
TM No. 921244

REFERENCE COPY

NAVAL UNDERSEA WARFARE CENTER
DETACHMENT NEW LONDON

NEW LONDON, CONNECTICUT

Technical Memorandum

WlllTENESS IN RANDOM NUMBER GENERATORS

Date: 28 December 1992 Prepared by: ,~~~

Approved for public release; distribution is unlimited.

A1 edo I. onds
System Development Division
Submarine Sonar Department

r

,- / r>
/ ~1 • <~__.--;"1---. . ~

1/1.;)~(/t4(>!1~
sA. Ionata· ·

, · System Development Division
Submarine Sonar Department

DISTRIBUTION STATEMENT" A"
Approved for Public Release;
distribution is unlimited. --- ·- ---

/)/:)

r:i/ 1--,-._____.-----· \(_r -,
S. G. PAYNE
PubHc A"lfairs Officer
Navel Undersea Warfare Center
Divis:on, Newoort, AI 02841
Date ..s- :_ J "7 z

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
28 DEC 1992

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED
 28-12-1992 to 28-12-1992

4. TITLE AND SUBTITLE
Whiteness in Random Number Generators

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Alfredo Edmonds; James Ionata

5d. PROJECT NUMBER
A17653

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Undersea Warfare Center Division,Newport,RI,02841

8. PERFORMING ORGANIZATION
REPORT NUMBER
TM 921244

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
NAVSEA 06U2

10. SPONSOR/MONITOR’S ACRONYM(S)
NAVSEA 06U2

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
NUWC2015

14. ABSTRACT
Three different pseudo-random number generators were examined for use in a sonar detection simulation
using a whiteness test. The fluctuation of the whiteness measure and the probability that an acceptable
sequence of numbers could be produced were studied. The ran1 generator, initially thought to be suitable,
was found to be unacceptable for our use. Random was the recommended generator.

15. SUBJECT TERMS
pseudo-random numbers; whiteness test

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

Three different pseudo-random number generators were examined for use in a
sonar detection simulation using a whiteness test. The fluctuation of the whiteness measure
and the probability that an acceptable sequence of numbers could be produced were
studied. The rani generator, initially thought to be suitable, was found to be unacceptable
for our use. Random was the recommended generator.

ADMINISTRATIVE INFORMATION

This memorandum was prepared under Project No. A17653, "AN/BQR-22A EC
15," principal investigator John Sanchis (Code 2152). The sponsoring activity is the
NA VSEA 06U2, project manager Thomas Ronaldi.

The authors of this memorandum are located at the Naval Undersea Warfare Center,
· Detachment New London, CT 06320.

ACKNOWLEDGMENT

The authors acknowledge that the success of this research represents the cumulative
efforts and cooperation among many individuals and organizations; specifically the
participation of Dr. Albert Nuttall at NUWC/NL (Code 302).

i!Ji
Reverse Blank

TABLE OF CONTENTS

ABSTRACf

ADMINISTRATIVE INFORMATION

ACKNOWLEDGMENT

LIST OF ILLUSTRATIONS

INTRODUCfiON

THEORETICAL ANALYSIS

WHITENESS ANALYSIS

SUMMARY

REFERENCES

APPENDIX A --RANI ROUTINES

APPENDIX B --WHITENESS ROUTINES

BIBLIOGRAPHY

iii

Page

i

i

i

iv

1

1

2

3

4

11

14

17

LIST OF ILLUSTRATIONS

Tables

1 - Ranl results

2 - Rand results

3 - Random results

Charts

1 - Ranl Whiteness

2 - Rand Whiteness

3 - Random Whiteness

4 - Algorithms' Whiteness

lV

Page

5

5

6

7

8

9

10

INTRODUCTION

A stochastic processl is a set of random variables having a joint probability
distribution.2 The process has particular properties by which it can be identified, such as
the case of the Markov3 and Poisson4 processes. If the random variables are generated by
a deterministic algorithm, they are called pseudorandom variables5 because their
distributions are given by a probability function that can be implemented in a computer.

