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Preface

OBJECTIVES

The last years have seen a thriving research activity on cooperative control
and motion coordination. This interest is motivated by the growing possi-
bilities enabled by robotic networks in the monitoring of natural phenomena
and the enhancement of human capabilities in hazardous and unknown en-
vironments.

Our first objective with this book is to present a coherent introduction to
basic distributed algorithms for robotic networks. This emerging discipline
sits at the intersection of different areas such as distributed algorithms, par-
allel processing, control, and estimation. Our second objective is to provide
a self-contained, broad exposition of the notions and tools from these areas
that are relevant in cooperative control problems. These concepts include
graph-theoretic notions (connectivity, adjacency and Laplacian matrices),
distributed algorithms from computer science (leader election, basic tree
computations) and from parallel processing (averaging algorithms, conver-
gence rates), and geometric models and optimization (Voronoi partitions,
proximity graphs). Our third objective is to put forth a model for robotic
networks that helps to rigorously formalize coordination algorithms running
on them. We illustrate how computational geometry plays an important role
in modeling the interconnection topology of robotic networks. We draw on
classical notions from distributed algorithms to provide complexity measures
that characterize the execution of coordination algorithms. Such measures
allow us to quantify the algorithm performance and implementation costs.
Our fourth and last objective is to present various algorithms for coordina-
tion tasks such as connectivity maintenance, rendezvous, and deployment.
We put special emphasis on analyzing the correctness of the algorithms and
providing measures of their complexity.

The thematic variety of the exposition is also present in the proofs of
the main results of the book. The technical treatment combines control-
theoretic tools such as Lyapunov functions and invariance principles with
techniques from computer science and parallel processing such as induction
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and message counting.

INTENDED AUDIENCE

The intended audience of this book are first- and second-year graduate stu-
dents in control and robotics from Computer Science, Electrical Engineer-
ing, Mechanical Engineering, and Aerospace Engineering. A familiarity with
basic concepts from analysis, linear algebra, dynamical systems, and con-
trol theory is assumed. The writing style of the book is mathematical: we
have aimed at being precise in the introduction of the notions, the state-
ment of the results, and the formal description of the algorithms. This is
complemented by numerous examples, exercises, and a special effort carried
throughout the book at motivating the introduction of concepts and giving
intuitive explanations behind the results.

Researchers in the fields of control theory and robotics who are not aware
of the literature on distributed algorithms will also benefit from the book.
The book uses notions with a clear computer-science flavor such as syn-
chronous networks, complexity measures, basic tree computations, and lin-
ear distributed iterations, and integrates them into the study of robotic
networks. Likewise, researchers in the fields of distributed algorithms and
automata theory who are not aware of robotic networks and distributed con-
trol will also find the book useful. The numerous connections that can be
drawn between the classical study of distributed algorithms and the present
book provide a friendly roadmap to step into the field of controlled coordi-
nation of robotic networks.

BOOK OUTLINE

Chapter 1 presents a broad introduction to distributed algorithms on syn-
chronous networks. We start by presenting basic matrix notions and a
primer on graph theory that makes special emphasis on linear algebraic
aspects such as adjacency and Laplacian matrices. After this, we introduce
the notion of synchronous networks, and present time, communication, and
space complexity notions. We examine these notions in basic algorithms
such as broadcast, tree computation, and leader election. The chapter ends
with a thorough treatment of linear iterations and averaging algorithms.

Chapter 2 presents basic geometric notions that are relevant in motion co-
ordination. Robotic networks have a spatial component which is not always
present in synchronous networks as studied in computer science. Geometric
objects such as polytopes, Voronoi partitions, and geometric centers play
an important role in modeling the interaction of robotic networks with the
physical environment. Proximity graphs allow us to rigorously formalize the
interconnection topology of a network of robotic agents, and characterize
the spatially-distributed character of coordination algorithms. This notion

vi
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is a natural translation of the notion of distributed algorithms treated in
the previous chapter. The chapter concludes with a detailed discussion on
concepts from geometric optimization and multicenter functions.

Chapter 3 introduces a model for a group of robots that synchronously
communicate/sense locally, process information, and move. We describe the
physical components of the robotic network and introduce a formal notion
of motion coordination algorithm as a control and communication law. Gen-
eralizing the notions introduced in Chapter 1, we introduce the notion of
task and of time, communication, and space complexity. We illustrate these
concepts by means of a simple and insightful example of a group of robots
moving on a circle.

Chapter 4 analyzes in detail two coordination tasks: connectivity main-
tenance and rendezvous. The objective of “connectivity maintenance” is to
establish local rules that allow agents to move without losing the connec-
tivity of the overall networks. The objective of “rendezvous” is to establish
local rules that allow agents to agree on a common spatial location. We
present coordination algorithms that achieve these tasks, making use of the
geometric concepts introduced in the previous chapters. Furthermore, we
provide results on the correctness and complexity of these algorithms.

Chapter 5 considers deployment problems. The “deployment problem”
objective is to establish local rules that allow agents to achieve optimal
network configurations in an environment of interest. Here, optimality is
defined using the multicenter functions from geometric optimization intro-
duced in Chapter 2. We present coordination algorithms that achieve these
tasks, characterizing their correctness and complexity.

Chapter 6 has a dual purpose. First, we introduce an event-driven control
and communication law, in which computation and communication actions
are triggered by asynchronous events, rather than taking place on a periodic
schedule. Second, we consider a boundary tracking problem and propose
an “estimation and balancing” algorithm that allows a robotic network to
monitor a moving boundary efficiently.

The reader will note that, as the discussion progresses, the selection of
topics emphasizes problems in which we have been directly involved. There
are exciting topics that have been considered in the literature and are not
presented here in depth, albeit we briefly discuss a number of them through-
out the exposition. In this, our first effort, we decided to tackle the problems
we knew better, postponing the rest for the future. We hope the reader will
appreciate the result and share, while reading it, some of the fun we had
writing it.

vii
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HOW TO USE THIS BOOK AS A TEXT

Our experience and opinion is that this text can be used for a quarter- or
semester-long course on “Distributed Control” or on “Robotic Networks.”
Such a course could be taught in an Engineering or in a Computer Science
department. We taught such a course at our respective institutions over a
10 weeks, 3 hours a week, period, skipping some material and some proofs
(e.g., skipping combinatorial optimization in Chapter 1, some of the multi-
center functions and the nonconvex geometry treatment in Chapter 2, and
the relative-sensing model in Chapter 3). With proofs and more complete
treatment, we estimate the material might require 45 hours of lecture time.

Finally, the complete latest version of the manuscript with supplementary
material, such as slides and software, is freely available on the internet at:

http://coordinationbook.info
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Chapter One

An introduction to distributed algorithms

Graph theory, distributed algorithms, and linear distributed algorithms are
a fascinating scientific subject. In this chapter we provide a broad introduc-
tion to distributed algorithms by reviewing some preliminary graphical con-
cepts and by studying some simple algorithms. We begin the chapter with
one section introducing some basic notation and another section stating a
few useful facts from matrix theory, dynamical systems, and convergence
theorems based on invariance principles. In the third section of the chapter,
we provide a primer on graph theory with a particular emphasis on alge-
braic aspects, such as the properties of adjacency and Laplacian matrices
associated to a weighted digraph. In the next section of the chapter, we in-
troduce the notion of synchronous network and of distributed algorithm. We
state various complexity notions and study them in simple example prob-
lems such as the broadcast problem, the tree computation problem, and the
leader election problem. In the fifth section of the chapter, we discuss linear
distributed algorithms. We focus on linear algorithms defined by sequences
of stochastic matrices and review the results on their convergence proper-
ties. We end the chapter with three sections on, respectively, bibliographical
notes, proofs of the results presented in the chapter, and exercises.

1.1 ELEMENTARY CONCEPTS AND NOTATION

1.1.1 Sets and maps

We assume the reader is familiar with basic notions from topology, such as
the notions of open, closed, bounded and compact sets. In this section we
just introduce some basic notation. We let x € .S denote a point x belonging
to a set S. If S is finite, we let |S| denote the number of its elements. For
a set S, we let P(S) and F(S) denote the collection of subsets of S and the
collection of finite subsets of S, respectively. The empty set is denoted by
(). The interior and the boundary of a set S are denoted by int(S) and 95,
respectively. If A is a subset of or equal to S, then we write A C S. If A is
a strict subset of S, then we write A C S. We describe subsets of S defined
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by specific conditions via the notation
{z € S| condition(s) on x}.

Given two sets S7 and Sy, we let S1USy, S1NSy, and S7 x Sy denote
the union, intersection and Cartesian product of S; and So, respectively.
Given a collection of sets {S,},ca indexed by a set A, we interchangeably
denote their Cartesian product by [[,c4Sa or by [[{Sa | a € A}. We
adopt analogous notations for union and intersection. We denote by S™ the
Cartesian product of n copies of the same S. The diagonal set diag(S™) of
S™ is given by diag(S™) = {(s,...,s) € S™ | s € S}. The set S} \ S contains
all points in S7 that do not belong to Ss.

We let N and Z>q denote the set of natural numbers and of non-negative
integers, respectively. We let R, Ry, R>¢ and C denote the set of real
numbers, strictly positive real numbers, non-negative real numbers, and
complex numbers, respectively. The sets R, C%, and S ¢ R4 are the
d-dimensional Euclidean space, the d-dimensional complex space, and the
d-dimensional sphere, respectively. The tangent space of R?, denoted by
TR, is the set of all vectors tangent to R%. Note that TR can be identified
with R?xR? by mapping a vector v tangent to R? at = € R? to the pair (z,v).
Likewise, T'S? is the set of all vectors tangent to S, and can be identified with
S? x RY. The Euclidean space R? contains the vectors 04 = (0,...,0), 14 =
(1,...,1) and the standard basis e; = (1,0,...,0),...,eq4 = (0,...,0,1).
Given a < b, we let [a,b] and |a, b[ denote the closed interval and the open
interval between a and b, respectively.

Given two sets S and T, we let f : S — T denote a map from S to T,
i.e., a unique way of associating an element of 7" to an element of S. Given
f:S—Tand S; C S, welet f(S1) denote the image set {f(s) | s € S1}.
Given f: S —Tand g: T — U, welet fog:S — U, fog(s)= f(g(s)),
denote the composition of f and g. The map idg : S — S is the identity
map on S. Given f: S5 — R, the support of f is the set of elements s such
that f(s) # 0. The indicator function 1g : S — R associated with S is given
by 15(q) = 1if ¢ € S, and 15(q) = 0 if ¢ € S. Given two sets S and T,
a set-valued map, denoted by h : S = T, associates to an element of S a
subset of T. Given a map f : S — T, the inverse map f~' : T = S is
defined by

fH) ={se S| f(s) =1}

If f is a real-valued function, then f~!(z), for any z € R, is a level set of f.

The projection of a point ¢ € R? onto a set S C R? is defined by the
set-valued map proj, : R = S. This map assigns to every point ¢ € R? the
set projg(q) = {p € S| dista(q,p) = dista(q,S)}. If S is a closed set, then
projg(q) # 0 for any ¢ € R%.

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
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Finally, we introduce the so-called Bachmann-Landau symbols. For f. g :
N — R, we say that f € O(g) (respectively, f € Q(g)) if there exist ng € N
and K € Ry (respectively, k& € R~¢) such that |f(n)| < Klg(n)| for all
n > ng (respectively, |f(n)| > klg(n)| for all n > ng). If f € O(g) and
f € Q(g), then we use the notation f € ©(g).

1.1.2 Curves

In a topological space X, a (continuous) curve C'is the image of a continuous
map 7 : [a,b] — X. The map + is called a parameterization of C. We usually
identify a parameterization with the curve it defines. Note that, without loss
of generality, we can take a = 0 and b = 1. A curve connects two points p
and ¢ if 7(0) = p and v(1) = ¢. The length of a continuous and piecewise
continuously differentiable curve « is

1
length(y) = /0 14/(8) .

A curve 7 : [0,1] — X is not self-intersecting if + is injective on (0,1). A
curve is closed if 4(0) = ~(1). For a not self-intersecting and closed curve,
we define the inward unit normal vector ni, ~ and the outward unit normal
vectoT Noyt,~-

Consider a curve 7 : [0,1] — R in Euclidean space. Define the arg-length
parameter by

t
Yare(t) = /0 () lad.

Note that as the parameter ¢ varies in [0, 1], the arc-length parameter varc(t)
varies in [0, length(v)]. The arc-length parameterization of the curve is the
map Yare : [0, length(y)] — R? defined by the equation Yare(Yarc(t)) = (t).
Note that ng—: o = 1. With a slight abuse of notation, we will often drop
the subindex arc and denote the arc-length parameterization by ~ too.

For closed, not self-intersecting curves in the plane, we define the signed
and absolute curvatures as follows. Consider the (counterclockwise) arc-
length parameterization v : [0, length(y)] — R2. For each varc € [0, length(v)],
denote by 7' (Yarc) and nout(7are) the tangent vector and the outward unit
normal vector to the curve at y(7Varc). With these notations, the signed
curvature Ksigned : [0, length(y)] — R>q is defined by requiring it satisfies

'7” (’Yarc) = HKsigned (’Yarc) Nout,y (fyarc) 5
/

Nout,~ ('}’arc) = _”signed('Yarc)'V(’Varc)-

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
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The (absolute) curvature kaps : [0,length(y)] — R>o and the radius of cur-
vature p : [0, length(y)] — R of the curve are then defined by

Rabs (Varc) = ‘Hsigned (’Yarc) ‘7

,O(PYarc) = | Rsigned (FYarc) ‘ -t .

A set S C X is path connected if any two points in S can be joined by
a curve. A set S C X is simply connected if it is path connected and any
non self-intersecting closed curve can be continuously deformed to a point
in the set, i.e., for any injective continuous map = : [0, 1] — S that satisfies
~v(0) = (1), there exist p € S and a continuous map H : [0,1] x [0,1] — S
such that H(¢,0) = ~(t) and H(t,1) = p for all t € [0,1]. Informally, a
simply connected set is a set that consists of a single piece and does not
have any holes.

1.1.3 Distance functions

A function dist : S x S — R>q defines a distance on a set S if it satisfies:
(i) dist(z,y) = 0 if and only if x = y, (ii) dist(z,y) = dist(y,z) for all
x,y € S, and (iii) dist(x,y) < dist(x, z) + dist(z,y), for all x,y,z € S. The
pair (S, dist) is usually called a metric space.

Some relevant examples of distance functions include the following:

LP-distance on RY. For p € [1, +00|, consider the LP-norm on R¢ defined
by [lz|, = (Zle |2;|P)Y/P. For p = 400, consider the L>-norm on
R defined by ||z]e = maX;eqy,.. 4y |7i|. Any of these norms defines
naturally a LP-distance in R? by dist,(z,y) = ||y — z||,- In partic-
ular, the most widely used is the Euclidean distance, corresponding
to p = 2. Unless otherwise noted, it is always understood that R? is
endowed with this notion of distance. We will also use the L!- and
the L*°-distances. Finally, it is convenient to define the norm ||z||c of
a complex number z € C to be the Euclidean norm of z regarded as a
vector in R?;

Geodesic distance on S?. Another example is the notion of geodesic dis-
tance on S?. This is defined as follows. For z,y € S, disty(x,y) is
the length of the shortest curve in S? connecting = and y. We will
use this notion of distance in dimensions d = 1 and d = 2. On the
unit circle S*, by convention, let us define positions as angles measured
counterclockwise from the positive horizontal axis. Then, the geodesic

4
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distance can be expressed as
disty(z,y) = min{diste(z, y), distec (z,v)}, @,y € s,

where diste(z,y) = (x —y) mod 27 is the clockwise distance and
distec(x,y) = (y — ) mod 27 is the counterclockwise distance. Here
the clockwise distance between two angles is the path length from an
angle to the other traveling clockwise, and x mod 27 is the remainder
of the division of z by 27. On the sphere S?, the geodesic distance can
be computed as follows. Given x,y € S?, one considers the great circle
determined by x and y. Then, the geodesic distance between x and y
is exactly the length of the shortest arc in the great circle connecting
x and y;

Cartesian product distance on R% x S%. Consider R® endowed with
an LP-distance, p € [1,+00], and S% endowed with the geodesic dis-
tance. Then, one can define the Cartesian product distance on R% x
S by (dist,, disty) (21, 1), (¥2,y2)) = disty (21, 22) + disty(y1, y2) for
(z1,y1), (z2,72) € RY x S%. Unless otherwise noted, it is always un-
derstood that R% xS% is endowed with the Cartesian product distance
(dista, disty).

Given a metric space (5, dist), the open and closed ball of center = € S
and radius € € Ry are defined by, respectively,

B(z,e) ={y € S| dist(z,y) < €},

B(x,e) ={y € S| dist(z,y) < e}.
Consider a point z € X and a set S C X. A neighborhood of a point v € X
is a subset of X that contains an open ball centered at z. A neighborhood of
a set Y C X is a subset of X that, for each point y € Y, contains an open
ball centered at y.

The open lune associated to x,y € S is B(z,dist(x,y)) N B(y, dist(z,y)).
These notions are illustrated in Figure 1.1 for the Euclidean distance on the
plane.

The distance between a point z € S and a set W € P(S) is the infimum
of all distances between x and each of the points in W. Formally, we set

dist(xz, W) = inf{dist(z,y) | y € W}.

The diameter of a set is the maximum distance between any two points in
the set. Formally, we set diam(S) = sup{dist(x,y) | x,y € S}. With a slight
abuse of notation, we often use diam(P) to denote diam({pi,...,p,}) for

P =(p1,...,pn) € (R)™

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
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Figure 1.1 Open balls (dashed lines), closed ball (solid line), and open lune for the Eu-
clidean distance on the plane.

1.2 MATRIX THEORY

Here we present basic notions and results about matrix theory, following the
treatments in [Horn and Johnson, 1985] and [Meyer, 2001]. We let R™*™
and C™*"™ denote the set of n x m real and complex matrices. Given a real
matrix A and a complex matrix U, we let AT and U* denote the transpose
of A and the conjugate transpose matrix of U, respectively. We let I,
denote the n x n identity matrix. For a square matrix A, we write A > 0,
resp. A > 0, if A is symmetric positive definite, resp. symmetric positive
semidefinite. For a real matrix A, we let kernel(A) and rank(A) denote the
kernel and rank of A, respectively. Given a vector v, we let diag(v) denote
the square matrix whose diagonal elements are equal to the component v
and whose off-diagonal elements are zero.

1.2.1 Matrix sets

A matrix A € R™*" with entries a5, i,j € {1,...,n}, is

(i) orthogonal if AAT = I,,, and is special orthogonal if it is orthogonal
with det(A) = +1. The set of orthogonal matrices is a group;!

(ii) nonnegative (resp., positive) if all its entries are nonnegative (resp.,
positive);

(iii) row-stochastic (or stochastic for brevity) if it is nonnegative and

Z;LZI a;j = 1, for all i@ € {1,...,n}; in other words, A is row-
stochastic if

Al, = 1y;

(iv) doubly stochastic if it is row-stochastic and column-stochastic, where

1A set G with a binary operation, denoted by G x G > (a,b) — axb € G, is a group if (i)
ax(bxc)=(axb)*cfor all a,b,c € G (associativity property); (ii) there exists e € G such that
axe=exa=a forall a € G (existence of an identity element); and (iii) there exists a=! € G

such that axa™! = a~ ! xa = e for all a € G (existence of inverse elements).

6
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we say that A is column-stochastic if 17 A = 171
(v) normal if ATA = AAT,

(vi) a permutation matriz if A has precisely one entry equal to one in
each row, one entry equal to one in each column, and all other
entries equal to zero. The set of permutation matrices is a group;
and

(vii) drreducible if, for any nontrivial partition JU K of the index set
{1,...,n}, there exists j € J and k € K such that a;, # 0.

Remark 1.1 (Properties of irreducible matrices). The property of
irreducibility depends only upon the patterns of zeros and nonzero elements
of the matrix. Also, note the following equivalent definition of irreducibility.
A matrix A € R™" is irreducible if it is not reducible, and is reducible if
either

(i) n=1and A=0; or

(ii) there exists a permutation matrix P € R™ " and a number r €
{1,...,n—1} such that PT AP is block upper triangular with diag-
onal blocks of dimensions r x r and (n —r) x (n — 7). .

The scalars puq, ..., u, are convexr combination coefficients if p; > 0, for
i€ {l,...,k}, and Zle pu; = 1. (Each row of a row-stochastic matrix
contains convex combination coefficients.) A convex combination of vectors
is a linear combination of the vectors with convex combination coefficients.
A subset U of a vector space V is convez if the convex combination of any
two elements of U takes value in U. For example, the set of stochastic
matrices and the set of doubly stochastic matrices are convex.

Theorem 1.2 (Birkhoff-Von Neumann). A square matriz is doubly
stochastic if and only if it is a convexr combination of permutation matri-
ces.

Next, we review two families of relevant matrices with useful properties.
Toeplitz matrices are square matrices with equal entries along each diagonal
parallel to the main diagonal. In other words, a Toeplitz matrix is a matrix
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of the form

t—n+2

[t—nt1

t tn—2
to  H
t1  tye t
t1 to t
t1 to H
t1 to
lon+2 (]

tnfl

tp—2

t1
to |

An n x n Toeplitz matrix is determined by its first row and column, hence
by 2n — 1 scalars.

Circulant matrices are square Toeplitz matrices where each two subse-
quent row vectors v; and v;41 have the following two properties: the last
entry of v; is the first entry of v; ;1 and the first (n — 1) entries of v; are the
second (n — 1) entries of v;y1. In other words, a circulant matrix is a matrix

of the form

C2

C1

C2

Cn—2
c1
Co C1
Cn—1 €o &1
Cn—1 &0} C1
Cn—1 o
Cn—1

and, therefore, it is determined by its first row.

Cn—1

Cn—2

C1

€o

1.2.2 Eigenvalues, singular values, and induced norms

We require the reader to be familiar with the notion of eigenvalue and of
simple eigenvalue (i.e., an eigenvalue with algebraic and geometric multi-
plicity equal to 1). The set of eigenvalues of a matrix A € R™*" is called its
spectrum and is denoted by spec(A) C C. The singular values of the matrix
A € R™™ are the positive square roots of the eigenvalues of AT A.

We begin with a well-known property of the spectrum of a matrix.
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Theorem 1.3 (Gersgorin Disks). Let A be an n x n matriz. Then

spec(A) C U {z €C| |z = aiillc < Z ]aij]}.

ie{l,..,n} J=Lj#i

Next, we review a few facts about normal matrices and their singular
values.

Lemma 1.4 (Normal matrices). For a matric A € R™™, the following
statements are equivalent:

(i) A is normal;

(i) A has a complete orthonormal set of eigenvectors; and

(iii) A is unitarily similar to a diagonal matriz, i.e., there exists a uni-

tary? matriz U such that U* AU is diagonal.

Lemma 1.5 (The singular values of a normal matrix). If a normal
matriz has eigenvalues {1, ..., \n}, then its singular values are {|A1|,. .., ||}

It is well known that real symmetric matrices are normal, are diagonaliz-
able by orthogonal matrices, and have real eigenvalues. Additionally, circu-
lant matrices are normal.

