
Boosting Stochastic Problem Solvers Through
Online Self-Analysis of Performance

Vincent A. Cicirello

CMU-RI-TR-03-27

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

July 21, 2003

c 2003 Vincent A. Cicirello

This research has been funded in part by the Department of Defense Advanced Research Proj-
ects Agency and the U.S. Air Force Rome Research Laboratory under contracts F30602-97-2-0066
and F30602-00-2-0503 and by NASA under contract NCC2-1243. The views and conclusions con-
tained in this document should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NASA, ARPA, the Air Force or the U.S. Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 JUL 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Boosting Stochastic Problem Solvers Through Online Self-Analysis of
Performance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Robotics Institute,Pittsurgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In many combinatorial domains, simple stochastic algorithms often exhibit superior performance when
compared to highly customized approaches. Many of these simple algorithms outperform more
sophisticated approaches on difficult benchmark problems; and often lead to better solutions as the
algorithms are taken out of the world of benchmarks and into the real-world. Simple stochastic algorithms
are often robust, scalable problem solvers. This thesis explores methods for combining sets of heuristics
within a single stochastic search. The ability of stochastic search to amplify heuristics is often a key factor
in its success. Heuristics are not, however, infallible and in most domains no single heuristic dominates. It
is therefore desirable to gain the collective power of a set of heuristics; and to design a search control
framework capable of producing a hybrid algorithm from component heuristics with the ability to
customize itself to a given problem instance. A primary goal is to explore what can be learned from quality
distributions of iterative stochastic search in combinatorial optimization domains; and to exploit models of
quality distributions to enhance the performance of stochastic problem solvers. We hypothesize that
models of solution quality can lead to effective search control mechanisms, providing a general framework
for combining multiple heuristics into an enhanced decision-making process. These goals lead to the
development of a search control framework, called QD-BEACON that uses online-generated statistical
models of search performance to effectively combine search heuristics. A prerequisite goal is to develop a
suitable stochastic sampling algorithm for combinatorial search problems. This goal leads to the
development of an algorithm called VBSS that makes better use, in general, of the discriminatory power of
a given search heuristic as compared to existing sampling approaches. The search frameworks of this thesis
are evaluated on combinatorial optimization problems. Specifically, we show that: 1) VBSS is an effective
method for amplifying heuristic performance for the weighted tardiness sequencing problem with
sequence-dependent setups 2) QD-BEACON can enhance the current best known algorithm for weighted
tardiness sequencing; and 3) QD-BEACON and VBSS together provide the new best heuristic algorithm
for the constrained optimization problem known as RCPSP/max.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

219

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

In many combinatorial domains, simple stochastic algorithms often exhibit superior

performance when compared to highly customized approaches. Many of these simple al-

gorithms outperform more sophisticated approaches on difficult benchmark problems; and

often lead to better solutions as the algorithms are taken out of the world of benchmarks

and into the real-world. Simple stochastic algorithms are often robust, scalable problem

solvers.

This thesis explores methods for combining sets of heuristics within a single stochastic

search. The ability of stochastic search to amplify heuristics is often a key factor in its

success. Heuristics are not, however, infallible and in most domains no single heuristic

dominates. It is therefore desirable to gain the collective power of a set of heuristics; and to

design a search control framework capable of producing a hybrid algorithm from compo-

nent heuristics with the ability to customize itself to a given problem instance. A primary

goal is to explore what can be learned from quality distributions of iterative stochastic

search in combinatorial optimization domains; and to exploit models of quality distribu-

tions to enhance the performance of stochastic problem solvers. We hypothesize that mod-

els of solution quality can lead to effective search control mechanisms, providing a general

framework for combining multiple heuristics into an enhanced decision-making process.

These goals lead to the development of a search control framework, called QD-BEACON,

that uses online-generated statistical models of search performance to effectively combine

search heuristics. A prerequisite goal is to develop a suitable stochastic sampling algo-

rithm for combinatorial search problems. This goal leads to the development of an algo-

rithm called VBSS that makes better use, in general, of the discriminatory power of a given

search heuristic as compared to existing sampling approaches.

The search frameworks of this thesis are evaluated on combinatorial optimization prob-

lems. Specifically, we show that: 1) VBSS is an effective method for amplifying heuristic

performance for the weighted tardiness sequencing problem with sequence-dependent se-

tups; 2) QD-BEACON can enhance the current best known algorithm for weighted tardi-

ness sequencing; and 3) QD-BEACON and VBSS together provide the new best heuristic

algorithm for the constrained optimization problem known as RCPSP/max.

I

Acknowledgements

There are many people whose support and guidance in one form or another have helped

to make this dissertation a reality. I would like to acknowledge as many of them as possible

here.

First, I would like to thank my advisor, Steve Smith, for his wisdom and guidance

throughout my four years here at CMU and for his encouragement to explore research

directions that have lead into previously uncharted and interesting new territories.

Next, I would like to express my thanks and gratitude to the members of my thesis

committee: Andrew Moore (CMU RI), Norman Sadeh (CMU ISRI), and Carla Gomes

(Cornell University). Their advice and guidance throughout my thesis research have been

immeasurable.

Thanks to the members of the ICL Laboratory, both past and present, for discussions

that have lead my thoughts in directions that otherwise may not have been considered fully

and for sharing their comments and suggestions during practices of my defense talk. I

would like to specifically acknowledge: Dave Hildum, Larry Kramer, Heng “Harriet” Cao

(now at IBM Research), Susan Buchman, Charlie Collins, Gabriella Cortellessa, Dave

Crimm, Peter DeKlerk, Li Li, Jean Oh, Nicola Policella, Xiaofang Wang, Chris Young,

and Qu “Joe” Zhou (now in Saskatoon, Canada).

Thanks also go to the members of the FIRE (Federation of Intelligent Robotic Ex-

plorers) Project. In working with them to develop the scheduling component of the FIRE

Project, the algorithms of my thesis have benefitted greatly through insightful discussions.

The FIRE Project members include: Jeff Schneider, Reid Simmons, Tony Stentz, Dani

Goldberg, Drew Bagnell, Bernardine Dias, Trey Smith, Maayan Roth, Brennan Sellner,

and David Apfelbaum.

Thanks to members of my research qualifier committee, Tucker Balch (now at Georgia

Tech) and Al Rizzi, for their feedback on earlier research that lead to the foundation of the

WHISTLING algorithm.

I would like to acknowledge Chris Atkeson whose insights during the discussion period

of my thesis proposal last July lead me to explore concepts from extreme value theory that

have greatly added to the theoretical foundation of my thesis research.

Thanks go to the Robotics Institute for giving me the opportunity and support to pursue

a degree in Robotics here at CMU. Also, I would like to thank a few RI individuals for their

support during my time here at CMU. Matt Mason’s periodic graduate student lunches are

always a source of intellectually, stimulating discussion that often leads in unpredictable

III

directions. Thanks to Suzanne Muth for all that she does for the students of the Robotics

Institute. Thanks also to the former CIMDS research secretary Carol Boshears for her

administrative support during my time in the Robotics Institute and in the ICL Laboratory.

Special thanks go to my family, especially my Mom and Dad, my sisters Debbie and

Donna, Mom and Dad Silenzio, and my soon-to-be sister Roseann Silenzio for their support

throughout this long process. I especially would like to thank my fianc´ee Michelle for

her love, support, and encouragement, for putting up with my frequent drives between

Philadelphia and Pittsburgh, for always being there for me, and simply for being Michelle.

IV

In Memorium

– Pop-Pop (Gene Mingarino) and “Archibald the Mouse.”

V

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 4

1.2.1 Advantage / Leverage of a Stochastic Sampling Algorithm. 5

1.2.2 Descriptive Problem Solving Analysis / Characterization 6

1.2.3 Online Prescriptive Guidance from the Descriptive Analysis 7

1.2.4 Evaluation . 8

1.3 Organization . 8

2 Related Work: Search Algorithms 11

2.1 Overview . 11

2.2 Systematic Search Procedures .. 11

2.2.1 Discrepancy Search 11

2.2.2 Incremental Search 12

2.3 Stochastic Sampling Algorithms . 13

2.3.1 Iterative Sampling 13

2.3.2 Heuristic-Biased Stochastic Sampling 14

2.3.3 Heuristic Equivalency . 17

2.3.4 Nested Partitions 17

2.4 Stochastic Local Search Techniques 19

2.4.1 Hill-Climbing . 19

2.4.2 Simulated Annealing . 21

2.4.3 Threshold Accepting . .. 22

2.4.4 Tabu Search. 22

2.4.5 Genetic Algorithms . 22

2.4.6 Success of Local Search. 24

VII

2.5 Search Algorithm Design Motivated by Search-Space Analysis 24

2.5.1 Rapid Randomized Restarts 25

2.6 Combining Multiple Search Algorithms 26

2.6.1 Algorithm Portfolios . 27

2.6.2 Asynchronous Teams . .. 28

2.6.3 Meta-Planner . 28

2.7 Summary . 29

3 Related Work: Metareasoning and Metalevel Search Control 31

3.1 Overview . 31

3.2 Metalevel Control Parameter Optimization 31

3.3 Search Control Guided by Learned Models 33

3.3.1 The STAGE Algorithm . 33

3.3.2 Expected Cost Improvement Distributions 33

3.3.3 Ant Colony Optimization . 34

3.3.4 Adaptive Probing . 36

3.3.5 Hyperheuristics . 37

3.3.6 Wasp-Inspired Scheduling 39

3.3.7 Interval Estimation . 41

3.4 Metareasoning and Anytime Computation 41

3.4.1 Anytime Algorithms . 41

3.4.2 Performance Profiles . .. 42

3.4.3 Deliberation-Scheduling . 43

3.4.4 Compilation of Anytime Algorithms 44

3.4.5 Anytime Computation and Negotiation 44

3.5 Summary . 45

4 VBSS: Value Biased Stochastic Sampling 47

4.1 Overview . 47

4.2 Value-Biased Stochastic Sampling . 47

4.3 WHISTLING . 49

4.4 Proof: Dominance Tournament = Roulette Wheel Decision 53

4.5 Choosing a Bias Function 54

4.6 Summary . 55

VIII

5 Application: Weighted Tardiness Scheduling with Sequence-Dependent Se-

tups 57

5.1 Overview . 57

5.2 Problem Formalization . 58

5.3 State-of-the-(Ad-Hoc)-Art Solution Methods. 58

5.3.1 Dispatch Scheduling Policies . 59

5.3.2 Dispatch Policy as Starting Configuration for Local Search. 61

5.4 The Search-Space .. 62

5.5 The Problem Set . 63

5.6 Performance Criteria 64

5.7 To Value-Bias or to Rank-Bias? . 65

5.8 Value-Biasing Local Search Starting Configurations 68

5.9 Comparison to Systematic Heuristic Search Methods. 69

5.10 Summary . 72

6 AQDF: Algorithm Quality Density Function 74

6.1 Overview . 74

6.2 Quality Density Function 74

6.3 Algorithm Quality Density Function 75

6.4 Relation to Performance Profiles. 79

6.5 Summary . 81

7 QD-BEACON: Quality Distribution Based sEArch CONtrol 82

7.1 Overview . 82

7.2 QD-BEACON . 83

7.3 Estimating an AQDF . 86

7.3.1 Normal Estimates . 86

7.3.2 Kernel Density Estimation . 88

7.3.3 Generalized Extreme Value Distribution 91

7.3.4 Illustrative Comparison of AQDF Estimation Methods 95

7.4 Exploration versus Exploitation . 100

7.4.1 The Two-Armed Bandit andK-Armed Bandit Problems 100

7.4.2 The MaxK-Armed Bandit Problem 102

7.4.3 The QD-BEACON Exploration Strategy 109

7.5 Summary . 112

IX

8 Application: Sequencing to Minimize Weighted Tardiness (Revisited) 114

8.1 Overview . 114

8.2 Problem Formalization . 115

8.3 State-of-the-Art Solution Methods 115

8.3.1 Branch-and-Bound 116

8.3.2 Myopic Dispatch Policies 116

8.3.3 Local Search 118

8.3.4 Iterated Dynasearch . .. 119

8.4 The Benchmark Problem Set . 122

8.5 Performance Criteria 122

8.6 Using VBSS and QD-BEACON to Enhance Multistart Dynasearch. 123

8.7 Using QD-BEACON to Enhance Iterated Dynasearch. 131

8.8 Comparison with Other Local Search Algorithms 135

8.9 Summary . 137

9 Application: Resource Constrained Project Scheduling with Time Windows 139

9.1 Overview . 139

9.2 Problem Formalization . 140

9.3 State-of-the-Art Solution Methods 141

9.3.1 Branch-and-Bound 141

9.3.2 Priority-Rule Methods .. 142

9.3.3 Local Search 146

9.3.4 Iterative Sampling Earliest Solutions 146

9.4 The Benchmark Problem Set . 147

9.5 Performance Criteria 148

9.6 QD-BEACON/VBSS Iterative Priority-Rule Method. 149

9.7 Results . 151

9.8 Summary . 155

10 Conclusion 157

10.1 Summary . 157

10.2 Contributions . 159

10.2.1 VBSS and WHISTLING . 159

10.2.2 The QD-BEACON Framework and the AQDF 160

10.2.3 Applications . 162

X

10.3 Refinements and Extensions . 163

Bibliography 167

A Weighted Tardiness Scheduling with Sequence-Dependent Setups: A Bench-

mark Set 189

A.1 Overview . 189

A.2 Instance File Format . 189

A.3 Best Known Solutions . 190

XI

List of Tables

5.1 HBSS Preliminary Results: A sampling of the results from applying HBSS

with various bias functions and 100 iterations. This is a snapshot of the

data that was used to choose a bias function for the HBSS algorithm for

further experiments. 65

5.2 VBSS Preliminary Results: A sampling of the results from applying VBSS

with various bias functions and 100 iterations. This is a snapshot of the

data that was used to choose a bias function for the VBSS algorithm for

further experiments. 66

5.3 VBSS (withp = 5) vs HBSS (withp = 5) for various numbers of itera-

tions. ATCS is the deterministic heuristic result. LEE is the hill-climber

(non-randomized) of Leeet al. 66

5.4 VBSS plus a local hill-climb (VBSS-HC) vs Iterative Sampling plus a local

hill-climb (IS-HC). VBSS-HC uses a polynomial bias function of degree 5.

Both algorithms perform the hill-climb on the results of each of its itera-

tions. ATCS is the deterministic heuristic result. LEE is the hill-climber

(single-start, non-randomized) of Leeet al.SA is simulated annealing for

the specified number of restarts beginning with ATCS solution. 68

5.5 VBSS and VBSS-HC as compared to discrepancy search procedures. 71

6.1 Descriptive comparison of the QDF and AQDF. 75

6.2 Descriptive comparison of a Performance Profile and the AQDF. 79

7.1 Comparison of AQDF estimation methods for an instance of a weighted

tardiness scheduling problem and for two iterative stochastic search algo-

rithms referred to simply as “Algorithm 1” and “Algorithm 2”. 98

XIII

8.1 40 Job Set: QD-BEACON/VBSS Enhanced Multistart Dynasearch vs the

original Multistart Dynasearch. For each number of restarts, bold indicates

the best in terms of number of optimal solutions; italics indicates the best

in terms of percentage deviation.. 126

8.2 50 Job Set: QD-BEACON/VBSS Enhanced Multistart Dynasearch vs the

original Multistart Dynasearch. For each number of restarts, bold indicates

the best in terms of number of optimal solutions; italics indicates the best

in terms of percentage deviation.. 127

8.3 100 Job Set: QD-BEACON/VBSS Enhanced Multistart Dynasearch vs the

original Multistart Dynasearch. For each number of restarts, bold indicates

the best in terms of number of best known solutions; italics indicates the

best in terms of percentage deviation. 128

8.4 Tracking of the number of samples allocated to each of the four heuristics

by QD-BEACON using KDE on a single (100 job) problem instance. . . . 129

8.5 40 Job Set: QD-BEACON Enhanced Iterated Dynasearch vs the original

Iterated Dynasearch. For each number of iterations (kicks), bold indicates

the best in terms of number of optimal solutions; italics indicates the best

in terms of percentage deviation.. 132

8.6 50 Job Set: QD-BEACON Enhanced Iterated Dynasearch vs the original

Iterated Dynasearch. For each number of iterations (kicks), bold indicates

the best in terms of number of optimal solutions; italics indicates the best

in terms of percentage deviation.. 133

8.7 100 Job Set: QD-BEACON Enhanced Iterated Dynasearch vs the original

Iterated Dynasearch. For each number of iterations (kicks), bold indicates

the best in terms of number of optimal solutions; italics indicates the best

in terms of percentage deviation.. 134

8.8 40 Job Set: Comparison of QD-BEACON Enhanced Iterated Dynasearch

with various Local Search Algorithms. 135

8.9 50 Job Set: Comparison of QD-BEACON Enhanced Iterated Dynasearch

with various Local Search Algorithms. 136

8.10 100 Job Set: Comparison of QD-BEACON Enhanced Iterated Dynasearch

with various Local Search Algorithms. 136

XIV

9.1 New best known solutions found by using QD-BEACON/VBSS within a

randomized iterative priority-rule method. LB is the lower bound for the

makespan. 152

9.2 Summary of the results of using VBSS with the priority-rule method and

of the QD-BEACON/VBSS Iterative Priority-Rule Method. 154

9.3 Comparison of the QD-BEACON/VBSS Iterative Priority-Rule Method

with various other algorithms for the RCPSP/max problem. 155

XV

List of Figures

2.1 Search space for a stochastic sampler and a simple four city TSP. The probe

indicated by arrows represents the tour of the cities,A! C ! B ! D. . . 14

2.2 Example of a local search algorithm for a four city TSP: an initial state

modified by a sequence of two operations. 20

2.3 Rapid randomized restarts and the heavy-tailed nature of backtrack search

in constraint satisfaction domains. 26

3.1 Example of a performance profile. Shown is an example of a quality map

(i.e., the quality of results produced by the anytime algorithm for a set of

random instances and random amounts of compute time). The PP is the

expected quality as a function of time. 43

4.1 Two example decision contexts – one more discriminating than the other. . 48

4.2 A tournament of wasp dominance contests. 52

5.1 Illustration of the search space for the weighted tardiness scheduling prob-

lem. Particularly note the sequence-dependent size of the setup times that

are indicated by the size of the gray boxes in the figure. 62

6.1 Histogram approximations of QDFs for two instances of a weighted tardi-

ness scheduling problem: (a) QDF of a loose duedate problem; (b) QDF of

a tight duedate problem. 75

6.2 Histogram approximations of AQDFs for an instance of a weighted tardi-

ness scheduling problem with sequence-dependent setups and with loose

duedates and the WHISTLING algorithm using the ATCS heuristic and:

(a) “weaker” bias function; (b) “strong” bias function.. 76

XVII

6.3 Histogram approximations of AQDFs for an instance of a weighted tardi-

ness scheduling problem with sequence-dependent setups and with tight

duedates and the WHISTLING algorithm using the ATCS heuristic and:

(a) “weaker” bias function; (b) “strong” bias function.. 77

6.4 Histogram approximations of AQDFs for an instance of a weighted tar-

diness scheduling problem with very loose duedates and a wide duedate

range and the WHISTLING algorithm using the heuristics: (a) earliest due-

date; (b) weighted shortest processing time. 78

6.5 Histogram approximations of AQDFs for an instance of a weighted tar-

diness scheduling problem with tight duedates and the WHISTLING al-

gorithm using the heuristics: (a) earliest duedate; (b) weighted shortest

processing time. 78

6.6 Relationship of the AQDF with the concept of a performance profile. The

AQDF is a problem instance dependent, detailed model of the expected

quality of solutions generated by single iteration runs of a stochastic sam-

pling algorithm – essentially the first time slice indicated in the figure. . . . 80

7.1 The QD-BEACON framework provides a methodology for choosing from

among a set of search heuristics based on learned statistical models of their

performance on the problem instance at hand. The result of each iteration

of the search provides feedback to QD-BEACON used to refine the statis-

tical models. 83

7.2 Comparison of AQDF estimation methods for an instance of a weighted

tardiness scheduling problem and for two iterative stochastic search algo-

rithms referred to simply as “Algorithm 1” and “Algorithm 2”. The es-

timation methods shown are: (a) Normal distribution, (b) Kernel Density

Estimator, and (c) GEV distribution. Each estimation method is superim-

posed on a histogram estimate. .. 96

7.3 Comparison of AQDF estimation methods for an instance of a weighted

tardiness scheduling problem and for two iterative stochastic search algo-

rithms referred to simply as “Algorithm 1” and “Algorithm 2”. For each

algorithm, all three estimation methods are compared on a single graph. . . 98

XVIII

7.4 Comparison of AQDF estimation methods for an instance of a weighted

tardiness scheduling problem and for two iterative stochastic search algo-

rithms referred to simply as “Algorithm 1” and “Algorithm 2”. For each

estimation method, the AQDF of both algorithms are shown on the same

graph. 99

XIX

List of Algorithms

2.1 Iterative Sampling (IS) 15

2.2 Heuristic-Biased Stochastic Sampling (HBSS) 16

4.1 Value Biased Stochastic Sampling (VBSS) 49

4.2 Wasp beHavior Inspired STochastic sampLING (WHISTLING) 51

7.1 Integrated WHISTLING/QD-BEACON 85

7.2 Normal Estimation of the AQDF for QD-BEACON 87

7.3 Kernel Density Estimation of the AQDF for QD-BEACON 90

7.4 Using the Generalized Extreme Value Distribution within QD-BEACON . . 94

7.5 Maximum Likelihood Estimation of the parameters of the Generalized Ex-

treme Value Distribution . 95

7.6 The QD-BEACON Exploration Strategy 111

8.1 Multistart Dynasearch for Weighted Tardiness Sequencing 119

8.2 Iterated Dynasearch for Weighted Tardiness Sequencing 120

8.3 QD-BEACON/VBSS Enhanced Multistart Dynasearch for Weighted Tar-

diness Sequencing . 123

8.4 QD-BEACON Enhanced Iterated Dynasearch for Weighted Tardiness Se-

quencing . 130

9.1 Priority-Rule Method for RCPSP/max: The Serial Schedule Generation

Scheme . 143

9.2 Priority-Rule Method for RCPSP/max: The Unscheduling Step 144

9.3 VBSS Enhanced Priority-Rule Method for RCPSP/max: The Serial Sched-

ule Generation Scheme . 150

9.4 QD-BEACON/VBSS Iterative Priority-Rule Method. 151

XXI

Chapter 1

Introduction

1.1 Motivation

In many combinatorial optimization domains, simpler stochastic algorithms often exhibit

superior performance as compared to more carefully refined and highly customized ap-

proaches for the problem at hand. Examples of the success of such stochastic search al-

gorithms abound: Space Telescope Scheduling [25], Project Scheduling [30], Solid Model

Similarity Assessment [37, 39, 40, 41], Satisfiability [180, 159, 21], VLSI Channel Rout-

ing [20, 21], Graph Coloring [159], Constraint Satisfaction [84], and N-Queens [159] – just

to mention a few.

Although there have been numerous successes in this arena, there is little in the way of

formal analysis for this success. One potential explanation offered by researchers is the is-

sue of over-fitting algorithms to benchmark instances at design-time. For example, Watson

et al. studied the effects of problem structure on a variety of algorithms for the flow shop

scheduling problem [201] and observed that simple stochastic algorithms such as iterative

sampling [130] and heuristic-biased stochastic sampling [25] outperformed the more care-

fully tuned search procedures considered in the study as real-world problem structure was

added to the problems. The explanation given by the authors of the study is that the more

carefully refined approaches become over-fitted to the benchmark instances of the problem;

while the simpler stochastic algorithms are more robust to variation in problem structure.

Similarly, Hooker argues that a prime problem with heuristic search algorithm research is

that all too often the emphasis is placed on beating the existing algorithms for the problem

of interest [103]. One of the potential unfortunate outcomes of this competitive view of

heuristic search algorithm development is also an over-tuning to a set of benchmarks. In

1

Watsonet al.’s study, it is shown that the more sophisticated algorithms can become over-

fitted to benchmark instances and fail to live up to expectations when faced with problems

consisting of real-world structure; but no satisfying explanation is really provided as to why

the simpler (and often knowledge-poor) stochastic algorithms should do any better.

Others suggest that the issue is one of scalability (e.g., [159]). For an example con-

sider complete systematic backtrack search procedures. No matter how intelligently these

complete backtrack algorithms may search the space of solutions (e.g., through use of

heuristics, search-space pruning, and other tricks), they are still faced with an exponential

problem. As a consequence of this, these systematic algorithms are particularly prone to

this exponential growth when “mistakes” are made early in the search since it might result

in exhausting a large portion of unpromising search-space before backtracking to correct

a particularly poor choice made early in the search. Many of the simpler stochastic al-

gorithms scale better to problem size due to their lack of completeness. They are often

memoryless and care not about systematically exploring the search space. Many iteratively

probe from the root of the search space to a leaf making decisions randomly; while others

iteratively modify the current search state (e.g., simulated annealing, tabu search) in some

stochastic manner. However, why should we expect these algorithms, that consider what

amounts to a small amount of the exponentially-sized search-space, to perform as well as

they often do in these combinatorial optimization problems?

If you look closely at the behavior of some of these simple stochastic algorithms,

then you can often gain some insight into questions such as these. For example, con-

sider stochastic sampling algorithms. Iterative sampling is one such stochastic sampling

algorithm that iteratively probes from the root of the search-space while making decisions

unbiased at random [130]. Whenever a terminal node is reached, the search begins anew at

the root of the search-space completely forgetting about which search-branches were fol-

lowed on previous iterations. This algorithm clearly cannot be over-fitted to benchmarks

since there are no parameters to tune. Also, if it heads down an unpromising branch in the

search-space, then it is only going to forget that it followed that path in the first place rather

than systematically exploring that region. A less naive approach is that of heuristic-biased

stochastic sampling (HBSS) [25]. HBSS also makes each decision randomly, but uses a

heuristic to order the choices at each decision point and uses that ordering as a means of

biasing the stochastic decisions. HBSS allows the use of heuristic guidance, while using

randomization to expand the focused search region. HBSS makes the assumption that it

has a good search heuristic, but that it is not infallible and can often make mistakes. Ran-

2

domization of the heuristic is the method used by HBSS to handle the tradeoff of following

the heuristic’s advice and the possibility of missing out on better solutions elsewhere in

the search-space. Like iterative sampling, HBSS iteratively probes from the root forget-

ting its previous search trajectories and thus avoiding unnecessary systematic exploration

of unpromising search regions.

There are other stochastic elements of search algorithms whose performance have more

formal and highly analyzed explanations and motivation. For example, in the field of con-

straint satisfaction, Gomeset al.have set out to explain and motivate the practice of cutting

off a systematic (yet randomized) backtrack search procedure at some pre-specified run-

time prior to finding a solution and randomly restarting the search along a different search

trajectory [95, 92, 96, 33]. This practice is referred to asrapid randomized restarts. They

illustrate that backtrack search algorithms using a randomized heuristic to select a sys-

tematic search order of the branches at decision points often exhibit formally heavy-tailed

behavior in their runtime distributions. That is, for a large number of solution trajecto-

ries, the backtrack algorithm requires exponentially long runtimes to find a solution (the

heavy-tail of the distribution); while there also exists for the same problem a high density

of solution trajectories that lead almost directly to a solution. This provides rationale for the

rapid randomized restart technique. By cutting off the search at some specified time-limit

and restarting the algorithm along a new trajectory, you can abandon the runs that belong

to the heavy-tail in favor of more promising runs that may lead to a solution in less time.

The runs in the heavy-tail of the runtime distribution are runs that likely have become stuck

exhausting unpromising portions of the search-space. Rapid randomized restarts gives the

search a way out of such a bad search-space region without requiring it to exhaust it first.

In general, the heavy-tailed nature of the runtime distributions provide the rationale for pre-

scribing fixed restart cutoffs and under certain assumptions can also provide rationale for

schedules of cutoffs. Chen, Gomes, and Selman [33] have illustrated formal search-space

models that do exhibit the heavy-tailed phenomena; and have also illustrated search-space

models for which heavy-tailed behavior is not exhibited by backtrack search (e.g., balanced

search trees) and which consequently do not experience a runtime boost through rapid ran-

domized restarts.

This thesis explores methods for taking a set of heuristics and combining them within

a single stochastic search. The success of stochastic search algorithms is often due to their

ability to effectively amplify the performance of search heuristics. Heuristics, however,

are not infallible and in most domains there does not exist a single dominating heuristic.

3

Hence, it is desirable to be able to gain the collective power of a set of heuristics. The idea

is rather than carefully customizing an algorithm, to design a search control framework

capable of taking several simple search heuristics and turning them into a hybrid algorithm

with the ability of customizing itself on a per problem instance basis. A primary goal of this

thesis is to explore what can be learned by looking at the quality distributions of iterative

stochastic search algorithms. Specifically, I focus on combinatorial optimization domains;

and by “quality” refer to the objective values of the solutions produced by these algorithms

across multiple iterations. A further goal of this thesis is to explore ways of exploiting mod-

els of such quality distributions to enhance the performance of stochastic problem solvers.

Gomeset al.’s study of runtime distributions has lead to much success in constraint sat-

isfaction domains. A hypothesis of this thesis is that models of the distributions of the

solution qualities given by iterative stochastic search algorithms (in optimization domains)

can lead to the development of effective search control mechanisms that can enhance the

problem solving ability of such algorithms and that can provide a general framework for

combining multiple search heuristics into an enhanced decision-making process. These

goals lead to the development of a search control framework that uses online-generated

statistical models of search performance to effectively combine multiple search heuristics

and/or search algorithms. A prerequisite goal of this thesis is therefore to develop a suit-

able stochastic sampling algorithm for combinatorial search problems and to explore the

effectiveness of stochastic (heuristic-guided) sampling algorithms in domains of combina-

torial optimization. This prerequisite goal leads to the development of an algorithm called

value-biased stochastic sampling that makes better use, in general, of the discriminatory

power of a given search heuristic as compared to existing rank-biased approaches.

1.2 Overview

This thesis analyzes and offers a characterization of the inner workings of simple iterative

stochastic search techniques in combinatorial optimization domains. In a sense, this re-

search proposes to do for iterative stochastic optimization algorithms what Gomeset al.

have been doing for backtrack constraint satisfaction search algorithms. That is, I offer a

formal (descriptive) model of search performance, specifically focusing on stochastic sam-

pling algorithms. I further go a step beyond what has been done for backtrack search and

use the resulting formal model of the operation of the search to provide the optimizing

search with online (prescriptive) guidance. This thesis is threefold:

4

1. Advantage / leverage of a stochastic sampling algorithm.

2. Descriptive problem solving analysis / characterization.

3. Online prescriptive guidance from the descriptive analysis.

1.2.1 Advantage / Leverage of a Stochastic Sampling Algorithm

In this research, I specifically study the performance of algorithms that are based on the

iterative sampling algorithm. In iterative sampling, decisions are made unbiased at random

from the root of the search-space to a leaf. This is then iterated. In many cases, there

may be heuristics available for the problem at hand that can lend some guidance to the

problem. Iterative sampling as it is defined does not follow any such guidance, but there

are approaches based on iterative sampling that do. One crucial aspect of any such search

procedure is the approach taken to randomizing the base search heuristic. Conceptually,

the goal is to perturb the choice order prescribed by the heuristic at a given decision point

in a way that preserves much of the heuristic’s original bias. A simple, non-interfering

strategy is to simply break ties randomly in those decision contexts where two or more

top choices are ranked equivalently (i.e., making random decisions only when the heuristic

fails to make a selection). A somewhat more aggressive approach, calledheuristic equiva-

lency[92], chooses randomly among all choices having a heuristic value withinH% of the

highest. A more general framework calledHeuristic-Biased Stochastic Sampling(HBSS)

utilizes a specified bias function as a basis for deviating from the choice order given by the

base heuristic [25]. Through the use of different bias functions, a wide range of random-

ization strategies can be realized.

I present an alternative approach to randomizing search heuristics within an iterative

sampling framework. The approach taken in this thesis has much in common with HBSS,

but with one important difference. Instead of operating with respect to the rank ordering of

choices that is implied by application of the heuristic, our approach biases selection on the

actual values assigned by the heuristic to each possible choice. Like Oddi and Smith [153],

we assume that the heuristic can be more or less discriminating in different decision con-

texts and argue that the heuristic’s degree of preference for one choice over another should

impact the random selection process. We designate the algorithmValue-Biased Stochastic

Sampling(VBSS). We further define a specific mode of computation for the stochastic deci-

sions in VBSS that is inspired by a stochastic model of how wasp colonies self-organize (or

order themselves) into dominance hierarchies. This technique is lifted from the biological

5

context and reformulated as a general framework for randomizing heuristics in a stochastic

search context. We designate this approachWasp beHavior Inspired STochastic sampLING

(WHISTLING). VBSS and WHISTLING are presented in greater detail in Chapter 4.

1.2.2 Descriptive Problem Solving Analysis / Characterization

Bresinaet al. introduced the idea of aquality density function(QDF) [24, 23]. The QDF is

the distribution of the quality of solutions obtained from sampling uniformly from a solu-

tion space. In a sense, it characterizes the space of solutions according to their qualities. If

the particular problem domain satisfies certain conditions then the QDF can be generated

by performing some large number of iterations of the iterative sampling algorithm (i.e.,

making each search decision at random according to a uniform distribution over the possi-

ble choices). Bresina uses the QDF to compare the performance of various algorithms on

his particular problem domain. First, he computes an estimate of the QDF for a problem

instance using iterative sampling. Then, he solves the instance with each of the algorithms

he wishes to benchmark. He then scores each algorithm according to the number of stan-

dard deviations away from the mean of the QDF is the algorithm’s quality. This allows

for a more statistically meaningful algorithmic comparison across problem instances than

simply saying algorithm X produced a solution whose quality was Y% better than that of

algorithm Z.

One can also view quality distributions from the perspective of a particular stochastic

sampling algorithm, giving an idea of how the algorithm can be expected to perform on

various problem instances. Thus, taking as inspiration the QDF of Bresina, I define an

algorithm quality density function(AQDF) as the QDF obtained from sampling from a

solution space via a particular stochastic search algorithm rather than uniform samples.

For some problem instances, a particular iterative stochastic search algorithm may lead to

a high density of “good” solutions on successive iterations of the algorithm; while on other

instances, it may not. Similarly for some algorithms, a particular class of problem instances

may be solved very well; while other algorithms may have a difficult time finding a “good”

solution to these instances. The AQDF offers a methodology for modeling the performance

of a stochastic search algorithm for a specific problem instance. The AQDF is presented in

greater detail in Chapter 6.

6

1.2.3 Online Prescriptive Guidance from the Descriptive Analysis

Another crucial aspect of an iterative sampling approach using heuristic information (e.g.,

HBSS, VBSS, WHISTLING) is the choice of base heuristic itself. Often, for any given

problem domain there may exist a number of carefully designed heuristics. Each of these

heuristics may have particular classes of problem instances for which they are more highly

regarded when used deterministically without any search. In most interesting problem do-

mains, it is rare that any one heuristic will dominate all others in general (e.g., dispatch

scheduling policies [145]). For example, for a particular scheduling objective, one heuris-

tic may perform better in general for lightly loaded problem instances while another may

perform better in general for more heavily loaded instances. When employing an iterative

sampling search procedure, it may not be very clear which of these heuristics should lead to

better results in your domain or the problem characteristics that would lead to an informed

algorithmic choice may not be available until execution time. Also, the more state-of-the-

art heuristics, particularly dispatch scheduling policies, very often are parameterized and

these parameters are often over-fitted to a set of benchmark problems a priori. In practice,

some other set of parameters for the heuristic may be more appropriate and may lead to

better solutions. This heuristic with different sets of parameters can be seen as different

heuristics for the same problem – each of which may be more appropriate for different

problem characteristics such as the factory load, tightness of duedates, etc.

I present an approach to stochastic sampling that will allow the use of multiple base

search heuristics. The approach of this thesis adaptively chooses from among the base

search heuristics for further iterations of the algorithm. This adaptive decision is based on

estimates of the probability of finding better solutions than the best found so far for further

iterative samples using each base heuristic. Given a relatively few samples of the iterative

algorithm, the approach estimates the AQDF. Then, using these estimates of the AQDFs

for each of the base heuristics which adapt as iterations of the algorithm are performed,

we can decide which heuristic is likely to be most fruitful for further iterative samples.

Thus, we can take the descriptive analysis of the algorithm’s operation and turn it into

prescriptive guidance for the remainder of the search. The AQDFs can also be used to

consider the computation time / solution quality tradeoff of performing more iterations

of the algorithm with any heuristic. Perhaps, given the AQDFs, it may be deemed too

unlikely for the search to find a significantly better solution within a reasonable number

of additional iterations. For example, perhaps you have X problems to solve and limited

time to solve them. You can spend some number of iterations on each problem and use the

7

AQDFs to decide which problem appears to be leading in the most fruitful direction. We

designate this approachQuality Distribution Based sEArch CONtrol(QD-BEACON). The

QD-BEACON acronym can also serve as an analogy: just as boats use lighthouse beacons

for guidance and aircraft use radar beacons for guidance, stochastic search methods such

as VBSS or WHISTLING can use QD-BEACON for guidance. QD-BEACON is presented

in greater detail in Chapter 7.

1.2.4 Evaluation

The framework of this thesis is validated and evaluated on various combinatorial opti-

mization problems. Two specific problems upon which the experimentation focuses are

weighted tardiness scheduling with sequence-dependent setups (see Chapter 5, also see

Chapter 8 for the problem without setups) and resource constrained project scheduling with

time windows (see Chapter 9). The former is a difficult, yet real-world relevant schedul-

ing problem with insufficient coverage in the literature; thus a competitive approach to

this problem is a significant contribution in its own right. The latter adds an interesting

and challenging dimension to the study in that it involves solving an NP-hard constraint

satisfaction problem within the confines of an optimization process.

To evaluate the performance of the framework, the optimal or best-known solutions of

benchmark problems are used where available. Unfortunately, for many of the problems of

interest in this study, optimal solutions are too costly to compute. When such a comparison

is not realistically possible, the performance of the framework is compared to that of other

related algorithms as well as to current best known algorithms.

1.3 Organization

The remainder of this thesis is organized as follows:

� Chapter 2. This Chapter overviews related work in the area of search algorithms.

It specifically focuses on stochastic search algorithms and heuristic-guided search.

Topics discussed in detail include: discrepancy search, stochastic sampling, stochas-

tic local search, problem-space motivated search algorithm design, and methods of

combining multiple search algorithms such as through the concept of an algorithm

portfolio.

8

� Chapter 3. This Chapter overviews related work in the areas of metareasoning and

metalevel search control. Topics discussed include: metalevel control parameter op-

timization, learning models of search control, and the body of work that has been

done on anytime computation.

� Chapter 4. This Chapter presents the VBSS framework and its algorithmic details,

including a presentation of a specific mode of computation for the stochastic deci-

sions of the VBSS framework called WHISTLING.

� Chapter 5. This Chapter conducts an analysis of the performance of VBSS on a dif-

ficult combinatorial optimization problem known as weighted tardiness scheduling

with sequence-dependent setups. Specifically, the potential benefits of the value-

biased approach over the rank-biased alternative are explored. A second topic of

the discussion is value-biasing the starting solution configurations of a local search

approach to the problem. A comparison of VBSS with systematic heuristic guided

search algorithms such as discrepancy search is also presented.

� Chapter 6. This Chapter defines the algorithm quality density function that is the

key underlying characterization tool used in later chapters to guide search control

decisions.

� Chapter 7. This Chapter details the Quality Distribution Based sEArch CONtrol

framework. QD-BEACON is a framework that provides stochastic search algorithms

with the functionality necessary for modeling quality distributions associated with

searching with different heuristics (models of AQDFs) and with the functionality

necessary for exploiting these models to enhance search performance. Alternative

modeling techniques for the AQDF are presented. Also defined in this Chapter is the

exploration/exploitation strategy used by the framework. In the presentation of this

exploration strategy, a new variation of the multiarmed bandit problem, that we call

theMaxk-Armed Bandit Problemis presented and analyzed.

� Chapter 8. This Chapter revisits the weighted tardiness scheduling problem dis-

cussed earlier in Chapter 5. However, in this Chapter, we consider the somewhat

easier version of the problem without sequence-dependent setups. Though easier,

it is still a difficult NP-hard optimization problem. Due to the multiple heuristics

available for this problem, it is considered a good candidate problem for which to

test the efficacy of the QD-BEACON framework. QD-BEACON is used to enhance

9

the performance of state-of-the-art solution procedures for the problem. In particu-

lar, a QD-BEACON enhanced version of the previous best known algorithm for the

problem is now the new best known algorithm for the problem.

� Chapter 9. This Chapter explores the use of VBSS and QD-BEACON in the do-

main of resource constrained project scheduling with time windows. This problem is

one for which finding feasible solutions alone is NP-hard. Thus solution procedures

are faced not only with the difficult optimization problem, but also with a difficult

constraint satisfaction problem as well. A state-of-the-art priority-rule based search

algorithm for the problem is enhanced using VBSS and QD-BEACON. The resulting

algorithm is superior to the current best performing heuristic algorithm (ISES) for the

problem and competitive with a number of truncated branch-and-bound approaches

to the problem. The QD-BEACON/VBSS Iterative Priority-Rule Method is also able

to improve upon the best known solutions to a few of the problem instances in the

benchmark set.

� Chapter 10. In this final Chapter, contributions of this thesis to the larger research

community are discussed. Additionally, potential directions for future research build-

ing from the frameworks and results of this thesis are considered.

10

Chapter 2

Related Work: Search Algorithms

2.1 Overview

In this Chapter, I discuss related work on search algorithms. Section 2.2 describes sys-

tematic search procedures that have developed from work on constraint satisfaction. Sec-

tion 2.3 discusses stochastic sampling algorithms. Section 2.4 discusses stochastic local

search methods. Section 2.5 discusses recent studies of problem space characteristics as

motivation for more effective search algorithm design. One particularly successful ex-

ample that is discussed in detail is the heavy-tailed nature of the runtime distributions of

backtracking search in constraint satisfaction as motivation for rapid randomized restarts.

In Section 2.6, frameworks for using collections of search algorithms in parallel are de-

scribed. A summary concludes the Chapter in Section 2.7.

2.2 Systematic Search Procedures

2.2.1 Discrepancy Search

Harvey and Ginsberg consider the idea that for some constraint satisfaction problems, suc-

cessor ordering heuristics in a tree search could lead directly to a solution; and that in the

cases where a heuristic fails to lead directly to a solution, it may have succeeded had it not

made a few mistakes along its path through the search tree.Limited Discrepancy Search

(LDS) is designed with this rationale in mind [100]. LDS begins by following the succes-

sor ordering heuristic through the search tree to a leaf. If the leaf is a solution, the search

ends. Otherwise, it systematically considers all paths through the search tree with at most

11

1 “discrepancy” with the ordering heuristic (i.e., at most one decision is made contrary to

the choice of the heuristic). If it fails to find a solution, then it considers all paths with at

most 2 discrepancies with the heuristic, and then at most three, and so forth until either a

solution is found or the search space is exhausted.Improved Limited Discrepancy Search

(ILDS) eliminates much of the redundancy of the LDS algorithm by ensuring that each leaf

node is visited at most once [126].

Walsh has similar motivation in the design of hisDepth-bounded Discrepancy Search

(DDS) [199]. Walsh, however, acknowledges the idea that search heuristics are often less-

informed at the top of the search tree and often very-informed near the leafs of the tree. To

deal with this, he combines aspects of LDS with aspects of iterative deepening search [125].

On iteration0, DDS follows the heuristic’s advice to a leaf. On iterationi + 1, DDS con-

siders all discrepancies at depthi or less systematically in order of increasing discrepancy.

Although LDS and DDS are motivated by some of the same rationale as the work of

this thesis, their goals are somewhat different and are not well-suited to the types of prob-

lems for which I am concerned. LDS and DDS are concerned with finding afeasible

solution as opposed to finding anoptimal or near-optimalsolution. Consider a problem

where every leaf node is a solution but with drastically differing objective values. LDS

or DDS would not have any idea of when to stop searching in this instance. Also, al-

though they have the advantage of being complete search procedures (i.e., guaranteed to

find a solution if one exists), this advantage can be a disadvantage when scalability to very

large problem instances is considered due to its worst-case exponential complexity. Of-

ten, non-systematic search procedures are the ones that scale best to larger combinatorial

problems [130, 84, 159]. Later in this thesis, results are presented comparing LDS and

DDS to the stochastic sampling algorithm VBSS which illustrates the limitations of these

systematic search procedures in some combinatorial optimization domains.

2.2.2 Incremental Search

Pemberton and Korf consider variations of well-known systematic search algorithms for

use in real-rime decision-making [155]. Specifically, they present incremental versions of

depth-first branch-and-bound1 and best-first search. They define the following algorithms:

� Iterative-deepening branch-and-bounditeratively performs depth-first branch-and-

bound searches to progressively greater depths until time runs out.

1See the Operations Research literature for a detailed description of branch-and-bound search.

12

� Incremental branch-and-boundprecalculates the maximum depth that a depth-first

branch-and-bound is guaranteed to complete within the available time for the branch-

ing factor of the search-space under worst-case conditions. It then executes a depth-

first branch-and-bound to this precomputed maximum depth.

� Bounded memory best-first searchbounds the size of the open-list of search nodes.

The search proceeds until either time runs out or the open-list exceeds its maximum

allowed size.

� Incremental recursive best-first searchis an incremental version of an algorithm

called recursive best-first search (RBFS). RBFS maintains the current search path

and the heuristic values for all of the siblings of nodes along the current path [127].

Incremental RBFS performs RBFS one node expansion or backtracking step at a time

until time runs out.

2.3 Stochastic Sampling Algorithms

A stochastic sampling algorithm constructs a solution from scratch on each iteration, prob-

ing from the root of the search tree iteratively. Each of these decisions is made stochas-

tically. The details of this stochastic decision process are dependent upon the particular

algorithm of interest. Figure 2.1 shows, as an example, the search space for a stochastic

sampler and a simple four city TSP. The probe that is indicated by the arrows in the Figure

represents the tour of the cities,A! C ! B ! D. Similarly, each of the possible probes

from the root of this search tree to a terminal node represents a tour of the cities.2

2.3.1 Iterative Sampling

Iterative Sampling[130] is a simple algorithm that begins at the root of the search tree and

chooses a branch to follow from the root at random. From this successor node in the search

space, it again chooses randomly a branch to follow, and so on and so forth until it either

finds a solution or hits a dead-end. If the latter, then it begins again at the top of the search

tree and iterates the process. If the former, then if we are simply looking forsomesolution

then we are done. Otherwise, if we are looking for the best solution we can find, then the

process iterates some number of times until we are satisfied with the quality of the best
2For this representation of a TSP search tree, there may be multiple probes from the root that correspond

to the same tour of the cities. For example, the pathA! C ! B ! D is equivalent toA! D ! B ! C.

13

Figure 2.1: Search space for a stochastic sampler and a simple four city TSP. The probe
indicated by arrows represents the tour of the cities,A! C ! B ! D.

solution found. It is a rather simple, easy to implement algorithm; but it is naive and does

not consider any search/state information, nor does it consider any existing heuristics for

the problem. Its ability to find solutions relies entirely on the assumption that there may

exist many solutions in the search-space. Furthermore, its ability to find “good” solutions

in an optimization context relies entirely on the assumption that there exists a high density

of such “good” solutions. In most domains of practical interest, these assumptions tend to

be overly optimistic, although some promising results have been obtained for a flow-shop

scheduling problem [201].3 Algorithm 2.1 shows the iterative sampling algorithm for a

generic search-tree.

