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Abstract (U)

An ongoing activity undertaken by the Situation Analysis Support Systems (SASS)
Group in the Decision Support Systems (DSS) Section at Defence Research &
Development Canada (DRDC) - Valcartier is the investigation of advanced concepts of
data fusion and sensor management processes, and their adaptation and integration.
These concepts could apply to the current Halifax Class frigates Above Water Warfare
(AWW) sensor suite, as well as its possible future upgrades, in order to improve its
performance against predicted future threats. As part of this exploration, a comparative
study of the commonly used track-level fusion techniques/algorithms is reported here.
In developing data fusion systems for surveillance and tracking purposes, the selection
of such techniques and/or algorithms is a fundamental conceptual issue. For any given
sensor suite configuration, there can be many different ways to combine data from the
sensors into global tracks, and various trade-offs are generally required for the selection
of the appropriate data fusion architecture, since each approach has its benefits and
disadvantages. The considered methods are compared through the target tracking
problem that presents both of the independent and correlated source fusion problems.

Résumé (U)

Une activité de recherche entreprise par le Groupe systemes d’aide a I’analyse de la
situation (SAAS) de la Section systémes d’aide a la décision (SAD), & Recherche et
Development pour la Défence Canada (RDDC) - Valcartier, concerne I’étude de
concepts avancés de fusion des données et de gestion des capteurs, ainsi que de leur
gestion et leur intégration. Ces concepts pourraient s’appliquer aux détecteurs et
capteurs du systéme de guerre anti-aérienne et de surface des frégates de classe Halifax,
ainsi qu’a ses améliorations possibles a venir, afin d’en accroitre la performance contre
les menaces futures anticipées. Le volet rapporté dans ce document concerne une étude
comparative des techniques et des algorithmes de fusion de pistes les plus utilisés. La
sélection de tels algorithmes et techniques représente un élément fondamental dans la
conception des systemes de fusion de données pour la surveillance et le pistage. Pour
chaque configuration de capteurs, différentes approches peuvent étre utilisées pour
1’agrégation en pistes globales de données fournies pas les mesures. Aussi, étant donné
que chaque approche présente ses avantages et inconvénients, des compromis sont
souvent nécessaires dans la sélection de 1’architecture la plus adéquate. Les méthodes
retenues sont comparées dans le contexte du pistage de cibles, qui présente a la fois les
deux situations : la fusion de sources corrélées et la fusion de sources indépendantes.

TR 2001-224 i
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Executive summary (U)

The data fusion architecture is an important issue in developing surveillance and
tracking systems, since the benefits of the data fusion process are different depending
on the way the source data are combined. The selection of appropriate data fusion
algorithms and techniques also depends on the underlying architecture, which can
range from highly centralized to highly distributed. The architecture classification
depends upon the level at which the sensor data are fused. One possible type of
architecture is based on maintaining sensor-level tracks using local information at each
sensor site and combining the resulting tracks into centralized global tracks. This
architecture is typically referred to as track-level fusion.

The primary alternative architecture assumes that all of the raw sensor measurements
are sent directly to the centralized fusion node to be combined into global tracks. This
architecture is typically referred to as contact-level fusion. Since in the latter the
observation errors of the sources to be fused are statistically independent, the Kalman
filter provides an optimal method for fusing information. This optimality will however
be no longer guaranteed, if the errors of the fused sources are correlated, as in the case
of the track-level fusion. However, if the cross covariance matrix is available, the
independence assumption imposed by the Kalman filter can be relaxed. The filter will
then still provide an optimal solution, by exploiting this additional information. If the
correlation information is missing, the Kalman filter cannot theoretically be applied.

In many situations, to allow for the use of the Kalman filter, the error independence is
often assumed and the correlation is simply ignored 1n the estimation process. We then
talk about the "simple fusion” approach that makes the filter over optimistic, that is, it
underestimates the covariance matrix. This phenomenon is referred to as the
inconsistency of the estimation and may, in many situations, lead to divergence.

Different approaches are available to handle the inconsistency and they all result in an
increase of the estimated error covariance matrix. Some methods try to directly increase
the estimated covariance matrix, by introducing an empirically determined parameter.
Since no rigorous method exists for choosing this parameter, the stability and the
reliability of the fusion process can be greatly compromised. Some other methods aim
at estimating an upper limit of the actual covariance to avoid underestimating it. The
covariance intersection method and the largest ellipsoid method both fall within this
category. They are both based upon an estimation of the intersection region for the
covariances that represents, independently of the cross covariance, an upper bound for
the actual error covariance. Another solution consists in estimating the missing cross
covariance matrix to allow for the application of a general form of the Kalman filter. An
example of algorithms for computing the cross covariance matrix 1s given by the
weighted covariance method. Finally, since the inconsistency phenomenon is mainly
caused by the double counting of the redundant information, an interesting solution
consists in removing this redundancy. The tracklet fusion approach and the information
filter method are two very practical methods that use very similar algorithms to achieve

TR 2001-224 iii
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this task. These methods are all compared in this document through the target tracking
problem that presents both of the independent and correlated source fusion problems.

Abder Rezak Benaskeur and Jean Roy. 2002. A comparative study of data fusion algorithms
for target tracking. TR 2001-224. Defence Research & Development Canada - Valcartier.
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Sommaire (U)

L’ architecture de fusion des données est cruciale pour la mise au point de systemes de
surveillance et de poursuite, car les avantages du processus de fusion des données
varient selon la fagon dont sont combinées les données des sources. Le choix des
algorithmes et techniques appropriés de fusion des données dépend également de
I’architecture sous-jacente, qui peut &tre largement centralisée ou décentralisée. Le type
d’architecture dépend du type des données qui sont fusionnées. Il existe un type
d’architecture basée sur le maintien de pistes au niveau des capteurs utilisant
uniquement I’information locale. Par la suite les pistes locales sont combinées en pistes

globales centralisées. On désigne ce type d’architecture comme la fusion au niveau des
pistes.

L alternative a ce type d’architecture présuppose que toutes les mesures brutes des
capteurs sont envoyées directement a un noeud central de fusion afin de les combiner en
pistes globales. On désigne ce type d’architecture comme la fusion au niveau des
contacts. Les erreurs d’observation des sources a fusionner étant statistiquement
indépendantes, le filtre de Kalman constitue la méthode optimale de fusion
d’information dans ce type d’architecture. On ne peut toutefois plus s’attendre a obtenir
le degré optimal, lorsque les erreurs des sources & fusionner sont corrélées, comme
c’est le cas dans la fusion de pistes. Par contre, la condition d’indépendance imposée
par le filtre de Kalman peut étre relaxée lorsque la matrice d’inter-covariance est
disponible. Le filtre exploitant cette information additionnelle, celui-ci constitue
toujours la meilleure solution. Si I’inter-covariance n’est pas disponible, le filtre de
Kalman ne peut étre utilisé, du moins en théorie.

Dans bien des cas, afin de permettre I’utilisation du filtre de Kalman, on présuppose
généralement que les erreurs sont indépendantes, et le processus d’estimation ne tient
tout simplement pas compte de la corrélation. Dans ces cas, la simple fusion tend

sous-estimer la matrice de covariance de I’erreur. On parle alors d’inconsistance de
I’estimation.

Diverses méthodes permettent d’éviter cette inconsistance. Toutes ces méthode
entrainent un accroissement de ’estimé de la matrice de covariance de [erreur.
Certaines d’entre elles tentent d’accroitre directement I’estimé de la matrice de
covariance de I’erreur par I’introduction d’un parameétre déterminé de fagon empirique.
Comme il n’existe pas de méthode rigoureuse pour déterminer ce parametre, la stabilité
et la fiabilité du processus de fusion peuvent s’en trouver gravement compromises.
D’autres méthodes permettent de déterminer la limite supérieure de la covariance réelle,
ce qui évite de ne pas la sous-estimer. La méthode de I’intersection des covariances et
celle du plus grand ellipsoide présentent toutes deux cette caractéristique. Les deux se
fondent sur 1’évaluation de la zone d’intersection des covariances, laquelle représente la
limite supérieure de la covariance réelle. Une autre solution consiste a évaluer la
matrice d’inter-covariance manquante afin de permettre 1’utilisation dans le filtre de
Kalman. La méthode de la covariance pondérée comporte des exemples d’algorithmes

TR 2001-224 \'
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permettant de déterminer la matrice d’inter-covariance. Enfin, puisque 1’incohérence
est surtout attribuable au décompte d’information redondante, on peut simplement la
supprimer. La méthode des tracklets et celle du filtre d’information constituent deux
fagons tres pratiques d’utiliser des algorithmes tout a fait simulaires pour y arriver. La
poursuite de cibles, qui présente a la fois les caractéristiques des sources indépendantes
et corrélées, permet de comparer toutes ces méthodes entre elles.

Abder Rezak Benaskeur and Jean Roy. 2002. Etude comparative des algonithmes de fusion de
données pour le pistage des cibles. TR 2001-224. Recherche et Development pour la Défence
Canada - Valcartier.

vi TR 2001-224
UNCLASSIFIED



P518346.PDF [Page: 11 of 75]

UNCLASSIFIED

Table of contents (U)

Abstract (U)

........................................ i
Résumé (U) . . . . ot e e e e e e e i
Executive summary (U) . . . . . .. . .. e e e iii
Sommaire (U) . . . . . . o i e e e e e e e v
Tableofcontents (U) . . . . . . ... v it e e vii
Listof figures (U) . . . . . . . . 0 i e e e e e X
Listoftables (U) . . . . . . . . . e e e e xi
1. Introduction . . . . . . . . . e e e e e 1
1.1  Fusionarchitecture . . . . . . . . . ... i e e 1

1.2 Sourcemodeling . . . . .. .. .. .. e 2

1.3  Fusionofindependentsources . . . . . . . .. .. .. ..., 3

1.4  Fusionofcorrelatedsources . . . . . . .. .. .. .. ... ... ..... 4

14.1 Stabilizingnoise . . . . . ... ... ... L o .. 4

142 Upperbound . . . ... ... ... ... e 5

1.43  Estimation of thecrosscovariance . . . . . . ... .. ... ... 5

1.4.4  Removal of the redundant information . . . ... .. .. .. .. 5

1.5 Applicationtotrack fusion . ... ... ... ... .. .. 000 5

2. Contact-level fusion . . . . . . . . . . . . . e 8
2.1  Target’sdynamicalmodel . ... .. .. ... ... ... ... ..... 8

22 Kalmanfilter . . . . . .. L 9

2.2.1  Covariance computation . . . . . . . . . .. ..t e e 10

222 Inverseform . .. .. ... . ... e e 11

223 Directform. . . . .. ... oo o e 11

224 Innovationform . .................... ..., 12

TR 2001-224 vii

UNCLASSIFIED




P518346.PDF [Page: 12 of 75]

UNCLASSIFIED
2.3 Single sensor target tracking . . . . . . ..
2.4 Multi-sensor target tracking . . . . . . . .
24.1 Sequential fusion . . . . . .. ..
242  Parallel fusion . ... ... ...
243  Datacompression . .. .....