Several algorithms have been developed to simulate random number generators.
Most fall short of expectations because their randomness is dependent upon the finite
number of states of the machine and/or their deterministic approach. In general, there will
be a point when the output of the algorithm will become periodic. If the output becomes
predictable too soon, the algorithm is not useful for applications involving several million
numbers. In fact, the algorithm can then be known as a "bad" random number generator.

Different methods have been used to determine the efficiency and effectiveness of
the algorithm and its randomness. Among the methods used are the uniformity, serial
correlation and spectral tests. There are many other tests that can be performed on the
algorithm but, in general, the effectiveness and efficiency of the algorithm will depend
mostly on its particular application. 6

This study was conducted as part of a larger project to simulate the performance of
a sonar detection algorithm. The detection algorithm was designed to work when the
background noise has a Gaussian distribution and is stationary. A uniform random number
generator was required as the first step in simulating such noise. The uniformly distributed
deviates were then transformed using the polar method.7 The performance of the uniform
random number generator used was important because of the large number (on the order of
100 million) of independent deviates required for the simulation.

THEORETICAL ANALYSIS

To satisfy the requirements of the simulation, the generator had to pass a statistical
periodicity test so that there would be enough random data available to simulate the task.
The outputs of candidate random number generators were exposed to a whiteness test& to
determine their effectiveness. In this context, "whiteness" refers to the signal's
autocorrelation function and error measure. The whiteness performance test was
implemented in both the time and frequency domains. The time domain approach,
however, was quickly abandoned because it took longer than the frequency implementation
to obtain an output.

Three random number generators were tested: rani (App. A), raru:/) and random. 10

Uniform real random numbers in the range of (-~ , ~) were generated by the algorithms

and placed in an array. These numbers were converted to complex, frequency domain
numbers, through an FFf routine. Their magnitudes (Xm) were calculated and used for the
determination of the threshold test (Q) of the signal. Q1, the measure of whitenessll (or
simply called whiteness) could then be mathematically expressed as:

1

where
Ql = Q- 1

M-1

];Jxmj4

Q=M * M-1

(~Xml2?

and M is the number of discrete Fourier Transform points, and must be greater than or
equal to twice the number of data points K. The value of K is the amount of sequential
random numbers needed from the random number generator to make up one trial. For
practical reasons, the value of K was chosen to be of form 2n, so that M, after executing
the FFT routine, would have its entire array filled with useful data. For example, if K =
262,144 data points and there are 1000 trials, the algorithm will have to generate
262,144,000 numbers. Had M been chosen to be greater than twice the number of data
points K there would have been some points in M with unkown data.

The behavior of the algorithms' whiteness for increments of K = 26 to K = 220 was
recorded, with the emphasis placed on the value of their expectations. Expectation refers to
the mean of the set of sequential random numbers at that particular increment, after a
number of trials had been produced. Whenever possible, the total number of trials was one
thousand, allowing for an accurate calculation of the expectation. For this experiment's
purposes, about 100 million generated points were sufficient.

According to previous work,12 the expectation of the signal should not be
significantly greater than the whiteness figure of merit, Q., of 1.5. Ideally, the measure of
whiteness should approach zero asK increases. However, it tends to approach one after
the algorithm's output has been normalized. If the algorithm's expected value surpasses
the threshold, then the generator is considered inadequate for this research's specific
purpose.

The maximum and minimum values of whiteness and the probability of the measure
being above the threshold were also recorded to further analyze the behavior of the
algorithms. Fluctuation of the signal between maximum and minimum describes the
stability of the algorithm and it is defined as the difference between the highest possible
whiteness of all trials and the lowest possible whiteness of all trials. The probability
describes how often the algorithm is expected to rise above the figure of merit under the
same conditions that it was exposed in this evaluation. The probability is defined as the
number of times the algorithm's output is above the figure of merit divided by the total
number of trials under which the algorithm was tested at the particular n increment.

WHITENESS ANALYSIS

The routine in appendix B, written in C language in the Unix environment of the
Sun workstation, was used to obtain the results of running ranl, rand and random depicted

2

in Tables 1 through 3 respectively. Only the name of the candidate random number
generator was changed in the routine so that there would be no other discrepancies when
the results were compared. These data are also shown in Charts 1 through 3, which
describe the algorithms' whiteness as K (data points) increases. The small boxes on the
charts represent actual data. Graph smoothing was carried out by polynomial interpolation.
Ranl, rand and random were approximated with 6th, 5th and 3rd order polynomial
equations respectively.

