
CERT RESEARCH ANNUAL REPORT

2009



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
CERT Research Annual Report 2009 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University,Software Engineering 
Institute,Pittsburgh,PA,15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

82 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



The primary goals of the CERT® Program are to ensure 
that appropriate technology and systems management 
practices are used to resist attacks on networked systems 
and to limit damage and ensure continuity of critical 
services in spite of attacks, accidents, or failures. 

CERT is part of the Software Engineering Institute (SEI), 
a federally funded research and development center 
(FFRDC) sponsored by the U.S. Department of Defense and 
operated by Carnegie Mellon University. The SEI advances 
software engineering and related disciplines to ensure 
systems with predictable and improved quality, cost, and 
schedule.

This report describes how CERT research advanced the 
field of information and systems security during the 2009 
fiscal year.  

 

To download a PDF version of this annual report, go to 
http://www.cert.org/research/2009research-report.pdf   



1

TABLE OF CONTENTS

CERT Research Vision  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

Executive Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

2009 Research Report Abstracts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

Applying Function Extraction (FX) Techniques to Reverse Engineer Virtual Machines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

A Probabilistic Population Study of the Conficker-C Botnet   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10

Catching IPv6 Tunneled in IPv4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14

Finding Malicious Activity in Bulk DNS Data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18

Function Extraction for Malicious Code Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

Function Hashing for Malicious Code Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26

Metrics for Evaluating Network Sensor Placement   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

Modeling Insider Theft of Intellectual Property  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Rayon: A Unified Framework for Data Visualization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37

Source Code Analysis Laboratory   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

SQUARE: Requirements Engineering for Improved System Security   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48

Additional Research  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52

Advanced Technology for Test & Evaluation of Embedded Systems   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53

Automatic Generation of Hidden Markov Models for the Detection of  
 Polymorphic and Metamorphic Malware   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54

Baselining Port-Specific Scanning Behavior  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56

Building Assured Systems Framework (BASF)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57

Control System Security and Critical Infrastructure Survivability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58

Cyber Assurance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60

Cyber Security Risk Assessment in the Bulk Electric System   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61

Influencing National Capability Development in Cyber Security through Incentives  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62

Measuring Operational Resiliency  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62

Measuring Software Security  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64

SiLK: Improvements and Plans   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66

The Smart Grid Maturity Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67

Researcher Activities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68

List of Selected Publications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69

Talks/Panels/Workshops   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

Technical Leadership  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72

Biographies   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73



2



3

CERT Research Vision

Today we live in a world in which the threat of cyber attacks 
is ever-growing, and where threats from unknown sources are 
dynamic and constantly changing. It is seldom that a week 
goes by when articles on cyber security are not prominent 
in technical publications and popular media. It is the CERT 
Program’s mission to identify, develop, and mature, and 
broadly transition new technologies, system development 
practices, and system management practices that enable 
informed trust and confidence in using information and com-
munication technology.

Our stakeholders include the U.S. Department of Defense, 
the Department of Homeland Security, other U.S. federal 
agencies, state and local governments, and other operators of 
infrastructures critical to the national defense, cyber security, 
and the national economy; the providers of information com-
munications technologies (ICT) and services that support 
these system and network operators; the software develop-
ment community; and computer security incident response 
teams with national responsibilities.

The overall goal of our program is improved practices and 
technologies that are widely understood and routinely used 
to protect, detect, and respond to attacks, accidents, and 
failures on networked systems. Better informed, trained, and 
equipped people will produce better systems that will be 
better managed to reduce operational risk and the impact of 
cyber attacks.

Our research strategy has been to build and maintain a 
technical center of excellence that uses its operational experi-
ence and expertise to look across the entire software life 
cycle (from requirements through development, deployment, 
operations, and maintenance) to 
•  identify new technologies, development practices, and 

management practices that would significantly improve 
networked systems security and enterprise resiliency

•  mature these technologies and practices
•  apply these technologies to meet the needs of the program’s 

stakeholders
•  transition these technologies into widespread use 

The transition activity pays special attention to education 
and training and recognizes the critical need to develop an 
international workforce skilled in software and information 
assurance. 

Our objectives include the following

Objective one: Identify and establish techniques 
and approaches needed to embed software and 
system security assurance in all aspects of the 
system development life cycle.
The program is identifying and establishing techniques and 
approaches needed to embed software and system assurance 
in all aspects of the system development life cycle. We are 
transitioning these methods into widespread use with tradi-
tional methods and recently developed approaches, such as 
DHS’s Build Security In web site, the Resiliency Engineering 
Framework, and the SEI’s Virtual Training Environment.

Objective two: Improve the effectiveness of the 
international intrusion analysis and response team 
community.
Improve the effectiveness of the intrusion analysis and 
response team community by developing a commonly used 
infrastructure of policies, practices, and technologies that 
reduces the impact of cyber attacks by supporting rapid 
identification, collaborative analysis, and forensic investiga-
tion. Integrate insider threat research analysis and findings 
into new technologies for the detection and prevention of 
malicious insider activity. Create and transition incident 
response tools that provide commercially unavailable ca-
pabilities. Support the development of teams with national 
responsibility. 

Objective three: Develop a workforce skilled in 
secure cyber operations.
Develop a workforce skilled in secure cyber operations by 
developing curricula on network operations, information as-
surance, incident response, and forensics analysis for execu-
tives, managers, educators, software engineers, and network 
administrators; and developing curricula for cyber forensics 
for law enforcement investigators as well as front-line system 
operators. Transition the curricula using traditional methods 
to academic institutions and other stakeholders as well as 
through innovative approaches such as the CERT Virtual 
Training Environment (VTE) and XNET. 

Objective four: Improve the survivability and 
resiliency of the program’s stakeholders.
Improve the survivability and resiliency of the program’s 
stakeholders by developing and transitioning disciplined im-
provement approaches including improvement models (such 
as the Resiliency Management Model), security assessment 
methods, compliance validations, and threat analysis, model-
ing, and mitigation techniques. Provide practical guidance 
for identifying and managing insider threats and other risks.

The sophistication of technology and attack methods contin-
ues to evolve rapidly, and we must develop mitigation strate-
gies and solutions at the same pace. The need to maintain 
constant vigilance and awareness of the threat landscape is 
important, and organizations need to keep security aware-
ness at the forefront. Security policies must be dynamic and 
adapted as necessary to address the evolution of the threats. 
Striving to achieve these objectives requires our own best 
efforts, as well as cooperation and collaboration within the 
community we serve.

The following pages highlight a sample of our work, and 
we will continue to promote and rely on cooperation and 
collaboration within the security community. We welcome 
participation by organizations that share our belief that the 
networked environment of the future can provide safe and 
secure computing for all participants in the global informa-
tion community.

Richard Pethia
Director, CERT 
Software Engineering Institute 
Carnegie Mellon University



4

Executive Summary

The work of the CERT Program at Carnegie Mellon 
University’s Software Engineering Institute includes  
technologies and methods for  
• eliminating security flaws and vulnerabilities in systems  
• preventing intrusions from occurring 
• identifying intrusions that have occurred 
•  preserving essential services when systems have been  

penetrated and compromised 
•   providing decision makers with information required for  

network defense 

We recognize the importance of multiple strategies for 
prevention and detection of and recovery from cyber security 
attacks, and the CERT Program has been designed to address 
a broad spectrum of security technology research, develop- 
ment, and transfer. 

In our research activities, the goal is to replace informal 
methods with precise software and security engineering. In 
our technology development work, we create software and 
security standards, technologies, and automation. In technol- 
ogy transfer, we work with clients to incorporate results into 
key acquisition and development projects. We also provide 
training and materials, such as books and articles, to support 
technology transfer. 

While all these elements are necessary to achieve success, 
the focus of this report is on CERT’s research work. Our 
research agenda is driven by the need to develop theoreti- 
cal foundations and engineering methods to help ensure the 
security of critical systems and networks. We believe the 
projects described in this report are essential elements of this 
agenda. Abstracts are provided here for our major research 
projects, followed in the report by more detailed descriptions 
of the projects. Additional research activities, publications, 
and technical leadership activities are also described.  

2009 Research Report Abstracts
Applying Function Extraction (FX) Techniques to 
Reverse Engineer Virtual Machines
Malware that has been protected by intruders using virtual 
machine technology, or virtualized malware, represents 
a significant challenge to fast and effective reverse 
engineering. A virtual machine is a program that emulates 
one computer’s architecture on another architecture. Intruders 
can create a “one-off ” virtual machine and translate their 
malware to its unique architecture. However, virtualized 
malware must eventually be translated for execution on target 
machines such as the Intel IA-32 architecture, for which the 
meaning, or semantics, of each instruction is well known. 
To analyze virtualized malware, researchers applied CERT’s 
Function Extraction (FX) techniques for software behavior 

computation to understand the functional effect of sequences 
of virtual machine instructions. This approach permitted 
undoing of most of the virtual machine encoding, resulting 
in a standard IA-32 program suitable for reverse engineering 

with existing tools and techniques. 

A Probabilistic Population Study of the Conficker-C 
Botnet
Botnet size is often reported as a number of IP addresses, 
but the link between IP addresses and infected machines is 
more complicated than a simple one-to-one relationship. 
To count the number of infected machines when we have 
only an aggregated view of a botnet, we suggest building a 
precise probability model of the observable behavior of a 
single machine, and applying that model to the aggregates 
to obtain a population estimate. As an example, we build a 
probability model of the peer-to-peer (P2P) scanning activity 
of the Conficker-C botnet, and we use this model to estimate 
the number of active infected machines per hour over a two-
month window. 

Catching IPv6 Tunneled in IPv4
Internet Protocol version 6 (IPv6) is the long term solution 
for the depletion of IPv4 addresses and has been increasing 
in deployment over the past decade. To ease the adoption 
of IPv6, automatic tunneling protocols (i.e. 6to4, ISATAP, 
Teredo) will encapsulate IPv6 information inside IPv4 with 
minimal user effort. These protocols allow for IPv6 to run in 
networks regardless of the preparedness or awareness of the 
network administrators. In this work, we use features of these 
tunneling protocols to identify IPv6 traffic that is masquerad-
ing as IPv4.

Finding Malicious Activity in Bulk DNS Data
The Domain Name System is a vital component of the 
Internet, and nearly every transaction on the Internet uses it.  
It contains a wealth of Network Situational Awareness infor-
mation that can be used to discover malicious traffic. This 
report describes specific techniques to detect certain types 
of malicious traffic. These techniques have been developed 
through analyzing a large amount of DNS traffic data. CERT 
has developed specific tools that apply these techniques in 
an ongoing way. Future research will include enhancing the 
developed tools, developing new techniques and tools to 
work with known malicious patterns, and discovering new 
malicious patterns.



5

Function Extraction for Malicious Code Analysis
As the quantity and sophistication of malicious code 
continues to grow, automation support for analysis becomes 
more important to keep pace with the scope and scale of 
the problem. To help address this need, CERT originated 
the technology of Function Extraction (FX) for automated 
computation of software behavior (including malware) with 
mathematical precision to the maximum extent possible. 
Intruders often obfuscate malware packages to make analysis 
more difficult by inserting massive amounts of arbitrary 
jumps in the code that thwart control flow tracing, and by 
inserting blocks of no-op code that have no functional effect 
but must nevertheless be analyzed. A specialization of FX 
technology in the Function Extraction for Malicious Code 
(FX/MC) system is designed to address these obfuscation 
problems. FX/MC eliminates control flow obfuscation 
caused by arbitrary jumps by transforming the code into 
function-equivalent structured form, and applies behavior 
computation to detect and eliminate blocks of no-op code. 
These operations can result in smaller and less complex 
malware for analysis. 

Function Hashing for Malicious Code Analysis
Comparing samples of malicious code to each other contin-
ues to be an interesting field of research because it allows 
reverse engineers to save time otherwise spent analyzing 
malicious code they have looked at before. In our function 
hashing research, we have laid a foundation for code compar-
ison that dramatically reduces the size of the code similarity 
problem facing malicious code analysts. Our approach was 
to use high-confidence cryptographic hashing algorithms to 
identify duplicated code in approximately four million files 
in the CERT Artifact Catalog. Our results indicate that over 
1.5 billion function instances can be meaningfully repre-
sented by less than 40 million unique hashes. This reduction 
in the scale of the challenge can lead to improved correlation 
of similar malware based on their functionality.

Metrics for Evaluating Network Sensor Placement
Network sensors collect, detect, or help mitigate malicious 
activity on network traffic data. Metrics for evaluating their 
benefits at a given location can be improved. The improve-
ments in the metrics help in prioritizing sensor deployment 
and improve network security for an organization, given a 
budget constraint. An existing metric baseline was improved 
by two implementation approaches. One approach consisted 
of examining the metric along with its weights, and then 
suggesting improvements. Based on expert opinion, sugges-
tions were made to modify the existing metric to improve its 
accuracy. The other approach consisted of identifying new 
measures that could be included to form a more comprehen-
sive metric. Four new measures were constructed to augment 
the metric using network data. The result is a new metric that 
should better reflect the benefits from deploying a sensor at 
any particular location. 

Modeling Insider Theft of Intellectual Property
A study conducted by the CERT Program at Carnegie 
Mellon University’s Software Engineering Institute ana-
lyzed hundreds of insider cyber crimes across U.S. critical 
infrastructure sectors. Follow-up work involved detailed 
group modeling and analysis of 48 cases of insider theft of 
intellectual property. In the context of this paper, insider 
theft of intellectual property for business advantage includes 
incidents in which the insider’s primary goal is stealing confi-
dential or proprietary information from the organization with 
the intent to use it to take to a new job, to get a new job, or 
to start a business. It does not include cases in which insiders 
sell an organization’s information. This paper describes gen-
eral observations about, and a preliminary system dynamics 
model of, this class of insider crime based on our empirical 
data. This work generates empirically-based hypotheses for 
validation and a basis for identifying mititgative measures in 
future work.

Rayon: A Unified Framework for Data Visualization
Data visualization summarizes large volumes of data and 
represents this data pictorially. Data visualization is used in a 
wide variety of applications, but visualization techniques that 
are effective in one application can often be used as well or 
better in another application. When organizations depend on 
good data visualization, a unified visualization capability will 
often increase that effectiveness; this is especially important 
if an organization relies on internal experts to create new 
visualization techniques appropriate to their environment. 
The Rayon visualization toolkit was developed to augment 
large scale network analytic information, and to improve the 
visualization capability and productivity of analytic opera-
tions by making it possible to share visualization techniques 
between applications.

Source Code Analysis Laboratory
CERT established the Source Code Analysis Laboratory 
(SCALe) to address the problem of insecure code, that is, 
code that contains known vulnerabilities. The purpose of 
SCALe is to investigate approaches to developing systems 
that are certifiably free from known vulnerabilities. 

SQUARE: Security Quality Requirements 
Engineering
Through the SQUARE Project, CERT researchers have 
developed an end-to-end process for security requirements 
engineering to help organizations build security into the early 
stages of the production life cycle. The SQUARE methodol-
ogy consists of nine steps that generate a final deliverable 
of categorized and prioritized security requirements. The 
process has been baselined and transitioned into practice. A 
robust tool was released this year and one to two day training 
courses are available, as well as educational materials for 
download. SQUARE for acquisition (A-SQUARE) and for 
privacy (P-SQUARE) are under active development.



Applying Function Extraction 
(FX) Techniques to Reverse 
Engineer Virtual Machines

Stacy Prowell

Mark Pleszkoch 

Cory F. Cohen

Jeffrey S. Havrilla



7

A
P

P
ly

in
g

 F
u

n
C

ti
o

n
 E

x
tr

A
C

ti
o

n
 (

Fx
) 

tE
C

H
n

iq
u

ES
 t

o
 r

Ev
Er

S
E 

En
g

in
EE

r
 v

ir
tu

A
l 

M
A

C
H

in
ES

Applying Function Extraction (FX) 
Techniques to Reverse Engineer  
Virtual Machines

Introduction
Malware that has been protected by intruders using virtual 
machine technology, or virtualized malware, represents a 
significant challenge to fast and effective reverse engineer-
ing.  A virtual machine is a program that emulates one 
computer’s architecture on another architecture. Intruders 
can create a “one-off ” virtual machine and translate their 
malware to its unique architecture.  However, virtualized 
malware must eventually be translated for execution on target 
machines such as the Intel IA-32 architecture, for which the 
meaning, or semantics, of each instruction is well known.  
To analyze virtualized malware, researchers applied CERT’s 
Function Extraction (FX) techniques for software behavior 
computation to understand the functional effect of sequences 
of virtual machine instructions. This approach permitted 
undoing of most of the virtual machine encoding, resulting 
in a standard IA-32 program suitable for reverse engineering 
with existing tools and techniques. 

Problem Addressed
Reverse engineering relies on tools and techniques developed 
for common computer architectures, such as the 32-bit Intel 
architecture (IA-32).  Programs compiled for less-common 
architectures will consequently have fewer readily available 
tools for the reverse engineer to apply.  The worst case is a 
single-use, randomly-generated architecture that has never 
been seen before.  No standard tools and techniques will be 
readily available, and the first step of reverse engineering will 
be to understand the architecture.

A virtual machine is a computer program that emulates a 
machine.  For example, the Java Virtual Machine (JVM) 
emulates a stack-based architecture and executes programs 
compiled for this architecture.  A virtual machine allows 
emulation of one computer’s architecture on another, differ-
ent architecture, as illustrated in Figure 1.

Virtual machine protectors exploit differences in architecture 
to prevent reverse engineering compiled programs.  By creat-
ing a “one off ” virtual machine and then translating existing 
programs to the virtual machine’s architecture, the virtual 
machine protector makes the reverse engineer’s job signifi-
cantly harder.

Malware that has been protected using virtual machine 
technology, or virtualized malware, represents a significant 
challenge to fast and effective reverse engineering.

Research Approach
Despite being written for a specialized virtual architecture, 
programs must still operate on a well-known platform such 
as IA-32.  That is, there must be a point at which each virtual 
instruction is translated into the IA-32 instruction(s) that 
accomplish the desired effect.  This translation typically hap-
pens while the program is running, on a per-instruction basis.

This is the fundamental weakness of the virtual machine 
strategy: malware authors cannot change the physical ar-
chitecture where the program will ultimately execute.  The 
meaning, or semantics, of each instruction on the physical 
architecture is fixed and well known.  Despite this, it is not 
enough to simply capture the instruction stream produced as 
the program is executed, for several reasons:

•  Execution results in a stream of hundreds of thousands of 
instructions, and quickly overwhelms the analyst.

•  The instruction stream captured during execution may not 
be representative of all program functionality.

•  The instruction stream may be intentionally obfuscated to 
make it harder to understand.

Despite the virtual machine encoding, the end program must 
accomplish the same functional effect, or it will not be able 
to accomplish its mission.

Our approach was to apply CERT’s Function Extraction (FX) 
techniques for software behavior computation [1] to reason 
about the functional effect of sequences of virtual machine 
instructions.  By examining the overall functional effect 
of sequences of virtual instructions we were able to detect 
when a sequence of virtual instructions accomplished the 
same effect as some IA-32 instruction, and then to record 
that decoded IA-32 instruction.  In this manner we were able 
to undo most of the virtual machine encoding that had been 
performed, obtaining a standard IA-32 program suitable for 
reverse engineering with existing tools and techniques.

In more detail, a specific sample of virtualized malware was 
presented to the team for analysis.  Through traditional re-
verse engineering techniques the dispatch loop of the virtual 
machine engine was discovered, allowing determination of 
the instruction decode mechanism.  Each virtual instruction 
corresponded to a sequence of IA-32 instructions.  Since the 
current FX technology can reason about sequences of IA-32 
instructions, we were able to automatically obtain the seman-
tics of each virtual instruction, as depicted in Figure 2.

Next we were able to apply the semantics of the virtual 
instructions to obtain the overall semantics of sequences of 
virtual instructions, and then, again using the semantics of 
the IA-32 instruction set, to recognize when sequences of 
virtual instructions performed the same effect as a sequence 
of IA-32 instructions.  This allowed most of the virtualized 
program to be “decoded” to reveal the original program, 
prior to virtualization, as illustrated in Figure 3.



8

A
P

P
ly

in
g

 F
u

n
C

ti
o

n
 E

x
tr

A
C

ti
o

n
 (

Fx
) 

tE
C

H
n

iq
u

ES
 t

o
 r

Ev
Er

S
E 

En
g

in
EE

r
 v

ir
tu

A
l 

M
A

C
H

in
ES

Benefits
By applying FX technology to the problem of virtual ma-
chine protectors we addressed a serious threat to software 
reverse engineering and demonstrated the effectiveness of the 
FX technology developed by CERT.

Virtualization technology represents a significant challenge 
to reverse engineering.  New computational methods are re-
quired to reason quickly and effectively about programs that 
have been virtualized.

2009 Accomplishments
Our team developed new tools for reverse engineering virtual 
machine protected malware.  These tools were successfully 
applied to an existing sample of virtualized malware yielding 
a new, decoded sample that was then more easily analyzed 
using traditional techniques.

2010 Plans
Part of the virtualization effort involved creating specialized 
algorithms for code generation. That is, given a sequence of 
instructions, generate a new, possibly different sequence of 

instructions that accomplishes the same functional effect but 
in a simpler or more direct fashion.  While these algorithms 
were not part of, nor planned for, the existing FX system, 
they have proven very useful.  We plan to extend the existing 
FX system to the more general problem of code generation 
by “backporting” and generalizing the new algorithms devel-
oped to address malware virtualization.

We believe code generation technology can be applied 
not only to virtualization, but also to the more traditional 
polymorphism and metamorphism malware obfuscation 
techniques.

References
[1]  R. Linger, M. Pleszkoch, L. Burns, A. Hevner, and G. 
Walton, “Next-Generation Software Engineering: Function 
Extraction for Computation of Software Behavior,” in 
Proceedings of the 40th Annual Hawaii International 
Conference on System Sciences (HICSS’07), Kona, Hawaii, 
January 2007.

Figure 1:  The Virtualization Process



9

A
P

P
ly

in
g

 F
u

n
C

ti
o

n
 E

x
tr

A
C

ti
o

n
 (

Fx
) 

tE
C

H
n

iq
u

ES
 t

o
 r

Ev
Er

S
E 

En
g

in
EE

r
 v

ir
tu

A
l 

M
A

C
H

in
ES

Figure 2:  Understanding a Single Virtual Instruction

Figure 3:  Encoding and Decoding the Original Program



A Probabilistic Population 
Study of the Conficker-C 
Botnet rhiannon Weaver 

 



11

A
 P

r
o

b
A

b
il

iS
ti

C
 P

o
P

u
lA

ti
o

n
 S

tu
d

y
 o

F 
tH

E 
C

o
n

Fi
C

k
Er

-C
 b

o
tn

Et

A Probabilistic Population Study of the 
Conficker-C Botnet 

Abstract
Botnet size is often reported as a number of IP addresses, but 
the link between IP addresses and infected machines is more 
complicated than a simple one-to-one relationship. To count 
the number of infected machines when we have only an aggre-
gated view of a botnet, we suggest building a precise prob-
ability model of the observable behavior of a single machine, 
and applying that model to the aggregates to obtain a popula-
tion estimate. As an example, we build a probability model of 
the peer-to-peer (P2P) scanning activity of the Conficker-C 
botnet, and we use this model to estimate the number of active 
infected machines per hour over a two-month window. 

Problem Addressed
When new botnets emerge, the classic question is, “How big 
is it?” In practice, population estimates are often made public 
in online articles or security blogs, where it is difficult to 
determine the methods used to obtain either the estimate or 
the margin of error. Population estimation has a long history 
in the statistical literature, but methods often involve complex 
models that track each individual unit in the population over 
time. These methods are difficult to implement over millions 
of individuals on an Internet-wide scale, and they also assume 
an observer has a direct view of the units of interest– individ-
ual machines. Often the view of infected machines in a botnet 
is filtered through IP space. The existence of Network Address 
Translation (NAT), proxies and Dynamic Host Configuration 
Protocol (DHCP) leases in IPv4 space complicates the link 
between IP addresses and machines. For example, if 100 
infected machines are scanning a network from behind a NAT 
gateway, the outside observer sees only the aggregate scan 
attempts from all 100 hosts, coming from the single gateway 
IP address. 

In this research, we consider a principled but computationally 
approachable model for measuring the number of active hosts 
per hour in a botnet, based on modeling activity for a single 
host. We apply our method to the Conficker-C botnet that 
emerged in March of 2009.  

Research Approach
Our method relies on precisely describing a probability dis-
tribution for the observable behavior of a single infected host, 
and using the expected value of the distribution to represent 
a single host when we observe only aggregated measure-
ments. In this context, “observable behavior” is a quantitative 
measurement that we can see with a network telescope, for ex-
ample scanning rates, beaconing frequencies, or a count of re-
mote file downloads. The behavioral model should account for 
network variability, empirical testing results, and any stochas-
tic elements in either the underlying protocol or measurement 
method. It can be informed by sandbox experiments on the 
malware associated with a botnet, or from reverse engineering 
of the botnet’s source code.

Once developed, the model provides a theoretical average 

value for the measured behavior across all hosts, as well as a 
measure of variance. Given an aggregated count, for example a 
stream of scan attempts coming from a gateway IP address, we 
divide the observed value by the theoretical average in order 
to obtain the population estimate. Statistical theory [1] proves 
that this estimate is unbiased for the true population when 
the model is precise and the theoretical average is accurate.  
We can also obtain a margin of error for the population size 
that is informed by the variance of the single-host probability 
distribution.

Expected Benefits
As Internet addressing moves away from the single-host, 
single-IP model, for example with the highly ephemeral nature 
of IPv6 addresses, behavioral models based on single-host 
probability distributions will still be able to provide measure-
ments and metrics in terms of counts of machines. This ability 
allows for more interpretable and concrete results when we 
discuss the size of a population. Furthermore, not only can this 
methodology be used to track the size of homogenous popula-
tions such as botnets, but it can also be used to build inventory 
models for network situational awareness when the network 
monitoring agencies have either limited sensor placement, or 
only a high-level view of a very large network. 

2008 Accomplishments
In 2008, we used the single-host probability model to study the 
Conficker botnet. The Conficker-C worm variant that propagat-
ed through hosts infected with Conficker-A and Conficker-B in 
March 2009 introduced a specific pattern of peer-to-peer (P2P) 
activity using both TCP and UDP protocols. When a host 
infected with Conficker-C comes online, it searches for peers 
by randomly generating a set of destination IP addresses across 
most of IPv4 space, attempting connections to these hosts, and 
adding any peers it encounters to an internal list. Connection 
ports are based on a deterministic algorithm that uses the 
source IP address and date. This algorithm was the key to a 
behavioral signature for the identification of Conficker-C P2P 
traffic with high reliability that can be observed in the large-
scale summary information contained in network flow data. 

We used the behavioral signature to obtain counts of UDP scan 
attempts from external Conficker-infected IP addresses into 
our network of approximately 21,000 class C net blocks (.15% 
of IPv4 space), recorded hourly from the period of March 5th 
through April 24th, 2009. Overall, we observed 38 million 
unique IP addresses during the 2-month period, across 1.09 
million class C net blocks. Figure 1 displays the distribution of 
the average scan attempts per hour by class C net block using 
a log-log plot. While the majority of net blocks scanned our 
network between 3 and 5 times per hour when active, NATs 
and gateways show up as a long tail in the distribution, with 
some blocks scanning our network an average of over 1000 
times per hour.



12

A
 P

r
o

b
A

b
il

iS
ti

C
 P

o
P

u
lA

ti
o

n
 S

tu
d

y
 o

F 
tH

E 
C

o
n

Fi
C

k
Er

-C
 b

o
tn

Et

Figure 1: Variation in scan volume across  
Class C (/24) net blocks 

To determine an activity profile by hour in terms of infected 
hosts, we used a sandbox study from SRI International [2] 
and a reverse-engineered image of the Conficker-C P2P 
source code [3] to develop a model for the number of times 
a single, active infected host would scan our network in the 
duration of one hour. The sandbox study indicated that hosts 

tend to scan rapidly when they first come online (to attempts 
per minute interval), with rates declining steadily over the 
first 2 hours toward approximately attempts per minute  
interval. We modeled this time dependency by specifying 
three states an infected host could occupy during an hour in 
which it is actively scanning

1.  “Start-Up”: The host comes online and initiates P2P  
scanning in this hour. This state is characterized by a high 
scan rate per minute and a small peer list, with activity 
commencing at some point within the hour.

2.  “Running”: The host has initiated startup and is actively 
scanning for the entire hour. This state is characterized 
by a low scan rate per minute and a large peer list, with 
sustained activity throughout the hour.

3.  “Shut-Down”: The host has been actively scanning and 
goes offline at this hour. This state is characterized by a 
low scan rate per minute and a large peer list, with activity 
terminating at some point within the hour.

We assigned each external net block to a time zone based on 
its associated country code, and used a random sample of 
low-volume net blocks to estimate the probability that a host 
would be in each of the three states for each relative hour of 
the day, given that it is actively scanning in that hour. Figure 
2 shows the results; the probability of Start-Up is highest at 
7 a.m., while the probability of Shut-Down is highest during 
the late evening and early morning hours. 

