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Chapter 1 

Introduction 

Narrowband . adaptive beamforming using an array of sensors gives better 
resolution of two or more sources than conventional phase-adjust-and-sum 
beamforming techniques; this resolution improvement, however, requires a 
considerable increase in calculation burden. Since modern arrays can have 
numbers of sensors reaching into the hundreds, there is an interest in finding 
methods of reducing the numerical complexity of implementing adaptive al­
gorithms. The most promising methods for decreasing the burden of adaptive 
algorithms involve techniques which reduce the numerical complexity of the 
adaptive problem, while maintaining performance near that of "full" narrow­
band beamforming. Note that the term "narrowband" refers to frequency 
band, not angular band. 

Two general methods for reducing the size or dimension of the adaptive 
beamformer have been proposed: first, the effective number of sensors can 
be reduced [1], and, second, the dimension of the signal-subspace [2, 3] can 
be reduced. Both techniques can be used together to achieve even greater 
savings [1]. This thesis will concentrate on the first technique only. 

Abraham and Owsley [1] have presented a technique, termed "subarray 
preprocessing" adaptive beamforming, for reducing the effective number of 
sensors. This method is a two-stage beamformer where the first stage per­
forms conventional, Fourier-based (phase-adjust-and-sum) beamforming and 
the second stage performs adaptive beamforming. It is termed "subarray" 
beamforming because the first stage beamformer operates on segments of the 
full array termed "subarrays." The reduction in complexity is derived from 
the smaller dimension in the second stage adaptive beamformer. This beam-
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former is termed a conventional subarray-adaptive full array (CSA/AFA) 
beamformer. 

The CSA/ AFA beamformer yields near optimal performance, in most 
scenarios, provided care is taken to preserve the "aperture" generated by the 
subarrays. In this thesis it is shown that the subarray processing reduces the 
effective aperture of the full array beamformer and, consequently, reduces the 
resolution capability of the adaptive beamformer. It is also shown that for 
the CSA/ AFA beamformer most of the aperture can be retained, and that 
there is a tradeoff between effective aperture and algorithmic complexity. 

This CSA/ AFA beamformer is very promising, and it is natural to ex­
plore its extension to an adaptive-adaptive (ASA/ AFA) scheme, one in which 
the subarray beamforming and full-array recombination are both adaptive. 
This is the subject of this thesis: how should an adaptive-adaptive subarray 
beamformer be implemented, and is there any advantage in its use? It will be 
shown that ASA/ AFA is preferable to CSA/ AFA because there is a reduced 
sensitivity to jammers, which can spatially alias through the sidelobes of a 
CSA/ AFA subarray beamformer. 

In comparison to CSA/ AFA, the ASA/ AFA beamformer increases the 
degrees of freedom for the adaptive problem, and it is important to gauge 
how computationally intensive this algorithm is. It is shown, for systems 
with nearly full effective aperture, that the ASA/ AFA beamformer is roughly 
equivalent to CSA/ AFA in numerical complexity and, as the effective aper­
ture decreases below approximately 80%, that the CSA/ AFA is less complex. 

The most obvious approach to the design of an ASA/ AFA beamformer is 
to use a Minimum Variance Distortionless Response (MVDR) technique at 
both the subarray and full array level; that is, to minimize the output power 
of all subarrays (subject to a "distortionlessness" constraint in the specified 
look-direction), and to do the same for the full array. It turns out that 
this performs very poorly in many cases of interest: qualitatively, what often 
happens, particularly when there is interference angularly close to the desired 
look direction, is that the subarray main beams become severely distorted 
and effective recombination is impossible. 

An optimal two stage ASA/ AF A scheme requires a time-consuming non­
linear joint optimization over the subarray filter weights and the full array 
filter weights; thus, it is not a likely candidate for a practical system. Its 
performance is worth examining, however, since it lends insight. From sim­
ulation results of an optimal two-stage adaptive beamformer, it has been 
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observed that the subarray beamformer naturally cancels angularly-distant 
. interferers, while the full array beamformer cancels angularly-close interfer­

ers. Therefore, our design philosophy for an ASA/ AFA beamforming system 
is to: 

• at the subarray level, constrain the mainlobe to a constant shape, al­
lowing adaptivity and noise cancellation in the sidelobes only, and 

• at the full array level, constrain the beamformer in the look direction, 
allowing noise cancellation to occur everywhere else. 

In this thesis we explore the following possible ways to achieve these goals: 

• point-constraints on the main lobe shape (a generalization ofthe MVDR) 

• an integral constraint on the main lobe (as in [4]) 

• a white-noise gain constraint 

These may be used separately or together, and may be "hard" or applied 
via a penalty [5). The most successful technique appears to use an integral 
mainlobe constraint, implemented via a penalty. 
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Chapter 2 

Narrow band Beamforming 

A general introduction to narrowband beamforming and motivation for its 
use are given in this section. 

Background and notational development are covered in section 2.1. In 
.section 2.2, a description of narrowband beamforming is discussed and the 
definitions of conventional and adaptive narrowband beamforming are pre­
sented. This discussion will focus on beamforming which uses sensor data for 
input. The response pattern and the beampattern are described in section 
2.3. The response pattern and beampattern are tools for evaluating beam­
forming system performance. A technique termed "subarray beamforming" 
is described in section 2.4. Subarray beamforming is a two-stage beamformer 
which results in significant computational savings. 

2.1 Background 

Narrow band beamforming is the process by which a set of sensors "listen" 
to a single frequency source emanating from one spatial direction, in the 
presence of noise and interference arriving from many directions. There are 
many techniques for performing narrowband beamforming, but in its simplest 
form it first uses a temporal Fourier transform to listen to a single frequency, 
and then uses a second spatial Fourier transform to listen in one direction­
narrowband beamforming can be viewed as a two-dimensional transform of 
the temporally and spatially sampled sensor data. 

The availability of fast Fourier transforms (FFTs) permits the transfor-
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mation of sensor data into the frequency domain and then into the spatial 
domain with minimal computational load and a minimum memory require­
ment. From a practical point of view, this makes narrowband beamforming 
attractive. 

In the sections which follow, a model describing narrowband beamforming 
is given, and, using this model, the response of the an array of sensqrs to 
sources and noise is derived. These developments will be used extensively in 
the definition of narrowband beamforming 

2.1.1 Narrowband Beamforming Model 

In this section the "model" used for narrowband beamforming is defined. 
The model describes the type of source, the propagation of source energy to 
the sensors, and the physical placement of sensors. This model defines the 
basic set of assumptions used in beamforming in this paper. 

A narrowband beamforming model is given in Figure 2.1. The figure 
shows a single source at angle () emitting a sinusoidal tone at frequency f. 
The emitted wave travels through a propagation medium with speed v. The 
wavefront impinges on M equi-spaced sensors in a linear array with various 
delays due to the position of the sensors, the source location, the source's 
frequency, and the speed of propagation. 

In the most general scenario, the sensors can have non-uniform sensitivi­
ties (or the paths from the source to each sensor may have non-uniform at­
tenuation), the sensors can be arranged in a non-linear array, and the source 
may be placed close to the array. In this paper, the following assumptions 
will be made: 

• The array will be considered linear, 

• All sensors will have equal sensitivity, 

• The propagation speed v between source and sensor is constant, 

• The spacing between adjacent sensors d will be equal, and 

• The source will be assumed distant enough from the array that, if lines 
were drawn from the source to any two sensors, then the lines would 
be considered parallel ("far-field"). 
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Source: 
A.= u/f 

d .• ._----~···~---..~--~~~----~ • 
M sensors 

Figure 2.1: Narrowband Beamforming Model 
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These assumptions do not restrict the use of the techniques introduced in 
this paper, but the more general scenario is beyond the scope of this paper. 

2.1.2 Narrowband Beamformer Array Response 

In the previous section the model used in narrowband beamforming was 
presented. Using this model, it is desired to form an estimate of the waveform 
arriving from a given angle. In order to form this estimate, it is necessary to 
mathematically define the response of the array to external excitations. In 
this section, the response of an array of sensors to, first, a single source, and, 
second, to multiple sources and noise is given. 

The single source of Figure 2.1 is emitting the signal 

s(t) = Ao cos(27r ft + lo). (2.1) 

Here A0 is the signal's maximum amplitude, and lo is an arbitrary phase 
angle for the source. 

In narrowband beamforming it is required to establish the relationship 
between the time domain signal s(t) and the DFT coefficient at each sensor. 
To do this, the signal heard at each sensor and the Fourier Transform of 
that signal need to be formulated. Given the assumptions made above, it 
can be seen that the signal present at the m th sensor will be the same signal 
emitted by the source, after accounting for the delay introduced by signal 
propagation from the source to signal. Defining a "bulk delay" as the time 
necessary to travel from the source to the first sensor, that is sensor 0, then 
the delay from the source to the mth sensor is equal to the bulk delay plus 
the additional delay to the m th sensor, 

Here 

Tm Tbulk +Tom 

To+ Tom 

To- md cos() fv. (2.2) 

• d is the distance between adjacent sensors in an equi-spaced, linear 
array, 

• Tm is the delay from the source at ()to the mth sensor, 
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• Tbulk is the delay from the source at () to the first sensor, and 

• Tom is the additional delay required to reach the mth sensor. 

Using the delays of (2.2), the signal present at the mth sensor is 

sm(t) Ao cos(27r f(t- Tm) + Ia) 
Aocos(27rf(t- (Tbulk +Tom))+ Ia) 
Ao cos(27r f(t- Tbulk + md cos() Jv + Ia). (2.3) 

The narrowband coefficient for the mth sensor can now be found from (2.3) , 
but, first, in order to find a simple (and intuitive) expression for the narrow­
band coefficient, assume that: 

• The source frequency f occurs at the center of a DFT, that is 

k 
f= NT' (2.4) 

where k is an integer, N is the number of time samples taken, and T 
is the sampling interval. 

• The source is uniformly sampled at time tn = nT, where n is the time 
sample index. 

• An N point DFT is used to calculate the narrowband coefficient at 
frequency f. 

Using these assumptions and the time domain signal (2.3), the narrowband 
coefficient for the m th sensor is 

N-1 

sm(J,()) = sm(()) = I: Aocos(27rf(tn- Tm) +lo)exp(-j27rftn) 
n=O 
N-1 

L Aocos(27rkn/N- 211'/Tm + lo) exp( -j27rkn/N) 
n=O 

Ao exp( -j(27r fTm- Ia)) ~ 

A;N exp(j27rfmdcos()jv)exp(-j(27rfTo- Ia)) 

A exp(j1) exp(j27r fmd cos() Jv) 

- Aexp(ji1emd), (2.5) 

13 



where 

{ - lo- 2?r jTo, 

no - 2?r f cos() jv and 

A - Aexp(j1). 

The narrowband coefficient's amplitude (A= A0N /2) is the signal's am­
plitude scaled by the constant gain of the DFT operation, and the arbitrary 
phase of arrival, 1, is equal to the source's phase, rotated by an amount pro­
portional to the bulk propagation time (to sensor 0). The final term in (2.5) 
is the most important, because it depends on the spatial angle of arrival; it 
is this information that the beamformer will exploit. 

It will be convenient to define a signal vector response for the narrowband 
coefficients, 

s(J, fJ) s(fJ) 

[ so( fJ) s1 ( fJ) • · · SM-l(fJ) r 
- Aexp(j1) [ 1 exp(j08d) · · · exp(j(M- 1)0od) r 
- Ad(fJ) (2.6) 

Here d is the M x 1 array response vector to a unit amplitude source at () 
(with zero phase referenced to the first sensor), and s is the M x 1 array 
response to the source with amplitude A, phase of arrival 1, and angle of 
arrival 0. Vectors, shown as lower case boldface letters, are assumed to be 
columns, and the superscript "T" is the vector or matrix transpose operator. 

The model of Figure 2.1 shows only one source. A more practical model 
includes multiple sources and also additive "white noise." Here white noise 
means the noise is uncorrelated from sensor to sensor; that is, the noise is 
spatially white. The multiple sources could represent, in the sonar environ­
ment for example, several cargo ships passing the array of sensors, and the 
white noise could represent omni-directional, independent, external noise or 
electronic noise internal to the sensors. 

In the presence of multiple sources and additive noise, the narrowband 
coefficient for the mth sensor is 

s 
Xm (f) = Xm = L Sms + nm 

s=l 
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Here Sms is the signal component of the sth source at the mth sensor, where it 
is assumed that there are a total of S sources, and nm is the noise component 
of the mth sensor. The dependence on frequency f is assumed, but will be 
suppressed for compactness of notation. 

For notational convenience, vector responses for the signal and noise ex­
citations are now defined. From (2.6), the signal vector for the sth source 
IS 

sif, Os) - Sa(Oa) 

[ so.(Oa) si.(Os) · · · 8M-I.(08 ) ]T 

.. t [ 1 exp(jno.d) exp(j(M- 1)no.d) r 
A8 d(08 ) (2.8) 

Each source is defined by its amplitude A8 , its phase of arrival /s, and its 
angle of arrival 08 • • 

In Eqn. (2.8), d(Os) is seen to be a discretely sampled complex sinusoidal 
signal. This is also referred to as a "steering vector," because it is used in 
beamforming to "electronically steer" the array sensor data in direction 0. 

The noise vector response is defined as 

(2.9) 

Defining the array vector response as 

X= [ Xo XI • • • XM-I ]T, (2.10) 

and combining (2. 7), (2.8), and (2.9) with (2.10), the array vector response 
IS 

s 
X= LA8 exp(jls)d(08 ) + n. (2.11) 

s=l 

The summation of (2.11) can be expressed in the compact matrix form 

s 
LAs exp(j!s)d( 08 ) 

s=l 

15 



= De (2.12) 

Here D is an M x S matrix, whose columns represent the unit amplitude 
response vectors (defined in (2.6)), and e is an S X 1 vector comprised of the 
amplitude and phase of arrival for the sources. Eqn. (2.12) breaks the array 
response to sources into two components: 

• The matrix D contains the deterministic information about the sources, 
and 

• The vector e contains the unknown, and random, information about 
the sources. The vector e shall be called the "excitation" vector. 

Inserting (2.12) into (2.11 ), the array vector response becomes 

x=De+n. (2.13) 

Eqn. (2.13) incorporates the array geometry, the signal environment, the 
noise environment, and the propagation medium to give the narrowband 
response of the array. 

2.1.3 Spatial Undersampling and Aliasing 

In section 2.1.2, the array response to a single source was presented and 
the response was seen to be a discretely sampled, complex sinusoid. As 
in temporal discrete signal processing, spatial signals must be sampled at or 
above a minimum rate to avoid aliasing. In this section, the conditions under 
which aliasing is avoided are investigated. 

The m th element of the array response to a unit amplitude source is: 

d(m,O) = exp(jOomd), (2.14) 

where 

no - 27r f cos 0 jv. 
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Rearranging terms in (2.14), the element response can be represented as: 

d(m,O) = exp[j27r(cosO)m(df-\)]. (2.15) 

In (2.15), A is the signal's wavelength and the spatial equivalents of signal 
frequency and sampling interval can be identified as cos 0 and df A, respec­
tively. Note that in this paper, spatial frequency and bandwidth refer to the 
cosine of arrival angle and width of cosine of arrival, respectively. 

It is now possible to show when spatial aliasing will occur: spatial alias­
ing occurs when the magnitude of the phase differences of two consecutive 
samples in (2.15) exceeds 1r. When the phase differences exceed 1r, then a 
"positive" frequency (cos 0 > 0) can not be distinguished from a "negative" 
frequency (cos() < 0) and aliasing will occur. Mathematically, aliasing can 
be prevented provided: 

d 
21r icosOI X < 7r, 

d < 
,\ 

I I' or 2 cosO 

d < 
,\ 

(2.16) 2• 
Eqn. (2.16) establishes a maximum temporal frequency 

v 
(2.17) J<-- 2d 

which can be processed without spatial aliasing. 

2.1.4 The Cross Spectral Density Matrix . 

In section 2.1.2, the array vector response was seen to be the summation of 
possibly several sinusoidal signals and noise. In beamforming applications [6] 
and equivalently in spectral applications [7], it is desired to form an optimal 
estimate of the "frequency" content of a signal. In order to form a "minimum­
variance" estimate, it is necessary to calculate the second-order statistics of 
the array response. In this section the second-order statistics, known as the 
Cross Spectral Density Matrix (CSDM), are derived. 

The array response of (2.13) is the output at frequency f from one DFT 
operation. That is, it is the response to data samples from one window in 
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time. It is desired to know the second order statistics of the array response, 
E[xxH]. This is known as the covariance matrix, and for narrowband data 

·as the "cross-spectral density matrix" (CSDM) at a specific frequency, 

(2.18) 

Here "E" is the statistical expectation operator, and the superscript· "H" 
denotes the vector or matrix complex conjugate transpose operator. Matrices 
are shown as upper case bold letters. 

Inserting (2.13) into the expectation of (2.18), the CSDM is 

R - E[xxH) 
DE[eeH)DH + DE(enH) + E[neH)DH + E(nnH]. (2.19) 

Notice that the matrix Dis deterministic and can be taken out of the expec­
tation of (2.19). 

With respect to (2.19), the following simplifying assumptions will be 
made: 

• The amplitude and phase of a source are independent of the amplitude 
and phase of another source, that is 

E[A~] 
0 

s = t 
s=f.t 

s=t 
s=f.t · (2.20) 

Here e8 is the sth element of the signal excitation vector, and a; is the 
power of the sth source. 

The excitation correlation matrix, the result of the expectation inside 
the first term in (2.19), becomes 

E[eeH] - diag [ a~ 0'2 
2 0'~ ] 

0'2 
I 0 0 

0 0'2 
2 =E (2.21) 

0 
0 0 0'2 s 
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• The source's excitation is independent of the noise, 

(2.22) 

Here [en8 ]ii is the element of the S x M matrix located in the ith row 
and the ph column. The independence of the excitation e and the noise 
n makes the second and third terms of (2.19) drop out. , 

• The noise at one sensor is independent of the noise at another sensor 
and the noise power is identical at each sensor, 

{ 

(j2 i = j 
E[ninj] = On i =f j . (2.23) 

Combining (2.21), (2.22), arid (2.23) in (2.19), the CSDM is expressed as 

R - E(xx8
] 

= DED8 + u~IM, (2.24) 

where IM is an M x M identity matrix. 
It must be noted that there are practical situations which do not fit the 

model of (2.24). Some examples are: 

• Multi-path environments [8): In a "multi-path" environment the sig­
nal emitted by a source will travel over two, or more, separate paths. 
The array will respond to the single source as if there were multiple 
sources, and the "sources" can be, if no signal distortion has occurred, 
completely correlated. 

The model can be extended to include correlated sources by putting 
off-diagonal terms in the excitation correlation matrix E. However, it 
is beyond the scope of this paper to investigate the effects of correlated 
sources on narrowband beamforming. 

