
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v
k^s^i=mlpqdo^ar^qb=p`elli

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-CE-11-160

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Deriving the Cost of Software Maintenance for Software

Intensive Systems

29 August 2011

by

Major Bradley J. Sams, USMC

Advisors: Dr. John Osmundson, Associate Professor, and

Brad Naegle, Senior Lecturer

Graduate School of Operational & Information Sciences

Naval Postgraduate School

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 AUG 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Deriving the Cost of Software Maintenance for Software Intensive
Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Graduate School of Business & Public
Policy,555 Dyer Rd,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Throughout software???s lifetime, changes are introduced to the code in order to maintain the desired
performance. These changes often create side effects, which cause other cascading effects elsewhere in the
software or other system components with which the software interfaces. In a sense, the software degrades
because of the maintenance performed on it, not because of a lack of maintenance upkeep. This pattern
makes the cost of software maintenance difficult to predict, given the amount of variability in the upkeep
process. Therefore, the best that program managers can hope for are heuristics that permit them to
approximate annual operating budgets when calculating total ownership costs. Typically, these methods
employ metrics used during development to estimate the annual cost of maintaining the software (i.e.,
source lines of code or function points). Through correlation and regression analysis, this thesis examines
62 programs that captured software maintenance data to determine a cost model for software
maintenance. Even though a model was not built, the main contribution of this thesis is to provide a greater
awareness of the complexity of estimating the costs for software maintenance. Additionally, this thesis
provides insight to cost variables that may assist program managers when estimating annual software
maintenance costs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

127

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v
k^s^i=mlpqdo^ar^qb=p`elli

The research presented in this report was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate
School.

To request Defense Acquisition Research or to become a research
sponsor, please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli

ABSTRACT

Throughout software’s lifetime, changes are introduced to the code in order to maintain

the desired performance. These changes often create side effects, which cause other

cascading effects elsewhere in the software or other system components with which the

software interfaces. In a sense, the software degrades because of the maintenance

performed on it, not because of a lack of maintenance upkeep. This pattern makes the

cost of software maintenance difficult to predict, given the amount of variability in the

upkeep process. Therefore, the best that program managers can hope for are heuristics

that permit them to approximate annual operating budgets when calculating total

ownership costs. Typically, these methods employ metrics used during development to

estimate the annual cost of maintaining the software (i.e., source lines of code or function

points).

Through correlation and regression analysis, this thesis examines 62 programs

that captured software maintenance data to determine a cost model for software

maintenance. Even though a model was not built, the main contribution of this thesis is to

provide a greater awareness of the complexity of estimating the costs for software

maintenance. Additionally, this thesis provides insight to cost variables that may assist

program managers when estimating annual software maintenance costs.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli

ABOUT THE AUTHORS

Bradley J. Sams, Major, U.S. Marine Corps, Student, Graduate School of

Operational and Information Sciences. Maj Sams earned a BA in 1998 and an MS in

Education in 2006 from Old Dominion University; he is also a graduate of the U.S.

Marine Corps Expeditionary Warfare School and Command and Staff College Distance

Education Program. Maj Sams is a field artillery officer, having served in a variety of

operational and staff assignments in 13 years of active service, including his most recent

tour with 1st Battalion, 12th Marines. Upon graduation from the Information Systems and

Technology program at the Naval Postgraduate School in September 2011, Maj Sams

will report to Marine Corps Systems Command, Quantico, VA.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli

ACKNOWLEDGMENTS

There are many people who have helped this thesis become a reality. First, Brad Naegle,

LTC, USA (Ret.); his encouragement and unmitigated confidence in my abilities have

been an enormous inspiration. This thesis never would have gotten off the ground without

the determination and patience of Greg Mislick, LtCol, USMC (Ret.) in the Operations

Research Department. His assistance in obtaining data for this thesis was priceless.

Thanks to Dr. John Osmundson for listening to me prattle on about software

engineering program management and giving me a gentle nudge in the right direction

when needed. A tremendous amount of thanks to Dr. Wilson Rosa and Peter Braxton as

well as the professionals at the Air Force Cost Analysis Agency and Technomics for

providing their expertise and advice during my data collection travels. Their support was

unequivocal and greatly appreciated. Thanks also go out to Mike Popp in the NAVAIR

4.2 Cost Department for taking time away from his busy schedule to listen to a struggling

artilleryman ask questions about software cost estimation.

Additionally, I would like to thank the Acquisition Research Program, especially

RADM James Greene, USN (Ret.), Ms. Karey Shaffer, and Ms. Tera Yoder, for

providing funding and resources to ensure the success of this thesis.

I’d like to thank Audrey, Catherine, and Nikolaus for giving up their time and

attention with me so that I could complete this thesis. Even though I can never relive my

time away from them, I hope that in the future they can appreciate that sometimes you

have to make hard choices in order to accomplish good work. My final recognition goes

to my wife, Crystal, who was subjected to several hours of unending babble, but who

made me feel like my topic was the most important subject in academia. I cannot ever

hope to match her limitless patience, her enduring support, and her boundless

encouragement. I would be a lesser man without her. Thank you, Kiddo.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -
k^s^i=mlpqdo^ar^qb=p`elli

NPS-CE-11-160

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Deriving the Cost of Software Maintenance for Software

Intensive Systems

29 August 2011

by

Major Bradley J. Sams, USMC

Advisors: Dr. John Osmundson, Associate Professor, and

Brad Naegle, Senior Lecturer

Graduate School of Operational & Information Sciences

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - v -
k^s^i=mlpqdo^ar^qb=p`elli

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. PURPOSE ...2
C. RESEARCH QUESTIONS ...3
D. BENEFITS OF THE STUDY ...3
E. SCOPE ..3
F. METHODOLOGY ..4
G. ORGANIZATION OF THESIS ...4

II. SOFTWARE MAINTENANCE AND COST-ESTIMATION MODELS5
A. SOFTWARE MAINTENANCE ...5
B. COST-ESTIMATION TECHNIQUES ..9

1. Purpose..9
2. Constructive Cost Model II ...9

a. Sizing Software Maintenance ...10
b. Software maintenance effort ..11

3. System Evaluation and Estimation of Resources (SEER)
Family of Products ...12

4. Software Lifecycle Management (SLIM)–Suite of Tools15
5. Summary ...17

III. DATA AND METHODOLOGY ..19
A. SAMPLE DATA SET USED DURING RESEARCH19

1. Warner Robins Air Logistics Center ...19
2. Picatinny Arsenal ...21
3. Integrated Strategic Planning and Analysis Network22
4. Lockheed Martin Systems Integration Owego24
5. Naval Air Systems Command (NAVAIR)25

B. VARIABLES AND METHODOLOGY ..28

IV. DATA ANALYSIS ...31
A. CORRELATION ANALYSIS ..31

1. Purpose..31
2. Warner Robins and ISPAN Data Analysis32
3. Picatinny Arsenal Data Analysis ..33
4. Integrated Strategic Planning and Analysis Network Data

Analysis ...34
5. Lockheed Martin Systems Integration Data Analysis36
6. NAVAIR Program Related Engineering (PRE) Data Analysis37

B. REGRESSION ANALYSIS ..44
1. Purpose..44
2. Warner Robins and ISPAN...45
3. Picatinny Arsenal ...47
4. Integrated Strategic Planning and Analysis Network50
5. Lockheed Martin Systems Integration ...54

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vi -
k^s^i=mlpqdo^ar^qb=p`elli

6. NAVAIR PRE Data ...59
7. Summary ...69

V. CONCLUSIONS AND RECOMMENDATIONS ...71
A. SUMMARY OF FINDINGS ...71
B. SPECIFIC RECOMMENDATIONS ...72
C. FUTURE RESEARCH ..73

APPENDIX A. ..75

APPENDIX B ...87
A. ISPAN CORRELATION ANALYSIS ...87

1. ISPAN FY06 and FY07 ...87
B. NAVAIR PRE DATA BY CATEGORY FOR FY05–FY0788
C. NAVAIR PRE CORRELATION ANALYSIS FOR FY04–FY0791

1. Fixed Wing Aviation ..91
2. Rotary Wing Aviation..93
3. Air Combat Electronics ...94
4. Air Combat Electronics and Aviation Support Equipment95
5. Missiles ..96
6. Combination of Fixed and Rotary Wing Aviation97

LIST OF REFERENCES ..99

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vii -
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF FIGURES

Figure 1. Bathtub Curves for Hardware and Software ... 6

Figure 2. Types of Software Maintenance ... 8

Figure 3. SEER Parametric Modeling Process .. 12

Figure 4. SEER-SEM Maintenance Effort by Year Report 13

Figure 5. SEER–IT On-Going Support Example .. 15

Figure 6. SLIM Maintenance Screen ... 16

Figure 7. Multivariate Correlation Results for SLOC and Percentage of
Maintenance Effort for SW Programs ... 32

Figure 8. Multivariate Correlation Results for Cost and SLOC 33

Figure 9. Multivariate Correlation Results for Total Effort and SLOC 33

Figure 10. Multivariate Correlations Report for Cost and Requirements 34

Figure 11. Multivariate Correlations Report for Total Effort and Requirements ... 34

Figure 12. Multivariate Correlations Report for FY05 ISPAN Data 35

Figure 13. Multivariate Correlations Report for FY05 ISPAN Data Minus One
Subprogram With a Singular CSCI ... 35

Figure 14. Multivariate Correlations Report for FY08 ISPAN Data 35

Figure 15. Multivariate Correlations Report for FY08 ISPAN Data Minus One
Subprogram With a Singular CSCI ... 36

Figure 16. Multivariate Correlations Report for Multiyear Lockheed Martin Data
for Labor Months, Defects, Modified, and Base Code 37

Figure 17. Multivariate Correlations Report for Multiyear Lockheed Martin Data
for Labor Months, New, and Reused Code .. 37

Figure 18. Sum of PRE Actual Funded Amount for FY04 by Category 39

Figure 19. Sum of PRE Actual Funded Amount for FY08 by Category 39

Figure 20. Mean of PRE Actual Funded Amount for FY04 by Category 40

Figure 21. Mean of PRE Actual Funded Amount for FY08 by Category 40

Figure 22. Multivariate Correlations Report for PRE Data for Fixed Wing
Aviation, FY08 Funded Amounts, Average Number of Systems
Deployed, SLOC, and CSCIs ... 41

Figure 23. Multivariate Correlations Report for PRE Data for Rotary Wing
Aviation, FY08 Funded Amounts, Average Number of Systems
Deployed, SLOC, and CSCIs ... 41

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - viii -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 24. Multivariate Correlations Report for PRE Data for Air Combat
Electronics, FY08 Funded Amounts, Average Number of Systems
Deployed, SLOC, and CSCIs ... 42

Figure 25. Multivariate Correlations Report for PRE Data for Air Combat
Electronics, FY08 Funded Amounts, Average Number of Systems
Deployed, SLOC, and CSCIs With ASE Data 42

Figure 26. Multivariate Correlations Report for PRE Data for Missiles, FY08
Funded Amounts, Average Number of Systems Deployed, SLOC,
and CSCIs .. 43

Figure 27. Multivariate Correlations Report for PRE Data for Fixed and Rotary
Wing Aviation, FY08 Funded Amounts, Average Number of
Systems Deployed, SLOC, and CSCIs ... 43

Figure 28. Linear Fit Regression for SLOC and Percentage of Effort in
Perfective Maintenance .. 46

Figure 29. Whole Model Statistical Tables for SLOC and Percentage of Effort
in Perfective Maintenance .. 47

Figure 30. Linear Fit Regression for Overall Costs and SLOC New (Added) 48

Figure 31. Whole Model Statistical Tables for Overall Costs and SLOC New
(Added) ... 49

Figure 32. Linear Fit Regression for Total Effort and SLOC New (Added) 49

Figure 33. Whole Model Statistical Tables for Total Effort and SLOC New
(Added) ... 50

Figure 34. Linear Fit Regression for FTE Maintenance and SLOC for Six
ISPAN Programs .. 51

Figure 35. Whole Model Statistical Tables for FTE Maintenance and SLOC for
Six ISPAN Programs .. 52

Figure 36. Linear Fit Regression for FTE Maintenance and Defects for Five
ISPAN Programs .. 53

Figure 37. Whole Model Statistical Tables for FTE Maintenance and SLOC for
Five ISPAN Programs .. 54

Figure 38. Linear Fit Regression for Labor Months and New Code for Fourteen
Lockheed Martin Programs .. 55

Figure 39. Whole Model Statistical Tables for Labor Months and New Code for
Fourteen Lockheed Martin Programs ... 56

Figure 40. Linear Fit Regression for Labor Months and Modified Code for
Twelve Lockheed Martin Programs .. 56

Figure 41. Whole Model Statistical Tables for Labor Months and Modified
Code for Twelve Lockheed Martin Programs 57

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ix -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 42. Linear Fit Regression for Labor Months and Defects for Twelve
Lockheed Martin Programs .. 58

Figure 43. Whole Model Statistical Tables for Labor Months and Total Defects
for Thirteen Lockheed Martin Programs ... 59

Figure 44. Linear Fit Regression for FY08 Funded Amount and Sum of
CSCIs/Subsystems for Ten Fixed Wing Aviation Programs 60

Figure 45. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for Nine Fixed Wing Aviation Programs 61

Figure 46. Linear Fit Regression for FY08 Funded Amount and Sum of
CSCIs/Subsystems for Seven Rotary Wing Aviation Programs 62

Figure 47. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for Seven Fixed Wing Aviation Programs 63

Figure 48. Linear Fit Regression for FY08 Funded Amount and Sum of
CSCIs/Subsystems for Seven ACE and Two ASE Programs 64

Figure 49. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for Seven ACE and Two ASE Programs 65

Figure 50. Linear Fit Regression for FY08 Funded Amount and Average of
Units/Systems for Three Missile Programs ... 66

Figure 51. Whole Model Statistical Tables for FY08 and Average of
Units/Systems for Three Missile Programs ... 67

Figure 52. Linear Fit Regression for FY08 Funded Amount and Sum of
CSCIs/Subsystems for a Combination of Fixed and Rotary Wing
Programs .. 67

Figure 53. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for a Combination of Fixed and Rotary Wing
Programs .. 68

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - x -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xi -
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF TABLES

Table 1. Overview of the Often-Quoted Definitions of Software Maintenance 7

Table 2. Rating Scale for Programmer Unfamiliarity (UNFM) 10

Table 3. SEER-SEM Maintenance Growth Over Life Parameters 14

Table 4. Warner Robins ALC Programs and Languages 20

Table 5. Picatinny Arsenal Programs and Languages 22

Table 6. ISPAN Programs and Languages .. 23

Table 7. Lockheed Martin Systems Integration Owego Programs and
Languages .. 24

Table 8. Naval Air Systems Command SRDR Study Programs and
Languages .. 26

Table 9. Naval Air Systems Command PRE Software Product Team
Programs and Application Domains ... 28

Table 10. NAVAIR PRE Data Categories ... 38

Table 11. Bivariate Regression Analysis Criterion .. 45

Table 12. Bivariate Regression Results ... 46

Table 13. Bivariate Regression Results ... 48

Table 14. Bivariate Regression Results ... 50

Table 15. Bivariate Regression Results ... 51

Table 16. Bivariate Regression Results ... 53

Table 17. Bivariate Regression Results ... 55

Table 18. Bivariate Regression Results ... 57

Table 19. Bivariate Regression Results ... 58

Table 20. Bivariate Regression Results ... 60

Table 21. Bivariate Regression Results ... 62

Table 22. Bivariate Regression Results ... 64

Table 23. Bivariate Regression Results ... 66

Table 24. Bivariate Regression Results ... 68

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xii -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xiii -
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF ACRONYMS AND ABBREVIATIONS