2.3.2 Heuristic-Biased Stochastic Sampling

As indicated in Chapter 1, Bresina’s HBSS [25] framework provides a general basis for

amplifying heuristic performance through randomization. HBSS operates within a global
3Iterative sampling outperformed a few highly-customized problem-specific algorithms as real-world

problem structure was added to the problem. The problem-specific heuristic algorithms had been over-fitted
to the benchmark set.

14

Algorithm 2.1: Iterative Sampling (IS)
Input: Number of iterationsI; an “objective” function; and a search-treeT .
Output: A solutionS.
IS(I, objective,T)
(1) bestsofar nil
(2) repeat I times
(3) S root search-node ofT
(4) while S is a decision node ofT
(5) selectuniformly at random choiceC from S

(6) S Successor(S,C)
(7) if objective(S) is superior to objective(bestsofar)
(8) bestsofar S

(9) return bestsofar

search paradigm, where partial solutions are extended by adding one new decision at each

step of the search. Like iterative sampling, a random choice process is invoked to make each

decision; but unlike iterative sampling, this process is biased according to a pre-specified

heuristic for the problem at hand. Specifically, the heuristic is used to first prioritize the

alternatives that remain feasible at a given decision point, and then a bias function is super-

imposed over this ranking to stochastically select from this ranked set. Once a complete

solution is generated, it is evaluated according to the global optimization criteria. The

search process is then repeated some number of times and the best solution generated is

taken as the final result.

The specific problem considered by Bresina was telescope observation scheduling.

Given a set of potential observation tasks and an objective criterion (e.g., maximize viewing

time), the problem is to produce a schedule (i.e., a sequence of tasks) for execution during

the next period. Formulated within HBSS, generation of a schedule proceeds in a forward

dispatching manner, by repeatedly ranking the subset of tasks that remain “unscheduled”,

and then choosing the next task to append to the current (partial) schedule.4 This pro-

cess iterates until either all potential tasks have been scheduled or the time frame has been

exhausted.5 The resulting schedule is then evaluated globally and the search process is

restarted. The HBSS algorithm is illustrated in a general search context in Algorithm 2.2.

4Re-ranking is necessary at each step because the state (e.g., the position of the telescope and current
time), and thus the heuristic ordering, change each time a new task is added to the tentative schedule. Also
contributing to the context-dependent nature of the ranking is the fact that some observation tasks are only
schedulable within specific time windows and thus are not always feasible choices.

5In most cases, it is not possible to schedule all desired observations in Bresina’s domain within the
allotted time window.

15

Algorithm 2.2: Heuristic-Biased Stochastic Sampling (HBSS)
Input: Number of iterationsI; a “heuristic” function; a “bias” function; an “objective”
function; and a search-treeT .
Output: A solutionS.
HBSS(I, heuristic, bias, objective,T)
(1) bestsofar solutionS obtained if “heuristic” is followed fromT
(2) repeat I times
(3) S root search-node ofT
(4) while S is a decision node ofT
(5) foreachchoiceC from S

(6) score[C] heuristic(C, S)
(7) sort all choicesC according to score[C]
(8) totalweight 0
(9) foreachchoiceC from S

(10) rank[C] sort position ofC
(11) weight[C] bias(rank[C])
(12) totalweight totalweight+ weight[C]
(13) foreachchoiceC from S

(14) prob[C] weight[C] = totalweight
(15) selectrandomly the choiceC biased according to prob[C]
(16) S Successor(S, C)
(17) if objective(S) is superior to objective(bestsofar)
(18) bestsofar S

(19) return bestsofar

The ability to use different bias functions within HBSS provides a means of placing

more or less emphasis on following the advice of the base heuristic. A number of polyno-

mial bias functions of the formr�n and an exponential bias function of the forme�r, are

proposed and explored by Bresina, wherer is the rank of the choice in question [25]. As

pointed out by Bresina, the choice of bias function can and should be made based on overall

confidence in the base heuristic. If the heuristic is deemed strong, then it makes sense to

follow it more often; if the heuristic is weak, then a more disruptive bias is called for. The

potential problem is that heuristics are typically more or less informed in different decision

contexts; and it is not possible to calibrate the degree of randomness allowed according

to this dynamic aspect of problem solving state. This capability requires movement away

from an approach to random bias based strictly on rank order and toward an approach based

on heuristic valuations.

16

2.3.3 Heuristic Equivalency

Heuristic equivalencychooses randomly among all choices having a heuristic value within

H% of the highest [92]. Gomeset al. employ heuristic equivalency within a systematic

backtracking search [95, 92, 96]. As will be discussed later, the purpose of randomizing a

systematic backtrack search in constraint satisfaction domains is to take advantage of the

high variability in the runtime distribution that results. Cutting off such a search before it

runs to completion and restarting the search procedure can lead to an algorithm with a large

improvement in overall runtime.

Oddi and Smith explored using heuristic equivalency6 within a stochastic sampling

process for solving a generalized job shop scheduling problem [153]. One important dis-

tinction in this approach, as compared to rank-based approaches to stochastic sampling

such as HBSS, is acknowledgment of the fact that a heuristic may be more or less informed

in different decision-making contexts, and hence the degree of confidence in the heuris-

tic can vary from decision to decision. Rather than rely on a static bias function as is

used in HBSS, Oddi and Smith bias decisions dynamically. They define non-deterministic

variants of search control heuristics that vary the degree of randomness as a function of

how informed the heuristic is through the use of heuristic equivalency. A variant of this

idea is also exploited by Cestaet al. in solving a resource-constrained project scheduling

problem [30, 31, 32].7

One drawback to (or it can be argued feature of) heuristic equivalency is that only the

choices within the thresholdH% of the preferred choice are considered in the stochastic

decision. There is a probability of 0 in choosing any of the other choices. This can require

careful tuning of the thresholdH% or else too many or too few choices will be considered

equivalent.

2.3.4 Nested Partitions

Shi andÓlafsson have recently proposed a randomized algorithm for optimization prob-

lems that they callNested Partitions[182]. We describe this here in that one of its steps

uses stochastic sampling to evaluate how “promising” a region of the search-space is. The

algorithm works as follows:

6They use the termacceptance bandin place of heuristic equivalency.
7This algorithm is presented in detail later in Chapter 9 where it is used as a benchmark for our experi-

ments.

17

1. Partitioning step: Let�(k) be the current “most promising” region of the search-

space. At the root of the search, the entire search-space is this region (i.e.,�(0) is the

entire search-space).�(k) hasM�(k) subregions. Partition�(k) into its subregions,

�1(k); : : : ; �M�(k)
(k). Define�M�(k)+1(k) to be the region of the search-space that

excludes�(k).

2. Random sampling step: Conduct a random sampling ofNj points in each region

�j(k) for j = 1; : : : ;M�(k) + 1. Shi andÓlafsson use iterative sampling in their

experiments, but they do not make any restrictions on the sampling algorithm used.

A more sophisticated procedure that uses heuristic guidance, such as HBSS, may

lead to better results, but they have not investigated this.

3. Estimate the “Promising Index” step: Given the random samples obtained in the

previous step, define the “promising index” of a partition�j(k) as I(�j(k)). The

promising index is based on the objective values of points in the region obtained

from the random sampling. Shi andÓlafsson define this as the value of the best point

found in the given region by the sampling step.

4. Backtracking step: Determine the “most promising” region for the next iteration.

Take the region,�j(k), with the best value ofI(�j(k)). If two or more regions

appear equally promising, then choose one of these at random. If this region is a

subregion of�(k) (i.e., j � M�(k)), then the “most promising” region for the next

iteration,�(k+1), is�j(k). Otherwise, if the “most promising” region appears to be

the surrounding region (i.e.,�M�(k)+1(k)), then we backtrack to the super-region of

�(k) (i.e.,�(k � 1)).

Note that if we are at the root of the search-space, then there is no surrounding region

since we partition the entire “most promising” region. Also note that if we are at the

maximum depth of the search-space (i.e., the “most promising” region cannot be further

partitioned), we do not stop the search at this point. We continue iterating where we com-

pute the “promising indices” of this current “most promising” region and the surrounding

region. If the current “most promising” region of maximum search-space depth continues

to remain “most promising” then we continue the next iteration with it again as the “most

promising”. Such behavior may mean that the algorithm has converged (or is converging)

upon the global optimal (i.e., the global optimal lies in this region). If this is not the case,

then the global optimal must lie in the surrounding region. Since the sampling procedure

18

is required to give a positive probability of sampling any point in the given region, then

we will with positive probability backtrack eventually to further explore other search-space

regions. Shi and́Olafsson prove that the Nested Partitions method converges to a global

optimum in finite time.

An example of how Nested Partitions may be applied to a combinatorial optimization

problem is easily given for the TSP. The “most promising” region�(k) can be partitioned

according to the city visited in thek-th position of the tour. Sampling from each of the

subregions is straightforward. Cities0 throughk � 1 are fixed according to the chain of

superregions. Cityk is fixed for each of the subregions of�(k). And it is simply necessary

to conduct a random sampling procedure for city positions greater thank in the tour for the

purpose of estimating the “promising indices”.

2.4 Stochastic Local Search Techniques

Many of the search techniques so far discussed have been constructive. That is, they begin

with an empty solution (i.e., at the root of the search-space) and each decision that is made

adds one more piece to the current solution. For example, in Bresina’s telescope scheduling

domain, at a given node in the search-space HBSS randomly chooses which observation

to add next to the schedule that it is constructing. There is another entire collection of

stochastic search techniques that can be lumped into a category calledlocal search. A local

search method begins with a complete randomly generated solution and iteratively modifies

that solution in algorithm-dependent ways in its search for a solution that optimizes the

problem’s objective function. Many of these local search algorithms are then iterated some

number of times beginning at other randomly chosen starting configurations. Figure 2.2

illustrates an example of local search.

2.4.1 Hill-Climbing

One relatively straightforward local search technique is that ofhill-climbing [168]. A hill-

climbing algorithm considers the space of candidate solutions as laid out on a landscape

where altitude at a given point in the landscape is determined by the objective value of

the candidate solution located at that point. Given some set of allowed local moves, hill-

climbing chooses the move that advances from the current solution to the highest neighbor-

ing point in the landscape and continues until a locally optimal peek is reached and then

19

Figure 2.2: Example of a local search algorithm for a four city TSP: an initial state modified
by a sequence of two operations.

iterates this process from another randomly chosen starting configuration. In a sense, start-

ing from a random point in the search-space, hill-climbing then follows an uphill greedy

heuristic. This is usually referred to as steepest-ascent hill-climbing. Another variation of

hill-climbing is that of first-ascent hill-climbing in which each move that is made is the first

found that improves your position on the fitness landscape. Movesets can be as simple as

for example swapping two elements in a sequencing problem; or they can be more com-

plex such as for example the approach to sequencing problems known as dynasearch [51]

20

in which a best set of independent pairwise swaps is found by dynamic programming. Dy-

nasearch will be discussed in detail later in a specific problem domain context. Since each

iteration of a hill-climbing search finds a locally optimal peek in the objective landscape,

these algorithms are usually iterated a large number of times returning the best solution of

those iterations in the hopes of stumbling upon the global optimum.

2.4.2 Simulated Annealing

Another popular local search technique,simulated annealing[118, 198], in a sense, can be

viewed as a randomized, heuristically-biased, variant of the hill-climbing algorithm. Sim-

ulated annealing begins, as does hill-climbing, at a randomly chosen candidate solution

configuration. Potential moves from this configuration are chosen from the set of allowed

moves at random. If this move improves the search’s current position in the objective land-

scape, it is made. Otherwise, if the move takes the search in a downhill direction on the

objective landscape, then it is made with a probability that decreases as the degree of down-

hill movement increases and also decreases as the search length increases. In other words,

if you consider a heuristic that values downhill moves according to how steep the descent,

then the stochastic decision in simulated annealing is biased by this heuristic. The proba-

bility that a move is accepted is according to the Boltzmann distributionexp(��E
Ti

) where

�E is the “cost” associated with making the move (i.e., amount of downhill movement in a

maximization problem or uphill movement in a minimization problem) andTi is the current

temperature. Simulated annealing allows fewer downhill moves as the search progresses.

This is accomplished by acooling schedulethat decreases the temperature parameter pe-

riodically (e.g., by updating according toTi+1 = �Ti for some positive constant� < 1).

The final stages of a simulated annealing search essentially correspond to a first-ascent

hill-climb. Simulated annealing’s allowance of downhill moves (i.e., moves that seemingly

take you further from the optimal solution) serves the purpose of providing escape routes

from local extrema.

There has been a great deal of success in applying simulated annealing to difficult and

important optimization problems. A few successful applications of simulated annealing al-

gorithms include: VLSI design [204], call routing in telecommunications networks [206],

clustering [139], SPECT image reconstruction [136], digital filter design [10], graph draw-

ing [60], job-shop scheduling [170], vehicle routing [170], and radio network base station

positioning [120].

21

2.4.3 Threshold Accepting

Threshold acceptingis a local search algorithm very closely related to simulated anneal-

ing [71]. Threshold accepting begins at a randomly chosen candidate solution configura-

tion. Potential moves are chosen from the set of allowed moves at random. If this move

improves the search’s current position in the objective landscape, it is made. Otherwise,

if the move takes the search in a downhill direction on the objective landscape, then it is

made provided it does not degrade the current solution state by more than a threshold value

V . The thresholdV is decreased over time during the search analogously to the decreasing

of the temperature parameter of simulated annealing.

2.4.4 Tabu Search

Tabu searchis a local search technique closely related to hill-climbing, but which incor-

porates the concept of atabu listor a list of moves that are disallowed for some period of

time in the search [87, 88]. In tabu search, you begin with some randomly generated initial

solution and you iteratively modify that solution according to some set of moves. The move

that is selected is the one that improves your position on the objective landscape the most, if

such a move exists. If no such move exists, then you make the move that is least bad. Your

choice of moves at each step consists of what remains after eliminating some set of “tabu”

moves from the complete moveset. For example, the tabu list often includes the inverse of

the moves made in the lastt steps. This wandering around while disallowing some moves

is a very aggressive way of avoiding local optima. For example, consider a case where you

make the “least bad” move from some current search states1 (i.e., there were no improving

moves) and further consider that the “best” move from the resulting states2 returns you to

states1. By disallowing that move (i.e., adding it to the tabu list) you can avoid cycles in

your search and can escape this local optimum. Tabu search returns the best solution state

that it wandered through during the course of its search.

2.4.5 Genetic Algorithms

Genetic Algorithms[102, 91, 142] are stochastic search algorithms that come under the

broader category ofevolutionary computation8. The genetic algorithm (GA) is inspired

8The field of evolutionary computation is very broad and to properly survey the entire field would require
a volume unto itself. For the sake of brevity, I have chosen to simply describe what is perhaps the most
commonly employed of the evolutionary computation algorithms – the genetic algorithm.

22

by evolution theory and in a sense solves problems by means of the artificial evolution of

solutions. The problem of interest is first encoded aschromosomes. The most common

representation of a chromosome is that of a bit string.9 Tentative solution configurations

are mapped to bit strings. For example, if our problem was a function optimization problem

of four real-valued parameters, then we could potentially represent a problem configuration

as a bit string of length 128 where each of the four real-valued parameters is represented

by 32 of the bits. Thefitnessof a chromosome is defined according to the objective value

of the solution represented by the chromosome. Chromosomes with higher fitness values

correspond to solutions of better objective value.

The GA then evolves apopulationof N such chromosomes. It begins with a population

of randomly generated chromosomes and then iterates for some number of generations. In

eachgeneration, N chromosomes are selected from the population of the previous gener-

ation with replacement10 and copied into the initial population of the current generation.

This selection process is typically stochastic and biased in some manner by the fitness

values. For example, one common selection method weights a roulette wheel according

to the fitness values of the population and then spins this wheelN times. Each chromo-

some of this new initial population is then paired up with exactly one other chromosome.

Each pair of chromosomes mates with some probabilityC – the crossover rate. During

crossover, some amount of genetic material (the bits) is swapped between the pair. There

are various methods for selecting how many such bits and which bits to swap. After the

crossover phase, each bit of each chromosome is mutated with some small probabilityM

– the mutation rate. Ifmutationis to occur, then the value of the given bit is flipped. This

process is iterated for some large number of generations and the best solution from the final

generation is returned.

If you consider a GA that uses selection alone (i.e.,M = 0 andC = 0), then you would

have a very expensive way of choosing the best solution from the initial random population

(with high probability). If you consider a GA that uses selection and mutation, but not

crossover (i.e.,C = 0), then you would have the equivalent of a population-based variation

of simulated annealing. The mutation operator considers random moves on the fitness

landscape, and through selection you keep uphill moves with high probability but there

is still a non-zero probability of keeping around chromosomes corresponding to downhill

moves. Now, consider the complete GA with selection, mutation, and crossover, and you

9Other common representations include: permutations, vectors of reals, and in the case ofgenetic pro-
gramming[128] – program trees.

10Any chromosome has a chance of being selected multiple times and possibly not at all.

23

essentially have the equivalent of a population-based version of simulated annealing with a

way of jumping to potentially interesting but not yet explored hills in the fitness landscape

(i.e., crossover).

2.4.6 Success of Local Search

There are many successful examples of stochastic local search algorithms: Satisfiabil-

ity [180], Traveling Salesperson [135], Largest Common Subgraph [37, 39, 40, 41], Graph

Coloring [159]. Perhaps the most successful of these is that of the WALKSAT algorithm for

Satisfiability [180]. It is also perhaps the best example of a simple, yet highly successful,

stochastic search algorithm. WALKSAT begins with a random initial assignment of vari-

ables. It then iteratively picks at random unsatisfied clauses. For each of these randomly

selected unsatisfied clauses, with probabilityp it flips the value of a randomly selected vari-

able from that clause and with probability1� p it flips the value of one of the variables in

that clause according to a greedy heuristic. This greedy heuristic chooses the variable that

reduces the global number of unsatisfied clauses by the greatest amount. This amount can

also be 0 or negative, so if no improvement can be made by flipping one of the variables of

this clause the heuristic favors the one that is least bad.

2.5 Search Algorithm Design Motivated by Search-Space

Analysis

A number of researchers recently have been studying characteristics of search-spaces to

both identify particularly difficult (or easy) problem instances and also to influence the de-

velopment of new algorithms that exploit problem-space features. For example, Franket

al. studied characteristics of plateaus11 and benches12 encountered by local search strate-

gies [83]. They argued that by studying the characteristics of benches and plateaus for a

problem beforehand that the results of this study could be used in the design of a local

11A “plateau” in the search-space of a local search algorithm is a region of the search-space such that: each
member state of the plateau has the same objective value as all other member states; each member state is a
direct neighbor to at least one other member state; and there does not exist a neighbor of any member state
of the plateau for which that neighbor has a better objective value than that of the plateau. A “local optima”
is an example of a plateau of size 1.

12A “bench” is related to a plateau, but has the additional characteristic that one or more members of the
plateau neighbor states with better objective values. In other words, a bench is a flat region of the search-space
with one or more exits.

24

search technique for the problem. For example, for problem spaces with relatively small

plateaus, the methods of tabu search, and other similar algorithms, that disallow the re-

visiting of some search states may be effective; while for problem spaces with very large

(and difficult to escape) plateaus and benches, restarting the local search algorithm when

encountering a plateau may be more effective than spending any search time on the plateau.

A number of others have studied various problem domains to identify search-space features

that are correlated to problem difficulty [49, 154, 185, 202, 203]. In all of these examples,

characteristics of classes of difficult problem instances are identified and these characteris-

tics can potentially lead to new or improved algorithms for the problems.

2.5.1 Rapid Randomized Restarts

One particularly successful example of a search-space analysis motivating algorithm design

is that of heavy-tailed runtime distributions as motivation for rapid randomized restarts.

In constraint satisfaction problem-solving (CSP) domains, Gomeset al. have observed a

heavy-tailed nature of the search runtime distributions across different solution trajectories

of the search-space [95, 92, 96]. That is, for a given CSP instance, the distribution of run-

times for backtrack search procedures, across multiple runs, exhibits formally heavy-tailed

behavior. Heavy-tailed distributions are extremely non-standard distributions that capture

high variability and erratic behavior in random processes. These distributions are character-

ized by infinitely long tails, an infinite mean, and an infinite variance. Such heavy-tailed na-

ture offers an explanation to the high variability of runtimes exhibited by backtrack search

procedures.13 It also provides a conceptual rationale for adopting an approach that cuts

off search at specified computational time-limits (in essence, abandoning trials that belong

to the heavy-tail) and repeatedly restarting along different solution paths. This approach

allows the overall search process to reach more productive regions of this search space

sooner. Gomeset al.call this approachrapid randomized restarts[96]. The approach has

been shown to significantly reduce the run-times of complete search procedures on hard

problem instances across a range of problem domains [92, 96, 153]. Figure 2.3 illustrates

rapid randomized restarts and the motivation behind this procedure – the heavy-tailed na-

ture of the runtime distributions of backtrack search in constraint satisfaction domains.

A major design consideration of a rapid randomized restart search strategy is defining

the search cutoff point. Lubyet al. showed provably optimal restart policies under the

13For bounded search-spaces, a bounded heavy-tailed runtime distribution has an exponentially long right-
hand tail in the size of the space, an exponential mean in the size of the space, and an exponential variance.

25

Figure 2.3: Rapid randomized restarts and the heavy-tailed nature of backtrack search in
constraint satisfaction domains.

assumptions that runs are independent and the only feasible observation is the length of

a run [137]. Given complete knowledge of the runtime distribution, the optimal restart

policy is to set a fixed cutoff point ofc backtracks such that the expected time to find a

solution is minimized by this cutoff. Lubyet al. further showed that if nothing is known

about the runtime distribution, then the schedule of cutoffs,f1; 1; 2; 1; 1; 2; 4; : : :g, gives an

expected total runtime within a log factor of the optimal fixed cutoff. By considering other

features of a problem solver’s state during the search in addition to the length of a run, both

Horvitz et al.and Kautzet al.showed that Bayesian models can be constructed that lead to

dynamic restart policies based on solver state observations that are superior to the optimal

static policy [106, 115]. Ruanet al. further relaxed the run independence assumption and

considered restart policies with dependent runs [164].

2.6 Combining Multiple Search Algorithms

In this Section, we overview general methods for combining multiple stochastic search al-

gorithms into a single stochastic problem solver. Often different algorithms for the same

problem perform better for problem instances with different characteristics. For example,

Lagoudakiset al.considered the problem of sorting an array of numbers and used a Markov

decision process model to determine an optimal policy (given a particular computer archi-

26

tecture) for choosing from among insertion sort, merge sort, and quicksort for the sorting

performed at each recursive step based on the size of the subset of numbers to be sorted

during this recursive step [129]. For more complex and difficult problems, the problem

of combining search algorithms to leverage their advantages is not so simple. We now

overview a few general methods for search algorithm combination.

2.6.1 Algorithm Portfolios

An algorithm portfoliois a collection of different algorithms and/or different copies of the

same algorithm running on different processors or with interleaved execution on one or a

few processors [94, 93, 112]. The primary motivation behind such an approach is to com-

bine algorithms into a portfolio such that the portfolio approach gives superior performance

compared to the component algorithms. By combining several algorithms with large vari-

ance in the runtime distributions into such a portfolio of algorithms, it is possible to take

advantage of the non-negligible probability of finding a solution with a really short run of

one of the algorithms. For example, systematic backtrack search randomized via heuristic

equivalency in constraint satisfaction domains exhibits a high variability in the distribution

of runtimes across multiple runs of the search. By running several copies of such an al-

gorithm in parallel, one can take advantage of this runtime variability and improve their

probability of finding a feasible solution quickly on a short run of one of the copies of

the algorithm, or similarly, by running several different such “risky” algorithms in paral-

lel. Gomes and Selman demonstrate the efficacy of the algorithm portfolio approach by

showing for mixed integer programming (MIP) that although when running a single pro-

cess a best-bound approach is superior to a depth-first strategy, a portfolio of high-variance

depth-first runs outperforms a portfolio of best-bound runs [94]. The rapid randomized

restart approach of Gomeset al.discussed above takes similar advantage of this variability

by cutting off a randomized systematic search procedure at a pre-specified runtime prior to

finding a solution and restarting [95, 92, 96]. Hoos has also similarly shown that stochas-

tic local search algorithms in domains such as SAT and CSP can often exhibit a run-time

speed-up through parallelization as a portfolio [105, 104]. In these domains, some stochas-

tic local search algorithms are characterized by exponential run-time distributions which

account for the effectiveness of parallelization.

27

2.6.2 Asynchronous Teams

Similarly, in combinatorial optimization domains, Talukdaret al.have acknowledged that

all of the available search algorithms have strengths and weaknesses. Some produce very

good solutions but are slow; while others are fast, but with a tradeoff of solution quality.

Given this, they have developed a framework that allows a number of these algorithms to

search for solutions cooperatively. They call this framework anasynchronous team(A-

Team) [192, 35, 191, 169]. Essentially, an A-Team is a set of memories and a set of au-

tonomous agents. Each memory may be comprised of a set of complete tentative solutions

to the problem or partial solutions to the problem. Perhaps, one memory may use one prob-

lem representation while another memory may use some other representation. Some subset

of the agents are implementations of various search algorithms – constructive agents. For

example, one agent may be a simulated annealing algorithm; while another agent may be

a hill-climber. Each agent takes as its input tentative solutions selected from a given input

memory, improves (or tries to improve) upon those solutions, and then outputs its solu-

tions to a given output memory. The input and output memories can be the same for a

given agent, multiple agents may share an input and/or an output memory, and the input

memory of one agent may be the output memory of some other agent (and vice-versa). In

addition to the constructive agents, there are destructive agents. A destructive agent re-

moves from a given memory tentative solutions that it deems are not very promising. For

example, a destructive agent may use a procedure similar to roulette wheel selection in a

GA to select solutions to delete from a memory biased according to how unfit they are.

Or for example, they may use a mechanism similar to tabu lists from tabu search to delete

solution configurations that satisfy some criteria. All of the agents in the A-Team execute

asynchronously with no centralized control governing the amount of execution time each

is granted. Talukdaret al. have shown this framework to often give superior performance

as compared to using any of the underlying component algorithms alone. A-Teams appear

to be an effective framework for building a hybrid search algorithm from a collection of

search algorithms for a problem. An A-Team is essentially an algorithm portfolio with the

ability of algorithms to communicate and improve upon each others solutions.

2.6.3 Meta-Planner

A related idea from the AI planning community is theMeta-Plannerof Howe et al. that

combines several planning algorithms into a sort of algorithm portfolio (though they do not

28

use the term) [111]. Howeet al. performed a study of a number of planning algorithms

on a suite of benchmark planning problems. They showed that no one planner dominated

across the problem set and that each of the planners performed best on one or more problem

instances as compared to the other planners in the study. They also showed that problem

features such as number of actions, number of predicates, number of goals, number of

predicates in the initial condition, and the number of objects can be predictive of the per-

formance of a particular planner on a problem instance.

Using the data from the study, Howeet al. developed Meta-Planner. Meta-Planner

orders the component planning algorithms according toP (Ai)

T (Ai)
whereP (Ai) is the expected

probability of success of algorithmAi andT (Ai) is the expected runtime. These models

are linear regression models of the performance data from the study. After ordering the

algorithms, they are executed according to a round robin control strategy. An algorithm

is executed for a time slice equal to the expected time required to solve the problem. If it

solves the problem, then planning comes to an end. If it fails, then the planner is removed

from the round robin. If it uses its allocated time slice without finding a solution and

without failing, then it is suspended and control passes to the next planner. This continues

until either a solution is found, all planners fail, or a preset threshold amount of time is

exceeded.

2.7 Summary

In this Chapter, various related work on search algorithms have been discussed.

Discrepancy search algorithms like LDS and DDS are motivated by the idea that you

may have a good search ordering heuristic for your problem, but that the heuristic may

make some small number of mistakes during the course of the search. LDS and DDS are

systematic search algorithms designed with constraint satisfaction domains in mind and at-

tempt to ensure completeness by exhausting the search-space if necessary. In optimization

domains, these systematic procedures may suffer from scalability issues.

The stochastic sampling algorithms presented are more closely related to the work of

this thesis. Their underlying motivation is similar to LDS and DDS. However, rather than

trying to guarantee completeness and optimality, stochastic sampling algorithms trade these

off in favor of scalability and trying to find “good enough” solutions quickly. The novel

algorithm that will be presented later in this thesis falls into this category of stochastic

sampling.

29

Stochastic local search is another class of stochastic search algorithms in which some

initial complete solution (or solutions) is (are) iteratively modified via various operators;

rather than building solutions from scratch on each iteration as is done by stochastic sam-

pling search. The approach to search control that will be taken later in this thesis, although

designed with stochastic sampling in mind, may also be relevant to local search techniques.

For example, later in this thesis, results are presented involving a hybrid algorithm where

the solutions generated by the stochastic sampler are then taken to local extrema by a hill-

climbing algorithm. The resulting algorithm is then controlled by the search control frame-

work, QD-BEACON, of this thesis.

Search-space analysis recently has proven fruitful in providing motivation for search

algorithm design. For example, we saw Gomeset al.’s rapid randomized restart technique

in which a complete randomized backtrack search is abandoned and restarted if some pre-

specified runtime is exceeded. This practice is motivated by the heavy-tailed nature of the

runtime distributions of backtrack search in these problem domains.

Algorithm portfolios offer a method of taking advantage of high variance runtime dis-

tributions and combining many “risky” algorithms with parallel (or interleaved) execution

to create a single meta-algorithm with reduced variance and a significantly shorter expected

overall runtime. Similarly, A-Teams were seen as a potentially effective framework for al-

lowing a collection of stochastic search procedures to collaborate in their search for a solu-

tion to a given problem – effectively taking the good aspects of the component algorithms.

But, within these architectures, all agents (or search algorithms) work autonomously and

are essentially given equal priority by the execution architecture. Via the search control

framework presented in this thesis, QD-BEACON, it may be possible to more effectively

coordinate the share of execution time amongst some subset of the components of an A-

Team or an algorithm portfolio. More important for the aims of this thesis, QD-BEACON

is a potentially effective mechanism for combining multiple stochastic samplers into a sin-

gle hybrid search algorithm in much the same way that algorithm portfolios and A-Teams

provide an architecture for combining multiple search algorithms.

30

Chapter 3

Related Work: Metareasoning and

Metalevel Search Control

3.1 Overview

In this Chapter, I discuss related work on metareasoning and metalevel search control.

Section 3.2 discusses the work that has been done with metalevel control parameter opti-

mization – particularly the work that has been done with GAs and considering the metalevel

problem as one of static optimization. Section 3.3 discusses research dealing with making

search control decisions based on models of search performance learned during execution

(e.g., deciding when to restart the search or using heuristics that adapt according to search

progress). Section 3.4 discusses metareasoning and the work that has been done with any-

time algorithms. A summary concludes the Chapter in Section 3.5.

3.2 Metalevel Control Parameter Optimization

One important issue that often needs to be resolved in the design phase of a stochastic

search algorithm is how to set the various control parameters of the algorithm. The genetic

algorithm (GA) is a good case example to consider due to the large number of parameters

involved. For example, there is the mutation rate, the crossover rate, various choices of

crossover operator, the population size, and potentially many more specialized parameters

depending upon the choice of these operators and other more advanced issues with the GA.

Many researchers have considered this issue of GA control parameter selection [62, 61, 98,

172, 22, 205, 28, 72, 42]. One of the earliest studies of GA control parameters is that of De

31

Jong [62]. He analyzed a class of GAs for function optimization. De Jong’s optimal control

parameters became widely used despite lack of knowledge of optimality with respect to

problems outside of his test collection. Schafferet al.expanded upon De Jong’s test suite

and performed a more systematic study of the effects of the control parameters [172].

Grefenstette saw the problem of tuning the control parameters of the primary GA as a

secondary or metalevel optimization problem and was one of the first to apply a metalevel

GA approach [98]. Grefenstette’s metalevel GA was parameterized with De Jong’s optimal

control parameters: population of 50, cross-over rate of 0.6, mutation rate of 0.001, gen-

eration gap of 1.0, scaling window of 7, and an elitist strategy [62]. Grefenstette’s results

showed a slight improvement over De Jong’s with control parameters: population size of

30, cross-over rate of 0.95, mutation rate of 0.01, and an elitist strategy [98].

Others have also applied meta-level GAs to control parameter optimization. Bramlette

presents modified methods of selecting initial populations and mutation operators for im-

proving the performance of GAs for function optimization [22]. He tests his techniques

on a meta-level GA to optimize the control parameters for some other GA. Wu and Chow

apply a meta-level GA approach to optimizing the control parameters of GAs for nonlinear

mixed discrete-integer optimization problems [205]. Cicirello and Smith acknowledge the

computational expense associated with computing the fitness function within a metalevel

GA (since it requires executing the primary GA some number of times) and instead build a

neural network model of the performance of the primary GA to use as the fitness function

at the metalevel [42]. They apply their approach to optimizing the control parameters of a

GA for the largest common subgraph problem.

Metalevel optimization is not limited to GA control parameters. Kochet al. meta-

optimize the control parameters of an evolution strategy [119]. De Jong applies a GA

approach to control parameter optimization of dynamical systems, not necessarily to con-

trol parameters of a GA [61]. Morley uses a GA to optimize the parameters of the bidding

rules in his market-based mechanism for dynamically assigning trucks to paint booths in

vehicle paintshops [144, 143]. Camposet al. do likewise for their biologically motivated

multi-agent system for the same problem [27]. Many more examples of metalevel control

parameter optimization can be given.

32

3.3 Search Control Guided by Learned Models

3.3.1 The STAGE Algorithm

The success of local search algorithms, such as hill-climbing, simulated annealing, etc.,

often depends largely on characteristics of the objective function landscape for the prob-

lem at hand (for example, quantity and frequency of local optima, size of plateaus and

benches, etc.). Boyan observes that often it is possible to define an alternative objective

function consisting of the same global optima but which may have a landscape that is more

suitable for effective local search than the original objective function. Boyan’s STAGE

algorithm is designed with this motivation [20, 21, 19]. The STAGE algorithm takes as

input various problem state features, including the original objective function value of a

given problem state. It also takes as input a local search algorithm (e.g., simulated anneal-

ing or hill-climbing). It then proceeds in stages (thus its name STAGE). During the first

stage, the algorithm follows the local search in the original objective landscape. When a

local optima is encountered, STAGE then uses statistical learning (e.g., linear regression,

locally-weighted regression) to learn a value function mapping the problem state features

of a local search start state to the objective value of the expected local optima encountered

by a search beginning at that state. After this learning stage, STAGE then applies the local

search to the new objective landscape given by this learned model. It then cycles back to the

first stage performing a local search in the original objective function domain, and so forth.

If the search in the learned evaluation function space does not move the overall search to a

new local optima, then STAGE restarts from a randomly determined starting solution.

3.3.2 Expected Cost Improvement Distributions

Sadehet al. define what they call theExpected Cost Improvement Distribution(ECID)

and use this tool to motivate the restarting of a simulated annealing search [170]. They

recognize that finding near-optimal solutions to combinatorial optimization problems with

simulated annealing can often be an expensive process computationally requiring a large

number of restarts. To deal with this computational expense, their procedure learns to rec-

ognize and abandon runs that do not look very promising in favor of restarting the search.

Across multiple runs of simulated annealing on the given problem instance, they build

probabilistic models at a set of temperature checkpoints. Each of these is a distribution

of the expected improvement in cost of continuing the search below the given temperature

33

threshold. They assume these distributions can be modeled as normal distributions. The

mean of this distribution is:

�tn =

Pn
i=1(c

t
i � c0i)

n
(3.1)

and the standard deviation is:

�tn =

sPn
i=1((c

t
i � c0i)� �tn)

2

n� 1
(3.2)

wherecti is the cost of the best solution at check point temperaturet in thei-th run andc0i
is the cost of the best solution obtained at temperatureT = T1.

Then, during the(n + 1)-th restart of the simulated annealing search, this distribution

is computed for each check point given the results of the firstn restarts. The current run is

abandoned if:
ctn+1 � �tn � xn

�tn
> � (3.3)

wherexn is the cost of the best solution found during the previousn runs and� is a thresh-

old value.

Whenever a run is abandoned or completed, Sadehet al.’s approach then uses the

ECIDs to decide whether to begin a fresh run of simulated annealing or to “reanneal” the

solution of a previous run at one of the checkpoint temperatures. They consider three pos-

sibilities for making this decision. The first chooses the restart point expected to maximize

the rate at which the cost of the current best solution will improve. The second chooses

randomly among those within some threshold of the restart point expected to maximize the

same criteria. The third chooses according to a Boltzmann distribution weighting higher

those choices with a higher expected rate of improvement over the best solution.

3.3.3 Ant Colony Optimization

A heuristic-biased stochastic search technique that has gained in popularity in the com-

putational intelligence community in recent years is theAnt Colony Optimization (ACO)

meta-heuristic [67, 68, 69]. ACO uses a population of ant-like agents that communicate

indirectly via trail laying and following to build solutions to the optimization problem at

hand. Each of these ant-like agents builds a solution stochastically and biases its random

decisions according to the values of a heuristic as well as the values of artificial quantities

of pheromone that evolve over time based on obtained solution quality. For instance, in

one variation of ACO an artificial ant chooses search-space branchbi from among a set of

34

alternativesfb1; b2; : : : ; bng with probability:

P (bi) =
h(bi)

�p(bi)
�P

j=1;:::;n h(bj)
�p(bj)�

(3.4)

whereh() returns a heuristic value of the choice,p() returns the quantity of artificial

pheromone located on the search-space branch, and� and� are system parameters that

trade-off how heavily the heuristic and the pheromone influence the bias of the stochastic

search. The pheromone quantities are updated by one of several methods (e.g., all of the

ants update the search-space branches which they used according to the quality of their

respective solutions).

There are numerous applications of ACO to various combinatorial optimization prob-

lems including: the sequential ordering problem [85], job shop scheduling [197], flow shop

scheduling [189], vehicle routing [26, 86], bus driver scheduling [78], tardiness scheduling

problems [5, 65], and resource-constrained project scheduling [141]. There are also exten-

sions of ACO designed for dynamically changing optimization problems in a few domains.

For example, Schoonderwoerdet al. [173, 174] have developed an effective system called

Ant Based Control (ABC) for adapting routing tables in circuit-switched networks based on

the ACO framework. Similarly, Di Caro and Dorigo [66] have developed a system called

AntNet in which artificial ants adapt the routing tables of packet-switched networks. Also

based on the ACO paradigm, Cicirello and Smith developed a method for routing jobs to

multi-purpose machines in dynamic flow-shops to minimize setups that is called AC2 [43].

It unfortunately is prone to convergence to sub-optimal equilibrium in a game-theoretic

sense [38].

The ACO framework is an improvement over that of HBSS in that it uses the actual

heuristic values within its stochastic decisions and is thus capable of varying the degree of

randomness according to how informed the heuristic is, but in general its evolution of arti-

ficial pheromone quantities and convergence toward a solution are slow and not well-suited

for applications where you desire a solution quickly. It is best-suited to problems where

you are interested in finding near-optimal solutions and where you can afford extra com-

putation time. Its performance can be compared to evolutionary methods such as genetic

algorithms.

35

3.3.4 Adaptive Probing

Ruml describes a stochastic sampling method that he callsadaptive probing[165, 166,

167]. In adaptive probing, the search builds online a probabilistic model of the cost of

choosing any given action at any depth of the search. Adaptive probing assumes that the

effects of choosing thei-th most preferred action at depthj is the same for all search states

at depthj. Each estimated cost is assumed to be the mean of a normal distribution, with

all action costs at a given depth of the search space having the same variance. The cost of

taking actioni at depthj is aj(i). If the depth of the search tree isd and the branching

factorb, then it is necessary to maintaindb of these cost models. Ruml uses a perceptron

learning rule to update these parameters after each probe from the root of the space to a

leaf according to the observed leaf cost (objective value of a solution). If thed actions

taken during a probe arefi1; : : : ; idg, then each of thed cost meansfa1(i1); : : : ; ad(id)g
are updated according to� lk�l̂k

d
wherelk, l̂k, � are the observed leaf cost, the estimated leaf

cost, and the learning rate respectively. During a probe, actions are chosen according to the

probability that it leads to a solution with a lower cost (lower objective value).

In a sense, adaptive probing can be seen as a stochastic sampling method that attempts

to learn a search heuristic for the problem online. A heuristic can also be incorporated into

the method by specifying an initial probing policy based on the heuristic and then slowly

discounting its use in favor of the learned model. Ruml shows that adaptive probing is

competitive to systematic search procedures such as DFS, LDS, and DDS in many cases

except when the heuristic is very strong. In this case, it suffers from the need to learn that

the heuristic is a good one. Thus, it is not of much use to us in domains where we know

we have a good heuristic such as in many scheduling domains where the OR community

has spent much time and effort in designing strong dispatch heuristics. Furthermore, as the

search-space grows so do the number of parameters we need to maintain and learn with the

search. Thedb parameters can get difficult to deal with for problems with large branch-

ing factors and large depths. For example, a 1000 city TSP would require maintaining

1,000,000 cost models. Also, it assumes that the actions (as well as the costs of those ac-

tions) at a particular depth of the search are the same independent of your previous actions

and how you arrived at that level of the search. This is often an impractical assumption.

For example, during a tree search for a TSP, the actions (or cities available to visit next)

available at a search node at depthj are dependent upon the path taken from the root to that

node at depthj (i.e., the cities already visited). The technique is interesting just the same

in that it attempts to do something closely related with the approach of this thesis. Ruml’s

36

adaptive probing builds and utilizes online a model of the costs of choosing actions learned

during the search; whereas our approach builds and utilizes online a model of the objective

values of the leaf nodes (feasible solutions) of the search-space.

3.3.5 Hyperheuristics

Hyperheuristicsrepresent a new type of local search algorithm [55, 54, 56, 58, 57, 117].

A hyperheuristic is a method of combining multiple local neighborhood search operators

(e.g., insertions, removes, adds, swaps) into a single local search algorithm.

In the most basic form of a hyperheuristic, Cowlinget al.define what they callsimple

hyperheuristics[55, 54]. Specifically, they define four simple hyperheuristic algorithms:

1) SimpleRandom repeatedly chooses a local operator uniformly at random, applying it

once; 2) RandomDescent repeatedly chooses an operator uniformly at random, applying it

iteratively until no further improvement can be made; 3) RandomPerm chooses a random

permutation of all local operators and applies each one consecutively in the chosen order,

cycling around to the first; and 4) RandomPermDescent does the same as RandomPerm

except that each local operator is applied repeatedly until no further improvement can be

made before moving on to the next operator in the permutation.

The simple hyperheuristics listed above are not particularly interesting in light of the

topic of this Chapter. As so far described, hyperheuristics would seem a better fit in the

discussion of Chapter 2. But Cowlinget al. also define what they call achoice function

hyperheuristicwhich adapts a functional ranking of each low-level search operator [55, 54].

The choice functions are calculated based on the individual performance of a low-level

operator, the joint performance of pairs of operators (e.g., a particular operator might help

some other operator improve the current solution, while alone, that operator might not lead

to any improvement), and the amount of time that has elapsed since the operator’s last use.

The choice function of a local neighborhood operatorNj is defined as:

f(Nj) = �f1(Nj) + �f2(Nk; Nj) + Æf3(Nj); (3.5)

whereNk is the previous operator applied.

The functionf1(Nj) is the individual performance of an operator and is updated during

the search according to the following:

fnew1 (Nj) =
I(Nj)

T (Nj)
+ �f old1 (Nj); (3.6)

37

whereI(Nj) is the change in objective value since the last time operatorNj was applied

andT (Nj) is the amount of CPU time taken.

The functionf2(Nk; Nj) is the joint performance ofNk andNj and is updated during

the search as follows:

fnew2 (Nk; Nj) =
I(Nk; Nj)

T (Nk; Nj)
+ �f old2 (Nk; Nj); (3.7)

whereI(Nk; Nj) is the change in objective value since the last timeNj was called imme-

diately afterNk andT (Nk; Nj) is the amount of CPU time taken.

The functionf3(Nj) is the amount of CPU time that has elapsed since the last time

local neighborhood operatorNj was applied.

The�, �, andÆ are parameters that determine the degree to which each of these three

parts play a role in the determination of the choice function. These parameters can either

be fixed beforehand via some ad hoc tuning procedure [55, 58, 57] or they can be adjusted

with the search via simple reinforcement learning update rules [54, 56, 117].

Furthermore, an approach calledhyper-GAhas been considered in which a genetic al-

gorithm is used to evolve sequences of local neighborhood operators [53]. In the hyper-GA,

each chromosome in the population represents a sequence of local neighborhood operators.

The goal of the hyper-GA search is to find a sequence of local neighborhood operators that

when applied to the problem (e.g., in a manner analogous to the RandomPermDescent sim-

ple hyperheuristic) leads to good solutions. Theadaptive length chromosome hyper-GA

(ALChyper-GA)extends this idea beyond using fixed length sequences of local neighbor-

hood operators and allows the GA to search for the length of such a sequence in addition

to the sequence itself [99].

Others have begun using hyperheuristic approaches to combine multiple problem spe-

cific heuristics into improved problem solvers. For example, Rosset al. consider the bin-

packing problem [162]. Their hyperheuristic approach to the bin-packing problem uses a

learning classifier system to learn a choice function for deciding which of a set of 14 bin-

packing heuristics to apply to the current search state. Specifically, the search-space is that

of a constructive search, rather than a local search; and each of the heuristics in the choice

set can be used to decide things such as which item to place into which bin.

Rossi-Doria and Paechter have used an evolutionary algorithm in solving timetabling

problems [163]. In their approach, the genetic representation encodes a sequence of prob-

lem specific heuristics, rather than encoding a solution configuration. The fitness of an

38

individual chromosome of the population is based on the quality of the solution found by

using the sequence of heuristics to construct a solution to the given problem instance.

A system closely related to hyperheuristics is Epstein’s FORR architecture [75]. FORR

combines the advice of multiple heuristics by weighted voting and by a mechanism for

learning the weights used in the voting. Epsteinet al.use FORR in the domain of constraint

programming within their Adaptive Constraint Engine [76].

Also related to hyperheuristics isthe DragonBreath Engineof Nareyek which uses a

local search method to solve constraint programming problems [148, 149]. In this system,

each constraint in the problem has a cost determined by the degree to which it is satisfied at

any given time during the search. For example, for a constraint that is satisfied, the cost is

0; and unsatisfied constraints have some positive cost value. During each step of the search,

one of the constraints that has positive cost is selected. Upon selection, a heuristic is chosen

to improve the cost of the constraint by changing the values of some set of variables. For

each constraint, DragonBreath may have one or more heuristics that can be used to improve

the selected constraint’s cost. Each of these heuristics is assigned a weight by the system

and the weights are adapted during the search by simple reinforcement learning rules. That

is, whenever a constraint is chosen for improvement, the weight of the heuristic most re-

cently chosen for that constraint is adjusted based on the current cost of the constraint and

the cost of that constraint the last time it was selected. If the cost showed improvement,

then the weight for the heuristic is increased (and decreased otherwise). After adjusting

the weight of the most recently chosen heuristic, the heuristic with the highest weight for

the selected constraint is applied to improve the current cost of that constraint. Nareyek

considers several alternatives for the weight adjustment rules.

3.3.6 Wasp-Inspired Scheduling

Theraulazet al. present a model for the self-organization that takes place within a colony

of wasps [196]. Interactions between members of the colony and the local environment

result in dynamic distribution of tasks such as foraging and brood care. In addition, a

hierarchical social order among the wasps of the colony is formed through interactions

among individual wasps of the colony. This emergent social order is a succession of wasps

from the most dominant to the least dominant.