• Angularly extended noise [9]: Angularly extended noise is generated 
from sources occupying a sector of space. The array response to an an­
gularly extended source can be calculated by replacing the summation 
of (2.12) with an integral over space. 

While it is possible to describe more general scenarios by modifying the 
model of (2.24), the assumptions of (2.21), (2.22), and (2.23) describe many 
practical environments. 
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2.2 Direct Narrowband Beamforming 

In this section conventional and adaptive narrowband beamforming are de­
scribed. These two types of beamforming systems combine the narrowband 
sensor data directly to form beamformer output. Here this type of system is 
referred to as a "direct, beamformer. 

A narrowband beamforming system which could be either a conventional 
or adaptive beamformer is shown in Figure 2.2. In this figure, the following 
notation is used: 

m _ sensor index, 

n = time index, 

_ angle of arrival, () 

Xm(n) 
Xm{J) -

Wm{J, 0) 
y(O) 

sensor time sample, 

sensor narrowband coefficient, 

beamforming coefficient, and 

beamforming output. 

Narrowband beamforming, as shown in Figure 2.2, transforms the sensors' 
temporal data, phase adjusts the narrowband coefficients (compensating for 
spatial angle of arrival), amplitude adjusts based upon noise and signal pow­
ers, and forms a beam by coherently summing the phase and amplitude 
adjusted narrowband sensor data. 

Two types of beamforming [10] shall be discussed in this paper: 

• Direct, Full Array Beamforming: Direct beamforming combines all the 
sensors in the array into beams. The output shall be called a "full 
array beam," because the beam is formed using data from all sensors 
within the array. It is called "direct" beamforming because the full 
array beam output is created from the sensor data in one beamforming 
operation. 

• Indirect or Subarray Beamforming: Indirect beamforming combines 
the sensors of the array into full array beams in two stages. The first 
stage of the beamforming combines a sub-part of the array's sensors, 
termed a "subarray", into a "subarray beam", and the second stage 
beamformer recombines the subarray beams into a full array beam. 
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Figure 2.2: Narrowband Beamforming System 

- y(e) 

In the following sub-sections two types of "direct" beamforming are dis­
cussed: 

• Direct Conventional Beamforming: Direct conventional beamforming is 
a spatial Fourier transform of the narrowband sensor data x. Since it is 
a Fourier transform, is is computationally simple to perform. Because 
of its simplicity, this technique has historically been the beamformer 
of "choice," thus earning its name "conventional." Here the weights 
wi(f, 0) in Figure 2.2 are fixed; that is, not data dependent. 

• Direct Adaptive Beamforming: Direct adaptive beamforming combines 
the narrowband sensor data in an "optimal" fashion designed to min­
imize some criterion such as the power output of the operation, while 
maintaining a constant gain to a selected signal. In adaptive beam­
forming, the weights are data dependent and (as will be shown) com­
putationally expensive to update. 

21 



2.2.1 Direct Conventional Narrowband Beamforming 

Direct conventional narrowband beamforming forms an estimate of the en­
ergy arriving from a selected angle of arrival 0, by performing a spatial Fourier 
transform on the sensor's narrowband data. As mentioned earlier, the "di­
rect" beamformer uses the entire set of sensor data (in one beamfori:ning 
operation). As in spectral estimation, the spatial Fourier transform i'nput 
data can be "windowed" to give lower sidelobe aliasing. 

The spatial transform of the narrowband sensor data xis 
M-1 

Yc(O) = L Xmexp(-j27rfcos(O)mdjv) 
m=O 
M-1 

L Xm exp(-jf2ornd) . 
m=O 

(2.25) 

Borrowing from spectral estimation terminology, the "spatial frequency" of 
the transform is no= 27rfcos(O)/v, the "spatial sampling frequency" of the 
signal is 1/ d, and the transform length is M. From (2.25), it is seen that 
narrowband beamforming is a two-dimensional transform of the original sen­
sor data, w ~ere the first transform is from the time domain to the frequency 
domain and the second transform is to the spatial domain. 

The spatial transform or beamforming operation of (2.25) can also be 
"windowed." A "window" is a set of weights { Wi }i';;01 applied to the trans­
form input data, so that 

M-1 

Yc(O) L XmWmexp(-jf2omd), (2.26) 
m=O 

where window weights Wm satisfy the following symmetry rule: 

(2.27) 

The window is used to lower the spatial sidelobes of the transform operation. 
Equation (2.25) is a special case of (2.26), where the window is termed the 
"rectangular" weighting. The summations of (2.25) and (2.26) can be ex­
pressed as the complex conjugate inner product of the sensor data and the 
signal steering vector at angle (),with an optional weighting matrix W. 

Yc(O) { dH ( O)x if rectangular window, 
dH (O)Wx otherwise 

- c1H ( O)x, (2.28) 
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where the M x M diagonal weighting matrix is 

W = diag [ Wo WI · • · WM-1 ] · (2.29) 

Another useful view of (2.28) is that of a correlation between the sensor data 
x and an assumed signal s = d( 0). Correlation "peaks" will occur where the 
data vector contains the embedded signal vectors {si}~0 1 . When the sensors 
are not equi-spaced, this view is more appropriate. 

2.2.2 Direct Minimum Variance Narrowband Beam-
forming 

Conventional beamforming systems such as (2.28) do not claim optimality 
except under very specific conditions. The minimum variance distortionless 
response (MVDR) beamformer seeks optimality in a general (least squares) 
sense. The MVDR beamformer uses an estimate of the surrounding en­
vironment in its calculation, and because of this estimate is known as an 
"adaptive" beamformer . 

. The MVDR beamformer is now derived. Suppose that the beamformer 
output is 

(2.30) 

Here w is the adaptive filter vector of dimension M, and xis the sensor data. 
It is desired that the adaptive filter vector w satisfy two requirements: 

• The expected power output of the filter is minimized. 

• The signal gain at angle 0 is constrained to a specific value. 

It is clear that these two requirements formulate a maximum signal-to-noise 
ratio at the output y. Mathematically, the filter vector satisfies 

(2.31) 

A signal gain of M is chosen (arbitrarily). Expanding the expected power in 
the beamformer output as 

(2.32) 
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prompts us to define the cross-spectral density matrix (CSDM), 

(2.33) 

The CSDM, R, is an M x M covariance. matrix. Using the method of un­
known Lagrangian multipliers, the adaptive filter vector which satisfies (2.31) 
IS 

(2.34) 

Interestingly, if the environment contains only "white noise" (R = I), then 
the optimal filter is identical to the conventional filter vector. 

Md(O) . 
w(O) = d(B)Hd(B) = d(O), If R =I. (2.35) 

Equation (2.35) indicates that the conventional steering vector d( B) forms an 
optimal estimate in white noise. Intuitively, it also indicates that the conven­
tional steering vector is nearly optimum in spatially white noise dominated 
environments. 

To further analyze the adaptive filter vector, employ an eigenvector­
eigenvalue decomposition of the CSDM. 

(2.36) 

where 

Ms Eigenvectors of the "signal space" (D), 

Es Eigenvalues of the signal space, and 

Mn Eigenvectors of noise space (orthogonal to signal space). 

Now substitute the eigenvector-eigenvalue decomposition of the CSDM in 
(2.36) and the filter vector w of (2.34) into the beamformer output 

(2.37) 
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where the constant k = M/(dH(O)R-1d(O)). 
It is clear that if a source (embedded in x) projects onto an eigenvector 

associated with a large signal eigenvalue, then its power will be attenuated 
by the inverse of the signal eigenvalue, provided the signal eigenvalue is suf­
ficiently larger than the noise power. Signals other than the desired signal 
d(O), termed interferences, can be cancelled with this filter; cancellation oc­
curs when the interferer projects onto different eigenvectors than the desired 
signal. On the other hand, if the signal eigenvalues are much smaller than 
the noise power, then little signal attenuation will occur. 

2.3 Response Pattern and Beampattern 

The development of narrowband beamforming in section (2.2) focussed on 
the derivation of the conventional and adaptive filter vectors; in this sec­
tion we turn our attention to the performance of these beamformers. The 
performance will be measured with two analysis tools: 

1. The response pattern. The response plots the expected power response 
of the beamformer, as a function of look direction 0. 

2. The beampattern. The beampattern plots the "leakage" of interfering 
sources into the beamformer output steered at angle 0, as a function of 
interference angle of arrival </>. 

To facilitate the analysis of the response pattern and beampattern, the 
conventional bearriformer output to a single source is developed. 

if rectangular 
otherwise 

{ 

(
j(Op-Oe)d(M-l))sin((Op-Oe)dM/2) 

A exp -2 -, sin((Op-Oe)d/2) 
- (j(Oq,-Oe)d(M-1)) "'M-l (Op-Oe)d(2m-M+I) 

exp 2 L....m=O Wm COS 2 

- AHM(S1.p- no) 

if rectangular 

otherwise 

(2.38) 

This response is the well known "Dirichlet kernel" function of spectral es­
timation (for the rectangular window). There is a large peak response to 
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sources arriving in the neighborhood of(), often termed the "mainlobe", with 
the maximum point corresponding to the angle of the beamformer. A signal 
arriving from() will be passed without phase change and a gain factor of M. 
Signals arriving from angles other than() will be attenuated, but if the signal 
is spatially close to (), the conventional beamformer response will contain 
considerable energy from that signal. 

In realistic' scenarios there are several signals arriving from different angles 
at the same time. The beamformer output of (2.38) becomes, by superposi­
tion, a summation of many sources, 

s 
d(O)H(~=si(</>i) + n) 

i=l 

(2.39) 

. For any one look direction, spatially proximate sources will contribute a por­
tion of their energy, however the response is an estimate of the energy arriv­
ing from the beamsteering direction. The response pattern plots the squared 
magnitude of the beamformer output (2.39), as a function of beamformer 
look direction (). 

where M = JHJa~. 

rc(O) - E (IYcl 2
] 

dHE [xxH] d 
dHRd 
JHDEDHd+M, (2.40) 

The conventional beamformer power output is seen to be a weighted sum­
mation of responses to individual source signals. The powers of individual 
sources weight the inner product of the filter vector and the signal steering 
vector. An additive white noise constant of M is also present. 

Similarly, the expected power output for the adaptive beamformer can be 
defined as 

r(O) E (ly(O)I2
] 

w( O)HRw( 0) 

26 



M2dHR -I RR -ld 
(dHR-Id)2 

M2 
(2.41) 

When the expected beamformer power output is plotted as a function of angle 
of arrival the graph is termed a "response pattern." Both (2.40) and (2.41) 
depend on the CSDM, thus the response patterns will be data dependent. 
Figure 2.3 illustrates the adaptive and conventional response patterns for a 
12 sensor array. The assumed scenario of sources and white noise are given 
in the figure. The small "x" s indicate the exact location of the sources on 
the plot. Noise power is assumed to be OdB in all figures. From Figure 2.3, 
several observations can be made: 

• The conventional response is wider than the adaptive response for the 
more powerful source. Put another way, the adaptive beamformer is 
able to cancel a spatially close source by steering nulls (in its beampat­
tern) at it. 

• The dominant source can mask the presence of the lesser source m 
conventional beamforming. 

• The noise floor for the conventional, Hamming windowed beamformer 
is higher than the adaptive beamformer's noise floor. 

The response pattern plots an estimate of the spatial power spectrum, 
much like the power of a Fourier transform can be used to plot the frequency 
spectrum of a time domain signal. 

It was shown in (2.38) that the narrowband beamformer steered at 0 will 
respond to a source at 0 with no distortion to the source's phase of arrival 
( 1) and a constant gain to the source's power- that is, the narrowband 
beamformer exhibits the desirable characteristic that, within a constant gain 
factor, the output represents the true signal. It would also be desirable if the 
narrowband beamformer did not pass sources arriving from coordinates other 
than (!, 0). This will be an unattainable goal, but it is noteworthy that the 
beamformer discriminates well against "interfering" sources. The presence of 
interfering sources in the beamformer output is also called "leakage", because 
the interferer has leaked from its true location into the beamforming look 
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direction. The beampattern measures the amount of leakage and from what 
direction the leakage is arriving. 

Here the beampattern is defined as the magnitude squared transfer func­
tion of the beamformer steered at () to a unit amplitude source arriving from 
c/>, plotted as a function of cf>. The value of the beampattern at a single angle 
4> is 

(2.42) 

w represents any M x 1 filter vector and d is the interfering source's steering 
vector. 

Figure 2.4 shows the beampattern for a Hamming windowed conventional 
beamformer and for an MVDR adaptive beamformer. The number of sensors 
plus the number and characteristics of the sources are indicated on the figure. 
The conventional beampattern has the following characteristics: 

• The peak response to a single source occurs at the desired angle (). The 
angle () is denoted by a small circle on the beampattern. 

• The response to the interferer at angle ¢, denoted by a small 'x' on 
the conventional beampattern, is well above the sidelobe levels. This 
indicates that the interferer has leaked into the beamformer output­
at levels much higher than desired. 

• The sidelobe levels for the beampattern are uniformly 40 dB below the 
peak response. A sidelobe interferer will be rejected by no less than 40 
dB. 

2.4 Indirect or Subarray Narrowband Beam­
forming 

The direct MVDR beamformer of section 2.2.2 is often termed a "fully adap­
tive" solution because all available degrees of freedom (the number of sensors 
in the array) are used in the solution of the filter vector. Fully adaptive sys­
tems can be impractical for several reasons: 

• Providing the hardware resources necessary to calculate and invert the 
M x M CSDM, or calculate the inverse of the CSDM directly, can be 
prohibitive. 
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• The quasi-stationarity of the environment may be of shorter time du­
ration than the time required to create a full-rank CSDM estimate, 
and without a full rank matrix the adaptive weight vector can not be 
formed. 

While a fully adaptive system does give optimal performance, in practice 
it is not a requirement. It has been found that considerably' fewer degrees 
of freedom can yield nearly equal performance (in most realistic scenarios). 
Systems which employ fewer than the maximum number of available degrees 
of freedom [11] are termed "partially adaptive." It will be shown that the 
subarray technique is ideally suited for a partially adaptive solution to the 
narrowband beamforming problem. 

Gray [12] has developed another partially adaptive solution to narrow­
band beamforming termed "beam-space" beamforming. Beam-space beam­
fotming adaptively recombines the full array conventional beam outputs. 
This technique is mentioned because it is highly related to the subarray 
technique presented here; in fact, it can be viewed as an extension of the 
subarray technique. 

Subarray processing is a two stage beamformer which "breaks" the prob­
lem down into two separate parts, where each part is considerably smaller 
than the equivalent direct method. The first stage beamforms sub-segments 
of the array, and the second stage "rebeamforms" by combining the outputs 
of the first stage beamformer. 

The first stage beamformer, termed a "subarray beamforrner," filters a 
broad spatial sector (in the vicinity of the subarray beam-steering direc­
tion), and the output of this stage is often characterized by a large mainlobe 
response and extremely low sidelobes. The low sidelobes are designed to 
suppress spatially distant sources. The second stage, or "full array," beam­
former filters a narrow spatial sector within the mainlobe response of the 
subarray beamformer. This two stage process is an example of partitioning 
a problem into smaller more manageable sub-tasks by using a "global" strat­
egy, followed by a "local" strategy: The global strategy, performed by the 
first stage, is to cancel spatially distant interference, while the local strategy, 
performed by the second stage, is to cancel spatially proximate interference. 

As an aside, additional motivation for using subarray processing can be 
given when the assumed linear array is slightly perturbed. In this case, the ar­
ray subsegments or subarrays can be treated as quasi-linear and beamformed 
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as previously mentioned, but the full array beamformer must compensate 
for suba.rray "phase center" perturbations. This process of accounting for 
the subarray phase center locations is referred to as "shape compensation." 
Shape compensation of subarray phase center locations is numerically simpler 
than shape compensation of each sensor. 

In theory each stage of the subarray technique can be done using ~ither 
conventional or adaptive beamforming, giving a total of four possible sub­
array beamformers. Each of the four "modes" is listed below, along with 
motivation for using each mode (The subarray beamforming technique is 
listed first): 

• Conventional (SA)/Conventional (FA). This mode can be used when 
no strong interference is present. 

• Conventional/ Adaptive. This mode is useful when spatially distant in­
terferences can be suppressed by low (conventional window) sidelobes 
in the subarray stage, and powerful interferences can be nulled by adap­
tive full array beamforming. 

• Adaptive/Conventional. This mode is not useful: if adaptive subarrays 
are needed because of dominant interferences, then adaptive full array 
beamforming is also required. 

• Adaptive/ Adaptive. This mode is useful when spatially distant in­
terferences can not be sufficiently suppressed (to avoid aliasing) by 
subarray beamforming sidelobes. This can happen in the presence of 
powerful interferences or in arrays of large numbers of sensors (when 
subarrays are made small). See section 4 for a discussion of this tech­
mque. 

A detailed introduction to subarray formation and beamforming is cov­
ered in section 2.4.1. The subject of overlapped subarrays and spatial aliasing 
is discussed in section 2.4.2. Conventional/Conventional subarray beamform­
ing is covered in section 2.4.3. Conventional/ Adaptive subarray beamforming 
is covered in section 2.4.5. 
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2.4.1 Subarray Formation and Beamforming 

Subarray narrowband beamforming, as shown in Figure 2.5, is a two-stage 
beamforming technique. The first stage is a series of beamformers {SABF(i, f3)}f..;cf. 
Each first stage beamformer selects as it input a subset of the vector of nar­
rowband data vector x. This subset Xi, being a part of the whole array, shall 
be termed a "subarray". The first stage beamformers, or stibarray beam­
formers, steer the subarrays in look direction (3 and produce the subarray 
outputs {zdf:c/. The second stage beamforming, accepting the subarray 
outputs as its input, produces a beam in look direction e. The beam output 
y(O) is termed a "full array beam" because the data from all sensors in the 
array has been utilized in its formation. 

The discussion of the previous paragraph gave a brief overview of how 
subarray beamforming is performed. Attention is now given to the details 
of how the "subarrays" are created, beamformed, and, finally, rebeamformed 
(into full array beams) . For a very thorough treatment of the temporal 
equivalent of narrowband subarray beamforming, see [13]. 

In subarray narrowband beamforming, or subarray processing, the array 
is logically broken into several separate arrays. Each separate array, com­
prised of a subset of the total set of sensors, is termed a "subarray". Figure 
2.6 gives one illustration of how an array might be segmented into subarrays. 
In this example, an array of eight sensors is segmented into three subarrays. 
These subarrays consist of four adjacent sensors. Each subarray overlaps the 
next subarray by two sensors. 

In general, subarrays are formed using the following rules. 

• A subarray is comprised of adjacent sensors within the array. 

• Each subarray has an identical number of sensors; this is not an abso­
lute requirement, but its assumption will simplify later development. 

• A subarray "overlaps" the next subarray in the array, either in the 
forwards or backwards direction. That is, the portion of the sensors 
on one subarray closest to the next subarray are, also, in the next 
subarray. For reasons that will be explained later in this section, there 
is typically fifty percent or more overl~p between adjacent subarrays. 