2.5 Benefits of contact-level fusion
2.6 Drawbacks of contact-level fusion
3. Track-level fusion

3.1  Track-level fusion algorithms

3.1.1 Besttrack . ...........
3.1.2  Smmplefusion . .........
3.1.3  Covanance intersection . . . . .
3.14  Largestellipsoid . .. ... ...
3.1.5  Weighted covariance . . . . . ..
3.1.6  Trackletfusion . . . .. ... ..

3.1.6.1 Tracklet computation

3.1.7 Information filter . . . . . .. ..

3.2 Benefits of track-level fusion . . . .. ..

3.3  Drawbacks of track-level fusion . . . . . .

4. Performance comparison of various trackers . . .

4.1 Sensor-level tracker . . .. .. .. .. ..

4.2 Central tracker . . . . . ... ... ....

4.3 Results

4.3.1 Besttrack .. ..........

4.3.2  Simple fusion

Vi
UNCLASSIFIED

TR 2001-224



P518346.PDF [Page: 13 of 75]

UNCLASSIFIED

4.3.3 Covariance 1ntersection
4.3.4  Largest ellipsoid

4.3.5  Weighted covariance

4.3.6 Tracklet fusion & information filter

44  Comparison

S. Conclusion

References (U)
Annexes (U)

A Implementation of Kalman filter

A.1  Recursive algorithm

A.2  Array algorithm (Kalman filter)

A.2.1 Time update recursion

A.2.2  State update recursion

A.3  Array algorithm (covariance intersection)

A.3.1 Time update recursion

A.3.2  State update recursion

B Bayesian interpretation of Kalman filter . . . .. ... ... ...
Distribution List . . . . . . .. .. .. .. o oo
TR 2001-224

UNCLASSIFIED

o il T e A e

......................................

........................................

...............

..................

........

...............

........




P518346.PDF [Page: 14 of 75]

UNCLASSIFIED
List of figures (U)
1 Fusion network architecture . . . . . . . . . .. ... Lo o 6
2 Tracklet fusionalgonthm . . . . . . ... ... ... oo o o oL 25
3 Information filter algorithm . . . . . . .. ... oL oL oo oL 27
4 Best track fusion vs. Contactfusion . . . . . .. ... ... ... ... .. 32
5 Simple fusion vs. Contactfusion . . . . . .. ... ... oL L., 34
6 Covariance intersection fusion vs. Contactfuston . . . . ... . ... ... ... 35
7 Largest ellipsoid fusion vs. Contact fusion . . . . . ... .. ... ... ..... 36
8 Largest Ellipsoid fusion vs. Covariance Intersection and Contact fusion . . . . . . 37
9 Weighted covariance fusion vs. Contactfusion . . . . . . ... ... ... .... 38
10 Tracklet fusion vs. Contactfusion. . . . . . ... ... ... L 0oL 40
11 Information filter fusion vs. Contactfusion . . . . . .. . . ... ... .. .. .. 4]
X TR 2001-224

UNCLASSIFIED



P518346.PDF [Page: 15 of 75]

UNCLASSIFIED
List of tables (U)
1 Performance/Consistency comparison of the different track fusion methods . . . . 42
TR 2001-224 xi

UNCLASSIFIED




P518346.PDF [Page: 16 of 75]

UNCLASSIFIED

This page intentionally left blank.

Xii TR 2001-224
UNCLASSIFIED



P518346.PDF [Page: 17 of 75]

UNCLASSIFIED

Introduction

1.1

Recent years have witnessed a rapid development in the measurement and detection
technology. Nonetheless, no one of the available systems can be trusted enough to be
used as the single source, since they all depend on noisy, incomplete and/or inaccurate
input. This is even truer for critical situations, such as military applications. Therefore,
to achieve better accuracy, data from several sources are often combined. This
aggregation/combination, that allows for an efficient extraction of the desired
information, is referred to as “data fusion”. In most situations, it yields better accuracy
than could be achieved by single-source-based systems. Even though the need for data
fusion is nowadays recognized in many areas, applications to which it has up to
recently been applied have been mostly military in nature. In such a context, data
fusion provides the decision maker with an efficient tool to manage the information
he/she might receive from a variety of sources and improve his/her current situation

awareness, by helping 1n producing an “as accurate as possible” explanatory picture of
the battle environment.

An ongoing activity undertaken by the Situation Analysis Support Systems (SASS)
Group in the Decision Support Systems (DSS) Section at Defence Research &
Development Canada (DRDC) - Valcartier is the investigation of advanced concepts of
data fusion and sensor management processes, and their adaptation and integration.
These concepts could apply to the current Halifax Class frigates Above Water Warfare
(AWW) sensor suite, as well as its possible future upgrades, in order to improve its
performance against predicted future threats [1]. As part of this exploration, a highly
modular testbed, called CASE_ATTI (Concept Analysis and Stmulation Environment
for Automatic Target Tracking and Identification) has been developed {2, 3].
CASE_ATTI provides the algorithm-level test and replacement capability required to

study and compare the applicability and performance of advanced state-of-the-art data
fusion techniques.

A fundamental conceptual issue in developing a data fusion system for surveillance and
tracking purpose is the selection of an appropriate architecture [4-7]. For any given
sensor suite configuration, there can be many different ways to combine data from the
sensors into global tracks. This report presents a comparative study, making use of
CASE_ATTI, of the main fusion techniques reported in the literature.

Fusion architecture

The data fusion architecture is an important issue in developing surveillance and
tracking systems, since the benefits of the fusion process are different depending on the
way the sensor data are combined [8]. The selection of the appropriate fusion
algorithms and techniques also depends on the underlying architecture [8]. Hence,
before a data fusion algorithm can be implemented within a combat system, it must be
analyzed in terms of the different types of architectures and implementations that are

TR 2001-224 1
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possible, the benefits and drawbacks of these architectures and, finally, in terms of how
all this relates to the performance and mission requirements of the platform.

Within the surveyed literature, many different ways to combine data from multiple
sources have been found, offering as many architectural options to the data fusion
system designer [4-9]. The architecture of such a system can range from highly
centralized (or monolithic) to highly distributed [10]. The classification depends upon
the level at which the sensor data are fused (i.e., signal, contact or track level).

One possible type of architecture 1s based on maintaining sensor-level tracks using
local sensor information at each sensor site, finding (in a central fusion resource) the
sensor tracks that potentially represent the same target and then combining these tracks
into global tracks. This architecture is typically referred to as track-level fusion or
decentralized data fusion. The primary alternative architecture assumes that all of the
raw scnsor measurements (i.e., sensor contacts) are sent directly to the centralized
fusion node to be combined into global tracks. This architecture is typically referred to
as contact-level fusion or centralized data fusion. Although these two basic architectural
approaches have predominated most published work, fusion at the signal-level 1s also
possible. However, a discussion of this latter approach is out of the scope of this work.

Source modeling

In practice, the sources to be fused are often assumed corrupted by noises and therefore
modeled as random variables, whose true statistics are unknown. Within the estimation
theory framework, such stochastic variables are often represented in terms of means, or
estimates, and covariance matrices, that is, the uncertainties associated with the
estimation process. In this context, the main idea of data fusion is to get an estimate of
some unknown variable from its two (or more) available noise-corrupted, direct or
indirect, observations. In the case of two sources, s and 39, the statistical
representation of the available data (observations) is given by the means §; and 8s, the
assumed error covariance of each source

P, = E|535T (D
P, = E 5,57 2)

and the assumed cross covariance of the two sources

P.=E\535] (3)

where the unknown estimation error terms, §1 and So, are defined by

81 =81 — 81 4)
89 = 83 — 389 (5
TR 2001-224
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The fusion problem can then be characterized as finding a mathematical method to
describe how the information about 3; and 32 can be used, in an efficient and provably
optimal way, to construct a new estimate § (and an estimate of its associated measure of
accuracy P) that minimizes some cost function. This updated estimate is often
obtained via a linear combination of the two available estimates 51 and 3s.

3§ =Wis + Wh3y (6)

where the weights W) and W are computed to minimize some norm of the resulting
error covariance matrix P, whose expression is given by

P=w,PLWT + Wi PW] + Wy (P)TWT + W, B,W] )

1.3 Fusion of independent sources

If the sources to be fused are statistically independent, that is P¢ = 0, the combined
error covariance matrix (7) reduces to

P=wDBW] + WoB,Ww] (8)

and an interesting solution to the above described optimization problem is then given
by the weights of the Kalman filter [11]

-1 -1

W, = B, [131 + pQ] _ [13;1 + 132—1] Pt ©
~ -~ "~ —1 ~ -~ —1 -~

Wo = Py [Pl + P2] = {P;l + P;l] Pt (10)

Incontestably, the Kalman filter is one of the most important data fusion tools. If the
sources to be fused are actually statistically independent!, this filter provides,
regardless of the underlying error distribution, a mathematically rigorous and provably
stable method for fusing information in real-time, and performs in the Minimum Mean
Square Error sense, better than any other linear filter. The Kalman filter results in the
following fusion algorithm.