ACE Air Combat Equipment

AFCAA Air Force Cost Analysis Agency

AMC&D Advanced Mission Computer and Display

ASE Aviation Support Equipment

CAINS Carrier Aircraft Inertial Navigation System

CARC Chemical Agent Resistant Coating

CASS Consolidated Automated Support System

CDP Capability Defect Package

CMM Capability Maturity Model

CMMI Capability Maturity Model–Integrated

COCOMO Constructive Cost Model

COTS Commercial Off-The-Shelf

CSCI Computer Software Configuration Items

CSFIR Crash Survivable Flight Incident Recorder

DCAPE Defense Cost Assessment and Program Evaluation

DCARC Defense Cost and Resource Center

DID Data Item Description

EWSSA Electronic Warfare Software Support Activity

FRA Fleet Response Activity

FWA Fixed Wing Aviation

FY Fiscal Year

GPS/CDNU Global Positioning System/Control Display Navigation Unit

GPSW Ground Warning Proximity System

IPT Integrated Product Team

ISPAN Integrated Strategic Planning and Analysis Program

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xiv -
k^s^i=mlpqdo^ar^qb=p`elli

MDAP Major Defense Acquisition Program

MIS Missiles

NAVAIR Naval Air Systems Command

PRE Program Related Engineering

ODASA–CE Office of the Deputy Secretary of the Army for Cost and Economics

PDSS Post Deployment Software Support

QSM Quantitative Software Management

ROI Return on Investment

RWA Rotary Wing Aviation

SEER–IT System Evaluation and Estimation of Resources–Information Technology

SEER-SEM System Evaluation and Estimation of Resources–Software Engineering
Model

SIS Software Intensive System

SLIM Software Lifecycle Management

SLOC Source Lines of Code

SRDS Structural Data Recording Set

SRDR Software Resources Data Report

SSA Software Support Activity

TAMMAC Tactical Aircraft Moving Map Capability

TAWS Terrain Awareness Warning System

TOC Total Ownership Cost

VAMOSC Visibility and Management of Operating and Support Costs

WRALC Warner Robins Air Logistics Center

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xv -
k^s^i=mlpqdo^ar^qb=p`elli

EXECUTIVE SUMMARY

Software is becoming frequently more ubiquitous in the systems the Department

of Defense procures. These systems are increasingly reliant on software to successfully

perform their missions. This reality places greater emphasis on ensuring the

accompanying or embedded software performs as expected. However, reliability is not

cheap and trends toward a greater proportion of the system sustainment cost. In an age of

rapidly decreasing funds to support government functions (including the military), total

ownership cost has garnered a great deal more attention than in previous system

procurement. Previous studies have shown the disproportionate annual cost of

maintenance as compared to the software’s development, and program managers require

accurate models in order to estimate the life-cycle costs for proposed systems. Many

models exist to provide estimates for software development cost, but few are able to

predict the cost to support software once delivered to the end user.

The researcher examined over 60 programs that captured software maintenance

data. Given the diverse nature of the data set provided, the cost to support software was

analyzed from different perspectives. The research calculated correlations and performed

regressions on the data to derive the most promising relationships and candidate models

that might reveal some insight into the influence of particular variables related to cost.

The observations of these results revealed that a reliable and consistent model

could not be created from the data provided. However, it was determined from this

limited data set that source lines of code were not an adequate predictor of maintenance

cost. The number of defects reported divulged the strongest relationships with regard to

influencing cost. Additionally, the number of computer system configuration items could

provide a useable factor when estimating the cost of maintenance. Lastly, the researcher

recommends a uniform means for software support agencies or contractors to report their

software maintenance efforts, similar to the mandated software resources data report.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xvi -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 1 -
k^s^i=mlpqdo^ar^qb=p`elli

I. INTRODUCTION

The total cost of maintaining a widely used program is typically 40 percent or
more of the cost of developing it. Surprisingly, this cost is strongly affected by the
number of users. More users find more bugs.

– Frederick P. Brooks, Jr. (1995)

A. BACKGROUND

The current trend in government spending and appropriation is austerity. As U.S.

commitments in Iraq draw to a close and as efforts in Afghanistan are tailored to a

smaller force, the U.S.’s attention will be increasingly focused on reducing the budget

deficit and strengthening the domestic economy. Secretary of Defense Robert Gates

declared that “the gusher is off” (“Defense Spending,” 2010), referring to the last several

decades of increasing defense budgets. Since the Department of Defense (DoD) accounts

for over 50% of discretionary funding by the government, the concern for how the

military spends its funds will garner more interest and be a target for closer scrutiny.

Recent acquisition policy directives aimed at capturing the total ownership cost (TOC)

underscore this reality. For example, the Weapons Systems Acquisition Reform Act

(WSARA, 2009) instructs the Defense Cost Assessment and Program Evaluation

(DCAPE) to review assessment methods for operations and support costs for major

defense acquisition programs (MDAP). Additionally, the accompanying DoD Directive

Type Memorandum (DTM) 09-027 charges the Milestone Decision Authority (MDA) to

competitively contract for the maintenance and support contracts for its programs (Under

Secretary of Defense for Acquisition, Technology, and Logistics [USD(AT&L)], 2009).

The increased emphasis on operations and support costs challenges acquisition

professionals to ensure that the programs they acquire are sustainable in future years by a

decreasing operations budget.

Software maintenance implies the ability to make corrections, change

functionality, or perfect previously identified flaws in the functionality of the software.

These actions are typically executed during the operations and support phase of the

acquisition life cycle. Maintenance on software is very different from that completed on

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 2 -
k^s^i=mlpqdo^ar^qb=p`elli

hardware. For example, it is easy to observe early on when a piece of hardware needs

attention. There are clear warning signs given to the operator well before the piece of

equipment breaks and ceases to function (rust on joints, leaks at welds, etc.). However,

software does not provide these signals; it slows to unacceptable performance levels,

freezes, hangs up, or simply stops functioning without warning and leaves the operator

without the ability to execute the mission. Estimating the cost of maintaining hardware

can be done easily by simply following the manufacturer’s guidance on preventative

maintenance before the problem becomes corrective in nature. The cost associated with

this maintenance can then be extrapolated across the expected life of the hardware in

order to derive a number to justify budgets. Software is inherently complex and,

therefore, more difficult to accurately estimate the maintenance effort required to support

it. During the development of the software, program managers (and, ultimately, the

maintainers) are not able to accurately predict when the software is going to need to be

upgraded or perfected or when it might crash unexpectedly. Therefore, the best that

program managers can hope for are heuristics that permit them to approximate annual

operating budgets. Typically, these methods employ metrics used during development to

estimate the annual cost of maintaining the software (i.e., source lines of code or function

points). In his article, Sneed (2004) commented on the imprecision of predicting

development costs to estimate maintenance costs. This situation presents a dilemma when

the heuristics that program managers rely upon are based on erroneous assumptions and

imprecisely calibrated cost factors.

B. PURPOSE

The purpose of this thesis is to present an analysis of several cost-related factors

involved in software maintenance and their influence across different application

domains. This information could then be used by program managers to derive a cost-

estimation relationship and, ultimately, a cost model to determine the forecasted annual

cost to support similar systems while still in development. It is the researcher’s belief that

such a software maintenance cost model would more accurately portray the total

ownership cost of a particular system than current methods.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 3 -
k^s^i=mlpqdo^ar^qb=p`elli

C. RESEARCH QUESTIONS

1) What cost factors are involved when a program manager estimates the post-

deployment software support (PDSS) for a software-intensive system (SIS)?

2) Is there a model that can be derived for program managers to use in order to

more accurately estimate the total life-cycle (or operational) cost of software-intensive

command and control or weapons systems?

3) Is there a better method for program managers to budget software maintenance

rather than comparing the development costs to anticipated post-deployment support?

4) What software maintenance information is necessary in order to derive a

reliable cost model for program managers?

D. BENEFITS OF THE STUDY

This thesis presents an analysis of different factors related to the cost of existing

software intensive systems from a variety of domains. This information can be employed

by acquisition managers during the development phase of the acquisition life cycle to

predict the costs associated with the software maintenance support for a similar system.

This data could then be used to calibrate existing heuristics and more accurately estimate

the TOC for a proposed system.

E. SCOPE

This thesis is limited to the factors provided by the Naval Air Systems Command

(NAVAIR) and the various programs participating in the Air Force Cost Analysis

Agency (AFCAA) software maintenance study. While there are an indefinite amount of

factors that contribute to the cost of software maintenance, this thesis only analyzes those

categories collected in order to derive correlation coefficients and candidate cost-

estimating relationships through regression.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 4 -
k^s^i=mlpqdo^ar^qb=p`elli

F. METHODOLOGY

This thesis used three analysis methods. First, several literature sources related to

software maintenance were examined. Additionally, three of the most popular software

cost-estimation techniques were researched to understand how these methods estimate

post-deployment software support. Second, the data collected from the various sources

was presented and described. Third, the data collected was analyzed for any correlations

or cost-estimating relationships that could be derived and employed in an appropriate

model for post-production software support. Lastly, results of the data analysis presented

recommendations for program managers concerned with the total operational costs of

proposed software intensive systems.

G. ORGANIZATION OF THESIS

In Chapter II, the researcher provides relevant definitions for software

maintenance from an assortment of sources. Additionally, techniques for estimating

software maintenance are presented from three prevalent cost models used by

professionals.

In Chapter III, the researcher describes the data collected from NAVAIR and the

AFCAA study on software maintenance. This chapter depicts the disparate categories of

data that are analyzed in the following chapter.

In Chapter IV, the researcher analyzes the data presented in Chapter III through

the conduct of bivariate correlations and simple linear regressions. The results of this

analysis then determines the strongest cost-estimating relationships based on the limited

amount of data available.

In Chapter V, the researcher presents the conclusions of this analysis and makes

recommendations to program managers for estimating the cost of post-deployment

software support based on the categories analyzed in Chapter III. This chapter also makes

recommendations for further research on the software maintenance topic.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 5 -
k^s^i=mlpqdo^ar^qb=p`elli

II. SOFTWARE MAINTENANCE AND COST-ESTIMATION
MODELS

Software maintenance is usually, explicitly or not, the largest single element of
developing, owning, and operating a software system.

– Christensen and Thayer (2001)

A. SOFTWARE MAINTENANCE

Software does not possess the same physical characteristics as hardware. End

users cannot scrub the rust off existing software, apply a coat of chemical agent resistant

coating (CARC) and make it look as good as new. In fact, end users may not even be

able to see that their software possesses rust at all. However, software does degrade.

Throughout software’s lifetime, changes are introduced due to poor quality development

or other situations that mandate software alterations. These changes often create side

effects that are incorporated into the software, which causes cascading effects elsewhere

in the software or in other system components with which the software interfaces. In a

sense, the software degrades because of the maintenance performed on it, not because of

a lack of maintenance upkeep. Additionally, software maintenance does not permit the

notion of spares. For example, when a truck’s serpentine belt is broken, a suitable

replacement belt can be changed out for the defective one. This example does not

correlate well to software, as the truck’s architecture is not altered by the belt

replacement, but software maintenance typically does alter the software architecture. A

maintainer is unable to simply replace the degraded piece of software with a fresh one. In

order to avoid the unintended consequence of creating more problems by replacing the

defective software, the maintainer would need to redesign the entire software component

in order to fix the one particular problem, without creating other problems. Since this

resolution is not realistic, patches (frequently referred to as maintenance) are injected in

the software to correct deficiencies. These repairs are intended to increase the software’s

reliability over time. In theory, software should be able to perform as developed

throughout its life cycle without issue. Unfortunately, reality is much more complicated.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 6 -
k^s^i=mlpqdo^ar^qb=p`elli

As demonstrated in Figure 1, the software reliability curve significantly differs from the

hardware curve.

Many factors influence the maintenance performed on software, including the

repair of defects incorporated in the software during development or because of changes

in requirements or the desire to improve performance (Department of the Air Force,

2000). These aspects shape the reliability curve differently than anticipated for software.

As mentioned, even these remedies may inadvertently produce greater degradation of the

software, which requires more maintenance and the possibility of injecting new defects.

This pattern makes the cost of software maintenance difficult to predict, given the amount

of variability in the maintenance process. These are the environmental circumstances in

which the program manager, the developers, and the maintainers find themselves when

creating a realistic annual cost estimate as the software ages.

Figure 1. Bathtub Curves for Hardware and Software
(Department of the Air Force, 2000)

In order to adequately discuss this topic, it is important to provide an operational

definition for software maintenance that can be used throughout this thesis. There have

been a wide variety of opinions on what constitutes software maintenance, as shown in

Table 1. It is no surprise that in this chronological list of generally accepted definitions

for software maintenance each definition mentions that support occurs after its delivery.

Additionally, these definitions refer to software changes or modifications, but only the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 7 -
k^s^i=mlpqdo^ar^qb=p`elli

most recent description mentions the cost associated with software support. It is the

associated cost of maintenance that will occupy the attention of program managers.

Table 1. Overview of the Often-Quoted Definitions of Software Maintenance
(Abran & April, 2008)

Definition Year

“Changes that are done to software after its delivery to the user.” 1983

“The totality of the activities required in order to keep the software in

operational state following its delivery.”
1984

“Maintenance covers the software life-cycle starting from its

implementation until its retirement.”
1990

“…modification to code and associated documentation due to a problem

or the need for improvement. The objective is to modify the existing

software product while preserving its integrity.”

1995

“…the modification of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the product to a

modified environment.”

1998

“…the totality of activities required to support, at the lowest cost, the

software. Some activities start during its initial development but most

activities are those following its delivery.”
2005

When program managers analyze costs for maintenance, they first need to

understand the kind of anticipated maintenance that will represent the majority of support

costs. This analysis will influence the scope of the cost estimation and contribute to a

better understanding of the effort employed. Nevertheless, the maintenance effort is not

limited to making changes only in the source code. As noted by Parthasarathy (2007),

maintenance costs include operations and online support, fixing bugs, and enhancing the

application (both major and minor changes), which contributes to the total ownership cost

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 8 -
k^s^i=mlpqdo^ar^qb=p`elli

of software. However, this thesis limits the definition of software maintenance to three

areas shown in Figure 2: corrective, perfective, and adaptive. These groupings exist

solely based on the maintenance change expected to be performed.

Adaptive change occurs when the developed software needs to be changed based

on external realities. “Classic examples are adapting to an updated operating system,

changed or new hardware, software tools, and data format changes” (Christensen &

Thayer, 2001, p. 150). Approximately 20% of software maintenance falls in this

category (Christensen & Thayer, 2001). Corrective change occurs when the software

incurs unanticipated defects. These adjustments can be completed in the course of

normal business or take the form of emergency maintenance that needs to be

accomplished immediately. Around 20% of software maintenance is corrective in nature

(Rendon & Snider, 2008). Lastly, those actions that attempt to improve the software’s

performance are referred to as perfective maintenance. Similar to corrective, perfective

alterations can be planned in conjunction with other work (Christensen & Thayer, 2001).

