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Target-Pursuing Scheduling and Routing Policies for
Multiclass Queueing Networks
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Abstract—We propose a parametric class of myopic scheduling
and routing policies for open and closed multiclass queueing net-
works. In open networks, they steer the state of the system to-
ward a predetermined and fixed target, while, in closed networks
they steer instantaneous throughputs toward a fixed target. In both
cases, the proposed policies measure distance from the target using
a weighted norm. In open networks, we establish that for an L2
norm the corresponding policies are stable. In closed networks,
we establish that with proper target selection the corresponding
policy is efficient, that is, attains bottleneck throughput in the in-
finite population limit. In both open and closed networks, the pro-
posed policies are amenable to distributed implementation using
local state information. We exploit the work in a previous paper
to select appropriate parameter values and outline how optimal
parameter values can be computed. We report numerical results
indicating that we obtain near-optimal policies (when the optimal
can be computed) and significantly outperform heuristic alterna-
tives. This work has applications in a number of areas including
optimizing the processing of information in sensor networks.

Index Terms—Fluid models, multiclass queueing networks,
routing, scheduling, sensor networks.

I. INTRODUCTION

WE CONSIDER the problems of scheduling and routing
in open and closed Markovian multiclass queueing

networks (MQNETs). Such networks process jobs that belong
to multiple types, differing in their arrival processes, routes
through the network, processing times, and cost per unit of
waiting time. Scheduling or sequencing decisions determine
which job is being processed at each point in time in the various
network nodes. Routing decisions determine the sequence
of nodes at which a job undergoes processing as it traverses
the network. In open networks, the objective is to minimize a
weighted sum of mean waiting times, while, in closed networks,
we seek to maximize a weighted sum of mean throughputs over
the various job types.

Such problems have applications in a number of domains,
including, manufacturing systems, multiprocessor computer
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systems, communication networks, and clusters of computing
servers. One particular application area of interest concerns
sensor networks. These networks consist of “sensing nodes”
and “processing nodes.” The term “processing nodes” is meant
to describe all nodes that collect and process information gath-
ered by the sensors. Such processing can range from simple
storage to full processing of data in order to make decisions
(e.g., as a controller in a networked control system). Often
times information collected by sensors needs to undergo sev-
eral stages of processing at several processing nodes. Sensor
networks typically operate in adverse environments using
battery-powered sensors with limited local processing capabil-
ities. It follows that the “response time” of processing nodes
needs to be highly optimized to avoid loosing information
from sensor nodes that are nearing the end of their lifetime,
or even avoid delayed action based on critical and time-sen-
sitive information. We can model the collection of processing
nodes as an MQNET. Control actions that affect performance
include routing and scheduling. Routing includes both routing
of messages from sensor nodes to processing nodes, as well
as, routing of messages between processing nodes. Scheduling,
also, can be done at both the processing node level, among jobs
that wait to be processed, and within a processing node among
jobs that wait to access the various node resources (e.g., CPU,
disk, network interface card, etc.).

Performance analysis in MQNETs is notoriously hard. Nat-
urally, optimizing an MQNET is even harder. A version of the
scheduling problem we consider was shown to be EXP-com-
plete [2]. Under Markovian assumptions the problem can be for-
mulated as a stochastic dynamic programming (DP) problem.
This is not very useful in practice for two reasons: 1) Bellman’s
“curse of dimensionality” prohibits us from computing the op-
timal policy in large instances, and 2) implementing the optimal
policy is rather challenging, since typically, nodes need to have
global state information.

There is, by now, a fair amount of work in optimizing
MQNETs. A part of the literature has focused on heavy-traffic,
Brownian, approximations to derive policies in special cases
[3], [4]. [1] and [5] provide a polyhedral relaxation of the re-
gion of achievable performance and obtain bounds on optimal
performance. This relaxation is shown to be exact in Klimov’s
model [6]. Stability is an important and more basic question
than optimization. It should be noted that in open MQNETs
the usual condition of node utilizations being less than one
is not sufficient for the stability of all policies. [7] proves a
seminal result establishing that the stability of a fluid model
is a sufficient condition for the stability of the stochastic open
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MQNET. Several scheduling policies have been proposed for 
open MQNETs, including, fluctuation smoothing policies [8], 
affine shifts of policies for the fluid model [9], tracking of 
heavy-traffic-based policies [10], and tracking optimal tra­
jectories of the fluid model [11]. The latter policies perform 
well far from equilibrium but not necessarily equally well in 
steady state. Other approaches using diffusion models have 
been 1roposed in [12], [13]. 

The work in [7] has been extended in closed networks with a 
single job type [14]. Closed networks are always stable since the 
total number of jobs in the network is constant. The notion of 
efficiency of a scheduling policy has been introduced in [14] and 
can be seen as analogous to stability in open networks. Specifi­
cally, a scheduling policy is called efficient if it attains the max­
imum throughput ofthe bottleneck node as the population of the 
network grows large. 

Our work is also related to problems in manufacturing sys­
tems (see [15]-[19]). In this literature, optimal stochastic sched­
uling policies have been shown to yield controlled dynamics that 
follow piecewise linear trajectories characterized by attractors 
of monotonically decreasing dimension leading to a point at­
tractor (termed hedging point). 

Inspired by the body of work we outlined, in this paper we in­
troduce a class of scheduling and routing policies for M QNET s 
which we call target-pursuing (TP) policies. In both open and 
closed network they "steer" appropriate state variables toward 
a predetermined and fixed "target~' In open networks, this is 
done for the vector of jobs present from all classes, while in 
closed networks for the instantaneous throughput rates of all 
job classes. These policies were especially motivated by the 
observations: 1) state feedback tracking policies in control are 
often effective, and 2) the polyhedral relaxations ofthe region of 
achievable performance in [1] are often tight, thus, a policy that 
seeks to maintain the state of the system in the neighborhood of 
optimal points in these polyhedra can be rather effective. Our 
main findings are as follows. 

1) In open networks, we show that 1P policies are stable 
and in closed networks we establish that 1P policies are 
efficient. To that end, we work with a fluid model. 

2) We demonstrate that TP policies are amenable to dis­
tributed implementation without the need to maintain 
global state information. This is key in making these 
policies attractive to implement. 

3) We discuss ways of tuning policy parameters, notably the 
targets, in order to select the best policy within the class. 

4) We provide a set of illustrative numerical results sug­
gesting that 1P policies perform close to optimal (when it 
can be computed) and outperform heuristic alternatives. 

The remainder of this paper is organized as follows. Section II 
presents our model of open MQNETs where only scheduling 
is subject to optimization. Section III introduces 1P policies 
for open networks. Section IV discusses implementation issues. 
Section V establishes stability. Section VI outlines how to tune 
policy parameters. Section VII considers open MQNETs where 
routing is also subject to optimization. Section VIII focuses on 
closed MQNETs. Section IX contains our numerical results. 
Concluding remarks are in Section X. 

Notational Conventions: Throughout this paper all vectors 
are assumed to be column vectors. We use lower case boldface 
letters to denote vectors and for economy of space we write 
x = (:1: 1 , .•. , :rcu) for the column vectorx.Matrices are denoted 
by boldface upper case letters and prime denotes transpose. We 
use c to denote the vector of all ones, 0 for the vector of all 
zeroes, e, for the -ith unit vector, and I for the identity matrix. For 
any event .4, A denotes its complement and 1 { A} its indicator 
function. For any x E IRn, we denote l:rl = 2:!1 :J:i. We also 
use the weighted L2 norm 

II. 

llxll~ = LJi;(:ri)2
. (1) 

i=l 

When we write llxll 2 it is assumed that ,8 =c. 

II. MODEL AND KEY QUANTfTfES 

In this section, we present the model of our open MQNET. 
Initially, we consider only sequencing decisions. 

Consider a network consisting of N single-server nodes. Jobs 
entering the network are being processed at a series of nodes be­
fore, eventually, leaving the system. Externally arriving jobs can 
be of multiple types differing in their arrival processes, routes 
through the network, processing requirements, and costs per 
unit of waiting time. To account for jobs processed at different 
nodes we define the class of a job as the pair of job type and node 
at which it is receiving service. For example, for a network with 
J( job types there can be up to K x N classes. Let R be the total 
number of classes. 

We let <T(',.) denote the node at which class r is served and 

Ci ~ {7'1tT(r) = i} the constituency list of node ·i, that is, the 
set of classes served at node ·i. Routing is probabilistic, namely, 
when a class r job finishes processing at node tT( 1') it is routed to 
node tT(1J) and becomes a job of class r' with JIObability p,.,.•, 
or leaves the network with probability f.I•·O = 1 - 2:::,~= 1 p,., .•. 
Notice that we adopt the notational convention of identifying 
the external (to the network) world as class zero. We denote by 
P = {Pn' W,.'=l the routing matrix, which, since the network 
is open, is assumed to be substochastic, or equivalently the ma­
trix (I- P') is invertible. External arrivals come according toR 
independent Poisson arrival processes, one for each class, with 
rate Ao.,. for class 1·. Finally, service times are independent of 
anything else in the network and exponentially distributed with 
parameter J.l,. for class r. 

