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Abstract 
 
 
 
Many cart- and vehicular-based unexploded ordnance (UXO) detection systems employ global 
positioning system (GPS) receivers to accurately determine the system’s position. However, the 
unevenness of the terrain often causes the system to tilt during the data collection, introducing 
errors in the GPS measurements. In this work, three approaches are considered to correct the 
errors in the GPS measurements caused by the tilting of the system: low-pass filtering (LPF), 
linear predictive filtering, and adaptive filtering using a hidden Markov model (HMM). The LPF 
smooths the data collection path recorded by the GPS receiver. Although this filter does not 
explicitly model the system motion, it does remove dramatic, and unrealistic, jumps in the GPS 
measurements. In contrast, the movement of the system can be explicitly modeled by an HMM. 
The HMM characterizes the cart motion so that the subsequent filtering is appropriate for the 
type of motion encountered. The error correction techniques are first applied to simulated data, 
in which both the sources of error and the ground truth are known so that the performance of the 
algorithms can be compared. The algorithms are then applied to measured data collected with a 
cart-based system to evaluate the robustness of their performance. Although the HMM approach 
is found to represent an improvement over the LPF, robustness issues remain with this approach 
– mainly through ambiguities in the cart orientation. A quaternion formulation is therefore 
proposed as a possible efficient means to track and process the cart orientation as it moves over 
the uneven terrain. 
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1. Introduction 
 
The discrimination of unexploded ordnance (UXO) from surrounding metallic clutter poses a 
great technological challenge. One approach that has shown promise in addressing this challenge 
makes use of the following important observation: most electromagnetic induction (EMI) 
signatures of UXO and clutter are very well characterized by a simple induced dipole response 
model expressed by the eigenvalues of the magnetic polarizability tensor along the object’s three 
principal axes [1-3]. To the extent that these eigenvalues differ between UXO and clutter, 
discrimination is possible.  
  
Results of inverting controlled EMI measurements, over ordnance and clutter, have 
demonstrated that a high degree of discrimination is realizable [4-5]. However, when applied to 
field data – where the sensor positions are generally not precisely known – the same level of 
success has not been achieved [6]. The reason is simple: because signal amplitude depends 
strongly on range, positioning errors can cause significant deviations in the signal calculations 
used in inverting the data. This seriously degrades the ability to capture the subtle spatial 
variations of the signal that are crucial to discriminating between different types of objects. 
 
The goal of this work is to correct errors in global positioning system (GPS) measurements 
recorded by a cart-mounted UXO detection system. The UXO detection system includes EMI 
and magnetometer sensors and a GPS receiver, intended to accurately determine the position of 
the system, mounted above the cart. Unfortunately, in many instances, the unevenness of the 
ground causes the system to tilt. When the system tilts, the recorded GPS measurements are 
offset from the true system positions and discrimination performance is consequently 
diminished. 
 
The GPS measurement error-correction algorithms presented in this report are intended to reduce 
the errors in the GPS measurements introduced by the tilting of the cart. Three approaches are 
considered: low-pass filtering (LPF), linear predictive filtering, and adaptive filtering using a 
hidden Markov model (HMM). The LPF is the baseline error correction algorithm, and removes 
dramatic and unrealistic jumps in the GPS measurements even though it does not explicitly 
model the system motion. The linear predictive filter offers a causal approach, but again does not 
explicitly model the system motion. The third approach – the HMM approach – does explicitly 
include the system movement. In this approach, the cart motion is broadly characterized as either 
linear or nonlinear, after which an appropriate filter is applied. 
 
All three error correction techniques are applied to simulated data – for which both the sources 
of error and the ground truth are known – so that the performance of the algorithms can be 
compared. The algorithms are then applied to measured data collected with a cart-based system 
at the Advanced Technology Demonstration at Jefferson Proving Ground (ATD/JPG) to evaluate 
their robustness under real conditions.  
 
Finally, in order to address deficiencies in the HMM approach, a quaternion formulation is 
proposed as a possible means of tracking and processing the cart orientation as it moves over the 
uneven terrain. The addition of this information is crucial for resolving ambiguities encountered 
when attempting to characterize the motion as either linear or nonlinear, and offers an 
opportunity for improved robustness. 
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The accomplishments include: 
 

• Modeling of cart path, cart motion, GPS measurement errors, and sensors. 
• Development of algorithms for GPS measurement error-correction and cart motion 

characterization. 
• Analysis of GPS error correction algorithms through simulation. 
• Application of GPS error correction algorithms to data collected at ATD/JPG. 
• Modeling of cart orientation using a quaternion formulation. 

 
 
2. Models 
 

2.1. Cart Path Models 
 

2.1.1. Idealized Cart Path Models 
 
Several idealized cart motion models, which are intended to reveal the effects of curvature of the 
cart path on algorithm performance, are considered in the simulations. They are shown in Figure 
1. For each of the cart paths, the distance between successive cart locations is 1 unit. Since there 
are 500 measurements in each path, each path covers a distance of 499 units. 
 
The straight line path and circular paths, shown in subplots (a) through (f), are paths which have 
a constant curvature over the entire path. The straight line has curvature 0=κ , and the arcs have 

curvature
a
1

=κ , where a is the radius of the circle. The sinusoidal paths, shown in subplots (g) 

through (k), have varying curvature over the entire path. For these paths, the curvature is 
calculated numerically. When the cart path is expressed in vector notation, jiP ˆ)(ˆ)()( tytxt += , 
the curvature is 
 

3)(
v

xyyx
t

&&&&&& −
=κ , 

 
where )()( tt Pv &= . The curvature of the sinusoidal paths is periodic, with a period twice that of 
the underlying sinusoidal curve. This is illustrated in Figure 2, which shows the curvature of the 
path consisting of 3 sinusoid cycles. The simulations presented in Sec. 4.3 show that not only 
does the curvature of the path affect algorithm performance, but it is also related to the mean 
RMS error in distance. 
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Figure 1: Cart paths considered in the simulation studies. 