Perfective modifications absorb the remaining 60% of software maintenance. Knowing

the types of maintenance and their influence on total effort allows program managers to

better analyze costs.

Figure 2. Types of Software Maintenance
(Christensen & Thayer, 2001)

It is accepted that the total ownership cost of software includes the associated cost

of maintaining the software beyond development and delivery. However, there are few

models that provide program managers the ability to estimate or predict how much it will

cost per future year to maintain a particular software project. Therefore, it is rational that

practitioners would turn to easily captured development variables as a basis for their post-

Types of
Maintenance

Adaptive

Corrective

Perfective

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 9 -
k^s^i=mlpqdo^ar^qb=p`elli

deployment support costing approximation. For example, Deutsche Post (a mail service

in Germany) estimated the maintenance of a new application as a percentage of the

development costs (Buchmann, Frischbier, & Putz, 2011). This approach to maintenance

estimation was also challenged by Sneed (2004), who said that development costs may

not be related to the cost of maintaining a system. In fact, Sneed commented that

maintaining a commercial off-the-shelf (COTS) system could cost 40% more than a

system created from scratch and that the development of low-priced agile projects were

liable to cost more to maintain (Sneed, 2004). Therefore, it is important for program

managers to understand the efficacy of their chosen software maintenance cost model,

and program managers should appreciate the complexity and challenges connected to

sustaining software.

B. COST-ESTIMATION TECHNIQUES

1. Purpose

There are a variety of cost models in existence to estimate the development costs

for a software project. Typically, these models consider post-deployment software

support as another phase of development. There are very few cost models that exclusively

attempt to estimate maintenance cost for software. This section describes three popular

cost models that program managers use to estimate maintenance effort, which can be

used to approximate costs.

2. Constructive Cost Model II

Developed in 2000, the Constructive Cost Model (COCOMO) II expands Barry

Boehm’s original software cost-estimation model, COCOMO, written in 1981.

COCOMO II continues the principles described in Boehm’s earlier work and analyzes

“major product rebuilds changing over 50 percent of the existing software, and

development of sizable (over 20 percent changed) interfacing systems requiring little

rework of the existing system” (Boehm et al., 2000, p. 28). Boehm et al.’s (2000) updated

work considers software maintenance through two sections, sizing software maintenance

and maintenance effort. Both of these sections assume that “maintenance cost generally

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 10 -
k^s^i=mlpqdo^ar^qb=p`elli

has the same cost driver attributes as software development costs” (p. 58). These portions

of the COCOMO II method can be used to create an estimate for the size of the

maintenance required using the known base code size.

a. Sizing Software Maintenance

A COCOMO II sizing software maintenance model begins by examining

the software understanding (SU) of the existing software (determined on a scale from 0–

50%), dividing by 100, and multiplying this quotient by the programmer unfamiliarity

(UNFM) factors shown in Table 2. The product of these two factors is then added to 1,

which produces the maintenance adjustment factor (MAF).

Table 2. Rating Scale for Programmer Unfamiliarity (UNFM)
(Boehm et al., 2000)

UNFM Increment Level of Unfamiliarity

0.0 Completely Familiar

0.2 Mostly Familiar

0.4 Somewhat Familiar

0.6 Considerably Familiar

0.8 Mostly Unfamiliar

1.0 Completely Unfamiliar

The next portion of the software maintenance size equation comes from

the maintenance change factor (MCF). This number can be obtained by placing the sum

of modified and added size in the numerator and the known base code size in the

denominator, as indicated in Equation 1 from Boehm et al. (2000).

 MCF =
SizeAdded SizeModified

BaseCodeSize

 (1)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 11 -
k^s^i=mlpqdo^ar^qb=p`elli

Using the MAF and the MCF, the basic equation for the maintenance size

can be found in Equation 2, taken from Boehm et al. (2000).

 (Size)M = [(Base Code Size) x MCF] x MAF (2)

b. Software maintenance effort

Program managers need to capture the effort required to maintain any

existing software in order to justify budget requests and appropriately assign maintenance

responsibilities. COCOMO II provides a formula to derive the maintenance effort in

person-months (typically 152 hours per month). The estimation formula for maintenance

effort can stem from Equation 3 from Boehm et al. (2000).

15

1

()E
M M i

i

PM A Size EM

 (3)

where PM M = person-months effort for maintenance;

 A = the effort coefficient that can be calibrated, currently set
 to 2.94;

 E

MSize = the maintenance size with the exponent E derived from

 an aggregation of five scale factors associated with
 economies of scale (i.e., precedentedness “PREC” and
 development flexibility “FLEX”; and

EM i = 15 effort multipliers (minus the required development

 schedule “SCED” and required reusability “RUSE”).

Once PM M has been derived from Equation 3, the results can be taken

further to estimate the average maintenance staffing level (FSPM) associated with the

duration of any maintenance activity (TM), as demonstrated in Equation 4 from Boehm et

al. (2000).

MFSPM PM TM (4)

The ability of a program manager to estimate the number of person-months

needed to maintain a certain amount of software could be extremely useful, especially for

new software builds without historical analogous systems. COCOMO and COCOMO II

are popular methods to determine software cost estimation due to their ubiquity and the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 12 -
k^s^i=mlpqdo^ar^qb=p`elli

lack of cost to the user. However, there are commercial estimation methods that provide

program managers the ability to project post-deployment support for a proposed software

development.

3. System Evaluation and Estimation of Resources (SEER) Family of
Products

Produced by Galorath Incorporated, the System Evaluation and Estimation of

Resources (SEER) family of products uses parametric-based models, specifically

designed algorithms, a historical database of previous project cost estimations, and

sophisticated simulation/modeling engines that produce reports (including a report for

maintenance effort by year) based on user inputs and desires. The result is a variety of

reports that allow managers and developers to estimate their costs, as displayed in Figure

3.

Figure 3. SEER Parametric Modeling Process
(Galorath Incorporated, 2011b)

Two such products from the SEER family are SEER–Software Estimating Model

(SEER–SEM) and SEER for Information Technology (SEER–IT). These tools permit

managers and developers to estimate the costs associated with software builds. One of the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 13 -
k^s^i=mlpqdo^ar^qb=p`elli

features of these tools includes the ability to estimate the cost of post-deployment

support. As depicted in Figure 4, Galorath defines the costs associated with software

maintenance by using the following terms and definitions:

- Corrective maintenance—The costs due to modifying software to correct
issues discovered after initial deployment (generally 20% of software
maintenance costs).

- Adaptive maintenance—The costs due to modifying a software solution to
allow it to remain effective in a changing business environment (25% of
software maintenance costs).

- Perfective maintenance—The costs due to improving or enhancing a software
solution to improve overall performance (generally 5% of software
maintenance costs).

- Enhancements—The costs due to continuing innovations (generally 50% or
more of software maintenance).

Figure 4. SEER-SEM Maintenance Effort by Year Report
(Reifer, Allen, Fersch, Hitchings, Judy, & Rosa, 2010)

SEER–SEM requires the developer to contribute inputs to the model based on a set of

parameters associated with the anticipated sustainment attributes of the software. For

example, the category Maintenance Growth Over Life contains a rating correlated to how

much software growth the customers anticipate once the maintainers receive the software

in the maintenance cycle, as indicated in Table 3. A developer can assume that once the

software goes into the maintenance cycle, “an input of 100% means that the software will

double in size” (Galorath Incorporated, 2001, pp. 7–55).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 14 -
k^s^i=mlpqdo^ar^qb=p`elli

Table 3. SEER-SEM Maintenance Growth Over Life Parameters
(Galorath Incorporated, 2001)

Rating Description

100% Very high, major updates adding many new functions

35% High, major updates adding some new functions

20%
Nominal, minor updates with enhancements to existing

functions

5% Low, minor enhancements

0% Very low, sustaining engineering only

Other parameters that can be included to derive a software maintenance report are years

of maintenance, annual change rate, differences in the development environment,

maintenance level (rigor), and maintenance monthly labor rate (Galorath Incorporated,

2001).

SEER–IT differs from SEER–SEM in that SEER–IT extends beyond the software

and examines a proposed (or purchased) “IT system’s services, infrastructure and risk for

the project and ongoing support” (Galorath Incorporated, 2011a). The scope of SEER–IT

is much broader than SEER–SEM in order to include the ability to build project

portfolios that allow managers to estimate return on investment (ROI) for particular IT

projects. By drawing on historical databases of several previous IT projects provided by

Galorath, SEER–IT is able estimate the maintenance costs for an IT project (considered

on-going support) based on the data provided by the customer, as shown in Figure 5. The

combination of these estimation tools would provide a great deal of insight into the

projected cost of software maintenance and associated IT projects.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 15 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 5. SEER–IT On-Going Support Example
(Reifer et al., 2010)

4. Software Lifecycle Management (SLIM)–Suite of Tools

Developed by Quantitative Software Management (QSM) Incorporated, Software

Lifecycle Management (SLIM) contains several products that create reports, graphs, and

forecasts in order to defend software projects. SLIM–Estimate is just one product from

the SLIM suite designed to provide solutions to complex problems facing project

managers or developers. Other products include the following: SLIM–Control, SLIM–

Metrics, SLIM–DataManager and SLIM–MasterPlan (QSM, 2006). SLIM–Estimate

allows the customer to import his or her own data from previous projects in order to

calibrate the SLIM estimate (similar to SEER–SEM and SEER–IT), or the customer can

choose to employ the SLIM historical database to provide more data points in the

estimation.

SLIM–Estimate breaks development into four distinct phases typically associated

with the software development life cycle. These phases are as follows: (1) Concept

Definition, (2) Requirements and Design, (3) Construction and Test, and (4) Perfective

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 16 -
k^s^i=mlpqdo^ar^qb=p`elli

Maintenance (QSM, 2006). QSM (2006) defined maintenance as “correcting errors

revealed during system operation or enhancing the system to adapt to new user

requirements, changes in the environment, and new hardware” (QSM, 2006, p. 78).

SLIM–Estimate addresses software maintenance in the project environment portion of the

model in the perfective maintenance tab. The maintenance inputs of the SLIM–Estimate

model can then be transferred to the additional SLIM–MasterPlan tool to produce an

easy-to-read display, as shown in Figure 6. In this case, Figure 6 demonstrates the

estimated expected costs of a simulated software maintenance project over a three-year

period. This report includes major and minor enhancements as well as other maintenance

associated tasks within the Baseline Support category (i.e., emergency fixes and help

desk support). This model provides program managers defendable position from which to

justify manpower increases/decreases as displayed in man-months (MM), and budget

requests, as exhibited in the ($1,000) column.

Figure 6. SLIM Maintenance Screen
(Reifer et al., 2010)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 17 -
k^s^i=mlpqdo^ar^qb=p`elli

5. Summary

COCOMO II, SEER–SEM, SEER–IT, and SLIM–Estimate all provide program

managers with an appropriate amount of information necessary to estimate the costs of

software maintenance for a given program or project. These models “assume that

software maintenance is a subset of development, not the opposite” (Reifer et al., 2010, p.

10). Using these models, developers and program managers are able to adjust the cost

factors and continue to refine their calibration of whichever model they employ.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 18 -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 19 -
k^s^i=mlpqdo^ar^qb=p`elli

III. DATA AND METHODOLOGY

Software not developed with maintenance in mind can end up so poorly designed
and documented that total redevelopment is actually cheaper than maintaining the
original code.

– Department of the Air Force (2000)

A. SAMPLE DATA SET USED DURING RESEARCH

Data for this thesis was collected from the Office of the Secretary of Defense Cost

and Resource Center (DCARC) and compiled by the NAVAIR to support local ongoing

research. The majority of the data obtained for this thesis was graciously provided by Dr.

Wilson Rosa of the Information Technology Division of the AFCAA and Mr. Peter

Braxton of Technomics Incorporated. The AFCAA and Technomics are currently

conducting an Air Force–sponsored study on software maintenance and were able to

provide the results of their collection efforts thus far to support this thesis. Their study’s

objectives are to collect “actual data to improve software maintenance cost estimating”

(Rosa & Braxton, 2010). The results of the AFCAA study are to support better cost-

estimating techniques and to provide benchmarks for both industry and government

agencies that can be used in future proposals (Rosa & Braxton, 2010). A data item

description (DID) was provided to various contractors and government agencies for them

to complete and return to Technomics for inclusion in the study’s database. The final

DID that was provided to the data sources can be found in Appendix A. However,

agencies and industry partners submitted data prior to the completion of the DID;

therefore, this data was not normalized to match categories required by the DID. The

normalization process is currently being conducted by Technomics. Nevertheless, the

AFCAA and Technomics were able to provide whatever raw data they had available.

1. Warner Robins Air Logistics Center

In the summer of 2009, Reifer Consultants, Inc., conducted a software

maintenance study that involved various government agencies. Warner Robins Air

Logistics Center (ALC) was one such agency. ALC personnel who were working on a

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 20 -
k^s^i=mlpqdo^ar^qb=p`elli

variety of projects at equally varying times in the acquisition cycle completed

questionnaires in support of the study. Based on the information provided in the

questionnaires, the participants were selected for further interviews. If any additional

interviews were conducted, this data was not available.

From the set of eight available questionnaires, seven programs were selected due

to the completeness of the information provided and the applicability to this thesis. Each

questionnaire was completed by program managers, leads, software managers, or

integrated product team (IPT) leads. The range of programs from those selected reported

avionics as their operating environment. The questionnaires indicted the various

programming languages used in their software, as shown in Table 4.

Table 4. Warner Robins ALC Programs and Languages

Program Primary Software Language

Joint Stars C/C++

MC-130E Combat Talon Jovial J73

MMRT BCC-001 Ada

MRT E20 Ada

SOF EISE Sustainment Ada

USAF F-15 Suite S7E Block Upgrade Jovial

ALR-56M Block Cycle D Access

The application domains stated in the questionnaires included electronic warfare,

command and control, radar and weapons delivery, and database (which included

simulation and modeling as well as controls and displays). Other information contained

in the questionnaires included software change request information, the activities

included in the effort (divided between software maintenance and sustaining

engineering), and the success rating for the project. Next, the questionnaire inquired

about the actual resources expended/estimated (for completed software projects). This

allowed the program managers to record their cost estimates and drivers during the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 21 -
k^s^i=mlpqdo^ar^qb=p`elli

development of releases. These were documented through the categories of Total

Resources Expended, Resource Allocations (Labor Hour by Major Activity), Size

Information, and Modified Code. Lastly, the questionnaire enabled participants to

indicate scale factor ratings as designed by the COCOMO II model. The program

managers were able to indicate the estimated rating and the actual value of the scale

factor at completion.

The researcher transferred this raw data to an Excel spreadsheet for convenience

and ease of analysis. The data was categorized by source lines of code (SLOC), costs, and

the percentage of maintenance effort applied in the software release (whether adaptive,

corrective, perfective, or enhancements). Additionally, three programs were able to report

their budgeted and actual cost of release by the number of hours applied to the project.