Let n(t) = (n1 (t), ... ,nR(t)) denote the vector of the 
number of jobs present in the network from each class at time 
I. Under the Markovian assumptions we have imposed, and 
under a Markovian policy (i.e., a policy whose actions at time 
I depend on n(l) only), the network evolves according to a 
continuous-time Markov chain with state n(t.). Letting A,. 
denote the total (external and internal) mean arrival rate of class 
r jobs, the following traffic equations are satisfied: 

R 

A,. = Ao.,. + L p.,.'.,.A,.,, r=l, .... R. (2) 
·•·'=1 

In matrix notation this system of equations can be written as A = 
>.o + P'A, where,\= (>.1, ... , >.H) and .>.o = (>.ul, ... , AnH.)· 
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Since the network is open, (2) has a unique solution given by 

A = (I - P ')- 1 Ao. Let p,. ~ >-r/ J.Lr the fraction of time 
server a( r) works on class r. The utilization of server i is Pi = 
I:rEC, Pr · We assume p; < 1 for all nodes i ; otherwise, the 
network is unstable in the sense that ln (t)l ~ w.p. 1 (with 
probability one) as t ~ 

We are interested in a scheduling policy minimizing 

R 

lim '""' hrE [n,.(t)J 
t-oo~ 

r=l 
(3) 

where h = (ht, ... , hn) are given weights. Equivalently, we 
seek to minimize a weighted sum of the mean queue lengths 
where the expectation is taken with respect to the steady-state 
distribution. Using Little's Jaw this cost function can be easily 
transformed into a weighted sum of the mean waiting times. 

ill. TARGEIT-PURSUlNG P OLICIES 

Next, we introduce the fami ly of policies of interest. As 
mentioned earlier, [ I] and [5] provided a characterization of 
the achievable region for the performance vector lim E[n (t)J 

under all Markovian, preemptive, and stable pollci:S. By al­
lowing randomized (non-Markovian) policies, the resulting 
achievable region can be seen to be convex. We denote by A 
this convex achievable region; every point in A is achievable 
by randomizing among Markovian policies.• (We note that 
relaxing achievable state variables, but in a fluid model setting, 
has also been exploited in [13].) 

More specifically, [ I ] derives a polyhedron, say P, that con­
tains the achievable region for lim E [n (t)J (see Fig. 1). Opti-

mizing lim h ' E [n (t)J over P t;iclds an optimal solution say 
t~oo ' 

w *, whose cost is a lower bound on the optimal performance. 
Although the polyhedron P has an exponential number of con­
straints in R, optimizing lim h ' E[n (t)J can be done in polyno­

mial time by solving a li~"'i'aOC: programming (LP) problem in an 
associated higher dimensional polyhedron with a polynomial in 
R number of variables and constraints [1]. The bound is often 
quite tight, but in general w • ~ A and cannot be achieved by 
any policy. An interesting question is whether w * "contains in­
formation" leading to a "good" policy. 

Motivated by the fact that w" can be computed efficiently 
(in polynomial time) and that it is often "close" to the optimal 
z* = arg min,E.A h 'z, we consider a myopic state feedback 
policy that aims at "steering" the state of the system toward w * . 
Such a policy belongs to the following class of policies. 

Definition 1: We define as TP the class of scheduling policies 
which at each time t, and for a finite time interval t::.t, minimize 

E [lln(t + t::. t) - 8111n(t)J 

for some norm II · II· 
The review interval t::. t can be selected to be smaller than the 

timescale of arrivals and services. The expectation in the pre­
vious definition is with respect to the probability distribution of 
n(t + t::.t) conditional on the state being n (t) at time t . Further­
more, the minimization is over all scheduling decisions made 

1Here randomization among two policies A and B means "time-sharing," i.e., 
take a large lime interval and follow A for a fraction of that interval and B for 
the remaining fraction. The resulting policy i s non-Markovian. 

1711 

h 

Fig. I . Achievable region A included in a polyhedron p. 

at time t, i.e., we seek to select which job class is processed at 
every node at time t. Note that the selection of the norm and 
of 8 are left open. As defi ned, TP policies are not necessarily 
work-conserving (i.e., servers can idle even if there is work to be 
done). Henceforth, we refer to their work-conserving versions 
as work-conserving TP policies. 

In the sequel, we will consider the norm of (1) and explore 
several ways of selecting an appropriate " target" 8. As we 
have indicated above, one potential target is w*. We will see 
that setting 8 = w • often leads to a good policy. We note that 
TP policies are myopic and greedy, thus, we do not claim 
any optimality properties. We only establish stability results 
and provide some analytical and numerical evidence that they 
perform quite well. 

IV. IMPLEMENTATION IsSUES 

In this section, we discuss how to best implement TP poli­
cies. We will see that the implementation complexity amounts 
to solving an LP problem at each decision epoch. However, the 
computations can be decomposed across nodes and nodes re­
quire only (limited) local state information to perform them. 

Consider the network of Section ll and let us uniforrnize the 
corresponding continuous-time Markov chain In particular set 
I/= L~=l >-or+ I:~=l p,,. and consider the ~niforrnized chain 
with uniform transition rate 1/ . Let { Tk} be the sequence of 
epochs at which the uniformized chain makes transitions; this is 
also the sequence of ticks from a "Poisson clock" with rate //. As 
n ( t) is right-continuous, n ( rk) refers to the state right after the 
~th transition. Select t::.t « minr min{1, 1/ .A0,., 1/ /J,r }, i.e., t::.t 
ts small enough and in a much faster timescale than arrivals and 
services. ln ( TA:, Tk+6. lJ we have: an external class r arrival with 
probability >.o,. l::. t, a class r service completion with probability 
J.Lrl::.t if node a(1') is working on class r at Tk, a self-transition 
with probability J.Lrl::.t if node a(T) is not working on class 1· at 
Tk, no transition with probability 1 - 1/ 6-t, and more than one 
transitions with probability o(t::.t) . 

In the uniformized Markov chain, scheduling decisions need 
only to be made at the epochs Tk · Let Br(rk) the event that 
node a(1·) is working on class 1' right after Tkt and Br(rk ) its 
complement. For any 8 E IR, l::.t as defined before, and using 
norm ( I), the TP policy minimizes 

~t E [lln(rk+!::.t) -811~- lln(rk)- 8 11~ ln(rk) J 
R. 

= -vlln(rk) - 81 1~+ L >.o,· l l n(rk)+e,.- 811~ 
·r = l 
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Set x ( rk) = (1 { B1 ( rk)}, ... , 1 { B n( rk)} ) . Discarding con­
stants, notice that the right-hand side (RHS) of (4) can be written 
as x(rk)'q(n(rk), 9,,B) + o(!:::,.t)J !:::,.t where q(n (rk), 9, ,B) E 
Rn is appropriately defined. Since for small enough /:::,.t the first 
term dominates, to implement the TP policy with norm II · II~ 
we will be solving at each epoch T k the following LP problem: 

(LP1) min x(rk)'q (n(rk), B,,B) 

s.t . L x,.(rk):::; 1, i= 1, ... , N 

(5) 

where x ( rk) is the decision vector.2 The first inequality con­
straint above bounds the utilization of each server by one and 
the constraint x(rk) :::; n (r k) ensures that no capacity is allo­
cated to empty classes. If we impose work conservation, the first 
inequality constraint becomes an equality at all nodes i with jobs 
present. Under both work-conserving and nonwork-conserving 
TP policies, the constraint matrix is totally unimodular, hence, 
the feasible set is a polytope with integer extreme points and 
(LP 1) yields an integer optimal solution. 

A couple of remarks on the implementation complexity are in 
order. The size of (LP 1) is 0 ( RN) which is polynomial in the 
size of the MQNET. Very large instances of LP problems can 
be solved efficiently (in polynomial time) using interior-point 
algorithms. For large networks, though, the computational re­
quirements for solving (LP1) can be substantial. Moreover, 
the formulation in (5) requires a centralized computation with 
global state information. Fortunately, the work can be decentral­
ized and distributed across various nodes. To see that, and for 
simplicity of the exposition, let .B = e. Decomposing (LP1) 
across nodes, node i has to solve 

(Node- LP1) 

min L p,,x,.(r k)(2- p,.o) 

rEC; 

R 

+ 2 L J.L,.x,.(r k) L 7Jn·' 
reC, r'=l 

X [nr'(rk) - Br' - nr(rk) + Br] 

s.t . L Xr(rk) :::; 1 

where Xr( rk) , r E Ci, are the decision variables. Typically the 
number of classes served at an arbitrary node i is much less 
than R. Moreover, to solve (Node - LP1), node i needs state 

2Equivalently, and to avoid i naccuracies due to 6.t, we can define the TP 
policy as the policy obtained through (LPl) . 

information for classes r E Ci, and all classes within one hop, 
i.e., r' with p,.,., > Oforall r E C, .Thenumberofsuch r.! would 
also be much less than R in most cases. Thus, (Node - LP1) 
can be solved by each node using local information much faster 
than solving (L P1). 

