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ABSTRACT 

Throughout software’s lifetime, changes are introduced to the code in order to maintain 

the desired performance. These changes often create side effects, which cause other 

cascading effects elsewhere in the software or other system components with which the 

software interfaces. In a sense, the software degrades because of the maintenance 

performed on it, not because of a lack of maintenance upkeep. This pattern makes the 

cost of software maintenance difficult to predict, given the amount of variability in the 

upkeep process. Therefore, the best that program managers can hope for are heuristics 

that permit them to approximate annual operating budgets when calculating total 

ownership costs. Typically, these methods employ metrics used during development to 

estimate the annual cost of maintaining the software (i.e., source lines of code or function 

points). 

Through correlation and regression analysis, this thesis examines 62 programs 

that captured software maintenance data to determine a cost model for software 

maintenance. Even though a model was not built, the main contribution of this thesis is to 

provide a greater awareness of the complexity of estimating the costs for software 

maintenance. Additionally, this thesis provides insight to cost variables that may assist 

program managers when estimating annual software maintenance costs. 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - ii - 
k^s^i=mlpqdo^ar^qb=p`elli 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - i - 
k^s^i=mlpqdo^ar^qb=p`elli 

ABOUT THE AUTHORS 

Bradley J. Sams, Major, U.S. Marine Corps, Student, Graduate School of 

Operational and Information Sciences.  Maj Sams earned a BA in 1998 and an MS in 

Education in 2006 from Old Dominion University; he is also a graduate of the U.S. 

Marine Corps Expeditionary Warfare School and Command and Staff College Distance 

Education Program. Maj Sams is a field artillery officer, having served in a variety of 

operational and staff assignments in 13 years of active service, including his most recent 

tour with 1st Battalion, 12th Marines. Upon graduation from the Information Systems and 

Technology program at the Naval Postgraduate School in September 2011, Maj Sams 

will report to Marine Corps Systems Command, Quantico, VA. 

 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - ii - 
k^s^i=mlpqdo^ar^qb=p`elli 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - i - 
k^s^i=mlpqdo^ar^qb=p`elli 

ACKNOWLEDGMENTS 

There are many people who have helped this thesis become a reality. First, Brad Naegle, 

LTC, USA (Ret.); his encouragement and unmitigated confidence in my abilities have 

been an enormous inspiration. This thesis never would have gotten off the ground without 

the determination and patience of Greg Mislick, LtCol, USMC (Ret.) in the Operations 

Research Department. His assistance in obtaining data for this thesis was priceless.  

Thanks to Dr. John Osmundson for listening to me prattle on about software 

engineering program management and giving me a gentle nudge in the right direction 

when needed. A tremendous amount of thanks to Dr. Wilson Rosa and Peter Braxton as 

well as the professionals at the Air Force Cost Analysis Agency and Technomics for 

providing their expertise and advice during my data collection travels. Their support was 

unequivocal and greatly appreciated. Thanks also go out to Mike Popp in the NAVAIR 

4.2 Cost Department for taking time away from his busy schedule to listen to a struggling 

artilleryman ask questions about software cost estimation.  

Additionally, I would like to thank the Acquisition Research Program, especially 

RADM James Greene, USN (Ret.), Ms. Karey Shaffer, and Ms. Tera Yoder, for 

providing funding and resources to ensure the success of this thesis. 

I’d like to thank Audrey, Catherine, and Nikolaus for giving up their time and 

attention with me so that I could complete this thesis. Even though I can never relive my 

time away from them, I hope that in the future they can appreciate that sometimes you 

have to make hard choices in order to accomplish good work. My final recognition goes 

to my wife, Crystal, who was subjected to several hours of unending babble, but who 

made me feel like my topic was the most important subject in academia. I cannot ever 

hope to match her limitless patience, her enduring support, and her boundless 

encouragement. I would be a lesser man without her. Thank you, Kiddo. 

 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - ii - 
k^s^i=mlpqdo^ar^qb=p`elli 

THIS PAGE INTENTIONALLY LEFT BLANK 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - iii - 
k^s^i=mlpqdo^ar^qb=p`elli 

NPS-CE-11-160 

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

 
Deriving the Cost of Software Maintenance for Software 

Intensive Systems 

29 August 2011 

by 

Major Bradley J. Sams, USMC 

Advisors: Dr. John Osmundson, Associate Professor, and  

Brad Naegle, Senior Lecturer 

Graduate School of Operational & Information Sciences 

Naval Postgraduate School 

 

 

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of 
the Navy, the Department of Defense, or the Federal Government. 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - iv - 
k^s^i=mlpqdo^ar^qb=p`elli 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - v - 
k^s^i=mlpqdo^ar^qb=p`elli 

TABLE OF CONTENTS 

I.  INTRODUCTION........................................................................................................1 
A.  BACKGROUND ..............................................................................................1 
B.  PURPOSE .........................................................................................................2 
C.  RESEARCH QUESTIONS .............................................................................3 
D.  BENEFITS OF THE STUDY .........................................................................3 
E.  SCOPE ..............................................................................................................3 
F.  METHODOLOGY ..........................................................................................4 
G.  ORGANIZATION OF THESIS .....................................................................4 

II.  SOFTWARE MAINTENANCE AND COST-ESTIMATION MODELS ..............5 
A.  SOFTWARE MAINTENANCE .....................................................................5 
B.  COST-ESTIMATION TECHNIQUES ..........................................................9 

1.  Purpose..................................................................................................9 
2.  Constructive Cost Model II .................................................................9 

a.  Sizing Software Maintenance .................................................10 
b.  Software maintenance effort ..................................................11 

3.  System Evaluation and Estimation of Resources (SEER) 
Family of Products .............................................................................12 

4.  Software Lifecycle Management (SLIM)–Suite of Tools ...............15 
5.  Summary .............................................................................................17 

III.  DATA AND METHODOLOGY ..............................................................................19 
A.  SAMPLE DATA SET USED DURING RESEARCH ................................19 

1.  Warner Robins Air Logistics Center ...............................................19 
2.  Picatinny Arsenal ...............................................................................21 
3.  Integrated Strategic Planning and Analysis Network ....................22 
4.  Lockheed Martin Systems Integration Owego ................................24 
5.  Naval Air Systems Command (NAVAIR) .......................................25 

B.  VARIABLES AND METHODOLOGY ......................................................28 

IV.  DATA ANALYSIS .....................................................................................................31 
A.  CORRELATION ANALYSIS ......................................................................31 

1.  Purpose................................................................................................31 
2.  Warner Robins and ISPAN Data Analysis ......................................32 
3.  Picatinny Arsenal Data Analysis ......................................................33 
4.  Integrated Strategic Planning and Analysis Network Data 

Analysis ...............................................................................................34 
5.  Lockheed Martin Systems Integration Data Analysis ....................36 
6.  NAVAIR Program Related Engineering (PRE) Data Analysis .....37 

B.  REGRESSION ANALYSIS ..........................................................................44 
1.  Purpose................................................................................................44 
2.  Warner Robins and ISPAN...............................................................45 
3.  Picatinny Arsenal ...............................................................................47 
4.  Integrated Strategic Planning and Analysis Network ....................50 
5.  Lockheed Martin Systems Integration .............................................54 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - vi - 
k^s^i=mlpqdo^ar^qb=p`elli 

6.  NAVAIR PRE Data ...........................................................................59 
7.  Summary .............................................................................................69 

V.  CONCLUSIONS AND RECOMMENDATIONS ...................................................71 
A.  SUMMARY OF FINDINGS .........................................................................71 
B.  SPECIFIC RECOMMENDATIONS ...........................................................72 
C.  FUTURE RESEARCH ..................................................................................73 

APPENDIX A. ........................................................................................................................75 

APPENDIX B .........................................................................................................................87 
A.  ISPAN CORRELATION ANALYSIS .........................................................87 

1.  ISPAN FY06 and FY07 .....................................................................87 
B.  NAVAIR PRE DATA BY CATEGORY FOR FY05–FY07 ......................88 
C.  NAVAIR PRE CORRELATION ANALYSIS FOR FY04–FY07 .............91 

1.  Fixed Wing Aviation ..........................................................................91 
2.  Rotary Wing Aviation........................................................................93 
3.  Air Combat Electronics .....................................................................94 
4.  Air Combat Electronics and Aviation Support Equipment ...........95 
5.  Missiles ................................................................................................96 
6.  Combination of Fixed and Rotary Wing Aviation ..........................97 

LIST OF REFERENCES ......................................................................................................99 

 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - vii - 
k^s^i=mlpqdo^ar^qb=p`elli 

LIST OF FIGURES 

Figure 1.  Bathtub Curves for Hardware and Software ......................................... 6 

Figure 2.  Types of Software Maintenance ........................................................... 8 

Figure 3.  SEER Parametric Modeling Process .................................................. 12 

Figure 4.  SEER-SEM Maintenance Effort by Year Report ................................. 13 

Figure 5.  SEER–IT On-Going Support Example ................................................ 15 

Figure 6.  SLIM Maintenance Screen ................................................................. 16 

Figure 7.  Multivariate Correlation Results for SLOC and Percentage of 
Maintenance Effort for SW Programs ................................................. 32 

Figure 8.  Multivariate Correlation Results for Cost and SLOC ........................... 33 

Figure 9.  Multivariate Correlation Results for Total Effort and SLOC ................ 33 

Figure 10.  Multivariate Correlations Report for Cost and Requirements ............. 34 

Figure 11.  Multivariate Correlations Report for Total Effort and Requirements ... 34 

Figure 12.  Multivariate Correlations Report for FY05 ISPAN Data ...................... 35 

Figure 13.  Multivariate Correlations Report for FY05 ISPAN Data Minus One 
Subprogram With a Singular CSCI ..................................................... 35 

Figure 14.  Multivariate Correlations Report for FY08 ISPAN Data ...................... 35 

Figure 15.  Multivariate Correlations Report for FY08 ISPAN Data Minus One 
Subprogram With a Singular CSCI ..................................................... 36 

Figure 16.  Multivariate Correlations Report for Multiyear Lockheed Martin Data 
for Labor Months, Defects, Modified, and Base Code ........................ 37 

Figure 17.  Multivariate Correlations Report for Multiyear Lockheed Martin Data 
for Labor Months, New, and Reused Code ........................................ 37 

Figure 18.  Sum of PRE Actual Funded Amount for FY04 by Category ............... 39 

Figure 19.  Sum of PRE Actual Funded Amount for FY08 by Category ............... 39 

Figure 20.  Mean of PRE Actual Funded Amount for FY04 by Category .............. 40 

Figure 21.  Mean of PRE Actual Funded Amount for FY08 by Category .............. 40 

Figure 22.  Multivariate Correlations Report for PRE Data for Fixed Wing 
Aviation, FY08 Funded Amounts, Average Number of Systems 
Deployed, SLOC, and CSCIs ............................................................. 41 

Figure 23.  Multivariate Correlations Report for PRE Data for Rotary Wing 
Aviation, FY08 Funded Amounts, Average Number of Systems 
Deployed, SLOC, and CSCIs ............................................................. 41 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - viii - 
k^s^i=mlpqdo^ar^qb=p`elli 

Figure 24.  Multivariate Correlations Report for PRE Data for Air Combat 
Electronics, FY08 Funded Amounts, Average Number of Systems 
Deployed, SLOC, and CSCIs ............................................................. 42 

Figure 25.  Multivariate Correlations Report for PRE Data for Air Combat 
Electronics, FY08 Funded Amounts, Average Number of Systems 
Deployed, SLOC, and CSCIs With ASE Data .................................... 42 

Figure 26.  Multivariate Correlations Report for PRE Data for Missiles, FY08 
Funded Amounts, Average Number of Systems Deployed, SLOC, 
and CSCIs .......................................................................................... 43 

Figure 27.  Multivariate Correlations Report for PRE Data for Fixed and Rotary 
Wing Aviation, FY08 Funded Amounts, Average Number of 
Systems Deployed, SLOC, and CSCIs ............................................... 43 

Figure 28.  Linear Fit Regression for SLOC and Percentage of Effort in 
Perfective Maintenance ...................................................................... 46 

Figure 29.  Whole Model Statistical Tables for SLOC and Percentage of Effort 
in Perfective Maintenance .................................................................. 47 

Figure 30.  Linear Fit Regression for Overall Costs and SLOC New (Added) ...... 48 

Figure 31.  Whole Model Statistical Tables for Overall Costs and SLOC New 
(Added) ............................................................................................... 49 

Figure 32.  Linear Fit Regression for Total Effort and SLOC New (Added) .......... 49 

Figure 33.  Whole Model Statistical Tables for Total Effort and SLOC New 
(Added) ............................................................................................... 50 

Figure 34.  Linear Fit Regression for FTE Maintenance and SLOC for Six 
ISPAN Programs ................................................................................ 51 

Figure 35.  Whole Model Statistical Tables for FTE Maintenance and SLOC for 
Six ISPAN Programs .......................................................................... 52 

Figure 36.  Linear Fit Regression for FTE Maintenance and Defects for Five 
ISPAN Programs ................................................................................ 53 

Figure 37.  Whole Model Statistical Tables for FTE Maintenance and SLOC for 
Five ISPAN Programs ........................................................................ 54 

Figure 38.  Linear Fit Regression for Labor Months and New Code for Fourteen 
Lockheed Martin Programs ................................................................ 55 

Figure 39.  Whole Model Statistical Tables for Labor Months and New Code for 
Fourteen Lockheed Martin Programs ................................................. 56 

Figure 40.  Linear Fit Regression for Labor Months and Modified Code for 
Twelve Lockheed Martin Programs .................................................... 56 

Figure 41.  Whole Model Statistical Tables for Labor Months and Modified 
Code for Twelve Lockheed Martin Programs ..................................... 57 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - ix - 
k^s^i=mlpqdo^ar^qb=p`elli 

Figure 42.  Linear Fit Regression for Labor Months and Defects for Twelve 
Lockheed Martin Programs ................................................................ 58 

Figure 43.  Whole Model Statistical Tables for Labor Months and Total Defects 
for Thirteen Lockheed Martin Programs ............................................. 59 

Figure 44.  Linear Fit Regression for FY08 Funded Amount and Sum of 
CSCIs/Subsystems for Ten Fixed Wing Aviation Programs ............... 60 

Figure 45.  Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for Nine Fixed Wing Aviation Programs .............. 61 

Figure 46.  Linear Fit Regression for FY08 Funded Amount and Sum of 
CSCIs/Subsystems for Seven Rotary Wing Aviation Programs ......... 62 

Figure 47.  Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for Seven Fixed Wing Aviation Programs ........... 63 

Figure 48.  Linear Fit Regression for FY08 Funded Amount and Sum of 
CSCIs/Subsystems for Seven ACE and Two ASE Programs ............. 64 

Figure 49.  Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for Seven ACE and Two ASE Programs ............. 65 

Figure 50.  Linear Fit Regression for FY08 Funded Amount and Average of 
Units/Systems for Three Missile Programs ......................................... 66 

Figure 51.  Whole Model Statistical Tables for FY08 and Average of 
Units/Systems for Three Missile Programs ......................................... 67 

Figure 52.  Linear Fit Regression for FY08 Funded Amount and Sum of 
CSCIs/Subsystems for a Combination of Fixed and Rotary Wing 
Programs ............................................................................................ 67 

Figure 53.  Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for a Combination of Fixed and Rotary Wing 
Programs ............................................................................................ 68 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - x - 
k^s^i=mlpqdo^ar^qb=p`elli 