• The overlap between adjacent subarrays is identical across the entire 
array. 
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Some definitions: 

M = 8 = Number of sensors per array 
P = 4 = Number of sensors per subarray 
S = 3 = Number of subarrays 

• 

Q = 2 = Number of sensors skipped between subarrays 

Figure 2.6: Example of Subarray Formation 
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Using the definitions of Figure 2.6, 

S number of subarrays 

P - number of sensors per subarray and 

Q number of sensors skipped between subarrays, 

the elements of the ith subarray can be expressed in the compact form' 

Xi - [ OpxiQ lp OPxM-P-iQ ) X 

s.x. (2.43) 

Here i ranges from 0 to S- 1, Omxn is the m row x n column matrix of 
zeros, and lp is the P x P identity matrix. From (2.43), the P x M matrix 
Si is seen to select P adjacent sensors from the data vector x and place them 
in the P X 1 subarray data vector Xi. Note that the two adjacent subarray 
vectors Xi and Xi+l are uniformly overlapped by P - Q sensors. 

The subarray data vectors {xi}f::-0
1 are now input to the first stage, sub­

array beamform~r. In this section we assume that the subarray beamformer 
is a conventional, windowed beamformer. 

The output. of the ith conventional subarray beamformer is defined as: 

Zi(/3) { 
d~(f3)xi 

- d~(f3)Waxi 

- d~(/3)Xi· 

if rectangular window, 
otherwise 

(2.44) 

Here d~ (/3) is a P X 1 conventional subarray filter vector steered at angle /3, 
and W s is a P x P diagonal subarray weighting matrix. 

As in the full array filter vector case, the phase of the first sensor in the 
steering vector is zero. It is for this reason that the first sensor in a subarray 
is often called the phase center of the subarray. 

The ith subarray output Zi(/3) can also be expressed in terms of the original 
array data vector x 

where 

d~(f3)Six 
af(f3)x, 

a{f (/3) = [ OlxiQ d~(/3) Ol xM-P-iQ ] · 
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ai is an M x 1 vector. The two zero vectors of ai "mask off" the sensors 
not the ith subarray; the top zero vector excludes sensors from the start of 
the array up to, but not including, the first sensor in the subarray and the 
bottom zero vector excludes all sensors past the e.nd of the subarray to the 
end of the array. 

It will be convenient to express the set of subarray output, { zi}f,:-01 in the 
vector form 

z((3) = [ Zo(f3) Z1 ((3) · · · ZS-l ((3) ] T. 

Inserting (2.45) in (2.47), the vector of subarray outputs becomes 

z((3) [ affx afx 
[ ao a1 

- AHx. 

(2.4 7) 

(2.48) 

·A is an M x S filtering matrix applied to the array data vector x. The ith 

column of A spatially bandpass filters the ith subarray in look direction (3. 
In equation (2.13), it was shown that the data vector x was a (weighted) 

summation of signal steering vectors. Later, in equation (2.28), it was shown 
that conventional beamforming attempts to correlate the signal steering vec­
tor, from an assumed direction of (), with the signal steering vectors embedded 
in the array data vector x. It is now important to show that the subarray 
data vector z((3) is a summation of "subarray phase center signal vectors." 
Once this has been shown, it will be clear how the conventional full array 
beamformer must recombine the subarray outputs; it must correlate the sub­
array data vector z((3) with a "subarray phase center (PC) signal vector." 
As will be seen, the full array re-beamformer assumes the subarray phase 
center signal vector is arriving from an angle in the neighborhood of (3. 

To find the "subarray phase center signal vector" mentioned in the pre­
vious paragraph, assume that the array data vector x is responding to only 
one source. The subarray data vector response to one signal, 

(2.49) 

can now be investigated. 
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Each column of the filtering matrix A "picks off" part of the full array 
signal vector and bandpass filters it. The "selection" of the correct sensors for 
the subarray is done by the placement of two zero vectors in each column of 
A; these zero vectors mask out all signal data except the signal data received 
at one subarray. 

Call the portion of the full array signal vector left unmasked, after the 
subarray selection, the subarray signal vector r(</>). The subarray signal 
vector for the ith subarray ri( </>) consists of P consecutive elements of the full 
array signal vector s( </>) • Using this definition and (2.6), the ith subarray 
signal vector is 

ri( </>) Sis(</>) 

- [ exp(jiQO<t>) · · · exp(j(iQ + P- 1)0¢>) r. (2.50) 

Factoring out the phase rotation between the first sensor in the array and 
the phase center of the subarray, the ith suba.rray signal vector is 

ri(</>)- exp(jiQO<t>)[1 exp(jO¢>) 

exp(jiQnct>)ds( </>) 

exp(j(P- 1)0¢>) r. 
(2.51) 

Each subarray signal vector is the product of the phase rotation between the 
first sensor in the array and the phase center of the subarray and the subarray 
steering vector at angle ¢>. To within a complex constant of phase rotation, 
the subarray signal vector is equal to the subarray filter vector steered at the 
same angle as the source. 

For development of the subarray response to a single source, define a new 
vector containing the phase delays from each subarray's phase center to the 
first sensor in the array. This vector shall be referred to as the subarray 
phase center signal vector at angle </>, 

dz(</>) = [ 1 exp(jQO¢>) · · · exp(jQ(S -1)0¢>) r, (2.52) 

because it steers the subarray phase centers to the source arriving from angle 
</>. 

Combining (2.50) and (2.52) in (2.49), the subarray output response to a 
single source is 

38 



Aexp(j1) [ ro(¢) .. · rs-t(ci>) r d;(,B) 

Aexp(jl) [ 1 · · · exp(jQ(S- l)!l<J>) r d;(¢)d;(,B) 

Aexp(j1)Hp(!l4>- !lp)dz(¢). (2.53) 

The subarray output response to a single source is equal to the ~ubarray phase 
center signal vector dz ( ¢) multiplied by the signal excitation A exp(j/) and 
by the filtering attentuation Hp(!l<J> - !lp). 

Equation (2.53) will be a central formula in the development of the sub­
array beamformer. It will be used to 

• Describe subarray output as "directional" sensors, 

• Reveal aliasing issues with subarrays which are insufficiently overlapped, 
and 

• Determine the method by which subarray outputs can be rebeamformed 
into full array beams. 

The filtering attenuation Hp(!l<J>- !lp) is relatively constant in the neigh­
borhood of ,B (at the top of the mainlobe response), and increases as the 
angle between the source ¢> and the subarray steering angle ,B increases. At 
a sufficient angular separation from the subarray steering direction ,B (in the 
"sidelobes" ), the signal is considered to be rejected. 

It is for reasons mentioned above that a subarray is also known as a 
"directional" sensor; sources arriving from the direction of ,B are "heard," 
while sources arriving from further away are not picked up. Viewed in this 
context, the rebeamforming of subarray outputs can be seen simply as the 
beamforming of sensors with directional sensitivity. 

Figure 2. 7 depicts this view of subarray outputs as directional sensors. 
Sources arriving at the top of the mainlobe, shown as region \li(,B) in the 
figure, are heard. The attenuation at the edge of the region \11(,8) defines the 
amount of signal loss deemed acceptable. Sources arriving in the mainlobe 
but not within \11(,8), or sources arriving in the sidelobes, are unwanted, 
interfering signals. 
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Figure 2.7: Subarray Beams as "Directional Hydrophones" 
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2.4.2 Subarray Beam Width and Subarray Aliasing 

A set of "directional'' sensors, such as the subarrays in this paper, spatially 
sample an impinging wavefront. In a manner completely analogous to tem­
poral sampling or the spatial sampling by sensors (mentioned earlier), care 
must be taken not to undersample and cause aliasing of the signal. 

To investigate exactly when aliasing occurs with subarrays,'it is necessary 
to determine the spatial sampling frequency for the subarray phase center 
signal vector (2.52). Because the signal is e;t complex exponential sinusoid, 
the spatial sampling frequency is the maximum bandwidth which can be sup­
ported without aliasing. Therefore, if the bandwidth of the subarray phase 
center signal is less than the spatial sampling frequency, then aliasing will 
not occur. Of course, in practice a filter will always pass energy through the 
sidelobes, and this energy (however small) must alias. Figure (2.8) illustrates 
these concepts. If the spatial bandpass filter of width EM cuts off the signals 
inside of the non-aliasing bandwidth EF, then aliasing has been prevented. 

To mathematically define the non-aliasing spatial bandwidth for subar­
rays, substitute the original definitions for !lt> back into (2.52), and express 

the m th element of the su barray phase center signal vector as 

(2.54) 

From (2.54), the spatial sampling interval is ¥ and the non-aliasing band­
width is 

(2.55) 

Recognizing from (2.53) that subarrays are a bandpass operation, the spatial · 
band EF must be centered at the subarrays' center frequency J3 with a width 
less than the non-aliasing band EF; that is: 

EM < EF 

2lcos <P - cos /31 
A 

< 
Qd 

Ieos <P- cos /31 
A 

(2.56) < 
2Qd 
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Spatial aliasing will occur if inequality (2.56) is not true. If aliasing should 
occur it is easily corrected by decreasing the skip Q between subarrays; that 
is, subarray aliasing is correctable by more frequent spatial sampling. 

2.4.3 Conventional Subarray Rebeamforming 

In this section, the conventional rebeamforming of conventional subarray 
output is discussed. The method of forming a single full array beam is given 
first, and then a general strategy for achieving full azimuthal coverage from 
individual full array beams is presented. 

Conventional subarray rebeamforming is the process of combining subar­
ray outputs into full arrays beams, using a coherent phase-adjust-and-sum 
(correlation) algorithm. This dual stage beamformer shall be termed a "con­
ventional subarrayfconventional full array" or "conventional/conventional" 
beamformer. Viewing the subarrays' outputs as directional sensors, the con­
ventional subarray rebeamformer must choose the sensors "pointing" at the 
signal of interest, and then it can phase-adjust-and-sum the.se sensors for the 
assumed signal angle of arrival 0. The phase-adjust-and-sum operation is 
done using the subarray phase center steering vector. 

Stated mathematically, the full array beam output is 

{ 
d~(O)z(,B) 

- d~(O)Wzz(,B) 

- d~ ( O)z(,B), 

if rectangular window 
otherwise 

(2.57) 

where, the full array look direction() is inside the directional subarray beam; 
that is 

o E w(,B). (2.58) 

As seen in (2.58) and (2.57), a set of subarray beams focussed at ,8 gives 
only partial azimuthal coverage. To obtain full azimuthal coverage, each 
subarray must be focussed at several angles. As suggested by Owsley [10], 
each suba.rray can be steered at a "fan" of angles evenly distributed in cosine 
of arrival angle. (The look directions are spaced evenly in cosine of angle 
because the bandpass filter width of a subarray beam is uniform in cosine of 
angle.) 

To illustrate the concepts discussed above, Figure (2.9) plots the power 
response of (2.57) to white noise as a function of arrival. Referring to this 
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Figure 2.9: Full Azimuthal Coverage using 17 Subarray Beams 

figure, the conventional subarray rebeamformer calculates full array beams 
in look directions ranging from cos e = + 1 ("forward-fire") to cos e = -1 
("end-fire"), and typically the full array beams are spaced evenly in cosine 
space. In this example there are 17 subarray beams. At each subarray beam 
center the response reaches a maximum and between two subarray beam 
centers the response reaches a minimum. 

The conventional full array beamformer is similar in form to the direct 
conventional beamformer, except that directional sensors are used as input. 

44 



2.4.4 Response Pattern using Conventional Subarray 
Processing 

It is now possible to calculate the response pattern for a beamformer using 
subarray processing. It is of consi~erable interest to compare the performance 
of the subarray method with the performance of the "direct" beamformer of 
section (2.2.1). ' 

In order to plot the response pattern, the expected beam output power 
as a function of look direction must be calculated. From (2.57), the expected 
beam output power is 

r zc ( 0) - E [IYzc(OW] 

d~ ( O)E [ z(,B)zH (,B)] dz ( 0) 

= d~(O)AHE [xxH] Adz(O) 

= d~ ( O)A HRAdz( 0). (2.59) 

Figure 2.10 plots the response pattern for a direct conventional beamformer 
and a subarray conventional beamformer. It is clear, by observation, that the 
two responses are approximately equal, but there are some minor differences: 

• Sources arriving at the subarray maximum response axis (MRA) do 
not suffer power loss. The source at cos 0 = 0.38 illustrates a signal 
arriving at a subarray MRA; it has no power loss relative to the direct 
beamformer method. 

• Sources arriving off the subarray MRA experience a signal loss cor­
responding to the subarray beams' scalloping loss. The source at 
cos 0 = 0.69 arrives off a subarray MRA and is show·n experiencing 
a small power loss. 

• The white or omni-directional noise is subject to scalloping loss, in 
a manner similar to the power loss of the "point" sources mentioned 
above. To illustrate the noise scalloping caused by subarray processing, 
consider the three subarrays centered at -0. 75, -0.625, and -0.5. In 
this region of the plot, because the sources at 0.38 and 0.69 can have no 
significant contributions to the response pattern (40 dB sidelobes of the 
Hamming window), the response is due primarily to the noise. Notice 
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Figure 2.10: Response Pattern for Conventional Subarray Beamforming 

that the noise response at the indicated subarray MRAs is at a maxi­
mum, and the maximum scalloping loss is exhibited at the midpoints 
between the subarray MRAs. 

• The noise level in the CSA/CFA plot is lower because the second stage 
uses an "unwindowed" subarray recombination. The unwindowed sub­
array recombination also leads to signal sidelobes. 

The scalloping losses can be alleviated by compensating for the bandpass 
filter attenuation, but generally this is not done because the attenuation is 
considered insignificant. 
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2.4.5 Adaptive Beamforming using Conventional Sub-
arrays 

In this section the MVDR adaptive rebeamforming of conventional subarray 
beam outputs is derived. It is seen that the AFA beamformer is nearly 
identical in form to the MVDR solution. 

In deriving the direct MVDR filter vector w, the criterion for optimality 
was a constant gain to the signal of interest, while achieving a minimum 
expected power output. Applying the same criterion to the subarray re­
beamformer requires that the subarray MVDR filter w z has a constant gain 
to the subarray phase center signal vector dz(O), while realizing a minimum 
expected power output. Defining the full array output Yz(O) to be the com­
plex conjugate inner product of a filter vector w z with the subarray data, 
that is 

yz(O) = w~z, 
the optimum filter vector must satisfy 

wz(O) = nUn{E [1Yz(O)I2
]}, subj to {wHdz(O) = M/P}. 

(2.60) 

The constraint wH dz(O) = M/ P ensures that the subarray rebeamformer 
has the same signal gain as the direct beamformer. 

Expanding the expected power in (2.61), 

E [1Yzl
2

] = w~ AHRAwz, 

and defining a "subarray CSDM" 

Rz = AHRA, 

the filter vector w z must satisfy 

Wz =nUn{wHRzw}, subj to{wHdz(O) = M/P}. 

(2.62) 

(2.63) 

(2.64) 

The solution to (2.64), obtained by using the well known method of La­
grangian multipliers, is 

(2.65) 

It is clear that the AFA output is formed in a manner completely analagous 
to that of the direct adaptive beamformer. The AFA beamformer is, however, 
much easier to implement because the CSDM Rz is of smaller dimension. 
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Chapter 3 

Alternative Minimum ·variance 
Beamforming Techniques 

The MVDR solutions of (2.34) and (2.65) are designed to pass one signal 
of interest and cancel, within the limits of the filter's capabilities, all other 
signals. If tlie objective of the filter were changed to pass a narrow spatial 
sector, then this type of single or "point" constraint is not an optimum 
method. In this section, several techniques are introduced which guarantee 
a signal "bandwidth." 

A solution which maximizes signal-to-noise ratio over a continuum of 
signal space is often termed "robust," because it is relatively insensitive to 
small pointing direction errors [4]. Besides direction of arrival errors, robust 
solutions are desired for other practical situations. For instance, imperfectly 
known sensor locations or propagation speed (14] are two examples where 
robust solutions are sought. The methods of this section can be used to 
achieve a variety of optimum, robust solutions. 

In section 3.1 the minimum variance solution with a point and zero­
slope/derivative constraint is discussed, in section 3.2 the minimum variance 
solution with multiple point constraints is given, and in section 3.3 the min­
imum variance solution with a continuous (integral) constraint is given. 

The solutions introduced in this section present techniques to constrain 
the mainlobe response of an adaptive beam. With modifications, these tech­
niques will be used in specifying constraints for shaping th~ mainlobe in 
adaptive subarray processing; specifically, an extension of the unity gain in­
tegral constraint to a "mainlobe integral" constraint will be used extensively 
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in Chapter 4 to form adaptive subarray beams. 

3.1 MVDR Beamforming with a Slope Con­
straint 

The MVDR solution guarantees that a source arriving at the beam steering 
direction () will pass through the filter, but it can cancel sources which are 
very close to the look direction. In this section, an alternative optimal filter 
is designed to alleviate the need to point exactly at a source: the slope of the 
beampattern response at the beam focussing direction is constrained [15] to 
zero. 

Recall that the MVDR solution requires a "distortionless response" at 
look direction e. If it is also specified that the slope of the beampattern 
at 8 be zero, then sources arriving in the immediate neighborhood of the 
point constraint will have nearly equal magnitude and phase responses, as 
compared to a source at the point constraint. It is for this reason that a 
slope constraint is termed "robust" to small pointing errors. However, it is 
important to note that the slope constraint does not guarantee a near-uniform 
response. 

To set the slope of the beam pattern to zero, calculate the derivative of the 
beampattern, with respect to spatial angle of arrival, and set the derivative 
to zero. Since the beampattern width is uniform in cosine space, define a 
variable u = cos e, and take the derivative of the beampattern with respect 
to u: 

Here 

d 
du wHd(u)d(u)Hw 

d M-lM-1 

du L L wkwtexp(jwu(k -I)) 
k=O l=O 

M-lM-1 

E E wkwdw(k -I) exp(jwu(k -I)) 
k=O 1=0 

jw (wH(idHw - wHddHw). 

k exp(j27r f cos Okdfv) 
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k exp(jwuk), 

u - cos(), and 

w - 21rjdjv. 

Substituting the distortionless constraint (wHd = N) into (3.1), the spatial 
derivative is 

(3.2) 

where ~() is the imaginary part of the operand. It is clear that the spatial 
derivative is zero if ~(wHd) = 0. 

The optimal filter vector which gives a constant gain to a source at () and 
nearly constant gain to sources in the neighborhood of () must satisfy the set 
of constraints 

Nand 

0. 

