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ABSTRACT 

Adaptive, frequency domain, array signal detection is considered when there exist data blocks 

containing interference alone and signal plus interference that are disjoint in time and span several 

frequencies. The data block solely containing interference is used to form estimates of the 

interference covariance structure at each frequency. These estimates are substituted into 

generalized likelihood ratios to form constant false alarm rate detectors for deterministic and 

Gaussian signals that are limited in time to the signal plus interference data block. Central limit 

theorem based normal approximations are used to determine thresholds and the signal-to­

interference ratio (SIR) required to achieve specified false alarm and detection probabilities. The 

SIR required for the proposed detectors is shown to be the SIR required for the ideal conventional 

detector with interference covariance estimation losses and intra-block correlation losses. The gain 

in adaptive processing (i:e., the reduction in signal strength required to achieve specified false 

alarm and detection probabilities) is seen to be the ratio of the array gain improvement (AGI) to the 

change in the estimation and correlation losses resulting from the shift from conventional 

beamforming (dimension equals one) to higher dimension processing. Thus, the AGI must 

exceed the change in the estimation and correlation losses before adaptive detection becomes 

attractive. 
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A MAXIMUM LIKELIHOOD BASED ADAPTIVE DETECTOR 

1 INTRODUCTION 

Adaptive detection of signals received by an array of sensors provides improved performance over 

contemporary methods involving conventional beamforming prior to a detection algorithm in 

interference environments that yield high array gain improvement (AGI). Several issues plague 

adaptive detection, the foremost involves the estimation of unknown covariance matrices. 

Imperfect knowledge of covariance matrices both degrades performance and complicates the 

detector derivation and analysis. Detectors are often based on optimal techniques drawn from the 

Neyman-Pearson theory of hypothesis testing. Optimal in this case implies maximizing the 

probability of detecting a signal given a fixed probability of false alarm. When a complete 

statistical description of the signal and interference is available, these techniques provide the best 

detector structure in the form of a l~elihood ratio test (LRT). When only partial information about 

the statistics is available, optimal tests rarely exist and the suboptimal, although usually very good, 

generalized likelihood ratio tests (GLRT's) are used. Ideally, a detector incorporates known signal 

information such as time and frequency characteristics into the design of the algorithm. This 

matching of the detector structure to the signal unfortunately means that a loss is incurred if the 

signal does not have the assumed structure, perhaps due to time or frequency spreading of a 

transmitted signal, propagation effects of the medium, or simply a lack of knowledge of signal 

characteristics. A detector that is robust against not only signal mismatch, but also against the 

general time-frequency characteristics of the signal, is desired. 

It is commonly assumed that the interference hindering detection is stationary over a length of time 

greater than that of the signal. In frequency domain array processing (i.e., discrete Fourier 

transform (DFI) of the array time data), the signal may be assumed to lie in a block of data in time 

(consecutive DFf outputs, also called time snapshots) and frequency, denoted the primary data 

block.(PDB). Under the above stationarity assumption, the interferences present in the PDB are 

also present in data in adjacent, disjoint time snapshots at the same frequencies. This data is 

grouped and denoted the secondary data block (SDB). The primary-secondary data block structure 

is shifted in time, continually testing for the presence of a signal in the PDB subject to 

normalization by the interferences present in both data blocks. Wolcin [1], with extensions by 

Nuttall [2], has considered such a PDB with exponential averaging of the interference covariance 

structure over a semi-infmite SDB consisting of all data previous to the PDB. Specific subsets of 

these general block assumptions are found in the cardinal work of Reed, Mallett and Brennan [3], 

as well as more recently in several papers, notably by Kelly [4], Robey et al. [5], Robey [6], and 

Chen and Reed [7]. These papers [3-7] consider the single frequency case where the PDB consists 

of a single array vector and the SDB is a set of vectors with the same interference covariance 

I 



TM - 941021 

structure. Robey [6] does consider the case of a multiple vector PDB, however, the detector 

analysis is for the single vector case. These papers are also based on a signal with deterministic 

fonn and an unknown complex amplitude. 

This memorandum provides a brief background on array signal detection, proposing the use of 

matrix preprocessing to reduce the adaptive dimension of the detector and discussing common 

statistical models of the aiTay data. Detectors will be developed and analyzed for the deterministic 

signals considered in the above references [3-7] as well as a Gaussian signal with unknown 

power. The detector development is based on a generalization to the likelihood ratio approach 

reported by Robey [5, 6]. Following Wolcin [1], the detector for the Gaussian signal is designed 

to account for varying signal time-frequency characteristics by only considering time-frequency 

cells in the PDB that may contain a signal exceeding a particular strength. This effectively 

estimates the location of the signal in the PDB time-frequency cells. 

The detector perfonnance is evaluated by the signal-to-interference ratio (SIR) required to achieve 

desired false alarm and detection probabilities. When there are enough cells in the PDB, analysis 

may be performed by a nonnal random variable approximation using the central limit theorem 

(CL T). The SIR is decomposed into the required SIR for the ideal non-adaptive detector (i.e., 

conventional beamforming plior to detection when the conventional beam output power is known) 

as reported by Wolcin [1] or Nuttall [2]. with losses due to the estimation of the interference 

statistics and losses due to intra-block correlations caused by the estimated interference statistics. 

The gain in adaptive processing (i.e., the reduction in the signal strength required to achieve 

specified false alann and detection probabilities) is seen to be the ratio of the AGI to the change in 

the estimation and correlation losses from univariate to multivariate data. 

Applications of the proposed detectors include any limited time duration signal in an interference 

background with moderately constrained stationarity conditions. The degree to which adaptive 

processing is applicable depends on the severity of the inte1ferenc~ background. The AGI, which, 

for instance, is large for directions near to strong plane wave (isolated in arrival angle) 

interferences, must exceed the change in the estimation and correlation losses before adaptive 

processing becomes attractive. 

2 ARRAY SIGNAL DETECTION BACKGROUND 

The conventional detection of a signal arriving at an array of sensors from a particular direction 

may be viewed as two operations. First, the multivariate array data is processed to form a 

univariate test statistic. This is often accomplished by conventional beamfonning and is discussed 
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in section 2.1. Second, a function, called the detector function or detector non-linearity, is applied 

to the univariate test statistic. The detector function is formed based on the statistical characteristics 

of the test statistic which are dependent on the statistical assumptions on the array data. The output 

of the detector function is then compared to a threshold to decide if a signal is present or not. 

Adaptive array detectors form a detector function based on the statistical characteristics of 

multivariate array data rather than the univariate processed data. Unfortunately, this method is 

fraught with analysis and implementation difficulties. The estimation and inversion of the array 

data covariance matrix is typically required. As the number of array sensors increases, the matrix 

inversion becomes numerically inhibitive and the matrix estimation becomes statistically hazardous. 

A method of dealing with large arrays involves preprocessing the array data to a smaller dimension 

and then applying an adaptive detection algmithm. A very general matrix preprocessor is described 

in section 2.1, followed ·by a specific method, beam space preprocessing, that is applicable to 

adaptive detection. Common statistical models for the ~rray data and the effects of the matrix 

preprocessing on these models are discussed in section 2.2. 

2.1 Pre-Detector Signal Processing 

The signal processing of an array of sensors in sonar or radar detection applications, as seen in 

figure 2-1, typically includes simultaneous time sampling of the continuous waveform at each of P 

sensors followed by transformation to the Fomier domain by a discrete Fourier transform (OFT). 

The frequency domain array data is beamformed to multiple angles with a signal detection 

algorithm at each beam output. 

Beamforming is traditionally performed to increase the signal-to-noise ratio (SNR) prior to the 

detector by spatially filtering noise and interferences from other angles of arrival. This may be 

accomplished by using conventional, non-adaptive beamforming, or by data dependent, adaptive 

methods. 