THIS PAGE INTENTIONALLY LEFT BLANK



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - xi - 
k^s^i=mlpqdo^ar^qb=p`elli 

LIST OF TABLES 

Table 1.  Overview of the Often-Quoted Definitions of Software Maintenance .... 7 

Table 2.  Rating Scale for Programmer Unfamiliarity (UNFM) ........................... 10 

Table 3.  SEER-SEM Maintenance Growth Over Life Parameters .................... 14 

Table 4.  Warner Robins ALC Programs and Languages ................................. 20 

Table 5.  Picatinny Arsenal Programs and Languages ...................................... 22 

Table 6.  ISPAN Programs and Languages ...................................................... 23 

Table 7.  Lockheed Martin Systems Integration Owego Programs and 
Languages .......................................................................................... 24 

Table 8.  Naval Air Systems Command SRDR Study Programs and 
Languages .......................................................................................... 26 

Table 9.  Naval Air Systems Command PRE Software Product Team 
Programs and Application Domains ................................................... 28 

Table 10.  NAVAIR PRE Data Categories ........................................................... 38 

Table 11.  Bivariate Regression Analysis Criterion .............................................. 45 

Table 12.  Bivariate Regression Results ............................................................. 46 

Table 13.  Bivariate Regression Results ............................................................. 48 

Table 14.  Bivariate Regression Results ............................................................. 50 

Table 15.  Bivariate Regression Results ............................................................. 51 

Table 16.  Bivariate Regression Results ............................................................. 53 

Table 17.  Bivariate Regression Results ............................................................. 55 

Table 18.  Bivariate Regression Results ............................................................. 57 

Table 19.  Bivariate Regression Results ............................................................. 58 

Table 20.  Bivariate Regression Results ............................................................. 60 

Table 21.  Bivariate Regression Results ............................................................. 62 

Table 22.  Bivariate Regression Results ............................................................. 64 

Table 23.  Bivariate Regression Results ............................................................. 66 

Table 24.  Bivariate Regression Results ............................................................. 68 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - xii - 
k^s^i=mlpqdo^ar^qb=p`elli 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - xiii - 
k^s^i=mlpqdo^ar^qb=p`elli 

LIST OF ACRONYMS AND ABBREVIATIONS 

ACE  Air Combat Equipment 

AFCAA Air Force Cost Analysis Agency 

AMC&D Advanced Mission Computer and Display 

ASE  Aviation Support Equipment 

CAINS Carrier Aircraft Inertial Navigation System  

CARC  Chemical Agent Resistant Coating 

CASS  Consolidated Automated Support System 

CDP  Capability Defect Package 

CMM  Capability Maturity Model 

CMMI  Capability Maturity Model–Integrated 

COCOMO Constructive Cost Model 

COTS  Commercial Off-The-Shelf 

CSCI  Computer Software Configuration Items 

CSFIR  Crash Survivable Flight Incident Recorder 

DCAPE Defense Cost Assessment and Program Evaluation 

DCARC Defense Cost and Resource Center 

DID  Data Item Description 

EWSSA Electronic Warfare Software Support Activity 

FRA  Fleet Response Activity 

FWA  Fixed Wing Aviation 

FY  Fiscal Year 

GPS/CDNU Global Positioning System/Control Display Navigation Unit 

GPSW  Ground Warning Proximity System 

IPT  Integrated Product Team 

ISPAN  Integrated Strategic Planning and Analysis Program 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - xiv - 
k^s^i=mlpqdo^ar^qb=p`elli 

MDAP  Major Defense Acquisition Program 

MIS  Missiles 

NAVAIR Naval Air Systems Command 

PRE  Program Related Engineering 

ODASA–CE Office of the Deputy Secretary of the Army for Cost and Economics 

PDSS  Post Deployment Software Support  

QSM  Quantitative Software Management 

ROI  Return on Investment 

RWA  Rotary Wing Aviation 

SEER–IT System Evaluation and Estimation of Resources–Information Technology  

SEER-SEM System Evaluation and Estimation of Resources–Software Engineering 
Model 

SIS Software Intensive System  

SLIM  Software Lifecycle Management 

SLOC  Source Lines of Code 

SRDS  Structural Data Recording Set  

SRDR  Software Resources Data Report 

SSA  Software Support Activity 

TAMMAC Tactical Aircraft Moving Map Capability 

TAWS  Terrain Awareness Warning System 

TOC  Total Ownership Cost 

VAMOSC Visibility and Management of Operating and Support Costs  

WRALC Warner Robins Air Logistics Center



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - xv - 
k^s^i=mlpqdo^ar^qb=p`elli 

EXECUTIVE SUMMARY 

Software is becoming frequently more ubiquitous in the systems the Department 

of Defense procures. These systems are increasingly reliant on software to successfully 

perform their missions. This reality places greater emphasis on ensuring the 

accompanying or embedded software performs as expected. However, reliability is not 

cheap and trends toward a greater proportion of the system sustainment cost. In an age of 

rapidly decreasing funds to support government functions (including the military), total 

ownership cost has garnered a great deal more attention than in previous system 

procurement. Previous studies have shown the disproportionate annual cost of 

maintenance as compared to the software’s development, and program managers require 

accurate models in order to estimate the life-cycle costs for proposed systems. Many 

models exist to provide estimates for software development cost, but few are able to 

predict the cost to support software once delivered to the end user.  

The researcher examined over 60 programs that captured software maintenance 

data.  Given the diverse nature of the data set provided, the cost to support software was 

analyzed from different perspectives. The research calculated correlations and performed 

regressions on the data to derive the most promising relationships and candidate models 

that might reveal some insight into the influence of particular variables related to cost.  

The observations of these results revealed that a reliable and consistent model 

could not be created from the data provided. However, it was determined from this 

limited data set that source lines of code were not an adequate predictor of maintenance 

cost. The number of defects reported divulged the strongest relationships with regard to 

influencing cost. Additionally, the number of computer system configuration items could 

provide a useable factor when estimating the cost of maintenance. Lastly, the researcher 

recommends a uniform means for software support agencies or contractors to report their 

software maintenance efforts, similar to the mandated software resources data report.      
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I. INTRODUCTION  

The total cost of maintaining a widely used program is typically 40 percent or 
more of the cost of developing it. Surprisingly, this cost is strongly affected by the 
number of users. More users find more bugs. 

– Frederick P. Brooks, Jr. (1995) 

A. BACKGROUND 

The current trend in government spending and appropriation is austerity. As U.S. 

commitments in Iraq draw to a close and as efforts in Afghanistan are tailored to a 

smaller force, the U.S.’s attention will be increasingly focused on reducing the budget 

deficit and strengthening the domestic economy. Secretary of Defense Robert Gates 

declared that “the gusher is off” (“Defense Spending,” 2010), referring to the last several 

decades of increasing defense budgets. Since the Department of Defense (DoD) accounts 

for over 50% of discretionary funding by the government, the concern for how the 

military spends its funds will garner more interest and be a target for closer scrutiny. 

Recent acquisition policy directives aimed at capturing the total ownership cost (TOC) 

underscore this reality. For example, the Weapons Systems Acquisition Reform Act 

(WSARA, 2009) instructs the Defense Cost Assessment and Program Evaluation 

(DCAPE) to review assessment methods for operations and support costs for major 

defense acquisition programs (MDAP). Additionally, the accompanying DoD Directive 

Type Memorandum (DTM) 09-027 charges the Milestone Decision Authority (MDA) to 

competitively contract for the maintenance and support contracts for its programs (Under 

Secretary of Defense for Acquisition, Technology, and Logistics [USD(AT&L)], 2009).  

The increased emphasis on operations and support costs challenges acquisition 

professionals to ensure that the programs they acquire are sustainable in future years by a 

decreasing operations budget.  

Software maintenance implies the ability to make corrections, change 

functionality, or perfect previously identified flaws in the functionality of the software. 

These actions are typically executed during the operations and support phase of the 

acquisition life cycle. Maintenance on software is very different from that completed on 
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hardware. For example, it is easy to observe early on when a piece of hardware needs 

attention. There are clear warning signs given to the operator well before the piece of 

equipment breaks and ceases to function (rust on joints, leaks at welds, etc.). However, 

software does not provide these signals; it slows to unacceptable performance levels, 

freezes, hangs up, or simply stops functioning without warning and leaves the operator 

without the ability to execute the mission. Estimating the cost of maintaining hardware 

can be done easily by simply following the manufacturer’s guidance on preventative 

maintenance before the problem becomes corrective in nature. The cost associated with 

this maintenance can then be extrapolated across the expected life of the hardware in 

order to derive a number to justify budgets. Software is inherently complex and, 

therefore, more difficult to accurately estimate the maintenance effort required to support 

it. During the development of the software, program managers (and, ultimately, the 

maintainers) are not able to accurately predict when the software is going to need to be 

upgraded or perfected or when it might crash unexpectedly. Therefore, the best that 

program managers can hope for are heuristics that permit them to approximate annual 

operating budgets. Typically, these methods employ metrics used during development to 

estimate the annual cost of maintaining the software (i.e., source lines of code or function 

points). In his article, Sneed (2004) commented on the imprecision of predicting 

development costs to estimate maintenance costs. This situation presents a dilemma when 

the heuristics that program managers rely upon are based on erroneous assumptions and 

imprecisely calibrated cost factors.  

B. PURPOSE 

The purpose of this thesis is to present an analysis of several cost-related factors 

involved in software maintenance and their influence across different application 

domains.  This information could then be used by program managers to derive a cost-

estimation relationship and, ultimately, a cost model to determine the forecasted annual 

cost to support similar systems while still in development. It is the researcher’s belief that 

such a software maintenance cost model would more accurately portray the total 

ownership cost of a particular system than current methods.  
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C. RESEARCH QUESTIONS 

1) What cost factors are involved when a program manager estimates the post-

deployment software support (PDSS) for a software-intensive system (SIS)? 

2) Is there a model that can be derived for program managers to use in order to 

more accurately estimate the total life-cycle (or operational) cost of software-intensive 

command and control or weapons systems? 

3) Is there a better method for program managers to budget software maintenance 

rather than comparing the development costs to anticipated post-deployment support?  

4) What software maintenance information is necessary in order to derive a 

reliable cost model for program managers? 

D. BENEFITS OF THE STUDY 

This thesis presents an analysis of different factors related to the cost of existing 

software intensive systems from a variety of domains. This information can be employed 

by acquisition managers during the development phase of the acquisition life cycle to 

predict the costs associated with the software maintenance support for a similar system. 

This data could then be used to calibrate existing heuristics and more accurately estimate 

the TOC for a proposed system.  

E. SCOPE 

This thesis is limited to the factors provided by the Naval Air Systems Command 

(NAVAIR) and the various programs participating in the Air Force Cost Analysis 

Agency (AFCAA) software maintenance study. While there are an indefinite amount of 

factors that contribute to the cost of software maintenance, this thesis only analyzes those 

categories collected in order to derive correlation coefficients and candidate cost-

estimating relationships through regression.  
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F. METHODOLOGY 

This thesis used three analysis methods. First, several literature sources related to 

software maintenance were examined. Additionally, three of the most popular software 

cost-estimation techniques were researched to understand how these methods estimate 

post-deployment software support. Second, the data collected from the various sources 

was presented and described. Third, the data collected was analyzed for any correlations 

or cost-estimating relationships that could be derived and employed in an appropriate 

model for post-production software support. Lastly, results of the data analysis presented 

recommendations for program managers concerned with the total operational costs of 

proposed software intensive systems.        

G. ORGANIZATION OF THESIS  

In Chapter II, the researcher provides relevant definitions for software 

maintenance from an assortment of sources. Additionally, techniques for estimating 

software maintenance are presented from three prevalent cost models used by 

professionals. 

In Chapter III, the researcher describes the data collected from NAVAIR and the 

AFCAA study on software maintenance. This chapter depicts the disparate categories of 

data that are analyzed in the following chapter. 

In Chapter IV, the researcher analyzes the data presented in Chapter III through 

the conduct of bivariate correlations and simple linear regressions. The results of this 

analysis then determines the strongest cost-estimating relationships based on the limited 

amount of data available. 

In Chapter V, the researcher presents the conclusions of this analysis and makes 

recommendations to program managers for estimating the cost of post-deployment 

software support based on the categories analyzed in Chapter III. This chapter also makes 

recommendations for further research on the software maintenance topic. 
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II. SOFTWARE MAINTENANCE AND COST-ESTIMATION 
MODELS 

Software maintenance is usually, explicitly or not, the largest single element of 
developing, owning, and operating a software system. 

– Christensen and Thayer (2001)   

A. SOFTWARE MAINTENANCE  

Software does not possess the same physical characteristics as hardware. End 

users cannot scrub the rust off existing software, apply a coat of chemical agent resistant 

coating (CARC) and make it look as good as new.  In fact, end users may not even be 

able to see that their software possesses rust at all. However, software does degrade.  

Throughout software’s lifetime, changes are introduced due to poor quality development 

or other situations that mandate software alterations. These changes often create side 

effects that are incorporated into the software, which causes cascading effects elsewhere 

in the software or in other system components with which the software interfaces.  In a 

sense, the software degrades because of the maintenance performed on it, not because of 

a lack of maintenance upkeep. Additionally, software maintenance does not permit the 

notion of spares. For example, when a truck’s serpentine belt is broken, a suitable 

replacement belt can be changed out for the defective one. This example does not 

correlate well to software, as the truck’s architecture is not altered by the belt 

replacement, but software maintenance typically does alter the software architecture. A 

maintainer is unable to simply replace the degraded piece of software with a fresh one. In 

order to avoid the unintended consequence of creating more problems by replacing the 

defective software, the maintainer would need to redesign the entire software component 

in order to fix the one particular problem, without creating other problems. Since this 

resolution is not realistic, patches (frequently referred to as maintenance) are injected in 

the software to correct deficiencies. These repairs are intended to increase the software’s 

reliability over time. In theory, software should be able to perform as developed 

throughout its life cycle without issue. Unfortunately, reality is much more complicated. 
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As demonstrated in Figure 1, the software reliability curve significantly differs from the 

hardware curve.  

Many factors influence the maintenance performed on software, including the 

repair of defects incorporated in the software during development or because of changes 

in requirements or the desire to improve performance (Department of the Air Force, 

2000). These aspects shape the reliability curve differently than anticipated for software. 

As mentioned, even these remedies may inadvertently produce greater degradation of the 

software, which requires more maintenance and the possibility of injecting new defects. 

This pattern makes the cost of software maintenance difficult to predict, given the amount 

of variability in the maintenance process. These are the environmental circumstances in 

which the program manager, the developers, and the maintainers find themselves when 

creating a realistic annual cost estimate as the software ages. 

 

Figure 1.   Bathtub Curves for Hardware and Software 
(Department of the Air Force, 2000) 

In order to adequately discuss this topic, it is important to provide an operational 

definition for software maintenance that can be used throughout this thesis. There have 

been a wide variety of opinions on what constitutes software maintenance, as shown in 

Table 1. It is no surprise that in this chronological list of generally accepted definitions 

for software maintenance each definition mentions that support occurs after its delivery. 

Additionally, these definitions refer to software changes or modifications, but only the 
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most recent description mentions the cost associated with software support. It is the 

associated cost of maintenance that will occupy the attention of program managers.  