2. Picatinny Arsenal

Data from the Picatinny Arsenal was obtained by the AFCAA through the Office

of the Deputy Assistant Secretary of the Army for Cost and Economics (ODASA–CE)

and normalized by Technomics into the DID spreadsheet mentioned earlier. The data set

contained a total of 19 projects from four programs (the Light Weight Mortar Ballistic

Computer, the Mortar Fire Control System—Heavy, the Paladin system, and the Towed

Artillery Digitization) at various versions or software blocks. The researcher selected

seven programs from the available data due to the completeness of information provided

and the applicability to this thesis. The final candidate projects used for this thesis and

their associated programming languages are listed in Table 5.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 22 -
k^s^i=mlpqdo^ar^qb=p`elli

Table 5. Picatinny Arsenal Programs and Languages

Program Primary Software Language

LHMBC Version 3 C++

Paladin SWB2 Version 3 Ada

Paladin SWB2 Version 2 Ada

Paladin V7P Ada

Paladin V7 Ada

Paladin V11.4 Ada

TAD Block 1A C++

The researcher transferred this raw data to an Excel spreadsheet for convenience

and ease of analysis. The data was then categorized by a summarized tabulation of SLOC

(divided by deleted, modified, new, and reused) and overall costs. Additionally, one

program reported the number of defects categorized by priority of the defect. This data

point was also included in the Excel spreadsheet.

3. Integrated Strategic Planning and Analysis Network

As described in the DoD’s 2008 Major Automated Information System Annual

Report, the Integrated Strategic Planning and Analysis Network (ISPAN) Block I

employs a

system of systems approach that spans multiple security enclaves for
strategic and operational level planning and leadership decision making.
The system is composed of two elements: (1) a Collaborative Information
Environment (CIE) managing strategy-to-execution planning across all
United States Strategic Command (USSTRATCOM) Mission areas; and
(2) a Mission Planning and Analysis System (MPAS) that support the
development of Joint Staff Level I through Level IV nuclear and
conventional plans supporting National and Theater requirements. (DoD,
2008)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 23 -
k^s^i=mlpqdo^ar^qb=p`elli

The data provided to the AFCAA included several years’ worth of development and

maintenance information related to the suite of ISPAN programs. “The major application

software programs used in the process (ISPAN) include the National Ground Zero

Integrated List and Development System (NIDS), the Missile Graphics Planning System

(MGPS), the Air Vehicle Planning System (APS), and the Document Production System

(DPS)” (United States Strategic Command [USSTRATCOM], 2004, p. 2).1 Additional

programs included the Automated Windows Planning System (AWPS), the Theater

Integrated Planning System (TIPS), and others related to the ISPAN program. This

information was divided by SLOC and Software Change Requests and then further

segregated by the major programs within ISPAN. The various projects and their

associated programming languages used for this thesis are depicted in Table 6.

Table 6. ISPAN Programs and Languages

Program Primary Software Language

Automated Windows Planning System (AWPS) C

Missile Graphics Planning System (MGPS) FORTRAN

Aircraft Air Vehicle Planning System C++

Data Services C/C++

Theater Integrated Planning System (TIPS) Unknown

National Ground Zero Integrated List and

Development System (NIDS)
C++

The ISPAN data revealed the acquisition method used for each subordinate

program. This information was broken down into two categories, custom build or COTS

purchase. Additionally, the labor effort performed (by percentage) was partitioned

between three categories: adaptive, perfective, and corrective. Finally, the ISPAN data

contained full-time equivalent (FTE)_for maintenance personnel (between 2003 and

1 This document was provided to the researcher by the AFCAA for inclusion in a study on software

maintenance.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 24 -
k^s^i=mlpqdo^ar^qb=p`elli

2008), segregated by each major subordinate program, as well as the logical source lines

of code for these programs.

4. Lockheed Martin Systems Integration Owego

The Lockheed Martin data provided to the AFCAA arrived without an appropriate

data dictionary for use in sorting out the various category definitions listed in the Excel

spreadsheet provided. However, simple deduction and common assumptions permitted

the use of the data. The information Lockheed Martin gave on several of its programs

provided three years’ worth of aviation-related software maintenance. These programs

performed a variety of services, including built-in-testing and common console

applications. The software types themselves were split between support and embedded

software. The programs and their associated programming languages are displayed in

Table 7.

Table 7. Lockheed Martin Systems Integration Owego Programs and
Languages

Program Primary Software Language

CDNMDLT_IMOP_MHP Java

ESM MHP BIT C++

ESM MMH BIT C++

JAGRS–Total C

CP140 IMOP Emulator R4.0–Total Ada

MMH ESM OFP MERGE SW–Total Ada

MMH LASIS 15.5, 15.6, 15.7 & 15.8–Total Ada

MMH P3I Dev Rel 15 Ada

SBC Legacy BSP R11–Total C

VH-71 VASIS 5.0–Total Ada

MMH-P3I AOP SW Ada

MMH LASIS 15.9 & 17.0–Total Ada

AMCM Common Console–Total C

A10_PE_ISA C#

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 25 -
k^s^i=mlpqdo^ar^qb=p`elli

The data contained whether the software underwent maintenance while being

developed or whether it reflected only maintenance actions on those programs. This data

also held the start and end dates for any maintenance that was performed. The range for

these dates varied from as short as three months to as long as six years. SLOC counts

were recorded by base code, automatically generated code, modified, new, reuse, ported,

and their aggregate totals. Additionally, the data contained the number of defects reported

across several categories.

5. Naval Air Systems Command (NAVAIR)

A portion of the data provided by the NAVAIR 4.2 Cost Department was the

result of a previous analysis conducted on several software-intensive programs and their

associated information contained within the software resources data report (SRDR).

NAVAIR collected this data over several months via the Defense Cost and Resource

Center (DCARC) website to discover any trends related to the development language and

the type of software being created, reused, modified, or automatically generated. The

primary documents used to derive the Excel spreadsheet provided were taken by the

NAVAIR Cost Department from the SRDR (either the 2630-2 or 2630-2) for that

particular program. There were well over 1,300 data points from 47 disparate programs

identified in the data. However, NAVAIR reported that many data points were considered

unreliable for analysis: “In working with the data we recognized that some of the actual

data points were not very meaningful, either they were an interim build actual that was

not stand alone or the data turned in was highly questionable.”2 The extensive amount of

information contained in NAVAIR’s analysis precipitated the need to limit the data used

for this thesis to 16 data points associated with nine programs, as shown in Table 8.

2 This information can be found in the database received from NAVAIR 4.2 Cost Department under

the tab titled Filter Tips in the Microsoft Excel spreadsheet titled 2630 Raw Sep 10.xls.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 26 -
k^s^i=mlpqdo^ar^qb=p`elli

Table 8. Naval Air Systems Command SRDR Study Programs and Languages

Program
Primary Software

Language

AEA Mission Planning SW Build 1&2 Visual basic

Operational Flight Program SW Build 1&2 Final Ada

AN/USG-2/3 CEC DDS Tactical CSCI Ada

Intelligent Services Build 1 End C++

I/O Services Build 1 End C++

System of Systems Common Operating Environment
(SOSCOE) Build 1.5 Final

C++

SCS 4.0 Mission Computer Ada

F-16 Block 30 SCU 7 UPC C#

Apache Longbow Block III Ada

Active Controls (First Flight) C (ANSI C)

AHE Mission Computer Build 2 (Release 0) Ada

AHE Mission Computer Support Build 2 (Release 0) C/C++

AHE Mission Display Build 2 C++

AHE Comm Suite (UTFA1/UTFA3) C/Assembly

AHE Radar (AN/APY-9) C/C++

Mission Support SW Initial Release Java

NAVAIR’s collection of data provided information from the SRDRs of these

programs through SLOC counts and categorized by base code, new, modified, reused,

and automatically generated code. Additionally, the data collection identified the

software developer and its self-reported Capability Maturity Model—Integrated (CMMI)

maturity levels. Lastly, the data provided the time taken to develop the software and the

contractor’s overall productivity in relation to the SLOC type reported (new, modified,

unmodified).

The remaining portion of the data obtained from NAVAIR also included

information from 61 software projects and their related Program Related Engineering

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 27 -
k^s^i=mlpqdo^ar^qb=p`elli

(PRE) costs. PRE is a program of record that provides software support to the tactical

software systems for the Navy and Marine Corps (NAVAIR, 2010). The funding for PRE

is divided between Capability Defect Package (CDP) and Fleet Response Activity (FRA).

The CDP collects software trouble reports, performs analysis of these reports, and then

delivers the software to the operating forces (NAVAIR, 2010). FRA funds are used by

the Software Support Activity (SSA) for any other resources that are not identified as

CDP. This data set included several years’ worth of PRE actual amount funded (from

1995 to 2008) and expected funding (from 2009 to 2015) for these programs.

Additionally, the data set included major program subsystems/CSCIs, the number of

units/subsystems deployed to users, information concerning the maintainer (name, CMM

and CMMI levels), and the SLOC for the associated subsystems/CSCIs. These 61

candidate programs lacked consistency for the program’s actual amount funded;

therefore, the researcher narrowed the programs to those that possessed five consecutive

years’ worth of PRE actual amount funded data. NAVAIR arranged this data by the

SLOC for each programs’ subsystems/CSCIs. The researcher combined the total SLOC

and number of subsystems/CSCIs for ease of analysis. Additionally, the researcher

averaged the number of units/systems deployed to users. Unfortunately, the programming

language was not contained in the PRE data set. The total used for this research was 28

programs. The programs represented in the data were divided into five groupings

determined by their functions or by the major hardware they supported. These categories

are air combat equipment (ACE), aviation support equipment (ASE), missiles (MIS),

fixed wing aviation (FWA), and rotary wing aviation (RWA). The software product

teams’ programs and their associated application domain used in this research are shown

in Table 9.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 28 -
k^s^i=mlpqdo^ar^qb=p`elli

Table 9. Naval Air Systems Command PRE Software Product Team Programs
and Application Domains

Software Product Team Domain Software Product Team Domain

PMA170_GPS/CDNU ACE PMA265_F/A18 FWA

PMA209_AMC&D ACE PMA271_E6B FWA

PMA209_CAINS ACE PMA273_T45 FWA

PMA209_GPSW-TAWS ACE PMA290_P3C FWA

PMA209_CSFIR ACE PMA242_HARM MIS

PMA209_SDRS ACE PMA259_AIM9X MIS

PMA209_TAMMAC ACE PMA259_AMRAAM MIS

PMA260_CASS ASE PMA226_H46 RWA

PMA272_EWSSA ASE PMA261_H53 RWA

PMA207_C-130 F,R&T FWA PMA275_V22 RWA

PMA231_E2-C FWA PMA276_AH1W RWA

PMA207_KC130J FWA PMA276_UHIN RWA

PMA234_EA6B/AEA FWA PMA299_H60B-LAMPS RWA

PMA257_AV8B FWA PMA299_H60FH RWA

B. VARIABLES AND METHODOLOGY

The disparate number of variables, lack of consistency, and normalization across

the data limited the ability to perform extensive multivariate regression analysis across

the data collected. The researcher could not assure that any result from performing

traditional multivariate analysis would reveal the desired cost-estimating relationship

needed to create a cost model for software maintenance as originally intended. Instead,

the statistical tool JMP (Release 9) produced by the SAS Institute was used to derive the

analysis for this thesis. This package was principally chosen due to its availability to NPS

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 29 -
k^s^i=mlpqdo^ar^qb=p`elli

students for free. Additionally, JMP contains data tables that are easily converted and

manipulated from Excel spreadsheets. Additionally, JMP produces visually attractive

graphical material for analysis. This was compared to Excel, where the researcher needed

to create several different tabs in order to analyze a single data set, and the graphical

choices were limited. The variables selected for correlations or regressions were chosen

depending on the integrity of the data available and on assumptions concerning cost

drivers for software maintenance. Some of the variables chosen were SLOC types,

overall cost, effort types (adaptive, corrective, perfective), number of software change

requests, total number of defects reported, and the number of FTEs for a particular year’s

worth of maintenance. Any cost-related values were retained within their reported fiscal

years for consistency and not converted to reflect inflation.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 30 -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 31 -
k^s^i=mlpqdo^ar^qb=p`elli

IV. DATA ANALYSIS

Calculating maintenance costs is a multi-dimensional problem and the software
itself is only one of the many dimensions of that problem. There is not only a
product to be maintained, but also a maintenance process, a maintenance
environment, maintenance personnel and the tools available.

 – Harry M. Sneed (2004)

A. CORRELATION ANALYSIS

1. Purpose

The data analysis for this thesis began with simple correlations between the

variables collected within the data provided. This test was important because it allowed

the researcher to understand the linear relationship between two variables. The formula

for the simple Pearson product-moment correlation is represented in Equation 5.

 2 22 2
XY

n XY X Y
r

n X X n Y Y

 (5)

where XYr is the correlation coefficient between X and Y , and

 n is the size of the sample,

 X is the X variable,

 Y is the Y variable,

XY is the product of the X variable multiplied by the

corresponding Y variable,

2X is the X variable squared, and

2Y is the Y variable squared. (Salkind, 2004, p. 81)

For the purposes of this thesis, the correlation coefficient was used to determine

which pairing between variables contained the strongest relationships. The results of this

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 32 -
k^s^i=mlpqdo^ar^qb=p`elli

analysis were then used to extract candidate variables to compute simple linear

regressions and possibly create cost-estimating relationships.

2. Warner Robins and ISPAN Data Analysis

The data set provided by Warner Robins did not analyze well for this thesis. The

information provided did not contain enough cost data for analysis to calculate

correlations alone. However, the data set did provide a basis for comparing the amount of

SLOC compared to the maintenance effort applied. This information was also contained

in the ISPAN program data. Therefore, these two data sets (totaling nine programs) were

combined in order to analyze their results categorically by software size and effort type

(corrective or perfective maintenance). It was assumed that the amount of maintenance

performed would correlate to the complexity of the software, but since there were no

metrics provided that could be used as a surrogate for complexity, software size was

computed as the dependent variable for analysis.

The correlation between the variables’ total source lines of code and percentage

effort of corrective and perfective maintenance resulted in the report shown in Figure 7.

The outcome demonstrated that for this combined data set, the percentage of effort in

perfective maintenance correlated (0.75) to the source lines of code (depicted as Total

SLOC). However, the percentage of effort in corrective maintenance showed a negative

correlation (-0.63) to the source lines of code. Therefore, complexity could not be

definitively proven by the percentage effort of maintenance performed and the total

amount of SLOC in the software.

Figure 7. Multivariate Correlation Results for SLOC and Percentage of
Maintenance Effort for SW Programs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 33 -
k^s^i=mlpqdo^ar^qb=p`elli

3. Picatinny Arsenal Data Analysis

This data appeared to be the most promising toward building a software

maintenance model. This assumption was based on actual cost information and

descriptions of the software reported in the collected data.

The first correlation resulted in the report shown in Figure 8. The outcome

demonstrated that for this data set, the original base count of source lines of code

(depicted in Figure 8 as SLOC Reused [Old]) has little correlation (0.28) to the overall

costs associated with the maintenance. However, the number of SLOC introduced to the

base code (depicted in Figure 8 as SLOC [Added]) resulted in a strong correlation (0.81)

to the overall cost of the maintenance.

Figure 8. Multivariate Correlation Results for Cost and SLOC

The Picatinny Arsenal data also included the total effort (in man-months) used for

the maintenance. This data could be used as a proxy for dollar costs. The results of the

correlation for this variable with SLOC counts are shown in Figure 9. The total effort

variable was not strongly correlated (0.24) to the amount of SLOC reused in the

maintenance. However, SLOC (Added) continued to show a strong correlation (0.73)

compared to the total effort variable.

