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Introduction

Throughout the Department of
Defense (DoD), analysts use Mod-
els and Simulations (M&S) to assist

decision makers in choosing among vari-
ous strategic courses of action, whether or
not to purchase particular weapons sys-
tems, implement programs, and so on.  The
cost of these weapon systems and pro-
grams can run into billions of dollars, and
there is always the possibility of lives lost.
Therefore, ensuring that our models are
logically coherent and provide believable
results is of paramount importance.  Mod-
els that contain non-monotonic output may
be unbelievable to decision-makers.  A
model is non-monotonic if adding capabili-
ty to one side, while holding everything
else constant, results in a less favorable
outcome for that side.  When a model used
to decide between alternatives exhibits
non-monotonic behavior, the model’s
validity, as well as its usefulness for analy-
sis, may come into question.

Non-monotonic behavior has been
observed in large, well-established deter-
ministic combat models. For example,
Saeger and Hinch, in a force thinning
study that was part of the Quadrennial
Defense Review–1997, found that the
model they were using suggested that more
capability sometimes resulted in worse out-
comes.1 This article summarizes some of
the findings in Vinyard (2001) of high-
dimensional explorations of the relatively
simple Dewar model.2 In particular, two
questions are addressed:  (1) How wide-
spread is non-monotonicity in the model?
and (2) Can the response surface in non-
monotonic regions be made more
amenable to interpretation by decision-

makers without destroying the chaos that
may be inherent to both real combat and
the model?

Background
In 1991, Dewar et al., released a study

showing that even simple, deterministic
combat models can be subject to non-
monotonic behavior.3 This finding was not
new. However, the finding that the non-
monotonicity was due to chaos inherent in
the model was new. Perhaps this shouldn’t
have been surprising, as combat models are
nonlinear systems with delayed feedback
processes that can reinforce or dampen the
system. That is, combat models are exactly
the type of model likely to exhibit chaotic
behavior.  Of course, this can be troubling
for modelers because a characteristic of
chaotic systems is extreme sensitivity to
initial conditions. Furthermore, it is an
inescapable fact that no matter how careful
our measurements, the data used in our
analyses are subject to errors. In chaotic
systems, even if the magnitude of these
errors is extremely small, the uncertainty
associated with the errors creates uncer-
tainty about our knowledge of the system
in the future. In fact, Sandmeyer, found
that a computer’s double precision round-
off algorithm qualitatively affected a large,
deterministic combat model’s results.4

Dewar et al. cautioned that the chaotic
behavior manifested in a combat model
may or may not be an accurate reflection of
chaos on the battlefield.3 However, one of
the essential aspects of combat may be
chaos—for want of a nail … the battle was
lost. A combat model that exhibits chaotic
behavior in an appropriate way seems, on
an intuitive level, to be more realistic than
a model that does not.  

Previous Research and 
Suggested Remedies

The original article by Dewar et al.
spawned a series of articles.  Many of these
papers explored ways to explain, over-
come, or attenuate the effects of chaos and
the resulting non-monotonicities.  Palmore
offered multiple causes of instabilities and
discussed several ways to address these

problems.5 Louer advocated parametric
variation of variables and stochastic deci-
sion thresholds.6 He claimed that these
methods cope with the underlying chaos,
while providing results that are informative
and trends that are monotonic in behavior.
Louer also suggested the use of 

experimental design . . . covering the
full range of uncertainties . . . to develop
distributions of the response functions. .
. . The skilled analyst then needs to . . .
assess if they have any significant influ-
ence on the trends of the response func-
tion curves.7

Cooper urged “far-ranging sensitivity
trials, to explore more of a model’s
domains.”8 Cooper also showed how a
minor change to the Dewar model’s deci-
sion rules results in purely monotonic
behavior in the two-dimensional subspace
he examined.9 Huber and Tolk showed
that “non-monotonic effects may largely be
eliminated if dynamic mission-oriented
decision rules are used rather than the static
state-oriented decision thresholds [Dewar
used].”10 It has also been shown that care-
ful stochastic manipulation of both deci-
sion thresholds and attrition coefficients
can significantly smooth the non-monoto-
nicities that arise due to dynamic instabili-
ties inherent in combat models.11

Saeger and Hinch recently discovered
non-monotonic behavior in a large, deter-
ministic model.1 In an attempt to get
meaningful results out of the model, they
defined a neighborhood of the phase space,
randomly perturbed selected variables, and
attempted to fit a probability curve to the
output values of multiple runs.  They con-
cluded:

[T]he probability distribution of the
[response curve] is a function of the
variable that is perturbed.  [But there is]
no obvious way to determine, a priori,
which variables to perturb [nor] by what
magnitude to perturb them.  