~ ----tL----..z--

~ Beamformer v- T ----tL..-__ ;-_-_:----1 frequency fmt-----:_.......;;..__...;..._j 

• 
• 
• 

~ --""!_ __ __,_ 

Figure 2-1 Typical signal processing of sensor arrays for detection. 
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A more general configuration of this system replaces the beamforming block with an angle 

dependent matrix preprocessor followed by a detector as seen in figure 2-2. If the array data for 

the m'h DFT bin and the l'h time snapshot is an·anged in the P -by-1 vector, 

- (- - - ]T 
Xm/ = X!ml X2ml ... Xp,,/ (1) 

and operated on by the P-by-N preprocessing matrix, Ame• the resulting N-by-1 preprocessed 

data vector is 

(2) 

where the superscript Tis the transpose operation and the superscript H is the conjugate transpose 

operation. Vectors are denoted by lower case bold letters, and mau·ices are denoted by upper case 

bold letters. The - notation found on vector variables indicates that the variable is at the array 

sensor level. 

A H N-by"P 
m9 p · reprocessmg 

Matrix 

mth OFf frequency -+----••-------1~ Adaptive Detector 
bin from p sensors A H - Angle e 

xm/ x/11, = m9 x/11, 
P-by-1 

Data Vector 
N-by-1 

Data Vector 

Figure 2-2 Preprocessing and adaptive detector. 

Preprocessing the array sensor data provides N -dimensional data to the detector, where N is now 

dependent on the type of preprocessor employed. Conventional beamforming is represented by 

setting the matrix preprocessor to the array steering vector for the desired angle of arrival. 

Similarly, element space adaptive processing is represented by setting the matrix preprocessor to 

the P dimensional identity matrix, thus passing all of the sensor data to the detector. The matrix 

preprocessing structure also allows reduction of the adaptive dimension by transformations such 

that 1 < N < P, as in the subarray and beamspace preprocessors discussed in [8]. 

Beams pace preprocessors, as seen in [8], are of particular interest because the adaptive dimension 

may be greatly reduced with minimal performance loss . . For example, the AGI for an array with 
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P = 64 sensors using N = 5 beams in a beamspace preprocessor is typically within 0. 5 dB of the 

fully adaptive beam former AGJ. The preprocessing matrix has the form 

(3) 

where dm;( 0) represents an array steering vector at the m'1' DFT frequency with a direction 

denoted by the index, i. The N beams that are chosen are those equally spaced in wavenumber 

and centered about the desired angle, e. 

When adaptive beam forming (and also detection) is employed, reduction of the adaptive dimension 

is crucial due to the numerical intensity of the implementation and the statistical hazards involved in 

the estimation of large covariance matrices. The reduced dimension adaptive techniques typically 

require estimation and inversion of an N -by- N covmiance matrix at each DFT bin output. From a 

numerical computation and a statistical estimation standpoint this becomes difficult as N increases. 

Preprocessing the array data vectors to provide small N reduces numerical computations often 

with near equivalent average performance as shown by Owsley and Abraham [8] and also provides 

improved statistical perfonnance as shown by Burgess and VanVeen [9]. 

2.2 Statistical Modeling 
The array data vector from the m'h DFT frequency bin and the l'h time snapshot, iml• is commonly 

modeled as a complex, P. variate, Gaussian random vector. The following notation will be used 

throughout this paper to represent a P variate, complex Gaussian random vector with mean, J.l, 

and covariance matrix, L : 

When no signal is present, denoted by the hypothesis H, the an·ay data vector is distributed as 

(4) 

where Qm is the P -by- P covariance matrix representing the con·elations between sensors at the 

m'h DFT frequency bin due to interference and noise. 

There are two common signal models, the stochastic Gaussian signal with unknown power (SG) 

and the deterministic signal with unknown complex amplitude (SD). Both consider a plane wave 
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arrival with either stochastic or deterministic complex amplitude. For the SG case, the data vector 

is distributed as 

(5) 

where the hypothesis K represents signal present, dm8 represents the steering vector for the sensor 

level data and sm1 is the power of the signal in the m'h OFT bin and l'h time snapshot. The SO 

case, common in radar array processing, considers the time domain signal to be a sinusoid with 

known frequency and unknown complex amplitude, ami• yielding 

(6) 

For comparison purposes, it ·wm be assumed that the powers in the deterministic and Gaussian 

signals are the same, i.e., 

The data vectors are assumed to be independent, because of the Gaussian data assumption, for 

different frequencies and different time snapshots. Mathematically, this is described by 

(7) 

where 8ii, the Kronecker delta function, is non· zero only when i = j where it has unit value. The 

justification for this is based on [ 1 0] where, for the stationary continuous case, Hodgkiss and 

Nolte have shown that if the observation time of the signal is long enough, different Fourier 

coefficients become uncorrelated and, thus, are independent due to the Gaussian data assumption. 

It is also easily shown that similar results hold for the discrete case; that is, if the time series data is 

stationary, different DFT bins are approximately uncmTelated for a large enough DFT size and thus 

independent, assuming non·overlapping OFT's. Note that since our observation intervals are 

short, this places a minimum size constraint on the length of the OFf. · 

When the matrix preprocessing, described in section 2.1, is incorporated into the statistical 

description of the data, the SG and SD signals are respectively distributed as 

(8) 
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and 
(9) 

where the preprocessed steering vectors and interference covruiance matrices are 

and 

Due to the generality of the preprocessed data structure, the detection problem will be developed 

assuming that preprocessing has already been performed and, for notational convenience, suppress 

the dependence on the angle e. 

3 MAXIMUM LIKELIHOOD BASED ADAPTIVE DETECTORS 

As previously mentioned, the an·ay data is segmented in time into the PDB, containing interference 

and potentially signal, and the SDB, containing interference only. This structure, the statistical 

representation of the primary and secondary data, and its potential applications in the field of sonar 

are discussed in section 3.1. Then, following Robey's [5] derivation for the deterministic signal 

case, a detector for the Gaussian signal case is derived in section 3.2, and it is shown that each 

preprocessed array data vector in the PDB is used to f01m an adaptive beam output. The statistical 

distribution of the adaptive beam output is then described in section 3.3 for Gaussian and 

detenninistic signals. 

3.1 Array Data Structure 

The primary-secondary data structure, commonly found in radar systems analysis, is composed of 

two sets of independent data blocks. Each data block is composed of a set of DFI' bin outputs for 

multiple frequencies and time snapshots. The primary data block consists of data that is 

hypothesized to include signal energy. The secondary data block is independent of the PDB and 

must have the same intetference statistics as that found in the ptimary data block at each frequency. 

The SDB is used to form estimates of the frequency dependent interference covariance matrix. 

This estimate is crucial to the constant false almm rate (CFAR) property of the proposed detector. 

Figure 3-1 shows a typical contiguous primary and secondary data block set with M DFT 

frequencies, L time snapshots in the PDB, and J time snapshots in the SDB. 

Each time snapshot-DFT frequency bin point in the data blocks represents a length N preprocessed 

data vector. Those in the SDB are assumed to contain no signal components, where those in the 
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PDB may. Statistically, the data vectors are described by equations (8) and (9), respectively, for 

the SG and SD cases. The no signal requirement of data vectors in the SDB implies that 

sml = 0 or ami = 0. This yields the statistical representation 

Ymj- CNN(O,Q,.) (10) 

for both signal types, where y mi is the secondary data vector from the m'h DFf frequency and the 

j'h time snapshot (where j = l, ... ,J) and Q,. is the interference covariance matrix. 

DFTBin 
Outputs 

M .. .. ................... . .. . 

· · Secondary Data · · 
: : Block (SOB) : : 

: : : )nterfercnce: : : : 
Only 

· · · Primary Data· · · · 
: : : Block (PDB) : : : : 

. . . . Signal . . · · · 
+ 

: : : :l~te~f~r~n~e: : :, 

: : : : : : : : : : : : : .~Each grid point represents 
· · · · · · · • · · • · · · a length N preprocessed 
· · · · ' · · ' · · ' ' · · data vector 

J 1 L 

Time Snapshots From 
Non-overlapped OFT's 

Figure 3-1 Primary and Secondary Data Block representation. 