Table 1.   Overview of the Often-Quoted Definitions of Software Maintenance 
(Abran & April, 2008) 

Definition Year 

“Changes that are done to software after its delivery to the user.” 1983 

“The totality of the activities required in order to keep the software in 

operational state following its delivery.”  
1984 

“Maintenance covers the software life-cycle starting from its 

implementation until its retirement.” 
1990 

“…modification to code and associated documentation due to a problem 

or the need for improvement. The objective is to modify the existing 

software product while preserving its integrity.” 

1995 

“…the modification of a software product after delivery to correct faults, 

to improve performance or other attributes, or to adapt the product to a 

modified environment.”  

1998 

“…the totality of activities required to support, at the lowest cost, the 

software. Some activities start during its initial development but most 

activities are those following its delivery.” 
2005 

 

When program managers analyze costs for maintenance, they first need to 

understand the kind of anticipated maintenance that will represent the majority of support 

costs. This analysis will influence the scope of the cost estimation and contribute to a 

better understanding of the effort employed.  Nevertheless, the maintenance effort is not 

limited to making changes only in the source code. As noted by Parthasarathy (2007), 

maintenance costs include operations and online support, fixing bugs, and enhancing the 

application (both major and minor changes), which contributes to the total ownership cost 
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of software. However, this thesis limits the definition of software maintenance to three 

areas shown in Figure 2: corrective, perfective, and adaptive. These groupings exist 

solely based on the maintenance change expected to be performed.   

Adaptive change occurs when the developed software needs to be changed based 

on external realities. “Classic examples are adapting to an updated operating system, 

changed or new hardware, software tools, and data format changes” (Christensen & 

Thayer, 2001, p. 150).  Approximately 20% of software maintenance falls in this 

category (Christensen & Thayer, 2001).  Corrective change occurs when the software 

incurs unanticipated defects.  These adjustments can be completed in the course of 

normal business or take the form of emergency maintenance that needs to be 

accomplished immediately.  Around 20% of software maintenance is corrective in nature 

(Rendon & Snider, 2008).  Lastly, those actions that attempt to improve the software’s 

performance are referred to as perfective maintenance. Similar to corrective, perfective 

alterations can be planned in conjunction with other work (Christensen & Thayer, 2001). 

Perfective modifications absorb the remaining 60% of software maintenance. Knowing 

the types of maintenance and their influence on total effort allows program managers to 

better analyze costs.  

 

Figure 2.   Types of Software Maintenance 
(Christensen & Thayer, 2001) 

It is accepted that the total ownership cost of software includes the associated cost 

of maintaining the software beyond development and delivery. However, there are few 

models that provide program managers the ability to estimate or predict how much it will 

cost per future year to maintain a particular software project. Therefore, it is rational that 

practitioners would turn to easily captured development variables as a basis for their post-

Types of 
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deployment support costing approximation. For example, Deutsche Post (a mail service 

in Germany) estimated the maintenance of a new application as a percentage of the 

development costs (Buchmann, Frischbier, & Putz, 2011). This approach to maintenance 

estimation was also challenged by Sneed (2004), who said that development costs may 

not be related to the cost of maintaining a system. In fact, Sneed commented that 

maintaining a commercial off-the-shelf (COTS) system could cost 40% more than a 

system created from scratch and that the development of low-priced agile projects were 

liable to cost more to maintain (Sneed, 2004). Therefore, it is important for program 

managers to understand the efficacy of their chosen software maintenance cost model, 

and program managers should appreciate the complexity and challenges connected to 

sustaining software.  

B. COST-ESTIMATION TECHNIQUES  

1. Purpose 

There are a variety of cost models in existence to estimate the development costs 

for a software project. Typically, these models consider post-deployment software 

support as another phase of development. There are very few cost models that exclusively 

attempt to estimate maintenance cost for software. This section describes three popular 

cost models that program managers use to estimate maintenance effort, which can be 

used to approximate costs. 

2. Constructive Cost Model II 

Developed in 2000, the Constructive Cost Model (COCOMO) II expands Barry 

Boehm’s original software cost-estimation model, COCOMO, written in 1981. 

COCOMO II continues the principles described in Boehm’s earlier work and analyzes 

“major product rebuilds changing over 50 percent of the existing software, and 

development of sizable (over 20 percent changed) interfacing systems requiring little 

rework of the existing system” (Boehm et al., 2000, p. 28). Boehm et al.’s (2000) updated 

work considers software maintenance through two sections, sizing software maintenance 

and maintenance effort. Both of these sections assume that “maintenance cost generally 
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has the same cost driver attributes as software development costs” (p. 58). These portions 

of the COCOMO II method can be used to create an estimate for the size of the 

maintenance required using the known base code size.  

a. Sizing Software Maintenance  

A COCOMO II sizing software maintenance model begins by examining 

the software understanding (SU) of the existing software (determined on a scale from 0–

50%), dividing by 100, and multiplying this quotient by the programmer unfamiliarity 

(UNFM) factors shown in Table 2. The product of these two factors is then added to 1, 

which produces the maintenance adjustment factor (MAF).  

Table 2.   Rating Scale for Programmer Unfamiliarity (UNFM) 
(Boehm et al., 2000) 

UNFM Increment Level of Unfamiliarity 

0.0 Completely Familiar 

0.2 Mostly Familiar 

0.4 Somewhat Familiar 

0.6 Considerably Familiar 

0.8 Mostly Unfamiliar 

1.0 Completely Unfamiliar 

 

The next portion of the software maintenance size equation comes from 

the maintenance change factor (MCF). This number can be obtained by placing the sum 

of modified and added size in the numerator and the known base code size in the 

denominator, as indicated in Equation 1 from Boehm et al. (2000). 

 MCF = 
SizeAdded SizeModified

BaseCodeSize



 (1)
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Using the MAF and the MCF, the basic equation for the maintenance size 

can be found in Equation 2, taken from Boehm et al. (2000).   

 (Size)M = [(Base Code Size) x MCF] x MAF  (2) 

b. Software maintenance effort  

Program managers need to capture the effort required to maintain any 

existing software in order to justify budget requests and appropriately assign maintenance 

responsibilities. COCOMO II provides a formula to derive the maintenance effort in 

person-months (typically 152 hours per month). The estimation formula for maintenance 

effort can stem from Equation 3 from Boehm et al. (2000).  

 
15

1

( )E
M M i

i

PM A Size EM


  
 (3)

 

where  PM M   = person-months effort for maintenance; 

  A  = the effort coefficient that can be calibrated, currently set 
 to 2.94; 

   E

MSize  = the maintenance size with the exponent E derived from 

 an aggregation of five scale factors associated with 
 economies of scale (i.e., precedentedness “PREC” and 
 development flexibility “FLEX”; and  

EM i     = 15 effort multipliers (minus the required development 

  schedule “SCED” and required reusability “RUSE”).   
 

Once PM M has been derived from Equation 3, the results can be taken 

further to estimate the average maintenance staffing level (FSPM) associated with the 

duration of any maintenance activity (TM), as demonstrated in Equation 4 from Boehm et 

al. (2000). 

MFSPM PM TM       (4) 

The ability of a program manager to estimate the number of person-months 

needed to maintain a certain amount of software could be extremely useful, especially for 

new software builds without historical analogous systems. COCOMO and COCOMO II 

are popular methods to determine software cost estimation due to their ubiquity and the 
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lack of cost to the user. However, there are commercial estimation methods that provide 

program managers the ability to project post-deployment support for a proposed software 

development.    

3. System Evaluation and Estimation of Resources (SEER) Family of 
Products  

Produced by Galorath Incorporated, the System Evaluation and Estimation of 

Resources (SEER) family of products uses parametric-based models, specifically 

designed algorithms, a historical database of previous project cost estimations, and 

sophisticated simulation/modeling engines that produce reports (including a report for 

maintenance effort by year) based on user inputs and desires. The result is a variety of 

reports that allow managers and developers to estimate their costs, as displayed in Figure 

3.  

 

Figure 3.   SEER Parametric Modeling Process 
(Galorath Incorporated, 2011b) 

Two such products from the SEER family are SEER–Software Estimating Model 

(SEER–SEM) and SEER for Information Technology (SEER–IT). These tools permit 

managers and developers to estimate the costs associated with software builds. One of the 
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features of these tools includes the ability to estimate the cost of post-deployment 

support. As depicted in Figure 4, Galorath defines the costs associated with software 

maintenance by using the following terms and definitions: 

- Corrective maintenance—The costs due to modifying software to correct 
issues discovered after initial deployment (generally 20% of software 
maintenance costs). 

- Adaptive maintenance—The costs due to modifying a software solution to 
allow it to remain effective in a changing business environment (25% of 
software maintenance costs). 

- Perfective maintenance—The costs due to improving or enhancing a software 
solution to improve overall performance (generally 5% of software 
maintenance costs). 

- Enhancements—The costs due to continuing innovations (generally 50% or 
more of software maintenance). 
 

 

Figure 4.   SEER-SEM Maintenance Effort by Year Report 
(Reifer, Allen, Fersch, Hitchings, Judy, & Rosa, 2010) 

SEER–SEM requires the developer to contribute inputs to the model based on a set of 

parameters associated with the anticipated sustainment attributes of the software. For 

example, the category Maintenance Growth Over Life contains a rating correlated to how 

much software growth the customers anticipate once the maintainers receive the software 

in the maintenance cycle, as indicated in Table 3. A developer can assume that once the 

software goes into the maintenance cycle, “an input of 100% means that the software will 

double in size” (Galorath Incorporated, 2001, pp. 7–55). 
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Table 3.   SEER-SEM Maintenance Growth Over Life Parameters 
(Galorath Incorporated, 2001) 

Rating Description 

100% Very high, major updates adding many new functions 

35% High, major updates adding some new functions 

20% 
Nominal, minor updates with enhancements to existing 

functions 

5% Low, minor enhancements 

0% Very low, sustaining engineering only 

 

Other parameters that can be included to derive a software maintenance report are years 

of maintenance, annual change rate, differences in the development environment, 

maintenance level (rigor), and maintenance monthly labor rate (Galorath Incorporated, 

2001).  

SEER–IT differs from SEER–SEM in that SEER–IT extends beyond the software 

and examines a proposed (or purchased) “IT system’s services, infrastructure and risk for 

the project and ongoing support” (Galorath Incorporated, 2011a). The scope of SEER–IT 

is much broader than SEER–SEM in order to include the ability to build project 

portfolios that allow managers to estimate return on investment (ROI) for particular IT 

projects. By drawing on historical databases of several previous IT projects provided by 

Galorath, SEER–IT is able estimate the maintenance costs for an IT project (considered 

on-going support) based on the data provided by the customer, as shown in Figure 5. The 

combination of these estimation tools would provide a great deal of insight into the 

projected cost of software maintenance and associated IT projects.   
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Figure 5.   SEER–IT On-Going Support Example 
(Reifer et al., 2010) 

4. Software Lifecycle Management (SLIM)–Suite of Tools 

Developed by Quantitative Software Management (QSM) Incorporated, Software 

Lifecycle Management (SLIM) contains several products that create reports, graphs, and 

forecasts in order to defend software projects. SLIM–Estimate is just one product from 

the SLIM suite designed to provide solutions to complex problems facing project 

managers or developers. Other products include the following: SLIM–Control, SLIM–

Metrics, SLIM–DataManager and SLIM–MasterPlan (QSM, 2006). SLIM–Estimate 

allows the customer to import his or her own data from previous projects in order to 

calibrate the SLIM estimate (similar to SEER–SEM and SEER–IT), or the customer can 

choose to employ the SLIM historical database to provide more data points in the 

estimation.   

SLIM–Estimate breaks development into four distinct phases typically associated 

with the software development life cycle. These phases are as follows: (1) Concept 

Definition, (2) Requirements and Design, (3) Construction and Test, and (4) Perfective 
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Maintenance (QSM, 2006). QSM (2006) defined maintenance as “correcting errors 

revealed during system operation or enhancing the system to adapt to new user 

requirements, changes in the environment, and new hardware” (QSM, 2006, p. 78).  

SLIM–Estimate addresses software maintenance in the project environment portion of the 

model in the perfective maintenance tab. The maintenance inputs of the SLIM–Estimate 

model can then be transferred to the additional SLIM–MasterPlan tool to produce an 

easy-to-read display, as shown in Figure 6.  In this case, Figure 6 demonstrates the 

estimated expected costs of a simulated software maintenance project over a three-year 

period. This report includes major and minor enhancements as well as other maintenance 

associated tasks within the Baseline Support category (i.e., emergency fixes and help 

desk support). This model provides program managers defendable position from which to 

justify manpower increases/decreases as displayed in man-months (MM), and budget 

requests, as exhibited in the ($1,000) column. 

 

Figure 6.   SLIM Maintenance Screen 
(Reifer et al., 2010) 
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5. Summary 

COCOMO II, SEER–SEM, SEER–IT, and SLIM–Estimate all provide program 

managers with an appropriate amount of information necessary to estimate the costs of 

software maintenance for a given program or project. These models “assume that 

software maintenance is a subset of development, not the opposite” (Reifer et al., 2010, p. 

10). Using these models, developers and program managers are able to adjust the cost 

factors and continue to refine their calibration of whichever model they employ.   
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III. DATA AND METHODOLOGY 

Software not developed with maintenance in mind can end up so poorly designed 
and documented that total redevelopment is actually cheaper than maintaining the 
original code. 

– Department of the Air Force (2000)   

A. SAMPLE DATA SET USED DURING RESEARCH 

Data for this thesis was collected from the Office of the Secretary of Defense Cost 

and Resource Center (DCARC) and compiled by the NAVAIR to support local ongoing 

research. The majority of the data obtained for this thesis was graciously provided by Dr. 

Wilson Rosa of the Information Technology Division of the AFCAA and Mr. Peter 

Braxton of Technomics Incorporated. The AFCAA and Technomics are currently 

conducting an Air Force–sponsored study on software maintenance and were able to 

provide the results of their collection efforts thus far to support this thesis. Their study’s 

objectives are to collect “actual data to improve software maintenance cost estimating” 

(Rosa & Braxton, 2010). The results of the AFCAA study are to support better cost-

estimating techniques and to provide benchmarks for both industry and government 

agencies that can be used in future proposals (Rosa & Braxton, 2010). A data item 

description (DID) was provided to various contractors and government agencies for them 

to complete and return to Technomics for inclusion in the study’s database. The final 

DID that was provided to the data sources can be found in Appendix A. However, 

agencies and industry partners submitted data prior to the completion of the DID; 

therefore, this data was not normalized to match categories required by the DID. The 

normalization process is currently being conducted by Technomics. Nevertheless, the 

AFCAA and Technomics were able to provide whatever raw data they had available.  

1. Warner Robins Air Logistics Center  

In the summer of 2009, Reifer Consultants, Inc., conducted a software 

maintenance study that involved various government agencies. Warner Robins Air 

Logistics Center (ALC) was one such agency. ALC personnel who were working on a 
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variety of projects at equally varying times in the acquisition cycle completed 

questionnaires in support of the study. Based on the information provided in the 

questionnaires, the participants were selected for further interviews. If any additional 

interviews were conducted, this data was not available.  

From the set of eight available questionnaires, seven programs were selected due 

to the completeness of the information provided and the applicability to this thesis.  Each 

questionnaire was completed by program managers, leads, software managers, or 

integrated product team (IPT) leads. The range of programs from those selected reported 

avionics as their operating environment. The questionnaires indicted the various 

programming languages used in their software, as shown in Table 4. 

