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A foundation for logarithmic measures of fluctuating intensity
in pattern recognition

Nicholas C. Makris

Naval Research Laboratory, Washington, D.C. 20375

Received April 10, 1995

Independent analyses using Fisher information, optimal filtering, and information theory show that matched
filtering images with hypothetical patterns in the logarithmic domain provides an optimal method for pattern
recognition in the presence of signal-dependent noise arising from complex Gaussian f luctuations in the
received fields. This provides a mathematical justif ication for the use of logarithmic units (i.e., decibels) in a
variety of engineering applications.

The stochastic behavior of optical, radar, and acous-
tic fields received from both f luctuating sources
and scatterers can often be well approximated
with circular complex Gaussian random (CCGR)
variables.1 – 4 Averaged intensity from a CCGR
field has a standard deviation proportional to the
mean.1 Therefore intensity images derived from
CCGR fields have signal-dependent noise. Taking the
logarithm of such intensity images homomorphically
transforms5 the signal-dependent noise into additive
signal-independent noise.6 It is shown that matched
filtering such images with hypothetical patterns in
the logarithmic domain provides an optimal method
for pattern recognition according to the independent
perspectives offered by minimum variance unbiased
estimation with Fisher information, optimal filtering,
and information theory.

Let the vector W contain the independent aver-
aged intensity measurements Wk assigned to k 
1, 2, 3 . . . , N pixels in an image. Let the vector a con-
tain the parameters ai to be estimated from the im-
age W for i  1, 2, 3 . . . , Na. Assuming that the Wk
are measured from CCGR fields, the conditional proba-
bility distribution for image W given parameter vector
a is the product of gamma distributions1:
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For pixel k, the mean intensity kWkl  sksad explic-
itly depends on the parameters a to be estimated,
and the quantity mk is the number of coherence cells
in the intensity average.1 This number is equal to
the signal-to-noise ratio (SNR) kWkl2yskW 2

k l 2 kWkl2d,
which is approximately equal to the time–bandwidth
product of the received field for the given pixel (or
the number of image-plane speckles spatially aver-
aged1,6). The gamma distribution for Wk is denoted
G skWkl, mkd. The log-transformed image L is defined
by Lk  lnsWkyIref d, where Iref is the reference inten-
sity. This transformed image obeys the conditional
distribution6
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where s
0
ksad  sksadyIref . The expectation value

of Lk is lnfs0
ksadg 1 csmkd 2 ln mk, and the

variance is z s2, mkd. Here csmkd is Euler’s psi
function7 and z s2, mkd is Riemann’s zeta func-
tion.7 For example, z s2, 1d  p2y6, and in the
limit mk .. 1, kLkl ø lnfs0

ksadg and the variance is
z s2, mkd ø 1ymk. The exponential-gamma distribu-
tion for Lk is denoted E G skLkl, mkd.

According to estimation theory,8,9 the Cramer–Rao
lower bound8,9 (CRLB) Efsâi 2 aid2g $ fJ21gii limits
the minimum mean-square estimation error for any
unbiased estimate âi of the true parameter value
ai from measurements Y , where J is the Fisher
information matrix8,9 with elements
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The Fisher information matrices for image W and its
log transform L are identical and found to be equal to
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where sksad can be replaced by s
0
ksad  sksadyIref to

reference the logarithmic measure to physical units
without altering the Fisher information. Some useful
applications of Eq. (4) are given in Ref. 4. The Fisher
information matrix of Eq. (4) may equivalently be
written as
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Equation (5) shows that the CRLB can be computed
directly from the expectation value of logarithmic in-
tensity measures. It is significant because it shows
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that Fisher information is contained in (1) the varia-
tion of the expectation value of a logarithmic measure
of image intensity with respect to the parameters to be
estimated and (2) the number of coherence cells aver-
aged for each pixel. It is interesting that the Fisher
information matrix can be obtained directly from the
Gaussian form of P sLjad or P sW jad in the asymptotic
limit mk .. 1 because a is not a function of mk.4 This
is consistent with Fisher’s use of the central limit the-
orem in his initial derivation10 of what became known
as Fisher information.