The SDB is not required to be a contiguous set of time snapshots. Windows leading and lagging 

the PDB may be used to estimate the interference covmiance matrix, as in cell averaging CFAR 

systems, as long as steps are taken to insure that these windows are not contaminated by signal 

presence and have the same interference covariance structure as the PDB. 

The most restricting requirement of this data structure lies in the required stationarity of the 

interference over both the primary and secondary data blocks. The detector performance is nearly 

optimal when the SDB contains a large number of time snapshots; this, however, conflicts with 

typical stationarity assumptions for sonar interferences. The requirement that the SDB not contain 

any energy due to the signal limits the application of this data structure to scenarios that have a 

definitive signal start or stop time. 
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The PDB must be sized based on the type of signal that is to be detected. Ideally, if the time­

frequency characteristics of the signal were known exactly, only the cells that contained signal 

energy would be included in the PDB. However, since this information is rarely known and a 

detector that is robust against unknown signal time-frequency characteristics is desired, a block in 

time and frequency is utilized. 

These restrictions on the PDB and SOB indicate that this data structure may be applied to limited 

time duration signals in a background that is stationary over some period of time greater than the 

length of the signal. Included in this category is the adaptive detection of an active sonar return 

with robustness against doppler, time and frequency spreading, and corrupted by reverberation that 

is stationary over both data blocks and spatially distinct from the desired signal. 

This structure may also be applied to a signal that has a definitive onset but a long time duration. 

This type of signal suggests a sequential detector - this is not the focus of this memorandum, 

however, it may be a future research topic. 

3.2 Detector Derivation 

In the Neyman-Pearson sense of maximizing detection probability for a fixed false alarm rate, 

substituting the observed data into its likelihood ratio yields the optimal detector. When the 

statistical characterization of the data contains parameters with unknown values there is often no 

uniformly most powerful (UMP) test; that is, a single detector that provides optimal performance 

over all possible values of the unknown parameters. The GLRT often provides good (although 

suboptimal) performance when there are unknown parameters and no UMP test exists. 

In the primary-secondary data structure problem, Kelly [4] has derived a GLRT detector for the 

single frequency deterministic signal case with a single time snapshot PDB. Robey et al. [5] and 

Chen and Reed [7] derived a test by forming a GLR statistic for the unknown complex signal 

amplitude assuming that the inte1ference covariance matrix is known. The secondary data is then 

used to form the maximum likelihood estimate (MLE) of the interference covariance matrix, with 

the estimate substituted into the above GLR statistic. In this memorandum, a detector for the 

Gaussian signal case is developed following Robey et al. [5] and Chen and Reed [7], noting, as 

seen in [5], that the GLRT (i.e., Kelly [4]) has no assumed optimality over this method due to the 

nonexistence of a UMP test. 

The GLRT requires maximization of the likelihood ratio, or equivalently, the log-likelihood ratio, 

with respect to the unknown signal powers, resulting in the test statistic 
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(11) 

where the summation indices m and l represent frequency and time snapshot in the PDB. The 
functions /;( •) are the probability density· functions (PDF's) of the primary data vectors under the 

null (H) and alternative ( K) hypotheses for the Gaussian signal. 

Substituting the N variate complex normal PDF's [11] for the Gaussian signal model and 

simplifying yields the form 

(12) 

Maximizing this form under the constraint that "'"'' ~ 0 requires using the signal strength estimate 

(13) 

where Tm1 is the normalized adaptive beam output from the m'h DFT bin and the lrh time snapshot 

in the PDB; that is 

(14) 

It is not expected that there will be signal energy in all cells of the PDB, so it is possible for the test 

statistic A. to be corrupted by non-signal cells. Intuitively, it seems that if there are a large number 

of non-signal cells in the PDB, performance may degrade. A method, attributed to Wolcin [1], for 

dealing with this problem is to fmm the MLE of the cell signal power under the constraint, 
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SIR,1 ~ t, (15) 

where the signal-to-interference ratio for the m.l'" cell is defined as 

(16) 

This technique essentially forms an estimate of where the signal lies in the time-frequency block of 

data; that is, if the estimated SIR is not greater than t for a given cell then it is considered to have 

interference only and is not incorporated into the test statistic. Choosing t = 0 results in the 

conventional MLE for the unknown signal amplitude, since the SIR is zero if the signal power is 

zero. The effect on the signal power estimate of (13) is 

0 

Substituting this more general estimate back into (12) yields the detector statistic 

4sa = I,gsa(Tml)• 
m,l 

where the SG detector nonlinearity has the following form: 

{
T-1-log(D 

gsa(T) = 0 
T~I+t 

T< I+ r· 

(17) 

(18) 

(19) 

Substituting the complex Gaussian PDF for the deterministic signal case into the log-likelihood 

ratio form of (11) yields 

(20) 

By completing the square in te1ms of a,,. it is seen that choosing 
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will maximize the log-likelihood ratio to 

(21) 

where the deterministic signal detector non-linearity is actually the linear function 

(22) 

This is commonly known as an energy detector and has been explored for a single frequency. 

single PDB time snapshot case by Robey [5], Chen and Reed [7], and for a time domain 

implementation by Baggenstoss and Kay [12]. 

Substituting the MLE of the interference covariance matrix at the m'h DFf frequency over the 

secondary data block at each frequency, 

"1 J 
" ~ H 

Qm = J £.-JY mjY nrj' 
j=l 

into the adaptive beam output (14) yields 

3.3 Statistical Description of the Adaptive Beam Output 

(23) 

(24) 

The adaptive beam output (24) formed by using the MLE of the interference covariance matrix is 

used in both the SG and SD detectors. In order to calculate the thresholds required to implement 

the detectors and to analyze their performance, the probability density function of the adaptive 

beam output needs to be dete1mined. The approach used is to first determine the density function 

of the adaptive beam output conditioned on the interference covariance matrix estimate for the 

Gaussian and deterministic signals. The next step is to statistically describe the parameters of these 
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conditional distributions that depend on the estimated covariance matrix. The randomness 

introduced by estimating the interference covariance mauix may be described by two independent 

scalar random variables, the foundation of which comes from the work of Reed, Mallett, and 

Brennan [3], and is shown in Appendix A. 

The adaptive beam output, conditioned on the interference covariance matrix estimate, is the 

magnitude squared of a univariate complex Gaussian random variable. As a general case, consider 

theN-variate complex Gaussian random vector 

and the fonn 

(25) 

for some constant vector w. The temporary variable, Z = wnx, has the density function of a 

univariate complex Gaussian random variable, i.e., 

The magnitude squared of Z, which is equivalent to (25), is the sum of the squares of two 

independent Gaussian random variables with the same variance. This sum is proportional to a 

non-central Chi-squared random variable with two degrees of freedom. Thus, when appropriately 

scaled by the constant 1(, (25) is disllibuted as 

which has probability density function [ 13] 

y>O, 

where / 0 ( •) is a modified Bessel function of zero order. The scale and non-centrality parameters 

are, in this case, 
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2 
and 

(26) 

The mean and power of the adaptive beam output, T, in terms of the scale and non-centrality 

parameters, are 

E(T] = K'(2 +C) 
and 

(27) 

The adaptive beam output (24) may be w1itten as in (25) by letting 

w= (28) 

By substituting (28) and the mean and covariance from equation (8) or (9) into equations (26) and 

(27) it is seen that the chi-squared scale and non-centrality parameters and the adaptive beam output 

mean and power may be written as functions of the following two independent Gamma and Beta 

distributed random variables: 

- Gamma( I-N+ 1, YJ) 
and 

(d!Q:Id"'r 
Pm = - Beta(J- N +2,N -1). (29) 

( d~Q~,IQIIIQ~,Id/11 )(d:,~Q~,ldm) 

The density functions for the Gamma and Beta random variables and the derivation of these results 

are found in Appendix A. 