Table 4.   Warner Robins ALC Programs and Languages 

Program Primary Software Language  

Joint Stars C/C++ 

MC-130E Combat Talon Jovial J73 

MMRT BCC-001 Ada 

MRT E20 Ada 

SOF EISE Sustainment Ada 

USAF F-15 Suite S7E Block Upgrade Jovial 

ALR-56M Block Cycle D Access 

 

The application domains stated in the questionnaires included electronic warfare, 

command and control, radar and weapons delivery, and database (which included 

simulation and modeling as well as controls and displays). Other information contained 

in the questionnaires included software change request information, the activities 

included in the effort (divided between software maintenance and sustaining 

engineering), and the success rating for the project. Next, the questionnaire inquired 

about the actual resources expended/estimated (for completed software projects). This 

allowed the program managers to record their cost estimates and drivers during the 
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development of releases. These were documented through the categories of Total 

Resources Expended, Resource Allocations (Labor Hour by Major Activity), Size 

Information, and Modified Code. Lastly, the questionnaire enabled participants to 

indicate scale factor ratings as designed by the COCOMO II model. The program 

managers were able to indicate the estimated rating and the actual value of the scale 

factor at completion.  

The researcher transferred this raw data to an Excel spreadsheet for convenience 

and ease of analysis. The data was categorized by source lines of code (SLOC), costs, and 

the percentage of maintenance effort applied in the software release (whether adaptive, 

corrective, perfective, or enhancements). Additionally, three programs were able to report 

their budgeted and actual cost of release by the number of hours applied to the project.  

2. Picatinny Arsenal  

Data from the Picatinny Arsenal was obtained by the AFCAA through the Office 

of the Deputy Assistant Secretary of the Army for Cost and Economics (ODASA–CE) 

and normalized by Technomics into the DID spreadsheet mentioned earlier. The data set 

contained a total of 19 projects from four programs (the Light Weight Mortar Ballistic 

Computer, the Mortar Fire Control System—Heavy, the Paladin system, and the Towed 

Artillery Digitization) at various versions or software blocks. The researcher selected 

seven programs from the available data due to the completeness of information provided 

and the applicability to this thesis. The final candidate projects used for this thesis and 

their associated programming languages are listed in Table 5. 
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Table 5.   Picatinny Arsenal Programs and Languages 

Program Primary Software Language 

LHMBC Version 3 C++ 

Paladin SWB2 Version 3 Ada 

Paladin SWB2 Version 2 Ada 

Paladin V7P Ada 

Paladin V7 Ada 

Paladin V11.4 Ada 

TAD Block 1A C++ 

 

The researcher transferred this raw data to an Excel spreadsheet for convenience 

and ease of analysis. The data was then categorized by a summarized tabulation of SLOC 

(divided by deleted, modified, new, and reused) and overall costs. Additionally, one 

program reported the number of defects categorized by priority of the defect. This data 

point was also included in the Excel spreadsheet.  

3. Integrated Strategic Planning and Analysis Network 

As described in the DoD’s 2008 Major Automated Information System Annual 

Report, the Integrated Strategic Planning and Analysis Network (ISPAN) Block I 

employs a  

system of systems approach that spans multiple security enclaves for 
strategic and operational level planning and leadership decision making. 
The system is composed of two elements: (1) a Collaborative Information 
Environment (CIE) managing strategy-to-execution planning across all 
United States Strategic Command (USSTRATCOM) Mission areas; and 
(2) a Mission Planning and Analysis System (MPAS) that support the 
development of Joint Staff Level I through Level IV nuclear and 
conventional plans supporting National and Theater requirements. (DoD, 
2008)   
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The data provided to the AFCAA included several years’ worth of development and 

maintenance information related to the suite of ISPAN programs. “The major application 

software programs used in the process (ISPAN) include the National Ground Zero 

Integrated List and Development System (NIDS), the Missile Graphics Planning System 

(MGPS), the Air Vehicle Planning System (APS), and the Document Production System 

(DPS)” (United States Strategic Command [USSTRATCOM], 2004, p. 2).1 Additional 

programs included the Automated Windows Planning System (AWPS), the Theater 

Integrated Planning System (TIPS), and others related to the ISPAN program. This 

information was divided by SLOC and Software Change Requests and then further 

segregated by the major programs within ISPAN. The various projects and their 

associated programming languages used for this thesis are depicted in Table 6.  

Table 6.   ISPAN Programs and Languages 

Program Primary Software Language 

Automated Windows Planning System (AWPS) C 

Missile Graphics Planning System (MGPS) FORTRAN 

Aircraft Air Vehicle Planning System C++ 

Data Services C/C++ 

Theater Integrated Planning System (TIPS) Unknown 

National Ground Zero Integrated List and 

Development System (NIDS) 
C++ 

 

The ISPAN data revealed the acquisition method used for each subordinate 

program. This information was broken down into two categories, custom build or COTS 

purchase. Additionally, the labor effort performed (by percentage) was partitioned 

between three categories: adaptive, perfective, and corrective. Finally, the ISPAN data 

contained full-time equivalent (FTE)_for maintenance personnel (between 2003 and 

                                                 
1 This document was provided to the researcher by the AFCAA for inclusion in a study on software 

maintenance. 
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2008), segregated by each major subordinate program, as well as the logical source lines 

of code for these programs.     

4. Lockheed Martin Systems Integration Owego 

The Lockheed Martin data provided to the AFCAA arrived without an appropriate 

data dictionary for use in sorting out the various category definitions listed in the Excel 

spreadsheet provided. However, simple deduction and common assumptions permitted 

the use of the data. The information Lockheed Martin gave on several of its programs 

provided three years’ worth of aviation-related software maintenance. These programs 

performed a variety of services, including built-in-testing and common console 

applications. The software types themselves were split between support and embedded 

software.  The programs and their associated programming languages are displayed in 

Table 7. 

Table 7.   Lockheed Martin Systems Integration Owego Programs and 
Languages 

Program Primary Software Language 

CDNMDLT_IMOP_MHP Java 

ESM MHP BIT C++ 

ESM MMH BIT C++ 

JAGRS–Total C 

CP140 IMOP Emulator R4.0–Total Ada 

MMH ESM OFP MERGE SW–Total Ada 

MMH LASIS 15.5, 15.6, 15.7 & 15.8–Total Ada 

MMH P3I Dev Rel 15 Ada 

SBC Legacy BSP R11–Total C 

VH-71 VASIS 5.0–Total Ada 

MMH-P3I AOP SW Ada 

MMH LASIS 15.9 & 17.0–Total Ada 

AMCM Common Console–Total C 

A10_PE_ISA C# 
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The data contained whether the software underwent maintenance while being 

developed or whether it reflected only maintenance actions on those programs. This data 

also held the start and end dates for any maintenance that was performed. The range for 

these dates varied from as short as three months to as long as six years. SLOC counts 

were recorded by base code, automatically generated code, modified, new, reuse, ported, 

and their aggregate totals. Additionally, the data contained the number of defects reported 

across several categories.   

5. Naval Air Systems Command (NAVAIR) 

A portion of the data provided by the NAVAIR 4.2 Cost Department was the 

result of a previous analysis conducted on several software-intensive programs and their 

associated information contained within the software resources data report (SRDR). 

NAVAIR collected this data over several months via the Defense Cost and Resource 

Center (DCARC) website to discover any trends related to the development language and 

the type of software being created, reused, modified, or automatically generated. The 

primary documents used to derive the Excel spreadsheet provided were taken by the 

NAVAIR Cost Department from the SRDR (either the 2630-2 or 2630-2) for that 

particular program. There were well over 1,300 data points from 47 disparate programs 

identified in the data. However, NAVAIR reported that many data points were considered 

unreliable for analysis: “In working with the data we recognized that some of the actual 

data points were not very meaningful, either they were an interim build actual that was 

not stand alone or the data turned in was highly questionable.”2 The extensive amount of 

information contained in NAVAIR’s analysis precipitated the need to limit the data used 

for this thesis to 16 data points associated with nine programs, as shown in Table 8. 

 

                                                 
2 This information can be found in the database received from NAVAIR 4.2 Cost Department under 

the tab titled Filter Tips in the Microsoft Excel spreadsheet titled 2630 Raw Sep 10.xls. 
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Table 8.   Naval Air Systems Command SRDR Study Programs and Languages 

Program 
Primary Software 

Language 

AEA Mission Planning SW Build 1&2 Visual basic 

Operational Flight Program SW Build 1&2 Final Ada 

AN/USG-2/3 CEC DDS Tactical CSCI Ada 

Intelligent Services Build 1 End C++ 

I/O Services Build 1 End C++ 

System of Systems Common Operating Environment 
(SOSCOE) Build 1.5 Final 

C++ 

SCS 4.0 Mission Computer Ada 

F-16 Block 30 SCU 7 UPC C# 

Apache Longbow Block III Ada 

Active Controls (First Flight) C (ANSI C) 

AHE Mission Computer Build 2 (Release 0) Ada 

AHE Mission Computer Support Build 2 (Release 0) C/C++ 

AHE Mission Display Build 2 C++ 

AHE Comm Suite (UTFA1/UTFA3) C/Assembly 

AHE Radar (AN/APY-9) C/C++ 

Mission Support SW Initial Release Java 

 

NAVAIR’s collection of data provided information from the SRDRs of these 

programs through SLOC counts and categorized by base code, new, modified, reused, 

and automatically generated code. Additionally, the data collection identified the 

software developer and its self-reported Capability Maturity Model—Integrated (CMMI)  

maturity levels. Lastly, the data provided the time taken to develop the software and the 

contractor’s overall productivity in relation to the SLOC type reported (new, modified, 

unmodified).  

The remaining portion of the data obtained from NAVAIR also included 

information from 61 software projects and their related Program Related Engineering 
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(PRE) costs. PRE is a program of record that provides software support to the tactical 

software systems for the Navy and Marine Corps (NAVAIR, 2010). The funding for PRE 

is divided between Capability Defect Package (CDP) and Fleet Response Activity (FRA). 

The CDP collects software trouble reports, performs analysis of these reports, and then 

delivers the software to the operating forces (NAVAIR, 2010). FRA funds are used by 

the Software Support Activity (SSA) for any other resources that are not identified as 

CDP. This data set included several years’ worth of PRE actual amount funded (from 

1995 to 2008) and expected funding (from 2009 to 2015) for these programs. 

Additionally, the data set included major program subsystems/CSCIs, the number of 

units/subsystems deployed to users, information concerning the maintainer (name, CMM 

and CMMI levels), and the SLOC for the associated subsystems/CSCIs. These 61 

candidate programs lacked consistency for the program’s actual amount funded; 

therefore, the researcher narrowed the programs to those that possessed five consecutive 

years’ worth of PRE actual amount funded data.  NAVAIR arranged this data by the 

SLOC for each programs’ subsystems/CSCIs. The researcher combined the total SLOC 

and number of subsystems/CSCIs for ease of analysis. Additionally, the researcher 

averaged the number of units/systems deployed to users. Unfortunately, the programming 

language was not contained in the PRE data set. The total used for this research was 28 

programs. The programs represented in the data were divided into five groupings 

determined by their functions or by the major hardware they supported. These categories 

are air combat equipment (ACE), aviation support equipment (ASE), missiles (MIS), 

fixed wing aviation (FWA), and rotary wing aviation (RWA). The software product 

teams’ programs and their associated application domain used in this research are shown 

in Table 9. 
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Table 9.   Naval Air Systems Command PRE Software Product Team Programs 
and Application Domains 

Software Product Team Domain Software Product Team Domain

PMA170_GPS/CDNU ACE PMA265_F/A18 FWA 

PMA209_AMC&D ACE PMA271_E6B FWA 

PMA209_CAINS ACE PMA273_T45 FWA 

PMA209_GPSW-TAWS ACE PMA290_P3C FWA 

PMA209_CSFIR ACE PMA242_HARM MIS 

PMA209_SDRS ACE PMA259_AIM9X MIS 

PMA209_TAMMAC ACE PMA259_AMRAAM MIS 

PMA260_CASS ASE PMA226_H46 RWA 

PMA272_EWSSA ASE PMA261_H53 RWA 

PMA207_C-130 F,R&T FWA PMA275_V22 RWA 

PMA231_E2-C FWA PMA276_AH1W RWA 

PMA207_KC130J FWA PMA276_UHIN RWA 

PMA234_EA6B/AEA FWA PMA299_H60B-LAMPS RWA 

PMA257_AV8B FWA PMA299_H60FH RWA 

B. VARIABLES AND METHODOLOGY 

The disparate number of variables, lack of consistency, and normalization across 

the data limited the ability to perform extensive multivariate regression analysis across 

the data collected. The researcher could not assure that any result from performing 

traditional multivariate analysis would reveal the desired cost-estimating relationship 

needed to create a cost model for software maintenance as originally intended. Instead, 

the statistical tool JMP (Release 9) produced by the SAS Institute was used to derive the 

analysis for this thesis. This package was principally chosen due to its availability to NPS 
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students for free. Additionally, JMP contains data tables that are easily converted and 

manipulated from Excel spreadsheets. Additionally, JMP produces visually attractive 

graphical material for analysis. This was compared to Excel, where the researcher needed 

to create several different tabs in order to analyze a single data set, and the graphical 

choices were limited. The variables selected for correlations or regressions were chosen 

depending on the integrity of the data available and on assumptions concerning cost 

drivers for software maintenance. Some of the variables chosen were SLOC types, 

overall cost, effort types (adaptive, corrective, perfective), number of software change 

requests, total number of defects reported, and the number of FTEs for a particular year’s 

worth of maintenance. Any cost-related values were retained within their reported fiscal 

years for consistency and not converted to reflect inflation. 
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IV. DATA ANALYSIS 

Calculating maintenance costs is a multi-dimensional problem and the software 
itself is only one of the many dimensions of that problem. There is not only a 
product to be maintained, but also a maintenance process, a maintenance 
environment, maintenance personnel and the tools available. 

    – Harry M. Sneed (2004)   

A. CORRELATION ANALYSIS 

1. Purpose 

The data analysis for this thesis began with simple correlations between the 

variables collected within the data provided. This test was important because it allowed 

the researcher to understand the linear relationship between two variables. The formula 

for the simple Pearson product-moment correlation is represented in Equation 5. 

 

   2 22 2
XY

n XY X Y
r

n X X n Y Y




          

  
   

 (5) 

where XYr  is the correlation coefficient between X  and Y , and 

  n  is the size of the sample, 

  X  is the X  variable,   

  Y  is the Y  variable, 

XY  is the product of the X variable multiplied by the 

corresponding Y  variable, 

  
2X  is the X  variable squared, and 

  
2Y  is the Y variable squared. (Salkind, 2004, p. 81) 

For the purposes of this thesis, the correlation coefficient was used to determine 

which pairing between variables contained the strongest relationships. The results of this 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 32 - 
k^s^i=mlpqdo^ar^qb=p`elli 

analysis were then used to extract candidate variables to compute simple linear 

regressions and possibly create cost-estimating relationships.    

2. Warner Robins and ISPAN Data Analysis 

The data set provided by Warner Robins did not analyze well for this thesis. The 

information provided did not contain enough cost data for analysis to calculate 

correlations alone. However, the data set did provide a basis for comparing the amount of 

SLOC compared to the maintenance effort applied. This information was also contained 

in the ISPAN program data. Therefore, these two data sets (totaling nine programs) were 

combined in order to analyze their results categorically by software size and effort type 

(corrective or perfective maintenance). It was assumed that the amount of maintenance 

performed would correlate to the complexity of the software, but since there were no 

metrics provided that could be used as a surrogate for complexity, software size was 

computed as the dependent variable for analysis.     