Figure 2: Probability of states (Start-Up, Running, and 
Shut-Down) by hour of day



13

A
 P

r
o

b
A

b
il

iS
ti

C
 P

o
P

u
lA

ti
o

n
 S

tu
d

y
 o

F 
tH

E 
C

o
n

Fi
C

k
Er

-C
 b

o
tn

Et

Informed by the Conficker-C P2P protocol, we built Poisson 
probability models for the number of connection attempts 
we would expect to see in each state (Start-Up, Running, and 
Shut-Down). We then used a Binomial probability model to 
describe the distribution of the number of connection attempts 
directed to our network in each state. We averaged each of 
these models across the three states to obtain an overall model 
of observed scan attempts for each hour of the day. We used 
the theoretical average from this model to obtain population 
estimates.

Figure 3 shows the estimate of active Conficker-C hosts 
per hour for the two-month span starting on March 5th, and 
ending April 24th. The large jump occurs on March 17th and 
corresponds to a binary update that was released into the 
Conficker-C botnet. The largest host count associated with the 
botnet is 1.06 million active hosts. Numbers decline steadily 
through the month of April, but appear to stabilize toward the 
end of the month. The heavy lines correspond to a smoothed 
plot of both host count estimates (solid line), and observed 
unique IP address counts (dotted line). These lines show a 
trend that, as the botnet ages, it “spreads out” among IP space. 
The ratio of host count to IP count is large prior to the update 
in mid-March, but declines steadily afterwards. This decline 
in rate makes sense as large infected networks clean up. It sug-
gests that the persistent infections of Conficker-C are among 
more isolated machines in IPv4 space.

2010 Plans
In 2010 we plan to compare the Conficker-C UDP scanning 
model to a model for Conficker-C’s TCP scanning mecha-
nism. We also hope to find a simplified method to account 
for “churn” in the botnet; currently the single-host model can 
estimate active hosts per hour, but not an overall number of 
hosts in the botnet, as it does not track individuals from hour 
to hour. We also hope to apply the basic methodology to the 
more general task of counting the number of hosts behind a 
gateway.

References
[1] Casella, G. and Berger, R. Statistical Inference. Duxbury 
Press, 1990.

[2] Porras, P., Saidi, H., and Yegneswaran, V. Conficker C 
Analysis. Technical report, SRI International, March 2009. 
http://mtc.sri.com/Conficker/addendumC/index.html

[3] Porras, P., Saidi, H., and Yegneswaran, V. Conficker C 
P2P Protocol and Implementation. Technical report, SRI 
International, September 2009. http://mtc.sri.com/Conficker/
P2P/index.html

Figure 3: Estimated Host counts over time



Catching IPv6 Tunneled  
in IPv4

Evan Wright
 



15

C
A

tC
H

in
g

 i
P

v
6 

tu
n

n
El

Ed
 i

n
 i

P
v

4

Catching IPv6 Tunneled in IPv4

Introduction
Internet Protocol version 6 (IPv6) is the long-term solution 
for the depletion of IPv4 addresses and has been increasing 
in deployment over the past decade. To ease the adoption 
of IPv6, automatic tunneling protocols (i.e. 6to4, ISATAP, 
Teredo) will encapsulate IPv6 information inside IPv4 with 
minimal user effort. These protocols allow for IPv6 to run in 
networks regardless of the preparedness or awareness of the 
network administrators. In this work, we use features of these 
tunneling protocols to identify IPv6 traffic that is masquerad-
ing as IPv4.

Problem Addressed
The Internet Protocol (IP) is the fundamental protocol 
underlying the Internet, and it is in the process of an upgrade 
from version 4 (v4) to version 6 (v6). Since islands of IPv6 
networks will likely exist while the majority of the Internet is 
IPv4, there is a need for a mechanism that enables communi-
cation. Most configurations of IPv6 hosts also run IPv4. 

A tunnel allows for one protocol to be encapsulated within 
another. Figure 1 illustrates that IPv6 traffic gets wrapped in 
IPv4. If a sensor is not aware that some data packets are tun-
neled, it will mistakenly decode tunneled IPv6 as IPv4 traffic, 
with the real IPv6 data packet showing up as additional 
payload. Often, network flow sensors do not decode tunneled 
IPv6 traffic, yet network security and network situational 
awareness operations both have a need to be able to identify 
these tunnels in traffic. 

Tunnel connection establishment can be either automatic or 
static. Automatic tunnels require one end of the connection 
to be specified and fixed; the other end does not need to be 
specified and may be in any location. Examples of automatic 
tunneling protocols include Teredo, 6to4, and the Intra-Site 
Automatic Tunneling Addressing Protocol (ISATAP). Static 
tunnels require configuration at each end, and each endpoint 
must be static. 

IPv6 can negatively affect security. Firewalls and Intrusion 
Detection Systems (IDSs) inspect native and tunneled IPv6 
traffic for two reasons: to ensure tunneled IPv6 does not 
bypass security measures, and for future native IPv6 deploy-
ment. Once identified, IPv6 tunnels should be either verified 
and then hardened or entirely blocked.

Tunneling behavior is expected to increase before IPv6 
is used natively on a wide scale for two reasons. First, 
Microsoft and other vendors are releasing applications 
with greater use of IPv6 then they had released previously. 
Second, operating systems, such as Windows, are being 
released with greater reliance on IPv6 support.

Research Approach
Based on the unique network behavior, the tunneling pro-
tocols are grouped into three categories: Teredo, 6to4 and 
other IPv6 tunnel traffic. Teredo and 6to4 are both automatic 
tunneling protocols. The other IPv6 tunnel traffic category 
includes statically configured tunnels and the ISATAP 
automatic tunneling protocol. For a security analysis, it can 
be very difficult to determine which machines are using au-
tomatic tunneling protocols [1]. Netflow analysis allows for 
easy identification of automatic IPv6 tunnels, in a scalable 
manner. Flow analysis provides a historical dimension to our 
data, allowing insight into relevant past behavior that isn’t 
available with an instantaneous full packet view. PySiLK [2, 
3] is an extension to normal flow analysis that provides the 
capabilities to track states of a protocol. We used PySiLK to 
create scripts that identify these IPv6 tunnels.

Both Teredo and 6to4 have unique distinguishable character-
istics that separate them from other IPv6 tunneled traffic. We 
leverage these differences to distinguish Teredo from 6to4 
and to distinguish both from all other IPv6 tunneled IPv6 
traffic. Teredo contacts a short list of possible servers for 
tunnel connection establishment via User Datagram Protocol 
(UDP) port 3544 and proceeds to connect to the Teredo relay 
for the rest of the connection. 

Figure 1: IPv6 in IPv4 Tunneling



16

C
A

tC
H

in
g

 i
P

v
6 

tu
n

n
El

Ed
 i

n
 i

P
v

4

Our scripts use PySiLK to maintain state across flows for the 
Teredo and 6to4 protocol identification. First, IP addresses that 
have contacted the Teredo server IP addresses are noted. Then 
all the subsequent traffic from these IP addresses is recorded. 
Finally, other traffic from other erroneously identified traffic is 
filtered out. It is necessary to filter out other traffic because it 
could be possible for a Teredo host to communicate to Teredo 
servers then send other UDP port 3544 traffic that is not Teredo 
to another destination. 6To4 uses protocol number 41, in con-
trast to UDP, and establishes the tunnel with an IP at a specific 
anycast address (192.88.99.1). Similar to Teredo, we track the 
state of connections that have sent a unicast query. Protocol 41 
traffic is very low volume and not affected by the noise of UDP 
communication. Subsequent activity can be with any arbitrary 
IP address over protocol 41. All protocol 41 traffic that does 
not match a previous signature will be a manually established 
tunnel or ISATAP.

Expected Benefits  
IPv6 in IPv4 tunneling is widely supported by many operating 
systems, including Windows XP SP3, Windows Server 2008, 
and all newer versions of Microsoft desktop and server operat-
ing systems. IPv6 tunnel detection makes security administra-
tors aware of the prevalence of IPv6 tunneling, so that action 
can be taken and the overall security improved. Often, admin-
istrators assume that since native IPv6 is blocked that IPv6 
using tunnels could not be running on the network and on hosts 
in the network. Network defenses, such as packet filtering, 
inspection, and alerting, may not be prepared for such tunnel-
ing in unprepared networks. 

Despite the security risks of IPv6 tunnels operating on a 
network, IPv6 enables many benefits. By identifying the IPv6 
tunnels, the administrators have the option to transition into 
an IPv6 network in a more gradual way without detrimentally 
affecting security. Some benefits of IPv6 include increased ad-
dress size, faster switching of packets, and increased scalability 
of routing tables.

2009 Accomplishments
In 2009, we implemented a system for detecting IPv6 tun-
neling and deployed it over a large network. This system 
can detect IPv6 tunnels operating, even when the equipment 
on the large network cannot process IPv6. IPv6 tunnels are 
rarely known to administration. Often, the IPv6 tunnels may 
be a channel for malicious activity.

The IP addresses communicating to servers and traffic 
volumes and timing information about devices using IPv6 
tunneling can be used by security administrators. The secu-
rity administrators may also identify specific IP addresses 
doing this IPv6 tunneling and disable them. In practice, IPv6 
tunneled traffic exists on large networks often even if it is 
prohibited. The volume and interactions of IPv6 tunnels can 
be measured on a large scale. More specifically, the data 
from this system can be visualized over time with a time-
series plot. 

Another way to use this data is to visualize the pairwise inter-
actions of IP addresses communicating over tunneled IPv6 in 
a given time period. Figure 2a shows traffic IP address pairs 
communicating with one IPv6 tunneling protocol, Teredo, 
in a large network over a three-month period in 2008. The 
two highly connected vertexes are two of the Teredo servers 
hosted by Microsoft. Many smaller star-type clusters appear 
that are Teredo servers, if they have bidirectional traffic. 
Figure 2b shows a simplified example of the interactions the 
bidirectional traffic. A unidirectional traffic example is in 
Figure 2c. The star-type clusters that are unidirectional are 
scanners, misconfigured Teredo clients, or misconfigured 
Teredo servers.

(c)Figure 2: IP Address Interactions of Teredo Traffic

(a)

(b)



17

C
A

tC
H

in
g

 i
P

v
6 

tu
n

n
El

Ed
 i

n
 i

P
v

4

2010 Plans
In 2010, we will investigate how we can fully automate 
detection of the IPv6 tunneling protocols that are already 
identified. Existing Teredo identification is done by correlat-
ing known, existing Teredo servers with traffic patterns. In 
the future, we will attempt to statistically identify the patterns 
of the Teredo servers themselves so that new Teredo servers 
can be discovered automatically.

Another future goal is to increase the number of tunneling 
protocols that are identified. The ISATAP protocol, in par-
ticular, may have some characteristics that can be identified 
with a more in-depth machine learning approach, similar 
to [4]. In rare cases of 6to4 traffic, misconfigured Teredo 
servers also may not be properly identified, and a statistical 
analysis may be able to improve these rare cases.

References
[1]Hogg, S., Vyncke, E. “IPv6 Security.” Cisco Press, 2009 
(ISBN 978-1-58705-594-2) p. 483.

[2]Duggan, M, Shimeall, T. “PySiLK - A Language for 
Scripted Flow Manipulation” 2008 CERT Research Annual 
Report. 

[3] PySiLK: SiLK in Python. http://tools.cert.org/silk/silkpy-
thon.html.

[4]Duffield, N., Haffner, P., Krishnamurthy, B., Ringberd, 
H. “Rule-Based Anomaly Detection on IP Flows.” IEEE 
Infocom 2009. http://www2.research.att.com/~duffield/pa-
pers/snort_infocom.pdf.



Finding Malicious 
Activity in Bulk DNS Data

Ed Stoner 



19

Fi
n

d
in

g
 M

A
li

C
io

u
S

 A
C

ti
v

it
y

 i
n

 b
u

lk
 d

n
S

 d
A

tA

Finding Malicious Activity in  
Bulk DNS Data

Abstract
The Domain Name System is a vital component of the 
Internet, and nearly every transaction on the Internet uses it. 
It contains a wealth of Network Situational Awareness infor-
mation that can be used to discover malicious traffic. This 
report describes specific techniques to detect certain types 
of malicious traffic. These techniques have been developed 
through analyzing a large amount of DNS traffic data. CERT 
has developed specific tools that apply these techniques in 
an ongoing way. Future research will include enhancing the 
developed tools, developing new techniques and tools to 
work with known malicious patterns, and discovering new 
malicious patterns.

Problem Addressed
The Domain Name System (DNS), which maps names to IP 
addresses, is a vital component of the Internet. Nearly every 
transaction on the Internet begins by making a DNS query. 
This is true for both benign and malicious activity. Having 
access to large amount of DNS queries allows us to look for 
patterns in Internet transactions. In certain cases, the patterns 
for malicious activity can be distinguished and identified.

Research Approach
The Security Information Exchange (SIE) is a framework for 
information sharing run by the Internet Systems Consortium 
(ISC). It gives researchers access to a large amount of DNS 
messages. CERT has a server setup at SIE that captures 
information for about 400 million DNS messages per day. 
DNS messages contain either a question about a host name 
(i.e. what is the IP address of www.google.com?) or an an-
swer to a question. The DNS messages that are streamed by 
SIE are all answer messages that are marked as authoritative 
and do not contain errors. These messages are streamed to 
the CERT server and stored in the ncap file format developed 
by ISC specifically for this type of application. The ISC 
provides a piece of software called ncaptool to send, capture, 
and process these streams of DNS messages. With ncaptool 
and additional software developed at CERT, we are able to 
analyze the stored DNS messages for particular patterns of 
malicious activity.

Some of these patterns are the result of using the DNS infra-
structure itself in a way that it was not originally designed 
for. A particular example of this is DNS tunneling. Other pat-
terns of malicious activity are detectable because of certain 
constraints that the type of malicious activity places on how 
DNS can be used. An example of this is Fast Flux hosting. 

DNS tunneling is a process where DNS messages are used to 
transport arbitrary data by encoding that data into the DNS 
messages themselves. Because of the very wide support and 
availability of the global DNS infrastructure, and because 
very few organizations block DNS traffic from individual 
clients to the Internet, this method can be very effective for 
bypassing security measures such are firewalls or ACLs.

A DNS tunneling implementation is detectable when it 
is created to encode arbitrary data, and is either used for 
two-way communication or data exfiltration. The reason 
for this is that in a DNS question (which is what a client 
would use to pass information outbound), the only place 
to encode information is in the host name. Per the DNS 
protocol specification (RFC 1035), the host name has only 63 
allowable characters (all upper and lower case letters, digits 0 
through 9, and hyphen). In order to encode arbitrary data and 
achieve reasonable bandwidth, implementations of this type 
of tunneling will use noticeably more unique characters than 
normal host name would have. Figure 1 shows the unique 
character counts for a host name used in DNS tunneling and 
for www.google.com.

host name unique characters
08f0b06a25a5cf1f9df501bc39306
fbc6ff7875646817b4845c17da0.6.
ewsxz.com

23

www.google.com 8

Figure 1: Unique character count of host names

It is also a feature of the DNS protocol that the question is 
contained in the answer message. So even though our data 
only has DNS answers, it is still possible to find the tunnel-
ing. This is done by iterating through a particular set of mes-
sages, extracting the host name in the question, and counting 
how many unique characters are in it. After some initial 
testing it was determined that 20 unique characters was a 
good starting point for finding DNS messages with encoded 
information.

In fast flux hosting, an attacker uses DNS to hide malicious 
sites behind an ever-changing network of compromised 
hosts. This pattern shows up in DNS records as an unusually 
large number of distinct IP addresses in answers returned 
for the query of a single domain name, with each answer 
having a very short period of validity or time to live (TTL), 
and with previously unseen IP addresses constantly emerging 
in queries over time. The answers given all point to a proxy 
network—a set of compromised machines that relay traffic 
to a central host or small set of hosts that the malicious party 
controls. This proxy network hides the real malicious site, 
making it difficult to track the site and to take it down.



20

Fi
n

d
in

g
 M

A
li

C
io

u
S

 A
C

ti
v

it
y

 i
n

 b
u

lk
 d

n
S

 d
A

tA

To find Fast Flux hosting in our data, we first collect answers 
which give more than ten IP addresses for a given host name 
and have a TTL of 2000 seconds or less. Next, we count 
how many unique IP addresses are seen for each host name 
in the data we collected. Lastly, for host names with more 
than 25 unique IP addresses, we count how many different 
ASNs (Autonomous System Numbers, which map to Internet 
Service Providers) there are. If there are more than 20, then it 
is extremely likely that Fast Flux hosting is happening for the 
host name.

Answering with multiple IP addresses for a question about 
a host name is a long-standing legitimate practice to provide 
redundancy and high-availability. What makes Fast Flux 
different and detectable is that the hosts are compromised. 
Therefore, unlike a legitimate service, they are much more 
unreliable, so more hosts are needed, and they need to have a 
shorter TTL. Secondly, the hosts need to be on very diverse 
networks, or otherwise it would be easier to shut them off. 
Taking advantage of these characteristics yields a very suc-
cessful algorithm.

In researching Fast Flux hosting, we noticed a few other 
characteristics that are prevalent in domains setup for mali-
cious activity. One is that host names have a computer gener-
ated label. The other is that a top-level domain (like .com or 
.net) will appear in the middle of the name (www.somebank.
com.badguy.tv). We can use these characteristics to sort out 
malicious domains from compromised domains in existing 
block lists (which can then be used to track down hosts that 
are visiting malicious domains).

Expected Benefits
By identifying malicious activity in DNS messages, we can 
begin to develop a more proactive monitoring approach. 
Rather than relying on hand-assembled lists of malicious 
activity, we can start automatically generating lists that have 
the potential to include zero-day and previously unnoticed 
attacks and attack vectors. This can provide for quicker 
incident response time and the ability to notice a wider range 
of incidents.

2009 Accomplishments
The tools to apply the Fast Flux detection algorithm de-
scribed to large amounts of DNS data have been developed. 
A system has been put in place to find Fast Flux domains as 
well as hosts on certain networks that are connecting to those 
domains.

The tools to find DNS tunneling and exfiltration have been 
developed. Because there are so many examples of legiti-
mate exfiltration, the techniques are very sensitive as to what 
network they are monitoring.

The tools to separate malicious domains from known lists of 
bad domains and find the IP addresses associated with those 
domains have been developed. These IP addresses can then 
be used by systems already in place that monitor activity by 
IP address.

2010 Plans
One challenge that came up in our research into finding DNS 
tunneling was determining which tunneling messages are 
malicious. Because of its effectiveness and wide support, 
DNS tunneling has been adopted by many organizations 
for providing Real-time Blackhole Lists and similar lookup 
services. Future work will include developing techniques to 
identify whether a tunnel is benign or malicious.

The current tools for distinguishing between malicious 
domains and benign domains are very crude, and simply 
check for a large number of unique characters and top-level 
domains that are in the middle of a name. Because of this 
they require existing lists of known bad domains. We are 
exploring new techniques to be able to detect malicious 
domains with more reliability and without pre-filtering. That 
work includes identifying better algorithms to determine if a 
label in a DNS host name is computer generated.

By continuing to develop and refine our toolset for analyz-
ing DNS messages, we hope to identify additional malicious 
characteristics, and to provide additional tools to detect and 
report incidents. By combining the DNS data with other data 
sources we hope to detect new types of malicious activity.

References
[1] Tactical IT. “DNS Traffic Analysis.” http://tactical-it.
com/2009/01/a-study-of-dns/ 

[2] Thorsten Holz, Christian Gorecki, Konrad Rieck, & Felix 
C. Freiling, “Measuring and Detecting Fast-Flux Service 
Networks,” 2008 ISOC Network & Distributed System 
Security Symposium.

[3] Jose Nazario, Thorsten Holz, “As the Net Churns: Fast-
Flux Botnet Observations,” 3rd International Malicious and 
Unwanted Software (Malware 2008).



Stacy Prowell

Mark Pleszkoch 

timothy daly

richard linger

kirk Sayre

Function Extraction for 
Malicious Code Analysis



22

Fu
n

C
ti

o
n

 E
x

tr
A

C
ti

o
n

 F
o

r
 M

A
li

C
io

u
S

 C
o

d
E 

A
n

A
ly

S
iS

Function Extraction for Malicious  
Code Analysis

Problem Addressed
As the quantity and sophistication of malicious code continues 
to grow, automation support for analysis becomes more im-
portant to keep pace with the scope and scale of the problem. 
To help address this need, CERT originated and continues to 
evolve the technology of Function Extraction (FX) for auto-
mated computation of software behavior (including malware) 
with mathematical precision to the maximum extent possible. 

Research Approach
The objective of FX is to replace slow and fallible manual 
methods of code analysis with fast and correct computation 
of behavior. Computing the behavior of software requires 
deriving its net functional effect, that is, how it transforms 
inputs into outputs in all circumstances of use. That informa-
tion can be presented to analysts in non-procedural behavior 
displays that define all the possible effects a program can 
have, essentially, an “all cases of behavior” view. The founda-
tions for behavior computation are found in the mathematics 
of denotational semantics [1,2,3,4]. Individual instructions 
of a language are treated as rules for mathematical functions, 
that is, mappings from their domains to ranges, or inputs to 
outputs. These mappings are pre-defined as a starting point 
for the FX computational process, which composes the func-
tions of instructions in an input program in a stepwise process 
to ultimately arrive at the net functional effect of the entire 
program [5]. Methods have been developed for loop behavior 
computation that can make the effects of theoretical limita-
tions on this process arbitrarily small. The resulting computed 
behavior is expressed in the form of a conditional concurrent 
assignment (CCA). A CCA denotes a function from program 
input to program output, and is composed of a collection of 
predicates that partition the input space. For each predicate an 
associated concurrent assignment from the input state to the 
output state denotes the net functional effect implemented by 
the program when the predicate is true. The general behavior 
computation process is as follows:

• Functional transformation  
  Transform input program instructions into pre-defined 

equivalent function mappings.

• Structuring transformation 
  Transform the spaghetti logic of an input program into 

systematic structured form with any arbitrary jumps and 
branches eliminated, and expressed in a hierarchy of stan-
dard control structures, including sequence, ifthenelse, and 
whiledo.

• Behavior computation 
  Compute the behavior of control structures in the hierarchy, 

starting at the leaf nodes and progressing through compo-
sitional operations up the tree to arrive at the net functional 
effect of the entire program. 

CERT is developing an FX system that computes the behav-
ior of programs written in or compiled into Intel assembly 
language. The Function Extraction for Malicious Code (FX/
MC) system is a specialization of FX technology that focuses 
on malware, in particular, on elimination of certain forms of 
intentional code obfuscation that can make analysis more dif-
ficult. Intruders employ many methods to make their malware 
resistant to analysis and thereby more effective in carrying out 
their objectives. Common methods of obfuscation include

• Control flow obfuscation 
  Intruders often obfuscate the control flow of malware pack-

ages using commonly available malware development tools 
to insert massive quantities of arbitrary jumps that thwart 
human efforts to trace the control flow of the malware code.

• No-op code insertion 
  Intruders frequently insert sequences of “no-op” code (code 

with no persistent effect) in substantial quantities in malware 
packages. No-op code has the appearance of normal func-
tional code, but has no functional effect. Because analysts 
have no a priori knowledge of what code is no-op and what 
is truly functional, much time and effort can be consumed 
in analyzing code that turns out to have no impact on the 
overall functional effect of the malware. 

The FX/MC system addresses these problems as follows:

•  Eliminating control flow obfuscation 
The structuring capabilities of the FX/MC system trace 
and eliminate obfuscated control flow produced by arbi-
trary jumps. This process creates a function-equivalent 
representation of the original program expressed in nested 
and sequenced single-entry, single-exit control structures, 
including sequence, ifthenelse, and whiledo. With obfus-
cated control flow eliminated, the malware is reduced in size 
and complexity, and analysts can more readily understand its 
structure and function. 

• Detecting no-op code 
  FX/MC computes whatever behavior is produced by the 

control structures of an input program. The behavior may 
turn out to have an actual functional effect, or may have no 
functional effect at all (no-op code). The system employs 
behavior computation to detect and eliminate no-op code, 
thereby freeing the analyst to concentrate on portions of the 
malware that produce actual functional effects. 

In illustration of elimination of control flow obfuscation by 
FX/MC, consider the code of Figure 1. This display depicts 
part of a malware program that has undergone obfuscation by 
a popular intruder tool that inserts large numbers of arbitrary 
jumps as shown by the red arrows. The resulting complexity 
of control flow can exceed human comprehension. Automatic 
structuring by FX/MC eliminated the arbitrary jumps and 
reduced the malware to its original form, in this case a simple 
sequence structure of just six readily understandable instruc-
tions containing no branching or looping logic. The unobfus-
cated version of malware produced by F/MC is not depicted 
here for obvious reasons.



23

Fu
n

C
ti

o
n

 E
x

tr
A

C
ti

o
n

 F
o

r
 M

A
li

C
io

u
S

 C
o

d
E 

A
n

A
ly

S
iS

In illustration of no-op code detection, consider the display of 
Figure 2 that depicts FX/MC in operation. The top-left pane 
shows the build-up of a sequence of instructions that have 
been previously added one at a time from a malware program 
by the user. Each time an instruction is appended, the system 
computes the net behavior of the entire sequence. This com-
putation automatically eliminates any detected no-op code, 
leaving only those instructions with actual functional effect, 
as shown in the top-right pane. The two listings are identical 
at this point, indicating that no no-op code has been detected. 
The bottom pane depicts the net computed behavior of the 
entire code sequence.

The top-left pane of Figure 3 shows addition of one more 
instruction to the sequence of Figure 1. Behavior computation 
now identifies a section of the sequence as a no-op, as indi-
cated by the absence of several instructions with no functional 
effect in the top-right pane. This code need not be investi-
gated by the analyst. This miniature example involves a few 
lines of code. In practice, no-op code blocks can be large and 
numerous, and their automatic elimination can save analysts 
substantial time and effort. 

Expected Benefits
Automation support for elimination of control flow obfusca-
tion from massive inclusion of arbitrary jumps and detection 
of no-op code sequences can help analysts to more quickly 
determine the functional intent of malware and develop coun-
termeasures. As experience with the FX/MC system grows, 
additional uses for behavior computation in malware analysis 
will likely emerge. Beyond malware analysis, FX technology 
can be expected to help DoD with problems of malicious code 
detection [6], anti-tamper and corrupted function analysis, 
computational analysis of security attributes [7], correctness 
verification, validation of embedded systems [8], reduction in 
testing costs [9], legacy system understanding, and creation 
of assured software repositories. In terms of general software 
development and analysis, a controlled experiment quantified 
the positive effect of availability of computed behavior on 
programmer performance [10]. 

2009 Accomplishments
The initial version of the FX/MC system was developed and 
delivered in 2009. 

2010 Plans
Substantial evolution of the FX/MC system is planned at 
sponsor request. Additional capabilities include processing of 
malware code in a variety of file formats, extended analysis 
of complex malware control flow as a precursor to structur-
ing and behavior computation, and development of an API 
interface for integration of FX technology with existing suites 
of malware analysis tools.

References
[1] Allison, Lloyd, A Practical Introduction to Denotational 
Semantics, Cambridge Computer Science Texts 23, Cambridge 
University Press, 1986.

[2] Smullyan, Raymond, Recursion Theory for 
Metamathematics, Oxford Logic Guides 22, Oxford University 
Press, 1993.

[3] Prowell, S.; Trammell, C.; Linger, R.; & Poore, J. 
Cleanroom Software Engineering: Technology and Practice. 
Addison Wesley, 1999. 

[4] Mills, H. & Linger, R. “Cleanroom Software Engineering.” 
Encyclopedia of Software Engineering, 2nd ed. (J. Marciniak, 
ed.). John Wiley & Sons, 2002. 

[5] Linger, R., Pleszkoch, M., Burns, L., Hevner, A., and 
Walton, G. (2007). “Next-Generation Software Engineering: 
Function Extraction for Computation of Software Behavior,” 
Proceedings of the 40th Annual Hawaii International 
Conference on System Sciences (HICSS40), Hawaii, IEEE 
Computer Society Press, Los Alamitos, CA.

[6] Pleszkoch, M. and Linger, R. “Improving Network 
System Security with Function Extraction Technology for 
Automated Calculation of Program Behavior.” Proceedings of 
the 37th Hawaii International Conference on System Sciences 
(HICSS-37). Waikoloa, HI, Jan. 5-8, 2004. IEEE Computer 
Society Press, 2004. 

[7] Walton, G., Longstaff, T, and Linger, R. (2006). Technology 
Foundations for Computational Evaluation of Security 
Attributes, Technical Report CMU/SEI-2006-TR-021, 
Software Engineering Institute, Carnegie Mellon University, 
Pittsburgh, PA.