Utilizing the statistical descriptions of the Gaussian (8) and deterministic signals (9), the scale, 

non-centrality, mean and power of the respective adaptive beam outputs are as shown in table 3-1. 

In considering the results found in table 3-1, it is seen that the Gaussian signal case always results 

in a central Chi-square distribution, which, with two degrees of freedom, is the exponential 
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distribution. The deterministic signal case results in the exponential distribution only when the 

SIR is zero, i.e. when no signal is present. The conditional mean of the adaptive beam output is 

identical for both signal types. The power for the SO case is always less than or equal to that of 

the SG case with equality only when the SIR is zero. The only dependence of the scale and non­

centrality parameters, that describe the conditional distribution of the adaptive beam output, on the 

true interference covariance matrix, is through the SIR as defined in (16). When no signal is 

present, the SIR is zero and the adaptive beam output disllibution is free from dependence on the 

interference covariance matrix. Thus, any detector based on the adaptive beam output will have a 

constant false alarm rate. 

Table 3-1 Scale·. non-centrality, mean and power for the adaptive beam output 
from the ml'h cell in the PDB for Gaussian and deterministic signals. 

Signal Scale ,( Non-cenu·ality ( Mean E[T,1] Power E[ T!1) 

l+p,SIR,1 1+p,SIR,1 (I+ p,SIR,1 )
2 

2p,r, 2 2 

SG 0 p,rm (p,r, ) 
1 1+p,SIR,1 ( 1 + p,SIR,1 )

2 
SIR2 

2p,r, 2 2 ----l!!L 
SD 2pmSIRm1 

p,r, (p,r,) r2 
m 

It is useful to consider how the Gamma and Beta random variables change with the dimension of 

the data, N. and the size of the secondary data block, J. When N = 1 the beam space matrix 

preprocessor is performing conventional beamforming and it is seen that the Beta random variable 

becomes degenerate at one; that is, p = 1 with probability one. The secondary data is thus used to 

estimate the unknown conventional beam output power and then used to normalize the primary data 

as in cell averaging CFAR systems. This is a realistic, implementable, non-adaptive detector. If, 

addition~lly, the size of the SDB goes to infinity, which is not a practical assumption, both the 

Gamma and Beta random variables become degenerate at one. This situation represents infinite 

time averaging of the unknown interference covariance matrix which is· equivalent to perfect 

knowledge about the interference su·ucture. This case is known as the ideal conventional detector 

because of the assumed knowledge of the interference statistics at the beam output level. These 

results are summarized in table 3-2. 
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Table 3-2 Gamma and Beta random variables under certain N and J. 

N J GammaRV Beta RV 

N> 1 N<J<oo rm, Pmt 

N = 1 N<)<oo rml Pmt = 1 

N=l )-?oo rml -71 Pmt --?1 

4 DETECTOR ANALYSIS 

In section 3, detectors were derived based on Gaussian and deterministic signal assumptions. The 

resulting detectors were expressed as the summation, over all DFT frequency- time snapshot cells 

in the PDB, of a univariate statistic, the adaptive beam output, evaluated at a detector non-linearity. 

The detection statistic is 

A.= L8;(Tntl) (30) 
ntl 

where 8;(•) represents the detector non-linearity. When the number of cells in the PDB is large 

enough, a central limit theorem (CL T) based approximation to a Gaussian random variable may be 

used to analyze the performance of these detectors. This requires knowledge of the mean and 

variance of the test statistic, A., under the no-signal hypothesis (H) and the signal-present 

hypothesis ( K). The time-frequency characteristics of the signal have not been restricted in 

deriving the detectors. But, in order to make analysis tractable, certain restrictions need to be 

placed on the strength and time-frequency location of the signal in the PDB. 

The signal restrictions and the mean and variance of the detector test statistics are respectively 

described in sections 4.1 and 4.2. The detector performance analysis using the CL T 

approximation is desclibed in section 4.3. 

4.1 Signal Time-Frequency Model 

Without some simplification of the signal model, the analysis of the detectors, in particular the 

variance computation, is difficult due to the con·elation between adaptive beam outputs, at the same 

DFT frequency, introduced by the estimated interference cova1iance matrix. A model that provides 

some freedom in the placement of signal energy in the cells of the PDB is desired. · First, it is 

assumed that when the signal is present in a time-frequency cell, it will have a constant SIR. Next, 

the number of time snapshot cells that have signal present, for a particular DFT frequency, is either 

1 6 
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zero or L,. The number of DFT frequencies that contain L
1 

signal cells will be M,. Thus, the 

total number of signal cells is M,Ls and we define the ti-action of signal cells to total cells to be 

ML r=-s_s. 
ML 

(31) 

This is graphically described in figure 4-1 with an example where Ls = 3, Ms = 9, L = 7, and 

M = 14. The positioning of the DFT frequencies that contain signal and the signal cells at those 

DFf frequencies is not restricted. 

Primary Data 
Block (PDB) 

DFfBin 
Outputs 

M 

• • 

• • 

• 

• • • 
• • • • • • • 

• • • • • • • 
• • • • • 

L 
Time Snapshots From 
Non-overlapped DITs 

Figure 4-1 Graphical representation of signal time-frequency location. 
Signal is present in 3 of 7 time snapshot cells ( L, = 3, L = 7) for 9 of 14 
OFf frequencies (Ms =9, M = 14). 

4.2 Test Statistic Mean and Variance 

The SG and SD detector functions were delived in section 3. In this section the perfonnance of the 

SG detector for the Gaussian signal and the SD detector for both the Gaussian and deterministic 

signal, as depicted in figure 4-2, are analyzed. 

Case 

Detenninistic I~ 

Signal 2~ 
Gaussian ~3 • 

8so(T) 

Detector Non-linearity 

8sG(T) 

Figure 4-2 Signal and detector descriptions for analysis cases. 
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The block level mean and variance (i.e., mean and variance of (30)) under the signal present 

hypothesis ( K) may be found in terms of the previously described signal time-frequency 
parameters and the mean and variance of the detector non-linearity, 8;(•), operating on a single 

adaptive beam output, T, with no signal and with a signal with a specified SIR. These 

expressions are given by 

and 
VarK[it] = ML(l- y)Var0 [g;(T)] + MLy Var51R[8;(T)] 

+ML[ L -1 + r(Ls- 2L+ l)](h(O.O)- E0[g;(T)f) 

+2MLy(L- Ls}(h(O,SIR)- E0 [g;(T) ]EsiR[g;(T)]) 

+MLr(Ls -I)(~csiR,siR)- Es/R[K;<T)r). 

(32) 

where the subscript on the expectation terms on the light hand sides of the equations denote the 

SIR for the cell creating the adaptive beam output, T. 1'he term on tbe second \\ne \n t\\e vanance 

is due to the correlation between the adaptive beam outputs at the same frequency. The 

intermediate function, h.( a. b) , is defined as 

(33) 

where Ta and Tb are adaptive beam outputs formed from the same interference covariance matrix 

estimate and two independent primary data vectors with signal to interference ratio equal to a and 

b respectively. The mean and variance under the no signal hypothesis (H) may be found by 
setting r = 0 and Ls = 0 in (32), i.e., 

EH[it] = MLE0 [g;(T)] 

VarH[ it]= ML Var0 [g;(T)] + ML(L -l)(h(O,O)- E0 [g;(T)r) (34) 

Thus we only need to evaluate the cell level mean and variance (i.e., the mean and variance of the 

detector non-linearity) and the function h.(a,b) in order to determine the detector performance. 