 

 4

 
 

2.1.2. Realistic Cart Path Model 
 
A realistic cart path model is depicted in Figure 3. The parameters for the path were chosen to be 
consistent with the sampling parameters of existing cart and handheld systems. The distance 
between successive down-track measurements is 5cm, and the distance between adjacent cross-
track passes is 0.5m. For the purpose of describing the path, the passes are numbered from 
bottom to top, so pass 1 is at 0m in the y-direction and pass 6 is at 2.5m in the y-direction. The 
small bumps in the path, located around x=1m (passes 2-5) and x=4.2m (passes 3-6) in the x-
direction, are intended to simulate the perturbations in the GPS measurements induced by tilting 
of the cart. In addition, detours around obstacles are simulated between 2.5 and 3m in the x-
direction in passes 2 and 3, and between 2 and 3m in the x-direction in passes 5 and 6. Finally, 
the turns between passes are modeled as half-circles. 
 

2.2. Cart Motion Model 
 
The hidden Markov model (HMM) uses the GPS measurements to characterize the cart path as 
either moving forward, detour to the left, detour to the right, or turn around, and these states are 
defined for each of the pass directions. The model is depicted in Figure 4. In this model, the 
observable is the change in the cart position from one measurement to the next. Thus, when the 
model is in a particular state, that state defines the movement that should occur between the 
current measurement and the next measurement. For instance, when the model is in the right 
forward motion state, the next measurement should be 5cm to the right of the current 
measurement. 
 
 

Figure 2: Curvature of the path consisting of 3 Sinusoid Cycles. 
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Figure 3: Simulated error-free GPS measurements. 

Figure 4: Hidden Markov model for characterizing the cart path. 
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Each of the detour states is further divided into 5 states. The first two states are the movement 
away from the ideal straight line path, the third state is movement parallel to the ideal straight 
line path, and the last two states are movement back toward the ideal straight line path. There are 
two states moving away from and back toward the ideal path so that detours are forced to be at 
least 2 measurements away from the ideal path. Using 5 states, rather than 3, eliminated many 
errors in the estimated state sequence where perturbations in the GPS measurements cause 
straight line segments to be characterized as small detours. If the characteristics of the detours 
suggest it would be appropriate, more states can be added to the detour model to force the detour 
to be farther away from the ideal path. A model in which the detours were characterized by only 
3 states was also considered, and the simulations showed that the 5-state detour model was more 
robust than the 3-state detour model when perturbations in the GPS measurements were caused 
by cart tilt. Therefore, it is anticipated that forcing the detours to be larger would eliminate more 
errors in the estimated state sequence where perturbations in the GPS measurements cause 
straight line segments to be characterized as detours. It is likely that parameters, such as the 
detour size, will be site dependent. 
 
Each of the turn around states are also divided into several states, and are modeled as known 
movement in a circular path. For the chosen simulation parameters (5cm between measurements 
and 0.5m between passes), there are 16 states in each turn around. 
 

2.3. GPS Measurement Error Models 
 
The GPS measurements are modeled as jointly Gaussian. Both uncorrelated and correlated errors 
are considered, and the effects of correlation in the measurement errors are evaluated through 
simulations. We believe that assuming a jointly Gaussian model will allow us to work on the 
error correction algorithms, and also provide the flexibility to determine the model parameters 
from the actual ground surface and cart dynamics at a later time. 
 

2.3.1. Uncorrelated Errors 
 
Initially, the GPS measurement errors are modeled as uncorrelated jointly Gaussian random 
variables. An example trajectory (solid line) and the corresponding GPS measurements (open 
circles) are shown in Figure 5. In this example, the simulated cart path is described by y=x, and 
the GPS measurement errors are uncorrelated Gaussian random variables with variance σ2 = 0.1. 
The degree of error shown here is considered to be moderate for the simulations. The simulations 
also investigate both larger and smaller error. 
 

2.3.2. Correlated Errors 
 
The GPS measurement error model is extended to include correlation between errors in the x- 
and y-coordinates. Thus, the model now assumes the measurements in the two coordinate 
directions are jointly Gaussian with some correlation. The correlated Gaussian random variables 
were computed by post-multiplying uncorrelated Gaussian random variables by the upper 
triangular Cholesky decomposition of the desired correlation matrix, R, where 
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⎥
⎦

⎤
⎢
⎣

⎡
=

1
1
r

r
R  . 

 
In this notation, the cross-correlation between the errors in the x- and y-coordinates is denoted 
by r. 
 
The effects of correlation in the errors are illustrated in Figure 6. This figure shows an example 
cart track and the corresponding GPS measurements for uncorrelated (r =0), moderately 
correlated (r =0.5) and highly correlated (r = 0.9) GPS measurement errors for a moderate error 
level (i.e. variance σ 2 = 0.1). These examples show that even though the variances of the errors 
remain constant, the degree of variability appears to be dependent on the correlation. The more 
correlated the errors are, the less variable they appear to be. The simulations presented in Sec. 
4.2 show that the degree of correlation does not affect the performance of the algorithms 
evaluated in these simulations. 
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Figure 5: Example cart trajectory (solid line) and corresponding GPS measurements (open 
circles) for an uncorrelated jointly Gaussian GPS measurement error model. 
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2.4. Sensor Models 
 
The EMI dipole and magnetometer dipole models and parameter estimation algorithms used in 
these simulations [7] are the same as those used for the vehicular systems, with the appropriate 
modifications made to make them consistent with the man-portable or handheld system sampling 
geometries. The model parameters are estimated from measured data, and the resulting estimates 
utilized for UXO detection and/or discrimination. Thus, it is desirable to have accurate parameter 
estimates.  
 