We conclude defining the notion of induced norm of a matrix. For p €
NU{oo}, the p-induced norm of A € R™™™ is

HAHP = maX{||A33”p | Hpr =1}

One can see that

n n
Al = max Z Qi A = max Z Qi
|| ”1 je{lon} rar | z]|7 ” ”oo ie (Lo} ~ ‘ 1j|7

I|A|l2 = max{o | o is a singular value of A}.

1.2.3 Spectral radius and convergent matrices

The spectral radius of a matrix A € R™*" is
p(4) = max{[\c | A € spec(A)}.

In other words, p(A) is the radius of the smallest disk centered at the origin
that contains the spectrum of A.

2A complex matrix U € C**™ is unitary if U~1 = U*.

9
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Lemma 1.6 (Induced norms and spectral radius). For any square
matriz A and in any norm p € NU{oo}, p(A) < || Alp.

We will often deal with matrices with an eigenvalue equal to 1 and all
other eigenvalues strictly inside the unit disk. Accordingly, we generalize the
notion of spectral radius as follows. For a square matrix A with p(A) = 1,
we define the essential spectral radius

pess(A) = max{[[Allc | A € spec(4)\ {1}}. (12.1)

Next, we consider matrices with useful convergence properties.

Definition 1.7 (Convergent and semi-convergent matrices). A ma-
trix A € R™*" is

(i) semi-convergent if limy_, | o, A® exists; and

(ii) convergent if it is semi-convergent and lim,_,, o, A* = 0. o
These two notions are characterized as follows.

Lemma 1.8 (Convergent and semi-convergent matrices). The square
matriz A is convergent if and only if p(A) < 1. Furthermore, A is semi-
convergent if and only if the following three properties hold:

(1) p(A) < 1;

(1) pess(A) < 1, that is, 1 is an eigenvalue and 1 is the only eigenvalue
on the unit circle; and

(iii) the eigenvalue 1 is semisimple, i.e., it has equal algebraic and geo-
metric multiplicity (possibly larger than one).

In other words, A is semi-convergent if and only if there exists a nonsin-
gular matrix 7" such that
A=T [I’“ 0} 71,

where B € R("=#)*("=k) j5 convergent, that is, p(B) < 1. With this notation,
we have pess(A) = p(B) and the algebraic and geometric multiplicity of the
eigenvalue 1 is k.

1.2.4 Perron-Frobenius theory

Positive and nonnegative matrices have useful spectral properties. The first
statement in the following theorem amounts to the original Perron’s The-

10
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orem for positive matrices; the second statement is the extension due to
Frobenius for nonnegative matrices.

Theorem 1.9 (Perron-Frobenius). If the square matriz A is positive,
then

(i) p(A) > 0;
(ii) p(A) is an eigenvalue, it is simple, and p(A) is strictly larger than
the magnitude of any other eigenvalue; and

(iii) p(A) has an eigenvector with positive components.

Furthermore, if the square matrixz A is nonnegative and irreducible, then

(i) p(A) > 0;
(ii) p(A) is an eigenvalue, and it is simple; and

(iii) p(A) has an eigenvector with positive components.

Note that, in general, the spectral radius of a nonnegative irreducible
matrix does not need to be the only eigenvalue of maximum magnitude. For

example, the matrix 1] has eigenvalues {1, —1}. It is useful, therefore,

0
10
to introduce a sharper characterization of nonnegative irreducible matrices.

Definition 1.10 (Primitive matrix). A nonnegative square matrix A is
primitive if there exists k € N such that A* is positive. °

It is easy to see that if a matrix is reducible, then it cannot be primitive;
or in other words, if A is primitive, then it must be irreducible. The second
part of the Perron-Frobenius Theorem 1.9 can now be sharpened as follows.

Theorem 1.11 (Perron-Frobenius for primitive matrices). If a non-
negative matrix is primitive, then its spectral radius is its only eigenvalue of
mazimum magnitude.

We conclude this section by noting the following convergence properties: If
A is positive or A is nonnegative and primitive, then Lemma 1.8 guarantees
that p(A)~1A is semi-convergent.

1.3 DYNAMICAL SYSTEMS AND STABILITY THEORY

In this section we introduce some basic concepts about dynamical and con-
trol systems; e.g., see [Sontag, 1998, Khalil, 2002]. We discuss stability and
attractivity notions, and give fairly general versions of the invariance princi-
ple. We conclude with a treatment of set-valued systems and time-dependent

11
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systems.

1.3.1 State machines and dynamical systems

Here, we introduce three classes of dynamical and control systems: (i) state
machines or discrete-time discrete-space dynamical systems; (ii) discrete-
time continuous-space control systems; and (iii) continuous-time continuous-
space control systems.

We begin with our specific definition of state machine. A (deterministic,
finite) state machine is a tuple (X, U, X, f), where X is a finite set called
the state space, U is a finite set called the input space, Xg C X is the set
of allowable initial states, and f: X x U — X is the evolution map. Given
an input sequence u : Z>o — U, the state machine evolution z : Z>¢y — X
starting from z(0) € Xy is given by

z(l+1) = f(z(0),u(?)), LeZso.

We will often refer to a state machine as a processor. Note that, in a state
machine, both the state and the input spaces are finite or discrete. Often
times, we will find it useful to consider systems that evolve in continuous
space and that are time-dependent. Let us then provide two additional
definitions in the next paragraphs.

A (time-dependent) discrete-time continuous-space control system is a tu-
ple (X, U, Xo, f), where X is d-dimensional space chosen among R?, S%, and
the Cartesian products R% x S%, for some d; +ds = d, U is a compact subset
of R™ containing 0,,, Xo C X and f : Z>o x X x U — X is a continuous
map. As before, the individual objects X, U, Xg and f are termed state
space, input space, allowable initial states and evolution map, respectively.
Given an input sequence u : Z>o — U, the evolution = : Z>9 — X of the
dynamical system starting from 2:(0) € X is given by

2(C+1) = f(L,x(0),u(l)), {€ Zso.

A (time-dependent) continuous-time continuous-space control system is a
tuple (X, U, Xo, f), where X is d-dimensional space chosen among R?, S?,
and the Cartesian products R% x S%, for some d; +dy = d, U is a compact
subset of R™ containing 0,,, Xo C X and f : Ry x X xU — TX is a
continuously differentiable map. The individual objects X, U, Xg and f are
termed state space, input space, allowable initial states and control vector
field, respectively. Given an input function u : R>9 — U, the evolution

12
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x :R>p — X of the dynamical system starting from z(0) € X is given by
(t) = f(t,z(t),u(t)), teRso.

We often consider the case when the control vector field can be written as
ft,z,u) = fo(t,x) + >0t falt, z) uq, for some continuously differentiable
maps fo, fi,...,fm : R>0 x X — TX. Each of these individual maps is
called a (time-dependent) vector field, and f is said to be a control-affine
vector field. The control vector field f is driftless if f(t,x,0,,) = 0 for all
.I'EXanthRzo.

Finally, the term dynamical system denotes a control system that is not
subject to any external control action; this terminology is applicable both
in discrete and continuous time. Furthermore, we will sometimes neglect to
define a specific set of allowable initial states; in this case we mean that any
point in the state space is allowable as initial condition.

1.3.2 Stability and attractivity notions

In this section we consider a continuous-space dynamical system (X, f). We
first consider the discrete-time case and later we briefly present the analogous
continuous-time case. We study dynamical systems that are time-invariant.
In discrete-time, a time-invariant system is simply described by an evolution
map of the form f: X — X.

Definition 1.12 (Equilibrium point). A point z, € X is an equilibrium
point for the time-invariant dynamical system (X, f) if the constant curve
x : ZL>p — X, defined by z(¢) = z, for all £ € Z>g, is an evolution of the
System. °

It is immediate to see that a point x, is an equilibrium point if and only
if f(zs) = x.. We denote the set of equilibrium points of the dynamical
system by Equil(X, f).

Definition 1.13 (Trajectories and sets). Let (X, f) be a time-invariant
dynamical system and let W be a subset of X.

(i) The set W is positively invariant for (X, f) if each evolution with
initial condition in W remains in W for all subsequent times.

(ii) A trajectory x : Z>o — X approaches a set W C X if, for every
neighborhood Y of W, there exists a time o > 0 such that x(¢)
takes values in Y for all subsequent times ¢ > #y. In such a case, we
write x(¢) — W as £ — +o0. o
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In formal terms, W is positively invariant if z(0) € W implies z(¢) € W
for all ¢ € Z>o, where z : Z>¢9 — X is the evolution of (X, f) starting from
x(0).

Definition 1.14 (Stability and attractivity notions). For a time-invariant
dynamical system (X, f), a set S is

(i) stable if, for any neighborhood Y of S, there exists a neighborhood
W of S such that every evolution of (X, f) with initial condition in
W remains in Y for all subsequent times;

(ii) unstable if it is not stable;

(iii) locally attractive if there exists a neighborhood Y of S such that
every evolution with initial condition in Y approaches the set S;
and

(iv) locally asymptotically stable if it is stable and locally attractive. e

Remark 1.15 (Continuous-time dynamical systems). It is straight-
forward to extend the previous definitions to the setting of continuous-time
continuous-space dynamical systems. These notions are illustrated in Fig-
ure 1.2. °

Figure 1.2 Illustrations of stability, asymptotic stability, and instability.

1.3.3 Invariance principles

Before discussing various versions of the invariance principle, we begin with
a useful notion. Given a discrete-time time-invariant continuous-space dy-
namical system (X, f) and a set W C X, a function V' : X — R is non-
increasing along f in W it V(f(z)) < V(x) for all z € W. (Such functions
are often referred to as Lyapunov functions.) In other words, if a function
V' is non-increasing along f, then the composite function ¢ — V(y(¥)) is
non-increasing for each evolution y of the dynamical system (X, f). The
following theorem exploits this fact to establish useful properties of the evo-
lutions of (X, f).
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Theorem 1.16 (LaSalle Invariance Principle for discrete-time dy-
namical systems). Let (X, f) be a (discrete-time continuous-space) time-
independent dynamical system. Assume that

(i) there exists a set W C X that is positively invariant for (X, f);

(ii) there exists a function V : X — R that is non-increasing along f
on W;

(i1i) all evolutions of (X, f) with initial conditions in W are bounded;
and

(iv) f and V are continuous on W.

Then all evolutions with initial conditions in W approach a set of the form
V=Yce)NS, where c is a real constant and S is the largest positively invariant
set contained in {p € W | V(f(p)) =V(p)}.

We refer to Section 1.8.1 for a discussion about the proof of this result.
Next, we present the continuous-time version of the invariance principle. In
other words, we now assume that (X, f) is a continuous-time time-invariant
continuous-space dynamical system.

We begin by revisiting the notion of non-increasing function. Given a
continuously differentiable function V : X — R, the Lie derivative of V
along f, denoted by L;V : X — R, is defined by

d
LiV(x)=—=V(~(t
V) = Svem),_
where the trajectory 7 : | —e,e] — X satisfies 4(t) = f(7(¢)) and v(0) = z.
If X = R%, then we can write = in components (1, . ..,z4) and we can give

the following explicit formula for the Lie derivative:
LiV(x)=

Similar formulas can be obtained for more general state spaces. Next, given
aset W C X, a function V : X — R is non-increasing along f in W if
LV (xz) <0foralzelW.

Finally, we state the invariance principle for continuous-time systems.

Theorem 1.17 (LaSalle Invariance Principle for continuous-time
dynamical systems). Let (X, f) be a (continuous-time continuous-space)
time-independent dynamical system. Assume that

(i) there exists a set W C X that is positively invariant for (X, f);
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(ii) there exists a function V : X — R that is non-increasing along f
on W;

(iii) all evolutions of (X, f) with initial conditions in W are bounded;
and

(iv) f and V are continuously differentiable® on W.

Then all evolutions with initial conditions in W approach a set of the form
V=e)NS, where c is a real constant and S is the largest positively invariant
set contained in {p € W | L;V (p) = 0}.

1.3.4 Notions and results for set-valued systems

Next, we focus on a more sophisticated version of the LaSalle Invariance
Principle for more general dynamical systems, that is, dynamical systems
described by set-valued maps that allow for non-deterministic evolutions. To
do so, we need to present numerous notions including set-valued dynamical
systems, closedness properties, and weak positive invariance.

Specifically, a discrete-time continuous-space set-valued dynamical system
(in short, set-valued dynamical system) is determined by a tuple (X, Xy, T),
where X is a d-dimensional space chosen among R?, S?, and the Cartesian
products R% x §% for some di +ds =d, Xo C X and T : X = X is a
set-valued map. We assume that 7" assigns to each point x € X a nonempty
set T'(x) C X. The individual objects X, Xy and T" are termed state space,
allowable initial states and evolution map, respectively. An evolution of the
dynamical system (X, Xo,T") is any trajectory x : Z>o — X satisfying

2(f+1) € T(z(0)), €€ Zso.

Figure 1.3 illustrates this notion. In particular, a (time-invariant) discrete-
time continuous-space dynamical system (X, Xo, f) can be seen as a discrete-
time continuous-space set-valued dynamical system (X, X¢,7T'), where the
evolution set-valued map is just the singleton-valued map = — T(x) =

{f(2)}.

Next, we introduce a notion of continuity for set-valued maps. The evolu-
tion map 7' is said to be closed at x € X if, for any sequences {xj, | k € Z>o}
and {yi | k € Z>o} such that

lim z, = =z, lim y, =y, and yi € T(xg),
k—+o00 k—+o00

it holds that y € T'(z). The evolution set-valued map 7" is closed at W C X

3Tt suffices that f be locally Lipschitz and V be continuously differentiable; see [Cortés, 2008a].
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Figure 1.3 Discrete-time continuous-space set-valued dynamical system. A sample evolu-
tion is shown dashed.

if for any « € W, T is closed at x. Note that a continuous map f: X — X
is closed when viewed as a singleton-valued map.

(i) A set C C X is weakly positively invariant with respect to T if, for
any x € C, there exists y € C such that y € T'(x).

(ii) A set C C X is strongly positively invariant with respect to T if
T(x) C C for any z € C.

A point z is said to be a fized point of T if xg € T(xg). A continuous
function V' : X — R is non-increasing along T in W C X if V(y) < V(x)
for all x € W and y € T'(x).

We finally state and prove a general version of the invariance principle,
whose proof is presented in Section 1.8.1.

Theorem 1.18 (LaSalle Invariance Principle for set-valued dis-
crete-time dynamical systems). Let (X, Xo,T') be a (discrete-time continuous-
space) set-valued dynamical system. Assume that

(i) there exists a set W C X that is strongly positively invariant for

(X7 X07 T) 5

(ii) there exists a function V : X — R that is non-increasing along T
on W;

(iii) all evolutions of (X, Xo, T') with initial conditions in W are bounded;
and

(iv) T is nonempty and closed at W and V' is continuous on W.
Then all evolutions with initial conditions in W approach a set of the form
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V=Ye) NS, where ¢ is a real constant and S is the largest weakly positively
invariant set contained in {p € W | Ip' € T'(p) such that V(p') =V (p)}.

1.3.5 Notions and results for time-dependent systems

In this final subsection we consider time-dependent discrete-time dynamical
systems and discuss wuniform stability and convergence notions. We begin
with some uniform boundedness, stability and attractivity definitions.

In what follows, given a time-dependent discrete-time dynamical system
(X, Xo, f), an evolution with initial condition in W at time £y € Z>¢ is a
trajectory x : [lp, +00] — X of the dynamical system (X, Xy, f) defined by
the initial condition x(¢y) = x¢, for some zo € W. In other words, for time-
dependent systems we will often consider trajectories that begin at time ¢
not necessarily equal to 0.

Definition 1.19 (Uniformly bounded evolutions). A time-dependent
discrete-time dynamical system (X, X, f) has uniformly bounded evolutions
if, given any bounded set Y, there exists a bounded set W such that every
evolution with initial condition in Y at any time ¢y € Z>q, remains in W
for all subsequent times £ > £. °

Definition 1.20 (Uniform stability and attractivity notions). For a
time-dependent discrete-time dynamical system (X, Xg, f), the set S is

(i) wuniformly stable for (X, Xy, f) if, for any neighborhood Y of S,
there exists a neighborhood W of S such that every evolution with
initial condition in W at any time fy € Z>(, remains in Y for all
subsequent times ¢ > fy;

(ii) wniformly locally attractive for (X, Xy, f) if there exists a neighbor-
hood Y of S such that every evolution with initial condition in Y
at any time {g, approaches the set S in the following time-uniform
manner:

for all £y € Z>q, for all zg € Y, and for all neighborhoods
W of S, there exists a single 79 € Z>o such that the
evolution x : [{y, +00] — X defined by x(¢y) = xo, takes
value in W for all times ¢ > fy + 7p; and

(iii) uniformly locally asymptotically stable if it is uniformly stable and
uniformly locally attractive. °

With the same notation in the definition, the set S is (non-uniformly)
locally attractive if for all {y € Z>o, zo € Y, and neighborhoods W of S, the
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evolution x : [y, +oo[ — X defined by x(fy) = xo, takes value in W for all
times ¢ > £y + 79(¢o), for some 14(¢y) € Z>o.

To establish uniform stability and attractivity results we will overapprox-
imate the evolution of the time-dependent dynamical system by considering
the larger set of evolutions of an appropriate set-valued dynamical system.
Given a time-dependent evolution map f : Z>ox X — X, define a set-valued
overapprorimation map Ty : X = X by

Ty(x) = {f(t,x) | £ € Zxo}.

With this notion we can state a useful result, whose proof is left to the
reader as an exercise.

Lemma 1.21 (Overapproximation Lemma). Consider a time-dependent
discrete-time dynamical system (X, Xo, f).

(i) If x : [ly, +oo[ — X is an evolution of the dynamical system (X, f),
then y : Z>o — X defined by y({) = x(¢ + £y) is an evolution of the
set-valued overapproximation system (X, TY).

(ii) If the set S is locally attractive for the set-valued overapprozimation
system (X, Ty), then it is uniformly locally attractive for (X, f).

In other words, every evolution of the time-dependent dynamical system
from any initial time is an evolution of the set-valued overapproximation sys-
tem, and therefore, the set of trajectory of the set-valued overapproximation
system contains the set of trajectory of the original time-dependent system.
Uniform attractivity is a consequence of attractivity for the time-invariant
set-valued overapproximation.

1.4 GRAPH THEORY

Here we present basic definitions about graph theory, following the treat-
ments in the literature; e.g., see [Diestel, 2005, Godsil and Royle, 2001,
Biggs, 1994]

A directed graph, in short digraph, of order n is a pair G = (V, E'), where
V is a set with n elements called vertices (or nodes) and F is a set of ordered
pair of vertices called edges. In other words, £ C V x V. We call V and
E the vertex set and edge set, respectively. When convenient, we let V(G)
and F(G) denote the vertices and edges of G, respectively. For u,v € V,
the ordered pair (u,v) denotes an edge from u to v.

An undirected graph, in short graph, consists of a vertex set V and of a
set E of unordered pairs of vertices. For u,v € V and u # v, the set {u,v}
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denotes an unordered edge. A digraph is undirected if (v,u) € E anytime
(u,v) € E. Tt is possible and convenient to identify an undirected digraph
with the corresponding graph; vice versa, the directed version of a graph
(V, E) is the digraph (V’, E') with the property that (u,v) € E’ if and only
if {u,v} € E. In what follows, our convention is to allow self-loops in both
graphs and digraphs.

A digraph (V', E’) is a subgraph of a digraph (V, E) if V' C V and E’ C E;
additionally, a digraph (V’, E’) is a spanning subgraph if it is a subgraph and
V' = V. The subgraph of (V, E) induced by V' C V is the digraph (V', E’),
where E’ contains all edges in E between two vertices in V'. For two digraphs
G = (V,E) and G' = (V', E’), the intersection and union of G and G’ are
defined by

GNG =(VnV,ENE),
GUG = (VUV' EUE).

Analogous definitions may be given for graphs.

In a digraph G with an edge (u,v) € E, u is called an in-neighbor of v,
and v is called an out-neighbor of u. We let N (v), respectively N3 (v),
denote the set of in-neighbors, respectively the set of out-neighbors, of v
in the digraph G. We will drop the subscript when the graph G is clear
from the context. The in-degree and out-degree of v are the cardinality
of N'8(v) and N°"(v), respectively. A digraph is topologically balanced if
each vertex has the same in- and out-degrees (even if distinct vertices have
distinct degrees). Likewise, in an undirected graph G, the vertices u and v
are neighbors if {u,v} is an undirected edge. We let N (v) denote the set
of neighbors of v in the undirected graph G. As in the directed case, we will
drop the subscript when the graph G is clear from the context. The degree
of v is the cardinality of N(v).

Remark 1.22 (Additional notions). For a digraph G = (V, E), the re-
verse digraph rev(G) has vertex set V and edge set rev(FE) composed of all
edges in F with reversed direction. A digraph G = (V, E) is complete if
E =V xV. A cligue (V', E") of a digraph (V, E) is a subgraph of (V, E)
which is complete, i.e., such that £ = V/ x V’. Note that a clique is fully
determined by its set of vertices, and hence, there is no loss of precision in
denoting it by V’'. A mazimal clique V' of an edge of a digraph is a clique
of the digraph with the following two properties: it contains the edge, and
any other subgraph of the digraph that strictly contains (V/, V' x V') is not
a clique. °

20

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
Copyright (© 2006-2008. Manuscript under contract. This version: October 27, 2008



DCRN October 27, 2008

1.4.1 Connectivity notions

Let us now review some basic connectivity notions for digraphs and graphs.
We begin with the setting of undirected graphs because of its simplicity.

A path in a graph is an ordered sequence of vertices such that any two
consecutive vertices in the sequence are an edge of the graph. A graph is
connected if there exists a path between any two vertices. If a graph is
not connected, then it is composed of multiple connected components, i.e.,
multiple connected subgraphs. A path is simple if no vertices appear more
than once in it, except possibly for initial and final vertex. A cycle is a
simple path that starts and ends at the same vertex. A graph is acyclic if it
contains no cycles. A connected acyclic graph is a tree. A forest is a graph
that can be written as the disjoint union of trees. Trees have interesting
properties: for example, G = (V, F) is a tree if and only if G is connected
and |E| = |V| — 1. Alternatively, G = (V, E) is a tree if and only if G is
acyclic and |E| = |V| — 1. Figure 1.4 illustrates these notions.

Figure 1.4 Illustration of connectivity notions on a graph. The graph has two connected
components. The leftmost connected component is a tree, while the rightmost
connected component is a cycle.

Next, we generalize these notions to the case of digraphs. A directed path
in a digraph is an ordered sequence of vertices such that any two consecutive
vertices in the sequence are a directed edge of the digraph. A cycle in a
digraph is a directed path that starts and ends at the same vertex and that
contains no repeated vertex except for initial and final vertex. A digraph is
acyclic if it contains no cycles. In an acyclic graph, every vertex of in-degree
0 is named source, and every vertex of out-degree 0 is named sink. Every
acyclic digraph has at least one source and at least one sink. Figure 1.5
illustrates these notions.