Closed forms exist for the SD detector for both signal types and are shown in table 4-1. As 

expected, the only difference between the two signal types is that the variance of the adaptive beam 

output for the deterministic signal is less than that for the Gaussian signal. 
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The r and p random variables in table 4-l are, respectively, Gamma and Beta distributed, as 

discussed in section 3.3, and have closed form inverse moments when J > N + 1. The required 

inverse moments are 

Efr-1]= J~N' ri -"] }2 
'-'Lr- = (J-N)(J-N-1)' 

...r -1] J 
.... 'Lp = J - N + 1 ' 

E[ -2]- J(J-1) 
p - (J - N)(J - N + 1) 

(35) 

Table 4-1 Cell level mean, variance and h(a,b) function for the detenninistic 
signal detector operating on dete1ministic and Gaussian signals. 

Deterministic Signal Detector 

Parameter Deterministic Signal Gaussian Signal 

ESIR[T] E[r-1]{SIR+ E(p-1
]} E[r-1 ]{SIR+ E[p-1

]} 

Var51R[T] {siR+ E[p-1 1r { 2E[r-2
]- E[r-1 f} {SIR+ E[p-1]} 

2 

{ 2Efr-2
]-Efr-1 r} 

+2E[r-2 J{ E(p-2]- E(p-1f- ~SIR2 } +2E[r-2 J{ E[p-2]- Efp-1 y} 
h50(a,b) E[r-2]{ab+ (a+ b)E[p-1

] + E(p-2
]} E[r-2 ]{ab+(a + b)E[p-1]+ E[p-2

]} 

Due to the non-linear form of the Gaussian signal detector, the analysis is considerably more 

difficult and is done only for the Gaussian signal case. By utilizing the conditional distribution of 

the adaptive beam output, reducing the expectation over the Gamma random variable, and using the 

transformation u = 1 + -r, the i'h moment of the SG detector non-linearity may be expressed as 
T 

; _ [ (J-N+1)p(l+-r)g~(1:~)] 
Es,.[Csc(T))- E,. Ju'(l + SIR)['• P<I+TJ r·• • (36) 

p Ju(l+pSIR) 

where p is Beta distributed as previously described and u is a uniform random variable 

(independent of p) with density function 

f(u) = 1 (37) 

The function h(a,b) may similarly he exp1-essed as 
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_ [(J-N+l)(J-N+2)p2 (1 + 'r)
2 8sa(~)gSG(7)] 

hso{a,b)- Epuv [ ( )]J-11•) , (38) 
J2u2v2 (l+pa )(1 +pb) l+e --.2.!!._+~ 

J u(l+pa) v(l+pb) 

where both u and v are independent unifmm random vmiables with the density function described 

in (37). In reducing the expectation over the Gamma random variable, the following two 

relationships are used: 

E [ r9] J- N + 1 re ---"=""""'~~ 
r - J(l-%>J-N+2 

and 

(39) 

The evaluation of these functions would require two- and three-dimensional integrals for each SIR. 

Therefore, Monte-Carlo integration is used with the uniform and Beta random variables generated 

only once. The concept of Monte-Carlo integration is discussed in Appendix B. 

4.3 Detection Performance via CL T 

In order to implement and evaluate the detector, a threshold must be chosen based on the desired 

false alarm probability. The false alarm probability is the probability of the test statistic crossing 

some threshold, l, when no signal is present; that is, 

Pn. = Pr{A. ~ LIH}. (40) 

Since the test statistic is approximated by a Ga.ussian distlibuted random variable with mean and 

variance as described in (34) when no signal is present, the threshold that provides the specified 

false alarm performance may be written as 

(41) 

where the function cl>(•) is the standard Gaussian cumulative distlibution function, defined by 

" zz 
<l>(x)=Pr{Zs;x}= J~ e-2dz, (42) 

t=-~ 
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and the superscript -t represents a functional inverse. 

The probability of detecting a signal is the probability that the test statistic crosses a threshold (set 

by the desired false alann rate) when the signal is present, i.e., 

P0 = Pr{A ~IlK} . (43) 

Using the CLT nonnal approximation once again, the probability of detection is 

(44) 

The derivation of these forms for the threshold and probability of detection is straightforward and 

is found in Nuttall [2). 

The detection probability is dependent on the false alarm probability; the SIR found in each signal 

cell, the total number of cells containing signal, the signal location parameters previously 

discussed, the adaptive dimension, and the fixed sizes of the PDB and SDB. Here, the SIR 

required to achieve desired false ala1m and detection probabilities is considered. Clearly, the SIR 

enters into the detection probability through the mean and variance of (32), however, not in a 

simple fashion. In general, the SIR required to achieve specified detection and false alarm 

probabilities may be found numerically by evaluating (44) until the desired detection probability is 

found. The SG detector requires this approach, however, the closed form solution to the mean and 

variance for the SD detector provides an exact solution. As seen in table 4-1, the cell level mean, 

variance, and h(a,b) functions for the SD detector are either first or second order polynomials in 

SIR. The block level mean and variance are linear combinations of these terms and may be 

written, respectively, as a monomial and a quadratic in SIR as follows: 

where 

m, = MLyE[r-1
) 

m0 = MLE[r-1)E[p-1
)' 

and 

where 
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a2 = MLy{ VsE[r-2
] + L .• ( E[r-2

]- E[r-1 r)} 
a1 = 2MLyE[p-1l{(L+ I)E[r-2

]- LE[r-'Y} 

a0 = ML2
{ E(r-2]E(p-2

]- E(r-'Y E(p-'Y} + MLE[r-2]E[p-2
] 

(45) 

The Boolean vmiable, 

Us ={ 1 
() 

SG 

SD' 

represents the difference between the Gaussian and dete1ministic signals. 

For the SD detector, we can express the equality (44) in the fmm 

(46) 

Following Nuttall [2], we solve this by squaring both sides, which yields a quadratic form in SIR, 

i.e., 

where 

b2 = m,2 - a2 [<l>-1(P0 )f 
b1 = 2m1(11lo -lso) -a1[cl>-1(P0 )Y, 
bo =(rna -lsof -ao[<l>-'(Po)f 

where the threshold for the SD detector may be written as 

(47) 

(48) 

The quadratic formula yields the solution to ( 47), however, only one root will satisfy the 
transcendental equation (46). Notice that the above coefficients depend on the square of ~-1(P0 ), 

thus, removing dependence on the sign. As in [2], the sign of Cl>-1 
( P 0 ) is used in the quadratic 

formula to yield the correct root, that is, 
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(49) 

The sign( c~~- 1 (Po)) te1m in the result may he explained hy allowing P 0 to increase slightly from one 

half, which causes <l>-1(P0 ) to increase slightly from zero, thus at P0 = 0.5, the roots of the 

quadratic are the same. An.increased P0 requires more SIR, thus we want the larger root which is 

achieved in (49) when b2 > 0, which is true in the neighborhood of P0 = 0.5. 

As is seen in Nuttall [2], this method may also be applied to solving for the signal coverage 

parameter, r. required to achieve desired detection and false alarm probabilities using the ideal 

conventional detector for a fixed SIR. This is done to facilitate plotting the required SIR against 

the signal coverage parameter. The .SG detector requires substantial computation to evaluate the 

required SIR for each value of y. This method, conversely, computes the cell level mean and 

variance and finds the value of r that yields the desired performance, only requiring the numerical 

integration of two equations for each SIR. 