V. STABILITY ANALYSIS 

In this section, we show that TP policies are stable. To that 
end, and following [7] and [20], we consider a fluid model, es­
tablish stability of the fluid model, and then infer the stability of 
the stochastic system. 

A. Fluid Model 

To avoid overburdening our notation we use n (t) to denote 
the queue length vector in the fluid model as well; it will be ev­
ident from the context whether we refer to the fluid model or 
the stochastic system. Let Tr ( t) the cumulative amount of time 
server a ( r) has spent working on class r in [ 0, t ] . Let M = 
d iag(p,l , J.t2 , ... ,J.Ln), andu(t) = (u1(t), ... , un(t)),where 
d iag( x1, . .. , x n) denotes the diagonal matrix with main diag-
onal x1, . . . , x R and zeroes elsewhere. Let also C = ( Cir ) be 
the constituency matrix of the network with Ci•· = 1 {a ( r) = i} , 
for all r = 1, ... , R and i = 1, ... , N . In the fluid model, for 
all t 2:: 0 we have 

n(t) = .Xo - (I - P ' )M u(t) 

C u (t):::; e 

n (t) , u(t) 2:: 0. (6) 

Here, t£,.(t) = Tr(t) which can be interpreted as the fraction of 
the capacity of server a(r) allocated to class r at time t . The 
functions nr(t) and Tr(t) are absolutely continuous, and thus, 
differentiable almost everywhere. The equations in (6) hold for 
all times t at which nr(t) and Tr(t) are differentiable; these 
points in time will be referred to as regular. We next derive the 
fluid version of the TP policy under the norm in (1). 

Note that at every decision epoch TP policies minimize the 
expression given in Definition l subject to the constraints of 
(LP1) [cf. (5)]. Let us first consider the objective function in 
this minimization. Let ln(O) I = k > 0 and consider the fluid 
scaling of the stochastic system 

iik(t) = ..!..nk(kt) 
k 

where nk ( ·) denotes the queue length vector in the stochastic 
system initialized with ln (O) I = k . Since we will deal with 
the limit k --+ oo in the space of sample paths of nk(t), let 
us explicitly write nk(t,w) for a particular sample path w of 
nk(t) . We restrict ourselves only to w satisfying the strong law 
of large numbers (SLLN) for the arrival, service, and routing 
processes. [20] proves that if ln k(O,w) l/ k is bounded as k --+ 

oo, then ii k ( · , w) is precompact as k --+ oo in the Skorohod path 
space [)R[o, oo) endowed with the u.o.c. (uniformly on compact 
sets) topology. This implies that iik(-, w) is tight as k --+ oo 
([21]- [23]). Thus, for each sequence k --+ oo there exists a 
subsequence k. --+ oo along which 

u.o.c. 
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for some process ii E oR[o, oo) which is calledfiuid limit and 
satisfies (6). At time kt the TP policy minimizes 

E [lln(kt + i::!.t) - 811 - lln(kt) - Ollln (kt)] . 

Scaling by 1/ k, this is equivalent to minimizing 

Taking k __, oo, and since the stochastic system converges to 
the fluid limit for all w considered before, we conclude that for 
all (J the fluid version of the TP policy seeks to minimize 

d 
dt ll n (t)ll (7) 

at regular t . Using the norm in (l) and taking the fluid limit of 
the policy prescribed by (LP 1) the corresponding fluid version 
minimizes d l lii (t)ll~/ dt . 

Consider next the constraints of (LP 1) under which the min­
imization of (7) is done. The constraints of (LP1) under the 
fluid scaling translate to the constraints in (6) with the additional 
constraint that for all classes r it holds tt,.(t) = 0 whenever 
n,.(t) = 0. Therefore, the fluid version of the TP policy mini­
mizes the expression in (7) subject to the fluid feasibility con­
straints of (6) and the additional "idle when empty" constraint 
indicated above. This policy is well defined for all regular t and 
we will refer to it as the fluid target-pursuing (FTP) policy. FfP 
aims at maximizing the negative drift and driving the fluid level 
toward zero. It can be shown that the amounts of time allocated 
to various classes in the stochastic system under the TP policy 
converge to corresponding quantities in the fluid model under 
the FfP. 

B. Stability of the Fluid Model 

We next establish the stability of the fluid model operating 
under the FfP policy, that is, the nonwork-conserving policy 
minimizing dl ln(t) l l ~/dt for each t . 

Proposition V.l: Consider the fluid model operating under 
the nonwork-conserving FfP policy which uses the weighted 
L2 norm l l n(t)ll~. where .8 > 0 . For every solution of the fluid 
equations (6) satisfying ln (O) I :::; 1 and 'u,.(t) = 0 whenever 
n,. ( t) = 0 for allr·, there exists some 8 ( rJ) > 0 such that for all 
0 < '/} < 1 and all t 2: 8 it follows ln(t) l :::; rJ . 

Proof" Fix 'rJ E (0, 1) . Let B = d iag(,61, ... ,f3n) and 

G(t) ~ l l n(t)ll~ = n '(t)Bn(t). 

Clearly, G(t) = 0 if and only if n (t) = 0, and G(n (t)) can 
be shown to be locally Lipschitz continuous in n (t), i.e., for 
any compact set 0, there exists a constant t;;( 0 ) such that for 
any n 1( t) , n 2(t) E 0 it holds that IG(n t(t))- G(n2(t)) l :::; 
t;;( O ) ln 1 (t) - n 2(t) l. We show next that G(t) is nonincreasing 
in t . Using the fluid model dynamics of (6) we obtain 

G(t) = 2n'(t)B [.Xo + P 'Mu (t) - M u (t)] . (8) 

Let us now employ the nonwork-conserving policy that assigns 
a fraction u,. ( t) = p,. of node's u ( r·) capacity to all nonempty 
classes r and zero capacity to all empty classes. Let u ( t) be 
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the vector induced by this policy. Let also u = (Pt, ... , p n) . 
Note that for all t P ' Mu(t) :::; P'Mu, and n '(t)BMu (t) = 
n'(t)BMu. As a result, (8) implies 

G(t):::; 2n '(t)B [.Xo - (I - P ')Mu] = 0 (9) 

where in the last equation we used the traffic equations (cf. 
(2)). Since the FfP policy described in the statement of the 
Proposition minimizes G(t) for all t , we will have G(t) :::; 0 
for this latter policy. Thus, G ( t) is nonincreasing in time and 
G(t) :::; G(O) for all t 2: 0. 

Let E,.(t) = {3,.n-r(t) - ~~=t1J·ro·'.8r'nr'(t), e (t) = 
(6(t) , ... ,en(t)), and note thate(t) =(I - P )B n (t) . Due to 

the monotonicity of G(t), for all t 2: 0 and r we have 

R 

fjmin (nr(t))
2 :S ,8,. (n,.(t))

2 :S L Pr (n,.(t))
2 :S G(O) 

··=1 

where .8min = min,. ,B, .. Thus, n,.(t) :S )G(O)/ f3m in. for all 
t 2: 0 and r . This implies that for all t 2: 0 and r 

R 

le •. (t) l :::;,6,.n,.(t) + '2::::: p,.,.,,e,.,n,., (t) 
r'= l 

(
G(O) ) (2- p,.o) 
{31n1n 

(10) 

where f3ma:x = max,. {3,. . Consider the nonwork-conserving 
policy which allocates to class r 

'u,.(t) = { >.,+;;··(t) , if n,.(t~ > 0 
0, otherwise. 

(11) 

Let € > 0 be such that at all t 2: 0 we have Pi < 1 for all nodes 
j and A,. + cE,.( t) 2: 0 for all r . Such an E > 0 exists due to (10). 
Using this policy, from (8), we obtain 

G(t) :S 2 L ,6,.nr(t) 
r ln r(t)>O 

X [ Aor· - Ar - cE,.(t) + ~ Pr'r· (A,., + tEr' (t))] 

= 2E ~{3.,.n.,.(t) [ ~P•·'r·Er'(t) - E,.(t)] 

= - 2m'(t)B (I- P')(I- P )Bn(t). 