P~ls=Pls; + Pl (12)

It is proven that the quality of the estimate yielded by the algorithm (11)-(12) improves,
or at least remains constant, over the estimation process.

"Two random variables are independent, if thesr joint probability density 1s the product of their marginal (indi-
vidual) probability densities.

TR 2001-224 3
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Fusion of correlated sources

The optimality of the above-given Kalman filter will no longer be guaranteed, if the
fused sources are correlated. This may even compromuse the convergence of the
estimation process. Nevertheless, if the cross covariance matrix (P€), or at least an
estimate of 1t, 1s available, the independence assumption imposed by the Kalman filter
can be relaxed. The filter will then still provide an optimal solution, by exploiting this
additional information. The resulting weights are given by

-1
W, = (P, — (P9)T) [131 + PP (PC)T}

-1
= [(13’1 —P) ' 4 (B — (P! (PP (13)

and

1-1

W, = (P, - P°) [Pl + Py — P°— (P°)T

“1
_ [(151 _PY) Ty (B (pC)T)—l} (By— (P)T) (14)
One can easily show that the resulting error covariance matrix 1s given by
—1
P=P - [131 - PC} [131 - P+ Py (PC)T] [131 - (PC)T] (15)

Note that the introduction of the cross correlation matrix in the Kalman filter 1s
beneficial only 1if this matrix 1s definite positive. Furthermore, if the correlation
information 1s missing, the Kalman filter cannot theoretically be applied. In most
situations, to allow the use of the Kalman filter, the independence is often assumed and
the correlation is simply ignored 1n the estimation process. This approach, presented in
Sub-section 3.1.2 and known as the simple fusion, makes the filter “over optimistic”,
that is, it underestimates the actual error covariance matrix. We then talk about the
inconsistency of the estimation, that may in many situations lead to divergence [12].
This phenomenon is due to the double counting of the information, since the fusion
algonithm may be handling redundant pieces of information, while treating them as
independent. Different approaches are available to handle the inconsistency problem of
the simple fusion. These methods result all in an increase of the estimated error
covariance matrix, compared to the simple fusion. As shown below, the amount of this
increase and the way it 1s computed differs from one method to another.

1.4.1  Stabilizing noise

This approach consists in increasing directly the estimated covariance matrix,
by introducing an empirically determined parameter, also called “fudge
factor” [13]. Since there 1s no rigorous method for choosing this parameter,

TR 2001-224
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the stability and the reliability of the data fusion process can be greatly
compromised. This method 1s only mentioned for completeness and will not
be considered in the remainder.

Upper bound

Instead of artificially increasing the estimated error covariance, some methods
aim at finding an estimate for an upper limit of the actual error covariance, to
avoid underestimating it. The covariance intersection method [14] and the
recently proposed largest ellipsoid method [15], fall both within this category.
They are both based upon an estimation of the intersection region that
represents, independently of the cross covariance, an upper bound for the
actual error covariance. These methods result often in a loose of performance,
due to the overestimation of the actual covariance. They however have both
the advantage of being independent of the fusion network architecture and the
information flow. This makes them more widely applicable than the two
methods presented below.

Estimation of the cross covariance

Another solution consists in estimating the missing cross covariance matrix, to
allow for the application of the general form of the Kalman filter given by the
equations (13)—(15). An example of algorithms for computing the cross
covariance matrix is given by the weighted covariance method [16, 17]. Since
maintaining such a covariance matrix is not possible in any arbitrary
architecture [18], this method 1s only applicable in the case of “small”
networks, where the information flow 1s well defined.

Removal of the redundant information

Since the inconsistency phenomenon is mainly caused by the double counting
of the redundant information, an interesting solution consists in removing this
redundancy. The tracklet fusion approach [19, 20] and the information filter
method [21] are two very practical methods that use very similar algorithms to
achieve this task. Due to the amount of information required for their
implementation, these methods are also only applicable in the case of “small”
networks, with a known information flow.

ation to track fusion

for the comparison of the above-described methods, an application to the

target’s tracking problem 1s considered. This comparison is mainly based on the
estimation accuracy and consistency. Figure 1 gives the architecture of the fusion
network considered. Each local node has its own fusion mechanism that generates an
estimate (or a track) based only on its locally available measurement data (or contacts).
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Figure 1: Fusion network architecture

We assume that both nodes send their tracks and contacts to the central node that fuses
them, 1n some way, to obtain a combined track. Such a tracking problem presents both
of the above-mentioned situations, that 1s, independent and correlated source fusion
problems. The independent source case occurs at the sensor level, where the fused
contacts are actually independent. As shown in Chapter 2, this problem can be
optimally solved by the standard Kalman filter.

The correlated source situation 1s encountered at the central tracker level. The case,
where the latter uses only the contacts, and 1gnores the local tracks, 1s known as the
contact-level fusion, and falls within the independent source category. The standard
Kalman filter can therefore optimally solve 1t. Furthermore, since 1t yields the best
performance (by using the standard Kalman filter), it will serve as a reference to
evaluate the performance of the presented methods. A more challenging problem occurs
however when the central node fuses the sensor-level tracks, instead of the contacts.
Since the sensor-level trackers share, at least, the same process noise, their tracks are
correlated. The predicted estimate of the central tracker is also correlated with each of
these sensor-level tracks, since they share the same error history. This problem of
track-level fusion falls therefore within the correlated source case (see Chapter 3).

This report 1s organized as follows. The Kalman filter 1s first introduced in Chapter 2,
as an optimal solution to the contact-level fusion problem. In Chapter 3 is presented the
track-level fusion problem. The inconsistency of the simple fusion 1s shown, and
alternative solutions are presented. In Chapter 4, these solutions are compared for the
target’s tracking problem. The conclusion 1s presented in Chapter 5. Some useful
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materials and further developments will also be presented in Appendices A and B.
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Contact-level fusion

2.1

To illustrate the contact-level fusion problem, the estimation of the target’s kinematic
properties will be considered. In such a context, the contact-level fusion consists in
combining each new observation with the available estimate of the target’s state vector,
to provide an “improved” estimate of the actual target’s kinematics. Since each
observation is statistically independent from the others and from the maintained state
estimate, the fusion problem falls within the independent source class. Therefore, as
discussed in Chapter 1, the Kalman filter provides an optimal solution.

Target’s dynamical model

The dynamics of a target, whether it is an aircraft, a missile or a ship, can be described
by the evolution of its szate. The latter refers to a set of variables « that, at a specific
instant of time k, describe the target’s kinematic properties, which are partially reported
by a sensor or a set of sensors. Besides the target position estimate (e.g., range and
bearing, bearing and elevation, etc.), the reported information, which is commonly
referred to as a contact, may also contain a time tag, an esttmate of the measurement
quality (S§/N ratio, variance estimate, etc.) and, potentially, target identity information
data (e.g., IFF reply data). The target’s dynamical behavior is often modelled using the
dynamical equation

Thy1 = Frxp + Grug + vg (16)

This equation, known as the linearized state equation, may be prone to random
disturbances v, resulting from the model simplification? and/or the target’s maneuvers.
The matrix Fy, and Gy, are respectively the state transition matrix> and the
control/calibration gain matrix. The equation (16) tells how the future state vector @41
of the target evolves from its current value x; when 1t is affected by the control wy and
the process noise vg. In practice, the individual state variables x cannot always be
determined exactly by direct measurements. The observations usually provide only a
partial information about the complete state, i.e., they are “incomplete” observations.
Furthermore, since the sensors do not provide perfect data, the measurements (or
contacts) are often, if not always, corrupted by random noises w

ZE = Hkxk+wk 17

This equation is known as the linearized measurement (or observation) equation, where
Hj, 1s the observation matrnix.

The tracking problem then consists in combining the predicted state vector & 1|, and
the newly available data 21, to provide a refined estimate £ 1441 of the state vector.

2The objective of the model s Lo represent only the dorminant modes of the dynamucs.

3For non-linear systems, the matrices F, G and H), are the Jacobians, obtained from the partial denvatives of
the actual non-linear dynamics.
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The measurement noise w and the process noise v are assumed zero-mean, that is,

E [wk] =0 and E‘[vk] =0 (18)
and not auto—, i.e.,
E [wk—w?" } =R§(k—1) ad E {vkvﬂ = Qé(k —1) (19)
nor cross—, i.e.,
E [vkwlT} =0, Vk, 1 (20)

correlated. Under these assumptions, the Kalman filter provides the best unbiased
estimate &4 1|k+1 Of the actual state 1, given the statistics of the noises v and w.

Kalman filter

Within the Kalman filtering framework, the fusion problem can be reformulated as a
linear combination of the a priori estimate & 1 of the state ;11 and the measured
variable zx41. These represent the (independent) pieces of information to be fused, and
whose fusion results in the updated (or a posteriori) estimate &g 1% given by

k1 = Wapp + Wz, (21)

From (9) and (10), the Kalman gains are rewritten as

-1
W, = [P,;}llk + P;l] P,;jll X (22)
. -1
W, = [P,;}llk + P;l} Pt (23)
where
B . . T
Pk =FE [(wk+1|k — k1) (Brp1k — Ths1) } (24)

is the a priori estimation error covariance matrix*, and
~ ~T
P,=F [mzmz] 25

is the error covariance of the (indirectly) measured state. The combined estimate
covariance is then rewritten as

-1
Pk = [P;;_l”k + Pzﬁl] (26)

“This is the predicted value of the covanance at time instant k + 1, based on observations up to, and including,
the time instant k.
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2.2.1 Covariance computation
The a priori esiumation error is given by
Zpp1k = Thaile — Thtl (27)
= F &y — vg (28)
which leads to the following a priori covariance matrix
Pop=E [(Fk:f:k — vg) (Fiiy, — 'vk)T] (29)

10

= F.E [mw;{] FT 4 E'[vkvg} — F.E [ikvf ] —E [ukacz} FF (30)

Under the error/noise independence assumption, the last two terms are zero,
and the covarance reduces to

Pk = Py FE +Q €29

where Iskl k is the value at time instant k of the assumed a posteriori
covariance matrix. Now, even 1f the state 1s (in general) not directly accessible
to the measurement, its expression will be used to compute the measurement
error covariance matrix. The available information about the target’s state 1s
contained 1n the observation vector z; that is related to the state by the

observation equation (17). The (non-completely) measured state can then be
expressed as follows

@, = Hl zkp (32)

= @py1 + Hp | Wit (33)
The measurement error is then given by
&, = H || wipyy (34)
The covariance of the measurement error can be written as
P. = B (B wie) (Hihywen) | G5)
- H{LRUH)T (30
which can be expressed in the information (inverse) space as

P l=HI R 'H; (37)
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2.2.2 Inverse form

Gathering the equations (21) to (37) leads to the following algorithm for the
Kalman filter, known as the inverse form. This is very useful representation,
also known as the information space representation.