The ideal conventional detector represents perfect knowledge of the conventional beam output 

power which causes the h(a,b)function (33) to become 

(50) 

because there is no correlation between adaptive beam outputs at the same DFf frequency (the term 

due to correlation in the block level variance (32) thus goes to zero). Substituting the ideal 

conventional detector mean and valiance into the transcendental equation (46) yields the quadratic 

form in the signal coverage parameter, r' i.e., 

where 

c2 = ML{ Es1R[g;(T)]- E0 [g;CT)]}
2 

. 

c1 = 2~ MLVar0(g;(T)] ¢>-
1(PFA ){ EsiR(g;(T)]- E0(g;(T)]} 

- [ <l>-1 (PoW { VarsJR[g;(T)]- Var0 [g;(T)]} 

C0 = Var0[g;(T)]{[<I>-1(PFA)Y -[<l>-1{P0 )Y} 

As before, the solution is the quadratic formula with a sign con-ection, that is, 
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r = -Cl +sign(4>-1 (Pn))~c~ -4C2C0 
2c2 

5 DETECTOR PERFORMANCE 

(52) 

In previous sections, Gaussian and detetministic signal detectors were developed and a method of 

determining the SIR required to achieve specified detection and false alarm probabilities was 

provided. In section 5.1, the SIR is factored into an ideal case with covariance matrix estimation 

losses and intra-block correlation losses in order to determine what has the most effect on the 

required SIR. It is seen that the detector gain due to adaptive processing is related to the AGI. In 

section 5.2, the AGI for Owsley's standard test case [ 14] is shown, as well as the average loss 

due to beam space matrix pt·eprocessing. In section 5.3, the ideal conventional detector SIR is 

examined against the fraction of cells containing signal, r, for the SD detector with Gaussian and 

deterministic signals and for the SG detector with various SIR thresholds operating on a Gaussian 

signal. Estimation and correlation losses are then considered for various size secondary and 

primary data blocks and adaptive dimension. From these plots, the SIR required to achieve 

desired detection and false alarm probabilities can be determined. 

5.1 SIR Decomposition 

It is known that estimating the unknown interference covariance matrix causes performance 

degradation compared to the perfect knowledge or clairvoyant detector. These losses may be 

categorized as an estimation loss and as a con·elation loss. The correlation loss results from using 

the same estimated covariance matrix for each time snapshot in the PDB at each DFT frequency. 

Analytically, this is represented by factming the SIR into the amount of SIR required for an ideal 

conventional detector, SIR/deal, with a loss due to estimation of the interference covariance matrix, 

Eu,u, and a loss due to the intra-block con·elations, Cu, .•.• ; that is, 

(53) 

where the estimation and con-elation losses are greater than or equal to one. The ideal conventional 

detector is a detector operating at the output of a conventional beamfmmer when the beam output 

power is known. 

The required cell level signal power, sRqtJt may be written, utilizing the definition of the SIR, as 
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S - S /.ms Lo.<.< 
(

£ c ) 
Rqtl - ld~al AGI(N) • (54) 

where sldcat is the required cell level signal power for the ideal conventional detector for a given 

interference structure and AGI(N) represents the AGI achieved using the P by N preprocessing 

matrix, Am9 • Thus, 

(55) 

The loss due to estimation of the interference statistics is defined as the ratio of the required SIR 

for a detector where no· correlation loss occurs ( L = 1, with M fixed) to that of the ideal 

conventional detector; that is, 

£/.oss(J,N) = SIRRqti(J,N,L= 1) • 

SIR/tl~at 
(56) 

The correlation loss is defined as the ratio of the worst case required SIR (in terms of L,) for the 

given detector parameters to that of a detector where no correlation loss occurs; that is, 

max 
{ L} SIRRqd(J,N,L,L,) 

C (J N L)=..!:....:.o'~----
Loss ' ' SIRRqd(J,N,L=l) • 

(57) 

The gain in adaptive processing over conventional may be expressed as the ratio of their required 

signal powers, i.e., 

. - sRqd(N = 1) 
Gam - --=.::~=----

sRqd(N) 

= AGI(N)( ELo .•.• (J.N = l)XCI.o.t.t{J,N = l,L)J. 
E~.o .... (J.N) CLo .• ,(J,N,L) 

(58) 

noting that AGI(N = 1) = 1. To improve over the implementable conventional detector, the AGI 

need only be greater than the change in the estimation and con-elation losses. 
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5.2 Typical A GI 

As described in (55) and applied in (58), the AG/ represents the potential improvement when 

adaptive processing is utilized and is a function of the interference covariance matrix and the matrix 

preprocessing. In order to provide some measure of what typical AG/ values are, Owsley's 

standard test case (STC) [14] is analyzed for beam space preprocessing on a half wavelength 

linearly spaced 64 sensor array. This test case consists of five plane wave signals amidst two 

angularly extended signals. In figure 5-1, the expected conventional and adaptive beam responses 

to Owsley's STC, Scenario 1, are shown. Any signal arriving from a direction other than the look 

direction is considered to he an interference. 

In figure 5-2, the AG/ achieved using element space adaptive processing is shown as a function of 

the direction of an·ival (DOA) of the signal. The largest AG/ values are located close in arrival 

angle to the strong plane wave interferences and are seen to be greater than 10 dB. In figure 5-3, 

the average, over an·ival angles, of the loss in AG/ incun·ed by the beamspace preprocessing is 

plotted against the adaptive dimension of the preprocessor (number of beams used in the 

preprocessing matrix). This curve provides an idea of how much AG~ is lost due to beamspace 

preprocessing. In this example, five beams provides an average of 0.5 dB of loss. 
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Figure 5-l Expected conventional and adaptive beam responses to Owsley's 
STC, Scenario 1, for a half wavelength, linearly spaced, 64 sensor array. The 
marks on the abscissa indicate signal placement. 
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Array Gain lmpi'Ovcmenl for Element Space Processing 
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Figure 5-2 Array gain improvement ( AGI) for Owsley's STC, Scenario 1, for element space 
processing of a half wavelength, linearly spaced, 64 sensor array. 

A verugc AGI Loss due to Dcamspace Preprocessing 
1.4,---~----~----~---,-----r----~----r---~----~----. 

1.2 

,-. 

~ 
Ill 
Ill 0.8 .3 -C) 
< 
l) 0.6 1>0 

"' .. 
Q) 

> 
< 

0.4 

0.2 

0 
0 5 10 15 20 25 30 35 40 45 50 

N - Dimension of Preprocessor 

Figure S-3 Average loss in AGI compared to element space adaptive processing 
for Owsley's src. Scenario 1, due to beam space prepmcessing as a function of the 
number of beams used in the preprocessor, for a half wavelength, linearly spaced, 
64 sensor array. 
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5.3 Performance Results 

The method of analysis for the SO and SG detectors used here will first consider the SIR required 

to achieve specified detection and false alarm probabilities for the ideal conventional detector 

against the parameter r, the fraction of cells in the PDB that contain signal. The estimation loss is 

then determined for a narrowband ( r near zero) and a broadband ( r near one) signal, with 

changing SOB sizes and adaptive dimensions. Finally, the correlation loss is determined as a 

function of the POB size for a fixed SOB size. Throughout this analysis, the total number of cells 

in the POB, ML, is held constant. The SO detector is considered for both the deterministic and 

Gaussian signals. The SG detector is considered only for the Gaussian signal. These signal­

detector combinations will be denoted by: SD- SD, SG- SD, and SG- SG, with the first 

variable representing the signal type and the second the detector type. 

The SIR required to achieve a P0 = 0.9 and PF,.. = 10-3
, for an ideal conventional detector with 

ML = 1024, is shown in figure 5-4 for the SD- SD and SG- SD combinations and for the 

SG- SG combination with -r = 0, 2, and 4. This plot corresponds to ~hose found in [2] for the 

Gaussian signals. 

For small r signals, i.e. signals that are confined to very few cells in the POB, the SG detector 

performs better with increasing threshold, -r. Raising the threshold too high, thus decreasing the 

number of non-zero values in ( 18), violates the assumptions required to use the CLT in the 

analysis for small r signals. At values of y close to unity, i.e. signals that almost completely 

cover the PDB, the SO outperforms all of the SG detectors for the Gaussian signals. This 

characteristic is expected and has been shown before (see [2]). An intuitive rationale is that the 

deterministic signal should be easier to detect than the Gaussian signal because the signal structure 

is known exactly. This is demonstrated in figure 5-4 for the SO detector with the most degradation 

for the Gaussian signal when r is small. 