In the first inequality shown above, we used the fact 
A,. + ce,. ( t) 2: 0 for all r and t 2: 0. In the first equality above we 
used the traffic equations in (2). Let D = B (I - P')(I - P )B 
and note that D is symmetric. Since we are dealing with an 
open queueing network, (I - P') is invertible, thus, B (I - P ' ) 
is also invertible. Hence, D is positive definite and has real 
and strictly positive eigenvalues. Letting Smin be the smallest 
eigenvalue of D we obtain 

G(t) :S - 2m'(t)Dn(t) :S - 2Smin€ lln (t) ll
2

. (12) 

Whenever ln(t) l 2: 'f/, we have 

""' 2 (~i ni(t))
2 

'1}
2 

G(t) 2: ,Brnin ~ (ni(t)) 2: .8rnin R 2: ,Brnin R · 
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This implies 

2 

fjmax lln(t) ll 2 ~ n'(t)Bn(t) ~ f3min ~ 
which implies in turn 

(13) 

Consequently, in the fluid model under policy (11), whenever 
G(t) ~ /3min·rN R, (12) and (13) yield 

(14) 

Since the FfP policy described in the statement of the Propo­
sition minimizes G(t) for all t , G(t) will be upper-bounded by 
- 2sm;n cif>• under the latter policy as well. 

Suppose now G(O) ~ /3min112 / R. Equation (14) implies that 
G(t) will reach the region G(t) ::; f3min'IJ2 / R within time t,1 
where 

) zz:. G(O - /3min R, 
t, ::; -

2Smintc/>* 

Furthermore, G(t) will remain in this region for all t ~ tr1 

since it is a nonincreasing function of time. We conclude that 
for all t ~ t, , it holds that ln(t) l ::; 'IJ, since otherwise G(t) ~ 
/3m;11r/

2
/ R. Finally, in the case G(O) ::; /3min''12

/ R, the same ar­
gument applies and In ( t) I ::; 11 for all t ~ 0. • 

C. Stability of the Stochastic Network 

We conclude this section by establishing that the MQNET 
is stable under the TP policy using the norm in (1). Note that 
for any target 0 E RR the TP policy is Markovian and under 
this policy the state of the network is the queue length vector 
n ( t) E Z~ that evolves as a continuous-time Markov chain. 
The next theorem establishes that this Markov chain is positive 
Harris recurrent (see [7], [20], [21]). 

Theorem V.2: Consider the MQNET of Section ll operated 
under the TP policy that uses the norm lln(t)ll/3, where /3 > 0. 
The Markov chain n(t) is positive Harris recurrent. 

Proof' We will slightly modify the proof in [7]. Proposi­
tion V. l establishes that there exists some 8 ~ 1 such that for any 
solution ii(t) of the fluid model equations and any 0 < 1J < 1 
we have lii(t) l ::; Tf for all t ~ 8. Let { Zk} be any sequence of 
initial states n (O) with lzkl ---+ oo as k ---+ oo. From the exis­
tence of the fluid limit (see [7]) there exists a subsequence { z ~;;3 } 
such that 

where, as in Section V-A, ii(-) denotes the fluid limit. The fluid 
limit satisfies the fluid model equations, thus, 

Using the uniform integrability (see [7, Lemma 4.5]) of these­
quence on the left-hand side, we obtain 

Since { Zk} is an arbitrary sequence we have 

lim -
1

1

1

E [Inz (lz l8)1] ::;r]. 
lzl-+oo Z 

Let 0 < c < 1 - 11· There exists some "' ~ 1 such that 

1 
j;TE [lnz (lzi 8) IJ ::; 1 - f. 

for all z with lzl > "'· The remainder of the proof follows ex­
actly the proof of [7, Th. 3.1]. • 

VI. OPTIMIZING OVER POLICY PARAMETERS 

(LPl) suggests that if class i and j jobs are processed at 
the same node, qi ( n ( Tk) , 0, /3) = qj ( n ( Tk), 0, /3) constitutes a 
policy switching hyperplane. Namely, TP policies are character­
ized by switching hyperplanes determined by policy parameters. 
In this section, we discuss how we can optimize over these pa­
rameters, that is, the target 0 and the weight vector /3, in order to 

obtain the best policy within the class [i.e., minimizing (3)]. As 
mentioned in Section ill, the achievable region LP provides a 
tentative value of 0 equal to w * which, as we will see, performs 
quite well. Here, we are interested in further improving the se­
lection of 0 and optimizing over {3 as well. To that end, we use 
a simulation-based method developed in [24]. The underlying 
idea is rather simple: During the course of a simulation of the 
system we obtain "gradient information" which we then use to 

optimize over the parameters. 
1) Smooth Target-Pursuing Policies: To fix notation, con­

sider the uniforrnized Markov chain of Section IV and the TP 
policy outlined there with weight vector /3 > 0 . At each tran­
sition epoch Tk, scheduling decisions are made according to 

the optimal solution, say x*(n ( Tk), 0, /3), of (LP l ). Note that 
x*(n( Tk), 0, /3) is piecewise constant in (0, /3) with the jumps 
occurring at the points that the optimal solution switches from 
one extreme point of the feasible set to another. Consequently, 
using a simulation-based gradient optimization method to opti­
mize over the parameters would not be very successful since the 
gradients would be zero most of the time. 

To bypass this difficulty we use randomization to introduce 
a smoother version of our TP policies. For simplicity of the 
exposition, we concentrate on work-conserving TP policies; 
the nonwork-conserving case can be handled similarly. Let 
y C•·)(n(Tk), 0, /3) be a feasible solution of (LP l ) such that 
at time Tk class T is served at node a ( T) and the remaining 
decisions at all other nodes coincide with x* ( n( Tk), 0, /3). Let 
ry > 0 be a scalar and set 

L e--yy(r') (n (rk) ,/1,.8)' q (n (Tk ) ,8,,8) . 
(15) 

r' ECu(•·) ,n ,_, (Tk)> O 

At time Tb we serve class 7' at node a(1·) with probability 

( ( ) 0 /3) 
_ { &,. (n(Tk), 0, /3), ifn,.(Tk) > 0 (l6) a,. n Tk , , -

0 
th . 

, o erwtse. 

Notice that as ry ---+ 0 all nonempty classes at a node have equal 
probability of being served, and as 'Y ---+ oo the randomized 
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policy converges to the policy implied by x * ( n ( ""'), 0, /3) . The 
expression in (15) can be simplified as 

where q,.(n (Tk), O,{J) is the r th coordinate of q (n (Tk), O,{J) . 
Henceforth, we will be referring to this policy as the work-con­
serving smooth target-pursuing (STP) policy. This randomiza­
tion scheme is useful in satisfying the conditions required by the 
simulation-based optimization algorithm we implement 

2) Simulation-Based Optimization: We adopted the STP 
policy and used the simulation-based method of [24] to optimize 
the objective of (3) over the parameters ( 0, {3). In Section IX, 
we report illustrative numerical results and compare with a 
set of other scheduling policies. Under a set of stability and 
regularity conditions and a standard diminishing step-size rule, 
the algorithm in [24] is shown to convergence w.p. 1 to a local 
minimum. In our setting, the required stability condition is 
satisfied due to the result in Section V The remaining regularity 
conditions, however, are not satisfied in all cases of interest 

Under the STP policy, a:r(n (Tk), 0, {3) satisfies the required 
regularity conditions with respect to 0 but not with respect to {3. 
As a result, we fixed {3 and used the method in [24] to optimize 
over 0. We then employed random search around {3 = e to se­
lect a good {3. Admittedly, using a simulation-based method to 
optimize over 0 can be slow. We were encouraged to notice that 
initializing the algorithm with a tentative value equal to w*, ob­
tained from the achievable region LP, led to considerably faster 
convergence. 

Vll. COMBINED R OUTING/SCHEDULING D ECISIONS 

In this section, we extend the basic queueing network model 
of Section ll to consider the case where routing is not fixed but 
also subject to optimization. 

We adopt the model and notation of Section ll, indicating 
only the differences with the extended model we consider here. 
As in Section ll, jobs of class 1· = 1, ... , R arrive to the net­
work according to a Poisson arrival process with rate .A0, .. Upon 
arrival, though, and before joining the corresponding queue, a 
router selects a particular class and routes the arriving job to that 
class. Let A, .. ,., ( t) denote the event that an externally arriving job 
of class r is routed to class 1'1 upon its arrival at time t . Routing 
decisions are also made at the various nodes when jobs are ad­
mitted for service. Let B,.,,, ( t) denote the event that at time t 
node a(r) is working on a class r job that will be routed to class 
r 1 upon completion of service. 

