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ABSTRACT

The aerodynamics of a cone-cylinder-flare projectile at high supersonic speeds has
been investigated through computational means, and the results compared with existing
experimental results from DREV’s aeroballistic range. Aerodynamic coefficients, base
pressure surveys, base flow visualization and shock patterns over the projectile were
investigated for a Mach number range of 3.5 to 5.75. A goal of this investigation was the
numerical study of the effects of a base cavity on the aerodynamic behavior of this
projectile. Quantitative and qualitative information was accurately modelled by the CFD
code as indicated by correlations between experimental and numerical values. The results
seem to indicate an independence between the aerodynamic coefficients (aerodynamic
coefficients constitute some of the major parameters of this study) and the presence of a
base cavity for this particular configuration.

RESUME

Un projectile de recherche utilisé dans les hautes vitesses supersoniques et de forme
cone-cylindre-jupe a été étudié a partir de codes numériques et les résultats ont ét€ comparés
aux résultats expérimentaux provenant d'essais dans le corridor aérobalistique du CRDV.
L'étude couvre les domaines des coefficients aérodynamiques, de la pression de base, de la
visualisation de I'écoulement a la base, ainsi que de la structure de l'écoulement et des
ondes de choc pour une plage de nombres de Mach de 3.5 a4 5.75. L'analyse de l'effet
d'une cavité a la base de ce projectile constitue un autre des buts de cette étude. De
l'information quantitative et qualitative a €t modélisée avec précision par le code
numérique. La comparaison entre les résultats expérimentaux et numériques semblent
indiquer une indépendance entre les coefficients aérodynamiques et la présence d'une cavité
a la base du projectile pour cette configuration particulicre.
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EXECUTIVE SUMMARY

Many tube-launched projectiles have some form of cavity in their base. The
aerodynamic characteristics and stability parameters of such projectiles are not fully
understood at the velocities of current weapon systems. As velocities increase, with novel
gun technologies, this lack of knowledge will only be exacerbated. Consequently, to
develop the next generation of tube launched projectiles, it is imperative that their
aerodynamic characteristics and stability parameters be fully understood at speeds between
Mach 5 and 8.

In order to better understand these phenomena, Defence Research Establishment,
Valcartier (DREV) has been involved in a research project to study the flight dynamic,
aerodynamic, and aero-thermal properties of cone-cylinder-flare hypersonic configurations
up to Mach 7. The overall research program consists in conducting aeroballistic range
testing of several configurations to determine their aerodynamic coefficients and stability
derivatives, conduct outdoor firings to measure temperature in flight, and participate in
collaborative work with the Defence Research Agency, Fort Halstead, England. The
presence of a base cavity in some of these projectiles has provided the impetus for further
investigations. In an effort to better understand the physical phenomena associated with
this type of flow, numerical (CFD) analyses of some of these configurations have been
performed as well.

This numerical study of the effects of a base cavity on a projectile, and on its
aerodynamic characteristics, has been performed to produce an overall understanding of the
flow for these flight conditions, and for this specific design. It also provided valuable
information to DND on the potential of this type of projectile in future anti-armour
weapons. In turn, this allowed DREV to exchange aerodynamic and aerothermal
information about the flight behavior of hypersonic projectiles with other TTCP members.




P501873.PDF [Page: 11 of 42]

RCL

UNCLASSIFIED
vil

NOMENCLATURE

drag coefficient

base component of drag coefficient

normal force coefficient slope

pitching moment coefficient slope

projectile body diameter (m)

freestream Mach number

pressure (Pa)

Reynolds number (based on projectile length)
temperature (K)

density (kg/m3)
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1.0 INTRODUCTION

Many actual and future configurations of projectiles have some form of base cavity.
The aerodynamic characteristics and stability parameters associated with this type of vehicle
have not always been completely understood in current and future speed regimes.
However, this type of aerodynamic information will have to be known and understood for
the next generation of Kinetic energy penetrators, at extreme speed regimes (Mach 4 - 8),
before being used in any development phase.

In order to better understand these phenomena, Defence Research Establishment,
Valcartier (DREV) has been involved in a research project to study the flight dynamic,
acrodynamic, and aero-thermal properties of cone-cylinder-flare hypersonic configurations
up to Mach 7. The overall research program consists in conducting aeroballistic range
testing of several configurations to determine their aerodynamic coefficients and stability
derivatives, conduct outdoor firings to measure temperature in flight, and participate in
collaborative work with the Defence Research Agency, Fort Halstead, England. The
presence of a base cavity in some of these projectiles has provided the impetus for further
investigations. In an effort to better understand the physical phenomena associated with
this type of flow, numerical (CFD) analyses of some of these configurations have been
performed as well.