This model of wasp behavior describes the nature of interactions between an individ-

ual wasp and its local environment with respect to task allocation [196]. They model the

colony’s self-organized allocation of tasks using what they refer to as response thresholds.

39

An individual wasp has aresponse thresholdfor each zone of the nest. Based on a wasp’s

threshold for a given zone and the amount of stimulus from brood located in that zone, a

wasp may or may not become engaged in the task of foraging for that zone. A lower thresh-

old for a given zone amounts to a higher likelihood of engaging in activity given a stimulus.

Bonabeau, Theraulaz, and Deneubourg discuss a model in which these thresholds remain

fixed over time [16]. Later they consider that a threshold for a given task decreases during

time periods when that task is performed and increases otherwise [195]. They give exam-

ples of different insect species for which each of their mathematical models most closely

agree.

Bonabeauet al.demonstrate how this model leads to a distributed system for allocating

mail retrieval tasks to a group of mail carriers [15]. Although they deal with a “toy” prob-

lem, they successfully illustrate the potential of systems inspired by the underlying wasp

behavioral model. Camposet al. take the model a step further illustrating a connection

between market-based mechanisms and wasp-inspired systems [27]. They apply a system

inspired by the natural model to a simulation of the real-world vehicle paintshop problem

of Morley [144, 143]. The insect-inspired bidding rules of Camposet al. result in a slight

improvement over the market-mechanism of Morley. Similarly, Cicirello and Smith adopt

this task allocation model for theirrouting waspsto assign (or route) jobs to machines in

a distributed factory setting [47, 44, 46]. It should be noted that no actual search is being

performed to select which machine to assign a given job. Using simple update rules, the

response thresholds adapt over time. This adaptation of response thresholds can be thought

of as learning a heuristic that evaluates the trade-off associated with bidding or not bidding

on a particular job. This heuristic is then followed stochastically by each machine agent via

a single sample drawn by a stochastic sampling procedure to decide whether or not to bid

on the given job.

This model of wasp behavior also describes the nature of wasp-to-wasp interactions that

take place within the nest [196]. When two individuals of the colony encounter each other,

they may with some probability interact with each other. If this interaction takes place,

then the wasp with the higher social rank will have a higher probability of dominating in

the interaction. Through such interactions as these, wasps within the colony self-organize

themselves into a dominance hierarchy. Theraulaz, Bonabeau, and Deneubourg discuss

a number of ways of modeling the probability of interaction during an encounter which

range from always interacting to interacting based upon certain tendencies of the individu-

als [194]. In thescheduling waspdefinition of Cicirello and Smith, we used this concept to

40

model job priority and to prioritize jobs in a given machine queue [47, 45]. These schedul-

ing wasps are at the basis of the WHISTLING algorithm presented later in this thesis.

3.3.7 Interval Estimation

Much of the work on reinforcement learning, especially exploration policies, can be con-

sidered related to the work of this thesis. Here I will summarize one such exploration

strategy that is most relevant and which deals with the issue of selecting from among mul-

tiple actions in a reinforcement learning domain. This is similar to our need to select from

among multiple heuristics within a stochastic search algorithm. Kaelbling introduced the

reinforcement learning strategy known asinterval estimation[113]. In interval estimation,

for each action, a confidence interval for the expected reward is computed. The action with

the largest upper bound on this confidence interval is selected and executed. The rationale

is that an action with a large expected reward would have a large upper bound in the con-

fidence interval. Also, an action that has not been tried sufficiently often will also tend

to have a large upper bound since the width of the confidence interval will be larger with

fewer samples.

3.4 Metareasoning and Anytime Computation

3.4.1 Anytime Algorithms

An anytime algorithmis an algorithm whose result is expected to improve in terms of

quality as a function of increasing computation time. Dean and Boddy originated the term,

anytime algorithm [64, 12, 13]. They used this term as a name for the class of algorithms

with the following properties:

1 Preemptability: the algorithm can be suspended and resumed with minimal overhead.

2 Interruptibility: the algorithm can be terminated at any time and and will return some

answer.

3 Well-Behaved Improvement: the answers returned improve in some well-behaved

manner as a function of time.

Horvitz simultaneously developed related ideas and referred to algorithms with these prop-

erties asflexible inference strategies[107, 108]. There are a number of other properties

41

that have been found desirable for a number of reasons by researchers. Zilberstein outlines

some of these additional properties [208]:

4 Measurable Quality: the quality of an approximate result can be determined pre-

cisely.

5 Recognizable Quality: the quality of an approximate result can easily be determined

at runtime (i.e., in constant time).

6 Monotonicity: the quality of the result is a nondecreasing function of time and input

quality.

7 Consistency: the quality of result is correlated with computation time and input qual-

ity.

8 Diminishing Returns: the improvement in solution quality is larger at the early stages

of computation, and diminishes over time.

It can be noted that these additional properties can be used in various combinations to give

more specific definitions of Dean and Boddy’s third property.

There are many types of algorithms that fall into this class of anytime algorithms. For

example, all of the algorithms discussed in Chapter 2 can be employed as an anytime algo-

rithm. Discrepancy search methods such as LDS and DDS can be implemented in such a

way to allow for interruption and to return the best solution found by the time of interrup-

tion. Stochastic sampling algorithms as well can be implemented in this way. Local search

algorithms are designed to iteratively improve upon some initial solution or set of initial

solutions. Some other types of algorithms that can be used to develop anytime computation

procedures include (but are not limited to) numerical approximation algorithms (e.g., Tay-

lor series approximation) [158] and dynamic programming [9]. In general, any truncated

complete search procedure can also be used in an anytime setting.

3.4.2 Performance Profiles

A means of quantitatively expressing the effects of computation time on solution quality is

required for effective metareasoning about anytime algorithms. Dean and Boddy, in their

work on time-dependent planning, use a tool called aperformance profile(PP) [64, 12, 13].

A PP of an anytime algorithm is a function that maps computation time to the expected

42

Figure 3.1: Example of a performance profile. Shown is an example of a quality map (i.e.,
the quality of results produced by the anytime algorithm for a set of random instances and
random amounts of compute time). The PP is the expected quality as a function of time.

quality of the result. It is typically generated using a set of problem instances that are con-

sidered to be representative of the types of problem instances that will be encountered in the

future. For each of the instances in this set, a random amount of computation time is cho-

sen and a result is computed by the anytime algorithm for that amount of time. The quality

of the results and the computation times to generate those results are used to compute the

PP of the anytime algorithm. “Quality” in terms of a PP is typically something along the

lines of percent improvement over the initial solution. Horvitz uses a similar construct to

describe what he terms theobject-related valueof flexible computation [107, 108]. An

example of a PP can be seen in Figure 3.1.

3.4.3 Deliberation-Scheduling

Dean and Boddy consider the problem of deliberation-scheduling for time-dependent plan-

ning problems [64, 12]. They define a planning problem astime-dependentif the time

spent planning has a cost.Deliberation-schedulingis a procedure for allocating computa-

tional resources to a set of anytime algorithms based on expectations regarding their per-

formance. For example, a time-dependent planning problem can have some set of events

C = c1; c2; : : : ; cn that an agent must respond to. Each of these events can have a corre-

sponding anytime algorithm for the purpose of choosing an action to take in response to

the event. The job of the deliberation-scheduling algorithm is then to allocate computa-

43

tional resources among these anytime algorithms to maximize the agent’s expected utility.

Dean and Boddy give a polynomial-time algorithm for optimally solving this problem if

the performance profiles of the anytime algorithms are monotonically increasing, contin-

uous, and piece-wise differentiable functions [64]. The time spent by the deliberation-

scheduling algorithm is assumed negligible. The deliberation-scheduling algorithm that

they callexpectation-driven iterative refinementis applied to a robot courier problem [12].

Horvitz, similarly, presents deliberation-scheduling algorithms [107, 108].

3.4.4 Compilation of Anytime Algorithms

A more generalized metareasoning problem concerns the use of anytime algorithms as the

components of a larger system. Each component may take as input the output of one or

more other anytime components. The deliberation-scheduling problem that arises from

such a system is how to allocate computation time to the various components to maximize

the expected output quality of the complete system. To deal with this problem, Zilberstein

defines aconditional performance profile(CPP) of an anytime algorithm as a function

mapping input quality and computation time to a probability distribution over the quality

of results [207]. The anytime algorithm composition problem is NP-Complete [209, 207].

However, thelocal compilationapproach of Zilberstein can lead to a linear time offline

compilation (under certain assumptions) – though the result is not guaranteed globally op-

timal. In local compilation, the quality of the output of each component is optimized by

considering only the performance profiles of its immediate sub-components. These sub-

components are treated as elementary anytime algorithms in the local compilation. If a

sub-component is not elementary, then its performance profile is determined recursively by

local compilation [209, 207].

3.4.5 Anytime Computation and Negotiation

Larson and Sandholm consider problems in negotiation in which agents are assumed to

be bounded rational [131, 132, 133]. Specifically, they consider that each agent may have

an intractable individual problem and that there is a potential gain from pooling their re-

sources to instead solve the joint problem comprised of their individual problems. This

joint problem, too, is intractable. During deliberation, the agents can choose to compute on

the solution to their own problem, to compute on the solution to another agent’s problem, or

to compute on the solution to the joint problem. Upon reaching the deliberation deadline,

44

the bargaining phase begins in which one agent makes an offer for how to divide the value

of the joint solution and the other agent either accepts or rejects the offer (i.e., decides to

either implement the proposed joint solution or the individual problem solutions). Larson

and Sandholm consider the problem game-theoretically and define adeliberation equilib-

rium as the perfect Bayesian equilibrium of a game where deliberation actions are a part

of each agent’s strategy [131, 132]. They present algorithms for finding the equilibria for

a number of situations such as whether or not the deadline is known, whether or not the

proposer is known in advance, and whether the performance profiles are deterministic or

stochastic.

This negotiation problem is somewhat related to the ideas of this thesis. In the negotia-

tion problem, it must be decided which of three intractable problems to compute on, given

performance profiles for anytime algorithms for the problems. In this thesis, we are instead

interested in choosing among heuristics to use within a stochastic sampler (i.e., choosing

among variations of an anytime algorithm) in solving a single intractable problem.

In solving the negotiation problem, Larson and Sandholm define a tree-structured per-

formance profile that they call aperformance profile tree. The tree structure allows them

to condition on the results of computation so far. Each node in the tree represents solu-

tions of a particular quality. For example, if quality is defined as percent improvement over

an initial solution configuration, then the root of a performance profile tree will represent

solutions of quality 0. Given that there are many paths through such a tree, there may be

nodes at different levels that have the same quality as well as multiple nodes at the same

level with the same quality. Edges in the tree represent the probability of reaching a future

tree node (i.e., the child of the edge) given the current node (i.e., the parent of the edge).

By multiplying the probabilities along paths rooted at the current node, one can compute

the probability of reaching any given future node in the performance profile tree.

3.5 Summary

In this Chapter related work in metareasoning and metalevel search control has been dis-

cussed.

There has been much work in optimizing the control parameters of various search al-

gorithms such as genetic algorithms at the metalevel. Much of this work has focused on

optimization of these parameters a priori.

Next we discussed metareasoning approaches that learn models of search performance

45

online during execution for the purpose of search performance enhancement. For example,

we saw that Sadeh’s Expected Cost Improvement Distributions were used to identify and

abandon less promising runs of simulated annealing. Ant colony optimization, adaptive

probing, and hyperheuristics similarly all use weights of one type or another which they

adjust according to search performance to improve search control decision-making policies.

Boyan’s STAGE algorithm learns an alternative evaluation function for use by the search in

place of the original objective function. Of these, the approach of this thesis is most closely

related to hyperheuristics in that both can be used to adapt control policies for effective

choice of heuristics within a search framework.

The final part of the Chapter gave an overview of some related work from the area

of anytime computation. Most relevant is the concept of a performance profile, and its

variations such as Larson and Sandholm’s performance profile trees. The AQDF that will

be presented later in Chapter 6 can be viewed, as is later discussed, as a detailed model of

a particular time slice of a PP. The AQDF also differs from a PP in other ways including

being problem instance dependent while a PP is problem class dependent.

46

Chapter 4

VBSS: Value Biased Stochastic Sampling

4.1 Overview

In this Chapter, we present our novel approach to stochastic sampling. Acknowledging

the fact that our heuristic may be more or less discriminating from context to context, we

definevalue-biased stochastic sampling(VBSS) in Section 4.2. Our method for comput-

ing the stochastic sampling decisions in VBSS is inspired by a computational model of

wasp behavior (recall Section 3.3.6). This novel stochastic sampling algorithm, known

as WHISTLING (Wasp beHavior Inspired STochastic sampLING), is presented in Sec-

tion 4.3. Section 4.4 provides a proof of the equivalence of the wasp-inspired dominance

tournament to the roulette wheel decisions of VBSS. Section 4.5 discusses some issues as-

sociated with choosing an appropriate bias function for a given problem and for the choice

of heuristic function. A summary concludes the Chapter in Section 4.6.

4.2 Value-Biased Stochastic Sampling

A fundamental flaw of the HBSS framework of Bresina is that it ignores the discriminatory

power inherent in the heuristic. Its stochastic decisions rank-order the choices from the

choice with the highest value of the heuristic to the choice with the lowest value of the

heuristic. It then chooses choiceci according to a roulette wheel with probability:

P (ci) =
bias(rank(ci; heuristic))P
j bias(rank(cj; heuristic))

(4.1)

47

Figure 4.1: Two example decision contexts – one more discriminating than the other.

where bias() is a bias function and rank() returns the rank assigned to a given choice when

the set of choices is sorted by the given heuristic. Other than to sort the choices, the heuris-

tic values are not used and thus not utilized to their full potential. There are, however,

occasions when a rank-based approach may be more beneficial. For example, genetic al-

gorithms sometimes benefit from a rank-based selection strategy [91].

In order to fully utilize the discriminatory power of the heuristic inherent in the heuristic

values, we now define what we call value-biased stochastic sampling (VBSS). In VBSS,

decisions are again made in a manner analogous to a roulette wheel, but choiceci is now

made with probability:

P (ci) =
bias(heuristic(ci))P
j bias(heuristic(cj))

(4.2)

VBSS is shown in Algorithm 4.1.

Consider one decision context in which you have two choices that are preferred almost

equivalently by the heuristic (i.e., they have almost, but not quite, equal heuristic values).

Now consider a second decision context in which you have two choices, but where one of

the choices is much more heavily preferred (i.e., it has a much higher heuristic value than

the other choice). In HBSS, both of these decision contexts are regarded equivalently. That

is, the choice with the higher heuristic value gets ranked first, the other choice gets ranked

second, the bias function is applied, and the decision is made. The first ranked choice has

the same probability of being made in both contexts. Whereas, in VBSS, since the heuristic

48

Algorithm 4.1: Value Biased Stochastic Sampling (VBSS)
Input: Number of iterationsI; a “heuristic” function; a “bias” function; an “objective”
function; and a search-treeT .
Output: A solutionS.
VBSS(I, heuristic, bias, objective,T)
(1) bestsofar solutionS obtained if “heuristic” is followed fromT
(2) repeat I times
(3) S root search-node ofT
(4) while S is a decision node ofT
(5) foreachchoiceC from S

(6) score[C] heuristic(C, S)
(7) totalweight 0
(8) foreachchoiceC from S

(9) weight[C] bias(score[C])
(10) totalweight totalweight+ weight[C]
(11) foreachchoiceC from S

(12) prob[C] weight[C] = totalweight
(13) selectrandomly the choiceC biased according to prob[C]
(14) S Successor(S, C)
(15) if objective(S) is superior to objective(bestsofar)
(16) bestsofar S

(17) return bestsofar

values are used explicitly in the stochastic decisions rather than a rank imposed by them,

the first ranked choice in the more discriminating context is chosen with a much higher

probability than it is in the less discriminating context. This can be seen in Figure 4.1

where we see two example decision contexts: one in which the heuristic values are almost

the same and a second in which the heuristic values are drastically different. In this sec-

ond decision context, using a value-biased approach, there is a much higher probability of

choosing the heuristic preferred choice as compared to the other decision context; while

the rank-biased approach treats both decision contexts in the exact same way.

4.3 WHISTLING

Our stochastic search framework1 derives from the naturally-inspired computational model

of the self-organization that takes place within a colony of wasps [196, 194]. In nature,

1The WHISTLING algorithm is a stochastic search extension to ourscheduling wasps[47, 45]. The
WHISTLING algorithm was presented originally at CP-2002 [48].

49

a hierarchical social order among the wasps of the colony is formed through interactions

among individual wasps of the colony. This emergent social order is a succession (or

prioritization) of wasps from the most dominant to the least dominant. In the model of

Theraulazet al., the results of these interactions are determined stochastically based on

the forcevariables of the wasps involved. The probability of wasp 1 winning a dominance

contest against wasp 2 is defined based on the force variables,F1 andF2, of the wasps as:

P (F1; F2) =
F 2
1

F 2
1 + F 2

2

(4.3)

After such an interaction, the value of the force variable of the winner is increased and

the value of the force variable of the loser is decreased. Over time, through many such

interactions, a hierarchical social order is formed from the most dominant down to the least

dominant wasp.

We can map the above model to the problem of randomizing heuristic choices by asso-

ciating a wasp as a proxy for each possible choice in a decision context, and defining the

force of a given wasp to be a function of the heuristic value assigned to its corresponding

choice.

More precisely, we define the force of a wasp as:

Fw = bias(heuristic(Choicew)) +D (4.4)

where Choicew is the choice represented by waspw, heuristic() is a function that returns

the heuristic value of the given choice, and bias() is a bias function (as in the HBSS frame-

work). D is a variable (non-negative) that is initialized to0 and varies according to the

results of dominance contests during a run of the algorithm (see below). It mimics the fluc-

tuations that occur in the force variable values as dominance contests between real wasps

are won and lost in nature.

Given that our definition ofFw includes an explicit bias factor, we choose to simplify

the stochastic rule for choosing the winner of a dominance competition (Equation 4.3) as

follows:

P (F1; F2) =
F1

F1 + F2

(4.5)

By coupling this new definition in Equation 4.5 with an appropriate bias function in the

force definition of Equation 4.4 we can express the original rule given in Equation 4.3.

However, like HBSS, our reformulation allows the expression of a range of bias functions.

50

Algorithm 4.2: Wasp beHavior Inspired STochastic sampLING (WHISTLING)
Input: Number of iterationsI; a “heuristic” function; a “bias” function; an “objective”
function; and a search-treeT .
Output: A solutionS.
WHISTLING(I, heuristic, bias, objective,T)
(1) bestsofar solutionS obtained if “heuristic” is followed fromT
(2) evaluate[bestsofar] objective(bestsofar)
(3) repeat I times
(4) S root search-node ofT
(5) while S is a decision node ofT
(6) foreachchoiceC from S

(7) force[C] bias(heuristic(C, S))
(8) WinnerSoFar arbitrary choiceC from S

(9) Challengers the set of choices fromS �WinnerSoFar
(10) foreachchoiceC in the set Challengers
(11) with probability P(force[C], force[WinnerSoFar]) (see Eq. 4.5)
(12) force[C] force[C] + force[WinnerSoFar]
(13) WinnerSoFar C

(14) otherwise
(15) force[WinnerSoFar] force[WinnerSoFar]+ force[C]
(16) S Successor(S, WinnerSoFar)
(17) evaluate[S] objective(S)
(18) if evaluate[S] is superior to evaluate[bestsofar]
(19) bestsofar S

(20) return bestsofar

Bonabeauet al. generalize their definition asP (F1; F2) =
Fa
1

Fa
1 +F

a
2

wherea is a parame-

ter [14]. However, their motivation is somewhat different. They discuss how this formula

models the behavior of real insect societies and how different values foramay more closely

model a particular society’s behavior. Furthermore, force is a variable in their model that

adapts according to wins and losses of dominance contests and is not explicitly defined

functionally as we do here. Our definition allows for the spectrum of polynomials as does

Bonabeauet al.’s; but it also allows expression of many others (e.g., exponentials and log-

arithms) that cannot be expressed by Bonabeauet al.’s generalization.

Given the above definitions ofP (F1; F2) andFw, we can make the sampling algorithm

concrete by defining a specific competition structure. In what follows, we assume the fol-

lowing style of tournament. An initial wasp (choice) is selected arbitrarily and proceeds to

engage in successive competitions with all other wasps (other choices). The initial wasp

continues to compete as long as it wins. If it is defeated, the new winner takes its place

51

Figure 4.2: A tournament of wasp dominance contests.

and proceeds to face the remaining candidates. Upon winning a competition, the winning

wasp’sD variable is updated to accumulate the force variable value of the loser, and the

loser drops out. The wasp (choice) remaining at the end of the tournament is returned as

the final selection. This tournament structure is illustrated in Figure 4.2. It can be shown

that this computation is equivalent to selecting according to a standard roulette wheel de-

cision, with each possible choice Choicew taking a chunk of the wheel proportional to

bias(heuristic(Choicew)). The advantage of this method of computing a roulette wheel de-

cision over the usual one is that a single pass through the set of choices is required. The

alternative would be to make one initial pass to compute
P

j bias(heuristic(Choicej)) fol-

lowed by a second pass to choosew with probability bias(heuristic(Choicew))P
j
bias(heuristic(Choicej))

. A proof

of the equivalence of the tournament of dominance contests to a roulette wheel decision is

provided in Section 4.4.

The WHISTLING algorithm is presented in Algorithm 4.2. Line 7 of the algorithm is

the initial definition of the force variables of the wasps withD = 0 (see Equation 4.4).

Line 12 and line 15 represent the increase in the value ofD in Equation 4.4 for the winning

wasp. The dominance contests (see Equation 4.5) take place in line 11 of the algorithm.

Computationally, the WHISTLING algorithm (as well as the general VBSS algorithm)

selects a choice inO(C) time where there areC choices from the current search-node.

Since it must do thisC times (in a sequencing problem), the core sampling procedure has

52

an overall algorithmic complexity ofO(C2). In fact, the complexity of a corresponding de-

terministic dispatch scheduling procedure is alsoO(C2). Hence, WHISTLING (or VBSS)

adds only a constant factor to the computational time required for strict deterministic ap-

plication of the heuristic. If we compare this complexity to that of the HBSS algorithm of

Algorithm 2.2, we can see that WHISTLING can be asymptotically more efficient. Since

HBSS biases its stochastic decisions according to a rank-ordering of the choices, the obvi-

ous implementation sorts the choices according to their heuristic values each time a search

decision is to be made – anO(C logC) operation. And withC decisions to be made (in

a sequencing problem), the algorithmic complexity of HBSS isO(C2 logC).2 Later, we

will see how WHISTLING and HBSS compare experimentally in a particular scheduling

domain.

4.4 Proof: Dominance Tournament = Roulette Wheel De-

cision

Dominance Tournament = Roulette Wheel Decision: The structure of the tournament

of dominance contests within the WHISTLING algorithm is such that Choicew is chosen

with probability bias(heuristic(Choicew))Pk

j=1
bias(heuristic(Choicej))

. That is, the tournament is such that each

Choicew is chosen according to a roulette wheel decision where each Choicew takes a

chunk of the wheel proportional to bias(heuristic(Choicew)).

Proof (by induction): In this proof,Fw = bias(heuristic(Choicew)) is the initial value of

the force of Choicew. FurtherF 0
w is the force of Choicew including the accumulation of the

force variables of other choices which it has defeated in the tournament.

2It has been pointed out that the worst-case complexity of choosing thei-th largest element from an
unsorted list isO(n). Thus, in theory, this stochastic selection operation can also be done in linear time.
Under an assumption that then choices have ranks1 throughn, we can select the winning rank without
looking at the actual elements themselves. And then use the winning rank and the linear time selection
algorithm to make the decision. However, the linear time algorithm for the selection operation itself is likely
to be more of a theoretical interest than of practical interest. It has a large constant factor that results in
theO(n log n) sort-first-then-select algorithm dominating for all but very large problem instances [52]. A
second problem is that the assumption that then elements have ranks1 throughn does not hold if more than
one element may have the same heuristic value and thus the same rank. It may be possible (if one is clever
enough) to devise a linear time method for finding all ties in heuristic value. However, such a method is
certainly non-obvious and probably also non-trivial, adding to the already significant constant factor. Thus,
although it may be possible to compute the HBSS decisions in linear time, it is probably not desirable to
actually do so unless your search-space has a particularly large branching factor.

53

Base Case: Dominance tournament of two choices.

� Choice1 wins with probability F1
F1+F2

. If it wins, its new force isF 0
1 = F1 + F2.

� Choice2 wins with probability F2
F1+F2

. If it wins, its new force isF 0
2 = F1 + F2.

� Therefore, for the base case of two choices we have the equivalent of a roulette wheel

decision.

Inductive Step:

� Assume that for the case of a tournament of dominance contests ofk�1 choices that

this tournament is equivalent to a roulette wheel decision.

� Further assume that upon the completion of this tournament that the winning choice

Choicew has a force value ofF 0
w =

Pk�1
j=1 Fj.

� Now consider the addition of ak-th choice Choicek at the end of the list of choices

with an initial forceFk. The winner Choicew of the sub-tournament consisting of the

first k � 1 choices would then compete in a dominance contest against Choicek.

� Choicek wins this dominance contest and thus the tournament of contests among the

k choices with probability Fk
Fk+F 0

w
= Fk

Fk+
Pk�1

j=1
Fj

= FkPk

j=1
Fj

. If it wins, its new force

isF 0
k = Fk + F 0

w =
Pk

j=1 Fj.

� Choicew wins this dominance contest against Choicek with probability F 0

w

Fk+F 0

w
. Fur-

ther, since it had a probability ofFw
F 0

w
of winning the sub-tournament of the first

k � 1 choices, it therefore wins the overall tournament ofk choices with probability
Fw
F 0

w

F 0

w

Fk+F
0

w
= FwPk

j=1
Fj

. Its new force if it wins isF 00
w = Fk + F 0

w =
Pk

j=1 Fj.

� Therefore, for the case of a tournament ofk choices, we have the equivalent of a

roulette wheel decision.

4.5 Choosing a Bias Function

With VBSS (as well as with HBSS), it is necessary to specify a bias function that is applied

to the heuristic values (or in the case of HBSS to the ranks). This bias function can be

54

viewed as a system parameter that requires some amount of tuning. There are a couple of

issues to consider when selecting a bias function for VBSS:3

� First, stronger and/or knowledge-rich heuristics should probably be used in conjunc-

tion with stronger bias functions, such as polynomials of high degree. The rationale

is that if a large amount of effort and expert knowledge went into the heuristic’s de-

sign, then the search might benefit by following its advice more often. Similarly,

weaker and/or knowledge-poor heuristics should probably be used with weaker bias

functions, such as low degree polynomials.

� Second, heuristics that generally give values in some very small range, such as very

small positive real values less than one, might require a strong bias function to spread

out the values used in the roulette wheel decisions. Heuristics that give values in

a wider range might already be sufficiently spread to require only a weaker bias

function.

With these issues in mind, little (if any) fine-tuning of the bias function choice is generally

needed. It is generally sufficient to try out a few in some range decided upon by con-

sidering the types of values given by the heuristic and the strength of the heuristic itself.

Alternatively, one might employ a more computationally heavy approach to tuning the bias

function such as with a meta-optimization approach as is sometimes done to tune genetic

algorithms. In the experiments of this thesis, no such computational method has been em-

ployed. In most cases, a handful of bias functions have been tried on a small set of problem

instances for a small number of iterations. The bias functions tried in these preliminary

tuning runs are chosen according to the rationale presented above, and in most cases give

nearly numerically indistinguishable results.

4.6 Summary

In this Chapter, VBSS was defined and we saw how by using the heuristic values them-

selves within our stochastic decisions, rather than a rank-order imposed by the heuristic

values, that we are much better able to use the full discriminatory power inherent in our

heuristic function. Furthermore, since we no longer require ranking of the choices, we gain

computational efficiency as an added bonus – in the best case, eliminating theO(n logn)

ranking step of HBSS; and in the worst case, simplifying and streamlining the multiplier
3These issues are not necessarily the same as those involved with selecting a bias function for HBSS.

55

of the linear time operation (if the HBSS decision can be computed in linear time). We

further defined an efficient approach to computing roulette wheel decisions inspired by a

computational model of wasp social hierarchy formation and the resulting novel stochastic

sampling algorithm, which we call WHISTLING, is defined.

56

Chapter 5

Application: Weighted Tardiness

Scheduling with Sequence-Dependent

Setups

5.1 Overview

To demonstrate and experimentally evaluate the VBSS framework, we turn to the domain

of factory scheduling and the fairly broad body of work in the area of dispatch scheduling

heuristics (c.f., [145]). Specifically, in this Chapter, we explore the possibility of amplifying

dispatch scheduling heuristic performance through the addition of a search component –

namely our VBSS search framework. The scheduling problem tackled in this Chapter is

that of the weighted tardiness scheduling problem with sequence-dependent setups and

is formalized in Section 5.2. Existing methods for the problem from the literature are

presented in Section 5.3. The search space is discussed in Section 5.4. The description

of the specific set of problem instances and how they were generated can be found in

Section 5.5. Performance criteria that are used in the experimental comparisons of this

Chapter are defined in Section 5.6. In Section 5.7, we compare the performance of HBSS

and VBSS and demonstrate the power of value-biasing over rank-biasing. We go on to

illustrate the effective use of value-biasing as a means of generating initial configurations

within a multi-start local hill-climbing framework in Section 5.8. The difficulties faced by

related systematic search procedures such as LDS and DDS in this domain are considered in

the comparison of Section 5.9. Finally, a summary concludes the Chapter in Section 5.10.

57

5.2 Problem Formalization

The Weighted Tardiness Scheduling Problem with Sequence-Dependent Setups is a se-

quencing problem encountered in a number of real-world problem applications (e.g., tur-

bine component manufacturing [36], the packaging industry [1], among others [145]).

Specifically, we are given a set of jobsJ = fj0; j1; : : : ; jNg. Each of theN jobs j has

a weightwj, duedatedj, and process timepj. Furthermore,si;j is defined as the amount

of setup time required immediately prior to the start of processing for jobj if it is to fol-

low job i on the machine. It is not necessarily the case thatsi;j = sj;i. The0-th job is a

non-physical job representing the starting point of the problem (p0 = 0, d0 = 0, si;0 = 0,

w0 = 0). Its only purpose is to allow for the specification of the setup time of each of

the jobs if sequenced in position1. The sequence-dependent nature of the setup times is a

primary source of problem difficulty. The particular version of the problem that we concern

ourselves with here is the case where theN jobs must be sequenced on a single machine

and where preemption of a job during setup or processing is not permitted. Furthermore, if

a machine is processing or setting up, then it cannot do anything else until that operation is

completed.

The objective of this problem is to sequence the set of jobsJ on a machine to minimize

the total weighted tardiness:

T =
X
j2J

wjTj =
X
j2J

wj max (cj � dj; 0); (5.1)

whereTj is the tardiness of jobj; andcj, dj is the completion time and duedate of jobj.

The completion time of jobj is equal to the sum of the process times and setup times of all

jobs that come before it in the sequence plus the setup time and process time of jobj itself.

Specifically, let�(j) be the position in the sequence of jobj. We can now definecj as:

cj =
X

i;k2J;�(i)<=�(j);�(i)=�(k)+1
pi + sk;i (5.2)

5.3 State-of-the-(Ad-Hoc)-Art Solution Methods

Most of the work that has been done on the weighted tardiness scheduling problem has

been for versions of the problem without sequence-dependent setup times. For the setup-

free problem, there exist libraries of benchmark instances and a large number of algorithms

with which to compare new approaches.

58

Unfortunately, although sequence-dependent setups commonly appear in real-world

scheduling problems (e.g., [1, 144, 143]), they are often ignored during the development

of algorithms and solution procedures. It is common practice to assume that setup time

can be reintroduced to the problem after solving the setup-free version. For example, the

dispatch heuristics for the sequence-dependent setup case that we will discuss below are

variations of a well-known and state-of-the-art heuristic for the setup-free version of the

problem. Terms including setup time have been added to the heuristic in a seemingly ad

hoc manner. Yet, at the same time, these ad hoc heuristic procedures (as well as local im-

provement search algorithms applied to their results) seem about the best one can do for

the sequence-dependent setup version of the problem given the current state-of-the-art. For

example, complete, guaranteed optimal algorithms are currently limited to solving prob-

lems of at most 20-25 jobs in size [181], necessitating the use of heuristic-guided search,

or meta-heuristic approaches for larger problems.

In the following Subsections, we overview the existing dispatch policies for the

sequence-dependent setup, weighted tardiness scheduling problem as well as a local hill-

climber designed specifically with the intentions of improving upon the solutions produced

by one of these heuristics. Later in this Chapter, we use VBSS to search a stochastic neigh-

borhood of the heuristic’s prescribed solution path using VBSS as an alternative to this

hill-climber. We also define a few systematic heuristic-guided alternatives that also use the

dispatch policies of this Section for guidance.

5.3.1 Dispatch Scheduling Policies

In dynamic factory environments, dispatch scheduling heuristics (c.f., [145]) provide a

practical, robust basis for managing execution in environments that are often plagued by

a large number of dynamic characteristics that can be difficult to accurately model (e.g.,

McKay provides a model of such a complex dynamic factory environment [140]). Schedul-

ing decisions such as which job to assign to a machine next are made in an online manner

only as needed, based on the current state of the factory. Dispatch heuristics make use of

information about jobs such as expected processing time, setup time, due date, priority,

etc., and are typically designed to optimize a given performance objective. Their virtue

is their simplicity and insensitivity to environmental dynamics and for these reasons they

are commonly employed. At the same time, the localized and myopic nature by which

decisions are made under such schemes make them inherently susceptible to sub-optimal

decision-making and they can even exhibit formally chaotic tendencies [116, 8].

59

For the problem domain of weighted tardiness scheduling with sequence-dependent se-

tups, theApparent Tardiness Cost with Setups (ATCS)dispatch heuristic [134] is perhaps

the strongest heuristic available. ATCS builds on earlier research into the weighted tardi-

ness problem and is arguably the current best performing dispatch policy for this class of

scheduling problem. ATCS is defined as follows:

ATCSj(t; l) =
wj

pj
exp (�max (dj � pj � t; 0)

k1�p
� sl;j

k2�s
); (5.3)

wheret is the current time (or the sum of the process and setup times of the already se-

quenced jobs);l is the index of the job just completed (or the last job added to the schedule);

�p is the average processing time of all jobs;�s is the average setup time. Thek1 andk2 are

parameters for tuning the heuristic. Leeet al.defines values for these parameters according

to problem instance characteristics [134], specifically:

k1 =

8<
: 4:5 +R if R � 0:5

6:0� 2R otherwise
; (5.4)

and

k2 =
�

2
p
�
: (5.5)

R is the due-date range factor;� is the due-date tightness factor; and� is the setup time

severity factor. These are defined in Section 5.5. The next jobj added to the schedule using

the ATCS heuristic is simply:

j = argmax
j

ATCSj(t; l): (5.6)

Before the ATCS heuristic’s presentation by Leeet al., the best performing dispatch

heuristic for this problem had been that of Ramanet al. [161]:

Ramanj(t; l) =
wj

pj + sl;j
exp(�max (dj � pj � sl;j � t; 0)

k�p
) (5.7)

where the next jobj is chosen according to:

j = argmax
j

Ramanj(t; l): (5.8)

Thek is a parameter that again requires tuning. In their comparison of ATCS and Raman,

60

Leeet al.suggest settingk = 5:5� � � R + �.

One thing that should be noted is that both Ramanet al.’s dispatch policy as well as

the ATCS dispatch policy are modifications of the R&M dispatch policy [160] that was

developed for the variation of the problem without sequence-dependent setup constraints:

R&M j(t) =
wj

pj
exp(�max (dj � pj � t; 0)

k�p
): (5.9)

This heuristic will be discussed again in a later chapter that considers the problem without

sequence-dependent setup times.

5.3.2 Dispatch Policy as Starting Configuration for Local Search

In Leeet al.’s original paper describing the ATCS heuristic, they also present a local hill-

climber designed specifically with the intentions of being applied to the solution that results

directly from the deterministic application of the dispatch policy ATCS [134]. The hill-

climber (that we will refer to later in our experimental study as “LEE”) assumes that the

starting configuration is a good one (i.e., in the vicinity of the optimal or a near-optimal

solution). Given this assumption, Leeet al.’s hill-climber uses a fairly small operator set.

The operator set includes two types of local moves:

1. Swaps: First, choose the jobj 0 that adds the most to the total weighted tardiness

objective (i.e.,j 0 = argmaxj wj max (cj � dj; 0)). Next consider swapping jobj 0

with each of the20 nearest jobs in the current sequence.

2. Insertions: First, choose the jobj 0 that adds the most to the total weighted tardiness

objective (i.e.,j 0 = argmaxj wj max (cj � dj; 0)). Next consider the removal of job

j 0 followed by the insertion of jobj 0 before each of the20 nearest jobs in the current

sequence.

A couple things to note about this operator set is that it does not consider moving jobs large

distances and that one of the jobs is fixed to be the job which adds the most to the objective

function value. These fall out from the assumption of having a good initial solution. It is

assumed that jobs are near their optimal location in the sequence (i.e., moving jobs large

distances in the sequence is not considered) and it is assumed that most jobs do not need to

be moved at all (i.e., fixing one of the jobs to be the one that adds the most to the objective

function). Given this operator set, the hill-climber at each step makes the move that gives

61

Figure 5.1: Illustration of the search space for the weighted tardiness scheduling problem.
Particularly note the sequence-dependent size of the setup times that are indicated by the
size of the gray boxes in the figure.

the greatest improvement in the objective function’s evaluation and ends the search when

no further improvement can be made given this operator set. The ATCS dispatch policy

coupled with the use of this hill-climber is currently in operation within the scheduling

system of a number of factories in the packaging industry [1].

5.4 The Search-Space

The search-space that we will explore in the experiments in the remainder of this Chapter

can be viewed as a tree. The root node of this tree represents an empty sequence (or empty

schedule). Each search-node has a child for each of the jobs not yet in the sequence. Such

a child of a search-node represents adding the given job to the end of the sequence. If

a problem instance hasN jobs, then the root node hasN children (i.e., each represents

62

beginning the sequence with one of theN jobs). Each of the children of the root node has

N � 1 children, and so forth and so on. Each leaf node of the tree represents one of theN !

possible sequences of jobs. Every leaf node represents a feasible solution and thus every

path from the root is guaranteed to find a feasible solution. An illustration of this search-

space is shown in Figure 5.1. Particularly note that the size of the setup times (indicated by

the gray boxes) is dependent upon the sequence of jobs.

5.5 The Problem Set

The problem instances that we consider are generated according to a procedure described

by Lee et al. [134] and used in the analysis of their dispatch scheduling policy ATCS.

Unfortunately, they did not make their actual problem set available so we are unable to

compare to the exact problem instances that were used in their study. Our problem set is

however generated as they prescribe. We have made these problem instances available on

the Internet. Appendix A provides the location, details of the file format, and best known

solutions.

Each problem instance is characterized by three parameters: the due-date tightness

factor� ; the due-date range factorR; and the setup time severity factor�. These parameters

are defined as follows:

� = 1�
�d

Cmax

(5.10)

R =
dmax � dmin

Cmax

(5.11)

� =
�s

�p
(5.12)

where �d, �p, and�s are the average duedate, average process time, and average setup time,

dmax, dmin are the maximum and minimum duedates, andCmax is the makespan (or com-

pletion time of the last job). Given that the makespan depends on the sequence and thesi;j,

the estimator suggested by Leeet al. is used:~Cmax = n(�p+ ��s) wheren is the number of

jobs in the problem instance. We, specifically, consider problem sets characterized by the

following parameter values:� = f0:3; 0:6; 0:9g; R = f0:25; 0:75g; and� = f0:25; 0:75g.
For each of the twelve combinations of parameter values, we generate 10 problem instances

with 60 jobs each. Generally speaking, these 12 problem sets cover a spectrum from loosely

to tightly constrained problem instances. The processing times are uniformly distributed

63

over the interval[50; 150], with �p = 100. The mean setup time�s is then determined from

� and the setup times are uniformly distributed in the interval[0; 2�s]. The duedate of a

job is uniformly distributed over[�d(1�R); �d] with probability� and uniformly distributed

over [�d; �d + (Cmax � �d)R] with probability1 � � . The weights of the jobs are distributed

uniformly over[0; 10].

5.6 Performance Criteria

In the experimental results that follow, we use the following performance criteria:

� Average Percent Improvement (API) over the solution given by use of the determin-

istic heuristic policy. Percent improvement is defined as:100 � h�a
h

whereh is the

objective value for the problem instance given by the deterministic use of the dis-

patch heuristic ATCS, anda is the objective value given by the search algorithm.

This is then averaged across all 120 problem instances to get API. For all stochastic

algorithms considered, the API given is also averaged across the results of 10 inde-

pendent runs on each problem instance. In parentheses, after the average of the 10

runs, is the API where the best run for each problem instance is used.

The ATCS dispatch policy is currently the best known for this problem. Leeet al.’s

hill-climber which uses ATCS to determine the initial starting configuration is cur-

rently the best known heuristic search algorithm for this problem and Leeet al.report

their results as the API over ATCS. Ideally, we would like to have a set of problems

for which the optimal solutions are known, for which we have bounds, or for which

we at least have the current best known solutions. Unfortunately, for the sequence-

dependent setup problem, there is not such a benchmark set of problems in existence

currently. For this reason, we present comparative results using the criteria set forth

in the original discussion of the current best known algorithm for the problem. In a

later Chapter where we discuss the setup-free version of the problem, we do use a

benchmark library of problems for which optimal solutions are known for a number

of instances, best known are given for the others, and for which several algorithmic

results are available for comparative purposes.

� Average CPU Time (TIME) in seconds on a Sun Ultra 10, 300MHz.

� The average number of search nodes generated (Gen) by the search.

64

Table 5.1: HBSS Preliminary Results: A sampling of the results from applying HBSS with
various bias functions and 100 iterations. This is a snapshot of the data that was used to
choose a bias function for the HBSS algorithm for further experiments.

p API
1 0.0 (0.0)
2 4.6 (8.3)
3 18.3 (22.1)
4 21.5 (24.0)
5 21.6 (23.9)
6 20.8 (23.2)
7 19.7 (22.2)
8 17.9 (21.2)

� The average number of search nodes visited (Visits) by the search.

� The average number of solution nodes considered (Sols) by the search.

5.7 To Value-Bias or to Rank-Bias?

To value-bias or to rank-bias: that is the question. Whether tis nobler in the search to

rank-order choices ignoring utterly the context of decisions, or to take arms against a sea

of troubles, and by value-biasing end them?

In Chapter 4, we saw an example of two decision contexts in which a value-bias ap-

proach made better use of the discriminatory power inherent in the heuristic values as

compared to a rank-bias approach to stochastic sampling. Here now, we compare VBSS

and HBSS experimentally on the weighted tardiness scheduling problem with sequence-

dependent setups. The goal is to see how much can be gained by using the heuristic values

for bias rather than biasing by rank-order alone.

In order to properly compare HBSS and VBSS on the problem set, we begin by applying

each of them with a wide range of bias functions and the ATCS dispatch heuristic presented

earlier. Table 5.1 shows the results of the HBSS algorithm for polynomial bias functions

of degrees 1 through 8 (bias= 1

rankp wherep is the degree of the polynomial). Similarly,

Table 5.2 shows the results of VBSS with polynomial bias functions (bias= valuep wherep

is the degree of the polynomial and value is the heuristic value). Many more bias functions

were also considered but for brevity have been excluded from these tables. The values

in the tables are averages across all problem instances and for 10 runs each. Values in

65

Table 5.2: VBSS Preliminary Results: A sampling of the results from applying VBSS with
various bias functions and 100 iterations. This is a snapshot of the data that was used to
choose a bias function for the VBSS algorithm for further experiments.

p API
1 7.3 (9.7)
2 16.7 (19.7)
3 20.0 (22.9)
4 21.6 (24.5)
5 22.7 (25.0)
6 22.9 (25.5)
7 23.2 (25.8)
8 23.1 (25.3)

Table 5.3: VBSS (withp = 5) vs HBSS (withp = 5) for various numbers of iterations.
ATCS is the deterministic heuristic result. LEE is the hill-climber (non-randomized) of Lee
et al.

Algorithm API TIME Gen Visits Sols
ATCS 0.0 0.009 1,830 60 1
LEE 12.4 0.012 1,909 61 2
VBSS (1) 5.0 (11.7) 0.021 3,660 120 2
HBSS (1) 4.7 (12.4) 0.159 3,660 120 2
VBSS (10) 16.4 (21.1) 0.123 20,130 660 11
HBSS (10) 15.5 (20.4) 1.585 20,130 660 11
VBSS (100) 22.7 (25.0) 1.122 184,830 6,060 101
HBSS (100) 21.6 (23.9) 15.467 184,830 6,060 101
VBSS (200) 23.8 (26.1) 2.234 367,830 12,060 201
HBSS (200) 22.6 (24.4) 30.932 367,830 12,060 201

parentheses are the results of the best run of the 10 runs for each problem instance.

For the HBSS algorithm, the degree 5 polynomial gives highest average percent im-

provement over the deterministic heuristic solution (API), though is not statistically sig-

nificant as compared to either the degree 4 or 6 polynomials. All further comparisons

involving HBSS will use the results given by the degree 5 polynomial bias function. For

the VBSS results, the best bias function is even less clear. No statistical significance was

found among polynomial bias functions of degrees 4 through 8. Further comparisons will

use the results given by the degree 5 polynomial bias function.

We now turn to a direct comparison of VBSS and HBSS in Table 5.3. We compare

the algorithms with several numbers of iterations. We also compare to the deterministic

heuristic solution listed in the row labeled ATCS and to the hill-climber proposed by Lee

66

et al. [134] applied to the result of the deterministic heuristic solution listed in the table as

LEE. First note that all rows in the table should necessarily give improved performance as

compared to ATCS. This is due to the fact that both HBSS and VBSS, as implemented, first

compute the ATCS solution; and LEE hill-climbs on the ATCS solution. We can now make

the following observations:

� Both VBSS and HBSS begin outperforming LEE when 10 or more iterations are

computed. But, for a single iteration of either HBSS or VBSS, the solutions are not

as good as that of LEE and require more time than LEE. Therefore, HBSS and VBSS

both appear useful for improving upon solutions provided the CPU time is available.

If you desire a good solution almost instantaneously, then LEE might be the better

choice. Yet in slightly more than 2 seconds using 200 iterations of VBSS, you can

achieve almost twice the API as compared to the API of LEE.

� Consider any number of iterations (1, 10, 100, or 200) and note that VBSS using the

heuristic values as bias gives better results than HBSS using rank bias with that same

number of iterations.

� Upon examining CPU Times, it should be noted that for these 60 job problems, VBSS

exhibits a greater than 10-fold speedup over HBSS. This is due to the need of HBSS

to sort the choices according to the heuristic.1 Given this, one can compare 100

iterations of VBSS to 10 iterations of HBSS; and similarly 10 iterations of VBSS

to 1 iteration of HBSS. With this in mind, you can clearly find significantly better

results by value-biasing in a fraction of the time required to rank-bias the stochastic

search.

Value-biasing is a clear winner over rank-biasing in terms of solution quality and in

terms of the computational efficiency of the search in this problem domain. One may won-

der if there are circumstances where it is better to abandon the discriminatory advice of

the heuristic values in favor of a rank-biased approach. Genetic algorithms can sometimes

benefit from using a rank-based selection strategy [91]. Also, in Bresina’s original tele-

scope scheduling problem, rank-biased stochastic sampling performed very well (although

he does not mention ever considering the more obvious value-biased alternative).