The correlation between the variables’ total source lines of code and percentage 

effort of corrective and perfective maintenance resulted in the report shown in Figure 7.  

The outcome demonstrated that for this combined data set, the percentage of effort in 

perfective maintenance correlated (0.75) to the source lines of code (depicted as Total 

SLOC). However, the percentage of effort in corrective maintenance showed a negative 

correlation (-0.63) to the source lines of code. Therefore, complexity could not be 

definitively proven by the percentage effort of maintenance performed and the total 

amount of SLOC in the software.   

 

Figure 7.   Multivariate Correlation Results for SLOC and Percentage of 
Maintenance Effort for SW Programs 
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3. Picatinny Arsenal Data Analysis  

This data appeared to be the most promising toward building a software 

maintenance model. This assumption was based on actual cost information and 

descriptions of the software reported in the collected data.  

The first correlation resulted in the report shown in Figure 8. The outcome 

demonstrated that for this data set, the original base count of source lines of code 

(depicted in Figure 8 as SLOC Reused [Old]) has little correlation (0.28) to the overall 

costs associated with the maintenance. However, the number of SLOC introduced to the 

base code (depicted in Figure 8 as SLOC [Added])  resulted in a strong correlation (0.81) 

to the overall cost of the maintenance. 

 

Figure 8.   Multivariate Correlation Results for Cost and SLOC  

The Picatinny Arsenal data also included the total effort (in man-months) used for 

the maintenance. This data could be used as a proxy for dollar costs. The results of the 

correlation for this variable with SLOC counts are shown in Figure 9. The total effort 

variable was not strongly correlated (0.24) to the amount of SLOC reused in the 

maintenance. However, SLOC (Added) continued to show a strong correlation (0.73) 

compared to the total effort variable.  

 

Figure 9.   Multivariate Correlation Results for Total Effort and SLOC 

This data also included the requirements added or deleted for the particular 

software represented. However, the Paladin SWB2 (version 3) was excluded for analysis 
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because it did not include information for either one of these variables. The results of the 

five data points and their associated variables are shown in Figure 10. These analyses 

revealed that there were no strong correlations between the requirements added (new to 

the version or release, represented in Figure 10 as Reqts(+)) or deleted (existing 

requirements deleted from a previous release or version, represented in Figure 10 as 

Reqts(-)) and the overall cost of the maintenance performed.   

 

Figure 10.   Multivariate Correlations Report for Cost and Requirements 

The same analysis was conducted for total effort against these variables, as shown 

in Figure 11. This analysis also revealed that there were no strong correlations between 

the requirements added or deleted, and the total effort contributed to the software 

maintenance.  

 

Figure 11.   Multivariate Correlations Report for Total Effort and Requirements 

4. Integrated Strategic Planning and Analysis Network Data Analysis  

This data set provided six years’ worth of logical SLOC, the FTE associated with 

the maintenance conducted on ISPAN’s subprograms, the number of CSCIs associated 

with those subprograms, and the maintenance defect count for four years (2005–2008). 

Since actual cost data was not provided in the data set, it was assumed that FTE data 

could be used as a surrogate. The number of CSCIs listed in the data set indicated that 

they did not change from year to year; therefore, the number of CSCIs was held constant 
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in the analysis. These numbers were then correlated by year, as shown in Figures 12 and 

14. The remaining reports for fiscal years 2006 and 2007 are located in Appendix B.  

 

Figure 12.   Multivariate Correlations Report for FY05 ISPAN Data 

The results show that SLOC and the number of FTEs for maintenance contain the 

strongest correlation for FY05. Since one subprogram contained a singular CSCI, the 

researcher determined that this could skew the results of the correlation and recalculated 

the correlation; the results are shown in Figure 13. However, these results did not 

significantly improve the relationship between the proxy for cost (FTE Maintenance) and 

the number of CSCIs in the FY05 ISPAN program.  

 

Figure 13.   Multivariate Correlations Report for FY05 ISPAN Data Minus One 
Subprogram With a Singular CSCI   

The analysis of the ISPAN data set from FY08 revealed similar results as FY05, 

as shown in Figure 14.  The number of CSCIs continued to be less of a factor, 

contributing to the amount of FTE maintenance performed on the software.  

 

Figure 14.   Multivariate Correlations Report for FY08 ISPAN Data 
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In order to ensure that the singular CSCI count for one subprogram did not 

influence the results, another correlation was performed minus that particular program. 

The results are shown in Figure 15. As expected, the CSCI count did not reflect any 

relationship to the amount of FTE maintenance. However, the correlation between the 

amount of FTE maintenance and defects rose considerably from 0.46 to 0.86. 

 

Figure 15.   Multivariate Correlations Report for FY08 ISPAN Data Minus One 
Subprogram With a Singular CSCI   

5. Lockheed Martin Systems Integration Data Analysis  

This data set mostly contained information from FY07, but also it included data 

from FY08 and one program’s data for FY09. The Lockheed Martin data included the 

start and end date of the maintenance performed on these programs. The number of 

months contained in this information was calculated and analyzed to determine if this 

data was related to the number of labor months. The result was a 78% correlation. Since 

the data did not include actual cost data, the number of labor months was used as a proxy 

to determine cost factors in the remainder of the correlation analysis. 

The analysis of this data revealed that the strongest correlation was between the 

number of labor months and the modified code (0.83), as shown in Figure 16. Not 

surprisingly, a strong relationship exists between modified code and the number of 

defects. This implies that the amount of modified code increases with the number of 

defects in the software. However, the second strongest relationship is between defects 

and labor months.  
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Figure 16.   Multivariate Correlations Report for Multiyear Lockheed Martin Data 
for Labor Months, Defects, Modified, and Base Code 

Next, an analysis of the amount of new and reused code was performed, as shown 

in Figure 17. As expected, the amount of new code introduced had a very high correlation 

(0.95) to the amount of labor months used in the maintenance. The amount of reused 

code was significantly lower (-0.17) than anticipated because there were only two 

programs that reported reuse code numbers, which influenced the lower correlation.   

 

Figure 17.   Multivariate Correlations Report for Multiyear Lockheed Martin Data 
for Labor Months, New, and Reused Code 

6. NAVAIR Program Related Engineering (PRE) Data Analysis  

This data was analyzed to extract the most complete information possible 

concerning size of the software (SLOC), the number of associated subsystems or CSCIs, 

the number of deployed systems that use the software, and the amount funded for that 

program for a particular year. The data was then narrowed down to those programs that 

contained funded PRE data for at least five consecutive years. Once this funding criterion 

was met, the total number of program CSCIs was computed as well as the associated 

SLOC. Finally, the number of deployed units or subsystems within a program was 

averaged. This was done to account for the support activity’s inability to conduct 

maintenance on every single piece of equipment within that particular year’s worth of 

PRE funds. It was assumed that some of the software maintenance would carry over to 
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the next year’s funding. Therefore, the researcher determined that it was more appropriate 

to average the amount of units/subsystems deployed for the purposes of this research.   

The actual PRE funded amounts varied by year as well as by category. The 

programs represented in the data were divided into five groupings, determined by their 

functions or by the major hardware they supported. These categories were air combat 

equipment (ACE), aviation support equipment (ASE), missile systems (MIS), fixed wing 

aviation (FWA), and rotary wing aviation (RWA), as shown in Table 10. It appears that 

the vast majority of PRE funding is spent in support of fixed wing aviation, as shown in 

Figures 18 and 19, which display the FY04 and FY08 summation amounts funded by 

category. The charts for the remaining fiscal years can be found in Appendix B. 

However, when the mean of these amounts was computed for the identical years, aviation 

support equipment dominated PRE funding, as shown in Figures 20 and 21. The amount 

of funding is mentioned only to establish the background for the remainder of the data 

analysis on the information provided by NAVAIR.   

Table 10.   NAVAIR PRE Data Categories 

Category Abbreviation

Air Combat Equipment  ACE 

Aviation Support Equipment ASE 

Fixed Wing Aviation FWA 

Missile Systems MIS 

Rotary Wing Aviation RWA 
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Figure 18.   Sum of PRE Actual Funded Amount for FY04 by Category 
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Figure 19.   Sum of PRE Actual Funded Amount for FY08 by Category 
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Figure 20.   Mean of PRE Actual Funded Amount for FY04 by Category 

 

Figure 21.   Mean of PRE Actual Funded Amount for FY08 by Category 

Correlation analysis for these programs was computed within each category and 

combined when appropriate. Fixed wing aviation contained the largest amount of systems 
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(9) and was analyzed using FY08 PRE cost data, as shown in Figure 22. The remaining 

years’ worth of correlations are contained in Appendix B. This analysis revealed strong 

correlations (greater than 0.50) between all of the variables chosen.  However, the 

number of CSCIs within the programs exposed the most promising relationship (0.90) 

with FY08 funding amounts within this category.  

 

Figure 22.   Multivariate Correlations Report for PRE Data for Fixed Wing 
Aviation, FY08 Funded Amounts, Average Number of Systems 

Deployed, SLOC, and CSCIs 

Next, rotary wing aviation data contained seven data points and was computed in 

the same manner as fixed wing using the same variable categories. The variables did not 

reveal the strong correlations depicted in fixed wing aviation, as shown in Figure 23.  It is 

assumed that this occurred because of the age of the rotary aircraft. The PRE data 

included older aircraft that do not require a great deal of software, for example the UH–1 

utility aircraft. However, the number of CSCIs and the FY08 funded amount still proved 

to be a significant (0.69) relationship. Additionally, the number of CSCIs compared to the 

total SLOC revealed a strong (0.91) relationship. The remaining years’ worth of 

correlations are contained in Appendix B.   

 

Figure 23.   Multivariate Correlations Report for PRE Data for Rotary Wing 
Aviation, FY08 Funded Amounts, Average Number of Systems 

Deployed, SLOC, and CSCIs 

The category of air combat electronics contained seven entries and was computed 

using the same variable categories as fixed and rotary wing aviation. The variables 

revealed weaker correlations between the variables and no relationship between any of 
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the variables and the FY08 funded amounts. As anticipated, the SLOC, the total number 

of CSCIs/subsystems, and the average number of units/subsystems revealed strong 

relationships between them, as shown in Figure 24. It is worth noting that the correlation 

between total SLOC and the funded amount was much different than the two previous 

correlations. It is assumed that this difference could be attributed to fixed and rotary wing 

use of SLOC as a measure of their funded amounts versus air combat electronic 

programs, which may use another metric for requesting their maintenance funding.    

   

Figure 24.   Multivariate Correlations Report for PRE Data for Air Combat 
Electronics, FY08 Funded Amounts, Average Number of Systems 

Deployed, SLOC, and CSCIs 

The category for aviation support equipment contained only two data points; 

therefore, the researcher determined that these points should be combined with the data 

for air combat electronics for analysis. The correlation was computed again with the 

results shown in Figure 25. By combining the two domains for the purposes of analysis, 

the results revealed a stronger relationship between FY08 funded amounts and CSCIs 

(0.76). However, this mixture decreased the relationships between SLOC, the number of 

deployed units, and CSCIs. Given the results of these correlations, it may not be pertinent 

to combine these domains for further analysis. The remaining years’ worth of correlations 

for ACE and the combined ACE/ASE data set are contained in Appendix B.   

 

Figure 25.   Multivariate Correlations Report for PRE Data for Air Combat 
Electronics, FY08 Funded Amounts, Average Number of Systems 

Deployed, SLOC, and CSCIs With ASE Data 

Next, the category for missile software contained three data points and was 

computed in the same manner as the preceding data using the same categorical variables. 
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The results are shown in Figure 26. Even though the number of data points was small, a 

strong relationship (0.88) was revealed between the FY08 funded amount and the average 

number of units/systems deployed. However, this data set would need to include more 

data points in order to be more conclusive than what is currently presented.   

 

Figure 26.   Multivariate Correlations Report for PRE Data for Missiles, FY08 
Funded Amounts, Average Number of Systems Deployed, SLOC, and 

CSCIs 

Finally, a combination of the fixed and rotary wing aviation data was correlated in 

order to determine if there were any relationships that could be revealed given that these 

programs all involve manned-flight platforms. This category contained 16 data points, 

and the results for this analysis are shown in Figure 27. By combining the data sets, the 

correlation analysis revealed positive relationships between the variables. In this case, the 

relationship between FY08 funded amounts and the number of CSCIs/subsystems 

contained the strongest (0.83) correlation. 

 

Figure 27.   Multivariate Correlations Report for PRE Data for Fixed and Rotary 
Wing Aviation, FY08 Funded Amounts, Average Number of Systems 

Deployed, SLOC, and CSCIs 

However revealing these correlations were, correlation does not equal causation. 

Therefore, further statistical analysis was necessary in order to create a potential cost 

model or cost-estimating relationship. The next section uses simple linear regression 

analysis based on the correlation results. 
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B. REGRESSION ANALYSIS 

1. Purpose 

In order to estimate the costs associated with software maintenance, it is 

important to conduct regressions. This method of analysis allows a researcher to estimate 

the results of one variable from the input of another variable. In this case, the researcher 

wanted to estimate the cost (whether in actual costs, funded amounts, or labor hours) for 

a project’s maintenance when comparing that cost to a variety of variables (SLOC counts, 

average number of units/subsystems deployed, number of CSCIs, etc.). In this type of 

analysis, it is important to regard the entire statistical package when considering 

accepting the regression results. For example, a researcher needs to look beyond the 

apparent “fit” of the data points along the regression line. While this technique provides 

some advantages, the next step involves examining the coefficient of determination, 

which explains the total variation contained within the regression equation itself and is 

represented by Equation 6. 

 
 
 

2

2
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esty yExplainedVariation
R

TotalVariation y y


 






 (6) 

where esty  is the estimated value of y for a given value of x , 

and y is the mean of our known y . (Nussbaum, 2010) 

The coefficient of determination can be further explained by 2
adjR , which removes 

one degree of freedom and allows for greater variation explanation given a smaller 

sample size. This statistic is particularly useful considering the diminutive volume of the 

data sets used for this thesis. Lastly, the f test statistic was considered essential to the 

analysis. This test reveals whether or not the model represented by the regression 

equation is preferred versus having the coefficients for the dependent variables equal to 

zero. Typically, if the probability of calculating an f statistic is greater than 0.05, the 

model is considered not good, and researchers  should search for an alternative.  These 
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statistics determine the strength of the regressions conducted and provide evidence for 

future multivariate cost models.  

For the purposes of this thesis, the analysis results can be found in tables 

corresponding to their applicable regression graph. The criteria for designating a useable 

model depended on the coefficient of determination, the adjusted coefficient of 

determination, and the f statistic. Each coefficient of determination result was compared 

to Table 10, which allowed the researcher to conclude the utility of the model. The f 

statistic was analyzed based on whether the statistic exceeded the established 0.05 

threshold. If the regression results for the f statistic were beyond 0.05, the researcher 

concluded that the dependent variable did not significantly improve the ability to predict 

costs (the independent variable) and, therefore, should not be used. 