The set of cycles of a directed graph is finite. A directed graph is aperiodic
if there exists no k£ > 1 that divides the length of every cycle of the graph.
In other words, a digraph is aperiodic if the greatest common divisor of the
lengths of its cycles is one. Figure 1.6 shows an example of a periodic and
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@
W

Figure 1.5 Illustration of connectivity notions on a digraph. (a) shows an acyclic digraph
with one sink and two sources. (b) shows a directed path which is also a cycle.

an aperiodic digraph.

WP

Figure 1.6 (a) A periodic digraph. (b) An aperiodic digraph with cycles of lenght 2 and 3.

A vertex of a digraph is globally reachable if it can be reached from any
other vertex by traversing a directed path. A digraph is strongly connected
if every vertex is globally reachable. The decomposition of a digraph into
its strongly connected components and the notion of condensation digraph
are discussed in Exercise E1.12.

A directed tree (sometimes called a rooted tree) is an acyclic digraph with
the following property: there exists a vertex, called the root, such that any
other vertex of the digraph can be reached by one and only one directed
path starting at the root. In a directed tree, every in-neighbor of a vertex is
called a parent and every out-neighbor is called a child. Two vertices with
the same parent are called siblings. A successor of a vertex u is any other
node that can be reached with a directed path starting at u. A predecessor of
a vertex v is any other node such that a directed path exists starting at it and
reaching v. A directed spanning tree, or simply a spanning tree, of a digraph
is a spanning subgraph that is a directed tree. Clearly, a digraph contains a
spanning tree if and only if the reverse digraph contains a globally reachable
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vertex. A (directed) chain is a directed tree with exactly one source and one
sink. A (directed) ring digraph is the cycle obtained by adding to the edge
set of a chain a new edge from its sink to its source. Figure 1.7 illustrates

some of these notions. /\
AN 0
AN

Figure 1.7 From left to right, tree, directed tree, chain, and ring digraphs.

The proof of the following result is given in Section 1.8.2.

Lemma 1.23 (Connectivity in topologically balanced digraphs). Let
G be a digraph. The following statements hold:

(i) If G is strongly connected, then it contains a globally reachable vertex
and a spanning tree; and

(i1) if G is topologically balanced and contains either a globally reach-
able verter or a spanning tree, then G is strongly connected and is
Eulerian.*

Given a digraph G = (V, E), an in-neighbor of a nonempty set of nodes
U is anode v € V \ U for which there exists an edge (v,u) € E for some
ueU.

Lemma 1.24 (Disjoint subsets and spanning trees). Given a digraph
G with at least two nodes, the following two properties are equivalent:

(i) G has a spanning tree; and

(ii) for any pair of nonempty disjoint subsets Uy, Us C V', either Uy has
an in-netghbor or Us has an in-neighbor.

We postpone the proof to Section 1.8.2. The result is illustrated in Fig-
ure 1.8. We can also state the result in terms of global reachability: G has a
globally reachable node if and only if for any pair of nonempty disjoint sub-
sets Uy, Uy C V, either U; has an out-neighbor or Uy has an out-neighbor.
We let the reader give a proper definition of out-neighbor of a set.

4A graph is Eulerian if it has a cycle that visits all the graph edges exactly once.
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DO DT

Figure 1.8 Illustration of Lemma 1.24. The root of the spanning tree is plotted in gray. In
(a), the root is outside the sets Uy and Uz. Because these sets are non-empty,
there exists a directed path from the root to a vertex in each one of these sets.
Therefore, both U; and Us have in-neighbors. In (b), the root is contained in
Ui. Because U is non-empty, there exists a directed path from the root to
a vertex in Uz, and, therefore, Uz has in-neighbors. The case when the root
belongs to U, is treated analogously.

1.4.2 Weighted digraphs

A weighted digraph is a triplet G = (V, E, A), where the pair V = {vy,...,v,}
and E is a digraph, and where the nonnegative matrix A € RL;" is a
weighted adjacency matriz with the following properties: fori,j € {1,...,n},
the entry a;; > 0 if (v;,v;) is an edge of G, and a;; = 0 otherwise. In other
words, the scalars a;;, for all (v;,vj) € E, are a set of weights for the edges of
G. Note that the edge set is uniquely determined by the weighted adjacency
matrix and it can be therefore omitted. When convenient, we denote the
adjacency matrix of a weighted digraph G by A(G). Figure 1.9 shows an
example of a weighted digraph.

Figure 1.9 A weighted digraph with natural weights.

A digraph G = (V, E) can be naturally thought of as a weighted digraph
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by defining the weighted adjacency matrix A € {0,1}"*" as

1, if (v;,v;) € B,

aij = i (05, ;) (1.4.1)
0, otherwise,

where V' = {vy,...,v,}. The adjacency matrix of a graph is the adjacency

matrix of the directed version of the graph. Reciprocally, given a weighted
digraph G = (V, E, A), we refer to the digraph (V, E) as the unweighted ver-
sion of G and to its associated adjacency matrix as the unweighted adjacency
matriz. A weighted digraph is undirected if a;; = aj; for all 4,5 € {1,...,n}.
Clearly, G is undirected if and only if A(G) is symmetric.

Numerous concepts introduced for digraphs remain equally valid for the
case of weighted digraphs, including the connectivity notions and the defi-
nitions of in- and out-neighbors.

Finally, we generalize the notions of in- and out-degree to weighted di-
graphs. In a weighted digraph G = (V, E, A) with V' = {vy,...,v,}, the
weighted out-degree and the weighted in-degree of vertex v; are defined by,
respectively,

dowt(vi) = Y aij, and  din(vi) = > aji.
P =1

The weighted digraph G is weight-balanced if doys(v;) = din(v;) for all v; € V.
The weighted out-degree matrixz Doy (G) and the weighted in-degree matriz
Din(G) are the diagonal matrices defined by

Dout(G) = diag(A1,), and Dj,(G) = diag(AT1,).
That is, (Dout(G))ii = dout(v;) and (Din(G))s = din(v;), respectively.

1.4.3 Distances on digraphs and weighted digraphs

We first present a few definitions for unweighted digraphs. Given a digraph
G, the (topological) length of a directed path is the number of the edges
composing it. Given two vertices u and v in the digraph G, the distance
from u to v, denoted dist(u,v), is the smallest length of any directed path
from u to v, or +oc if there is no directed path from u to v, that is,

diste(u, v) = min ({length(p) | p is a directed path from u to v} U{+o0}).

Given a vertex v of a digraph G, the radius of v in GG is the maximum of all
the distances from v to any other vertex in G, that is,

radius(v, G) = max{distg(v,u) | u € V(G)}.
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If T is a directed tree and v is its root, then the depth of T is radius(v,T).
Finally, the diameter of the digraph G is

diam(G) = max{distg(u,v) | u,v € V(G)}.
These definitions lead to the following simple results:
(i) radius(v,G) < diam(G) for all vertices v of G;

(ii) G contains a spanning tree rooted at v if and only if radius(v, G) <
+o00; and

(iii) G is strongly connected if and only if diam(G) < +oo.

The definitions of path length, distance between vertices, radius of a vertex,
and diameter of a digraph can be easily applied to undirected graphs.

Next, we consider weighted digraphs. Given two vertices u and v in the
weighted digraph G, the weighted distance from u to v, denoted wdist¢ (u, v),
is the smallest weight of any directed path from u to v, or +oc if there is no
directed path from wu to v, that is,

wdiste (u, v) = min ({weight(p) | p is a directed path from u to v} U{+o0}).

Here, the weight of a subgraph of a weighted digraph is the sum of the
weights of all the edges of the subgraph. Note that when a digraph is thought
of as a weighted digraph (with the unweighted adjacency matrix (1.4.1)), the
notions of weight and weighted distance correspond to the usual notions of
length and distance, respectively. We leave it the reader to provide the
definitions of weighted radius, weighted depth, and weighted diameter.

1.4.4 Graph algorithms

In this section we present a few algorithms defined on graphs. We only
present high-level descriptions and we refer to [Cormen et al., 2001] for a
comprehensive discussion.

1.4.4.1 Breadth-first spanning tree

Let v be a vertex of a digraph G with radius(v,G) < +oo. A breadth-first
spanning (BFS) tree of G with respect to v, denoted Tppg, is a spanning
directed tree rooted at v that contains a shortest path from v to every other
vertex of G. (Here, a shortest path is one with shortest topological length.)
Let us provide the BFS ALGORITHM that, given a digraph G of order n and
a vertex v with radius(v, G) < +00, computes a BFS tree Tprg rooted at v.
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[Informal description/ Initialize a subgraph to contain only the
root v. Repeat radius(v,G) times the following instructions:
attach to the subgraph all out-neighbors of the subgraph as well
as a single connecting edge for each out-neighbor. The final
subgraph is the desired directed tree.

The algorithm is formally stated as follows.

function BFS(G,v)

1 (W, Br) == ({v},0)
2: for k =2 to radius(v, G) do

3:

4:
5:

find all vertices wy, ..., w,, not in V,_; that are out-neighbors of
some vertex in Vi_; and, for j € {1,...,m}, let e; be an edge
connecting a vertex in Vj_; to w;

Vk = kal U{wl, N ,wm}

E, = FE;,_4 U{el, e 6m}

6: return (V,, E,)

Note that the output of this algorithm is not necessarily unique, since the
choice of edges at step 3: in the algorithm is not unique. Figure 1.10 shows
an execution of the BFS ALGORITHM.

S T T T

Figure 1.10 Execution of the BF'S ALGORITHM. In the leftmost frame, vertex v is colored

in red. The other frames correspond to incremental additions of vertices and
edges as specified by the function BFS. The output of the algorithm is a
BF'S tree of the digraph. The BFS tree is represented in the last frame with
vertices and edges colored in red.

Some properties of the BFS algorithm are characterized as follows.

Lemma 1.25 (BFS tree). For a digraph G with a vertex v, any digraph
T computed by the BFS ALGORITHM, T € BFS(G,v), has the following

properties:

(i) T is a directed tree with root v;

(i) T contains a shortest path from v to any other vertex reachable from
v inside G, that is, if there is a path in G from v to w, then w € T
and distg (v, w) = disty (v, w); and

(i1i) if G contains a spanning tree rooted at v, then T is spanning too
and therefore, T is a BFS tree of G.
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We leave the proof to the reader. The key property of the algorithm is that
(Vk, Ex), k € {1,...,n}, is a sequence of directed trees with the property
that (Vk,Ek) C (Vk+1,Ek+1), for k € {1, e, — 1}.

1.4.4.2 Depth-first spanning tree

Next, we define the DFS ALGORITHM that, given a digraph G and a vertex v
with radius(v, G) < +o00, computes what we term a depth-first spanning
(DFS) tree Tprs rooted at v.

[Informal description] Visit all nodes of the graph recording the
traveled edges to form the desired tree. Visit the nodes in the
following recursive way: (1) as long as a node has an unvisited
child, visit it, (2) when the node has no more unvisited children,
then return to its parent (and recursively attempt to visit its
unvisited children).

The algorithm is formally stated as a recursive procedure as follows.

function DFS(G,v)
1: (Vvisiteda Evisited) = ({’U}, 0)
2: DFS-VIsiT(G, v)
3: return (V;/isitedy Evisited)

function DFS-VISIT(G, w)
1: for u out-neighbor of w do
2 if u does not belong to Viisiteq then
3 Vvisited = Vvisited U{U}
4 Eisited := Evisited U{('LU, 'LL)}
5 DFS-VIsIT(G, u)

Note that the output of this algorithm is not necessarily unique, since the
order in which the vertices are chosen in step 1: of DFS-VISIT is not unique.
Any digraph T computed by the DFS ALGORITHM, T' € DFS(G,v), is a
directed spanning tree with root v. Figure 1.11 shows an execution of the
algorithm.

Some properties of the DFS algorithm are characterized as follows.

Lemma 1.26 (DFS tree). For a digraph G with a vertex v, any digraph
T computed by the DFS ALGORITHM, T € DFS(G,v), has the following
properties:
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Figure 1.11 Execution of the DFS ALGORITHM. In the top leftmost frame, vertex v is
colored in red. The other frames correspond to incremental additions of
vertices and edges as specified by the function DFS. The output of the
algorithm is a DFS tree of the digraph. The DFS tree is represented in the
last frame with vertices and edges colored in red.

(i) T is a directed tree with root v; and

(i1) if G contains a spanning tree rooted at v, then T is spanning too.

Note that both BFS and DFS trees are uniquely defined once a lexico-
graphic order is introduced for the children of a node.

1.4.4.3 Shortest-paths tree in weighted digraphs via Dijkstra’s algorithm

Finally, we focus on weighted digraphs and on the notion of weighted path
length. Given a weighted digraph G of order n with weighted adjacency
matrix A and a vertex v with radius(v, G) < +00, a shortest-paths tree of G
with respect to v, denoted Tihortest-paths, 15 @ spanning directed tree rooted
at v that contains a (weighted) shortest path from v to every other vertex
of G. This tree differs from the BFS tree defined above because here the
path length is measured using the digraph weights.

We now provide the DIJKSTRA ALGORITHM that, given a digraph G of
order n and a vertex v with radius(v, G) < 400, computes a shortest-paths
tree Tyhortest-paths ToOted at v.

[Informal description] Incrementally construct a tree that con-
tains only shortest paths. At each round, add to the tree (1) the
node that is closest to the source and is not yet in the tree, and
(2) the edge corresponding to the shortest path. The weighted
distance to the source (required to perform step (1)) is computed
via an array of distance estimates that is updated as follows:
when a node is added to the tree, the distance estimates of all
its out-neighbors are updated.

29

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
Copyright (© 2006-2008. Manuscript under contract. This version: October 27, 2008



DCRN October 27, 2008

The algorithm is formally stated as follows.

function DUIKSTRA((V, E, A),v)

1: Tshortest—paths =10
% Initialize estimated distances and estimated parent nodes
2: for u € V do
0 U=
3 dist(u):=< ' .
400, otherwise.

>

parent(u) :=u
% Main loop to grow the tree and update estimates
5. while (Tshortest-paths does not contain all vertices) do
6:  find vertex u outside Tynortest-paths With smallest dist(u)
7. add to Tihortest-paths the vertex u
8 if u # v, add to Tynortest-paths the edge (parent(u),u)
9:  for each node w that is an out-neighbor of u in (V, E, A) do
10: if dist(w) > dist(u) + ayyw then

11: dist(w) := dist(u) + auw
12: parent(w) :=u

13: return Tshortest—paths

Note that the output of this algorithm is not necessarily unique, since the
choice of vertex at step 6: in the algorithm is not unique. Figure 1.12 shows
an execution of the Dijkstra’s algorithm.

Figure 1.12 Execution of the Dijkstra’s algorithm on the weighted digraph plotted in
Figure 1.9. In the top leftmost frame, vertex v is colored in gray. The other
frames correspond to incremental additions of vertices and edges as specified
by the function DIJKSTRA. The output of the algorithm is a shortest-paths
tree of the digraph rooted at v. This tree is represented in the last frame with
vertices and edges colored in gray.

The following properties of the Dijkstra’s algorithm mirrors those of the
BFS algorithm in Lemma 1.25.
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Lemma 1.27 (Dijkstra’s algorithm). For a weighted digraph G with
a vertex v, any digraph T computed by the DIJKSTRA ALGORITHM, T €
DUKSTRA(G, v), has the following properties:

(i) T is a directed tree with root v;

(i) T contains a shortest path from v to any other vertex reachable from
v inside G, that is, if there is a path in G from v to w, then w € T
and wdistg (v, w) = wdistp(v, w); and

(iii) if G contains a spanning tree rooted at v, then T is spanning too,
and therefore, T' is a shortest-paths tree of G.

1.4.4.4 On combinatorial optimization problems

We conclude this section on graph algorithms with a brief mention of classic
optimization problems defined on graphs. Standard references on combina-
torial optimization include [Korte and Vygen, 2005, Vazirani, 2001]. Given
a weighted directed graph G, classical combinatorial optimization problems
include the following:

Minimum-weight spanning tree. A minimum-weight spanning tree (MST)
of G, denoted Tygt, is a spanning tree with the minimum possible
weight. In order for the MST to exist, G must contain a spanning
tree. If all the weights of the individual edges are different, then the
MST is unique;

Traveling salesperson problem. A traveling salesperson tour (TSP) of
G, denoted Trsp, is a cycle that passes through all the nodes of the
digraph and has the minimum possible weight. In order for the TSP
to exist, G must contain a cycle through all nodes; and

Multicenter optimization problems. Given a weighted digraph with ver-
tices V' = {v1,...,v,} and a set U = {uq,...,ux} C V, the weighted
distance from v € V to the set U is the smallest weighted distance from
v to any vertex in {ui,...,ug}. We now consider the cost functions
Huax, Hs: : VF — R defined by

H Uly...,Up) = max min  wdistg(v;, up),
max( ! k) i€{l,...,n} he{l,... .k} G( ! h)
n
Hs(ui, ..., ug) = min  wdistg(v;, up).
Z< ! k) — he{l,....k} G( ‘ h)
=1
The k-center problem and the k-median problem consist of finding a set
of vertices {uy,...,u;} that minimizes the k-center function Hpyax and
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the k-median function Hs, respectively. We refer to [Vazirani, 2001]
for a discussion of the k-center and k-median problems (as well as
the more general uncapacited facility location problem) over complete
undirected graphs with edge costs satisfying the triangle inequality.

The Euclidean versions of these combinatorial optimization problems refer
to the situation where one considers a weighted complete digraph whose
vertex set is a point set in R?, d € N, and whose weight map assigns to each
edge the Euclidean distance between the two nodes connected by the edge.

1.4.5 Algebraic graph theory

Algebraic graph theory [Godsil and Royle, 2001, Biggs, 1994] is the study
of matrices defined by digraphs: in this section we expose two topics. First,
we study the equivalence between properties of graphs and of their associ-
ated adjacency matrices. We also specify how to associate a digraph to a
nonnegative matrix. Second, we introduce and characterize the Laplacian
matrix of a weighted digraph.

We begin by studying adjacency matrices. Note that the adjacency matrix
of a weighted digraph is nonnegative and, in general, not stochastic. The
following lemma expands on this point.

Lemma 1.28 (Weight-balanced digraphs and doubly stochastic ad-
jacency matrices). Let G be a weighted digraph of order n with weighted
adjacency matriz A and weighted out-degree matriz Doyt. Define the matrix

_ DA, if each out-degree is strictly positive,
(In + Dout)il(In + A), otherwise.

Then
(i) F is row-stochastic; and

(ii) F is doubly stochastic if G is weight-balanced and the weighted degree
18 constant for all vertices.

Proof. Consider first the case when each vertex has an outgoing edge so that
Doyt is invertible. We first note that diag(v) ~'v = 1,, for each v € (R\{0})".
Therefore

(D, A)1, = diag(Al,) 1 (AL,) = 1,

out

32

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
Copyright (© 2006-2008. Manuscript under contract. This version: October 27, 2008



DCRN October 27, 2008

which proves (i). Furthermore, if Doy = Dy, = dI,, for some d € R+, then

out

(D2 A)"1, = é(ATln) = D71(AT1,) = diag(AT1,) " (AT1,) = 1,

which proves (ii). Finally, if (V, E, A) does not have outgoing edges at each
vertex, then apply the statement to the weighted digraph (V, EU{(i,7) | i €
{1,...,n}}, A+ 1,). ]

The next result characterizes the relationship between the adjacency ma-
trix and directed paths in the digraph.

Lemma 1.29 (Directed paths and powers of the adjacency matrix).
Let G be a weighted digraph of order n with weighted adjacency matriz A,
with unweighted adjacency matriz Ag1 € {0,1}"", and possibly with self-
loops. For all i,j,k € {1,...,n}

(i) the (i,j) entry of AISJ equals the number of directed paths of length
k (including paths with self-loops) from node i to node j; and

(ii) the (i,7) entry of A¥ is positive if and only if there exists a directed
path of length k (including paths with self-loops) from node i to
node j.

Proof. The second statement is a direct consequence of the first. The first
statement is proved by induction. The statement is clearly true for k£ = 1.
Next, we assume the statement is true for £ > 1 and we prove it for k + 1.
By assumption, the entry (Ak)ij equals the number of directed paths from
i to j of length k. Note that each path from i to j of length k + 1 identifies
(1) a unique node ¢ such that (i,/) is an edge of G and (2) a unique path
from ¢ to j of length k. We write A¥T!1 = AA* in components as

n
(AR = Agg(AF).
(=1
Therefore, it is true that the entry (Akﬂ)ij equals the number of directed
paths from ¢ to j of length k+1. This concludes the induction argument. M

The following proposition characterizes in detail the relationship between
various connectivity properties of the digraph and algebraic properties of
the adjacency matrix. The result is illustrated in Figure 1.13 and its proof
is postponed to Section 1.8.3.

Proposition 1.30 (Connectivity properties of the digraph and pos-
itive powers of the adjacency matrix). Let G be a weighted digraph
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Figure 1.13 Illustration of Proposition 1.30. Even though vertices 2 and 3 are globally
reachable, the digraph is not strongly connected because vertex 1 has no
in-neighbor other than itself. Therefore, the associated adjacency matrix
A = (ai;) with (a1;) = 13, (az;) = (as;) = (0,1, 1), is reducible.

of order n with weighted adjacency matrix A. The following statements are
equivalent:

(i) G is strongly connected,
(ii) A is irreducible; and
(iii) 1=y A* is positive.
For any j € {1,...,n}, the following two statements are equivalent:
(iv) the jth node of G is globally reachable; and
(v) the jth column of Zﬁ;é AF has positive entries.

Stronger statements can be given for digraphs with self-loops.

Proposition 1.31 (Connectivity properties of the digraph and posi-
tive powers of the adjacency matrix: continued). Let G be a weighted
digraph of order n with weighted adjacency matrix A and with self-loops at
each node. The following statements are equivalent:

(iv) G is strongly connected; and

(v) A"~! has positive entries.

For any j € {1,...,n}, the following two statements are equivalent:
(iv) the jth node of G is globally reachable; and

(v) the jth column of A"~ has positive entries.

Next, we characterize the relationship between irreducible aperiodic di-
graphs and primitive matrices (recall Definition 1.10). We postpone the
proof to Section 1.8.3.
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Proposition 1.32 (Strongly connected and aperiodic digraph and
primitive adjacency matrix). Let G be a weighted digraph of order n with
weighted adjacency matriz A. The following two statements are equivalent:

(i) G is strongly connected and aperiodic; and

(ii) A is primitive, i.e., there exists k € N such that A* is positive.

This concludes our study of adjacency matrices associated to weighted
digraphs. Next, we emphasize how all results obtained so far have analogues
that hold when the original object is a nonnegative matrix, instead of a
weighted digraph.

Remark 1.33 (From a nonnegative matrix to its associated di-
graphs). Given a nonnegative n x n matrix A, its associated weighted di-
graph is the weighted digraph with nodes {1,...,n}, and weighted adjacency
matrix A. The unweighted version of this weighted digraph is called the as-
sociated digraph. The following statements are analogues of the previous
lemmas:

(i) If A is stochastic, then its associated digraph has weighted out-
degree matrix equal to I;

(ii) if A is doubly stochastic, then its associated weighted digraph is
weight-balanced and, additionally, both in-degree and out-degree
matrices are equal to I,,; and

(iii) A is irreducible if and only if its associated weighted digraph is

strongly connected. °

So far we have analyzed in detail the properties of adjacency matrices. We
conclude this section by studying a second relevant matrix associated to a
digraph, called the Laplacian matrix. The Laplacian matriz of the weighted
digraph G is

L(G) = Dout(G) - A(G)

Some immediate consequences of this definition are the following;:

(i) L(G)1, = 0,, that is, 0 is an eigenvalue of L(G) with eigenvector
1n;

(ii) G is undirected if and only if L(G) is symmetric; and

(iii) L(G) equals the Laplacian matrix of the digraph obtained by adding
to or removing from G any self-loop with arbitrary weight.

