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Background: The ability to rapidly
and accurately triage, evacuate, and utilize
appropriate interventions can be problem-
atic in the early decision-making process of
trauma care. With current methods of pre-
hospital data collection and analysis, deci-
sions are often based upon single data
points. This information may be insufficient
for reliable decision-making. To date, no
studies have attempted to utilize data at
multiple time points for purposes of enhanc-
ing prediction, nor have studies attempted
to synthesize prediction models with data
reflecting both large-vessel venous and arte-
rial injuries. Therefore, we performed a ret-
rospective study to examine the potential
utility of dynamic neural networks in pre-
dicting mortality using highly discretized
uncontrolled hemorrhagic shock data.

Methods: One hundred forty-three
swine with either grade V liver injuries or

2.8-mm aortotomies had hemodynamic
data collected every minute throughout
injury and resuscitation. The independent
variables used as inputs to the polynomial
neural networks (PNNs) included systolic
blood pressure and mean arterial pressure
(MAP). These inputs were used to predict
mortality in individual swine 1 hour after
injury using data up to 20 minutes after
injury. Survival models were compared
based on discrimination power (DP), i.e.,
where specificity equals sensitivity, and
area under the receiver operating charac-
teristic (ROC) curve (c-statistic). The Hos-
mer-Lemeshow (H-L) statistic was used to
measure model calibration.

Results: The best PNN model pre-
dicted mortality at 60 minutes utilizing
data from injury to 20 minutes after in-
jury. This model produced a ROC area of
0.919, a DP of 0.857, and a H-L value of

16.47. A DP of 0.857 means that 85.7% of
the survivors are correctly predicted to
survive, and 85.7% of the nonsurvivors
are predicted to die. MAP of survivors
and nonsurvivors were graphed for com-
parative purposes. As this graph illus-
trates, the use of MAP alone cannot dis-
criminate survivors from nonsurvivors.

Conclusion: This study demonstrates
that PNN models can effectively harness
the dynamic nature of uncontrolled hem-
orrhagic shock data, despite utilizing data
from large-vessel arterial and venous in-
juries. Utilizing the dynamic nature of
hemorrhagic shock data in PNNs may ul-
timately allow the development of novel
decision assist devices.
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With the invention of the sphygmomanometer in 1891
came the first noninvasive physiologic sensing de-
vice. Now, over 100 years later, there is a major

effort by both civilian companies and the military to develop
new noninvasive sensor technologies and improve the accu-

racy of existing sensors. Military projects focusing on pre-
hospital frequently sampled digital data collection have
spearheaded the development of advanced noninvasive sen-
sors, including pulse oxymetry, capnography, and a durable
digitized electrocardiogram.1

Equipment in these sophisticated monitoring systems
collect highly sampled discretized data, mimicking the trend
analysis common in the intensive care environment. If col-
lected in the prehospital environment, similar digitized data
could greatly change the relatively crude decision-making
algorithms currently utilized in prehospital trauma triage and
injury severity assessment. Standard trauma triage algorithms
currently used in prehospital and hospital settings, such as the
Revised Trauma Score (RTS) and Trauma and Injury Sever-
ity Scoring (TRISS), use only physiologic data at one time
point.2–7 When these and other algorithms were developed,
collection of highly sampled data for real-time triage and
assessment was not an option due to the lack of sensor
technology and computing power. With these technological
advances in hardware, sophisticated algorithms, such as neu-
ral networks, can analyze and integrate hemodynamic dis-
crete-time data and provide the near instantaneous results
desired by clinicians.
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The purpose of this study is to examine the utility of
polynomial neural networks (PNNs) in predicating mortality
during uncontrolled hemorrhagic shock secondary to severe
liver or aorta injury. We hypothesized that the PNN models
would be able to learn the dynamic characteristics of the
venous and arterial uncontrolled hemorrhagic shock data for
use in mortality prediction soon after the injury.