-1
P = [FkPkskaT + Q] + Hi R Hipy (38)

-1
Pl @een = {kak‘kaT + Q] [F@Hk 4 Gkuk} +HI  R7'zp1 (39

2.2.3 Direct form

Another representation of the Kalman filter, known as the direct form or the
covariance space representation, can be obtained by considering the
expression of the a posteriori covariance matrix

— >—1 T p-1
Pk = P + Hepn R Hiy (40)
to which is applied the following matrix inversion lemma.
(A" + BDC)'= A—-AB(CAB+ DY) lCcA (41)

This results in

-1
Pisippr1 = Popp — By HE 1 [Hk+1Pk+1lkHl’cP+1 + R} Hi 1Pk (42)

= Py — Wi Her1 ey (43)
where
. . -1
Wi1 = P HE [Hk+1Pk+l|kHE+1 + R} (44)
-1
= [Plc—-*-lllk + HZHR”HM] H{,, R (45)
= B HEn R (46)

is what is commonly referred to as the Kalman gain matrix. From equations
(21) and (26), the a posteriori estimate can then be expressed as

. A -1 - -1
Ter1e+1 = Pratjest [Pk+1|kmk+1|k + P; wz] (47)
N A —~1 ~
= Zgp1k + Perrps1 P [wz - mk+1|k} (48)
= &p1jk + Pepiprt Py Hi [Zk+1 - Hk+1§3k+1|k} (49)
TR 2001-224 1
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Using equations (37) and (46), the above update rule is rewritten in the
following form

Ekt1 = Tk + Wt | 2e41 — Hk+1‘f3k+1|k:| (50)

Grouping together equations (31), (43), (44) and (50) leads to the well-known
“prediction-update cycle” (or the direct) form of the Kalman filter.

Prediction
Tk = Fr@ipe + Grug (51)
Pk = FuP L+ Q (52)
Update
) ) -1
Wit = P Hiy l:Hk+1Pk+1|kHIZ1+1 + R} (53)
Epp1lk41 = Thrie + Wit [Zkﬂ - Hk+15’k+1|k} (54)
Pty = [I - Wk+1Hk+1] Py (55)

2.2.4 Innovation form

Another widely used form of the Kalman filter uses the innovation® () and 1ts
covariance matrix (S). This allows rewriting the Kalman filter as given below.

Prediction
Epp1jk = Felppe + Gruk (56)
Pk = Fe Py FL +Q (57)

Innovation
Vel = 2kt — Hiep1i@rp1pk (58)
Sky1 = Hk+lﬁk+l|kHE+l + R (59)

Update
Wit = PeHE 1 Seh (60)
Thpilhrl = Thprp + W1Vt (61)
Pk = Pregapp — Wisr1Ski1 W, (62)
30r the residual.
12 TR 2001-224
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2.3 Single sensor target tracking

In the case of a single sensor configuration, the tracking can be performed using any
one of the above-given forms of the Kalman filter. These forms all lead to the same
(optimal) solution, given that the independence assumptions are satisfied.

In the architecture of Figure 1, the single sensor configuration is used within the
sensor-level trackers. This represents the simplest case.

2.4 Multi-sensor target tracking

When a centralized multi-sensor fusion architecture is used, each individual sensor
transmits (with negligible delay through large bandwidth communication links) its raw
observations to the fusion centre where the required processes are performed to
generate and update global tracks, within a single master track file [8]. The central
fusion process performs the functions of data alignment, data association and target
state estimation. Because of the actual independence of the fused contacts, the
contact-level fusion approach yields, as in the single source case, an optimal
performance by using the standard Kalman filter. There are however three different
solutions possible to fuse the independent contacts received by the central tracker from
the sensors. Their performances are very similar (and even identical in the linear case)
and only the computation requirements may differ from one solution to another [22].

2.41 Sequential fusion

A Kalman filter, as in the case of a single sensor configuration, treats all the
measurements sequentially. The fusion of these measurements is however
performed without a prediction. Only one prediction is computed for all the
received (at the same time) measurements.

For the first sensor

-1
5-1  _ 5 T T -1
Pk+1|k+1 - [FkPkaFk + Q] + Hl(k+1;R1 Hy (63)
Zry1jkr1 = Felrp + 15k+1|1c+1H1r‘r(,ﬂ,1,Rfl [zl(k+1) - Hl(k+1)Fk‘ik[k} (64)

For the others (i = 2 to N)

51 -1 T -1

+1jk+1 T Pk+1|k+1 + Hl(k+1)Rt H‘(kH) (65)
- X A T -1 "
Thtilk+1l = Triljk+1 T Pk+l|k+1Ht(k+1)R1 [zt(k“) - Hz(k+1)mk+1|k+1] (66)
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2.4.2 Parallel fusion

This method is based upon the use of a stacked vector of the measurements to
process them 1n parallel. A composite equation 1s defined by

Zpp1 = Hipp1Teg1 + weg (67)
where
T T T
Zh1 = ‘:zl(kﬂ)’ e zN(k+1)] (68)
r T
_ T
Hieyy = [H1<k+1)""’HN(k+1)} (69)
. T
Wk+1 = [w£k+1)’ e wN(k+1)] (70)
and
R:diag[Rl,...,RN] (71

These matrices and vectors are used as inputs (and parameters) to a standard
Kalman filter.

-1
Pk_+11[k:+1 = I:FkPkaFE + Q] -+ H]Z_HR—lHk_H (72)
Thp1jk+1 = Firdr + Poppn HE R [Zk+1 — Hi 1 FioZgy (73)

24.3 Data compression

All the contacts (21( ki 1) ,R,) from the differcnt sensors are first fused together
to form unique vector 2,41 and covariance R, of the same dimension as
Zyy.., and R, respectively. The obtained information is used as a unique
contact by a central Kalman filter. The compression algorithm 1s given

n

R'=) "R (74)
=1

Rz =Y Rz, 75)
=1

Note that the data compression and the parallel fusion apply only in the case
of synchronous systems, i.e., all the contacts from the sensors are received at
the same time. The sequential fusion can be used in either synchronous or
random transmission cases. A different prediction mechanism is however used
in the random case. From the computation requirement viewpoint, the data
compression 1s the most efficient, while the parallel fusion 1s the least [22].
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Benefits of contact-level fusion

One advantage of the contact-level (or centralized) fusion architecture is the increased
reaction time [8]. Track initiation, confirmation and reporting are much quicker with
the centralized approach. All sensors that detect a target are used to initiate a track on
the target and contribute to the promotion of the track to the status of firm. Also, the
mutual support provided by the various sensors reduces the number of “holes” in the
data due to sensor fades (e.g., radar fade zones or IR sensor blockage). Moreover, the
aggregate scan period of the suite of sensors 1s significantly less than the fastest sensor.
For example, if a sensor 1s in a 10 seconds scan mode and another sensor is scanning
the same volume at the rate of once every 10 seconds, then the average update rate for a
target being seen by both sensors is once every 5 seconds. Hence, each composite track
contains more data per unit of time than the corresponding sensor-level tracks. Thus, by
using raw detections from all sensors for each track, the probability of confirming the
track can be improved over that for a single sensor. The increased reaction time
translates into longer range at target detection and track confirmation. Clearly, this is of
high interest in a military environment.

The contact-level fusion architecture has also the advantage of good track continuity. In
hard environmental conditions, each individual sensor may have a hard time to sustain a
track. However, looking at the overall sensor suite, one sensor may be blocked while
another has contact with the target being tracked. Hence, with multiple sensors
updating a track, the probability is small that all sensors are experiencing a fade at the
same point in space and time. It can typically be seen that one sensor “fills the gaps” of
the other sensor’s fade zones and that the combined probability of detection is better
than the maximum probability of each sensor at each range. For example, in a system
with a radar and an infrared (IR) sensor, IR detections can maintain a track that might
otherwise be lost during a fade in the radar return [17]. The probability of sustaining a
track is thus increased over that for a single sensor by using raw contacts from all
sensors. Finally, as an additional factor that contributes to the track continuity, each
composite track contains more data per unit of time than the corresponding sensor-level
tracks. The data from each sensor is used immediately to confirm target maneuvers
before the track is lost or corrupted [8].

Use of the maximum available information in the centralized architecture results in less
track uncertainty, and potentially a corresponding decrease in mis-correlation [5, 8, 17].
For example, there will be a higher probability of correct correlation in areas affected
by clutter because the gate sizes will be smaller due to more frequent track

updates [17]. Furthermore, since the data from each sensor is used immediately to
confirm target maneuvers before the track is lost or corrupted, the contact-level fusion
approach should have good false track suppression [8]. Moreover, a centralized fusion
system must, by necessity, incorporate advanced clutter suppression algorithms to
offset the increased data rate available from multiple sensors [8]. These algorithms are
specifically designed to suppress the types of clutter encountered by maritime
surveillance sensors (sea, weather, chaff and land clutter). Finally, as presented above,
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tracking algonthms conceptually similar to single-sensor tracking algorithms can be
used to implement centralized fusion [5].