Sometimes the algorithms were running for several days before the result of at least
one trial was attained. Less than one thousand trials were collected for those cases and
though the average whiteness is less precise, the data may still be used to measure the
performance of the algorithm because the algorithm generated more than 1 million points.

The tabulated data prompted the observation that rand's fluctuation seems to be
slightly approaching zero faster than rani's and random's fluctuations at the beginning, but
as K increases its fluctuation becomes higher than that of both algorithms. Although it may
seem contradictory, note that while rands fluctuation is high, of the three algorithms, it has
the lowest probability of having the measure of whiteness above the figure of merit, which
only means that rand's whiteness are within a wider range of values than the other two.
The results also denoted rani's average whiteness at K = 220 points rising above the
threshold, while the other two were yet to approach the limit. In fact, rani's probability of
failure at that point was 100%!

SUMMAR\'

According to the computer simulation, the test results showed that rani's average
whiteness exceeded the threshold value. The results of the three candidate random number
generators may be compared using Chart 4. Even after 1,048,576 points, only ranl would
have completely failed the test. Therefore, rani cannot be recommended for this particular
application. Ranl is unreliable when attempting to generate greater than 262,144 random
numbers.

When fluctuation becomes a major consideration, random is the best choice of the
three. The results showed that as K increases, for every one thousand trials, there was
almost no significant difference in the outputs of random. And, if the concern is for the
number of times the algorithm's output is higher than the figure of merit, then the results
demonstrated rand would satisfy this requirement better than the other algorithms.

Even though these three random number generators were tested for more than
524,288 data points, it does not necessarily mean that they will work successfully once
they are employed. This research only set the basis for future analysis concerning random
number generation. While there are many other available tests, as it was mentioned before,
there may also be other algorithms which can perform more effectively and efficiently than
those analyzed here. However, no computer program can generate truly random numbers.
"Good" random number generators are those whose outputs have been tested and found
acceptable for particular applications. Future work in this area should include a whiteness
test on more mndom number generators as well as their measured performance in different

tests, such as y} and spectral tests.

3

REFERENCES

[1] J. L. Doob, "Stochastic Processes," New York, 1953 (Wiley Classics Library
Edition Published 1990.)

[2] H. Cramer, "Random Variables and Probability Distributions," University Press,
Cambridge, 1970.

[3] D.P. Heyman, M.J. Sobel, Eds., "Stochastic Models, Vol. 2 of Handbooks in
Operations Research and Management Science," Elsevier Science Publishers B.V .,
North Holland, 1990.

[4] A.B. Clarke, R.L. Disney, "Probability and Random Processes for Engineers and
Scientists," John Wiley & Sons, New York, 1970.

[5] H. Niederreiter, "Random Number Generation and Quasi-Monte Carlo Methods,"
SIAM, 1992.

[6] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling,"Numerical
Recipes: The Art of Scientific Computing," University Press, Cambridge, 1970. pp
191-192.

[7] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, "Numerical
Recipes: The Art of Scientific Computing," University Press, Cambridge, 1970. pp
202-203.

[8] A. Nuttall, "On Generation of Random Numbers with Specified Distributions or
Densities," NUSC TR 6843, Detach. New London, 1 December 1982.

[9] Sun Workstations, "SunOs Reference Manual Vol. II, 3. C Library Functions, Sun
Release 4.1," Revision A of27 March, 1990, USA.

[10] Sun Workstations, "SunOs Reference Manual Vol. II, 3. C Library Functions, Sun
Release 4.1," Revision A of 27 March, 1990, USA.

[11] A. Nuttall, "On Generation of Random Numbers with Specified Distributions or
Densities," NUSC TR 6843, Detach. New London, 1 December 1982.

[12] A. Nuttall, "Statistics of a White Measure," NUSC-NL TR 10237, 9 December
1992.