1Note, however, that if it is possible to compute the HBSS decisions in linear time (i.e., if sorting is not
necessary) then the speedup may be less than the 10-fold seen in this experiment. However, depending on
the significance of the constant factor in such a linear time version in this problem domain with a branching
factor of 60, the best HBSS can do in terms of CPU time might still be theO(n logn) results reported here.

67

Table 5.4: VBSS plus a local hill-climb (VBSS-HC) vs Iterative Sampling plus a local hill-
climb (IS-HC). VBSS-HC uses a polynomial bias function of degree 5. Both algorithms
perform the hill-climb on the results of each of its iterations. ATCS is the deterministic
heuristic result. LEE is the hill-climber (single-start, non-randomized) of Leeet al.SA is
simulated annealing for the specified number of restarts beginning with ATCS solution.

Algorithm API TIME Gen Visits Sols
ATCS 0.0 0.009 1,830 60 1
LEE 12.4 0.012 1,909 61 2
SA (1) 25.3 (27.8) 224.60 20,001,830 7,838,400 7,838,341
SA (3) 28.1 (29.3) 673.10 60,001,830 23,515,080 23,515,021
VBSS-HC (1) 15.1 (19.6) 0.021 3,791 122 4
VBSS-HC (10) 21.1 (23.7) 0.123 20,725 667 22
VBSS-HC (100) 24.7 (26.6) 1.122 190,076 6,122 202
VBSS-HC (200) 25.5 (27.2) 2.236 378,243 12,183 402
VBSS-HC (500) 26.6 (28.0) 5.570 942,744 30,366 1,002
VBSS-HC (1000) 27.4 (28.7) 11.121 1,883,579 60,671 2,002
VBSS-HC (2500) 28.1 (29.4) 27.742 4,706,084 151,586 5,002
VBSS-HC (5000) 28.7 (29.9) 55.674 9,410,259 303,111 10,002
VBSS-HC (10000) 29.3 (30.4) 114.140 18,818,609 606,161 20,002
IS-HC (1) 0.0 (0.0) 0.023 716 75 16
IS-HC (10) 0.0 (0.0) 0.226 7,163 754 164
IS-HC (100) 0.0 (0.0) 2.272 71,633 7,541 1,641
IS-HC (200) 0.0 (0.0) 4.543 143,266 15,082 3,282
IS-HC (500) 0.0 (0.0) 11.351 358,165 37,305 8,205
IS-HC (1000) 0.0 (0.0) 22.700 716,330 75,410 16,410
IS-HC (2500) 0.0 (0.0) 56.713 1,790,825 186,525 41,025
IS-HC (5000) 0.0 (0.0) 113.446 3,581,650 373,050 82,050
IS-HC (10000) 0.0 (0.0) 226.902 7,163,300 754,100 164,100

5.8 Value-Biasing Local Search Starting Configurations

In the previous Section, we observed that LEE requires a tiny fraction of the CPU time

required to perform multiple iterations of VBSS, but also observed that if we had the extra

time, we could find significantly better solutions than LEE with VBSS. Perhaps, VBSS

could be used as a means of extending the Leeet al.hill-climber to a multi-start algorithm.

Here we examine the use of VBSS as a mechanism for seeding the starting solutions of Lee

et al.’s local hill-climber. As an added point of comparison, we also consider beginning

a simulated annealing search at the solution given by the ATCS dispatch policy. We have

implemented a computationally intense simulated annealing procedure that uses a modified

68

Lam schedule (see [19] for description of the modified Lam schedule) and that is allowed

to run for a total of 20 million evaluations.

In Table 5.4 we compare this VBSS seeded hill-climber (VBSS-HC), the hill-climber

with unbiased random starting configurations (IS-HC), LEE, and the deterministic dispatch

policy ATCS. We make the following observations:

� The unbiased hill-climber never finds a solution better than ATCS. In fact, in most

cases (though not shown here) the best solution given by the unbiased hill-climber on

any problem instance is far worse than that of the ATCS solution. The primary reason

for this is that the Leeet al.hill-climber assumes a good starting configuration with

its very limited operator set. Unbiased random starting solutions are highly unlikely

to be such good starting solutions for the problem instances of this problem set.

� Using VBSS to seed the starting configurations requires approximately half the CPU

time for the search as compared to using unbiased random starting configurations.

Though it takes more time to generate starting solutions with VBSS (evident in the

higher number of search nodes generated by VBSS-HC), the underlying assumption

of Leeet al.’s hill-climber, that it starts at a good solution holds in the case of VBSS.

Therefore, the hill-climb is short (note the lower numbers of search nodes and solu-

tions nodes visited by VBSS-HC as compared to IS-HC). In contrast, it takes nearly

negligible time to generate unbiased random starting solutions, but those solutions

are far from local optima, so the hill-climb takes significantly more time.

5.9 Comparison to Systematic Heuristic Search Methods

We now consider a computational comparison of VBSS and VBSS-HC with various ver-

sions of discrepancy search. The purpose of this comparison is to explore the power of

stochastic sampling in combinatorial domains where systematic search gets bogged down

considering a large number of un-promising solutions. For example, limited discrepancy

search is required to systematically exhaust every solution path containing a single discrep-

ancy from the heuristic’s advice before it ever considers a solution path with two discrep-

ancies. During this search, there might be several decision contexts in which the heuristic

very strongly prefers one choice over the others, or very strongly prefers against one or

more choices in some decision contexts. LDS has no way of skipping over the single

discrepancy solution paths where it is clear to the heuristic that one or more choices are

69

bad and thus systematically considers them anyway. Similarly, depth-bounded discrepancy

search is unable to consider a solution with discrepancies at depth 4 or greater before it ex-

hausts all solution paths with all possible discrepancy combinations from the root through

and including depth 3. Although its assumption of a heuristic’s tendency to be most fallible

at the start of the search is a good one in most cases, at the same time if the search-space

has a very large branching factor, then it is still likely to be considering a large number of

solution paths that might be clearly un-promising to the heuristic. Our hypothesis is that

stochastic sampling approaches are able to better tune the heuristic’s advice to the context

and though incomplete are capable of finding better solutions given limited time than the

systematic approaches of LDS and DDS in domains where the branching factor is very

high.

Specifically, we will consider the following variations of discrepancy search:

� LDS-all-single: Limited Discrepancy Search2 considering all single discrepancy (or

less) solution paths. There are1; 771 such solution states in each of these 60 job

problem instances.

� LDS-all-two: Limited Discrepancy Search3 considering all two-discrepancy (or less)

solution paths. There are1; 533; 116 such solution states.

� DDS-depth-2: Depth-Bounded Discrepancy Search considering all discrepancies

through depth 2. There are3; 540 solution states considered.

� DDS-depth-3: Depth-Bounded Discrepancy Search considering all discrepancies

through depth 3. There are205; 320 solution states considered.

The results of this comparison can be found in Table 5.5. The following observations

are made:

� VBSS on average finds better solutions than LDS-all-single in less time (with 500

iterations of VBSS) and even better solutions with slightly more time than LDS (1000

iterations of VBSS).

� In approximately half the time, the VBSS seeded hill-climber (VBSS-HC with 1000

iterations) finds solutions better than DDS (DDS-depth-2).

2The improved version (ILDS) of Korf [126] is used.
3Again, the improved version (ILDS) of Korf [126] is used.

70

Table 5.5: VBSS and VBSS-HC as compared to discrepancy search procedures.
Algorithm API TIME Gen Visits Sols
VBSS (100) 22.7 (25.0) 1.12 184,830 6,060 101
VBSS (500) 25.1 (27.0) 4.44 916,830 30,060 501
VBSS (1000) 26.0 (27.8) 8.87 1,831,830 60,060 1001
VBSS-HC (100) 24.7 (26.6) 1.12 190,076 6,122 202
VBSS-HC (500) 26.6 (28.0) 5.57 942,744 30,366 1,002
VBSS-HC (1000) 27.4 (28.7) 11.12 1,883,579 60,671 2,002
VBSS-HC (10000) 29.3 (30.4) 114.14 18,818,609 606,161 20,002
LDS-all-single 24.3 6.04 1,601,615 70,270 1,771
LDS-all-two 28.8 3902.04 912,864,816 48,219,521 1,533,116
DDS-depth-2 23.6 20.94 6,056,940 205,320 3,540
DDS-depth-3 26.5 911.72 339,393,960 11,703,240 205,320

� In less than two minutes, the VBSS seeded hill-climber (VBSS-HC with 10000 it-

erations), finds solutions that are on average better than solutions found by allowing

LDS to run for over an hour per instance (LDS-all-two) and that are on average better

than allowing DDS to run for 15 minutes (DDS-depth-3).

� VBSS-HC can find better solutions while generating and visiting far fewer search

nodes than LDS or DDS and while visiting far fewer solution nodes than LDS or

DDS. In particular compare VBSS-HC with 10,000 iterations to LDS-all-two and

DDS-depth-3. For example, in considering all solution paths with two or less dis-

crepancies from the heuristic’s advice, LDS generates nearly a billion search nodes,

visiting almost 50 million of them, and evaluating over a million and a half solution

nodes; while 10,000 iterations of VBSS-HC generates just under 19 million search

nodes visiting approximately 600 thousand, and evaluating only 20 thousand solution

nodes.

The overall theme of these observations is that in far less CPU time, VBSS can find sig-

nificantly better solutions on average as compared to the systematic discrepancy search

procedures. This would clearly not be the case in all domains, but for this problem do-

main with the large branching factor, it is. Though often used in problems of optimization,

LDS and DDS are better suited to constrained problem domains – for example, constraint

satisfaction domains where we are instead looking for any feasible solution; but also in

constrained optimization domains where there is some objective criteria, but which the

problem’s search-space is not as cumbersome in size as a large sequencing problem.

71

5.10 Summary

In this Chapter, we considered the problem of weighted tardiness scheduling under the con-

straint of sequence-dependent setups. This is a problem for which there is little prior work.

In dealing with the weighted tardiness scheduling problem, many assume away the setup

costs and later reintroduce the sequence-dependent setups with ad hoc modifications. The

dispatch policy of ATCS coupled with a local hill-climber was until now the best avail-

able heuristic method for this problem. Given this problem, we experimentally compared a

number of heuristic-guided search algorithms using the ATCS heuristic within the search.

In the first comparison, we showed that the value-biased approach of VBSS does make

better use of the inherent discriminatory power of the heuristic as compared to the rank-

biased approach of HBSS. VBSS exhibited solutions with better objective values; and fur-

ther, was able to find these solutions in significantly less CPU time. Neither of these find-

ings are surprising. Given that we made the assumption that our heuristic is a good one,

then it only makes sense that we should be able to do better with value-biasing since we are

making use of more of the information contained therein; while the rank-biased approach

essentially throws away heuristic information. Furthermore, VBSS dominating HBSS in

terms of CPU time falls directly out of the need of HBSS to rank-order the choices at each

decision step.

In the second comparison, we considered the idea of using VBSS as a seeding mech-

anism for the starting configurations of a multi-start extension to Leeet al.’s hill-climber.

Leeet al.’s hill-climber is designed with the assumption of beginning at a good search-state

and previously applied only to the solution given by the ATCS dispatch policy. This pro-

cedure gives good results with negligible computational overhead. However, given more

CPU time, we showed that it is possible to further improve upon the results by using VBSS

to generate starting configurations and applying Leeet al.’s hill-climber beginning at the

VBSS generated solutions.

In the final comparison, we considered the hypothesis: given the large branching factor

of un-constrained sequencing problems, VBSS could make more effective use of heuris-

tic guidance as compared to truncated systematic approaches such as LDS and DDS. LDS

and DDS, as they are defined, systematically exhaust the search space considering solution

nodes in order of increasing discrepancy with the heuristic’s prescribed path. In problem

domains where there are a large number of choices at each decision point, it is likely that

many of these choices will be deemed as un-promising by the heuristic values; but for

example, LDS is forced to systematically consider one discrepancy solutions where the

72

single discrepancy is each of these un-promising choices before ever considering any so-

lution with two discrepancies. As was seen through the number of nodes generated and

visited and the number of solution states evaluated, LDS and DDS become overwhelmed

by the search-space size. Consequently, VBSS and VBSS-HC, with the power to ignore

un-promising discrepancies are better able to reach more productive regions of the search-

space in domains such as this one with the large branching factor.

73

Chapter 6

AQDF: Algorithm Quality Density

Function

6.1 Overview

In this Chapter, we define a descriptive tool that we call the Algorithm Quality Density

Function (AQDF). At the foundation of the AQDF is Bresina’s concept of a quality den-

sity function (QDF). More importantly, the study and analysis of the AQDF is motivated

by the work of Gomeset al.They studied the runtime distributions of backtrack search in

constraint satisfaction domains and offered as rationale for rapid randomized restarts the

heavy-tailed nature of these runtime distributions. In a similar way, I examine the quality

distributions of stochastic sampling search in combinatorial optimization domains and ex-

amine what if anything these AQDFs may tell us about the search behavior. Section 6.2

describes Bresina’s concept of a quality density function upon which the AQDF is based.

Section 6.3 defines and discusses our AQDF. Section 6.4 relates the AQDF to the concept of

a performance profile from the body of work that has been done with Anytime algorithms.

A summary concludes the Chapter in Section 6.5.

6.2 Quality Density Function

Bresinaet al. introduce the idea of aquality density function(QDF) [23, 24]. The QDF

is the distribution of the quality of solutions obtained from sampling uniformly from a

solution space (see Figure 6.1 for examples of QDFs). Bresina’s QDF characterizes the

feasible-solution space of a problem instance in terms of the distribution of solution qual-

74

1 2 3 4 5 6 7

x 10
5

0

50

100

150

200

250

300

6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

x 10
5

0

50

100

150

200

250

300

350

weighted tardiness weighted tardiness

(a) (b)

Figure 6.1: Histogram approximations of QDFs for two instances of a weighted tardiness
scheduling problem: (a) QDF of a loose duedate problem; (b) QDF of a tight duedate
problem.

Table 6.1: Descriptive comparison of the QDF and AQDF.
QDF AQDF

Sampling is uniform according to particular algorithm
Characterizes problem space algorithm’s performance
Is algorithm independent dependent

ities. Using such a QDF, Bresina computes the number of standard deviations away from

the mean is a solution produced by a particular algorithm. He then compares this measure

to that given by other algorithms for his scheduling problem to benchmark the performance

of the algorithms in terms of solution quality for a given problem instance. This is incor-

porated into a broader measure that he callsexpected solution quality(ESQ) that includes

computation time in the comparison [24].

6.3 Algorithm Quality Density Function

For the basis of our descriptive analysis of the WHISTLING algorithm, we now define an

algorithm quality density function(AQDF) as the distribution of the quality of solutions

obtained by sampling from a solution space via a particular stochastic sampling algorithm

rather than uniform samples. So for example, given a heuristic for a particular scheduling

problem and a bias function, we can compute the AQDF of the WHISTLING algorithm for

75

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

300

350

400

weighted tardiness weighted tardiness

(a) (b)

Figure 6.2: Histogram approximations of AQDFs for an instance of a weighted tardi-
ness scheduling problem with sequence-dependent setups and with loose duedates and the
WHISTLING algorithm using the ATCS heuristic and: (a) “weaker” bias function; (b)
“strong” bias function.

an instance of that scheduling problem. Figure 6.2 and Figure 6.3 show example AQDFs

of the WHISTLING algorithm for two such problem instances – a loose duedate instance

and a tight duedate instance of a weighted tardiness scheduling problem, respectively. Our

AQDF characterizes the performance of a particular stochastic sampling algorithm for a

problem instance in terms of the distribution of solution qualities obtained by that algo-

rithm. Table 6.1 compares and contrasts the AQDF and QDF.

Figure 6.2(b) illustrates an approximation of the AQDF of WHISTLING using a

“strong” bias; while Figure 6.2(a) shows an approximation of the AQDF of WHISTLING

using a somewhat “weaker” bias. For this problem instance, there are several optimal so-

lutions where the weighted tardiness is0. Using the stronger bias, WHISTLING tends

to favor the suboptimal heuristic solution more heavily, although it does find the optimal

solution very frequently and would require very few iterations until it does so; while the

somewhat “weaker” bias allows WHISTLING to widen the search and finds one of the

nearby optimal solutions more frequently for this problem instance.

Contrast this with Figure 6.3 where the stronger bias (see the approximation of the

AQDF of Figure 6.3(b)) allows WHISTLING to reach deeper into the “better” region of the

search space concentrated very closely around the heuristic solution; while WHISTLING

with the “weaker” bias seems to wander a bit too far from the heuristic solution. For this

problem instance, the heuristic appears more informed than it did for the other problem

76

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

x 10
5

0

10

20

30

40

50

60

70

80

90

3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3

x 10
5

0

10

20

30

40

50

60

70

80

90

weighted tardiness weighted tardiness

(a) (b)

Figure 6.3: Histogram approximations of AQDFs for an instance of a weighted tardi-
ness scheduling problem with sequence-dependent setups and with tight duedates and the
WHISTLING algorithm using the ATCS heuristic and: (a) “weaker” bias function; (b)
“strong” bias function.

instance. If we had this AQDF data ahead of time it would have allowed us to make a more

informed choice for the bias function and we could have chosen the stronger bias function

for a more productive search.

Figure 6.4 shows approximations of the AQDFs of the WHISTLING algorithm using

an earliest duedate (EDD) heuristic (Figure 6.4(a)) and a weighted shortest processing time

(WSPT) heuristic (Figure 6.4(b)) for a weighted tardiness problem instance with very loose

duedates and a wide duedate range (no setup times in this instance). WHISTLING with

EDD finds better solutions for this problem instance than does WHISTLING with WSPT.

Figure 6.5 shows the equivalent AQDFs for another instance of the problem with tight

duedates. This example is in contrast with that of Figure 6.4 in that we see that WSPT

(Figure 6.5(b)) does significantly better than EDD (Figure 6.4(a)). This should serve as

an example that for some problems there may be instances where WHISTLING with one

heuristic may perform better than another while at the same time there may be instances

where this second heuristic is superior. Later in this thesis, we develop algorithms for

computing approximations of an AQDF online with the search to help make such heuristic

choice decisions in a more informed way.

77

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

70

80

90

weighted tardiness weighted tardiness

(a) (b)

Figure 6.4: Histogram approximations of AQDFs for an instance of a weighted tardiness
scheduling problem with very loose duedates and a wide duedate range and the WHIS-
TLING algorithm using the heuristics: (a) earliest duedate; (b) weighted shortest process-
ing time.

4.8 5 5.2 5.4 5.6 5.8 6

x 10
5

0

10

20

30

40

50

60

70

80

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

x 10
5

0

20

40

60

80

100

120

weighted tardiness weighted tardiness

(a) (b)

Figure 6.5: Histogram approximations of AQDFs for an instance of a weighted tardiness
scheduling problem with tight duedates and the WHISTLING algorithm using the heuris-
tics: (a) earliest duedate; (b) weighted shortest processing time.

78

Table 6.2: Descriptive comparison of a Performance Profile and the AQDF.
Performance Profile AQDF

Problem class dependent instance dependent
Generated for several random instances single instance
Generated ahead of time online
Quality means percent improvement objective value
Models quality as function of time quality of single iterations

6.4 Relation to Performance Profiles

To someone familiar with the concept of a performance profile, it may be desirable to con-

sider the relationship of the AQDF and a performance profile. Recall from Chapter 3 that

a performance profile is a function that maps the runtime of an algorithm to the expected

quality of the result obtained by executing the algorithm for that amount of time. Further-

more, a performance profile is often (if not always) a continuous function. Often, “quality”

specifies the amount of improvement over some initially generated solution.

Now consider an anytime algorithm that repeatedly generates solutions and saves the

best of those solutions encountered along the way. Further, consider that partial solutions

are not valued and that the time required to generate each complete solution is invariant.

For example, the time to construct a single solution to a sequencing problem by the WHIS-

TLING algorithm doesn’t vary across iterations for a single problem instance. The amount

of computational effort to choose the first element in the sequence isO(n), to choose the

second element in the sequence isO(n� 1), and so forth until a complete sequence is ob-

tained.1 This computational effort does not vary from iteration to iteration. A performance

profile for this example, would track the expected quality of the best found solution as a

function of time. But the expected quality of this best found solution should only change

at discrete time intervals (i.e., everyX time units whereX is the length of time to generate

a single solution). The rest of the performance profile, though it would likely be smoothed

out as a continuous function, would for all intents and purposes be completely irrelevant.

Lastly, if you had a detailed model of the expected solution quality at the first such time

interval, then you would have all that is necessary for successive numbers of iterations.

And thus, for such an algorithm, there is but a single time slice of the performance profile

that is at all relevant. This is illustrated in Figure 6.6.

The AQDF acknowledges this and is most relevant to algorithms where the approxi-

1This is under the assumption that the heuristic value function used is linear in the number of choices.
The same argument can be made for heuristics of greater complexity.

79

Figure 6.6: Relationship of the AQDF with the concept of a performance profile. The
AQDF is a problem instance dependent, detailed model of the expected quality of solutions
generated by single iteration runs of a stochastic sampling algorithm – essentially the first
time slice indicated in the figure.

mate computation time of a single iteration is invariant. It redefines “quality” as simply the

objective value rather than in terms of improvement over some initial solution. It also is

generated using a single problem instance, rather than a set of random instances deemed

indicative of future problems as is used to generate a PP. Given this, the AQDF can be

described as a problem instance dependent, detailed model of the expected quality of so-

lutions generated by single iteration runs of the stochastic sampling algorithm. Table 6.2

summarizes the similarities and differences between the AQDF and the PP.

80

6.5 Summary

In this Chapter, the descriptive tool of the Algorithm Quality Density Function was pre-

sented. The AQDF is a model of the distribution of the quality of solutions obtained by

single iteration runs of a given stochastic sampling algorithm. It is a problem instance de-

pendent and algorithm dependent descriptive tool. The AQDF is related to the concept of

a performance profile. The AQDF can be described as a detailed model of the time slice of

a performance profile representing single iteration runs of a stochastic sampling algorithm.

Finally, the AQDF is a problem instance dependent detailed model; while the performance

profile is a problem class dependent model.

81

Chapter 7

QD-BEACON: Quality Distribution

Based sEArch CONtrol

7.1 Overview

Given the definition of the AQDF of the previous Chapter, consider that if we had a method

of estimating an AQDF with relatively few samples, then we could perhaps use such an

estimation for effective search control. For example, we could approximate the AQDFs of

the WHISTLING algorithm for a problem instance using some number of heuristics. Then

given estimates of the AQDFs, we could choose which heuristic to use for further iterations

according to the probability of finding a better solution than the best found so far. The

estimates of the AQDFs can continue to be refined as we iterate the search. In this Chapter,

we define the QD-BEACON (Quality Distribution Based Search Control) framework. QD-

BEACON provides the functionality to compute models of AQDFs online with the search

as well as the functionality to exploit those models for effective search control guidance.

The functionality that is provided to search algorithms by QD-BEACON is summarized

in Section 7.2. To implement this framework, a method for estimating an AQDF is needed.

Section 7.3 presents three methods for this estimation using: 1) normal distributions; 2)

kernel density estimators; and 3) generalized extreme value distributions. Within the QD-

BEACON framework, a method is needed for balancing the tradeoff between exploiting the

current estimates of the AQDFs and exploring to improve upon those estimates. Section 7.4

first discusses this tradeoff theoretically in terms of thek-armed bandit problem and then

presents our exploration strategy based upon our analysis of a new problem that we call the

“max k-armed bandit problem”. A summary concludes the Chapter in Section 7.5.

82

Search−SpaceSet of Search Heuristics

Heuristic A

Heuristic B

Heuristic C

Heuristic D

A

B

GetHeuristicBiasFunctionPair

UpdateAQDF

QD−BEACON

C

D

Figure 7.1: The QD-BEACON framework provides a methodology for choosing from
among a set of search heuristics based on learned statistical models of their performance on
the problem instance at hand. The result of each iteration of the search provides feedback
to QD-BEACON used to refine the statistical models.

7.2 QD-BEACON

The QD-BEACON framework provides the functionality necessary to model AQDFs on-

line within the search and to exploit those models for effective search control guidance. For

example, given a set of search heuristics for a problem, QD-BEACON provides a method

for learning statistical models of the distributions of solution qualities given by each of

the heuristics in the set. Given these statistical models, QD-BEACON allows a stochastic

sampling algorithm to make a more informed choice of search heuristic. This example is

illustrated in Figure 7.1.

The QD-BEACON framework primarily provides the following functionality for mod-

eling AQDFs and for using those models to select a search heuristic for each iteration of

the search:

� UPDATEAQDF(Heuristic,BiasFunction,Quality): This function allows a stochastic

sampling algorithm to give feedback on the quality of the solution found by the

heuristic / bias function pair and is used to update the appropriate AQDF.

� GETHEURISTICBIASFUNCTIONPAIR(): This function returns the heuristic and bias

83

function to use for the next iteration of the algorithm. This pair is chosen according to

the AQDF data, the probability of finding a solution better than the best found so far

with each of the heuristic/bias function pairs, and the exploration strategy described

in Section 7.4.

QD-BEACON also provides the following functionality for a stopping criterion, for

considering infeasible search trajectories in constrained optimization domains, and for set-

ting up the set of heuristics to be combined by the framework:

� CONTINUE(P): This function returnstrue if the probability of finding a better so-

lution than the best found so far given the AQDF data (of the observed best) is at

leastP andfalseotherwise. It allows an alternative stopping criteria in addition to a

maximum number of iterations.

� REPORTINFEASIBLESOLUTIONSTATE(Heuristic,BiasFunction): This function al-

lows a stochastic sampling algorithm to report that an infeasible solution state was

found during the current iteration by the heuristic / bias function pair. For some prob-

lems, this function may not be necessary. But for other problems, such as constraint

satisfaction problem domains, where not every probe from the root of the search-tree

to a leaf node is guaranteed to find a feasible solution, it is necessary to consider

such failed samplings in future heuristic / bias function choices. For each heuristic /

bias function pairi, this function is used to maintain a variable Infeasiblei which is a

count of the number of infeasible solution nodes found usingi.

� QD-BEACONINIT(Heuristics, Biases): This function performs any necessary ini-

tialization required by the QD-BEACON framework. It takes as input an array of

heuristic functions and an array of bias functions. These lists should be paired –

meaning that thei-th element of the list of heuristics is always used with thei-th

element of the list of bias functions (i.e., if you wish to consider one heuristic with

multiple bias functions, then that heuristic should be in the list of heuristics multiple

times).

Given the QD-BEACON framework described above, an extended version of the

WHISTLING algorithm that incorporates QD-BEACON is presented in Algorithm 7.1.

84

Algorithm 7.1: Integrated WHISTLING/QD-BEACON
Input: Number of iterationsI; an array of “heuristic” functions; an array of “bias” func-
tions; an “objective” function; a probabilityP ; and a search-treeT .
Output: A solutionS.
WHISTLING-QD-BEACON(I, Heuristics, Biases, objective,P , T)
(1) QD-BEACONINIT(Heuristics, Biases)
(2) bestsofar solutionS obtained if “heuristic”h1 is followed fromT

(3) evaluate[bestsofar] objective(bestsofar)
(4) foreach heuristich 2 Heuristics -h1
(5) S solution obtained if heuristich is followed fromT

(6) evaluate[S] objective(S)
(7) if evaluate[S] is superior to evaluate[bestsofar]
(8) bestsofar S

(9) repeat I times or until not CONTINUE(P)
(10) fheuristic, biasg GETHEURISTICBIASFUNCTIONPAIR()
(11) S root search-node ofT
(12) while S is a decision node ofT
(13) foreachchoiceC from S

(14) force[C] bias(heuristic(C, S))
(15) WinnerSoFar arbitrary choiceC from S

(16) Challengers the set of choices fromS �WinnerSoFar
(17) foreachchoiceC in the set Challengers
(18) with probability P(force[C], force[WinnerSoFar]) (see Eq. 4.5)
(19) force[C] force[C] + force[WinnerSoFar]
(20) WinnerSoFar C

(21) otherwise
(22) force[WinnerSoFar] force[WinnerSoFar]+ force[C]
(23) S Successor(S, WinnerSoFar)
(24) if S is not a feasible solution state
(25) REPORTINFEASIBLESOLUTIONSTATE(heuristic, bias)
(26) else
(27) evaluate[S] objective(S)
(28) UPDATEAQDF(heuristic, bias, evaluate[S])
(29) if evaluate[S] is superior to evaluate[bestsofar]
(30) bestsofar S

(31) return bestsofar

85

7.3 Estimating an AQDF

The example AQDFs of the previous Chapter were generated using a relatively large num-

ber of iterations – 1000. A design criteria of the QD-BEACON framework is that it should

be capable of roughly estimating the AQDF of a stochastic search algorithm online dur-

ing the search using very few samples (e.g., 10 samples). So for example, consider a case

where you have some scheduling problem to solve and you have sufficient computation

time available for approximately 100 iterations of the WHISTLING algorithm. Also con-

sider that you have two heuristics for the problem, but you do not know which heuristic

is more appropriate for the given problem instance nor do you have enough time to do the

necessary computation to make such a determination. It is desirable that QD-BEACON

be capable of estimating the AQDF for each heuristic given relatively few samples from

the WHISTLING algorithm using each. Then using these AQDFs, it is also desirable that

QD-BEACON be capable of deciding which heuristic to continue using for the remain-

ing samples of the WHISTLING algorithm based on the probabilities of finding a better

solution than the best found so far. It is also important that QD-BEACON be capable of es-

timating the AQDFs efficiently as well as capable of efficiently choosing among competing

heuristics (and possibly bias functions) for successive iterations. In the sections that follow

describing three methods for estimating an AQDF, we assume that we are dealing with a

problem domain in which smaller objective values are better.

7.3.1 Normal Estimates

One possibility for estimating the AQDF is to fit a normal distribution to the data. The

advantage of this approach is that it can be computed quickly and online during the search

with little difficulty. The disadvantage is that if the AQDF is very much unlike a Gaus-

sian (e.g., Figure 6.2) then the estimated probability of finding a better solution will be

very inaccurate and QD-BEACON may suggest using a less well-suited heuristic for the

remainder of the search.

To estimate an AQDF by a normal distribution within the QD-BEACON framework,

we do the following. For each AQDFi required by QD-BEACON for our problem, we

maintain the following:

� Ni is the number of samples for the estimation of AQDFi (i.e., the number of samples

using thei-th heuristic / bias function pair).

86

Algorithm 7.2: Normal Estimation of the AQDF for QD-BEACON
Input: A heuristic, a bias function, and the quality of the solution just obtained
Output:
Description: Updates theNi, Xi, Yi, Pi appropriately. Note that it assumes smaller objec-
tive values, or qualities, are better. BestSolution is the global best solution found so far, the
value of which persists across calls to UPDATEAQDF().
UPDATEAQDF(Heuristic,BiasFunction,Quality)
(1) i fHeuristic;BiasFunctiong
(2) Ni Ni + 1

(3) Xi Xi + Quality
(4) Yi Yi + Quality2

(5) if Quality< BestSolution
(6) BestSolution Quality
(7) �i Xi

Ni

(8) �i
r

Yi�Ni�
2
i

Ni�1
(9) foreach j = heuristic/bias function pair

(10) Pj N(
BestSolution��j

�j
)

(11) else
(12) �i Xi

Ni

(13) �i
r

Yi�Ni�
2
i

Ni�1

(14) Pi N(BestSolution��i
�i

)

� Xi =
PNi

j=1 Si;j is the sum of theseNi samples (Si;j is the objective value of thej-th

solution obtained by thei-th heuristic / bias function pair).

� Yi =
PNi

j=1 S
2
i;j is the sum of the squares of theseNi samples.

TheNi, Xi, andYi are initialized to 0 by QD-BEACONINIT(Heuristics, Biases). At the

beginning of UPDATEAQDF(Heuristic,BiasFunction,Quality),Ni, Xi, andYi are updated

appropriately fori = fHeuristic;BiasFunctiong.
Upon updating theNi, Xi, andYi, UPDATEAQDF(Heuristic,BiasFunction,Quality)

continues by updating the probability of each heuristic / bias function pair finding a better

solution than the best found so far. If “Quality” is a new best found solution, then for all

heuristic / bias function pairsi, the probabilityPi of finding a better solution than the best

found so far,B, given AQDFi is updated according to:

Pi = N(
B � �i

�i
): (7.1)

87

The mean�i and standard deviation�i are computed according to:

�i =
Xi

Ni

(7.2)

and

�i =

s
Yi �Ni�

2
i

Ni � 1
: (7.3)

If “Quality” is not a new best found solution, thenPi need only be updated for the given

heuristic / bias function pairi = fHeuristic;BiasFunctiong. A lookup table is used for the

cumulative distribution of the standard normal,N(�). Algorithm 7.2 shows the algorithm

for updating the AQDFs within QD-BEACON using normal estimation.

7.3.2 Kernel Density Estimation

A second possibility for estimating the AQDF is Kernel Density Estimation (see [193, 184,

17, 200, 183, 97]). A kernel density estimator makes little, if any, assumptions regarding

the underlying distribution that it models. It provides a non-parametric framework for es-

timating arbitrary probability densities. In terms of estimating an AQDF, it provides the

QD-BEACON framework with a non-parametric method for this estimation that relies on

very limited distributional assumptions. The advantage of this approach is that it should be

possible to more closely estimate arbitrary AQDFs. The disadvantage is that there is addi-

tional computational overhead associated with using kernel density estimates as compared

to the normal distribution of the previous section. Kernel density estimation takes local

averages to estimate a density function by placing smoothed out quantities of mass at each

data point. The kernel density estimator is defined as:

f̂(x) =
1

nh

nX
i=1

K(
x�Xi

h
): (7.4)

K(�) is a kernel function andh is called the bandwidth (also sometimes called the scale

parameter or spreading coefficient). TheXi are then sample values.

The kernel function chosen for the QD-BEACON framework is the Epanechnikov ker-

nel [74]:

K(x) = 3

4
p
5
(1� x2

5
) for jxj <

p
5 and otherwise0 : (7.5)

Epanechnikov showed that this is the risk optimal kernel, but estimates using other smooth

kernels are usually numerically indistinguishable. Thus the form of the kernel can be cho-

88

sen to best address computational efficiency concerns. In our case, the Epanechnikov kernel

is a clear winner computationally for the following reasons:

� It is easy to integrate. Since we are most interested in using the density estimate to

ultimately compute the probability of finding a better solution than the best found so

far, this kernel function choice allows us to easily compute the cumulative probability

distribution for arbitrary AQDFs.

� It is bounded. Due to the conditionjxj <
p
5, only a limited number of sample values

must be considered in computing the value of the kernel function. This is useful in

reducing the computational overhead.

Although the choice of kernel function is not very critical in terms of numerical results,

the choice of bandwidth on the other hand can be very crucial. Epanechnikov showed that

the optimal choice of bandwidth is [74]:

h = (
L

nM
)1=5; (7.6)

where

L =
Z 1

�1
K(x)2 dx; (7.7)

M =
Z 1

�1
(f 00(x))2 dx; (7.8)

and wheren is the number of samples.

Unfortunately, this computation is dependent on knowing the true distribution (M

depends onf(x)). Commonly, it is assumed that the underlying distribution is normal

which, if the chosen kernel function is the Epanechnikov, results inh = 1:05�n�1=5

where� is the sample standard deviation.1 The standard deviation� is usually replaced

by s = minf�;Q=1:34g, whereQ is the interquartile range yieldingh = 1:05sn�1=5 [184].

We choose to instead make the assumption that the underlying distribution is the Gum-

bel distribution:

P (Z � z) = G(z) = exp(� exp(�(z � b

a
))): (7.9)

whereb is called the location parameter anda the scale parameter. The reasoning behind

this assumption is motivated by extreme value theory and will be discussed in greater de-

tail in Section 7.3.3. The Gumbel distribution is one of the three types of extreme value
1If you are instead using the Gaussian kernel, then under the assumption of an underlying normal distri-

bution,h = 1:06�n�1=5.

89

Algorithm 7.3: Kernel Density Estimation of the AQDF for QD-BEACON
Input: A heuristic, a bias function, and the quality of the solution just obtained
Output:
Description: Updates theNi,Xi, Yi,Pi, Si;j, hi appropriately. Note that it assumes smaller
objective values, or qualities, are better. BestSolution is the global best solution found so
far, the value of which persists across calls to UPDATEAQDF().
UPDATEAQDF(Heuristic,BiasFunction,Quality)
(1) i fHeuristic;BiasFunctiong
(2) Ni Ni + 1

(3) Xi Xi + Quality
(4) Yi Yi + Quality2

(5) insert Quality into sortedSi;j
(6) �i Xi

Ni

(7) �i
r

Yi�Ni�
2
i

Ni�1
(8) Qi interquartile range ofSi;j
(9) hi 0:79min(Qi; �i)N

�1=5
i

(10) if Quality< BestSolution
(11) BestSolution Quality
(12) foreach j = heuristic/bias function pair
(13) Pj result of Equation 7.12
(14) else
(15) Pi result of Equation 7.12

distributions. Given the Gumbel distribution assumption,M = 1
4a5

. Note that the standard

deviation of the Gumbel distribution is� = �ap
6

[152]. From this, we havea = �
p
6

�
. We

can now writeM in terms of the sample standard deviation:M = �5

4
p
6
5
�5

. We are using the

Epanechnikov kernel soL = 3

5
p
5
. This results in a value ofh computed as:h = 0:79sn�1=5

where agains = minf�;Q=1:34g.

Within QD-BEACON, we are interested in the cumulative distribution function for the

purpose of computing the probability of finding a better solution than the best found so

far. This can be obtained from integrating the kernel density estimator. Thus we have the

probabilityPi of finding a solution better than the best found so far given AQDFi:

Pi =
Z B

0
f̂i(x) dx; (7.10)

90

whereB is the best solution so far, which equals2

Pi =
Z B

0

1

nihi

niX
j=1

K(
x� Si;j

hi
) dx: (7.11)

Given our choice of the Epanechnikov kernel, this evaluates to:

Pi =
3

4nihi
p
5

P
j;jB�Si;j

hi
j<
p
5

((B � 1

5h2i
(
B3

3
�B2Si;j +BS2

i;j))�

(Si;j � hi
p
5� 1

5h2i
(
(Si;j � hi

p
5)3

3
�

(Si;j � hi
p
5)2Si;j + (Si;j � hi

p
5)S2

i;j))) (7.12)

It should be noted, that if we maintain the samples in sorted order, then given thatB must

be less than or equal to the smallest value in this list3, we compute this sum until we reach

a sampleSi;j such thatjB�Si;j
hi
j �
p
5. Once a sample for which this condition holds is

reached in the list, the summation can end. Actually, rather than in a sorted list, we maintain

the samples in a sorted histogram, maintaining counts of the number of samples with given

discrete values. To computehi = 0:79sin
�1=5
i , we compute�i as it had been in the previous

section for the normal distribution andQi is readily accessible from the samples given that

we maintain them in sorted order. The kernel density estimator version of QD-BEACON’s

UPDATEAQDF(Heuristic,BiasFunction,Quality) is shown in Algorithm 7.3.

7.3.3 Generalized Extreme Value Distribution

We now consider that the solutions to the problem at hand computed on each iteration of

our stochastic sampling algorithm (or some other iterative stochastic search algorithm) are

in fact at the extreme when the overall solution-space is considered. If you were to sample

solutions uniformly at random, the probability is very low that you would find any of the

solutions generated by WHISTLING with a strong heuristic. In other words, good solutions

to any given problem instance from the class of problems we are most interested in are, in

a sense, rare phenomena within the space of feasible solutions.

Consider for example the QDF illustrated previously in Figure 6.1 (a) for the solution-

space of a weighted tardiness scheduling instance with loose duedates. The solution space

for this instance has a mean objective value of4:0935 � 105 and standard deviation of
2This assumes a minimization problem with a lower bound of 0 on the value of the objective function.
3Assuming we are minimizing an objective function.

91

6:3589 � 104. The optimal solution to this problem instance is 0 – over 6.4 standard de-

viations better than the mean solution in the problem-space. The mean objective value of

single iteration solutions generated by WHISTLING on this problem instance is 276 – also

over 6.4 standard deviations better than the mean solution of the problem space. The opti-

mal solution to this problem instance is “rare” considering the problem space, as are single

iteration solutions generated by WHISTLING. And this is an “easy” problem instance.

Now consider a harder problem instance with QDF illustrated in Figure 6.1 (b). This

problem instance has much tighter duedates. The solution space for this problem instance

has a mean objective value of9:0140 � 105 and standard deviation of5:4138 � 104. We do

not know the optimal solution to this problem instance, but the best known solution has

objective value equal to 389354 which is over 9.4 standard deviations better than the mean

solution in the problem-space. The mean objective value of single iteration solutions found

by WHISTLING is 407480 which is over 9.1 standard deviations better than the mean

solution in the problem space.

This is far from a proof that the solutions we are sampling with WHISTLING and other

stochastic sampling algorithms are in fact rare phenomena in terms of the problem space,

but it should serve to illustrate that the AQDFs we are modeling represent distributions of

solution values sampled from the extremes of the solution space. With this noted, it makes

sense to turn to the field of extreme value theory, which concerns itself with “techniques and

models for describing the unusual rather than the usual” [50]. Specifically, we shall turn

to an extreme value analog to the central limit theory. Consider,Mn = maxfX1; : : : ; Xng
whereX1; : : : ; Xn is a sequence of independent random variables having a common distri-

bution functionF . For example, perhaps theXi represent the mean temperatures for each

of the 365 days in the year, thenMn would correspond to the annual maximum temperature.

To modelMn, extreme value theorists turn to theextremal types theorem[50]:

Theorem 1 If there exists sequences of constantsfan > 0g andfbng such thatP ((Mn �
bn)=an � z) ! G(z) asn !1, whereG is a non-degenerate distribution function, then

G belongs to one of the following families:

I: G(z) = exp(� exp(�(z�b
a
))),�1 < z <1

II: G(z) = exp(�(z�b
a
)��) if z > b and otherwiseG(z) = 0

III: G(z) = exp((z�b
a
)�) if z < b and otherwiseG(z) = 1

for parametersa > 0, b and in the latter two cases� > 0.

92

These are known as the extreme value distributions with types I (Gumbel), II (Fr´echet),

and III (Weibull). These distributions are commonly reformulated into the generalization

known as the generalized extreme value distribution (GEV):

G(z) = exp(�(1 + �(
z � b

a
))�1=�) (7.13)

wherefz : 1 + �(z�b
a
) > 0g, �1 < b < 1, a > 0, and�1 < � < 1. The case where

� = 0 is treated as the limit ofG(z) as� approaches 0 to arrive at the Gumbel distribution.

Under the assumption of Theorem 1,P ((Mn � bn)=an � z) � G(z) for large enoughn

which is equivalent toP (Mn � z) � G((z � bn)=an) = G�(z) whereG�(z) is some other

member of the generalized extreme value distribution family.

Following from the preceding argument regarding the rarity of the solutions produced

on each iteration of WHISTLING with a strong heuristic within the larger solution space,

I argue that the GEV distribution is a sensible assumption to make regarding the distribu-

tion of samples represented by an AQDF. Theorem 1 only explicitly applies to modeling

the distribution of “block maxima”. The assumption I now make is that the AQDF for a

stochastic sampling algorithm using a strong heuristic behaves the same as (or at least sim-

ilar to) the distribution of block maxima and thus that the cumulative distribution function

of the AQDF can be modeled by the GEV distribution.

To use the GEV for this modeling, we must first recognize that we have been assum-

ing throughout this thesis that we are interested in minimizing our objective function so

we need a “block minima” analog to Equation 7.13. LetM 0
n = minfX1; : : : ; Xng. We

now wantP (M 0
n < z). Let M 00

n = maxf�X1; : : : ;�Xng. Therefore,M 0
n = �M 00

n and

P (M 0
n < z) = P (�M 00

n < z) = P (M 00
n > �z) = 1� P (M 00

n � �z). Therefore, assuming

that the distribution function associated with an AQDF behaves according to a GEV distri-

bution, we have that the probabilityPi of finding a better solution than the best found so

far (B) can be defined as:

Pi = 1�Gi(�B) = 1� exp(�(1 + �i(
�B � bi

ai
))�1=�i) (7.14)

where thebi, ai, and�i are estimated from the negative of the sample values. To com-

pute these parameters within the QD-BEACON framework, we use Hosking’s maximum-

likelihood estimator of the GEV parameters [109, 138, 110]. The implementation of this

algorithm available through StatLib [110] has been used. The original code is in Fortran but

93

Algorithm 7.4: Using the Generalized Extreme Value Distribution within QD-BEACON
Input: A heuristic, a bias function, and the quality of the solution just obtained
Output:
Description: Updates theNi,Xi, Yi, Pi, Si;j, and the GEV parameters appropriately. Note
that it assumes smaller objective values, or qualities, are better. BestSolution is the global
best solution found so far, the value of which persists across calls to UPDATEAQDF().
UPDATEAQDF(Heuristic,BiasFunction,Quality)
(1) i fHeuristic;BiasFunctiong
(2) Ni Ni + 1

(3) Xi Xi + Quality
(4) Yi Yi + Quality2

(5) add Quality toSi;j
(6) �i Xi

Ni

(7) �i
r

Yi�Ni�
2
i

Ni�1
(8) Qi interquartile range ofSi;j
(9) fbi; ai; �ig MLEOFGEV(�i ,min(�i; Qi),�1 � Si;j)
(10) if Quality< BestSolution
(11) BestSolution Quality
(12) foreach j = heuristic/bias function pair

(13) Pj 1� exp(�(1 + �j(
�BestSolution�bj

aj
))�1=�j)

(14) else
(15) Pi 1� exp(�(1 + �i(

�BestSolution�bi
ai

))�1=�i)

has been converted to C for our purposes using the “f2c”4 fortran-to-c utility of Bell labs.

The GEV version of QD-BEACON’s UPDATEAQDF(Heuristic,BiasFunction,Quality) is

shown in Algorithm 7.4. It calls MLEOFGEV(�,�,S) to compute a maximum likelihood

estimate of the GEV parameters. The MLEOFGEV(�,�,S) is described by Algorithm 7.5.

In computing a maximum likelihood estimate of the GEV parameters, Hosking’s algorithm

is called multiple times if necessary. The first call uses initial estimates of the parameters

as recommended by Hosking (set assuming a Gumbel distribution). If Hosking’s algo-

rithm fails to converge, then a few additional calls are made with random initial values

of the parameters. If convergence still fails, MLEOFGEV(�,�,S) returns the values of

the parameters as estimated by assuming a type I extreme value distribution (the Gumbel

distribution).

4http://netlib.bell-labs.com/netlib/f2c/

94

Algorithm 7.5: Maximum Likelihood Estimation of the parameters of the Generalized
Extreme Value Distribution
Input: The sample mean and standard deviation. The list of data-pointsS to use for the
estimation
Output: The maximum likelihood estimates ofb, a, and�
MLEOFGEV(�,�,S)
(1) ~a �

p
6

�

(2) ~b �� 0:5772~a

(3) ~� 0

(4) f~a;~b; ~�g HOSKING(S, ~a, ~b, ~�, ResultCode)
(5) if ResultCode is Success
(6) return f~a;~b; ~�g
(7) else
(8) for 1 to 5
(9) ~a random value
(10) ~b random value
(11) ~� random value
(12) f~a;~b; ~�g HOSKING(S, ~a, ~b, ~�, ResultCode)
(13) if ResultCode is Success
(14) return f~a;~b; ~�g
(15) ~a �

p
6

�

(16) ~b �� 0:5772~a
(17) ~� 0

(18) return f~a;~b; ~�g

7.3.4 Illustrative Comparison of AQDF Estimation Methods

In this Subsection, we take a look at the strengths and weaknesses of each of the three

AQDF estimation methods presented above. Specifically, we consider a single problem

instance from a set of benchmark instances for the weighted tardiness scheduling problem.