2.4.1. Electromagnetic Induction 
 
The EMI dipole model is intended to replicate the EM61 response. There are 5 parameters in the 
EMI dipole model: the dipole which is composed of the two parameters m1 and m2 
( [ ]211 mmm=m ), the target inclination (θ), the target azimuth (φm), and the target depth (d). 
The dipole is a function of the physical properties of the target. For UXO, m2 > m1, and generally 

102
1

2 ≤≤
m
m . The target inclination is defined as the angle from the vertical axis (z) through the 

target center to the principle axis of the target. Thus, θ = 0 corresponds to a vertical target, and 
θ=π/2 corresponds to a horizontal target. The target azimuth is defined (in the x-y plane) as the 
angle from the projection of the principle axis of the target to the x-axis. If the cart is traveling 
parallel to the y-axis, φm= 0 describes a target lying perpendicular to the direction of travel, and 
φm=π/2 describes a target lying parallel to the direction of travel. 
 

2.4.2. Magnetometer 
 
The magnetometer dipole model has 3 parameters: the target inclination (θ), the target azimuth 
(φm), and the target depth (d). The definitions of the target inclination and the target azimuth are 
the same as for the EMI dipole model. 

Figure 6: Example cart path (solid line) and corresponding GPS measurements (open circles) for 
uncorrelated, moderately correlated, and highly correlated GPS measurement errors. 
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3. Algorithms 
 

3.1. GPS Measurement Filters 
 

3.1.1. Low Pass Filters 
 
The baseline GPS measurement error correction algorithm is a simple low-pass filter (LPF). 
Although this approach will reduce large jumps in the GPS measurements, this algorithm does 
not incorporate models of either the cart motion or the ground surface. Several approaches were 
taken in designing the LPF. Since a causal filter results in a lag between the actual measurements 
and the filtered result, only non-causal filters were considered. In addition to a simple moving 
average filter, other filters which weight the data unequally were also considered. The effects of 
filter order were evaluated for each of the filters. 
 
The moving average filter is a simple arithmetic average of the k+1 (odd) points about the point 
of interest, where k is the filter order. The impulse response is a rectangular function, and the 
frequency response is low-pass. Both are shown in Figure 7(a) for a filter order of 6. 
 
The modified moving average filters are similar to the moving average filter, except the tap 
weights emphasize the points near the point of interest rather than weighting all the points 
equally. The windowing functions considered were the triangular and Hamming windows. The 
impulse functions and the corresponding low-pass frequency responses for a filter order of 6 are 
shown in Figures 7(b) and 7(c), respectively. Both of these filters have a broader frequency 
response than a rectangular filter of the same length. As expected, the simulation results show 
that the rectangular filter, which has the narrowest response, has better error-correction 
performance than either of the other filters. 

 

Figure 7: Impulse and frequency responses of the low-pass filters. 
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3.1.2. Linear Predictive Filter 

 
A linear predictive filter [8] has also been implemented for GPS measurement error correction. 
Linear prediction differs from the LPF in that it provides a causal solution to error-correcting the 
GPS measurements. This method assumes a linear model, βα += mz , where z is the coordinate 
of the cart, either x or y, and m is the measurement number.  
 
Linear prediction seeks to minimize the expected value of the squared error between the assumed 
linear model and the GPS measurement, zGPS, which again is either xGPS or yGPS, 
 

])[( 2zzE GPS −=ε . 
 
Setting the partial derivatives of ε with respect to both α and β equal to zero, yields two 
equations in two unknowns. The solution to this set of equations, denoted by α0 and β0, is 
 

m

Z

m

GPS GPSzmCOV
σ

ρσ
σ

α == 20
],[  

 
and 
 

.00 mzGPS αβ −=  
 
Thus, the parameters for the linear model, α0 and β0, are determined from the data, and the 
estimate of the current coordinate is calculated from the model by 00ˆ βα += mz . 
 
As applied to this problem, the linear predictive filter of order k uses the previous k GPS 
measurements as well as the current measurement, for a total of k +1 points, to estimate the 
current coordinate. 
 

3.2. Cart Motion Characterization 
 
The cart motion state sequence – from which the cart motion is characterized as linear or 
nonlinear – is estimated using the Viterbi algorithm [9]. The Viterbi algorithm is a useful method 
for finding the maximum a posteriori (MAP) estimate of the state sequence of a finite-state 
discrete-time Markov process observed in memory-less noise when the output of the process is a 
function of its current state. It accomplishes this by finding the state sequence which maximizes 
the conditional a posteriori probability of the state sequence given the noisy observations. 
 
For a system with S states and O observations, the number of possible states sequences is SO. 
Thus, the computational intensity grows exponentially with the number of observations if the 
conditional a posteriori probability is calculated for every possible state sequence. However, the 
Viterbi algorithm reduces the computational intensity to linear growth by determining the most 
likely state sequence leading to every possible ending state after each observation. In this way, 
after every observation the number of remaining state sequences is equal to the number of 
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possible ending states, and the search space for the next observation is greatly reduced. This 
remains an optimal solution to the maximization problem because the most likely state sequence 
leading to any state after observation o must include one of the most likely state sequences 
determined after observation o-1. Thus, the Viterbi algorithm naturally lends itself to a 
sequential implementation. 
 

3.3. Sensor Model Parameter Estimation 
 
The sensor model parameters are estimated from measured data, and the resulting estimates used 
for UXO detection and/or discrimination. For the simulations investigating the effects of GPS 
positional errors on model parameter estimation, noise-free data is first simulated on a perfect 
grid, simulating the sampling intervals of the handheld system. In all the simulations, the data is 
generated assuming that a pass is made directly over the center of the target. After the simulated 
data is computed, the coordinates of the grid are perturbed to simulate GPS measurement errors. 
The parameters for the sensor model are then estimated from the simulated sensor data and the 
perturbed coordinates. 
 