[8] Bartholomew, R., Burns, L., Daly, T., Linger, R., and 
Prowell, S., “Function Extraction: Automated Behavior 
Computation for Aerospace Software Verification and 
Certification,” Proceedings of 2007 AIAA Aerospace 
Conference, Monterey, CA, May, 2007, Vol. 3, pp. 2145-2153. 

[9] Linger, R., Pleszkoch, M., and Hevner, R., “Introducing 
Function Extraction into Software Testing,” The Data Base for 
Advances in Information Systems: Special Issue on Software 
Systems Testing, ACM SIGMIS, New York, NY, 2008. 

[10] Collins, R.; Walton, G.; Hevner, A.; & Linger, R. The 
CERT Function Extraction Experiment: Quantifying FX 
Impact on Software Comprehension and Verification (CMU/
SEI-2005-TN-047). Software Engineering Institute, Carnegie 
Mellon University, 2005. 



24

Fu
n

C
ti

o
n

 E
x

tr
A

C
ti

o
n

 F
o

r
 M

A
li

C
io

u
S

 C
o

d
E 

A
n

A
ly

S
iS

Figure 1: Malicious Code Exhibiting 
Control Flow Obfuscation For 
Elimination by FX/MC

Figure 2: Part 1 of a Miniature 
Example: FX/MC Behavior 
Computation Reveals no “No-Op” 
Code So Far



25

Fu
n

C
ti

o
n

 E
x

tr
A

C
ti

o
n

 F
o

r
 M

A
li

C
io

u
S

 C
o

d
E 

A
n

A
ly

S
iS

Figure 3: Part 2 of a Miniature Example:
FX/MC Behavior Computation Detects and 
Eliminates No-Op Code 



Function Hashing for 
Malicious Code Analysis

Cory F. Cohen

Jeffrey S. Havrilla



27

Fu
n

C
ti

o
n

 H
A

S
H

in
g

 F
o

r
 M

A
li

C
io

u
S

 C
o

d
E 

A
n

A
ly

S
iS

Function Hashing for Malicious  
Code Analysis

Problem Addressed
Program comparison continues to be an interesting field of 
research because it allows malicious code analysts to avoid 
duplication of effort and reduce the time spent analyzing mali-
cious code. While much research has focused on the complex 
issue of roughly similar code [1], relatively little work has 
been done on quantifying the benefits of identifying nearly 
identical code. In our function hashing research, we laid a 
foundation for code comparison that dramatically reduces the 
size of the remaining code similarity problem.

Research Approach
Our approach was to use simple, high-confidence hashing 
algorithms to identify duplicated code in the CERT Artifact 
Catalog. The first technique was based on cryptographic 
hashing of program sections as identified in the Portable 
Executable (PE) header [2]. The second technique used a 
cryptographic hash of the bytes contained within a function, 
which we refer to as an exact hash. The third technique used 
a modified version of the function bytes to produce a position 
independent code (PIC) hash. These techniques proved very 
effective and identified with high confidence a large amount of 
code duplication within the malicious code sample set.

When we began our research, there were approximately 4 mil-
lion executable files in the CERT Artifact Catalog. Each file 
was processed to parse the PE header and identify the bytes 
contained in each program section. These sections typically 
correspond to the code, data, imports, and other portions of 
a Windows executable file. An MD5 cryptographic hash was 
computed for the bytes of each section, and the results were 
analyzed to determine which sections were shared among dif-
ferent executable files in the catalog.

In addition to clustering similar programs that shared com-
mon sections, this analysis identified the most common cause 
of whole-file MD5 hash differences between code-identical 
programs. Approximately half of the samples were found to be 
duplicates of other files when the “slack space” was excluded 
when calculating MD5 hashes. Slack space refers to the bytes 
at the end of an executable file that are not referenced in the 
PE header and are not loaded into memory by the program 
loader. Malicious programs frequently use this space for 
configuration or other data by reading the bytes into memory 
during execution. Code-identical programs excluding the slack 
space are very likely to be identical malware with different 
run-time data.

By excluding the hashes for the slack space and PE header, 
we were able to reduce the number of unique programs in the 
sample set by almost 50 percent. The remaining two million 
files were processed by a loosely-coupled cluster of approxi-
mately 40 virtual machines running IDA Pro to identify the 
function byte boundaries. Slightly more than 757 million 
function instances were found, averaging 394 functions per 

file. IDA Pro’s detection of function boundaries is not perfect, 
and it is possible that the derivative results are biased by this 
incorrect identification, although this bias is not believed to be 
significant.

We produced an exact hash of the bytes between the beginning 
and end of each function using MD5. Only 154 million unique 
exact hashes were found in the data set, representing a reduction 
of nearly 5 to 1 over the number of function instances identified. 
Functions sharing the same exact hash are almost certainly the 
same function, and because memory references are included in 
the hash, it is very likely that they are in fact the same function 
at the same address in a nearly identical program. This level of 
exact hash duplication suggests that our malware sample set 
has many nearly identical programs. This is consistent with the 
significant reduction encountered in section hashing.

Identical functions are frequently found at different locations in 
memory since the compiler is usually used for generating the 
memory layout of a program from the source code. To normal-
ize for frequent relocation of functions, we developed a position 
independent code (PIC) hash by replacing some of the bytes 
supplied to the MD5 algorithm with zeros. The zeroed bytes in 
the PIC hash were identified as follows:
•  If IDA identified an operand for an instruction as a memory 

reference, then the byte corresponding with that operand was 
replaced with zeros.

•  Any immediate operands that were valid memory addresses 
within the program were also zeroed.

•  Instruction op-codes, relative jumps, register operands, and 
other immediate values were left unchanged.

We expected that this PIC algorithm would produce multiple 
exact hashes for a given PIC hash, and a single PIC hash for a 
given exact hash. In practice one design flaw and one imple-
mentation defect caused about 1.27 percent of the PIC hashes 
to map to multiple exact hashes. The design flaw involved 
truncated programs with immediate operands that referenced 
the truncated part of the executable. In these cases we failed to 
zero the immediate operand bytes because IDA Pro correctly 
reported that the operand was not a valid address in the trun-
cated file. The implementation defect caused data bytes within 
the function boundaries to be excluded from the PIC hash, but 
not from the exact hash. We were able to make approximate 
corrections for these bugs in the data set without regenerating 
all of the function hashes. 

We identified over 39 million unique PIC hashes, reducing the 
function space by nearly 4 to 1 compared to the unique exact 
hashes, and nearly 20 to 1 compared to the function instances. 
Figure 1 shows the reduction in the number of function in-
stances to be analyzed, starting with approximately 1.5 bil-
lion functions in the original dataset, dropping to 757 million 
functions after the section hash techniques were used to remove 
nearly duplicate programs, and further declining to 154 million 
and then 39 million as the two function hashing techniques were 
applied.



28

Fu
n

C
ti

o
n

 H
A

S
H

in
g

 F
o

r
 M

A
li

C
io

u
S

 C
o

d
E 

A
n

A
ly

S
iS

0

200

400

600

800

1000

1200

1400

1600

Total 
Functions

Section 
Hashes

Exact 
Hashes

PIC 
Hashes

M
ill
io
ns

  

 

Figure 1: Function Instance Reduction

While functions sharing a given PIC hash are less likely to 
really be the same function than those sharing the same exact 
hash, in practice we have found that all functions with a given 
PIC hash are the same function, only at a different address in 
memory. Some proportion of PIC hashes are known to have 
different interpretations depending on the context in which 
they occur. For example, we found two PIC hashes that cor-
respond with nearly 83 million function instances. These two 
PIC hashes are produced by two variants of the Intel jump 
instruction, which are commonly referred to as “thunks” 
(functions which simply jump to another function). It is likely 
that other semantically different functions share the same 
PIC hash, especially when the code is small and relatively 
mundane. We have found object constructors and exception 
handling code with multiple context dependent variants that 
produce the same PIC hash. Despite these contextual issues, 
most PIC hashes appear to correlate with unique function5 
behavior.

Additional Analysis
The exact and PIC function hash data has proven to be a rich 
source of data for additional derivative research. In addition 
to preventing duplicative analysis of malicious functions, iden-
tifying known library functions and other uninteresting code 
is even more beneficial. Just providing analytically meaning-
ful names for as many function hashes as possible can have 
real operational impact. We collected names assigned by the 
IDA FLIRT system [3] and correlated those results with the 
exact PIC function hashes in our data set. The FLIRT system 
was found to be more reliable than we anticipated, with less 
than 1 percent of exact hashes and less than 4 percent of PIC 
hashes with substantially inconsistent names. This step alone 
labeled approximately one-third of the function hashes. While 
IDA may have assigned a consistent name to given hashes, 

or “a given hash” not all occurrences of the hash may have 
been named across different files. By assigning names to all 
occurrences of a given hash, we were able to improve on IDA’s 
FLIRT system by over 60 percent.

We also conducted some experiments attempting to identify 
“high-value” functions that were of interest to malicious code 
analysts. In this way, we were able to identify nearly 5,000 PIC 
hashes and over 14,000 exact hashes that involved cryptograph-
ic hash routines used in malicious code. We then correlated 
these hashes with the programs that used them, and produced 
trend data showing the relative growth of specific hash routines 
in malware over the last several years (see Figure 2).

0%

1%

2%

3%

4%

5%

6%

7%

8%

20
07

-0
1

20
07

-0
3

20
07

-0
5

20
07

-0
7

20
07

-0
9

20
07

-1
1

20
08

-0
1

20
08

-0
3

20
08

-0
5

20
08

-0
7

20
08

-0
9

20
08

-1
1

20
09

-0
1

20
09

-0
3

20
09

-0
5

MD4 MD5 RipeMD

SHA1 SHA256 Unknown
 

Figure 2: Cryptographic Hash Prevalence in the CERT 
Artifact Catalog

 The function hash data is also very useful for clustering mal-
ware samples into families. We divided the functions into two 
categories: those that occurred only in specific families (and 
thus were indicative of that family) and those that occurred 
across multiple families (and are more likely to be library 
functions or other uninteresting code). Once the functions 
were divided in this way, clustering was a simple matter of 
grouping all programs that shared indicative functions, which 
is easily accomplished in linear time for even large data sets of 
several million files.

Since this approach required prior knowledge of the families 
to divide the functions, we used the Pithos tool described in 
last year’s research report [4] to bootstrap the process. This 
resulted in a very small number of PIC hashes (about 7 per-
cent) being marked as non-indicative. These hashes repre-
sented more than 91 percent of all function instances, strongly 
supporting the assertion that these functions were primarily 
library functions or other highly duplicative code.



29

Fu
n

C
ti

o
n

 H
A

S
H

in
g

 F
o

r
 M

A
li

C
io

u
S

 C
o

d
E 

A
n

A
ly

S
iS

Benefits
We have used simple hashing techniques to dramatically 
reduce the size of the malicious code similarity challenge and 
provide other valuable insights into malicious code behavior. 
While other more advanced techniques may be required to 
gain a complete understanding of malicious code similarity, 
new problems faced by malicious code researchers will be 
more tractable in the future.

2009 Accomplishments
In 2009, we made significant progress in reducing the size and 
complexity of the malicious code similarity challenge by re-
ducing the number of functions requiring analysis by a factor 
of 40. Simple hashing algorithms were shown to provide value 
by identifying large numbers of reused and duplicated func-
tions, preventing the unnecessary duplication of analyst effort 
when reverse engineering malicious code. Function hashing 
techniques were able to provide new methods of clustering 
malware families. Our understanding of the contents of the 
CERT Artifact Catalog has improved, leading to additional 
insight into the malicious code threat landscape, and many 
new avenues of research into malicious code clustering and 
program comparison have been opened to further research.

2010 Plans
We plan to characterize the nature of the function hashes by 
assigning names to them. Our initial results are summarized 
in Figure 3, which shows the approximate proportions of dif-
ferent types of functions. Each pie chart shows the functions 

named by IDA FLIRT, the functions indicative of a specific 
malware family, the functions which might be named us-
ing import profiling techniques still under development, and 
finally those functions that remain uncategorized. While large 
percentages of the function instances remained unnamed, they 
represent very small percentages of the unique hashes. This 
suggests that those functions are heavily re-used, and might 
be easily named using techniques similar to IDA’s FLIRT 
capability.

We plan to extend the existing research to include more sophis-
ticated identification techniques based on flow control similar-
ity, heuristic similarity, and semantic equivalence. This will 
further reduce the size of the code comparison problem, and 
enable more complex views of the Artifact Catalog of more 
interest to malicious code analysts.

References
[1] Willcock, C., Saebjornsen A., Panas, T., Quinlan, D., Su, 
Z., “Detecting Code Clones in Binary Executables”
http://portal.acm.org/citation.cfm?id=1572272.1572287

[2] Microsoft Corporation, “Microsoft Portable Executable 
and Common Object File Format Specification”, http://www.
microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

[3] Guilfanov, I., “Fast Library Identification and Recognition 
Technology”, http://www.hex-rays.com/idapro/flirt.htm

[4] Cohen, C., Havrilla, J., “Malware Clustering Based on 
Entry Points”, CERT Research Annual Report 2008
http://portal.acm.org/citation.cfm?id=1572272.1572287

27.47

7.63
21.03

43.88

Function Instances Named

Based on Exact Hash Analysis

29.10

2.68

6.95

61.27

Based on PIC Hash Analysis

24.58

14.3756.65

4.40

Unique Function Hashes Named

Exact Hashes

2.62 11.09

81.09

5.19

PIC Hashes

IDA FLIRT Imports Malware Families Unnamed

Figure 3: Preliminary Results for Categorizing Functions



Metrics for Evaluating 
Network Sensor Placement

Soumyo d. Moitra

Evan Wright



31

M
Et

r
iC

S
 F

o
r

 E
vA

lu
A

ti
n

g
 n

Et
W

o
r

k
 S

En
S

o
r

 P
lA

C
EM

En
t

Metrics for Evaluating Network Sensor 
Placement

Network sensors collect, detect, or help mitigate malicious 
activity on network traffic data. Metrics for evaluating their 
benefits at a given location can be improved. The improve-
ments in the metric help in prioritizing sensor deployment and 
improve network security for an organization, given a budget 
constraint.

An existing metric baseline was improved by two implemen-
tation approaches. One approach consisted of examining the 
metric along with its weights, and then suggesting improve-
ments. Based on expert opinion, suggestions were made to 
modify the existing metric to improve its accuracy. The other 
approach consisted of identifying new measures that could 
be included to form a more comprehensive metric. Four new 
measures were constructed to augment the metric using net-
work data. The result is a new metric that should better reflect 
the benefits from deploying a sensor at any particular location. 

Problem Addressed
A major challenge for information security decision makers 
is to develop better metrics that help evaluate the benefits of 
deploying network sensors. Sensors are critical to providing 
security in networks. They help by detecting attacks, intru-
sions, and malicious software on computer networks. Sensors 
can be of various types, which include anomaly-based intru-
sion detection systems, signature-based intrusion detection 
systems, and intrusion prevention systems. These sensors can 
alert security personnel of potential threats and may also help 
mitigate threats. It is generally not possible to purchase all the 
sensors an organization may desire because of resource limita-
tions. Therefore, a prioritization scheme has to be employed to 
decide the number of sensors and the locations to deploy them 
so that, given the constraint on resources, the security pro-
vided by the sensors can be maximized. These metrics for the 
prioritization scheme should accurately represent the advan-
tages gained by purchasing sensors for specific locations. 

An effective metric should be as comprehensive and objective 
as possible. For large organizations with many sub-organiza-
tions, it is difficult for decision makers to completely under-
stand the operating environment of all the sub-organizations. 
The sub-organizations may have a deeper insight into their 
own situation and needs, but the decision makers may be 
biased and also may be unfamiliar with the budgetary con-
straints of the organization as a whole. Often, metrics exist 
that have not been systematically analyzed. In such cases, 
there is a need to review these metrics and then develop a new 
and improved metric. This new metric can be used by the over-
all organization to prioritize the needs of the sub-organizations 
and make the sensor deployments more effective.

Research Approach
We use the following terminology:
•  Measures: components of the sensor metric that are related 

to the criticality of the network of the sub-organization that 
wishes to deploy a sensor to cover its network

•  Scores: the numeric output from the new measures con-
structed here - diversity, visibility, etc.

•  Values: magnitudes of the importance weights associated 
with the measures

The existing sensor evaluation metric was primarily focused 
on the evaluation of sub-organizational criticality.

The measures used in this metric were relevant to the ben-
efits of placing a sensor at a particular location. Specific 
sub-organizations that house mission-critical data or that play 
a mission-critical role were prioritized in this metric. The 
secondary focus of the metric was to quantitatively identify the 
security policy exceptions present in each sub-organization. 
Each measure had an importance weight associated with it. 
The measures and their importance weights were combined to 
form the composite metric. Therefore this composite metric 
represented the overall benefit of deploying a sensor at that 
location.

Two sources of information, which are not often utilized, can 
help an organization optimize this metric. The first is the set 
of experts across organizations that have technical experience 
related to the specific threats that they operationally face every 
day. The second is a set of network-based tools that are used to 
monitor network traffic. In this research, both these informa-
tion sources were used to develop an improved metric.

The first part of this work focused on
•  studying the existing metric for relevance and completeness 

in terms of the existing measures used
•  benchmarking with comparable models that have been 

established in the area of decision analysis; in particular, the 
scales were investigated to verify that the proper measures 
and importance weights were used

•  investigating issues regarding the correlations among mea-
sures used in the metric

•  identifying the modifications and possible enhancements 
that might improve the metric

•  verifying the actual weights used: this entailed designing a 
survey to elicit expert opinion and analyzing the data from 
the survey

•  suggesting several changes to the importance weights

In the second part, some new measures based on network traf-
fic data were constructed to augment the existing metric. This 
was done by
•  conducting empirical analyses of traffic based on network 

flow data; network flow is used by telecommunications ser-
vice providers and other large organizations for large-scale 
network traffic analysis

•  developing tools and methodologies to capture and summa-
rize the network flow data

•  computing flow volumes in terms of connections, packets, 
bytes, timing, and other information

•  constructing a set of measures based on this network flow 
data that indicate future effectiveness of sensors by location



32

M
Et

r
iC

S
 F

o
r

 E
vA

lu
A

ti
n

g
 n

Et
W

o
r

k
 S

En
S

o
r

 P
lA

C
EM

En
t

For each sub-organization, a specific sampling of data was 
collected and evaluated by an average of four measures

1.  Total volume in packets: a ratio of the sub-organization’s 
packet volume to the whole organization’s packet volume.

2.  Diversity: a value that captures the number of service 
requests of the sub-organization, so that its relative value 
can be compared to other organizations’ scores.

3.  Visibility: the percentage of IP addresses on the Internet 
that communicates with the sub-organization.

4.  Ratio of encrypted to unencrypted traffic: network sensors 
cannot inspect encrypted payloads, and little added value 
is obtained from sensors when most packets are encrypted.

Expected Benefits
The new metric we have developed includes inputs from 
experts and data-derived measures that will lead to better 
decisions regarding sensor deployment. This should provide 
better security for the budget of a given organization. The 
inputs from experts have helped to verify, and in some cases 
modify, the importance weights for the existing measures 
that go into estimating the overall metric. These inputs reflect 
a consensus among experts who have been involved with 
network sensors, and this provides a better indication of the 
benefits of having a sensor at a given location.

By using network traffic data, we will be able to avoid the 
problems in decision making based on monetary values. The 
scores derived from flow data are objective measurements, 
where no disagreement exists about their values given their 
definitions. This empirical approach avoids vertical organi-
zational contention where decision makers at the top may 
not be fully aware of operational impacts on the sub-organi-
zations. Moreover, it would reduce any perception of bias in 
middle management’s judgment concerning any subordinate 
organization.

2009 Accomplishments
This project demonstrates how the use of experts can be used 
to improve importance weights and how their values can be 
verified and modified based on expert opinion. This was done 
through a survey and then analyzing the data from that survey.

For the analysis using network data, we have designed 
software that will automatically evaluate each of the four 
measures. We have added a stipulation to the sensor appli-
cation process that requires a list of IP addresses from the 
sub-organizations that desire funding for security purchases. 
Next, we have successfully automated all the data collec-
tion, manipulation, organization, and statistics generation of 
network flow data. The numeric output consists of prioritiza-
tion values that measure the benefits of placing a sensor inside 
each sub-organization.

2010 Plans
We will be able to improve future metrics by gathering and 
analyzing results from the 2009 sensor metric analysis. Our 
new testing data will be more precise than previous testing 
data, allowing for a more objective metric in the next revision. 
This will also allow a more evenly designed partitioning sys-
tem that will better distribute criteria scores across the scales 
that are used by the metric.

Our domain knowledge of the network flow data can be 
applied to reduce noise in the network analysis before each 
of the four criteria is calculated. Noisy traffic may include 
irrelevant scans that do not affect security. This will allow us 
to have a more accurate measurement of the network traffic 
that would be applicable to decision making for purchasing 
sensors.



Modeling Insider Theft of 
Intellectual Property

Andrew Moore 

dawn Cappelli

randy trzeciak



34

M
o

d
El

in
g

 i
n

S
id

Er
 t

H
EF

t 
o

F 
in

tE
ll

EC
tu

A
l 

P
r

o
P

Er
ty

Modeling Insider Theft of Intellectual 
Property

Problem Addressed
Insider theft of intellectual property (IP) is a real concern in 
today’s organizational environment. These insiders often plan 
to develop a competing product or use the stolen informa-
tion to lure clients from the victim organization. They may 
conspire with a competitor as a prelude to employment with 
that organization, or simply sell IP to a competitor. 

Cases documented in the CERT Insider Threat Database 
illustrate the problem. For instance, the head of the public 
finance department of a securities firm recruited employees 
to collect documents to take to a competitor. Then he sent a 
resignation letter to the head of the sales department on be-
half of himself and each of the employees he recruited to his 
scheme. The following week, the entire group started work 
with the competitor. In another case, an outsider operating a 
fictitious company recruited a job-seeking employee to send 
him reams of his current employer’s IP by email, postal mail, 
and commercial carrier. 

Since 2001, CERT has researched malicious insider inci-
dents, including IT sabotage, fraud, theft of confidential 
or proprietary information, espionage, and threats to U.S. 
critical infrastructure. The consequences of these incidents 
include financial loss, operational impact, damage to reputa-
tion, and harm to individuals. In fact, the actions of a single 
insider have caused damage ranging from lost staff hours to 
public relations and financial damage so extensive that busi-
nesses have been forced to lay off employees or cease opera-
tion. Furthermore, insider incidents can have repercussions 
beyond the affected organization, disrupting operations or 
services critical to a specific sector or creating serious risks 
to public safety and national security.

CERT’s Management and Education of the Risk of Insider 
Threat (MERIT) work uses empirical data CERT collects 
to outline the complexity of insider events—especially the 
unintended consequences of organizational culture, policies, 
practices, technology, and efforts to manage insider risk. 
MERIT employs system dynamics modeling and simulation 
to better grasp and communicate the threat to information 
technology (IT) systems posed by malicious current or for-
mer employees and contractors. Our past work has involved 
modeling insider fraud [1], insider IT sabotage [2], and 
national security espionage [3].

Based on our initial modeling work and case analyses, we 
have found that different classes of insider crimes exhibit  
different patterns of problematic behavior and mitigative 
measures. CERT identified four categories of insider threat 
based on patterns observed in the cases analyzed: IT sabo-
tage, theft or modification of information for financial gain 
(fraud), theft of IP, and national security espionage. 

We believe modeling these crimes separately can be more 
illuminating than modeling the problem as a whole. Our mod-
eling effort in 2009 focused on understanding, documenting, 
and analyzing the behavioral and technical patterns of crimes 
involving insider theft of IP [4].

Research Approach
Our research approach is based on the comparative case study 
methodology [5]. The cases we selected fit our definition of 
insider theft of IP.1 We identified these cases through public 
reporting and included primary source materials, such as court 
records in criminal justice databases (found through searches 
on Lexis court databases) and secondary source materials, 
such as media reports (found through searches on Lexis-Nexis 
news databases and Internet search engines such as Google). 
We used the following criteria to select cases:
• The crime occurred in the United States.
•  The subject of the crime was prosecuted in a United States 

court (possibly resulting in a plea bargain).
•  The available data were of sufficient quantity and quality to 

understand the case.

We identified and analyzed 48 cases of IP theft meeting these 
criteria. While generalizing from case study comparisons in 
general, and from our study in particular, is problematic, this 
method does improve understanding of the context surround-
ing and influencing the event. Indeed, the sole purpose of our 
modeling effort is to help people understand the complex 
nature of the threat. Our models evolved through group data 
analysis sessions involving experts in both the behavioral and 
technical aspects of insider crimes. This analysis used system 
dynamics, a method for modeling the holistic behavior of 
complex problems as they evolve. System dynamics provides 
insight to difficult management situations in which efforts to 
solve a problem actually make it worse. 

System dynamics model boundaries are drawn so that all the 
variables necessary to generate and understand problematic 
behavior are contained within them. This approach encourages 
the inclusion of soft factors, such as policy-related, procedural, 
administrative, or cultural factors. Arrows represent the pair-
wise influence of the source variable on the target variable. A 
solid arrow indicates that the values of the variables move in 
the same direction, whereas a dashed arrow indicates that they 
move in the opposite direction. 

In system dynamics, the dynamic complexity of problematic 
behavior is captured by the underlying feedback structure 
of that behavior. Our models identify two types of feedback 
loops: balancing and reinforcing. Balancing loops (indicated 
by the letter B followed by a number) drive variables to some 
goal state and are typified by aspects that control problematic 
behaviors. 

1  We define insider theft of IP as crimes in which current or former employ-
ees, contractors, or business partners intentionally exceeded or misused an 
authorized level of access to networks, systems, or data to steal confidential 
or proprietary information from the organization.



35

M
o

d
El

in
g

 i
n

S
id

Er
 t

H
EF

t 
o

F 
in

tE
ll

EC
tu

A
l 

P
r

o
P

Er
ty

Reinforcing loops (indicated by the letter R followed by a 
number) describe system aspects that drive variable values 
consistently upward or downward and are typified by escalat-
ing problematic behaviors.

Expected Benefits
We believe our models will enable a better understanding of 
the complex nature of this threat. Improved understanding 
stimulates better awareness and intuition about the effective-
ness of countermeasures. For instance, our models reveal 
behavioral and technical precursor activities that might 
alert an organization to the potential for insider theft of IP. 
Understanding the relevance of these precursors provides 
organizations an opportunity to detect IP theft prior to em-
ployee termination. The model suggests monitoring for the 
following activities: 
• deceptive practices
•  attempts to use IP (e.g., to sell the IP or solicit business 

from customers of the victim organization)
• attempts to gain increased access to sensitive information
• downloading of information in excess of normal patterns
• emailing of attachments outside of normal patterns
• monitoring of backup tape use 
• exfiltration of information within 30 days of resignation

2009 Accomplishments
Our work identified two dominant models in the insider 
theft of IP cases: the Entitled Independent Scenario and the 
Ambitious Leader Scenario. Entitled Independents are ambi-
tious insiders acting alone to steal information to take to a 
new job or side business. They feel a sense of entitlement to 
that IP based on their participation in its development. This 
sense of entitlement can be reinforced by an event they per-
ceive as dissatisfying. Insiders then used stolen IP as lever-
age to pursue new opportunities. The Entitled Independent is 
more often than not fully authorized to access this informa-
tion and steals it when nearing resignation. Sometimes, he or 
she will engage in deception to facilitate the theft. Entitled 
Independents rarely act as if they are doing anything wrong. 
Figure 2 presents the part of the Entitled Independent model 
concerning the escalation of entitlement. 

In the Ambitious Leader scenario, the insider recruits other 
insiders to steal information for some larger purpose. The 
cases can be distinguished according to whether the insider
•  had plans to develop a competing product or use the IP to 

lure clients from the victim organization
•  was working with a competing organization to help his 

new employer
• sold the information to a competing organization

(R1)

insider contribution
to developing
information or

product

insider predisposition
to feeling entitled

insider sense of
ownership of the

information/product

insider time and
resources invested

in group

insider desire to
contribute to
organization

insider
contribution to
organizational

group

insider sense of entitlement
to products of the group

(R2)

Figure 1: Insider Entitlement Escalation

.
insider planning to
go to competing

organization

insider desire to
steal org

information

extent of
planning to

steal org info

information
stolen

opportunity to
detect theft

insider concern
over being caught

insider perpetrated
deceptions related to the

info theft
insider's awareness

that org cares
about theft

(R3)

(B1)
(B2)

Figure 2: Theft Planning by Ambitious Leader



36

M
o

d
El

in
g

 i
n

S
id

Er
 t

H
EF

t 
o

F 
in

tE
ll

EC
tu

A
l 

P
r

o
P

Er
ty

This scenario also describes cases in which the insider was 
partially motivated by a desire to help a foreign govern-
ment or company. It is more complex than the Entitled 
Independent scenario, involving more intricate planning, 
deceptive attempts to gain increased access, and recruitment 
of other employees to the leader’s scheme. Figure 3 presents 
the part of the Ambitious Leader model concerned with theft 
planning.