This benchmark set and a comparison of algorithms applied to the problems of the set will

actually be discussed in detail in a later Chapter. For now, it is sufficient to know that the

problem is one of minimization and that the current best known solution to this problem

instance has an objective value of 425875. In this analysis, we consider two algorithms

that will be referred to as “Algorithm 1” and “Algorithm 2”. All that is necessary to know

about these two algorithms is that they are both iterative stochastic search algorithms and

that Algorithm 1 in general tends to produce better solutions than Algorithm 2. Although

at the individual problem instance level, it may not be known if this latter assumption is

true a priori.

95

Algorithm 1 Algorithm 2

4.255 4.26 4.265 4.27 4.275 4.28 4.285 4.29

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3

weighted tardiness

p(
x)

NORMALpdf
histogram

4.25 4.26 4.27 4.28 4.29 4.3 4.31 4.32

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3

weighted tardiness

p(
x)

NORMALpdf
histogram

(a)

4.255 4.26 4.265 4.27 4.275 4.28 4.285 4.29

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3

weighted tardiness

p(
x)

KDEpdf
histogram

4.25 4.26 4.27 4.28 4.29 4.3 4.31 4.32

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3

p(
x)

weighted tardiness

KDEpdf
histogram

(b)

4.255 4.26 4.265 4.27 4.275 4.28 4.285 4.29

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3

weighted tardiness

p(
x)

GEVpdf
histogram

4.25 4.26 4.27 4.28 4.29 4.3 4.31 4.32

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3

weighted tardiness

p(
x)

GEVpdf
histogram

(c)

Figure 7.2: Comparison of AQDF estimation methods for an instance of a weighted tar-
diness scheduling problem and for two iterative stochastic search algorithms referred to
simply as “Algorithm 1” and “Algorithm 2”. The estimation methods shown are: (a) Nor-
mal distribution, (b) Kernel Density Estimator, and (c) GEV distribution. Each estimation
method is superimposed on a histogram estimate.

96

Several graphs are shown in Figure 7.2. The histogram in each graph is an estimate of

the AQDF for the indicated algorithm and 1000 iterations. In Figure 7.2 (a), the Normal

distribution estimates of these AQDFs are superimposed upon the histograms. Likewise, in

Figure 7.2 (b), are shown the kernel density estimates of the AQDFs; and in Figure 7.2 (c),

are shown the GEV distribution estimates. For the Normal distribution estimates, we see

that there is a left-hand tail for which a significant density is to the left of the best solutions

found by the respective algorithms. Also, of note, is that neither AQDF appears very much

like a Normal distribution when viewing the histogram estimates. For the kernel density

estimates, we see that the right-hand tail appears to capture the behavior of the right-hand-

side of the AQDF better than did the Normal estimates. We, however, are more interested

in the behavior of the left-hand-side. This too appears to be a better estimation using the

KDE given that for both algorithms, the left-hand tail trails off to 0 not far to the left of the

histogram estimate. Essentially, the KDE does not risk putting too much density in regions

for which it has no data points.

Finally, for the GEV distribution estimates, we find that for both algorithms, the AQDF

drops completely off to zero at some bound. For an algorithm that produces solutions

very close to the optimal solution for the given problem instance, this is how we should

intuitively expect the AQDF to behave. After all, the AQDF must be bounded below by

whatever is the optimal solution. And if the algorithm under analysis produces a high den-

sity of solutions near this optimal solution, then there must be a sharp drop-off in the AQDF

near this bound. It is not known if the best known solution of 425875 is optimal for this

problem instance, but it is the best solution found by a large number of search algorithms

available in the literature. The best solution found by 1000 iterations of Algorithm 1 is

425903 and by Algorithm 2 is 425950. And overall, the AQDFs of these algorithms appear

to behave as if they are producing solutions near some theoretical bound in solution quality

– thus making the resulting GEV estimate seem reasonable.

In Figure 7.3 we see, for each of the two algorithms, a graph showing a comparison of

all three estimation methods. For each algorithm and for the GEV distribution estimates,

we see a sharp peak near the bound of each GEV. For the KDE, we see significant density

to the left of the mean of the AQDF (see Normal for position of mean), but most of this

density in the KDE is to the right of the bound seen in the GEV with a relatively small

amount of probability density to the left of this bound. The KDE appears to behave much

like the GEV, but at the same time tails off to the left at a slower rate. For the Normal

estimates, we see significant probability density in the left-hand tail. In fact, there is a

97

Algorithm 1 Algorithm 2

4.255 4.26 4.265 4.27 4.275 4.28 4.285 4.29

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3
p(

x)

weighted tardiness

Normal
KDE
GEV

4.25 4.26 4.27 4.28 4.29 4.3 4.31 4.32

x 10
5

0

0.2

0.4

0.6

0.8

1
x 10

−3

weighted tardiness

p(
x)

Normal
KDE
GEV

Figure 7.3: Comparison of AQDF estimation methods for an instance of a weighted tar-
diness scheduling problem and for two iterative stochastic search algorithms referred to
simply as “Algorithm 1” and “Algorithm 2”. For each algorithm, all three estimation meth-
ods are compared on a single graph.

Table 7.1: Comparison of AQDF estimation methods for an instance of a weighted tardiness
scheduling problem and for two iterative stochastic search algorithms referred to simply as
“Algorithm 1” and “Algorithm 2”.
Algorithm Estimator best foundP (x < 425903) P (x < 425875) P (425875)

Algorithm 1 Normal 425903 0.0431 0.0365 0.00022
KDE 425903 0.0100 0.0053 0.00013
GEV 425903 0.0045 0.0000 0.00000

Algorithm 2 Normal 425950 0.1060 0.1014 0.00016
KDE 425950 0.0076 0.0055 0.00006
GEV 425950 0.0000 0.0000 0.00000

significant amount of probability density to the left of the best known solution. This seems

unlikely to be the case in reality for these AQDFs given the large number of state-of-the-art

algorithms that went into the production of that best known solution.

In Figure 7.4 we see, for each of the three estimation methods, a graph showing a

comparison of the AQDFs of the two algorithms for this problem instance. For the Normal

distribution estimates, we see that although Algorithm 1 appears to find a high density of

solutions near the current best known solution, Algorithm 2 has an AQDF with a much

higher density given to the region to the left of this current best known solution due to

the high standard deviation in the solution qualities produced by Algorithm 2. As just

discussed, this is unlikely to be the case in reality for this problem instance. Therefore,

98

Normal Distribution GEV Distribution

4.25 4.26 4.27 4.28 4.29 4.3 4.31 4.32

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

weighted tardiness

p(
x)

Algorithm 1
Algorithm 2

4.25 4.26 4.27 4.28 4.29 4.3 4.31 4.32

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−3

p(
x)

weighted tardiness

Algorithm 1
Algorithm 2

Kernel Density Estimator

4.25 4.26 4.27 4.28 4.29 4.3 4.31 4.32

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

p(
x)

weighted tardiness

Algorithm 1
Algorithm 2

Figure 7.4: Comparison of AQDF estimation methods for an instance of a weighted tar-
diness scheduling problem and for two iterative stochastic search algorithms referred to
simply as “Algorithm 1” and “Algorithm 2”. For each estimation method, the AQDF of
both algorithms are shown on the same graph.

for this problem instance, there appears to be a good chance that using Normal distribution

estimates will likely lead the search astray by recommending heavier use of Algorithm 2

as compared to Algorithm 1. Both the GEV and KDE estimates have a sharp peak in the

density near some bound for Algorithm 1. Likewise, they have sharp (but not as sharp)

peaks for Algorithm 2 slightly to the right of the Algorithm 1 peaks. This may indicate

that both KDE and GEV would lead to a recommendation of following Algorithm 1 more

frequently.

We will explore this further by looking closer at what exactly the AQDF estimates tell

us numerically. Table 7.1 shows a number of things for each of the two algorithms and each

99

of the three estimators: 1) best found solution by the algorithm; 2) probability of improving

upon the best solution found by either of the algorithms (425903 found by Algorithm 1); 3)

probability of finding a solution better than the current best known solution (425875); and

4) probability of finding a solution with quality equal to the current best known. First, note

that the Normal estimates seem to be far too overly optimistic, especially for Algorithm 2,

giving a probability greater than0:1 of finding a solution better than the current best known

solution on any single iteration of the algorithm (P (x < 425875)). Next, note that the GEV

distribution estimates might possibly be too pessimistic. Specifically, observe that the GEV

estimate gives a probability of0 (P (x < 425903)) to the event of Algorithm 2 improving

upon the best solution found by either of the two algorithms. The kernel density estimator

perhaps offers a nice mix of the behaviors of these two other methods. It neither appears

overly optimistic nor overly pessimistic. It will be interesting to compare the performance

of these methods in greater detail in specific problem domains later in this thesis.

7.4 Exploration versus Exploitation

Within the QD-BEACON framework, a method is needed for balancing the tradeoff be-

tween exploiting the current estimates of the solution qualities given by the algorithm

choices and the need for exploration to improve these estimates. To develop this strat-

egy, we first turn in Section 7.4.1 to Holland’s analysis of thek-Armed Bandit Problem

and his use of it as demonstration of the near-optimal tradeoff of exploration/exploitation

within the genetic algorithm. Then, in Section 7.4.2, we pose a new variation of thek-

armed bandit problem that we call the “Maxk-Armed Bandit Problem” and we detail a

solution to it. Section 7.4.3 discusses the relevance of this solution to the QD-BEACON

framework and presents the exploration strategy which it motivates.

7.4.1 The Two-Armed Bandit andK-Armed Bandit Problems

Thek-armed bandit problemhas been used by many as a theoretical analogy for the prob-

lem of balancing the tradeoff of exploration and exploitation in search problems [11, 101,

102, 114, 190]. It is the problem of allocating trials to the arms of ak-armed bandit (i.e.,

a slot machine withk arms, each with different and unknown pay-out distributions) with

the goal of maximizing the expected reward over time. Many have presented analyses of

various bandit problems (e.g., [11, 101, 102, 3, 4]) and others have used bandit problems

100

as inspiration for, or justification of, exploration strategies in application domains such as

reinforcement learning (see [114, 190]) and genetic algorithms (see [101, 102]).

Our analysis in a later section of a newly posed variation of thek-armed bandit problem

is inspired by Holland’s analysis of thek-armed bandit and its connection with the genetic

algorithm, so we begin by giving an overview of Holland’s findings. Thetwo-armed bandit

andk-armed banditproblems are a major part of the theoretical underpinning of the genetic

algorithm. Under certain assumptions, Holland demonstrates, using these bandit problems,

that the GA achieves a near-optimal tradeoff of exploration and exploitation [101, 102].

Holland’s analysis of the bandit problems will serve here as a basis for the design of an

exploration policy within the QD-BEACON framework.

The two-armed bandit problem can be stated simply. Consider a slot machine with

two arms. The reward for playing one of the arms is�1 with variance�21 and the reward

for playing the other arm is�2 with variance�22 . Furthermore,�1 � �2, but we do not

know which arm is which. The problem is to maximize expected reward for a series of

trials from this two-armed bandit. To solve the problem, it is necessary to determine the

optimal tradeoff of exploratory actions (i.e., trying to discover the payoffs of the arms)

versus exploitation actions (i.e., playing the arm that appears best). Thek-armed bandit

problem is the obvious generalization.

For the two-armed bandit problem, Holland showed that the optimal allocation of trials

(in terms of minimizing expected loss from trials of the worse of the two arms) allocates

n� trials to the worse of the two arms, wheren� is:5

n� � b2 ln(
N2

8�b4 lnN2
); (7.15)

whereN is the total number of trials to both arms andb = �2
�1��2 . Therefore, the number

of trials of the better of the two arms in the optimal allocation is:

N � n� �
p
8�b4 lnN2 � exp(n

�

2b2
)� n�: (7.16)

As n� increases,exp(n
�

2b2
) dominates this equation so we can simplify this expression to:

N � n� � �(exp(cn�)); (7.17)

wherec is a constant. The important point is that the number of trials allocated to the

5See Holland for the complete derivation [101, 102].

101

observed better arm should increase exponentially with the number of trials allocated to

the observed worse arm.

Holland’s analysis of thek-armed bandit problem is significantly more complex. We

now havek arms with expected payoffs,�1 � �2 � : : : � �k, and variances,�i for

i = 1; : : : ; k. Holland’s analysis showed that the worst-case expected loss for the problem

occurs when�2 = �3 = : : : = �k and�2 = �3 = : : : = �k. Therefore, the best arm should

be allocatedN � (k � 1)m� trials whereN is the total number of trials and where each of

the otherk � 1 arms are allocatedm� trials. The optimal number of trialsm� allocated to

these worse arms is shown by Holland to be bound by:

m�
l � b2 ln(

N2

8�(k � 1)2b4 lnN2
) (7.18)

and

m�
u � m�

l + 2b2 ln(k � 1): (7.19)

Therefore, the number of trials,N�(k�1)m�, allocated to the observed best arm is bound

by:

N � (k � 1)m�
u �

q
8�(k � 1)2b4 lnN2 � exp(m

�
l

2b2
� ln(k � 1))� (k � 1)m�

u (7.20)

and

N � (k � 1)m�
l �

q
8�(k � 1)2b4 lnN2 � exp(m

�
l

2b2
)� (k � 1)m�

l : (7.21)

Again, as in the two-armed bandit case, the exponential in each of these bounds dominates

and this can all be simplified to:

N � (k � 1)m� � �(exp(cm�)): (7.22)

The main point again is that the number of trials allocated to the observed best arm in the

optimal allocation should increase exponentially with the number of trials allocated to each

of the otherk � 1 arms.

7.4.2 The MaxK-Armed Bandit Problem

The problem of choosing among competing heuristics for a stochastic sampling algorithm

within the QD-BEACON framework is closely related to thek-Armed Bandit Problem.

102

On each iteration, QD-BEACON must choose from among a set of heuristics, each with

different and unknown expected payoffs. The goal, however, is not quite the same as in

thek-Armed Bandit Problem. In thek-Armed Bandit Problem, one wishes to maximize

the sum of expected rewards over a series of trials. QD-BEACON’s goal is a bit different.

QD-BEACON concerns itself with the best single reward it receives over the series of

trials. Assuming higher rewards are better, this leads us to pose the MaxK-Armed Bandit

Problem.

In the MaxK-Armed Bandit Problem, we are faced with a series ofN trials. In each

trial we can choose any ofk arms. For each of these arms there is an expected payoff

according to some probability distribution. Our goal is to maximize the value of thebest

single reward received over theN trials.

We first detail a solution to the special case of 2-arms and then generalize to thek-armed

case. Specifically, we show that to maximize the expected max single sample reward over

N trials, the number of samples taken from the observed best arm should grow double

exponentially in the number of samples taken from the observed second best. To make this

derivation most relevant to the QD-BEACON framework, we assume that each of the arms

is sampling at the extreme of some distribution. We specifically assume that each of the

two arms is sampling from a Gumbel distribution – the type I extreme value distribution.

Using the GEV, though it would be more general, would also unnecessarily complicate the

analysis. The GEV special case of the Gumbel allows for an easily determined mean and

standard deviation of the distribution in terms of the parameters of the distribution. There

also exist straightforward estimators of these parameters from the sample mean and sample

standard deviation which prove useful in the derivation.

Let us begin by stating that there are two arms,M1 andM2. The rewards of armMi are

drawn from a Gumbel distributionGi(x) with location parameterbi and scale parameterai.

The mean reward of a single sample of armMi is:

�i = bi + 0:5772ai; (7.23)

where0:5772 is Euler’s number, and the standard deviation is:

�i =
ai�p
6
: (7.24)

In order to fully state the problem, given that we want to maximize the expected largest

single sample of a series of trials, we need an expression for the expected value of such a

103

max single sample of a series of trials. GivenN samplesfX1; : : : ; XNg from a distribution,

the probability that the maximum of these samples equalsx is:

P (max(Xi) = x) = N P (X = x)P (X � x)N�1: (7.25)

With our assumption of samples drawn from a Gumbel distribution, we have:

P (max(Xi) = x) = N
a
exp(�x�b

a
) exp(� exp(�x�b

a
))

exp(�(N � 1) exp(�x�b
a
)): (7.26)

This simplifies to:

P (max(Xi) = x) =
1

a
exp(�x� b� a lnN

a
) exp(� exp(�x� b� a lnN

a
)): (7.27)

From this we see that the distribution of the max ofN samples drawn from a Gumbel

distribution with location parameterb and scale parametera is also a Gumbel distribution

with location parameter,bmax = b + a lnN and scale parameteramax = a. Thus the

expected max reward ofN samples from each of the two arms in the problem is:

bi + 0:5772ai + ai lnN: (7.28)

Consider that armM1 is the better of the two arms in the problem. This necessitates

defining what we mean here by better. Specifically, let:

b1 + 0:5772a1 + a1 lnN > b2 + 0:5772a2 + a2 lnN (7.29)

which implies thata1 must be greater than or equal toa2 or else for great enoughN this

inequality would fail to hold.

In the two-armed problem, where we do not know with certainty which arm isM1 and

which isM2, the expected max reward if we had access to some omniscient observer that

could tell us which was which, is clearlyb1+0:5772a1+a1 lnN – the expected max reward

of giving allN trials to the better arm. However, given that we cannot know with certainty

which arm is which, some exploration is necessary. Consider that we drawn samples

from the observed second best arm, andN � n samples from the observed best arm. Now

consider the loss of reward associated with sampling from the second best arm. There are

two cases to consider:

104

1. The observed best arm is really the best arm. In this case the loss comes from giving

n less samples to the best arm and we have an expected loss equal to:a1(lnN �
ln (N � n)).

2. The observed best arm is really second best. The loss in this case is a bit more

complicated and depends on whether the expected value of givingN � n samples to

the second best arm is greater than givingn samples to the best arm. The mathematics

is simplified if we assume that there is a higher expected value associated with taking

n samples from the best arm as compared toN � n samples from the second best.

Also, as we will see later in this analysis, the probability of this second source of

loss decreases exponentially withn. Furthermore, this form of loss is at a maximum

when the expected value of the max ofn samples of the best arm equals that of

N �n samples of the second best. With all of this said, we can now consider that the

expected loss in this case is:a1(lnN � lnn).

Now let q be the probability that the observed best arm is really the second best arm.

Therefore,(1� q) is the probability that the observed best arm really is the best arm. The

expected loss of samplingn times from the observed second best andN � n times from

the observed best arm, as a function ofn is therefore:

l(N) = q(a1(lnN � lnn)) + (1� q)(a1(lnN � ln (N � n))): (7.30)

This can be simplified to:

l(N) = q(a1(ln (N � n)� lnn)) + a1(lnN � ln (N � n)): (7.31)

In order to select a value forn which minimizes the expected loss, we need to defineq

as a function ofn. Let Mb be the arm that is perceived as best (i.e., the arm perceived to

have the highest expected max single sample reward over a series ofN trials) andMw be

the arm that is perceived as second best. The probabilityq can be stated as the probability

that the expected max value ofN samples ofMw is greater than the expected max value of

N samples ofMb. If we note that the parameters of a Gumbel distribution can be estimated

from the data by~a = s
p
6

�
and~b = �X � 0:5772~a, where �X ands are the sample mean and

sample standard deviation, then we can define:

q(n) = P ((~bb + 0:5772~ab + ~ab lnN)� (~bw + 0:5772~aw + ~aw lnN) < 0) (7.32)

105

= P ((�Xb +
sb
p
6

�
lnN)� (�Xw +

sw
p
6

�
lnN) < 0) (7.33)

= P (�Xb � �Xw < (sw � sb)

p
6

�
lnN): (7.34)

The central limit theorem says that�Xb approaches a normal distribution with mean�b and

variance �2
b

N�n . Similarly, �Xw approaches a normal distribution with mean�w and variance
�2w
n

. The distribution of�Xb � �Xw is the convolution of the distributions�Xb and� �Xw. The

convolution of these distributions is by definition a normal distribution with mean�b � �w

and variance �2
b

N�n + �2w
n

. Using an approximation for the tail of a normal distribution, we

can defineq(n) as:

q(n)
<� 1p

2�

exp(�x2=2)
x

(7.35)

where

x =
(�b � �w) +

p
6
�
ln (N)(�bp

N�n �
�wp
n
)r

�2
b

N�n + �2w
n

: (7.36)

Given the above definitions forq(n) andx, we can see thatq(n) decreases exponentially in

n. This allows us to simplifyx. Using the same simplification made by Holland, we can

note that no matter the value for�b, there is a large enoughN such that forn close to its

optimal value, �2
b

N�n �
�2w
n

which leads to:

x
<� (�b � �w)

p
n� �w

p
6

�
lnN

�w
(7.37)

To select the value ofn that will minimize the lossl(n)we begin by taking the derivative

of l(n) with respect ton:

dl

dn
=

dq

dn
(a1(ln (N � n)� lnn))� q(n)(

a1

N � n
+
a1

n
) +

a1

N � n
; (7.38)

where
dq

dn

<� �q(n)x
2 + 1

x

dx

dn
; (7.39)

and
dx

dn

<� �b � �w

2�w
p
n
: (7.40)

The optimal value ofn occurs whendl
dn

= 0 so we can get a bound on the optimaln by

106

solving the following inequality:

0
<� a1

N � n
� q(n)

a1N

N � n
� q(n)

x2 + 1

x

dx

dn
(a1(ln (N � n)� lnn)): (7.41)

We can collect the logarithmic terms on the left to obtain:

ln (N � n)� lnn
<� (1� q(n)N)x

(N � n)q(n) dx
dn
(x2 + 1)

(7.42)

Recalling thatq(n) decreases exponentially withn, (1 � q(n)N) rapidly approaches 1.

Also noting that x
x2+1

<� 1
x
, we arrive at:

ln (N � n)� lnn
<� 1

(N � n)q(n) dx
dn
x

(7.43)

We can substitute in the expressions forq(n) and dx
dn

.

ln (N � n)� lnn
<� �w

p
8�
p
n

(N � n)(�b � �w)
exp(

(�b � �w � �w
p
6

�
p
n
ln (N))2 n

2�2w
) (7.44)

Exponentiating both sides of the inequality, we get:

N � n
<� exp(ln (n) +

�w
p
8�
p
n

(N � n)(�b � �w)
exp(

(�b � �w � �w
p
6

�
p
n
ln (N))2 n

2�2w
)) (7.45)

You might now be troubled by the recursive expression forN � n. This might be

especially the case if you note that thoughN � n grows double exponentially inn, it also

appears thatN � n decreases exponentially in itself which seemingly implies thatN � n

decreases triple exponentially inn while increasing double exponentially inn. But, again,

the triple exponential decrease is defined recursively. Thus, the decrease itself is decreased

double exponentially and we no longer have a triple exponential decrease inn. The question

that remains is which term dominates the expression. We can take the fraction involving

N � n up into the exponential and gain insight into the answer to this question:

N � n
<� exp(ln (n) + exp(

(�b � �w � �w
p
6

�
p
n
ln (N))2 n

2�2w
+ ln (

�w
p
8�
p
n

(N � n)(�b � �w)
))):

(7.46)

Looking at this, we must now determine which part of the double exponential dominates

107

as the total number of samplesN gets large. Consider the following limits:

lim
N!1

(�b � �w � �w
p
6

�
p
n
ln (N))2 n

2�2w
=1 (7.47)

lim
N!1

ln (
�w
p
8�
p
n

(N � n)(�b � �w)
))) = �1 (7.48)

Note that the first expression is dominated by the(lnN)2 and that within the logarithm

of the second expression, theN in the denominator dominates. For large enoughN , it

is sufficient enough to consider which of(lnN)2 and ln (1=N) dominates. Consider the

following:

lim
N!1

f(lnN)2 + ln (1=N)g = lim
N!1

f(lnN)2 + ln 1� lnNg
= lim

N!1
flnN (lnN � 1)g

= 1 (7.49)

Taking this into account and making a few other obvious simplifications, we can get:

N � n � �(exp(exp(cn))) (7.50)

This shows that the number of trialsN � n given to the observed best arm should grow

double exponentially inn to maximize the expected max single sample reward.

We conjecture that in the MaxK-Armed Bandit case, the result is asymptotically iden-

tical to the two-armed case. That is, the number of samples given the observed best arm

should grow double exponentially in the number of samples given the otherk � 1 arms.

A weak argument for this leap from the result of the two-arm case to thek-arm case is as

follows. The worst case loss in thek-armed case will occur when thek � 1 worst arms are

identical (as was the case in Holland’s analysis of the originalk-armed bandit problem).

Withm� trials given to each of thesek�1 worse arms, the analysis of thek-armed case can

be loosely thought of in terms of a special case of the analysis of the two-armed problem.

Specifically, you have the observed best arm and a meta-arm comprised of the aggregation

of the otherk�1 arms. The meta-arm is givenn� = m�(k�1) trials uniformly distributed

across thek � 1 arms. Since thek � 1 arms are identical in the worst case, the meta-arm

should behave in the same way as the second best arm in the two-arm case. And thus,

the number of samplesN � m�(k � 1) given the observed best arm should grow double

108

exponentially inn� = m�(k � 1).

Our analysis of the MaxK-Armed Bandit problem (just like Holland’s analysis of

the originalK-armed bandit) makes use of the central limit theorem and other similar

assumptions. As such, the end result only directly applies in the limit and its relevance to

finite models is tenuous. A finite-time analysis might be more appropriate, but would only

directly apply if you knew beforehand the number of trials. In what follows, we use this

analysis to provide motivation for exploration within QD-BEACON.

7.4.3 The QD-BEACON Exploration Strategy

In defining an exploration strategy for the QD-BEACON framework, we consider the anal-

ysis of the MaxK-Armed Bandit Problem. To maximize the expected max single sample

reward of a series ofN trials, we should give a double exponentially increasing number of

samples to the observed best arm relative to the number of samples given the otherk � 1

arms. Specific to our problem within QD-BEACON, this means sampling with the ob-

served best heuristic with frequency increasing double exponentially relative to the number

of samples given the other heuristics.

It should first be noted that in our analysis of the MaxK-Armed Bandit, “observed

best” meant the arm perceived to have the highest expected max of a series ofN trials. To

compute such expectations, the analysis had assumed that the output of an arm followed a

type I extreme value distribution. As was seen, the distribution of the max ofN samples

from such an arm also follows a type I extreme value distribution. In fact, as we also earlier

saw in the extremal types theorem, independent of the distribution of samples drawn from

an arm, the distribution of the max ofN samples follows a GEV distribution (i.e., one of the

three types of extreme value distribution). However, only the type I (Gumbel) distribution

leads to a closed form expression for the expected max ofN samples, which is one of the

reasons it was assumed in the analysis of the MaxK-Armed Bandit.

Given this, we can now note a couple of things regarding the QD-BEACON framework.

First, the distribution of the best ofN samples of a stochastic sampling algorithm does not

necessarily follow a type I extreme value distribution and may instead follow either a type

II or type III extreme value distribution. Second, if it does follow a type II or type III

extreme value distribution, then we cannot easily compute an expected value for the best

of N samples. Third, we cannot easily (and certainly not efficiently) compute which of

the extreme value distribution types the distribution of the best ofN samples follows only

given our models of the underlying distribution of samples. Fourth, the analysis of the Max

109

K-Armed Bandit concerns itself with what happens in the limit, while QD-BEACON is

faced with a finite (and potentially unknown) number of trials.

These points, particularly the last, leads QD-BEACON to concern itself primarily with

trying to improve upon the current best found solution by its choice of the next heuristic

or stochastic search algorithm to apply to the problem. This choice considers the past

trials and the next trial and does not attempt to use a projection out over the result of the

futureN trials. Its definition of the “observed best” arm is the heuristic (or algorithm) that

has the highest estimated probability of improving upon the current best found solution.

Incorporating this myopic definition of “observed best” into the analysis of the MaxK-

Armed Bandit would not allow for such a clean analysis (at best) as it would require a

closed form expression for the convolution of two GEV distributions.

This discrepancy with the definition of “observed best” may be troublesome to some

readers given that the exploration strategy of QD-BEACON is motivated by the analysis of

the MaxK-Armed Bandit. But keep in mind that the analysis is of the limit as the number

of samplesN goes to infinity; while the QD-BEACON exploration strategy assumes that

the next sample might be the last sample. With this, it therefore makes more sense to

consider the observed best to be the heuristic with the higher probability of improving

upon the best solution found so far with a single sample, rather than attempting to project

out the expected best of an ever-growing series of samples. This is what QD-BEACON

does.

Consider, as the exploration strategy for the QD-BEACON framework, Boltzmann ex-

ploration as commonly used in reinforcement learning [114, 190] and within simulated

annealing [118, 198]. With a Boltzmann exploration strategy, we would choose to use

heuristichi with probabilityP (hi):

P (hi) =
exp((PiFi)=T)PH
j=1 exp((PjFj)=T)

; (7.51)

wherePi is the probability of finding a solution better than the best found so far as defined

previously for any of the methods of estimating AQDFi, whereFi is the ratio of the number

of feasible solutions used in estimatingPi to the total number of samples withi, where there

areH heuristics to choose from, and whereT is a temperature parameter.

Now consider the number of samples expected to be given to the observed best heuristic

110

Algorithm 7.6: The QD-BEACON Exploration Strategy
Input:
Output: A heuristic / bias function pairfHeuristic;BiasFunctiong.
GETHEURISTICBIASFUNCTIONPAIR()
(1) if MaxExplore= true
(2) i argmaxj PjFj
(3) return fHeuristici;BiasFunctionig
(4) else
(5) foreach j = heuristic/bias function pair
(6) Wj exp((PjFj)=T)

(7) if Any overflow conditions
(8) MaxExplore true
(9) if MaxExplore= true
(10) i argmaxj PjFj
(11) return fHeuristici;BiasFunctionig
(12) else
(13) T T � 0:5
(14) if Underflow ofT
(15) MaxExplore true
(16) selecti with probability weighted byWi

(17) return fHeuristici;BiasFunctionig

hb relative to some other heuristicho:

N � P (hb)

N � P (ho)
= exp(

PbFb � PoFo

T
); (7.52)

whereN is the total number of samples. Sincehb is observed best, that means the prob-

ability of finding a better solution than the best found so far is greater forhb than forho
(i.e.,PbFb > PoFo). This implies that we give an exponentially increasing in decreasing

T number of samples relative toho. To get the double exponential sampling increase, we

need to decreaseT exponentially. For example, letT = exp(�N 0) whereN 0 is the number

of samples already taken and samplehi with probability:

P (hi) =
exp((PiFi)= exp(�N 0))PH
j=1 exp((PjFj)= exp(�N 0))

: (7.53)

Within QD-BEACON, we have actually chosen to increase the frequency of samples

given the observed best heuristic slightly less than double exponentially. We use the fol-

111

lowing cooling schedule forT as an alternative:

T0 = 1 (7.54)

TN 0 = TN 0�1 � 0:5; (7.55)

which is equivalent toT = 0:5N
0

. The reasons for this slower than double exponential

increase in the sampling of the observed best include:

1. An acknowledgment that in the analysis of the Maxk-Armed Bandit we made a

number of simplifying assumptions, including regarding the underlying distributions

of the samples of the arms.

2. Cooling via this schedule can also potentially lead to a trivial improvement in im-

plementation efficiency by allowingT to be adjusted via bit shifts if you instead

maintainT 0 = 1=T as an integer.

3. It allows for a longer search before we begin underflowing the denominator in the

calculations ofexp((PiFi)=T).

In the QD-BEACON framework, onceT does reach the point of underflow (or the value of

some(PiFi)=T overflows, or the value of someexp((PiFi)=T) overflows), the framework

begins to chose the heuristic for the next sample deterministically according to:

argmax
hi

PiFi; (7.56)

where againPi is the probability of heuristichi finding a solution better than the best found

so far andFi is the fraction of feasible solutions found. In other words, if the search lasts

sufficiently long, QD-BEACON switches to a complete exploitation policy. This explo-

ration policy for choosing which heuristic / bias function pair to use for the next iteration

of the search is described in Algorithm 7.6.

7.5 Summary

In this Chapter we defined the functionality of the QD-BEACON framework. This includes

functions that allow stochastic sampling algorithms to report the quality of solutions ob-

tained on each iteration for a specific heuristic / bias function pair and which also allow for

the reporting of infeasible solution nodes that are found. The latter is used in domains of

112

constrained optimization where not every iteration of a stochastic search algorithm neces-

sarily leads to a feasible solution. It also includes functions that allow a stochastic sampling

algorithm to choose which heuristic / bias function pair to use on future iterations based on

the probability of finding a better solution than the best found so far. A modified version

of WHISTLING that integrates the QD-BEACON functionality is presented as an example

use of the framework.

Upon the reporting of solution quality, QD-BEACON uses one of several methods to

update the appropriate AQDF estimate. The simplest model of an AQDF is that of a nor-

mal distribution. The next model discussed used kernel density estimation. Specifically,

the KDE of an AQDF as presented here selects the value of the bandwidthh under the

assumption that we are sampling from a type I extreme value distribution (i.e., a Gumbel

distribution). The third model discussed, argued that stochastic sampling algorithms using

strong heuristics, are likely to be sampling at the extreme of the problem instance’s underly-

ing solution space. This argument lead to motivation for the use of the generalized extreme

value distribution as the model for the AQDF data. A comparison of these three models

on a single instance of a scheduling problem using two stochastic search algorithms was

then presented. Overall, this analysis showed that the Normal distribution seems to be an

overly optimistic model for the AQDF, that the GEV might be overly pessimistic, and that

the behavior of the KDE might offer a reasonable modeling methodology for the AQDF

that is neither overly optimistic nor pessimistic.

Whichever model of the normal, KDE, or GEV, is used for the AQDF, some method

of exploration / exploitation is needed if we desire to generate these models online while

searching for the best solution we can find. Taking inspiration from Holland’s analysis of

thek-Armed Bandit Problem, we defined a new problem that we call the Maxk-Armed

Bandit Problem. Using an analysis of this Maxk-Armed Bandit Problem, we showed that

the optimal number of trials given the observed best arm should increase double exponen-

tially in the number of trials given to the observed next best arm. This derivation became the

motivation for the choice of Boltzmann exploration with an exponentially decaying tem-

perature parameter – though mostly for implementation efficiency reasons, we ultimately

decided upon a slightly less than exponentially decaying temperature parameter.

113

Chapter 8

Application: Sequencing to Minimize

Weighted Tardiness (Revisited)

8.1 Overview

In this Chapter, we revisit the problem of sequencing a set of jobs on a single machine

to minimize the weighted tardiness scheduling objective. The goal of this Chapter is to

explore the benefit of combining multiple search heuristics within an iterative stochastic

search algorithm using the QD-BEACON framework. Given a set of heuristics for the

problem, each with its good and bad points, can QD-BEACON effectively combine them

to enhance search performance as compared to using a single heuristic, as compared to

using the naive strategy of sampling a uniform number of times with each heuristic, and

as compared to the state-of-the-art for the problem? These are a few of the questions we

explore in this Chapter.

The remainder of this Chapter is organized as follows. In Section 8.2 we present the

problem’s formalization. For the reader with Chapter 5 fresh in their mind, you may skip

Section 8.2 provided that you note that in this Chapter we are considering the problem

without sequence-dependent setups (i.e.,si;j = 0 for all i; j). Section 8.3 overviews the

state-of-the-art in problem solving for the weighted tardiness sequencing problem. In Sec-

tion 8.4 we describe the benchmark problem sets used in this experimental comparison.

Section 8.5 defines our performance criteria. In Section 8.6 we present a comparison of a

number of local search algorithms with a variation of multistart dynasearch that has been

enhanced using VBSS and the QD-BEACON framework. Then in Section 8.7 we further

enhance the current best algorithm for the problem – iterated dynasearch – using the QD-

114

BEACON framework. Section 8.8 shows how the resulting algorithm compares to other

local search algorithms available for comparison. We conclude the Chapter with a summary

in Section 8.9.

8.2 Problem Formalization

The Weighted Tardiness Scheduling Problem is a sequencing problem. Specifically, we are

given a set of jobsJ = fj1; : : : ; jNg. Each of theN jobsj has a weightwj, duedatedj, and

process timepj. The particular instance of the problem that we concern ourselves with here

is the case where theN jobs must be sequenced on a single machine and where preemption

of a job during processing is not permitted. Furthermore, if a machine is processing a job,

then it cannot do anything else until that operation is completed.

The objective of this problem is to sequence the set of jobsJ on a machine to minimize

the total weighted tardiness:

T =
X
j2J

wjTj =
X
j2J

wj max (cj � dj; 0); (8.1)

whereTj is the tardiness of jobj; andcj, dj is the completion time and duedate of jobj.

The completion time of jobj is equal to the sum over the process times of all jobs that

come before it in the sequence plus the processing time of jobj itself. Specifically, let�(j)

be the position in the sequence of jobj. We can now definecj as:

cj =
X

i2J;�(i)<=�(j)
pi (8.2)

8.3 State-of-the-Art Solution Methods

In this Section, we overview a number of solution methods available in the literature for

the weighted tardiness scheduling problem. These include the branch-and-bound procedure

that was originally used to find optimal solutions to problem instances in the benchmark

problem set, myopic dispatch policies for the problem, and a number of local search ap-

proaches. The final algorithm described in this Section is that of Iterated Dynasearch,

which is currently the best known algorithm for the problem.

115

8.3.1 Branch-and-Bound

The optimal solutions that are available for most of the 40 and 50 job problem instances

in the OR-Library were originally found by the branch-and-bound algorithm of Potts and

van Wassenhove [156]. They were unable to tackle the 100 job problem instances due to

the computational complexity of the problem. Prior to this branch-and-bound algorithm,

no previous approach had been applied to problems with greater than 20 jobs. Since this

branch-and-bound algorithm (despite its age of 18 years), no new approach (other than

heuristic, local search, and other non-systematic approaches) has been able to optimally

solve (with guarantees) problems larger than 50 jobs. Narayan, Morton, and Ramnath

claim that exact methods are impractical for weighted tardiness problems any larger and

advocate the use of dispatch policies [147]. The lower bounding scheme of Akturk and

Yildirim gives tighter lower bounds [2], but has not been used within a branch-and-bound

algorithm since its appearance in the literature.

The branch-and-bound algorithm of Potts and van Wassenhove use the well-known

dominance rules of Emmons to generate precedence relations to prune branches in the

search tree (see [73]). The search strategy explores in a newest active node first order.

Backward sequencing is assumed in the branching. That is, a search node at levell of

the search tree consists of jobs sequenced in the lastl positions. The sub-problems at

level l are of the same form as the original problem but withl fewer jobs. In addition to

the precedence relations, the algorithm further prunes search nodes by noting that, if in a

sub-problem it is possible to sequence a job last so it has zero tardiness, then it should be

sequenced last in the sub-problem. Further search-space pruning occurs by considering the

final job sequences of pairs of search nodes. If two final sequences contain the same subset

of jobs, then the one with the lower weighted tardiness of the subset of jobs is kept while

the other is pruned. If the weighted tardiness of the subset of jobs is the same in these final

sequences, then one of them is discarded. The lower bound for the firstN � l nodes of the

sequence of a search node at levell is computed by solving a Lagrangian relaxation of the

problem. See the original publication of this algorithm for the details of the relaxation and

its solution [156].

8.3.2 Myopic Dispatch Policies

Recall from our earlier discussion of dispatch policies in Chapter 5 that dispatch policies

are heuristic rules for choosing the next job to sequence based on the current local char-

116

acteristics of the problem. There are a few dispatch heuristics in the OR literature for the

problem with a well-grounded basis. These include:

� WSPT: The weighted shortest process time rule optimizes weighted tardiness when

no job can possibly be scheduled earlier than its duedate [188, 145]. It is considered

a good heuristic in highly constrained problems (i.e., most jobs cannot be scheduled

earlier than their duedate). It is defined as:

WSPTi =
wi

pi
: (8.3)

� EDD: The earliest duedate rule is optimal if it is possible to sequence the jobs such

that no job is tardy [145]. In the unweighted version of the problem, EDD optimizes

total tardiness if at most one job is tardy [157]. EDD is considered a good rule

for loosely constrained problems (i.e., problems where most jobs can be scheduled

before their duedate). We define EDD here as:

EDDi =
1

di
(8.4)

� COVERT: The cost over time rule is a more complex dispatch policy that attempts to

combine aspects of both EDD and WSPT [29, 145]. It is defined as:

COVERTi(t) =
wi

pi
(1� max (0; di � pi � t)

kpi
); (8.5)

wheret is the current time, andk is a parameter that requires tuning. Usuallyk is set

in some ad hoc way. Typical values ofk are between 1 and 4 [145].

� R&M: The policy of Rachamadugu and Morton (sometimes referred to as “apparent

urgency” or “apparent tardiness cost”) is another attempt to combine aspects of EDD

and WSPT [160, 146, 145]. It is defined as:

R&M i(t) =
wi

pi
exp(�1 � max (0; di � pi � t)

k�p
); (8.6)

where�p is the average processing time,t is the current time, andk is again a pa-

rameter that requires tuning. Typical ad hoc values fork are again between 1 and

4.

117

Dispatch policy methods, due to their robustness, are particularly used in the dynamic

variation of the problem in which jobs arrive dynamically and the problem is constantly

changing. In the X-Dispatch methods of Narayan, Morton, and Ramnath, the R&M heuris-

tic is extended to allow for the insertion of idle time between the processing of jobs in the

dynamic case to handle the case where a particularly important job might arrive unexpect-

edly [147]. We do not consider the dynamic problem here.

When using one of these heuristics, the next job sequenced is the job with the highest

value of the heuristic. Although the name EDD may imply smallest value of the heuristic

(i.e., “earliest”), we have defined it as1=di to allow for choosing the job with the max of

the heuristic values independent of the heuristic.

Potts and van Wassenhove suggest using a strategy that sequences the jobs four times,

once with each of the four above heuristics (EDD, WSPT, COVERT, R&M), and takes the

best solution of the four [157]. Later, we will take this idea further and use these four

heuristics in conjunction with the QD-BEACON framework and stochastic sampling.

8.3.3 Local Search

Though there currently only exist a very few complete optimal algorithms for the weighted

tardiness sequencing problem, in recent years there have been a number of successful ap-

plications of local search algorithms to the problem. Crauwels, Potts, and Van Wassenhove

compare several such local search methods [59]. The local search approaches considered

in their study include:

� Strict Descent (D): Allows only operations that improve the objective value. Uses

a permutation representation in which pairwise interchanges of jobs in the sequence

are the allowed moves. As an alternative, also considered is a binary encoding of the

problem with single bit flips as the local operator.

� Descent, neutral moves allowed (DN): Same as D, but which allows local moves to

solutions with the same objective value.

� Simulated Annealing (SA): Same representation alternatives and operator sets as

above.

� Threshold Accepting (TA): Same representation alternatives and operator sets as

above.

118

Algorithm 8.1: Multistart Dynasearch for Weighted Tardiness Sequencing
Input: Number of restartsI; An instance of the weighted tardiness sequencing problem
W .
Output: A solutionS.
MULTI START-DYNA SEARCH(I, W)
(1) bestsofar empty solution
(2) for 1 to I

(3) � random sequence of the jobsji in W
(4) stop false
(5) while not stop
(6) compute the recursionF (�k) for k = 0; : : : ; N (use Equation 8.9)
(7) useF (�k) for k = 0; : : : ; N to compute next sequence�
(8) if � did not change (is a local optima)
(9) stop true
(10) if � is better than bestsofar
(11) bestsofar �

(12) return bestsofar

� Tabu Search (TS): Same representation alternatives and operator sets as above.

� Genetic Algorithm (GA): Uses the binary encoding only. They claim they also con-

sidered a GA with a permutation encoding and appropriate operators, but do not

report on those results.

In the results later in this Chapter, these algorithms will be referred to by the abbrevia-

tions given above. In square brackets after the abbreviation will be either a “P” or a “B”

indicating whether the results shown used the permutation representation or a binary rep-

resentation (e.g., D[P] will refer to strict descent using the permutation representation).

8.3.4 Iterated Dynasearch

The current best performing algorithm for the weighted tardiness scheduling problem is

arguably theIterated Dynasearchof Congram, Potts, and van de Velde [51]. It too falls

into the category of local search, but has been singled out here due to its particular success.

Also, later in this Chapter, we will consider the use of VBSS as a method of generating

initial solution states for further improvement by Dynasearch.

To describe the Iterated Dynasearch algorithm, we begin by describingDynasearch.

Dynasearch is essentially a local hill-climber. Its name comes from its local operator set –

or more accurately, its name comes from the method used to compute that operator set. A

119

Algorithm 8.2: Iterated Dynasearch for Weighted Tardiness Sequencing
Input: Number of kicksI; Kick length�; Start from best every� kicks; An instance of
the weighted tardiness sequencing problemW ; a “heuristic” to generate initial solution.
Output: A solutionS.
ITERATED-DYNA SEARCH(I, �, �,W , “heuristic”)
(1) bestsofar jobsji in W sequenced according to heuristic
(2) � bestsofar
(3) for k = 1 to I

(4) stop false
(5) while not stop
(6) compute the recursionF (�k) for k = 0; : : : ; N (use Equation 8.9)
(7) useF (�k) for k = 0; : : : ; N to compute next sequence�
(8) if � did not change (is a local optima)
(9) stop true
(10) if � is better than bestsofar
(11) bestsofar �

(12) if k mod � = 0

(13) � bestsofar
(14) for 1 to �

(15) compute random set of independent swaps and move to neighboring�

(16) return bestsofar

common operator set used by local search algorithms for problems represented as permu-

tations or sequences is pairwise swapping or pairwise interchanging. That is, commonly

the changes in objective value that results from swapping each of theO(n2) pairs of jobs

i, j is considered and the best such swap is taken. In Dynasearch, instead, the best set of

independent swaps is made. In other words, a move in the search space of Dynasearch

can make several swaps all at once. This set of independent swaps is found using dynamic

programming. Let�i be thei-th job in the current sequence. Now initialize:

F (�0) = 0; (8.7)

F (�1) = w�1 max (0; p�1 � d�1); (8.8)

120

and use the recursion:

F (�k) = min

8>>>>>><
>>>>>>:

F (�k�1) + w�k max (0; P�k � d�k);

min0�i�k�2

8>>><
>>>:
F (�i) + w�k max (0; P�i + p�k � d�k)

+
Pk�1

j=i+2w�j max (0; P�j + p�k � p�i+1 � d�j)

+w�i+1 max (0; P�k � d�i+1)

9>>>=
>>>;

(8.9)

whereP�k =
Pk

i=1 p�i . Once this recursion is computed, the next search state (or best

sequence reachable by a set of independent swaps) is determined by backtracking. IfF (�N)

was determined by the first term in the minimization, then job�N is not swapped and we

proceed to determine howF (�N�1) was computed. Otherwise,F (�N) was computed by

the second term in the minimization for some indexi and we swap jobs�N and�i+1, then

proceed to determine howF (�i) was computed and so forth. If no jobs are swapped by this

procedure then we are at a local optima. Otherwise, we repeat the dynamic programming

step to compute the next set of independent swaps.