The eff iciency of logarithmic measures is particu-
larly evident in the estimation of a single param-
eter a from a single measurement L. Here the
minimum estimation error is hEfsâ 2 ad2gj1/2 
fpmjs≠kLly≠adjg21. The optimal resolution of the
parameter is inversely proportional to the param-
eter’s slope magnitude over the expectation value
of a logarithmic measurement of intensity. For
example, if the parameter to be estimated is the
expected intensity level kLl, as is often the case
in engineering applications, the bound is depen-
dent only on the number of coherence cells in the
average. This situation is desirable in comparing
measurements with different intensity expectation
values, because the resolution can be kept constant.
Conversely, if the parameter to be estimated is the
intensity expectation value s, the bound is directly
dependent on both the number of coherence cells in
the average and the local expectation value of inten-
sity. This makes comparison of measurements with
different intensity expectation values more difficult,
because the resolution varies in direct proportion to
the parameter to be estimated.

The minimum error possible in the unbiased position
estimation of an object in an intensity image is now de-
rived. This resolution bound is also a bound on recog-
nition of the object because an object that cannot be
resolved cannot be recognized. Let the intensity mea-
surements Cfx 2 x0g describe an object measurement
vector C of finite length X and unknown position x0
in a one-dimensional image W of spatial pixel index
x such that 2Xy2 # x 2 x0 # Xy2. The Cfx 2 x0g
are gamma distributed according to G skCfx 2 x0gl, md,
where the expectation value of the object is defined
by kCfx 2 x0gl and the number of coherence cells in
the measurement average is a constant m throughout
the object. With the definition qfx 2 x0g  lnskCfx 2
x0glyIref d and Dx as a pixel increment, the logarithmic
form of the Fisher information given in Eq. (4) can be
used to yield the CRLB for estimation of the position
parameter x0. This Fisher information is
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Defining Qfjg as the Fourier transform of qfxg,
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as the rms bandwidth characterizing the natural log of
the expected value of object intensity, yields the CRLB
for position estimation of the object:
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This result and the development from relations (6)–(9)
are analogous to those used in bounding time-delay
resolution for radar returns in uncorrelated
noise.11 This is due to the similar form of the Fisher
information matrix in both problems. However, it
must be stressed that in this case Brms and E are
descriptors of the log-transformed object expectation
value, which can span a full range of values. Also,
the noise is from signal-dependent f luctuations that
are only signal independent and additive in the loga-
rithmic domain, whereas in the radar/sonar time-delay
problem similar methods are used to describe the rms
bandwidth and energy of a coherent waveform (which
also can span a full range of values) in independent
additive white noise. With these definitions, Fisher
information for object recognition and position reso-
lution increases with the number of coherence cells
and (log-domain) bandwidth and energy and decreases
with pixel increment. For example, it is apparent
from relations (7)–(9) that occlusion of an object can
decrease the energy or bandwidth and cause the Fisher
information to decrease and the CRLB to increase.

The matched filter estimator has been shown to
attain the CRLB for position resolution of a signal
in independent additive white noise when its output
SNR is high.2,11 For example, matched filtering an
image with the expected object in the logarithmic do-
main provides the minimum variance unbiased es-
timator for object localization because it attains the
CRLB of relation (9) when E .. z s2, mdDx, where
z s2, md ø 1ym always holds approximately but becomes
more accurate as m increases. Furthermore, the out-
put of such a log-transformed matched filter always
has maximum SNR. One can see this by first defin-
ing the log-transformed object measurement F such
that Ffxg  lnsCfxgyIref d and then employing the de-
composition Ffxg  Sfxg 1 N fxg, where the signal com-
ponent is deterministic and defined as Sfxg  qfxg 1

csmd 2 ln m, so that the noise component N fxg is zero
mean and exponential-gamma distributed according to
E G skN fxgl  0, md. The linear time-invariant filter
that maximizes the output SNR for such zero-mean un-
correlated noise is the matched filter.2 The output of
the matched filter for the log-transformed image is