MATERIALS AND METHODS
Swine Hemorrhagic Shock Database

The database used for this retrospective analysis was
compiled from several different experiments examining re-
suscitation techniques on swine in hemorrhagic shock. The
hemorrhage was induced in 79 pigs by a grade V liver injury
(Liver Injury Scale of the American Association for the
Surgery of Trauma).8 Resuscitation in the different experi-
ments included the application of a variety of hemorrhage
control methods, as well as fluid administration, with a goal
of rapid return to preinjury mean arterial pressure (MAP).8,9

Hemorrhage was induced in 64 pigs by an aortotomy exper-
iment which examined the optimal timing and rate of admin-
istration of resuscitation fluids in uncontrolled hemorrhage.
One hundred forty-three commercial swine weighing 40 � 5
kg were used in this study. All animals were maintained in a
facility accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care International. The
protocol was approved by the Animal Care and Use Com-
mittees of the Institute of Surgical Research, Ft. Sam Hous-
ton, Texas, and William Beaumont Army Medical Center, El
Paso, Texas. All animals received care in strict compliance
with the Guide for the Care and Use of Laboratory Animals
(National Research Council, 1996).

Splenectomies were performed on each pig before injury
so that the physiologic reaction to the hemorrhage would be
more comparable to humans; the pig spleen is contractile and
can autotransfuse a significant volume of blood. Data vari-
ables were measured from preinjury until 1 hour or until the
animal died. These included MAP and systolic blood pressure
(SBP) sampled every minute. Missing data entries at several
time iterations and entries that were deemed physiologically
impossible were computed using linear interpolation of the
surrounding data points. Similar techniques have been em-

ployed in previous studies to overcome the problem of miss-
ing data entries.10

Network Synthesis
Neural network algorithms are mathematical constructs

for determining the functional relationships between two sets
of data (inputs and outputs). In this context, they represent an
extension of traditional regression analysis.11 The commer-
cial neural network development software we used for this
experiment synthesizes neural networks to solve multivariate
estimation and classification problems.12 Proceeding from a
numerical database of known input-output relationships, the
software synthesizes a PNN from zero connections to an
optimum level of complexity. As part of this process, the
software then selects those variables that are most useful in
modeling from the list of available candidate inputs. Linear
and nonlinear algebraic nodal functions are selected automat-
ically and interconnected by the software into networks that
become global models of the functional relationships in the
data.13 The software then produces C-language code that may
readily be compiled on essentially any personal computer.

In our experiment, two types of networks were synthe-
sized by this software: a static PNN model that uses physio-
logic data at one time point, and a dynamic PNN model,
which uses the historical data over the course of the hemor-
rhage. The static model, illustrated in Figure 1A, was trained
to predict swine survival at time 60 minutes using MAP and
SBP at 20 minutes into hemorrhage. The 20-minute time
cutoff was chosen because it had the greatest number of pigs
still alive within the 20- to 30-minute window of interest.
Two additional static (without feedback) networks were
trained to predict survival at 60 minutes using these variables
at 16 and 18 minutes after injury for comparative purposes.
Similarly, the dynamic model, illustrated in Figure 1B, used
the independent variables MAP and SBP at 1-minute inter-
vals over the first 20 minutes of the uncontrolled hemorrhage
as inputs into the neural network to predict survival at 60
minutes. Again, similar dynamic models were trained using
variables at 16 and 18 minutes for comparison to the model
synthesized at 20 minutes.

Due to the limited number of pig specimens, model
efficacy was determined via an N-fold cross-validation pro-

Fig. 1. (A) Static PNN. (B) Dynamic PNN.
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cedure. Under this paradigm, each pig was, in turn, withheld
from use in model synthesis and then used to evaluate only
that model. This process was repeated for each pig and the
accumulated results were used to construct a receiver oper-
ating characteristic (ROC) curve, the area under which is
known as the c-statistic.14 The networks synthesized utilized
linear polynomials and a logistic distortion function.

Statistical Analysis
The term “discrimination power” (DP) is defined as the

value where the specificity, the percent of actual survivors
correctly identified as such, and sensitivity, the percent of
nonsurvivors correctly identified as such, are equal. The use
of this measure avoids reporting a high value of specificity
that corresponds to a poor value of sensitivity, as this can
often be misleading. ROC curves plot 1 � specificity on the
abscissa vs. sensitivity on the ordinate at varying decision
thresholds. The area under the ROC curve is a measure that
indicates how close the predictive outcomes are from random
guessing, where an area of “0.5” indicates no discrimination
and an area of “1.0” indicates perfect discrimination. The
Hosmer-Lemeshow (H-L) goodness-of-fit statistic was com-
puted as an indication of the quality of model calibration.
This statistic compares true and model estimated outcome
over a decile of risk.15,16