4

RANI RANDOM NUMBER GENERATOR

Kdata MFFI' minimum maximum probability
points size trials whiteness whiteness whiteness fluctuation (%)

64 128 1000 .973 .361 2.391 2.029 5.000
128 256 1000 .979 .578 1.919 1.341 1.800
256 512 1000 .996 .686 1.632 .946 .400
512 1024 1000 .993 .766 1.567 .801 .200

1024 2048 1000 .999 .810 1.405 .595 .000
2048 4096 1000 1.001 .869 1.224 .355 .000
4096 8192 1000 1.002 .890 1.146 .256 .000
8192 16384 1000 1.002 .911 1.093 .182 .000

16384 32768 1000 1.003 .941 1.060 .120 .000
32768 65536 1000 1.007 .966 1.048 .082 .000
65536 131072 1000 1.020 .995 1.047 .052 .000

131072 262144 1000 1.044 1.026 1.063 .037 .000
262144 524288 1000 1.265 1.255 1.273 .018 .000
524288 1048576 1000 2.053 2.041 2.061 .020 100.000

1048576 2097152 4 3.342 * * * * * not available

Table 1

RAND -UNIX'S RANDOM NUMBER GENERATOR

Kdata MFFI' minimum maximum probability
points SlZe trials whiteness whiteness whiteness fluctuation (%)

64 128 1000 .982 .461 2.151 1.690 4.900
128 256 1000 .995 .592 1.974 1.383 1.700
256 512 1000 1.000 .646 1.859 1.213 .300
512 1024 1000 1.000 .714 1.412 .698 .000

1024 2048 1000 1.001 .774 1.286 .512 .000
2048 4096 1000 .997 .867 1.211 .345 .000
4096 8192 1000 .998 .908 1.128 .220 .000
8192 16384 1000 1.000 .929 1.094 .166 .000

16384 32768 1000 1.000 .940 1.074 .134 .000
32768 65536 1000 1.000 .957 1.037 .080 .000
65536 131072 1000 1.000 .976 1.031 .054 .000

131072 262144 1000 1.000 .981 1.020 .039 .000
262144 524288 1000 1.000 .987 1.015 .028 .000
524288 1048576 1000 1.000 .988 1.010 .022 .000

1048576 2097152 3 1.000 * * * * * not available

Table 2

5

RANDOM -UNIX'S RANDOM NUMBER GENERATOR

Kdata MFFT minimum maximum probability
points size trials whiteness whiteness whiteness fluctuation (%)

64 128 1000 .976 .500 3.085 2.585 4.200
128 256 1000 .998 .578 2.132 1.554 2.900
256 512 1000 .991 .690 1.569 .879 .400
512 1024 1000 .992 .723 1.430 .706 .000

1024 2048 1000 .996 .784 1.251 .468 .000
2048 4096 1000 .999 .852 1.182 .330 .000
4096 8192 1000 .998 .882 1.133 .251 .000
8192 16384 1000 .999 .915 1.080 .166 .000

16384 32768 1000 1.000 .951 1.051 .100 .000
32768 65536 1000 1.000 .958 1.044 .086 .000
65536 131072 1000 1.000 .970 1.030 .060 .000

131072 262144 1000 1.000 .981 1.020 .039 .000
262144 524288 1000 .999 1.000 1.018 .018 .000
524288 1048576 1000 1.000 .996 1.007 .012 .000

1048576 2097152 6 1.000 * * * * * not available

Table 3

6

(/)
(/)
(I)
c
(I),

RANI- RANDOM NUMBER GENERATOR

I

..

o••OOOOHUoO• 0000 .. 00000U •• OUOOUUOO·~ UUH .. o.Ohoo •o.oHH .. ~H •••000000HH •oOUOUU··· OOUU.OUoOU oOOOO~......... UH .. UOhOH ••••••••••••• 0000000000 00 OUOU~·UUU UU .. O•;onn

1.7;---r--;---+---r---+-~---+---r--+---~~---r-+~--r-~

~ 1 .5 -+--+--+--
... :::/"""" ,-

c
ro
a:

1.3

0.9

.. If

v co co C\.1 -.:t co co C\.1 -.:t co (.0 C\.1 -.:t ro co C\.1 co C\.1 l() ,..- C\.1 v (S) (S) co (.0 C") I' v ro I'- l()
,- C\.1 l() 0 0 0 ,..- C") ~ l() 0 ,..- C\.1 l() ,..-