Rflg 
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for 2X # l # X, where Sfxg is the optimal filter,
the noise covariance kN fxgNfx0gl is z s2, md for x  x0

and zero otherwise, k0 is a normalization constant,
and the integration is only over the overlap of
Sfxg and Ffx 2 lg. The output SNR is defined
as SNR sRfl gd ; kRfl gl2yskRfl g2l 2 kRfl gl2d. It
has a maximum value at zero-lag SNR sRf0gd 
ESyfz s2, mdDxg, where the signal energy is ES 

RX/2
2X/2

jSfxgj2dx. The signal energy is approximated by E,
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and the maximum SNR sRf0gd is approximated by
mEyDx with increasing accuracy as m increases. An
optimal logarithmic matched filter for the special
case of m  1 was recently derived by Downie and
Walkup.12 Their filter also differs from that above
because it has not been defined so that the additive
noise is zero mean.

To investigate the information theory perspective,
the conditional probability distribution for the log-
transformed object measurement can be written as
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by straightforward algebraic manipulation of Eq. (2),
where M is the number of pixels in F and m is constant
over x. The argument of the interior exponential can
be expanded into a Taylor series6 such that

P sFjad ø

"
mm

Gsmd
exps2md

#M

3 exp
Ω
2

m

2

X/2X
x2X/2

sFfxg 2 qfx; agd2
æ

(12)

for jFfxg 2 qfx; agj ,, 3. (This can be a reasonable
approximation even for m  1 because the correspond-
ing standard deviation of Ffxg is then p

p
6 ø 1.3. As

m increases, the approximation becomes better and
Stirling’s formula leads to a Gaussian density.6) It is
assumed that there is a priori probability P snd that
the nth object is present in an image, where kCnfxgl
defines the nth object’s expectation value such that
qnfxg  lnskCnfxglyIref d. This a priori probability P snd
should be set by the context of the recognition prob-
lem. According to the information theory of Wood-
ward and Davies,2,13 the ideal or a posteriori receiver
for the nth object is one that computes the a posteriori
probability P snjFd  P sndP sFjndyP sFd, where P sFd is
a known constant fixed by the measurement F. From
relation (12) it follows that
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where the general parameter set a is replaced by
the specific object index n. Because the Ffxg are
measured, the first summation term in the exponent
is a known constant. Following the analogous radar
problem, it is common to assume that the qnfxg have the
same energy over n,2,13 so that the second summation is
a constant. Therefore the correlation receiver of the
log-transformed intensities
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is a sufficient statistic2,8 – 10,13 from which the
a posteriori density P snjFd may be fully recon-
structed and all the received information about the
presence of the nth object may be fully recovered in
an optimum receiver.2,13 Clearly, there is a simple
linear relationship between the correlation receiver
Csnd and the zero-lag value of the optimal filter output
Rf0g, which involves known additive and multiplicative
constants. For example, when P snd is uniformly
distributed, Csnd attains a maximum with respect to n

for the object that is most likely to be present.
The a posteriori probability P snjCd for the presence

of the nth object given the intensity measurement C
is equal to the a posteriori probability P snjFd given
the log measurement F, because F is completely
specified by C and vice versa. However, the sufficient
statistic of Eq. (14), the optimal filter of Eq. (10),
and the Fisher information of Eq. (9) indicate that
matched filtering images with hypothetical patterns
in the logarithmic domain provides an optimal method
for pattern recognition in the presence of signal-
dependent noise arising from CCGR f luctuations in the
received fields. Because CCGR fields are commonly
measured in optical, radar, and acoustic imaging, this
result provides a mathematical justif ication for the use
of logarithmic intensity measurements to efficiently
convey information for pattern recognition in a variety
of engineering applications. These results may also
be useful in interpreting the apparent logarithmic
response of human auditory and visual perception to
intensity stimulus as exhibited in the Weber–Fechner
laws.14
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