Figure 9. Multivariate Correlation Results for Total Effort and SLOC

This data also included the requirements added or deleted for the particular

software represented. However, the Paladin SWB2 (version 3) was excluded for analysis

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 34 -
k^s^i=mlpqdo^ar^qb=p`elli

because it did not include information for either one of these variables. The results of the

five data points and their associated variables are shown in Figure 10. These analyses

revealed that there were no strong correlations between the requirements added (new to

the version or release, represented in Figure 10 as Reqts(+)) or deleted (existing

requirements deleted from a previous release or version, represented in Figure 10 as

Reqts(-)) and the overall cost of the maintenance performed.

Figure 10. Multivariate Correlations Report for Cost and Requirements

The same analysis was conducted for total effort against these variables, as shown

in Figure 11. This analysis also revealed that there were no strong correlations between

the requirements added or deleted, and the total effort contributed to the software

maintenance.

Figure 11. Multivariate Correlations Report for Total Effort and Requirements

4. Integrated Strategic Planning and Analysis Network Data Analysis

This data set provided six years’ worth of logical SLOC, the FTE associated with

the maintenance conducted on ISPAN’s subprograms, the number of CSCIs associated

with those subprograms, and the maintenance defect count for four years (2005–2008).

Since actual cost data was not provided in the data set, it was assumed that FTE data

could be used as a surrogate. The number of CSCIs listed in the data set indicated that

they did not change from year to year; therefore, the number of CSCIs was held constant

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 35 -
k^s^i=mlpqdo^ar^qb=p`elli

in the analysis. These numbers were then correlated by year, as shown in Figures 12 and

14. The remaining reports for fiscal years 2006 and 2007 are located in Appendix B.

Figure 12. Multivariate Correlations Report for FY05 ISPAN Data

The results show that SLOC and the number of FTEs for maintenance contain the

strongest correlation for FY05. Since one subprogram contained a singular CSCI, the

researcher determined that this could skew the results of the correlation and recalculated

the correlation; the results are shown in Figure 13. However, these results did not

significantly improve the relationship between the proxy for cost (FTE Maintenance) and

the number of CSCIs in the FY05 ISPAN program.

Figure 13. Multivariate Correlations Report for FY05 ISPAN Data Minus One
Subprogram With a Singular CSCI

The analysis of the ISPAN data set from FY08 revealed similar results as FY05,

as shown in Figure 14. The number of CSCIs continued to be less of a factor,

contributing to the amount of FTE maintenance performed on the software.

Figure 14. Multivariate Correlations Report for FY08 ISPAN Data

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 36 -
k^s^i=mlpqdo^ar^qb=p`elli

In order to ensure that the singular CSCI count for one subprogram did not

influence the results, another correlation was performed minus that particular program.

The results are shown in Figure 15. As expected, the CSCI count did not reflect any

relationship to the amount of FTE maintenance. However, the correlation between the

amount of FTE maintenance and defects rose considerably from 0.46 to 0.86.

Figure 15. Multivariate Correlations Report for FY08 ISPAN Data Minus One
Subprogram With a Singular CSCI

5. Lockheed Martin Systems Integration Data Analysis

This data set mostly contained information from FY07, but also it included data

from FY08 and one program’s data for FY09. The Lockheed Martin data included the

start and end date of the maintenance performed on these programs. The number of

months contained in this information was calculated and analyzed to determine if this

data was related to the number of labor months. The result was a 78% correlation. Since

the data did not include actual cost data, the number of labor months was used as a proxy

to determine cost factors in the remainder of the correlation analysis.

The analysis of this data revealed that the strongest correlation was between the

number of labor months and the modified code (0.83), as shown in Figure 16. Not

surprisingly, a strong relationship exists between modified code and the number of

defects. This implies that the amount of modified code increases with the number of

defects in the software. However, the second strongest relationship is between defects

and labor months.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 37 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 16. Multivariate Correlations Report for Multiyear Lockheed Martin Data
for Labor Months, Defects, Modified, and Base Code

Next, an analysis of the amount of new and reused code was performed, as shown

in Figure 17. As expected, the amount of new code introduced had a very high correlation

(0.95) to the amount of labor months used in the maintenance. The amount of reused

code was significantly lower (-0.17) than anticipated because there were only two

programs that reported reuse code numbers, which influenced the lower correlation.

Figure 17. Multivariate Correlations Report for Multiyear Lockheed Martin Data
for Labor Months, New, and Reused Code

6. NAVAIR Program Related Engineering (PRE) Data Analysis

This data was analyzed to extract the most complete information possible

concerning size of the software (SLOC), the number of associated subsystems or CSCIs,

the number of deployed systems that use the software, and the amount funded for that

program for a particular year. The data was then narrowed down to those programs that

contained funded PRE data for at least five consecutive years. Once this funding criterion

was met, the total number of program CSCIs was computed as well as the associated

SLOC. Finally, the number of deployed units or subsystems within a program was

averaged. This was done to account for the support activity’s inability to conduct

maintenance on every single piece of equipment within that particular year’s worth of

PRE funds. It was assumed that some of the software maintenance would carry over to

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 38 -
k^s^i=mlpqdo^ar^qb=p`elli

the next year’s funding. Therefore, the researcher determined that it was more appropriate

to average the amount of units/subsystems deployed for the purposes of this research.

The actual PRE funded amounts varied by year as well as by category. The

programs represented in the data were divided into five groupings, determined by their

functions or by the major hardware they supported. These categories were air combat

equipment (ACE), aviation support equipment (ASE), missile systems (MIS), fixed wing

aviation (FWA), and rotary wing aviation (RWA), as shown in Table 10. It appears that

the vast majority of PRE funding is spent in support of fixed wing aviation, as shown in

Figures 18 and 19, which display the FY04 and FY08 summation amounts funded by

category. The charts for the remaining fiscal years can be found in Appendix B.

However, when the mean of these amounts was computed for the identical years, aviation

support equipment dominated PRE funding, as shown in Figures 20 and 21. The amount

of funding is mentioned only to establish the background for the remainder of the data

analysis on the information provided by NAVAIR.

Table 10. NAVAIR PRE Data Categories

Category Abbreviation

Air Combat Equipment ACE

Aviation Support Equipment ASE

Fixed Wing Aviation FWA

Missile Systems MIS

Rotary Wing Aviation RWA

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 39 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 18. Sum of PRE Actual Funded Amount for FY04 by Category

S
um

(2
00

8)

Figure 19. Sum of PRE Actual Funded Amount for FY08 by Category

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 40 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 20. Mean of PRE Actual Funded Amount for FY04 by Category

Figure 21. Mean of PRE Actual Funded Amount for FY08 by Category

Correlation analysis for these programs was computed within each category and

combined when appropriate. Fixed wing aviation contained the largest amount of systems

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 41 -
k^s^i=mlpqdo^ar^qb=p`elli

(9) and was analyzed using FY08 PRE cost data, as shown in Figure 22. The remaining

years’ worth of correlations are contained in Appendix B. This analysis revealed strong

correlations (greater than 0.50) between all of the variables chosen. However, the

number of CSCIs within the programs exposed the most promising relationship (0.90)

with FY08 funding amounts within this category.

Figure 22. Multivariate Correlations Report for PRE Data for Fixed Wing
Aviation, FY08 Funded Amounts, Average Number of Systems

Deployed, SLOC, and CSCIs

Next, rotary wing aviation data contained seven data points and was computed in

the same manner as fixed wing using the same variable categories. The variables did not

reveal the strong correlations depicted in fixed wing aviation, as shown in Figure 23. It is

assumed that this occurred because of the age of the rotary aircraft. The PRE data

included older aircraft that do not require a great deal of software, for example the UH–1

utility aircraft. However, the number of CSCIs and the FY08 funded amount still proved

to be a significant (0.69) relationship. Additionally, the number of CSCIs compared to the

total SLOC revealed a strong (0.91) relationship. The remaining years’ worth of

correlations are contained in Appendix B.

Figure 23. Multivariate Correlations Report for PRE Data for Rotary Wing
Aviation, FY08 Funded Amounts, Average Number of Systems

Deployed, SLOC, and CSCIs

The category of air combat electronics contained seven entries and was computed

using the same variable categories as fixed and rotary wing aviation. The variables

revealed weaker correlations between the variables and no relationship between any of

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 42 -
k^s^i=mlpqdo^ar^qb=p`elli

the variables and the FY08 funded amounts. As anticipated, the SLOC, the total number

of CSCIs/subsystems, and the average number of units/subsystems revealed strong

relationships between them, as shown in Figure 24. It is worth noting that the correlation

between total SLOC and the funded amount was much different than the two previous

correlations. It is assumed that this difference could be attributed to fixed and rotary wing

use of SLOC as a measure of their funded amounts versus air combat electronic

programs, which may use another metric for requesting their maintenance funding.

Figure 24. Multivariate Correlations Report for PRE Data for Air Combat
Electronics, FY08 Funded Amounts, Average Number of Systems

Deployed, SLOC, and CSCIs

The category for aviation support equipment contained only two data points;

therefore, the researcher determined that these points should be combined with the data

for air combat electronics for analysis. The correlation was computed again with the

results shown in Figure 25. By combining the two domains for the purposes of analysis,

the results revealed a stronger relationship between FY08 funded amounts and CSCIs

(0.76). However, this mixture decreased the relationships between SLOC, the number of

deployed units, and CSCIs. Given the results of these correlations, it may not be pertinent

to combine these domains for further analysis. The remaining years’ worth of correlations

for ACE and the combined ACE/ASE data set are contained in Appendix B.

Figure 25. Multivariate Correlations Report for PRE Data for Air Combat
Electronics, FY08 Funded Amounts, Average Number of Systems

Deployed, SLOC, and CSCIs With ASE Data

Next, the category for missile software contained three data points and was

computed in the same manner as the preceding data using the same categorical variables.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 43 -
k^s^i=mlpqdo^ar^qb=p`elli

The results are shown in Figure 26. Even though the number of data points was small, a

strong relationship (0.88) was revealed between the FY08 funded amount and the average

number of units/systems deployed. However, this data set would need to include more

data points in order to be more conclusive than what is currently presented.

Figure 26. Multivariate Correlations Report for PRE Data for Missiles, FY08
Funded Amounts, Average Number of Systems Deployed, SLOC, and

CSCIs

Finally, a combination of the fixed and rotary wing aviation data was correlated in

order to determine if there were any relationships that could be revealed given that these

programs all involve manned-flight platforms. This category contained 16 data points,

and the results for this analysis are shown in Figure 27. By combining the data sets, the

correlation analysis revealed positive relationships between the variables. In this case, the

relationship between FY08 funded amounts and the number of CSCIs/subsystems

contained the strongest (0.83) correlation.

Figure 27. Multivariate Correlations Report for PRE Data for Fixed and Rotary
Wing Aviation, FY08 Funded Amounts, Average Number of Systems

Deployed, SLOC, and CSCIs

However revealing these correlations were, correlation does not equal causation.

Therefore, further statistical analysis was necessary in order to create a potential cost

model or cost-estimating relationship. The next section uses simple linear regression

analysis based on the correlation results.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 44 -
k^s^i=mlpqdo^ar^qb=p`elli

B. REGRESSION ANALYSIS

1. Purpose

In order to estimate the costs associated with software maintenance, it is

important to conduct regressions. This method of analysis allows a researcher to estimate

the results of one variable from the input of another variable. In this case, the researcher

wanted to estimate the cost (whether in actual costs, funded amounts, or labor hours) for

a project’s maintenance when comparing that cost to a variety of variables (SLOC counts,

average number of units/subsystems deployed, number of CSCIs, etc.). In this type of

analysis, it is important to regard the entire statistical package when considering

accepting the regression results. For example, a researcher needs to look beyond the

apparent “fit” of the data points along the regression line. While this technique provides

some advantages, the next step involves examining the coefficient of determination,

which explains the total variation contained within the regression equation itself and is

represented by Equation 6.

2

2
2

esty yExplainedVariation
R

TotalVariation y y

 (6)

where esty is the estimated value of y for a given value of x ,

and y is the mean of our known y . (Nussbaum, 2010)

The coefficient of determination can be further explained by 2
adjR , which removes

one degree of freedom and allows for greater variation explanation given a smaller

sample size. This statistic is particularly useful considering the diminutive volume of the

data sets used for this thesis. Lastly, the f test statistic was considered essential to the

analysis. This test reveals whether or not the model represented by the regression

equation is preferred versus having the coefficients for the dependent variables equal to

zero. Typically, if the probability of calculating an f statistic is greater than 0.05, the

model is considered not good, and researchers should search for an alternative. These

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 45 -
k^s^i=mlpqdo^ar^qb=p`elli

statistics determine the strength of the regressions conducted and provide evidence for

future multivariate cost models.

For the purposes of this thesis, the analysis results can be found in tables

corresponding to their applicable regression graph. The criteria for designating a useable

model depended on the coefficient of determination, the adjusted coefficient of

determination, and the f statistic. Each coefficient of determination result was compared

to Table 10, which allowed the researcher to conclude the utility of the model. The f

statistic was analyzed based on whether the statistic exceeded the established 0.05

threshold. If the regression results for the f statistic were beyond 0.05, the researcher

concluded that the dependent variable did not significantly improve the ability to predict

costs (the independent variable) and, therefore, should not be used.

Table 11. Bivariate Regression Analysis Criterion

 0 –50% 51–60% 61–70% 71–80% 81–99%

Coefficient of
Determination

Weak Inconclusive
Moderately

strong
Strong

Very
strong

Coefficient of
Determination

(adjusted)
Weak Inconclusive

Moderately
strong

Strong
Very
strong

2. Warner Robins and ISPAN

The bivariate regressions executed on this data set attempted to determine the

possible variables that could be used in a best fit model. The correlations demonstrated

that total SLOC and the percentage of effort in perfective maintenance could result as a

candidate best fit model. Therefore, the first regression placed the total SLOC as the

dependent variable and the percentage of effort in perfective maintenance as the

independent. The results of this analysis are shown in Figures 28 and 29.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 46 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 28. Linear Fit Regression for SLOC and Percentage of Effort in Perfective
Maintenance

The linear relationship equation for Figure 28 is represented by Equation 7.

 Total SLOC = 65314.3 + 2909117 * Effort (Perfective) (7)

Table 12. Bivariate Regression Results

 Results Researcher’s Interpretation

Coefficient of Determination (2R) 57% Inconclusive

Adjusted Coefficient of Determination (2
adjR) 51% Inconclusive

f statistic 0.0185 Good

Only slightly more than 50% of this model’s variability could be explained

through the coefficients of determination. Additionally, the f value (0.0185) did not

surpass the threshold of 0.05, which implies that this could be a model candidate if there

are no superior alternatives.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 47 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 29. Whole Model Statistical Tables for SLOC and Percentage of Effort in
Perfective Maintenance

3. Picatinny Arsenal

Simple bivariate regressions were executed on the data sets in order to determine

the best variables for inclusion in a best fit model. The Picatinny Arsenal correlations

revealed that the overall cost category contained a strong relationship with the number of

New SLOC (added) in the maintenance. Therefore, the first regression placed overall

costs as the dependent variable and SLOC New (added) as the independent. The results

of this analysis are shown in Figures 30 and 31.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 48 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 30. Linear Fit Regression for Overall Costs and SLOC New (Added)

The linear relationship equation for Figure 30 is represented by Equation 8.