Further properties are established as follows.
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Theorem 1.34 (Properties of the Laplacian matrix). Let G be a
weighted digraph of order n. The following statements hold:

(i) all eigenvalues of L(G) have nonnegative real part (thus, if G is
undirected, then L(G) is symmetric positive semidefinite);

(ii) if G is strongly connected, then rank(L(G)) =n — 1, that is, 0 is a
simple eigenvalue of L(G);
(iii) G contains a globally reachable vertex if and only if rank(L(G)) =
n—1;
(iv) the following three statements are equivalent:
(a) G is weight-balanced;
(b) 1TL(G) = 0T ; and
(c) L(G) + L(G)T is positive semidefinite.

1.5 DISTRIBUTED ALGORITHMS ON SYNCHRONOUS
NETWORKS

Here we introduce a synchronous network as a group of processors with the
ability to exchange messages and perform local computations. What we
present is a basic classic model studied extensively in the distributed algo-
rithms literature. Our treatment is directly adopted with minor variations
from the texts by Lynch [1997] and Peleg [2000].

1.5.1 Physical components and computational models

Loosely speaking, a synchronous network is a group of processors, or nodes,
that possess a local state, exchange messages along the edges of a digraph,
and compute an update to their local state based on the received messages.
Each processor alternates the two tasks of exchanging messages with its
neighboring processors and of performing a computation step. Let us begin
by describing what constitutes a network.

Definition 1.35 (Network). The physical component of a synchronous
network S is a digraph (I, Ecmm ), where

(i) I ={1,...,n} is called the set of unique identifiers (UIDs); and

(ii) Eemm is a set of directed edges over the vertices {1,...,n}, called
the communication links. .

In general, the set of unique identifiers does not need to be n consecutive
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natural numbers, but we take this convention for simplicity. The set Femm
models the topology of the communication service among the nodes: for
i,7 € {1,...,n}, processor i can send a message to processor j if the directed
edge (i,7) is present in Eepm. Note that, unlike the standard treatments
in [Lynch, 1997, Peleg, 2000], we do not assume the digraph to be strongly
connected; the required connectivity assumption will be specified on a case
by case basis.

Next, we discuss the state and the algorithms that each processor possesses
and executes, respectively. By convention, we let the superscript [i] denote
any quantity associated with the node 1.

Definition 1.36 (Distributed algorithm). A distributed algorithm DA
for a network S consists of the sets

(i) A, a set containing the null element, called the communication
alphabet; elements of A are called messages;

(ii) Wl i eI, called the processor state sets; and

(iii) W(gi] C Wl i eI, sets of allowable initial values;

and of the maps

(i) msgll : WU x T — A, i € I, called message-generation functions;
and

(ii) stfll s Wl x An — Wl ;e I, called state-transition functions.

It whl = w, msg[i] = msg, and stfll = stf for all i e, then DA is said to
be uniform and is described by a tuple (A, W, {W(gz] }ier, msg, stf). °

Now, with all elements in place, we can explain in more detail how a
synchronous network executes a distributed algorithm, see Figure 1.14. The

Transmite Update

and processor
receive state

Figure 1.14 Execution of a distributed algorithm by a synchronous network.

state of processor i is a variable wl?! € Wl initially set equal to an allowable

value in W(gi]. At each time instant ¢ € Z>q, processor i sends to each
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of its out-neighbors j in the communication digraph (I, Femm) & message
(possibly the null message) computed by applying the message-generation
function msgl! to the current values of its state wl! and to the identity ;.
Subsequently, but still at time instant ¢ € Zx, processor ¢ updates the value
of its state wl’! by applying the state-transition function stfll to the current
value of its state w(!! and to the messages it receives from its in-neighbors.
Note that, at each round, the first step is transmission and the second one
is computation. These notions are formalized in the following definition.

Definition 1.37 (Network evolution). Let DA be a distributed algo-
rithm for the network S. The evolution of (S, PA) from initial conditions
w([)z] € Wéz], i € I, is the collection of trajectories wl! : L>o — wll e,
satisfying
wll () = st (wll (0 — 1),y (0)),

where wll(—1) = w([)i], i € I, and where the trajectory yll : Zso — A"
(describing the messages received by processor i) has components yj[?] (0), for
j € I, given by

o) = msgl (wll(€ —1),4), if (j,4) € Eemm,
J null, otherwise.

We let £ — w(f) = (w!¥(0),...,w(¢)) denote the collection of trajectories.

We conclude this section with two sets of remarks. We first discuss some
aspects of our communication model that have a large impact on the sub-
sequent development. We then collect a few general comments about dis-
tributed algorithms on networks.

Remarks 1.38 (Aspects of the communication model).

(i) The network S and the algorithm DA are referred to as synchronous
because the communications between all processors takes place at
the same time for all processors.

(ii) Communication is modeled as a so-called “point to point” service: a
processor can specify different messages for different out-neighbors
and knows the processor identity corresponding to any incoming
message.

(iii) Information is exchanged between processors as messages, i.e., ele-
ments of the alphabet A; the message null indicates no communi-
cation. Messages might encode logical expressions such as true and
false, or finite-resolution quantized representations of integer and
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real numbers.

(iv) In some uniform algorithms, the messages between processors are
the processors’ states. In such cases, the corresponding commu-
nication alphabet is A = W U{null} and the message generation
function msggq(w,j) = w is referred to as the standard message-
generation function. °

Remarks 1.39 (Advanced topics: Control structures and failures).

(i) Processors in a network have only partial information about the
network topology. In general, each processor only knows its own
UID, and the UID of its in- and out-neighbors. Sometimes we will
assume that the processor knows the network diameter. In some
cases [Peleg, 2000] actively running networks might depend upon
“control structures,” i.e., structures that are computed at initial
time and are exploited in subsequent algorithms. For example,
routing tables might be computed for routing problems, “leader”
processors might be elected and tree structures might be computed
and represented in a distributed manner for various tasks, e.g., color-
ing or maximal independent set problems. We present some sample
algorithms to compute these structures below.

(ii) A key issue in the study of distributed algorithms is the possible
occurrence of failures. A network might experience intermittent
or permanent communication failures: along given edges a null
message or an arbitrary message might be delivered instead of the
intended value. Alternatively, a network might experience various
types of processor failures: a processor might transmit only null
messages (i.e., the msg function returns null always), a processor
might quit updating its state (i.e., the stf function neglects incoming
messages and returns the current state value), or a processor might
implement arbitrarily modified msg and stf functions. The latter
situation, in which completely arbitrary and possibly malicious be-
havior is adopted by faulty nodes, is referred to as a Byzantine
failure in the distributed algorithms literature. °

1.5.2 Complexity notions

Here we begin our analysis of the performance of distributed algorithms.
We introduce a notion of algorithm completion and, in turn, we introduce
the classic notions of time, space, and communication complexity.
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Definition 1.40 (Algorithm completion). We say that an algorithm
terminates when only null messages are transmitted and all processors
states become constants. °

Remarks 1.41 (Alternative termination notions).

(i) In the interest of simplicity, we have defined evolutions to be un-
bounded in time and we do not explicitly require algorithms to
actually have termination conditions, i.e., to be able to detect when
termination takes place.

(ii) It is also possible to define the termination time as the first instant
when a given problem or task is achieved, independently of the fact
that the algorithm might continue to transmit data subsequently. e

Definition 1.42 (Time complexity). The (worst-case) time complexity
of a distributed algorithm DA on a network S, denoted TC(DA), is the
maximum number of rounds required by the execution of DA on S among
all allowable initial states until termination. °

Next, we quantify memory and communication requirements of distributed
algorithms. From an information theory viewpoint [Gallager, 1968], the in-
formation content of a memory variable or of a message is properly mea-
sured in bits. On the other hand, it is convenient to use the alternative no-
tions of “basic memory unit” and “basic message.” It is customary [Peleg,
2000] to assume that a “basic memory unit” or a “basic message” contains
log(n) bits so that, for example, the information content of a robot identi-
fier i € {1,...,n} is log(n) bits or, equivalently, one “basic memory unit.”
Note that elements of the processor state set W or of the alphabet set A
might amount to multiple basic memory units or basic messages; the null
message has zero cost. Unless specified otherwise, the following definitions
and examples are stated in terms of basic memory unit and basic messages:

Definition 1.43 (Space complexity). The (worst-case) space complexity
of a distributed algorithm DA on a network S, denoted by SC(DA), is the
maximum number of basic memory units required by a processor executing
DA on S among all processors and among all allowable initial states until
termination. °

Remark 1.44 (Space complexity conventions). By convention, each
processor knows its identity, i.e., it requires log(n) bits to represent its unique
identifier in a set with n distinct elements. We do not count this cost in the
space complexity of an algorithm. °

Next, we compute the communication complexity by counting basic mes-
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sages.

Definition 1.45 (Communication complexity). The (worst-case) com-
munication complexity of a distributed algorithm DA on a network S, de-
noted by CC(DA), is the maximum number of basic messages transmitted
over the entire network during the execution of DA among all allowable
initial states until termination. °

We conclude this section by discussing ways of quantifying time, space
and communication complexity. The idea, borrowed from combinatorial op-
timization, is to adopt asymptotic “order of magnitude” measures. Formally,
complexity bounds will be expressed with respect to the Bachman-Laundau
symbols O, 2 and © defined in Section 1.1. Let us be more specific.

(i) We will say that an algorithm has time complexity of order Q(f(n))
over some network if, for all n, there exists a network of order n
and initial processor values such that the time complexity of the
algorithm is greater than a constant factor times f(n);

(ii) we will say that an algorithm has time complexity of order O(f(n))
over arbitrary networks if, for all n, for all networks of order n and
for all initial processor values the time complexity of the algorithm
is lower than a constant factor times f(n); and

(iii) we will say that an algorithm has time complexity of order ©(f(n))
if its time complexity is of order Q(f(n)) over some network and
O(f(n)) over arbitrary networks at the same time.

Similar conventions will be used for space and communication complexity.

In many cases the complexity of an algorithm will typically depend upon
the number of vertices of the network. It is therefore useful to present a
few simple facts about these functions now. Over arbitrary digraphs & =
(I, Eepam ) of order n, we have

diam(S) € O(n), |Eemm(S)| € ©(n?) and radius(v,S) € O(diam(S)),

where v is any vertex of S.

Remark 1.46 (Additional complexity notions). Numerous variations
of the proposed complexity notions are possible and may be of interest.

Global lower bounds. In the definition of lower bound, consider the logic
quantifier describing the role of the network. The lower bound state-
ment is “existential” rather than “global,” in the sense that the bound
does not hold for all graphs. As discussed in [Peleg, 2000], it is pos-
sible to define also “global” lower bounds, i.e., lower bounds over all
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graphs, or lower bounds over specified classes of graphs.

Average complexity notions. The proposed complexity notions focus on
the worst-case situation. It is also possible to define expected or aver-
age complexity notions, where one is be interested in characterizing,
for example, the average number of rounds required or the average
number of basic messages transmitted over the entire network during
the execution of an algorithm among all allowable initial states until
termination.

Problem complexity. It is possible to define complexity notions for prob-
lems, rather than algorithms, by considering, for example, the worst-
case optimal performance among all algorithms that solve the given
problem, or over classes of algorithms or classes of graphs. °

1.5.3 Broadcast and BFS tree computation

In the following, we consider some basic algorithmic problems such as the
simple one-to-all communication task, i.e., broadcasting, and the establish-
ment of some “control structures,” see Remarks 1.39, such as the construc-
tion of a BFS spanning tree and the election of a leader.

Problem 1.47 (Broadcast). Assume that a processor, called the source,
has a message, called the token. Transmit the token to all others processors.
[ ]

Note that existence of a spanning tree rooted at the source is a neces-
sary requirement for the broadcast problem to be solvable. We begin by
establishing some analysis results for the broadcast problem.

Lemma 1.48 (Complexity lower bounds for the broadcast prob-
lem). Let S be a network containing a spanning tree rooted at v. The
broadcast problem for S from the source v has communication complexity
lower bounded by n — 1 and time complexity lower bounded by radius(v,S).

In what follows, we shall solve the broadcast problem while simultaneously
also considering the following problem.

Problem 1.49 (BFS tree computation). Let S be a network containing
a spanning tree rooted at v. Compute a distributed representation for a

BE'S tree rooted at v. °

We add two remarks on the BFS tree computation problem.
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(i) By a distributed representation of a directed tree with bounded
memory at each node we mean the following: each child vertex
knows the identity of its parent and the root vertex knows it has no
parents. A more informative structure would require each parent to
know the identity of its children; this is easy to achieve on undirected
digraphs.

(ii) The BFS tree computation has the same lower bounds as the broad-
cast problem.

An elegant and classic solution to the broadcast and BFS tree compu-
tation problems is given by the FLOODING ALGORITHM. This algorithm
implements the same “breadth-first search” mechanism of the (centralized)
BFS ALGORITHM characterized in Lemma 1.25.

[Informal description] The source broadcasts the token to its
out-neighbors. At each communication round, each node deter-
mines whether it has received a non-null message from one of
its in-neighbors. When a non-null message is received, i.e., the
token is received, the node performs two actions. First, the node
stores the token in the variable data (this solves the Broad-
cast problem). Second, the node stores the identity of one of
the transmitting in-neighbors in the variable parent (this solves
the BFS tree computation problem). Specifically, if the message
is received simultaneously from multiple in-neighbors, then the
node stores the smallest among the identities of the transmitting
in-neighbors. At the subsequent communication round, the node
broadcasts the token to its out-neighbors.

To formally describe the algorithm, we assume that the node with the
message to be broadcast is v = 1. Also, we assume that the token is a letter
of the Greek alphabet {a,...,w}.

Synchronous Network: S = ({1,...,n}, Ecnm)
Distributed Algorithm: FLOODING
Alphabet: A ={a,...,w}Unull
Processor State: w = (parent,data, snd-flag), where
parent € {1,...,n}Unull, initially: parent!! =1,
parentV) = null for all j # 1
data €A initially: datalll =,
datall = null for all j # 1
snd-flag € {false, true}, initially: snd-flagl! = true,
snd-flagl! = false for all j # 1
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function msg(w,?)

if (parent # i) AND (snd-flag = true) then
return data

else
return null

function stf(w,y)
1: case
2. (data = null) AND (y contains only null messages):
% The node has not yet received the token

3: new-parent := null
4: new-data := null
5: new-snd-flag := false
6: (data =null) AND (y contains a non-null message):
% The node has just received the token
7: new-parent := smallest UID among transmitting in-neighbors
8: new-data := a non-null message

9: new-snd-flag := true
10: (data # null):
% If the node already has the token, then do not re-broadcast it

11: new-parent := parent
12: new-data := data
13: new-snd-flag := false

14: return (new-parent,new-data,new-snd-flag)

An execution of the FLOODING ALGORITHM is illustrated in Figure 1.15.

fz 0 0.

(a) (b)

Figure 1.15 Example execution of the FLOODING ALGORITHM. The source is vertex 1. (a)
shows the network and (b) shows the BFS tree that results from the execution.

This algorithm can analyzed by induction: one can show that, for d €
{1,...,radius(v,S)}, every node at a distance d from the root receives a
non-null message at round d. A summary of results is given as follows.
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Lemma 1.50 (Complexity upper bounds for the flooding algo-
rithm). For a network S containing a spanning tree rooted at v, the FLOOD-
ING ALGORITHM has communication complexity in O(|Eemm|), time com-
plexity in ©(radius(v,S)), and space complexity in O(1).

Remark 1.51 (Termination condition for the flooding algorithm).
As presented, the flooding algorithm does not include a termination con-
dition, i.e., the processors do not have a mechanism to detect when the
broadcast and tree computation are complete. If an upper bound on the
graph diameter is known, then it is easy to design a termination condition
based on this information; we do this in the next subsection. If no a priori
knowledge is available, then one can design more sophisticated algorithms
for networks with stronger connectivity properties. We refer to [Lynch, 1997,
Peleg, 2000] for a complete discussion about this. °

1.5.4 Leader election

Next, we formulate another interesting problem for a network.

Problem 1.52 (Leader election). Assume that all processors of a net-
work have a state variable, say leader, initially set to unknown. We say that
a leader is elected when one and only one processor has the state variable
set to true and all others have it set to false. Elect a leader. °

This is a task that is a bit more global in nature. We display here a
solution that requires individual processors to know the diameter of the
network, denoted by diam(S), or an upper bound on it.

[Informal description] At each communication round, each agent
sends to all its neighbors the maximum UID it has received up
to that time. This is repeated for diam(S) rounds. At the last
round, each agent compares the maximum received UID with its
own, and declares itself a leader if they coincide, or a non-leader
otherwise.

The algorithm is called the FLOODMAX ALGORITHM: the maximum UID in
the network is transmitted to other agents in an incremental fashion. At
the first communication round, agents that are neighbors of the agent with
the maximum UID receive the message from it. At the next communication
round, the neighbors of these agents receive the message with the maximum
UID. This process goes on for diam(S) rounds to ensure that every agent
receives the maximum UID. Note that there are networks for which all agents

45

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
Copyright (© 2006-2008. Manuscript under contract. This version: October 27, 2008



DCRN October 27, 2008

receive the message with the maximum UID in fewer communication rounds
than diam(S). The algorithm is formally stated as follows.

Synchronous Network: &= ({1,...,n}, Ecmm)
Distributed Algorithm: FLOODMAX
Alphabet: A ={1,...,n}U{null}

Processor State: w = (my-id,max-id, leader,round), where

my-id € {1,...,n}, initially: my-idl!l = for all ¢

max-id € {1,...,n}, initially: max-idll = for all ¢
leader € {false,true,unknown}, initially: leader!! = unknown for all i
round € {0,1,...,diam(S)}, initially: round = 0 for all 4

function msg(w,?)
1: if round < diam(S) then
2 return max-id
3: else
4 return null

function stf(w,y)

1: new-id:= max{max-id, largest identifier iny}

2: case

3:  round < diam(S): new-lead := unknown
4:  round = diam(S) AND max-id =my-id: new-lead := true
5. round = diam(S) AND max-id > my-id: new-lead := false
6: return (my-id,new-id,new-lead,round +1)

Figure 1.16 shows an execution of the FLOODMAX ALGORITHM. This al-
gorithm’s properties are characterized in the following lemma. A complete
analysis of this algorithm, including modifications to improve the commu-
nication complexity, is discussed in [Lynch, 1997, Section 4.1].

Figure 1.16 Execution of the FLOODMAX ALGORITHM. The diameter of the network is 4.
In the leftmost frame, the agent with the maximum UID is colored in red.
After 4 communication rounds, its message has been received by all agents.

Lemma 1.53 (Complexity upper bounds for the floodmax algo-
rithm). For a network S containing a spanning tree, the FLOODMAX AL-
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GORITHM has communication complexity in O(diam(S)|Eemm|), time com-
plezity equal to diam(S), and space complexity in ©(1).

A simplification of the FLOODMAX ALGORITHM leads to the Le Lann-
Chang-Roberts algorithm (or LCR ALGORITHM) for leader election in rings,
see [Lynch, 1997, Chapter 3.3], that we describe next. The LCR ALGORITHM
runs on a ring digraph and does not require the agents to know the diameter
of the network.

[Informal description] At each communication round, if the agent
receives from its in-neighbor a UID that is larger than the UIDs
received earlier, then the agent records the received UID and
forwards it to the out-neighbor during the following communica-
tion round. (Agents do not record the number of communication
rounds.) When the agent with the maximum UID receives its
own UID from a neighbor, it declares itself the leader.

The algorithm is formally stated as follows.

Synchronous Network: ring digraph
Distributed Algorithm: LCR
Alphabet: A ={1,...,n}U{null}

Processor State: w = (my-id,max-id, leader, snd-flag), where

my-id e{l,...,n}, initially: my-idl = for all ¢

max-id e{l,...,n}, initially: max-idll = for all i
leader € {true,false,unknown}, initially: leader!! = unknown for all 4
snd-flag € {true,false}, initially: snd-flagl! = true for all i

function msg(w,1)
1. if snd-flag = true then
2 return max-id
3: else
4 return null

function stf(w,y)

1: case

2. (y contains only null msgs) OR (largest identifier iny < my-id):
3 new-id := max-id

4: new-lead := leader

5 new-snd-flag := false

6: (largest identifier iny = my-id):
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7: new-id := max-id

8: new-lead := true

9: new-snd-flag := false

10:  (largest identifier iny > my-id):
11: new-id := largest identifier iny
12: new-lead := false

13: new-snd-flag := true

14: return (my-id,new-id,new-lead, new-snd-flag)

Figure 1.17 shows an execution of the LCR ALGORITHM. The properties

Figure 1.17 Execution of the LCR ALGORITHM. In the leftmost frame, the agent with the
maximum UID is colored in red. After 5 communication rounds, this agent
receives its own UID from its in-neighbor and declares itself the leader.

of the LCR ALGORITHM can be characterized as follows.

Lemma 1.54 (Complexity upper bounds for the LCR algorithm).
For a ring network S of order n, the LCR ALGORITHM has communication
complexity in ©(n?), time complexity equal to n, and space complexity in

o(1).

1.5.5 Shortest-paths tree computation

Finally, we consider the shortest-paths tree problem in a weighted digraph:
in Section 1.4.4 we presented Dijkstra’s algorithm to solve this problem in
a centralized setting; we present here the Bellman-Ford algorithm for the
distributed setting.

We consider a synchronous network associated to a weighted digraph, i.e.,
we assume that a strictly positive weight is associated to each communication
edge. We assume that the source is vertex 1 and we aim to compute a
tree containing shortest paths from node 1 to all other nodes. As for the
computation of a BFS tree, we aim to obtain a distributed representation
of a directed tree with bounded memory at each node.

[Informal description] Each agent maintains (1) an estimate dist
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of its weighted distance from the source, and (2) an estimate
parent of the in-neighbor corresponding to the (weighted) short-
est path from the source. The dist estimate is initialized to 0
for the source and to 4+oo for all other nodes. At each com-
munication round, each agent performs the following tasks: (1)
it transmits its dist to its out-neighbors, (2) it computes the
smallest quantity among “the dist received from an in-neighbor
summed with the edge weight corresponding to that same in-
neighbor,” and (3) if the agent’s estimate dist is larger than
this quantity, then the agent updates its dist and its estimate
parent.

The algorithm is formally stated as follows.