The parameter inversion process is illustrated in Figure 8 using EMI sensor data. For this 
example, the EMI dipole model parameters are m = [10 10 20], θ = π/2 , φm = π/2, and d = 
0.75m. The measurements are taken at 0.05m intervals in the down-track direction and 0.5m 
intervals in the cross-track direction. The data is displayed with the original sample locations 
(denoted by ‘x’) and the perturbed sample locations (denoted by ‘o’) superimposed in subplots 
(a) and (b), respectively, for a moderate error level (σ2 = 10-4 m2 in total distance). The data, 
which is assumed to have been measured at the irregularly spaced points shown in subplot (b), is 
then interpolated to a perfect grid, as shown in subplot (c). The dipole parameters are estimated 
from the interpolated data, and simulated data generated using the parameter estimates is shown 
in subplot (d). In this example, the estimated EMI dipole model parameters are m = [10.0511 
10.0511 20.0966], θ = 0.4996π, φm = 0.5005π, and d = 0.7513m. 
 
 
4. Simulation Studies 
 

4.1. Sensitivity of Sensor Model Parameter Estimation 
 
The sensitivity of the EMI and magnetometer dipole models to perturbations in the GPS 
measurements is evaluated through simulations. The simulations are performed for a variety of 
dipole model parameters, which are listed in Table 1. All 5 parameters apply to the EMI 
simulations; however, only θ, φm, and d apply to the magnetometer simulations. Therefore, only 
simulations 1 through 4 are performed for the magnetometer model. 
 
The RMS errors are computed from 100 independent realizations of GPS measurement errors. 
The variance of the GPS measurement errors, as measured by total distance, ranges from 10-6 to 
10-3 m2. The corresponding variances in the x- and y-coordinates are 10-6/√2 to 10-3/√2 m2. The 
dipole model parameters are estimated from each realization 10 times, with the initial conditions 
selected randomly for each estimation in order to avoid the problem of convergence at a local 
minimum, rather than a global minimum. The estimated parameters for each realization are 
selected by choosing the estimation results which result in the lowest error. In all the 
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simulations, the simulated sensor data is noise-free. In addition, the realizations which fail to 
converge at the global minimum are removed from the data before the RMS errors are computed. 
In all cases, at least 98 realizations are retained to calculate the RMS error. 
 

 

 

Table 1: EMI and magnetometer dipole model simulation parameters. 

Figure 8: Example EMI dipole model parameter estimation with perturbed GPS measurements. The actual 
model parameters are m1 = 10, m2 = 20, θ = 0.5π, φm = 0.5π, and d = 0.75m, and the estimated model 

parameters are m1 = 10.0511, m2 = 20.0966, θ = 0.4996π, φm = 0.5005π, and d = 0.7513m. 
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Figures 9 and 10 show the RMS errors in the EMI and magnetometer parameter estimates as a 
function of the GPS measurement error variance, measured in distance, for each of the 
simulations. As expected, the results show that decreasing the variance in the GPS measurement 
errors tends to reduce the RMS error in the dipole model parameter estimates. As this set of 
simulations illustrates, the improvement in the parameter estimates depends on both the target 
dipole parameters and the orientation of the target relative to the data collection. For example, 
the RMS error in the estimate of φm (target azimuth) is independent of the GPS measurement 
error variance for simulations 2, 3, and 6, and decreases with the GPS measurement error 
variance for simulations 1, 4, and 5. 
 

4.2. Effects of GPS Measurement Error Correlation 
 
The effects of correlation in the measurement errors are investigated through simulations for the 
straight line and half circle cart paths at all three error levels. The mean RMS errors as a function 
of filter order for both the x- and y-coordinates as well as overall distance are shown in Figures 
11 through 16. The results in these figures show that for the algorithms considered here, the 
mean RMS error is not a function of the measurement error correlation. This result is not 
surprising since the current algorithms operate on the x- and y-coordinate data separately. It is 
anticipated that the correlation will affect the performance of future algorithms which operate on 
the two coordinates simultaneously. It is interesting to note that the half circle cart path results 
show that higher filter order does not necessarily provide better performance. This is due to the 
curvature of the cart path, which is discussed in the following section. 
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Figure 9: RMS errors in the EMI dipole model parameter estimates as a function of the GPS 
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Figure 10: RMS errors in the magnetometer dipole model parameter estimates as a function of the GPS 
measurement error variance (measured in distance) for all the simulations. 
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Figure 11: RMS Error as a function of filter order for the straight line cart path with low measurement 
error (σ2 = 0.01). 
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Figure 12: RMS Error as a function of filter order for the straight line cart path with moderate 
measurement error (σ2 = 0.1). 
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Figure 13: RMS Error as a function of filter order for the straight line cart path with high measurement 
error (σ2 = 1). 
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Figure 14: RMS Error as a function of filter order for the half circle cart path with low measurement 
error (σ2 = 0.01). 
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Figure 15: RMS Error as a function of filter order for the half circle cart path with moderate 
measurement error (σ2 = 0.1). 
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Figure 16: RMS Error as a function of filter order for the half circle cart path with high measurement 
error (σ2 = 1). 
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4.3. Effects of Cart Path Curvature 

 
The effects of curvature in the cart path are investigated through simulations for all of the cart 
paths at all three error levels. Since the simulation results for the straight line and half circle cart 
paths showed that correlation in the measurement errors does not affect performance of the 
current algorithms, the simulations studying the effects of curvature in the cart path are 
performed only for moderately correlated errors (r = 0.5). The other levels of error correlation 
should produce the same results as those shown here. 
 
The mean RMS errors as a function of filter order for both the x- and y-coordinates as well as 
overall distance are shown in Figures 17 through 27. These summary results show that the cart 
path curvature affects algorithm performance. As the path curvature increases (Figures 17-22), 
the performance degrades. This is most noticeable at the low error level (σ2 = 0.01). In addition, 
it appears as though cart path curvature also affects the choice of filter order since higher filter 
order increases the algorithm sensitivity to curvature in the cart path. 
 
It is interesting that for the set of sinusoid paths the x- and y-coordinates often have different 
performance curves. This, again, is due to the curvature of the cart path. When the x- and y- 
coordinates are plotted versus measurement number, it can be seen that x-coordinate is more 
linear with measurement number than the y-coordinate. Hence, the algorithms have better 
performance on the x-coordinate than the y-coordinate. 
 