It is convenient to define these constraints in terms of real numbers as 

?R(wHd) - N, 
~(wHd) 0, and 

~(wHd) 0 

or 

[ d 
v d ]T W = f>Tw [ 1] =c. d 

Here 

A [ ~(w) l w 
~(w) ' 

d - [ ?R( d) l 
~(d) ' 

c1 - [ \l(d) l -?R( d) , and 

' [ ~(d) l d -?R(d) . 
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In order to formulate the optimal filter, the expected beam power must also 
be expressed in real quantities as: 

-~(R) l ~ 
~(R) w. (3.5) 

The filter vector that minimizes the expected power output in (3.5) subject to 
the constraints of (3.4), obtained by the method of undetermined Lagrangian 
multipliers, is 

(3.6) 

Figure 3.1 shows a beampattern obtained by using the filter vector of (3.6). 
The filter response is flat in the vicinity of the beam steer direction. In this 
same figure, the beam pattern for an MVDR filter is shown. The MVDR filter 
response is not flat at the beam steer direction. Instead it is "sloped," so as 
to cancel the proximate source at cos ¢> = 0.22. 

The MVDR filter tends to cancel proximate sources, making it necessary 
to steer directly at the source to avoid cancellation. The zero-slope beam­
pattern does not cancel the close sources (as much), allowing beam steering 
directions to be spaced further apart. For this reason, the zero-slope beam­
former is termed "robust" to small pointing errors. 

As the signal interference power increases, the zero-slope solution will 
tend to cancel close sources; the zero-slope constraint only guarantees "ro­
bustness" exactly at the beam steering direction. This beamformer provides 
weak mainlobe control. 

An additional second derivative constraint can ensure the correct "accel­
eration" of the mainlobe, giving further control of the mainlobe's shape. But 
these "slope" and "acceleration" constraints, and any more derivative con­
straints, only control mainlobe shape at the beam steering direction (with 
certainty). It is clear, however, that increasing the number of derivative 
constraints will tend to provide increasing robustness. 

51 



30.------.------,------,------,------.------.-----~ 

20 ~- - -----------------
' 

.; ..... ----- ... 
' ' 

10 -
' ' ' ' ' ' ' - ' ' fg ' ' 

' 
, .._.. I , 

~ 0 ' ' Slope Constraint ' 
' I I 

~ ' I I 

' 
, 

---------- Point Constraint 
I 

0 I I I 
I I I 

~ I I 
I 

Source Pwr(dB) Cosine ' I ' 
' I I 

-10 ' ' 1 0.00 0.22 
'I 

0 I I I 
I 0 0 I 
I I 'I 
I I II 
II 8 Sensors " II " " " II " II " 

-20 ~ " II 
II 

• 
' I 
I 

-30 
-0.2 -0.1 0 0.1 0.2 0.3 0.4 o.s 

Cosine of Arrival Angle 

Figure 3.1: Beam pattern for Minimum Variance Derivative Constrained 
Beamforming 

52 



3.2 MVDR Beamforming with Multiple Point 
Constraints 

The MVDR solution of (2.34) guarantees a constant gain for a signal arriv­
ing at the beam steering direction 0, but it does not ensure the gain for a 
source arriving very close to the beam steer direction. This can lead to sig­
nal cancellation- even when beam steering directions are spaced relatively 
closely. One method of combatting signal cancellation (for close sources) 
is to specify more than one constraint [16]; that is, form a minimum vari­
ance solution with a "distortionless response" for several angles of arrival. 
This solution shall be called an MVDR beamformer with "multiple point 
constraints." 

If the object of a multiple constraint beamformer is to pass a spatial region 
centered about the look direction 0, then constraints must be placed "at 
the top" of the beampattern's mainlobe response. In addition to constraint 
location, a choice arises as to the nature of the constraint: that is, what are 
the exact magnitude and phase constraints to be imposed? In this paper, the 
constraints shall be equal to the response of a (selected) conventional filter 
at the specified constraint points. This approach has the desirable features 
of linear phase shift and a known, realizable mainlobe (magnitude) shape. 

To present a concrete example, assume that three constraints are imposed 
on the MVDR solution at angles Ot, 02 and 03 , and that the desired response 
is equal to the conventional filter response at look direction 0 to sources at 
those angles. The set of constraints is expressed as: 

[ d(Ot) d(82) d(83) ]H W£ [ d(OI) d(82) d(83) ]H d(O) 

DfwL - C£. (3.7) 

Here theM x 3 matrix D L contains the steering vectors for the source's angles 
of arrival and the 3 x 1 constraint vector CL contains the desired responses. 
In general, if there are L constraints, DL would be an M x L matrix and C£ 

would be an L x 1 vector. 
The desired MVDR solution must minimize the expected output power 

subject to the constraints (3. 7). That is, it must satisfy 

W£ = mJn{wHRw}, subj to {Dfw = cL}. (3.8) 
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forming 

The solution to (3.8), obtained by the method of undetermined Lagrangian 
multipliers, is 

(3.9) 

Figure 3.2 plots beam patterns for the multiple. point constraint and the single 
point constraint (MVDR) techniques. In this figure, the point constraints are 
indicated by small circles ( o's) and a single source location is indicated by a 
small cross (x). Referring to this illustration, notice that the multiple point 
constraint does not attempt to null this source, while the single point MVDR 
partially cancels it. 

If the object of the set of constraints were to pass a "larger" spatial region, 
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unlike the narrow region of the previous example, then more constraints 
could be specified across the entire mainlobe. Used in this way, the set of 
constraints can provide strong control of the mainlobe, but (because of the 
nature of point constraints) the control is not absolute. 

A drawback of using multiple point constraints for mainlobe shape control 
is the loss of degrees of freedom. Many degrees of freedom are lo1>t to mainlobe 
control, potentially leaving few for interference cancellation. This problem 
can be addressed by making low rank approximations [4] to the steering 
vector constraint matrix D£. 

3.3 MVDR Beamforming with a Continu­
ous Constraint 

An alternative to the "point" constraints suggested for zero-slope and mul­
tiple angle of arrival problems is a continuous (integral) constraint [4]. In 
.this method the response of the beamformer can be (almost) specified on a 
continuum, thus achieving a robust solution across a specified region. 

The continuous constraint is achieved by integrating the magnitude squared 
difference between the actual response to a source at angle¢ with the desired 
response to that source, and then setting the integrated differences (nearly) 
equal to zero. In [4], the desired response was chosen to be unity. The total 
magnitude squared error is 

e2 
1 19+l:i./2 2 
~ tb=9-l:i./211 - WH d( ¢) I d¢ 

1 - WH p - pH W + WH Qw 

(wo- w)HQ(w0 - w), (3.10) 

where 

1 10+l:i./2 
p - ~ d(¢)d¢, 

tb=O-l:i./2 

Q 
1 10+l:i./2 
~ tb=B-l:i./

2 
d(¢)d(¢)Hd¢, and 

Wo - [ 1 0 .. . 0 r. 
(3.11) 
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It is not always possible to set the error in (3.10) to zero, except in the trivial 
case of w = w0 , therefore the optimum filter vector must satisfy 

w = mJn { wHRw}, subj to { (w0 - w)H Q(w0 - w) = t}, (3.12) 

where 0 < t < 1 defines the range of meaningful error deviations. 
The solution to (3.12), obtained using unknown Lagrangian multipliers, 

IS 

w(O) =.X (R + .XQf1 p, (3.13) 

where .X satisfies 

.\pH [(R + .XQ)-1 + (R + .XQfi R (R + .XQfl] p = 1- t. (3.14) 

In Figure 3.3, a beampattern is shown for a filter which satisfies (3.13). 
Referring to this figure, the left and right ends of the constrained region 
are indicated by small circles (placed on the response). The beampattern 
response is indeed "flat" in the region of interest, but the response does not 
fall off immediately outside of the constrained region. In fact, the response 
increases just outside of the constrained region, and, though not shown in 
this figure, it also has very high sidelobe behavior. 

The poor characteristics of the filter of {3.13) is a direct consequence of 
the unity gain; the causal filter is attempting to create a passband which 
has zero phase shift, and this may be considered an error on the part of the 
authors. A slight modification to the desired (unity) response will alleviate 
the undesirable response of this filter: make the desired response have unity 
magnitude with a linear phase shift. The integrated error now becomes 

1 19+A/2 I 12 e2 
A exp(j(n<P- Oe)(M -1)/2)- wHd(<P) d<P 
u <P=B-A/2 
1- wHp- f>Hw + wHQw 

- (wo- w)HQ(wo- w) +a, (3.15) 

where 

p 
1 19+A/2 
A exp(-j(n<P- ne)(M -1)/2)d(<P)d<P, 

u <P=B-A/2 

Q -
1 {O+A/2 
~ j<P=O-A/2 d( <P )d( <P )H d<P, 

Wo Q-1p, and 

a - 1-w{!Qwo. 
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Note that the M x 1 filter vector w0 minimizes the total error in (3.15), and 
that the minimum error, unlike the unity response of (3.10), is not zero, but 
a = 1 - w{f Qw0 • This minimum error is very small for spatial bandwidths 
of approximately the width of the mainlobe, and only becomes large when 
the constrained bandwidth approaches the full spatial bandwidth. 

The filter vector must then satisfy 

w(O) = mJn {wHRw}, subj to { (w0 - w)H Q(w0 - w) =c.}, (3.16) 

where a < c. < 1 defines the range of meaningful error deviations. 
The solution to (3.16), obtained using unknown Lagrangian multipliers, 

IS 

w = >. (R + >.Qrl p, (3.17) 

where >. satisfies 

(3.18) 

In Figure 3.3, a beampattern is shown for a filter which satisfies (3.17). 
Referring to Figure 3.3, the left and right ends of the constrained region are 
indicated by small circles placed on the beampattern response. It can be 
seen that the response is fiat across the region of interest, and, unlike the 
unity response, the mainlobe response drops off immediately. Although not 
shown in this figure, the sidelobes are also satisfactorily low. 

The "modified" integral constraint (3.16) is a good method for controlling 
the "top" of the beampattern's mainlobe, but it can not be used to maintain 
the shape of an entire mainlobe (the mainlobe has non-unity magnitude as 
it drops off). In Chapter 4, a further modification to the integral constraint 
is given which allows full mainlobe control. 
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Chapter 4 

Adaptive Subarray Processing 

In section 2.4 the subarray pre-processor was developed. The main emphasis 
was to describe a conventional subarray pre-processor which would "feed" a 
full array recombination stage. In this section several techniques are derived 
which form an adaptive beam suitable for use as a subarray pre-processor. 
Th~ methods are termed adaptive subarray /adaptive full array (ASA/ AFA) 
techniques. 

From Figure 2. 7, it is seen that a subarray processor must spatially band­
pass a region of interest, designated as llt(,B), centered about the subarray 
focussing direction .8, while rejecting sources arriving from outside the re­
gion of interest. The conventional subarray processor discriminates against 
interfering sources with very low and static sidelobes. But it does so at the 
expense of a "wide" transition band and a "narrow" region of interest. The 
adaptive subarray processor seeks to have a wider region of interest, for a 
given stopband width, or a narrower transition bandwidth, for a given pass- _ 
band width, while adaptively nulling sidelobe interferers. The wider subarray 
beam passband would be selected to decrease the total number of required 
subarray beams and their corresponding subarray output CSDMs. 

The central issue in adaptive subarray beamforming is to decide at what 
stage to cancel the proximate sources. In section 4.1, an optimal two-stage 
beamformer is presented, and it is shown that the proximate interferers are 
not cancelled at the first stage, but at the second stage. In fact, occasionally, 
proximate interferers are amplified at the first stage. This result is surprising 
because it "contradicts" single stage MVDR, which must cancel an interfering 
source immediately. The reason that the two stage beamformer does not 
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cancel the close interferers is related to white noise amplification, also referred 
to as noise gain: the tradeoff between interference cancellation and noise 
gain (inherent in a minimum power output solution) is much more expensive 
at the first stage than at the second stage. Conceptually, the first stage 
beamformer has to "strain" to cancel a proximate source, while the second 
stage beamformer can cancel them quite easily; this makes it much ,more 
efficient to "divide" the adaptive cancellation work, so that: 

1. The subarray beamformer cancels subarray sidelobe interferers and 
"shapes" a broad passband, and 

2. The full array cancels all remaining signals (arriving from the subarray 
mainlobe), except for the single source of interest. 

In forming the subarray beam it is necessary to either maintain the ~ain­
lobe shape or ignore sources in the mainlobe; accordingly, two approaches to 
calculating adaptive subarrays are then investigated: 

1. The first approach constrains the response, to be equal to a specified 
conventional response, in the entire mainlobe, and 

2. The second approach explicitly constrains the noise gain of the subarray 
beamformer, while passing the region of interest. This approach tends 
to ignore sources in the mainlobe. 

A method for performing the latter, termed a "noise gain constraint" 
technique, is given in section 4.3. It is an effective but, computationally, 
very expensive method. Two methods for performing the former, termed 
"full mainlobe constraint" techniques, are given in sections 4.2 and 4.4. The 
approaches do not mathematically exclude subarray noise gain, but, for prac­
tical situations, they perform with little excess noise gain. Both full mainlobe 
constraint methods are much simpler to calculate than the noise gain con­
straint method. 

As an aside, the relationship between the subarray beamformers of this 
section and the spatially constrained beamformers of section 3 is discussed. 
In section 3, a variety of techniques were introduced which adaptively beam­
formed with "local" or "narrow" spatial constraints. Because of the noise 
gain concerns discussed above, such techniques, though highly related to the 
methods of this section, are inadequate as subarray pre-processors. 
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The subarray beams of sections 4.2-4.4 are constrained so that the re­
sponse in the "region of interest" is equal to the conventional response of a 
bandpass filter. For the mainlobe constrained beamformers, the effect of this 
constraint is to conventionally beamform the subarray mainlobe, adaptively 
cancel in the subarray sidelobe, and, at the second stage, to adaptively cancel 
the subarray mainlobe signals. · 

In summary, this section establishes several adaptive beamformer tech­
niques designed to limit noise gain and conventionally pass a region of inter­
est. The emphasis of this section will be to demonstrate that these methods 
can avoid the noise gain "pitfalls" and perform as well as a conventional 
subarray pre-processor; the issue of enhanced adaptive subarray beamformer 
performance (in the presence of dominant interferers or "jammers") is exam­
ined in section 5. 

4.1 Non-Linear Optimum Subarray Process-
• 1ng 

In this section the problem of calculating a subarray filter which minimizes 
the full array output power (subject to a signal gain constraint) is investi­
gated. It is shown that calculating an optimum subarray filter vector is a 
non-linear process, involving the simultaneous manipulation of the full array 
and subarray filter vectors. By example, the "strategy" of the simultaneous 
solution can be seen, and then, from observation of this strategy, a sub­
optimal approach is suggested. 

Perhaps the most obvious criterion for a subarray filter vector is that it 
should produce a minimum output power at the subarray level. If this were 
the case, then the full array filter would cancel any remaining signals left 
after the first stage cancellation. The weakness of this approach is that . the 
subarray filter attempts to do all the "work" itself, leaving little for the full 
array filter to cancel. Cancelling signals in the first stage beamformer in itself 
is not a problem, but the (unnecessary) white noise gain introduced by doing 
so can not be compensated for by the second stage; basically, the white or 
omni-directional noise power, enhanced at the subarray output, can not be 
cancelled by the full array filter. In this section, the concepts of noise gain 
and the constraint of same are also investigated. 
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Recall that the adaptive subarray filter was constrained to pass a region 
of space, and that a separate adaptive full array filter must be calculated for 
each look direction within a subarray's beam. For this method, it would be 
very difficult to calculate a globally optimum subarray filter because it would 
involve a joint optimization of the subarray filter with all full array filters. 
Accordingly, in this section the adaptive subarray filter and one adapth;e full 
array filter will be constrained to pass a single signal. This approach will 
provide useful insight into the "strategy" of an optimal two-stage adaptive 
beamformer. 

The globally optimum subarray /full array beamformer seeks to simulta­
neously calculate the subarray and full array filters so as to minimize the 
full array output, subject to signal constraints at the subarray and full array 
output; that is: 

(ll) . · { HA( )HRA( ) } b' { u(())Hds(()) = P , } ( l) 
y v = W,W w u u w , su Ject to wHdz(()) = M/P 4. 

Here 

w(()) = w 

u(()) = u 

A(u) =A 
ds ( ()) 

dz(O) -

the S x 1 full array filter, 

the P x 1 subarray filter, 

theM x S subarray preprocessing matrix (see (2.48)), 
the P x 1 subarray signal steering vector, and 

the S x 1 subarray phase center steering vector. 

To allow for further developments, rewrite the optimum beamformer output 
in terms of the subarray filter and a "full array" preprocessing matrix as 

(()) · { HB( )HRB( ) } b' { u(())Hds(()) = P , } 
y = W,W u w w u , su Ject to wHdz(()) = M/P · 

(4.2) 
Here the M x P "full array" preprocessing matrix B(w) = B satisfies the 
equality 

B(w)u = A(u)w. (4.3) 

The full array preprocessing matrix is found by rearranging the vector A(u)w 
in terms of the vector u and the matrix B . 
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From (4.1) or (4.2), it is clear that there are fourth order terms (of the 
individual filter elements) in the beamformer output y, making a direct, linear 
solution impossible; hence, an alternative solution is sought. An iterative, 
two-stage linear solution is now proposed: 

1. Assign a conventional filter vector to the subarray filter u, for initial­
ization. 

2. Solve for the full array filter with the subarray filter fixed, subject only 
to the full array constraint, 

y(O) = mJn{wH A(u)HRA(u)w}, subject to {wHdz(O) = MfP}. 
(4.4) 

3. Solve for the subarray filter with the full array fixed, subject only to 
the subarray constraint, 

y(O) = mjn { uHB(w)HRB(w)u}, subject to { u( O)H d.,( B) = P} 

( 4.5) 

4. Repeat steps 2 and 3, until convergence. Here, convergence is defined to 
have occurred at iteration k if the power output at the current iteration 
y( k), is only a small percentage less than the previous iteration y( k -1); 
that is, if 

y(k -1)- y(k) 
y(k-1) < f, 

(4.6) 

then convergence has occured. Steps 2 and 3, each finding a global min­
imum for their respective problems, are guaranteed to descend, until 
"convergence." 

This shall be called the "iterative ASA/ AFA" algorithm. "It is of interest 
to investigate the performance of this iterative subarray /full array filter set 
with the performance of competing approaches. The metric used here is the 
full array power output: the goal of a subarray processor is to approach the 
global minimum obtained by the fully adaptive processor. 

Two specific interference/noise scenarios are of general importance: 

1. Interference signal impinging close to a selected look direction. 

By "close," it is meant that the signal angle of arrival falls on the 
mainlobe of a conventional windowed subarray beampattern. 
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2. Interference signal impinging relatively far away from the selected look 
direction (signal angie of arrival falling in the sidelobes of a conventional 
windowed subarray beampattern). 

Also, three methods for calculating the subarray and full array filters shall 
be compared (for the above two interference scenarios): 

1. Iterative ASA/ AFA: Iterative adaptive sub array/ adaptive full array fil­
ter set, obtained by iterative solution of (4.1). This is the "optimal" 
solution. 