Synchronous Network with Weights: &= ({1,...,n}, Ecmm, 4)
Distributed Algorithm: DISTRIBUTED BELLMAN-FORD
Alphabet: A = R5oUnull U{+oc0}
Processor State: w = (parent,dist), where
parent € {1,...,n}, initially: parentl! = j for all j
dist €A, initially: datal'l =0,
datalll = 400 for all j # 1

function msg(w,1)
1: if round < n then
2 return dist
3: else
4 return null

function stf(w,y)

1 := processor UID
. k := arginf{y; + aj; | for all y; # null}
if (dist < k) then
return (parent,dist)
else
return (k, yp + ag;)

@ g w2

In other words, if we let d; € R>q U{+400} denote the dist variable for each
processor 7, then the Bellman-Ford algorithm is equivalent to the following
discrete-time dynamical system:

dl(g + 1) = inf {dl(g) ) inf{dj(g) + Qji | (]71) € Ecmm}}a
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with initial conditions d(0) = (1,+00,...,4+00). (Recall that Ecpyy is the
edge set and the weights a;; are strictly positive for all (4, ) € Ecmm.)

This algorithm’s key property enabling its analysis is that, after k com-
munication rounds, the estimated distance at node i equals the shortest
path of topological length at most k from the source to node i. Therefore,
after n — 1 communication rounds, all possible distinct topological paths
connecting source to node i have been investigated. The properties of the
DISTRIBUTED BELLMAN-FORD ALGORITHM as follows.

Lemma 1.55 (Complexity upper bounds for the distributed Bell-
man-Ford algorithm). For a network S of order n containing a spanning
tree rooted at v, the DISTRIBUTED BELLMAN-FORD ALGORITHM has com-
munication complexity in O(n|Eemm|), time complexity equal to n — 1, and
space complexity in O(1).

Figure 1.18 shows an execution of the DISTRIBUTED BELLMAN-FORD AL-
GORITHM.

In the leftmost frame, the agent with the maximum UID is colored in
red. After 5 communication rounds, this agent receives its own UID from
its in-neighbor and declares itself the leader.

1.6 LINEAR DISTRIBUTED ALGORITHMS

Computing linear combination of the initial states of the processors is one
of the most basic computation that we might be interested in implementing
on a synchronous network. More accurately, linear distributed algorithms
on synchronous networks are discrete-time linear dynamical systems whose
evolution map is linear and has a sparsity structure related to the network.
These algorithms represent an important class of iterative algorithms that
find applications in optimization, in the solution of systems of equations and
in distributed decision making, see for instance [Bertsekas and Tsitsiklis,
1997]. In this section we present some relevant results on distributed linear
algorithms.

1.6.1 Linear iterations on synchronous networks

Given a synchronous network S = ({1,...,n}, Ecmm), assign a scalar fj; # 0
to each directed edge (7,7) € Ecmm. Given such scalars fj; for (i,7) € Eemm,
the LINEAR COMBINATION ALGORITHM over S is defined as follows.

Distributed Algorithm: LINEAR COMBINATION
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(c) (d)

Figure 1.18 Execution of the DISTRIBUTED BELLMAN-FORD ALGORITHM. (a) depicts the
processor state initialization. The vertex 1 is the only one whose variable
dist is 0. After 3 iterations, as guaranteed by Lemma 1.55, (d) depicts the
resulting shortest-paths tree of the digraph rooted at vertex 1. This tree is
represented in the last frame with edges colored in gray.
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Alphabet: A = RUnull

Processor state: w € R

function msg(w,i) = msgy4(w,1)

function stf(w,y)
1: 1 := processor UID
2: return fuw =+ Zjé/\/i“(i) fijyj

We assume that each processor i € {1,...,n} knows the scalars f;;, for
§ € N'™(i) U {i}, so that it can evaluate the state-transition function. Also,
we assume that real numbers may be transmitted through a communica-
tion channel, i.e., we neglect quantization issues in the message-generation
function.

In the language of Section 1.3, one can regard the LINEAR COMBINATION
ALGORITHM over S as the discrete-time continuous-space dynamical system
(X, Xo, f), with X = Xy = R™ and evolution map defined by f(w) =
F - w, where we define a matrix F' € R™ ™ with vanishing entries except
for fj;, for (4,5) € Eemm. Note that, if A(S) denotes the adjacency matrix
of the digraph S, then the entries of F' vanish precisely when the entries of
A(S)T vanish. With this notation, the evolution w : Z>o — R" with initial
condition wy € R" is given by

w(0) =wp, w(l+1)=F- -w), [{€Z>o. (1.6.1)

Conversely, any linear algorithm of the form (1.6.1) can easily be cast as
a LINEAR COMBINATION ALGORITHM over a suitable synchronous network.
We do this bookkeeping carefully, in order to be consistent with the notion
of associated weighted digraph from Remark 1.33. Given F € R"™*™ let
Sr be the synchronous network with node set {1,...,n} and with edge set
Eenum (F) defined by any of the equivalent statements.

(i) (4,7) € Ecmm (F) if and only if f;; # 0; or

(ii) Sp is the reversed and unweighted version of the digraph associated
to F.

1.6.2 Averaging algorithms

In what follows we consider linear combination algorithms over time-dependent
weighted directed graphs; we restrict our analysis to nonnegative weights.
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Definition 1.56 (Averaging algorithms). The averaging algorithm as-
sociated to a sequence of stochastic matrices {F(¢) | £ € Z>o} C R™" is
the discrete-time dynamical system

w(l +1) = F(0) - w(l), € Zso. (1.6.2)

In the literature, such algorithms are often referred to as agreement algo-
rithms or as consensus algorithms.

There are useful ways to compute a stochastic matrix, and therefore, a
time-independent averaging algorithm, from a weighted digraph; see Exer-
cise E1.14.

Definition 1.57 (Adjacency- and Laplacian-based averaging). Let G
be a weighted digraph with node set {1,...,n}, weighted adjacency matrix
A, weighted out-degree matrix Doy, and weighted Laplacian L. Then

(i) the adjacency-based averaging algorithm is defined by the stochastic
matrix (I, + Dout) (I, + A) and reads in components

wi(l+ 1) = 3 (wi(€) + > aijw;(0)); (1.6.3)
Jj=1

1 =+ dout (Z

(ii) given a positive scalar € upper bounded by min{l/dou (i) | i €
{1,...,n}}, the Laplacian-based averaging algorithm is defined by
the stochastic matrix I, — eL(G) and reads in components

wz(ﬁ + 1) = <1 —€ Z aij)wi(é) +e Z aijwj(é). (1.6.4)

J=1,j#i J=1,j#i

These notions are immediately extended to sequences of stochastic matrices
arising from sequences of weighted digraphs. °

Adjacency-based averaging algorithms arising from unweighted (undirected)
graphs without self-loops are also known as the equal-neighbor averaging rule
or the Vicsek’s model; see [Vicsek et al., 1995]. Specifically, if G is an un-
weighted graph with vertices {1,...,n} and without self-loops, then the
equal-neighbor averaging rule is

will +1) = avig({wi (O} U{wy(0) | j € Na(@}),  (1.65)
where we adopt the shorthand avrg({z1,...,2x}) = (z1 + - + zx) /k.

Remark 1.58 (Sensing versus communication interpretation of di-
rected edges). In the definition of averaging algorithms arising from di-
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graphs, the edges of the digraph play the role of “sensing edges,” not that of
“communication edges.” In other words, a nonzero entry a;;, corresponding
to the edge (i,7) in the digraph, implies that the ith component of the state
is updated with the jth component of the state. It is as if node ¢ could sense
the state of node j, rather than node ¢ transmitting to node j its own state.
[ ]

Next, we present the main stability and convergence results for averag-
ing algorithms associated to a sequence of stochastic matrices. We start
by discussing equilibrium points and their stability. Recall that 1, is an
eigenvector of any stochastic matrix with eigenvalue 1 and that the diag-
onal set diag(R™) is the vector subspace generated by 1,. Therefore, any
point in diag(R™) is an equilibrium for any averaging algorithm. We refer to
the points of the diag(R"™) as agreeement configurations, since all the com-
ponents of an element in diag(R™) are equal to the same value. We will
informally say that an algorithm achieves agreement if it steers the network
state towards the set of agreement configurations.

Lemma 1.59 (Stability of agreement configurations). Any averaging
algorithm in R™ is uniformly stable and uniformly bounded with respect to
diag(R™).

Regarding convergence results, we need to introduce a useful property of
collections of stochastic matrices. Given « € ]0, 1], the set of non-degenerate
matrices with respect to a consists of all stochastic matrices F' with entries
fij, for i, j € {1,...,n}, satisfying

Additionally, the sequence of stochastic matrices {F'(¢) | £ € Z>¢} is non-
degenerate if there exists a € ]0,1] such that F'(¢) is non-degenerate with
respect to o for all £ € Z>p. We now state the main convergence resultand
postpone its proof to Section 1.8.5.

Theorem 1.60 (Convergence for time-dependent stochastic matri-
ces). Let {F({) | ¢ € Z>o} C R"™™ be a non-degenerate sequence of stochas-
tic matrices. For { € Z>q, let G({) be the unweighted digraph associated to
F(0), according to Remark 1.33. The following statements are equivalent:

(i) The set diag(R™) is uniformly globally attractive for the associated
averaging algorithm; and

(ii) there exists a duration § € N such that, for all { € Z>q, the digraph
GUl+1)U---UGU+9)

contains a globally reachable vertez.

54

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Martinez
Copyright (© 2006-2008. Manuscript under contract. This version: October 27, 2008



DCRN October 27, 2008

We collect a few observations about this result.

Remarks 1.61 (Discussion of Theorem 1.60).

(i) The statement in Theorem 1.60(i) means that each solution to the
time-dependent linear dynamical system (1.6.2) converges uniformly
and asymptotically to the vector subspace generated by 1,,.

(ii) The necessary and sufficient condition in Theorem 1.60(ii) amounts
to the existence of a uniformly-bounded time duration § with the
property that a weak connectivity assumptions holds over each col-
lection of ¢ consecutive digraphs. We refer to [Blondel et al., 2005]
for a counterexample showing is the duration in Theorem 1.60 is
not uniformly bounded, then there exist algorithms that do not
converge.

(iii) According to Definition 1.20, uniform convergence is a property of
all solutions to system (1.6.2) starting at any arbitrary time, and
not only at time equal to 0. If we restrict our attention to solutions
that only start at time 0, then Theorem 1.60 should be modified as
follows: the statement in Theorem 1.60(i) implies, but is not implied
by, the statement in Theorem 1.60(ii).

(iv) The theorem applies only to sequences of non-degenerate matri-
ces. Indeed, there exist sequences of degenerate stochastic matrices
whose associated averaging algorithms converges. Furthermore, one
does not even need to consider sequences because it is possible to
define converging algorithms by just considering a single stochastic
matrix. Precisely when the stochastic matrix is primitive we already
know that the associated averaging algorithm will converge (see
Theorem 1.11). Examples of degenerate primitive stochastic ma-
trices (with converging associated averaging algorithms) are given
in Exercise E1.22. We discuss time-invariant averaging algorithms
in Proposition 1.65 below. °

Theorem 1.60 gives a general result about non-degenerate stochastic ma-
trices that are not necessarily symmetric. The following theorem presents
a convergence result for the case of symmetric matrices (i.e., undirected
digraphs) under connectivity requirements that are weaker (i.e., the dura-
tion does not need to be uniformly bounded) than the ones expressed in
statement (ii) of Theorem 1.60.

Theorem 1.62 (Convergence for time-dependent symmetric stochas-

tic matrices). Let {F({) | { € Z>o} C R™"™ be a non-degenerate sequence
of symmetric, stochastic matrices. For ¢ € Z>q, let G({) be the unweighted
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graph associated to F({), according to Remark 1.33. The following state-
ments are equivalent:

(i) The set diag(R"™) is globally attractive for the associated averaging
algorithm; and

(i1) for all ¢ € Z>o, the graph

Uam

>0

1s connected.

Let us briefly particularize our discussion here on adjacency- and Laplacian-
based averaging algorithms.

Corollary 1.63 (Convergence of adjancency- and Laplacian-based
averaging algorithms). Let {G({) | ¢ € Z>o} C R™™™ be a sequence of
weighted digraphs. The following statements are equivalent:

(i) There exists § € N such that, for all £ € Z>, the digraph
GUl+1HU---UGU+9)
contains a globally reachable vertex;

(i) the set diag(R™) is uniformly globally attractive for the the time-
dependent adjancency-based averaging algorithm (1.6.3); and

(iii) the set diag(R™) is uniformly globally attractive for the the time-
dependent Laplacian-based averaging algorithm (1.6.4) (defined with
e<1/n).

Finally, we refine the results presented thus far by discussing some further
aspects.

Proposition 1.64 (Convergence to a point in the invariant set).
Under the assumptions in Theorem 1.60 and assuming that diag(R"™) is uni-
formly globally attractive for the averaging algorithm, each individual evolu-
tion converges to a specific point of diag(R™), rather than converging to the
whole set.

In general, the specific value upon which all w;, i € {1,...,n}, agree in
the limit is unknown. Clearly, this agreement value depends on the initial
condition and the specific sequence of matrices defining the time-dependent
linear algorithm. In some cases, however, by restricting the class of allowable
matrices, we can elucidate the common limit value. We consider two impor-
tant settings: time-independent averaging algorithms and doubly-stochastic
averaging algorithms.
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First, we specialize the main convergence result to the case of time-
independent averaging algorithms. Note that, given a stochastic matrix
F, convergence of the averaging algorithm associated to F' for all initial
conditions is equivalent to the matrix F' being semi-convergent (see Defini-
tion 1.7).

Proposition 1.65 (Time-independent averaging algorithm). Con-
sider the linear dynamical system on R™

Assume F € R™™ is stochastic, let G(F') denote its associated weighted
digraph, and let v € R™ be a left eigenvector of F' with eigenvalue 1. Assume
either one of the two following properties:

(i) F is primitive (i.e., G(F) is strongly connected and aperiodic); or

(ii) F has non-zero diagonal terms and a column of F"~' has positive
entries (i.e., G(F) has self-loops at each node and has a globally
reachable node).

Then every trajectory w of system (1.6.6) converges to (v w(0)/v71,)1,.

Proof. From Theorem 1.60 we know that the dynamical system (1.6.6) con-
verges if property (ii) holds. The same conclusion follows if F' satisfies
property (i) because of Perron-Frobenius Theorem 1.9 and Lemma 1.8. To
computing the limiting value, note that

vITw(l +1) = vl Fw(l) = vTw(0),

that is, the quantity £ — v”w(¢) is constant. Because F is semi-convergent
and stochastic, we know that limy_, o, w(f) = a1, for some «. To conclude,
we compute « from the relationship a(v?'1,) = limy_, o v7w(¢) = vTw(0).

[ |

Remarks 1.66 (Alternative conditions for time-independent aver-
aging).

(i) The following necessary and sufficient condition generalizes and is
weaker than the two sufficient conditions given in Proposition 1.65:
every trajectory of system (1.6.6) is asymptotically convergent if and
only if all sinks of the condensation digraph of G(F') are aperiodic
subgraphs of G(F'). We refer the interested reader to [Meyer, 2001,
Chapter 8] for the proof of this statement and for the related notion
of ergodic classes of a Markov chain. Also, we refer the interested
reader to Exercise E1.12 for the notion of condensation digraph.
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(ii) Without introducing any trajectory w, the result of the proposition
can be equivalently stated by saying that

lim F’= (vT1,) 1,0t °
l—+00

Second, we specialize the main convergence result to the case of doubly
stochastic averaging algorithms.

Corollary 1.67 (Average consensus). Let {F({) | ¢ € Z>o} be a se-
quence of stochastic matrices as in Theorem 1.60. If all matrices F(¢),
{ € Zs>o, are doubly stochastic, then every trajectory w of the averaging
algorithms satisfies

Zwi(f) = Zwi(O), for all ¢,
i=1 i=1

that is, the sum of the initial conditions is a conserved quantity. There-
fore, if {F(£) | £ € Z>o} is non-degenerate and satisfies property (i) in
Theorem 1.60, then

. 1 ¢ .
éllinoowj(e) = n;wi(()), jed{l,...,n}.

Proof. The proof of the first fact is an immediate consequence of
> wi(t+1) = 1w +1) = ITF(Ow(l) = 1w(t) = > w;(0).
i=1 i=1

The second fact is an immediate consequence of the first fact. |

In other words, if the matrices are double stochastic, then each compo-
nent of the trajectories will converge to the average of the initial condition.
We therefore adopt the following definition: an average-consensus averaging
algorithm is an averaging algorithm whose sequence of stochastic matrices
are all doubly stochastic.

1.6.3 Convergence speed of averaging algorithms

We know that any trajectory of the associated averaging algorithm converges
to the diagonal set diag(R™); in what follows we characterize how fast this
convergence takes place. We begin with some general definitions for semi-
convergent matrices (recall the discussion culminating in Lemma 1.8).
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Definition 1.68 (Convergence time and exponential convergence
factor). Let A € R™ " be semi-convergent with limit lim,_,, o, A* = A*.

(i) For € € ]0,1], the e-convergence time of A is the smallest time
T.(A) € Z>¢ such that, for all zp € R" and ¢ > T.(A),

HAé.CUg - A*x0||2 < EH.T() - A*CCQHQ.

(ii) The exponential convergence factor of A, denoted by 7exp(A) €
[0,1], is

Texp(A) = sup limsup

< ||A£QS‘0 — A*Qj‘ong)l/e
ro#£A* e L—400 .

lzo — A*xol|2

The exponential factor of convergence has the following interpretation: If
the trajectory z(£) = Az maximizing the sup operator has the form z(¢) =
pf(zo — x*) + 2%, for p < 1, then it is immediate to see that Texp(A) = p.

Lemma 1.69 (Exponential convergence factor of a convergent ma-
trix). If A is a convergent matriz, then rexp(A) = p(A).

In what follows we are interested in studying how the convergence time
and exponential convergence factor of a matrix depend upon € and upon the
dimension of the matrix itself.

Remark 1.70 (Complexity notions). Analogously to the treatment in
Section 1.5.2, we introduce some complexity notions. Let 4, € R"*" n € N,
be a sequence of semi-convergent matrices with limit limg_, 4 o Afl = A}, and
let € € ]0,1]. We say that

(i) T=(Ayp) is of order Q(f(n,¢)) if, for all n and all €, there exists an
initial condition 2o € R™ such that || A% zg— A*xo||o > €Hx0—A*m0H2
for all times ¢ greater than a constant factor times f(n,¢);

(ii) T:(Ay) is of order O(f(n,e)) if, for all n and all e, T.(A4,) is less
than or equal to a constant factor times f(n,e); and

(iii) T:(Ay) is of order ©(f(n,¢)) if it is both of order Q(f(n,¢)) and of
order O(f(n,¢)). .

Lemma 1.71 (Asymptotic relationship). Let A, € R™*" n € N, be
a sequence of semi-convergent matrices and let ¢ € 10,1]. In the limit as
e — 0" and as n — +o0,

T:(A,) € O( log 5*1) :

v
1 — rexp(Ap)

Proof. By definition of exponential convergence factor and of limsup, we
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know that for all > 0, there exists N such that for all £ > N,
[|A%zg — A*xo||, < (rexp(An) +n)"[|lzo — A*ol|2-

The e-convergence time is upper bounded by any ¢ such that (7exp(An) +
n)t < e. Selecting n = (1 — rexp(An))/2, straightforward manipulations lead
to

l> ! loge™?
> 0 )
—log((rexp(An) +1)/2)
It is also immediate to note that 1% > w, for all » € ]0,1[. This
establishes the bound in the statement above. [ |

Next, we apply the notion of convergence time and exponential conver-
gence factor to any non-degenerate stochastic matrix whose associated di-
graph has a globally reachable node.

Lemma 1.72 (Exponential convergence factor of stochastic matri-
ces). Let F' be a non-degenerate stochastic matriz whose associated digraph
has a globally reachable node. Then

Texp(F) = pess(F).
(From equation (1.2.1) recall pess(F') = max{||A|c | A € spec(F')\ {1}}.)

Proof. If v € R™ is a left eigenvector of F', then, as in Proposition 1.65,

lim F'=F* = (vT1,) 11,07,
{—~o00

Relaying upon v’ F = »* and F1,, = 1, straightforward manipulations
show that F* = F*F = FF* = F*F* and in turn

FHY = (F — F*)(F* — F*).

For any wg € R™ such that wy # F*wy, define the error variable e(¢) :=
Flwg — F*wy. Note that the error variable evolves according to e(£ + 1) =
(F — F*)e(¢) and converges to zero. Additionally, the rate at which w(¢) =
Flwg converges to F*wy is the same at which e(f) converges to zero, that
is,

Fesp(F = F*) = rexp((F).

Therefore,

TEXP(F) = TEXP(F - F*) = p(F - F*) = pess(F)'
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The following result establishes bounds on convergence factors and conver-
gence times for stochastic matrices arising from the equal-neighbor averaging
rule in equation (1.6.5).

Theorem 1.73 (Bounds on the convergence factor and the conver-
gence time). Let G be an undirected unweighted connected graph of order
n and let € € ]0,1]. Define the stochastic matriz F = (I,, + D(G))~ (I, +
A(Q)). There exists v > 0 (independent of n) such that the exponential
convergence factor and convergence time of F' satisfy

Texp(F) <1—n™% and T.(F) € O(n*loge™"),

as € — 07 and n — +o0.

1.6.4 Algorithms defined by tridiagonal Toeplitz and tridiagonal circulant
matrices

This section presents a detailed analysis of the convergence rates of linear
distributed algorithms defined by tridiagonal Toeplitz matrices and by cer-
tain circulant matrices. Let us start by introducing the family of matrices
under study. For n > 2 and a, b, ¢ € R, define the nxn matrices Trid,,(a, b, ¢)
and Circy(a, b, ¢) by

b ¢ 0
a b c ... 0
Trid,(a,b,¢) = [+ .. .. .. 1|,
0 a b ¢
0 0 b
and
[0 0 a
0 0 0
Circp(a, b, c) = Tridy(a,b,c) + [+ o -, . @

0O 0 ... 0 0
c 0 ... 0 O

We call the matrices Trid,, and Circ,, tridiagonal Toeplitz and tridiagonal
circulant, respectively. The two matrices only differ in their (1,7) and (n, 1)
entries. Note our convention that

Circa(a,b,c) = [ b a—i—c] .

a+c b

Note that, for a = 0 and ¢ # 0 (alternatively, a # 0 and ¢ = 0), the syn-
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chronous networks defined by Trid(a, b, ¢) and Circ(a, b, ¢) are, respectively,
the chain and the ring digraphs introduced in Section 1.4. If both a and
c are non-vanishing, then the synchronous networks are, respectively, the
undirected versions of the chain and the ring digraphs.

Now, we characterize the eigenvalues and eigenvectors of Trid,, and Circ,,.

Lemma 1.74 (Eigenvalues and eigenvectors of tridiagonal Toeplitz
and tridiagonal circulant matrices). For n > 2 and a,b,c € R, the
following statements hold:

(i) For ac # 0, the eigenvalues and eigenvectors of Trid,(a,b,c) are,
forie{l,...,n},

(%)1/2 sin ni—:l
. a\2/2 . 24
2 sin
b+ 2C\/ECOS ( " ) e C, () il e C™
c n+1 :

()" sn (25)

(ii) the eigenvalues and eigenvectors of Circ,(a, b, ¢) are, for w = exp(
and fori e {1,...,n},

b+ (a+ c)cos (T) +v/~=1(c — a)sin (?) €C,

and (1,o,...,wm=D)T ¢ Cn.