To gain a better understanding of how the cart path curvature, filter order, and noise level 
interact, it is instructive to examine the results over the entire cart path, rather than averaging the 
results over the measurements. Results obtained for the 2 sinusoid cycle cart path are shown in 
Figures 28 through 30. These figures show the mean RMS error as a function of measurement 
number. The results indicate that when the noise level is low the RMS error fluctuates with the 
cart path curvature, so when the curvature is large, the error is large, and conversely when the 
curvature is small, the error is small. The larger the filter order, the more pronounced this effect. 
This occurs because at low noise levels, the algorithms are limited by the accuracy of the 
underlying model, which for these algorithms is linear. The linear assumption is least appropriate 
when the path curvature is large, and this produces the larger errors at those places in the path. 
However, at high measurement error levels, the algorithms are noise limited. When the 
measurement error is large, the modeling error is small in comparison. Since these algorithms 
either implicitly (LPF) or explicitly (linear prediction) assume a linear cart path, and they are 
sensitive to the accuracy of this assumption. Therefore, they are sensitive to curvature in the 
path, and low error level and/or large filter order increases this sensitivity. 
 
The interaction between the cart path curvature and filter order for the rectangular LPF is shown 
in Figure 31. These results were compiled using the straight line and circular cart paths, all of 
which have a constant curvature over the entire cart path. These figures clearly show that at a 
low noise level, where the modeling error dominates, a low filter order provides the best 
performance, and that at a high noise level, where the measurement error dominates, a high filter 
order provides the best performance. However, at a moderate noise level, where neither the 
modeling error nor the measurement error is dominant, the best filter order depends on the 
curvature of the cart path. 
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Figure 17: RMS Error as a function of filter order for the straight line cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 18: RMS Error as a function of filter order for the 1/8 circle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 19: RMS Error as a function of filter order for the 1/4 circle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 20: RMS Error as a function of filter order for the 1/2 circle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 21: RMS Error as a function of filter order for the 3/4 circle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 22: RMS Error as a function of filter order for the full circle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 23: RMS Error as a function of filter order for the 1 sinusoid cycle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 24: RMS Error as a function of filter order for the 2 sinusoid cycle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 25: RMS Error as a function of filter order for the 3 sinusoid cycle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 26: RMS Error as a function of filter order for the 4 sinusoid cycle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 27: RMS Error as a function of filter order for the 5 sinusoid cycle cart path with moderate 
measurement error correlation (r = 0.5). 
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Figure 28: RMS Error as a function of measurement number with moderate measurement error 
correlation (r = 0.5) for the 2 sinusoid cycle cart path and filter order of 6. 
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Figure 29: RMS Error as a function of measurement number with moderate measurement error 
correlation (r = 0.5) for the 2 sinusoid cycle cart path and filter order of 12. 
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Figure 30: RMS Error as a function of measurement number with moderate measurement error 
correlation (r = 0.5) for the 2 sinusoid cycle cart path and filter order of 18. 
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Figure 31: RMS Error produced by the rectangular low-pass filter as a function of path curvature 
and filter order for the straight line and circular cart paths with moderate measurement error 

correlation (r = 0.5). 
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For cart paths which do not have constant curvature, such as the sinusoidal paths considered in 
these simulations, the choice of filter order is more difficult since low filter order is appropriate 
for some segments while high filter order is appropriate for other segments. It is anticipated that 
future (adaptive) algorithms will provide better performance not only for paths with some 
constant curvature, but also for paths with varying curvature. 
 

4.4. Impact of Cart Motion Characterization 
 
The impact of characterizing the cart path prior to applying error-correction algorithms to the 
GPS measurements is evaluated through simulations. For comparison, an LPF of order 6 is also 
evaluated in these simulations. The cart path utilized in the simulations is the simulated path 
shown in Figure 3. In these simulations, the error variances in the x- and y-directions range from 
σ2 = 1x10-6 to σ2 = 1x10-3. These error levels are smaller than those used previously because the 
distance between successive samples is now .05m, rather than 1m. 
 
First, the HMM is applied to the first difference in the GPS measurements to estimate the state 
sequence. The most likely state sequence is determined using the Viterbi algorithm, and that 
state sequence is then used to guide the error correction. If the estimated state is one of the 
forward motion states, an LPF of order 6 is applied to reduce the GPS measurement errors. The 
filter order is reduced at the boundaries of the cart path segment so that measurements associated 
with a different type of motion do not impact the error correction of the current segment. The 
estimated state sequence is used to define the boundaries of the different segments in the cart 
path. Thus, the HMM not only allows us to apply an appropriate filter to the different segments 
of the cart path, but it also allows us to transition between the segments in an appropriate way. If 
the estimated state is one of the detour or turn around states, an LPF of order 2 is applied to 
reduce the GPS measurement errors. The lower filter order removes the major perturbations in 
the GPS measurements, while not imposing a linear model over a long series of measurements. 
This filter order is chosen for the detours because it is anticipated that the detours seen in real 
data will be more gently curved, and not the idealized straight line segments utilized in these 
simulations. 
 
Single realization simulation results are shown for a range of error variances in Figures 32 
through 38 (low variance to high variance). The top panel in each of these figures shows the 
noisy measurements (green dots), the corrected measurements using the HMM (red circles), and 
the corrected measurements using the LPF (cyan squares) for the entire cart path. The bottom 
panels each show sections of the cart path in more detail. The left bottom panel shows a turn 
around and perturbations induced by cart tilt, and the right bottom panel shows detours as well as 
a straight line segment. 
 
The bottom panels illustrate the differences between the using the HMM and only the LPF on the 
GPS error correction at the boundaries between the straight line motion and the nonlinear motion 
(detour or turn around). At low and moderate noise variances, where the modeling errors 
resulting from assuming strictly linear motion dominate the LPF results, the HMM outperforms 
the LPF. At high noise variances, where the noise dominates the LPF results, the LPF 
outperforms the HMM. The exception to these observations is where cart tilt introduces 
perturbations in the cart path. At these locations, the LPF outperforms the HMM for all error 
levels because the HMM is incorrectly characterizing these segments as small detours. This 
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illustrates the sensitivity of the HMM approach to the accuracy of the model. If the detour model 
forced the detours to be at least farther away from the forward motion segment than the 
perturbation induced by the cart tilt, it is likely those segments would be correctly characterized 
as forward motion. This hypothesis will be evaluated in future simulations. 
 