In addition to the two system dynamics models for insider 
theft of IP, we developed a workshop on insider threat that in-
cludes interactive exercises. These exercises help participants 
assess their own organization’s vulnerability to insider threat 
in specific areas. We want participants to leave the workshop 
with actionable steps they can take to better manage the risk 
of insider threat. Because the sensitivity of actual case data 
precludes its use for training, we created a representative 
fictional case around the Ambitious Leader scenario. This 
fictional case illustrates and communicates the key aspects of 
insider crimes. 

2010 Plans
Future work will refine models of insider fraud and national 
security espionage. Using system dynamics, we will at-
tempt to assess the weight and interrelatedness of personal, 
organizational, social, and technical factors. Of course, our 
ultimate concern is to develop effective countermeasures to 
insider crimes, and we plan to use modeling and simulation 
to identify and evaluate the effectiveness of such measures in 
the workplace. 

We recognize methodological and data challenges must be 
overcome before research on insider activity can effectively 
prescribe mitigation policies, practices, and technology. 
Prospective studies of these phenomena will always be 
challenging because of low base rates. However, we believe 
system dynamics modeling using available empirical data 
can bridge this methodological gap.

References
[1] E. Rich, I.J. Martinez-Moyano, S. Conrad, D.M. Cappelli, 
A.P. Moore, T.J. Shimeall, D.F. Andersen, J.J. Gonzalez, R.J. 
Ellison, H.F. Lipson, D.A. Mundie, J.M. Sarriegui, A. Sawicka, 
T.R. Stewart, J.M. Torres, E.A. Weaver, J. Wiik, “Simulating 
Insider Cyber-Threat Risks: A Model-Based Case and a 
Case-Based Model,” in Proceedings of the 23rd International 
Conference of the System Dynamics Society, July 2005. http://
www.cert.org/insider_threat/docs/insider_threatISDC2005.pdf

 [2] Moore, A. P., Cappelli, D. M., & Trzeciak, R. F. (2008). 
The „Big Picture“ of Insider IT Sabotage Across U.S. Critical 
Infrastructures (Vol. Insider Attack and Cyber Secruity: 
Beyond the Hacker). (S. Stolfo, S. M. Bellovin, S. Hershkop, 
A. Keromytis, S. Sinclair, & S. W. Smith, Eds.) New York, NY: 
Springer Science+Business Media, LLC.

[3] Band, S. R., Cappelli, D. M., Fischer, L. F., Moore, A. P., 
Shaw, E. D., & Trzeciak, R. F. (December 2006). Comparing 
Insider IT Sabotage and Espionage: A Model-Based Analysis. 
Carnegie Mellon University, Software Engineering Institute.

[4] Moore, A.P., D.M. Cappelli, T. Caron, E. Shaw, R.F. 
Trzeciak, “Insider Theft of Intellectual Property for Business 
Advantage: A Preliminary Model,” in Proc. Of the 1st 
International Workshop on Managing Insider Security Threats 
(MIST2009), Purdue University, West Lafayette, USA, June 
16, 2009. http://www.cert.org/insider_threat/docs/Insider_
Theft_of_IP_Model_MIST09.pdf

[5] Yin, R. K. (2003). Case Study Research. (3rd, Ed.) 
Thousand Oaks: Sage Publications.



Rayon: A Unified Framework 
for Data Visualization

Phillip groce



38

r
A

y
o

n
: A

 u
n

iF
iE

d
 F

r
A

M
EW

o
r

k
 F

o
r

 d
A

tA
 v

iS
u

A
li

zA
ti

o
n

Rayon: A Unified Framework for Data 
Visualization

Introduction
Data visualization summarizes large volumes of data and 
represents this data pictorially. Data visualization is used in a 
wide variety of applications, but visualization techniques that 
are effective in one application can often be used as well or 
better in another application. When organizations depend on 
good data visualization, a unified visualization capability will 
often increase that effectiveness; this is especially important 
if an organization relies on internal experts to create new 
visualization techniques appropriate to their environment. 
The Rayon visualization toolkit was developed to augment 
large-scale network analytic information, and to improve the 
visualization capability and productivity of analytic opera-
tions by making it possible to share visualization techniques 
between applications.

Problem Addressed
To be effective, network security analysts must quickly 
analyze large volumes of network monitoring data. Network 
analysts often specify custom visualizations in order to meet 
this challenge. These visualizations are applied to data to 
produce graphics, which highlight aspects of network activity 
the analysts regard as important. 

Graphics may be produced for several purposes, for example

•  Exploration: An analyst generates a graphic to better 
understand a specific problem. The graphic is part of an 
iterative process of understanding the data. An interactive 
graphic may be useful to iteratively “walk through” the 
dataset.

•  Explanation: An analyst generates a graphic to illustrate 
a point. The data for the graphic is well understood and 
carefully chosen. The graphic may be heavily anno-
tated. The graphic may be printed, or included in a slide 
presentation.

•  Validation: A scheduled process generates a graphic 
periodically as part of ongoing reporting and situational 
awareness. Analysts have expectations about the data, 
and the graphic either validates or highlights violations of 
these expectations. When expectations change, a series of 
validating graphics may document a transition from one 
set of expectations to another. 

These use cases have diverse requirements concerning 
(among others) how quickly the graphic can be generated; 
whether the output can be saved or shared; and how much 
user attention is required to generate them. However, core 
visualization techniques such as scatterplots, bar charts and 
line plots can often be shared within these use cases. When 
an organization develops a new visualization technique or 
useful combination of existing techniques, it can be most ef-
fectively used when it is available for all these use cases.

Several software packages provide visualization capabili-
ties. Examples are R [1], Matlab [2] and Microsoft Excel 

[3]. Sometimes visualization is provided as part of a larger 
analytic tool. Other tools exist only to do visualization. All 
of these packages simplify the process of data visualization. 
However, different packages have different strengths, and 
using multiple packages presents problems:

•  No common language exists that applies to all visualiza-
tion tools. Visualization techniques developed in one tool 
cannot be migrated to another without additional software 
effort. Similarly, different tools may export graphics in 
different ways. Some tools may support highly interactive 
graphics, but little to no export functionality.

•  Visualization tools often depend on additional software. 
These dependencies differ from package to package, and 
may not be installed or available. The additional packages 
may complicate configuration management and lengthen 
time to deployment (e.g., by requiring additional change 
control requests).

•  Default options are inconsistent between tools. 

Ideally, an organization’s visualization capabilities would be 
integrated to provide a consistent user interface and portable 
visualization techniques.

Research Approach
The Rayon visualization toolkit has been developed to pro-
vide a single platform that can be used to generate graphics 
in data exploration, explanation, and validation applications. 
Rayon provides an application programming interface (API) 
in the Python [4] programming language for specifying 
visualizations, and a facility for generating graphics from 
these specifications using different low-level software pack-
ages. Rayon can currently render static graphics using the 
Cairo [5] graphics library or interactive graphics using the 
WxWidgets [6] GUI toolkit.

In Rayon, a visualization developer (e.g., a network ana-
lyst who wishes to view a type of data in a particular way) 
specifies a visualization by creating an object called a Plot. 
Rayon comes with several common types of Plots. Plots can 
be overlaid onto each other or tiled; visualization developers 
may therefore compose more complicated Plots from numer-
ous simpler Plots. For example, a line plot of trended data 
may be laid over a scatterplot of raw data.



39

r
A

y
o

n
: A

 u
n

iF
iE

d
 F

r
A

M
EW

o
r

k
 F

o
r

 d
A

tA
 v

iS
u

A
li

zA
ti

o
nFigure 1: Multiple time series plots generated with 

Rayon, showing network traffic volume broken down 
by application and protocol. Incoming traffic is red, 
and outgoing traffic is blue. All the plots share the 
same time and volume scales, so volume can be 
compared across them.

Once a Plot has been created, it may be used to generate a 
graphic without having to understand how the Plot works. It 
can also be used within a larger Plot, again without having 
any additional knowledge. In this way, visualization devel-
opers can share and reuse their work. Figure 1 is a simple 
example of this. Different data are applied repeatedly to the 
same plot; the resulting graphics are tiled vertically to dis-
play an overall characterization of network traffic. 

Engineers developing applications with visualization capa-
bilities can write software that generates graphics from these 
visualization specifications knowing only the type of data it 
requires for input. If a visualization developer has defined 

events that the Plot handles, developers of interactive GUI 
applications can attach event listeners to them and provide 
interactive features. For instance, when an application end-
user moves a mouse over a point in a scatterplot, the applica-
tion can display a transient window containing additional 
information about the point.

Organizations benefit from Rayon by using or writing their 
own Rayon-enabled applications. Rayon comes with a set of 
UNIX command-line visualization tools. These tools may 
be used with arbitrary data, but they are designed to inte-
grate well with the System for Internet Level Knowledge [7] 

(SiLK) network flow analysis tools. Each Rayon command-
line tool generates a visualization based on data from a file 
(or UNIX standard input) and configuration information 
passed as command-line options. Integration is also planned 
with iSiLK [8], a graphical interface to the SiLK tools.



40

r
A

y
o

n
: A

 u
n

iF
iE

d
 F

r
A

M
EW

o
r

k
 F

o
r

 d
A

tA
 v

iS
u

A
li

zA
ti

o
n

At minimum, Rayon requires a Python interpreter and one 
of the low-level libraries Rayon uses to generate graphics. 
When a dependency does not exist on a system, Rayon will, 
whenever possible, install with diminished capability rather 
than fail to install. 

Figure 2: A visualization of network traffic generated 
using ryhilbert, a Rayon-enabled visualization tool 
that displays blocks of network addresses such 
that contiguous addresses are adjacent. Each point 
is a network block; blocks are shaded to indicate 
traffic volume, and colored borders are laid over the 
visualization to indicate IP allocations. Larger squares 
indicate larger networks; the red numbers in the 
“upper left” of blocks representing Class A networks 
show the first octet of those networks’ addresses.

Expected Benefits
Rayon provides a visualization capability that can be used 
in applications across an organization. Visualization de-
velopers can create new visualizations which can generate 
graphics from any Rayon-enabled application, and support 
many different graphical use cases with a single codebase. 
Application developers can use the same visualization capa-
bility to support simple basic command-line tools, analysis 
scripts, and full-featured GUI and web applications.

2009 Accomplishments
Rayon has been incorporated into the most recent revision of 
an analytic tool that displays network traffic trends over time. 
One of the products of this tool is the visualization in Figure 
1. The tool classifies network traffic by type and direction 
and presents the results as a set of parallel time-series graph-
ics. The graphics share scales to make comparison easier.

Rayon has been used to implement two command-line tools. 
ryscatterplot generates scatterplots from the command line. 
ryhilbert generates graphics that represent IP networks in 
two-dimensional space, such that contiguous network ad-
dresses are adjacent to each other. An example is given in 
Figure 2.

2010 Plans
The focus of Rayon development for 2010 is to expand  
the number of Rayon-enabled applications. Rayon will 
be integrated into additional network analysis tools; one 
example is a tool characterizing network traffic from a set 
of IP addresses as using time series plots and sparklines. 
Command-line tools are planned to provide the user with 
access to time-series plots, bar plots, and line plots. Other 
command-line tools will be developed to perform simple 
analytics with obvious visual products, such as cumulative 
distribution functions. 

In addition to expanded application support, the library  
will be expanded to provide additional plot types, such as 
matrix scatterplots and heat maps. To further support consis-
tent styling across applications, a configuration interface is 
planned so that a user can provide custom styling informa-
tion from a single source (e.g., a configuration file) to any 
Rayon-enabled application.

References
[1] The R Project for Statistical Computing.  
http://www.r-project.org/

[2] The MathWorks – MATLAB and Simulink for Technical 
Computing. http://www.mathworks.com

[3] Excel Home Page – Microsoft Office Online.  
http://office.microsoft.com/en-us/excel/default.aspx

[4] Python Programming Language -- Official Website. 
http://python.org/

[5] Cairo. http://www.cairographics.org/

[6] wxWidgets: Cross-Platform GUI Library.  
http://www.wxwidgets.org/

[7] SiLK. http://tools.netsa.cert.org/silk/

[8] iSiLK. http://tools.netsa.cert.org/isilk/



Source Code Analysis 
Laboratory

robert Seacord

david Svoboda 

Philip Miller



42

S
o

u
r

C
E 

C
o

d
E 

A
n

A
ly

S
iS

 l
A

b
o

r
A

to
r

y

Source Code Analysis Laboratory
 
Problem Addressed
Software vulnerability reports continue to grow at an alarm-
ing rate, with a significant number of these reports resulting 
in technical security alerts. To address this growing threat 
to governments, corporations, educational institutions, and 
individuals, systems must be developed that are free from 
software vulnerabilities. 

Research Approach
CERT established the Source Code Analysis Laboratory 
(SCALe) to address the problem of insecure code, that is, 
code that contains known vulnerabilities. The purpose of 
SCALe is to investigate approaches to developing systems 
that are certifiably free from known vulnerabilities. 

SCALe takes a comprehensive approach to eliminating 
vulnerabilities and other software defects from code through 
these projects and tools:

1.  Secure Coding Standards: Providing a detailed enumera-
tion of coding errors that have resulted in vulnerabilities 
and their mitigations though the development of secure 
coding standards for the most commonly used software 
development languages. 

2.  Standards Development: Participating in the development 
and evolution of international programming language 
standards to improve the safety and security of common 
programming languages.

3.  Automated Analysis Tools: Working with industry to 
develop tools that assist developers in building secure 
software.

4.  CERT C and C++: Producing safe and secure executables 
that are known to be free from several important classes of 
vulnerabilities, including buffer overflows.

5.  Application Conformance Testing: Offering formal 
certification of software as conforming to secure coding 
standards.

6.  TSP-Secure: Integrating secure coding techniques into the 
Team Software Process so that high-quality, secure soft-
ware can be developed with predictable cost and schedule.

7.  Books, Courses, Training, and Education: Creating books 
and courses that create a security mindset and teach devel-
opers to code securely. 

Secure Coding Standards
  The SCALe foundation rests 

upon secure coding standards 
for common programming 
languages such as C, C++, 
and Java. These coding 
standards define an enforce-
able set of guidelines against 
which the CERT SCALe can 
evaluate conformance.

Coding standards encour-
age programmers to follow 
a uniform set of rules and 
guidelines determined by the 
requirements of the project 

and organization, rather than by the programmer’s familiarity 
or preference. Developers and software designers can apply 
these coding standards during software development to create 
secure systems.

The use of secure coding standards defines a set of rules and 
recommendations to which the source code can be evaluated 
for conformance. Secure coding standards provide a metric for 
evaluating and contrasting software security, safety, reliability, 
and related properties. 

CERT coordinates development of secure coding standards by 
security researchers, language experts, and software develop-
ers using a wiki-based community process. More than 450 
contributors and reviewers participated in the development 
of secure coding standards on the CERT Secure Coding 
Standards wiki. 

Standards Development
CERT participates in the development of international 
standards for programming languages to improve the safety 
and security of these languages. CERT is a voting mem-
ber of INCITS PL22 Programming Languages, PL22.11 
Programming Language C and sends technical experts to ISO/
IEC working group meetings for C, C++, and programming 
language vulnerabilities.

Working with technical experts in these international standards 
bodies has led to the following advancements:

•  the publication of TR 24731-1 [1] and TR 24732-2 [2], 
followed by their inclusion into a conditionally normative 
annex for C1X

•  security improvements to C standard library functions

•  deprecating the gets() function in C99 and removing it from 
C1X

•  the inclusion of the Analyzability Annex into the condition-
ally normative annex for C1X [3]

•  successful balloting of PDTR 24772.2, Guidance to 
Avoiding Vulnerabilities in Programming Languages 
through Language Selection and Use [4]

•  formation of the C Secure Coding Guidelines Study Group 
within WG14 to study the problem of producing analyzable 
secure coding guidelines for C99 and C1X



43

CERT participation in international standards bodies 
improves the quality of our secure coding standards and pro-
cesses and provides a channel for their adoption and publica-
tion as international standards.

Automated Analysis Tools
Secure coding standards alone are inadequate to ensure se-
cure software development because they may not be consis-
tently and correctly applied. Manual security code audits can 
be supplemented through the use of automated analysis tools, 
including static analysis tools, dynamic analysis tools, and 
tools within a compiler suite. However, there are many prob-
lems and limitations in source code analysis. Static analysis 
techniques, while effective, are prone to both false positives 
and false negatives. For example, a recent study [5] found 
that not one of five C and C++ source analysis tools was able 
to diagnose 41.5% of 210 test cases, while only 7.2% of test 
cases were successfully diagnosed by all five tools. A similar 
study showed that not one of six Java code analysis tools was 
able to diagnose 39.7% of 177 test cases, while 0% of the 
test cases were discovered by all six tools. Dynamic analysis 
tools, while producing lower false positives rates, are prone 
to false negatives along untested code paths. The NIST Static 
Analysis Tool Exposition (SATE) also demonstrated that 
developing comprehensive analysis criteria for static analysis 
tools is difficult [6] because there are many different perspec-
tives on what constitutes a true or false positive.

To address these problems, CERT is working with analyzer 
vendors and with the WG14 CSCG SG to precisely define a 
set of analyzable secure coding guidelines for C99, as well 
as for the emerging C1X major revision. Having such a set 
of guidelines and standardizing them through the ISO/IEC 
process should eliminate many of the problems encountered 
at NIST SATE and also improve the percentage of defects 
found by more than one tool. In addition to developing a set 
of analyzable secure coding guidelines, CERT is coordinat-
ing a test suite under a BSD-type license that will be freely 
available for any use. This test suite can then be used to 
determine which tools are capable of enforcing which guide-
lines and to establish false positive and false negative rates. 
Depending on the application, consumers of these tools may 
have different preferences for tools that can, for example, 
trade off a high false positive rate for a low false negative 
rate or vice versa.

In addition to working with commercial analyzer vendors, 
CERT has extended the Compass/ROSE tool (developed 
at Lawrence Livermore National Laboratory) to diagnose 
violations of the CERT Secure Coding Standards in C and 
C++ language programs. CERT has also developed a GCC 
prototype of the as-if infinitely ranged integer model [7] that, 
when combined with fuzz testing, can be used to discover 
integer overflow and truncation vulnerabilities.

When possible, the SCALe incorporates dynamic analysis 
and fuzz testing techniques in addition to the static analysis 
to identify coding defects and for true/false positive analysis.

CERT C and C++
Static analysis tools can be used to detect security flaws dur-
ing testing and maintenance that can result in vulnerabilities. 
These products provide some assistance with preventing buffer 
overflows, but none provide certification that all buffer over-
flows are detected and prevented. However, these products do 
much more than check for buffer overflows; they detect bugs, 
catch other security problems, and enforce coding standards. 
For example, LDRA, as well as other static analysis tool ven-
dors, have implemented code checkers to diagnose violations 
of these guidelines in C and C++ source code. 

For any solution to make a significant difference in the reli-
ability of the software infrastructure, the methods must be 
incorporated into tools that working programmers are using to 
build their applications. 

Compiler producers constitute a segment of the software 
production supply chain, one that is quite different from the 
quality-tools producers. Each hardware company typically 
maintains some number of compiler groups, as do several of 
the large software producers. There are several specialized 
compiler producers. In addition, there is a significant commu-
nity of individuals and companies that support the open-source 
GCC. Adding these various groups together, we estimate that 
there are well over 100 compiler vendors. 

Safe Secure C/C++ (SSCC) eliminates several important class-
es of vulnerabilities, including writing outside the bounds of 
an object (e.g., buffer overflow), reading outside the bounds of 
an object, and arbitrary reads/writes (e.g., wild-pointer stores) 
[8]. The buffer overflow problem, for example, is solved using 
static analysis for issues that can be resolved at compile and 
link time and dynamic analysis using highly optimized code 
sequences for issues that can be resolved only at run time. 

To encourage adoption of the SSCC methods into working 
compilers, CERT proposes extending ROSE to perform the 
SSCC analysis methods and produce an advice file for the 
platform-dependent compiler. The structure of such a tool was 
first proposed as a method for providing optimization advice 
from a front-end source analysis tool to a platform-dependent 
back-end compiler [9]. For example, the modified ROSE tool 
can advise the back-end compilers to “verify that pointer p is 
less than a+1000, just before the expression at line 21 token 7” 
or “insert 5 elements of padding after the array a declared at 
line 31 token 3.”

Along with the ROSE Advisor, a pre-linker is also required to 
read and process the full collection of bounds-data files from 
all components of the application being compiled and linked. 
The resulting system is illustrated in Figure 1.

S
o

u
r

C
E 

C
o

d
E 

A
n

A
ly

S
iS

 l
A

b
o

r
A

to
r

y



44

Application Conformance Testing
SCALe provides an operational capability for application 
conformance testing to satisfy the demand for source code as-
sessments for government and industry. CERT uses the SCALe 
to assess client source code against one or more secure coding 
standards, following the process shown in Figure 2. A detailed 
report of findings is provided to the customer to repair. After 
these findings have been addressed by the developer, SCALe 
issues and certifies the conformance test results. 

Client contacts SCALe

SCALe communicates
requirement

Client provides buildable
software

SCALe selects toolset

SCALe analyzes source code
and generates initial report

Client repairs software

SCALe issues conformace
tests results and certificate

Figure 2: Conformance testing process

For each rule and recommendation, the source code is certified 
as provably nonconforming, deviating, conforming, or prov-
ably conforming. 

•  The code is provably nonconforming if one or more viola-
tions of a rule are discovered for which no deviation has 
been specified.

•  Deviating code is code for which the application devel-
oper has a documented deviation. This documentation is 
included with the certification.

•  The code is conforming if no violations of a rule could be 
identified.

•  Finally, the code is provably conforming if the code has 
been verified to adhere to the rule in all possible cases.

Once the process is completed, a report detailing the confor-
mance or nonconformance for each CERT C Secure Coding 
rule is provided to the customer. 

TSP-Secure 
The SEI Team Software ProcessSM (TSPSM) methodology, 
known for enabling dramatic improvement in productivity and 
product quality, is now being used for rapid, economic, and 
self-sustaining CMMI implementation. TSP-Secure extends 
TSP to achieve the development of secure software systems by 
institutionalizing guidance offered from CERT, as illustrated 
in Figure 3. By implementing TSP-Secure, organizations can 
efficiently build high-quality, secure software while conform-
ing to CMMI. 

TSP-Secure incorporates the planning, process, quality, 
measurement, and tracking frameworks of TSP for secure 
software development and generates the practices and artifacts 
required to satisfy a CMMI SCAMPI Maturity Level 3 (ML3) 
appraisal. TSP-Secure requires selection of one or more secure 
coding standards during the requirements phase of the project. 
TSP-Secure teams apply the application conformance test-
ing processes as part of their own development processes to 
produce demonstrably conforming secure code.

S
o

u
r

C
E 

C
o

d
E 

A
n

A
ly

S
iS

 l
A

b
o

r
A

to
r

y

Figure 1: ROSE 
Advisor designROSE

Source file

Modified
Compiler
Backend

Compiler
Frontend

Advice file

Internal
representation

(IR)

Pre-linker Linker
Safe/Secure
Executable

Object code

Run-time
pointer-checking

library

diagnostics

Compiler



45

Technical training for developers is delivered prior to project 
launch. A new team role, Security Manager, is defined. 

Additional launch meetings are specified and scripted. Some 
existing launch meetings are modified. These include modi-
fied scripts and forms. Process steps integrate the use of 
static analysis tools and so forth. At this time, development 
teams must be using C or C++ to take advantage of the secu-
rity training, tools, and methods. We expect to extend that to 
Java development in the coming year.

Finally, feedback loops exist for putting fresh information 
discovered in conducting TSP-Secure projects back into our 
security and information repositories. 

Books, Courses, Training, and Education
CERT has published two books on secure coding: Secure 
Coding in C and C++ [10] and The CERT C Secure Coding 
Standard [11]. These books identify insecure coding practic-
es, describe how insecure code can be exploited, and provide 
mitigation strategies.

  CERT has developed a four-day 
Secure Coding in C and C++ 
course that identifies common 
programming errors in C and 
C++ and describes how these 
errors can lead to code that is 
vulnerable to exploitation. The 
course concentrates on security 
issues intrinsic to the C and C++ 
programming languages and 
associated libraries and is based 
on the Addison-Wesley book by 
the same name. This course is 
currently being offered by the 
SEI and by SEI partner 
organizations. 

CERT is also involved in teaching secure programming 
to undergraduates in the Computer Science department at 
Carnegie Mellon and secure software engineering to gradu-
ate students in Carnegie Mellon’s Information Networking 
Institute, and is working with other universities to improve 
their software security courses.

Expected Benefits
The goal of the CERT SCALe is to reduce or eliminate vul-
nerabilities deployed in operational software by preventing 
coding errors or discovering and eliminating security flaws 
during implementation and test. Organizations can benefit 
from this work by

•  participating in the development of CERT Secure Coding 
Standards and applying these standards in their software 
development process

•  adopting, extending, and using static analysis tools (some 
of which are freely available) that have been enhanced to 
detect violations of CERT Secure Coding guidelines

•  training their software development workforce through 
secure coding courses developed and offered by the SEI 
and partner organizations

•  using the resources of the CERT SCALe for conformance 
testing and possible certification

•  using TSP-Secure as their software development process

2009 Accomplishments
As-if Infinitely Ranged Integer Model
In 2009, CERT developed the as-if infinitely ranged (AIR) 
integer model, which provides a largely automated mecha-
nism for eliminating integer overflow and integer truncation 
[7]. The AIR integer model either produces a value equiva-
lent to one that would have been obtained using infinitely 
ranged integers or results in a runtime constraint violation. A 
proof of concept modification to GCC compiler version 4.5.0 

S
o

u
r

C
E 

C
o

d
E 

A
n

A
ly

S
iS

 l
A

b
o

r
A

to
r

y

221 Guidelines

Source
Code

static analysis 
tools, unit tests, 
and fuzz testing 

Deploy

Security
Manager

Figure 3: TSP-Secure



46

S
o

u
r

C
E 

C
o

d
E 

A
n

A
ly

S
iS

 l
A

b
o

r
A

to
r

y

has been developed by CERT that automatically invokes a 
runtime constraint handler when an integral operation fails to 
produce a correctly represented value.

Secure Design Patterns
CERT has completed a two-year joint study with JPCERT, 
Japan’s first computer security incident response team 
(CSIRT), to develop a technical report describing secure de-
sign patterns. Secure design patterns are descriptions or tem-
plates describing a general solution to a security problem that 
can be applied in many different situations. Rather than focus 
on the implementation of specific security mechanisms, 
the secure design patterns detailed in the report are meant 
to eliminate the accidental insertion of vulnerabilities into 
code or to mitigate the consequences of vulnerabilities. The 
patterns were derived by generalizing existing best security 
design practices and by extending existing design patterns 
with security-specific functionality. They are categorized 
according to their level of abstraction: architecture, design, or 
implementation. Six new secure design patterns were added 
to the report in an October 2009 update [12].

International Standards
CERT is working with both the ISO/IEC JTC1/SC22/WG14 
international standardization working group for the program-
ming language C and the WG21 international standardiza-
tion working group for the programming language C++ to 
improve security in these languages. CERT is also working 
with the WG23 Programming Language Vulnerabilities 
working group in the development of TR 24772, Guidance to 
Avoiding Vulnerabilities in Programming Languages through 
Language Selection and Use.

In 2009, the ISO/IEC JTC 1/SC 22/WG 14 international 
standardization working group for the programming lan-
guage C has created the C Secure Coding Guidelines Study 
Group (CSCG SG) to study the problem of producing ana-
lyzable secure coding guidelines for C99 and C1X.

CERT also provides the liaison from the PL22 Programming 
Languages to CS1 (cyber security). CERT is also providing 
expertise to the JTC 1/SC 7 embedded system coding guide-
lines study group.

SCALe Assessments
CERT conducted software security assessments for AREVA 
and the Office of Navy Intelligence. These assessments 
included systems developed in C, C++, and Java.

2010 Plans
International Standards Activities
CERT is hosting the March 2010 meeting of the ISO/IEC 
JTC1/SC22/WG21 international standardization working 
group for the programming language C++ on the Carnegie 
Mellon University campus in Pittsburgh, Pennsylvania.

Technical experts from CERT will continue to work with 
international standards bodies to improve the security of 
programming languages.

Secure Coding Standards=
CERT Secure Coding Initiative will continue to collabo-
rate with Sun Microsystems to develop The CERT Sun 
Microsystems Secure Coding Standard for Java [13]. This 
standard provides guidance for secure programming in the 
Java Platform Standard Edition 6 environment. Programmers 
who adopt the Java standard can avoid vulnerabilities in 
Java systems. This coding standard affects the wide range of 
products coded in Java, such as PCs, game players, mobile 
phones, home appliances, and automotive electronics.

CERT will also continue to develop a C++ Secure Coding 
Standard [14] and maintain and enhance the existing C 
Secure Coding Standard. 

Application Conformance Testing
During 2010 CERT plans to offer conformance testing 
against the CERT C Secure Coding Standard to any interest-
ed parties. We are also hoping to certify a conforming system 
and document the process in a case study.