When the interference statistics are unknown and need to be estimated, the increase in the required 
SIR is quantified by the Eu.s..(J,N) metric. For a fixed number ofPDB cells (ML=l024), this 

parameter is considered against increasing values of SOB size ( J ), for N = 1, 5,10, and 15 for 

both small rand large y signals. Figures 5-5 and 5-6, respectively, show the estimation loss for 

the y = 0.1 and r = 0. 9 signals. The ideal conventional detector required SIR is noted in figure 5-

4 for both of these signal cases. Recall that the number of time snapshots in the PDB is one 

( L = 1) so there is no loss due to con-elation. 
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SG-SD 
SD-SD -~··•··~·-o- · 

SG-SG ----------

r=O.l 

l/ 

r- Fraction of cells containing signal 

r=0.9 

" i 

Figure 5-4 SIR/d~al vs. r for ML = 1024, PD = 0.9, and PFA = 10-3
• 

As expected, the loss due to estimating the interferl"!nce statistics decreases as the size of the SDB is 

increased. The estimation loss seems inva1iant to r for the SD- SD and SG- SD combinations, 

with the loss nearly indistinguishable for the two signal types. The SG detector ( 't = 0) shows 

increased loss for small y, with a higher sensitivity for larger N. Note also that the losses for 

each detector are approximately the same for the large r signal. 

In order to consider the loss due to correlation of the normalized beam output statistics, 
CL<m(J,N,L), we choose a pmticular size for the SDB (J = 20). In most cases, the SDB size will 

be dictated by the stationa1ity of the interference, thus this is a reasonable specification. Figures 

5-7 and 5-8 show the loss in required SIR due to con·elation against the PDB size (L) for 

N = I, 5, 10, and 15 and respectively for the y = 0.1 and y = 0. 9 signals, respectively. 

The correlation losses for all the signal-detector combinations increase as the number of time 

snapshots in the PDB increases. As with the estimation loss, the loss for the SD- SD and 

SG D combinations are indistinguishable. The correlation loss is also seen to be larger for the 

small r signal for all the signal-detector combinations and slightly sensitive to larger N. 
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Figure 5-5 ELoss(J.N)vs. J for r=O.l, ML=l024, Po=0.9,and PFA=l0-3
• 
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SD-SD . 0 ·· 0 ··· 0 ···0 · · 

SG-SG ·---------· P0 = 0.9 
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Figure S-6 ELos .• (J,N) vs. J for r = 0.9, ML = 1024, Po= 0.9, and PFA = 10-3
• 
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Figure 5-7 C~.os,(J,N,L) vs. Lfor 1=20, y=O.l, ML=l024, P0 =0.9,and 

PF,.. = w-3. 
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6 CONCLUSIONS 

This memorandum considers the utilization of multiple sensor aiTay data in the adaptive detection 

of sonar and radar signals. The signal processing prior to the detector, including a dimension 

reducing matrix preprocessor and statistical models commonly used to describe the data, were 

introduced as a preface to the adaptive detector development. Detectors were then developed for 

the Gaussian and deterministic signal cases, where signal energy is restricted to a block in time and 

frequency, the plimary data block (PDB). The Gaussian signal detector was derived allowing the 

signal-to-interference ratio (SIR) that is observed at each time snapshot-OFf frequency cell in the 

PDB to be thresholded. This imparts a robust character to the detector against diverse time­

frequency characteristics of a received signal. A second block, disjoint in time from the block 

containing the signal, is used to estimate the interference statistics which are common to both 

blocks. Applications of this data structure include active sonar retums and limited time duration 

signals that are corrupted by interference that is stationary over both data blocks. 

The detection and false alarm probabilities of the detectors were then determined using a central 

limit theorem based approximation to a normal random variable. Cl.osed form solutions were 

found for the deterministic signal detector operating on both the deterministic and Gaussian 

signals. The Gaussian signal detector required the evaluation of multi-dimensional integrals which 

was accomplished by a Monte-Carlo method. 

The performance of the detectors was then described by the cell level SIR required to achieve 

specified detection and false alarm probabilities. The SIR was factored into the SIR required for 

an ideal conventional detector affected by an estimation loss and an intra-block correlation loss. 

When the matrix preprocessing of the array data provides the detector with multivariate data, an 

adaptive processing gain, quantified by the array gain impl'Ovement (AGI), may counter the 

estimation al).d con·elation losses. The AGJ increases with the dimension of the preprocessed data, 

when beamspace preprocessing is used, however, this improvement is opposed by an increase in 

the estimation and correlation losses. The estimation loss decreases as the time length of the block 

used to estimate the inte1ference statistics increases. The con·elation loss increases with the time 

length of the block containing the signal. Both the estimation and correlation losses are seen to 

increase with the adaptive dimension of the detectors. 

These results lead to a desired detector structure that has (i) a large time block used to estimate the 

interference statistics, (ii) a small time block that contains the signal, (iii) a small adaptive 

dimension to reduce estimation and con·elation losses, and (iv) a large adaptive dimension to 

improve the AG/. Clearly, (iii) and (iv) are conflicting requirements, however, the adaptive 

dimension may be reduced substantially using beam space preprocessing with a loss in AGI that is 
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easily countered by the reduced estimation and correlation losses. The large time desired for 

estimation of the interference statistics, (i), is opposed by the limited stationarity of typical sonar 

interferences. The size of the time block containing signal is determined by the type of signal being 

detected and by the size of the OFf that decm·relates the time series data. Fewer time snapshots in 

the block containing signal is desired which requires a larger DFf which is good for decorrelating 

the time series, however it also means fewer time snapshots in the block used to estimate the 

interference statistics, thus increasing the estimation loss. The decrease in correlation loss, 

however, is not enough to offset the increase in estimation loss, thus the OFf size should be 

chosen large enough to dec01-relate the time series data and small enough to provide adequate 

estimation of the interference statistics. 

This memorandum proposes two adaptive detector structures based on deterministic and Gaussian 

signals that exist in a limited region in time and frequency. The detectors estimate and then employ 

the unknown interference covariance ·matrix which results in a constant false alarm rate detector. A 

method for system level design is provided by evaluating the effect of the size of the primary 

(signal and interference) and secondary (interference only) data b~ocks on the SIR required to 

achieve specified performance for several adaptive dimensions. The size of the OFT, the type of 

signal to be detected, and the length of the stationarity of the interference affect these sizes, and, 

thus, the estimation and correlation losses incurred on the required SIR. Balancing these losses is 

the gain due to adaptive .processing which increases with the adaptive dimension of the 

preprocessing. Coupling the estimation and correlation losses with the adaptive processing gain, 

as a function of the adaptive dimension, an optimal choice of adaptive dimension is possible for a 

given interference environment. 
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APPENDIX A· PDF OF CFAR AND SIR LOSS RANDOM VARIABLES 

The distribution of the adaptive beam output for the m11
' DFf frequency and the l'h time snapshot 

in the PDB (24) conditioned on the estimate of the interference covariance matrix was described in 

terms of SIR loss and CFAR loss parameters. The SIR loss parameter, was first derived and 

shown to be Beta distlibuted by Reed, Mallet and Brennan [3]; its definition and distribution are 

and 

f ( _ r(J + 1) J-N+l(l )N-2 
P p)- f(J-N+2)f(N-l)p -p O<p<I, (A-1) 

where the Gamma function is defined as 

-
r(z) = J xz-le-Jidx. 

x=O 

For positive integer values of z, the Gamma function is 

f(z) = (z -1)! z = 1,2,3, ... 