 Overall Costs = 4048176.7 + 132.0 * SLOC New (Added) (8)

Table 13. Bivariate Regression Results

 Results Researcher’s Interpretation

Coefficient of Determination (2R) 47% Weak

Adjusted Coefficient of Determination
(2

adjR) 34% Weak

f statistic 0.098 Not Good

Less than 50% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (0.098) surpassed the threshold of

0.05, which implies that this is not a good model to use.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 49 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 31. Whole Model Statistical Tables for Overall Costs and SLOC New
(Added)

Another simple regression was performed using total effort (in man-months)

against SLOC New (Added) since this was determined to possess a strong relationship

during correlation analysis. The results are shown in Figures 32 and 33.

Figure 32. Linear Fit Regression for Total Effort and SLOC New (Added)

The linear relationship equation for Figure 32 is represented by Equation 9.

 Total Effort = 22717.3 + 1.9 * SLOC New (Added) (9)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 50 -
k^s^i=mlpqdo^ar^qb=p`elli

Table 14. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 54% Inconclusive

Adjusted Coefficient of Determination
(2

adjR) 44% Weak

f statistic 0.059 Not Good

Less than 50% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (0.059) surpassed the threshold

of 0.05, which implies that this is not a good model to use. Based on the data from these

regressions, it would be difficult to derive an effective model for cost prediction based on

the results.

Figure 33. Whole Model Statistical Tables for Total Effort and SLOC New
(Added)

4. Integrated Strategic Planning and Analysis Network

Similar to the Picatinny data, the ISPAN data was subjected to regression tests in

order to determine the best variables for inclusion in a best fit model. The ISPAN data

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 51 -
k^s^i=mlpqdo^ar^qb=p`elli

correlations computed that the FTE maintenance category contained a strong relationship

with the number of SLOC in the software. Therefore, the first regression analyzed FY08

data and placed FTE maintenance as the dependent variable with SLOC as the

independent. This analysis included all six ISPAN programs. The results are shown in

Figures 34 and 35.

Figure 34. Linear Fit Regression for FTE Maintenance and SLOC for Six ISPAN
Programs

The linear relationship equation for Figure 34 is represented by Equation 10.

 FTE maintenance = 10.1 + 3.7 e-6 * SLOC (10)

Table 15. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 51% Inconclusive

Adjusted Coefficient of
Determination (2

adjR) 38% Weak

f statistic 0.11 Not Good

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 52 -
k^s^i=mlpqdo^ar^qb=p`elli

Less than 50% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (0.11) surpassed the threshold of

0.05, which implies that this is not a good model to use.

Figure 35. Whole Model Statistical Tables for FTE Maintenance and SLOC for
Six ISPAN Programs

Another regression was executed using FTE maintenance against defects since

this was determined to possess a strong relationship during correlation analysis.

However, as was done during correlation analysis, the Theater Integrated Planning

System was removed. The results are shown in Figures 36 and 37.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 53 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 36. Linear Fit Regression for FTE Maintenance and Defects for Five
ISPAN Programs

The linear relationship equation for Figure 36 is represented by Equation 11.

 FTE maintenance = 13.6 + 0.015 * Defects (11)

Table 16. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 75% Strong

Adjusted Coefficient of Determination
(2

adjR) 66% Moderately strong

f statistic 0.057 Not Good

Only slightly more than 50% of this model’s variability could be explained

through the coefficients of determination. Additionally, the f value (0.057) barely

surpassed the threshold of 0.05, which implies that this could be a model candidate if

there are no superior alternatives.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 54 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 37. Whole Model Statistical Tables for FTE Maintenance and SLOC for
Five ISPAN Programs

5. Lockheed Martin Systems Integration

In order to determine the variables for a best fit model, the Lockheed Martin data

was subjected to regression tests. The Lockheed Martin data correlations computed that

the labor month’s category contained the strongest relationship with the amount of new

code and a weaker relationship with the amount of modified code and the total defects in

the software. Therefore, the first regression analyzed placed labor months as the

dependent variable and the amount of new code as the independent variable. This

analysis excluded two programs that reported zero modified code. The results are shown

in Figures 38 and 39.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 55 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 38. Linear Fit Regression for Labor Months and New Code for Fourteen
Lockheed Martin Programs

The linear relationship equation for Figure 38 is represented by Equation 12.

 Labor Months = -1.015 + 0.0025 * New Code (12)

Table 17. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 92% Strong

Adjusted Coefficient of
Determination (2

adjR) 91% Strong

f statistic <0.0001 Good

More than 90% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (<0.0001) did not surpass the

threshold of 0.05, which implies that this could be a model candidate to use.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 56 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 39. Whole Model Statistical Tables for Labor Months and New Code for
Fourteen Lockheed Martin Programs

A second regression was executed using labor months against the amount of

modified code since this was determined to possess a strong relationship during

correlation analysis. However, contrary to the correlation analysis, two programs that

contained zero modified code were removed. The results are shown in Figures 40 and

41.

Figure 40. Linear Fit Regression for Labor Months and Modified Code for Twelve
Lockheed Martin Programs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 57 -
k^s^i=mlpqdo^ar^qb=p`elli

The linear relationship equation for Figure 40 is represented by Equation 13.

 Labor Months = 3.45 + 0.012 * Modified Code (13)

Table 18. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 99% Strong

Adjusted Coefficient of Determination
(2

adjR) 99% Strong

f statistic <0.0001 Good

More than 90% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (<.00001) did not surpass the

threshold of 0.05, which implies that this could be a model candidate to use.

Figure 41. Whole Model Statistical Tables for Labor Months and Modified Code
for Twelve Lockheed Martin Programs

A third regression was executed using labor months against the amount of defects

in the software since this was also determined to possess a strong relationship during

correlation analysis. However, contrary to the correlation analysis, one program reported

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 58 -
k^s^i=mlpqdo^ar^qb=p`elli

zero defects, so that program was removed for this analysis. The results are shown in

Figures 42 and 43.

Figure 42. Linear Fit Regression for Labor Months and Defects for Twelve
Lockheed Martin Programs

The linear relationship equation for Figure 42 is represented by Equation 14.

 Labor Months = 33.9 + 0.17 * Total Defects (14)

Table 19. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 41% Weak

Adjusted Coefficient of Determination
(2

adjR) 36% Weak

f statistic 0.01 Good

Less than 40% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (0.01) did not surpass the

threshold of 0.05, which implies that this model may be useful if there are no other

alternatives.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 59 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 43. Whole Model Statistical Tables for Labor Months and Total Defects for
Thirteen Lockheed Martin Programs

6. NAVAIR PRE Data

The NAVAIR PRE data correlations revealed that the FY08 funded amount

category contained a number of strong relationships with variables from the data

provided. Bivariate regressions were calculated for each category according to the

strength of the correlation. Those correlations that disclosed the highest positive

correlation were used to populate the regression.

The fixed wing aviation correlations revealed that the FY08 funded amount

category contained a strong relationship with the sum of CSCIs/subsystems associated

with the program. Therefore, the first regression placed the FY08 funded amount as the

dependent variable and the sum of CSCIs/subsystems as the independent variable. The

results of this analysis are shown in Figures 44 and 45.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 60 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 44. Linear Fit Regression for FY08 Funded Amount and Sum of
CSCIs/Subsystems for Ten Fixed Wing Aviation Programs

The linear relationship equation for Figure 44 is represented by Equation 15.

 FY08 Funded Amount = -2,208,978 + 319866.6 * Sum of CSCIs/Subsystems (15)

Table 20. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 81% Very strong

Adjusted Coefficient of Determination
(2

adjR) 79% Moderately strong

f statistic 0.0008 Good

Eighty percent of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (0.0008) did not surpass the

threshold of 0.05, which implies that this could be a model candidate to use.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 61 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 45. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for Nine Fixed Wing Aviation Programs

The rotary wing aviation correlations revealed that the FY08 funded amount

category contained a strong relationship with the sum of CSCIs/subsystems associated

with the program. Therefore, the first regression placed the FY08 funded amount as the

dependent variable and the sum of CSCIs/subsystems as the independent variable. The

results of this analysis are shown in Figures 46 and 47.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 62 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 46. Linear Fit Regression for FY08 Funded Amount and Sum of
CSCIs/Subsystems for Seven Rotary Wing Aviation Programs

The linear relationship equation for Figure 46 is represented by Equation 16.

FY08 Funded Amount = 432,009.5 + 95298.4.6 * Total of CSCIs/Subsystems (16)

Table 21. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 48% Inconclusive

Adjusted Coefficient of Determination
(2

adjR) 39% Inconclusive

f statistic 0.08 Not Good

Only slightly more than 40% of this model’s variability could be explained

through the coefficients of determination. Additionally, the f value (0.08) surpassed the

threshold of 0.05, which implies that this is not a good model to use.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 63 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 47. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for Seven Fixed Wing Aviation Programs

The air combat electronics correlations revealed that there were no positive

correlations between the FY08 funded amount category and any of the potential

independent variables associated with the program. Therefore, there were no regressions

calculated on this data. However, when the ACE data was combined with the aviation

support equipment, the FY08 funded amount category contained a strong relationship

with the sum of CSCIs/subsystems associated with the program. Therefore, this

regression analysis placed the FY08 funded amount as the dependent variable and the

sum of CSCIs/subsystems as the independent variable. The results of this analysis are

shown in Figures 48 and 49.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 64 -
k^s^i=mlpqdo^ar^qb=p`elli

F
Y

08
 F

un
de

d

A
m

ou
nt

Figure 48. Linear Fit Regression for FY08 Funded Amount and Sum of
CSCIs/Subsystems for Seven ACE and Two ASE Programs

The linear relationship equation for Figure 48 is represented by Equation 17.

 FY08 Funded Amount = -1553693 + 385902.6 * Total CSCIs/Subsystems (17)

Table 22. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 57% Inconclusive

Adjusted Coefficient of Determination
(2

adjR) 51% Inconclusive

f statistic 0.01 Good

Only slightly more than 50% of this model’s variability could be explained

through the coefficients of determination. Additionally, the f value (0.01) did not surpass

the threshold of 0.05, which implies that this could be a model candidate if there are no

superior alternatives.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 65 -
k^s^i=mlpqdo^ar^qb=p`elli

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.572877

0.511859

3279363

2305333

9

Summary of Fit

Model

Error

C. Total

Source

1

7

8

DF

1.0097e+14

7.528e+13

1.7625e+14

Sum of

Squares

1.01e+14

1.075e+13

Mean Square

9.3887

F Ratio

0.0182*

Prob > F

Analysis of Variance

Intercept

Total CSCIs/Subsystems

Term

-1553693

385902.65

Estimate

1667658

125943.2

Std Error
-0.93

3.06

t Ratio

0.3825

0.0182*

Prob>|t|

Parameter Estimates

Figure 49. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for Seven ACE and Two ASE Programs

The missile category correlations revealed that the FY08 funded amount category

contained a strong relationship with the average of units/systems associated with the

program. However, there were only three programs to analyze. Nevertheless, these

systems were subjected to regression analysis in order to discover any possible useful

information. The regression placed the FY08 funded amount as the dependent variable

and the average of units/systems as the independent variable. The results of this analysis

are shown in Figures 50 and 51.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 66 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 50. Linear Fit Regression for FY08 Funded Amount and Average of
Units/Systems for Three Missile Programs

The linear relationship equation for Figure 50 is represented by Equation 18.

 FY08 Funded Amount = 432,009.5 + 95298.46 * Total of CSCIs/Subsystems (18)

Table 23. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 78% Strong

Adjusted Coefficient of Determination
(2

adjR) 57% Inconclusive

f statistic 0.303 Not Good

More than 60% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (0.303) surpassed the threshold of

0.05, which implies that this is not a good model to use.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 67 -
k^s^i=mlpqdo^ar^qb=p`elli

Figure 51. Whole Model Statistical Tables for FY08 and Average of Units/Systems
for Three Missile Programs

The fixed and rotary wing aviation combination correlations revealed that the

FY08 funded amount category contained a strong relationship with the sum of

CSCIs/subsystems associated with the programs. Therefore, the regression placed the

FY08 funded amount as the dependent variable and the sum of CSCIs/subsystems as the

independent variable. The results of this analysis are shown in Figures 52 and 53.

Figure 52. Linear Fit Regression for FY08 Funded Amount and Sum of

CSCIs/Subsystems for a Combination of Fixed and Rotary Wing
Programs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 68 -
k^s^i=mlpqdo^ar^qb=p`elli

The linear relationship equation for Figure 52 is represented by Equation 19.

FY08 Funded Amount = -1,494,262 + 265277.1 * Total of CSCIs/Subsystems (19)

Table 24. Bivariate Regression Results

 Results Researcher’s
Interpretation

Coefficient of Determination (2R) 71% Strong

Adjusted Coefficient of Determination
(2

adjR) 68% Moderately Strong

f statistic <0.0001 Good

More than 69% of this model’s variability could be explained through the

coefficients of determination. Additionally, the f value (<0.0001) did not surpass the

threshold of 0.05, which implies that this could be a model candidate to use.

Figure 53. Whole Model Statistical Tables for FY08 and Sum of
CSCIs/Subsystems for a Combination of Fixed and Rotary Wing

Programs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 69 -
k^s^i=mlpqdo^ar^qb=p`elli

7. Summary

The data sets provided for this thesis were from diverse sources, and the

associated analyses revealed this disparate nature. The correlations validated several of

the researcher’s assumptions, including the assumption that the more SLOC to maintain,

the higher the hours spent maintaining the code. However, this analysis also questioned

the researcher’s supposition about software reuse and disclosed that the amount of code

reuse does not relate to the amount of cost or effort. Additionally, the discovery of a

relationship between subsystems/CSCIs and costs was exposed.

The regression analysis proved to be the most enlightening task of this thesis.

Based on the data, the results demonstrated that using SLOC counts to estimate costs

proved to be an inconsistent method, unless the code was categorized by modified and

new. The PRE data uncovered the notion of the number of subsystems/CSCIs and their

relationship with funded amounts. This was particularly interesting since the number of

CSCIs could reveal the complexity of the software and the maintenance challenges.

Lastly, the number of defects reported also showed that this variable could be useful in a

model, if calculated with additional software attributes.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 70 -
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 71 -
k^s^i=mlpqdo^ar^qb=p`elli

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY OF FINDINGS

The diverse nature of the data provided for this thesis constrained the researcher’s

ability to create a model for the cost of software maintenance. However, there were a

number of findings that may assist a program manager to estimate the cost of the

software associated with a program. More important, these findings highlight the need for

better reporting from those sources of software maintenance support in order to build

more accurate models in the future.

The first observation is that the traditional total amount of SLOC metric does not

accurately reflect the amount of effort required to maintain the software unless

categorized by the type of SLOC maintained. A strong correlation between the total

amount of SLOC and costs (whether they are actual costs, labor months, or FTE work)

could not be determined. None of the bivariate models created supported using total

SLOC as a sole factor for determining costs. However, SLOC is one of the major inputs

to any of the software cost-estimation models employed. This analysis supports the use of

additional information beyond the more easily attained total SLOC count as a method to

estimate software maintenance.

The next observation is that the number of defects reported would be an accurate

measure of the costs for post-production support. Strong relationships were derived

between the designated cost category and the reported number of defects from the

correlation analysis and the regressions executed on two programs. Additionally, the

regressions that included defect counts were proven to be useful. Unfortunately, this data

is dependent upon where the software is during development. If defects are reported

during the testing phase of development, this information may be useful to a program

manager to estimate future maintenance costs. However, the best defect data is still going

to be derived from software currently in service.