References
[1] ISO/IEC. Extensions to the C Library, — Part I: Bounds-
checking interfaces (ISO/IEC TR 24731-1). Geneva, 
Switzerland: International Organization for Standardization, 
April 2006.

[2] ISO/IEC. Extensions to the C Library, — Part II: 
Dynamic Allocation Functions (ISO/IEC PDTR 24731-
2). Geneva, Switzerland: International Organization for 
Standardization, August 2007.

[3] Plum, T. & Seacord, R. C. “ISO/IEC JTC 1/SC 22/WG14/
N1394 – Analyzability.” Geneva, Switzerland: International 
Standards Organization, August 2009. http://www.open-std.
org/jtc1/sc22/wg14/www/docs/n1394.pdf

[4] ISO/IEC. Information Technology — Programming 
Languages — Guidance to Avoiding Vulnerabilities in 
Programming Languages through Language Selection 
and Use (ISO/IEC PDTR 24772). Geneva, Switzerland: 
International Standards Organization, March 2008. 
http://www.aitcnet.org/isai/DocLog/180-thru-199/22-
WG23-N-0191/n0191.pdf

[5] Landwehr, C. IARPA STONESOUP Proposers Day. July 
2008. http://www.iarpa.[6] Okun, V., Gaucher, R., & Black, 
P. E. Static Analysis Tool Exposition (SATE) 2008. NIST 
Special Publication 500-279. June 2009.



47

[7] Keaton, D., Plum, T., Seacord, R. C., Svoboda, D., 
Volkovitsky, A., & Wilson, T. As-if Infinitely Ranged 
Integer Model (CMU/SEI-2009-TN-023). Carnegie Mellon 
University, Software Engineering Institute, 2009. http://www.
sei.cmu.edu/library/abstracts/reports/09tn023.cfm 

[8] Plum, T. & Keaton, D. M. “Eliminating Buffer Overflows 
Using the Compiler or a Standalone Tool.” Proceedings 
of the Workshop on Software Security Assurance Tools, 
Techniques, and Metrics. Long Beach, California, 
November 7-8, 2005. https://samate.nist.gov/index.php/ 
Past_Workshops 

[9] Sangyeun, C., Tsaiy, J-Y., Song, Y., Zheng, B., Schwinn, 
S. J., Wang, X., Zhao, Q., Liz, Z., Lilja, D. J., & Yew, P-C. 
High-Level Information – An Approach for Integrating 
Front-End and Back-End Compilers. http://www.cs.pitt.
edu/~cho/data/cho-icpp98.pdf

[10] Seacord, R. C. Secure Coding in C and C++. Addison-
Wesley Professional, 2005 (ISBN: 0-321-33572-4).

[11] Seacord, R. C. The CERT C Secure Coding Standard. 
Addison-Wesley Professional, 2008 (ISBN: 0-321-56321-2).

[12] Dougherty, C., Sayre, K., Seacord, R. C., Svoboda, D., 
& Togashi, K. Secure Design Patterns (CMU/SEI-2009-
TR-010). Carnegie Mellon University, Software Engineering 
Institute, 2009. http://www.sei.cmu.edu/reports/09tr010.pdf 

[13] The CERT Sun Microsystems Secure Coding 
Standard for Java. Pittsburgh, PA: Software Engineering 
Institute, CERT, 2009. https://www.securecoding.cert.org/
confluence/x/Ux

[14] The CERT C++ Secure Coding Standard. Pittsburgh, 
PA: Software Engineering Institute, CERT, 2009. https://
www.securecoding.cert.org/confluence/x/fQI

S
o

u
r

C
E 

C
o

d
E 

A
n

A
ly

S
iS

 l
A

b
o

r
A

to
r

y



SQUARE: Requirements 
Engineering for Improved 
System Securitynancy r. Mead

Justin zahn



49

S
q

u
A

r
E:

 r
Eq

u
ir

EM
En

tS
 E

n
g

in
EE

r
in

g
 F

o
r

  i
M

P
r

o
v

Ed
 S

y
S

tE
M

 S
EC

u
r

it
y

SQUARE: Requirements Engineering for 
Improved System Security

Problem Addressed
It is well recognized in industry that requirements engineering 
is critical to the success of any major development project. 
Several authoritative studies have shown that requirements en-
gineering defects cost 10 to 200 times as much to correct once 
fielded than if they are detected during requirements develop-
ment [1, 2]. A more recent vendor example indicates that it is 
100 times cheaper to fix security flaws at requirements time 
than after a product has been released [3]. Other studies have 
shown that reworking requirements, design, and code defects 
on most software development projects costs 40 to 50 percent 
of total project effort [4], and the percentage of defects origi-
nating during requirements engineering is estimated at more 
than 50 percent [5]. The total percentage of project budget due 
to requirements defects is 25 to 40 percent [6].

The National Institute of Standards and Technology (NIST) 
reports that software faulty in security and reliability costs the 
economy $59.5 billion annually in breakdowns and repairs [7]. 
The costs of poor security requirements make apparent that 
even a small improvement in this area will provide a high val-
ue. By the time an application is fielded and in its operational 
environment, it is very difficult and expensive to significantly 
improve its security.

Requirements problems are among the top causes of why 

•  projects are significantly over budget, past schedule, have 
significantly reduced scope, or are cancelled

•  development teams deliver poor-quality applications

•  products are not significantly used once delivered

These days we have the further problem that the environment 
in which we do requirements engineering has changed, result-
ing in an added element of complexity. Software development 
occurs in a dynamic environment that changes while projects 
are still in development, with the result that requirements 
are in flux from the beginning. This can be due to conflicts 
between stakeholder groups, rapidly evolving markets, the 
impact of tradeoff decisions, and so on.

When security requirements are considered at all during the 
system life cycle, they tend to be general lists of security 
features such as password protection, firewalls, virus detection 
tools, and the like. These are, in fact, not security requirements 
at all but rather implementation mechanisms that are intended 
to satisfy unstated requirements, such as authenticated access. 
As a result, security requirements that are specific to the sys-
tem and that provide for protection of essential services and 
assets are often neglected. In addition, the attacker perspective 
is not considered, with the result that security requirements, 
when they exist, are likely to be incomplete. We believe that a 
systematic approach to security requirements engineering will 
help to avoid the problem of generic lists of features and to 
take into account the attacker perspective.

In reviewing requirements documents, we typically find that 
security requirements, when they exist, are in a section by 
themselves and have been copied from a generic set of secu-
rity requirements. The requirements elicitation and analysis 
that is needed to get a better set of security requirements 
seldom takes place.

Much requirements engineering research and practice has ad-
dressed the capabilities that the system will provide. So while 
significant attention is given to the functionality of the system 
from the user’s perspective, little attention is given to what 
the system should not do. In one discussion on requirements 
prioritization for a specific large system, ease of use was as-
signed a higher priority than security requirements. Security 
requirements were in the lower half of the prioritized require-
ments. This occurred in part because the only security require-
ments that were considered had to do with access control.

Research Approach
The CERT Program has developed a methodology to help 
organizations build security into the early stages of the 
production life cycle. The Security Quality Requirements 
Engineering (SQUARE) methodology consists of nine steps 
that generate a final deliverable of categorized and prioritized 
security requirements. Although SQUARE could likely be 
generalized to any large-scale design project, it was designed 
for use with information technology systems.

The SQUARE process is most effective and accurate when it 
is conducted by a team of requirements engineers with secu-
rity expertise and the stakeholders of an IT project. It begins 
with the requirements engineering team and project stakehold-
ers agreeing on technical definitions that serve as a baseline 
for all future communication. Next, assets are identified and 
business and security goals are outlined. Third, artifacts and 
documentation are created, which are necessary for a full 
understanding of the relevant system. A structured risk assess-
ment determines the likelihood and impact of possible threats 
to the system. 

Following this work, the requirements engineering team 
determines the best method for eliciting initial security 
requirements from stakeholders. This determination depends 
on several factors, including the stakeholders involved, the 
expertise of the requirements engineering team, and the 
size and complexity of the project. Once a method has been 
established, the participants rely on artifacts and risk assess-
ment results to elicit an initial set of security requirements. 
Two subsequent stages are spent categorizing and prioritizing 
these requirements for management’s use in making tradeoff 
decisions. Finally, an inspection stage is included to ensure 
the consistency and accuracy of the security requirements that 
have been generated.



50

S
q

u
A

r
E:

 r
Eq

u
ir

EM
En

tS
 E

n
g

in
EE

r
in

g
 F

o
r

  i
M

P
r

o
v

Ed
 S

y
S

tE
M

 S
EC

u
r

it
y

SQUARE’s nine discrete steps are outlined in Table 1. Each 
step identifies the necessary inputs, major participants, sug-
gested techniques, and final output. Generally, the output 
of each step serves as the sequential input to the ensuing 
steps, though some steps may be performed in parallel. For 
instance, it might be more efficient for the requirements engi-
neering team to perform Step 2 (Identify Assets and Security 
Goals) and Step 3 (Develop Artifacts) simultaneously, since 
to some extent they are independent activities. The output 
of both steps, however, is required for Step 4 (Perform Risk 
Assessment). In principle, Steps 1–4 are actually activities 
that precede security requirements engineering but are neces-
sary to ensure that it is successful.

The SQUARE process is described in a technical report [8] 
and is suitable for incorporation into development practice. 
SQUARE is described in the Requirements Engineering sec-
tion of the Build Security In website [9] and in three books 
[10, 11, 12]. CERT is currently continuing research and 
application of the process and is working to develop a robust 
tool to support each stage of the methodology.

Expected Benefits
When SQUARE is applied, the user should expect to have 
identified, documented, and inspected relevant security 
requirements for the system or software that is being de-
veloped. SQUARE may be more suited to a system under 
development or one undergoing major modification than one 
that has already been fielded, although it has been used both 
ways. 

2009 Accomplishments
In conjunction with the Carnegie Mellon University CyLab 
and Master of Software Engineering Program, an MSE 
Studio team has developed a robust SQUARE tool that is 
available for free. A workshop on SQUARE was delivered to 
the National Defense University of Taiwan, and the work-
shop materials were translated into Chinese and delivered 
there. Research on privacy requirements engineering with 
SQUARE (P-SQUARE) has continued, and there have been 
several published papers [13, 14, 15]. A white paper on 
SQUARE for Acquisition (A-SQUARE) has been produced.

2010 Plans
Carnegie Mellon University student interns and volunteers in 
the community are working to extend SQUARE for privacy. 
The extensions of SQUARE for Acquisition will be incor-
porated into the educational materials. In addition, we will 
continue to take advantage of client opportunities to apply 
SQUARE, P-SQUARE, and A-SQUARE in the field and will 
publish the results.

References
[1] Boehm, B. W. & Papaccio, P. N. “Understanding and 
Controlling Software Costs.” IEEE Transactions on Software 
Engineering SE-4, 10 (October 1988): 1462–77.

[2] McConnell, Steve. “From the Editor - An Ounce of 
Prevention.” IEEE Software 18, 3 (May 2001): 5–7.

[3] Meftah, B. “Business Software Assurance: Identifying and 
Reducing Software Risk in the Enterprise.” https://buildsecuri-
tyin.us-cert.gov/swa/downloads/Meftah.pdf

[4] Jones, C., ed. Tutorial: Programming Productivity: Issues 
for the Eighties, 2nd Ed. IEEE Computer Society Press, 1986.

[5] Wiegers, K. E. “Inspecting Requirements” (column). 
StickyMinds, July 30, 2001. http://www.stickyminds.com

[6] Leffingwell, D. & Widrig. D. Managing Software 
Requirements–A Use Case Approach, 2nd ed. Addison-Wesley, 
2003.

[7] National Institute of Standards and Technology. “Software 
Errors Cost U.S. Economy $59.5 Billion Annually” (NIST 
2002-10). http://www.nist.gov/public_affairs/releases/n02-10.
htm (2002).

[8] Mead, N. R., Hough, E., & Stehney, T. Security Quality 
Requirements Engineering (SQUARE) Methodology (CMU/
SEI-2005-TR-009). Software Engineering Institute, Carnegie 
Mellon University, 2005. http://www.sei.cmu.edu/publications/
documents/05.reports/05tr009.html

[9] Software Engineering Institute. Build Security In. https://
buildsecurityin.us-cert.gov/ (2009).

[10] Mead, N. R., Davis, N., Dougherty, C., & Mead, R. Ch. 8, 
“Recommended Practices,” 275–308. Secure Coding in C and 
C++, Robert Seacord. Addison Wesley Professional, 2005.

[11] Mead, N. R. Ch. 3, “Identifying Security Requirements 
Using the SQUARE Method,” 44–69. Integrating Security 
and Software Engineering: Advances and Future Visions 
H. Mouratidis & P. Giorgini. Idea Group, 2006 (ISBN: 
1-59904-147-2).

[12] Allen, J., Barnum, S., Ellison, R., McGraw, G., & Mead, 
N. R. Software Security Engineering: A Guide for Project 
Managers. Addison-Wesley Professional, 2008 (ISBN-13: 
978-0-321-50917-8).

[13] Abu-Nimeh, S., Miyazaki, S., & Mead, N. R. “Integrating 
Privacy Requirements into Security Requirements Engineering, 
542–547. Proceedings of the 21st International Conference on 
Software Engineering and Knowledge Engineering (SEKE). 
Boston, MA, July 1–3, 2009. IEEE Computer Society, 2009.

[14] Mead, N. R. & Yoshioka, N. “Square Up Your Security 
Requirements Engineering with SQUARE.” Information 
Processing Society of Japan (IPSJ) Journal (invited) 50, 3 
(March 2009). 

[15] Miyazaki, S., Mead, N. R., & Zhan, J. “Computer-
Aided Privacy Requirements Elicitation Technique,” 367–
372. Proceedings of the 2008 IEEE Asia-Pacific Services 
Computing Conference (APSCC). Yilan, Taiwan, December 
9–12, 2008. IEEE Computer Society, 2009.



51

Table 1: Security Requirements Elicitation and Analysis Process

Step Input Techniques Participants Output

1 Agree on definitions Candidate 
definitions from 
IEEE and other 
standards

Structured interviews, 
focus group

Stakeholders, 
requirements 
team

Agreed-to definitions

2 Identify assets and 
security goals

Definitions, 
candidate goals, 
business drivers, 
policies and 
procedures, 
examples

Facilitated work session, 
surveys, interviews

Stakeholders, 
requirements 
engineer

Assets and goals

3 Develop artifacts 
to support security 
requirements 
definition

Potential artifacts 
(e .g ., scenarios, 
misuse cases, 
templates, forms)

Work session Requirements 
engineer

Needed artifacts: 
scenarios, misuse 
cases, models, 
templates, forms

4 Perform risk 
assessment

Misuse cases, 
scenarios, security 
goals

Risk assessment 
method, analysis of 
anticipated risk against 
organizational risk 
tolerance, including 
threat analysis

Requirements 
engineer, 
risk expert, 
stakeholders

Risk assessment 
results

5 Select elicitation 
techniques

Goals, definitions, 
candidate 
techniques, 
expertise of 
stakeholders, 
organizational style, 
culture, level of 
security needed, 
cost benefit 
analysis, etc .

Work session Requirements 
engineer

Selected elicitation 
techniques

6 Elicit security 
requirements

Artifacts, risk 
assessment results, 
selected techniques

Joint Application 
Development (JAD), 
interviews, surveys, 
model-based analysis, 
checklists, lists of 
reusable requirements 
types, document 
reviews

Stakeholders 
facilitated by 
requirements 
engineer

Initial cut at security 
requirements

7 Categorize 
requirements as 
to level (system, 
software, etc .) and 
whether they are 
requirements or other 
kinds of constraints

Initial requirements, 
architecture

Work session using 
a standard set of 
categories

Requirements 
engineer, other 
specialists as 
needed

Categorized 
requirements

8 Prioritize 
requirements

Categorized 
requirements and 
risk assessment 
results

Prioritization methods 
such as Triage, Win-Win

Stakeholders 
facilitated by 
requirements 
engineer

Prioritized 
requirements

9 Inspect requirements Prioritized 
requirements, 
candidate formal 
inspection 
technique

Inspection method such 
as Fagan, peer reviews

Inspection team Initial selected 
requirements, 
documentation of 
decision making 
process and 
rationale

S
q

u
A

r
E:

 r
Eq

u
ir

EM
En

tS
 E

n
g

in
EE

r
in

g
 F

o
r

  i
M

P
r

o
v

Ed
 S

y
S

tE
M

 S
EC

u
r

it
y



Additional Research 



53

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Advanced Technology for Test & 
Evaluation of Embedded Systems 
Timothy Daly and Richard Linger

Embedded system test and evaluation (T&E) can consume 
substantial resources in system development and evolution. 
Yet despite significant expenditures of time and effort, T&E 
can nevertheless produce inconclusive results, and it is well 
known that even thoroughly tested software can experience 
errors and vulnerabilities in field use. Software systems can 
exhibit massive numbers of possible execution paths, and no 
testing effort, no matter how well planned and funded, can 
exercise more than a small fraction of them. The need for 
more effective validation of system functionality across the 
life cycle is discussed in the report of the Defense Science 
Board (DSB) Task Force on Defense Software [1]: 

“Support for assurance and certification is a critical area that 
needs to be addressed proactively during each step of the 
development process. After-the-fact or post-mortem com-
plete assurance and certification methods, needed after every 
change, are very expensive, and can involve rediscovery of 
the design decisions made in the development process. While 
there is certainly a key place for independent testing and 
certification methods, the earlier that support for assurance 
and certification is introduced into the development process, 
the lower the costs.” 

Test and evaluation of embedded systems can be particu-
larly difficult because of the frequent need for specialized 
hardware environments and test interfaces. This exploratory 
project is investigating the possibility of applying advanced 
technology for a new approach to embedded system T&E. It 
involves a new form of automated software analysis that may 
permit reduction or replacement of certain types of testing. 

The foundation for this work is CERT-developed Function 
Extraction (FX) technology [2]. The objective of FX is to 
automate computation of software behavior with mathemati-
cal precision to the maximum extent possible. Initial work 
relating FX to T&E [3, 4] suggests that the technology can 
support software verification and assurance, and may reduce 
or replace certain forms of testing, most notably functional 
testing at the unit and component level. Of particular interest 
is exploration of the technology for T&E in applications such 
as avionics, space, and weapons systems, where assurance of 
functional behavior and detection of malicious content are 
essential. This approach may permit T&E to expand beyond 
an end-of-life-cycle role, to address earlier phases where cor-
rections can require fewer resources and carry less risk. 

The FX approach does not require selecting specific execu-
tions among so many possibilities as is the case in testing. 
Behavior computation can uncover errors, vulnerabilities, 
and malicious content that may not be found in testing, sim-
ply because the specific combinations of conditions for their 
execution may not be exercised. The key observation is that 

if software behavior is known, functional testing may provide 
little additional information, and can be reduced or in some 
cases even eliminated. Other forms of testing will still be 
required, for example, performance and integration testing, 
but substantial savings may be possible at the functional test-
ing level.

Figure 1 depicts differences in the testing and behavior 
computation approaches. The flow on the left depicts a 
program subjected to traditional testing. Because programs 
typically exhibit very large populations of possible execu-
tions, as a practical matter only a small fraction of them can 
be exercised in the testing process. This partial coverage 
is illustrated by the yellow population of executions that is 
not addressed by the black dots representing individual test 
cases. The flow on the right depicts behavior computation, 
which produces results not from selective program execution 
as in testing, but rather from comprehensive static analysis 
to determine program behavior. This analysis computes all 
possible behavior and expresses it in a set of disjointed parti-
tions which define and cover the green behavior space in the 
Figure. Each partition is defined by a predicate, which, if true 
on input to the program, results in transformation of the input 
state into the output state through a set of concurrent assign-
ments associated with that partition. These results can be 
analyzed for conformance to requirements and specifications, 
and to investigate whether malicious content or corrupted 
functionality is present.

This project will explore potential savings in testing resourc-
es and improvement in software quality through application 
of behavior computation technology. 

References
[1] Hansen, M. and Nesbit, R., Report of the Defense Science 
Board Task Force on Defense Software, Defense Science 
Board, Wshing, DC, Nov. 2000.

[2] Linger, R., Pleszkoch, M., Burns, L., Hevner, A., and 
Walton, G. (2007). “Next-Generation Software Engineering: 
Function Extraction for Computation of Software Behavior,” 
Proceedings of the 40th Annual Hawaii International 
Conference on System Sciences (HICSS40), Hawaii, IEEE 
Computer Society Press, Los Alamitos, CA.

[3]Linger, R., Pleszkoch, M., and Hevner, R., “Introducing 
Function Extraction into Software Testing,” The Data Base 
for Advances in Information Systems: Special Issue on 
Software Systems Testing, ACM SIGMIS, New York, NY, 
2008. 

[4] Bartholomew, R., Burns, L., Daly, T., Linger, R., and 
Prowell, S., “Function Extraction: Automated Behavior 
Computation for Aerospace Software Verification and 
Certification,” Proceedings of 2007 AIAA Aerospace 
Conference, Monterey, CA, May, 2007, Vol. 3, pp. 
2145-2153. 



54

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Advanced Technology for Test & Evaluation of Embedded 
Systems , continued

Program Program

Population of possible program executions:

Dots are test cases, yellow is untested 

executions

Population of possible program behaviors:

Disjoint partitions are computed behavior cases 

that cover the entire population

Testing
Behavior

computation

Program Program

Population of possible program executions:

Dots are test cases, yellow is untested 

executions

Population of possible program behaviors:

Disjoint partitions are computed behavior cases 

that cover the entire population

Testing
Behavior

computation

Figure 1: Comparison of Testing and Behavior 
Computation for T&E

Automatic Generation of Hidden Markov 
Models for the Detection of Polymorphic 
and Metamorphic Malware
Mark Pleszkoch, Cory F. Cohen, and Timothy Daly 

As of July 2009, the CERT Artifact Catalog contained 
nearly 7 million executable files. Accurate identification 
and classification of these malware artifacts is essential for 
gaining intellectual control over the contents of the catalog. 
Additionally, many subsequent analysis activities performed 
by CERT are critically dependant on accurate malware iden-
tification and classification. Such activities include malware 
trend analysis (time-evolution of the quantity and distribu-
tion of malware varieties) and large-scale analysis of specific 
malware families (overall analysis of an entire group or fam-
ily of malware). Since CERT stakeholders require malware 
trending information to support strategic planning, accuracy 
in carrying out these activities is essential. 

Over half a dozen existing anti-virus products are regularly 
run over the contents of the CERT artifact catalog. However, 
these anti-virus products are unable to meet the need of ac-
curately classifying executable malware artifacts for several 
reasons, chief among them being the frequency with which 
they yield different and conflicting classifications. This is 
likely due to several factors, including use of different tech-
niques and criteria for malware detection, coupled with the 
fact that malware classification is a secondary concern for 
those products, which are primarily focused on separation of 
malicious from non-malicious code.

Because of this, CERT researchers developed the Pithos tool 
[1] to cluster and classify malware artifacts based solely on 
their entry point sequence, that is, the first 100 bytes of code 
or data starting from the entry point. Pithos works extremely 
well in identifying most malware families, but performs sub-
optimally on polymorphic and metamorphic malware. Such 
malware is constructed from the output of a code generation 
engine that randomly produces varying Intel code sequences 
to accomplish the same desired behavior. Because of this, 
Pithos signatures, which match specific bytes (or parts of 
bytes) at specific offsets, are only created when the same 
unique sequence of bytes is generated at the same offset in 
enough different instances of the polymorphic or metamor-
phic malware to reach the Pithos signature creation threshold.

To address this problem, CERT researchers first investigated 
the Allaple polymorphic malware family, which accounts 
for over 3% of the entries in the artifact catalog. Instances of 
Allaple are surrounded by two layers of polymorphic pack-
ing, so that the bytes at the outer layer have both randomized 
instructions and randomized data. This makes detection 
of Allaple more difficult, and helps explain why Allaple is 
so prevalent in the artifact catalog. However, by examin-
ing known instances of Allaple, it was possible to develop 
a state machine model of Allaple’s code generation engine. 
An Allaple detector was then implemented by using the state 



55

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

machine model as a pattern against which to match the entry 
point sequences of prospective artifacts. This detector proved 
to be highly accurate, exhibiting the ability to correctly iden-
tify instances of Allaple after examining only 25 bytes of the 
entry point sequence. More importantly, Pithos performed 
even better on the remaining collection of artifacts after all 
the Allaple instances were first removed.

The results of the Allaple investigation indicated that mal-
ware identification for the artifact catalog would significantly 
benefit from application of state machine models for each of 
the known polymorphic and metamorphic malware families. 
However, due to the effort required to construct the Allaple 
state machine model, and the number and size of the other 
polymorphic and metamorphic malware families (perhaps 
a hundred families, each with only a few thousand artifacts, 
as contrasted with hundreds of thousands of artifacts for the 
Allaple family), it is not feasible to construct a state machine 
model for each family by hand, and automation of this task is 
clearly required. 

The problem of reconstructing a model from samples of its 
output is called inductive inference. There are many ap-
proaches to inductive inference, each with its own applica-
tion area. A promising approach to the polymorphic and 
metamorphic malware problem can be found in the Hidden 
Markov Model (HMM) induction framework of Andreas 
Stolcke and Stephen Omohundro [2,3,4], originally devel-
oped for speech recognition. This work does not directly 
provide a specific algorithm for automatically creating 
state machine detectors for polymorphic and metamorphic 
malware. Rather, it defines solid mathematical foundations 
and a generalized framework for understanding tradeoffs in 
the many decisions required to proceed from the Stolcke and 
Omohundro framework to a specific mathematical and then 
algorithmic solution. 

The objective of this research project is to adapt, extend, 
and apply the HMM induction framework of Stolcke 
and Omohundro to address the problem of automatically 
constructing state machine models for polymorphic and 
metamorphic malware. This work involves four phases: 
(1) validating their research findings; (2) specializing their 
framework to address the particular problem domain of poly-
morphic and metamorphic malware over the Intel instruction 
set; (3) extending their algorithms to handle the unique chal-
lenges present in this problem domain; and (4) implementing 
tools based on the research results from the previous phases 
and deploying them over the entire CERT artifact catalog, 
thereby reaping the benefits of substantially improved mal-
ware identification and classification. 

The success of this research will be based on the number of 
polymorphic and metamorphic malware artifacts that are 
correctly identified by the HMM-based detectors produced 
during the final phase of the project. Another important fac-
tor will be the extent to which construction of HMM-based 
detectors can be made automatic, requiring little or no human 

intervention or supervision. Due to both the complicated 
nature of the Allaple polymorphic malware family and the 
large amount of data from the many Allaple instances, auto-
matic construction of the Allaple state machine model would 
represent a significant research breakthrough. 

References 
[1] Cohen, C. and Havrilla, J., “Malware Clustering Based 
on Entry Points,” 2008 CERT Research Annual Report, 
Software Engineering Institute, Carnegie Mellon University 
Pittsburgh, PA.. 

[2] Stolcke, A. and Omohundro, S., “Hidden Markov Model 
Induction by Bayesian Model Merging,” Advances in Neural 
Information Processing Systems 5, eds. S. J. Hanson, J. D. 
Cowan, and C. L. Giles, pp. 11-18, Morgan Kaufmann, 1993. 

[3] Best-first Model Merging for Hidden Markov Model 
Induction, Technical Report TR-94-003, International 
Computer Science Institute, Berkeley, CA, revised April 
1994. 

[4] Stolcke, A. and Omohundro, Model Merging for Hidden 
Markov Model Induction, NEC Research Institute, Inc. 
Technical Report, 1996. 



56

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Baselining Port-Specific Scanning 
Behavior
Rhiannon Weaver 

The incident of a new large-scale exploit or worm targeting a 
particular port can be preceded by a gradual increase in scan 
activity on that port. But there has been little study in typical 
behavior of scanners that does not lead to an outbreak. How 
long-lived are scans? How much variation is there in the number 
of IP addresses scanning a particular port, and in the number of 
hosts each address scans? In the new era of botnets and proxy 
networks, it is not immediately clear that a large increase in 
scanners represents a universal growth in interest on that port. In 
this research, we wish to examine port-specific scanning activity 
in order to illuminate some trends about how and why activity 
changes. This information can be used to help refine data collec-
tion and thresholds for port-specific scan activity, with the goal 
of reducing false positive alarms.

We used the combined Thresholded Random Walk and 
MISSILE algorithms, built into the SiLK rwscan tool, to flag 
scanners. In six-hour intervals over a period of November 1 
through December 31, 2008, we recorded the number of unique 
source IP addresses scanning a large network, as well as a sum-
mary of the number of unique destination addresses scanned per 
source IP address. These time series were recorded for each of 
the 65536 unique ports. As a first step to find surging ports, we 
performed linear regressions of unique source IP (log-scaled) 
over time, and ranked ports by the steepness (either increasing 
or decreasing) of the resulting slope estimate. Figure 1 shows 
some examples of highly ranked ports, plotted on a log scale. 