ZW\/TI)

n

Proof. Both facts are discussed, for example, in [Meyer, 2001, Example 7.2.5
and Exercise 7.2.20]. Fact (ii) requires some straightforward algebraic ma-
nipulations. |

Figure 1.19 illustrates the location of the eigenvalues of these matrices in
the complex plane.

Remarks 1.75 (Inclusion relationships for eigenvalues of tridiago-
nal Toeplitz and tridiagonal circulant matrices).

(i) The set of eigenvalues of Trid, (a, b, c) is contained in the real interval
[b — 2/ac, b+ 2y/ac], if ac > 0, and in the interval in the complex

plane [b — 2v/—14/|ac|, b+ 2v/—14/]ac|], if ac < 0.

(ii) The set of eigenvalues of Circy,(a,b, ¢) is contained in the ellipse on
the complex plane with center b, horizontal axis 2|a+c|, and vertical
axis 2|c — al. o
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(a) (b)

Figure 1.19 The eigenvalues of Toeplitz and circulant matrices, cf. Lemma 1.74, are
closely related with the roots of unity. Plotted in the complex plane, the
black discs correspond in (a) to the eigenvalues of Tridis(a,b,c), and in (b)
to the eigenvalues of Circi4(0,b,c).

Next, we characterize the convergence rate of linear algorithms defined by
tridiagonal Toeplitz and tridiagonal circulant matrices. As in the previous
section we are interested in asymptotic results as the system dimension
n — +o0o and as the accuracy parameter ¢ goes to 0T,

Theorem 1.76 (Linear algorithms defined by tridiagonal Toeplitz
and tridiagonal circulant matrices). Let n > 2, ¢ € ]0,1[, and a,b,c €
R. Let x : Z>o — R" and y : Z>o — R"™ be solutions to

x(0 4+ 1) = Tridy(a, b, c) z(¢), y(¢ + 1) = Circy(a, b, ) y(¢),

with initial conditions x(0) = xg and y(0) = yo, respectively. The following
statements hold:

(i) If a = ¢ # 0 and |b| + 2|a| = 1, then limy_ 1o x(£) = 0,, with
e-convergence time in ©(n?loge™!);

(i) if a # 0, ¢ = 0 and 0 < [b] < 1, then limy_{~ xz(f) = 0, with
g-convergence time in O(n logn + log 6_1); and

(i1i) ifa>0,¢>0,1>b>0, and a+b+c=1, then limy_,; y(¢) =
Yave Ln, WheTe Yaye = %lgyo, with e-convergence time in @(n2 log 5_1).

The proof of this result is reported in Section 1.8.6. Next, we extend
these results to another interesting set of tridiagonal matrices. For n > 2
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and a,b € R, define the n x n matrices ATrid; (a,b) and ATrid, (a,b) by

a 0 ... ... 0
o o0 ... ... 0
ATridE (a,b) = Trid,(a,b,a) £ |1 o, .. .
O ... ... 0 0
o ... ... 0 af

We refer to these matrices as augmented tridiagonal matrices. If we define

11 0 0 ... O
1 -1 1 0 ... 0
1 0 -1 1 0
P+ - . . ’
1 0 0o -1 1
10 0 0 —1]
! 1 0 0 0]
-1 1 1 0 0
1 0 1 1 0
P = ,
(-2 0 ... 0 1 1
(=™t o0 ... 0 0 1]
then the following similarity transforms are satisfied:
b=+ 2a 0 _
it _ 1
ATrid; (a,b) = Py 0 Trid, 1 (a, b, a) P (1.6.7)

To analyze the convergence properties of the linear algorithms determined
by ATrid}! (a,b) and ATrid, (a,b), we will find useful to consider the vector

17 =1, -1,1,..., (-2 (=) HT e R™.

In the following theorem we will not assume that the matrices of interest
are semi-convergent. We will establish convergence to a trajectory, rather
than to a fixed point. For e € ]0,1[, we say that a trajectory x : Z>g — R"
converges to Tfna) : Z>0 — R"™ with convergence time T € Zx if

(i) ||x(¢) — xapa1(£)]]2 — 0 as £ — 4o00; and
(ii) Tr is the smallest time such that ||z({) — zana(O)|l2 < €|lxz(0) —
.’Eﬁnal(O)HQ, for all £ > Tg.

Theorem 1.77 (Linear algorithms defined by augmented tridiag-
onal matrices). Let n > 2, ¢ € |0,1], and a,b € R with a # 0 and
bl +2|a| =1. Let v : Z>o — R™ and z : Z>o — R™ be solutions to

(0 + 1) = ATrid; (a, b) z(¢), z(0 4+ 1) = ATrid,, (a,b) 2(¥),
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with initial conditions x(0) = xo and z(0) = zo, respectively. The following
statements hold:

(i) imy_s o0 (2(0) = Zave()1,) = Op, where Tave(€) = (21720)(b+2a)",
with e-convergence time in @(n2 log 5_1); and

(i) Hmy_ oo (2(£) — Zave(£)1n—) = On, where zave(£) = (211_20)(b —
2a)*, with e-convergence time in @(n2 log 5_1).

The proof of this result is reported in Section 1.8.6.

Remark 1.78 (From Toeplitz to stochastic matrices). A tridiagonal
Toeplitz matrix is not stochastic unless its off-diagonal elements are zero.
The tridiagonal circulant matrices Circ,, and augmented tridiagonal ma-
trices ATrid;" studied in Theorem 1.76(iii) and Theorem 1.77(i) are slight
modifications of tridiagonal Toeplitz matrices and are doubly stochastic. In-
deed, note that the evolutions converge to the average consensus value, as
predicted by Corollary 1.67. Note that convergence times obtained for Circ,,
and ATrid;| are consistent with the upper bound predicted by Theorem 1.73.

[ ]
We conclude this section with some useful bounds.

Lemma 1.79 (Bounds on vector norms). Assume x € R", y € R"" 1
and z € R"™1 jointly satisfy

cen ] eer ]

Then gllzllz < [lyllz < (n = 1l|zll2 and 3[lll2 < ||zl < (n = 1)|z]2.

The proof of this result is based on spelling out the coordinate expressions
for x, y, and z, and is left to the reader as Exercise E1.28.

1.7 NOTES

Dynamical systems and stability theory

Our definition of state machine is very basic; more general definitions of

state machines can be found in the literature, e.g., see [Sipser, 2005], but
the one presented in this chapter are enough of our purposes.

The literature on dynamical and control systems is vast. The main
tool we use in later chapters is the LaSalle Invariance Principle, obtained
by LaSalle [1960] and discussed in [LaSalle, 1986]; see also the earlier works
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by [Barbasin and Krasovskii, 1952] and [Krasovskii, 1963] for related ver-
sions. Example relevant references include modern texts on dynamical sys-
tems [Guckenheimer and Holmes, 1990], linear control systems [Chen, 1984],
nonlinear control systems [[<halil, 2002], robust control [Dullerud and Paganini,
2000], and discrete-event systems [Cassandras and Lafortune, 2007].

Graph theory

The basic definitions of graph theory are standard in the literature; e.g.,
see [Diestel, 2005, Godsil and Royle, 2001, Biggs, 1994]. The discussion
about graph algorithms is taken from [Cormen et al., 2001], which also con-
tains detailed discussion on implementation and complexity issues. Regard-
ing Section 1.4.4.4, standard references on combinatorial optimization in-
clude [Korte and Vygen, 2005, Vazirani, 2001].

In Section 1.4.5, all statements about powers of the adjacency matrix
are standard results in algebraic graph theory, e.g., see [Godsil and Royle,
2001, Biggs, 1994]. Lemma 1.24 is a recent result from [Moreau, 2005,
Lin et al., 2005]. Proposition 1.32, on the fact that a weighted digraph
is aperiodic and irreducible if and only if its adjacency matrix is primi-
tive, is related to standard results in the theory of Markov chains, e.g.,
see [Seneta, 1981, Meyer, 2001].  Our proof adopts the approach in [Lin,
2005]. Laplacian matrices have numerous remarkable properties; two el-
egant surveys are [Mohar, 1991, Merris, 1994]. Theorem 1.34 character-
izing the properties of the Laplacian matrix contains recent results. A
proof of statement (ii) is given in [Olfati-Saber and Murray, 2004]; in our
proof we follow the approach in [Francis, 2006]. Statement (iii) is proved
by Lin et al. [2005], Francis [20006]; the following equivalent version is proved
in [Ren and Beard, 2005]: a weighted digraph G contains a spanning tree if
and only if rank(L(rev(G))) = n — 1. Regarding statement (iv), the equiva-
lence between (iv)a and (iv)b is proved by Olfati-Saber and Murray [2004]
and the equivalence between (iv)b and (iv)c is proved by Moreau [2005].

Distributed algorithms

Our discussion of distributed algorithms is extremely incomplete. We only
presented a few token ideas and we refer to the textbooks by Lynch [1997]
and Peleg [2000] for detailed treatments. Let us mention briefly that many
more efficient algorithms are available in the literature, for example, the GHS
algorithm [Gallager et al.; 1983] for minimum spanning tree computation
and consensus algorithms with communication and processors faults; much
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attention is dedicated to fault tolerance in asynchronous systems with shared
memory and in asynchronous network systems.

Linear distributed algorithms

Distributed linear algorithms and in particular, averaging iterations that
achieve consensus among processors, have a long and rich history. The
richness comes from the vivid analogies with physical process of diffusion,
with Markov chain models, and with the sharp theory of positive matrices
developed by Perron and Frobenius. What follows is a necessarily incom-
plete list. An early reference on averaging opinions and achieving consensus
is [DeGroot, 1974]. An early reference on the connection between averag-
ing algorithms, the products of stochastic matrices and ergodicity in in-
homogeneous Markov chains is [Chatterjee and Seneta, 1977] — the history
of inhomogeneous Markov chains being a classic topic since the early 20th
century. The stochastic setting was investigated in [Cogburn, 1984]. Load
balancing with divisible tasks in parallel computers is discussed in [Cybenko,
1989]. A comprehensive theory of asynchronous parallel processors imple-
menting distributed gradient methods and time-dependent averaging algo-
rithms is developed in the series of works [Tsitsiklis, 1984, Tsitsiklis et al.,
1986, Bertsekas and Tsitsiklis, 1997]. Much interest for averaging algorithms
arose from the influential work on flocking by Jadbabaie et al. [2003]. Sharp
conditions for convergence for the time-dependent setting were obtained
in [Moreau, 2005]. Finally, proper attention to the average consensus prob-
lem was given in [Olfati-Saber and Murray, 2004].

Regarding Theorem 1.60 characterizing the convergence of averaging al-
gorithms defined by sequences of stochastic matrices, we note that (1)
the PhD thesis [Tsitsiklis, 1984] established convergence under a strong-
connectivity assumption, (2) a sufficient condition was independently re-
discovered in [Jadbabaie et al.; 2003] adopting a result from [Wolfowitz,
1963], and (3) [Moreau, 2003, 2005] obtained the necessary and sufficient
condition (for uniform convergence in non-degenerate sequences) involving
the existence of a uniformly globally reachable node. The work in [Moreau,
2003, 2005] is an early reference also for Theorem 1.62; additional related re-
sults and a historical discussion appeared in [Blondel et al., 2005, Hendricks,
2008]. The estimates of the on convergence factor given in Theorem 1.73 in
Section 1.6.3 were proved by Landau and Odlyzko [1981]. Our treatment of
in Section 1.6.4 follows [Martinez et al., 2007a].

Among the numerous recent directions of research on consensus and aver-
aging we mention: continuous-time consensus algorithms [Olfati-Saber and Murray,

2004, Moreau, 2004, Lin et al., 2004, Ren and Beard, 2005, Lin et al., 2005,
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2007¢], consensus over random networks [Hatano and Mesbahi, 2005, Wu,

2006, Porfiri and Stilwell, 2007, Tahbaz-Salehi and Jadbabaie, 2008, Picci and Taylor,
2007, Fagnani and Zampieri, 2008, Patterson et al., 2007], consensus in finite-

time [Cortés, 2006, Sundaram and Hadjicostis, 2008], consensus algorithms

for general functions [Bauso et al., 2006, Cortés, 2008b, Lorenz and Lorenz,

2008, Sundaram and Hadjicostis, 2008], connections with the heat equa-

tion and partial difference equation [Ferrari-Trecate et al., 2006], spatially-
decaying interactions [Cucker and Smale, 2007], convergence in time-delayed

and asynchronous settings [Blondel et al.; 2005, Angeli and Bliman, 2006,

Fang and Antsaklis, 2008], quantized consensus problems [Savkin, 2004, Kashyap et al.,
2007, Carli et al., 2008a, Zhu and Martinez, 2008b], consensus on mani-

folds [Sarlette and Sepulchre, 2007, Scardovi et al., 2007, Igarashi et al., 2007],
applications to distributed signal processing [Spanos et al., 2005, Xiao et al.,

2005, Olfati-Saber et al., 2006, Zhu and Martinez, 2008a], characterization

of the convergence rates and time complexity [Landau and Odlyzko, 1981,
Olshevsky and Tsitsiklis, 2007, Carli et al., 2008b, Cao et al., 2008]. Nu-

merous interesting results are reported in the recent PhD theses [Lin, 2005,

Lorenz, 2007, Cao, 2007, Hendrickx, 2008, Carli, 2008]. Finally, we point

out two recent surveys [Olfati-Saber et al., 2007, Ren et al., 2007] and the

text [Ren and Beard, 2008|.

Synchronization is a fascinating topic related to averaging algorithms.
A very early reference is the work by Huygens [1673] on coupled pen-
dula. The synchronization of oscillators in dynamical systems has received
increasing attention and key references include [Wiener, 1958, Kuramoto,
1975, Winfree, 1980, Kuramoto, 1984, Strogatz, 2000, Nijmeijer, 2001]; see
also the widely accessible [Strogatz, 2003]. Under all-to-all interactions,
Mirollo and Strogatz [1990] prove synchronization of a collection of “in-
tegrate and fire” biological oscillators. Recent works on the Kuramoto
and other synchronized oscillator models include [Jadbabaic et al., 2004,
Chopra and Spong, 2008, Triplett et al., 2006, Papachristodoulou and Jadbabaie,
2006, Wang and Slotine, 2006].

1.8 PROOFS

This section gathers the proofs of the main results presented in the chapter.

1.8.1 Proof of Theorem 1.18

Here we provide the proof of the LaSalle Invariance Principle for set-valued
discrete-time dynamical systems. We remark that Theorem 1.16 is an im-
mediate consequence of Theorem 1.18 and that Theorem 1.17 is proved in
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a similar way (we refer to [KChalil, 2002] for details).

Proof of Theorem 1.18. Let « be any evolution of (X, Xo,T) starting from
W. Let Q(y) C W denote the w-limit set® of the sequence v = {vy(¢) | £ €
Z>o}. First, let us prove that Q(v) is weakly positively invariant. Let
z € Q7). Then there exists a subsequence {y(¢;,) | m € Z>o} of v such
that mgrilmv(ﬂm) = z. Consider the sequence {y({y, + 1) | m € Z>o}.

Since this sequence is bounded, it has a convergent subsequence. For ease

of notation, we use the same notation to refer to it, i.e., there exits y such

that hIE Yl + 1) = y. By definition, y € (). Moreover, using the
m—-—-+00

fact that T is closed, we deduce that y € T'(z). Therefore, 2(7) is weakly
positively invariant.

Now, consider the sequence Vo~ = {V(y({)) | £ € Z>o}. Since v is
bounded and V' is non-increasing along 7" on W, the sequence V o~ is
decreasing and bounded from below, and therefore, convergent. Let ¢ € R
satisfy eh? V(y(£)) = c¢. Next, we prove that the value of V' on Q(y) is

— T 00

constant and equal to ¢. Take any z € Q(vy). Accordingly, there exists a
subsequence {v(¢,,) | m € Z>o} such that hIJIrl Y(y) = z. Since V is
- m—-1+0o0

continuous, mEIEWV(v(Km)) = V(z). From EETOOV(W(E)) = ¢, we conclude
that V(z) = c.
Finally, Q(v) being weakly positively invariant and V' being constant on
Q(~) imply that
Q(y) C{z € X | Jy € T(2) such that V(y) = V(2)}.
Therefore, we conclude that , ETOO dist(y(£), S N V~(c)) = 0, where S is

the largest weakly positively invariant set contained in {p € W | 3p’ €
T(p) such that V(p') = V(p)}. |

1.8.2 Proofs of Lemmas 1.23 and 1.24

Proof of Lemma 1.23. The first statement is obvious. Regarding the second
statement, we prove that a topologically balanced digraph with a globally
reachable node is strongly connected, and leave the proof of the other case
to the reader. We reason by contradiction. Assume G is not strongly con-
nected. Let S C V be the set of all nodes of G that are globally reachable.

5The w-limit set of a sequence v = {y(¢) | £ € Z>¢} is the set of points y for which there exists
a subsequence {Y({m) | m € Z>o} of v such that lirﬁ Ylm) = y.
- m— oo
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By hypothesis, S # ). Since G is not strongly connected, we have S C V.
Note that any outgoing edge with origin in a globally reachable node auto-
matically makes the destination a globally reachable node too. This implies
that there cannot be any outgoing edges from a node in S to a node in
V\S. Let v € V'\ S such that v has an out-neighbor in S (such a node must
exist, since otherwise the nodes in S cannot be globally reachable). Since by
hypothesis G is balanced, there must exist an edge of the form (w,v) € E.
Clearly, w ¢ S, since otherwise v would be globally reachable too, which
is a contradiction. Therefore, w € V' \ S. Again, using the fact that G is
topologically balanced, there must exist an edge of the form (z,w) € E. As
before, z € V'\ S (note that z = v is a possibility). Since V'\ S is finite and so
is the number of possible edges between its nodes, applying this argument
repeatedly, we find that there exists a vertex whose out-degree is strictly
larger than its in-degree, which is a contradiction with the fact that G is
topologically balanced. We refer to [Cortés, 2008b] for the proof that G is
Eulerian. |

Proof of Lemma 1.24. (i) = (i) Assume that ¢ € V is the root of
the spanning tree and take an arbitrary pair of nonempty, disjoint sub-
sets Uy,Us C V. If © € Uy, then there must exist a path from i € Uy to a
node in Us. Therefore, Us must have an in-neighbor. Analogously, if ¢ € Us,
then U; must have an in-neighbor. Finally, it is possible that i ¢ Uy UUs,.
In this case, there exists paths from i to both U; and Us, that is, both sets
have in-neighbors.

(i) = (i) This is proved by finding a node from which there exists a
path to all others. We do this in an algorithmic manner using induction. At
each induction step k, except the last one, four sets of nodes are considered
Ui(k) c Wi(k) C V, Ua(k) C Wa(k) C V with the following properties:

(a) The sets Wi (k) and Wa(k) are disjoint; and

(b) from each node of Ug(k) there exists a path to each other node in
Wi (k) \ Us(k), s € {1,2}.

Induction Step k=1: Set Uy = W1 = {i1} and Uy = Wy = {ia}, where iy, io
are two arbitrary different nodes of the graph that satisfy the requirements
(a) and (b).

Induction Step k > 1: Suppose that for k& — 1 we found sets Uy (k — 1) C
Wi(k —1) and Ua(k — 1) C W(k — 1) as in (a) and (b). Since Uj(k — 1)
and Uz(k — 1) are disjoint, then there exists either an edge (ig,j1) with
J1 € Ui(k —1), i, € V\Ui(k —1), or an edge (ig,j2) with jo € Ua(k — 1)
and i, € V \ Ua(k — 1). Suppose that an edge (i, j2) exists (the case of a
edge (ig,j1) can be treated in a similar way). Only four cases are possible.
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(A) If i, € Wi(k —1) and Wy(k —1)UWsy(k — 1) = V, then we can ter-
minate the algorithm and conclude that from any node i € Uy(k — 1)
there exists a path to all other nodes in the graph and thus there is a
spanning tree.

(B) If iy, € Wi(k —1) and Wi(k — 1) UWa(k — 1) # V, then set:
Ur (k) = Uy (k — 1),
Wi(k) = Wik —1)UWa(k — 2),
Us(k) = Wa(k) = {ix},
where iy, is an arbitrary node which does not belong to Wy (k—1) U Wa(k—

1).

(
Wi (
Uz (k) = {ix},
Wz(k = Wg(k — 1) U{Zk}
(D) Tf iy, € Wa(k — 1)\ Ua(k — 1) then
Ui(k) = Ur(k — 1),
Wi (k) =Wi(k —1),
Us(k) = Ua(k — 1) U{ix},
Wa(k) = Wa(k — 1)

The algorithm terminates in a finite number of induction steps because at
each step, except when finally case (A) holds true, either the number of
nodes in W7 U W5y increases, or the number of nodes in W7 U W5 remains
constant and the number of nodes in Uy U Uy increases. [ |

1.8.3 Proofs of Propositions 1.30 and 1.32

Proof of Proposition 1.30. (it)) = (i) We aim to show that there exist
directed paths from any node to any other node. Fix i € {1,...,n} and let
R; C {1,...,n} be the set of nodes that belong to directed paths originating
from node i. Denote the unreachable nodes by U; = {1,...,n} \ R;. We
argue that U; cannot contain any element, because if it does, then R; UU;
is a nontrivial partition of the index set {1,...,n} and irreducibility implies
the existence of a non-zero entry aj;, with j € R; and k& € U;. Therefore,
U; = 0, and all nodes are reachable from i. The converse statement (i) —
(ii) is proved similarly.
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(i) = (i) If G is strongly connected, then there exists a directed path
of length k < n — 1 connecting any node ¢ to any other node j. Hence,
by Lemma 1.29(ii), the entry (A¥);; is strictly positive. This immediately
implies the statement (iii). The converse statement (i) = (i) is proved
similarly. |

Next we present a useful number theory result. This states that relatively
co-prime numbers generate all sufficiently large natural numbers.

Lemma 1.80 (Natural number combination). Letay,...,ay € N have
greatest common divisor 1. There exists k € N such that every number
m > k can be written as

m=qia; + -+ ayay,

for appropriate numbers aq,...,any € N.

