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Report Title
Micromechanics Based Representative Volume Element Modeling of Heterogeneous Cement Paste

ABSTRACT

The current work focuses on evaluation of the effective elastic properties of cementitious materials through a voxel
based FEA approach. Voxels are generated for a heterogeneous cementitious material (Type-I cement) consisting of
typical volume fractions of various constituent phases from digital microstructures. The microstructure is modeled as
a micro-scale representative volume element (RVE) in ABAQUS to generate cubes several tens of microns in
dimension and subjected to various prescribed deformation modes to generate the effective elastic tensor of the
material. The RVE-calculated elastic properties such as moduli and Poisson’s ratio are validated through an
asymptotic expansion homogenization (AEH) and compared with rule of mixtures. Both Periodic (PBC) and
Kinematic boundary conditions (KBC) are investigated to determine if the elastic properties are invariant due to
boundary conditions. In addition the method of “Windowing” was used to assess the randomness of the constituents
and to validate how the isotropic elastic properties were determined. The average elastic properties obtained from the
displacement based FEA of various locally anisotropic micro-size cubes extracted from an RVE of size 100x100x100
microns showed that the overall RVE response was fully isotropic. The effects of domain size, degree of hydration,
kinematic and periodic boundary conditions, domain sampling techniques, local anisotropy, particle size distribution
(PSD), and random microstructure on elastic properties are studied.



Abstract

1 Effective elastic properties of cementitious materials are evaluated
through a voxel based FEA approach.

Introduction

1 A methodology has been developed for computing the elastic properties
of heterogeneous C-S-H (calcium oxide- silicate oxide- hydroxide) based
multi-phase cementitious materials.

1 The primary focus is to predict homogenized properties at macro-levels
using micro mechanics based models.

1 Focus is on the determination of elastic properties for hydrated cement
paste from un-hydrated constituents when small strain quasi-static loading
conditions are applied to micro-scale.

Methodolog

1 The representative volume element (RVE) is the smallest volume of
material that captures global characteristics of the material and shows the
same overall material properties irrespective of the boundary conditions
applied.

 Software package CEMHYD3D V.3 (NIST), simulates the hydration
process and formation of the digitally generated micro-structure for a
typical Type-I general purpose cement.

 Initial 3D microstructure 1s created based on measured geometrical
particle size distribution (PSD) as well as volume fractions and surface—
area fractions of the constituent phases for cement powder, extracted from
2D composite images of cement at various degrees of hydration (DOH).

1 The RVE-calculated elastic properties such as moduli and Poisson’s ratio
are validated through an asymptotic expansion homogenization (AEH)
and compared with rule of mixtures.

d Windowing is employed to investigate how anisotropy due to local
microstructure leads to overall 1sotropic behavior of the agglomerate.
Windows are analogous to physical core samples prepared by extraction
from a hydrated bulk specimen.

genpartnew.c distrib3d.c stat3d.c
Input: Input: Input: 30image
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*number of particles to place C3S,C3A, C4AF) *phase volumes
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*whether particles should be flocculated, VS de 3 - Ph D .
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Output: initial 3D disrealnew.c
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* microstructure (Phase ID) voxel :
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Generation of particle size distributions, voxel coordinates and material type
Linear elastic
Phase Phase | Volume E Poisson’s Nonlinear Quasi-static
ID Fraction% | (GPa ratio . . . o
*|CE N Nonlinear Dynamic Explicit
1 | Water Porosity 0 19.8251 0.001 0.499924 (Wave propagation)
2 | Tricalcium Silicate (C3S) 1 7.1625 117.6 0.314
3 | Dicalcium Silicate (C2S) 2 2.628 117.6 0.314
4 | Tricalcium Aluminate (C3A) 3 1.7376 117.6 0.314 10000
5 | Tetracalcium Aluminoferrite (C;AT) 4 1.1012 117.6 0.314 E
6 | Dihydrate (Gypsum) (CS.H,) 5 0.0022 45.7 0.33
7 | Hemihydrate (CS.H, ) 6 0.0001 | 62.9 0.3
8 | Anhydrite (CS) 7 0.0005 | 80 0.275 _ 1000 ~-100x100x100
9 | Calcium Hydroxide (CH) 13 14.425 42.3 0.324 2 - 50x50x50
10 | Calcium Silicate Hydrate Gel (CSH) 14 37.4425 22.4 0.25 E —=-20x20x20
11 | Hydrogarnet (C3AHs) 15 4.2538 22.4 0.25 = 100 10x10x10
12 | Ettringite (C,AS,Ha,) 16 6.034 | 224 0.25 s T ROERX
13 | Iron-rich Stable Ettringite 'g
(ETTRCAF) 17 1.807 224 0.25 2 10 .
14 | Monosulfate AFM (C,ASH;, ) 18 2.4623 22.4 0.25 :
15 | Iron Hydroxide (FH3) 19 0.3193 22.4 0.25
16 | Gypsum Formed from Hemihydrate
and Anhydrite (GYPSUMS) 25 0.003 45.7 0.33 1 - ' '
17 | ABSGYPS 29 0.2996 45.7 0.33 0 2 4 6 8 10 12 14 16 18
18 | Empty Porosity 45 0.4963 0 0 Particle Radius (micron)
Material properties and volume fractions of constituent phases Scaling is required to maintain consistent area and
for a representative Type-I cement volume fractions of various constituent phases
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AEH

1 Subject to PBC, exact estimate of the effective homogeneous elastic properties can be obtained
for linear elastic inhomogeneous microstructures that exhibit perfectly-periodic homogeneity by

lving forXk i : o
solving for n: o, et _ 9
aijl]kl(y) ayl _ay]_Dl]mn(y)

L Vector y;, signifies the coordinates of the microstructure RVE, and Dy, is the elastic stiffness

tensor at a point y in the material. The homogenized linear elastic stiffness tensor, Dg-%? 1S given;
hom _ 1 _ OXr "\ 3
Dijmn - |Y|L Dijmn (}’) (6km61n a)’l )d y
\. J
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Microstructure Based Homogenization

Effect of DOH on material bulk properties for 1M-RVE for KBC and PBC
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A rule of mixtures approach independent of the microstructure of the material is used
to compute the effective bulk properties of the cementitious material.

1 The theoretical extreme upper and lower bounds on effective material properties of
multi-phase materials are the Voigt (1928) and Reuss (1929) bounds.

-

n n
1 _Nh 1N
* — ) ) G* :z .G. -_ —_— —_— z_
K= ) Sk £, LK G 4G
[ l= 1=

d  Hashin(1962) presented the composite (or coated) spheres model for determining the
effective material properties for multi-phase materials, based on the dilute suspension

=1

model.
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1 For Hashin and Voigt estimates, the bulk modulus (K) is found to be lower compared
to the values computed based on the microstructure (KBC, PBC and AEH). Both the
Young’s Modulus (E) and shear modulus (G) are determined to be higher than those

_ estimated by microstructure based homogenization. .

Conclusion

1 A comparison between the two domain sampling methods shows that windowing produces
effective material properties with a larger variation than the PMD due to a higher variation
in local phase volume fractions.

1 Macroscopic properties obtained for various DOH and domain sizes, determined by
applying Kinematic Boundary Conditions (KBC), Periodic Boundary Conditions (PBC),
AEH and rule of mixtures based homogenization are found to be comparable.

It is shown that even though cement is a heterogeneous anisotropic material at the micro-
level, the bulk properties are effectively 1sotropic.
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