DEPENDENCE OF BIOLOGICAL SCATTERING ON ACOUSTIC CARRIER FREQUENCY

John K. Horne and J. Michael Jech
Cooperative Institute for Limnology and Ecosystem Research
2205 Commonwealth Blvd
Ann Arbor, MI 48105
phone: (313) 741-2269 Horne; (313) 741-2275 Jech; fax: (313) 741-2003
e-mail: horne@gler1.noaa.gov; jech@gler1.noaa.gov

Clarence S. Clay
Department of Geology and Geophysics
University of Wisconsin, Madison
Lewis G. Weeks Hall - 1215 W. Dayton St.
Madison, WI 53706
phone: (608) 262-9473
fax: (608) 262-0693
e-mail: clay@geology.wisc.edu
Award # N00014-96-1-0989
Category of Research: high-frequency acoustics

LONG-TERM GOALS

The long-term goals of the Principal Investigators are to continue the development of theory and technology needed to resolve the forward and inverse problems in fisheries acoustics.

OBJECTIVES

To combine acoustic backscatter models with empirical measurements to investigate the utility of multi-frequency data when estimating target size, and when attempting to recognize and discriminate acoustic targets.

APPROACH

Acoustic scatter models are based on digitized x-ray images of fish body and swimbladder morphology. Back-scatter amplitude as a function of acoustic wavelength, fish length, and fish aspect is estimated using Kirchhoff ray-mode scatter models. Model predictions are used in computer simulations to estimate population abundances, and compared to empirical backscatter measurements from tethered fish in tanks and in situ field measurements during mobile surveys.
Dependence of Biological Scattering on Acoustic Carrier Frequency

Cooperative Institute for Limnology and Ecosystem Research, 2205 Commonwealth Blvd, Ann Arbor, MI, 48105

Approved for public release; distribution unlimited

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>Same as Report (SAR)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

16. Subject Terms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
WORK COMPLETED

Kirchhoff-ray mode backscatter models have been used to examine: choice of system configurations when selecting sonar equipment for fisheries research; applicability of model to discriminate co-occurring pelagic species; the combination of multiple frequencies and the inverse approach to estimate abundances of fish within specified size-classes; and to examine orientation and aspect distributions of fish within ensembles.

A computer-controlled aspect frame was designed, constructed, and used to tether fish for acoustic backscatter measurements during a trip to the Huntsman Marine Science Center in St. Andrews, New Brunswick. Acoustic equipment used during tank measurements included single and split-beam single frequency commercial sounders, and a four channel, digital sounder from the University of Wisconsin-Madison. Work is continuing on analysis of x-ray, tank, and field data from the St. Andrews trip.

RESULTS

Kirchhoff-ray mode model predictions match empirical scattering measurements over a wide range of fish lengths and aspects. Model results provide insight to variation in backscatter measurements. Measurements of backscatter by swimbladdered fish are relatively robust when the ratio of fish length to frequency wavelength is between two and ten. As fish length to wavelength ratios increase, echo amplitudes become more dependent on aspect. Amplitudes peak when the swimbladder is perpendicular to the acoustic wavefront.

IMPACT/APPLICATIONS

Morphologically-based scattering models provide a convenient way to quantify the sensitivity of backscattered echo amplitudes to hardware parameters and organism behavior. Scattering models can be used to explore carrier frequency choices when designing acoustic surveys, acoustically estimate organism abundances in multiple length classes, and to refine the discrimination of fish species in acoustic data.

TRANSITIONS

The Kirchhoff-ray mode backscatter model is currently being used to predict echo amplitudes for a number of fish species throughout the world. Several inquires have also been received from medical researchers working on human imaging projects. Consultation with the co-PI's of this project aided in the development of a viscous-elastic swimbladder model for describing low-frequency resonant backscatter of fish (C. Feuillade and R. Nero, Naval Research Laboratory, Stennis Space Center).
RELATED PROJECTS

Results from this study have prompted us to initiate several projects to help quantify the variability of physical and biological factors influencing backscattered echo amplitudes:
- develop 3-D modeling of fish images (Ken Foote, IMR, Norway) to quantify the sensitivity of model predictions to image resolution.
- use other imaging technologies (e.g. RUTIS and MRI) to enhance delineation of fish swimbladder and body structure.
- measure low frequency (200 HZ - 2 kHz) backscatter for comparison to model predictions (Mardi Hastings, Ohio State University)

REFERENCES