In this modified setting, we are interested in devising a com­
bined scheduling and routing policy to minimize the cost func­
tion (3). Target-pursuing (TP) policies are defined exactly as in 
Section ill (cf. Definition l) with the only exception that the 
minimization is with respect to both scheduling and routing de­
cisions at each time t . A polyhedral relaxation P of the achiev­
able region A can be obtained in this case as well (see [ l]); an 
optimal solution of this achievable region LP, denoted again by 
w *, is one particular choice for 0. 
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To describe the implementation ofTP policies in the extended 
model we uniforrnize the Markov chain n(t) as in Section IV. 
Let again v denote the uniform transition rate and { '~k} the se­
quence of transition epochs in the uniforrnized Markov chain. 
For any 0, t:J.t small enough and as specified in Section IV, and 
using norm (l), the TP policy minimizes 

~tE ~ I n(-rk +t:J. t) - 0 1 1~ ln (rk)J 

= (~t -I/) l ln(Tk) - 0 1 1~ 
n n 

+ L L .Ao,.1{An'(rk)} lln (rk)+e,., - 011; 
r=l r'= l 

n [ n 
+ ~J.Lr 1~ 1{B,.,.,(rk)}l ln(-rk)- e,.+ e,.,- 0 1 1~ 

+ 1 {B,.o(rk)}lln(rk) - e,.- 0 1 1~] 
n n (t:J. t) 

+ L J.Lr L1{ B,.,.,(rk) } lln(rk) - 011~+ 0 
t:J. t . (17) 

r = l •·'=0 

Let now Xnr (T~,) = 1{fl,.,.,(,k)} for r = 1, ... ,R and 
r' = 0, 1, . . . , R, y,.., .• (-rk) = 1{A,.,,(rk)} for 7', r ' = 1, . .. , R 
and denote x ( rk) (1 { B 10( rk)}, . .. , 1 { B nn( rk)} ), 
y( rk) = (1 { A11 ( rk)}, ... , 1 {Ann( rk)} ). Discarding con­
stants, the RHS of (17) can be written as 

where Qi ( n( '~k) , 0, {3), i = 1, 2, are appropriately defined. Since 
for small enough t:J.t the first two terms dominate, to implement 
the TP policy with norm 11 ·1 1~ we will be solving the following 
LP problem at each epoch Tk : 

(LP2) min x ( '~k)' Q1 (n( rk), 0, {3) + y( Tk)' Q2(n( '~k) , 0, {3) 
R 

s.t. 2:::: 2:::: :r:,.,., c "k) ::::; 1, 'r/i 
•·EC; •·' = 0 
R 

L x.,., .• (rk) ::=; n,.(-rk) , 'r/r 
1' 1= 0 

n 
2:::: y,.,.,(-rk) = 1, 'r/1· 
·r '=l 

(18) 

where (x (rk), y (rk)) is the decision vector. In the case of a 
work-conserving TP policy, the first inequality constraint above 
becomes an equality, except at nodes with no jobs present It 
should be noted that situations where a class can only be routed 
to a subset of other class are easily accommodated; one needs to 

simply add constraints of the form :r:,.,., ( '~k) = 0 and Yn' ( '~k) = 
0 if 'r can not be routed to T

1
• Again, as it was the case with 

(LP1), the work to solve (LP2) can be distributed across the 
nodes of the network with node i deciding for Xn' ( Tk) and 
Yn·' ( '~"k) with r E Ci . Furthermore, each node needs only local 
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state information, i.e., state information for all classes served at 
the node and all classes the node can route jobs to. 

Finally, the discussion of Section VI applies intact to the ex­
tended model considered here and a simulation-based method to 
optimize over policy parameters, 8 and {3, is applicable. Since 
the optimal solution of (L P2) is integer, a smooth TP policy (as 
in Section VI) must be employed to that end. 

A. Fluid Model and the Fluid TP Policy 

We now proceed to establish the stability of TP policies in 
the combined scheduling/routing model. Let Ar-r' (t), T, r' = 
1, . .. , R, denote the number of external class r arrivals routed 
to class ,,.1 upon arrival in the time interval [0, t] . Let also T,.,., (t), 
r = 1, ... , R, 1'

1 = 0, .. . , R, denote the cumulative amount of 
time server u ( T) has spent in the time interval [0, t] working on 
class T jobs that are routed to class T 1

• In the fluid model, for all 
t ~ 0, the dynamics of the network satisfy 

R R 

n ,.(t) = L Ao,..,a.,.,,.(t)+ LJ.Lr't~,.,,. (t) 
1' 1=1 ·r'=1 

R 

- J.Lr• L 'ttr,•' ( t) T = 1, ... , R 
··'=0 

n 
L L:: t~r-r'(t)~1 i= 1, ... ,N 

t•EC; •·'=0 
R 

L iin'(t) = 1 T = l, ... ,R 
r'=l 

r,r' =1, ... , R 

T= 1, ... ,R, r'= O, ... ,R 
(19) 

where Ur·r' ( t) = T,..,., ( t) is the fraction of the capacity of server 
0' ( T) allocated a~ time t to class T jobs that are routed to class T1

, 

and Q.,.,r(t) = Ar'r·(t)/ AQr·' is the fraction of class T
1 external 

arrivals routed to class r upon their arrival at time t . The equa­
tions in (19) hold for all regular times t . 

Following the same reasoning as in Section V-A, for all t and 
8 the fluid version of the TP policy selects the variables a,.,., ( t) 
and u,.,., ( t) to minimize 

d 
dt lln(t)ll 

where n(t) is the fluid limit of the stochastic system satisfying 
(19). Regarding the constraints under which this minimization 
is performed, the discussion of Section V-A applies. Specifi­
cally, the FfP policy using the L2 norm of n(t) needs to satisfy 
u,.,.,(t) = 0 whenever nr(t) = 0 for all r , r', and t . 

B. Stability Analysis 

The following proposition is similar to Prop. V. l and estab­
lishes a form of stability for the fluid model using the non­
work-conserving FfP policy under norm l l n(t)ll~ · 

Proposition Vl/.1: Consider the fluid model operating under 
the nonwork-conserving FfP policy which uses norm l l n (t) l l~, 
where {3 > 0. Suppose there exists a routing probability matrix 

P = {p.,.,., }~•·'= 1 and nonnegative y,.,.,, T, 1'
1 = 1, . .. , R, such 

that 

n n 
T = l , ... ,R 

r'=1 •·'=1 
R 

L Yrr' = 1 T = 1, ... , R 
r·'=l 

y,.,., ~ 0, r , T1 = 1, ... , R 
"\"" ,\,. 
~ - <1. J.Lr• ' 

r·ECi 

i= 1, .. . , N 

and (I - P') is invertible. Then for every solution of the fluid 
equations (19) satisfying ln(O)I ~ 1 and 'Ur•·' ( t) = 0 whenever 
n,.(t) = 0 for all r, 1'

1
, and t, there exists some 8(rJ) > 0 such 

that for all 0 < rJ < 1 and all t ~ 8 it follows ln(t)l ~ rJ. 
Proof' The proof is similar to the one of Prop. V.l. Fix 

'fJ E (0, 1) . Let again B = diag(,61 , .. . ,,6n) and 

C,. 2 I 
G(t) = lln(t) llp = n (t)Bn(t) . 

Using the fluid model dynamics of (19) we obtain 

G(t) = 2 ~ ,6.,.n,.(t) [t .\o,-'ar'•·(t) 

+ 1~ J.Lr''U1•
1r(t) - J.Lr· ,ta U,.,.,(t)]. 

Let us adopt a policy that decomposes routing and scheduling 
decisions. More specifically, we employ a (fixed) routing policy 
that uses a routing matrix P and nonnegative Yr·r' that satisfy the 
set of equations given in the statement of the proposition. As in 
the pure scheduling problem t~,.(t) = L~=O Un·'(t) denotes 
the fraction of server' s u(T) capacity allocated to class Tat time 
t . Under this fixed routing policy, a,.,.,.(t) = Yr'•· and u,.,,.(t) = 
·u,., ( t)p .. ,,., for all t, yielding 

G(t) = 2 ;,B,.n,.(t) [,~ Aor·'Y•·'r 

R l +J; P••·' J.Lr' ( t )1Jr1 r - P•r 11r ( t) · (20) 

The FfP policy defined in the statement of the proposition 
minimizes G(t) over routing/scheduling decisions, thus, the 
resulting G(t) is less than or equal the one in (20) for all t . 