Proof. Assume that a1 < --- < any without loss of generality. From the

generalized Bezout identity we know that, for any numbers aq,...,ay with

greatest common divisor 1, there exist integers 71,...,vny € Z such that
1=ma1+ -+ ynan. (1.8.1)

Pick k = |yi1|a? +- - +|yn|ak € N. Every number m > k can be written as
m=k+ Mqtnt @1 + Myrmndrs

for appropriate numbers mqine > 0 and 1 < mympar < a1. Using the defini-
tion of k£ and equation (1.8.1), we write

m = (’71‘@% + -+ |7N|a?\1) + Mqtntd1 + mrmndr(/ylal + 4 ’YNCLN)
= Mqtnta1 + ("Yl‘al + mrmndr71)a1 +-- 4+ (”YN’GN + mrmndrfYN)aN-

The proof is now complete by noting that each integer number (|y1|a; +

MymndrY1)s - - - (JYN|aN + Mymndryn) 18 strictly positive because mympar <
a; <---<ay. [ |

Proof of Proposition 1.32. (i) = (ii) Pick any i. We claim there exists a
number k(z) with the property that for all m > k(i) we have that (A™);; is
positive, that is, there exists a directed path from i to ¢ of length m for all m
larger than a number k(7). To show this claim, let {c1,...,cn} be the set of
the cycles of G and let {¢1,...,¢x} be their lengths. Because G is aperiodic,
Lemma 1.80 implies the existence of a number h(¢1,...,¢y) such that any
number larger than h(¢q,...,¢y) is a linear combination of #1,...,¢n with
natural numbers as coefficients. Because G is strongly connected, there
exists a path 7 of arbitrary length I'(7) that starts at 4, contains a vertex
of each of the cycles ci,...,cy, and terminates at . Now, we claim that
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k(i) =T(i)+h(ly,...,¢N) has the desired property. Indeed, pick any number
m > k(i) and write it as k = I'(¢)+ 5141+ - -+ On Ly for appropriate numbers
B1,...,0n € N. A directed path from i to ¢ of length m is constructed by
attaching to the path ~ the following cycles: (1 times the cycle ¢, B2 times
the cycle ¢, ..., By times the cycle cy. Finally, having proved the existence
of k(i) with the desired property, let K be the maximum k(i) over all nodes
i, and recall that diam(G) is the maximum pairwise distance between nodes.
Clearly, AM is positive for all M > K + diam(G).

(ii) = (i) From Lemma 1.29 we know that A* > 0 means that there
are paths from every node to every other node of length k. Hence, the
digraph G is strongly connected. Next, we prove aperiodicity. Because G is
strongly connected, each node of G has at least one outgoing edge, i.e., for
all 4, there exists at least one index j such that a;; > 0. This fact implies
that the matrix A¥T1 = AAF is positive via the following simple calculation:
(AR, = py ain (AR > aij(Ak)ﬂ > (0. In summary, we have shown
that, if A* is positive for some k, then A™ is positive for all subsequent
m > k. Therefore, there are cycles in GG of any length greater than or equal
to k, which means that G is aperiodic. [ |

1.8.4 Proof of Theorem 1.34

Proof. We begin with statement (i). Let l;;, for 4,5 € {1,...,n}, be the
entries of L(G). Note that l; = Z?:L#i a;j > 0 and l;; = —a;; < 0 for
i # j. By the Gersgorin Disks Theorem 1.3, we know that each eigenvalue
of L(G) belongs to at least one of the disks

n
{zeCllz-tillc< Y ll}={zeC|llz - tilc <ta}.
=1
These disks contain the origin 0,, and complex numbers with positive real
part. This concludes the proof of statement (i).

Regarding statement (ii), note that Dy (G) is invertible because G is
strongly connected. Define the two matrices A = Doy (G) tA(G) and L =
Dout(G) 'L(G) and note that they satisfy L = I, — A. Since Doy (G)
is diagonal, the matrices A(G) and A have the same pattern of zeros and
positive entries. This observation and the assumption that G is strongly
connected imply that A is nonnegative and irreducible. By the Perron-
Frobenius Theorem 1.9, the spectral radius p(A) is a simple eigenvalue.
Furthermore, one can verify that A is row-stochastic (see Lemma 1.28),
and therefore, its spectral radius is 1 (see Exercise E1.4). In summary, we

conclude that 1 is a simple eigenvalue of A, that 0 is a simple eigenvalue of
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L, that L has rank n — 1, and that L(G) has rank n — 1.

Regarding statement (iii), we first prove that rank(L(G)) = n — 1 implies
the existence of a globally reachable vertex. By contradiction, let G con-
tain no globally reachable vertex. Then, by Lemma 1.24, there exist two
nonempty disjoint subsets Uy, Us C V(G) without any out-neighbor. After
a permutation of the vertices, the adjacency matrix can be partitioned into

the blocks

Ay 0 0
AG) =] 0 Apn 0
Az1 Azz Asg

Here, A2 and A;3 vanish because U; does not have any out-neighbor, and
Aoy and Aoz vanish because Us does not have any out-neighbor. Note that
D11 — A1y and D9y — Assy are the Laplacian matrices of the graphs defined
by restricting G to the vertices in U; and in Us, respectively. Therefore, the
eigenvalue 0 has geometric multiplicity at least 2 for the matrix Doyt (G) —
A(G). This contradicts the assumption that rank(L(G)) =n — 1.

Next, still regarding statement (iii), we prove that the existence of a glob-
ally reachable vertex implies rank(L(G)) = n—1. Without loss of generality,
we assume that G contains self-loops at each node (so that Dy is invert-
ible). Let R be the set of globally reachable vertices; let r € {1,...,n} be its
cardinality. If 7 = n, then the graph is strongly connected and statement (ii)
implies rank(L(G)) = n — 1. Assume therefore r < n. Renumber the ver-
tices so that R is the set of the first r vertices. After this permutation, the
adjacency matrix and Laplacian matrix can be partitioned into the blocks

_ All 0 . L11 0
AG) = [AZI A22] . and L(G) = |:L21 L22] '

Here, A5 € R"™*("=7) vanishes because there can be no out-neighbor of R
otherwise that out-neighbor would be a globally reachable vertex in V'\ R.
Note that the rank of L1; € R"*" is exactly r—1 since the digraph associated
to Aq1 is strongly connected. To complete the proof it suffices to show that
the rank of Loy € R(™=7)*(n=7) ig full. Note that the same block partition
applies to the matrices A = D, A and L = D, L considered in the proof
of statement (ii) above. With this block decomposition, we compute

Anct 0

An—l — | _ i,
Agl(n — 1) Ag2 1

for some matrix A (n — 1) that depends upon A1y, As; and Ags. Because
a globally reachable node in G is globally reachable also in the digraph
associated to A, Proposition 1.30(v) implies that Ag(n — 1) is positive.
This fact, combined with the fact that A and hence A" ! are row-stochastic,
implies that A%, has maximal row sum (that is, co-induced norm) strictly
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less than 1. Hence, the spectral radius of flg; L and of Agy are strictly
lgss than 1. Since Ago has spectral radius strictly less than 1, the matrix
Los = I,,_, — Ago, and in turn the matrix Los, have full rank.

Regarding statement (iv), the equivalence between (iv)a and (iv)b is
proved as follows. Because Z?Zl lij = dout(vi) —din(v;) for all i € {1,...,n},
it follows that 17 L(G) = 0L if and only if Dy (G) = Din(G). Next, we
prove that (iv)b implies (iv)c. Suppose that L(G)T1, = 0L and consider
the system 4(t) = —L(G)~(t), v(0) = x0, together with the positive definite
function V' : R — R defined by V() = 272. We compute the Lie derivative
of the function V along the vector field z — —L(G)z as V (z) = =227 L(G)x.
Note that V(z) < 0, for all z € R, is equivalent to L(G) + L(G)T > 0.
Because 11 L(G) = 01 and L(G)1,, = 0,, it is immediate to establish that
exp(—L(G)t), t € R, is a doubly stochastic matrix. From Theorem 1.2 we
know that, if we let {P,} be the set of n x n permutation matrices, then
there exist time-dependent convex combination coefficients > Ao (t) = 1,
Aa(t) > 0, such that exp(—L(G)t) = Y, Aa(t)Pa. By the convexity of V'
and its invariance under coordinate permutations, for any = € R", we have

V(exp(=L(G)t)x) = V(O Xa(t)Paz)
< AOV(Paz) =) AtV () = V(z).

In other words, V(exp(—L(G)t)x) < V(x) for all x € R", which implies
V(z) <0, for all z € R™. Finally, we prove that (iv)c implies (iv)b. By
assumption, —2? (L(G) + L(G)")x = —22TL(G)z < 0 for all x € R". In
particular, for any small ¢ > 0 and 2 = 1,, — e L(G) "1,

—(F — AT (@) L(G) (1, — eL(G)T1,,) = || L(G)T1,,]|3 + O(e?) < 0,
which is possible only if L(G)"1,, = 0%, [ |

1.8.5 Proofs of Theorem 1.60 and Proposition 1.64

In this section we prove Theorem 1.60. The exposition follows along the main
lines of the original proof by Moreau [2005], with the variation of using the
LaSalle Invariance Principle for set-valued dynamical systems, presented as
Theorem 1.18. We begin with some preliminary results.

Lemma 1.81 (Union of graphs and sums of adjacency matrices).
Let Gy, ...,Gs be unweighted digraphs with common node set {1,...,n} and
adjacency matrices Ay, ..., As. The unweighted digraph

GiU---UGs = ({1,...,n}, E(A1)U--- U E(4y))
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1s equal to the unweighted digraph associated to the nonnegative matriz
> oke(l,...oy Ak, that is, the unweighted digraph ({1,...,n}, E(A1+---+As)).

Proof. 1t (i,j) € Ukeq,..sy E(G), then there exists kg € {1,...,d} such
that (i,j) € E(Gy,). Denoting the entries of the matrix Ay by a;;(k), this
implies that a;;(ko) > 0, that a;;(1) + -+ a;;(6) > 0, and that (4, j) is an
edge in E(A; + ---+ As). The converse statement is easily proved with an
analogous reasoning. [ |

In what follows, for a € ]0, 1], let F(«) denote the set of n x n stochastic

matrices that are non-degenerate with respect to a. Given « € ]0,1] and
0 € N, define the sets Fs(a) C R™*™ by

Fs(a) = {F € .7-"(045) | 3F,..., F5 € F(«) such that F' = Fs--- F}
and G(F})U---UG(Fy) contains a globally reachable node},

or, equivalently by Proposition 1.30,

Fs(a) ={F € F(a®) | 3F,...,F5 € F(a) such that F = F5... Fy

and a column of (F} + - -+ + Fs)" has positive entries}.

Lemma 1.82 (Compact sets of stochastic matrices). For a € ]0,1],
the sets F(a) and Fs(ar), 6 € N, are compact.

Proof. All sets are clearly bounded. We invite the reader in Exercise E1.23
to prove that F(«) is closed. Let us prove now that Fs(«) is closed. Consider
a matrix sequence {F(k) | k € N} C Fs(a) convergent to some matrix F.
Because F(a’) is closed, we establish that F' € F(a?). Because each matrix
F (k) belongs to Fs(«), there exist matrices Fiy(k),..., F5(k) € F(a) such
that F'(k) = Fs(k)--- F1(k). We claim that there exists a sequence k; € N,
for I € N, such that, for all s € {1,...,0}, the matrix sequences Fs(k;),l € N,
are convergent. (To see this, note that Fj (k) takes value in a compact set,
hence it must have a convergent subsequence. Restrict F5(k) to the instants
of time in the convergent subsequence for Fj(k) and observe that it takes
value in a compact set, etc.) Therefore, there exist matrices Fy, to which the
matrix sequences Fs(k;), | € N, converge. Taking the limit as | — +o0 in the
equality F'(k;) = Fs(k;)--- Fi(k;), we establish that F' = Fy--- F}. Finally,
it remains to show that a column of B := (F} + --- 4+ Fj3)" has positive
entries. For k € N, define B(k) = (Fi(k)+---+ Fs(k))". Clearly, B(k) — B
as k — +o00. By the definition of the sequence F'(k), each B(k) = (b;;(k))
has the property that there exists ji € {1,...,n} such that b;; (k) > 0 for
alli e {1,...,n}. Since {1,...,n} is a finite set, there exists jo € {1,...,n}
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that satisfies this property for an infinite subsequence of matrices B(k;),
I € N. With some straightforward bookkeeping, we write:

(B(k1))ijo = Z Z Z Foy (k))iny -+ (Fa, (k)b 1o

Q1o =1hy=1 hp_1=1

Note that, because Fs(k) € F(a), for s € {1,...,d}, each nonzero entry
Fy(k) is lower bounded by a > 0. Furthermore, each entry (B(k;))qj, is the
sum of nonnegative terms, each of which is the product of n factors, each
of which is lower bounded by a. Hence, because (B(k;))i;, is positive, it
is also lower bounded by a™. Since l_l}TOOB (k;) = B, by the compactness

of [o",1]U{0}, it must be that B = (b;;) satisfies bj;, > o™ > 0 for all
j €{1,...,n}. In particular this implies that F' € Fs(a) and then Fs(a) is
closed. |

Finally, we are able to prove the equivalences in Theorem 1.60.

Proof of Theorem 1.60. First, we prove that (i) implies (ii). Suppose that
for all € N, there exists some fy € N such that the digraph with edges
Uselto,o+5] £ (F'(5)) does not contain a globally reachable node. By Lemma 1.24
there must exist a set of nodes Uy,Us C {1,...,n} such that there are no
out-going edges (i1,71), with iy € Uy, i1 € {1,...,n} \ Uy or (i, j2), with
jo € Ua, g € {1,...,n} \ Us. Take any values a,b € R, a # b, and consider
the initial condition:

a, 1€ Uy,
wi(ﬁo) =4 b, 1 € Us,
c € co(a,b), ie{l,...,n}\ (UUU,).
Because of the properties of Uy and Us, for all § € N, we must have
a, ] € Ula
w](€0+6+1): ba jGUQa
ceco(a,b), je{l,....,n}\ (U1 UUs).
Because 0 can be chose arbitrarily large, one can easily construct a con-

tradiction with the fact that diag(R™) is supposed to be uniformly globally
attractive.

Next, we show that (ii) implies (i). Let a € ]0,1] to be the scalar with
respect to which the sequence is non-degenerate. Consider the set-valued
discrete-time dynamical system (R",R",T, s), with evolution map T, s :
R™ = R" defined by

Tos(w) ={Fw | F € Fs(a)}.
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Because of this definition, any trajectory w : Z>¢o — R" of the averaging
algorithm (1.6.2) satisfies

w((k + 1)) € Tas(w(ks)), k€ Zso.

Next, we intend to use the LaSalle Invariance Principle for set-valued dis-
crete systems, presented as Theorem 1.18, to prove that , lim dist(w(kf),diag(R")) =
— 400

0. This will then imply, by Lemma 1.21, the uniform attractivity statement
in theorem. In the following we check the conditions of the theorem.

Closedness of the set-valued dynamical system. Consider a pair of vector
sequences {zj | k € N} and {yx | ¥ € N} in R" such that limg_, 4oz =
x, limg_qooyr = y and y, € Ty s5(xy), for all k& € N. We need to show
that y € T, 5(x). By definition of T, s and because y, € Ty 5(z), there
exists a sequence {F(k) | k € N} C Fs(«) such that F(k)xy = yg, for all
k € N. Furthermore, since Fs(«) is compact by Lemma 1.82, there exists
a subsequence {F(k;) | | € N} that is convergent to some F' € Fs(a). The
desired conclusion follows from

y= lim y, = lim F(k¢)zy, = Fx.
— 400

l——o00

Non-increasing Lyapunov function. Define the function V' : R" — R>¢ by

V(r)= max x;— min x;.
ie{l,...,n} ie{l,...,n}
Note that V' is continuous. Pick any x € R"™ and any stochastic matrix
F € Fs(a). Recall that [|z]|cc = max;eqi,. pny |7i], and that ||F|o = 1.
Therefore, by definition of induced norm, ||Fz| e < [|2||oco. Similarly, in
components,

(Fz); = Z fijsz( Z f”) ke?ll,m7} "

J€{1,...,n} GE{L,

that implies min;eqy, .y (Fz); > mink€{17.,,,n} x. Therefore, we have that
V(Fz) < V(x) for all z € R” and F' € Fs(«). In other words, the function
V' is non-increasing along T, 5 in R".

Boundedness. It is immediate to see that, since ||Fz||s < ||7]/co for all
stochastic matrices F' and vectors x, the trajectory k +— w(kd) is bounded.

Invariant set. By Theorem 1.18, any trajectory of T, 5, and hence also the
trajectory w : Z>o — R™ of the averaging algorithm (1.6.2), will converge
to the largest weakly positively invariant set contained in a level set of the
Lyapunov function V' and in a set where the Lyapunov function does not
decrease along 7. In the following we determine that this set must be
contained in diag(R"™).
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For k € N fixed, assume w(kd) satisfies V(w(kd)) > 0. Given the averag-
ing algorithm (1.6.2) defined by the sequence {F(¢) | { € Z>o} C F(«),
define Fi(k) = F(k+ 1), ..., Fs(k) = F(k + 6). Additionally, define
F(k) = Fs(k)--- F1(k) and note that F'(k) € Fs(«), by construction. With
this notation, note that w(kd + s) = Fs(k) --- Fi(k)w(kd) for s € {1,...,0}.
Define wys = maxjeqy,.. ) wi(k6) and wy, = minjegy ) wi(kd); by hypoth-
esis we know wps > wyy,. Define Uy = {i € {1,...,n} | w(kd) = wps} and
Unp ={i€{l,...,n} | wj(kd) = wy}; by hypothesis we know Up; NU,, = 0.
Now, we are ready to use the property (ii) in the theorem statement. Since
({L,...,n},Usequ,....5y E(Fs(k)) contains a globally reachable node and since
Uys and U, are nonempty and disjoint, then Lemma 1.24 implies that there
exists either

e (an out-neighbor of Uys) an edge (inr, jar) € E(Fs(kd)) with iy € Uny,
jm €41,...,n}\ Uy, and s € {1,...,0}; or

e (an out-neighbor of U,,) an edge (i, jm) € E(Fs(kd)) with iy, € Up,
Jm €{1,...,n}\ Up, and s € {1,...,0}.

Without loss of generality, suppose that an edge (ips, jas) exists and let
so € {1,...,0} be the first time index for which this happens. We have that

e for every s € {1,...,50 — 1}, there does not exist any edge (i, h) with
i € Upr and h ¢ Upy, and, thus, for all i € Uyy;

n

wi(kd +1) = Z(Fl(k‘))z‘jwj(kfs) = Z (F1(k))inwn (k6)

j=1 heUy,

= (32 (Fik)nth) ) war = war.

heUn
The same argument can be repeated for Fy(k),...,Fs(k), so that

w;i(kd + s) = wyy for all i € Upy;

o if i ¢ Uy at time kd, then w;(kd +s) < wys forall s € {1,...,s0—1}.
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To see this, we compute
wi(kd +1) =Y (F1(k))sjw; (k3)
j=1
= (Fy(k))iiwi(kd) + > (Fi(k))ijw;(kd)

=1,

< (FiR))awikd) + (Y2 (Filk)ig ) was
j=L,j#i
< aw;(kd) + (1 — a)war < way,
where we used the assumption of non-degeneracy with parameter o €

Ja, 1]. The same argument can be repeated for the subsequent multi-
plications by the matrices Fy(k),..., Fy(k).

We finally reach time sy and compute

n

Win, (k6 + 50) = Y (Fy(k))iyjw; (kS + 59 — 1)

j=1
= (Fso(k))ihljwfwjhl (]{(5 + 50 — 1) + Z (FSO (k))lM]wj(k(s + 50 — 1)
J=Lj#)m
< (Fso(k))iMJMwM + Z (FSO (k))lzu]w](k(s + S0 — 1) S wh -

J=Lj#im
This implies that w;,, ((k+1)d) < was so that iy does not belong to Ups at
time (k + 1)d. That is, the cardinality of Ups decreases at least by one after
(k+1)6. Since {1,...,n} is finite, after repeating this argument at most n—1
times, we have that either Up; becomes empty at time (k+n — 1)d. (Here
we are assuming that the out-neighbor always exists for Uys; an analogous
argument can be made for the general case.) This is enough to guarantee
that V(w((k + n)d)) < wy — wy, = V(w(ko)). This is what we need to
conclude that lim dist(w(kd),diag(R)) = 0. In summary, this concludes

k—-+o00

the proof of Theorem 1.60. |

We conclude this section by establishing convergence to an individual
point.

Proof of Proposition 1.64. We adopt the same notation as above, i.e., as in
the proof of Theorem 1.60. Since F'(k) € Fs(«), the set of sequence points
{w(ké) | k € N} belong to the convex hull of all the components of the initial
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condition, that is, [min; w;(0), max; w;(0)]". Since [min; w;(0), max; w;(0)]"

is compact, there exists a convergent subsequence {w(k;d) | I € N} to a point

c1,,. We also notice that for any k; € N, w;((k;+k)d) € [min; w;(k;0), max; w;(kid)]",
i€ {l,...,n}and k € N. Since lim w(klé) =cl,, then lim [minw;(k;9), maxwz(klé)]

l—+o00 —+00
cl,. Therefore, any sequence {w((k; + k)0) | k € N}, for [ € N, must con-
verge to cl,. This implies that klim w(kd) = cl,. [
——400

1.8.6 Proofs of Theorems 1.76 and 1.77

Proof of Theorem 1.76. Let us prove fact (i). Because Trid,(a,b,a) is a real
symmetric matrix, Trid,(a, b, a) is normal and its 2-induced norm, i.e., its
largest singular value, is equal to the magnitude of its eigenvalue with largest
magnitude. Based on this information and on the eigenvalue computation

in Lemma 1.74, we compute
b+ 2acos ( o ) ’
} n+1

cos [ —— < |b] + 2|al cos ).
n+1 n+1

Because we assumed [b] + 2]a| = 1 and because cos(;;77) < 1 for any n > 2,
the 2-induced norm of Trid,,(a, b, a) is strictly less than 1. Additionally, for
£ > 0, we bound from above the magnitude of the curve x as:

| Tridy, (a, b, a)||2 = max

e{l,...,n

< |b] +2]a] max
1e{l,...,n}

¢
. s
le(6)lz = | Trid o, b0aoll < (161+ 2lalcos (5 ) ) ol

To have ||z(¢)||2 < e||zol|2, it is sufficient that £log <|b| + 2|a| cos (#)) <
log e, that is,

loge™!

—log <‘b’ + 2lal cos (%—l—l)) |

The upper bound now follows by noting that, as t — 0, we have

>

(1.8.2)

1 1
log(1 — 2[al(1 —cost))  |alt?

+0(1).

Let us now show the lower bound. Assume without loss of generality that
ab > 0 and consider the eigenvalue b + 2a cos(;77) of Trid,(a,b,a). Note
that [b + 2acos(;;57)| = |b] + 2]afcos(;57). (If ab < 0, then consider the
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eigenvalue b + 2a cos(2=).) For n > 2, define the unit-length vector

n+1
5 sin nLH
Vi = : eR", (1.8.3)
n+1 “nr
n+1

and note that, by Lemma 1.74(i), v,, is an eigenvector of Trid,,(a, b, a) with

eigenvalue b + 2acos(;;57). The trajectory x with initial condition v;, sat-
n+1

B(1,,¢||vp|l2) only when ¢ satisfies equation (1.8.2). This completes the

proof of fact (i).

