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In a cooperative effort involving the Army Research Laboratory (ARL), the Naval Surface 

Warfare Center (NSWC), and Applied Analytical, Inc., the scale-up of a process to separate the 

components of Composition B high explosive using a supercritical fluid (SF) extraction process 

was investigated. New solubility data for TNT and wax in SF C02 was measured as part of this 

study. Batch SF extraction runs were carried out up to the 100-gram level, with results 

substantially the same as in the previous laboratory-scale process. 

*The timeframe covered in this interim report extends from 19 May 1998 through 

30 September 1998. 
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Background 

In the past, waste and excess energetic materials have been disposed of through the means of 

open burning and open detonation (OB/OD). As an alternative to OB/OD, we have investigated 

the use of supercritical fluid (SF) technologies for the separation and recovery of valuable 

nitramine energetic materials from propellant and explosive formulations. The SF technologies 

we have investigated have involved the use of environmentally benign carbon dioxide (C02) as a 

process solvent. With recent increases in the procurement costs of virgin RDX, the use of 

reclaimed RDX is being given greater consideration.[l] Current RDX production costs are in the 

range of $12 to $15 per pound, as compared to $2 to $4 per pound several years ago. Two 

potential sources ofRDX available for reclamation are Composition A-3, type I, and 

Composition B high explosives. The quantities of RDX potentially available for recovery from 

both existing industrial stocks and demilitarization inventories are much greater for Composition 

B than for Composition A-3. Composition B is a 60:40 mixture ofRDX:TNT, with 1% added 

wax. 

Objective 

The primary objective of this project for FY98 was to demonstrate the scale-up of a process 

developed for the separation and recovery ofRDX from Composition B high explosive. The 

process involves SF extraction (SFE) of the TNT and wax from Composition B. The TNT and 

wax components of Composition B are much more soluble in SF C02 than is RDX. RDX is 

recovered as a non-extractable material in this process. 

Technical Approach 

Recent work at the Army Research Laboratory (ARL) has demonstrated that RDX can be 

separated from Composition B high explosive, on the gram scale, via a SFE process.[2] For 

FY98, our planned approach was to incrementally scale this technology up to processing of 300 

gram batches of Composition B. The Indian Head Division of the Naval Surface Warfare Center 

(NSWC) has the appropriate facilities to conduct the pilot-scale SF processing runs on energetic 
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materials, using extraction vessels with volumes ranging from 0.5-liter up to about 20-liters. The 

services of Applied Analytical, Inc. were employed to generate quantitative TNT and wax 

solubility data in SF C02. 

In the pressure-temperature (P-T) phase diagram of Figure 1, the lines separating the solid, 

liquid, and gas phases of C02 are equilibrium coexistence curves that represent phase 

boundaries. For fluid-based extractions, we are primarily concerned with the liquid and gas 

regions on the phase diagram. The liquid-gas coexistence curve extends between two well­

defined points: the triple point and the critical point. At the triple point, the solid, liquid, and 

gas phases exist in equilibrium. The liquid-gas coexistence curve terminates abruptly at the 

critical point, where the densities of the gas and liquid phases in equilibrium become identical, 

and the demarcation between the gas and liquid disappears. For C02, the triple point occurs at 

217 K and 5.18 bar, and the critical point occurs at 304 K (Tc) and 73.8 bar (Pc). A fluid with 

temperature and pressure greater than that at the critical point is referred to as supercritical fluid. 

In the supercritical region of the phase diagram, a single phase exists that is neither a gas nor a 

liquid, but has properties intermediate to those of gases and liquids. Supercritical fluids have 

gas-like viscosities (typically an order of magnitude below those of conventional solvents) and 

diffusivities (typically 1-2 orders of magnitude greater than those of conventional solvents), zero 

surface tension, and liquid-like densities. The gas-like viscosities and diffusivities of 

supercritical fluids imply superior mass transport characteristics for SFE as compared with 

conventional organic solvent extraction. 

Figure 2 shows a block schematic diagram for a supercritical fluid extractor. A reservoir of 

liquid C02 supplies a pump that is used to bring the fluid to the operating pressure. The high­

pressure liquid flows into a heated vessel that contains the material to be extracted. When the 

solute-rich fluid exits the extraction vessel, it passes through a pressure reduction valve, and into 

a separator, where the extracted material is collected. The C02 exiting the separator may be 

vented as a gas, or collected, recompressed, chilled, and used to replenish the liquid supply 

reservoir in a closed-loop operation. Omitted from Figure 2 are ancillary equipment, such as 

fluid pre-heaters, isolation valves, pressure and temperature gauges, and flow meters. 
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Supercritical fluid extraction equipment ranges from the analytical scale, with extraction vessel 

volumes of 1 ml or less, through process scale, with vessel volumes of greater than 100 liters. 