In the case exemplified by port 16340, the volume of unique 
scanners increases gradually over time, as hypothesized would 
occur with a vulnerability announcement. However in other 
cases, such as ports 8443 and 7193, the number of scanning IP 
addresses increases rapidly by orders of magnitude. Rather than 
a continued increase, the high-volume activity stabilizes, often 
over a period of weeks or months. Rapid declines, as exempli-
fied by port 5579, are also evident. We hypothesize that this 
activity pattern is due to botnets. The colors of the points repre-
sent the number of addresses scanned by the majority of source 
IP addresses, with green indicating few addresses scanned per 
source, and redder colors indicating higher numbers. Only in 
the case of port 8443, during the week of November 17th, does 
it appear that incoming sources also scan large parts of the 
internal network. 

This kind of botnet activity can lead to false positives in an 
alerting system looking for new port-based vulnerabilities; 
none of these incidents were associated with an outbreak. We 
hypothesize that scanning would not only increase, but that 
scanners would become bolder in scope, targeting larger areas 
for scanning of the vulnerable port, as opposed to targeted surgi-
cal attacks. In future research we plan to study the use of both 
unique scanning sources and the number of destination address-
es scanned, in order to help pinpoint port-based vulnerabilities 
and to predict outbreaks more accurately. 

11/07

10
10

0

U
n

iq
 s

lP

10
00

11/17 11/27

Time

Port 16340 Port 8443

Port 7193 Port 5579

12/07 12/17 12/27

11/07

10
10

0

U
n

iq
 s

lP

10
00

11/17 11/27

Time

12/07 12/17 12/27 11/07

10
10

0U
n

iq
 s

lP

10
00

11/17 11/27

Time

12/07 12/17 12/27

11/07

10
10

0

U
n

iq
 s

lP

10
00

10
00

0

11/17 11/27

Time

12/07 12/17 12/27

Figure 1: Volume of unique sources scanning several 
different ports

11/07

10
10

0

U
n

iq
 s

lP

10
00

11/17 11/27

Time

Port 16340 Port 8443

Port 7193 Port 5579

12/07 12/17 12/27

11/07

10
10

0

U
n

iq
 s

lP

10
00

11/17 11/27

Time

12/07 12/17 12/27 11/07

10
10

0U
n

iq
 s

lP

10
00

11/17 11/27

Time

12/07 12/17 12/27

11/07

10
10

0

U
n

iq
 s

lP

10
00

10
00

0

11/17 11/27

Time

12/07 12/17 12/27



57

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Building Assured Systems Framework 
(BASF)
Nancy R. Mead and Julia Allen

Problem Statement
There is no single, recognized framework to organize 
research and practice areas focused on building assured sys-
tems (BAS). If we had such a framework, sponsors could use 
it to show how research and development in the BAS area 
fits into the big picture. It could also demonstrate how CERT 
research efforts fit into the BASF. 

Background on Assured Systems
The following items from CERT’s internal research planning 
all in some way address the problem of BAS. Note that these 
items exhibit varying levels of maturity, and use differing 
terminology, but they all support this topic.

Engineering Resilient Systems – encompasses secure 
software engineering as well as requirements engineering, 
architecture, and design of secure systems and large systems 
of systems. 

Containment – focuses on the problem of how to monitor 
and detect a component’s behavior to contain and isolate the 
effect of aberrant behavior while still being able to recover 
from a false assumption of bad behavior. 

Architecting Secure Systems – defines the necessary and ap-
propriate design artifacts, quality attributes, and appropriate 
tradeoff considerations that describe how security properties 
are positioned, how they relate to the overall system/IT archi-
tecture, and how security quality attributes are measured.

Secure Software Engineering (secure coding, software 
engineering, and hardware design improvement) – improves 
the way software and hardware are developed by reduc-
ing vulnerabilities from software and hardware flaws. This 
work includes technology life-cycle assurance mechanisms, 
advanced engineering disciplines, standards and certification 
regimes, and best practices. The research areas it focuses on 
include refining current assurance mechanisms and devel-
oping new ones where necessary, developing certification 
regimes, and exploring policy and incentive options.

Secure software engineering encompasses a range of activi-
ties targeting security. Software Security Engineering: A 
Guide for Project Managers [1] presents a valuable discus-
sion of these topics. In varying levels of detail, the book 
examines the spectrum of the appropriate activities: 
• requirements Engineering for Secure Software 
• secure Architecture and Design
• secure Coding and Testing
• security and Complexity: System Assembly Challenges
• governance and Managing for More Secure Software

However, the discussion of these topics in Software Security 
Engineering: A Guide for Project Managers does not 
preclude additional research. In fact, several are the focus 

of CERT’s current research projects: security requirements 
engineering, secure coding, governance and management, and 
systems complexity. 

Current State of the Practice
Some organizations have begun to pay more attention to BAS, 
including Microsoft SDL [2], other SAFECode consortium 
members [3], and Oracle. These efforts tend to be stronger in 
vendor organizations. However, they are weaker in large orga-
nizations developing systems for use in-house and integrating 
across multiple vendors. They are also weaker in small- to 
medium-size companies developing products for licensed use. 
Furthermore, there are a variety of life-cycle models in prac-
tice—no single approach has emerged as standard. Even in 
the larger organizations adopting secure software engineering 
practices, there is a tendency to select a subset of the total set 
of recommended or applicable practices. Such uneven adop-
tion of BAS suggests the need for ways to measure results.

Approach
In the literature, we typically see life-cycle models or ap-
proaches that serve as umbrellas, some of which have been 
discussed in the book Software Security Engineering: A Guide 
for Project Managers as well as in the article “Software [In]
security: A Software Security Framework: Working Towards 
a Realistic Maturity Model” by Gary McGraw and Brian 
Chess[4].

The research has started with a review of existing frameworks 
and lifecycle models for BAS. This activity will be followed by 
development of a framework that would serve as an umbrella 
for research into how to build assured systems. We anticipate 
that this framework would initially be reviewed internally 
and later on externally. It does not need to be elaborate or 
lengthy—simplicity is highly desirable. 

The expected output is a report describing the BASF and 
showing the placement of current related research activi-
ties within CERT, the SEI, and elsewhere. This report could 
be used in our research planning, our communications with 
others, and also in the CERT Research Annual Report. We 
expect that the DoD and other sponsors would find it useful for 
tracking current R&D efforts in BAS, and possibly in acquir-
ing assured systems.

References
[1] Allen, J., Barnum, S., Ellison, R., McGraw, G., and Mead, 
N. R. Software Security Engineering: A Guide for Project 
Managers. Addison-Wesley Professional, 2008 (ISBN-13: 
978-0-321-50917-8).

[2] Lipner, S. and Howard M. “The Trustworthy Computing 
Security Development Lifecycle.” March 2005. http://msdn.
microsoft.com/en-us/library/ms995349.aspx

[3] http://www.safecode.org

 [4] McGraw, C. and Chess, B. “Software [In]security: A 
Software Security Framework: Working Towards a Realistic 
Maturity Model.” InformIT. October 15, 200. http://www.
informit.com/articles/article.aspx?p=1271382 . 



58

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Control System Security and Critical
Infrastructure Survivability
Howard F. Lipson 

The complex control systems and devices that automate 
operation of society’s critical infrastructures, including the 
electric power grid, transportation, oil and natural gas, chemi-
cal plants, and manufacturing and industrial processes, are 
increasingly Internet-connected. Clearly, there are significant 
economic benefits and efficiency gains for both vendors and 
utilities for using common Internet-based technologies, built 
on open Ethernet networking protocols, as the foundation 
for constructing control system networks and devices. These 
economic benefits accrue even if such control devices are 
used solely on private local area networks. Moreover, these 
open designs allow for the mass production of commercial-
off-the-shelf (COTS) control system products that can be 
used throughout and across industry segments. While this 
high degree of open-standards-based connectivity brings 
benefits, it is accompanied by growing risks of targeted cyber 
attacks that could result in economic and societal conse-
quences of substantial proportions. These attacks are literally 
enabled by common software vulnerabilities and the inherent 
susceptibility of networked systems to malicious access.

For example, the Internet and its enabling technologies are 
playing an increasing role in electric power systems, improv-
ing the efficiency and sophistication of business and techni-
cal operations. However, Internet connectivity also introduc-
es significant new risks to the power grid’s automated control 
systems and hence to the power grid itself. Moreover, the 
scientific and engineering foundations for secure and surviv-
able system design must be substantially extended to address 
the scope and complexity of the sophisticated forms of con-
trol envisioned for next-generation energy systems. Equally 
important is the need for technology guidelines to ensure that 
engineering best practices are consistently employed during 
system design, acquisition, development, integration, and 
evolution.

By undertaking the development, procurement, and deploy-
ment of Advanced Metering Infrastructure (AMI) devices 
and communications networks, the electricity industry is tak-
ing the earliest evolutionary steps necessary for realizing the 
ultimate vision and benefits of smart grid technology. As cur-
rently envisioned, smart grid services promise unprecedented 
levels of automation, situational awareness, efficiency, and 
fine-grained control of the generation, transmission, delivery, 
and use of electric power. During FY 2009, members of the 
Software Engineering Institute from CERT and the Research, 
Technology, and System Solutions (RTSS) program con-
tributed expert advice and ongoing support to the Advanced 
Metering Infrastructure Security (AMI-SEC) Task Force [1] 
of the Smart Grid Security (SG Security) Working Group [2], 
organized under the Open Smart Grid Subcommittee of the 
UCA International Users Group. The AMI-SEC Task Force 
“is charged with developing security guidelines, recom-

mendations, and best practices for AMI system elements” 
for the benefit of end-users (i.e., utilities) and vendors of 
AMI technology. In particular, SEI staff participated in the 
task force’s AMI Security Acceleration Project (ASAP) and 
helped to co-author an AMI System Security Requirements 
document [3], which was ratified by the utility members of 
the AMI-SEC Task Force and was a “first-of-its-kind” for the 
utility industry. 

SEI staff members continued to make extensive contribu-
tions to a new project under the SG Security Working Group, 
called the Advanced Security Acceleration Project for the 
Smart Grid (ASAP-SG). ASAP-SG encompasses not only 
further elaboration and improvement of recommended secu-
rity controls for developing and procuring AMI systems and 
devices, but is also beginning to extend security guidance 
into other emerging areas of smart grid functionality. As part 
of the ASAP-SG team, SEI staff members collaborated with 
other members from EnerNex, Southern California Edison, 
Consumers Energy, InGuardians, and Oak Ridge National 
Laboratory to co-author key deliverables for the SG Security 
Working Group. The ASAP-SG team has drafted a Security 
Profile for Advanced Metering Infrastructure document [4] 
which contains recommended security controls that have 
been tailored for use with AMI systems. Also under develop-
ment by the ASAP-SG team is a Security Profile Blueprint 
which will assist domain experts in creating or customizing 
“security profiles” for major classes of smart grid business 
functions. An overview document that describes the strate-
gies and guiding principles used in the creation of security 
guidelines is being drafted, with SEI staff members as the 
primary authors.

The ASAP-SG team, including SEI staff, also collabo-
rated with and contributed to the efforts of the National 
Institute of Standards and Technology (NIST) Cyber 
Security Coordination Task Group (CSCTG) [5]. The NIST 
CSCTG was formed to “address the cyber security aspects 
of the Smart Grid Interoperability Framework.” Much of 
the content of the Security Profile for Advanced Metering 
Infrastructure drafted by the ASAP-SG team was incorpo-
rated by the CSCTG into a draft NIST interagency report, 
Smart Grid Cyber Security Strategy and Requirements [6], 
released in September 2009.

In other related activities, CERT contributed cyber security 
requirements language as part of the merit review criteria for 
the Department of Energy’s Smart Grid Investment Grants 
Program (under the American Recovery and Reinvestment 
Act). As has been the case since 2006, CERT has continued 
to extend its efforts in vulnerability analysis and remediation 
to include control system networks and devices. A member 
of CERT also serves as an adjunct research faculty member 
at the Carnegie Mellon Electricity Industry Center.

CERT plans to continue to expand its operational and re-
search focus on control system security engineering and criti-
cal infrastructure survivability in 2010. A primary goal is to 
use lessons learned from incident and vulnerability analysis 



59

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

to contribute to the creation and enhancement of software 
engineering methods and best practices for secure and surviv-
able control system development, operation, and assurance. 
Another major objective is to continue to raise vendor and util-
ity awareness of engineering best practices for control system 
security and survivability, which includes plans for further SEI 
contributions to the ASAP-SG team, the SG Security Working 
Group, and the NIST smart grid cyber security efforts 
throughout 2010.

References
[1] http://osgug.ucaiug.org/utilisec/amisec/default.aspx

[2] The SG Security Working Group is also known as the 
Utility Security (UtiliSec) Working Group.

[3] AMI System Security Requirements, Version 1.01. 
Advanced Metering Infrastructure (AMI) Security 
Acceleration Project (UCAIUG: AMI-SEC-ASAP), December 
17, 2008. http://osgug.ucaiug.org/utilisec/amisec/Shared%20
Documents/1.%20System%20Security%20Requirements/
AMI%20System%20Security%20Requirements%20-%20
v1_01%20-%20Final.doc 

[4] Security Profile for Advanced Metering Infrastructure, 
Draft Version 0.46. Prepared for the UtiliSec Working Group 
(UCAIug) and the NIST Cyber Security Coordination Task 
Group by the Advanced Security Acceleration Project for the 
Smart Grid (ASAP-SG), September 18, 2009. http://osgug.
ucaiug.org/utilisec/amisec/Shared%20Documents/Forms/
AllItems.aspx?RootFolder=%2futilisec%2famisec%2fSh
ared%20Documents%2fAMI%20Security%20Profile%20
%28ASAP-SG%29&FolderCTID=&View={7B63C81F-617F-
4FC1-AFCB-8404B6B6B0A7} 

[5] The NIST CSCTG is transitioning to the Smart Grid 
Interoperability Panel Cyber Security Working Group  
(SGIP-CSWG). http://collaborate.nist.gov/twiki-sggrid/bin/
view/SmartGrid/CyberSecurityCTG

[6] Smart Grid Cyber Security Strategy and Requirements, 
Draft NIST Interagency Report 7628, The Cyber Security 
Coordination Task Group (Annabelle Lee, Lead; Tanya 
Brewer, Editor) and Advanced Security Acceleration Project 
- Smart Grid, September 2009. http://collaborate.nist.gov/
twiki-sggrid/bin/view/SmartGrid/NISTIR7628Sep252009



60

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Cyber Assurance
Christopher Alberts, Robert J. Ellison, and  
Carol Woody

Project Description
Cyber assurance is the justified confidence that networked 
systems are adequately secure to meet operational needs, 
even in the presence of attacks, failures, accidents, and 
unexpected events. This requires appropriate consideration of 
operational security across all aspects of acquisition, devel-
opment and deployment, and operations and sustainment.

Existing assurance approaches are primarily single system, 
single organization focused. With the highly interconnected, 
complex environments in use today, effective cyber assur-
ance must be addressed across multi-program acquisitions, 
through the supply chains, and among operational environ-
ments that span multiple organizations.

In addition, security considerations are typically handled 
by experts operating outside of the normal acquisition and 
development workflow addressing certification and accredita-
tion activities. Instead, cyber assurance must be effectively 
fused with day-to-day acquisition, development, and opera-
tional activities and not viewed as separate add-on actions. 

In order to assure the operational security characteristics of 
networked systems, appropriate methods and metrics for 
managing and monitoring are critical. 

Decisions impacting security are made at multiple levels of 
the organization as well as across the acquisition life cycle, 
but there is not an effective means of bridging among the 
range of stakeholders, which can include program manage-
ment, architects, system and software engineers, implemen-
tation support, security specialists, operational management, 
and operational support. An integrated decision-making 

framework is needed that can link a management perspective 
with the detailed technical and operational realities so that 
the impact of decisions made at each level can be determined 
and appropriately evaluated. For example, this integrated 
view would allow cost and schedule options to be evaluated 
against the operational security risk.

Research tasks will include
•  development of assessment techniques for cyber assurance 

in multi-system, multi-enterprise environments
•  establishing an integrated decision-making framework
•  building best practices for cyber assurance relative to 

acquisition, development and deployment, and operations 
and sustainment

•  identification and use of metrics to monitor and manage 
cyber assurance

•  approaches for using modeling and simulation to analyze 
and improve cyber assurance 

References
Ellison, R., Goodenough, J., Weinstock, C., and Woody, C. 
Survivability Assurance for Systems of Systems, Software 
Engineering Institute, Carnegie Mellon University, CMU/
SEI-2008-TR-008, http://www.sei.cmu.edu/publications/
documents/08.reports/08tr008.html 

Alberts, C., Smith II, J., and Woody, C. Multi-view Decision 
Making (MVDM) Workshop, Software Engineering 
Institute, Carnegie Mellon University, CMU/SEI-2008-
SR-035, http://www.sei.cmu.edu/publications/documents/08.
reports/08sr035.html 

Alberts, C., Woody, C., “Consider Operational Security Risk 
During System Development” published in IEEE Security & 
Privacy January/February 2007



61

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Cyber Security Risk Assessment in the 
Bulk Electric System
Samuel A. Merrell and James F. Stevens

The ability of the United States’ electricity infrastructure 
to deliver power reliably when and where it is needed is 
a significant component of both of its continued prosper-
ity and national security. The electricity infrastructure in 
the U.S. consists of three primary components: generation, 
transmission, and distribution. The generation and transmis-
sion components together make up the Bulk Electric System 
(BES) [1]. As a highly interconnected and interdependent 
system, the BES requires an approach to risk assessment that 
accounts for the reliability and operability requirements of 
individual organizations and of the system as a whole. Unless 
a risk assessment is able to identify and consistently value 
shared risks, it is not possible to ensure that organizations are 
taking actions that are in the best interests of grid reliability. 

To address this need, the CERT Program developed the 
OCTAVE BES method, a cyber security risk assessment ap-
proach specifically tailored for the functions that ensure the 
safe and reliable generation and transmission of electricity. 
CERT has a rich history in developing successful structured 
risk assessments for the purposes of cyber security manage-
ment. These include the OCTAVE Method, OCTAVE-S, and 
most recently OCTAVE Allegro. These assessments serve 
specific audiences but share a fundamental structural founda-
tion. All of them have been effective in assisting organiza-
tions in identifying their cyber security risks and in support-
ing the development of risk mitigation plans.

OCTAVE BES leverages the fundamental approach to cyber 
risk assessment that has proven to be successful with the 
other OCTAVE methods, but provides a tailored methodol-
ogy to suit the needs of the organizations that comprise 
the sector and focuses on BES reliability and operability. 
OCTAVE BES defines a process to support the identification 
and assessment of cyber risks to the BES. It facilitates an 
organization’s ability to internalize resiliency requirements 
of the BES, and encourages uniform risk assessment and risk 
management across the BES.

There are eight steps in the OCTAVE BES method as shown 
in Figure 1. The process begins with the selection and profil-
ing of a BES function to assess and concludes with a collec-
tion of risk statements. These risk statements are a view of 
the current risk environment for a given BES function.

OCTAVE BES is being developed in conjunction with own-
ers and operators of BES assets. Working directly with sector 
members to develop OCTAVE BES will provide a number of 
benefits for the assessment methodology that will allow it to 
be more likely to be

Figure 1: An overview of OCTAVE BES

•  readily applicable to the BES
•  applied correctly
•  accepted by the sector members that will be using it

In addition to working directly with the owners and opera-
tors of BES assets, efforts were made to align OCTAVE BES 
with current and emerging NERC CIP standards and guid-
ance wherever possible. This will, hopefully, ensure that the 
method will support compliance efforts while also facilitat-
ing the ability of BES organizations to manage their cyber 
security risks effectively and efficiently. 

An initial pilot of the OCTAVE BES method was conducted 
in August 2009. The piloting process began with simply 
identifying a candidate BES function to assess. The func-
tion of Electricity Transmission Control was selected as it 
is conceptually and operationally straightforward—a master 
SCADA system gathers information and issues commands to 
relays in the field. Selection of a straightforward function was 
purposeful for this initial piloting activity because it allowed 
staff from both the SEI and the pilot organization to focus on 
the assessment process and not on explaining and under-
standing details about the mechanics of a more complex BES 
reliability function. 

The initial piloting activities have demonstrated the effec-
tiveness and usability of the OCTAVE BES, but additional 
research and development is required. Two of the highest 
priority tasks for this coming year are to continue to refine 
the guidance and supporting materials so that individual or-
ganizations can conduct assessments without expert facilita-
tion and to perform additional pilots on more complex BES 
functions and organizations to determine if the method scales 
and to improve its overall performance.

References
[1] NERC defines the Bulk Electric System as generation re-
sources, transmission lines, interconnections with neighbor-
ing systems, and associated equipment, generally operated at 
voltages of 100 kV or higher.

 

Step 1:
Pro�le BES function

Step 3:
Pro�le associated 
critical cyber systems

Step 8:
Develop risk statement

Step 4:
Identify current 
control environment

Step 2:
De�ne impact 
evaluation criteria

Step 7:
Analyze risks

Step 6:
Identify risks

Step 5:
Identify threat
environment



62

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Influencing National Capability 
Development in Cyber Security through 
Incentives
Bradford Willke and Samuel A. Merrell

The development of a national capability for cyber security is 
lacking throughout the majority of the nations of the world. 
Of the 194 nations recognized by the U.S. Department of 
State, less than 90 have a formal, established organization 
that is capable of responding to a computer security incident, 
let alone manage the other activities that a national cyber se-
curity program must oversee, such as those proposed by the 
United Nations’ International Telecommunications Union. 

The United States should harness opportunities to promote 
the consideration and development of robust cyber security 
capability in emerging economies. Through the creation of 
incentive programs that accompany foreign aid and invest-
ment, the U.S. can influence foreign protection of informa-
tion infrastructure and create a capacity for performing 
national cyber security. When the U.S. provides funding to 
aid organizations such as the International Monetary Fund 
(IMF), the World Bank, or the International Red Cross, it can 
seize the opportunity to encourage desirable behaviors, such 
as the adoption of cyber security. 

As an example, the IMF currently administers a $602 mil-
lion loan for the African nation of Ghana. This loan was 
granted to assist Ghana in the development of infrastructure 
to support oil production. The information technologies that 
support such an infrastructure, such as SCADA systems and 
corporate computing environments, are highly important to 
resilient oil production. If these assets are afforded an inad-
equate level of cyber security, including ineffective manage-
ment of cyber threats, vulnerabilities, consequences, and risk, 
they could compromise the integrity of the very infrastruc-
ture that they will be designed to control and support.

The United States has an important opportunity to encourage 
global safety and stability through incentive programs that 
accompany foreign aid. U.S. and international news head-
lines are awash with accounts of malevolent actors infiltrat-
ing critical information and service delivery infrastructures 
across the globe. It is in the best interest of the U.S. to 
compel both the discourse to raise cyber security awareness 
and the means by which cyber security is practiced. It is 
also incumbent on the U.S. to lead emerging economies to 
improvements in cyber security to ensure that these situations 
can be adequately prepared for and prevented. Developing a 
national capability for cyber security management contrib-
utes to overall national security and stability. 

Measuring Operational Resiliency
Julia Allen

Since 2003, CERT has conducted research to develop a 
model for managing operational resiliency. CERT research-
ers drew from the SEI’s experiences with CMMI and the 
CERT OCTAVE (Operationally Critical Threat, Asset, and 
Vulnerability Evaluation) method, collaboration with leaders 
in the U.S. financial services sector, and existing codes of 
practice in security, business continuity, and IT operations. 
The resulting CERT Resiliency Management Model (RMM) 
[1] describes the processes that characterize the organization-
al capabilities necessary to manage operational resiliency. In 
FY09, collaboration partners and customers assessed their 
organizational performance against the model to benchmark 
current practice, validate the model, and begin process im-
provement efforts. 

Also in FY09, CERT commenced a new area of research to 
identify candidate measures for determining the effectiveness 
of the processes described in the CERT RMM in improving 
operational resiliency. The first step in defining a meaning-
ful measurement program is to determine the required or 
desired level of operational resiliency for an organization. 
(“Organization” may be the enterprise, any business line or 
operating unit of the enterprise, or a supply chain or other 
form of business relationship that includes external enti-
ties.) The CERT RMM provides a process-based structure 
of goals and practices at four levels of maturity (Incomplete, 
Performed, Managed, and Defined) and a companion ap-
praisal method. Defining the required or desired level 
establishes the baseline against which operational resiliency 
can be measured. Ideally, the required level is established 
during strategic and operational planning as well as when 
planning for continuity of operations, not as an afterthought 
during times of stress and service disruption. The required 
level should be no less than, and no more than, that which is 
required to meet business mission objectives. The purpose 
of CERT’s new area of research is to answer the question, 
“What should be measured to determine whether the required 
level of operational resiliency has been achieved?”

Example measures for answering this question for each pro-
cess area appear in CERT RMM version 1.0. They include 
key process measures and performance indicators that can 
be used, in whole or in part, to demonstrate that the required 
level of operational resiliency has been achieved for a given 
process area. Examples of measures for 5 of the 26 process 
areas are included in Table 1.



63

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Table 1: Examples of Measures in Selected RMM Process Areas

Process Area Example Measures

Knowledge and 
Information Management

•  percentage of information assets that do not have stated owners or custodians
•  frequency and timeliness of information asset backups; frequency of  

backup restoration testing
•  percentage of information assets for which encryption is required and not yet implemented

Technology Management •  percentage of technology assets (software, hardware, systems) for which the cost of compro-
mise (loss, damage, disclosure, disruption in access to) has been quantified

•  percentage of technology assets for which some form of risk assessment has been  
performed as required by policy

•  number of unauthorized changes to technology assets during a stated time interval

Service Continuity •  percentage of service continuity plans tested (and number of times tested by time period)
•  percentage of service continuity plans that failed one or more test objectives
•  percentage of high-value services and supporting assets that do not  

have service continuity plans
•  percentage of unmet recovery time objectives and recovery point objectives 

Vulnerability Analysis 
and Resolution

•  percentage of high-value assets that have been monitored, assessed, and audited  
for vulnerabilities within a stated time interval

•  percentage of vulnerabilities that have been satisfactorily remediated, by time interval

Resiliency Requirements 
Definition

•  percentage of services and assets for which resiliency requirements have been defined and 
documented (or conversely, for which requirements are not stated or are incomplete)

•  elapsed time between identification of new assets and the development of resiliency  
requirements for those assets

Research tasks in FY10 are focused on the identification, 
deployment, piloting, and measurement of effective security 
and resiliency measures. These measures may be perfor-
mance or process based. Automated approaches for collect-
ing and reporting measures will be considered. Tasks include 
reviewing and extending the process area measures and 
measurement and analysis description that appear in version 
1.0, working with collaborators and customers to determine 
what measures are most useful for determining process ef-
fectiveness, developing measures templates and structured 
definitions, and updating the model to reflect results. 

This research also includes an examination of how statisti-
cal process control concepts can be used in resiliency and 
security measures and in determining how much resiliency is 
sufficient. This may involve analyzing various combinations 
of CERT RMM process areas and process area measures to 
help decision makers better specify what levels of opera-
tional resiliency are required and desired, and measures for 
determining when and if those levels have been achieved.

References
[1] CERT Resilient Enterprise Management Team. CERT 
Resiliency Management Model, v1.0. Software Engineering 
Institute, Carnegie Mellon University, 2009. http://www.cert.
org/resiliency/rmm.html. 



64

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Measuring Software Security
Julia Allen

Since the mid 1990s, CERT has researched and created value-
added processes, methods, practices, and tools for software 
survivability, software assurance, and building security into 
software throughout its development life cycle. In recent years, 
the research community has increasingly contributed to the 
body of knowledge about software assurance and software 
security metrics. 

Unfortunately, the security community often conflates in-
formation security metrics and software security metrics, 
which in fact are quite distinct. Efforts to identify meaning-
ful information and operational security metrics have been 
ongoing for some time. These efforts include various reports 
by the U.S. National Institute of Standards and Technology 
[1], the Workshop on the Economics of Information Security 
(WEIS) [2], and consensus efforts such as those conducted by 
the Center for Internet Security [3] and the 2004 Corporate 
Information Security Working Group [4]. However, while they 
inform and influence one another, information security metrics 
are not software security metrics.

Consequently, in FY09, CERT began new research in software 
security measures that builds on CERT’s core competence in 
software and information security. The purpose of this research 
is to address the following two questions:

•  How do I establish and specify the required/desired level of 
security for a specific software application, set of applica-
tions, software-reliant system, system of systems, supply 
chains, and other multi-system environments?

•  How do I measure, at each phase of the development or 
acquisition life cycle, that the required and/or desired level 
of security has been achieved?

Approaches to answering the first question define the base-
line against which software security can be measured. Such 
approaches create a meaningful measure of the degree of 
software security for a specific set of related software compo-
nents. Ideally, this measurement is performed as part of initial 
planning and specification, not as an afterthought during test-
ing and integration. 