This document describes the numerical analysis of the aerodynamic characteristics
of one of the configurations designed for experimental testing, and compares the results of
this analysis with existing experimental results. The numerical study of the effects of a base
cavity on the projectile aerodynamic characteristics has been performed to produce an
overall understanding of the flow for these flight conditions and for this specific design.
This work was conducted as part of a joint cooperative project between Canada and the
UK, under the auspices of TTCP-WTP-2, to study the aerodynamic characteristics and
aeroheating aspects of several configurations at hypersonic speeds. It was conducted at
Defence Research Establishment Valcartier (DREV) between July 1995 and May 1996,
under Project 2EA19 - Hypersonic Flight.
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2.0 BACKGROUND

The structures and characteristics of the near and far wakes of supersonic vehicles
are known to comprise extremely complex flow patterns, including subsonic recirculations,
separated regions, secondary shocks, and extreme fluctuations in pressure, velocity,
density and temperature. The presence of these flow patterns constitutes a very demanding
scenario for any experimental or numerical resolution techniques. A schematic
representation of the different flow patterns behind a moving body at supersonic speed is
presented in Fig. 1.

This schematic diagram shows the approaching supersonic flow separating at the
base corner, and the free shear layer forming in the wake. An expansion fan affects the
flow has it passes the base corner. The flow is then realigned by a recompression shock
downstream of the base, which finally leads to the trailing wake formation. A rear
stagnation point (reattachment area) also develops upstream of the trailing shock position.
A low pressure region is formed immediately downstream of the base which is
characterized by a low speed recirculating flow region. This recirculation region is the
principal subject of the present study, with its effects on the general aerodynamic
parameters of this body.

Inviscid region Expansion fan

// Free shear layer
. /- Dividing streamline
S
—~ S—

-

C%
—
—

—
L Region of recirculation

Base region

4&’ stagnation point

FIGURE 1 - Wake of a supersonic vehicle
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Results by Celmins (Ref. 1), using a configuration somewhat different from the
model used in the present study, showed a large variation (50%) in the value of Cypq

between the cases with and without base cavities, but no significant effects on the drag
coefficient. The same conclusion (about the effect of a cavity on the drag coefficient) was
supported by Compton (Ref. 2) and Nash et al. (Ref.3). However, a recent report by Sahu
(Ref. 4) shows a significant decrease in base drag, and total drag, when testing projectiles
with a base cavity. All the models of Refs. 1 - 4 were different from the CAN-4 projectile.

3.0 PROJECTILE CONFIGURATION

The projectile under investigation, CAN-4, is shown in Fig. 2. It consists of a 1.9
calibre flare base type, and was designed to obtain a centre of gravity at 2.85 calibres from
the nose (with the present cavity). The nose was conical with a short cylindrical body
section. The nominal diameter of the model was 18 mm. The overall /d of this
configuration was 5.84. Two types of the model were used in the experimental firings. The
first type is shown in Fig. 2. The second type was a projectile without a base cavity. It had
a pressed fitted disc on the aft end to close the existing cavity.

a! z—_m;,”‘_ R0.33 !‘ '
{ ﬁkl&%
F- 200 =——p
>

FIGURE 2 - Schematic of the CAN-4 projectile with a deep base cavity (all dimensions:
calibres)
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1.89
1.28

FIGURE 3 - Schematic diagram of base cavity openings (CFD models)

The dimensions of the CFD models were identical to the experimental projectile.
However, three different cavity depths were also investigated. The different cavity depths
were produced by moving the end wall of the cavity towards the base of the projectile,
while keeping the opening of the cavity on the base plane constant (constant opening area),
as shown in Fig. 3.

4.0 PROCEDURES

The aerodynamic information on this projectile was generated from two distinct
sources, one numerical and the other experimental. Firstly, a CFD code was employed to
numerically obtain the required aerodynamic information about this projectile. Computed
results show the quantitative and qualitative details of the base flow structure. Base
pressure surveys, base flow visualization, and shock patterns over this projectile were
numerically investigated. Additionally, several aerodynamic coefficients were obtained by
integrating surface pressures and viscous drag over the entire surface of the body
(including the base region), and resolving in the appropriate directions to produce the
required coefficients, to allow comparisons with existing experimental results. Secondly,
the experimental results were generated through firings at Mach numbers as high as 5.75,
in the DREV aeroballistic range (Ref. 5).
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4.1 Aeroballistic Range