Drawbacks of contact-level fusion

The contact-level fusion approach suffers primarily from the large communication load
resulting from the amount of raw observation data that must be transferred from the
sensors to the central processor through a high bandwidth communication link. The
computer processing power required to centrally process this raw data may also be very
high. Other potential problems with the centralized fusion relate to military
environments {5]. Centralized systems are highly vulnerable to failure (or destruction)
because of the critical nature of the central node in such architecture. From a tactical
perspective, because it represents a physically large, easily recogmzed critical element
in the intelligence preparation and dissemination processes, a centrahized system 1s
highly vulnerable to attack [10]. Hence, the centralized approach requires backup
processing and track files for survivability in case the platform containing the central
track file fails [8]. Centralized systems are also vulnerable to degraded (or corrupted)
sensor data. This problem occurs when the data from one sensor can become degraded
(and this degradation not immediately sensed), and thus lead to poor central-level
tracking. In this case, the possible combination of good data from un-degraded sensors
with bad data, in effect, will negate the value of the good data [23].

With the contact-level fusion architecture, one seeks to determine 1f raw data are
observations of the same entity. This data association process may be difficult because
of the large amount of data that need to be processed simultaneously, and because of
the dissimilarity between the sensors. Even the association of identical sensors may be
difficult if the sensors are displaced geographically. Fusion of raw data requires
commensurate sensor data [9]. Commensurate sensors observe the same physical
manifestation of an entity. Examples of commensurate sensors include identical sensors
or sensors whose observational data may be closely compared or merged (e.g., an
infrared image and a visual image). Finally, the implementation of the centralized
fusion architecture typically requires modifications to the current autonomous sensors
already 1n use to gain access to the raw contact data. These modifications may be costly.
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Track-level fusion

3.1

The track-level (or decentralized) fusion architecture allows each sensor to perform a
maximum amount of pre-processing to generate sensor output decisions (such as state
vectors and declarations of identity) for the various entities in the environment [9].
Independent target detection, features extraction, state estimation and identification are
thus potentially performed within the signal processor and tracker of each sensor [8].
The resulting target track data is normally stored in a track file. Hence, each sensor
individually maintains its own track file based exclusively upon its own measurement
data processed by the local tracker [23]. These sensor-level tracks are then transmitted
to a central fusion process responsible for both finding the sensor tracks that likely
represent the same target, and for combining or fusing these tracks into composite
tracks to form a master track file. Within the central fusion process, data alignment,
gating, assignment and fusion (positional and/or identity) are performed on state
vectors rather than on raw data.

Track-level fusion algorithms

Fundamental to the problem of combining sensor-level tracks is to first determine
whether two tracks from different systems (i.e., different sensor track files) potentially
represent the same target [23]. To accomplish this parametric association process, one
must define for each track-to-track pairing an appropriate association metric that
quantifies the closeness of the tracks. With the use of the Kalman filtering, the
association metric can be a statistical distance applied to the track state vector
differences for the two tracks. However, because the process noise introduced by the
target behavior is observed by all sources tracking a common entity, Bar-Shalom [6]
has shown that the track estimation errors may be correlated, and that this correlation
must be considered in the association metric. After track-to-track associations have
been determined, the local tracks that correspond to the same targets as seen by
different sensors must eventually be combined at a later stage.

Nevertheless, if the central track 1s updated with sensor-level tracks, the usual
assumption (valid for the case of raw measurements with uncorrelated measurement
error) of error independence from one update period to another is not valid. The
dependence between the estimation errors from the track files arises from the common
process noise entering into the state equation of the tracking filters (i.e., the common
error source due to the target dynamics), given that the information processors follow
the same target. For example, a sudden target maneuver can lead to a bias error for all
the tracking filters. The fact that the measurement noise sequences processed by these
different filters can be assumed independent is not sufficient to ensure the independence
of the estimation errors in the track files. The tracks dependence can be taken into
account in the processing, but it forces additional complexity [6,23]. Techniques for
combining sensor-level tracks into a global track file are described in many

references [6,9, 10, 17,23]. The next sections give an overview and a comparative
study of most of the reported techmques.
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Best track

This is the simplest way to obtain a global track from the sensor-level tracks.
It consists 1n choosing, according to some decision strategy, the best among
all the available tracks. One approach consists in selecting the sensor-level
track that yields the smallest (norm of the) error covariance matrix. Since this
method uses only one track at time, it does not take advantage of the
information contained in the other tracks, that is, the information brought by
the other sensors. In this case, if one sensor is slightly more accurate than the
others, the central track will reduce to the track generated by the tracker
associated with that sensor. Since it does not take advantage of the available
fusion architecture, the performance of the resulting fusion will correspond to
that of single-sensor architecture.

Simple fusion

The simple fusion method, where the sensor-level tracks are assumed
independent, 1s another simple way to generate global tracks. As a
consequence of the independence assumption, a standard Kalman filter is used
in the central tracker. The (assumed independent) sensor-level tracks are then
simply treated as contacts, with the identity as an observation matrix. This
approach, whose algorithm 1s given below, suffers from inconsistency.

Prediction
Zrp1k = Frlpp + Gruk (76)
P = FPp FE +Q a7
Update

A1 _ p-1 -1 -1
Pertperr = BParape + Proy T Prgeny (78)

51 . _ H-1 4 51 - 51 4
Bk etk = Pip@earle T Pry ) Bl + Po ) 200 (79)

3.1.3

This filter overestimates its own performance, by underestimating the actual
error covariance matrix. This inconsistency may lead the filter to instability, if
the latter 1s applied for recursive estimation. This 1s why alternative methods
are presented below.

Covariance intersection

The covariance intersection provides a method that allows performing the
track® fusion without assuming independence. The “intersection” terminology
1s related to the geometric analogy based upon the covariance o-contour plots.

SAnd correlated data, 1n general.

18
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By using a Kalman-like fusion rule, the actual error covariance will always lie
within the region defined by the intersection of the covariance of the fused
sources, whatever is the degree of correlation between these sources [14].

Based on this observation, and in order to guarantee the consistency, the
covariance intersection algorithm computes a covariance matrix that will
always enclose the intersection region. The latter is in fact an upper bound for
the actual covariance. In the case of two sensor-level tracks, (&1, P,) and
(&2, Py), the central fusion algorithm is given by.

Prediction
Zip1lk = FeZpe + Gru (80)
Pk = Fe P FE + Q (81)
Update
5—1 S | 51 H—1
kriferr = W0y twlPy ey (82)
f—1 - -1 4 H—1 H—1
Pk+1]k+1mk+1|k+1 = “’f)Pk+1|k“’k+llk + wlPl(k+1)“’1(k+x) + ‘*’2P2(k+1)“:2(k+1) (83
Subject to
wo+wytwy=1 (84)
w; >0, Vj (85)

The parameters w, provide additional degrees of freedom that allow one to

perform a further optimization of (a some norm of) the combined covariance
matrix.

Since the intersection region represents (in all directions) an upper limit for
the actual covariance, and the covariance intersection method overestimates it,
the latter results in a significant loose of performance. This is why the method
is said sub-optimal. To avoid this large overestimation of the actual covariance
matrix, we proposed in [15] a new filter called largest ellipsoid, which is
briefly presented below.

3.1.4 Largest ellipsoid

As in the covariance intersection case, the design of the largest ellipsoid filter
is based on the estimation of the intersection region. But instead of
overestimating it, the proposed filter tries to slightly underestimate it. This
will have no consequence on the consistency of the filter, because the
intersection region is only an upper limit. Since the o-contour defined by the
actual covariance matrix is an ellipsoid, the largest ellipsoid filter computes
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the largest ellipsoid contained within this intersection region. The matrix
orientation problems may however render the computation of this intersection
very difficult, and even impossible. This 1s why the following geometrical
transformations are first applied to the covariance matrices 13’1“ 41, and

P2(k+1)'

1 0 .. o0
oo o | [

1,

- . . -)\1 v{l
JJalSu
0 0 - v
where A1, and vy, are respectively the 7™ eigenvalue and ei genvector of

Py (k1) Lhe shape and the size of the intersection ellipsoid are then defined
by the following matrix

’UT
~ 21
E=T"1wy, ... v3,]Dmmn | : |T7T (86)

T
vy,

which will serve as the error covariance matrix pk+1lk+1 for the central track.
The matrix D,,,, is defined by

min(Ag,, Ao, ) 0 ... 0
0 min(A,, Ag,) ... 0
Dppan = . (ripds) - . (87)
0 0 ... min(Ay,, Ag,)

where Ay, and vy, are respectively the 7" eigenvalue and eigenvector of the
transformed matrix

Pl -Th,, 1" (88)

Besides the computation of the largest ellipsoid matrix, a simple fusion
algorithm is run. The resulting state vector estimate (79) is kept, while the
covariance matrix (78) is dropped and replaced by (86). The pair (79)-(86)
represents the updated central track, and will serve as the starting point for the

next cycle 1n both of the simple fusion algorithm and the largest ellipsoid
computation.

Weighted covariance

An estimate of the cross covariance matrix is computed recursively. This
allows the correlation between the tracks to be taken 1nto account, through the
application of the general form of the Kalman filter given by the equations
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(13)-(15). Since the Kalman gains W) and W, are computed at the contact
arrival rate, the cross covariance matrix has to be computed at this same rate.
An example of a recursive computation [16, 17], and the associated fusion
rule, are given below.

Correlation
Pf= [I - Wy, Hlj] PS5, [I - W2]H2J} (89)
Update
Pp=Py,, — P +Py,,, — (P (90)
Wi = [lerl) - P1§+1j] Pg! 2y
Ze+1 = E144y, + Wit [imm - fi‘1(k+1,} (92)
p(k+1) = P1<k+1) - [pl(ku) - Pkoﬂ} Py [Pl(km ~ (Pg)” ®3)

3.1.6

Since it requires the Kalman gains used to generate the sensor-level tracks,
this method cannot use the prior information (predicted from the central
track), and serves only to fuse synchronous sensor tracks. The fusion result is
therefore not optimal in the minimum mean square error sense, but only in the
maximum likelithood sense. Furthermore, if the sensor trackers’ Kalman gains
are not available, or cannot be sent the central tracker at the sensor trackers’
update rate, the weighted covariance algorithm cannot be implemented.