The above observations are quantified in Figure 39. The figure summarizes the results obtained 
for 100 independent realizations of noisy GPS measurements. It shows the mean RMS error 
across all measurements as a function of the GPS measurement error variance. The mean RMS 
errors increase as the measurement error variance increases, as expected. It is interesting to note 
that the HMM has lower mean RMS error than the LPF for low measurement error variance; 
however, the LPF has lower mean RMS error than the HMM for high measurement error 
variance. These are consistent with the observations made about the corrected cart paths for the 
single realization results. 
 
 
5. Real Data Processing: ATD/JPG 
 
The GPS error correction algorithm is validated using data collected at the ATD/JPG, and the 
results are shown in Figure 40. Some of the algorithm parameters were adjusted to better match 
the measurement conditions in this data collection. For instance, the distance between successive 
measurements was increased from 0.05m to 0.125m. In addition, the cart motion model was 
modified to force the detours to be further away from the straight line path by adding more states 
to the movement away from and back toward the forward motion state. 
 
While there were volumes of data collected, and processed, only a representative subset is shown 
in Figure 40. This section of the cart path was chosen because it illustrates some interesting 
features. Since ground truth is not available for this data set, the performance evaluation is more 
qualitative than quantitative. In the section at approximately (x,y) = (-0.75,20.75), both the LPF 
and the HMM followed by filtering remove the bump seen in the measured data. This is a section 
where the HMM characterized the cart motion as linear, and attributes the deviation in the GPS 
measurements to the cart tilting. However, in the section at approximately (x,y) = (-2.75,20.75), 
the HMM follows the measured data, while the LPF alone deviates significantly from it. In this 
section, the HMM characterized the cart motion as the beginning of the turn around. Finally, the 
turn around section shows that the LPF alone introduces a systematic error, while the HMM 
continues to follow the measured data. 
 
Although the HMM approach, in this case, appears qualitatively to have done a better job at 
error correcting than the LPF alone, the approach is far from robust in its current configuration. 
The major source of contention is usually the incorrect characterization of perturbations in the 
cart path (due to tilting) as small detours in the cart path. A logical way to resolve this ambiguity 
is to track the orientation of the cart as it moves over the uneven terrain. 
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Figure 32: Simulated cart path with noisy GPS measurements and error-corrected GPS measurements 
for measurement error variance σ2 = 1 x 10-6. 
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Figure 33: Simulated cart path with noisy GPS measurements and error-corrected GPS measurements 
for measurement error variance σ2 = 5 x 10-5. 
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Figure 34: Simulated cart path with noisy GPS measurements and error-corrected GPS measurements 
for measurement error variance σ2 = 1 x 10-5. 
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Figure 35: Simulated cart path with noisy GPS measurements and error-corrected GPS measurements 
for measurement error variance σ2 = 5 x 10-4. 
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Figure 36: Simulated cart path with noisy GPS measurements and error-corrected GPS measurements 
for measurement error variance σ2 = 1 x 10-4. 
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Figure 37: Simulated cart path with noisy GPS measurements and error-corrected GPS measurements 
for measurement error variance σ2 = 5 x 10-3. 
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Figure 38: Simulated cart path with noisy GPS measurements and error-corrected GPS measurements 
for measurement error variance σ2 = 1 x 10-3. 
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Figure 40: Error correction algorithms applied to data collected at the JPG V demonstration. 

Figure 39: Mean RMS error across all measurements as a function of GPS measurement error variance. 
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6. Three-Dimensional Cart Motion 
 

6.1.  Quaternions 
 
When dealing with the cart motion in three dimensions, the common approach is to use a 
sequence of three Euler angle rotations to completely define the orientation of the cart relative to 
a reference coordinate system at each point along the cart path. In general, any angle of rotation 
about a coordinate axis is called an Euler angle. One such sequence that is often used is the 
yaw(φ)–pitch(θ)–roll(ψ) sequence of Figure 41. In describing the evolution of the cart motion, 
one must keep track of the evolution of the location (x, y, z) and all three Euler angles (φ, θ, ψ).  
 

 
Figure 41: Yaw-Pitch-Roll: A common Euler angle sequence. 

 
If the cart motion were restricted to a plane, the state of each point would be completely defined 
by its location on the plane (x, y) and the Euler angle φ . In this case, a recursive relation for the 
evolution of φ can be written simply as 
 

...3,2,1,
1

01 =∆+=∆+= ∑
=

− n
n

i
innn φφφφφ  

 
where 1−−=∆ nnn φφφ  represents the incremental change in φ between points n-1 and n, and 0φ  
represents the initial angle. This same recursive representation for an angle, however, is a natural 
consequence of multiplying complex numbers (of unit magnitude) in the polar representation. 
Thus, if we represent the complex number c as 
 

φφφ ireriribac ≡+=+= )sin()cos( , 
 
where 
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then the recursive product of unit complex numbers gives 
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The above result reinforces the idea that given a point on the unit circle in the complex plane 
(i.e. 1−nc , which represents the angle 1−nφ ), we can multiply it by another unit complex number 
(i.e.  nc∆ ) in order to rotate it to a new point on the unit circle (i.e. nc , which now represents the 
angle nφ ). In other words, points on the unit circle in the complex plane represent all allowable 
rotations of the cart frame, provided θ = ψ = 0 (i.e. the cart motion is restricted to a plane), and 
furthermore the evolution of the rotation angle φ is completely specified as a path along the unit 
circle. 
 