)4
isfies ||z ()]s = <|b| + 2|a| cos (L)> |lVnll2, and therefore, it will enter

Next, we consider fact (ii). Clearly, all eigenvalues of the matrix Trid, (a, b, 0)
are strictly inside the unit disk. For ¢ > 0, we compute

Trid, (a, b, 0)*
n—1 E'

_pt @ S
ji=

because of the nilpotency of Trid,(1,0,0). Now, we can bound from above
the magnitude of the curve x as

(%)J Trid,(1,0,0)

l2(£)l2 = || Trids(a, b,0)zo]|2

n—1 .
4 .
< |b|z Z m (%)j H Tl"idn(l, 0, 0)jl'0H2 < ea/bgn—l |b|Z ”33‘0”2
= :

Here we used || Trid,,(1,0,0)7 |2 < ||zo/|2 and max{(gfi!j)! |j€{0,....,n—

1}} < ¢!, Therefore, in order to have ||z(¢)||2 < e||zo||2, it suffices that
log(e®/?) 4+ (n — 1)log £ + Llog |b| < loge, that is,

n—1 ¢ —loge
——  Jogl >t
“log o] 8" “Toglb]

A sufficient condition for ¢ — alogf > (3, for a, 3 > 0, is that £ > 23 +
2amax{1,loga}. For, if £ > 2a, then log/ is bounded from above by the
line ¢//2a + log . Furthermore, the line ¢/2a + loga is a lower bound
for the line (¢ — B)/a if £ > 20 + 2aloga. In summary, it is true that
lz(0)|l2 < €l|z(0)||2 whenever

a

& —loge n—1 n—1
¢>292%b 2 1,log ——— % .
= 4%m+—mmwm%’%—mw}

This completes the proof of the upper bound, that is, fact (ii).

The proof of fact (iii) is similar to that of fact (i). Because Circ,(a, b, c) is
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circulant, it is also normal and each of its singular values corresponds to an
eigenvector, eigenvalue pair. From Lemma 1.74(ii) and from the assumption
a—+b-+c=1, it is clear that the eigenvalue corresponding to ¢ = n is equal
to 1; this is the largest singular value of Circ,(a, b, ¢) and the corresponding
eigenvector is 1,,. We now compute the second largest singular value:

ie{l,..n—1}

o+ 0+ eheos () 4 v - apsin (27 |
~[1- @+ (1-eos (B) + V=i —aysm ()]

Here ||-||c is the norm in C. Because of the assumptions on a, b, ¢, the second
largest singular value is strictly less than 1. In the orthogonal decomposition
induced by the eigenvectors of Circy,(a,b, c), we assume that the vector yg
has a component Y. along the eigenvector 1,,. For £ > 0, we bound the
distance of the curve y(¢) from yavel, as

Hy(f) - yave1n||2
= || CiI‘Cn(CL b C)Zyo — Yave nH2 = H CiI‘Cn((L b C)e(yl) — Yave n)||2

<H1—a—|—c)(1—cos( ))—FF(C—a)sm( )H 10 = YaveLnl|2-

This proves that limy_, o0 ¥(¢) = Yaveln. Also, for « =a+ ¢, =c—a and
as t — 0, we have

- L — 2 Lo

log ((1 —a(l - cost))2 + (32 sin? t) V2 (a2

Here 3% < a because a,c € ]0,1[. From this, one deduces the upper bound
in (iii).

Now, consider the eigenvalues A, = b+(a+c) cos (22 )++/=1(c—a) sin (2X)
and \, = b+ (a+c) cos ( n-1) 277) ++v—1(c—a)sin ((n L2n > of Circy(a, b, ),

and its associated eigenvectors (cf. Lemma 1.74(ii))

1 1
w wnfl
v, = . eC", v,= . cC". (1.8.4)
w1 w

Note that the vector v,, + Vv, belongs to R™. Moreover, its component yaye
along the eigenvector 1,, is 0. The trajectory y with initial condition v,, +v,,

satisfies ||y (€)||2 = [N v, +XfﬁnH2 = |A\u|?l|Ve + V0|2, and therefore, it will
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enter B(0,, ||V, + V,|2) only when

1 -1
‘s oge
—log Hl —(a+c¢) (1 — Cos (%)) +v—=1(c — a)sin (22) HC
This completes the proof of fact (iii). [

Proof of Theorem 1.77. We prove fact (i) and observe that the proof of
fact (ii) is analogous. Consider the change of coordinates

o) = Py [l —ateor, e 2| 6]

(/) € Rand y(¢) € R*~1. A quick calculation shows that /() =

)

/
where 27,

1172(¢), and the similarity transformation described in equation (1.
implies
y(f + 1) = Trid,_1(a,b,a) y(£), and ) (£ + 1) = (b+ 2a)x,,.(0).

Therefore, x4y = 2], It is also clear that

x(l+1) — zave(L + 1)1,

- [y(f(l 1)] - <P+ {8 Tridnj(a, b, a)] i 1)(5”(5) ~ Tave(€)1n).

Consider the matrix in parenthesis determining the trajectory ¢ — (z:(¢) —
Zave()1,). This matrix is symmetric, its singular values are 0 and the singu-
lar values of Trid,,—1(a, b, a), and its eigenvectors are 1,, and the eigenvectors
of Trid,,—1(a,b,a) (padded with an extra zero). These facts are sufficient to
duplicate, step by step, the proof of fact (i) in Theorem 1.76. Therefore, the
trajectory £+ (z(f) — Tave()1,) satisfies the stated properties. [

1.9 EXERCISES

E1l.1  (Orthogonal and permutation matrices). Prove that
(i) the set of orthogonal matrices is a group;
(ii) the set of permutation matrices is a group; and
(iii) each permutation matrix is orthogonal.

E1.2 (Doubly stochastic matrices). Show that set of doubly stochastic matrices is
convex and that it contains the set of permutation matrices. Find in the literature
as many distinct proofs of Theorem 1.2 as possible.

Hint: A proof is contained in [Horn and Johnson, 1985]. A second proof method
is based on combinatorics methods.

E1.3 (Circulant matrices). Given two n X n circulant matrices Cy and Cs, show that
the following hold:
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E1.6

E1.7

1) C’lT, Ch + C3 and C1C5 are circulant; and
(ii) C1C2 = C2Ch.

(Spectral radius and oc-induced norm of a row-stochastic matrix). Show
that the spectral radius and the oo-induced norm of a row-stochastic matrix is 1.
Hint: Let A € R*? be stochastic. First, show ||Allc < 1 by direct algebraic ma-
nipulation. Second, use the bound in Lemma 1.6 to show that p(A) < 1. Finally,
conclude the proof by noting that 1 is an eigenvalue of A.

Hint: An alternative proof that p(A) = 1 is as follows. First, use Gerigorin
Disks Theorem 1.3 to show that spec(A) is contained in the unit-disk centered at
the origin. Second, note that p(A) > 1 since 1 is an eigenvalue of A.

(Positive semidefinite matrix defined by a doubly-stochastic and irre-
ducible matrix). Let A € R"*" be doubly-stochastic and irreducible. Show
that the matrix

I,—ATA
is positive semidefinite and its eigenvalue 0 is simple.

(M-matrices). This exercise summarizes some properties of the so-called M-
matrices; see [Fiedler, 1986]. A matrix A € R"*" is an M-matriz (resp. an
Mo-matriz) if

(i) all the off-diagonal elements of A are zero or negative; and

(ii) there exist a nonnegative matrix C' € R™*"™ and k > p(C) (resp. k >
p(C)) such that A = kI, — C.
Show that

(i) the matrix B € R™*™ is an M-matrix if
(a) all the off-diagonal elements of B are zero or negative; and

(b) there exists a vector v € R™ with positive entries such that Bv
has positive entries;

(ii) if A is an Mp-matrix, irreducible and singular, then there exists x € R"
with positive entries such that Az = 0 and rank(A) = n — 1; and

(iii) if A is an M-matrix, then all eigenvalues of A have positive real part.

(Decomposition of a stochastic matrix). Consider the matrix

1 -1 0 ... O
o 1 -1 ... 0
T=|: . | eRMY
0 ... 0 1 -1
11 R}

Show that
(i) T is invertible.
(ii) For a stochastic matrix F' € R™*", there exist Fe,r € R=Dx(=1) and

Cerr € RY(™=1) guch that

TFT—I _ l:Ferr O(nfl)x1:|

Cerr 1
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E1.8

E19
E1.10

E1.11

E1.12

E1.13

E1.14

Moreover, if F' is symmetric, then cerr = O1x(n—1)-

(The closed map defined by a finite collection of continuous maps). Let
fiy..., fm + X — X be continuous functions, where X is a d-dimensional space
chosen among R, $%, and the Cartesian products R% x S, for some d; +da = d.
Define the set-valued map T': X = X by

T(z) ={fi(z),..., fm(2)}.

Show that T is closed on X.
Hint: Reason by contradiction.

(Overapproximation Lemma). Prove Lemma 1.21.
(Acyclic digraphs). Let G be an acyclic digraph. Show that:
(i) G contains at least one source, i.e., a vertex without in-neighbors;
(ii) G contains at least one sink, i.e., a vertex without out-neighbors; and

(iii) in an appropriate ordering of the vertices of G, the adjacency matrix A
is lower-triangular, i.e., all its entries above the main diagonal vanish.
Hint: Order the vertices of G according to their distance to a sink.

(A sufficient condition for a matrix to be primitive). Show that if A €
R™ ™ is nonnegative, irreducible, and has a positive element on the diagonal, then
A is primitive. Give an example that shows that this condition is sufficient but not
necessary, i.e., find a primitive matrix with no positive element on the diagonal.
Hint: See Exercise E1.22 below for a candidate matriz.

(Condensation digraph). This exercise studies the decomposition of a digraph
G in its strongly connected components. A subgraph H is a strongly connected
component of G if H is strongly connected and any other subgraph of G strictly
containing H is not strongly connected. The condensation digraph of GG, denoted
C(@), is defined as follows: the nodes of C'(G) are the strongly connected compo-
nents of GG, and there exists a directed edge in C(G) from node H; to node H if
and only if there exists a directed edge in G from a node of H; to a node of Ho.
Show that:

(i) every condensation digraph is acyclic;

(ii) a digraph contains a globally reachable node if and only if its condensa-
tion digraph contains a globally reachable node; and

(iii) a digraph contains a directed spanning tree if and only if its condensation
digraph contains a directed spanning tree.

(Incidence matrix). Given a weighted digraph G of order n, choose an arbi-
trary ordering of its edges. Define the incidence matriz H(G) € RIEX™ of G by
specifying that the row of H(G) corresponding to edge (i,7) has an entry 1 in
column i, an entry —1 in column j, and all other entries equal to zero. Show that

H(@)"WH(G) = L(G) + L(rev(@)),

where W € RIZIXIEl s the diagonal matrix with a;; in the entry corresponding to
edge (4, ).

(From digraphs to stochastic matrices and back). Let G be a weighted di-
graph of order n with adjacency matrix A, out-degree matrix Doyut, and Laplacian
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matrix L. Define the following matrices:

Fy = (kI 4+ Dout) ' (kI + A), for k € Rx,
Py =1, —¢L, for & € [0, min{(Dout);; |7 € {1,...,n}}[.

Perform the following tasks:
(i) Compute the entries of Fy and F> as a function of the entries of A(G);
(ii) show that the matrices Fy and F> are row-stochastic;

(iii) identify the least restrictive conditions on G such that the matrices Fy
and F» are doubly stochastic; and

(iv) under what conditions can a row-stochastic matrix be written in the form
F1, or F» for some appropriate digraph (and for some appropriate scalars
k and €)?

E1.15 (Metropolis-Hastings weights from the theory of Markov chains). Given
an undirected graph G of order n, define a weighted adjacency matrix A with
entries

1
T 1+ max{ING)|, NG|}

Qg

for (i,75) € E. Perform the following tasks:
(i) Show that the weighted degree of any vertex is strictly smaller than 1;

(ii) use (i) to justify that ¢ = 1 can be chosen in Exercise E1.14 for the
construction of the matrix F>; and

(iii) express the exponential convergence factor rexp(F2) as a function of the
eigenvalues of the Laplacian of G.

E1.16 (Some properties of products of stochastic matrices). Show that:

(i) if the matrices Ai,...,Ar are nonnegative, row-stochastic, or doubly
stochastic, respectively, then their product A; - - - Ay is non-negative, row-
stochastic, or doubly stochastic, respectively;

(ii) if the nonnegative matrices Ai,..., A have strictly positive diagonal
elements, then their product A; --- Ay has strictly positive diagonal ele-
ments; and

(iii) let Gi,...,Gk be digraphs associated with the nonnegative matrices
Aq, ..., Ay with strictly positive diagonal elements. If the digraph G1 U... UGy
is strongly connected, then the matrix A; --- Ay is irreducible.

E1.17 (Disagreement function). The quadratic form associated with a symmetric
matrix B € R™*" is the function = — 2T Bz. Given a digraph G of order n, the
disagreement function ®a : R™ — R is defined by

1
q)G(.T) = 5 .Zl aij(xj — a:l-)Q. (Ell)
i,j=
Show the following are true:
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(i) The disagreement function is the quadratic form associated with the sym-
metric positive-semidefinite matrix

1

5 (Dout(G) + Din(G) — A(G) — A@);
(i) P(G) = %(L(G) + L(rev(G))).

Hint: A sample proof is provided in [Gao et al., 2008].

P(G) =

E1.18 (Weight-balanced graphs and connectivity). Let G be a weighted digraph
and let A be a nonnegative n X n matrix. Show the following statements:

(i) If G is weight-balanced and contains a globally reachable node, then it
is strongly connected;

(i1) if A is doubly stochastic and its associated weighted digraph contains a
globally reachable node, then its associated weighted digraph is strongly
connected; and

n

(iif) if A is doubly stochastic and a column of S_7_) A* is positive, then
S o AF is positive.

E1.19 (The Laplacian matrix is positive semidefinite). Without relying on the
Gersgorin Disks Theorem 1.3, show that, if the weighted digraph G is undirected,
then the matrix L(G) is symmetric positive semidefinite. (Note that the proof of
statement (i) in Theorem 1.34 relies on Gersgorin Disks Theorem 1.3).

E1.20 (Properties of the BFS algorithm). Prove Lemma 1.25.
E1.21 (LCR algorithm). Consider the following LCR algorithm for leader election:

(i) Give a UID assignment to each processor for which Q(n?) messages are
sent; and

(ii) give a UID assignment to each processor for which only O(n) messages
are sent.

(iii) Show that the average number of messages sent is O(nlogn), where the
average is taken over all possible ordering of the processors on the ring,
each ordering assumed to be equally likely.

E1.22 (Properties of a stochastic matrix and its associated digraph). Consider
the stochastic matrices

110 0
001 1

1 1o 0o 1 1

Al’ii?é and A=\ 4 g

00 1 1

Define and draw the associated digraphs Gi and Ga2. Without relying on the
characterization in Propositions 1.30 and 1.32, perform the following tasks:

(i) Show that the matrices A; and A are irreducible and that the associated
digraphs (G1 and G2 are strongly connected;

(ii) show that the matrices A; and Az are primitive and that the associated
digraphs GG; and G2 are strongly connected and aperiodic; and

(iii) show that the averaging algorithm associated with A, converges in a
finite number of steps.
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E1.23

E1.24

(Compactness of the set of non-degenerate matrices with respect to a
parameter). Show that, for any a € ]0,1], the set of non-degenerate matrices
with respect to « is compact.

(Laplacian flow [Olfati-Saber and Murray, 2004]). Let G be a weighted
directed graph with a globally reachable node. Define the Laplacian flow on R™
by

& = —L(G)x,
or, equivalently in components,
Ti = Z aij(z; — i), 1€{1,...,n}
JEN©UE (4)
Answer the following questions:

(i) What are the equilibrium points?

(ii) show that, if G is undirected, then the disagreement function (see Exer-
cise E1.17) is monotonically non-increasing along the Laplacian flow;

(iii) given zo = ((zo)1,.--,(x0o)n) € R", show that the solution ¢ — z(t) of
the Laplacian flow starting at xo verifies

min{(zo)1, ..., (zo)n} < zi(t) < max{(zo)1,..., (zo)n},

for all t € R>g. Use this fact to deduce that the solution ¢ +— x(t) is
bounded;

(iv) for G undirected, use (i)-(iii) to apply the LaSalle Invariance Principle in
Theorem 1.17 and show that the solutions of the Laplacian flow converge
to diag(R");

(v) find an example G such that, with the notation in Exercise E1.17, the
symmetric matrix L(G)T P(G) + P(G)L(G) is indefinite; and
Hint: To show that the matrix is indefinite, it suffices to find x1,x2 €
R™ such that z1(L(G)T P(G) + P(G)L(G))z1 < 0 and z2(L(G)T P(G) +
P(G)L(G))z2 > 0.

(vi) show that the Euler discretization of the Laplacian flow is the Laplacian-
based averaging algorithm.

E1.25 (Log-Sum-Exp consensus [Tahbaz-Salehi and Jadbabaie, 2006]). Pick

a € R\ {0} and define the function f, : R™ — R by

fa(z) = alog (% iez"/a).

Show that
(i) lim fo(z) = min{zi,...,z,} and lim+ fa(z) = max{x1,...,zn}; and
a—0— a—0

. . . 1
(ii)) lm fo(z) = lim fo(z)=—=(z14+ -+ xn).
a—+oo a— — 00 n
Let A € R™*™ be a non-degenerate, doubly stochastic matrix whose associated
digraph contains a globally reachable node. Consider the discrete-time dynamical
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system

wi({ + 1) = alog (En:ai]. ewj(f)/a).

=1

(iii) Show that w(¢) — fo(w(0))1, as £ — +oo.

E1.26 (The theory of Markov chains and random walks on graphs). List as

many connections as possible between the theory of averaging algorithms discussed
in Section 1.6.2 and the theory of Markov chains. Some relevant references on
Markov chains include [Seneta, 1981, Lovdsz, 1993].
Hint: There is a one-to-one correspondence between averaging algorithms and
Markov chains. A homogeneous Markov chains corresponds precisely to a time-
independent averaging algorithm. A reversible Markov chain corresponds precisely
to a symmetric stochastic matriz.

E1.27 (Distributed hypothesis testing [Rao and Durrant-Whyte, 1993, Olfati-Saber et al.,
2006]). Let h., for v € I' in a finite set I", be a set of alternative hypotheses about
an uncertain event. Suppose that n nodes take measurements z;, fori € {1,...,n},
related to the event. Assume that each observation is conditionally independent
of all other observations, given any hypothesis.

(i) Using Bayes’ Theorem and the independence assumption, show that the
a posteriori probabilities satisfy

n

[T ptelns)

i=1

p(hy)

hvylzi, ..., 20) =
p(hy |21 ) P E——

(ii) Suppose the nodes form a undirected unweighted connected synchronous
network with adjacency matrix A. Consider the discrete-time dynamical
system

1/(A4dout (1))

m(e+1) = (mi(0) f[ 5 (0))

j=1

Fix v € T, set m;(0) = p(zi|h+), and show that 7(£) — 7

as £ — +oo.

(iii) What information does each node need in order to compute the mazimum
a posteriori estimate, that is, to estimate the most likely hypothesis?
Hint: Can you compute p(z1,...,2xn), given knowledge of p(hy) and of
T, plzlhy) ?
As a bibliographical note, the variable 7; is referred to as the belief in the seminal
work by Pearl [1988].
E1.28 (Bounds on vector norms). Prove Lemma 1.79.
E1.29 (The “n-bugs problem” and cyclic interactions). The “n-bugs problem”
related to the pursuit curves from mathematics, inquires about what are the paths
of n bugs, not aligned initially, when they chase one another. Simple versions of the

problem (e.g., for three bugs starting at the vertices of an equilateral triangle) were
studied as early as the 19th century. It was in [Watton and Kydon, 1969] when a
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general solution for the general n bugs problem for non-collinear initial positions
was given. The bugs trace out logarithmic spirals that eventually meet at the
same point, and it is not necessary that they move with constant velocity. Surveys
about cyclic pursuit problems are given in the papers in [Watton and Kydon, 1969,
Marshall et al., 2004]. Cyeclic pursuit, has also been recently studied in the multi-
agent and control literature, e.g., see [Bruckstein et al., 1991, Marshall et al., 2004,
Smith et al., 2005]. In particular, the paper [Marshall et al., 2004] extends the n-
bugs problem to the case of n kinematic unicycles evolving in continuous time.

Consider the simplified scenario of the n-bugs problem placed on a circle of
radius r and suppose that the bugs’ motion is constrained to be on that circle.
Assume that agents are ordered counterclockwise with identities ¢ € {1,...,n},
where we identify for convenience n + 1 with 1. Denote by p;(£) = (r,6;(¢)) the
sequence of positions of bug 4, initially at p;(0) = (r,0,(0)).

Cyclic pursuit. Suppose that each bug is chasing the closest counterclockwise
neighbor (according to the order we have given them on the circle), see
Figure E1.1(a). In other words, each bug feels an attraction towards the
closest counterclockwise neighbor that can be described by the equation

9,(€ + 1) = (1 — k)(gl(f) + k(91‘+1(é), e Zzo,

where k € [0,1]. Determine for which values of k the bugs converge to a
configuration for which distc(0;41,0;) = distc(0;,0;—1) for all ¢ € {1,...,n}.
Observe that the bugs will approach this equally-spaced configuration while
moving around the circle indefinitely.

Cyclic balancing. Suppose that each bug makes a compromise between chasing
its closest counterclockwise neighbor and the closest clockwise neighbor, see
Figure E1.1(b). In other words, each bug feels an attraction towards the
closest counterclockwise and clockwise neighbors that can be described by
the equation

91(6 + 1) = k91+1(€) + (1 — 2]@‘)9,(6) + kei_1(€), le Zzo,
where k € [0, 1].

(i) Determine for which values of k the bugs converge to a configuration
for which distc(0;41,0;) = distc(0;,0;-1) for all i € {1,...,n}.

(ii) Show that the bugs will approach this equally-spaced configuration
while each of them converges to a stationary position on the circle.

Hint: Rewrite the cyclic pursuit and cyclic balancing systems in terms of the inter-
bug distances, that is, in terms of d;(£) = distc(0;41(€),0:(£)), i € {1,...,n}, L €
Z>o. Find the matrices that describe the linear iterations in these new coordinates.
Show that the agreement space, i.e., the diagonal set in R™, is invariant under
the dynamical systems. Finally, determine which values of k make each system
converge to the agreement space. Lemma 1.74 might be of use in this regard.
Regarding part (ii)b), recall that an exponentially decaying sequence is summable.
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(a) (b)

Figure E1.1 Illustration of the n-bugs problem. In (a), agent i looks at the position of
agent ¢+ 1 and moves toward it by an amount proportional to their distance.
In (b), agent ¢ looks at the position of agents i + 1 and ¢ — 1 and moves
toward the one which is furthest by an amount proportional to the difference
between the two distances. In both cases, the constant of proportionality
is k.
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Chapter Two

Geometric models and optimization

This chapter presents various geometric objects and geometric optimiza-
tion problems that have strong connections with motion coordination. Ba-
sic geometric notions such as polytopes, centers, partitions, and distances
are ubiquitous in cooperative strategies, coordination tasks, and the inter-
action of robotic networks with the physical environment. The notion of
Voronoi partition finds application in diverse areas such as wireless com-
munications, signal compression, facility location, and mesh optimization.
Proximity graphs provide a natural way to mathematically model the net-
work interconnection topology resulting from the agents’ sensing and/or
communication capabilities. Finally, multicenter functions play the role of
aggregate objective functions in geometric optimization problems. We in-
troduce these concepts here in preparation for the later chapters.

The chapter is organized as follows. We begin by presenting basic geo-
metric constructions. This gives way to introduce the notion of proximity
graphs along with numerous examples. The next section of the chapter
presents geometric optimization problems and multicenter funct