,..- C\.1 "¢' co co l() ,..- C\.1 v ro I'
,..- C") (.0 C") co C\.1 "¢' (S)

,..- C\.1 l() 0 0
,..- C\.1

K data points

CHART 1

7

(/)
(/)
(])
c:
(])
'!::::
.c
~
0
c:
ctS a:

RAND - RANDOM NUMBER GENERA TOR

1.05~--~--~--~--~--~--~--~----r---r---~--~--~--~

... ···············
1.044---~--~---r---+---+---+--~----~--~--+---+---+---4

..

1.03;---~--~---r---+---+---+--~----~--r---+---+---+---4

1.02

1.01

1

0.99

..

.. 1

.. f .. .

:::::::::::::::~::: .. :::
::::::::f.:::.::

I

1·/"""'"""""""""""""""''"""'""'""'"""""""'"""''""""""""""""""""""""""""""""'""""""""""''"""""'"""""""""""""""""""""""'"""""""'""""""'""'""'"""""""""""""

0.984---~--~---r---+---+---+---4--~~--~--~--+---+---4

...
...............

0.97
-.;t co <0 C\1 -.;t co <0 C\1 -.;t co <0 C\1 -.;t co
<0 C\1 lO T- C\1 v C) C) co <0 (!") !"-- v co

T- C\1 lO 0 0 0 T- (!") !"-- lO 0 T- C\1
T- C\1 v co <0 C\1 lO T- C\1 v

T- (") <0 (!") <0 C\1
T- C\1 lO

K data points

CHART 2

8

RANDOM· RANDOM NUMBER GENERATOR

1.02

1.015

1.01

1.005

(/)
(/)

1 Q)
c
Q)

:!:::::

:':':'::':':':':':':':': :·::·:::·::·::·::·: ·::::·:·:·:::':':':': :'::':':':':':':':':':': ·:::·:·:·:·:·::::·:· ·:::':':':':'::':':':: :':':'::::::·:::·: ::·:·:·:·:·:::·:·:·:: ':':':':':':':':::':':': :·:::':':':':·:::::.~·:·:::·::·::':':':':' ':':'::':':':':'::':':': :':':':'::·:·::; ~ ~:·:·::·:·:
:::::::::::: ·:::::::::::: ·:::.:·:::.:·::.~ ~ ~:::: .. :::::::::::. ::::::::::::: ·::::::::::::. ·:............::::::::: .. ::::::::::::: ::::::::::::: ·::::::::::::.

..c
$: 0.995
E
0
"0
c 0.99
~
a:

...................................... ~

~~; ~· ;; ~:_:. --.~; :: .. -.. -·; ;;- : : ;; ;;;::. ;;;~; -: ; ;~ : :.;::- -::: ; ; ;: -

::_:_::_:_:,:_:;~_:_:_:_:_::: :_:_:_:_:::_:_:::::. ·::::::.::::.:_:: _:_:_:_:_:_:_~_:_:_::: :_:_::::::~. ~.::_:_:_:_:_:_::_:_:_: _ _ ::_:_:_:_:_::_::_::: ::_:_:_::_::_::::_: _ _ :_:_:_:_:_:_:_:_:_:_:_:_: _::_:_:_:_:_:_:_:_:_:_:: :_:::_:_:_:_:_:_:_:_:_:_ :.::_:_:_:_:_:_:_:_:_:_:: _:_:_:_:_:::_:_:_:::: ::_:_:_:_:_:_:_:_:_:_:_:_

0.985 /
/ ;

0.98
............ ,

0.975

0.97 I
-.;;t <X) (0 C\1 -.;;t <X) (0 C\1 -.;;t <X) (0 C\1 -.;;t <X) (0 C\1
(0 C\1 lO ,... C\1 -.;;t 0') 0') <X) (0 {Y) ('.. -.;;t <X) ('.. lO ,... C\1 lO 0 0 0 ,... {Y) ('.. lO 0 ,... C\1 lO ,... ,... C\1 -.;;t <X) (0 C\1 lO ,... C\1 -.;;t <X) !"---,... {Y) (0 {Y) (0 C\1 -.;;t 0') ,... C\1 lO 0 0 ,... C\1

K data points

CHART 3

9

whiteness

n ~
:r 0.. ~ ::0 -0
..,

::0 ,..,.
"0 ~ 9.
::;
~

I 024 I I
11

~QH-+--+-+-!. ~-+--+-+-+--+-1111 +-+-++-+-11
l !