The third observation is that the number of CSCIs was discovered to be highly

correlated with the actual funded amount from NAVAIR’s PRE data. The regressions

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 72 -
k^s^i=mlpqdo^ar^qb=p`elli

computed revealed that the number of CSCIs/subsystems did provide useable models

(more so than other data) for estimating the maintenance costs for those particular

programs. This conclusion does not indicate that the number of CSCIs/subsystems

associated with a program will provide accurate costs for maintenance. It does imply that

the number of CSCIs/subsystems associated with a program could disclose the

complexity of the software, which may well correlate to the maintenance costs if more

information regarding the CSCIs/subsystems is provided. This information may provide

program managers with a better understanding of the cost drivers in software

maintenance.

The final observation is that the information reported by various contractors and

government agencies does not provide enough detail to permit the creation of a robust

software maintenance estimation cost model. As evidenced by the disparate amount of

data collected, many data collection systems used by maintainers record their efforts and

the particulars of whatever software they are tasked to support. However, more

standardization is required across the software maintenance community in order to ensure

that the data being recorded can be employed beyond the agency or contractor.

B. SPECIFIC RECOMMENDATIONS

Currently, the software resources data report (SRDR) retained by the Defense

Cost and Resource Center (DCARC) requires developers to report information related to

software development and upgrade costs. These reports can be done by contractors,

government design activities, or a mixture of both (DoD, 2004). The reports require the

submission of a DD Form 2630-2 to the DCARC within 60 days of the project start. The

initial developer report provides an estimate of the work about to be performed. The final

developer report (DD Form 2630-3), which reports actual data concerning the software, is

then submitted to the DCARC within 60 days of delivery. This information is captured in

the DCARC database and is available to those with a need to know.

A similar method of software maintenance needs to be implemented that would

permit the capture of actual resources used to complete maintenance. Once the

information is submitted to the appropriate Service’s Visibility and Management of

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 73 -
k^s^i=mlpqdo^ar^qb=p`elli

Operating and Support Costs (VAMOSC) center, it would be categorized by application

domain (aviation, ships, ground weapons, command and control platforms, etc.) for easy

access, dependent upon the user’s desires. The required information to populate the report

would be programming languages (which relates to program complexity), number of

subsystems/CSCIs, defect counts and their type, labor hours charged toward the

maintenance provided, and SLOC by category (base, reuse, new, and modified). In order

to be sensitive to contractor proprietary concerns, it would not be necessary to report

labor rates or actual billing amounts. The labor effort would be reported by maintenance

performed (corrective, perfective, or adaptive) in man-hours. This information could then

be used as a basis for program managers to build and design their own estimation models.

C. FUTURE RESEARCH

Estimating the cost of software maintenance is a challenging problem for a variety

of reasons. Many practitioners continue to postulate the factors that comprise software

maintenance. Even more experts debate which costs can be (and should be) attributed to

software support. Therefore, any research that attempts to contribute to this subject’s

body of knowledge should be regarded as pioneering work and used for further

exploration. Due to recent budgetary concerns, the field should garner a great deal of

attention. Therefore, the maneuver space available to the next researcher is dependent

only on the determination of the researcher and the availability of the data.

This thesis described the current software maintenance cost-estimation models in

use by the acquisition community. A researcher could examine these models to determine

their accuracy in light of actual maintenance costs. This may prove difficult, considering

that SLIM and SEER–SEM are commercial products. However, the researcher may be

able to obtain the data provided to these companies and gauge their effectiveness. The

case could then be made for whether it is worth the investment to use these products

versus an open-source cost-estimation product like COCOMO II.

This thesis collected as much information as possible from a variety of sources

across several application domains. Future research could examine one particular domain,

narrow the scope to one program with several years’ worth (at least five) of software

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 74 -
k^s^i=mlpqdo^ar^qb=p`elli

maintenance, and build a predictive cost model for that one system. This effort would

contribute to the data collection efforts for at least one system that could then be used by

other similar systems as an estimating tool while they are still in development.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 75 -
k^s^i=mlpqdo^ar^qb=p`elli

APPENDIX A.

DATA ITEM DESCRIPTION SOFTWARE MAINTENANCE DATA
COLLECTION (VERSION 1.3)

Title: Software Maintenance Data Collection

Use/Relationship: This Data Item Description (DID) identifies and describes the data
being collected to build a software operations and maintenance cost database. This
Software Maintenance Data Collection form is not a management or measurement report.
It is not intended for tracking progress, nor does it intend to collect financial information.
Rather, its purpose is to collect empirical data during software operations and
maintenance for use in developing benchmarks and estimating relationships, and
calibrating models. These data will also be used to substantiate budgets used for future
maintenance appropriations. The accompanying Excel form is provided for ease of data
entry.

Timing: Because we are collecting both estimates and actuals for many of the measures
identified, the best time to capture data is at the start and end of a cycle. For example,
size in source lines of code would be captured as an estimate at the beginning of a release
and the end with a measurement of the actuals, which can be accomplished with a code
counter such as the University of Southern California (USC) Unified Code Counter
(UCC), measuring actual size and the number of lines added, deleted, changed, and
reused from version to version (using the tool’s differential counting capability).

Additionally, data needs to be captured on an annual basis when releases are multi-year
because that is how budgets are allocated. For multi-year projects, the estimate data must
therefore be collected at the start of the cycle, updated with a cost and schedule to
complete the start of the next fiscal year, and finalized with actuals when the release is
provided to the field. Conversely, when there are several releases during a fiscal year,
data snapshots are needed at the beginning and end of each release.

Information Needs:
The following data items should be collected for entry into the maintenance cost and
quality database as a record for each project version released to the field. Those data
items identified as “Mandatory” represent the minimum data set to be collected. Such
data includes both contextual as well as measured values. Data are desired in as raw a
form as possible (e.g., effort in hours as a direct output from the timecard system) so that
any normalization steps may be traced and validated.

Indentifying Information (Mandatory)
A description of the project and associated software development process provides vital
context for the subsequent data to be collected. In aggregate data analysis, all identifying
information will be stripped so that each individual data point remains “anonymous.”
 Organization (contracted or in-house)–Identify whether the version or release was done in-

house by a government and contractor team or was contracted externally. If internal, provide

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 76 -
k^s^i=mlpqdo^ar^qb=p`elli

the name of the responsible life cycle support center. If contracted, provide the name(s) of
the contractor(s). Be sure to include all subcontractors in order to provide a complete
accounting of the effort.

 Program Name–The name of the program under which the effort is being accomplished.

 System Name–The name of the system of which the software is a part (e.g., platform).

 Project Name–The name of the software project.

 Version–The number and name of the version or release being described.

 Process Description–A comprehensive description of the standard software maintenance
process being followed, preferably in an existing external document (e.g., Software
Development Plan)

 Application Domain–Identify the domain as one of the following: avionics, business,
command & control, microcode, process control, real-time, scientific, systems software, and
telecommunications.

 Platform–The platform type of the system of which the software is a part: manned aircraft,
unmanned aerial vehicle (UAV), ground fixed, ground mobile, unmanned space, missiles, or
shipboard.

Sizing–Source Lines of Code (Mandatory)
The size of the software counted in non-blank, non-comment logical source lines of code
(SLOC). Counting conventions for logical source lines vary by language. However,
counters exist and should be used to count source lines for the language in question using
conventions established by the Software Engineering Institute (SEI) in the following
referenced standard:
 Robert E. Park, Software Size Measurement: A Framework for Counting Source

Statements, Technical Report CMU/SEI-92-TR-020, 1992.

The preferred code counter is the aforementioned USC Unified Code Counting (UCC)
tool, which can be downloaded free from http://sunset.usc.edu.

If other measures of size, such as function points or object points, are used in addition to
or in lieu of SLOC, they should be reported as well.

This set of data is being collected to define the size of the release, which is generally
thought to be a driver of software effort. The data to be reported in this category
includes:
 Programming language(s)–The programming language(s) in which the software version or

release was written (including assembly).

 New (added)–The number of new human-generated SLOC added to the new version or
release.

 Auto-generated–The number of auto-generated SLOC added to the new version or release.
Auto-generated code is produced using specialized tools at a pace far exceeding manual
development.

 Carryover (existing)–The number of SLOC from the previous version that were carried over
as is. These lines are not changed in any way.

 Reused (internal)–The number of existing SLOC from a different project within the
organization that were included in the new version or release. These lines are not changed in
any way.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 77 -
k^s^i=mlpqdo^ar^qb=p`elli

 Reused (external)–The number of existing SLOC from a different project outside the
organization (e.g., Open Source) that were included in the new version or release. These
lines are not changed in any way.

 Modified (changed)–The number of existing SLOC that were changed and included in the
new version or release. These lines can include design modified, code modified and/or
integration modified elements. Please specify source of modified code (previous release,
internal, external) and degree of modification.

 Deleted–The number of existing SLOC that were deleted from the previous version or
release.

Schedule (Mandatory)
The schedule represents the calendar time spent to generate the version or release from its
start to its actual delivery date. This set of data is being collected to enable the prediction
of schedule and to relate effort and staffing. The software effort starts when allocated
software requirements are provided to the software team by systems engineering. The
software effort ends when the Formal Qualification Tested (FQT’d) software is delivered
to systems engineering for integration and test, typically in some System Integration Lab
or facility. Schedule should be reported with interim milestones where tracked. (A
possible set of milestones is Software Requirements, Preliminary Design, Detailed
Design, Code & Unit Test, and Software I&T). The data to be reported in this category
includes:
 Estimated Begin Date–The estimated calendar date that work on the new version or release

should have began.

 Actual Begin Date–The actual calendar date that work on the new version or release began.
This may differ from the estimated date due to any number of reasons.

 Estimated End Date–The estimated calendar date that the new version or release should
have been delivered to systems engineering for integration and test.

 Actual End Date–The actual calendar date that the new version or release was delivered to
systems engineering for integration and test.

Effort (Mandatory)
The effort represents the number of staff-hours spent during the time from when allocated
software requirements are provided to when the FQT’d software is delivered to systems
engineering for integration and test. The number of hours includes all directly-
chargeable hours to the software project, including all of those expended by management,
development, test and support personnel involved in getting the software product
delivered, and including sustaining engineering. Effort should be reported by activity
where tracked. (A possible set of activities is Software Requirements, Preliminary
Design, Detailed Design, Code & Unit Test, Software I&T, Qualification Testing,
Software Program Management, Software Quality Assurance, Software Configuration
Management, Information Assurance, and Independent Verification and Validation.) The
data to be reported in this category includes:
 Estimated Effort (staff-hours)–The estimated effort in staff-hours for the new version or

release provided prior to the work begins.

 Actual Effort (staff-hours)–The actual effort expended in staff-hours for the new version or
release provided when the work was completed.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 78 -
k^s^i=mlpqdo^ar^qb=p`elli

 Standard Month–The number of staff-hours in a standard staff-month (only required if
effort is only available in staff-months).

 Labor Mix–The breakout of staff-hours by labor category (e.g., senior/mid/junior).
 Staffing Level–identify the average number of people on the maintenance team and the peak

staff size expressed as average (peak) for each version or release. If the data are available,
record the composition of the team (e.g., ten average; one manager, six software engineers,
one CM/QA person, one network administrator/security, and one field support engineer).

 Labor Rates–The fully-burdened dollars per hour ($/hr), either composite or by labor
category. Can refer to standard documentation (e.g., rate schedules).

Quality (Mandatory)
The number of defects is determined by the tallying the number of Software Problem
Reports (SPR) as they are entered into the problem reporting system. A defect is an
error, flaw, mistake or fault in a software program that causes it to produce either
incorrect or unexpected results, or causes it to behave in untended ways. Defects are
sometimes separately by phase in which they are discovered in an attempt to determine
how many escape detection in-phase and out-of-phase. If there are change requests
separate from SPRs and formal requirements (see below), please provide similar counts
of those as well.

This set of data is being collected to define the relative quality of the release as a
potential cost driver. The data to be reported in this category includes:
 Number of Defects–The actual number of defects related to this version or release separated

into the following five categories:
o Category 1 Defects (Catastrophic)–The number of catastrophic defects related to

this release. Catastrophic defects are those that prevent the accomplishment of an
operational or mission-essential capability and for which no work-around solution is
known. In addition, catastrophic defects include all system/software lockups and
those defects that jeopardize safety, security, or other absolutely essential
requirements.

o Category 2 Defects (Critical)–The number of critical defects related to this release.
Critical defects are those that adversely affect the accomplishment of an operational
or mission-essential capability and for which a work-around solution is not known.
In addition, such defects include those that adversely affect technical, cost, or
schedule risks to the project or to life cycle support of the system and for which no
work-around solution is known.

o Category 3 Defects (Serious)–The number of serious defects related to this release.
Serious defects are those that adversely affect the accomplishment of an operational
or mission-essential capability, but for which a work-around solution is known.

o Category 4 Defects (Annoyance)–The number of annoyance defects related to this
release. Annoyance defects are those that typically result in user/operator
inconvenience, but do not affect any required operational or mission-essential
capability.

o Category 5 Defects (Minimal)–The number of defects that both have minimal
impacts and do not appear in any other category related to this release. They may be
provided for informational purposes.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 79 -
k^s^i=mlpqdo^ar^qb=p`elli

 Defect Information - Information supplied for defects in each of these categories, via a
spreadsheet or table, includes:

o Number of known defects; i.e., those existing prior to this release

o Number of known defects planned to be fixed as part of this release

o Number of known defects actually fixed as part of this release

o Number of new defects found during work on this release

o Number of new defects fixed as part of this release

Capability (Mandatory)
This information captures the overall skill of the software team. The data to be reported
in this category includes:
 Process Maturity–The Capability Maturity Model (CMM) rating provided by SEI.

 Application Experience–The average number of years of experience of the software team
with developing and maintaining this type of application.

 Platform Experience–The average number of years of experience of the software team with
developing and maintaining software for this type of platform.

 Language/Tool Experience–The average number of years of experience of the software
team with developing and maintaining software coded in this language and using this suite of
software tools.

Cost (Optional)
The cost represents the dollars ($) spent during the time from when allocated software
requirements are provided to when the FQT’d software is delivered to systems
engineering for integration and test. The number of dollars ($) differs from effort in
staff-hours as it includes all those expended on the project including those spent on
licenses, travel, and other costs. The data to be reported in this category includes:
 Estimated Labor Costs ($)–The estimated labor costs in $ for the new version or release

prior to the work on it being started.

 Actual Labor Costs ($)–The actual labor costs expended in $ for the new version or release
when the work on it was completed.

 Estimated License Costs ($)–The estimated license costs in $ for the new version or release
prior to the work on the new version it being started.

 Actual License Costs ($)–The actual license costs expended in $ for the new version or
release when the work on it was completed.

 Estimated Travel Costs ($)–The estimated travel costs in $ for the new version or release
prior to the work on it being started.

 Actual Travel Costs ($)–The actual travel costs expended in $ for the new version or release
when the work on it was completed.

 Estimated Facility Costs ($)–The estimated costs for software development and test
facilities in $ needed to sustain, test, and support of the new version or release, prior to the
work on it being started. Does not include building costs (e.g., lease).

 Actual Facility Costs ($)–The actual costs for software development and test facilities in $
needed to sustain, test, and support the new version or release, when the work on it was
completed. Does not include building costs (e.g., lease).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 80 -
k^s^i=mlpqdo^ar^qb=p`elli

 Estimated Other Costs ($)–The estimated other direct costs (ODCs), not including Travel,
in $ for the new version or release prior to the work on it being started. Includes separate
Security/IA costs.