Table 11.   Bivariate Regression Analysis Criterion  

 0 –50% 51–60% 61–70% 71–80% 81–99%

Coefficient of 
Determination 

Weak Inconclusive
Moderately 

strong 
Strong 

Very 
strong 

Coefficient of 
Determination 

(adjusted) 
Weak Inconclusive

Moderately 
strong 

Strong 
Very 
strong 

2. Warner Robins and ISPAN  

The bivariate regressions executed on this data set attempted to determine the 

possible variables that could be used in a best fit model. The correlations demonstrated 

that total SLOC and the percentage of effort in perfective maintenance could result as a 

candidate best fit model. Therefore, the first regression placed the total SLOC as the 

dependent variable and the percentage of effort in perfective maintenance as the 

independent. The results of this analysis are shown in Figures 28 and 29. 
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Figure 28.   Linear Fit Regression for SLOC and Percentage of Effort in Perfective 
Maintenance   

The linear relationship equation for Figure 28 is represented by Equation 7.  

 Total SLOC = 65314.3 + 2909117 * Effort (Perfective) (7) 

Table 12.    Bivariate Regression Results  

 Results Researcher’s Interpretation 

Coefficient of Determination ( 2R ) 57% Inconclusive 

Adjusted Coefficient of Determination ( 2
adjR )  51% Inconclusive 

f statistic 0.0185 Good 

 

Only slightly more than 50% of this model’s variability could be explained 

through the coefficients of determination. Additionally, the f value (0.0185) did not 

surpass the threshold of 0.05, which implies that this could be a model candidate if there 

are no superior alternatives. 
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Figure 29.   Whole Model Statistical Tables for SLOC and Percentage of Effort in 
Perfective Maintenance 

3. Picatinny Arsenal 

Simple bivariate regressions were executed on the data sets in order to determine 

the best variables for inclusion in a best fit model. The Picatinny Arsenal correlations 

revealed that the overall cost category contained a strong relationship with the number of 

New SLOC (added) in the maintenance. Therefore, the first regression placed overall 

costs as the dependent variable and SLOC New (added) as the independent. The results 

of this analysis are shown in Figures 30 and 31.   
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Figure 30.   Linear Fit Regression for Overall Costs and SLOC New (Added)  

The linear relationship equation for Figure 30 is represented by Equation 8.  

 Overall Costs = 4048176.7 + 132.0 * SLOC New (Added)  (8) 

Table 13.   Bivariate Regression Results  

 Results Researcher’s Interpretation 

Coefficient of Determination ( 2R ) 47% Weak 

Adjusted Coefficient of Determination 
( 2

adjR )  34% Weak 

f statistic 0.098 Not Good 

 

Less than 50% of this model’s variability could be explained through the 

coefficients of determination. Additionally, the f value (0.098) surpassed the threshold of 

0.05, which implies that this is not a good model to use.  
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Figure 31.   Whole Model Statistical Tables for Overall Costs and SLOC New 
(Added) 

Another simple regression was performed using total effort (in man-months) 

against SLOC New (Added) since this was determined to possess a strong relationship 

during correlation analysis. The results are shown in Figures 32 and 33.  

 

Figure 32.   Linear Fit Regression for Total Effort and SLOC New (Added)  

The linear relationship equation for Figure 32 is represented by Equation 9.  

 Total Effort = 22717.3 + 1.9 * SLOC New (Added) (9) 
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Table 14.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 54% Inconclusive 

Adjusted Coefficient of Determination 
( 2

adjR )  44% Weak 

f statistic 0.059 Not Good 

 

Less than 50% of this model’s variability could be explained through the 

coefficients of determination.  Additionally, the f value (0.059) surpassed the threshold 

of 0.05, which implies that this is not a good model to use. Based on the data from these 

regressions, it would be difficult to derive an effective model for cost prediction based on 

the results.  

 

Figure 33.   Whole Model Statistical Tables for Total Effort and SLOC New 
(Added) 

4. Integrated Strategic Planning and Analysis Network 

Similar to the Picatinny data, the ISPAN data was subjected to regression tests in 

order to determine the best variables for inclusion in a best fit model. The ISPAN data 
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correlations computed that the FTE maintenance category contained a strong relationship 

with the number of SLOC in the software. Therefore, the first regression analyzed FY08 

data and placed FTE maintenance as the dependent variable with SLOC as the 

independent. This analysis included all six ISPAN programs. The results are shown in 

Figures 34 and 35. 

 

Figure 34.   Linear Fit Regression for FTE Maintenance and SLOC for Six ISPAN 
Programs 

The linear relationship equation for Figure 34 is represented by Equation 10.  

 FTE maintenance = 10.1 + 3.7 e-6 * SLOC (10) 

Table 15.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 51% Inconclusive 

Adjusted Coefficient of 
Determination ( 2

adjR )  38% Weak 

f statistic 0.11 Not Good 
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Less than 50% of this model’s variability could be explained through the 

coefficients of determination. Additionally, the f value (0.11) surpassed the threshold of 

0.05, which implies that this is not a good model to use.   

 

Figure 35.    Whole Model Statistical Tables for FTE Maintenance and SLOC for 
Six ISPAN Programs 

Another regression was executed using FTE maintenance against defects since 

this was determined to possess a strong relationship during correlation analysis. 

However, as was done during correlation analysis, the Theater Integrated Planning 

System was removed.  The results are shown in Figures 36 and 37.  
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Figure 36.   Linear Fit Regression for FTE Maintenance and Defects for Five 
ISPAN Programs 

The linear relationship equation for Figure 36 is represented by Equation 11.  

 FTE maintenance = 13.6 + 0.015 * Defects  (11) 

Table 16.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 75% Strong 

Adjusted Coefficient of Determination 
( 2

adjR )  66% Moderately strong 

f statistic 0.057 Not Good 

 

Only slightly more than 50% of this model’s variability could be explained 

through the coefficients of determination. Additionally, the f value (0.057) barely 

surpassed the threshold of 0.05, which implies that this could be a model candidate if 

there are no superior alternatives. 
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Figure 37.   Whole Model Statistical Tables for FTE Maintenance and SLOC for 
Five ISPAN Programs 

5. Lockheed Martin Systems Integration 

In order to determine the variables for a best fit model, the Lockheed Martin data 

was subjected to regression tests. The Lockheed Martin data correlations computed that 

the labor month’s category contained the strongest relationship with the amount of new 

code and a weaker relationship with the amount of modified code and the total defects in 

the software. Therefore, the first regression analyzed placed labor months as the 

dependent variable and the amount of new code as the independent variable. This 

analysis excluded two programs that reported zero modified code. The results are shown 

in Figures 38 and 39. 
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Figure 38.   Linear Fit Regression for Labor Months and New Code for Fourteen 
Lockheed Martin Programs 

The linear relationship equation for Figure 38 is represented by Equation 12.  

 Labor Months = -1.015 + 0.0025 * New Code (12) 

Table 17.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 92% Strong 

Adjusted Coefficient of 
Determination ( 2

adjR )  91% Strong 

f statistic <0.0001 Good 

 

More than 90% of this model’s variability could be explained through the 

coefficients of determination.  Additionally, the f value (<0.0001) did not surpass the 

threshold of 0.05, which implies that this could be a model candidate to use.  
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Figure 39.   Whole Model Statistical Tables for Labor Months and New Code for 
Fourteen Lockheed Martin Programs 

A second regression was executed using labor months against the amount of 

modified code since this was determined to possess a strong relationship during 

correlation analysis. However, contrary to the correlation analysis, two programs that 

contained zero modified code were removed.  The results are shown in Figures 40 and 

41.  

 

Figure 40.   Linear Fit Regression for Labor Months and Modified Code for Twelve 
Lockheed Martin Programs 
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The linear relationship equation for Figure 40 is represented by Equation 13.  

 Labor Months = 3.45 + 0.012 * Modified Code (13) 

Table 18.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 99% Strong 

Adjusted Coefficient of Determination 
( 2

adjR )  99% Strong 

f statistic <0.0001 Good 

 

More than 90% of this model’s variability could be explained through the 

coefficients of determination. Additionally, the f value (<.00001) did not surpass the 

threshold of 0.05, which implies that this could be a model candidate to use. 

 

Figure 41.   Whole Model Statistical Tables for Labor Months and Modified Code 
for Twelve Lockheed Martin Programs 

A third regression was executed using labor months against the amount of defects 

in the software since this was also determined to possess a strong relationship during 

correlation analysis. However, contrary to the correlation analysis, one program reported 
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zero defects, so that program was removed for this analysis. The results are shown in 

Figures 42 and 43.  

 

Figure 42.   Linear Fit Regression for Labor Months and Defects for Twelve 
Lockheed Martin Programs 

The linear relationship equation for Figure 42 is represented by Equation 14.  

 Labor Months = 33.9 + 0.17 * Total Defects (14) 

Table 19.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 41% Weak 

Adjusted Coefficient of Determination 
( 2

adjR )  36% Weak 

f statistic 0.01 Good 

Less than 40% of this model’s variability could be explained through the 

coefficients of determination. Additionally, the f value (0.01) did not surpass the 

threshold of 0.05, which implies that this model may be useful if there are no other 

alternatives.  
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Figure 43.   Whole Model Statistical Tables for Labor Months and Total Defects for 
Thirteen Lockheed Martin Programs 

6. NAVAIR PRE Data 

The NAVAIR PRE data correlations revealed that the FY08 funded amount 

category contained a number of strong relationships with variables from the data 

provided. Bivariate regressions were calculated for each category according to the 

strength of the correlation. Those correlations that disclosed the highest positive 

correlation were used to populate the regression.  

The fixed wing aviation correlations revealed that the FY08 funded amount 

category contained a strong relationship with the sum of CSCIs/subsystems associated 

with the program. Therefore, the first regression placed the FY08 funded amount as the 

dependent variable and the sum of CSCIs/subsystems as the independent variable. The 

results of this analysis are shown in Figures 44 and 45.   
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Figure 44.   Linear Fit Regression for FY08 Funded Amount and Sum of 
CSCIs/Subsystems for Ten Fixed Wing Aviation Programs 

The linear relationship equation for Figure 44 is represented by Equation 15.  

 FY08 Funded Amount = -2,208,978 + 319866.6 * Sum of CSCIs/Subsystems (15) 

Table 20.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 81% Very strong 

Adjusted Coefficient of Determination 
( 2

adjR )  79% Moderately strong 

f statistic 0.0008 Good 

Eighty percent of this model’s variability could be explained through the 

coefficients of determination. Additionally, the f value (0.0008) did not surpass the 

threshold of 0.05, which implies that this could be a model candidate to use.   
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Figure 45.   Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for Nine Fixed Wing Aviation Programs 

The rotary wing aviation correlations revealed that the FY08 funded amount 

category contained a strong relationship with the sum of CSCIs/subsystems associated 

with the program. Therefore, the first regression placed the FY08 funded amount as the 

dependent variable and the sum of CSCIs/subsystems as the independent variable. The 

results of this analysis are shown in Figures 46 and 47. 
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Figure 46.   Linear Fit Regression for FY08 Funded Amount and Sum of 
CSCIs/Subsystems for Seven Rotary Wing Aviation Programs 

The linear relationship equation for Figure 46 is represented by Equation 16.  

FY08 Funded Amount = 432,009.5 + 95298.4.6 * Total of CSCIs/Subsystems (16) 

Table 21.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 48% Inconclusive 

Adjusted Coefficient of Determination 
( 2

adjR )  39% Inconclusive 

f statistic 0.08 Not Good 

 

Only slightly more than 40% of this model’s variability could be explained 

through the coefficients of determination. Additionally, the f value (0.08) surpassed the 

threshold of 0.05, which implies that this is not a good model to use. 
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Figure 47.   Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for Seven Fixed Wing Aviation Programs 

The air combat electronics correlations revealed that there were no positive 

correlations between the FY08 funded amount category and any of the potential 

independent variables associated with the program. Therefore, there were no regressions 

calculated on this data. However, when the ACE data was combined with the aviation 

support equipment, the FY08 funded amount category contained a strong relationship 

with the sum of CSCIs/subsystems associated with the program. Therefore, this 

regression analysis placed the FY08 funded amount as the dependent variable and the 

sum of CSCIs/subsystems as the independent variable. The results of this analysis are 

shown in Figures 48 and 49. 
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Figure 48.   Linear Fit Regression for FY08 Funded Amount and Sum of 
CSCIs/Subsystems for Seven ACE and Two ASE Programs 

The linear relationship equation for Figure 48 is represented by Equation 17.  

 FY08 Funded Amount = -1553693 + 385902.6 * Total CSCIs/Subsystems (17) 

Table 22.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 57% Inconclusive 

Adjusted Coefficient of Determination 
( 2

adjR )  51% Inconclusive 

f statistic 0.01 Good 

 

Only slightly more than 50% of this model’s variability could be explained 

through the coefficients of determination.  Additionally, the f value (0.01) did not surpass 

the threshold of 0.05, which implies that this could be a model candidate if there are no 

superior alternatives. 
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Figure 49.   Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for Seven ACE and Two ASE Programs 

The missile category correlations revealed that the FY08 funded amount category 

contained a strong relationship with the average of units/systems associated with the 

program. However, there were only three programs to analyze. Nevertheless, these 

systems were subjected to regression analysis in order to discover any possible useful 

information. The regression placed the FY08 funded amount as the dependent variable 

and the average of units/systems as the independent variable. The results of this analysis 

are shown in Figures 50 and 51.   
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Figure 50.   Linear Fit Regression for FY08 Funded Amount and Average of 
Units/Systems for Three Missile Programs 

The linear relationship equation for Figure 50 is represented by Equation 18.  

 FY08 Funded Amount = 432,009.5 + 95298.46 * Total of CSCIs/Subsystems (18) 

Table 23.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 78% Strong 

Adjusted Coefficient of Determination 
( 2

adjR )  57% Inconclusive 

f statistic 0.303 Not Good 

 

More than 60% of this model’s variability could be explained through the 

coefficients of determination. Additionally, the f value (0.303) surpassed the threshold of 

0.05, which implies that this is not a good model to use. 
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Figure 51.   Whole Model Statistical Tables for FY08 and Average of Units/Systems 
for Three Missile Programs 

The fixed and rotary wing aviation combination correlations revealed that the 

FY08 funded amount category contained a strong relationship with the sum of 

CSCIs/subsystems associated with the programs. Therefore, the regression placed the 

FY08 funded amount as the dependent variable and the sum of CSCIs/subsystems as the 

independent variable. The results of this analysis are shown in Figures 52 and 53.   

 
Figure 52.   Linear Fit Regression for FY08 Funded Amount and Sum of 

CSCIs/Subsystems for a Combination of Fixed and Rotary Wing 
Programs 
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The linear relationship equation for Figure 52 is represented by Equation 19.  

FY08 Funded Amount = -1,494,262 + 265277.1 * Total of CSCIs/Subsystems (19) 

Table 24.   Bivariate Regression Results  

 Results Researcher’s 
Interpretation 

Coefficient of Determination ( 2R ) 71% Strong 

Adjusted Coefficient of Determination 
( 2

adjR )  68% Moderately Strong 

f statistic <0.0001 Good 

 

More than 69% of this model’s variability could be explained through the 

coefficients of determination.  Additionally, the f value (<0.0001) did not surpass the 

threshold of 0.05, which implies that this could be a model candidate to use.   

 

Figure 53.   Whole Model Statistical Tables for FY08 and Sum of 
CSCIs/Subsystems for a Combination of Fixed and Rotary Wing 

Programs 
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7. Summary 

The data sets provided for this thesis were from diverse sources, and the 

associated analyses revealed this disparate nature.  The correlations validated several of 

the researcher’s assumptions, including the assumption that the more SLOC to maintain, 

the higher the hours spent maintaining the code. However, this analysis also questioned 

the researcher’s supposition about software reuse and disclosed that the amount of code 

reuse does not relate to the amount of cost or effort. Additionally, the discovery of a 

relationship between subsystems/CSCIs and costs was exposed.  