We have now reduced the problem to the exact same sched­
uling problem addressed in Prop. V.l, namely, an open MQNET 
with fixed routing matrix P and external Poisson arrival rate 
equal to L~=1 AQ·r'Y·r'r for class 1' . The first of the set of equa­
tions in the statement of the proposition is the traffic equation 
while the last is the usual stability condition at each node. Fol­
lowing the steps of the proof of Prop. V.l we can establish the 
desired result. • 

Following the same steps as in the proof of Theorem V.2 we 
can also establish that Proposition VII.l implies the stability of 
the stochastic system. The main result for the TP policy in the 
combined routing/scheduling model is summarized next. 
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Theorem Vl/.2: Consider the MQNET of this section in­
volving both sequencing and routing decisions and operated 
under the TP policy using norm lln(t) II.B, where /3 > 0. Sup­
pose there exists a routing probability matrix P = {Prr' }~r·' =l 
and nonnegative Yrr' , r , 1" = 1, .. . , R, such that 

R R 

>.,. = L Aor'Yr'•· + L A.,.•Pr'•· , T = 1, ... , R 
r'= l r'=l 

R 

L 1Jrr' = 1, r = 1, . .. ,R 
r·'=l 

y,.,., ~ 0, r, r' = 1, .. . , R 

L Ar < 1, i = 1, . .. , N 
r·EC; ~tr 

and (I - P ') is invertible. Then, the corresponding Markov chain 
n (t) is positive Harris recurrent. 

Vill. CLOSED NETWORKS 

In this section, we consider the case of closed MQNEfs 
and introduce a class of TP policies for such systems. We first 
introduce the model and define TP policies, then discuss their 
implementation, and finally use fluid analysis to investigate 
their efficiency. The notion of efficiency of scheduling policies 
in closed networks has been introduced in [14]; to accommodate 
our more general model of closed networks, we will extend 
an efficiency sufficient condition established there. 

To define the class of closed networks of interest, consider 
the open MQNET of Section II. Here, however, there are no 
external arrivals (Aor = 0, 'v'r') and the probability a job exits 
the network is zero (p,.0 = 0, 'v'r'). Routing is fixed and not 
subject to optimization; at the end of this Section we comment 
on how our work can be extended to address routing as well. 
The routing probability matrix P defines a number, say K , of 
noncommunicating classes which we call types; a class of type k 
can never be routed to a class of some other type not equal to k. 
We use the notation type ( r) to denote the type of class r . In the 
closed network, we fix to Sk the number of jobs of type k and 
(to exclude trivial cases) assume Sk > 0 for all k = 1, ... , K. 
LetS = (S1 , .. . , SK) . 

Let us again uniforrnize the Markov chain n (t), use 
the uniform transition rate v = I:~= l p,,., and denote 
by { Tk} the sequence of transition epochs. Denote by 
Ar = lim M.·E[l {B,.(rk)}] the throughput of class r, 

k-+oo 
where, as before, Br( rk) denotes the event that node a(r) is 
working on class r right after time Tk . We are interested in a 
scheduling policy maximizing 

R 

l: h,.>.,. (21) 
··=1 

where h = (hi> ... , hn) ~ 0 are given weights . 
Let x (t) = (l {B1(t)} , .. . , l{Bn(t)}) be the vector of 

scheduling decisions at time t . Recall M = d iag(p,1 , ... , ~tn) . 
We define TP policies for closed MQNETs as follows . 

Definition 2: We define as target-pursuing (TP) the class of 
scheduling policies for closed MQNETs which at each time t 
minimize IIMx(t) - 011 for some norm II · II· 
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In the uniforrnized Markov chain and for any weighted norm 
ll· llp , with /3 > 0 , implementing a TP policy amounts to solving 
the following optimization problem at every epoch Tk 

(OPT3) min IIMx(rk) - Ollp 

s.t. L x,.(rk):::; 1 i = 1, . . . ,N 

(22) 

where x ( Tk) is the decision vector. For the weighted L2 norm 
of (l) this is a quadratic programming (QP) problem for which 
efficient (i.e., polynomial time) interior-point algorithms exist. 
The work for solving (OP T3) can be decomposed and dis­
tributed across the various nodes along the lines of Section IV. In 
the case of a work-conserving TP policy, the first inequality con­
straint of (OPT3) becomes an equality at all nodes with jobs 
present. It should be noted that when all classes are nonempty, 
the optimal solution of (OPT3) does not depend on time and 
thus, it only needs to be solved once. The resulting policy is 
simply the projection of (fh/ p,1 , . .. , B R! ~R) onto the feasible 
set of (OPT3), which is a static (i.e., time-independent) pro­
cessor sharing policy. However, when empty classes exist, some 
of the decision variables are forced to zero (due to the constraint 
x(rk) :::; n(rk)) and the static policy is adjusted to avoid allo­
cating capacity to empty classes. 

As with open networks, [1] derives an LP whose optimal 
value is an upper bound on the optimal weighted throughput of 
(21). This bound is often tight and the associated optimal solu­
tion can provide one potential target 0. 

For closed MQNETs the discussion of Section VI applies 
and one can use a simulation-based method to optimize over 
the policy parameters 0 and /3. Notice that (OPT3) is a QP 
problem, thus, the use of a randomized policy is not necessary 
since the optimal solution is smooth in the policy parameters. 

A. Efficiency of TP Policies for Closed Networks 

We next follow [14] and discuss the efficiency of the TP 
policy. To that end, we work with a fluid model. 

1) Fluid Model: Consider the stochastic system and let 
D,.(t) denote the number of departures from class 'r in [0, t ], 
and T,.(t) the amount of time server o-(r) spends working 
on class 1· in [0, t]. Let also z = n (O) denote the initial con­
dition at time zero, assuming that z is in the support of S 
(i.e., l::{rltype(r)=k} z,. = Sk > 0 for all k = 1, . . . , K ). To 
obtain the fluid model we use the same fluid scaling as in open 
networks, and consider sequences of initial condition vectors 
ZJ = lz with l -+ oo. We use a bar to indicate various quantities 
of interest in the fluid model, in particular, ii(t) denotes the 
queue length vector. We have 

where superscript l indicates quantities in a system initialized 
with ZJ jobs. Using the exact same analysis as in [14], for every 
sequence of initial conditions z t there exists a subsequence Zt3 
such that along this subsequence and as t.1 -+ oo 

n1i (·,w) -+ ii(-) u.o.c. 
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where w is a sample path satisfying the SLLN for service and 
routing processes. This result is analogous to the one obtained 
in [20] for open networks. For the limit processes, we have 

tJ,.(t) = p,,.f',.(t), 1· = 1, ... , R 
R 

'i'i,.(t) = fi,.(O) + L p,,,1J,.,(t) - b,.(t), T = l , .. . , R 
'1''=1 

i = 1, .. . ,N 
rEC; 

R 

2: -n,.(O) = 1 " _ ( sk L n,. O) = g 
{rlt.ype(r') = q ··=1 

r = l , ... , R (23) 

along witjl some additional equations provided in [14]. Let 
u,.(t) = T,.(t) denote the fraction of the capacity allocated to 
class r by node O'(r), where the derivative is defined at regular 
times. We next derive the fluid version of the TP policy of 
Definition 2, using a weighted L2 norm II · 11.8 and target 0. 

It can be seen that in the fluid limit the policy selects alloca­
tions u (t) = (tt,1 (t), . .. , UR(t)) satisfying the dynamics in (23) 
and minimizing IIMu(t) - 011.8· Consider next the constraints 
under hich the TP policy in the stochastic system makes deci­
sions (cf. (OPT3)) and note that the policy idles on an empty 
class. The fluid version of the TP policy selects allocations u(t) 
satisfying (23) with the additional constraint that one can notal­
locate capacity to empty classes. We will refer to this policy as 
the FTP policy. 

We are now ready to formally define the notion of efficiency 
of scheduling policies for our closed MQNET, which is an 
extension of a similar definition in [14] that applies to closed 
networks with a single type. Consider the following LP: 

R 

(Eff - LP) max L h,. >.,. 
r=1 

">.,. <_ 1 s.t. L 
•·EC, p,,. 

>. = P ' >. 

i = 1, .. . , N 

(24) 

where >. is the decision vector. The first inequality constraint 
bounds the utilization of all servers by one and the second con­
straint is the set of traffic equations for the closed network. 
These latter equations have a unique solution up to a multiplica­
tive constant. Let>.* = (>.i, . . . , >. 'R) be an optimal solution of 
(Eff - LP). We can view Lr h.,.>.; as the maximal weighted 
throughput sustainable by the network. Note that at least one of 
the inequality (utilization) constraints is tight at the optimal so­
lution. Any node corresponding to a tight utilization constraint 
at>.* will be called a bottleneck node. 

Let now >." ( z) denote the throughput vector achieved under 
a stationary policy 1r when the closed network is initialized with 
n(O) = z. We define the efficiency of 1r as follows. 

Definition 3: The stationary policy 1r is said to be efficient 
under the cost structure h if for every sequence of initial condi­
tions z1 = lz with z in the support of S and l - oo we have 

where >. * is an optimal solution of (Eff - LP). 
The following theorem generalizes [14, Th. 4.2] and provides 

a sufficient condition on efficiency based on the fluid limit. We 
omit the proof since it is very similar to the corresponding proof 
in [14]. 