Their recommendation was to “perturb
all variables [and] perform sensitivity
analysis in perturbation magnitude.”
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Searching for Non-Monotonicity 
in the Dewar Model

The previously published papers on the
Dewar model examined only one or two of
the model’s 18 dimensions.  Thus, the ques-
tion must be asked:  Are these findings
anomalies that occur only in the small por-
tions of the model that have been examined,
or do they generalize to other measures and
dimensions?  The combinatorial possibili-
ties of main effects and interactions among
the 18 dimensions are too great to examine
en masse.  Consequently, we use advanced
statistical designs and billions of computa-
tional experiments to more fully explore the
model.

The original Dewar model is a determin-
istic time-step simulation of a homogeneous
Lanchester square law battle (see [3] for
details).  In addition to the attrition rate
coefficients, the model has parameters for
initial force sizes, reserves, reinforcement
levels, reinforcement delays, and decision
thresholds.  At each time step, depending on
the engaged force ratio and force levels,
each side makes decisions on whether to
withdraw or call in reinforcements.  There is
a natural symmetry in the parameters—i.e.,
for each Blue parameter there is a corre-
sponding Red parameter.  The previous
research focused on the initial forces sub-
space (i.e., the two-dimensional space
defined by initial Blue force level and initial
Red force level) and the binary outcome
measure ‘who wins.’  Figure 1 shows the
non-monotonic output of this subspace in
the Dewar model.  In this two-dimensional
graph, initial Red force levels vary from ten
to 3500, in increments of ten.  Initial Blue
force levels vary from ten to 2000, also in
increments of ten.  Thus, the model was run
69,451 times to generate this surface.  The
black region represents those initial force
levels that result in a Red win.  Consider the
following two scenarios:

a. Initial Blue forces are fixed at 900 (this is
indicated by a line on the graph), and ini-
tial Red forces vary from ten through
3500.  As additional troops are added to
the initial Red force, with all other vari-
ables held constant, the trend is monoton-
ic.  At an initial force level of about 2800
troops, Red starts to win.  After that,
adding troops to Red’s initial force level
results in continued Red wins, just as one

would expect.  

b. The initial Blue force level is fixed at 450,
while Red varies from 700 to 1800.
Now, the response trend goes from Blue
wins to Red wins, and back and forth
many times.  This non-monotonic trend
seems to make it impossible for a deci-
sion-maker to decide whether or not
adding more Red Forces is a good idea.

Note the broad region of extreme non-
monotonicity in Figure 1.  Also note that
large portions of this subspace contain nice
monotonic regions.  If this graph is any indi-
cation of the subspaces that exist in larger
models, then it is easy to see why extreme
non-monotonicity might go unnoticed, even
when it exists.  In larger models, the dimen-
sionality of the phase space is incomprehen-
sibly vast.  It is entirely possible that these
large models are operating in purely monot-
onic regions.  However, it is also possible
that they are teetering on the edges of non-
monotonic regions like the one pictured
here.  

In the Dewar model, there are 18
 2  =

153 pairs of variables.  We chose to search
the subspaces associated with the nine nat-
ural pairs of variables, with a natural pairing
consisting of the same parameter for Red
and Blue.  For each of these pairs, we want

to see if the surface is monotonic over a
range of settings for the other 16 parame-
ters. To do this, we used random Latin
Hypercube Sampling on the 16 parameters.
From McKay et al., Latin Hypercube Sam-
pling “can be viewed as a K-dimensional
extension of Latin Square Sampling” and
generates an efficient “space-filling”
design.12

For each of the nine natural two-dimen-
sional subspaces, 16 surfaces are generated
and assessed for non-monotonicity. In total,
9*16*69,451 = 10,000,944 battles are simu-
lated to generate 144 surfaces. In designing
our sample, we adhere to the original Dewar
model’s basic structure of a smaller, more
efficient force opposing a larger, less effec-
tive force; or, if you prefer, a smaller Blue
defensive force opposing a larger Red
attacking force.  To preserve the original
model’s tension between opposing forces,
we restrict the domain of the remaining
variables to fairly thin hyperplanes, centered
at the nominal values of the original model.  