Congram, Potts, and van de Velde then describe Iterated Dynasearch [51]. They do not

use “iterated” to mean repeating the above described process from some other randomly

chosen starting configuration. Instead, iterated dynasearch makes a series of� = 6 ran-

domly chosen sets of independent swaps beginning from the current local optima. They

call this a “kick”. Every� = 6 iterations, iterated dynasearch performs this kick on the

best found so far local optima instead of on the current local optima. It then begins another

iteration of dynasearch from the resulting sequence. The initial solution configuration of

the very first iteration of iterated dynasearch is generated via some dispatch policy. Iterated

Dynasearch can be seen in Algorithm 8.2.

Additionally, they describe an algorithm they call Multistart Dynasearch, which restarts

Dynasearch at a randomly generated initial starting configuration whenever a local optima

is reached as shown in Algorithm 8.1. In the multistart version of the algorithm, they do

not use a heuristic to seed the starting configurations. They state that unbiased random

starts are more effective, without presenting any evidence to this. Later in the results of

this Chapter, we show their assumption to be false by using VBSS and the QD-BEACON

framework to seed the starting solution configurations of a multistart version of dynasearch.

This results in a significant improvement over the use of unbiased starts. Furthermore,

Congramet al. had shown that Iterated Dynasearch performed better than the multistart

version. However, using QD-BEACON, we are able to further improve upon the Iterated

Dynasearch performance.

121

8.4 The Benchmark Problem Set

The problem sets that we use in this Chapter are from the OR-Library [7, 6]. There are three

problem sets available in the OR-Library: 1)N = 40 jobs; 2)N = 50 jobs; and 3)N = 100

jobs. The integer process timepj of a job is uniformly distributed in the interval[1; 100].

The integer weightwj of a job is uniformly distributed in the interval[1; 10]. The inte-

ger duedatedj is uniformly distributed in the interval[N �p 1�TF�RDD
2

; N �p1�TF+RDD
2

],

where �p is the average processing time, TF is the average tardiness factor, and RDD

is the relative range of duedates. The problem instances generated consider RDD=

f0:2; 0:4; 0:6; 0:8; 1:0g and TF = f0:2; 0:4; 0:6; 0:8; 1:0g. For each of the 25 combina-

tions of these two parameters, 5 problem instances are generated. This is done for all three

numbers of jobs resulting in 125 instances with 40 jobs, 125 instances with 50 jobs, and

125 instances with 100 jobs. Optimal solutions are known for 124 of the 40 job problems

and for 103 of the 50 job problems. For the 100 job problems and for the unsolved 40 and

50 job problems, current best known solutions are available in the OR-Library.

8.5 Performance Criteria

In the experimental results that follow, we use the following performance criteria:

� NO: The number of optimal (or best known) solutions out of 125 problem instances.

For the 100 job problem set, the NO is the best known solutions prior to Congramet

al.’s Iterated Dynasearch to allow for a consistent comparison with all of the solution

methods currently available. So for the 100 job problem set, NO is the number of

at least as good as previous best known solutions out of 125. There are 8 problem

instances with 100 jobs out of 125 for which Congramet al. reports new best known

solutions. In these 8 cases, our approach also finds these new best known, but does

not further improve upon them.

� ARPD: The average relative percentage deviation of the solution value found by the

algorithm from the optimal solution value (or best known). “na” is listed if divide by

zero would occur.

� MRPD: The maximum relative percentage deviation of the solution value found by

the algorithm from the optimal solution value (or best known). “na” is listed if divide

by zero would occur.

122

Algorithm 8.3: QD-BEACON/VBSS Enhanced Multistart Dynasearch for Weighted Tar-
diness Sequencing
Input: Number of restartsI; An instance of the weighted tardiness sequencing problem
W .
Output: A solutionS.
VBSS-QD-BEACON-MULTI START-DYNA SEARCH(I, W)
(1) QD-BEACONINIT(fEDD,WSPT,R&M,COVERTg, fCorresponding bias func-

tionsg)
(2) bestsofar best of the four solutions given by direct use of heuristics
(3) for 1 to I

(4) fheuristic, biasg GETHEURISTICBIASFUNCTIONPAIR()
(5) � sequence of jobs inW obtained by 1 iteration of VBSS
(6) stop false
(7) while not stop
(8) compute the recursionF (�k) for k = 0; : : : ; N (use Equation 8.9)
(9) useF (�k) for k = 0; : : : ; N to compute next sequence�
(10) if � did not change (is a local optima)
(11) stop true
(12) UPDATEAQDF(heuristic, bias, objective(�))
(13) if � is better than bestsofar
(14) bestsofar �

(15) return bestsofar

For each of these criteria, we present the average of 10 runs of the algorithm across all 125

problem instances of each given size. In the Tables of the following Sections, values in

parentheses after the average indicate the best of the 10 runs.

8.6 Using VBSS and QD-BEACON to Enhance Multistart

Dynasearch

The multistart version of dynasearch as described by Congramet al.begins each restart of

the algorithm at an unbiased random starting configuration as discussed above. Congram

et al. stated that there is no advantage to biasing the starting configurations but presented

no evidence. In this Section, we consider using: 1) VBSS and one of the existing dispatch

policies for the problem (EDD, WSPT, R&M, and COVERT) to bias the starting solutions

of each restart; and 2) VBSS and QD-BEACON and all 4 of the heuristics to bias the start-

ing solutions of each restart. The results contradict Congramet al.’s untested hypothesis.

123

Significant improvement over the results of Multistart Dynasearch can be made by using

VBSS and QD-BEACON to bias the starting solution configurations. Algorithm 8.3 shows

the enhanced multistart algorithm.

The bias function was tuned for each of these heuristics for a relatively small number

of iterations for a set of bias functions chosen via the rationale presented in Chapter 4. The

bias functions used by VBSS for each heuristic are: 1) EDD,v4; 2) WSPT,v1; 3) R&M, v2;

and COVERT,v3. R&M and COVERT are both stronger heuristics as compared to WSPT,

thus the stronger bias functions. EDD, as we have defined it, gives very small real values

less than one in a relatively small range. This requires the stronger bias function to spread

out the values used by VBSS for EDD in its roulette wheel decisions. The scale parameter

k of the COVERT and R&M heuristics has been set to 3.0. QD-BEACON uses these same

4 heuristics and bias functions. We will refer to the various algorithms considered using

the following abbreviations:

� EDD[N]: Using VBSS and the EDD heuristic to seedN restarts of multistart dy-

nasearch.

� WSPT[N]: Using VBSS and the WSPT heuristic to seedN restarts of multistart

dynasearch.

� COVERT[N]: Using VBSS and the COVERT heuristic to seedN restarts of multi-

start dynasearch.

� RM[N]: Using VBSS and the R&M heuristic to seedN restarts of multistart dy-

nasearch.

� NAIVE[N]: Using VBSS to seedN restarts of multistart dynasearch (N=4 restarts

with each of the 4 heuristics).

� NORM[N]: Using QD-BEACON/VBSS and all 4 heuristics with Normal distribution

estimates of the AQDFs to seedN restarts of multistart dynasearch.

� KDE[N]: Using QD-BEACON/VBSS and all 4 heuristics with Kernel Density Esti-

mates of the AQDFs to seedN restarts of multistart dynasearch.

� GEV[N]: Using QD-BEACON/VBSS and all 4 heuristics with GEV distribution es-

timates of the AQDFs to seedN restarts of multistart dynasearch.

124

� M-DYNA[N]: N restarts of multistart dynasearch using unbiased starting configura-

tions as specified by Congramet al.originally.

The results of a comparison of these algorithms for the 40 job problems, 50 job prob-

lems, and 100 job problems can be found in Table 8.1, Table 8.2, and Table 8.3, respectively.

We can make the following general observations about these results:

� M-DYNA[N], the original Multistart Dynasearch algorithm using unbiased random

starting solution configurations, is the second worst algorithm considered in this com-

parison for any number of restartsN . It is only able to defeat WSPT[N] (Multistart

Dynasearch with starting configurations seeded by VBSS and the WSPT heuristic)

which does very poorly on average. Thus, Congramet al.’s previously untested hy-

pothesis is falsified (i.e., there is a benefit to using heuristic knowledge to seed the

starts of the multistart dynasearch algorithm).

� For the 40 job problem set (Table 8.1), combining multiple heuristics in the search is

not at all necessary. Using VBSS with only the COVERT heuristic to seed the starting

solution configurations performs best for each number of restarts considered; and for

400 or more restarts is able to consistently solve to optimality all 125 instances from

the 40 job problem set.

� Turning to the 50 job problem set (Table 8.2), we see that for up to 200 restarts seed-

ing the starting configurations with VBSS and COVERT again does best in terms of

number of instances solved to optimality; while we now see that seeding the restarts

with VBSS and EDD does best in terms of relative percentage deviation. There is

one problem instance for which seeding the restarts with VBSS and COVERT does

very poorly (see the high MRPD for COVERT[N] for any value ofN). By combin-

ing the heuristics, we can also combine their problem-solving strengths. As you can

see in the results for 400 or more restarts, the best strategy for combining heuristics

is KDE[N]. It is the only strategy that is able to consistently solve to optimality all

125 problem instances with 50 jobs.

� Combining heuristics is most effective in solving the instances from the 100 job

problem set (Table 8.3). In particular, using QD-BEACON with Kernel Density Es-

timates performs best in terms of the number of best known solutions found for all

numbers of restarts considered and is only marginally second best in terms of rel-

ative percentage deviation. For 800 restarts or less, QD-BEACON using the GEV

125

Table 8.1: 40 Job Set: QD-BEACON/VBSS Enhanced Multistart Dynasearch vs the origi-
nal Multistart Dynasearch. For each number of restarts, bold indicates the best in terms of
number of optimal solutions; italics indicates the best in terms of percentage deviation.

Algorithm NO ARPD MRPD
COVERT[100] 124 (125) 0.03 (0.00) 3.70 (0.00)
KDE[100] 123.3 (124) 0.011 (0.010 1.29 (1.29)
NORM[100] 122.7 (125) 0.007 (0.000) 0.88 (0.00)
GEV[100] 122.7 (123) 0.011 (0.011) 1.29 (1.29)
EDD[100] 121 (124) 0.034 (0.002) 3.21 (0.26)
RM[100] 116.3 (119) 0.13 (0.09) 9.77 (9.77)
M-DYNA[100] 112.7 (118) 0.38 (0.21) 10.58 (8.33)
WSPT[100] 89.3 (98) 1.38 (0.77) 51.36 (21.51)
COVERT[200] 124.7 (125) 0.008 (0.000) 0.96 (0.00)
KDE[200] 124 (125) 0.007 (0.000) 0.86 (0.00)
GEV[200] 123.3 (124) 0.007 (0.0005) 0.88 (0.06)
NORM[200] 123 (125) 0.007 (0.000) 0.88 (0.00)
EDD[200] 122.3 (124) 0.027 (0.002) 3.18 (0.26)
RM[200] 119 (121) 0.053 (0.016) 4.87 (1.29)
M-DYNA[200] 115.3 (121) 0.25 (0.11) 7.59 (6.70)
WSPT[200] 97 (105) 1.21 (0.71) 48.78 (16.86)
COVERT[400] 125 (125) 0.00 (0.00) 0.00 (0.00)
NAIVE[400] 125 (125) 0.00 (0.00) 0.00 (0.00)
KDE[400] 124.3 (125) 0.007 (0.000) 0.86 (0.00)
GEV[400] 124 (125) 0.007 (0.000) 0.86 (0.00)
NORM[400] 123.3 (125) 0.007 (0.000) 0.86 (0.00)
EDD[400] 123.3 (124) 0.008 (0.002) 0.95 (0.26)
RM[400] 120.3 (121) 0.023 (0.016) 1.86 (1.29)
M-DYNA[400] 119.3 (122) 0.13 (0.05) 7.25 (5.41)
WSPT[400] 101.3 (109) 1.07 (0.60) 46.49 (16.86)
NAIVE[800] 125 (125) 0.00 (0.00) 0.00 (0.00)
GEV[800] 124.7 (125) 0.0007 (0.0000) 0.086 (0.000)
KDE[800] 124.3 (125) 0.007 (0.000) 0.86 (0.00)
NORM[800] 123.7 (125) 0.007 (0.000) 0.86 (0.00)
M-DYNA[800] 121.3 (123) 0.07 (0.05) 5.93 (5.41)
NAIVE[1600] 125 (125) 0.00 (0.00) 0.00 (0.00)
GEV[1600] 125 (125) 0.00 (0.00) 0.00 (0.00)
KDE[1600] 124.3 (125) 0.007 (0.000) 0.86 (0.00)
NORM[1600] 123.7 (125) 0.007 (0.000) 0.86 (0.00)
M-DYNA[1600] 122.7 (124) 0.04 (0.02) 4.55 (2.84)

126

Table 8.2: 50 Job Set: QD-BEACON/VBSS Enhanced Multistart Dynasearch vs the origi-
nal Multistart Dynasearch. For each number of restarts, bold indicates the best in terms of
number of optimal solutions; italics indicates the best in terms of percentage deviation.

Algorithm NO ARPD MRPD
COVERT[100] 119.7 (122) 1.08 (0.19) 125.89 (22.92)
NORM[100] 113.7 (122) 0.03 (0.001) 1.62 (0.10)
KDE[100] 111.7 (123) 0.059 (0.002) 2.74 (0.13)
GEV[100] 111 (122) 0.059 (0.002) 2.79 (0.10)
EDD[100] 109.7 (115) 0.022 (0.009) 1.19 (0.42)
RM[100] 105.3 (114) 0.20 (0.19) 22.92 (22.92)
M-DYNA[100] 89.3 (96) 0.49 (0.32) 12.10 (11.20)
WSPT[100] 73 (82) na (1.24) na (31.55)
COVERT[200] 121.3 (122) 1.08 (0.19) 125.89 (22.92)
KDE[200] 116.7 (125) 0.053 (0.00) 2.70 (0.00)
NORM[200] 116.7 (124) 0.03 (0.0008) 1.59 (0.10)
GEV[200] 114 (124) 0.059 (0.0008) 2.79 (0.10)
EDD[200] 112.3 (115) 0.013 (0.008) 0.54 (0.42)
RM[200] 110.3 (116) 0.20 (0.19) 22.92 (22.92)
M-DYNA[200] 95.7 (104) 0.33 (0.21) 12.05 (11.20)
WSPT[200] 78.7 (87) na (1.00) na (31.55)
KDE[400] 124.0 (125) 0.022 (0.00) 2.70 (0.00)
NAIVE[400] 123 (124) 0.0014 (0.0008) 0.11 (0.10)
COVERT[400] 121.7 (122) 1.07 (0.19) 125.89 (22.92)
NORM[400] 121.3 (124) 0.029 (0.0008) 1.59 (0.10)
GEV[400] 121.0 (124) 0.054 (0.0008) 2.72 (0.10)
EDD[400] 116.7 (120) 0.008 (0.006) 0.42 (0.42)
RM[400] 114.3 (118) 0.19 (0.19) 22.92 (22.92)
M-DYNA[400] 101.3 (108) 0.24 (0.16) 8.57 (7.26)
WSPT[400] 82 (92) 1.14 (0.92) 34.43 (31.55)
KDE[800] 124.7 (125) 0.007 (0.00) 2.67 (0.00)
NAIVE[800] 124 (124) 0.0008 (0.0008) 0.10 (0.10)
NORM[800] 123 (124) 0.029 (0.0008) 1.59 (0.10)
GEV[800] 122.7 (124) 0.054 (0.0008) 2.72 (0.10)
M-DYNA[800] 107.3 (114) 0.17 (0.08) 7.98 (4.89)
KDE[1600] 125 (125) 0.000 (0.000) 0.00 (0.00)
GEV[1600] 124 (125) 0.021 (0.000) 2.67 (0.00)
NAIVE[1600] 124 (124) 0.0008 (0.0008) 0.10 (0.10)
NORM[1600] 123.3 (124) 0.029 (0.0008) 1.59 (0.10)
M-DYNA[1600] 113.3 (118) 0.12 (0.06) 5.93 (4.89)

127

Table 8.3: 100 Job Set: QD-BEACON/VBSS Enhanced Multistart Dynasearch vs the orig-
inal Multistart Dynasearch. For each number of restarts, bold indicates the best in terms of
number of best known solutions; italics indicates the best in terms of percentage deviation.

Algorithm NO ARPD MRPD
KDE[100] 79.7 (95) 0.18 (0.15) 11.28 (11.28)
GEV[100] 76.3 (93) 0.16 (0.10) 11.28 (11.28)
NORM[100] 76 (94) 0.19 (0.15) 11.28 (11.28)
COVERT[100] 70 (81) na (na) na (na)
RM[100] 69.3 (77) 0.22 (0.15) 13.51 (11.28)
EDD[100] 60.3 (70) 0.39 (0.29) 17.09 (11.28)
M-DYNA[100] 48.7 (60) 2.48 (1.61) 92.59 (61.20)
WSPT[100] 39 (45) na (na) na (na)
KDE[200] 88.7 (102) 0.16 (0.14) 11.28 (11.28)
NORM[200] 85 (102) 0.18 (0.14) 11.28 (11.28)
GEV[200] 82.7 (97) 0.13 (0.02) 10.07 (1.67)
COVERT[200] 76.7 (87) na (na) na (na)
RM[200] 75.3 (82) 0.20 (0.15) 13.51 (11.28)
EDD[200] 66 (78) 0.38 (0.28) 16.92 (11.28)
M-DYNA[200] 56.3 (68) 2.06 (1.34) 92.59 (61.20)
WSPT[200] 43.3 (47) na (na) na (na)
KDE[400] 94.3 (108) 0.12 (0.04) 10.07 (5.14)
NORM[400] 90.7 (106) 0.13 (0.02) 10.07 (1.79)
GEV[400] 89 (104) 0.12 (0.005) 10.07 (0.31)
NAIVE[400] 85 (94) 0.14 (0.14) 11.28 (11.28)
COVERT[400] 84 (93) na (na) na (na)
RM[400] 78.7 (84) 0.19 (0.15) 13.51 (11.28)
EDD[400] 73.7 (83) 0.26 (0.16) 9.75 (6.69)
M-DYNA[400] 62 (70) 1.66 (1.06) 76.18 (53.31)
WSPT[400] 46.7 (52) na (na) na (na)
KDE[800] 100.7 (111) 0.12 (0.04) 10.07 (5.14)
NORM[800] 97 (108) 0.123 (0.016) 10.07 (1.79)
GEV[800] 95.3 (110) 0.11 (0.001) 10.07 (0.05)
NAIVE[800] 89.3 (98) 0.14 (0.14) 11.28 (11.28)
M-DYNA[800] 68.3 (76) 1.29 (0.47) 74.28 (18.06)
KDE[1600] 107.3 (117) 0.11 (0.04) 8.47 (5.14)
NORM[1600] 104.7 (117) 0.07 (0.015) 5.69 (1.79)
GEV[1600] 100.3 (113) 0.10 (0.001) 10.07 (0.05)
NAIVE[1600] 95 (101) 0.12 (0.098) 9.75 (6.69)
M-DYNA[1600] 73.3 (84) 1.16 (0.46) 71.06 (18.06)

128

Table 8.4: Tracking of the number of samples allocated to each of the four heuristics by
QD-BEACON using KDE on a single (100 job) problem instance.

COVERT RM EDD WSPT
61 17 12 10
156 22 12 10
253 25 12 10
352 26 12 10
451 27 12 10
551 27 12 10
650 28 12 10
749 28 13 10
846 30 14 10
944 31 14 11

distribution does best in terms of relative percentage deviation; while QD-BEACON

using Normal distributions does best in terms of relative percentage deviation for

1600 restarts.

In Table 8.4, we show a tracking of the number of samples allocated to each of the four

heuristics by QD-BEACON using KDE on a single (100 job) problem instance. For this

particular problem instance, QD-BEACON strongly favors using the COVERT heuristic

as can be seen in the number of samples allocated to COVERT. However, the exploration

strategy does not entirely abandon the other heuristics. In particular, the R&M heuristic

is allocated a few samples throughout the run. EDD and WSPT, though they are given

far fewer samples, are not totally abandoned (e.g., WSPT is given an additional sample on

iteration 976 despite not being sampled since iteration 40).

A lesson that can be taken home from this study is that for the easier problems (e.g.,

40 job instances), the multiple heuristic approach may not be necessary. Searching the

neighborhood around a single heuristic may be sufficient. In this case, it was. As you

increase problem difficulty (the 50 job problem set and 100 job problem set), there is an

advantage to incorporating multiple heuristics within the search routine. It is for the most

difficult problem instances (the 100 job problem set) that we gain the most benefit of using

the QD-BEACON framework.

129

Algorithm 8.4: QD-BEACON Enhanced Iterated Dynasearch for Weighted Tardiness Se-
quencing
Input: Number of kicksI; Kick length�; Start from best every� kicks; An instance of
the weighted tardiness sequencing problemW .
Output: A solutionS.
QD-BEACON-ITERATED-DYNA SEARCH(I, �, �,W)
(1) best[EDD] jobsji in W sequenced according to EDD
(2) best[WSPT] jobsji in W sequenced according to WSPT
(3) best[RM] jobsji in W sequenced according to R&M
(4) best[COVERT] jobsji in W sequenced according to COVERT
(5) bestsofar best of best[EDD], best[WSPT], best[RM], best[COVERT]
(6) �EDD best[EDD]
(7) �WSPT best[WSPT]
(8) �RM best[RM]
(9) �COV ERT best[COVERT]
(10) N[EDD] 0, N[WSPT] 0, N[RM] 0, N[COVERT] 0

(11) QD-BEACONINIT(fEDD,WSPT,R&M,COVERTg, fbias functions not usedg)
(12) for k = 1 to I

(13) fheuristic, biasg GETHEURISTICBIASFUNCTIONPAIR()
(14) N[heuristic] 1+ N[heuristic]
(15) stop false
(16) while not stop
(17) compute the recursionF (�heuristick) for k = 0; : : : ; N (use Equation 8.9)
(18) useF (�heuristick) for k = 0; : : : ; N to compute next sequence�heuristic

(19) if �heuristic did not change (is a local optima)
(20) stop true
(21) UPDATEAQDF(heuristic, bias, objective(�heuristic))
(22) if �heuristic is better than bestsofar
(23) bestsofar �heuristic

(24) if �heuristic is better than best[heuristic]
(25) best[heuristic] �heuristic

(26) if N[heuristic]mod � = 0

(27) �heuristic best[heuristic]
(28) for 1 to �

(29) compute random set of independent swaps and move to neighboring�heuristic

(30) return bestsofar

130

8.7 Using QD-BEACON to Enhance Iterated Dynasearch

The Iterated Dynasearch algorithm is the current best performing algorithm for weighted

tardiness sequencing problems. Even the VBSS/QD-BEACON Enhanced Multistart Dy-

nasearch, though better than plain Multistart Dynasearch, does not compare to Iterated Dy-

nasearch. The question we consider here is whether Iterated Dynasearch can be improved

further by using QD-BEACON in some way.

Recall that the Iterated Dynasearch algorithm seeds its initial solution by the direct de-

terministic application of a dispatch policy. The dispatch policy that we have chosen to use

is a best of four heuristics where the four heuristics are EDD, WSPT, R&M, and COVERT.1

Now recall that given the initial start, iterated dynasearch makes local improvements via

sets of independent swaps until a local optima is reached. When a local optima is reached,

it “kicks” the current search state with a series of random sets of independent swaps. Every

so many iterations, it “kicks” the current best found solution instead of the current local

optima.

We modify the Iterated Dynasearch algorithm to interleave the execution of 4 simul-

taneous iterated dynasearches. Each of these 4 searches begins at an initial starting con-

figuration given by one of the 4 dispatch policies. The QD-BEACON framework is used

to model the distributions of local optima encountered by each of these 4 independent

searches. QD-BEACON is further used to control the number of iterations given to each of

the independent searches based on the probability of finding a better solution than the best

found so far implied by the AQDFs of each independent search. The hypothesis is that if

the 4 different starting configurations are spread far enough apart in the objective landscape

then we may be able to conduct a local search of as many as four different regions of the

search space while expending more effort on the region that looks the most promising. The

QD-BEACON enhanced version of iterated dynasearch is shown in Algorithm 8.4.

The results can be found in Table 8.5 (40 job problems), Table 8.6 (50 job problems),

and Table 8.7 (100 job problems). We compare the following:

� I-DYNA[N]: The original Iterated Dynasearch, where the starting configuration of

the search is the best solution given by the deterministic application of each of the

four dispatch policies.N is the number of kicks.

� NORM-I-DYNA[N]: Iterated Dynasearch enhanced using QD-BEACON. Four inde-

pendent iterated dynasearches are interleaved, each beginning from a dispatch policy
1Congramet al.originally used R&M.

131

Table 8.5: 40 Job Set: QD-BEACON Enhanced Iterated Dynasearch vs the original Iterated
Dynasearch. For each number of iterations (kicks), bold indicates the best in terms of
number of optimal solutions; italics indicates the best in terms of percentage deviation.

Algorithm NO ARPD MRPD
I-DYNA[100] 122.7 (125) 0.05 (0.00) 5.01 (0.00)
KDE-I-DYNA[100] 122.3 (124) 0.03 (0.01) 3.09 (1.29)
GEV-I-DYNA[100] 121.7 (125) 0.045 (0.000) 4.53 (0.00)
NORM-I-DYNA[100] 121.3 (123) 0.03 (0.01) 3.09 (1.29)
KDE-I-DYNA[200] 125 (125) 0.0 (0.0) 0.0 (0.0)
I-DYNA[200] 124 (125) 0.026 (0.000) 3.17 (0.00)
NORM-I-DYNA[200] 123.7 (125) 0.025 (0.000) 2.66 (0.00)
GEV-I-DYNA[200] 123.7 (125) 0.025 (0.000) 2.72 (0.00)
KDE-I-DYNA[400] 125 (125) 0.0 (0.0) 0.0 (0.0)
I-DYNA[400] 124.7 (125) 0.0008 (0.0000) 0.11 (0.00)
GEV-I-DYNA[400] 124.3 (125) 0.007 (0.000) 0.86 (0.00)
NORM-I-DYNA[400] 124 (125) 0.025 (0.000) 2.66 (0.00)
KDE-I-DYNA[800] 125 (125) 0.0 (0.0) 0.0 (0.0)
I-DYNA[800] 125 (125) 0.0 (0.0) 0.0 (0.0)
GEV-I-DYNA[800] 124.7 (125) 0.003 (0.000) 0.43 (0.00)
NORM-I-DYNA[800] 124.7 (125) 0.003 (0.000) 0.43 (0.00)
NORM-I-DYNA[1600] 125 (125) 0.0 (0.0) 0.0 (0.0)
KDE-I-DYNA[1600] 125 (125) 0.0 (0.0) 0.0 (0.0)
GEV-I-DYNA[1600] 125 (125) 0.0 (0.0) 0.0 (0.0)
I-DYNA[1600] 125 (125) 0.0 (0.0) 0.0 (0.0)

solution given by one of the four heuristics. QD-BEACON using Normal distribution

estimates is used to control the proportion of computation time allocated each of the

searches as in Algorithm 8.4.N is the total number of kicks that must be allocated

to the four searches.

� KDE-I-DYNA[N]: Iterated Dynasearch enhanced using QD-BEACON. Four inde-

pendent iterated dynasearches are interleaved, each beginning from a dispatch policy

solution given by one of the four heuristics. QD-BEACON using kernel density es-

timates is used to control the proportion of computation time allocated each of the

searches as in Algorithm 8.4.N is the total number of kicks that must be allocated

to the four searches.

� GEV-I-DYNA[N]: Iterated Dynasearch enhanced using QD-BEACON. Four inde-

pendent iterated dynasearches are interleaved, each beginning from a dispatch policy

132

Table 8.6: 50 Job Set: QD-BEACON Enhanced Iterated Dynasearch vs the original Iterated
Dynasearch. For each number of iterations (kicks), bold indicates the best in terms of
number of optimal solutions; italics indicates the best in terms of percentage deviation.

Algorithm NO ARPD MRPD
KDE-I-DYNA[100] 111.7 (120) 0.038 (0.007) 2.05 (0.29)
I-DYNA[100] 111 (116) 0.06 (0.03) 4.06 (1.63)
NORM-I-DYNA[100] 110.7 (120) 0.04 (0.02) 2.80 (2.27)
GEV-I-DYNA[100] 109.7 (120) 0.034 (0.007) 1.47 (0.49)
NORM-I-DYNA[200] 119 (121) 0.019 (0.006) 1.51 (0.41)
KDE-I-DYNA[200] 118.7 (121) 0.019 (0.005) 1.43 (0.29)
GEV-I-DYNA[200] 116.7 (122) 0.017 (0.004) 1.04 (0.36)
I-DYNA[200] 115.3 (119) 0.03 (0.01) 2.32 (0.62)
NORM-I-DYNA[400] 121 (123) 0.009 (0.003) 0.67 (0.17)
GEV-I-DYNA[400] 121 (123) 0.012 (0.002) 1.00 (0.23)
KDE-I-DYNA[400] 120.7 (122) 0.014 (0.005) 1.16 (0.29)
I-DYNA[400] 119.3 (121) 0.010 (0.004) 0.74 (0.23)
GEV-I-DYNA[800] 122.7 (124) 0.004 (0.002) 0.31 (0.23)
NORM-I-DYNA[800] 122 (124) 0.004 (0.001) 0.25 (0.16)
KDE-I-DYNA[800] 121.7 (124) 0.009 (0.002) 0.78 (0.29)
I-DYNA[800] 121 (123) 0.005 (0.003) 0.27 (0.23)
NORM-I-DYNA[1600] 123 (124) 0.003 (0.001) 0.23 (0.16)
GEV-I-DYNA[1600] 123 (124) 0.003 (0.002) 0.29 (0.23)
KDE-I-DYNA[1600] 122.7 (124) 0.007 (0.002) 0.70 (0.23)
I-DYNA[1600] 122 (123) 0.004 (0.003) 0.21 (0.17)

solution given by one of the four heuristics. QD-BEACON using GEV distribution

estimates is used to control the proportion of computation time allocated each of the

searches as in Algorithm 8.4.N is the total number of kicks that must be allocated

to the four searches.

The results of a comparison of these algorithms for the 40 job problems, 50 job prob-

lems, and 100 job problems can be found in Table 8.1, Table 8.2, and Table 8.3, respectively.

We can make the following general observations about these results:

� For the 40 job problem set (Table 8.1), with a small number of total kicks,N =

100, the original iterated dynasearch, I-DYNA[N] is able to find more of the optimal

solutions on average as compared to the other algorithms; while using QD-BEACON

to enhance the search does result in improved relative percentage deviation from the

optimal solution values. However, more importantly, with as few as 200 total kicks,

using QD-BEACON with Kernel Density Estimation to enhance the search (KDE-

133

Table 8.7: 100 Job Set: QD-BEACON Enhanced Iterated Dynasearch vs the original Iter-
ated Dynasearch. For each number of iterations (kicks), bold indicates the best in terms of
number of optimal solutions; italics indicates the best in terms of percentage deviation.

Algorithm NO ARPD MRPD
I-DYNA[100] 93.3 (108) 0.069 (0.004) 5.09 (0.16)
KDE-I-DYNA[100] 85 (100) 0.06 (0.01) 3.54 (0.64)
NORM-I-DYNA[100] 84.7 (101) 0.09 (0.02) 4.83 (1.79)
GEV-I-DYNA[100] 81.3 (95) 0.12 (0.03) 6.72 (1.89)
I-DYNA[200] 102.3 (114) 0.026 (0.002) 2.03 (0.16)
KDE-I-DYNA[200] 101.7 (116) 0.025 (0.007) 1.44 (0.64)
NORM-I-DYNA[200] 99 (111) 0.048 (0.017) 3.29 (1.79)
GEV-I-DYNA[200] 95 (106) 0.077 (0.005) 6.62 (0.22)
KDE-I-DYNA[400] 112 (119) 0.020 (0.006) 1.44 (0.64)
NORM-I-DYNA[400] 111 (120) 0.03 (0.01) 3.15 (1.79)
I-DYNA[400] 110.7 (120) 0.0064 (0.0009) 0.46 (0.08)
GEV-I-DYNA[400] 108.7 (118) 0.014 (0.001) 0.71 (0.09)
NORM-I-DYNA[800] 118.7 (124) 0.013 (0.005) 1.40 (0.64)
KDE-I-DYNA[800] 118.3 (122) 0.013 (0.005) 1.40 (0.64)
GEV-I-DYNA[800] 117.7 (124) 0.0058 (0.0003) 0.61 (0.04)
I-DYNA[800] 117.3 (123) 0.0051 (0.0004) 0.45 (0.04)
KDE-I-DYNA[1600] 122.7 (125) 0.005 (0.000) 0.61 (0.00)
I-DYNA[1600] 121.7 (125) 0.0022 (0.0000) 0.24 (0.00)
GEV-I-DYNA[1600] 121.7 (124) 0.0022 (0.0001) 0.25 (0.01)
NORM-I-DYNA[1600] 121.3 (124) 0.012 (0.005) 1.40 (0.64)

I-DYNA[N]) can consistently solve to optimality all 125 problem instances. The

original iterated dynasearch requires 800 kicks (I-DYNA[800]) before it begins to

consistently solve all 125 problem instances to optimality.

� For the 50 job problem set (Table 8.2), some version of the QD-BEACON enhanced

algorithm is the best performer for each number of kicks considered and for both the

number of optimal solutions found and for relative percentage deviation. An even

stronger observation is that for any number of kicks greater than or equal to 200, the

original iterated dynasearch is the worst performer of those algorithms considered in

terms of number of solutions solved to optimality (i.e., the QD-BEACON enhanced

algorithm is better than I-DYNA independent of which of the three estimation meth-

ods is used for the AQDFs).

� For the 100 job problem set (Table 8.3), I-DYNA does best for 200 or less kicks in

134

Table 8.8: 40 Job Set: Comparison of QD-BEACON Enhanced Iterated Dynasearch with
various Local Search Algorithms.

Algorithm NO ARPD MRPD TIME
KDE[200] 124 0.01 0.86 0.70
KDE-I-DYNA[200] 125 0.00 0.00 0.20
D[P] 120 0.04 4.21 0.55
D[B] 121 0.00 0.05 0.76
DN[P] 115 0.01 0.41 0.77
DN[B] 123 0.00 0.05 0.81
SA[P] 121 0.01 0.81 0.84
SA[B] 116 0.00 0.07 0.85
TA[P] 121 0.06 6.70 0.86
TA[B] 119 0.00 0.05 0.83
TS[P] 123 0.00 0.17 0.84
TS[B] 122 0.00 0.21 0.82
GA[B] 119 0.00 0.08 0.45

terms of number of best known solutions found; while the QD-BEACON enhanced

algorithm using kernel density estimation is best in terms of relative percentage devi-

ation. However, as more kicks are given the algorithms, the QD-BEACON enhanced

approach does best in number of best known solutions found (for 400 kicks or more).

Overall, the QD-BEACON enhanced approach has some benefit. For the 40 job problems,

it allows us to consistently solve all problem instances to optimality with fewer iterations

(kicks) and thus less CPU time. For the 50 job problems, the QD-BEACON enhanced

approach is always best, independent of the number of iterations given the algorithms. Fi-

nally, for the most difficult problem set (the 100 job problems), the QD-BEACON enhanced

approach performs best for longer searches.

8.8 Comparison with Other Local Search Algorithms

In this Section, we compare the QD-BEACON enhanced iterated dynasearch to the local

search algorithms listed earlier in Section 8.3.3. These local search algorithms were orig-

inally tested by Crauwelset al. on an HP 9000/G50 which ran at 96MHz [59]. We have

used a very crude conversion of the CPU times reported by Crauwelset al.to the equivalent

CPU times on our Sun Ultra 10/300MHz. That is, we have multiplied the times reported

by Crauwelset al.by 96
300

.

135

Table 8.9: 50 Job Set: Comparison of QD-BEACON Enhanced Iterated Dynasearch with
various Local Search Algorithms.

Algorithm NO ARPD MRPD TIME
KDE[200] 117 0.05 2.70 1.27
GEV-I-DYNA[800] 123 0.00 0.31 1.26
D[P] 119 0.00 0.26 1.41
D[B] 112 0.01 0.18 1.76
DN[P] 102 0.02 0.84 1.79
DN[B] 114 0.01 0.19 1.76
SA[P] 115 0.09 11.20 1.96
SA[B] 101 0.01 0.45 1.92
TA[P] 111 0.01 0.28 2.05
TA[B] 108 0.01 0.18 1.82
TS[P] 118 0.00 0.16 1.89
TS[B] 115 0.01 0.36 1.72
GA[B] 113 0.01 0.19 1.00

Table 8.10: 100 Job Set: Comparison of QD-BEACON Enhanced Iterated Dynasearch with
various Local Search Algorithms.

Algorithm NO ARPD MRPD TIME
KDE[400] 94 0.12 10.07 8.70
KDE-I-DYNA[1600] 123 0.01 0.61 5.61
D[P] 86 0.06 4.78 12.54
D[B] 57 0.06 1.85 12.83
DN[P] 72 0.07 4.78 12.83
DN[B] 69 0.04 1.85 13.02
SA[P] 59 0.12 4.78 12.96
SA[B] 59 0.16 1.05 13.06
TA[P] 70 0.10 4.78 12.83
TA[B] 64 0.06 1.86 12.67
TS[P] 103 0.04 4.39 12.03
TS[B] 66 0.04 0.34 14.43
GA[B] 77 0.03 0.76 11.94

The results of this comparison with various local search algorithms is seen in Table 8.8,

Table 8.9, and Table 8.10 for the 40 job, 50 job, and 100 job problem sets, respectively.

In each table, we list the local search results as reported by Crauwelset al. with the CPU

times adjusted as we have stated above. Also listed in each table, is the best variation of the

multistart dynasearch algorithm for a comparable CPU time as well as the best variation of

the iterated dynasearch algorithm for a comparable CPU time. We can make the following

136

observations:

� For the 40 job problems (Table 8.8), KDE-I-DYNA[200] is the clear winner in the

comparison. As mentioned earlier, for as few as 200 kicks (iterations) of the QD-

BEACON with KDE Enhanced Iterated Dynasearch algorithm, we can optimally

solve all 125 of the 40 job instances. This can be done in a fraction of the time

the other algorithms require. The next best algorithm is the QD-BEACON/VBSS

Enhanced Multistart Dynasearch with 200 restarts (KDE[200]), but this algorithm

requires significantly more time than KDE-I-DYNA[200].

� For the 50 job problems (Table 8.9), GEV-I-DYNA[800] is the clear winner. The QD-

BEACON (with GEV) Enhanced Iterated Dynasearch algorithm with 800 iterations

(kicks) optimally solves more of the 50 job problems with less relative percentage

deviation from the optimal and in less CPU time than any of the other local search

algorithms. In the same amount of CPU time, there is only enough time for 200

restarts of the multistart algorithm, while the 800 kicks of the iterated algorithm lead

to better results.

� For the 100 job problems (Table 8.10), in less than half the amount of time, KDE-I-

DYNA[1600] is able to find significantly more of the best known solutions than any

of the other local search algorithms. In fact, the QD-BEACON with KDE Enhanced

Iterated Dynasearch with 1600 iterations (kicks) requires less time than 400 restarts

of the QD-BEACON with KDE Enhanced Multistart Dynasearch; and in that less

time is able to find approximately 30% more of the best known solutions.

The overall result is that the QD-BEACON Enhanced Iterated Dynasearch Algorithm is

clearly the dominant algorithm for this problem as compared to the other local search al-

gorithms available as benchmarks.

8.9 Summary

In this Chapter, we considered the problem of weighted tardiness sequencing. This is an

NP-Hard optimization problem for which complete search algorithms are currently unable

to guarantee finding optimal solutions to problems larger than 40-50 jobs.

We presented enhanced versions of the two current best local search algorithms for the

problem:

137

� First, we used the QD-BEACON framework to combine the use of four different

dispatch policies within the VBSS framework to seed the starting solution configura-

tions of a multistart version of the dynasearch algorithm. The result was that, contrary

to Congramet al.’s untested hypothesis, we were able to obtain better results by us-

ing heuristic guidance in seeding the restarts. We were able to then further improve

upon the performance by combining multiple heuristics within the QD-BEACON

framework.

� Second, we used the QD-BEACON framework to enhance the iterated dynasearch

algorithm. Until now, Iterated Dynasearch was the best performing algorithm for

this problem. Our enhanced version, uses QD-BEACON to control the amount of

search allocated to each of four independent iterated dynasearches whose execution

is interleaved. Each of these four iterated dynasearches begins at a different initial

starting solution provided by one of four dispatch policies. QD-BEACON is used to

model the distribution of local optima encountered by each and to control the number

of iterations (kicks) given to each of the four. This allows the search to explore as

many as four different regions of the search space, concentrating more effort on the

more promising regions as the search continues. The original Iterated Dynasearch

algorithm of Congramet al. began its search at a single starting solution state. The

QD-BEACON Enhanced version exhibits improved performance and thus shows us

that there is a benefit to the approach. Additionally, this QD-BEACON Enhanced

Iterated Dynasearch is the new best algorithm for the problem.

138

Chapter 9

Application: Resource Constrained

Project Scheduling with Time Windows

9.1 Overview

In this Chapter, we consider the resource constrained project scheduling problem with time

windows (RCPSP/max). RCPSP/max is the RCPSP with generalized precedence relations

between start times of activities. It is a difficult makespan minimization problem well stud-

ied by the Operations Research community. Finding feasible solutions to instances of the

RCPSP/max is NP-Hard, making the optimization problem very difficult. The RCPSP/max

problem adds an interesting dimension to the analysis of the QD-BEACON/VBSS frame-

work in that solving this problem requires handling a difficult CSP problem within the

context of the optimization process.

The RCPSP/max problem is applicable within the COMIREM project of the CMU

Robotics Institute [186, 187]. COMIREM (Continuous, Mixed-Initiative Resource Man-

agement) is a system for collaborative, incremental development of plans and schedules

in dynamic, resource-constrained domains. Through lightweight plug-in applications, the

objective of COMIREM is to deliver a wide-range of web-based planning and scheduling

services. The VBSS/QD-BEACON framework, with its simple, fast, effective stochastic

search abilities, will become a valuable addition to the COMIREM system provided it is

capable of efficiently solving the RCPSP/max problem.

The RCPSP/max problem is also applicable within the CMU Robotics Institute project

FIRE. The FIRE (Federation of Intelligent Robotic Explorers) project team is developing a

market-based distributed multi-robot coordination architecture [89, 90]. The architecture is

139

comprised of three layers: the planning, executive, and behavior layers. The planning layer

is further subdivided into various components. Two primary components of this planning

layer include: 1) the RoboTrader which is responsible for activities such as bidding on tasks

and conducting auctions; and 2) the RoboScheduler which is responsible for activities such

as evaluating the cost associated with scheduling a potential new task and the savings asso-

ciated with removing some task from its current schedule. It is within the RoboScheduler

that the RCPSP/max problem is relevant. In the current instantiation of the FIRE system,

the Scheduler is faced with the need to frequently solve numerous scheduling problems

that are essentially instances of the traveling salesperson problem (TSP). One of the future

goals of the project is to incorporate more complex scheduling constraints such as temporal

constraints between the start times of pairs of tasks, coordinated execution of tasks involv-

ing multiple robots, and the ability of a robot to execute multiple tasks in parallel provided

it has the resources to do so. All of these constraints can be specified within the formaliza-

tion of the RCPSP/max problem. And thus, the algorithms that are now developed in this

Chapter can be plugged into the Scheduling component of the FIRE system when the need

for them arises.

The remainder of this Chapter is organized as follows. In Section 9.2 we formalize the

RCPSP/max problem. Section 9.3 overviews the state-of-the-art in solution methods avail-

able for the RCPSP/max problem. Section 9.4 describes the set of benchmark instances

used in the experiments studied later in this Chapter. Section 9.5 defines our performance

criteria. Section 9.6 details the QD-BEACON/VBSS Iterative Priority-Rule Method. Sec-

tion 9.7 presents a comparison of a number of different algorithms with our approach –

combining multiple search heuristics using QD-BEACON. We conclude the Chapter with

a summary in Section 9.8.

9.2 Problem Formalization

The RCPSP/max problem can be defined formally as follows. DefineP =< A;�; R > as

an instance of RCPSP/max. LetA be the set of activitiesA = fa0; a1; a2; : : : ; an; an+1g.
Activity a0 is a dummy activity representing the start of the project andan+1 is similarly

the project end. Each activityaj has a fixed durationpj, a start-timeSj, and a completion-

timeCj which satisfy the constraintSj + pj = Cj. Let� be a set of temporal constraints

between activity pairs< ai; aj > of the formSj�Si 2 [Tmin
i;j ; Tmax

i;j]. The� are generalized

precedence relations between activities. TheTmin
i;j andTmax

i;j are minimum and maximum

140

time-lags between the start times of pairs of activities. LetR be the set of renewable

resourcesR = fr1; r2; : : : rmg. Each resourcerk has an integer capacityck � 1. Execution

of an activityaj requires one or more resources. For each resourcerk, the activityaj
requires an integer capacityrcj;k for the duration of its execution. An assignment of start-

times to the activities inA is time-feasible if all temporal constraints are satisfied and is

resource-feasible if all resource constraints are satisfied. A schedule is feasible if both sets

of constraints are satisfied. The problem is then to find a feasible schedule with minimum

makespanM whereM(S) = maxfCig. That is we wish to find a set of assignments toS

such thatSsol = argminSM(S). The maximum time-lag constraints are what makes this

problem especially difficult. Particularly, due to the maximum time-lag constraints, finding

feasible solutions alone to this problem is NP-Hard.

9.3 State-of-the-Art Solution Methods

Neumann, Schwindt, and Zimmermann give a very thorough and exhaustive overview

of the RCPSP/max problem and of the solution techniques that have been used to solve

it [150]. For more detail on any of the algorithms mentioned in this Section see either

the references to the individual papers describing them or see Neumannet al.’s survey.

The algorithms presented in this Section are organized according to branch-and-bound ap-

proaches (Section 9.3.1), priority-rule methods (Section 9.3.2), local search (Section 9.3.3),

and iterative sampling (Section 9.3.4).

9.3.1 Branch-and-Bound

There are a large number of branch-and-bound approaches for the RCPSP/max problem.

We do not give the details of any of these here since this would be an unnecessary side-

track. We simply point out that there has been much success in applying branch-and-

bound algorithms to the problem. Though for many problem instances it is too costly

to execute a branch-and-bound long enough to prove optimality, good solutions are often

obtained in a reasonable amount of computation time through truncation (i.e., not allowing

the search to run to completion). Following is a list of the branch-and-bound approaches

(abbreviations given will later be used in the results section) for which results are available

for the benchmark set used in this Chapter:

� B&BDRH98: De Reyck and Herroelen’s branch-and-bound algorithm [63].

141

� B&BF98: Festet al.’s branch-and-bound algorithm [77].

� B&BS98: Schwindt’s branch-and-bound algorithm [177, 81].

� B&BDPP98: Dorndorfet al.’s branch-and-bound algorithm [70].

9.3.2 Priority-Rule Methods

In this Section, I overview priority-rule methods for the problem. It should be noted that

a priority rule method, as used in this Chapter, is not the same thing as a dispatch pol-

icy. It actually refers to a backtracking CSP search that uses one or more priority-rules

(heuristics) to choose an activity to schedule next. By “schedule next”, I do not mean in

a sequencing sort of way, but rather I mean fixing its start time variable in place. Recall,

that the RCPSP/max is more than just an optimization problem. It is also a constraint satis-

faction problem. And thus, when a start time becomes fixed, there is also some amount of

constraint propagation that takes place, further constraining the domains of the start time

variables. The priority-rule method described in this Section is important because it will be

the method which is later randomized using VBSS and QD-BEACON in Section 9.6.