The regression analysis proved to be the most enlightening task of this thesis.  

Based on the data, the results demonstrated that using SLOC counts to estimate costs 

proved to be an inconsistent method, unless the code was categorized by modified and 

new. The PRE data uncovered the notion of the number of subsystems/CSCIs and their 

relationship with funded amounts. This was particularly interesting since the number of 

CSCIs could reveal the complexity of the software and the maintenance challenges. 

Lastly, the number of defects reported also showed that this variable could be useful in a 

model, if calculated with additional software attributes.   
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY OF FINDINGS 

The diverse nature of the data provided for this thesis constrained the researcher’s 

ability to create a model for the cost of software maintenance. However, there were a 

number of findings that may assist a program manager to estimate the cost of the 

software associated with a program. More important, these findings highlight the need for 

better reporting from those sources of software maintenance support in order to build 

more accurate models in the future. 

The first observation is that the traditional total amount of SLOC metric does not 

accurately reflect the amount of effort required to maintain the software unless 

categorized by the type of SLOC maintained. A strong correlation between the total 

amount of SLOC and costs (whether they are actual costs, labor months, or FTE work) 

could not be determined. None of the bivariate models created supported using total 

SLOC as a sole factor for determining costs. However, SLOC is one of the major inputs 

to any of the software cost-estimation models employed. This analysis supports the use of 

additional information beyond the more easily attained total SLOC count as a method to 

estimate software maintenance.  

The next observation is that the number of defects reported would be an accurate 

measure of the costs for post-production support. Strong relationships were derived 

between the designated cost category and the reported number of defects from the 

correlation analysis and the regressions executed on two programs. Additionally, the 

regressions that included defect counts were proven to be useful. Unfortunately, this data 

is dependent upon where the software is during development. If defects are reported 

during the testing phase of development, this information may be useful to a program 

manager to estimate future maintenance costs. However, the best defect data is still going 

to be derived from software currently in service.   

The third observation is that the number of CSCIs was discovered to be highly 

correlated with the actual funded amount from NAVAIR’s PRE data. The regressions 
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computed revealed that the number of CSCIs/subsystems did provide useable models 

(more so than other data) for estimating the maintenance costs for those particular 

programs. This conclusion does not indicate that the number of CSCIs/subsystems 

associated with a program will provide accurate costs for maintenance. It does imply that 

the number of CSCIs/subsystems associated with a program could disclose the 

complexity of the software, which may well correlate to the maintenance costs if more 

information regarding the CSCIs/subsystems is provided. This information may provide 

program managers with a better understanding of the cost drivers in software 

maintenance.    

The final observation is that the information reported by various contractors and 

government agencies does not provide enough detail to permit the creation of a robust 

software maintenance estimation cost model. As evidenced by the disparate amount of 

data collected, many data collection systems used by maintainers record their efforts and 

the particulars of whatever software they are tasked to support. However, more 

standardization is required across the software maintenance community in order to ensure 

that the data being recorded can be employed beyond the agency or contractor.     

B. SPECIFIC RECOMMENDATIONS 

Currently, the software resources data report (SRDR) retained by the Defense 

Cost and Resource Center (DCARC) requires developers to report information related to 

software development and upgrade costs. These reports can be done by contractors, 

government design activities, or a mixture of both (DoD, 2004).  The reports require the 

submission of a DD Form 2630-2 to the DCARC within 60 days of the project start. The 

initial developer report provides an estimate of the work about to be performed.  The final 

developer report (DD Form 2630-3), which reports actual data concerning the software, is 

then submitted to the DCARC within 60 days of delivery. This information is captured in 

the DCARC database and is available to those with a need to know.   

A similar method of software maintenance needs to be implemented that would 

permit the capture of actual resources used to complete maintenance. Once the 

information is submitted to the appropriate Service’s Visibility and Management of 
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Operating and Support Costs (VAMOSC) center, it would be categorized by application 

domain (aviation, ships, ground weapons, command and control platforms, etc.) for easy 

access, dependent upon the user’s desires. The required information to populate the report 

would be programming languages (which relates to program complexity), number of 

subsystems/CSCIs, defect counts and their type, labor hours charged toward the 

maintenance provided, and SLOC by category (base, reuse, new, and modified). In order 

to be sensitive to contractor proprietary concerns, it would not be necessary to report 

labor rates or actual billing amounts. The labor effort would be reported by maintenance 

performed (corrective, perfective, or adaptive) in man-hours. This information could then 

be used as a basis for program managers to build and design their own estimation models.   

C. FUTURE RESEARCH 

Estimating the cost of software maintenance is a challenging problem for a variety 

of reasons. Many practitioners continue to postulate the factors that comprise software 

maintenance. Even more experts debate which costs can be (and should be) attributed to 

software support. Therefore, any research that attempts to contribute to this subject’s 

body of knowledge should be regarded as pioneering work and used for further 

exploration. Due to recent budgetary concerns, the field should garner a great deal of 

attention. Therefore, the maneuver space available to the next researcher is dependent 

only on the determination of the researcher and the availability of the data.   

This thesis described the current software maintenance cost-estimation models in 

use by the acquisition community. A researcher could examine these models to determine 

their accuracy in light of actual maintenance costs. This may prove difficult, considering 

that SLIM and SEER–SEM are commercial products. However, the researcher may be 

able to obtain the data provided to these companies and gauge their effectiveness.  The 

case could then be made for whether it is worth the investment to use these products 

versus an open-source cost-estimation product like COCOMO II.  

This thesis collected as much information as possible from a variety of sources 

across several application domains. Future research could examine one particular domain, 

narrow the scope to one program with several years’ worth (at least five) of software 
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maintenance, and build a predictive cost model for that one system. This effort would 

contribute to the data collection efforts for at least one system that could then be used by 

other similar systems as an estimating tool while they are still in development.  
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APPENDIX A. 

DATA ITEM DESCRIPTION SOFTWARE MAINTENANCE DATA 
COLLECTION (VERSION 1.3)  

 
Title:  Software Maintenance Data Collection 
 

Use/Relationship:  This Data Item Description (DID) identifies and describes the data 
being collected to build a software operations and maintenance cost database.  This 
Software Maintenance Data Collection form is not a management or measurement report.  
It is not intended for tracking progress, nor does it intend to collect financial information.  
Rather, its purpose is to collect empirical data during software operations and 
maintenance for use in developing benchmarks and estimating relationships, and 
calibrating models.  These data will also be used to substantiate budgets used for future 
maintenance appropriations.  The accompanying Excel form is provided for ease of data 
entry. 
 

Timing:  Because we are collecting both estimates and actuals for many of the measures 
identified, the best time to capture data is at the start and end of a cycle.  For example, 
size in source lines of code would be captured as an estimate at the beginning of a release 
and the end with a measurement of the actuals, which can be accomplished with a code 
counter such as the University of Southern California (USC) Unified Code Counter 
(UCC), measuring actual size and the number of lines added, deleted, changed, and 
reused from version to version (using the tool’s differential counting capability). 
 

Additionally, data needs to be captured on an annual basis when releases are multi-year 
because that is how budgets are allocated.  For multi-year projects, the estimate data must 
therefore be collected at the start of the cycle, updated with a cost and schedule to 
complete the start of the next fiscal year, and finalized with actuals when the release is 
provided to the field.  Conversely, when there are several releases during a fiscal year, 
data snapshots are needed at the beginning and end of each release. 
 

Information Needs: 
The following data items should be collected for entry into the maintenance cost and 
quality database as a record for each project version released to the field.  Those data 
items identified as “Mandatory” represent the minimum data set to be collected.  Such 
data includes both contextual as well as measured values.  Data are desired in as raw a 
form as possible (e.g., effort in hours as a direct output from the timecard system) so that 
any normalization steps may be traced and validated. 
 

Indentifying Information (Mandatory) 
A description of the project and associated software development process provides vital 
context for the subsequent data to be collected.  In aggregate data analysis, all identifying 
information will be stripped so that each individual data point remains “anonymous.” 
 Organization (contracted or in-house)–Identify whether the version or release was done in-

house by a government and contractor team or was contracted externally.  If internal, provide 
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the name of the responsible life cycle support center.  If contracted, provide the name(s) of 
the contractor(s).  Be sure to include all subcontractors in order to provide a complete 
accounting of the effort. 

 Program Name–The name of the program under which the effort is being accomplished. 

 System Name–The name of the system of which the software is a part (e.g., platform). 

 Project Name–The name of the software project. 

 Version–The number and name of the version or release being described. 

 Process Description–A comprehensive description of the standard software maintenance 
process being followed, preferably in an existing external document (e.g., Software 
Development Plan) 

 Application Domain–Identify the domain as one of the following: avionics, business, 
command & control, microcode, process control, real-time, scientific, systems software, and 
telecommunications. 

 Platform–The platform type of the system of which the software is a part:  manned aircraft, 
unmanned aerial vehicle (UAV), ground fixed, ground mobile, unmanned space, missiles, or 
shipboard. 

 

Sizing–Source Lines of Code (Mandatory) 
The size of the software counted in non-blank, non-comment logical source lines of code 
(SLOC).  Counting conventions for logical source lines vary by language.  However, 
counters exist and should be used to count source lines for the language in question using 
conventions established by the Software Engineering Institute (SEI) in the following 
referenced standard: 
 Robert E. Park, Software Size Measurement: A Framework for Counting Source 

Statements, Technical Report CMU/SEI-92-TR-020, 1992. 
 
The preferred code counter is the aforementioned USC Unified Code Counting (UCC) 
tool, which can be downloaded free from http://sunset.usc.edu. 
 

If other measures of size, such as function points or object points, are used in addition to 
or in lieu of SLOC, they should be reported as well. 
 

This set of data is being collected to define the size of the release, which is generally 
thought to be a driver of software effort.  The data to be reported in this category 
includes: 
 Programming language(s)–The programming language(s) in which the software version or 

release was written (including assembly). 

 New (added)–The number of new human-generated SLOC added to the new version or 
release. 

 Auto-generated–The number of auto-generated SLOC added to the new version or release.  
Auto-generated code is produced using specialized tools at a pace far exceeding manual 
development. 

 Carryover (existing)–The number of SLOC from the previous version that were carried over 
as is.  These lines are not changed in any way. 

 Reused (internal)–The number of existing SLOC from a different project within the 
organization that were included in the new version or release.  These lines are not changed in 
any way. 
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 Reused (external)–The number of existing SLOC from a different project outside the 
organization (e.g., Open Source) that were included in the new version or release.  These 
lines are not changed in any way. 

 Modified (changed)–The number of existing SLOC that were changed and included in the 
new version or release.  These lines can include design modified, code modified and/or 
integration modified elements.  Please specify source of modified code (previous release, 
internal, external) and degree of modification. 

 Deleted–The number of existing SLOC that were deleted from the previous version or 
release. 

 

Schedule (Mandatory) 
The schedule represents the calendar time spent to generate the version or release from its 
start to its actual delivery date.  This set of data is being collected to enable the prediction 
of schedule and to relate effort and staffing.  The software effort starts when allocated 
software requirements are provided to the software team by systems engineering.  The 
software effort ends when the Formal Qualification Tested (FQT’d) software is delivered 
to systems engineering for integration and test, typically in some System Integration Lab 
or facility.  Schedule should be reported with interim milestones where tracked.  (A 
possible set of milestones is Software Requirements, Preliminary Design, Detailed 
Design, Code & Unit Test, and Software I&T).  The data to be reported in this category 
includes: 
 Estimated Begin Date–The estimated calendar date that work on the new version or release 

should have began. 

 Actual Begin Date–The actual calendar date that work on the new version or release began.  
This may differ from the estimated date due to any number of reasons. 

 Estimated End Date–The estimated calendar date that the new version or release should 
have been delivered to systems engineering for integration and test. 

 Actual End Date–The actual calendar date that the new version or release was delivered to 
systems engineering for integration and test. 

 

Effort (Mandatory) 
The effort represents the number of staff-hours spent during the time from when allocated 
software requirements are provided to when the FQT’d software is delivered to systems 
engineering for integration and test.  The number of hours includes all directly-
chargeable hours to the software project, including all of those expended by management, 
development, test and support personnel involved in getting the software product 
delivered, and including sustaining engineering.  Effort should be reported by activity 
where tracked.  (A possible set of activities is Software Requirements, Preliminary 
Design, Detailed Design, Code & Unit Test, Software I&T, Qualification Testing, 
Software Program Management, Software Quality Assurance, Software Configuration 
Management, Information Assurance, and Independent Verification and Validation.)  The 
data to be reported in this category includes: 
 Estimated Effort (staff-hours)–The estimated effort in staff-hours for the new version or 

release provided prior to the work begins. 

 Actual Effort (staff-hours)–The actual effort expended in staff-hours for the new version or 
release provided when the work was completed. 
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 Standard Month–The number of staff-hours in a standard staff-month (only required if 
effort is only available in staff-months). 

 Labor Mix–The breakout of staff-hours by labor category (e.g., senior/mid/junior). 
 Staffing Level–identify the average number of people on the maintenance team and the peak 

staff size expressed as average (peak) for each version or release.  If the data are available, 
record the composition of the team (e.g., ten average; one manager, six software engineers, 
one CM/QA person, one network administrator/security, and one field support engineer). 

 Labor Rates–The fully-burdened dollars per hour ($/hr), either composite or by labor 
category.  Can refer to standard documentation (e.g., rate schedules). 

 
 

Quality (Mandatory) 
The number of defects is determined by the tallying the number of Software Problem 
Reports (SPR) as they are entered into the problem reporting system.  A defect is an 
error, flaw, mistake or fault in a software program that causes it to produce either 
incorrect or unexpected results, or causes it to behave in untended ways.  Defects are 
sometimes separately by phase in which they are discovered in an attempt to determine 
how many escape detection in-phase and out-of-phase.  If there are change requests 
separate from SPRs and formal requirements (see below), please provide similar counts 
of those as well. 
 

This set of data is being collected to define the relative quality of the release as a 
potential cost driver.  The data to be reported in this category includes: 
 Number of Defects–The actual number of defects related to this version or release separated 

into the following five categories: 
o Category 1 Defects (Catastrophic)–The number of catastrophic defects related to 

this release.  Catastrophic defects are those that prevent the accomplishment of an 
operational or mission-essential capability and for which no work-around solution is 
known.  In addition, catastrophic defects include all system/software lockups and 
those defects that jeopardize safety, security, or other absolutely essential 
requirements. 

o Category 2 Defects (Critical)–The number of critical defects related to this release.  
Critical defects are those that adversely affect the accomplishment of an operational 
or mission-essential capability and for which a work-around solution is not known.  
In addition, such defects include those that adversely affect technical, cost, or 
schedule risks to the project or to life cycle support of the system and for which no 
work-around solution is known. 

o Category 3 Defects (Serious)–The number of serious defects related to this release.  
Serious defects are those that adversely affect the accomplishment of an operational 
or mission-essential capability, but for which a work-around solution is known. 

o Category 4 Defects (Annoyance)–The number of annoyance defects related to this 
release.  Annoyance defects are those that typically result in user/operator 
inconvenience, but do not affect any required operational or mission-essential 
capability. 

o Category 5 Defects (Minimal)–The number of defects that both have minimal 
impacts and do not appear in any other category related to this release. They may be 
provided for informational purposes. 
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 Defect Information - Information supplied for defects in each of these categories, via a 
spreadsheet or table, includes: 

o Number of known defects; i.e., those existing prior to this release  

o Number of known defects planned to be fixed as part of this release 

o Number of known defects actually fixed as part of this release 

o Number of new defects found during work on this release 

o Number of new defects fixed as part of this release 
 

Capability (Mandatory) 
This information captures the overall skill of the software team.  The data to be reported 
in this category includes: 
 Process Maturity–The Capability Maturity Model (CMM) rating provided by SEI. 