Tracklet fusion

This method is based on the removal of the redundant information approach.
In the case of a fusion without the process noise, this method is proven to be
optimal, that is, 1t is equivalent to the contact-level fusion. Nevertheless, in the
practice the presence of this noise does not affect much the performance of the
method. Since the sensor-level trackers compute tracklets, and not complete
tracks, the only available track is located at the central node’. The sensor-level
tracks may be required in some situations, as for the track association
problems in multi-target environments. To solve this problem, sensor-level
trackers will have to maintain complete tracks besides the tracklets. This

obviously will results in an increased computation load and communication
bandwidth®.

"If a feedback
central track will
track.

8Since both of

TR 2001-224

1s used, the central node will also have to run a tracklet algorithm, which means that even the
no longer be available, unless additional computation is performed to also maintain a complete

the tracklets and the tracks are sent to the central tracker.
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The method is illustrated here with the example of two (sensor-level) trackers
that send their tracks to a central tracker (see Figure 1). For more than two
nodes, each pair of nodes that exchange information will have to run a simular
algorithm to avoid redundancy. It is clear that, for a large number of nodes,
the implementation may be difficult, and even impossible; if the data transfer
paths are not known. This is why this method is only practical in the case of
“small” networks with a known data flow.

3.1.6.1

Tracklet computation

For each sensor-level tracker, a tracklet is computed at the end of
cycles corresponding to « contacts. The starting time and the end
of each cycle are noted, respectively, [ and k. Take note that

k=1+a (94)

where o can be seen as an over-sampling rate. Since the same
treatment applies to both nodes, and to lighten the notation, the
subscript corresponding to the node number will be dropped.
Starting from the last sent tracklet at time instant , viz. (u;,U)),
and under the zero process noise assumption, the predicted value
(« steps ahead) of the state vector, without using the contacts, is
given by

Ty = Py 95)
Py = &y Ui, (96)

where

k—1
=] F 97)
7=l

During this same cycle, the filtered state that does use the contacts
18 given by

Ty = Feo1@-1jp—1 + Wi [Zk - Hka—liik_uk—l} (98)

= [I - Wka] Fio_1& -1 + Kizg (99)

= Ty + ¢(2) (100)

and

Py, = [I - Wka:l Fi 1P o1 FiL 4 (101)

= Ty U], (102)
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where
k—1
Ty = H [I - VVj+1H;+1] F, (103)
=l

The correlation between &; and &y 1s computed to allow for the
removal of the redundant information. This correlation is given by

E[:i:klk:ﬁf“] = E[@k,ku%;{k] (104)
=E [:i:kuﬂ &} (105)
= Ty Ui d}, (106)
= By (107)

The idea behind the tracklet fusion algorithm consists 1n
generating a piece of information (ug, Ug), called a tracklet that,
unlike the complete track, is rendered independent of (u;, Uy).
The independence is obtained by combining the above-calculated
predicted and filtered vectors as follows

wug = :i:k“ + K‘(:i’k|k — :i:k“) (108)

where the gain k is chosen such that

E[ukulT] =0 (109)
From (95}, this is equivalent to
E[ukﬁ:{u] = Py + n[ﬁklk - Pk,i] (110)
=0

An obvious choice for  that guarantees a zero cross-correlation is
given by

-1
Kk = Py [Pku - Pk|k] (111)

The resulting tracklet and its covariance matrix are then given by

-1
ug = Epp + Py [Pkll - Pkuc} (ke — Twopt) (112)
-1
Ui = Py [Pku - Pk] Py — Py (113)
23
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Because of their complete independence, the tracklets from the
both sensor-level trackers are treated as contacts by the central
node, with an identity observation matrix. The tracklet algorithm,
whose principle 1s illustrated by Figure 2, can also be rewritten 1n
the information space. This leads to the following algorithm.

Computation (¢ = 1,2)

By, = H F, (114)
- —T 15—
P1k|k l|k U (I)ilk (115)
U; wn, = By, — <I>;|,CTU“ Uy, (116)
Fusion

1 _ 5T p-lg- - 1
Pklk LT Pm ‘I’zug +UL + Uy, (117)
klkmklk = ‘I’uk Pz|z &y + Ulk Ul + U2k Uy, (118)

Re-initialization

P“II =U,, (119)
m‘m = Uy, (120)

Information filter

As shown in Figure 3, the information filter method is very similar to the
tiacklet fusion approach (Figure 2). The information filter 1s however more
general, since 1t does not assume the process noise to be null. This approach
yields an optimal fusion of tracks and, in terms of performance, is equivalent
to the contact-level] fusion. Besides the process noise assumption, the fusion
algorithm given below differs from the tracklet fusion in the re-initialization
mechanism at the starting of each cycle. While the tracklet fusion
re-1nitializes both of the predicted and the update estimates, the information
filter re-imitializes only the predicted one. Another difference lies in the
mformation (uy, U}) used for this re-initialization. The tracklet uses the
previously sent de-correlated tracklet, while the information filter re-initializes
with the complete sensor-level track.

Besides 1ts superiority over the tracklet fusion 1n terms of performance, the
information filter has the advantage of maintaining complete tracks at the
sensor-level, instead of tracklets that contain only partial information. Note
that the information removal can be performed at either the sensor-level
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trackers or the central tracker. If the removal 1s 1gnored, the method reduces to
the simple fusion.

Redundancy removal (i = 1,2)

-1 _ Pl -1

Uu - ch P’«ku (121)
U, ', = P'&, - P d,, (122)

Information fusion
Pl =Pyl + U+ Uy (123)
B '@y = Pl + Ujlui, + Uy luy, (124)

where

Py, 1= FP . F +Q (125)
&)1 = Fy&; 1 (126)

3.2 Benefits of track-level fusion

The track-level (or decentralized) fusion has the advantage of reduced communication
requirements when compared with the centralized contact-level scheme [6, 8, 17]. The
track-level fusion requires much less I/0 bandwidth to transmut the data between the
sensors and the central node. The local tracks are periodically transferred to the central
processor rather than the copious measurement data. If necessary, the sensor-level
tracks may also be communicated less frequently than the arrival of the sensor data
(e.g., the a over-sampling rate for the tracklet fusion and the information filter
approaches). The approach also has the advantage of reduced computational loading (in
any single processor). Certain computational advantages may result from the inherent
parallel processing possible using this approach [6, 17].

In military applications, due to the distributed tracking capabilities, the decentralized
fusion results 1n increased survivability when compared with centralized

systems [5,23]. Moreover, if one sensor becomes degraded, its observations will not
affect the sensor-level tracks of the other sensors (i.e., the good sensor-level tracks will
not be corrupted by the bad data) [5, 23]. By checking the sensor-level tracks with the
central tracks, one may be able to detect any errors 1n the sensors [23]. Then, when the
sensor with poor data 1s finally recogmzed, the central-level tracks can be formed using
only sensor-level tracks from non-degraded sensors [5]. The track-level fusion option
allows also the fusion system designer to tune each sensor-specific estimation process
to the nuances of that particular sensor’s data and operating characteristics [4, 5, 23].
Data association for this architecture 1s relatively simple, since the process compares
state vectors or identity declarations instead of raw data [9]. The approach also allows
data from non-commensurate sensors to be combined. Finally, the track-level fusion
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architecture offers a systematic and natural upgrade path from the existing surveillance
systems. This 1s achieved by using previously developed single-sensor trackers locally,
followed by the combination of their local tracks to form global tracks.

Drawbacks of track-level fusion

A major disadvantage of the track-level fusion 1s the inherent poor reaction time. A
target track 1s reported to the Commanding Officer / Operator only after one of the
single sensors has promoted its internal track to the firm status. Moreover, the
track-level fusion potentially provides a significant tnformation loss compared with the
contact-level fusion, since sensor data are represented via state vectors or identity
declarations. The information processing and analysis for each sensor may result 1n a
local optimization rather than a global optimized solution [9, 10].

Less accurate tracking and correlation are to be expected if sensor-level tracks are
maintained. For example, there will be a higher probability of false correlation for the
sensor-level tracks 1n areas affected by clutter because the gate sizes will be larger due
to less frequent track updates [23].

The major difficulty associated with the use of the decentralized data fusion arises
during the formation of global tracks from sensor-level tracks [5]. There is a
requirement to correlate and fuse track data, such as state vectors, which are not
statistically independent due to potential target maneuvers (representing common error
sources). It is necessary n the track processing algorithms to account explicitly for
such dependence [9]. If track fusion occurs without taking into consideration the
statistical interdependence, then there will be a reduction in the random error but the
mean error due to target maneuver will not be averaged out [5]. However, these 1ssues
are of importance only when the tracks being combined are of comparable accuracy.
When considering radar, IR, and ESM sensors the track fusion process essentially will
be a merging of IR angle, radar range, and ESM ID. The effect of the common error
source of target maneuver will not be a major 1ssue for this set of sensors. Finally, the
track-level fusion architecture can suffer from a poor false track suppression capability
since poor track-to-track correlation (e.g., for a maneuvering target) will inevitably lead
to multiple tracks on the same target.
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Performance comparison of various trackers

The methods presented are illustrated and compared using the target’s tracking
example, whose fusion network is shown in Figure 1. One is interested here in
providing an “improved” estimate of the state vector, such that the target’s kinematics
can be depicted as correctly as possible. This tracking problem presents both of the
independent and correlated source fusion problems. But since the independent source
case admits the standard Kalman filter as an optimal solution, the emphasis will be put
on the more challenging correlated case, i.e., the track-level fusion.

The tracked target is assumed to be moving in a 2D space, where the acceleration acts
as an input®. The state to be estimated is therefore composed of the target’s coordinates,
viz., the position and the linear velocity. With the following state variable notation

Pz
z = |Pv and v= [”1] (127)
CF v2
Vy
the equations of such a target can be expressed as
Trr1 = Fraep + Tog (128)

where v is vector of random variables that reflects the unforeseeable variation of the
acceleration in both directions and the state transition matrix is given by

Fy, = (129)

oo o=
S O = O
Q= o
= o > o

h is the time increment. The matrix I in (128) depends on the model used to represent

the discrete-time nature of the process noise v. Two examples are given below. The
first one

h%j2 0

| 0 A%)2

r=|, 0 (130)
0 h

%Since the acceleration may change unfareseeably, it 1s often modeled as a random variable, and so will be as

such.
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reprensents to the pulse model, while the following one

R 1
0 0

2\/§ 2 3 3
2 2

r=|{ o 0 he vr® (131)

2v3 2

0 vh O 0

0 0 o A

is used by the Brownian motion modelling. Note that the latter requires four random
variables instead of two. If the process noises are assumed to have the same standard
deviation J,, the pulse model results 1n the following process noise covariance matrix

Q =érr?