The specific priority-rule method that I will now describe is referred to as the “direct

method” with a “serial schedule generation scheme” [81, 150]. There also exist a couple

decomposition methods as well as a parallel schedule generation scheme, but Francket al.

found the direct method with serial generation scheme to perform better in general.

The priority-rule method makes use of a graph representation of the temporal con-

straints. This graph representation is called a project network. Nodes represent activities.

Directed edges with positive weights represent minimal time-lag constraints and directed

edges with negative weights represent maximal time-lags. The priority-rule method be-

gins with a preprocessing phase which consists in propagating constraints and a few other

tricks. First, all strong components in the project network are found; and then later in the

schedule generation whenever an activity is scheduled, all other activities from the same

strong component (also referred to as a cycle structure) are then scheduled next one at a

time. Next, for each pair of activities with a combined resource requirement greater than

the resource capacity, a temporal constraint is added to the problem to break up the pair

(two-element forbidden set). Finally, constraint propagation is used to propagate temporal

constraints to adjust the domains on the start times of the activities.

After the preprocessing phase is complete, the priority-rule method begins the serial

generation scheme. The serial generation scheme is a backtracking CSP search proce-

142

Algorithm 9.1: Priority-Rule Method for RCPSP/max: The Serial Schedule Generation
Scheme
Input: The initial earliest and latest start times of the activities,ESi, LSi, the weights of
the project networkÆi;j, the immediate predecessors of the activities Predi, a maximum
number of unscheduling steps (backtracks)umax, a heuristich.
Output: A set of assignments to the start timesSi.
SERIAL-SCHEDULE-GENERATION(ESi , LSi, Æi;j, Predi, umax, h)
(1) S0 0
(2) Adda0 to scheduled set
(3) u 0

(4) initialize all resource profiles
(5) while not all activities scheduled
(6) if some but not all activities from some cycle structureCS scheduled
(7) let the eligible set be all unscheduled activities inCS such that all of its pre-

decessors have been scheduled
(8) else
(9) let the eligible set be all activities such that all predecessors have been sched-

uled and such that all of the predecessors of the activities in its cycle structure
have either been scheduled already or are in that same cycle structure

(10) j� the eligible activity preferred by heuristich
(11) t� the earliest resource feasible start time� ESj�

(12) if t� > LSj�

(13) u u+ 1

(14) if u > umax

(15) maximum number of unscheduling steps reached
(16) return the empty solution
(17) UNSCHEDULE(j� , t� � LSj�)
(18) else
(19) Schedulej� at timet�

(20) Sj� = t�

(21) Addj� to scheduled set
(22) update all resource profiles
(23) foreachnot yet scheduled activityi
(24) ESi = max (ESi; Sj� + Æj�;i)

(25) LSi = min (LSi; Sj� � Æi;j�)

143

Algorithm 9.2: Priority-Rule Method for RCPSP/max: The Unscheduling Step
Input: An activity j�, a value�.
Output:
UNSCHEDULE(j� , �)
(1) U the set of all scheduled activitiesi such thatSi � Æj�;i = LSj�

(2) if a0 in U
(3) no feasible schedule can be found
(4) return terminate
(5) foreach i in U

(6) ESi = Si +�

(7) removei from the scheduled set
(8) foreach scheduled activityi such thatSi > minh2U Sh
(9) removei from the scheduled set
(10) update resource profiles
(11) foreach not yet scheduled activityi
(12) ESi = max (Æ0;i;maxh2U(ESh + Æh;i))
(13) LSi = �Æi;0
(14) foreachscheduled activityk
(15) ESi = max (ESi; Sk + Æk;i)
(16) LSi = min (LSi; Sk � Æi;k)

dure. Each decision point in the search chooses an activity to schedule next from a set of

“eligible” activities. An activity is eligible if all of its temporal predecessors have been

scheduled. This decision is made using a priority-rule (possible heuristics for this decision

are discussed below). Once selected, the start time of an activity is scheduled at its earliest

time and resource feasible time. At this point, constraint propagation takes place to adjust

the domains of the start times of the not yet scheduled activities. If there is no time and

resource feasible time to start the selected activity, then the serial generation scheme per-

forms what it calls an unscheduling step. The unscheduling step essentially is a backtrack.

It finds the scheduled activity or activities which begin one or more maximal time lag con-

straints involving the activity which we were unable to schedule. It unschedules these and

constrains the start times to occur late enough to allow for the scheduling of this unschedu-

lable activity. It then also unschedules all activities that had been scheduled later than any

of these other unscheduled activities. Appropriate constraint propagation also takes place

at this point. The serial generation scheme is shown in Algorithm 9.1 with the unschedul-

ing step (backtracking step) shown in Algorithm 9.2. Neumannet al. recommend setting

the maximum number of unscheduling steps equal to10
p
n.

The serial schedule generation scheme requires a priority-rule or activity selection

144

heuristic. There are a wide variety of such heuristics available in the literature. Neumann

et al. recommend five in particular. These five heuristics are those that we later use along

with VBSS and QD-BEACON:

� LST: smallest “latest start time” first:

LSTi =
1

1 + LSi
: (9.1)

� MST: “minimum slack time” first:

MSTi =
1

1 + LSi � ESi
: (9.2)

� MTS: “most total successors” first:

MTSi = jSuccessorsij (9.3)

where Successorsi is the set of not necessarily immediate successors ofai in the

project network.

� LPF: “longest path following” first

LPFi = lpath(i; n+ 1) (9.4)

where lpath(i; n + 1) is the length of the longest path fromai to an+1.

� RSM: “resource scheduling method”

RSMi =
1

1 +max (0;max
g2eligible set;g 6=i (ESi + pi � LSg))

: (9.5)

Note that I have rephrased a few of these heuristics from Neumannet al.’s definitions so

that for each, the eligible activity with the highest heuristic value is chosen. Other heuristics

are available in the literature (see for example, [151, 79]). There are others available for the

RCPSP without generalized precedence constraints [122, 121] that do not obviously apply

to the RCPSP/max problem.

Later in the discussion of results, we will refer to the following multiple run priority

methods:

145

� PRFNS5: Executing the direct method with serial generation scheme 5 times, once

with each of the heuristics described above, and taking the best solution of the 5.

Franket al. originally suggested using the best of these 5 heuristics solutions [81,

150]. Results shown later are of our implementation.

� PRFN10: Similarly, this is a best of 10 heuristics. The results shown later are as

reported by Dorndorfet al. [70] and Cestaet al. [32] of Franck and Neumann’s best

of 10 heuristics method [80].1

9.3.3 Local Search

Francket al. describe a number of local search algorithms for the problem [82, 81, 150].

We leave the reader to the references for the details of the algorithms. Here we simply

state that they begin by constructing one or more schedules using the direct priority-rules

method and improve those schedules via local search. The algorithms later used in the

comparison include:

� GA: a genetic algorithm.

� TS: tabu search.

� SA: simulated annealing

9.3.4 Iterative Sampling Earliest Solutions

Cestaet al.present an algorithm for the RCPSP/max problem that they callIterative Sam-

pling Earliest Solutions (ISES)[30, 31, 32]. ISES begins by finding a time feasible solution

with a maximum horizon (initially very large) on the project’s makespan, assuming one ex-

ists. The resulting time-feasible solution, for any interesting problem instance, is generally

not resource-feasible. ISES proceeds by iteratively “leveling” resource-constraint conflicts.

That is, it first detects sets of activities that temporally overlap and whose total resource re-

quirement exceeds the resource capacity. Given the set of resource-constraint conflicts,

it chooses one of the conflicts using heuristic-equivalency (i.e., chooses randomly from

among all those resource-conflicts within an “acceptance band” in heuristic value from the

1Franck and Neumann’s technical report describing this best of 10 strategy is no longer available according
to both the library at their institution as well as the secretary of their lab. We have been unable to find out
what the 10 heuristics are that produce these results.

146

heuristic preferred choice). It then levels the chosen conflict by posting a precedence con-

straint between two of the activities in the conflicted set. It continues until a time-feasible

and resource-feasible solution is found or until some resource-conflict cannot be leveled.

This is then iterated some fixed number of times within a stochastic sampling framework.

Then, given the best found solution of the stochastic sampling process, the entire algorithm

is repeated iteratively for smaller and smaller horizons, specifically for a horizon on the

makespan of a time-feasible solution equal to the makespan of the best feasible solution

found so far. The rest of the low-level details of the ISES algorithm can be found in the

references. Cestaet al. show ISES to be better than the previous best heuristic algorithm

for the RCPSP/max problem (namely PRFN10).

9.4 The Benchmark Problem Set

The set of benchmark problem instances that we use in the experimental

study in this Chapter is that of Schwindt available at http://www.wior.uni-

karlsruhe.de/LSNeumann/Forschung/ProGenMax/rcpspmax.html. It is a problem set that

has been generated by the problem generator known as ProGen/max [178, 179, 176, 175].2

There are many approaches to the RCPSP/max problem that have used this problem set,

and thus a large number of approaches to which to compare our QD-BEACON/VBSS

approach. Furthermore, lower bounds, current best known solutions, and in many cases

optimal solutions are available for the problem instances of this benchmark set.

There are 1080 problem instances in this problem set. Of the 1080 problem instances,

1059 have feasible solutions and the other 21 are provably infeasible. Each instance has 100

activities and 5 renewable resources. The difficulty of the problem instances is controlled

by a number of parameters of the problem generator. The two primary parameters that

govern problem difficulty are the order strength of the project network and the resource

strength of the network. The order strength is a measure of how much of the project network

is strictly ordered. An order strength of 0 means that the temporal constraints allow all

activities to be executed simultaneously (though the resource constraints do not necessarily

allow this). An order strength equal to 1 means that for any pair of activities there is a

minimal time lag from the start of one of the activities to the start of the other, resulting

in a strict order of the activities in the project. Projects with lower order strengths are

2The ProGen/max problem generator is largely based on a problem generator for the version of the prob-
lem without generalized precedence constraints – the ProGen [124, 123] problem generator.

147

generally more difficult. The resource strength is a measure of the scarcity of resources. A

resource strength of 0 means that the resources only have the minimum capacity necessary

to process a single activity at a time. A resource strength of 1 means that the schedule

that results from starting each activity at its earliest temporally feasible start time is also

resource feasible and thus optimal. Projects with smaller values of the resource strength

parameter are generally more difficult, though in the case of resource strength equal to

(or close to) 0, many resource conflicts can be dealt with fairly easily. See the complete

detailed description of the problem generator for more detail of these and other generator

parameters [178].

9.5 Performance Criteria

In the experiments that follow, we use the following performance criteria which have been

used by several others to compare the performance of algorithms for the RCPSP/max prob-

lem:

� �LB: the average relative deviation from the known lower bound, averaged across

all problem instances for which a feasible solution was found. Note that this is based

on the number of problem instances for which the given algorithm was able to find a

feasible solution and thus might be based on a different number of problem instances

for each algorithm compared. This criteria, as defined, is exactly as used by all of the

other approaches to the problem available in the literature.

� NO: the number of optimal solutions found. Currently, there are known optimal

solutions for 789 of the 1080 problem instances.

� NF: the number of feasible solutions found. Of the 1080 problem instances, 1059

possess at least one feasible solution. The other 21 can be proven infeasible (e.g., by

the preprocessing step of the priority-rule method).

� TIME: CPU time in seconds.

For all stochastic algorithms, values shown are averages across 10 runs. Values in parenthe-

ses are best of the 10 runs. In the results, as an added comparison point, we list the above

criteria for the current best known solutions as BEST. Note that BEST is the best known

prior to the algorithms of this thesis. We further improve upon the best known solutions to

some of the problem instances, but this is not considered in BEST.

148

9.6 QD-BEACON/VBSS Iterative Priority-Rule Method

In this Section we detail the QD-BEACON/VBSS Iterative Priority-Rule Method. We be-

gin by modifying the serial generation scheme to use VBSS to randomize the heuristic

used to choose which activity to schedule from among the eligible activities. This modified

serial generation scheme can be found in Algorithm 9.3. The only change from Algo-

rithm 9.1 is the use of VBSS to randomize the choice from among the eligible activities.

The unscheduling step is as described earlier.

We detail the QD-BEACON/VBSS Iterative Priority-Rule Method in Algorithm 9.4.

This algorithm iteratively calls the VBSS randomized priority-rule serial generation scheme

algorithm with heuristic / bias function pairs chosen using the QD-BEACON framework

and updates the AQDF of the appropriate heuristic / bias function pair after each iteration.

In the results that follow, we will refer to using the stochastic sampling framework

VBSS within the priority-rule method forN iterations by:

� LST[N]: sampling using the LST heuristic (polynomial bias function degree 10).

� MST[N]: sampling using the MST heuristic (polynomial bias function degree 10).

� MTS[N]: sampling using the MTS heuristic (polynomial bias function degree 2).

� LPF[N]: sampling using the LPF heuristic (polynomial bias function degree 3).

� RSM[N]: sampling using the RSM heuristic (polynomial bias function degree 4).

� NAIVE[N]: sampling an equal number of times with each of the five heuristics (N

iterations total).

No in depth tuning process was performed to determine the bias functions. A few were

tried for a small set of problem instances. The range of bias functions used in this simple

tuning were determined by the general guidelines outlined in Chapter 4. That is, for the

LST and MST heuristic, we considered stronger bias functions (such as the polynomial of

degree 10) because of the way we have these heuristics defined. That is, they are defined as

a fraction of 1 over a potentially large number – thus they tend to be small real values less

than one in a small range and require a stronger bias to spread out the values. The MTS

and LPF values are already fairly well spread so somewhat weaker bias functions were

considered. Our initial intuition regarding the RSM heuristic was that it would require a

149

Algorithm 9.3: VBSS Enhanced Priority-Rule Method for RCPSP/max: The Serial Sched-
ule Generation Scheme
Input: The initial earliest and latest start times of the activities,ESi, LSi, the weights of
the project networkÆi;j, the immediate predecessors of the activities Predi, a maximum
number of unscheduling steps (backtracks)umax, a heuristich, and a bias functionb.
Output: A set of assignments to the start timesSi.
VBSS-SERIAL-SCHEDULE-GENERATION(ESi , LSi, Æi;j, Predi, umax, h, b)
(1) S0 0
(2) Adda0 to scheduled set
(3) u 0

(4) initialize all resource profiles
(5) while not all activities scheduled
(6) if some but not all activities from some cycle structureCS scheduled
(7) let the eligible set be all unscheduled activities inCS such that all of its pre-

decessors have been scheduled
(8) else
(9) let the eligible set be all activities such that all predecessors have been sched-

uled and such that all of the predecessors of the activities in its cycle structure
have either been scheduled already or are in that same cycle structure

(10) j� the eligible activity chosen randomly by VBSS using heuristich and bias
functionb

(11) t� the earliest resource feasible start time� ESj�

(12) if t� > LSj�

(13) u u+ 1
(14) if u > umax

(15) maximum number of unscheduling steps reached
(16) return the empty solution
(17) UNSCHEDULE(j� , t� � LSj�)
(18) else
(19) Schedulej� at timet�

(20) Sj� = t�

(21) Addj� to scheduled set
(22) update all resource profiles
(23) foreachnot yet scheduled activityi
(24) ESi = max (ESi; Sj� + Æj�;i)
(25) LSi = min (LSi; Sj� � Æi;j�)

150

Algorithm 9.4: QD-BEACON/VBSS Iterative Priority-Rule Method
Input: The initial earliest and latest start times of the activities,ESi, LSi, the weights of
the project networkÆi;j, the immediate predecessors of the activities Predi, a maximum
number of unscheduling steps (backtracks)umax, heuristic/bias function pairsfhi; big, and
a maximum number of iterationsI.
Output: A set of assignments to the start timesSi.
QD-BEACON-ITERATIVE-PRIORITY-RULE-METHOD(ESi , LSi, Æi;j, Predi, umax,
fhi; big, I)
(1) QD-BEACONINIT(fhi ; big)
(2) bestsofar best of the calls to SERIAL-SCHEDULE-GENERATION(ESi , LSi, Æi;j,

Predi, umax, hi)
(3) for 1 to I

(4) fheuristic, biasg GETHEURISTICBIASFUNCTIONPAIR()
(5) Schedule VBSS-SERIAL-SCHEDULE-GENERATION(ESi , LSi, Æi;j, Predi,

umax, heuristic, bias)
(6) UPDATEAQDF(heuristic, bias, makespan(Schedule))
(7) if makespan(Schedule)< makespan(bestsofar)
(8) bestsofar Schedule

stronger bias function – in the order of that required by the LST and MST heuristics – but as

it turns out, the RSM heuristic by itself does not generally perform well when randomized.

We will refer to the QD-BEACON/VBSS Iterative Priority-Rule Method using the

above five heuristic / bias function pairs forN iterations according to the AQDF estimation

method as follows:

� NORM[N]: N iterations using Normal distribution estimates.

� KDE[N]: N iterations using kernel density estimates.

� GEV[N]: N iterations using GEV distribution estimates.

9.7 Results

Table 9.2 shows a summary of the results of using VBSS with the priority-rule method and

of the QD-BEACON/VBSS Iterative Priority-Rule Method. Table 9.1 lists the problem

instances for which we were able to improve upon the current best known solutions. We

can make a number of observations:

� Looking at the VBSS enhanced priority-rule method results, we can see that for any

number of iterations, the best single heuristic to use in terms of the number of optimal

151

Table 9.1: New best known solutions found by using QD-BEACON/VBSS within a ran-
domized iterative priority-rule method. LB is the lower bound for the makespan.

Instance LB Previous Best New Best Algorithm(s)
C364 341 372 365 MTS[100], NORM[100], KDE[100]
D65 440 539 521 NORM[2000], KDE[2000], GEV[2000]
D96 434 450 445 LPF[20], KDE[100], GEV[100]
D127 428 445 434 LPF[200]
D277 558 575 569 NORM[2000], KDE[2000], GEV[2000]

solutions found by the method is the “longest-path following first” (LPF) heuristic.

Furthermore, VBSS and LPF is able to improve upon the best known solutions to a

couple of problem instances. However, we can also observe that the VBSS method

using LPF is worst in terms of the number of feasible solutions found. Using LPF

and VBSS appears to perform very well on the problem instances for which it can

find feasible solutions, while at the same time having difficulties finding any feasible

solution for a large number of other problem instances.

� We can observe similar behavior when the second best heuristic in terms of number

of optimal solutions found (VBSS using the “most total successors” (MTS)) is con-

sidered. VBSS using MTS is also able to improve upon the best known solutions to a

couple of problem instances. However, like VBSS using LPF, VBSS using MTS per-

forms poorly in terms of finding feasible solutions to the problems of the benchmark

set.

� Although VBSS using any of the other three heuristics does not perform as well

in terms of finding optimal solutions as compared to using LPF or MTS, using these

other heuristics allows the search to find feasible solutions for many more of the prob-

lem instances. Thus, we can see that by combining the five heuristics either by the

naive strategy or by using QD-BEACON, that we can find feasible solutions to nearly

all of the 1059 problem instances on average; while at the same time combining the

strengths of the individual heuristics in terms of finding optimal, or near-optimal,

solutions.

� Comparing the use of QD-BEACON to guide the choice of search heuristic to the

naive strategy of giving an equal number of iterations to each of the five heuristics, we

see that the QD-BEACON method using any of the three estimation models always

performs better than the naive strategy. For any number of iterations considered,

152

the naive strategy is always the worst in terms of the number of optimal solutions

found. Furthermore, somewhat more interestingly, it is also always worst in terms of

CPU time. Despite the overhead required by QD-BEACON for the estimation of the

AQDFs, the naive strategy appears to be generally slower – as much as 2.5 seconds

slower in the 2000 iteration case. The reason for this is that although QD-BEACON

has extra computational overhead in modeling the AQDFs it is also able to take ad-

vantage of these models, giving less iterations to heuristics that appear less likely to

even find a feasible solution. The naive strategy results in more iterations that do not

even find a feasible solution, thus performing the maximum number of unscheduling

steps allowed by the serial generation scheme for such infeasible iterations.

� Of the three methods for estimating AQDFs considered, kernel density estimation

performs best for the RCPSP/max problem. Except forN = 100, KDE[N] finds

more optimal solutions than the other considered methods. Furthermore, KDE[N]

requires significantly less CPU time than does GEV[N] (at least it does for the par-

ticular estimation procedure of the GEV distribution employed here). Also, the ad-

ditional overhead of KDE[N] compared to NORM[N] appears to be negligible given

the CPU timing results.

Table 9.3 lists the results of a comparison of QD-BEACON/VBSS Iterative Priority-

Rule Method and various other algorithms, including branch-and-bound approaches and

stochastic search algorithms. We can make the following observations:

� The best performing heuristic method is clearly KDE[N]. In approximately 1/6 of

the CPU time used by the previous best performing heuristic method – ISES –

KDE[1000] finds as many optimal solutions with a significantly lower average devi-

ation from the known lower bounds. In less than 1/3 of the CPU time required by

ISES, KDE[2000] consistently finds as many feasible solutions as ISES; KDE[2000]

consistently finds more optimal solutions than ISES; and KDE[2000] on average

finds solutions that deviate significantly less from the known lower bounds as com-

pared to ISES.

� All of the branch-and-bound algorithms considered (except for B&BDRH98) are able

to find more optimal solutions than KDE[2000]. However, in approximately 1/6 the

amount of CPU time, KDE[2000] on average performs as well as the best branch-

and-bound algorithm – B&BDPP98 – in terms of deviation from the known lower

bounds (and better than B&BDPP98 for the best run of KDE[2000]). KDE[2000] is a

153

Table 9.2: Summary of the results of using VBSS with the priority-rule method and of the
QD-BEACON/VBSS Iterative Priority-Rule Method.

Algorithm �LB NO NF TIME
LPF[20] 4.4 (4.2) 616 (628) 942 (956) 0.4
LST[20] 6.1 (5.7) 600.7 (612) 1041 (1043) 0.2
MTS[20] 4.6 (4.4) 600 (617) 953.3 (965) 0.4
MST[20] 6.6 (6.1) 598.3 (606) 1038.7 (1041) 0.3
RSM[20] 8.5 (7.7) 447.7 (494) 1027.3 (1031) 0.2
LPF[100] 4.2 (4.0) 632.3 (642) 959.7 (969) 1.1
MTS[100] 4.4 (4.3) 626 (638) 970 (981) 1.1
LST[100] 5.5 (5.2) 617.3 (625) 1044 (1044) 0.6
MST[100] 5.9 (5.6) 609 (614) 1042 (1043) 0.8
RSM[100] 7.4 (6.9) 510.3 (536) 1033.3 (1035) 0.6
LPF[200] 4.1 (4.0) 638.7 (647) 965 (974) 2.1
MTS[200] 4.3 (4.2) 634(648) 979 (986) 2.0
LST[200] 5.3 (5.1) 625.3 (633) 1044.3 (1045) 1.1
MST[200] 5.7 (5.5) 614.3 (623) 1043.3 (1044) 1.5
RSM[200] 7.1 (6.5) 529.7 (555) 1034.7 (1036) 1.0
LPF[400] 4.1 (4.0) 643.3 (650) 972.3 (980) 4.0
MTS[400] 4.3 (4.2) 641.7 (654) 983.7 (989) 3.7
LST[400] 5.2 (4.9) 631 (638) 1044.7 (1045) 1.9
MST[400] 5.5 (5.3) 619 (629) 1043.7 (1045) 2.8
RSM[400] 6.7 (6.3) 544 (564) 1035.7 (1037) 1.7
GEV[100] 5.3 (4.9) 650.7 (667) 1050.7 (1053) 0.8
KDE[100] 5.3 (4.9) 649.7 (662) 1050.7 (1053) 0.8
NORM[100] 5.3 (4.9) 648.7 (661) 1050.7 (1053) 0.8
NAIVE[100] 5.3 (5.0) 646.3 (650) 1050 (1052) 0.9
KDE[500] 4.8 (4.6) 665.7 (680) 1053 (1055) 3.1
NORM[500] 4.9 (4.6) 662.3 (673) 1053 (1055) 3.0
GEV[500] 4.9 (4.6) 660 (677) 1053 (1055) 3.2
NAIVE[500] 4.8 (4.6) 658.3 (666) 1052.7 (1055) 3.7
KDE[1000] 4.7 (4.5) 670.3 (683) 1054.7 (1057) 5.8
GEV[1000] 4.8 (4.5) 667(682) 1054.7 (1057) 6.5
NORM[1000] 4.8 (4.5) 666.7 (678) 1054.7 (1057) 5.8
NAIVE[1000] 4.7 (4.5) 664.7 (673) 1054.7 (1057) 7.0
KDE[2000] 4.6 (4.4) 675.7 (689) 1057 (1059) 11.2
NORM[2000] 4.7 (4.4) 672.3 (685) 1057 (1059) 11.0
GEV[2000] 4.7 (4.4) 672.3 (685) 1057 (1059) 13.0
NAIVE[2000] 4.6 (4.4) 669.7 (678) 1057 (1059) 13.5

154

Table 9.3: Comparison of the QD-BEACON/VBSS Iterative Priority-Rule Method with
various other algorithms for the RCPSP/max problem.

Algorithm �LB NO NF TIME
BEST 3.3 789 1059 –
B&BDRH98 n/a 606 1009 n/ac

B&BS98 6.9 684 1059 66.7a

B&BF98 7.0 768 1059 66.7a

B&BDPP98 4.6 774 1059 66.7a

PRFNS5 6.5 603 991 0.2
PRFN10 7.7 601 1053 n/ac

TS 5.8 593 1059 n/ac

SA 5.7 630 1059 n/ac

GA 5.3 634 1059 n/ac

ISES 8.0 (7.3) 669.8 (683) 1057 (1059) 35.7b

KDE[1000] 4.7 (4.5) 670.3 (683) 1054.7 (1057) 5.8
KDE[2000] 4.6 (4.4) 675.7 (689) 1057 (1059) 11.2
a Adjusted from original publication by a factor of200

300
. These

branch-and-bound algorithms were implemented on a 200
Mhz Pentium, while we used for our algorithms a Sun Ultra
10 / 300MHz.

b Adjusted from original publication by a factor of266
300

. ISES
was originally implemented on a Sun UltraSparc 30 / 266
MHz, while we used for our algorithms a Sun Ultra 10 /
300MHz.

c Timing results were not available in some cases. This is indi-
cated by “n/a”.

competitive alternative to truncated branch and bound if one requires good solutions

but not necessarily optimal solutions in a highly limited amount of time.

9.8 Summary

In this Chapter we considered the RCPSP/max problem. RCPSP/max is a very difficult

makespan minimization scheduling problem for which finding feasible solutions alone is

NP-hard. We used VBSS and QD-BEACON to enhance a priority-rules method for the

problem. The resulting algorithm that we call the QD-BEACON/VBSS Iterative Priority-

Rule Method is the new best performing heuristic method for the RCPSP/max problem. It

outperforms the previous best heuristic algorithm (ISES), finding optimal solutions to more

155

problem instances in less CPU time than ISES. QD-BEACON/VBSS Iterative Priority-Rule

Method is also competitive to some of the best branch-and-bound approaches to the prob-

lem, finding (on average) solutions that deviate less from known lower bounds as compared

to branch-and-bound algorithms in a fraction of the time, despite the branch-and-bound

algorithms’ ability to find significantly more optimal solutions than the QD-BEACON ap-

proach. If one requires good solutions but not necessarily optimal solutions in a highly

limited amount of time, then the QD-BEACON/VBSS Iterative Priority-Rule Method is

a viable and effective alternative to truncated branch-and-bound. Finally, using the QD-

BEACON/VBSS Iterative Priority-Rule Method we were able to improve upon the current

best known solutions to 5 of the 1080 problem instances (or 5 of the 270 problem instances

for which the optimal solution is not currently known).

156

Chapter 10

Conclusion

10.1 Summary

In this thesis, we considered stochastic search algorithms and their strength as robust, scal-

able problem solvers. Tools and algorithms were designed and analyzed that allow for

effective performance enhancement of existing stochastic search algorithms as well as for

the design of new, hybrid search algorithms that combine the problem solving strengths

of multiple heuristics. The ideas encapsulated in this thesis are closely related to the con-

cept of an algorithm portfolio. In fact, the QD-BEACON framework of this thesis can be

viewed as an extension of the algorithm portfolio concept. As you may recall, an algorithm

portfolio executes multiple search algorithms in parallel either on multiple processors or

interleaved on a single processor. The QD-BEACON framework of this thesis can be used

for an effective search control mechanism for such an algorithm portfolio. Much of the

prior work with algorithm portfolios gives an equal amount of computation time to each of

the algorithms in the portfolio. By using the QD-BEACON framework, statistical models

of the quality of solutions generated by each of the algorithms can be computed online and

used as a control strategy for the algorithm portfolio – determining how many cycles to

allocate to each of the interleaved search strategies.

In the algorithmic exploration of this thesis, we began by presenting a new stochastic

sampling algorithm called VBSS. VBSS is a value-biased alternative to the rank-biased

stochastic sampling algorithm known as HBSS. We also considered a novel mode of com-

putation for the stochastic decisions within VBSS based on a computational model of wasp

social hierarchy formation. This lead to a variation of VBSS that we call WHISTLING.

The power of the VBSS (or WHISTLING) algorithm, as compared to HBSS, is its abil-

157

ity to make better use of the discriminatory power inherent in search heuristics within

the stochastic sampling framework. This superior search performance was demonstrated

when we showed that the VBSS framework is able to find significantly better solutions

to weighted tardiness sequencing problems in significantly less computation time as com-

pared to HBSS.

We also showed that VBSS can be used to seed the starting solution configurations of

a multistart hill-climber to enhance the search performance of that local search algorithm.

This is somewhat contrary to popular belief that multistart hill-climbers perform better

when the starting configurations are random and unbiased. However, for the problems con-

sidered in this thesis, we have strong heuristics at our disposal. These heuristics appear to

be very well-informed in a large number of cases. Therefore, when using a randomization

of these strong heuristics within a multistart hill-climber, we do see a benefit over unbiased

random starts since each of these stochastic samples is likely to start the search at or near

an already good solution. For weighted tardiness sequencing with sequence-dependent se-

tups, we saw that such an approach has the ability to find better solutions as compared to

truncated systematic heuristic search algorithms (such as LDS or DDS) in significantly less

CPU time. Part of the reason for this result is the size of the problem space in this domain.

LDS and DDS are forced to explore many heuristically unattractive solution trajectories

(i.e., solution trajectories with only 1 or 2 discrepancies, but where the 1 or 2 discrepancies

are large in heuristic value) due to their systematic nature, while VBSS can avoid such

solution trajectories. In the variation of the problem without setups, VBSS was seen to be

able to enhance an algorithm called multistart dynasearch, contrary to the untested claim

of the authors of the multistart dynasearch algorithm.

Next we defined an algorithmic tool that we call an AQDF as the distribution of solution

qualities produced by an iterative stochastic search algorithm. It is an algorithm dependent

model – modeling the performance of any single algorithm. It is a problem instance de-

pendent model – modeling the performance of the given algorithm on a single problem

instance. The AQDF is related to the concept of a performance profile (PP) in that it can

be viewed as a detailed model of the time slice of a PP associated with single iteration runs

of an iterative stochastic search algorithm (especially stochastic sampling algorithms). The

AQDF can be used to model the quality of solutions produced across the iterations of a

stochastic sampling algorithm or it can be used to model the quality of the local optima

discovered by a hill-climbing algorithm.

The final, but central, algorithmic tool developed and presented in this thesis is that of

158

the QD-BEACON framework. QD-BEACON provides the functionality to estimate the sta-

tistical model of the AQDF online during a search. Furthermore, QD-BEACON provides

the functionality to use these models to guide stochastic search algorithms for more effec-

tive search control. For example, QD-BEACON can be used to choose from among mul-

tiple search heuristics on an iteration by iteration basis within a stochastic sampling algo-

rithm. For weighted tardiness sequencing problems, we showed that using QD-BEACON

in such a manner can lead to a more effective search algorithm as compared to using any

single heuristic as well as compared to using the naive strategy of giving an equal number

of iterations to each heuristic. We also showed that QD-BEACON can be used to model the

local optima of a single-start local search algorithm with the ability to escape local optima.

Given such ability, we are able to interleave the execution of multiple copies of this single-

start algorithm where each copy of the algorithm begins in a different region of the search

space. QD-BEACON is used to allocate compute time among the multiple interleaved

copies according to the distributions of local optima encountered by each. This technique

was used to enhance the previous best performing algorithm for the weighted tardiness

scheduling problem. Finally, QD-BEACON, in conjunction with the VBSS algorithm, was

used to enhance a backtracking, heuristic-guided CSP search algorithm for the RCPSP/max

problem. VBSS was used to randomize the heuristic activity-selection heuristics and QD-

BEACON was used to select from among a set of state-of-the-art heuristics. The resulting

algorithm, that we call the QD-BEACON/VBSS Iterative Priority-Rule Method, is the new

best-performing heuristic algorithm for the RCPSP/max problem.

Below, in Section 10.2, we summarize the contributions of this thesis. We conclude this

thesis with Section 10.3 which considers possible future refinements and extensions of the

research of this thesis.

10.2 Contributions

10.2.1 VBSS and WHISTLING

� Exploiting the inherent discriminatory power of heuristics.

The VBSS framework was developed as a value-biased alternative to the rank-biased

HBSS algorithm. In using the actual heuristic values within the stochastic decisions

of the sampling algorithm, VBSS is better able to leverage the inherent discrimina-

tory power of a search heuristic. This is both theoretically and experimentally valid.

159

In theory, HBSS uses only the order of the choices given by the heuristic; while

VBSS instead uses the heuristic values directly, incorporating the complete informa-

tion available within the heuristic. We experimentally demonstrated this improved

search performance on a weighted tardiness scheduling problem.

� Improved decision-making efficiency.

Since the need to rank-order the choices at each step is alleviated in the value-biased

approach of VBSS, the stochastic decisions can be computed in an efficientO(n)

time (small constant multiplier), rather than theO(n logn) time required by the obvi-

ous implementation of the rank-biased approach of HBSS. Though we do not rule out

the possibility of developing anO(n) rank-biased decision scheme, such a scheme

would necessarily operate with a much larger constant multiplier compared to the

value-biased approach.

� One-pass computation.

The dominance tournaments of WHISTLING allow each search decision to be made

by a single pass through the choices, rather than two – small, but useful speedup.

10.2.2 The QD-BEACON Framework and the AQDF

� Descriptive tool for analysis of quality distributions.

The AQDF is a tool that can be used to model the distribution of solutions given by

single iteration runs of a stochastic search algorithm. It is an algorithm dependent

model – modeling the performance of any single algorithm. It is a problem instance

dependent model – modeling the performance of the given algorithm on a single

problem instance. The AQDF is related to the concept of a performance profile (PP)

in that it can be viewed as a detailed model of the time slice of a PP associated with

single iteration runs of an iterative stochastic search algorithm (especially stochastic

sampling algorithms).

� The ability to use an AQDF for online prescriptive search guidance.

The QD-BEACON framework provides a number of functions that allow iterative

stochastic search algorithms to model AQDFs and use them online for effective

search guidance.

� Methods for estimating an AQDF.

Three different methodologies were developed for estimating an AQDF. The first

160

assumed the AQDF was a normal distribution. The second made no distribution as-

sumption and used kernel density estimation (KDE). The KDE approach computes

its window width under the assumption of a type I extreme value distribution (Gum-

bel distribution). The third method was inspired by the body of work on extreme

value theory and models the AQDF using a maximum likelihood estimate of the gen-

eralized extreme value (GEV) distribution. Of these three method, the KDE approach

is best. Using normal estimates leads to an overly optimistic view of heuristic perfor-

mance for heuristics that have a high variance in the quality of results produced and

often provides the search with misleading guidance. The GEV distribution offers a

much closer fit to the actual distributions that are modeled by an AQDF. Theoreti-

cally this is true since we argued that the AQDF of a stochastic sampler guided by a

strong heuristic samples from the extreme of the underlying distribution of the search

space (or similarly, that the distribution of local optima encountered by a state-of-the-

art local search algorithm is also at the extreme of the search space). However, the

maximum likelihood estimated of the GEV for many of the algorithms of this thesis

turn out to follow the type of extreme value distribution that is bounded from below

(for a minimization problem). The number of samples we are interested in using to

model AQDFs is very small relative to that of the theory behind the GEV. The result

tends to be a GEV that is bounded from below too tightly to the set of samples, thus

offering search guidance that is too pessimistic. The KDE approach appears to be a

nice balance of the approaches. Using a scale parameter motivated by the GEV, the

KDE approach produces AQDF estimates with characteristics similar to the GEV,

while preserving some amount of optimism in the left-hand tail of the AQDF.

� Theoretically motivated exploration policy.

A new multiarmed bandit problem – The MaxK-Armed Bandit Problem – was posed

and analyzed. The result is that to maximize the expected max single sample re-

ward of a series ofN pulls from a multiarmed bandit, the number of samples given

the observed best arm should grow double exponentially in the number of samples

given each of the other arms. This result motivated the use of Boltzmann exploration

with an exponentially decreasing temperature parameter as the exploration policy of

choice within the QD-BEACON framework, which empirically worked much better

than more conservative cooling schedules.

161

10.2.3 Applications

� Weighted Tardiness with Sequence-Dependent Setups.

It was demonstrated that VBSS is able to find better solutions for this problem in less

CPU time than using the rank-biased approach of HBSS as a proof of the inherent

hypothesis of the design of VBSS. We also saw that results could be greatly im-

proved with minimal additional computational overhead by applying a simple local

hill-climber to the solutions of each iteration. Another significant result is that this

multistart hill-climber is able to find better solutions than truncated systematic search

procedures such as LDS and DDS in significantly less time while exploring a small

fraction of the factorially-sized search-space. While the systematic procedures get

bogged down exploring poor regions of the search-space, stochastic samplers such

as VBSS are able to avoid some poor regions of the search-space by considering the

discriminatory power of the heuristic values. LDS and DDS systematically consider

solutions in order of increasing discrepancy from the heuristic path, but many small

discrepancy (one or two discrepancies) solution paths lead to poor solutions. This

can be evident in the values given by a strong heuristic (e.g., high value given to one

choice and an extremely small value given to the discrepancy).

� Weighted Tardiness (no setups).

Contrary to the assumptions of the authors of the multistart dynasearch algorithm,

we found that using VBSS and QD-BEACON with search heuristics to bias the

starting solution configurations results in significant improvement in performance

as compared to unbiased starting solution configurations. We also effectively used

QD-BEACON to enhance the performance of the previous best known algorithm for

the problem – Iterated Dynasearch. Our new algorithm – QD-BEACON Enhanced

Iterated Dynasearch – is now the current best performing algorithm on this widely

used set of benchmarks for the weighted tardiness sequencing problem.

� RCPSP/max.

Using VBSS and QD-BEACON, we enhanced a state-of-the-art priority-rule based

search algorithm for the problem. The resulting algorithm is superior to the previous

best performing heuristic search algorithm (ISES) for the problem and competitive

with a number of truncated branch-and-bound approaches to the problem. The QD-

BEACON/VBSS Iterative Priority-Rule Method is also able to improve upon the best

known solutions to a few of the problem instances in the benchmark set.

162

10.3 Refinements and Extensions

� Applying framework to additional problem domains .

In this thesis, we used the QD-BEACON and VBSS frameworks to design and en-

hance the problem solving performance of stochastic search algorithms in a number

of optimization domains, including: 1) the weighted tardiness sequencing problem

with sequence-dependent setups; 2) the weighted tardiness sequencing problem (no

setups); and 3) the resource constrained project scheduling with time windows. There

are volumes of combinatorial optimization problems which can potentially benefit

from solution procedures involving VBSS and/or the QD-BEACON framework.

� Evolving the Scheduler component of the FIRE system to new problems.

One of the components of the planning layer of the rovers in the FIRE architec-

ture [89, 90] is a scheduler. This Scheduler component is in charge of solving any

scheduling problem that the rover requires in order to place bids on tasks or in or-

der to evaluate bids from other rovers for its own tasks. Currently, the particular

scheduling problems faced by the Scheduler component of the FIRE system are es-

sentially TSP instances. This Scheduler component solves these TSP instances using

the VBSS algorithm of Chapter 4 of this thesis. With the volumes of work existing for

the TSP problem, the current instantiation of the Scheduler component of the FIRE

system is not obviously ground-breaking work. But the goal was not to develop the

next best TSP algorithm. Rather, the goal was to develop a scheduling component

with the flexibility to adapt to different and/or more complex scheduling constraints

and objective functions. As the FIRE Project progresses, the VBSS based Scheduler

component can be easily adapted as the need to solve more complex scheduling prob-

lems arises. For example, if the optimization objective was changed to minimizing

weighted tardiness, then we can simply pull out the TSP search heuristic and plug-in

one of the heuristics used in either Chapter 5 or Chapter 8 and potentially combine

these using the QD-BEACON framework. Also, as more complex timing constraints

are considered such as tightly coupled rover coordination/timing constraints, the new

results obtained for RCPSP/max in Chapter 9 can be plugged into the Scheduler

component of the rovers.

� Enhancing other types of search algorithms with QD-BEACON.

The QD-BEACON framework is not limited to boosting the performance of stochas-

tic sampling algorithms. In fact, in this thesis, we have seen examples of how QD-

163

BEACON can be used to enhance the performance of a number of stochastic search

algorithms. First, we saw how QD-BEACON could be used to combine multiple

search heuristics in a stochastic sampling algorithm. Second, we saw how using

QD-BEACON, VBSS, and multiple search heuristics could be used to enhance mul-

tistart hill-climbing algorithms – for example, the QD-BEACON/VBSS Enhanced

Multistart Dynasearch algorithm. Third, QD-BEACON was used outside the domain

of multistart algorithms when it was used to interleave, and control the amount of

CPU time given to, multiple simultaneously executing iterated dynasearches – the

QD-BEACON Enhanced Iterated Dynasearch algorithm. Finally, QD-BEACON and

VBSS were used to create an iterative multi-pass version of a priority-rule method

in the constrained optimization domain of RCPSP/max – the QD-BEACON/VBSS

Iterative Priority-Rule Method. This algorithm combines stochastic sampling within

a backtracking heuristic-guided CSP search algorithm and uses QD-BEACON to

select from among competing heuristics. Other stochastic search algorithms could

benefit from the application of the QD-BEACON framework. For example, it could

perhaps be used within a genetic algorithm to choose from among multiple crossover

or mutation operators. Or, it might be used within an algorithm portfolio – as is

essentially done in the QD-BEACON Enhanced Iterated Dynasearch algorithm – to

control the amount of computation given each algorithm in the portfolio. It may also

be useful to revisit some of the related work ideas, using the more detailed models

available within the QD-BEACON framework. For example, Sadeh’s expected cost

improvement distributions used to detect unpromising runs of simulated annealing

may benefit from the extreme value theory motivation of the QD-BEACON frame-

work.

� Learning bias functions.

The QD-BEACON framework is already designed to allow one to consider multiple

bias functions for each heuristic (i.e., by modeling the AQDF of a heuristic / bias

function pair). To some extent this is not always necessary. For example, rationale

was given for selecting a bias function for the VBSS algorithm according to the types

of values given by your choice of heuristic function. However, it may not always be

an easy decision to make a priori. One possible solution is to use the QD-BEACON

framework with heuristic / bias function pairs. Another possibility might be to adapt

the bias function according to some learned model of the range of heuristic values

(e.g., by tracking the heuristic values) or perhaps adapting the bias function according

164

to the distribution of the quality of solutions (e.g., weakening the bias to expand a

search for which the AQDF is hitting a “wall”).

� Asymmetric kernel functions.

As has been demonstrated, the best performing estimation method for the AQDF

within the QD-BEACON framework is that of kernel density estimation. If you

recall, the kernel function chosen for KDE within QD-BEACON was the Epanech-

nikov kernel. It was chosen primarily for computational efficiency reasons that were

outlined – it is bounded and it is easy to compute its integral. It might be desir-

able, however, to consider an asymmetric kernel density estimator [18]. For the

problem domains considered in this thesis, the theoretical lower bound for any prob-

lem instance is bounded below by zero. Also, many of the AQDFs modeled by the

framework for these problem domains are strongly skewed to the right and appear

to be bounded on the left. Asymmetric kernel density estimators are specifically de-

signed for densities defined on[0;1). A couple of examples include the Gamma

kernel [34], the Inverse Gaussian [171], and the Reciprocal Inverse Gaussian [171].

For our purposes, these may or may not be of use since they would make our required

computations more complex. But it might be possible to design such an asymmetric

kernel that does suit our computational needs.

� Going beyond assumption of search time per iteration invariance.

The QD-BEACON framework, as defined, assumes that the amount of search time

required by each possible choice of search heuristic is approximately the same for

all of its choices. In the algorithms presented in this thesis, this holds for the most

part. For example, in the sequencing problems, using VBSS to compute a single

solution always requires approximately the same amount of CPU time. Adding the

hill-climber on top of the VBSS solution adds almost negligible CPU time due to the

very short hill-climbs typically required by the algorithms of this thesis to reach lo-

cal optima, so the invariance assumption still approximately holds in this case. In the

QD-BEACON Enhanced Iterated Dynasearch algorithm, each dynasearch to a local

optima requires very few steps, so in using QD-BEACON to interleave the simul-

taneous Iterated Dynasearches, the invariance assumption yet again approximately

holds. The one case in this thesis where the search time per iteration invariance as-

sumption does not hold is the QD-BEACON/VBSS Iterative Priority-Rule Method

for the RCPSP/max problem. However, in this algorithm, heuristics that are likely

165

to often lead to infeasible solutions are not sampled as frequently as those that often

find feasible solutions. It is these infeasible runs that require the most time. There-

fore, although the invariance assumption does not hold, the behavior of the algorithm

is favorable just the same. There are other cases, however, for which it could be

a detriment to problem solving performance if the invariance assumption does not

hold. For example, in a sequencing problem, using the VBSS algorithm, it might be

possible to have two heuristics which require drastically different amounts of CPU

time for each call to the heuristic function. If this was the case, then it would be

important to extend the QD-BEACON framework to consider this, in addition to the

model of the AQDF, in choosing which heuristic to use for each iteration of VBSS.

For example, if VBSS with heuristich1 takes twice as much time per iteration as

compared to heuristich2, then perhaps you want to instead consider the probability

of finding a better solution than the best found so far given 2 iterations withh2 as

compared to the probability given a single iteration withh1.

� Using QD-BEACON to distribute search among solving multiple problem in-

stances.

Another potentially interesting problem to which to apply the QD-BEACON frame-

work is that of distributing a limited amount of computation time to the solving of

multiple problem instances. This is one problem for which the anytime computa-

tion community has spent a great deal of effort. Perhaps, the modeling methods

and exploration strategy of the QD-BEACON framework can be used in conjunction

with some of the anytime computation tools such as performance profiles to further

enhance this distribution of compute time among multiple problem instances.

166

Bibliography

[1] L. Adler, N. M. Fraiman, E. Kobacker, M. Pinedo, J. C. Plotnitcoff, and T. P.

Wu. BPSS: a scheduling system for the packaging industry.Operations Research,

41:641–648, 1993.

[2] M. S. Akturk and M. B. Yildirim. A new lower bounding scheme for the total

weighted tardiness problem.Computers and Operations Research, 25(4):265–278,

1998.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem. InProceedings of the 15th International Conference on Machine

Learning, pages 100–108. Morgan Kaufmann, 1998.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem.Machine Learning, 47:235–256, 2002.

[5] A. Bauer, B. Bullnheimer, R. F. Hartl, and C. Strauss. An ant colony optimization

approach for the single machine total tardiness problem. InCEC99: Proceedings of

the Congress on Evolutionary Computation, pages 1445–1450, July 1999.