 Application Experience–The average number of years of experience of the software team 
with developing and maintaining this type of application. 

 Platform Experience–The average number of years of experience of the software team with 
developing and maintaining software for this type of platform. 

 Language/Tool Experience–The average number of years of experience of the software 
team with developing and maintaining software coded in this language and using this suite of 
software tools. 

 
Cost (Optional) 
The cost represents the dollars ($) spent during the time from when allocated software 
requirements are provided to when the FQT’d software is delivered to systems 
engineering for integration and test.  The number of dollars ($) differs from effort in 
staff-hours as it includes all those expended on the project including those spent on 
licenses, travel, and other costs.  The data to be reported in this category includes: 
 Estimated Labor Costs ($)–The estimated labor costs in $ for the new version or release 

prior to the work on it being started. 

 Actual Labor Costs ($)–The actual labor costs expended in $ for the new version or release 
when the work on it was completed. 

 Estimated License Costs ($)–The estimated license costs in $ for the new version or release 
prior to the work on the new version it being started. 

 Actual License Costs ($)–The actual license costs expended in $ for the new version or 
release when the work on it was completed. 

 Estimated Travel Costs ($)–The estimated travel costs in $ for the new version or release 
prior to the work on it being started. 

 Actual Travel Costs ($)–The actual travel costs expended in $ for the new version or release 
when the work on it was completed. 

 Estimated Facility Costs ($)–The estimated costs for software development and test 
facilities in $ needed to sustain, test, and support of the new version or release, prior to the 
work on it being started.  Does not include building costs (e.g., lease). 

 Actual Facility Costs ($)–The actual costs for software development and test facilities in $ 
needed to sustain, test, and support the new version or release, when the work on it was 
completed.  Does not include building costs (e.g., lease). 
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 Estimated Other Costs ($)–The estimated other direct costs (ODCs), not including Travel, 
in $ for the new version or release prior to the work on it being started.  Includes separate 
Security/IA costs. 

 Actual Other Costs ($)–The actual other direct costs (ODCs), not including Travel, 
expended in $ for the new version or release when the work on it was completed.  Includes 
separate Security/IA costs. 

 

Requirements (Optional) 
If the maintenance effort is driven by requirements, they should be elicited, defined at a 
detailed level, and managed using  a tool such as DOORS by IBM/Rational.  
Requirements are expressed in a complete sentence containing both a subject and 
predicate.  These sentences shall consistently use the verb “shall” or “will” or “must” to 
show the requirement’s mandatory nature. The whole requirement specifies a desired end 
goal or result and contains success criterion or other measurable indication of quality. 
 

This set of data is being collected to substantiate budgets for software enhancements 
including funds needed for sustaining engineering and product support during operations.  
The data to be reported in this category includes: 
 Added–The number of new requirements added to the current version or release. 

 Deleted–The number of existing requirements deleted from the previous version or release. 

 Changed–The number of existing requirements modified for the current version or release. 

 Deferred–The number of requirements deferred from the new version or release solely due to 
funding constraints. 

 Total # Requirements–The actual number of requirements in the new version or release 
when it is delivered for operational use. 

 
Earned Value (Optional) 
Earned value is a project management technique used to measure progress in an objective 
manner.  It combines measurement of scope, schedule and cost into an integrated 
framework for determining status and assessing progress.  If EVM is being conducted for 
this project, the below elements should be reported at lowest level of the work breakdown 
structure (WBS) for which they are collected.  The data to be reported in this category 
includes: 
 Budgeted Cost of Work Performed (BCWP)–the budgeted cost of the work actually 

completed. 

 Actual Cost of Work Performed (ACWP)–the actual cost of the work completed taken 
from the financial records. 

 Budgeted Cost of Work Scheduled (BCWS)–the budgeted cost of the work scheduled but 
not performed as of yet. 

 Budget At Completion (BAC)–the current budget allocated to complete the work. 

 Estimate At Completion (EAC)–the current estimated cost to complete the work. 

 
Test Effort (Optional) 
The effort represents the number of staff-hours spent to perform Formal Qualification 
Test (FQT) on the software version or release.  It does not include staff-hours for unit 
testing.  However, it does include staff-hours needed to conduct dry runs and prepare 
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automation scripts.  The number of hours includes all directly-chargeable hours to the 
software project including all of those expended by management, test and support 
personnel involved in getting the software product delivered.  Where available, the below 
quantities should be broken out by type of testing (e.g., Dry Run, Dry Run Regression, 
FQT, and FQT Regression).  The data to be reported in this category includes: 
 Number of Test Cases–The actual number of test cases developed for the new version or 

release separated into the following categories: 
 Test Case Effort (staff-hours)–The actual effort expended in staff-hours for developing test 

cases for the new version or release separated into the following categories: 
 Number of Tests Run–The actual number of tests run for the new version or release 

separated into the following categories: 
 Test Conduct Effort (staff-hours)–The actual effort expended in staff-hours for conducting 

the testing of the new version or release separated into the following categories: 
 Test Cost ($)–The actual test cost expended in $ for the new version or release separated into 

the following categories: 
 
Model Information (Optional) 
If the COCOMO II or SLIM cost model was used to prepare the estimates for cost, please 
provide a copy of the estimate file and basis for estimate for each version or release. 
Multiple files are needed, i.e., that containing the initial estimate and another that updates 
the drivers to reflect the estimated cost- and schedule-to complete at the end the fiscal 
year for multi-year projects and actuals at the end of the effort.  As an example, the team 
may have planned to use experienced people for the job, but they may have had 
difficulties finding them because the technology involved was so antiquated.  The result 
is that the initial estimate assumed applications experience (“APEX” for the COCOMO II 
cost model) was “High” when in actuality it was “Low” for the updates.  The values for 
experience should be captured along with an explanation in each updated file (cost-to-
complete and actual).  If you do not have these files, please complete the following two 
tables. 
 

The COCOMO II and SLIM models were selected because they represent packages for 
which our sponsor holds licenses.  There are other software cost models that can fit the 
bill.  We have elected not to capture data for them because of license issues.  However, 
we encourage you to do so if you use some of these other models.  Understanding the 
factors that impact the effort and duration estimates is extremely important because it 
gives you insight into the factors upon which cost varies. 
 

1. Scale Factors 
Rate the COCOMO II scale drivers.  These are the factors in the exponent of the 

equation.  When in doubt use the nominal setting.  Please provide the two versions of this 
table that were requested.   

 



 

 

 

 

 

 

 Very Low     Low    Nominal    High Very High Extra High   Estimate  Rating 

Precedentedness Thoroughly 
un-precedented 

Largely  

un- 

precedented 

Somewhat un-
precedented 

Generally 
familiar 

Largely 
familiar 

Largely 
familiar 

 

Development  

Flexibility 

Rigorous Occasional 
relaxation 

Some relaxation General 
conformity 

Some 
conformity 

Some 
conformity 

 

Architecture/ 

Risk Resolution 

Little  

20% 

Some  

40% 

Often  

60% 

Generally 
75% 

Mostly 90% Mostly  

90% 
 

Team  

Cohesion 

Strongly 
adversarial 

Occasionally 
cooperative 

Moderately 
cooperative 

Largely 
cooperative 

Highly 
cooperative 

Highly 
cooperative 

 

Process Maturity CMM Level 1 
(lower half) 

CMM Level 1 
(upper half) 

CMM  

Level 2 

CMM Level 
3 

CMM Level 
4 

CMM  

Level 5 
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2. Cost Drivers 
Rate the COCOMO II cost drivers.  These factors are multiplied together to adjust the 

project cost to factors that have been found to influence over it.  When in doubt use the 
nominal setting.  Please provide the two versions of this table that were requested.   



 

 Very       

Low 

Low     Nominal   High Very  High Extra          

High 

Estimate   

Rating 

Required Software 

Reliability 

Slight in-

convenience 

Low, easily 

recoverable 

losses 

Moderate, easily 

recoverable losses 

High financial 

loss 

Risk   to human 

life 
 

 

Data Base Size  D/P < 10 10 < D/P < 100 
100 < D/P < 

1000 
D/P > 1000  

 

Product 

Complexity 
Simple 

Straight-

forward 

Routine, some 

math, multi-file 

Processing 

intense 
Interrupt-driven 

Complex     real-

time 

 

Required 

Reusability 
 None Across project Across Program 

Across Product 

Line 

Across Multiple 

Product Lines 

 

Documentation 

Match to Life 

Cycle Needs 

Many life 

cycle needs 

uncovered 

Some needs 

uncovered 

Right-sized to life 

cycle needs 

Excessive for life 

cycle needs 

Very excessive 

for lifecycle  

needs 

 

 

Execution Time 

Constraints 
  

> 50% use of 

available exec. 

time 

70% use 85% use 95% use 

 



 

Main Storage 

Constraints 
  

> 50% use of 

available storage 
70% use 85% use 95% use 

 

Platform Volatility  

Major 

- 12 months 

Minor 

- 1 month 

Major 

- 6 months 

Minor 

– 2 weeks 

Major 

- 2 months 

Minor 

- 1 week 

Major 

- 2 weeks 

Minor – 

- 2 days 

 

 

Analyst Capability 15thpercentile 35th percentile 55thpercentile 75thpercentile 

90th 

percentile 

 

 

Programmer 

Capability 
15thpercentile 35th percentile 55thpercentile 75thpercentile 

90th 

percentile 

 

 

Personnel 

Continuity 
48%/year 24%/year 12%/year 6%/year 3%/year  

 

Application 

Experience 

< 2 

months 
6 months 1 year 3 years 6 years  

 

Platform 

Experience 

< 2 

months 
6 months 1 year 3 years 6 years  

 



 

Language/Tool 

Experience 

< 2 

months 
6 months 1 year 3 years 6 years  

 

Use of Software 

Tools 

Edit, code, 

debug 

Simple front-

end, backend 

CASE, little 

integration 

Basic life cycle 

tools, moderate 

integration 

Strong, mature 

tools, moderate 

integration 

Strong, mature 

tools, well 

integrated with 

processes 

 

 

Site–Collocation International 
Multi-city and 

multi-company 

Multi-city and 

multi-company 

Same city or 

metro area 

Same building 

or complex 
Fully co-located 

 

Site– 

Communications 

Some 

phone, mail 

Individual 

phone, FAX 

Narrow-band 

email 

Wide-band 

electronic comm. 

Wideband 

electronic 

comm., some 

video conf. 

Inter-active 

multi-media 
 

Required 

Development 

Schedule 

75%of nominal 85%of nominal 100% of nominal 130% of nominal 
160%of 

nominal 
 

 

Multiply these factors to get the Effort Multiplier Factor (EMF)  
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APPENDIX B 

A. ISPAN CORRELATION ANALYSIS 

1. ISPAN FY06 and FY07  

 

Multivariate Correlations Report for FY06 ISPAN Data 

 

 

             

Multivariate Correlations Report for FY06 ISPAN Data Minus One 
Subprogram With a Singular CSCI 

 

 

Multivariate Correlations Report for FY07 ISPAN Data 
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Multivariate Correlations Report for FY07 ISPAN Data Minus One 
Subprogram With a Singular CSCI 

 

B. NAVAIR PRE DATA BY CATEGORY FOR FY05–FY07 

S
u

m
(2

0
0

5
)

 

Sum of PRE Actual Funded Amount for FY05 by Category 
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Mean of PRE Actual Funding Amount for FY07 by Category 

C. NAVAIR PRE CORRELATION ANALYSIS FOR FY04–FY07 

1. Fixed Wing Aviation 

FY04 Funded Amount

Avg of Units/Systems Deployed

SUM of SLOC

Sum of CSCI/Subsystems

1.0000

0.6504

0.8783

0.9088

0.6504

1.0000

0.6985

0.6566

0.8783

0.6985

1.0000

0.7496

0.9088

0.6566

0.7496

1.0000

FY04 Funded Amount Avg of Units/Systems Deployed SUM of SLOC Sum of CSCI/Subsystems

Correlations

 

Multivariate Correlations Report for PRE Data for Fixed Wing Aviation, 
FY04 Funded Amount, Average Number of Systems Deployed, SLOC, and 

CSCIs 
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Multivariate Correlations Report for PRE Data for Fixed Wing Aviation, 
FY05 Funded Amount, Average Number of Systems Deployed, SLOC, and 

CSCIs 

 

FY06 Funded Amount

Avg of Units/Systems Deployed

SUM of SLOC

Sum of CSCI/Subsystems

1.0000

0.6306

0.7922

0.8936

0.6306

1.0000

0.6985

0.6566

0.7922

0.6985

1.0000

0.7496

0.8936

0.6566

0.7496

1.0000

FY06 Funded Amount Avg of Units/Systems Deployed SUM of SLOC Sum of CSCI/Subsystems

Correlations

 

Multivariate Correlations Report for PRE Data for Fixed Wing Aviation, 
FY06 Funded Amount, Average Number of Systems Deployed, SLOC, and 

CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Fixed Wing Aviation, 
FY07 Funded Amount, Average Number of Systems Deployed, SLOC, and 

CSCIs
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2. Rotary Wing Aviation 

 

Multivariate Correlations Report for PRE Data For Rotary Wing Aviation, FY04 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Rotary Wing Aviation, FY05 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

 

FY06 funded Amount

Avg of Units/Systems Deployed

Total SLOC

Total CSCIs/Subsystems

1.0000

-0.3511

0.7645

0.8940

-0.3511

1.0000

-0.3781

-0.2665

0.7645

-0.3781

1.0000

0.9169

0.8940

-0.2665

0.9169

1.0000

FY06 funded Amount Avg of Units/Systems Deployed Total SLOC Total CSCIs/Subsystems

Correlations

 

Multivariate Correlations Report for PRE Data for Rotary Wing Aviation, FY06 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Rotary Wing Aviation, FY07 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs 
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3. Air Combat Electronics 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY04 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY05 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY06 
Funded Amount, Average Number of Systems Deployed, SLOC and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY07 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs 
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4. Air Combat Electronics and Aviation Support Equipment 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY04 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With 

ASE Data 

 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY05 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With 

ASE Data 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY06 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With 

ASE Data 

 

 

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY07 
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With 

ASE Data 
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5. Missiles 

 

Multivariate Correlations Report for PRE Data for Missiles, FY04 Funded 
Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Missiles, FY04 Funded 
Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Missiles, FY06 Funded 
Amount, Average Number of Systems Deployed, SLOC, and CSCIs 
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Multivariate Correlations Report for PRE Data for Missiles, FY07 Funded 
Amount, Average Number of Systems Deployed, SLOC, and CSCIs 

6. Combination of Fixed and Rotary Wing Aviation 

 

Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing 
Aviation, FY04 Funded Amount, Average Number of Systems Deployed, SLOC, 

and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing 
Aviation, FY05 Funded Amount, Average Number of Systems Deployed, SLOC, 

and CSCIs 

 

 

Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing 
Aviation, FY06 Funded Amount, Average Number of Systems Deployed, SLOC, 

and CSCIs 
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Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing 
Aviation, FY07 Funded Amount, Average Number of Systems Deployed, SLOC, 

and CSCIs
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