2. Sequential ASA/ AFA: The subarray filter is obtained by minimizing 
the subarray output, subject to a subarray signal constraint, 

where Rs is the P x P CSDM embedded on the diagonal of the CSDM 
R. 

Next, using the subarray filter from the first step, the full array filter 
is obtained by minimizing the full array output power, subject to the 
subarray phase center signal constraint; that is, 

y(O) = nUn{wH A(u)HRA(u)w}, subject to {wHdz(B) = M/P}. 
(4.8) 

3. CSA/ AFA: The suban;ay filter is a selected (Hanning windowed) con­
ventional filter (fs(O), and the full array filter minimizes the full array 
output power; that is, 

y(O) = mJn{wH A(d8 )HRA(d8 )w}, subject to {wHdz(O) = M/P}. 
(4.9) 

Before evaluating the selected beamformers, the concept of "noise gain" 
must be introduced. Noise gain or white noise amplification is defined here 
to be ratio of output power due to white noise divided by the input power 
due to white noise 

NG = Noise Power0 ut 
- Noise Powerin ' 
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or, assuming unity input power, 

NG = wH A(u)H A(u)w. ( 4.11) 

As defined in (4.11), it measures the power due to white noise, and will be 
useful in discriminating whether signal and/or noise power has been passed 
into the beamformer output. When evaluating a beampattern, the noise 
gain of the beamformer can be judged by the relative width and heights 
of the sidelobes; large sidelobes (possibly larger than the mainlobe) lead to 
significant increases in noise gain. 

To help evaluate the performance of the candidate beamformers, the sub­
array beampatterns for a "close" interferer are plotted in Figure 4.1 and for 
a "distant" interferer in Figure 4.2. The beamformer look direction is indi­
cated by a small circle, and the interferer location is indicated by a small 
"x." Interference scenario 2 of Table 4.4 is used, and the subarrays are setup 
according to Eqn. 4.12 below: 

p 

M = 
8 = sensors per subarray, 

20 - sensors in array, and 

S = 5 = number of subarrays. 

Referring to Figure 4.1, the following observations can be made: 

(4.12) 

• The iterative ASA/ AFA beamformer does not place a null in the direc­
tion of the close interferer in the first stage, subarray beamformer, but 
defers the work of cancelling the close interferer until the second stage 
full array beamformer. It is noteworthy that the mainlobe is moved to­
wards the interferer, giving a signal amplification at the subarray stage, 
instead of cancellation. Evidently, the beamformer can afford to am­
plify the signal because it "knows" (from the recursion) that the signal 
will be cancelled. 

The distant interferer is cancelled by the first stage beamformer by ma­
nipulating the sidelobes and placing a null at the source location. The 
mainlobe does "move" but, for distant interferers, not always towards 
the source. Most likely, the freedom to move the mainlobe a little al­
lows for better sidelobe structure (if, for a single interferer, a slight 
shift/ amplification of the entire "quiescent" beam pattern placed the 
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Figure 4.1: Subarray Beam patterns for a Close Interferer 
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Table 4.1: Power Outputs and Noise Gains for Subarray Processors 
Beamform at 0.15 Beamform at -0.45 

Method Power out NG Power out NG 

Fully Adaptive 23.1 23.0 20.0 20.0 
Iterative ASA/ AFA 24.2 24.1 20.6 20.6 
Sequential ASA/ AFA 40.5 31.4 21.3 21.2 
CSA/AFA 32.3 32.1 23.6 23.6 
Conv. Full Array 191.9 20.0 22.7 20.0 

interferer in a null, then near optimal noise discrimination will occur, 
while cancelling the source entirely.). 

Another less obvious observation is the fact that the sidelobes of the 
subarray beampattern are "picketed"; that is, every other sidelobe is 
smaller than its neighbor. The beamformer is using this sidelobe struc­
ture to achieve noise cancellation. 

• The sequential ASA/ AFA cancels the close interferer immediately in 
the first stage subarray beamformer and does no further signal can­
cellation in the full array beamformer. It does cancel the interferer, 
but it is clear that significant white noise amplification or gain has also 
occured. 

This beamformer also cancels the distant interferer with, apparently, 
little more than the minimum noise gain. 

• The CSA/ AFA subarray beamformer suppresses the proximate inter­
ferer at the subarray beamformer stage (with -40 dB sidelobes) and 
uses a "quiescent" beampattern to cancel the noise at the full array 
stage. 

The output powers and noise gains for the two interference scenarios and 
three algorithms are given in the Table 4.1: 

In reference to the above Table 4.1, the following observations can be 
made: 

• The iterative ASA/ AFA method performs nearly optimally, whether 
the interference is close in or far away. 
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From the beampatterns, it is clear that this beamformer "decides" 
whether to cancel an interferer based on the overall expense of the 
operation; when the interferer is close to the beamformer look direc­
tion, it is advantageous to cancel the signal at the full array stage, 
avoiding excessive noise gain. And, conversely, when the interferer is 
distant, this beamformer can afford to cancel the sour~e at the first 
stage. 

• The sequential ASA/ AFA method perfqrms nearly optimally when the 
interfering source is not close, but does poorly when the interferer is 
proximate. 

From the beampatterns, it is clear that "the excessive subarray beam­
former noise gain can not be compensated for by the full array beam­
former. It is interesting to note that there is a measurable signal power 
remaining, for the close interferer scenario (as evidenced by the differ­
ence between the power out and the noise gain), and that the full array 

_ beamformer makes no effort to cancel it- the noise power has become 
so dominant that the response is basically "conventional." This could 
be viewed as an (inadvertently created) adaptive subarray /conventional 
full array beamformer. 

• For the low-level examples used here, the CSA/ AFA technique performs 
nearly optimally for the distant interferer and reasonably well for the 
close interferer. When the interferer is close, the full array beamformer 
is able to cancel the interferer, but at the expense of a measurable . . . . 
mcrease m nOise gam. 

It will be shown, however, that CSA/ AFA can produce "false alarms" 
due to spatial aliasing through the subarray beam's sidelobes. 

From observing the beampatterns for the iterative ASA/ AFA there are 
several features that an adaptive subarray beamformer would ideally adopt­
such as "intelligent" mainlobe placement and signal cancellation and "pick­
eted" sidelobe structure- but pursuit of these features in a sequential SA/FA 
beamformer seems impractical. Instead, a sub-optimal approach is now pro­
posed: 

• Constrain the mainlobe of the subarray response, well down towards the 
sidelobes, to be equal to that of a specified (bandpass) filter response, 
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• Allow the subarray beamformer to cancel signals in the sidelobes, and 

• Allow the full array beamformer to cancel all signals, subject to a point 
constraint for the particular signal of interest. 

This beamformer would not in general suffer from excessive subarray noise 
gain (because the mainlobe has not been "misshapen" from adaptive caTicel­
lation of close sources), and would cancel close interferers. Additionally, the 
constrained mainlobe guarantees a signal bandwidth (about the mainlobe 
peak), which is a required subarray beamformer characteristic. 

The sub-optimal approach of subarray mainlobe constraint does not ab­
solutely guarantee a low noise gain, and in some extreme cases an additional 
(inequality) noise gain constraint can be imposed on the beamformer. This 
option is investigated in section 4.3. 

The iterative ASA/ AFA technique, as presented in this section, is ex­
cessively costly in terms of computational burden. Other algorithmic ap­
proaches, such as reduced-rank signal-subspace representations [2, 3j of the 
CSDM, may reduce the computational load, making this method more at­
tractive. 

4.2 Mainlobe Constrained Subarray Process-
• 1ng 

In section 4.1, the non-linear adaptive subarray beamforming solution was 
investigated, and it was shown that optimal performance is achieved when 
signals arriving in the quiescent beampattern's mainlobe are not cancelled 
by the subarray beamformer. In this section, a beamformer which constrains 
the response across the entire mainlobe is introduced, and it is shown that 
this beamformer (in most cases) avoids excessive noise gain. 

The derivation of the full mainlobe constraint presented here follows very 
closely that of the integral constraint of section 3.3, except that here the 
desired response in the mainlobe is set equal to the response of a conventional 
beamforming filter [5]. The conventional beamforming filter chosen here has 
linear phase, nearly flat magnitude, a.lld (acceptably) low sidelobes. The 
adaptive filter must match the response of the conventional beamforming 
filter or "model" filter in the constrained region and adjust the sidelobe 
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response to minimize power output. The advantage of using a model filter 
is that an adaptive filter can match the desired response and still have low 
sidelobes. 

In this thesis the Parks-McClellan equi-ripple filter is used as the model 
filter. This flexible filter is chosen because mainlobe width, passband rip­
ple, and stopband sidelobe levels can be adjusted. This will prove useful in 
selecting a subarray configuration which has maximal subarray beamwidth, 
low sidelobes, and does not exhibit spatial aliasing. The topic of choosing a 
model filter, other than the Parks-McClellan filter, which is "optimal" is not 
pursued in this thesis. 

To constrain the response of the subarray beamformer across a spatial 
region, the difference or error between the actual response and a specified, 
realizable response is integrated, and the total error is set to zero. The 
integrated error is 

r~t::.n 2 
e2 = J.P=9-t::./21uHd(¢>)-eH(O)d(<P)I d¢> 

1
~6/2 

(uHddHu- uHddH e- eHddHu + eHddHe) d¢>, 
1/1=9-6/2 

(4.13) 

where 

8 - the subarray focussing direction, 

the mainlobe width, 

the M X 1 steering vector at angle ¢>, 

~ 

d(¢>) = d 

e(O) = e TheM x 1 conventional filter, or "model," vector, and 

u _ theM x 1 subarray adaptive filter vector. 

Defining theM x M matrix Do, 

1
9+1::./2 

Do= ddHd¢>, 
.P=O-t::./2 

(4.14) 

and substituting the eigenvector-eigenvalue decomposition of Do, 

( 4.15) 
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the integrated error ( 4.13) becomes 

e2 uHD0u- uHDoe- eHDou + eHDoe 
- uHM:EMH u- uHM:EMH e- eHM:EMH u + eHD:EMH e. 

(4.16) 

It is clear that if 
MHu = MHe, (4.17) 

then the error ( 4.16) is zero, and the adaptive filter u exactly matches the 
conventional response of the filter vector e- in the specified region () - .6. ~ 
</> ~ () + .6... It is noteworthy that a set of linear point constraints can be used 
to satisfy an integral constraint. It is, however, not practical to use ( 4.17) 
as a set of linear constraints, because, noting that the matrix M is full-rank, 
the constraints would consume all available degrees of freedom. 

To allow for the greatest number of degrees of freedom (in a least squares, 
adaptive solution), form a lower-rank approximation to the matrix Do, 

( 4.18) 

where r is the rank of the approximation matrix Dr, the M x r matrix Mr 
contains the r eigenvectors associated with the r largest eigenvalues of Do, 
and the r x r diagonal matrix :Er contains the r largest eigenvalues of Do. 
The rank of Dr determines the degree to which the integral constraint is met. 
(In the example that follows, six eigenvectors are used, spanning 99.99% of 
the total eigenvalue power.) 

The adaptive filter u which (approximately) matches the desired conven­
tional response in the mainlobe, while producing minimum expected power 
output, satisfies the equation 

y(O) = rrtln{uHRu}, subj to {M~u = M~e}. (4.19) 

The solution to (4.19) is 

. ( H -1 )-l H u = RMr Mr R Mr Mr e. ( 4.20) 

As an aside, the issue of the computational burden of calculating (4.20) is 
discussed, with regards to a complex Hermitian Toeplitz CSDM. If the ele­
ments of a subarray are (considered) evenly and linearly spaced, the subarray 
CSDM is a complex Hermitian Toeplitz matrix. The benefits of the CSDM 
structure are: 
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• The CSDM estimate involves estimating M quantities, instead of the 
M(~+l) quantities in a general M X M CSDM. And the M CSDM 
quantities, using a DFT convolution, can be estimated very quickly. 

• A complex Hermitian Toeplitz matrix inverse can be calculated in order 
M2 steps, as compared to order M3 steps for a general M x M matrix. 

• The statistical information in a CSDM estimate can be increased by 
using all the sensors in the array to form one subarray CSDM estimate. 
(The single CSDM estimate can be used to form the adaptive filter 
vector for all subarrays.) This increases the computational burden 
slightly, but affords greater stability in the estimate. 

It is noted that assuming a Hermitian Toeplitz structure precludes appli­
cations where the array is not assumed linear. 

To illustrate the integral constraint subarray beamformer, Figures 4.4 
- 4.5 show the subarray and overall full array beampatterns, respectively, 
for a close interferer, and Figures 4.6 - 4. 7 show the same beampatterns 
for a distant interferer. For the integrally constrained responses, the rank r 

was selected so as to include 99.99% of the energy of the matrix D, using six 
eigenvectors (out of nine available). For comparison, the CSA/ AFA responses 
are plotted, where the conventional subarray filter of the mainlobe constraint 
method is used. Interference scenario 2 of Table 4.4 is used, and the subarrays 
are setup according to 4.52. 

In the examples described above, the subarray "model" filter e used is 
a Parks-McClellan equi-ripple filter. Figure 4.3 shows the beampattern for 
this filter and that of a Hamming window. The Parks-McClellan window is a 
bandpass filter, with a stop bandwidth roughly equal to that of the Hamming 
window. (The subarray overlap percentages are the same, but fewer subarray 
beams are required.) 

Figure 4.4 shows the subarray beampattern for the close interferer. The 
limits of the integral constraint are indicated by two circles, placed on the 
beampattern. The response of the approximate integral constraint filter and 
the conventional filter are seen to be almost identical in the mainlobe, differ­
ing only slightly at the "tails" of the mainlobe. Figure 4.5 shows the overall 
full array beampattern for the close interferer. It is clear that the source is 
cancelled at the full array stage. 

73 



T bl 4 2 P a e .. ower Ot tf M'lbC t. dSb u pu s or amo e ons rame u array p rocessor 
Beamform at 0.10 Beamform at -0.50 

Method Pout NG PI(dB) Pout NG PI(dB) 

Fully Adaptive 21.73 21.72 0.00 21.05 21.05 0.00 
ML Constrained SA 28.76 28.76 1.22 28.58 28.58 1.33 
CSA(AFA 28.68 28.68 1.21 28.58 28.56 1.33 

Figure 4.6 shows the subarray beampattern for the far interferer. The 
limits of the integral constraint are indicated by two circles, placed on the 
beampattern. It is clear that the source is cancelled at the subarray stage. 
Figure 4. 7 shows the overall full array beam pattern for the far interferer. 

Using the integrally constrained subarray beamformer, the full array 
beam power output for the distant and close interferer cases are slightly 
higher than the optimal, direct beamformer. In Table 4.2, the power outputs 
and noise gains for the fully adaptive, the mainlobe constrained SA/adaptive 
FA, and conventional SA/adaptive FA beamformers are given. Also, a mea­
sure of the power increase, defined as 

PI= Pout ' 
PoutMVDR 

(4.21) 

is included. The power increase (PI) compares the output power for a selected 
beamformer with the minimum power output of the direct, MVDR solution. 
The power increases of the mainlobe constrained beamformer, for the close 
and distant interferer cases, are approximately equal and acceptably low. 

The increase in the output power is a consequence of the reduced number . 
of degrees of freedom at the full array stage and the (spatially) wide subar­
ray beam: the subarray beam is very wide (approximately one half of the 
total spatial bandwidth) and the full array stage must cancel the white noise 
in this large bandwidth with a small number of degrees of freedom. It is 
inevitable that there is a small increase in noise gain. If a decrease in noise 
gain is sought, the number of subarrays can be increased and/or the spatial 
bandwidth of the subarray beam can be decreased. 

The integrally constrained subarray beamformer is a good choice for an 
adaptive first stage. It performs nearly optimally and does not introduce 
a large computational burden (linear solution, using the Hermitian Toeplitz 
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property). In section 4.4, another very similar technique is introduced which 
yields nearly identical performance, with significantly less computational bur­
den. 

4.3 Noise Gain Constrained Subar~ay Pro-
• cess1ng 

In section 4.1, it was shown that a linearly constrained subarray beamformer 
which attempts to cancel strong proximate sources will produce significant 
increases in noise gain in the subarray output (and the full array output). 
An alternative subarray beamformer would cancel interfering sources, subject 
to (linear) signal constraints, provided that the noise gain did not exceed a 
specified threshold [16]. Accordingly, in this section, the minimization of the 
subarray beamformer power output subject to a (white) noise gain constraint 
and other linear constraints is investigated. 

The noise gain has been defined as the ratio of the beamformer output 
from white noise to input power from white noise. Here subarray noise gain 

H 2J 
NG - u an u = UH u. sa- a2 

n 
(4.22) 

is defined as the gain against white noise in the subarray stage beamformer. 
Because of the signal gain constraint of Pat the subarray focussing point, 

the noise gain constraint must be greater than or equal to P to be realizable. 
For practical purposes, an upper bound on the noise gain is set a fraction 
higher than the noise gain of the conventional subarray filter vector (after 
which the signal constraints are modeled). This establishes the limits on the 
subarray beamformer noise gain of 

(4.23) 

where Pe = eH e is the subarray noise gain of the "model" filter vector e. 
The value of k used is determined by how much excess noise is considered 
acceptable. As an aside, if k is set to less than unity, then the "quiescent" 
beampattern is altered, producing a narrower mainlobe and higher sidelobes. 
(Here quiescent [17] refers to the response to white noise only.) 
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Figure 4.3: Subarray Beampatterns for Selected Conventional Windows 
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The subarray beamformer which minimizes the power output, subject to 
multiple linear signal constraints and a noise gain constraint, must satisfy 

( 4.24) 

Here k is chosen to be slightly greater than unity and the P x C matrix 
D contains the signal vectors of interest, and the C x 1 vector b contains 
the signal constraints. The signal vector matrix D and its corresponding 
signal constraint vector c could represent a set of point constraints, integral 
constraints, or any other set of meaningful linear signal constraints. 

To avoid solving both constraints simultaneously, a rotation matrix B is 
sought which satisfies the following two equations: 

DH B = [ lc 0 ] and (4.25) 

BHB = [ B 0 l' 0 lp_c 
( 4.26) 

where the C x C matrix B is to be a specified, non-singular matrix. 
As will be seen the two conditions on B, as represented by ( 4.25) and 

( 4.26), will allow the solution of (4.24) to be found with regard to the noise­
gain constraint only, knowing that the linear constraints must be satisfied. 