(132)
_h4 h3 -
— 0 — 0
‘ h4 2 R3
2|0 4 2
=8 | s 4 2 (133)
5 0 h?
h3
o — 0 A
L 2 -
while the covartance matrix for the brownian motion is given by
Q = &rr” (134)
"h3 h? |
— 0 — 0
h3 2 h2
0 —_— 0 —
= &2 12 3 2 (135)
5 0 h 0
h?
i 0 - 0 h |

4.1 Sensor-level tracker

The contact fusion problem (at the sensor level) 1s first considered. This corresponds to
the case of actually independent sources, since the measurement and the estimation
noise at the sensor level are not correlated. The target’s position (in both directions) is

the only measured variable. This can be represented by the following observation
equation

Zuey = Hitoin (136)

where k + 1 1s the observation time, ¢ 1s the sensor number (= 1,2) and H, is the
observation matrix that 1s given, for both sensors, by

1 0 0 0

H=1 1 o o

(137)
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Central tracker

The central tracker receives and fuses the tracks from the two sensor-level trackers,
which, for simplicity, are assumed time aligned. Since it deals with correlated sources,
the track-level fusion problem is more challenging than the contact-level one. Different
methods are compared, and in order to lighten the graphics, each method is separately
plotted versus the centralized contact-level fusion approach. Due to its proven
optimality, the latter is taken as a reference, in the performance evaluation.
Nevertheless, the performance is not the unique comparnson criterion. The consistency

is another important property, which helps in choosing the appropriate approach for a
given situation.

Results

To compare the different algorithms, the traces of the actual and the estimated error
covariance matrix of the central tracker are plotted. All the plotted traces are
normalized with respect to the trace of the estimated error covariance matrix yielded by
the centralized contact-level fusion. The results presented are obtain via 200
Monte-Carlo runs. The used covariance matrix corresponds to the pulse model, with

d, = 12 and h = .1. The sensor noise standard deviations are given, respectively, by
&y, = 5 and &, = 4 for the first sensor, and 8,, = 6 and §,,, = 3, for the second one.
Note that the sensors are not assumed identical, and the positions in each direction (z or
y) are measured with a different accuracy. The over-sampling rate o has been fixed to 5.

Furthermore, to obtain a comparison means between the presented methods, two
parameters are defined (see Table 1). The first one p. corresponds, for each considered
method, to the ratio of the trace of the estimated covariance matrix to the trace of the
actual one. This gives a direct measure of the consistency of the fusion algorithms.
Note that a method is inconsistent, if . < 1. The second parameter gp, which is > 1,
deals with the performance. It is defined by the ratio of the trace of the actual
covariance matrix (yielded by each method) to the actual covariance matrix yielded by
the centralized contact fusion. Note that the more g, is close to 1, the more the
corresponding method is performant.

4.3.1 Best track

The best track approach consists in choosing, between the two tracks, the one
that yields the highest performance, according to some criterion. But since the
information contained in the other one is dropped, this approach results, as
shown in Figure 4, in a loose of performance (g, = 1.32). The best track
method has however the advantage of always leading to a consistent estimate
(oc = 1.02). The consistency is guaranteed because the central track is always
equal to one of the two sensor-level tracks, which are both consistent.
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Simple fusion

The simple fusion assumes the independence between the sensor-level tracks,
and between each of the sensor-level tracks and the central track. It therefore
uses a standard Kalman filter to fuse them, which obviously leads to
inconsistency. This result is clearly shown in Figure 5, where the fusion
algorithm underestimates the actual error covariance matrix (g, = 0.35).

Covariance intersection

As shown in Figure 6, the covariance intersection allows avoiding the
inconsistency of the simple fusion. The actual covariance matrix is indeed
smaller than the assumed one (g, = 1.12). This consistency is however
obtained at the expense of a significant loose of performance (g, = 1.20).

Largest ellipsoid

The results given in Figures 7 & 8 are conclusive, since, while the estimate is
still consistent (g, = 1.10), the assumed covariance, is much closer the
centralized contact-level fusion one, than that obtained by the covariance
intersection. Indeed, the actual error is only 10% larger than the one obtained
with the centralized contact-level fusion, while it is 20% in the case of the
covariance intersection. The performance ratio is given by g, = 1.10.

Even if they both result in a loose of performance, both of the covariance
intersection and the largest ellipsoid have the advantage of being independent
of the network fusion architecture. This makes them more suitable in
decentralized fusion problems, which deal with arbitrary topologies. This is
not the case of the three remaining methods, which are less general.
Nevertheless, when they can be implemented, these methods guarantee better
performance.

Weighted covariance

In the case of Figure 9, the estimate yielded by the weighted covariance is not
consistent, since the filter underestimates the actual error (g. = 0.88). This
can be attributed to that the obtained estimated cross covariance is smaller
than the actual one. The increase resulting from 1its use in the Kalman filter is
therefore not sufficient to ensure consistency.

Tracklet fusion & information filter

From either the consistency or performance viewpoint, the tracklet fusion
(Figure 10) and the information filter (Figure 11), represent the most
interesting solutions (see Table 1). The tracklet fusion presents however no
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real advantage over the information filter. They both have the same
computation/communication requirements, while the information filter is

e More accurate : i.e., very close to the centralized contact-level fusion.

s Easier to implement : does not require the modification of the existing
local trackers for its implementation.

e Maintains full tracks : instead of tracklets. Full tracks can be used in the

other fusion operations, as the track association, which is not the case of
the tracklets.

4.4 Comparison

The comparison results are summarized in Table 1. It is clear that, when the network
topology allows for 1ts implementation'?, the information filter is the method to be
considered, since it guarantees both the consistency and the minimum mean square
error optimality. When the information filter cannot be implemented, neither of the less
efficient weighted covariance and tracklet fusion can. These methods cannot therefore
be of any help. In this case, the only remaining alternatives are the covariance
intersection and the largest ellipsoid approaches. Since the latter is more efficient, it
represents a good alternative that does not suffer from the applicability limitation.

'0That 1s, is the case of small networks, with a known information flow.
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| Method [ ep | o |
Contact fusion 1.00 | 1.01
Best track 1.32 | 1.02
Simple fusion 1.25 1 0.35
Covariance ntersection || 1.20 | 1.12
Largest ellipsoid 1.10 | 1.10
Weighted covariance 1.01 | 0.88
Information filter 1.00 | 1.02
Tracklet fusion 1.01 | 1.02

Table 1: Performance/Consistency comparison of the different track fuston methods
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Conclusion

Various trade-offs are generally required for the selection of the data fusion
architecture, since each approach has benefits and disadvantages. As discussed in the
previous chapters, this design choice affects the quality of the fused product and the
nature of the algorithms or techniques that may be used. Hence, besides its high
vulnerability, due to its centralized nature, contact-level] fusion presents the
disadvantage of being very demanding in terms of communication bandwidth and
central computation capacity. This is why the track-level fusion may represent a good
alternative, and the only possible solution, if the sensor contacts are not available at all.
Nevertheless, the correlation between the sensor-level tracks, and between each
sensor-level track and the central track, is at the origin of the inconsistency problem.
This results in an underestimation of the actual error covariance matrix, if a standard
Kalman filter 1s used for the track-level fusion. Different approaches are presented to
handle this inconsistency, and result all in an increased estimated error covariance
matrix. The amount of this increase, and the way it is computed, differs, however, from
one method to another, leading to a different performance and conditions of
applicability.

Due to its minimum mean square error optimality and its consistency, the information
filter is the method to be considered, when the fusion architecture allows for its
implementation. This filter guarantees the consistency by avoiding double counting of
information in the fusion process. The information filter is applicable where the tracklet
algorithm is, and is more efficient. The weighted covariance is not optimal in the
minimum mean square error sense, but only 1n the maximum likelihood sense.
Furthermore, its implementation is not always possible. It does not therefore present
any advantage over the two previous ones. When the applicability is the major concern,
the covariance intersection offers a robust alternative to the simple fusion.
Nevertheless, to avoid underestimating the actual error covariance matrix, this method
overestimates it too much. This results in a significant loose in performance. A good
alternative to the covariance intersection is given by the largest ellipsoid method. The
latter inherits the advantage of the covariance intersection, that is the large applicability
and consistency, and avoids its drawback, viz., the lack of performance. As the
covariance intersection, this method 1s also based on the estimation of the intersection
region, but provides a tighter estimate.
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Annex A
Implementation of Kalman filter

A1

46

The Kalman filter 1s usually implemented as a recursive algorithm. The procedure starts
from an initial estimate of the state variables, and recursively predicts and adjusts this
estimate with each new measurement. From a practical standpoint, this recursiveness
makes the Kalman filter very suitable for the on-computer implementation. No storage
of the previous data s required, which allows real-time operating. This recursive nature
has much helped in making the filter very popular.

Recursive algorithm

The standard form of the recursive discrete-time Kalman filter, can be summarized 1n
the following steps.

1. Initialization — The filter is supplied with initial information, including the
estimate of the initial state

Zopp = £ {ﬂco]
and the measurement error covariance
POIO == R
Note that different initializations might be used.

2. Prediction of the state — The most recent available a posteriori estimate of the
state, namely &y, is injected 1n the system model to yield the new a priori
estimate & 1) of the state at the time instant £ + 1.

Tpyik = Fegp + Gruk (A1)

3. Prediction of the covariance matrix — A prediction of the estimation error
covariance matrix 1s performed, at the time instance & + 1. Its computation is based
upon the most recent available a posteriori value Pgy.