If we now relax the condition that the cart motion be restricted to a plane, it turns out that a 
generalization of the above exists: points on a unit hyper-sphere in four-dimensional complex 
space represent all allowable rotations in three dimensions, and furthermore the evolution of the 
rotation Euler angles (φ, θ, ψ) is completely specified by a path on the unit hyper-sphere. This is 
done by extending the above idea for complex numbers, to something called quaternions [10-
11] – sometimes also called hyper-complex numbers of rank 4 – where the multiplication 
operator no longer obeys the commutative law (i.e. the multiplication sequence is important). 
Thus, if we represent the quaternion q as 
 

vkji +=+++= uvvvuq 321
ˆˆˆ , 

 
where u is the scalar real part of the quaternion while v is the vector imaginary part of the 
quaternion, and the vector components [v1, v2, v3] are mutually orthogonal with the standard 
directional unit vectors î , ĵ  and k̂ , respectively; then the unit quaternion can be expressed in a 
polar-like representation as 
 

2
sinˆ

2
cos ζζ Ev +=+= uq , 

 
where Ê represents a unit vector about which a positive rotation of ζ (as defined by a right-
handed coordinate system) takes place. This interpretation stems from the quaternion product of 

∗qq oo r , a quantity referred to as the quaternion rotation operator, where r is any three-
dimensional vector to be rotated and v−=∗ uq  is the complex conjugate of the unit quaternion 
q. Thus, assuming ir ˆ=  and kE ˆˆ = , and noting that the quaternion product has the following 
properties: 
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1ˆˆˆˆˆˆˆˆˆ −==== kjikkjjii ooooo ; 
 

we have 

rotatedqq rjir ≡+=∗ ζζ sinˆcosˆoo , 
 
where it is clear that the quaternion rotation operator has rotated the vector ir ˆ=  by a positive 
angle ζ about the kE ˆˆ =  axis. 
 
Returning to the problem of describing the evolution of the cart motion in three dimensions, we 
first note that due to a theorem by Euler, any given sequence of rotations can be represented as a 
single rotation about a single fixed axis. The φ–θ–ψ sequence can therefore be represented by a 
single rotation about a single axis, say ζ about Ê , which we have seen can be readily expressed 
as a unit quaternion q. If we now track from point to point the vector Ê , for example, we have 
the recursive relation 
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where qn is the unit quaternion that is needed to rotate the 1

ˆ
−nE  vector into nÊ , and 
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is itself the unit quaternion needed to rotate the initial vector, 0Ê , into nÊ . Note that q0 

represents the rotation that takes 0Ê  into 1Ê ; q1 represents the rotation that takes 1Ê  into 2Ê ; 
etc… It is clear, therefore, that the rotational evolution of a vector is efficiently described 
through a quaternion product of unit quaternions representing incremental rotations at each point 
along the track, and furthermore that the product outcome is itself a unit quaternion that 
represents the combined rotation from start to finish. 
 
At this point, it is important to recognize that unit quaternions – which can be thought of as 
points on a unit hyper-sphere in four dimensions – provide an unambiguous mapping to three-
dimensional rotations. For each rotation, however, there exists two corresponding unit 
quaternions, q and –q. Topologically, quaternion space consists of a “double covering”, where q 
maps to one covering and –q maps to the other. Any continuous quaternion curve on a single 
covering corresponds to a continuous sequence of rotations [12]. In this case, we can always 
define a great circle as the unit circle that results from the intersection of the unit sphere in three-
dimensional real projective space with a two-dimensional plane containing any two unit 
quaternions belonging to the curve, as well as the origin of the sphere.  There then exists a 
unique shortest arc along the great circle between the two quaternions, and so the angle that 
subtends this arc becomes a natural metric to use in order to measure the distance between two 
unit quaternions. Indeed, if q0 and q1 are two unit quaternions, and q0 rotates to q1 , then 



 

 51

 
0

*
011 )( qqqq oo≡  

 
(since 12

0
*
0 ≡⋅+= vvuqq o  for unit quaternions) and the composite quaternion *

01 qq o  is the 
rotation connecting them. And since 
 

010101
*
01 qquuqq ⋅≡⋅+= vvo , 

 
where 01 qq ⋅  is the four-dimensional dot product of q1 and q0 , this is by definition the cosine of 
the angular separation between q0 and q1 on the unit sphere. 
 
 
In summary: 
 

• Any three-dimensional rotation can be represented by one of two unit quaternions (q or –
q). 

• All unit quaternions reside on a hyper-sphere in four dimensions. Topologically, they can 
reside on one of two coverings. 

• Any continuous quaternion curve on a single covering corresponds to a continuous 
sequence of rotations, and has the geometry of three-dimensional real projective space 

• The quaternion product of a sequence of points on a curve on the unit sphere is itself 
another point on the unit sphere, and represents the combined rotation from start to finish 
for that sequence of points. 

• The quaternion product *
1−nn qq o  connects point 1−nq  to nq  on the unit sphere, and 

represents the cosine of the angular separation between 1−nq and nq on the unit sphere, 
thus giving the product a geometrical interpretation. 

 
 

6.2. Advantages of Using Quaternions 
 
It was stated that when dealing with the cart motion in three dimensions, the common approach 
is to use a sequence of three Euler angle rotations (such as the sequence of Figure 40) to 
completely define the orientation of the cart relative to a reference coordinate system at each 
point along the cart path. In this common approach, all rotations are represented by 3 x 3 
orthogonal matrices whose determinants are +1 (subsequently to be referred to as rotation 
matrices). The matrix product – also non-commutative – of a sequence of rotation matrices also 
results in a rotation matrix that represents the combined rotation of the sequence from start to 
finish. Thus, in an analogous fashion to unit quaternions, a recursive matrix relation expressing 
the rotational evolution of the cart frame can be formulated. Also analogous to unit quaternions, 
a matrix product connecting two rotation matrices exists. However, unlike the unit quaternions, a 
direct geometrical interpretation linking the two matrices does not exist. 
 
There in lies the greatest advantage of using the quaternion formulation over the more common 
matrix formulation. By knowing the topology and geometry that links a sequence of unit 
quaternions together, it is possible to manipulate the orientation evolution of the cart frame with 
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a lot more efficiency and dexterity. The cost, however, is that the new landscape has to be 
explored and a degree of familiarization attained before this advantage can be exploited. 
 