Calibration is a measure of the accuracy of a measuring
instrument; in this case, a prediction model. For mortality
prediction models which provide a probability for a binary
outcome, the calibration would determine how close the
probabilities generated by the model are to the actual out-
come: a 1.0 for survivors and a 0.0 for nonsurvivors. Al-
though the models were able to perform very well in discrim-
inating survivors from nonsurvivors, four out of the six
models had H-L goodness-of-fit statistics that were higher
than the 15.5 threshold value that indicates a good fit. These
high values are due, in part, to the relatively small number of
swine available for training the PNN models. The use of the
statistical analysis of calibration as a determination of model
efficacy, however, is still under debate.17 This is because
models can discriminate 100% of the time while having poor
calibration using the H-L statistic. Bars indicating 1 SD
above and below mean were used in Figure 2 to illustrate that
mortality discrimination is not feasible using just MAP values
alone, as there is a large inconsistency in pressures of indi-
vidual swine over the course of the hemorrhage.

RESULTS
Of the 143 swine in the database, 87 (60.8%) lived past

the observational period, and 56 (39.2%) died before the end
of the experiment. Tables 1 and 2 summarize the means and
standard deviations of the physiologic inputs for the survivors
and the nonsurvivors, respectively. In Table 1, we see that the
two physiologic variables of the survivors revert back to
baseline after an initial fluctuation at the beginning of the
hemorrhage. In Table 2, we see that both the mean pressures

of the nonsurvivors decrease steadily over the course of the
hemorrhage. The changes reflect either effective hemostasis
(Table 1) or continued bleeding (Table 2), combined with
resuscitation.

Results of the static PNNs trained using 142 of the 143
animals are seen in Table 3 and the corresponding ROC
curves are provided in Figure 3. From these results we see
discrimination improves over the course of the hemorrhage.

Results of the dynamic PNNs trained with 142 animals
are given in Table 4 and the corresponding ROC curves
provided in Figure 4. In Table 4, we see that the model at time

Fig. 2. Mean MAP (mm Hg) over time (minutes) of pigs who lived
up to 60 minutes and those who died before 60 minutes. The error
bars represent 1 SD above and below the mean.

Table 1 Statistical Summary of the Physiological
Inputs at Postinjury Times for the Pigs Who Survived
to 60 Minutes

Time
(min) Mean SBP (mm Hg) (SD) Mean MAP (mm Hg) (SD)

1 81.22 (17.16) 62.37 (15.16)
4 63.12 (22.76) 44.84 (17.66)

16 78.60 (18.86) 56.34 (15.35)
18 80.48 (18.84) 57.92 (15.53)
20 83.23 (18.49) 60.02 (15.20)

Table 2 Statistical Summary of the Physiological
Inputs at Postinjury Times for the Nonsurvivors

Time
(min)

Mean SBP (mm Hg)
(SD)

Mean MAP (mm Hg)
(SD)

1 88.33 (17.36) 69.62 (15.96)
4 61.68 (25.55) 41.37 (21.26)

16 59.50 (21.77) 39.25 (20.41)
18 57.71 (23.71) 38.05 (21.10)
20 54.36 (21.47) 34.24 (19.07)
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20 minutes produces the best overall results in terms of
discrimination.

Figure 2 illustrates the mean MAP of the survivors vs.
nonsurvivors over time. The clear divergence seen at 3 min-
utes postinjury appears to suggest easy discrimination be-
tween the pigs that live and those that die. However, upon
examining the standard deviations from these means, repre-
sented by the bars on the means, there is a large overlap in the
MAP values of the survivors and nonsurvivors. This indicates
the clinically recognized difficulty in early discrimination
between survivors and nonsurvivors and highlights the need
for highly sampled discrete data collection, integration, and
data analysis, such as the neural network techniques de-
scribed herein.

DISCUSSION
The goal of this present study was to examine the ability

of PNN-based algorithms to utilize the large amounts of
digitized data collected during an uncontrolled hemorrhage
experiment to accurately predict mortality at the earliest pos-
sible time after injury. From our analyses, we showed that the
models were successful in discriminating between those pigs
that lived from those that died, at 18 and 20 minutes postin-
jury, where use of mean MAP could not discriminate.