Theorem Vl/1.1: Consider a stationary scheduling policy 1r 

under which every fluid limit satisfies 

R - R 
. " h,.D,.(t) " * hm sup L 2: L h,.)..,. a.s. 
t~oo r=1 t r=l 

Then 1r is efficient under the cost structure h . 
Another, and perhaps more convenient, way to express this 

sufficient condition is provided by the following corollary. The 
proof is immediate since the condition below implies the suffi­
cient condition of Theorem Vill. l . 

Corollary Vl/1.2: Consider a stationary scheduling policy 1r 

under which for every fluid limit there exists a time T < oo 

such that for all regular times t > T 

Then, 1r is efficient under the cost structure h . 
We will use Corollary Vill.2 to investigate the efficiency of 

the TP policies for closed networks we defined earlier. Our main 
result is stated in the following theorem. 

Theorem VIl/.3: Consider the TP policy with target 0 = >. * 
using a weighted L2 norm II · ll .o with {3 > 0. This TP policy is 
efficient under the cost structure h . 

Proof' Recall that the FfP satisfies u,.(t) = 0 if 
n,.(t) = 0. Without loss of generality, assume that ini­
tially class r is empty (if multiple classes are empty, 
the analysis is the same). Hence, the FfP policy selects 

u(t) = (>.rf I-Ll, .. · , >.;._lft"r·- 1 ,0, >.;.+1/ t£,.+1 , .. · , >. 'R/ ttn) 
since this minimizes IIM u(t) - Oll .o subject to the proper 
constraints. Using this policy and after a small time interval 
o class T will seize to be empty (due to arrivals from other 
classes). At that point in time, the FfP policy switches to the 
allocation u*(t) = ()..ifp,1 , ... ,)..;jp,,., ... ,>.R./J-Ln) since it 
minimizes IIMu(t) - Oll p subject to the proper constraints. 
Notice, that we now have flow balance, i.e., the departing 
flow rate always equals the arriving flow rate for all classes. 
Therefore, at any time t > 8, no class is empty, and the same 
allocation u*(t) remains in effect. This allocation achieves a 
throughput of 2::~=1 h,.p,,.·u,.(t) = I:~=l h,. )..;, that is, the TP 
policy is efficient under cost structure h. • 

We conclude this section by outlining how routing decisions 
can be incorporated in our setting. As in Section Vll, we can 
define variables Xn'(t) = I {Bn'(t)}, where B,.,.,(t) denotes 
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the event that at time t node 0'(1') is working on a class 7' job 
that will be routed to class r' upon completion of service. Let 
y(t) = (yn(t), . .. , Ynn(t)) , where Yf'r'(t) = f£,.x,.,.,(t) , and 
() = ( Ou , . .. 'eRR). We can then define TP policies as the class 
of combined scheduling/routing policies which at each time t 
minimize lly(t) - 011 for some norm II · II · In fact, the problem 
can be transformed to a pure scheduling problem. To that end, 
split each class r to at most 0 ( R) classes, one for every possible 
class 1.1 that class r jobs can be routed to. In this modified closed 
MQNET, there are only scheduling decisions to be made and 
routing is deterministic. 

IX. NUMERICAL REsULTS 

Next, we present some illustrative numerical results to assess 
the performance ofTP policies. We implement the policy under 
work-conserving constraints. Non-work-conserving TP policies 
typically result in worst performance. 

A. Open Networks 

The first example we consider is the two-node network of 
Fig. 2. In Table I we compare several work-conserving sched­
uling policies) with h = e. The parameters for the various traffic 
scenarios are listed in Table IT, where we use p = (Pl , P2) 
to denote the utilizations of nodes 1,2, respectively. We use 
the following abbreviations for the various traffic scenarios we 
considered: LL (imbalanced light), B.L (balanced light), LM. 
(imbalanced medium), B.M. (balanced medium), IR (imbal­
anced heavy), and B.H. (balanced heavy). The second column 
of Table I (ALP) lists the lower bound on optimal performance 
obtained by solving the achievable region LP of [1] (see Sec­
tion ill). The third column of Table I (DP) lists the optimal per­
formance obtained via dynamic programming; the last row is 
missing because it was computationally intractable to obtain. 
The fourth column of Table I [TP ( w *)] reports the performance 
(obtained by simulation) of the TP policy using the L2 norm 
for n(t) with target() equal to the optimal solution w * of the 
achievable region LP and norm weight vector /3 = e. The fifth 
column of Table I (OTP) reports the performance of the TP 
policy using the same norm but with optimized (as discussed 
in Section VI) policy parameters. For the first four rows, we 
only optimized over () and used /3 = e . For the last two (heavy 
traffic) rows we also optimized over /3 and report those results 
in brackets. The optimal /3 turned out to be (1 ,3.4,7.2) for IR 
and (1 ,2.6,1 L2) for RH., respectively. In the sixth column of 
Table I (Thr.), we list the performance of a threshold policy pro­
posed in [3] based on heavy traffic analysis, which is conjec­
tured to be asymptotically optimal in heavy traffic. According 
to this policy, priority is given to type A jobs at node 1 if the 
number of jobs at node 2 is below some threshold; otherwise 
priority is given to type B jobs. The results listed in column 6 
of Table I are for the best such policy (i.e., optimized over the 
threshold). Finally, in the last column of Table I we report the 
percentage distance of the best policy we came up with (OTP 
column in this case) with the best other policy found. In partic­
ular, Gap= [(Best Ours) - (Best Other)] x 100%/(Best Other). 
To facilitate the reader, we use bold for these two values. 
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Fig. 2. Example 1: There are two types of jobs with Poisson arrival rates ,\A 

and AD (and 3 classes indicated on the figure). All jobs require exponential 
service time with rate JL 1 and w2 at nodes 1 and 2, respectively. 

TABLE I 
REsULTS FOR EXAMPLE 1 OF FIG. 2 

II ALP I DP I TP(w *) I OTP T hr. Gap 

LL. 0.63 0.671 0.678 0 .678 0.679 LO% 

8 .1. 0.73 0.843 0.856 0 .856 0.857 1.5% 

I.M. 1.9 2.084 2.119 2.117 2.129 1.6% 

B.M. 2.1 2.829 2.96 2.895 2.895 2.3% 

I. H. 9.6 9.97 10.36 10.33 [10. 13) 10.15 1.6% 
B.H. 9.9 - 18.0 17.4 (15.5) 15.5 O% 

TABLE 0 

P ARAMETERS FOR THE TRAFFIC SCENARIOS OF TABLE I 

II AA I AB I /.'1 I /.12 I PI I P'l 

1.1. 0.3 0.3 2 1.5 0.3 0.2 

B.L. 0.3 0.3 2 1 0.3 0.3 

I.M. 0.6 0.6 2 1.5 0.6 0.4 

B.M. 0.6 0.6 2 1 0.6 0.6 

!.H. 0.9 0.9 2 1.5 0.9 0.6 

B.H. 0.9 0.9 2 1 0.9 0.9 

A couple of remarks are in order. First, the TP policy using 
() = w * performs well from light to moderate traffic scenarios. 
This is appealing since w * can be computed in polynomial­
time by solving the achievable region LP. It is interesting to see 
that the optimal solution of this LP can lead to a fairly good 
policy. The optimized TP policy performs even better and is 
close to optimal. In the heavy-traffic cases (especially B.H.) 
using a weighted norm improves performance. The numerical 
results suggest that /33 » max(/31 , /32) is appropriate for those 
cases. This is to be expected since as /33 ~ oo the TP policy 
approaches the threshold policy of [3] with threshold 83 and the 
latter policy is known to be effective in heavy-traffic. 

The second example we consider is the six-class network of 
Fig. 3. The results are reported in Table ill, where we use the 
same notation and abbreviations as in Table I. The parameters 
for the various traffic scenarios are listed in Table IV. In the fifth 
column, optimization was done over () keeping /3 = e . In the 
last two rows of this column we also optimized over /3 and report 
the results in brackets. The sixth column (BPP) lists results from 
the best strict priority policy we were able to find. Finally, as in 
Table I, the last column reports the percentage gap of our best 
policy with the best other policy found. 
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M3 M l M4 M2 -

/ L5 fk6 

Fig. 3. Example 2: There are two types of jobs with Poisson arrival rates A A 

and A 8 . All jobs require exponential service times with rate JL i for class i = 
1, ... , 6 . The cost vector h in the objective of (3) is set equal to e . 

Mt ftz 

Ml M2 

- 1-
p,,, fl3 

Fig. 4. Example 3: There are two types of jobs with Poisson arrival rates AA 
and A 8 and exponential service times with rate JL i for class i . Again, h = e . 