Take, for example, the interpolation of orientation of the cart body frame given sparse data 
sampling in the form of the Euler angles φ, θ, ψ. In the matrix formulation, there is no 
straightforward method of finding intermediate rotation matrices given end point rotation 
matrices. It is not a simple matter of interpolating the Euler angles separately since these angles 
are obviously correlated. In the quaternion formulation, however, the geometrical interpretation 
connecting the two unit quaternions allows one to intuitively interpolate between the two points. 
One simple scheme is the spherical linear interpolation – abbreviated as slerp – which linearly 
interpolates along the great arc connecting the two points and represents a constant speed 
rotation between the points [13-14]. Many more elaborate schemes also exist [15-16]. 
 
By now it should be clear that any filtering (i.e. LPF, linear predictive, etc…) of the orientation 
data needs to take place in the nonlinear unit quaternion space. Failing to do so will result in 
non-intuitive methods involving nonlinear transformations, and will therefore be more prone to 
errors. Using linear approximations might simplify the process, but this then has the potential of 
resulting in significant deviations from its true behavior if the orientation errors get large.  
 
Another advantage of using quaternions – one that becomes more of an issue when considering 
real-time processing – is the fact that the only time we need to compute the rotation matrix is 
when we need to transform to the cart frame. For most other operations, such as the filtering 
schemes referred to above, we need only look at the quaternions. Since a matrix product requires 
many more operations than a quaternion product, we can save a lot of time and preserve more 
numerical accuracy with quaternions than with matrices [17]. 
 

6.3. A Quaternion Formulation Using GPS Measurements 
 
This formulation closely follows one suggested by Hanson [18]. His method is applied to the 
idea of describing the full cart motion – orientation included – using only GPS (x,y,z) 
measurements. The steps are enumerated below: 
 
1. Create a curve in space which best represents the location of the cart at each point: use GPS 

data for this. This curve should be described in the tangent-plane reference frame (i.e. earth); 
 

2. At each point along the curve, compute a unit tangent vector T̂ . This represents the heading 
at each point, and will be tied to the x-axis of the cart-body reference frame. 

 
3. If  qi is the quaternion that rotates 1

ˆ
−iT  to iT̂ , then the recursive relation for the evolution of 

T̂ is simply 
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4. Note, however, that any quaternion )(ξip  can replace the quaternion qi above, provided 
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since ( )ξ

i
qT̂  is the quaternion that leaves the direction iT̂  invariant.  The angle ξ serves to 

parameterize a ring in quaternion space, each point of which corresponds to a particular cart-
body frame at (xi,yi,zi), and all frames are described twice since πξ 40 <≤ . )(ξip  is thus 
known as the sliding ring constraint, for obvious reasons. 

 
5. Finally, choose the angle ξ at every cart location by minimizing the quaternion length of the 

frame assignment for the curve. The justification for this is that there is a unique rotation in 
the plane of two neighboring tangents that takes each tangent direction to its next neighbor 
along a curve – this is the geodesic arc connecting the two frames in quaternion space, and is 
therefore the minimum distance between the quaternion points representing the two frames. 

 
This last step represents a nontrivial step which is highly dependent on the initial orientation 
chosen for the cart.  
 
 
7. Summary 
 
The sensitivity of EMI dipole and magnetometer dipole model parameter estimates to errors in 
the GPS measurements was evaluated through simulations. The results suggest that decreasing 
the error in the GPS measurements tends to decrease the error in the parameter inversion, with 
the degree of improvement dependent upon the target parameters and orientation relative to the 
data collection. This observation motivates the need for techniques to reduce GPS measurement 
errors. A hidden Markov model for the cart motion has been implemented to broadly 
characterize the cart motion as linear or nonlinear. The HMM characterizes the cart path so that 
different error correction techniques can be applied to different segments of the path. For 
instance, the error correction applied to the linear segments is different from the error correction 
applied to the nonlinear segments. 
 
Simulations were performed to compare the performance of the HMM followed by segment 
specific filtering, to the LPF alone. The results show that for low and moderate error levels, 
where the GPS errors do not impede cart motion characterization, the HMM in general offers 
better performance. The better performance is due in large part to the improved performance in 
the regions where the motion is nonlinear. However, for large error variance, where the GPS 
errors prevent accurate characterization of the cart motion, the LPF alone offers better 
performance. The same algorithms were then applied to field data collected at the ATD/JPG. 
 
A potential problem for the HMM is in the characterization of perturbations in the cart path due 
to tilting of the cart. Such segments in the cart path are occasionally mistaken for small detours. 
To address this deficiency, a quaternion formulation has been proposed as a possible efficient 
means to track and process the cart orientation as it moves over the uneven terrain. With this 
added orientation information, ambiguities encountered when attempting to characterize the cart 
motion as being either linear or nonlinear can be resolved, offering an opportunity for improved 
robustness for the HMM approach. 
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8. Directions for Future Research 
 
There are several directions for continued and future research related to this work. One obvious 
direction is to incorporate the proposed quaternion formulation into the HMM to improve the 
robustness of the currently implemented approach. This will naturally lead to questions 
regarding estimates of the initial orientation state and whether an additional sensor, such as an 
inertial motion unit (IMU), will actually be necessary to make this work. If an IMU is deemed 
necessary, there is then the question of whether it makes more sense to go with something more 
sophisticated, such as a Kalman-type filter, to combine the GPS and IMU data. Like the current 
implementation of the HMM with an LPF of adaptively varying order, the adaptation of the 
Kalman filter could be guided or influenced by the cart motion characterization determined using 
the improved HMM.  
 
Another direction, which will be site dependent, might be to closely examine the relationship 
between the characteristics of the ground surface and the distributions of GPS errors. The 
relationship between the ground surface and GPS error distributions could then be utilized to 
guide the design of the HMM for the cart motion model. 
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