To find a matrix B which satisfies ( 4.25) and ( 4.26), perform the following 
singular value decomposition on the constraint vectors D: 

DH =USVH =U( Sn 0) ( Vv Vo ]H =USvVZ. ( 4.27) 

Here the C x C matrix U contains the left-hand singular vectors. The C x P 
matrix S of singular values is partitioned into the C x C matrix Sv of non­
zero singular values and the C x P - C matrix of zeros. And the P x P 
matrix V of right-hand singular vectors is partitioned into an P x C matrix 
Vv and an P x P-C matrix V0 • 

Then, if the rotation matrix B is defined as 

(4.28) 

it is clear that 

(4.29) 
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and that 

(4.30) 

Therefore equ~tion (4.28) satisfies (4.25) and (4.26). 
Given a rotation matrix B from (4.28), the linear constraints become 

DH u = DHBv = DHB [ ~: l 
[ Ic 0 l [ :: l = v, = b ( 4.31) 

Here the rotated filter vector v has been partitioned into a C X 1 "constrained" 
filter vector Vc and a P-C X 1 "adaptive" filter vector Va. Note, from (4.31), 
that the vector v c must be equal to the constraints b, leaving the vector v a 

"free" for use in minimization. 
Substituting ( 4.31) and ( 4.30) into the original constrained problem and 

minimizing with respect to the free variables Va, the minimum output power 
must satisfy 

y ~~n { [ :: r BHRB [ :: l } , 
subj to { [ :: r BHB [ :: l ~ kP, } or 

{ 

H- H- } . Vc RuVc + Vc R12va+ 
mm H- H- ' 

Va Ya R21Vc + Ya R22Ya 

subj to { v~Bvc + vlfva.::; kPe } . ( 4.32) 

Here the P X P matrix R is defined as 

R = BHRB = [ ~n ~12] , 
R21 R22 

( 4.33) 

where Rn is a C x C matrix, R12 and Rf1 are C x P - C matrices, and R22 

is a P - C X P - C matrix. 
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The optimum adaptive filter Va, obtained using the method of undeter­
mined Lagrangian multipliers, is 

( 4.34) 

and substituting this filter into the noise gain constraint the so~ution is found 
for a positive value of A satisfying 

( 4.35) 

If a positive A can be found then the noise gain equality constraint is in effect, 
otherwise ( 4.32) can be solved without the noise gain constraint [18). 

To facilitate numerical solution of ( 4.35), perform the following eigenvalue­
eigenvector decomposition on the hermitian Toeplitz matrix R22 , 

- H 
R22 = MAM , ( 4.36) 

where the P - C X P - C matrix M contains the eigenvectors of R22 and 
the P-C x P-C matrix A contains the eigenvalues of R22 . 

Substituting the decomposition of ( 4.36) into ( 4.35), the desired value of 
A must satisfy 

H­kPe- Vc Bvc, 

P, or 

P. ( 4.37) 

Here the constant Pis equal to kPe- v~Bvc and the P-C x 1 vector Vc 
H-is defined as M R 21 v c· 

In ( 4.37) it is clear that there are poles at { >. = - Ai }::~c and that the left 
hand side of the equation goes, monotonically, to zero as the absolute value 
of A goes to infinity. Therefore, the desired value of >. lies on the positive 
side of the largest pole; that is 

Amin <A< 00. 
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Using ( 4.39), equation ( 4.37) can be solved using a numerical root-finding 
technique which starts its search at zero and "looks" in the positive direction. 
If, at .\, the left hand side of ( 4.37) is less than P, then only a negative value 
of ,\ will solve the equation, and it becomes possible to solve ( 4.24) without 
the noise gain constraint. 

Provided that the noise gain constraint is in effect (.\ > 0), theQ. the 
optimum noise gain and linearly constrained filter is 

u = B = B - -I - b, 
[ 

Vc l [ lc l 
Va - (R22 + .\1) R21 

( 4.40) 

where Vc =band Va has been solved in terms of,\ using (4.34). 
To illustrate this technique, Figures 4.8 - 4.9 show the subarray and 

overall full array beampatterns for a "close" interferer, where the noise gain 
constraint is in effect. And Figure 4.10 shows the subarray beampattern for 
a "distant" interferer, when the noise gain constraint is not in effect. The 
signal is constrained, using the reduced-rank integral constraint approxima­
tion, over a narrow region at the top of the mainlobe. In this case, only 3 
eigenvalues are needed to "span" the constraint matrix Do. It is unnecessary 
to constrain the entire mainlobe, because of the noise gain constraint. In 
these examples, the subarray noise gain constraint is NGsa ~ kPe = 1.02Pe. 

Figure 4.8 shows the subarray beampattern for a close interferer. The 
subarray beamformer attenuates the interfering source slightly, at some ex­
pense in noise gain. In this case the noise gain constraint is in effect. And 
Figure 4.9 shows the overall beampattern for the close interferer. The source 
is clearly cancelled at the full array stage .. 

Figure 4.10 shows the subarray beampattern for a distant interferer. The 
subarray beamformer cancels the interferer with a subarray noise gain of 
0.91Pe, which is less than the constraint 1.02Pe. Therefore, the noise gain 
constraint is not in effect. 

Table 4.3 shows the power outputs, full array noise gains, and power 
increases for the close and distant interferer cases. The results are very 
similar to those of section 4.2. 

The noise gain constrained solution of this section is computationally 
burdensome, and, because it attenuates proximate sources, it does not "act" 
in a manner analogous to the optimum, non-linear beamformer of section 
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Figure 4.8: Noise Gain Constrained Subarray Beampatterns for one Close 
Interferer 

Table 4.3: Power Outputs for Noise Gain Constrained Subarray Processor 
Beamform at 0.10 Beamform at -0.50 

Method Pout NG PI(dB) Pout NG PI(dB) 

Fully Adaptive 21.73 21.72 0.00 21.05 21.05 0.00 
NG Constrained SA 30.01 30.01 1.40 28.99 28.99 1.39 
CSA/AFA 28.69 28.68 1.21 28.58 28.56 1.33 
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Figure 4.9: Noise Gain Constrained Overall Full Array Beampatterns for a 
Close Interferer 
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Figure 4.10: Noise Gain Constrained Subarray Beampatterns for a Distant 
Interferer 
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4.1. It does, however, illustrate an alternative formulation to the problem; 
one which can produce nearly equal results to the beamformer of section 4.2. 

4.4 Mainlobe Constrained Subarray Process­
ing using Penalties 

In section 4.2, the mainlobe integrally constrained beamformer was intro­
duced. This beamformer minimized output power, while achieving (exactly) 
a specified response in the subarray beam. The integrally constrained beam­
former, however, requires two matrix inverses, as well as several matrix 
multiplications, leading to a computational burden which is significantly 
higher than, say, that of a point-constrained beamformer. In this section, 
a "penalty" method is introduced, which performs nearly identically to the 
integral constraint, but with much fewer calculations. 

Minimum variance distortionless beamformers are often termed ."hard" 
constrained solutions [5], because the Lagrangian multipliers ensure that the 
constraint is absolutely satisfied. An alternative formulation to this problem 

-is to minimize (without constraints) the output power plus the error between 
the actual response and the desired response (in the subarray mainlobe). If 
the error is weighted more heavily than the objective function, then the opti­
mum beamformer will cancel signals arriving outside of the mainlobe region, 
and tend to satisfy the "constraint," in the mainlobe. Such an approach is 
said to use a "soft" constraint, because the mathematics does not guarantee 
an exact response. 

The soft constraint method minimizes the expected output power for the 
filter u, 

y(u) = uHRu, ( 4.41) 

and the integrated mainlobe error term (see (4.13)), 

e2(u) = e2 = uHDu- uHDe- eHDu + eHDe, ( 4.42) 

subject to a weighting or penalty Ap on the integrated error; that is, the soft' 
constrained beamformer filter satisfies 

( 4.43) 
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The solution to (4.43), in terms of the scalar penalty -X, , is 

u = .x, (R + .x,Df1 De. (4.44) 

To ensure that the soft-constrained beamformer does not violate the con­
straint, it is necessary to penalize the error, caused by attenuating an inter­
ferer (even slightly), as heavily as the reduction in output power. A heuristic 
argument for the selection of the scalar penalty -X, is now given. 

The penalized integral error, for a slight attenuation a, can be approxi­
mated as 

where 

a = amount of interferer attenuation, 

h _ height of the error, and 

w _ assumed width of the attenuation. 

Redefining the attenuation as 

a= 1- t, 

the penalized integral error becomes 

The reduction in signal interference power output is 

~pout = a2 p2 _ a2a2 p2 = ( 2<: _ t:2) u2 p2 

(4.45) 

( 4.46) 

( 4.4 7) 

( 4.48) 

Now, assuming that the signal power reduction (4.47) is acceptable, the 
penalized, integral error ( 4.47) can be set equal to the power reduction ( 4.48). 
Solving for the scalar penalty -X,, it is argued that 

-X, = ( ~ - 1) P a 2
• ( 4.49) 
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It is evident that the attenuation can not be set arbitrarily small, because Ap 
will grow without bounds; hence, it is necessary to allow some attenuation. 
By experimentation, a value of 

1 
t: = p2. (4.50) 

has been found to be adequate. 
Since the signal power u 2 is not known, an upper bound on Ap can be 

found using the trace of the CSDM and equation (4.50), giving 

..\p = 2P2trace(R) > 2P3
0"

2
• (4.51) 

If the value ).P becomes much larger than the power of the sidelobe interfer­
ers, then this beamformer will not be capable of cancelling these interferers 
(due to numerical precision). For practical situations, where the dominant 
interferers are not hundreds of decibels above the "quieter" interferers, this 

. is not a problem. 
The argument given for selection of the penalty function ..\p assumed an 

interferer arriving at the top of the mainlobe. The same value has been found 
to work for all arrival locations in the mainlobe. 

To evaluate the performance of the penalty method beamformer, the 
beampatterns, the integrated error terms, and power outputs will be cal­
culated for three interference scenarios, as shown in Table 4.4. For compar­
ison the responses for the subarray conventional filter vector e, after which 
the constraints are modeled, are also shown. These scenarios are chosen to 
illustrate the following points: 

• Scenario 1 shows that the penalty method works in a noise-only envi­
ronment. 

• Scenario 2 demonstrates that a strong mainlobe interferer does not 
(significantly) violate the constraint. 

• Scenario 3 shows that a sidelobe interferer can be cancelled, in the 
presence of white noise and a mainlobe interferer. 
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Table 4.4: Interference Scenarios for Penalty Method 
Power (dB) 

Scenario White Noise I Interferer @ 0.22 I Interferer @ 0.90 

II 

1 

II 

0 

I 

OFF OFF 
2 0 5 OFF 
3 0 5 o· 

For the examples that follow, the subarray setup variables are: 

P = 9 =sensors per subarray, 

M =21 

s =7 
=sensors in array, and 

= number of subarrays. 

II 

(4.52) 

Figure 4.11 plots the quiescent subarray beampattern for the penalty 
method, showing the response is equal to the desired response, in the "soft 
constrained" section of the mainlobe. 

Figure 4.12 shows the subarray beampattern for scenario 2. The proxi­
mate interferer is not cancelled or attenuated, and the soft constraint is not 
violated. Note that there is a sidelobe at cosine () = +0.9; the interferer of 
scenario 3 is placed here, to show that the penalty method can "move" its 
sidelobes and cancel sources. 

Figures 4.13 and 4.14 show the subarray and overall full array beampat­
tern for interference scenario 3, respectively. Figure 4.13 shows the subarray 
beampattern. The soft constraint is obeyed in the region of interest and the 
distant (sidelobe) interferer is rejected. Figure 4.14 shows the overall full 
array beampattern. The proximate interferer is rejected at this stage 

Table 4.5 shows the power outputs for the fully adaptive, the subarray 
integral penalty method, and the CSA/ AFA beamformers. It is clear that 
the presence of one or both point interferers does not increase the output 
power above the quiescent beam power output; indicating that the penalty 
method can cancel (mainlobe and/or sidelobe) interferers and maintain the 
soft constraint, without an increase in power output. Note that the power 
output is identical to the power output of the mainlobe integrally constrained 
beamformer. 

In Table 4.5, the integral error term (4.13) is also given. The error is 
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Figure 4.11: Mainlobe Penalty: Subarray Beampatterns for Scenario 1 
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Figure 4.12: Mainlobe Penalty: Subarray Beampatterns for Scenario 2 
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Figure 4.13: Mainlobe Penalty: Subarray Beampatterns for Scenario 3 
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Figure 4.14: Mainlobe Penalty: Overall Full Array Beampatterns for Sce­
nario 3 
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Table 4.5: Power Outputs and Errors for the Penalty Method 
Power Output (dB) Relative Error (dB) 

MVDR Main lobe Conv SA/ Mainlobe 
Scenario Penalty Adap FA Penalty 

1 21.00 28.54 2e.56 -69 
2 21.73 28.61 28.68 -55 
3 21.77 28.76 28.72 -58 

expressed in decibels, relative to the area of the constraint, as 

( 4.53) 

It is seen that the relative integral error is very small, for all three scenarios. 

The reduced computational load of the penalty method is now discussed, 
assuming that the subarray CSDM is complex Hermitian Toeplitz: 

• The constraint matrix D is complex Hermitian Toeplitz, meaning that 
the matrix R + ApD is also complex Hermitian Toeplitz; hence, the 
inverse can be calculated in O(P2] steps. 

• The scalar penalty is simply a constant times the trace of the subarray 
CSDM estimate. 

• The vector De can be calculated "off-line," since it does not change. 

• The additim~al matrix multiplications and inverse (of the integrally 
constrained solution) have been avoided. 

The soft constraint, integral penalty method is a very efficient method of 
calculating an adaptive subarray filter vector, and the performance of this 
beamformer is roughly equivalent to that of the mainlobe hard constrained 
beamformer. The soft constraint, integral penalty method is the preferred 
technique for calculating subarray beams. 
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Chapter 5 

Analysis of Adaptive Subarray 
Processing 

In section 4, three techniques for performing adaptive subarray beamform­
ing were described. It was shown that each technique constrained a wide 
section of the subarray beam, while adaptively cancelling sources in the side­
lobes. The performance of these techniques, in terms of calculation burden 
and dominant interference cancellation, and the details of implementation, in 
terms of subarray configuration, were not discussed. Accordingly, in this sec­
tion, the following performance issues of the adaptive subarray beamformer 
are investigated: 

• The calculation burden of an ASA beamformer is compared to that of 
a CSA beamformer. 

• The resolution capability and array gain of the ASA beamformer are 
compared to that of the MVDR beamformer. 

• The ramifications of subarray size, subarray overlap, and number of 
subarrays on the calculation burden and resolution capability are in­
vestigated. 

• The capability of the ASA beamformer to cancel dominant interferers 
is compared to that of the CSA beamformer. 

In order to discuss the specifics of implementation, such as subarray size 
and overlap, an array must be selected. In this section, a specific array will 
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be used: an equi-spaced linear array with 200 sensors. The results of this 
section are applicable to arrays with other geometries, provided that quasi­
linear segments exist. 

5.1 Calculation Burden of a Practical ASA/ AFA 
System 

In this section the practical issues of implementing a two-stage adaptive sub­
array beamformer are explored: the size, number and overlap of subarrays 
must be chosen according to a defined criterion, the subarray spatial win­
dow must be selected to avoid aliasing, etc. In making these decisions, the 
system designer must select from a set of parameters so as to minimize cal­
culation burden, while maintaining a specified level of system performance. 
An approach is given for finding a subarray configuration (size, overlap, and 

. number of subarrays) which meets these objectives. It is seen that,. for the 
CSA beam former, there is a basic tradeoff between calculation burden and 
system performance. Here system performance is measured in angular reso­

. lution; that is, subarray configurations with lower angular resolution tend to 
be computationally less expensive. 

It is important to define the term "system performance," because there 
are several metrics which can be used. The most important performance 
metric is array gain. Array gain is defined as the ratio of signal gain to noise 
gain 

SG 
AG = NG' (5.1) 

This measure relates the signal gain of the array when focused directly at 
the signal to the white noise gain. As defined, array gain is related to the 
detectability of signals in white noise. In this section, signal gain loss will 
be limited by keeping the subarray filter scalloping loss below a specified 
threshold. Noise gain is also limited, by discarding subarray configurations 
with noise gain above a specified threshold. It is important to note that 
signal scalloping losses and noise power increases do not generally coincide. 
This is usually true because signal scalloping loss is at a maximum at the 
edge of the subarray beams, precisely where noise gain is at a minimum. 
The effect is to have nearly optimal, nearly flat array gain across the entire 
subarray beam, given limits on SG losses and NG. 
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In scenarios with two very close interferers, the noise gain term must in­
clude the interfering source and array gain will consequently decrease. Given 
that array gain is near optimum for the single source in white noise case, 
the ability to discriminate between the location of two proximate sources is 
a more direct measure of system performance. In summary, the definition of 
system performance used here is the resolution capability of the dual-stage 
adaptive beamformer, given near optimum array gain in white noise. 

In order to maintain near optimal performance, it is also necessary to 
ensure that "spatial aliasing" is minimized. Spatial aliasing is here defined 
to be the leakage of sidelobe interferers in a subarray beam into the mainlobe 
at the full array stage. Aliasing is prevented by very low sidelobes in CSA 
and by steering nulls in the ASA. But in the presence of dominant interferers, 
significant leakage can occur in CSA. 

The calculation and performance analysis is presented for a .specific array: 
a linear array of 200 equi-spaced sensors. The intent is to design an adaptive 
system, for this array, which will not exhibit spatial aliasing in the presence 
of 20 dB interferers. The calculation burden and resolution performance of 
the ASA/ AFA beamformer is then compared to a CSA/ AFA system which 
does exhibit some spatial aliasing, and it is shown that the ASA and CSA 
beamformers are roughly equivalent in terms of calculation burden and res­
olution capability. A more costly conventional system could be designed to 
handle this interference scenario, but this example is chosen to demonstrate 
that a more capable ASA/ AFA system can be implemented for the same 
cost. (These goals are achieved using adaptive subarray beams with quies­
cent sidelobe rejection of 30 dB and conventional subarray beams'with 40 
dB sidelobe rejection.) 

Since the resolution of adaptive beamformers is signal-to-noise ratio and 
scenario dependent, the usage of the term "resolution" must be defined. 
An indication of a system's resolution capability is its response pattern peak 
width for a single source in white noise. Owsley [10] has derived the response 
peak widths for the direct conventional and adaptive beamformers: 

he ()( 1 FJ; 
Md 

1 + Ma2 

DA ()( l[J; 
Md Ma2 ' 

(5.2) 
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where 

d distance between sensors, 

he _ conventional peak width, 

6A adaptive peak width, and 

u 2 signal power (unity noise power assumed). 

In (5.2), the second terms are dependent on the signal-to-noise ratio (u2
) 

and can not be controlled by system design. The first term .Jd is inversely 
proportional to the array's length or aperture 

L=Md (5.3) 

and is directly proportional to the conventional beamwidth of the source. 
Since these are the only terms controllable by system design, the philosophy 
here is to maximize aperture to give maximum resolution capability. For 
indirect beamforming the effective aperture is dependent on the subarray 
configuration: the indirect "aperture" is equal to the number of subarrays 
times the spacing of the subarrays times the distance between sensors, 

Ls = SQd. (5.4) 

Since the total number of sensors is 

M=P+(S-l)Q, (5.5) 

then the product of number of subarrays S times the number of sensors 
between subarrays Q is 

SQ=M-P+Q, (5.6) 

and it is clear that the effective aperture Ls is less than the total aperture 
L. The measure of resolution capability used' here shall be the percentage of 
full aperture retained by the beamformer: 

Ls 
PL= - . 