The cutoff time of 20 minutes was chosen for several
reasons. First, 20–30 minutes after injury is the time window
within which army medics and civilian prehospital personnel
must make triage and evacuation decisions.18 In the civilian
setting, 70% of all trauma deaths occur in the prehospital
environment.19 On the battlefield, roughly 90% of deaths
occur before injured soldiers can be transported to the field
hospital.20,21 After arriving at the field hospital, mortality
rates fall to near 3%; therefore, to significantly decrease
mortality, gains are needed in the prehospital setting.22 We
feel that there is potential for improving upon the current
single time point data collection in the prehospital arena by
utilizing data from multiple time points, possibly decreasing
the traditionally high prehospital death rate.23 Utilizing PNNs
may help facilitate triage decisions, resulting in improved
utilization of resources and evacuation priorities, and leading
possibly to overall lower mortality.

Limitations
There are a variety of limitations with the present study.

The purpose of this retrospective study was to examine the

Table 3 Results of Static PNN Models Trained on
142 Pigs

Model at Time
(min)

Discrimination
Power

Area under
ROC Curve

Goodness-of-Fit
Statistic

16 0.732 0.774 24.115
18 0.816 0.847 15.054
20 0.857 0.886 4.81

Fig. 3. ROC curve of static PNN trained on all 142 pigs.

Table 4 Results of Dynamic PNN Models Trained on
142 Pigs

Time
(min)

Discrimination
Power

Area under
ROC Curve Hosmer-Lemeshow

16 0.803 0.827 59.63
18 0.839 0.866 16.47
20 0.857 0.919 14.74

Fig. 4. ROC curves of dynamic PNN.
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utility of PNNs to predict mortality given time-stamped phys-
iologic data. Although this was accomplished, there were no
standard algorithms with which to compare these results. This
is due to the lack of applicable data from these animal studies
such as Glasgow Coma Scale score, used in most prehospital
scoring systems, and Injury Severity Score, used in retrospec-
tive outcome algorithms, such as TRISS. To have some gauge
of comparison, PNN models at a variety of times were syn-
thesized. The ability of the PNN algorithm to discriminate
well over the different time provides evidence that good
discrimination at 20 minutes was not due to chance. The
improvement in predictability of the models over 16, 18, and
20 minutes supports the hypothesis that PNNs can effectively
model the physiologic dynamics of hemorrhage.

Another limitation with our results lies in the data used.
The data analyzed in this retrospective study were obtained
from two experiments specifically designed to assess various
types of hemorrhage control and resuscitation methods, and
thus the swine involved were homogenous across breed,
weight, and two types of severe injury. To be useful for field
triage, a model should be able to take into account more than
two etiologies of life-threatening hemorrhage. Also, although
statistically valid conclusions were made on models synthe-
sized with data from 143 animals, a model synthesized with
a larger training data set is needed to be useful in possibly
providing an earlier mortality discrimination. Additionally,
training on human data, not pig data, is needed for models to
be directly useful in the clinical setting.

Creating a human prehospital database for modeling,
however, would be a large undertaking, due, in part, to the
amount of patients needed. For example, the RTS algorithm
was constructed using a 2,166-patient database, and evaluated
using a 26,000-patient database.2,5 Collecting the necessary
physiologic data needed for modeling would also be difficult
due to the sophisticated sensors and storage hardware this
would require. Data collected in the civilian prehospital set-
ting, unlike data in this study, would have a significant lag
from the time of injury to the time of data collection due to
the response time of medics.

Another potential limitation that needs to be considered
is the effect of various resuscitation endpoints, and different
methods of hemorrhage control on our analysis. Although
standard protocols were followed in the administration of
lactated Ringer’s solution for all pigs, the application of
different hemostatic techniques among the liver hemorrhage
pigs could have affected model discrimination.

Clinical Utility
The PNN models synthesized in this experiment indi-

cated an ability to produce an accurate probability of survival
prediction using limited data from two uncontrolled hemor-
rhage swine models. These models provide an option not
currently available in present prehospital scoring systems to
effectively harness valuable physiologic variables taken at
multiple times. Unlike RTS and TRISS, which produce a

probability of survival using physiologic data from one point
in time, the PNN-based models combine data from multiple
times and thus are able to utilize valuable information on
hemorrhage dynamics to improve outcome classification.

While it is premature to discuss applications of this
algorithm in civilian trauma, due to our use of data which
would be difficult to collect in that setting, the idea of utiliz-
ing similar PNN-based models may soon be possible in com-
bat trauma where efforts are being made to collect patient
data immediately upon injury. This concept of data analysis
at multiple times could also fuel research in the emergency
department and in-patient critical care areas.
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