TABLE ill 
REsULTS FOR EXAMPLE 2 OF FIG. 3 

II "\LP I DP I TP (w*) I OTP I BPP I Gap 

I.L. 0.62 0.663 0.684 0.671 0.743 1.2% 

B.L. 0.71 0.798 0.844 0.803 0.916 0.3% 

I..M. 1.76 1.966 2.15 2.01 2.31 2% 

B.M. 1.94 2.56 2.81 2.59 3.07 0.8% 

I. H. 7.63 - 9.41 8.45 [8.32) 9.21 -9.7% 

B.H. 8.21 - 16 13.8 [13.6) 15.1 -9.9% 

TABLE IV 
PARAMETERS FOR THE TRAFFIC SCENARIOS OF TABLE ill 

>.A >.B I-' ! 11-2 1-'3 Jl-4 Jl-5 11-6 

LL 3/140 3/140 1/4 2/3 1/ 8 1/4 1/2 3/ 14 

B.L. 3/ 140 3/ 140 1/ 4 1 1/ 8 1/ 6 1/ 2 1/ 7 

I.M. 6/140 6/ 140 1/ 4 2/ 3 1/ 8 1/4 1/2 3/14 

B.M. 6/140 6/140 1/4 1 l / 8 1/6 1/2 1/ 7 

I. H. 9/ 140 9/ 140 1/ 4 2/ 3 1/ 8 1/4 1/2 3/14 

B.H. 9/ 140 9/140 1/ 4 1 1/ 8 1/ 6 1/2 1/7 

The conclusions in this more challenging network are similar. 
The TP policies with target equal tow* perform quite well from 
light to moderate traffic scenarios. In heavy traffic, performance 
can further be improved by optimizing over policy parameters 
( (} , /3). Overall, we are within 2% of the optimal (when possible 
to compute) or we outperform by more than 9% the best other 
policy found. 

The third example we show is the Rybk<hStolyar network 
[25], [26] . We used >.A = AB = 1, f t l = M3 = 6, f lz = f £4 = 
1.5. It has been shown that the last-buffer- first-serve policy is 
unstable with these parameters. Instead, TP policies perform 
pretty well (Table V). 

TABLE V 
REsULTS FOR EXAMPLE 3 OF FIG. 4 

ALP Gap 

7.08 3.4% 

Fig. 5. Example 4. 

TABLE VI 
REsULTS FOR THE ROUTING EXAMPLE (EXAMPLE 4) OF FIG. 5 

Load >. ,~ p ALP SQ OTPo Gap 

Light 1.65 1.5 0.55 1.22 1.69 1.69 0% 

Medium 2. 1 1.5 0.7 2.33 2.94 2.94 0% 

Heavy 2.7 1.5 0.9 9.00 9.56 9.56 0% 

Our final open network example is the system of Fig. 5. Jobs 
arrive according to a Poisson process of rate ). and are to be 
routed either at the top or bottom node. Service times are ex­
ponentially distributed with rate f l at both nodes. We need to 

decide where to route each job in order to minimize the objec­
tive of (3) with h = e . Table VI reports our results for three 
traffic scenarios corresponding top = A/(2p,) = 0.55,0.7,0.9, 
respectively. The sixth column (SQ) lists the performance of the 
policy that sends jobs to the shortest queue, which is known to 

be optimal [27]. The seventh column lists the performance of 
the optimized, over (} and with f3 = e, TP policy using the L2 
norm of n (t) . The last column compares the two policies. It is 
evident that the optimized TP policy achieves optimality. This 
is to be expected since from the structure of (LP2) and (17) it 
can be easily verified that any TP policy with target (} such that 
81 = Bz and /3 = e makes routing decisions identical to the SQ 
policy. 

B. Closed Networks 

We next present two closed network examples (cf. Fig. 6). 
Results for these examples are reported in Table VII. The 
second column lists the (fixed) number of jobs in the system 
for each type. The third column (ALP) reports an upper bound 
on the optimal weighted throughput obtained by the achievable 
region LP of [ 1]. We denote by w * the target obtained from the 
optimal solution of that LP. The fourth column (DP) lists the 
optimal weighted throughput obtained by solving a dynamic 
programming problem. The fifth column (TP ( w*)) lists the 
performance of the TP policy for closed networks using target 
(} = w * and the L2 norm II · 11

2
. In some instances we have 

optimized over the target (} . We refer to the latter policy as 
OTP and report the results in brackets. The sixth column lists 
the performance of the TP policy using target (} equal to the 
optimal solution..\* of (Eff- LP) in (24). Finally, the seventh 
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I 
(a) Example 5 (b) Example 6 

Fig. 6. Exponential service times with rate JH for class i . (a) Example 5: Total number of jobs equals S , h = el4, p. = (113, 217, 1, 2) . (b) Example 6: 'JYpe I 
jobs (classes 1-4) are fixed to s,, type 2 jobs (classes 5-6) are fixed to S2, h = (11 4, 114,1 I 4, 1 I 4, 112. 1 12) , J.t = (8, 5, 2, 7, 4, 1) . 

TABLE VD 
REsULTS RlR EXAMPLES 5 AND 6 OF FIG. 6 

S I ALP I DP I TP(w*) [OTP) I TP(.>.*) I Gap 

Ex. 5 10 10.53 10.49 10.28 [10.49) 10.27 O% 

Ex. 5 100 11.05 11.05 11.05 11.05 0% 

Ex. 6 5/5 1.914 1.904 1.882 1.796 1.16% 

Ex. 6 5/30 1.914 1.914 1.895 1.877 0.99% 

Ex. 6 30/5 1.914 1.914 1.899 1.807 0.8% 

column reports the distance of our best policy from the optimal, 
namely, Gap = [(Optimal) - (Best Ours)] x 100%/(0ptimal). 

In both examples, we conclude that the TP policy with target 
w * is rather close to optimal. As in open networks, this suggests 
that the optimal solution to the achievable region LP contains 
useful information from which a "good" policy can be obtained. 
The TP policy with target equal to A* performs equally well. 
It becomes near-optimal for large populations, which is to be 
expected in the light of the efficiency results of Section Vill-A. 
Finally, the TP policy with optimized target 0 is within less than 
1.2% from the optimal in all cases considered. 

X. CONCLUSION 

We proposed a new class of what we call TP policies for 
scheduling and routing in MQNETs. These networks can model 
a variety of systems, including sensor networks, multiprocessor 
computer systems, and manufacturing systems. In open net­
works external arrivals were assumed to be Poisson with class­
dependent rates, and in both open and closed networks service 
times were assumed to be exponentially distributed with class­
dependent rates. These assumptions, although restrictive, can 
even accommodate heavy-tailed service distributions by using 
a hyperexponential approximation of these distributions. The 
fluid version of TP policies belongs to a broader class of fluid 
policies called greedy in [9]. In general, greedy or myopic poli­
cies may perform extremely poorly, nonetheless, we were able 
to demonstrate that our proposed class is rather effective. 

In open networks, TP policies "steer" the state of the system 
toward a fixed target 0, where distance is measured using a 
weighted norm with weight vector {3. We demonstrated that TP 

policies are stable for any 0 under an L2 norm with weight 
vector {3 > 0. Hence, they are safe to implement even if the 
parameter vector ( 0, {3) is not optimally selected (as long as 
{3 > 0). In closed networks, TP policies "steer" the instanta­
neous throughput of the various classes toward a fixed target 
0, where, again, distance is measured using a weighted norm 
with weight vector {3. We showed that appropriate target selec­
tion leads to the efficiency of the corresponding policy, meaning, 
that the policy achieves maximum bottleneck throughput in the 
infinite population limit. In both open and closed networks, the 
proposed policies are amenable to distributed implementation 
using local state information. 

In open networks, our numerical results suggest that the 
polyhedral relaxations of achievable performance of [1] con­
tain enough information to yield good targets 0, especially in 
light to moderate load conditions. This might be sufficient in 
many practical situations involving sensor networks, where 
performance considerations would lead capacity planners to 
avoid heavy loads. In closed networks, an optimal solution 
to the achievable region LP of [1] leads to effective policies, 
especially for large populations. This is useful in applications to 
processing clusters in sensor networks which block jobs above 
a certain threshold to avoid performance degradation; during 
heavy traffic conditions the cluster can be modeled as a closed 
network and the population will typically be large. 

The performance of the proposed class of TP policies can 
be further improved by optimizing over the parameter vector 
( 0, {3); we outlined how this can be done using simulation-based 
methods. Overall, as our numerical results indicate, we obtain 
near-optimal policies (when the optimal can be computed) and 
significantly outperform heuristic alternatives. 

We close by noting that although we derived our results for 
networks where nodes can preempt a job to accept another, TP 
policies can also be implemented in a nonpreemptive setting 
with arbitrarily distributed service times. To that end, nodes can 
make decisions only at service completions by minimizing an 
expectation along the lines of Section IV, conditioning though 
not only on the current number of jobs but also on the times 
elapsed since the most recent service completions of other 
nodes. 
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