In addition to demonstrating that security requirements are 
satisfied, risk analysis approaches, including the prioritization 
of software components based on their contribution to mission 
success, are also relevant. The SEI has undertaken promising 
work to identify methods, such as assurance cases, for captur-
ing this expression [5]. This research task will examine the 
suitability of these methods in establishing a foundation for 
measuring software security. It will also recommend a range 
of alternatives with appropriate selection criteria. Software 
development project managers and stakeholders will be able 
to select from these alternatives to define a required level of 
security as part of their software validation criteria.

Given a baseline against which to measure, approaches to the 
second question will include key product measures, process 
measures, and performance indicators that can be used to 
validate the required level of software security appropriate to a 
given life cycle phase. Such measures will be developed within 
the context of a measurement process and framework that can 
be tailored for a specific development project. Table 1 presents 
early examples of life-cycle-phase measures that could be used 
to validate required levels of software security:

Research tasks in FY10 include 
•  investigating existing bodies of knowledge to lay the foun-

dation for addressing the two presented research questions
•  building relationships with key thought leaders and potential 

collaborators
•  identifying core definitions
•  developing an initial software security measurement process
•  publishing initial findings

Research tasks in FY11 and beyond include 
•  organizing FY10 results by software development life cycle 

phase to inform the development of a software security 
measures framework and updated process

•  identifying software security measures for acquisition—
defining measures that can be written into requests for 
proposal (RFPs), contracts, service level agreements, and to 
assist in making funding decisions

•  integrating software security development and acquisition 
measures into selected security assessment and evaluation 
instruments as well as selected software development and 
measurement standards

References
[1] Chew, Elizabeth, et. al. Performance Measurement Guide 
for Information Security: Special Publication 800-55 Revision 
1. National Institute of Standards and Technology (NIST), July 
2008. http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/
SP800-55-rev1.pdf. Additional NIST reports are available at 
http://csrc.nist.gov/publications/PubsSPs.html. 

[2] The Ninth Workshop on the Economics of Information 
Security (WEIS 2010). http://weis2010.econinfosec.org/index.
html. Agendas and papers presented from prior WEIS events 
are available online.

[3] The Center for Internet Security Consensus Information 
Security Metrics. http://cisecurity.org/securitymetrics.html. 

[4] Corporate Information Security Working Group. Adam H. 
Putnam, Chairman; Subcommittee on Technology, Information 
Policy, Intergovernmental Relations & the Census Government 
Reform Committee, U.S. House of Representatives. “Report 
of the Best Practices and Metrics Teams.” November 17, 2004; 
updated January 10, 2005. http://net.educause.edu/ir/library/
pdf/CSD3661.pdf. 

[5] Work in assurance cases at the Software Engineering 
Institute: http://www.sei.cmu.edu/dependability/tools/assur-
ancecase/index.cfm. 



65

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

Life cycle phase Example software security measures

Requirements 
engineering

•  Percentage of relevant software security principles reflected in requirements specifications (this 
assumes that security principles essential for a given development project have been selected)

•  Percentage of security requirements that have been subject to analyses (risk, feasibility, cost/benefit, 
performance tradeoffs) prior to being included in the specification

•  Percentage of security requirements covered by attack patterns, misuse/abuse cases, and other 
specified means of threat modeling and analysis

Architecture and 
design

•  Percentage of architectural/design components subject to attack surface analysis and measurement
•  Percentage of architectural/design components subject to architectural risk analysis
•  Percentage of high-value security controls covered by security design patterns

Coding •  Percentage of software components subject to static and dynamic code analysis against known 
vulnerabilities and weaknesses

•  Percentage of defects discovered during coding that was injected in architecture and design; in 
requirements specification

•  Percentage of software components subject to code integrity and handling procedures, such as chain 
of custody verification, anti-tampering, and code signing

Testing •  Percentage of defects discovered during testing that was injected in coding; in architecture and design; 
in requirements specification

•  Percentage of software components with demonstrated satisfaction of security requirements as 
represented by a range of testing approaches (functional, risk-based, fuzz, penetration, black box, 
white box, code coverage, etc.)

•  Percentage of software components that demonstrated required levels of attack resistance and 
resilience when subject to attack patterns, misuse/abuse cases, and other specified means of threat 
modeling and analysis

Table 1: Example Software Security Measures by Life Cycle Phase



66

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

SiLK: Improvements and Plans
Mark Thomas and Michael Duggan

The System for internet Level Knowledge (SiLK) sup-
ports the collection and analysis of network flow data. The 
release of SiLK 2 improves the types of analysis that can be 
performed.

An analyst frequently wants to group flow records based on 
selected attributes of the records and compute a value for all 
records in the group. SiLK uses the term aggregate value 
to refer to a value computed across multiple records. For 
example, an analyst may ask how many bytes of data were 
exchanged between each of the hosts inside her network with 
hosts outside her network. By sorting the byte counts from 
largest to smallest, an analyst can create a list of the “top-N 
talkers.” Recent improvements to the SiLK tool set allow 
creating a top-N list for any set of attributes, and greatly 
increases the types of aggregate values that can be computed. 
The rwuniq tool has had long-standing support for group-
ing records using an arbitrary, user-defined key based on 
attributes of the flow records. In addition, rwuniq allowed 
an analyst to define new key fields by writing C or Python 
code (“plug-ins”) that could be loaded into rwuniq. rwuniq 
supports computing multiple aggregate values for each group 
of records (e.g., sum of packets and sum of bytes), but prior 
to SiLK 2 the list of aggregate values was fixed to those built 
into rwuniq. Realizing that it is impossible to predict all the 
possible aggregate values an analyst may want to compute, 
SiLK 2 allows an analyst to write C or Python plug-ins that 
define new aggregate values. To make defining new ag-
gregate values easy, the Python interface provides simple 
interfaces for defining aggregate values that compute sums, 
maximums across sets of values, and minimums across sets 
of values.

The rwstats tool computes top-N (or “bottom-N”) lists. In 
SiLK 1, rwstats had a very limited set of key fields it sup-
ported, and it only supported computing a single aggregate 
value for each group. For data with a large number of unique 
keys, rwstats would sometimes exit before completion 
because it had exhausted the machine’s memory. To work 
around the limitations of rwstats, an analyst would use rwu-
niq to group the records and compute the aggregate values, 
and then use UNIX utilities to sort the textual output from 
rwuniq to get the top-N list. While this worked, it was inef-
ficient. The rwstats tool in SiLK 2 is greatly improved: it now 
supports an arbitrary user-defined key; it supports multiple 
aggregate value fields; it allows the user to load C or Python 
plug-ins that define new key fields or aggregate value fields; 
and it can store data in temporary files when its memory 
requirements exceed those of the system.

SiLK 2 includes improvements to PySiLK, an extension 
module for the Python programming language that makes it 
easy to work with SiLK flow records from Python. PySiLK 
now supports manipulating bag and prefix map files, two 
binary SiLK file formats that provide volume and labeling 

information for IP addresses. When writing Python plug-
ins for SiLK tools, creating new key fields is now easier 
thanks to simplified field registration functions, and analysts 
can now add new command line options from their Python 
plug-ins.

Prefix map files are binary files that map an IP address to a 
textual label. These files can be used for filtering, sorting, 
and grouping flow records. Prior to SiLK 2, the tools only 
allowed a single prefix map to be used per invocation. The 
tools now support multiple prefix maps, and additional SiLK 
tools now have prefix map support.

Additional changes were made across the SiLK tool set to 
improve IPv6 support and to make the tools more functional 
and more consistent.

CERT is planning continued improvements to SiLK in 2010, 
but the primary focus will be in making it easier to run 
routine analysis on incoming flow data and to allow querying 
of SiLK flow data using the SQL language, which will allow 
SiLK to interoperate with other sources of data more easily.



67

A
d

d
it

io
n

A
l 

r
ES

EA
r

C
H

 

The Smart Grid Maturity Model
James F. Stevens and David W. White

The Smart Grid Maturity Model (SGMM) is a management 
tool that provides a framework for utilities to plan, measure 
progress, and prioritize options as they move towards the 
implementation of a smart grid. The SGMM focuses on utili-
ties that have a strong distribution component to their opera-
tions, but is designed to meet the needs of a wide range of 
electric utilities: public or investor owned, rural or urban, large 
or small, foreign or domestic, and those that have generation 
capacity or rely on power purchase agreements to meet their 
customer load. A very wide range of demographics were con-
sidered in developing the model so that it would be broadly 
applicable.

The SGMM was developed in 2007 by IBM and the Global 
Intelligent Utility Network Coalition with the assistance of 
APQC. After the initial development was completed it was 
determined that the model should be transferred to a global 
body or institution for totally impartial delivery, stewardship, 
and growth. The Software Engineering Institute (SEI) was 
selected to become the steward of the SGMM and officially 
took over that role in March 2009. As a global leader in soft-
ware and systems engineering and architecture, security best 
practices, process improvement, and maturity modeling, the 
SEI is uniquely positioned to take on the challenges leading 
the future development of this model. 

The model itself consists of eight domains of related capabili-
ties and characteristics against which a utility can assess its 
current state and its desired future state. The domains, which 
provide focus areas for evaluating capability, are as follows:
1. Strategy, Management, and Regulatory
2. Organization and Structure
3. Grid Operations
4. Work and Asset Management
5. Customer Management and Experience
6. Technology
7. Value Chain Integration
8. Societal and Environmental

Achieving a balance in performance across these domains 
within an organization demonstrates that the organization 
has examined and improved upon a broad portion of its 
operations. 

A six-point scale (0-5) is used to indicate the maturity for 
each domain in the model. Level 0 is the default and simply 
indicates that an organization has not achieved the necessary 
capabilities and characteristics required to achieve Level 1 
in a given domain. Level 5 indicates that an organization has 
fully achieved the capabilities and requirements and is perhaps 
moving beyond simple smart grid implementation. 

To develop its maturity profile, a utility completes an assess-
ment survey, which can be performed by the utility itself or 
through a facilitated workshop. An impartial third party then 
scores the completed survey. The SEI has partnered with 
APQC [1] to provide scoring services for the assessment 
survey.

In September of 2009 the SEI issued the first annual report on 
the model results titled “SGMM: First Annual Report on Smart 
Grid Implementation.” [2]. It is envisioned that this report will 
be updated each year and released sometime in the late third 
or early fourth quarter. The 2009 report provided an overview 
of the results from the 53 utilities that had completed survey 
assessments by July 2009. Figure 1 below provides a sum-
mary of the domain scores. Approximately 53% of the utilities 
participating in the survey were based in the United States; the 
rest of the participants operated in other regions of the world. 
As expected, the results indicated that most utilities were just 
beginning their smart grid journeys.

Figure 1: Average and range of maturity scores by 
domain

With the support of the Department of Energy and the 
National Energy Technology Laboratory, the SEI and its col-
laborator APQC are maintaining and evolving the Smart Grid 
Maturity Model as a resource for industry transformation. In 
2010 the SEI has a very aggressive plan to improve the model, 
to expand the suite of products available to facilitate its use, 
and to transition its adoption in the community. In the first 
quarter of 2010 the SEI will release an incremental update to 
the model focused on addressing structural issues and improv-
ing its usability. Shortly after the model update is released, 
additional training on the model and its facilitated use within a 
utility will be available. Finally, an aggressive push to increase 
the number of utilities that have taken the SGMM assessment 
will be made with the goal of publishing the new results in a 
2nd annual report, targeted for late third quarter 2010.

Our hope for this model is that as more organizations partici-
pate, the SGMM will become an increasingly valuable bench-
marking, best practice, and strategic planning management 
tool for individual organizations and for the utility industry as 
a whole. Additional information on the model and notifications 
about updates can be found at www.sei.cmu.edu/smartgrid. 

References 
[1] APQC is a non-profit member-based research organization 
with more than 30 years of systematic quality and process im-
provement research experience. APQC is working in collabo-
ration with the SEI to evolve the SGMM and to analyze and 
maintain the data collected. 

[2] The report is available at the following URL:  
http://www.sei.cmu.edu/library/assets/sgmm.pdf



list of Selected 
 Publications

talks/Panels/ 
Workshops

technical  
leadership

biographies 

Researcher Activities



69

r
ES

EA
r

C
H

Er
 A

C
ti

v
it

iE
S

List of Selected Publications

Chris Alberts
Reports
Alberts, C . and Dorofee, A . A Framework for Categorizing Key 
Drivers of Risk (CMU/SEI-2009-TR-007) . Software Engineering 
Institute, Carnegie Mellon University, 2009 .  
http://www .sei .cmu .edu/reports/09tr007 .pdf

Alberts, C ., Smith II, J ., and Woody, C . Multi-View Decision 
Making (MVDM) Workshop (CMU/SEI-2008-SR-035) . Software 
Engineering Institute, Carnegie Mellon University, 2009 .  
http://www .sei .cmu .edu/reports/08sr035 .pdf

Papers
Alberts, C ., Moore, A ., Siviy, J ., and Woody, C ., “Value mapping 
and Modeling SoS Assurance Technologies and Supply Chain”, 
2009 IEEE International Systems Conference; Vancouver 
Canada, May 2009 . Won best paper award .

Julia Allen
Book Chapters
Allen, Julia; Kim, Gene; Love, Paul; Spafford, George . Chapter 
3, “IT Operational Pressures on Information Security,” 
Enterprise Information Security and Privacy . Artech House, 2009 .

Papers
Siviy, Jeannine; Moore, Andrew; Alberts, Christopher; 
Woody, Carol; Allen, Julia . “Value Mapping and Modeling 
SoS Assurance Technologies and Assurance Supply Chain .” 
IEEE Systems Council Conference, March 2009 . Received best 
paper award .

Reports
Wrubel, James; White, David; Allen, Julia . High Fidelity 
e-Learning: SEI’s Virtual Training Environment (CMU/SEI-2009-
TR-005) . Software Engineering Institute, Carnegie Mellon 
University, January 2009 . http://www .sei .cmu .edu/library/
abstracts/reports/09tr005 .cfm .

Robert J. Ellison
Reports
Ellison, R ., Goodenough, J ., Weinstock, C ., and Woody, C . 
Survivability Assurance for Systems of Systems, Software 
Engineering Institute, Carnegie Mellon University, CMU/
SEI-2008-TR-008, http://www .sei .cmu .edu/publications/
documents/08 .reports/08tr008 .html

Howard Lipson
Book Chapters and Sections
Lipson, H ., Goodenough, J ., & Weinstock, C . Section 2 .4, “How 
to Assert and Specify Desired Security Properties,” 61–70 . 
Software Security Engineering: A Guide for Project Managers . 
Addison-Wesley, 2008 .

Reports
Brown, B ., Singletary B ., Willke B ., Bennett, C ., Highfill, D ., 
Houseman, D ., Cleveland, F ., Lipson, H ., Ivers, J ., Gooding, 
J ., McDonald, J ., Greenfield, N ., & Li S . AMI System Security 
Requirements –Version 1.01, Advanced Metering Infrastructure 
(AMI) Security Acceleration Project, AMI Security Task Force, 
UCA International Users Group, December, 2008, 111 pp .

Papers
Lipson, H . & van Wyk, K . “Application Firewalls and Proxies 
– Introduction and Concept of Operations .” Department 
of Homeland Security Build Security In website, Revised 
September 2008 . https://buildsecurityin .us-cert .gov/daisy/bsi/
articles/best-practices/assembly/30-BSI .html

Lipson, H . “Evolutionary Design of Secure Systems – The First 
Step Is Recognizing the Need for Change .” Department of 
Homeland Security Build Security In website, Revised October 
2008 . https://buildsecurityin .us-cert .gov/daisy/bsi/articles/best-
practices/assembly/467-BSI .html

Lipson, H . Update of “Source Code Analysis Tools – Overview” 
by C . Michael & S . R . Lavenhar, “Source Code Analysis Tools – 
Example Programs” by Cigital, Inc ., and “Source Code Analysis 
Tools – Bibliography” by Cigital, Inc . Department of Homeland 
Security Build Security In website, February 2009 . https://
buildsecurityin .us-cert .gov/daisy/bsi/articles/tools/code .html

Nancy R. Mead
Conference Papers in Published Proceedings 
S . Miyazaki, N . R . Mead, J . Zhan, Computer-Aided Privacy 
Requirements Elicitation Technique, in APSCC: Proceedings of 
the 2008 IEEE Asia-Pacific Services Computing Conference, 
December 2008, pp .367-372 .

Mead, N .R ., Drommi, A ., Shoemaker, D ., Ingalsbe, J ., A study 
of the Impact on Students: Understanding Cross Cultural 
Differences in Software Engineering Work, COMPSAC 
(International Computer Software and Applications Conference) 
July, 2009, Seattle, WA

Abu-Nimeh, S ., Miyazaki, S ., Mead, N .R ., Integrating Privacy 
Requirements into Security Requirements Engineering, IEEE 
Software Engineering and Knowledge Engineering (SEKE) 
Conference, July 2009, Boston, MA

Mead, N .R ., Shoemaker, D ., Ingalsbe, J ., Teaching Security 
Requirements Engineering Using SQUARE, 4th International 
Workshop on Requirements Engineering Education and 
Training (REET), IEEE Requirements Engineering Conference, 
September, 2009

Abu-Nimeh, S ., Mead, N,R ., Privacy Risk Assessment in Privacy 
Requirements Engineering, Second International Workshop 
on Requirements Engineering and Law (RELAW), IEEE 
Requirements Engineering Conference, September, 2009

Mead, N .R ., Shoemaker, D ., Ingalsbe, J ., Ensuring Cost Efficient 
and Secure Software through Student Case Studies in Risk and 
Requirements Prioritization, HICSS 42, January 2009, Hawaii



70

r
ES

EA
r

C
H

Er
 A

C
ti

v
it

iE
S

Nancy R. Mead, continued
Journal Articles 
(Invited) Mead, N .R ., Software Engineering Education: How 
Far We’ve Come and How Far We Have To Go, Journal of 
Systems and Software, (2009), doi:10 .1016/j .jss2008 .12 .038

(Invited) Mead, N .R ., Yoshioka, N ., Square Up Your Security 
Requirements Engineering with SQUARE, Information 
Processing Society of Japan (IPSJ) Journal, Vol .50 No .3 Mar . 
2009

Mead, N .R ., Shoemaker, D ., Ingalsbe, J ., Software Assurance 
Practice at Ford: A Case Study, CrossTalk, Vol . 22, No . 3, 
March 2009, pp . 4-7 . 

Journal Editorships 
REJ (Requirements Engineering Journal), Editorial Board

Editorial Review Board – International Journal on Secure 
Software Engineering (IJSSE), IGI Global

Books Published 
Mead, N .R ., Shoemaker, D ., Book Chapter Novel Methods 
of Incorporating Security Requirements Engineering into 
Software Engineering Courses and Curricula, Chapter VI, 
Software Engineering: Effective Teaching and Learning 
Approaches and Practices, Eds, Ellis, Demurjian, & Naveda, 
IGI Global, pp . 98-113, 2008 

SEI Reports 
Nancy R . Mead, Julia Allen, W . Arthur Conklin, Antonio 
Drommi, John Harrison, Jeff Ingalsbe, James Rainey, Dan 
Shoemaker, Making the Business Case for Software Assurance, 
CMU/SEI-2009-SR-001 Pittsburgh, PA: Software Engineering 
Institute, Carnegie Mellon University, April, 2009

Varokas Panusuwan, Prashanth Batlagundu, Nancy R . Mead, 
Faculty Advisor, Privacy Risk Assessment Case Studies in 
Support of SQUARE, CMU/SEI-2009-SR-017 Pittsburgh, PA: 
Software Engineering Institute, Carnegie Mellon University, 
July, 2009 www .sei .cmu .edu/publications/documents/09 .
reports/09sr017 .html

Robert Seacord
Robert C . Seacord . The CERT C Secure Coding Standard . 
Addison-Wesley . October 2008 . ISBN-13: 978-0-321-56321-7 .

Robert C . Seacord . Secure Coding in C and C++ . Addison-
Wesley . September 2005 . ISBN: 0321335724 .

Robert C . Seacord, Daniel Plakosh, Grace A . Lewis, 
Modernizing Legacy Systems: Software Technologies, 
Engineering Processes, and Business Practices, Addison-
Wesley, February 2003 .

Kurt C . Wallnau, Scott A . Hissam, Robert C . Seacord, Building 
Systems from Commercial Components, Addison-Wesley, 
June 2001, ISBN: 0201700646 .

Carol Woody
Publications
Ellison, R ., Goodenough, J ., Weinstock, C ., and Woody, C . 
Survivability Assurance for Systems of Systems, Software 
Engineering Institute, Carnegie Mellon University, CMU/
SEI-2008-TR-008, http://www .sei .cmu .edu/publications/
documents/08 .reports/08tr008 .html 

Alberts, C ., Smith II, J ., and Woody, C . Multi-view Decision 
Making (MVDM) Workshop, Software Engineering Institute, 
Carnegie Mellon University, CMU/SEI-2008-SR-035, 
http://www .sei .cmu .edu/publications/documents/08 .
reports/08sr035 .html 

Alberts, C ., Moore, A ., Siviy, J ., and Woody, C ., “Value 
mapping and Modeling SoS Assurance Technologies and 
Supply Chain”, 2009 IEEE International Systems Conference; 
Vancouver Canada, May 2009 . Won the Best Paper Award .



71

r
ES

EA
r

C
H

Er
 A

C
ti

v
it

iE
S

Talks/Panels/Workshops

Julia Allen
Talks/Panels/Workshops
Allen, Julia . “Making the Business Case for Software 
Assurance” SecureIT Conference keynote presentation, Los 
Angeles, California, March 2009 . Also presented at the SEI’s 
SEPG North America conference in March 2009 .

Allen, Julia; Payne, Shirley . “Making the Case for Security: 
A Framework for Communicating and Governing .” Half-day 
seminar, EDUCAUSE Security Professionals Conference, 
Atlanta, Georgia, April 2009 .

Podcasts
Captured 20 podcasts as part of the CERT Podcast Series: 
Security for Business Leaders . http://www .cert .org/podcasts .

Richard Linger
Invited lectures at University of South Florida, March, 2009 
“Software Assurance through Correctness Verification”

“Incremental System Development for Risk and Cost 
Reduction”

“Function Extraction Technology for Software Behavior 
Computation”

Howard Lipson
Talks/Panels/Workshops
Lipson, H . “Towards a CERT Coordination Center for Control 
Systems –The Survivability Challenge,” 2008 ACS Control 
Systems Cyber Security Conference, Chicago, Ill ., August 2008 .

Lipson, H . “Beyond Cyber Security: Built for Survival,” 
Instinctive Computing International Workshop, Carnegie Mellon 
University, Pittsburgh, Pa ., June 2009 .

Nancy R. Mead
Webinars 
Invited talk on BSI and Software Security Engineering 
book, FSTC Roundtable, July13, 2009, “Software Security 
Engineering: How to Get Started”

Keynote speaker for Bright Talk Threat Management Summit 
September 8, 2009, “ Uses of Threat Modeling in Software 
Development” 

DoD Software Collaborators’ Telecon, August 4, 2009 “A Toolbox 
for Improved Security”, co-presented with Carol Woody

SQUARE Overview, May 14, 2009, SEI Webinar

Workshops and Tutorials 
2-day workshop on SQUARE for National Defense University 
of Taiwan, May 2009

Knowledge Transfer Network (KTN) Workshop Panelist in 
March 2009 

Co-presenter of tutorial “Software Security Engineering: How 
to Get Started” DHS Forum in Fall 2008

Robert Seacord
SD West 2009 Conference & Expo

March 9-13 
Santa Clara Convention Center, Santa Clara, CA  
http://www .SDExpo .com

Title: Secure Coding in C++: Integers 
Date: Thursday, March 12

Title: Secure Coding in C++: Strings 
Date: Thursday, March 12

Title: Dangerous Optimizations and the loss of Causality 
Date: Friday, March 13

Software Development Best Practices

Tuesday, October 28, 2008 
Secure Coding in C and C++: Strings

Secure Coding in C and C++: Integers

Carol Woody
Presentations
MORS Symposium, “Evaluating the Impact of Technology 
Change on Mission Success – a Process Approach”, Ft 
Leavenworth KA, May 2009

DHS SwA Working Group, “Overcoming Barriers of Adoption 
for Software Assurance”, Laurel MD, December 2008 

AIAA, “The Landscape of Software Assurance – Participating 
Organizations and Technologies”, AIAA Unmanned . . .
Unlimited Conference, Seattle WA, April 2009

DHS SwA Forum, “The Way Forward for Mitigating Software 
Supply Chain Risk”, Arlington VA, November 2009



72

r
ES

EA
r

C
H

Er
 A

C
ti

v
it

iE
S

Technical Leadership

Julia Allen
Technical Leadership
CERT representative to the EDUCAUSE Security Task Force 
Risk Management Working Group . Served as subject matter 
expert to capture best practices for information security 
governance (as a wiki site) .

Howard Lipson
Co-organizer, Instinctive Computing International Workshop, 
Carnegie Mellon University, June 2009 . http://www .cmu .edu/
vis/workshop-brochure-v6 .pdf 

Invited presentation, “Towards a CERT Coordination Center 
for Control Systems –The Survivability Challenge,” 2008 ACS 
Control Systems Cyber Security Conference, Chicago, Ill ., 
August 2008

Session chair, “Privacy in Services,” Fourth ACM Workshop 
on Digital Identity Management, ACM CCS, October 2008

Program committee member, Fourth ACM Workshop on 
Digital Identity Management, ACM Conference on Computer 
and Communications Security, October 2008

Program committee member, Fifth ACM Workshop on Digital 
Identity Management, ACM CCS, November 2009

Program committee member, International Workshop on 
Security Measurements and Metrics (MetriSec), October 
2009

Program committee member, Workshop on Ethics in 
Computer Security Research (WECSR), January 2010

Served in an expert advisory role for the Smart Grid Security 
Working Group’s Advanced Security Acceleration Project for 
the Smart Grid

Research Fellow, Instinctive Computing Laboratory, Carnegie 
Mellon University

Member (founding), Carnegie Mellon Electricity Industry 
Center

Member of the Advisory Board for Duquesne University’s 
Graduate Program in Computational Mathematics, 
1999-present (Chair 2002-2004)

Nancy R. Mead
IEEE Fellow, Distinguished Member of the ACM

ISA (Information Security & Assurance) Conference 2009, 
Program Committee

PASSAT (IEEE International Conference on Information 
Privacy, Security, Risk and Trust) Conference 2009, Program 
Committee, August, Vancouver, Canada

GSwERC Invited Reviewer 2009

COMPSAC (International Computer Software and 
Applications Conference) 2009, Program Committee 

Program Committee for the Workshop on Privacy (RELAW) 
held in conjunction with the Requirements Engineering 
Conference RE’09 

Program Committee for the Workshop on E-Voting held in 
conjunction with the Requirements Engineering Conference 
RE’09 

Robert Seacord
CMU representative to INCITS PL22 – Programming 
Languages - U .S . TAG to ISO/IEC JTC1/SC22

CMU representative to INCITS PL22 .11 – Programming 
Language C

Technical Expert ISO/IEC   JTC1/SC22/WG14 – Programming 
Language C

Technical Expert ISO/IEC   JTC1/SC22/WG23 – Language 
Vulnerabilities

PL22 Liaison to CS1 - Cyber Security –US TAG for ISO/IEC 
JTC 1/SC 27 and all SC 27 Working Groups . 

Financial Services Technology Consortium (FSTC) Software 
Assurance Initiative Secure Coding Work Stream Leader

Carol Woody
Elected IEEE Senior Member, August 2009

Elected ACM Senior Member, August 2009

Session Co-chair for the Military Operations Research Society 
(MORS) Workshop “Understanding the Consequences of 
Catastrophic Events: Using Methods and Tools to Analyze 
and Manage Incidents”, November 2008

Panel Facilitator, DHS SwA Forum, “Where is Academia 
Going and How Can the SwA Forum Help”, Arlington VA, 
November 2009 



73

b
io

g
r

A
P

H
iE

S

Biographies

Christopher Alberts 
Christopher Alberts is a senior member of the technical 
staff at the SEI . He has 25 years of experience in software 
engineering and information technology, with particular 
emphasis on systems analysis, software design and 
development, and information security . At the SEI, Alberts 
leads applied research and development projects in the 
field of risk management . He has developed practical and 
innovative methods, tools, and techniques that have been 
applied by people throughout government and industry 
organizations, both nationally and internationally . He has 
also co-authored two books, Managing Information Security 
Risks: The OCTAVESM Approach (Addison-Wesley 2002) and 
the Continuous Risk Management Guidebook (Software 
Engineering Institute 1996) .

Prior to joining the SEI, Alberts worked at Carnegie Mellon 
Research Institute, where he developed autonomous robots 
for hazardous environments, and at AT&T Bell Laboratories, 
where he helped automate AT&T’s manufacturing processes . 
He has BS and ME degrees in engineering from Carnegie 
Mellon University .