Py = FuPy FT + QT

4. Kalman Gain matrix — The obtained so far (predicted) values are used to
calculate the new Kalman gain matrix.

Wi = P HY  (Hep1 Poyy o HE,  + R)
Note that this gain is needed only for the diiect form implementation.

5. Update of the Covariance Matrix — which gives, 1n both direct and inverse
forms, a confidence measure 1n the estimate.
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e Direct form : The Kalman matrix gain Wi, serves to update the estimation of
the covariance matrix.

Poiiper1 = I — Wi Hep 1) B
e Inverse form : The update is performed without the need of Wi1.

-1 _ p-l T p-1
ket = Pogup + Hen B Hy

6. Update of the state estimate

e Direct form : The error!! that reflects the discrepancy between the predicted
measurement based upon the a priori estimate & 1|, and the newly available
measurement 21 is determined and multiplied by the gain matrix Wi, to
compute the a posteriori estimate at time instant k + 1.

Tprtk+l = Thtife + Wir1(Zrr1 — Hep1@e411%)

e Inverse form : the residual is not computed, and the update rule uses a
weighted sum of the a priori estimate and the new measurement.

. _ A 51 A T -1
Bry1fk+1 = Pritjks1 [Pk+1|kwk+1;k + Hi R 2k41

7. Attime k + 2, the cycle starts again at step 2. This cycle will go on at the sampling
rate.

Note that the system noise v is not used 1n the state prediction equation (A.1). This is
due to the fact that the best prediction one can make for a white noise is 1its mean, which
happens to be equal to zero here.

Array algorithm (Kalman filter)

Even though the above-mentioned implementation does not show it explicitly, the
Kalman filter can be expressed as a recursive algorithm, which propagates some Riccati
equation, whose solution is the covariance matrix Iak+1!k+1. A sufficient condition to
the convergence of this recursion is given by the positivity of the matrix Pk+1|k+1. In

this algorithm, due, among others, to the unknown modeling/measurement errors, this
positivity cannot always be guaranteed.

An interesting solution to this problem is given by the so-called square-root array
algorithm {24, 25]. Instead of propagating the covariance itself, this solution propagates
its square-root matrix. Hence, squaring the resulting matrix will ensure the positivity of
the covariance. The principle of the algorithm is shown below.

"0ften called the measurement innovation or the restdual.
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Time update recursion
The error covariance prediction equation is given by
Py = FuPypFL + Q

- [Fk P Ql/z] [ BB Ql/zr

= [RB}} Q] ee” [RBY: Q1 ‘
where © 1s any unitary matrix, chosen such that

e’ =1
and
(Bl Qle=[x o

This means that © has as a main role the triangularization of the matrix

B Q]

These conditions will ensure that
xxT=[x o[x o
=[R2 @] eeT [RBl Ql/z]T
= Fi Py FL +Q
which will provide the square-root (matrix) of the covarniance matrix, that 1s,

5172
X = Pk+1]k

This result gives the following recursion for updating this square root, for the
a priori covariance matrix.

[FBg Qe = [Bl o

State update recursion

The equations, for the calculation of the Kalman gain and the update of the
error covariance matrix, are given below.

Wit = Py H (He Py Hib + R) T

Peiyksr = Pepe — W1 Hicp1 Py i

48

= Peyip — Py HE (Hiy Py HE  + R) 7 Hicp Py i
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‘We define the matrix

R/ Hk+1ﬁi:-{—21|k

T=

51/2
0 B,

and suppose that we know a matrix © such that ®®7 = I and

X 0
roe =
Y zZ
By squaring, we will obtain
ree’r? = rr”
(X XT XxXyT

YXT  YYT 4227
R+ Hk+lpk+l|kHZ+1 Hk+1ﬁk+1|k

. r R
Py eHiyy Pk

A simple identification of the terms will yield

. 2
X=(R+ Hk+1Pk+1|ng+1)l/

N N -T/2
Y = Poppe Hi o (R+ Hy Py HEL ) /

Z = (Peyp ~ YYT)?

_pi/2
= Pk

With these variables, the Kalman gain can be rewritten as
Wi =YX!

This notation allows us to express the recursion as

H1/2 i 5 1/2
R!/2 H"’“‘lplc—{—l]k (R+ Hyp1 Py HE ) /
e =
0 1’:‘,1/2 p HT (R H P HT )-T/2
k+1jk R TSTI2 = SRV o & RS o FRTPY & )
X 0
B - 51/2
LW"HX ' Pk+1|k+1

TR 2001-224

0

51/2
Pk+1|k+1

which provides all the necessary information for the implementation of the
Kalman filter. Note that only the square root of the covarniance matrix is

propagated.
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A.3 Array algorithm (covariance intersection)

With a small modification, the same array algorithm can be used to implement the
covariance intersection filter. The details of this modification are given below.

A.3.1 Time update recursion

Identical the Kalman filter case.

A.3.2 State update recursion

The state update equation 1s given by

~ > T -1
Eiei1ha1 = Prripr |w Py e Bk + (1= w) He R 2 (A2)
where the error covariance matrix is calculated by

Pk—+1\k+1 wh, +1|k+( w)H{ R Hiy (A.3)

Usting the matrix inversion lemma (Eq. 41, p. 11), this covariance can be
expressed as

Peoe Pk
w

R - Pk+l k
Pripr1 = H, |wR+(1- W)Hk+ka+11kHE+1} Hyyy — 2
Using (A.3), the update rule (A.2) can be rewritten as

Eppifbrr = Trprp + (1 — W) BHE L R (2041 — Hea@rgs)

= Zpp1pk + Wit (21 — Hep18411k)

where the covariance intersection gain (which 1s equivalent to the Kalman
gain) is given by

Wi = (1 — w) Py e HE R
—1
= (1 -w) [WPI;rlllk +(1- w)HE+1R—1Hk+1] I"I1,£+1R~1
-1
= (1 — )Py Hiy,y [WR +(1- W)Hk+lpk+llng‘+1}

As for the Kalman filter, we define the matrix

A 1/2
(WR)?  Hyyy [(1 - w)Pk+1|k1

P 1/2
0 [ k+1|k}

w

T =

50 TR 2001-224

UNCLASSIFIED



P518346.PDF [Page: 67 of 75]

UNCLASSIFIED

and suppose, also as in the Kalman filter case, that a matrix © exists such that

©07T = I and
X o0
re =
Y Z

By squaring, we will obtain

1ee’rT =117
(x x7 XyT ]

YXT YYT+2Z2T

n T 1—w N W

wR+ (1 —w)He 1 PoyipHig o Hev1 P
l-w. pk+1|k

i V o PevieH it 0 ]

and by identification,

) 1/2
X = [wR-i— (1- w)Hk+lPk+1lkHE+1]

1—-w T
~ T A ‘T
Y = " Py e H 41 [R + Hk+1Pk+1|kH’°+1]

) 1/2
Z= [Pkﬂug - YYT]

_ pl/2
= Plc+1|k+1

The gain Wi, can be rewritten as

Wit = Vol —w)Y X!

This gives as a final recursion

X 1/2
(wWR)Y?  Hyyy [(1 - w)Pk+11kl X 0
pk—HIk 12 - _“‘]:_"'Wk+1X_1 plcl—{—21|k+1
e ud Joll =
0 [ " ] w(l — w)
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Annex B
Bayesian interpretation of Kalman filter

There are many ways to interpret the Kalman filter method. Kalman’s original

paper [11] posed the problem in terms of error (trace) minimization. The Bayesian
interpretation of the Kalman filter did not become popular until the early 1970s. From
the Bayesian viewpoint, the Kalman filter propagates the conditional probability
density of the desired state, conditioned on the knowledge of the measurement data.
The Kalman filter mantains the first two moments of the state distribution!?

E[wkﬂ] = Lpp1jkt1
“ - T ~
E [(mk+1 — Thop 1) (Tht1 — Thg1jhr 1) ] = Pryijks1

If the Gaussian and whiteness conditions, of the noises w and v are satisfied, the state
will be normally distributed, with as a mean the a posteriori estimate and a variance,
the estimation covariance matrix, that is

Fe(@riilze) = N(‘i‘k+1|k+1’ Pk+1|k+1)
The a priori probability is given by

Fo = N(@pam Peyap)

: L o T p-1 .
B (2m)n2| By |2 exp [_ 2@k = Zepage)” Py (@t — $k+1|k)}

The statistics of the available data, i.e. the measurement, can be expressed as

Faje = N(Hi12h41, R)
1

1 T -1
R o———— [— ~(2b1 — Hipi@en) TR (241 — Hk+1wk+1)]
(@m)/2|R|"? 2

Given these two probability functions, the estimation problem consists then in

maximizing the a posteriori estimation probability, whose expression is given by the
Bayes's rule

lez Jx
fx]z = f.
Under these conditions, the a posteriori estimate of the state  can be expressed as

- fz]zfz'
Th1lk+1 = Argmax I = argmax | fz1;

12A distribution function f» of a random variable X 1s a2 mathematical relation that gives for each number z, the
probability of X < z.
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since f, is independent of . The same estimate could be obtained by maximizing the
logarithm of the a posteriori probability function.

Zpy1|ks1 = argmaxin [fmf:]

1 .
= arg mza.x{ ~3 [1n((27r)"lPk+1|kl) + 1n((27r)"|R|)
+ (Tky1 — 'j:k+1|k)Tp;;}1|k(mk+1 — Bpp|k)

+ (231 — Hip12r01) TR (2541 — Hk+1-'rk+1)] }

Computing the negative gradient and setting it equal to zero yields

o
0= _a—w"ln (.fz|zf:c)

=Ry 1)k 1

-1 (a . T p-1 .
Pk+1lk (wk+11k+1 - mk+1]k) - H R (241 — Hk+1mk+1|lc+1)

This gives

-1
- A H—1 T -1 T -1 2
xk+1[k+1 = :Ek+1|k + [Pk+llk + Hk+1R Hk+1 Hk+1R (Zk+1 - Hk+1mk+1‘k)

= &k + Wir1 (2e41 — Hip1@ep1k)

which is identical to the equation (50, p. 12), obtained within the trace minimization
framework.
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