In this appendix, it will be shown that the CFAR loss parameter is a Gamma distributed random 

variable and that it is statistically independent from the SIR loss parameter. As seen in (29), the 

CFAR loss parameter is defined by 

(A-2) 

It is now convenient to introduce the complex Wishart distribution of JQm: 

(A-3) 

Equation (A-3) reads: the N -by- N matrix A has a complex Wishart distribution with J degrees 
I 

of freedom and scale mauix Q,.. Letting v = Q::dnr, the CF AR loss parameter becomes 
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...!. ...!. v 
Letting 8 = Q,: A Q'"1 and u = -;;;- (so that u H u = l ), then 

"'1/VHV 

(A-4) 

(A-5) 

Let u = PHe1 and C = PBPH, where Pis orthogonal (P11P = 1) and e1 is the first unit vector (i.e. 

el = [1· .. of), giving 

(A-6) 

Now it is seen that C is a Wishart distributed mauix by using the property that if A- CWN(J,I) 

and M is L-by- N with rank L, then MAM 11
- CWL(J,Ml:MH). This is found for the real 

Wishart matrix in Muirhead [15] and is easily extended to the complex Wishart case. Thus writing 

Cas 

it is seen to be complex Wishm1 distributed, 

C- CWN( J,PQ:,~Q111Q:~pH). 
- CWN(J,I) 

In this same fashion, the SIR loss parameter may he written as 

Proceeding, we first partition the mallix C and D = c-t as follows: 
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and 

(A-9) 

where c11 and d11 are scalars, C22 and 0 22 are (N -1)-by- (N -1) matrices, and the other 

dimensions follow accordingly. Now, clearly, 

uc-l d 
el el = u 

and 
Hc-2 d2 dHd 

el el = 11 + 12 21· 

Either from equating CD= I or from the Matlix Theory Appendix of [ 15], 

and 

(A-10) 

The complex Wishart matrix form of a theorem found in Muirhead ([ 15] p.93 Thm. 3.2.10) is now 

required. The extension from the real Wishart matrix form is simply performed by following 

Muirhead's proof and using the complex Wishart distributional infmmation found in [ 11]. 

Theorem- Suppose that A- CWN(J,:I:), with the partitions 

A= [ ~:: ~::] and }; = [~:: 
where A11 and 1::11 are M -by- M mau·ices. Now define 

A11.2 =Au- A12A;~A21 
and 

then 

(i) All·2- CWM(J- N + M,:I:IIJ 

(ii) A 11.2 is independent of A 12 and A 22 

Now, letting M = 1 , A = c;, and I: = I in the above theorem,. it is seen that 
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and 
uc-2 {I uc-2 )(c )-2 e. e. = + C12 22c21 11·2 • (A-ll) 

Substituting these into (A-6) and (A-8) yields 

c11.2 r ---
"' J 

and 
1 

(A-12) 

Utilizing the above theorem, it is seen that r, and Pm are independent and that the distribution of 

C 11.2 =Jr,, is CW1(J-N+1,1), which is a Gamma(J-N+1,1) distribution, thus rm is 

distributed as 

r"'- Gamma(J- N + 1,1/J), 

with PDF 
JJ-N+1 

f (r) = · rJ-N e-Jr r > 0, 
' r(J-N+l) 

(A-13) 
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APPENDIX B - MONTE-CARLO INTEGRATION 

It is very difficult to evaluate higher dimension integrals numetically [16]. To avoid this problem, 

Monte-Carlo integration [ 16] is employed for evaluating the two and three dimensional integrals in 

this report. This method involves writing the integral as the expectation of a function over a set of 

(in this case) independent random vatiables, 

'P = J g(x)dF(x) = E.[g(x)], (B-1) 

where g(x) is the function to be integrated and F(x) is the joint cumulative distribution function of 

the random vector x . 

The integral is then approx~mated by forming a large number of these random variables and 

computing the sam pie mean of the desired function, 

" } N 

'P =-Lg(x,), 
N n=i 

(B-2) 

where the x, are independent samples of the random vector x. This is known to converge in 

probability to the true value of the integral as the num her of samples used tends to infinity. 

38 



TM - 941021 

REFERENCES 
[1) Wolcin, J.J., Personal Notes, 1983. 

[2) Nuttall, A.H .• "Required Signal-to-Noise Ratios for Maximum Likelihood Detection of 

Transient Signals," NUSC TM-891140, 29 August 1989. 

[3) Reed, I.S., J.D. Mallet, and L.E. Brennan, "Rapid Convergence Rate in Adaptive Arrays," 

IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-10, No.6, pp.853-863, November 

1974. 

[4) Kelly, E.J., "An Adaptive Detection Algorithm," IEEE Trans. on Aerospace and Electronic 

Systems, Vol. AES-22, No. I, pp.ll5-127, March 1986. 

[5) Robey, F.C., D.R. Furhmann, E.J. Kelly, and R. Nitzberg, "A CFAR Adaptive Matched 

Filter Detector," IEEE Trans. on Aerospace and Electronic Systems, Vol. 28, No. 1, pp.208-216, 

January 1992. 

[6) Robey, F.C., "A Covariance Modeling Approach to Adaptive Beamforming and Detection," 

Lincoln Laboratory Tech. Rpt. 918, 30 July 1991. 

[7) Chen, W.S. and I.S. Reed, "A New CFAR Detection Test for Radar," in Digital Signal 

Processing I, pp.198-214, Academic Press, 1991. 

[8] Owsley, N.L. and D.A. Abraham, "Preprocessing for High Resolution Beamforming," Proc. 

of 23rd Asilomar Conf. on Signals, Systems and Computers 1989 or NUSC Reprint Rpt. 8651, 3 

November 1989. 

[9] Burgess, K.A. and B.D. VanVeen, "Improved Adaptive Detection Pe1formance via Subspace 

Processing," Proc. ICASSP 1992, pp.V-353-356. 

[10] Hodgkiss, W.S. and L.W. Nolte, "Covariance between Fourier coefficients representing the 

time waveforms observed from an array of sensors," Journal of Acoustical Society of America, 

Vol. 59, No.3, pp.582-590, March 1976. 

[11] Goodman, N.R., "Statistical Analysis Based on a Certain Multivariate Complex Gaussian 
Distribution (An Introduction)," The Annals of Mathematical Statistics, Vol. 34, pp.152-177, 

March 1963. 

39 



TM - 941021 

[12] Baggenstoss, P.M. and S.M. Kay, "An Adaptive Detector for Dete1ministic Signals in Noise 

of Unknown Spectl'a Using the Rao Test," IEEE Trans. on Signal Processing, Vol. 40, No. 6, 

pp1460-1468, June 1992. 

[13] Whalen, A.D. Detection of Signals in Noise, Academic Press, Inc., 1971. 

[14] Owsley, N.L., "A Standardized Test Case (STC) for Sensor Array Processor Evaluation," 

IEEE Oceans '91 Conf. Proc. or NUSC Replint Rpt. 8981, 20 November 1991. 

[15] Muirhead, R.J., Aspects of Multivariate Statistical Theory, John Wiley & Sons, 1982. 

[16] Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in 

Fortran Second Edition, Cambridge University Press, 1988. 

40 



• 

.. 

T. G. Goldsberry 
L. Jacobi 
N. Harned 
J. Polcari 
R. Holland 
R. Young 
J. Wolcin 
I. Metal 

NUWC Technical Memorandum No. 941021 . 
DISTRIBUTION LIST, EXTERNAL 

ONR45l 
ONR451 
ONR451 
PEOUSWASTO 
SPA WAR 
Penn State 
USCG A 
Norden Systems 

NEW LONDON 
D. Abraham (5) 
G. C. Carter 
W. Chang 
G. Connolly 
R. Dwyer 
J. Fay 
M. Gouzie 
S. Greineder 
R. Kneipfer 
P. Koenigs 
J. Ianniello 
R. Latourette 
D. Lerro 
T. Luginbuhl 
A. Nuttall 
J. Nuttall 
N. Owsley 
1. Sanchis 
M. Schindler 
D. Sheldon 
E. Siborg 
Library 

NEWPORT 

R. Streit 
Library 

WEST PALM 

2121 
.2192 
3314 
2192 
3331 
3331 
2121 
2121 
214 
3112 
2123 
2152 
3314 
2121 
302 
2121 
2123 
2152 
2121 
3314 
2111 
(4) 

22101 
(2) 

R. Kennedy 3802 

Total (40) 

' . 