Julia Allen
Julia Allen is a senior researcher within the CERT® Program 
at the Software Engineering Institute (SEI), a unit of Carnegie 
Mellon University in Pittsburgh, PA . Allen’s areas of interest 
include enterprise security governance, operational 
resilience, and software security and assurance . 

Prior to this technical assignment, Allen served as acting 
director of the SEI for six months and deputy director/chief 
operating officer for three years . Before joining the SEI, 
she was a vice president in embedded systems software 
development for Science Applications International 
Corporation and managed large software development 
programs for TRW (now Northrop Grumman) .

Ms . Allen is the author of The CERT Guide to System and 
Network Security Practices (Addison-Wesley 2001), the 
CERT Podcast Series: Security for Business Leaders, and 
the CERT governance portal . She is a co-author of Software 
Security Engineering: A Guide for Project Managers (Addison-
Wesley 2008) and a contributing author to CERT’s Resiliency 
Management Model . Her degrees include a BS in computer 
science (University of Michigan), an MS in electrical 
engineering (University of Southern California), and an 
executive business certificate (University of California – Los 
Angeles) .

Dawn M. Cappelli
Dawn Cappelli is Technical Manager of the Threat and 
Incident Management Team, which includes the Insider Threat 
Center, in the CERT Program at Carnegie Mellon University’s 
Software Engineering Institute . Her team’s mission is to 
assist organizations in improving their security posture and 
incident response capability by researching technical threat 
areas; developing information security assessment methods 
and techniques; and providing information, solutions, and 
training for preventing, detecting, and responding to illicit 
activity . Her team members are domain experts in insider 
threat and incident response, and team capabilities include 
threat analysis and modeling; development of security 
metrics and assessment methodologies; and creation and 
delivery of training, courses, and workshops . Cappelli has 
29 years of experience in software engineering, including 
programming, technical project management, information 
security, and research . Cappelli regularly presents at national 
and international conferences, and is also adjunct professor 
in Carnegie Mellon’s Heinz School of Public Policy and 
Management . 

Before joining CERT in 2001, Cappelli was the Director of 
Engineering for the Information Technology Development 
Center of the Carnegie Mellon Research Institute (CMRI) . While 
with CMRI, she was a technical and program manager for a 
variety of information networking projects . These projects 
included the design and development of large-scale databases 
and Internet-based systems that adhered to data privacy 
and security requirements, the design and implementation 
of multi-organizational portals for preparation and response 
to weapons of mass destruction and collaboration among 
public health department epidemiologists, and the design 
and development of a networked media solution for remote 
collaboration between teachers of children with special needs 
and consultants . 

Previously she worked in Computing Services at Carnegie 
Mellon University where she led several teams in the areas 
of web application development, database development, 
and networked media . Cappelli began her career at Carnegie 
Mellon University (CMU) in the Information Technology 
Department at the SEI, managing development of various web 
and database applications, as well as managing the redesign 
of the SEI’s website by an interdisciplinary project team . Prior 
to her career at CMU, Cappelli worked for Westinghouse 
Electric Corporation . While at Westinghouse, she designed 
and developed systems for nuclear power plants, including 
real-time graphical user interface systems for power plant 
operators and computer-aided engineering systems for 
nuclear plant designers .



74

b
io

g
r

A
P

H
iE

S

Cory F. Cohen
Cory F . Cohen is a senior member of the CERT technical staff, 
guiding the research and development work of the Malicious 
Code Analysis team . During his 12 years at CERT, he has worked 
as an security incident handler, a vulnerability analyst, and a 
malicious code analyst . His recent work has focused on large-
scale automated analysis of malicious code samples collected by 
CERT .

Prior to joining CERT, Cohen worked for the University of 
Louisville as HP/UX System Administrator in the engineering 
school where he managed the primary computing cluster . He also 
worked for the university as an IDMS/R database administrator 
maintaining production payroll and student record systems . 
Cohen holds a BS in information science and data processing 
from the University of Louisville .

Timothy Daly
Timothy Daly is a Senior Member of the Technical Staff in the 
Software Engineering Institute at Carnegie Mellon University 
and is currently serving as a member of the FX/MC (Function 
Extraction for Malicious Code) team . Prior to this, he served as 
Research Scientist at the Center for Algorithms and Interactive 
Scientific Software at City College in New York, where he was 
the lead developer on Axiom (a General Purpose Computer 
Algebra System) and Magnus (an Infinite Group Theory system) . 
Formerly he was employed at IBM Research in Yorktown, New 
York where he participated in projects on rewritable paper, 
natural language understanding, expert systems, knowledge 
representation, computer algebra, and industrial robotics . He 
holds one patent in the area of robotics . He helped develop 
4 commercial programming languages . He has published a 
tutorial book on Axiom and is the lead developer on that open 
source project . He has taught at City College of New York, Vassar 
College, and William Patterson College . He holds a Master’s 
degree in Computer Science from Fairleigh Dickinson University 
and a Bachelor of Science in Mathematics from Montclair State 
University .

Michael Duggan
Michael Duggan is a software developer for CERT’s Network 
Situational Awareness team . He has been a staff member of CERT 
since 2003 . He has primarily worked on network flow collection 
and analysis infrastructure .

Prior to joining the SEI, Duggan was a programmer and 
designer for the Language Technologies Institute at Carnegie 
Mellon University . Duggan has a BS in Electrical and Computer 
Engineering from Carnegie Mellon . 

Robert J. Ellison
Robert J . Ellison is a senior member of the technical staff in the 
Networked Systems Survivability Program (NSS) at the Software 
Engineering Institute (SEI) at Carnegie Mellon University (CMU) 
and a founding member of the SEI . 

While at the SEI he has served in both technical and management 
roles . He participates in the evaluation of software architectures 
and contributes from the perspective of security and reliability 
measures . As a member of the NSS program, he is one of the 
developers of the Survivability Analysis Framework (SAF), has 
been the project leader for the Build-Security-In project, and 
currently leads the Supply-Chain Risk project . 

Dr . Ellison received his MS and PhD in mathematics from Purdue 
University . He is a member of the IEEE Computer Society and the 
Association of Computing Machinery (ACM) .

Phillip Groce
Phil Groce is a member of the technical staff in the CERT Program . 
As a member of the Network Situational Awareness group, he 
develops tools to help analyze and monitor large networks for 
security and capacity problems . Before joining CERT, Groce 
worked at CipherTrust (now a division of McAfee), developing 
email security solutions . Groce was also a senior software 
engineer at SecureWorks, an Atlanta-based managed security 
provider . Groce currently works on improving data visualization 
capabilities in operational network analysis .

Jeffrey S. Havrilla
Jeffrey S . Havrilla has been a senior member of the technical staff 
at the Software Engineering Institute for over 10 years, primarily 
focused on software security engineering . His current area of work 
is analyzing malicious code and artifacts associated with computer 
security intrusions .

Havrilla was previously the technical leader of the CERT/CC 
vulnerability discovery team, part of the CERT/CC focused on 
finding software vulnerabilities in deployed software using both 
static and dynamic analytical tools .

Prior to working at the SEI, Havrilla worked at the University of 
Pittsburgh Medical Center and School of Medicine as a large-
scale database, network and research systems administrator 
and programmer . Havrilla has a Master’s of Science in 
Telecommunications from the University of Pittsburgh School 
of Information Sciences, and is a member of the IEEE Computer 
Society and Internet Society (ISOC) .

Richard Linger
Richard Linger is manager of the CERT Survivable Systems 
Engineering group . He directs research and development for the 
Function Extraction project for software behavior computation, 
with application to software development and testing and to 
malware detection and analysis .  Linger also serves as a member 
of the faculty at the Carnegie Mellon University Heinz School 
of Public Policy and Management . At IBM, he partnered with 
Dr . Harlan Mills, IBM Fellow, to create Cleanroom Software 
Engineering technology for development of ultra-reliable 
software systems, including box-structure specification, function-
theoretic design and correctness verification, and statistical 
usage-based testing for certification of software fitness for use . 
He has extensive experience in project management; system 
specification, architecture, design, verification, and certification; 
software re-engineering and reverse engineering; and technology 
transfer and education . He has published three software 
engineering textbooks, 12 book chapters, and over 60 papers and 
journal articles . He is a senior member of the IEEE and a member 
of ACM and AIAA .

Howard F. Lipson
Howard F . Lipson is a Senior Member of the Technical Staff 
in the CERT Program at the SEI . Lipson has been a computer 
security researcher at CERT for more than 17 years . He is also an 
adjunct professor in Carnegie Mellon University’s Department 
of Engineering and Public Policy and an adjunct research faculty 
member at the Carnegie Mellon Electricity Industry Center . He has 
played a major role in developing the foundational concepts and 
methodologies necessary to extend security research into the new 
realm of survivability, and was a chair of three IEEE Information 
Survivability Workshops . His research interests include the 
analysis and design of survivable systems and architectures, 
software assurance, and critical infrastructure protection (in 
particular, smart grid security and survivability) .



75

b
io

g
r

A
P

H
iE

S

Prior to joining Carnegie Mellon, Lipson was a systems design 
consultant, helping to manage the complexity and improve 
the usability of leading-edge software systems . Earlier, he was 
a computer scientist at AT&T Bell Labs . Lipson holds a PhD in 
Computer Science from Columbia University .

Nancy R. Mead
Nancy R . Mead is a senior member of the technical staff in 
the CERT Survivable Systems Engineering group . Mead is 
also a faculty member in the Master of Software Engineering 
and Master of Information Systems Management programs 
at Carnegie Mellon University . She is currently involved 
in the study of security requirements engineering and the 
development of professional infrastructure for software 
engineers . 

Prior to joining the SEI, Mead was a senior technical staff 
member at IBM Federal Systems, where she developed and 
managed large real-time systems . She also worked in IBM’s 
software engineering technology area and managed IBM 
Federal Systems’ software engineering education department . 
She has developed and taught numerous courses on software 
engineering topics .

Mead has more than 150 publications and invited 
presentations, and has a biographical citation in Who’s Who 
in America . She is a Fellow of IEEE and the IEEE Computer 
Society and a Distinguished Member of the ACM . Mead 
received her PhD in mathematics from the Polytechnic 
Institute of New York, and a BA and an MS in mathematics 
from New York University .

Samuel A. Merrell
Samuel Merrell is a Member of the Technical Staff on the 
Resilient Enterprise Management Team at CERT . Merrell works 
with organizations to improve their information security 
risk management capabilities . This work includes Critical 
Infrastructure Protection projects within the Department of 
Homeland Security and analysis of federal (DoD and civilian 
agency) information security programs, including Federal 
Information Security Management Act (FISMA) compliance 
efforts . Recent projects include assisting in the development 
of the CERT Resilient Enterprise Framework and evaluating 
Service Oriented Architecture initiatives within the U .S . 
Military . 

Prior to joining the SEI, Merrell spent seven years as the 
Information Technology Manager for a Pittsburgh-area 
community bank . Before that, he was an information 
technology consultant, primarily support the IBM AS/400 . 
Merrell holds an undergraduate degree from the University 
of Pittsburgh, the Certified Information Systems Security 
Professional (CISSP) certification, and a number of SANS 
certificates, and is currently working towards a master’s 
degree in Information Security at Carnegie Mellon University . 

Philip Miller
Dr . Philip Miller is a Senior Member of the Operational Staff 
at the Software Engineering Institute . Dr . Miller joined the 
SEI in 2005 . He was responsible for launching the Mexican 
TSP Initiative and the MSIT-SEM program . Recently he has 
refocused on brining in research funding into the SEI . Prior 
to 2005, Miller co-founded iCarnegie, Inc ., a Carnegie Mellon 
University educational spin-off . He was a member of the 
Carnegie Mellon School of Computer Science faculty from 
1979 through 1998 .

Soumyo D. Moitra
Soumyo Moitra is a Senior Member of the Technical Staff with 
CERT Network Situational Awareness Group . He has been 
involved with modeling and analyzing network traffic for 
security and monitoring . He is currently working on metrics 
for the cost-effectiveness of network sensors and modeling 
network security operations .

Prior to his joining the SEI, Soumyo taught Operations 
Management, worked on telecommunications services and 
planning at Bellcore, New Jersey, and also taught Policy 
Analysis at Baruch College, New York . He has an MA from 
Cornell University, an MS from Syracuse University and a 
PhD from SUPA (now Heiz College), CMU . He has been an 
Alexander von Humboldt Fellow at the Max-Planck-Institute, 
Freiburg, Germany and a Visiting Professor at NT T,  Tokyo, 
Japan . He has published journal articles in a number of 
subject areas and presents regularly at conferences . He is a 
member of INFORMS (Institute for Operations Research and 
Management Science), the American Statistical Association, 
and SIGMA XI: The Research Society . 

Andrew P. Moore
Andrew Moore is a Senior Member of the Technical Staff 
of the CERT Program at the Software Engineering Institute 
at the Carnegie Mellon University . Moore explores ways 
to improve the security, survivability, and resiliency of 
enterprise systems through insider threat and defense 
modeling, incident processing and analysis, and architecture 
engineering and analysis . Before joining the SEI in 2000, he 
worked for the Naval Research Laboratory investigating high 
assurance system development methods for the Navy . He 
has over twenty years experience developing and applying 
mission-critical system analysis methods and tools, leading 
to the transfer of critical technology to both industry and the 
military . Moore received his BA in Mathematics from the 
College of Wooster and MA in Computer Science from Duke 
University .

While at the NRL, Moore served as member of the U .S . 
Defense Science and Technology review (Information 
Technology TARA) panel on Information Assurance; the 
International Technical Cooperation Program, Joint Systems 
and Analysis Group on Safety-Critical Systems (TTCP 
JSA-AG-4); and the Assurance Working Group of DARPA’s 
Information Assurance Program . He has served as Principal 
Investigator on numerous projects sponsored by NSA 
and DARPA . He has also served on numerous computer 
assurance and security conference program committees and 
working groups .  Moore has published a book chapter and 
a wide variety of technical journal and conference papers . 
His research interests include computer and network attack 
modeling and analysis, IT management control analysis, 
survivable systems engineering, formal assurance techniques, 
and security risk analysis .



76

b
io

g
r

A
P

H
iE

S

Rich Pethia
Richard Pethia is the Director of the CERT Program . The 
program conducts research and development activities to 
produce technology and systems management practices 
that help organizations recognize, resist, and recover 
from attacks on networked systems . The program’s CERT 
Coordination Center (CERT/CC) has formed a partnership with 
the Department of Homeland Security to provide a national 
cyber security system, US-CERT . In 2003, Pethia was awarded 
the position of SEI Fellow for his vision and leadership 
in establishing the CERT/CC, for his development of the 
research and development program, and for his ongoing work 
and leadership in the areas of information assurance and 
computer and network security . Pethia is also a co-director of 
Carnegie Mellon University’s CyLab . CyLab is a public/private 
partnership to develop new technologies for measurable, 
available, secure, trustworthy, and sustainable computing 
and communications systems . This university-wide, 
multidisciplinary initiative involves more than 200 faculty, 
students, and staff at Carnegie Mellon . 

Mark Pleszkoch
Mark Pleszkoch is a Senior Member of the Technical Staff 
at CERT . He is an expert in function-theoretic mathematical 
foundations of software, and focuses on automation of formal 
methods . As a member of the function extraction research 
and development team, he is responsible for creating 
theoretical foundations and engineering automation for FX 
systems .

Prior to joining CERT, Pleszkoch worked at IBM for 21 years in 
various capacities . As a member of IBM's Cleanroom Software 
Technology Center, he provided education and consultation 
to clients in software process, software engineering 
technologies, and software testing . He was the principal 
architect of the IBM Cleanroom Certification Assistant tool set 
for statistical testing automation . 

Pleszkoch received his PhD in Computer Science from the 
University of Maryland and an MA and a BA in Mathematics 
from the University of Virginia . He is a member of the IEEE 
and the Association for Symbolic Logic . 

Stacy Prowell
Stacy Prowell is a Senior Member of the Technical Staff at 
CERT . He is an expert in the function-theoretic foundations 
of software, and is currently conducting research and 
development for function extraction technology . Prowell 
has managed both commercial and academic software 
development projects and consulted on design, development, 
and testing of applications ranging from consumer electronics 
to medical scanners, from small embedded real-time systems 
to very large distributed applications . 

Prior to joining the SEI in 2005, Prowell was a research 
professor at the University of Tennessee . To support wider 
adoption of rigorous methods in industry, he started the 
Experimentation, Simulation, and Prototyping (ESP) project at 
the University of Tennessee, which develops software libraries 
and tools to support application of model-based testing and 
sequence-based specification . Software developed by this 
program is in use by over 30 organizations .

Prior to working at the university, he served as a consultant in 
the software industry . His research interests include rigorous 
software specification methods, automated statistical testing, 
and function-theoretic analysis of program behavior . Prowell 
holds a PhD in Computer Science from the University of 
Tennessee and is a member of the ACM, IEEE, and Sigma Xi .

Kirk Sayre
Kirk Sayre is an expert in the function-theoretic mathematical 
foundations that are the basis for function extraction 
technology . He is currently working on development of the 
core rewriting engine for the FX system, as well as on formal 
testing for the system . In addition, Sayre is involved in 
research involving the application of programming patterns to 
the development of secure software .

Prior to joining CERT, Sayre was a research professor at the 
University of Tennessee, where he developed an automated 
testing framework for the certification of generic scientific 
computing libraries . In his position at UT, Sayre also 
developed a CASE tool to support the editing and creation 
of rigorous sequence-based software specifications . This 
tool is currently being used on software projects at Oak 
Ridge National Laboratory and Bosch . Sayre has developed 
software in many different areas, including educational web 
applications, automated testing tools, CASE tools, medical 
devices, and weapons systems .

Robert C. Seacord
Robert C . Seacord leads the Secure Coding Initiative at 
CERT, located in Carnegie Mellon’s Software Engineering 
Institute (SEI) in Pittsburgh, PA . CERT, among other security 
related activities, regularly analyzes software vulnerability 
reports and assesses the risk to the Internet and other critical 
infrastructure . Robert is an adjunct professor in the Carnegie 
Mellon University School of Computer Science and at the 
Information Networking Institute .  He represents CMU at 
PL22 .11 (ANSI “C”) and is a technical expert for the JTC1/
SC22/WG14 international standardization working group for 
the C programming language .

James F. Stevens
James F . Stevens is a senior member of the technical staff 
in the Networked Systems Survivability (NSS) Program at 
Carnegie Mellon University’s Software Engineering Institute 
(SEI) . The CERT Coordination Center is also part of this 
program . As a part of the Survivable Enterprise Management 
group, Stevens is responsible for developing methods, tools, 
and techniques for resilient enterprise management . This work 
includes designing and delivering various information security 
risk assessment, analysis, and management technologies for 
customers in the government and the private sector . Stevens 
has been working in information security for over fifteen years 
and holds a BS degree in Electrical Engineering from the 
University of Notre Dame and an MBA from Carnegie Mellon 
University’s Tepper School of Business . Stevens holds the 
CISSP certification as well .

Ed Stoner
Ed Stoner is a Member of the Technical Staff in the Network 
Situational Awareness Group at CERT . He holds a BS in Math/
Computer Science from Carnegie Mellon . Prior to joining 
the NetSA team, Ed was the network engineer for the CERT 
Infrastructure Team . His research interests include network 
protocols and large-scale DNS trends .



77

b
io

g
r

A
P

H
iE

S

David Svoboda
David Svoboda is a software security engineer at CERT, at the 
Software Engineering Institute (SEI) in Pittsburgh, PA . David 
has been the primary developer on a diverse set of software 
development projects at Carnegie Mellon since 1991, ranging 
from hierarchical chip modelling and social organization 
simulation to Automated Machine Translation (AMT) . His 
KANTOO AMT software, developed in 1996, is still (as of 2008) 
in production use at Caterpillar . David is also actively involved 
in several ISO standards groups: the JTC1/SC22/WG14 group 
for the C programming language, and the JTC1/SC22/WG21 
group for C++ .

Mark Thomas
Mark Thomas is a Member of the Technical Staff with the 
Network Situational Awareness Group, where he works as a 
software engineer, primarily developing tools for network flow 
collection and analysis and responding to user feedback .

Although Thomas's degrees are in Chemical Engineering (a 
BS from West Virginia Tech, an MS and a PhD from Carnegie 
Mellon), he has always enjoyed programming, and his PhD 
work on computer environments for engineering design 
allowed him to join his programming skills with his formal 
education . Thomas worked on a variety of software projects 
either at Carnegie Mellon or near its campus in the years 
between his graduation and his joining CERT in 2003 .

Randy Trzeciak
Randy Trzeciak is currently a Member of the Technical Staff for 
the Software Engineering Institute’s (SEI) Networked Systems 
Survivability (NSS) Program .

Mr . Trzeciak is a member of a team in CERT focusing on 
insider threat research, including insider threat studies being 
conducted with the U .S . Secret Service National Threat 
Assessment Center, DoD’s Personnel Security Research 
Center (PERSEREC), and Carnegie Mellon’s CyLab . The studies 
analyze the physical and online behavior of malicious insiders 
prior to and during network compromises . Other insider 
threat research uses system dynamics modeling for risk 
analysis of the impacts of policy decisions, technical security 
measures, psychological issues, and organizational culture 
on insider threat . Mr . Trzeciak also is an adjunct professor in 
Carnegie Mellon’s H . John Heinz School of Public Policy and 
Management .

Prior to his current role in the NSS Program, Mr . Trzeciak 
managed the Management Information Systems (MIS) team in 
the Information Technology Department at the SEI . Under his 
direction, the MIS team developed and supported numerous 
mission critical, large-scale, relational database management 
systems . The applications developed supported business 
functions across all levels in the SEI, from the Director’s Office 
to administrative support staff .

Prior to his time working at the SEI, Mr . Trzeciak was a software 
engineer for the Information Technology Development 
Center of the Carnegie Mellon Research Institute (CMRI), 
responsible for a variety of information networking projects .  
These projects included the design and development of 
large-scale databases and internet-based systems that 
adhered to data privacy and security requirements; the 
design and implementation of multi-organizational portals for 
preparation and response to weapons of mass destruction; 
and collaboration among public health department 
epidemiologists . 

Previously he worked in Computing Services at Carnegie 
Mellon University where he was a lead developer and 
database administrator on several teams focusing on 
the areas of web application development, database 
development, and networked media .

Prior to his career at Carnegie Mellon, Mr . Trzeciak worked 
for Software Technology, Incorporated (STI) in Alexandria 
Virginia . For 9 years, Mr . Trzeciak was a consultant to the 
Naval Research Laboratory (NRL) working on numerous 
projects designing, building, and supporting large-scale 
relational database management systems . During his 
employment with STI, Mr . Trzeciak also filled the role of 
Information Systems Business Manager . Mr . Trzeciak was 
responsible for managing business operations for the 
Information Systems Segment within STI .

Mr . Trzeciak holds a MS in Management from the University 
of Maryland, a BS in Management Information Systems, and 
a BA in Business Administration from Geneva College .

Rhiannon Weaver
Rhiannon Weaver is a member of the Technical Staff for the 
Network Situational Awareness Group .  She holds a BS in 
Mathematics and a BS in Computer Science from Penn State 
University, and a MS in Statistics from Carnegie Mellon 
University, where she is also pursuing her PhD in statistics . 

Weaver provides support for advanced modeling techniques 
for network anomaly detection and large-scale trending of 
Internet-wide phenomena . Her research interests include time 
series analysis of network data, data collection and inference 
in hierarchical and Bayesian models, as well as addressing 
the challenges of evaluating and applying advanced 
modeling and data mining techniques in operational 
environments . 

David W. White
David White is a Senior Member of the Technical Staff at 
CERT . White is responsible for developing and implementing 
strategies that lead to the widespread dissemination and use 
of methods, techniques, and tools that help organizations 
manage information security risks . He is also a member of 
the development team for the CERT Resiliency Engineering 
Framework, a process improvement framework that provides 
guidelines for improvement framework that provides 
guidelines for managing security and business continuity 
from an enterprise risk management perspective .

White has a bachelor’s degree in Civil Engineering and 
Public Policy from Carnegie Mellon University and a master’s 
degree in Civil Engineering with a specialization in robotics 
from Carnegie Mellon University . He is currently based in 
New York City . 

Evan Wright
Evan is an analyst for the Network Situational Awareness 
Team (NetSA) . Evan’s research interests include next-
generation technologies, network design, routing protocols, 
and design of network attack tools .

Prior to joining the SEI, Wright completed graduate school at 
Carnegie Mellon, where he obtained his MS in Information 
Security and Technology Management from the School of 
Engineering . He also holds a BS in Technology Systems from 
East Carolina University . 



78

b
io

g
r

A
P

H
iE

S

Wright worked as a Network Administrator at ABC Phones 
in North Carolina and as a consultant for various other 
companies . Evan holds the Cisco Certified Networking 
Professional certificate and four other IT certifications . 

Bradford J. Willke, CISSP 
Bradford Willke is a member of the Survivable Enterprise 
Management group and a senior member of the CERT 
technical staff . Willke is responsible for leading the 
Information and Infrastructure Protection team, and conducts 
research, development, and process improvement activities 
in risk, threat, and vulnerability management methodology 
related to information security management . Willke also 
leads projects to develop strategies and provide support for 
national and international critical infrastructure protection 
initiatives . In addition, he worked on the development 
of the SEI’s principle risk assessment methodology, the 
Operationally Critical Threat, Asset, and Vulnerability 
Evaluation (OCTAVESM) Method .

Before joining the SEI, Willke was a technical intern with 
Southern Illinois University at Carbondale, where he 
installed, managed, and maintained the university’s first 
firewall, which protected the university’s multi-million dollar 
Oracle investment . He also provided technology and security 
management for computing resources of the 90th Security 
Police Squadron, Francis E . Warren Air Force Base, Wyoming . 
Willke served in the United States Air Force as a law 
enforcement specialist and organizational computer security 
officer from 1993-1997 .

Willke holds a professional certificate in information 
protection and security from the University of New Haven, 
and received a BS in information systems technologies 
from Southern Illinois University at Carbondale in 1999 . He 
received an AAS in criminal justice from the Community 
College of the Air Force in 1997, and has been a Certified 
Information System Security Professional (CISSP) since 2004 .

Carol Woody
Carol Woody is a senior member of the technical staff at 
SEI . She leads a team of researchers focused on building 
capabilities in defining, acquiring, developing, measuring, 
managing, and sustaining networked systems and software 
so as to exhibit desired security attributes over time .

Woody has over 25 years of experience in software 
development and project management covering all aspects 
of software and systems planning, acquisition, design, 
development, and implementation in large  complex 
organizations . Woody has a biographical citation in Who’s 
Who in American Women and Who’s Who in Finance and 
Industry . She is a senior member of IEEE and ACM, and a 
member of PMI .

Dr . Woody holds a BS in mathematics from The College of 
William and Mary, an MBA with distinction from Wake Forest 
University, and a PhD in Information Systems from NOVA 
Southeastern University . 

Justin Zhan 
Dr . Justin Zhan is a faculty member at Carnegie Mellon 
University and a research director of the privacy, security, and 
decision informatics lab at Carnegie Mellon CyLab Japan . His 
research interests include the privacy and security aspects of 
data mining, privacy and security issues in social networks, 
privacy-preserving scientific computing, privacy-preserving 
electronic business, artificial intelligence applied in the 
information security domain, data mining approaches for 
privacy management, and security technologies associated 
with compliance and security intelligence . He has served 
as an editor/advisory/editorial board member for many 
international journals and a committee chair/member for 
over 80 international conferences . He has published over 
one hundred articles in various peer reviewed journals and 
conferences .



Copyrights
Carnegie Mellon University SEI-authored documents are sponsored by the  
U.S. Department of Defense under Contract FA8721-05-C-0003. Carnegie 
Mellon University retains copyrights in all material produced under this 
contract. The U.S. Government retains a non-exclusive, royalty-free license 
to publish or reproduce these documents, or allow others to do so, for U.S. 
Government purposes only pursuant to the copyright license under the 
contract clause at 252-227-7013.

For information and guidelines regarding permission to use specific  
copyrighted materials owned by Carnegie Mellon University  
(e.g., text and images), see Permissions at  www.sei.cmu.edu/about 
/legal-permissions.html. If you do not find the copyright information you 
need, please consult your legal counsel for advice.

Trademarks and Service Marks
Carnegie Mellon Software Engineering Institute (stylized), Carnegie Mellon  
Software Engineering Institute (and design), and the stylized hexagon are  
trademarks of  Carnegie Mellon University.

®  CERT, CERT Coordination Center, and OCTAVE are registered in the   
U.S. Patent and Trademark Office by Carnegie Mellon University.

For information and guidelines regarding the proper referential  
use of Carnegie Mellon University service marks and trademarks,  
see Trademarks, Registration, and Service Marks at  
www.sei.cmu.edu/about/legal-trademarks.html.

© 2010 by Carnegie Mellon University

The 2009 CERT Research  
Annual Report was produced by  
SEI Communications.

Executive Editor 
Richard Linger

Design
Robert Fantazier

Production 
David Biber 
David Gregg 
Melissa Neely 



Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Fax: 412-268-5758
www.cert.org