The facility used in the experimental part of the analysis is the DREV aeroballistic
range (A/B range). It is used to examine the exterior ballistics of various free-flight
configurations, and consists of a gun bay, a control room, and the instrumented range.
This range comprises three Schlieren stations followed by 54 orthogonal shadowgraph
stations over a range of approximately 260 m (Ref. 6). Ballistic synchro cameras were also
employed to provide information on the launch characteristics. The DREV aeroballistic
range has a cross sectional area of 6.1 x 6.1m and is temperature and humidity controlled
(Fig. 4). Nominal operating conditions are 20°C and 45% relative humidity. For this
experiment, flight Reynolds numbers ranged from as high as Re; = 1.7 x 107 at launch, to
as low as 5.0 x 109 towards the end of the flight. These Reynolds numbers are sufficiently
high that a fully turbulent boundary layer flow had developed along the body. The analysis
of the aeroballistic coefficients was carried out at DREV using the Ballistic Range Data
Analysis System, BARDAS (Ref. 7). The complete analysis of the test programme can be
found in Ref. 8. Figure 5 shows a shadowgraph picture of the CAN-4 configuration at
Mach number 5.75 taken in the aeroballistic range (Ref. 5). Shock wave patterns
developing of the body are easily identifiable, and a good representation of the turbulence
present in the wake can also be seen.

7ERO 30 120 170 240
20
GuN | BUTT
/’ - ]
Lﬁ ![IIIHHHHHIHHHIIHHIHHH RN A A '
2.5m » 36 S.0m x 10 10.0m » 7
Z §0m 50m 70m
4 SCHLIEREN STATIONS

BALL. SYNC. & X-RAY

FIGURE 4 - Aeroballistic range photographic station spacing
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FIGURE 5 - Shadowgraph of the CAN-4 configuration at Mach 5.75

4.2 Computational Fluid Dynamic Code

The code used by DREV is the TASCflow! Naviér—Stokes code developed
by Advanced Scientific Computing Ltd (Ref. 9). This code is a fully implicit, finite volume
method with a flux element based discretization of geometry that can utilize various
numerical upwind schemes to ensure the global conservation of mass, continuity,
momentum, and energy. It generates a general non-orthogonal, structured, boundary fitted
grid. For this study, a modified linear profile scheme was used, with both laminar and
turbulent cases. For the turbulent cases, a standard k-¢ turbulence model with wall
functions was used to evaluate the Reynolds stresses and thermal diffusion.

The following two figures show various aspects of the computational domains.
Figure 6 shows the overall computational grid for a case without a base cavity. The grid is
projected on two planes for simplification, even if the total grid and computations were
performed in three dimensions. The 3-dimensional calculations were required since the
flowfields produced by the projectile at incidence have only planar symmetry (only at zero
incidence can axial symmetry be exploited). However, only half of the full geometry of this

1 TASCflowT™ is a registered Canadian trademark of ASC Litd.
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expanded view of the computational grid in the base region for the case with a shallow
cavity. '

problem needed to be resolved
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FIGURE 7 - Computational grid for a projectile with a shallow cavity (base region only)
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The resulting grid (for all cases tested) contained 189000 nodes (distribution: 150 x
60 x 21), distributed following various patterns depending on the requirements of the
specific cases tested. This grid was assumed sufficient to prevent shock wave reflection off
the outer boundary and hence possible downstream interference, as well as to ensure full
supersonic flow at the outflow boundary (grid selected following a sensitivity analysis to
determine the grid size required for a grid independent solution). The applied boundary
conditions for the cases studied in this analysis included a range of Mach numbers from 3.5
to 5.75 for turbulent flows (k-€ turbulence model: turbulence intensity of 0.1 with eddy
length scale of 7.8 x 10”). Standard sea level pressure and temperature were employed
(p=101325 Pa, T=293.15 K). These conditions are summarized in Table I.

TABLE]I
DREYV simulations flight parameters

Mach number : 3.5t05.75
Pressure (N/m?2) 101325.1
Temperature (K) 293.15

Velocity (m/s) 1190 to 1955

Re/m 91.3 x 10% to 150.2 x 106

5.0 RESULTS

A test program consisting of seven firings (three around a Mach number of 4.5, and
four around a Mach number of 5.75) of the CAN-4 projectile was conducted during the
summer of 1995 in DREV’s aeroballistic range. In an attempt to confirm some experimental
results gathered from the literature (Ref. 1), some of these projectiles were fired with a base
cavity (4), and others (3) with the base cavity closed.