2048~'~'+4~~'~'+4~1-H~~~~~,!~~++~~~l~l~ :'-'~+!~l~~~~~r++4~~ 4-H-H

4096 -+-+1-+-l +-

1
i ! ~ ~~~ 'rr' i ! 1 i i i l : : :

II 1! 1 !11! 111!11, ... ~11 ~
8192 ~

II 1~~ 1 llll!
16384 -+-+--+-+--+-+-+---+--;:--+-+-++' ':.' .:! ... : ~ ··'\;r-4:······';-+~:l ... :· -+-1---i-+++-++-+-:-i +-l t-;:---<: ji---lj~i-+-+-+-t++-H--j--.,;-t-+-~H

1 i ' i I i !
32768 -++-... '~, ..;-.. ·'·,~. !--+-1---J-.+-..;;-...+---j-+-+--!---!-m-*.:!\H.:: l ,._i-++-H-+~t' .. :·, r-+_ .. '~.: ~ .. ·'l, : : : :

655364-~~++++~~~~~:~ !,\~'~++~l~l~~~r+'+'+'+'~~~~~~ 1
1 ~++++~

! l 4ttJ i ! i ~rti I i I i I i I
I I I r--t-t-1 -r--H-TH--t"ifl---r-t- ~~lim J

262144~HHHHHr~~~~~~rrrrT+++++++++++fT~~~~99~~--

131072

>
1:""'
C1

: 0

l ~ --3
::t s:
c:n

~
:r:
-3
ti:l z
ti:l

! u:r
c:n

i

~

II + t +

APPENDIX A

1 1

/**
* Ran1(idum) to be tested on whiteness
* W.H. Press, B.P. Flannary, S.A. Teukolsky, and W.T. Vetterling,
*"Numerical Recipes: The Art of Scientific Computing", 1986, p196.
**!

#define M1 259200
#define IA1 7141
#defme IC1 54773
#define RM1 (l.O/M1)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 243000
#define IA3 4561
#define IC3 51349
#include <stdio.h>

double ran1(idum)
int idum;
{

static long ix 1 ,ix2,ix3;
static double r[98];
double temp;
static int iff=O;
intj;

if (idum < 0 II iff == 0)

}

{
iff=1;
ix1=(1Cl-idum)% Ml;
ixl=(IA1*ixl+IC1)% M1;
ix2=ix1 % M2;
ix1=(1A1*ix1+1C1)% Ml;
ix3=ix1 % M3;
for (j=1;j<=97;j++) {

ix1=(IA1 *ix1 +IC1)% M1;
ix2=(IA2*ix2+1C2) % M2;
r[j]=(ix 1 +ix2*RM2)*RM1;

ix1=(1Al*ix1+1Cl)% M1;
ix2=(1A2*ix2+IC2) % M2;
ix3=(1A3*ix3+1C3) % M3;
j=1 + ((97*ix3)/M3);
if (j > 9711 j < 1) printf("RAN1: This cannot happen.\n");
temp=r[j];
rOJ=(ixl +ix2*RM2)*RM1;
return temp;

12

/* These variables are undefined just in case they are used in a different module of the
* main routine. The undefined has been added to make the code portable.*/

#undefMl
#undefiAl
#undefiCl
#undefRMl
#undefM2
#undefiA2
#undefiC2
#undefRM2
#undefM3
#undefiA3
#undef IC3

1 3

APPENDIX B

14

I**
*"White" noise tester using FFf method
* J. Ionata, 11-AUG-1992
* A. Edmonds 14-SEP-1992
* Based on TR 6843 by AI Nuttall, 01-DEC-1982
**I
#define K 1048576
#define M (2 * K)
#define thrshold 1.5
#define nials 1000
#define SEED 13
#include <stdio.h>
#include <math.h>
main()
{

double x_rl[M];
double x_im[M];
double rani();
double R_hat;
double err, prob15;
double white, avg, wtotal;
double leastw, mostw;
double mag_sqrd;
int n;
int k, m, abovethrs;
int t;