[6] J. E. Beasley. OR-Library: Distributing test problems by electronic

mail. Journal of the Operational Research Society, 41(11):1069–1072, 1990.

http://www.ms.ic.ac.uk/info.html.

[7] J. E. Beasley. Weighted tardiness. InOR-Library. Imperial College Management

School, 1998. Available at, http://mscmga.ms.ic.ac.uk/jeb/orlib/wtinfo.html.

[8] T. Beaumariage and K. Kempf. Attractors in manufacturing systems with

chaotic tendencies, 1995. Presentation at INFORMS-95, New Orleans,

http://www.informs.org/Conf/NewOrleans95/ TALKS/TB07.3.html.

167

[9] R. E. Bellmann.Dynamic Programming. Princeton University Press, 1957.

[10] N. Benvenuto, M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini. Finite wordlength

digital filter design using an annealing algorithm. InProceedings of ICASSP-89:

IEEE International Conference on Acoustic, Speech and Signal Processing, pages

861–864, May 1989.

[11] D. A. Berry and B. Fristedt.Bandit Problems: Sequential Allocation of Experiments.

Chapman and Hall, London, UK, 1985.

[12] M. Boddy and T. Dean. Solving time-dependent planning problems. InProceedings

of the Eleventh International Joint Conference on Artificial Intelligence, pages 979–

984. Morgan Kaufmann, August 1989.

[13] M. Boddy and T. Dean. Decision-theoretic deliberation scheduling for problem solv-

ing in time-constrained environments.Artificial Intelligence, 67(2):245–286, 1994.

[14] E. Bonabeau, M. Dorigo, and G. Theraulaz.Swarm Intelligence: From Natural to

Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford

University Press, 1999.

[15] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J. L. Deneubourg. Adaptive task

allocation inspired by a model of division of labor in social insects. In D. Lundh and

B. Olsson, editors,Bio Computation and Emergent Computing, pages 36–45. World

Scientific, 1997.

[16] E. Bonabeau, G. Theraulaz, and J. L. Deneubourg. Fixed response thresholds and the

regulation of division of labor in insect societies.Bulletin of Mathematical Biology,

60:753–807, 1998.

[17] D. Bosq.Nonparametric Statistics for Stochastic Processes: Estimation and Predic-

tion. Lecture Notes in Statistics. Springer, 1998.

[18] T. Bouezmarni and O. Scaillet. Consistency of asymmetric kernel density estimators

and smoothed histograms with application to income data. Technical Report STAT

DP 0306, Universit´e Catholique De Louvain, 2003.

[19] J. A. Boyan.Learning Evaluation Functions for Global Optimization. PhD thesis,

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,

1998.

168

[20] J. A. Boyan and A. W. Moore. Using prediction to improve combinatorial opti-

mization search. InProceedings of the Sixth International Workshop on Artificial

Intelligence and Statistics (AISTATS-6), 1997.

[21] J. A. Boyan and A. W. Moore. Learning evaluation functions for global optimization

and boolean satisfiability. InProceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAI-98), 1998.

[22] M. F. Bramlette. Initialization, mutation and selection methods in genetic algorithms

for function optimization. In R. K. Belew and L. B. Booker, editors,Proceedings

of the Fourth International Conference on Genetic Algorithms, pages 100–107, San

Mateo, CA, 1991. Morgan Kaufmann.

[23] J. Bresina, M. Drummond, and K. Swanson. Search space characterization for a tele-

scope scheduling application. InWorking Notes of the AAAI 1994 Fall Symposium,

Planning and Learning: On To Real Applications. AAAI Press, 1994.

[24] J. Bresina, M. Drummond, and K. Swanson. Expected solution quality. InPro-

ceedings of the Fourteenth International Joint Conference on Artificial Intelligence,

pages 1583–1590. Morgan Kaufmann, 1995.

[25] J. L. Bresina. Heuristic-biased stochastic sampling. InProceedings of the Thir-

teenth National Conference on Artificial Intelligence and the Eighth Innovative Ap-

plications of Artificial Intelligence Conference, Volume One, pages 271–278. AAAI

Press, 1996.

[26] B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algorithm for

the vehicle routing problem.Annals of Operations Research, 89:319–328, 1999.

[27] M. Campos, E. Bonabeau, G. Th´eraulaz, and J. Deneubourg. Dynamic scheduling

and division of labor in social insects.Adaptive Behavior, 8(2):83–96, 2000.

[28] Y. J. Cao and Q. H. Wu. Optimization of control parameters in genetic algorithms:

A stochastic approach.International Journal of Systems Science, 30(5):551–559,

May 1999.

[29] D. C. Carroll.Heuristic Sequencing of Single and Multiple Components. PhD thesis,

M.I.T., Massachusetts, 1965.

169

[30] A. Cesta, A. Oddi, and S. F. Smith. An iterative sampling procedure for resource

constrained project scheduling with time windows. InProceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, pages 1022–1029. Morgan

Kaufmann, 1999.

[31] A. Cesta, A. Oddi, and S. F. Smith. A constraint-based method for project schedul-

ing with time windows. Technical Report CMU-RI-TR-00-34, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA, February 2000.

[32] A. Cesta, A. Oddi, and S. F. Smith. A constraint-based method for project scheduling

with time windows.Journal of Heuristics, 8:109–136, 2002.

[33] H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in

combinatorial search. InUsing Uncertainty Within Computation: Papers from the

2001 AAAI Fall Symposium, Technical Report FS-01-04. AAAI Press, 2-4 November

2001.

[34] S. X. Chen. Probability density function estimation using gamma kernels.Annals of

the Institute of Statistical Mathematics, 52(3):471–480, 2000.

[35] S. Y. Chen, S. N. Talukdar, and N. M. Sadeh. Job shop scheduling by an asyn-

chronous team of optimization agents. InIJCAI-93 Workshop on Knowledge-Based

Production Planning, Scheduling, and Control: Workshop Notes, pages 73–82, Au-

gust 1993.

[36] W. Y. Chiang, M. S. Fox, and P. S. Ow. Factory model and test data descriptions:

OPIS experiments. Technical Report CMU-RI-TR-90-05, The Robotics Institute,

Carnegie Mellon University, March 1990.

[37] V. A. Cicirello. Intelligent retrieval of solid models. Master’s thesis, Department

of Mathematics and Computer Science, Drexel University, Philadelphia, PA, June

1999.

[38] V. A. Cicirello. A game-theoretic analysis of multi-agent systems for shop floor

routing. Technical Report CMU-RI-TR-01-28, Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, September 2001.

[39] V. A. Cicirello and W. C. Regli. Resolving non-uniqueness in design feature his-

tories. In W. F. Bronsvoort and D. C. Anderson, editors,Fifth ACM/SIGGRAPH

170

Symposium on Solid Modeling and Applications, pages 76–84. ACM Press, 9-11

June 1999. Ann Arbor, MI.

[40] V. A. Cicirello and W. C. Regli. Machining feature-based comparison of mechanical

parts. InInternational Conference on Shape Modeling and Applications, pages 176–

185. ACM SIGGRAPH, the Computer Graphics Society, and EUROGRAPHICS,

IEEE Computer Society Press, May 2001. Genova, Italy.

[41] V. A. Cicirello and W. C. Regli. An approach to feature-based comparison of solid

models of machined parts.Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 16(5):385–399, November 2002.

[42] V. A. Cicirello and S. F. Smith. Modeling GA performance for control parameter

optimization. In D. Whitley, D. Goldberg, E. Cant´u-Paz, L. Spector, I. Parmee,

and H. Beyer, editors,GECCO-2000: Proceedings of the Genetic and Evolutionary

Computation Conference, pages 235–242. Morgan Kaufmann Publishers, 8-12 July

2000. Las Vegas, NV.

[43] V. A. Cicirello and S. F. Smith. Ant colony control for autonomous decentralized

shop floor routing. InISADS-2001: International Symposium on Autonomous De-

centralized Systems, pages 383–390. IEEE Computer Society Press, March 2001.

Dallas, TX.

[44] V. A. Cicirello and S. F. Smith. Improved routing wasps for distributed factory

control. In The IJCAI-01 Workshop on Artificial Intelligence and Manufacturing,

Working Notes, pages 26–32. AAAI SIGMAN, 4-9 August 2001. Seattle, WA.

[45] V. A. Cicirello and S. F. Smith. Randomizing dispatch scheduling policies. InUs-

ing Uncertainty Within Computation: Papers from the 2001 AAAI Fall Symposium,

Technical Report FS-01-04, pages 30–37. AAAI Press, 2-4 November 2001. North

Falmouth, Massachusetts.

[46] V. A. Cicirello and S. F. Smith. Wasp-like agents for distributed factory coordi-

nation. Technical Report CMU-RI-TR-01-39, Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, December 2001.

[47] V. A. Cicirello and S. F. Smith. Wasp nests for self-configurable factories. In

J. P. Müller, E. Andre, S. Sen, and C. Frasson, editors,Proceedings of the Fifth

171

International Conference on Autonomous Agents, pages 473–480. ACM SIGART,

ACM/SIGGRAPH, ACM/SIGCHI, ACM Press, May-June 2001. Montreal, Que-

bec, Canada.

[48] V. A. Cicirello and S. F. Smith. Amplification of search performance through ran-

domization of heuristics. In P. Van Hentenryck, editor,Principles and Practice

of Constraint Programming – CP 2002: 8th International Conference, Proceed-

ings, volume LNCS 2470 ofLecture Notes in Computer Science, pages 124–138.

Springer-Verlag, 7-13 September 2002. Ithaca, NY.

[49] D. A. Clark, J. Frank, I. P. Gent, E. MacIntyre, N. Tomov, and T. Walsh. Local search

and the number of solutions. InProceedings of the Second International Conference

on Principles and Practices of Constraint Programming (CP-96), pages 119–133,

1996.

[50] S. Coles. An Introduction to Statistical Modeling of Extreme Values. Springer-

Verlag, 2001.

[51] R. K. Congram, C. N. Potts, and S. L. van de Velde. An iterated dynasearch al-

gorithm for the single-machine total weighted tardiness scheduling problem.IN-

FORMS Journal on Computing, 14(1):52–67, Winter 2002.

[52] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms.

McGraw-Hill, 1990.

[53] P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic genetic

algorithm applied to a trainer scheduling problem. InProceedings of the Congress

on Evolutionary Computation (CEC-2002), pages 1185–1190, May 2002.

[54] P. Cowling, G. Kendall, and E. Soubeiga. Adaptively parameterised hyperheuris-

tics for sales summit scheduling. InSelected Papers from the 4th Metaheuristics

International Conference. Kluwer, July 2001.

[55] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling

a sales summit. InPractice and Theory of Automated Timetabling III: Third Inter-

national Conference, PATAT 2000, Selected Papers, number LNCS 2079 in Lecture

Notes in Computer Science, pages 176–190. Springer-Verlag, August 2001.

172

[56] P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic for

scheduling a sales summit. InProceedings of the 4th Metaheuristics International

Conference, pages 127–131, July 2001.

[57] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A robust optimisation

method applied to nurse scheduling. In J. J. Merelo, P. Adamidis, and H. G. Beyer,

editors,Parallel Problem Solving from Nature – PPSN VII: 7th International Con-

ference, Proceedings, number LNCS 2439 in Lecture Notes in Computer Science,

pages 851–860. Springer-Verlag, September 2002.

[58] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for rapid prototyp-

ing in scheduling and optimisation. In S. Cagnoni, J. Gottlieb, E. Hart, M. Midden-

dorf, and G. R. Raidl, editors,Applications of Evolutionary Computing: EvoWork-

shops 2002 Proceedings, number LNCS 2279 in Lecture Notes in Computer Sci-

ence, pages 1–10. Springer-Verlag, April 2002.

[59] H. A. J. Crauwels, C. N. Potts, and L. N. Van Wassenhove. Local search heuris-

tics for the single machine total weighted tardiness scheduling problem.INFORMS

Journal on Computing, 10(3):341–350, Summer 1998.

[60] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing.ACM

Transactions on Graphics, 15(4):301–331, October 1996.

[61] K. De Jong. Adaptive system design: A genetic approach.IEEE Transactions on

Systems, Man, and Cybernetics, 10(9):566–574, 1980.

[62] K. A. De Jong.An Analysis of the Behavior of a Class of Genetic Adaptive Systems.

PhD thesis, University of Michigan, Ann Arbor, MI, 1975.

[63] B. De Reyck and W. Herroelen. A branch-and-bound procedure for the resource-

constrained project scheduling problem with generalized precedence constraints.

European Journal of Operational Research, 111:152–174, 1998.

[64] T. Dean and M. Boddy. An analysis of time-dependent planning. InProceedings

of the Seventh National Conference on Artificial Intelligence, pages 49–54. AAAI

Press, August 1988.

[65] M. den Besten, T. St¨utzle, and M. Dorigo. Ant colony optimization for the to-

tal weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,

173

E. Lutton, J. J. Merelo, and H. S. Schwefel, editors,Proceedings of PPSN-VI, Sixth

International Conference on Parallel Problem Solving from Nature, volume 1917 of

Lecture Notes in Computer Science, pages 611–620. Springer Verlag, 2000.

[66] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communi-

cations networks.Journal of Artificial Intelligence Research, 9:317–365, 1998.

[67] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In

D. Corne, M. Dorigo, and F. Glover, editors,New Ideas in Optimization, pages 11–

32. McGraw-Hill, 1999.

[68] M. Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman problem.

BioSystems, 43:73–89, 1997.

[69] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning

approach to the traveling salesman problem.IEEE Transactions on Evolutionary

Computation, 1(1):53–66, 1997.

[70] U. Dorndorf, E. Pesch, and T. Phan-Huy. A time-oriented branch-and-bound algo-

rithm for resource-constrained project scheduling with generalised precedence con-

straints.Management Science, 46(10):1365–1384, 2000.

[71] G. Dueck and T. Scheuer. Threshold accepting: A general purpose optimization

algorithm appearing superior to simulated annealing.Journal of Computational

Physics, 90:161–175, 1990.

[72] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, July

1999.

[73] H. Emmons. One-machine sequencing to minimize certain functions of job tardi-

ness.Operations Research, 17:701–705, 1969.

[74] V. A. Epanechnikov. Non-parametric estimation of a multivariate probability density.

Theory of Probability and Its Applications, 14(1):153–158, 1969.

[75] S. L. Epstein. For the right reasons: the FORR architecture for learning in a skilled

domain.Cognitive Science, 18:479–511, 1994.

174

[76] S. L. Epstein, E. C. Freuder, R. Wallace, A. Morozov, and B. Samuels. The adaptive

constraint engine. In P. Van Hentenryck, editor,Principles and Practice of Con-

straint Programming – CP 2002: 8th International Conference, Proceedings, vol-

ume LNCS 2470 ofLecture Notes in Computer Science, pages 525–540. Springer-

Verlag, 2002.

[77] A. Fest, R. H. Möhring, F. Stork, and M. Uetz. Resource-constrained project

scheduling with time windows: A branching scheme based on dynamic release dates.

Technical Report 596, Technische Universit¨at Berlin, Berlin, Germany, 1999.

[78] P. Forsyth and A. Wren. An ant system for bus driver scheduling. Technical Report

97.25, University of Leeds, School of Computer Studies, July 1997. Presented at

the 7th International Workshop on Computer-Aided Scheduling of Public Transport,

Boston, July 1997.

[79] B. Franck and K. Neumann. Priority-rule methods for the resource-constrained

project scheduling problem with minimal and maximal time lags – an empirical

analysis. InThe 5th International Workshop on Project Management and Schedul-

ing, pages 88–91, 1996.

[80] B. Franck and K. Neumann. Resource-constrained project scheduling with time

windows: Structural questions and priority-rule methods. Technical Report WIOR-

492, Universität Karlsruhe, Karlsruhe, Germany, 1998.

[81] B. Franck, K. Neumann, and C. Schwindt. Truncated branch-and-bound, schedule-

construction, and schedule-improvement procedures for resource-constrained

project scheduling.OR Spektrum, 23:297–324, 2001.

[82] B. Franck and T. Selle. Metaheuristics for the resource-constrained project schedul-

ing with schedule-dependent time windows. Technical Report WIOR-546, Univer-

sität Karlsruhe, Karlsruhe, Germany, 1998.

[83] J. Frank, P. Cheeseman, and J. Stutz. When gravity fails: Local search topology.

Journal of Artificial Intelligence Research, 7:249–281, 1997.

[84] E. C. Freuder, R. Dechter, M. L. Ginsberg, B. Selman, and E. Tsang. Systematic ver-

sus stochastic constraint satisfaction. InProceedings of the Fourteenth International

Joint Conference on Artificial Intelligence, pages 2027–2032. Morgan Kaufmann,

1995.

175

[85] L. M. Gambardella and M. Dorigo. HAS-SOP: Hybrid ant system for the sequential

ordering problem. Technical Report IDSIA 97-11, Istituto Dalle Molle di Studi

sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland, 1997.

[86] L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant

colony system for vehicle routing problems with time windows. Technical Re-

port IDSIA-06-99, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA),

Lugano, Switzerland, 1999.

[87] F. Glover. Tabu search – part I.ORSA Journal on Computing, 1(3):190–206, Sum-

mer 1989.

[88] F. Glover. Tabu search – part II.ORSA Journal on Computing, 2(1):4–32, Winter

1990.

[89] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, T. Smith, and

A. Stentz. A distributed layered architecture for mobile robot coordination: Appli-

cation to space exploration. InThe 3rd International NASA Workshop on Planning

and Scheduling for Space, 27-29 October 2002. Houston, TX.

[90] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, and A. Stentz. Market-

based multi-robot planning in a distributed layered architecture. InMulti-Robot Sys-

tems: From Swarms to Intelligent Automata: Proceedings of the 2003 International

Workshop on Multi-Robot Systems, volume 2, pages 27–38. Kluwer Academic Pub-

lishers, 17-19 March 2003. Washington, DC.

[91] D. E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison Wesley, 1989.

[92] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through ran-

domization. InProceedings of the Fifteenth National Conference on Artificial In-

telligence and Tenth Innovative Applications of Artificial Intelligence Conference,

pages 431–437. AAAI Press, 1998.

[93] C. P. Gomes and B. Selman. Algorithm portfolio design: Theory vs. practice. In

Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI-

97). Morgan Kaufmann, 1997.

176

[94] C. P. Gomes and B. Selman. Algorithm portfolios.Artificial Intelligence, 126:43–62,

2001.

[95] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinatorial

search. InPrinciples and Practices of Constraint Programming (CP-97), Lecture

Notes in Computer Science, pages 121–135. Springer-Verlag, 1997.

[96] C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in sat-

isfiability and constraint satisfaction problems.Journal of Automated Reasoning,

24:67–100, 2000.

[97] A. G. Gray and A. W. Moore. Rapid evaluation of multiple density models. In C. M.

Bishop and B. J. Frey, editors,Proceedings of the Ninth International Workshop on

Artificial Intelligence and Statistics, January 2003.

[98] J. Grefenstette. Optimization of control parameters for genetic algorithms.IEEE

Transactions on Systems, Man, and Cybernetics, 16(1):122–128, Jan-Feb 1986.

[99] L. Han, G. Kendall, and P. Cowling. An adaptive length chromosome hyperheuristic

genetic algorithm for a trainer scheduling problem. InProceedings of the 4th Asia-

Pacific Conference on Simulated Evolution and Learning (SEAL’02), pages 267–

271, November 2002.

[100] W. Harvey and M. Ginsberg. Limited discrepency search. InProceedings of the

Fourteenth International Joint Conference on Artificial Intelligence, pages 607–613.

Morgan Kaufmann, 1995.

[101] J. H. Holland. Genetic algorithms and the optimal allocations of trials.SIAM Journal

on Computing, 2(2):88–105, 1973.

[102] J. H. Holland.Adaptation in Natural and Artificial Systems: An Introductory Anal-

ysis with Applications to Biology, Control, and Artificial Intelligence. University of

Michigan Press, 1975. Second Edition: MIT Press, 1992.

[103] J. N. Hooker. Testing heuristics: We have it all wrong.Journal of Heuristics, 1:33–

42, 1995.

[104] H. Hoos and T. Stutzle. Characterizing the run-time behavior of stochastic local

search. Technical Report AIDA-98-01, Darmstadt University of Technology, Ger-

many, 1998.

177

[105] H. H. Hoos.Stochastic Local Search. PhD thesis, Darmstadt University of Technol-

ogy, Germany, November 1998.

[106] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering. A bayesian

approach to tackling hard computational problems. InProceedings of the 17th Con-

ference on Uncertainty in Artificial Intelligence (UAI-2001), pages 235–244, 2001.

[107] E. J. Horvitz. Reasoning about beliefs and actions under computational resource

constraints. InProceedings of the Third Workshop on Uncertainty in Artificial Intel-

ligence, pages 429–444. AAAI and Association for Uncertainty in Artificial Intelli-

gence, July 1987.

[108] E. J. Horvitz. Reasoning under varying and uncertain resource constraints. InPro-

ceedings of the Seventh National Conference on Artificial Intelligence, pages 111–

116. AAAI Press, August 1988.

[109] J. R. M. Hosking. Algorithm AS 215: Maximum-likelihood estimation of the para-

maters of the generalized extreme-value distribution.Applied Statistics, 34(3):301–

310, 1985.

[110] J. R. M. Hosking and A. J. Macleod. Maximum likelihood estimation of the param-

eters of the generalized extreme-value distribution. InStatLib: Applied Statistics

Algorithms. CMU, 1994. http://lib.stat.cmu.edu/apstat/.

[111] A. E. Howe, E. Dahlman, C. Hansen, M. Scheetz, and A. von Mayrhauser. Ex-

ploiting competitive planner performance. In S. Biundo and M. Fox, editors,Recent

Advances in AI Planning, 5th European Conference on Planning (ECP’99), Pro-

ceedings, volume LNCS 1809 ofLecture Notes in Computer Science, pages 62–72.

Springer-Verlag, 1999.

[112] B. A. Huberman, R. M. Lukose, and T. Hogg. An economics approach to hard

computational problems.Science, 275:51–54, 3 January 1997.

[113] L. P. Kaelbling.Learning in Embedded Systems. PhD thesis, Department of Com-

puter Science, Stanford University, Stanford, California, 1990.

[114] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, 4:237–285, May 1996.

178

[115] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart poli-

cies. InProceedings of the Eighteenth National Conference on Artificial Intelligence.

AAAI Press, July 2002.

[116] K. Kempf and T. Beaumariage. Chaotic behavior in manufacturing systems. In

AAAI-94 Workshop Program, Reasoning About the Shop Floor, Workshop Notes,

pages 82–96. AAAI Press, 1994.

[117] G. Kendall, E. Soubeiga, and P. Cowling. Choice function and random hyperheuris-

tics. InProceedings of the 4th Asia-Pacific Conference on Simulated Evolution and

Learning (SEAL’02), pages 667–671, November 2002.

[118] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220:671–680, May 1983.

[119] T. E. Koch, V. Scheer, J. Wakunda, and A. Zell. A parallel, hybrid meta-optimization

for finding better parameters of an evolution strategy in real world optimization prob-

lems. In A. S. Wu, editor,Proceedings of the 2000 Genetic and Evolutionary Com-

putation Conference Workshop Program, pages 17–19, July 2000. Evolutionary

Computation and Parallel Processing Workshop.

[120] I. Kocsis, L. Farkas, and L. Nagy. 3G base station positioning using simulated

annealing. InThe 13th IEEE International Symposium on Personal, Indoor and

Mobile Radio Communications, September 2002.

[121] R. Kolisch and S. Hartmann. Heuristic algorithms for solving the resource-

constrained project scheduling problem: Classification and computational analy-

sis. Technical Report 469, Christian-Albrechts-Universit¨at zu Kiel, Kiel, Germany,

February 1998.

[122] R. Kolisch and S. Hartmann. Heuristic algorithms for solving the resource-

constrained project scheduling problem: Classification and computational analysis.

In J. Weglarz, editor,Project Scheduling: Recent Models, Algorithms and Applica-

tions, pages 147–178. Kluwer, Amsterdam, the Netherlands, 1999.

[123] R. Kolisch and A. Sprecher. PSPLIB: A project scheduling problem library. Tech-

nical Report 396, Christian-Albrechts-Universit¨at zu Kiel, Kiel, Germany, March

1996.

179

[124] R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of resource-

constrained project scheduling problems.Management Science, 41:1693–1703,

1995.

[125] R. Korf. Depth-first iterative-deepening: An optimal admissible tree search.Artifi-

cial Intelligence, 27(1):97–109, 1985.

[126] R. Korf. Improved limited discrepancy search. InProceedings of the Thirteenth Na-

tional Conference on Artificial Intelligence and the Eighth Innovative Applications

of Artificial Intelligence Conference, Volume 1, pages 286–291. AAAI Press, 1996.

[127] R. E. Korf. Linear-space best-first search: Summary of results. InProceedings of

the National Conference on Artificial Intelligence (AAAI-92), July 1992.

[128] J. R. Koza.Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

[129] M. G. Lagoudakis, M. L. Littman, and R. E. Parr. Selecting the right algorithm. In

Using Uncertainty Within Computation: Papers from the 2001 AAAI Fall Sympo-

sium, Technical Report FS-01-04, pages 74–75. AAAI Press, November 2001.

[130] P. Langley. Systematic and nonsystematic search strategies. InArtificial Intelligence

Planning Systems: Proceedings of the First International Conference, pages 145–

152, 1992.

[131] K. Larson and T. Sandholm. Deliberation in equilibrium: Bargaining in computa-

tionally complex problems. InProceedings of the Seventeenth National Conference

on Artificial Intelligence (AAAI-2000), pages 48–55, July-August 2000.

[132] K. Larson and T. Sandholm. Bargaining with limited computation: Deliberation

equilibrium.Artificial Intelligence, 132:183–217, 2001.

[133] K. Larson and T. Sandholm. Costly valuation computation in auctions. InProceed-

ings of the Eighth Conference on Theoretical Aspects of Reasoning about Knowledge

(TARK), pages 169–182, July 2001.

[134] Y. H. Lee, K. Bhaskaran, and M. Pinedo. A heuristic to minimize the total weighted

tardiness with sequence-dependent setups.IIE Transactions, 29:45–52, 1997.

180

[135] S. Lin and B. W. Kernighan. An effective heuristic for the traveling-salesman prob-

lem. Operational Research, 21:498–516, 1973.

[136] A. López, R. Molina, J. Mateos, and A. K. Katsaggelos. Spect image reconstruc-

tion using prior models.International Journal of Pattern Recognition and Artificial

Intelligence, 16(3):317–330, 2002.

[137] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas algorithms.

Information Processing Letters, 47(4):173–180, 1993.

[138] A. J. Macleod. Remark AS R76: A remark on algorithm AS 215: Maximum-

likelihood estimation of the paramaters of the generalized extreme-value distribu-

tion. Applied Statistics, 38(1):198–199, 1989.

[139] U. Maulik, S. Bandyopadhyay, and M. K. Pakhira. Clustering using annealing evo-

lution: Application to pixel classification of satellite images. InThe 3rd Indian Con-

ference on Computer Vision, Graphics and Image Processing: Online ICVGIP-2002

Proceedings, December 2002. http://www.ee.iitb.ac.in/˜ icvgip/.

[140] K. N. McKay. The factory from hell – a modelling benchmark. InProceedings of

the NSF Workshop on Intelligent, Dynamic Scheduling for Manufacturing Systems,

pages 99–114, June 1993.

[141] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-

constrained project scheduling. InGECCO-2000: Proceedings of the Genetic and

Evolutionary Computation Conference, pages 893–900. Morgan Kaufmann, July

2000.

[142] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[143] D. Morley. Painting trucks at general motors: The effectiveness of a complexity-

based approach. InEmbracing Complexity: Exploring the Application of Complex

Adaptive Systems to Business, pages 53–58. The Ernst and Young Center for Busi-

ness Innovation, 1996.

[144] D. Morley and C. Schelberg. An analysis of a plant-specific dynamic scheduler. In

Proceedings of the NSF Workshop on Intelligent, Dynamic Scheduling for Manufac-

turing Systems, pages 115–122, June 1993.

181

[145] T. E. Morton and D. W. Pentico.Heuristic Scheduling Systems: With Applications

to Production Systems and Project Management. John Wiley and Sons, 1993.

[146] T. F. Morton and R. M. V. Rachamadugu. Myopic heuristics for the single machine

weighted tardiness problem. Technical Report CMU-RI-TR-83-9, Carnegie Mellon

University, Pittsburgh, PA, November 1982.

[147] V. Narayan, T. Morton, and P. Ramnath. X-Dispatch methods for weighted tardiness

job shops. GSIA Working Paper 1994-14, Carnegie Mellon University, Pittsburgh,

PA, July 1994.

[148] A. Nareyek. Using global constraints for local search. In E. C. Freuder and R. J.

Wallace, editors,Constraint Programming and Large Scale Discrete Optimization,

volume DIMACS 57, pages 9–28. American Mathematical Society Publications,

2001.

[149] A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning.

In M. G. C. Resende and J. P. de Sousa, editors,Metaheuristics: Computer Decision

Making. Kluwer Academic Publishers, 2003.

[150] K. Neumann, C. Schwindt, and J. Zimmermann.Project Scheduling with Time Win-

dows and Scarce Resources: Temporal and Resource-Constrained Project Schedul-

ing with Regular and Nonregular Objective Functions. Lecture Notes in Economics

and Mathematical Systems. Springer-Verlag, 2002.

[151] K. Neumann and J. Zhan. Heuristics for the minimum project-duration problem

with minimal and maximal time lags under fixed resource constraints.Journal of

Intelligent Manufacturing, 6:145–154, 1995.

[152] NIST/SEMATECH.e-Handbook of Statistical Methods. NIST/SEMATECH, 2003.

http://www.itl.nist.gov/div898/handbook/.

[153] A. Oddi and S. F. Smith. Stochastic procedures for generating feasible schedules.

In Proceedings of the Fourteenth National Conference on Artificial Intelligence and

Ninth Innovative Applications of Artificial Intelligence Conference, pages 308–314.

AAAI Press, 1997.

182

[154] A. J. Parkes. Clustering at the phase transition. InProceedings of the Fourteenth

National Conference on Artificial Intelligence (AAAI-97), pages 340–345. AAAI

Press, 1997.

[155] J. C. Pemberton and R. E. Korf. An incremental search approach to real-time plan-

ning and scheduling: Preliminary results. InProceedings of the NSF Workshop on

Intelligent, Dynamic Scheduling for Manufacturing Systems, pages 134–145, June

1993.

[156] C. N. Potts and L. N. van Wassenhove. A branch and bound algorithm for the total

weighted tardiness problem.Operations Research, 33(2):363–377, 1985.

[157] C. N. Potts and L. N. Van Wassenhove. Single machine tardiness sequencing heuris-

tics. IIE Transactions, 23(4):346–354, December 1991.

[158] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, 1992. Second

Edition.

[159] S. Prestwich. Local search and backtracking vs non-systematic backtracking. InUs-

ing Uncertainty Within Computation: Papers from the 2001 AAAI Fall Symposium,

Technical Report FS-01-04, pages 109–115. AAAI Press, 2-4 November 2001.

[160] R. V. Rachamadugu and T. E. Morton. Myopic heuristics for the single machine

weighted tardiness problem. Working Paper 30-82-83, GSIA, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 1982.

[161] N. Raman, R. V. Rachamadugu, and F. B. Talbot. Real time scheduling of an auto-

mated manufacturing center.European Journal of Operational Research, 40:222–

242, 1989.

[162] P. Ross, S. Schulenburg, J. G. Marín-Blázquez, and E. Hart. Hyper-heuristics:

Learning to combine simple heuristics in bin-packing problem. InGECCO 2002:

Proceedings of the Genetic and Evolutionary Computation Conference, pages 942–

948. Morgan Kaufmann, 2002.

[163] O. Rossi-Doria and B. Paechter. An hyperheuristic approach to course timetabling

problem using an evolutionary algorithm. InThe 1st Multidisciplinary International

Conference on Scheduling: Theory and Applications (MISTA 2003), August 2003.

183

[164] Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependence among runs: A

dynamic programming approach. In P. Van Hentenryck, editor,Principles and Prac-

tice of Constraint Programming – CP 2002: 8th International Conference, Proceed-

ings, volume LNCS 2470 ofLecture Notes in Computer Science, pages 573–586.

Springer-Verlag, 2002.

[165] W. Ruml. Incomplete tree search using adaptive probing. InProceedings of the

Seventeenth International Joint Conference on Artificial Intelligence, pages 235–

241, 4-10 August 2001.

[166] W. Ruml. Using prior knowledge with adaptive probing. InUsing Uncertainty

Within Computation: Papers from the 2001 AAAI Fall Symposium, Technical Report

FS-01-04, pages 116–120. AAAI Press, 2-4 November 2001.

[167] W. Ruml.Adaptive Tree Search. PhD thesis, Harvard University, May 2002.

[168] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall,

Upper Saddle River, New Jersey 07458, 1995.

[169] S. Sachdev.Explorations in Asynchronous Teams. PhD thesis, Department of Elec-

trical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 3 De-

cember 1998.

[170] N. M. Sadeh, Y. Nakakuki, and S. R. Thangiah. Learning to recognize (un)promising

simulated annealing runs: Efficient search procedures for job shop scheduling and

vehicle routing.Annals of Operations Research, 75:189–208, 1997.

[171] O. Scaillet. Density estimation using inverse and reciprocal inverse gaussian kernels.

Technical Report IRES DP 2001-17, Universit´e Catholique De Louvain, 2001.

[172] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das. A study of control param-

eters affecting online performance of genetic algorithms for function optimization.

In J. D. Schaffer, editor,Proceedings of the Third International Conference on Ge-

netic Algorithms, San Mateo, CA, 1989. Morgan Kaufmann.

[173] R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load balancing in

telecommunications networks. InAgents ’97, Proceedings of the First International

Conference on Autonomous Agents, pages 209–216. ACM Press, 1997.

184

[174] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz. Ant-based load bal-

ancing in telecommunications networks.Adaptive Behavior, 5(2):169–207, 1997.

[175] C. Schwindt. ProGen/max: A new problem generator for different resource-

constrained project scheduling problems with minimal and maximal time lags. Tech-

nical Report WIOR-449, Universit¨at Karlsruhe, Karlsruhe, Germany, July 1995.

[176] C. Schwindt. Generation of resource-constrained project scheduling problems with

minimal and maximal time lags. Technical Report WIOR-489, Universit¨at Karl-

sruhe, Karlsruhe, Germany, November 1996.

[177] C. Schwindt. A branch-and-bound algorithm for the resource-constrained project

duration problem subject to temporal constraints. Technical Report WIOR-544, Uni-

versität Karlsruhe, Karlsruhe, Germany, 1998.

[178] C. Schwindt. Generation of resource-constrained project scheduling problems sub-

ject to temporal constraints. Technical Report WIOR-543, Universit¨at Karlsruhe,

Karlsruhe, Germany, November 1998.

[179] C. Schwindt. Project generator progen/max and psp/max-library, 2003.

http://www.wior.uni-karlsruhe.de/LSNeumann/Forschung/ProGenMax/.

[180] B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability test-

ing. In D. S. Johnson and M. A. Trick, editors,Cliques, Coloring, and Satisfiability:

Second DIMACS Implementation Challenge, October 11-13, 1993, volume 26 ofDI-

MACS Series in Discrete Mathematics and Theoretical Computer Science. American

Mathematical Society, 1996.

[181] A. K. Sen and A. Bagchi. Graph search methods for non-order-preserving evalu-

ation functions: Applications to job sequencing problems.Artificial Intelligence,

86(1):43–73, September 1996.

[182] L. Shi and S.́Olafsson. Nested partitions method for global optimization.Operations

Research, 48(3):390–407, May-June 2000.

[183] B. W. Silverman. Algorithm AS 176: Kernel density estimation using the fast fourier

transform.Applied Statistics, 31(1):93–99, 1982.

[184] B. W. Silverman.Density Estimation for Statistics and Data Analysis. Monographs

on Statistics and Applied Probability. Chapman and Hall, 1986.

185

[185] J. Singer, I. P. Gent, and A. Smaill. Backbone fragility and the local search cost

peak.Journal of Artificial Intelligence Research, 12:235–270, 2000.

[186] S. F. Smith, D. W. Hildum, and D. Crimm. Toward the design of web-based plan-

ning and scheduling services. InProceedings of the ECP-01 / Planet Workshop on

Automated Planning and Scheduling Technologies in New Methods for Electronic,

Mobile and Collaborative Work, September 2001.

[187] S. F. Smith, D. W. Hildum, and D. A. Crimm. Interactive resource management

in the COMIREM planner. InProceedings of the IJCAI-03 Workshop on Mixed-

Initiative Intelligent Systems, August 2003.

[188] W. E. Smith. Various optimizers for single-stage production.Naval Research Logis-

tics Quarterly, 3:59–66, 1956.

[189] T. Stützle. An ant approach to the flow shop problem. InProceedings of the 6th

European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), vol-

ume 3, pages 1560–1564. Verlag Mainz, Wissenschaftsverlag, Aachen, 1998.

[190] R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

[191] S. Talukdar, L. Baerentzen, A. Gove, and P. de Souza. Asynchronous teams: Coop-

eration schemes for autonomous agents.Journal of Heuristics, 4:295–321, 1998.

[192] S. N. Talukdar. Asynchronous teams. Technical Report EDRC 18-42-93, Engineer-

ing Design Research Center, Department of Electrical and Computer Engineering,

Carnegie Mellon University, Pittsburgh, PA, 1993.

[193] R. A. Tapia and J. R. Thompson.Nonparametric Probability Density Estimation.

The Johns Hopkins University Press, Baltimore and London, 1978.

[194] G. Theraulaz, E. Bonabeau, and J. L. Deneubourg. Self-organization of hierarchies

in animal societies: The case of the primitively eusocial wasp polistes dominulus

christ. Journal of Theoretical Biology, 174:313–323, 1995.

[195] G. Theraulaz, E. Bonabeau, and J. L. Deneubourg. Response threshold reinforce-

ment and division of labour in insect societies.Proceedings of the Royal Society of

London B, 265(1393):327–335, February 1998.

186

[196] G. Theraulaz, S. Goss, J. Gervet, and J. L. Deneubourg. Task differentiation in

polistes wasp colonies: A model for self-organizing groups of robots. InFrom An-

imals to Animats: Proceedings of the First International Conference on Simulation

of Adaptive Behavior, pages 346–355. MIT Press, 1991.

[197] S. van der Zwaan and C. Marques. Ant colony optimisation for job shop schedul-

ing. In Proceedings of the ’99 Workshop on Genetic Algorithms and Artficial Life

GAAL’99, Lisbon, Portugal, March 1999.

[198] P. J. M. van Laarhoven and E. H. L. Aarts.Simulated Annealing: Theory and Appli-

cations. D. Reidel Publishing Company (Kluwer Academic Publishers), 1987.

[199] T. Walsh. Depth-bounded discrepency search. InProceedings of the Fifteenth In-

ternational Joint Conference on Artificial Intelligence, pages 1388–1395. Morgan

Kaufmann, 1997.

[200] L. Wasserman. Lecture notes: 36-713. nonparametric methods.

http://www.stat.cmu.edu/˜ larry/=stat713/, 2001.

[201] J. P. Watson, L. Barbulescu, A. E. Howe, and L. D. Whitley. Algorithm performance

and problem structure for flow-shop scheduling. InProceedings, Sixteenth National

Conference on Artificial Intelligence (AAAI-99), Eleventh Innovative Applications of

Artificial Intelligence Conference (IAAI-99), pages 688–695. AAAI Press, 1999.

[202] J. P. Watson, J. C. Beck, A. E. Howe, and L. D. Whitley. Toward an understanding

of local search cost in job-shop scheduling. InProceedings of the Sixth European

Conference on Planning, 2001.

[203] J. P. Watson, J. C. Beck, A. E. Howe, and L. D. Whitley. Problem difficulty for tabu

search in job-shop scheduling.Artificial Intelligence, 143(2), February 2003.

[204] D. F. Wong, H. W. Leong, and C. L. Liu.Simulated Annealing for VLSI Design.

Kluwer Academic, 1988.

[205] S. J. Wu and P. T. Chow. Genetic algorithms for nonlinear mixed discrete-integer

optimization problems via meta-genetic parameter optimization.Engineering Opti-

mization, 24(2):137–159, 1995.

[206] X. Yao. Call routing by simulated annealing.International Journal of Electronics,

79(4):379–387, 1995.

187

[207] S. Zilberstein.Operational Rationality through Compilation of Anytime Algorithms.

PhD thesis, University of California at Berkeley, 1993.

[208] S. Zilberstein. Using anytime algorithms in intelligent systems.AI Magazine,

17(3):73–83, Fall 1996.

[209] S. Zilberstein and S. Russell. Optimal composition of real-time systems.Artificial

Intelligence, 82:181–213, 1996.

188

Appendix A

Weighted Tardiness Scheduling with

Sequence-Dependent Setups: A

Benchmark Set

A.1 Overview

This Appendix details the set of problem instances used in the experiments of Chapter 5.

These problem instances are available online at either of:

� http://www.cs.cmu.edu/˜ vincent/benchmarks.html

� http://www.ozone.ri.cmu.edu/benchmarks.html

The file format for a problem instance file is described in Section A.2. The current best

known solutions to these instances which were found by various algorithms discussed in

Chapter 5 are listed in Section A.3.

A.2 Instance File Format

Each instance of the benchmark library is stored in a separate file according to the following

file format:

Problem Instance: <instance number>

Problem Size: <number of jobs in instance>

189

Begin Generator Parameters

Tau: <tau>

R: <R>

Eta: <eta>

P_bar: <average process time>

P_MIN: <minimum process time>

P_MAX: <maximum process time>

S_bar: <average setup time>

MAX_WEIGHT: <maximum weight value>

C_max: <target makespan>

D_bar: <average duedate>

End Generator Parameters

Begin Problem Specification

Process Times:

<process time for job 0>

...

<process time for job n>

Weights:

<weight for job 0>

...

<weight for job n>

Duedates:

<duedate for job 0>

...

<duedate for job n>

Setup Times:

<job i> <job j> <setup time for j if it follows i>

// i=-1 indicates the setup time if j is first job

End Problem Specification

A.3 Best Known Solutions

In this list of best known solutions, we list the problem instance number, best found objec-

tive value for the instance, and the algorithm that found it. Algorithms are referred to as

190

follows:

� LDS-all-two: This is LDS (Limited Discrepancy Search) allowed to run long enough

to consider all two-discrepancy solutions.

� HBSS,<iterations>,<bias>: This is HBSS with the specified number of iterations and

a bias function equal to rank�1�bias.

� VBSS,<iterations>,<bias>: This is VBSS with the specified number of iterations and

a bias function equal to valuebias.

� VBSS-HC,<iterations>,<bias>: This is the random-restart hill-climber using VBSS

to seed the starting solutions for the specified number of iterations and a bias function

equal to valuebias.

� SA,<totalEvals>: This is simulated annealing with a modified Lam schedule for the

specified number of total evaluations. Search begins with ATCS solution.

These algorithms are described in detail in Chapter 5 of this thesis. Other algorithms con-

sidered (including DDS, other variations of LDS, IS, Leeet al.’s single-start hill-climber,

the deterministic ATCS policy) also found some of these best known solutions but did not

exclusively find any best known solutions. The best known solutions are as follows:

191

Problem Instance Objective Value Algorithm

1 978 VBSS-HC,10000,5

2 6489 VBSS-HC,10000,5

3 2348 VBSS-HC,5000,5

4 8311 SA,20000000

5 5606 VBSS-HC,1000,5

6 8244 VBSS,5000,5

7 4347 VBSS-HC,10000,5

8 327 VBSS-HC,5000,5

9 7598 LDS-all-two

10 2451 VBSS-HC,10000,5

11 5263 VBSS-HC,2500,5

12 0 LDS-all-two

13 6147 VBSS-HC,2500,5

14 3941 VBSS,2500,5

15 2915 VBSS-HC,5000,5

16 6711 VBSS-HC,10000,5

17 462 VBSS-HC,5000,5

18 2514 VBSS,10000,5

19 279 VBSS-HC,2500,5

20 4193 VBSS-HC,10000,5

21 0 LDS-all-two

22 0 LDS-all-two

23 0 LDS-all-two

24 1791 SA,20000000

25 0 SA,20000000

26 0 LDS-all-two

27 229 SA,20000000

28 72 SA,20000000

29 0 LDS-all-two

30 575 SA,20000000

192

Problem Instance Objective Value Algorithm

31 0 LDS-all-two

32 0 LDS-all-two

33 0 LDS-all-two

34 0 LDS-all-two

35 0 LDS-all-two

36 0 LDS-all-two

37 2407 VBSS-HC,10000,5

38 0 LDS-all-two

39 0 LDS-all-two

40 0 LDS-all-two

41 73176 SA,20000000

42 61859 VBSS-HC,2500,5

43 149990 LDS-all-two

44 38726 SA,20000000

45 62760 VBSS,100,9

46 37992 SA,20000000

47 77189 SA,20000000

48 68920 LDS-all-two

49 84143 SA,20000000

50 36235 SA,20000000

51 58574 VBSS-HC,5000,5

52 105367 VBSS-HC,5000,5

53 95452 VBSS-HC,10000,5

54 123558 VBSS,2500,5

55 76368 VBSS,5000,5

56 88420 SA,20000000

57 70414 VBSS,10000,5

58 55522 VBSS-HC,10000,5

59 59060 VBSS-HC,10000,5

60 73328 VBSS-HC,10000,5

193

Problem Instance Objective Value Algorithm

61 79884 SA,20000000

62 47860 SA,20000000

63 78822 VBSS,200,23

64 96378 SA,20000000

65 134881 SA,20000000

66 64054 SA,20000000

67 34899 SA,20000000

68 26404 SA,20000000

69 75414 SA,20000000

70 81200 SA,20000000

71 161233 VBSS-HC,1000,5

72 56934 VBSS-HC,5000,5

73 36465 LDS-all-two

74 38292 VBSS-HC,10000,5

75 30980 LDS-all-two

76 67553 VBSS-HC,5000,5

77 40558 SA,20000000

78 25105 SA,20000000

79 125824 VBSS,5000,5

80 31844 VBSS,10000,5

81 387148 VBSS,200,17

82 413488 VBSS,200,17

83 466070 SA,20000000

84 331659 VBSS,100,20

85 558556 SA,20000000

86 365783 VBSS,200,20

87 403016 SA,20000000

88 436855 VBSS,200,11

89 416916 VBSS-HC,5000,5

90 406939 LDS-all-two

194

Problem Instance Objective Value Algorithm

91 347175 VBSS,100,14

92 365779 VBSS,100,11

93 410462 VBSS,100,19

94 336299 VBSS,100,10

95 527909 VBSS,100,9

96 464403 LDS-all-two

97 420287 VBSS,10000,5

98 532519 VBSS,100,12

99 374781 VBSS,100,12

100 441888 VBSS-HC,500,5

101 355822 LDS-all-two

102 496131 LDS-all-two

103 380170 VBSS,100,18

104 362008 VBSS,200,15

105 456364 VBSS,200,17

106 459925 LDS-all-two

107 356645 VBSS,200,15

108 468111 VBSS,200,21

109 415817 VBSS,10,13

110 421282 LDS-all-two

111 350723 VBSS,5000,5

112 377418 VBSS-HC,10000,5

113 263200 VBSS,100,5

114 473197 VBSS-HC,5000,5

115 460225 VBSS,100,10

116 540231 LDS-all-two

117 518579 VBSS-HC,10000,5

118 357575 LDS-all-two

119 583947 VBSS,200,13

120 399700 VBSS-HC,10000,5

195