Figure 8 shows the pitching moment coefficient slope (CMq), for all seven cases
fired. From these results, the value of Cpjg, (about -5.1) seems to be very constant over the

range of Mach numbers studied. Also, the effect of the base cavity seems to be negligible
on the value of Cymq. No significant effects on the drag coefficient were identified in this

experiment.
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FIGURE 8 - Cpq, for CAN-4 (experimental)

However, the trends shown by these results do not correspond to the results
observed in other investigations (Refs. 1-4), which were presented in the background
section. Thus, in order to provide additional information and substantiate the A/B range
results, a complete CFD investigation on the nature of the flow in the wake of a projectile,
with and without a base cavity, was initiated. This computational study covered a wide
range of test conditions: four different Mach numbers (3.5, 4.5, 5.0, and 5.75), three base
cavity depths (0.72, 1.44, and 2.12 calibres), and also the closed base case.

5.1 Aerodynamic Information

Tables II and III, and Fig. 9 provide a summary of the aerodynamic coefficient
calculations performed for these cases. Values at only two Mach numbers, 4.5 (Table II)
and 5.75 (Table III), were included in these results, as these correspond to the results
available from the aeroballistic range values.
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TABLEII
Results at Mach 4.5

no cavity

13.0 mm cavity
26.0 mm cavity
38.12 mm cavity

TABLE III
Results at Mach 5.75
Experimental cx || cxs
no cavity 0.544 -5.499 I 7.000

~ |l 5200 | 7.100
|| oo | ONa
5.440 || 6.884

38.12 mm cavity 0.537

| cm |

no cavity
13.0 mm cavity 5377 || 6.867
26.0 mm cavity -5.629 6.742

38.12 mm cavity 0.538 0.145 | -5.318 6.730
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FIGURE 9 - Aerodynamic coefficients for CAN-4

The experimental values for these three aerodynamic coefficients were calculated
from a multiple likelihood method fit through the results of several individual firings. They
carry a probable error of less than * 2.0% for Cng, while the errors for Cx and Cypq were
less than % 1.0%. It should be noted that small variations (less than 3%) exist between the
experimental values measured with and without a base cavity. However, these variations
were mostly produced by small variations in the flight Mach number for each case
calculated, and are probably not directly related to the presence of a cavity on the projectile.

With a maximum relative error between the experimental and computational values
of around 4% (for Cx at Mach 4.5) and a minimum relative error of 0.25% (for Cpmq at
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Mach 4.5), it can be concluded that the CFD calculations succeeded in predicting these
coefficients in a satisfactory manner.

Some interesting results and comparisons are provided by the lack of a substantial
difference between cases with and without a base cavity. Neither drag nor pitching moment
(or normal force) slopes seemed affected by the presence of a base cavity. The absence of
an observable effect on the aerodynamic coefficients seems to indicate a totally different
relation between these coefficients and the presence of a cavity, when compared with the
conclusions reached by Celmins (Ref. 1) and Sahu (Ref. 4). However, the model used by
Sahu to conduct his CFD analysis was subjected to reduction of the projected area of the
cavity, while the changes of configuration for the present experiment only consisted in
increasing the cavity's depth, while maintaining the frontal area of the cavity constant.

Several other aerodynamic coefficients were obtained experimentally (pitch
damping, etc.), but were not used in the comparison process. A method to calculate one of
the dynamic coefficients (pitch damping: Cmq) from CFD results (Ref. 10) is now being
implemented at DREV, but was not used in this study. The cubic pitch moments were
however compared. The cubic pitch moment coefficient, Cpg> (Ref. 5), was reduced

experimentally to -45.0 at Mach 4.5. CFD calculations were conducted at various angles up
to 10° angle of attack and the pitching moment coefficient (Cpg) is shown in Fig. 10.

-0.25 - S

Wl I
S -0.75 \
- ~

_1: N,

0 0.05 0.1 0.15 0.2
Angle (rad)

FIGURE 10 - CM versus angle of attack
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From curve fitting, the value calculated (Cpmo> (Ref. 5)) from the simulated results is
approximately -39.5. A relative error of around 12.5% exists between these two values. It
should be understood that this coefficient is a non-linear coefficient, which tends to present
added difficulties for a numerical prediction. Thus, in view of the present results, it can be
concluded that this variable is well determined by CFD, even if the result is not as precise
as the previously calculated coefficients.

5.2 Base Flow Information

Case with solid base

Figures 11 and 12 show the solid base wake of the CAN4 projectile at Mach
numbers 4.5 and 5.75, respectively. The CFD solutions showed the general features
expected from this flow. A low pressure region is formed immediately downstream of the
base, which is characterized by a low speed recirculating flow region (elliptical shape). It
should also be noted that the expected velocity defect in the wake can also be seen further
downstream in both figures. In the recirculation region, the flow starts from the stagnation
point, accelerates towards the base of the model, slows down to a low subsonic velocity
close to the model, and finally turns upwards to develop the recirculation.