This exploration found that non-monoto-
nicity, with respect to the measure ‘who
wins,’ is prevalent in the model, with non-
monotonicity for ‘who wins’ being found in
seven of the nine two-dimensional sub-
spaces explored (see Table 1). In fact, five
of the subspaces exhibit pervasive non-

COMBAT MODELS
(continued from p. 19)

Figure 1. The Response Surface of the Original Dewar Model.
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monotonicity, with it showing up in over
80 percent of the surfaces checked. In total,
54% of the surfaces generated contain non-
monotonic regions.  

Figure 2 shows examples of the newly
discovered widespread non-monotonicity
in the Dewar model.  The top row of the
figure displays two of the many striking

examples we discovered using Latin
Hypercube Sampling.  These two graphs
exhibit non-monotonicity with respect to
the MOE ‘length of battle.’  The two bot-
tom graphs in Figure 2 exhibit non-monot-
onicity with respect to the MOE ‘who
wins’ in the force ratio reinforcement and
reinforcement block size subspaces.

Mitigating Non-Monotonicity 
in the Dewar Model 

The fact that so many subspaces contain
non-monotonic behavior is cause for con-
cern.  The Dewar model contains some of
the same basic processes that many of the
larger models use, such as decision thresh-
olds and attrition processes.  If the interac-
tion of these processes in the Dewar model
generates such widespread non-monotonic
behavior, then the larger, more complex
models may also be affected by similar non-
monotonicities.  What can be done to gener-
ate interpretable responses despite the non-
monotonicities caused by the chaos in the
battle trace?  Much of the literature
reviewed for this paper indicates that sto-
chastic modeling can be a useful way to
deal with non-monotonic behavior in both
the simple Dewar model and other, more
complex models.  

To examine how making parameters sto-
chastic affects non-monotonicity in the
Dewar model, we ran a fractional factorial
experiment to determine the effect of sto-
chastic modeling on the trends of the
response surface.  The experiment varied
nine factors consisting of the nine types of
parameters in the model.  Each factor had
two levels, deterministic and stochastic.  To
efficiently search all nine factors simultane-
ously, a 29-3, resolution V, fractional factori-
al design is used.13 This requires 64 differ-
ent input settings.  Each surface consists of
69,451 points.  Plus, each point in a stochas-
tic model must be estimated. To get precise
estimates, we use 1000 replications to esti-
mate the probability that Red wins at each
point.  Thus, about 4.5 billion battles were
simulated in the fractional factorial experi-
ment.

It is not always easy to distinguish
between bona fide non-monotonicities and
random variation over an entire surface.  Six
parameters—measuring the number of non-
monotonic jumps, trends, statistically signif-
icant jumps, statistically significant trends,
and functions thereof—were used to assess
the extent of the non-monotonicities.  See
[2] for how this was done and an empirical
assessment.  Following previous analyses,
the attrition coefficients are modeled as nor-
mal random variables, with means equal to
the nominal Dewar model values and stan-
dard deviations equal to ten percent of the
square root of their means.  All other para-
meters, when stochastic, are modeled as

(See COMBAT MODELS, p. 38)

Two-dimensional Percent of Response Surfaces
Dewar Model Subspaces Containing Non-monotonic Behavior

Initial Force Levels 100%
Force Ratio Reinforcement Thresholds 81%
Percent of Remaining Forces Reinforcement Threshold 19%
Force Ratio Withdrawal Threshold 0%
Percent of Remaining Forces Withdrawal Threshold 0%
Reinforcement Blocks Available 6%
Reinforcement Block Delay 100%
Reinforcement Block Size 88%
Attrition Coefficients 94%

Table 1.  Latin Hypercube Sampling Results: 78 of the 144 response surfaces found
during the Latin Hypercube Sampling exhibited non-monotonic behavior.  

Figure 2. Four of the Many Two-dimensional Subspaces 
Exhibiting Non-monotonic Behavior 
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uniform random variables with intervals,
centered on the nominal Dewar model val-
ues, ranging from plus to minus five percent
of the nominal value. These small random
deviations are within the uncertainties that
would be present on a real battlefield.