I* begin main program *I
m=M;
k=K;
abovethrs = 0.0;
leastw = 1 00.0;
mostw = 0.0;

I* uniform random data *I

I* correlation estimate *I
I* error measure "E" *I
I* whiteness measure *I

I* variances *I
I* magnitude squared value *I

I* delay (index) *I
I* thresholds *I
I* tnumberofnials *I

I* printf (''\nClearing arrays ... "); *I
for (n = 0; n < m; n++)
{

}

x_rl[n] = 0.0;
x_im[n] = 0.0;

I* printf("done."); *I

for (t = 0; t < nials; t++)
{
err= 0.0;
R_hat = 0.0;
for (n = k; n < m; n++)
{

}

x_rl[n] = 0.0;
x_im[n] = 0.0;

I* printf (''\nCalculating uniform random numbers ... "); *I
for (n = 0; n < k; n++)
{

1 5

I* Candidate Random number generator routine rani, rand &
random *I

x_rl[n] = ranl(SEED)-0.5; I* random -0.5 to 0.5 *I
x_im[n] = 0.0;

}
I* printf("done. "); *I

I* printf("\nDoing FFr ... "); *I
anfft(m, x_rl, x_im);
I* printf("done."); *I

I* printf("\nDoing summation ... "); *I
for (n = 0; n < m; n++)
{

mag_sqrd = x_rl[n]*x_rl[n] + x_im[n]*x_im[n];
R_hat += mag_sqrd;
err += mag_sqrd * mag_sqrd;

}
I* printf("done. "); *I

white= (m *err I (R_hat * R_hat)) -1;
wtotal += white;
if (white> thrshold)
abovethrs++;

if (white> mostw)
mostw = white;

if (white< leastw)
leastw = white;
}
avg = wtotal/(trials);

I* highest whiteness *I

I* lowest whiteness *I

I* average whiteness *I

printf (''\naverage whiteness= %e", avg);
printf (''\nminimum whiteness= %e", leastw);
printf (''\nmaximum whiteness= %e", mostw);
printf (''\nnumber of trials = %4d", trials);

prob15 = (float)abovethrsltrials;
printf (''\nProbability Q > 1.5 = %e", prob15);
printf (''\nProgram done.\n ");

1 6

BmLIOGRAPHY

Stochastic Processes

Doob, J. L., "Stochastic Processes," New York, 1953 (Wiley Classics Library
Edition Published 1990.)

H. Cramer, "Random Variables and Probability Distributions,"
University Press, Cambridge, 1970.

Probability Distributions

Heyman, D.P. and Sobel, M.J., eds., "Stochastic Models, Vol. 2 of
Handbooks in Operations Research and Management Science," Elsevier
Science Publishers B.V., North Holland, 1990.

Clarke, A.B. and Disney, R.L., "Probability and Random Processes for Engineers
and Scientists," John Wiley & Sons, New York, 1970.

Methods of Testing Algorithms

Knuth, D., "Seminumerical Algorithms, Vol. 2 of The Art of Computing
Programming," Addison-Wesley, Reading, MA 1981.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,W.T.,
"Numerical Recipes: The Art of Scientific Computing," University Press,
Cambridge, 1970.

Time and Freguency Domain Applications

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,W.T.,
"Numerical Recipes: The Art of Scientific Computing," University Press,
Cambridge, 1970.

Alwrithms

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,W.T.,
"Numerical Recipes: The Art of Scientific Computing," University Press,
Cambridge, 1970.

Golomb, S.W., "Shift Register Sequences," Holden-Day Inc., San Francisco,
1967.

17

Internal
Codes: 10

21
215
2152
2153
302
0261
0262

Total: 13

DISTRIBUTION LIST

(J. Sanchis)
(H. Watt, J. Munoz, J. Ionata, A. Edmonds (2))
(A. Nuttall)
(NLON Library (2))
(NPT Library)

TM No. 921244

\
1