Project Accomplishments 

The milestones 1-5 were completed through the end ofFY98, with modification as 

appropriate. 

1. Initiate reconfigure and relocate SF-C02 equipment. 

2. Initiate laboratory scale-up protocol-conduct base characterization on Comp B and 

Octol, and ingredients. 

3. Initiate SF-C02 scale-up deployment for Comp B-define process parameters, 

temperature, pressure, and Comp B to C02 ratio. 

4. Initiate large lab-scale process studies. 

5. Scale-up process to 100-gram batches. 

Initiate reconfigure and relocate SF-C02 equipment. Supercritical C02 processing 

equipment for 100-mL through 3-L vessel sizes was relocated within the Naval Surface Warfare 

Center-Indian Head Division (NSWC) in order to meet NSWC safety requirements. 

Initiate laboratory scale-up protocol-conduct base characterization on Composition B and 

Octo!, and ingredients. As part of the base characterization of Composition B, Dr. Larry Taylor 

of the Virginia Polytechnic Institute and Applied Analytical, Inc., completed more detailed 

laboratory studies on the solubilities of TNT and wax in C02[3] than were previously available 

in the literature[4]. The results of these studies are presented in Tables 1-2 and Figure 3-4. 

Each data point represents the average of 5 individual replicate measurements. For TNT, the 

data from Table 1 was converted to TNT mole fraction (X TNT), and was fit as a function of 

density using a procedure similar to that used previously to fit RDX solubility data in C02[5]. 

Since waxes are oligomeric in nature, with a distribution of molecular weights, the solubility 

fitting analysis that was applied to RDX and TNT solubility data cannot be used. The data from 

Table 2 was plotted directly in FigUre 4. It is expected that supercritical fluid extraction will tend 

to fractionate the wax. The data presented in Table 2 may not represent an even solubility 
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distribution across the molecular weight distribution of the wax oligomers. In all likelihood, the 

lighter fractions of the wax will exhibit greater solubility in supercritical C02. No measurements 

of wax molecular weight distributions were made as part of this solubility study. 

Table 1. Mass solubility of TNT in C02 (mg RDX/g C02) as a function of temperature and 
pressure. 

p (bar) Solubility @ Solubility @ Solubility@ 
308 K 323 K 343 K 

139 5.3 4.2 13.3 
253 11.0 13.7 25.6 
375 14.9 18.0 30.3 

Table 2. Mass solubility of wax in C02 (mg wax/g C02) as a function of temperature and 
pressure. 

P (bar) Solubility @ Solubility @ Solubility @ 
308 K 328 K 343 K 

139 0.34 0.39 0.46 
253 0.40 0.62 0.79 
375 0.62 1.21 1.61 

Initiate large lab-scale process studies and scale-up process to 100 gram batches. The 

Composition B SFE process was scaled up to the 100 gram level with a moderate degree of 

success. However, as was noted on the gram-scale SFE runs [2], the recovered RDX had the 

appearance of beach sand, rather than the preferred white appearance of virgin RDX. A small 

number of post-processing solvents were used without much success in an attempt to whiten the 

appearance of the recovered RDX. In the opinion of the technical POC at NSWC, on the basis of 

the discoloration, no formulator would choose to use this material. It was decided not to scale 

this process up to the 300-gram level until recovered RDX with a more agreeable appearance 

could be recovered. It is expected that scale-up from the 1 00-gam to 300-gram level would 

involve minimal complications. 

High performance liquid chromatographic (HPLC) analysis of the recovered RDX revealed 

removal of the TNT component, and gravimetric analysis confirmed the removal of the wax. 
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Given the processing and morphology of Composition B, it was concluded that this discoloration 

was due to a small amount of material that was coated on the surface of the recovered RDX 

crystals. It is anticipated that recrystallization of the recovered RDX would result in that same 

white appearance is seen with virgin RDX. However, recrystallization of the recovered RDX 

would add an additional processing cost of$3 to $6 per pound.[l] 

Papers that resulted from this FY98 study will be presented at the 1999 JANNAF Propellant 

Development & Characterization Subcommittee and Safety & Environmental Protection 

Subcommittee Joint Meeting; the citations for these papers are listed in Appendix A. Future 

plans involve a transition from ARL to NSWC for continued investigation of a COrbased 

extraction process for the recovery ofRDX from Composition B. Since FY98 was the final year 

of SERDP funding for this project, a more detailed project final report is currently under 

preparation. 
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