L 
(5. 7) 

As will be seen, roughly 90% of the effective aperture can be retained for the 
least costly ASA/ AFA configurations. 
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In order to prevent spatial aliasing, it is necessary that the mainlobe 
bandwidth BM of the subarray window be less than the principal non-aliasing 
full array bandwidth BF. It is now shown that aliasing can be prevented 
provided that a certain minimum amount of subarray overlap is used. The 
mainlobe bandwidth is defined as the width which is higher than the highest 
sidelobe. For a conventional subarray window, the mainlobe. bandwidth is 
roughly taken to be inversely proportional to the filter length P: 

2/3 
BM=-, p (5.8) 

where 

2 _ the full sensor bandwidth, 

(3 _ proportionality constant, and 

P _ number of sensors per subarray. 

Typical values of (3 are 2 and 4 for the rectangular and Hamming windows, 
respectively. 

Note that the spatial bandwidth is expressed in cosine of arrival angle 
and that spatial Nyquist frequency is assumed. The full array bandwidth 
is equal to the full bandwidth at the sensor level divided by the number of 
sensors between subarrays ("desampling" the spatial signal): 

(5.9) 

where 

2 the full sensor bandwidth and 

Q skip between subarrays. 

Since the subarray mainlobe width must be less than the full array band­
width, equations (5.8) and (5.9) can be combined, defining a relationship 
between subarray size and skip between subarrays: 

BM < BF 
2(3 2 

< -p Q 

Q < 
p 

(5.10) 73" 
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Equation ( 5.10) states that the skip between subarrays must be bounded by 
the width of the subarray mainlobe, as measured by the constant (3. Recall 
that the overlap of the subarrays is defined as: 

So= 1- ~· (5.11) 

Substituting Eqn (5.11) into Eqn. (5.10) and rearranging, the following re­
lationship between subarray overlap and mainlobe width is found: 

1 
So~ 1- ~· (5.12) 

Equation (5.12) establishes a lower bound on the amount of subarray overlap. 
By experimentation, the following approximate mainlobe width constants 
have been measured for sidelobe levels of 30 and 40 dB respectively: 

f3ao R:: 2. 7 and 

f34o R:: 4.0. (5.13) 

Using Equation (5.13) in Equation (5.12), minimum subarray overlaps for 
sidelobe levels of 30 and 40 dB respectively are: 

So30 > 0.637 and 

So.0 > 0.75. (5.14) 

Equation (5.14) defines the minimum overlaps used here for the ASA and 
CSA beamformers, respectively. 

The subarray spatial window used for the ASA and the CSA beamform­
ers is the Parks-McClellan equi-ripple filter. The stop band is set equal to 
the full array bandwidth and the start of the transition bandwidth is off­
set from the stop band by one-half of the approximate mainlobe width of 
equation (5.8). The design of the filter is illustrated in Figure 5.1. Notice 
that the meaning of the conventional mainlobe width EM of Equation (5.8) 
has been reinterpreted: here, the width BM describes the required transition 
bandwidth on the rising and falling edges of the passband, to provide the 
specified stopband rejection; the passband is not included in the width EM. 
This strategy uses the maximum available band width per subarray beam, 
while preventing spatial aliasing. 
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passband 

0.5~ 

Figure 5.1: Design Parameters for Subarray Spatial Filtering Window 
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Besides the specification of stop band and pass band limits in the design 
of the Parks-McClellan spatial window, it is necessary to establish a limit 
on the in-band ripple or signal scalloping loss. The scalloping loss limit used 
here is 

Ps:::; 0.5dB. (5.15) 

In order to meet specified scalloping loss limits and sidelobe levels, it is noted 
that, when using the Parks-McClellan filter, experimentation with specific 
pass band limits and relative weighting of pass band . and stop band ripples 
was necessary. 

For a given minimum subarray overlap, one must establish a set of rules 
for finding the set of realizable subarray configuration.s. To determine this 
set it is assumed that the subarrays will use the entire aperture (no sensors 
are left unutilized), and the number of sensors skipped between subarrays is 
uniform. The approach taken in this paper is outlined below: 

1. Evaluate all possible skips (Q) between subarrays. This search starts 
with subarrays spaced two sensors apart and continues up to the max­
imum skip (associated with 2 subarrays per line). 

2. For a particular skip between subarrays, find the minimum subarray 
length Pmin and the corresponding maximum number of subarrays Smax 
as follows: 

(a) The minimum subarray length is 

Q 
Pmin = 1- So' 

where So is defined as the minimum required overlap. 

(b) The maximum number of subarrays per line is equal to 

(
M- Pmin ) 

Smax = floor Q + 1 . 

(5.16) 

(5.17) 

(c) And the integer minimum sub array length is recalculated as 

Pmin = M- (Smax -1)Q. (5.18) 
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3. For each possible skip between subarrays, generate all possible subarray 
configurations. A list is created starting from the configuration with 
minimum subarray length and maximum number of subarrays. The 
list ends with a maximum subarray length and two subarrays. 

4. For all configurations generated in step 3 above, test whether the fol­
lowing criteria are met: 

(a) Effective Aperture Test: Check that the effective aperture per­
centage PL is greater than the specified threshold. 

(b) Noise Gain Test: Check that the noise gain is less than a speci­
fied threshold. Threshold is defined here to be the ratio of the 
ASA/ AFA beamformer noise gain to the fully adaptive beam­
former noise gain 

P _ NGASA _ NGASA 
NG - NGMVDR - N 

(5.19) 

(c) Redundant Effective Aperture Test: If several configurations have 
identical effective apertures, then retain the configuration with the 
lowest calculation burden. 

(d) Effective Aperture Locally Maximum Test: Ifthe calculation bur­
den of a configuration is significantly higher than its neighbors (in 
terms of effective aperture), then discard the configuration. This 
is a "one-pass" operation. 

Note that steps (a) and (b) are performed so as to meet specified re­
quirements, while steps (c) and (d) are necessary for presentation pur­
poses only. 

To evaluate the computational cost of the CSA/ AFA and the ASA/ AFA 
system, specific algorithms must be chosen to estimate CSDMs, calculate 
filter vectors and form beams- at both the subarray and full array stages. 
An outline of the algorithms used for this analysis is now given: 

1. Subarray CSDM Estimation (SA CSDM), for ASA/ AFA only: The 
array is assumed to be linear with equi-spaced sensors and far-field 
sources, giving a Hermitian Toeplitz subarray CSDM. A single subarray 
CSDM is estimated, by use of FFT convolution techniques, because all 
subarrays are assumed to have identical statistics. 
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2. Subarray Filter Vector Calculation (SA FV), for ASA/ AFA only: Sub­
array adaptive filters are found by solution of a Hermitian Toeplitz 
linear system [7]. One filter vector is calculated per subarray beam, on 
a periodic basis. 

3. Subarray Beam Output Calculation .(SA Beams): 

(a) ASA/ AFA outputs are calculated via complex vector inner prod­
ucts. One subarray output is calculated for each beam for each 
subarray. 

(b) CSA/ AFA outputs are calculated using composite-N FFTs [19], 
where the FFT length (number of beams per subarray) is found 
which minimizes the combined cost of subarray beam output cal­
culation and full array CSDM estimation (while maintaining the 
minimum number of subarray beams). 

For subsequent use, the cost of Zb·point FFT is taken as: 

where 

pb 

CF(Zb) = zb 2.:a(pi)(Pi -1), 
i=l 

{Pi} ~1 - a set of prime numbers, satisfying 
pb 

II Pi - zb, and 
i=l 

_ { 5 Pi= 2, 
8 otherwise 

(5.20) 

It is noted that, in a practical system, the cost of composite-N 
FFTs is most likely higher than the simple count of multiplies 
and adds, used in this section. Therefore, the CSA/ AFA cost is 
biased low. 

4. Full Array CSDM Estimation (FA CSDM): Full array CSDMs are cal­
culated using a reduced-rank eigen-signal subspace technique [2, 20]. 
A full array CSDM is required for each subarray beam look direction. 
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5. Full Array Filter Vector Calculation (FA FV): Full array filter vectors 
are found via "back solution" of the eigen-signal subspace mentioned 
above. A full array filter is calculated for each full beam look direction, 
on a periodic basis. 

6. Full Array Beam Outputs (FA Beams): Full array outputs are calcu­
lated via complex vector inner products. To allow for sufficient sam­
pling of strong sources, typically, three times as many full array beams 
are required as sensors in the array. 

The philosophy used in selecting these algorithms was to choose the most 
efficient methods possible, for both the ASA and the CSA systems; for ex­
ample: in the ASA case, the Hermitian Toeplitz assumption is convenient, 
but may not apply in all cases, and in the CSA case, the cost function for 
the subarray beam formation is certainly biased low, as mentioned above. 

Table 5.1 summarizes the variables and assumptions pertinent to the 
cost analysis of the beamformer described above and Table 5.2 presents the 
computational cost of each step in the beamformer. The cost is measured. in 
terms of the total number of multiplies and adds in the operation, and the 
te:r;-m floating point operation (FLOP) is used to describe either a multiply 
or an add. 

To aid in the cost versus performance analysis of the CSA and ASA 
systems, several tables summarize the set of subarray setups and the de­
tailed calculation cost figures considered here. The purpose of these tables 
is to present the computational cost of each system as a function of effec­
tive aperture. As mentioned, there is a tradeoff between computation cost 
and performance, but, for ASA/ AFA, this tradeoff does not occur until the 
system attempts to get more than 90% of the total aperture; that is, sys­
tems yielding less than 85% effective aperture are more costly and are not 
reasonable alternatives. Results have been calculated for systems with more 
than 75% of the total aperture and having a skip between subarrays of two 
or more sensors. 

Tables 5.3 and 5.4 give a detailed accounting of the subarrays setups for 
the CSA/ AFA and ASA/ AFA, respectively. Each table lists the skip between 
subarrays, the number of subarrays, the sensors per subarray, and the number 
of beams required per subarray. From these figures, the overlap percentage, 
effective aperture and total FLOPS have been calculated, as listed in the 
tables. 
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Table 5.1: Beamformer Cost Analysis: Variable Definition and Values 
I N arne I Value I Description I 

So.o > 0.75 CSA Subarray overlap 

So3o ;? 0.63 ASA Subarray overlap 

Ps 0.5 dB Scalloping loss 

PL ;? 0. 75 CSA/CFA Effective Aperture 

PNG ~ 0.5 dB Noise Gain Ratio 
M 200 Number of sensors in the array 
p Number of sensors per subarray 
s Number of subarrays per line 
Q Skip between subarrays 
zb Number of beams per subarray 
u zb Number of full array CSDMs 

NF 2ce1l(log2 M)+l SA CSDM convolution length 
D 4 Dimension of eigen-signal subspace 
NB 3M +1 Number of full array beams 
I 20 Period of SA FV and FA FV updates 

Table 5.2: Beamformer Cost Analysis: FLOP Count, by Sub-Operation 
I Operation I FLOP count I 

SA CSDM 5Np log2 Np + 3NF + 5~NF log2 ~NF + 18P 
SA FV ~Zb(16P2 ) 

SA Beams, ASA SZB(8P) 
SA Beams, CSA SCp(Zb) 

FA CSDM U(36SD) 
FAFV tNB(18DS) 

FA Beams NB(8S) 
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Table 5.3: Analysis of Subarray Setups for CSA/ AFA Processing 
Config. Subarrays Skip Sensors Overlap Eff. Aper. Beams FLOPS 

per SA % % 
1 11 14 60 77 77 96 272047 
2 15 11 46 76 83 80 339774 
3 17 10 40 75 85 72 352301 
4 19 9 38 76 86 64 344044 
5 29 6 32 81 87 20 310056 
6 35 5 30 83 88 16 335846 
7 44 4 28 86 88 9 376446 
8 59 3 26 88 89 6 469734 
9 89 2 24 92 89 3 663192 
10 36 5 25 80 90 20 384897 
11 91 2 20 90 91 4 690471 
12 61 3 20 85 92 8 502859 
13 46 4 20 80 92 16 441397 
14 37 5 20 75 93 36 505701 
15 62 3 17 82 93 9 530447 
16 47 4 16 75 94 32 581841 
17 63 3 14 79 95 18 644464 
18 95 2 12 83 95 6 756352 
19 96 2 10 80 96 9 821337 
20 97 2 8 75 97 16 930773 

Tables 5.5 and 5.6 list the computational cost for each stage of the beam­
former and the total cost for each subarray setup for the CSA/ AFA and 
ASA/ AFA beamformers, respectively. The figures given in the above men­
tioned tables were calculated using the general formulas found in Table 5.2. 

Figure 5.2 graphs the cost of selected subarrays setups as a function of 
resolution. Note that each setup, whether it is used with conventional or 
adaptive subarrays, gives identical resolution, meaning the cost of equivalent 
CSA/ AFA and ASA/ AFA setups appear at the same place on the horizontal 
aXIS. 

Referring to Tables 5.1-5.6 and Figure 5.2, the following observations 
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Table 5.4: Analysis of Subarray Setups for ASA/ AFA Processing· 
Config. Subarrays Skip Sensors Overlap Eff. Aper. Beams FLOPS 

per SA % % 
1 6 25 75 67 75 152 1440523 
2 7 22 68 68 77 133 1217362 
3 8 20 60 67 80 121 1044180 
4 7 23 62 63 81 137 1119795 
5 9 18 56 68 81 108 944942 
6 11 15 50 70 83 84 783059 
7 14 12 44 73 84 59 634285 
8 13 13 44 70 85 71 694011 
9 10 17 47 64 85 103 822999 
10 22 8 32 75 88 32 496581 
11 30 6 26 77 90 16 422044 
12 26 7 25 72 91 37 565955 
13 61 3 20 85 92 6 573627 
14 46 4 20 80 92 10 498909 
15 37 5 . 20 75 93 21 536053 
16 62 3 17 82 93 7 590499 
17 47 4 16 75 94 18 596567 
18 63 3 14 79 95 7 588272 
19 38 5 15 67 95 32 626790 
20 48 4 12 67 96 25 660548 
21 97 2 8 75 97 11 933704 
22 98 2 6 67 98 13 963123 
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Table 5.5: Detailed FLOPS Analysis for CSA/ AFA Processing 
Config. SA SA SA FV FA FA FV FA Total 

Beams CSDM CSDM Beams Total 

1 43296 0 0 152064 23800 52888 272048 
2 62400 0 0 172800 32454 72120 339774 
3 57528 0 0 176256 36781 81736 352301 
4 36480 0 0 175104 41108 91352 344044 
5 24360 0 0 83520 62744 139432 310056 
6 11200 0 0 80640 75726 168280 335846 
7 12672 0 0 57024 95198 211552 376446 
8 7434 0 0 50976 127652 283672 469734 
9 4272 0 0 38448 192560 427912 663192 
10 30240 0 0 103680 77890 173088 384898 
11 3640 0 0 52416 196888 437528 690472 
12 7320 0 0 70272 131980 293288 502860 
13 14720 0 0 105984 99526 221168 441398 
14 55944 0 0 191808 80053 177896 505701 
15 17856 0 0 80352 134143 298096 530447 
16 37600 0 0 216576 101689 225976 581841 
17 41958 0 0 163296 136307 302904 644465 
18 11970 0 0 82080 205542 456760 756352 
19 27648 0 0 124416 207706 461568 821338 
20 31040 0 0 223488 209869 466376 930773 
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Table 5.6: Detailed FLOPS Analysis for ASA/ AFA Processing ' 
Config. SA SA SA FV FA FA FV FA Total 

Beams CSDM CSDM Beams Total 

1 547200 36166 684000 131328 12982 28848 1440524 
2 506464 36040 491994 134064 15145 33656 1217363 
3 464640 35896 348480 139392 17309 38464 1044181 
4 475664 35932 421302 138096 15145 33656 1119796 
5 435456 35824 270950 139968 19472 43272 944943 
6 369600 35716 168000 133056 23800 52888 783060 
7 290752 35608 91379 118944 30290 67312 634286 
8 324896 35608 109965 132912 28127 62504 694012 
9 387280 35662 182022 148320 21636 48080 823000 
10 180224 35392 26214 101376 47599 105776 496582 
11 99840 35284 8653 69120 64908 144240 422045 
12 192400 35266 18500 138528 56254 125008 565956 
13 58560 35176 1920 52704 131980 293288 573628 
14 73600 35176 3200 66240 99526 221168 498910 
15 124320 35176 6720 111888 80053 177896 536053 
16 59024 35122 1618 62496 134143 298096 590500 
17 108288 35104 3686 121824 101689 225976 596568 
18 49392 35068 1098 63504 136307 302904 588272 
19 145920 35086 5760 175104 82217 182704 626791 
20 115200 35032 2880 172800 103853 230784 660549 
21 68288 34960 563 153648 209869 466376 933704 
22 61152 34924 374 183456 212033 471184 963123 

112 



5 
~ 
~ 

= .S! 
1iS 
'3 
(.) 

'iii 
u 

x105 

14 \ 

' ' 12 ' 
' 

10 

8 

6 

4 

2 

0 
75 

' 

" ""., I I 

" ' ' ' ' ' 

80 

' ' ' 

' ' 

I, 
I ' 

I ' 

/ \ 
' I ' 
' ' ' \: 

85 

' \ 

90 

CSA/AFA 
ASA/AFA 

' , 
•/ 

' ' 
---- ., 

Effective Aperture Percentage 

95 

I 

I 
I 
I 

' 

100 

Figure 5.2: Calculation Burden vs Percentage of Aperture for ASA and CSA 

113 



can be made: 

• The FA FV and FA Beam costs are identical for the CSA/ AFA and 
ASA/ AFA systems, because the number of beams and sensors p,er sub­
array are identical for each subarray setup. 

• The ASA/ AFA SA FV cost is low for subarrays with few sensors' and 
becomes prohibitive for the largest subarray sizes. 

• The number of beams required for an adaptive subarray is approxi­
mately one half that of the conventional subarray. 

The reduced number of ASA beams does not give a reduction 
in SA Beams cost because conventional subarray beams can be 
calculated very efficiently. 

The reduced number of ASA beams does, however, reduce the cost 
of FA CSDM estimation. 

- The reduction in FA CSDM cost and the increase in cost of SA 
Beams, SA CSDM, and SA FV for the ASA/ AFA beamformer, 
relative to CSA/ AFA, are even tradeoffs for configurations ranging 
from 88% to 97% of the full aperture, where the subarrays are the 
shortest. 