The results are dramatic and convincing,
and support previous work.1,6,7,11 Stochas-
tic perturbation usually dramatically reduces
the non-monotonic behavior of the response
surface, but can, by some measures, exacer-
bate it.  The attrition coefficients are the
model parameters, over the values we inves-
tigated, that have the greatest effect on the
reduction of the non-monotonic behavior—
see [2] for a detailed analysis of the effects
and interactions between parameters.  Fig-
ure 3 shows the same surface as Figure 1,
with all of the parameters stochastic.  Unlike
the previous graph, Figure 3 appeals to our
intuition(the outcome remains uncertain
until one side or the other quits the field of
battle.  

Conclusions 
Caveat actor et cavendo tutus

Feigenbaum, Mandlebrot and other pio-
neers of chaos theory have shown that chaos
is the rule rather than the exception in the
real world.14  The possibility that chaos and
its consequent non-monotonicity are also
the rule in large, complex combat models is
very real. The Dewar model is relatively
small compared to most of the larger, more
complex models that DoD currently uses.
Nonetheless, it includes many of the same
processes present in these much larger mod-
els. Thus, it is reasonable to suppose that
what we learn from studying the Dewar
model will help us with our larger models.
The bottom line is that non-monotonicity
may be more pervasive in combat models
than previously suspected.  Stochastic mod-
eling can be a viable method for dealing
with non-monotonic response surfaces.
However, stochastic modeling must be done
carefully. When it is, the non-monotonic
behavior of the model can be dramatically
reduced while maintaining the chaos that
may be inherent to combat, thereby making
the trends of the response surface more use-
ful for comparative analyses. Better analy-
ses can help decision-makers save time,
money, and other assets(and, perhaps,
another soldier, sailor, airman or Marine
will get to enjoy their pension.

References 
[1] Saeger and Hinch, “Understanding

Instability in a Complex Deterministic
Combat Simulation,” not yet pub-
lished paper, 24 August 2000.

[2] Vinyard, “Reducing Non-monotonici-
ty in Combat Models,” Master’s The-
sis, Naval Postgraduate School, Sep-
tember 2001.

[3] Dewar, Gillogly and Juncosa, “Non-
monotonicity, Chaos, and Combat
Models,” RAND R-3995-RC, 1991.

[4] Sandmeyer, “Simtech Project: Appli-
cation of Supercomputers to Divi-
sion/Corps Level Combat Simula-
tion,” AMSAA, Interim Note No.
C-159, October 1990.

[5] Palmore, “Research on the Causes of
Dynamical Instability in Combat
Models,” USSACERL Technical
Report 96/95, August 1996.

[6] Louer, “More on Non-Linear
Effects...,” Phalanx, March 1993.

[7] Louer, “Treatment of Non-monotonic
Effects in Models for Analyses,”
PHALANX, March 1994.

[8] Cooper, “Non-Monotonicity and
Other Combat Modeling Ailments,”
PHALANX, June 1994.

[9] Cooper, “Non-monotonicity Revisit-
ed,” Phalanx, September 1994.

[10] Huber and Tolk, “Non-monotonicity
Effects in Combat Models and Tacti-
cal Decision Modeling,” Phalanx, Sep-
tember 1994.

[11] Lucas, “How One Randomizes Mat-
ters:  A Study of Non-monotonicity
and Randomness in Combat Analy-
sis,” Phalanx, March 1997.

[12] McKay, Beckman and Conover, “A
Comparison of Three Methods for
Selecting Values of Input Variables in
the Analysis of Output from a Com-
puter Code,” Technometrics, vol. 21,
no. 2, May 1979.

[13] Box, Hunter and Hunter, Statistics
For Experimenters, John Wiley and
Sons, 1978.

[14] Gleick, Chaos: Making a New Sci-
ence, Penguin Books, 1987.

Biographies
Major William Vinyard has been on

active duty since 1980, serving in a variety
of billets throughout the Marine Corps.  He
recently graduated from the Naval Post-
graduate School with an MS in Operations
Research.  He is currently stationed at the
Marine Corps Logistics Base, Albany,
Georgia, in the Logistics Operations Cen-
ter working as an operations analyst.

Dr Tom Lucas is an Associate Profes-
sor of Operations Research at the Naval
Postgraduate School. His primary
research interests are combat analysis,
design of experiments, and robust Bayesian
statistics.  Previously, he worked as a sta-
tistician at RAND and as a systems engi-
neer at Hughes Aircraft Company. ✪

COMBAT MODELS
(continued from p. 37)

Figure 3. When all parameters are stochastic, the response surface represents the
probability of a Red win.  In this graph, the regions where Red or Blue wins are 

clearly delineated.  The gray region represents those initial force levels where 
the outcome is uncertain.