FIGURE 11 - Near wake of solid base (Mach 4.5)
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FIGURE 12 - Near wake of solid base (Mach 5.75)

As the results for this section are only computational (the A/B range only provides
aerodynamic coefficients and shocks structure), there exists a requirement to validate or
correlate these results with some from experimental sources. Parker Lamb and Oberkampf
(Ref. 11) have performed a comprehensive review of experimental base pressure data, and
have constructed empirical based correlations for axisymmetric geometries up to hypersonic
flows. Using their results for a turbulent cone with a half angle of 10°, it was possible to
correlate the base pressure results, even if CAN-4 is more than just a simple cone. Figure
13 shows a reproduction of their correlation curve for a turbulent cone, with the present
results shown as data points. The quantity used for the vertical axis is calculated from the
base pressure, while the quantity used for the horizontal axis is derived from the Mach
number (Crocco number). For the four Mach numbers calculated, the trend demonstrated
by the CFD curve corresponds well to their results. The difference between the two curves
is probably produced by the fact that CAN-4 is not a simple cone, but a complete cone-
cylinder-flare projectile.
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Additional information about the recirculation zone can also be gathered from the
literature. The recirculation region extended to about 0.75 base diameter of the base corner
(given by the change in direction of centreline velocity) for these two cases (a little shorter
for the higher Mach number). These results compare well with the results provided in an
experiment (cone at Mach 6.0) by Martellucci et al. (Ref. 12).

Finally, the centreline static pressure variation downstream of the body will be
examined in the following section as experimental values exist to validate the present CFD
calculations.

Case with base cavity

As mentioned previously, flow simulations with three different base cavities
(affected parameter: cavity depth) were performed for several inflow Mach numbers.
Figure 14 shows velocity vectors in the base area of the medium cavity (depth of 1.44
calibres) for a Mach number of 4.5.
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FIGURE 14 - Near wake of medium cavity base (Mach 4.5)

Many features are identifiable on this figure. First, the recirculatory flow in the base
region is evident, as it extends in the cavity itself. Then, two flow expansions are apparent,
one at the end of the flare section, and the other one at the end of the cavity (see Fig. 14 for
additional information). This second expansion is generated by the back flow, which on
reaching the end of the cavity, follows the contour of the cavity, and leaves the cavity in
the same direction as the freestream flow. The end of the recirculation region gives the
location of the stagnation point. This stagnation point signals the most downstream position
of the recirculation zone, which extends to about 0.83 base diameter of the base corner, and
is given by the change in direction of the centreline velocity. It should be noted that the
presence of the cavity does not seem to have a large effect on the downstream position of
the stagnation point (from base plane, not cavity depth) as the stagnation point for the solid
base case was around 0.75 base diameter of the base corner.

A final feature to be identified on this figure is the presence of secondary
recirculation zones, which were not present for the solid base case. One is positioned on
the back surface of the projectile, at the intersection with the cavity. The effects of these
additional recirculation zone on the flow around the projectile have not been investigated,
and are mostly unknown.
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FIGURE 15 - Wake centreline pressure distribution (Mach 4.5)

One of the quantitative comparisons that can be made with these results consists in
looking at the static pressure distribution along the centreline in the recirculation zone.
Figure 15 shows an example of this type of curve, and provides comparison with another
set of numerical values. The results, compared with the results from Ref. 4, present a
generally good agreement. The ratio P/Poo initially decreases with increasing distance
(inside of the cavity) to reach a minimum value on the base plane (approximately), then
increases rapidly to a peak pressure that is somewhat larger than Poo, and finally
overexpands towards Poo.
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6.0 CONCLUSIONS

The aerodynamics of a cone-cylinder-flare projectile, with various base cavities and
flying at high supersonic speeds has been investigated through experimental and
computational means. Aerodynamic coefficients, base pressure surveys, and base flow
visualization over this projectile were investigated. Comparisons were carried out between
the results originating from the different sources. Good agreement resulted from most of
the comparisons with experimental values or other CFD results.

Correlations between experimental and the present numerical values seem to indicate
an independence between the acrodynamic properties and the presence of a base cavity for
this particular configuration. This was demonstrated by the lack of significant differences
between aerodynamic coefficients calculated from different sources.

7.0 RECOMMENDATIONS
It is recommended that additional work be performed on the base cavity concept:
- to allow for some comparisons with the results from Ref. 4, numerical simulations
with different base cavity arm thicknesses would be required (changes in base cavity
opening dimensions).
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