• The efficiency of the composite-N FFT allows very long subarrays to 
be calculated. For the CSA/ AFA beamformer, this leads to a strict 
tradeoff between calculation burden and resolution. 

It is noted that when CSA beams are calculated using vector inner 
products, as contrasted with composite-N FFTs, then there is a 
large penalty for longer subarrays. This penalty applies to the 
shorter subarrays as well, and leads to the ASA beamformer being 
more efficient than the CSA beamformer, in all cases. 

• For ASA/AFA, systems with either low resolution (long subarrays) or 
high resolution (short subarrays) are most costly. It is interesting that 
there is no tradeoff between calculation cost and resolution below 85%, 
as in CSA/ AFA. 
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In summary, this section has addressed the practical issues of calculation 
burden and system performance, measured in effective aperture, for the CSA 
and ASA beamformers. For the systems with the best resolution, it has been 
shown that ASA and CSA are roughly equivalent in cost. In section 5.3, it 
will be shown that, in the presence of dominant interferers, the particular 
ASA systems considered here are very resistant to spatial a~iasing effects, 
while the CSA systems are not. 

5.2 Response Patterns of Closely-Spaced Low­
Level Sources 

In section 5.1, it was noted that signal and noise gain vary with angular po­
sition within a subarray beam, and that the aperture of a dual-stage beam­
former is reduced from that of the full array. It was claimed that signal loss 
and noise gain increase do not generally coincide, and that effective aperture 
is g. measure of resolution capability. In response to these claims, several 
examples are given to demonstrate that: 

• Signal gain and noise gain tend to follow each other, resulting, fortu­
nately, in nearly constant array gain. 

• Resolution of two sources is diminished with decreased aperture. 

In order to verify that array gain is nearly uniform across a subarray, it 
is desired to normalize either the signal or the noise gain to a constant, and 
then check for a near-constant response of the unnormalized quantity. In 
this section, the philosophy is to scale the response so as to achieve constant 
signal gain. For emphasis, it is noted that constant signal gain is not a 
requirement when the ripple is only 0.5 dB- it is done only to investigate 
the array gain response within a subarray beam. 

Signal gain variations are the result of ripple in the passband of a subarray 
beam. As a function of angular position within the subarray beam, there 
is a predetermined loss or gain in signal- as compared to the desired P 2 

signal gain. Since the signal variation is known, it can easily be removed by 
scaling the response pattern by the measured subarray passband ripple. This 
procedure is referred to as "signal gain compensation." 
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Table 5. 7: Source Scenario for Low-Level, Closely-Spaced Sources 
I Source I Cosine of Arrival Angle I Power (dB) I 
I 1 I -0.057 I -19 I 

2 -0.046 -19 

The subarray signal gain equalization gives uniform signal gain, but it 
does not guarantee equal noise gain in the subarrays 's beam-space. This is 
an important consideration because unequal noise gain means unequal array 
gain. Intuitively, the noise gain ought to correlate highly with signal gain 
for the following reasons: noise gain is the integral of the noise centered 
about the signal of interest, and signal and noise have approximately equal 
ripple in one region of the subarray beam. If subarray noise and signal 
gains are highly correlated, then correcting signal gain, for example,. will 
tend to correct noise gain. To verify this intuition- in at least one case -
the response pattern to white noise-only is measured before and afte:r: signal 
gain compensation. Figure 5.3 shows the uncompensated and compensated 
ASA responses to white noise. In this figure, configuration 11 from Table 5.4 
.is used with mainlobe constrained ASA processing. The MVDR solution is 
also shown for comparision purposes. In the compensated case it is clear that 
noise gain is uniform to within 0.1 dB across the subarray beam-space. It is 
recalled that configurations from Table 5.4 were specified to have a maximum 
normalized noise gain of 0.5 dB. It is evident that the actual noise gain is 
somewhat less than 0.5 dB above the MVDR solution. 

Figure 5.4 illustrates the effect of signal gain compensation in the presence 
of two equal interferences. In this figure, subarray configuration 11 from 
Table 5.4 is used with mainlobe constrained ASA processing and the source 
scenario used is given in Table 5.7. The MVDR solution is also shown for 
comparision purposes. It is evident that the peak signal responses are unequal 
without compensation. With compensation the peaks are equal but slightly 
higher than the MVDR solution. This bias is due to ASA noise gain which 
is higher than the MVDR noise gain. 

Referring to Figure 5.4 again, the resolution capability of the ASA beam-· 
former can be compared to the MVDR beamformer by comparison of the 
"notch depth." Notch depth is here defined to be the depth of the response 
pattern between the two sources. It is clear that the ASA notch depth is not 
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as deep as the MVDR, meaning that some loss in resolution has occurred. 
(Note that this is true despite the noise gain bias of the ASA response: the 
ASA noise gain causes a 0.5 dB deflection at 23 dB and only a 0.2 dB de­
flection at 27 dB, and the notch depth differences are greater than 0.2 dB.) 

In summary, the examples used in this section have shown the following: 

• Signal gain compensation removes signal response bias. 

• Signal gain compensation smooths out the noise gain response. 

• Noise gain can be kept reasonably close to the the optimum found with 
MVDR, yielding near-optimum array gain. 

• Resolution capability decreases slightly with slight decreases in effective 
aperture. 

5.3 Response Patterns for Worst Case Dom­
inant Interferers 

In this section, the anti-aliasing properties of the mainlobe and noise gain 
constrained ASA beamformers are compared to the CSA beamformer. It has 
been claimed that ASA beamformers can steer sidelobe nulls in the subarray 
beam to "cancel out" interferers, while the CSA must rely solely on low 
sidelobes to attenuate interferences. To verify these claims, it is important 
to not only pick interferences of sufficient strength, but also to investigate 
the importance of source position (within a subarray beam) and the number 
of sources present. Accordingly, the following objectives are pursued in this 
section: 

• Establish the relationship between a single source's location and (re­
sponse pattern) performance, when using mainlobe constrained ASA 
(ML ASA) beamformer. 

- Establish the performance with source position when there are 
one or two additional, fixed sources. 

• From above, pick a "worst case" scenario for one, two, and three sources 
and compare the performance of the ML ASA beamformer, the noise 
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gain constrained ASA (NG ASA) beamformer, and the CSA beam­
former. 

As mentioned above, it is the goal of this section to establish the per­
formance of the ASA beamformers in some "worst case" scenarios. In order 
to define what is a worst case, it important to note how performance can 
be impacted. The performance of an ASA beamformer, as measured by the 
response pattern, is degraded by either of two effects: 

• Excessive Subarray Noise Gain: High noise gain in a subarray beam 
leads to high full array noise gain. This is exhibited by the response 
pattern being "biased" high in the region of a subarray beam. 

Empirically, it has been observed that excessive subarray noise gain 
can occur in the ML ASA beamformer. The mainlobe constraint im­
poses no limit on the noise gain, allowing for maximum non-mainlobe 
interference cancellation. 

• Insufficent Sidelobe Cancellation: When inadequate nulls are steered at 
sources outside of the full array non-aliasing bandwidth, then spatial 
aliasing occurs. This is exhibited by "false peaks" in the response 
pattern. 

Empirically, it has been observed that this tends to occur when there is 
a noise gain limit imposed on the subarray beamformer. The noise gain 
limit restricts the beamformer's "freedom" to shift location- and more 
importantly -the level of the sidelobes, leading to partial interference 
cancellation. 

From the above comments, it is clear that a worst case for the ML ASA 
beamformer will not be the worst case for the N G ASA beamformer and 
vice versa. It is the philosophy here to seek a worst case for the "best" ASA 
beamformer, because it is desired to show how well this beamformer performs 
in the most difficult situation. Since the ML ASA beamformer is considered 
the most efficient (and will be shown to have the best performance), it is 
selected as the algorithm of choice. Thus "worst case" scenarios shall be 
ones which maximize subarray noise gain. 

As mentioned in the introduction to this section, it is desired to find 
worst case scenarios for one, two, and three sources. To do this a sequential 
procedure is adopted here: the worst location of a single source is first found, 
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and then, fixing the location of the first source, the location for the second 
interferer is determined, etc. The procedure used is outlined below: 

1. Find the worst location for a single source: 

(a) Pick a subarray configuration and one subarray beam focussing 
direction. 

(b) Evaluate the subarray noise gain as a function of arrival angle. 
Vary the location through all possible angles. 

(c) Place the single source at the location where subarray noise gain 
is maximized. 

2. Find the worst locations for two sources: 

(a) Repeat step (1a). 

(b) Fix a single source at location found in step (1c). 

(c) Evaluate noise gain for all possible arrival angles. 

(d) Place the second source where maximum noise gain occurs, omit­
ting from consideration the "neighborhood" of the single fixed 
source. The "neighborhood" of the single fixed source is defined 
as the peak area of the subarray noise gain plot of step (1 b). 

3. Find the worst locations for three sources: 

(a) Repeat steps (2a)- (2d) except that there are two fixed sources. 

It is noted that this procedure does not maximize subarray noise gain 
by simultaneously moving all three sources. It is therefore likely that an 
absolute maximum has not been found. 

Figure 5.5 plots the subarray noise gain versus arrival angle for one, two, 
and three sources. In this figure, subarray configuration 11 from Table 5.4 is 
used, the subarray beam is focussed at cos( 0) ~ 0.07, and the mainlobe con­
straint limits are at approximately -0.1 and +0.23. The worst case scenarios, 
as taken from this plot, are noted in Table 5.8. 

Referring to Figure 5.5, the following observations can be made for the 
single interferer case: 

. 121 



• The subarray noise gain is highest in the first sidelobes on the left and 
right of the mainlobe. Evidently, the adaptation has the most difficulty 
when cancelling sources close to the constraint region. 

• The subarray noise gain is also sensitive in the second sidelobes. 

• In the subarray mainlobe and outside of the first and second sidelobes, 
the subarray noise gain is nearly equal to that of the CSA beamformer. 

Referring to Figure 5.5, the following observations can be made for the 
double interferer case: 

• . With a first sidelobe interferer, the next worst case is in the second 
sidelobe on the opposite side of the mainlobe. 

• Subarray noise gain is nearly constant at 0.4 dB in the subarray main­
lobe and outside of the first and second sidelobes. 

Referring to Figure 5.5, the following observations can be made for the 
triple interferer case: 

• With a fixed interferer in the first left sidelobe and another interferer 
in the second right sidelobe, the worst place for the third interferer is 
in the third right sidelobe. 

• Subarray noise gain is nearly constant at 0.65 dB in the subarray main­
lobe and outside of the first three sidelobes. 

It is noted that these worst case scenarios are subarray configuration 
and frequency dependent. Any change in subarray configuration, subarray 
focussing direction or frequency will cause the response to be very different 
(due to shifting subarray beam sidelobe locations). 

To evaluate the performance of the ASA and CSA beamformers for the 
three worst cases of Table 5.8, refer to Figures 5.6 - 5.8 for scenarios 1, 2 
and 3, respectively. From these figures, the following observations can be 
made: 

• In the target ted subarray beam (cos( 0) ~ 0.06) , the ML ASA beam­
former exhibits a 1- 2 dB excess in noise gain, for all three scenarios. 
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• The NG ASA beamformer exhibits a single spatial alias at cos(O) ~ 0.2 
in the two and three source scenarios. This is the result of the proximate 
source at cos(O) ~ 0.31: the subarray beamformer must cancel this 
close mainlobe interferer, and, consequently, can not sufficiently null 
the interferer at cos(O) = -0.14. 

A full mainlobe constraint in conjunction with the noise gain constraint 
would correct this particular alias, but, from experimentation, it has 
been found that such a combined ML/NG ASA beamformer will ex­
hibit aliases when dominant interferers occur in the first and second 
sidelobes; the ASA beamformer must allow noise gain in order to pre­
vent spatial aliasing. 

• The CSA beamformer exhibits many large spatial aliases. The spa­
tial aliases can be alleviated by use of a subarray window with 10 dB 
lower sidelobes, but this would drive the calculation burden signifi­
cantly higher. 

It is noted that the ML and NG ASA beamformers would both benefit 
from an optimization technique which omits the subarray transition band 
from power minimization. In the ML ASA beamformer this would allow the 
limits of the constraint to be eased, allowing easier cancellation of the first 
and second sidelobe interferers. And in the NG ASA beamformer, this would 
prevent the cancellation of transition band interferers, which lead to spatial 
aliases in the above examples. Since it was not apparent how to perform 
such an optimization, this modification to the ASA beamformer could not 
be implemented. 

In summary, the following conclusions can be made: 

• In the presence of "worst case" first, second and third sidelobe inter­
ferers, the ML ASA beamformer exhibits some extra noise gain. 

• In the presence of dominant transition band interferers, the NG ASA 
beamformer exhibits an occasional spatial alias. 

• In the presence of sufficiently powerful interferers, the CSA beamformer 
exhibits spatial aliasing. The subarray sidelobe levels can be decreased, 
at a cost in calculation burden. 
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Figure 5.5: Subarray Noise Gain for Three Swept, Dominant Interferers 

124 



50~--~----~--~----~--~----~---.----.----,----, 

45 

40 

30 

25 

Mainlobe Constrained ASA 
NG Constrained ASA 
Equi-Ripple CSA 

20~--~----~----~--~----~--~----~----~--~----~ 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Cosine of Arrival Angle 

Figure 5.6: Response Patterns for One Dominant Interferer 

125 



55 
Mainlobe Constrained ASA 

---------- NO Constrained ASA 
50 Equi-Ripple CSA 

45 

........ 
40 ~ 

'-" 

~ 
~ 
0 
p., 35 

30 

25 

20 
-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 0.6 0.8 1 

Cosine of Arrival Angle 

Figure 5.7: Response Patterns for Two Dominant Interferers 

126 



55 
Mainlobe Constrained ASA 

---------- NG Constrained ASA 
50 Equi-Ripple CSA 

45 

,....., 
40 ~ .._.. 

~ 
~ 
0 35 ~ 

30 

-· 
25 

20 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Cosine of Arrival Angle 

Figure 5.8: Response Patterns for Three Dominant Interferers 

127 



Chapt.er 6 

Conclusions 

This thesis has introduced the two-stage adaptive-adaptive subarray beam­
former (ASA/AFA) and has addressed whether there is an advantage in 
using this beamformer over the conventional-adaptive subarray beamformer 
(CSA/ AFA). Additionally, it has described practical methods of configuring 
subarrays·, for either the ASA/ AFA or CSA/ AFA beamformers, to achieve 
near optimum array gain and effective aperture, while minimizing calculation 
burden of the overall beamforming system. 

Finding the best method to calculate adaptive subarray beams required 
careful consideration. Viewing the subarray beam as a "directional hy­
drophone," it was clear that the subarray beam had to be constrained so 
as to achieve a fixed angular passband, otherwise signals of interest would be 
cancelled. To achieve the fixed passband a variety of techniques to constrain 
the subarray beam were proposed; these included derivative, multiple point, 
and unity gain integral constraints. These methods, termed here subarray 
passband constraint methods, would pass the subarray beam passband and 
allow adaptation to cancel interference and noise everywhere else. This strat­
egy satisfied the minimal requirement of creating a subarray beam passband, 
but the question remained whether these ASA/ AFA beamformer would out­
perform, or even perform as well as, the CSA/ AFA beamformer. 

To answer whether the subarray passband constraint ASA/ AFA beam­
former could outperform the CSA/AFA beamformer, the extreme case of 
a "point" subarray passband constraint (point ASA/ AFA) was considered; 
that is, the subarray and the full array beamformers are constrained at only 
a single point, termed the look direction. It was discovered that the point 

128 



ASA/ AFA beamformer cancelled interferers which arrived close to the beam­
former look direction, and that the resultant subarray beampattern distortion 
and noise gain resulted in poorer performance than the CSA/ AFA beam­
former: it was clear that the strategy of constraining only one point in the 
subarray passband was not acceptable and needed modification. The ques­
tion now arose: what is the optimum way to form an adaptive subarray 
beam? 

To find the optimum way to form adaptive subarray beams would require 
a difficult non-linear, joint optimization of the subarray and full filter vec­
tors. To avoid this difficulty and still gain insight into the optimum strategy, 
a near-optimum iterative solution of the subarray and full array filter vec­
tors was proposed. It was seen that the behavior of this iterative solution 
varied with the location of an interferer relative to the beamformer look di­
rection. If the interference arrived in the mainlobe of the subarray beam, the 
subarray beamformer passed the interference and the full array beamformer 
cancelled it; conversely, if the interference arrived in the sidelobes of the 
subarray beam, the subarray beamformer cancelled the interference. These 
observations established that an adaptive subarray beam must not attempt 
to cancel interferers arriving in the mainlobe of the subarray beam. 

After observ:ng that the near-optimum adaptive subarray beamformer 
does not cancel interferers arriving in the subarray mainlobe, a sub-optimum 
approach to forming adaptive subarray beams was suggested: constrain the 
entire subarray mainlobe and allow adaptation only in the subarray side­
lobes. This strategy divided the work between the subarray and full array 
beamforming stages and allowed each stage to do the work that it did best: 
the subarray beamformer is best at cancelling interferers in the sidelobes and 
the full array beamformer is best at cancelling interferers in the mainlobe. 

After establishing this strategy for the ASA/ AFA beamformer the issue 
of the relative performances and calculation burdens of the ASA and CSA 
beamformers was addressed. To do this a practical method of selecting sub­
array configurations, which met specified requirements in terms of attaining 
near maximum array gain and alleviating spatial aliasing, was presented. It 
was shown that the ASA and CSA beamformers have nearly equal calcula­
tion burden for configurations with near full effective aperture, and that the 
CSA beamformer has a lower calculation burden for configurations with less 
than 80% effective aperture. 

Since the ASA beamformer adapts its subarray sidelobes to null interfer-
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ences and the CSA can only attenuate these same interferences, it is claimed 
that the ASA beamformer is a better choice in a dominant interference see-

. nario. Although it was clear that the ASA beamformer could cancel a single 
dominant interferer placed in the subarray sidelobes, it was not clear how 
well it could cancel multiple interferers placed in arbitrary locations. The 
behavior of the ASA beamformer in scenarios with worst-case placemen,ts of 
one, two, and three interferers was then investigated. It was discovered that 
this worst-case noise gain could become quite large in a subarray beam if 
sources were placed in certain worst-case locations relative to the subarray 
beam. It was noted, however, that this undesirable feature could probably 
be avoided by shifting the positioning and number of subarray beams when 
the noise gain in a particular subarray beam became too high. 

In summary, it has been shown that the ASA beamformer can prevent 
spatial aliasing in the presence of dominant interferers better than the CSA 
beamformer, and that the ASA beamformer is roughly equivalent to the CSA 
beamformer in calculation burden for configurations with near full effective 
aperture. Because the computational burden of ASA is not less than that 
of CSA, it is therefore concluded that only in scenarios with dominant inter­
ferences is there any advantage to using the ASA beamformer over the CSA 
beamformer. 
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