 Actual Other Costs ($)–The actual other direct costs (ODCs), not including Travel,
expended in $ for the new version or release when the work on it was completed. Includes
separate Security/IA costs.

Requirements (Optional)
If the maintenance effort is driven by requirements, they should be elicited, defined at a
detailed level, and managed using a tool such as DOORS by IBM/Rational.
Requirements are expressed in a complete sentence containing both a subject and
predicate. These sentences shall consistently use the verb “shall” or “will” or “must” to
show the requirement’s mandatory nature. The whole requirement specifies a desired end
goal or result and contains success criterion or other measurable indication of quality.

This set of data is being collected to substantiate budgets for software enhancements
including funds needed for sustaining engineering and product support during operations.
The data to be reported in this category includes:
 Added–The number of new requirements added to the current version or release.

 Deleted–The number of existing requirements deleted from the previous version or release.

 Changed–The number of existing requirements modified for the current version or release.

 Deferred–The number of requirements deferred from the new version or release solely due to
funding constraints.

 Total # Requirements–The actual number of requirements in the new version or release
when it is delivered for operational use.

Earned Value (Optional)
Earned value is a project management technique used to measure progress in an objective
manner. It combines measurement of scope, schedule and cost into an integrated
framework for determining status and assessing progress. If EVM is being conducted for
this project, the below elements should be reported at lowest level of the work breakdown
structure (WBS) for which they are collected. The data to be reported in this category
includes:
 Budgeted Cost of Work Performed (BCWP)–the budgeted cost of the work actually

completed.

 Actual Cost of Work Performed (ACWP)–the actual cost of the work completed taken
from the financial records.

 Budgeted Cost of Work Scheduled (BCWS)–the budgeted cost of the work scheduled but
not performed as of yet.

 Budget At Completion (BAC)–the current budget allocated to complete the work.

 Estimate At Completion (EAC)–the current estimated cost to complete the work.

Test Effort (Optional)
The effort represents the number of staff-hours spent to perform Formal Qualification
Test (FQT) on the software version or release. It does not include staff-hours for unit
testing. However, it does include staff-hours needed to conduct dry runs and prepare

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 81 -
k^s^i=mlpqdo^ar^qb=p`elli

automation scripts. The number of hours includes all directly-chargeable hours to the
software project including all of those expended by management, test and support
personnel involved in getting the software product delivered. Where available, the below
quantities should be broken out by type of testing (e.g., Dry Run, Dry Run Regression,
FQT, and FQT Regression). The data to be reported in this category includes:
 Number of Test Cases–The actual number of test cases developed for the new version or

release separated into the following categories:
 Test Case Effort (staff-hours)–The actual effort expended in staff-hours for developing test

cases for the new version or release separated into the following categories:
 Number of Tests Run–The actual number of tests run for the new version or release

separated into the following categories:
 Test Conduct Effort (staff-hours)–The actual effort expended in staff-hours for conducting

the testing of the new version or release separated into the following categories:
 Test Cost ($)–The actual test cost expended in $ for the new version or release separated into

the following categories:

Model Information (Optional)
If the COCOMO II or SLIM cost model was used to prepare the estimates for cost, please
provide a copy of the estimate file and basis for estimate for each version or release.
Multiple files are needed, i.e., that containing the initial estimate and another that updates
the drivers to reflect the estimated cost- and schedule-to complete at the end the fiscal
year for multi-year projects and actuals at the end of the effort. As an example, the team
may have planned to use experienced people for the job, but they may have had
difficulties finding them because the technology involved was so antiquated. The result
is that the initial estimate assumed applications experience (“APEX” for the COCOMO II
cost model) was “High” when in actuality it was “Low” for the updates. The values for
experience should be captured along with an explanation in each updated file (cost-to-
complete and actual). If you do not have these files, please complete the following two
tables.

The COCOMO II and SLIM models were selected because they represent packages for
which our sponsor holds licenses. There are other software cost models that can fit the
bill. We have elected not to capture data for them because of license issues. However,
we encourage you to do so if you use some of these other models. Understanding the
factors that impact the effort and duration estimates is extremely important because it
gives you insight into the factors upon which cost varies.

1. Scale Factors
Rate the COCOMO II scale drivers. These are the factors in the exponent of the

equation. When in doubt use the nominal setting. Please provide the two versions of this
table that were requested.

 Very Low Low Nominal High Very High Extra High Estimate Rating

Precedentedness Thoroughly
un-precedented

Largely

un-

precedented

Somewhat un-
precedented

Generally
familiar

Largely
familiar

Largely
familiar

Development

Flexibility

Rigorous Occasional
relaxation

Some relaxation General
conformity

Some
conformity

Some
conformity

Architecture/

Risk Resolution

Little

20%

Some

40%

Often

60%

Generally
75%

Mostly 90% Mostly

90%

Team

Cohesion

Strongly
adversarial

Occasionally
cooperative

Moderately
cooperative

Largely
cooperative

Highly
cooperative

Highly
cooperative

Process Maturity CMM Level 1
(lower half)

CMM Level 1
(upper half)

CMM

Level 2

CMM Level
3

CMM Level
4

CMM

Level 5

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 83 -
k^s^i=mlpqdo^ar^qb=p`elli

2. Cost Drivers
Rate the COCOMO II cost drivers. These factors are multiplied together to adjust the

project cost to factors that have been found to influence over it. When in doubt use the
nominal setting. Please provide the two versions of this table that were requested.

 Very

Low

Low Nominal High Very High Extra

High

Estimate

Rating

Required Software

Reliability

Slight in-

convenience

Low, easily

recoverable

losses

Moderate, easily

recoverable losses

High financial

loss

Risk to human

life

Data Base Size D/P < 10 10 < D/P < 100
100 < D/P <

1000
D/P > 1000

Product

Complexity
Simple

Straight-

forward

Routine, some

math, multi-file

Processing

intense
Interrupt-driven

Complex real-

time

Required

Reusability
 None Across project Across Program

Across Product

Line

Across Multiple

Product Lines

Documentation

Match to Life

Cycle Needs

Many life

cycle needs

uncovered

Some needs

uncovered

Right-sized to life

cycle needs

Excessive for life

cycle needs

Very excessive

for lifecycle

needs

Execution Time

Constraints

> 50% use of

available exec.

time

70% use 85% use 95% use

Main Storage

Constraints

> 50% use of

available storage
70% use 85% use 95% use

Platform Volatility

Major

- 12 months

Minor

- 1 month

Major

- 6 months

Minor

– 2 weeks

Major

- 2 months

Minor

- 1 week

Major

- 2 weeks

Minor –

- 2 days

Analyst Capability 15thpercentile 35th percentile 55thpercentile 75thpercentile

90th

percentile

Programmer

Capability
15thpercentile 35th percentile 55thpercentile 75thpercentile

90th

percentile

Personnel

Continuity
48%/year 24%/year 12%/year 6%/year 3%/year

Application

Experience

< 2

months
6 months 1 year 3 years 6 years

Platform

Experience

< 2

months
6 months 1 year 3 years 6 years

Language/Tool

Experience

< 2

months
6 months 1 year 3 years 6 years

Use of Software

Tools

Edit, code,

debug

Simple front-

end, backend

CASE, little

integration

Basic life cycle

tools, moderate

integration

Strong, mature

tools, moderate

integration

Strong, mature

tools, well

integrated with

processes

Site–Collocation International
Multi-city and

multi-company

Multi-city and

multi-company

Same city or

metro area

Same building

or complex
Fully co-located

Site–

Communications

Some

phone, mail

Individual

phone, FAX

Narrow-band

email

Wide-band

electronic comm.

Wideband

electronic

comm., some

video conf.

Inter-active

multi-media

Required

Development

Schedule

75%of nominal 85%of nominal 100% of nominal 130% of nominal
160%of

nominal

Multiply these factors to get the Effort Multiplier Factor (EMF)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 87 -
k^s^i=mlpqdo^ar^qb=p`elli

APPENDIX B

A. ISPAN CORRELATION ANALYSIS

1. ISPAN FY06 and FY07

Multivariate Correlations Report for FY06 ISPAN Data

Multivariate Correlations Report for FY06 ISPAN Data Minus One
Subprogram With a Singular CSCI

Multivariate Correlations Report for FY07 ISPAN Data

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 88 -
k^s^i=mlpqdo^ar^qb=p`elli

Multivariate Correlations Report for FY07 ISPAN Data Minus One
Subprogram With a Singular CSCI

B. NAVAIR PRE DATA BY CATEGORY FOR FY05–FY07

S
u

m
(2

0
0

5
)

Sum of PRE Actual Funded Amount for FY05 by Category

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 89 -
k^s^i=mlpqdo^ar^qb=p`elli

Mean(2005) vs. Domain

Domain

ACE ASE FWA MIS RWA

M
ea

n(
20

05
)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000
2005

2005

Mean of PRE Actual Amount Funded Amount for FY05 by Category

S
um

(2
00

6)

Sum of PRE Actual Amount Funded for FY06 by Category

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 90 -
k^s^i=mlpqdo^ar^qb=p`elli

Mean(2006) vs. Domain

Domain

ACE ASE FWA MIS RWA

M
e

a
n

(2
0

0
6

)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000
2006

2006

Mean of PRE Actual Funded Amount for FY06 by Category

Sum(2007) vs. Domain

Domain

ACE ASE FWA MIS RWA

S
um

(2
00

7)

0

10000000

20000000

30000000

40000000

50000000

60000000
Legend

2007

Sum of PRE Actual Funded Amount for FY07 by Category

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 91 -
k^s^i=mlpqdo^ar^qb=p`elli

Mean of PRE Actual Funding Amount for FY07 by Category

C. NAVAIR PRE CORRELATION ANALYSIS FOR FY04–FY07

1. Fixed Wing Aviation

FY04 Funded Amount

Avg of Units/Systems Deployed

SUM of SLOC

Sum of CSCI/Subsystems

1.0000

0.6504

0.8783

0.9088

0.6504

1.0000

0.6985

0.6566

0.8783

0.6985

1.0000

0.7496

0.9088

0.6566

0.7496

1.0000

FY04 Funded Amount Avg of Units/Systems Deployed SUM of SLOC Sum of CSCI/Subsystems

Correlations

Multivariate Correlations Report for PRE Data for Fixed Wing Aviation,
FY04 Funded Amount, Average Number of Systems Deployed, SLOC, and

CSCIs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 92 -
k^s^i=mlpqdo^ar^qb=p`elli

Multivariate Correlations Report for PRE Data for Fixed Wing Aviation,
FY05 Funded Amount, Average Number of Systems Deployed, SLOC, and

CSCIs

FY06 Funded Amount

Avg of Units/Systems Deployed

SUM of SLOC

Sum of CSCI/Subsystems

1.0000

0.6306

0.7922

0.8936

0.6306

1.0000

0.6985

0.6566

0.7922

0.6985

1.0000

0.7496

0.8936

0.6566

0.7496

1.0000

FY06 Funded Amount Avg of Units/Systems Deployed SUM of SLOC Sum of CSCI/Subsystems

Correlations

Multivariate Correlations Report for PRE Data for Fixed Wing Aviation,
FY06 Funded Amount, Average Number of Systems Deployed, SLOC, and

CSCIs

Multivariate Correlations Report for PRE Data for Fixed Wing Aviation,
FY07 Funded Amount, Average Number of Systems Deployed, SLOC, and

CSCIs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 93 -
k^s^i=mlpqdo^ar^qb=p`elli

2. Rotary Wing Aviation

Multivariate Correlations Report for PRE Data For Rotary Wing Aviation, FY04
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs

Multivariate Correlations Report for PRE Data for Rotary Wing Aviation, FY05
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs

FY06 funded Amount

Avg of Units/Systems Deployed

Total SLOC

Total CSCIs/Subsystems

1.0000

-0.3511

0.7645

0.8940

-0.3511

1.0000

-0.3781

-0.2665

0.7645

-0.3781

1.0000

0.9169

0.8940

-0.2665

0.9169

1.0000

FY06 funded Amount Avg of Units/Systems Deployed Total SLOC Total CSCIs/Subsystems

Correlations

Multivariate Correlations Report for PRE Data for Rotary Wing Aviation, FY06
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs

Multivariate Correlations Report for PRE Data for Rotary Wing Aviation, FY07
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 94 -
k^s^i=mlpqdo^ar^qb=p`elli

3. Air Combat Electronics

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY04
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY05
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY06
Funded Amount, Average Number of Systems Deployed, SLOC and CSCIs

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY07
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 95 -
k^s^i=mlpqdo^ar^qb=p`elli

4. Air Combat Electronics and Aviation Support Equipment

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY04
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With

ASE Data

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY05
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With

ASE Data

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY06
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With

ASE Data

Multivariate Correlations Report for PRE Data for Air Combat Electronic, FY07
Funded Amount, Average Number of Systems Deployed, SLOC, and CSCIs With

ASE Data

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 96 -
k^s^i=mlpqdo^ar^qb=p`elli

5. Missiles

Multivariate Correlations Report for PRE Data for Missiles, FY04 Funded
Amount, Average Number of Systems Deployed, SLOC, and CSCIs

Multivariate Correlations Report for PRE Data for Missiles, FY04 Funded
Amount, Average Number of Systems Deployed, SLOC, and CSCIs

Multivariate Correlations Report for PRE Data for Missiles, FY06 Funded
Amount, Average Number of Systems Deployed, SLOC, and CSCIs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 97 -
k^s^i=mlpqdo^ar^qb=p`elli

Multivariate Correlations Report for PRE Data for Missiles, FY07 Funded
Amount, Average Number of Systems Deployed, SLOC, and CSCIs

6. Combination of Fixed and Rotary Wing Aviation

Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing
Aviation, FY04 Funded Amount, Average Number of Systems Deployed, SLOC,

and CSCIs

Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing
Aviation, FY05 Funded Amount, Average Number of Systems Deployed, SLOC,

and CSCIs

Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing
Aviation, FY06 Funded Amount, Average Number of Systems Deployed, SLOC,

and CSCIs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 98 -
k^s^i=mlpqdo^ar^qb=p`elli

Multivariate Correlations Report for PRE Data for Fixed and Rotary Wing
Aviation, FY07 Funded Amount, Average Number of Systems Deployed, SLOC,

and CSCIs

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 99 -
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF REFERENCES

Abran, A., & April, A. (2008). Software maintenance management. Hoboken, NJ: IEEE
Computer Society.

Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz E., … & Steece, B.
(2000). Software cost estimation with COCOMO II. Upper Saddle River, NJ:
Prentice Hall.

Brooks, F., Jr. (1995). The mythical man-month: Essays on software engineering, 20th
anniversary. Crawfordsville, IN: Addison Wesley Longman.

Buchmann, I., Frischbier, S., & Putz, D. (2011). Towards an estimation model for
software maintenance costs. Proceedings of the 2011 15th IEEE European
Conference on Software Maintenance and Reengineering, 1534–5351(11), 313–
316.

Christensen, M., & Thayer, R. (2001). The project manager’s guide to software
engineering best practices. Los Alamitos, CA: IEEE Computer Society.

Defense spending in a time of austerity. (2010, August 26). The Economist, 396(8697),
20–22.

Department of the Air Force. (2000). Guidelines for successful acquisition and
management of software intensive systems: Weapons systems, command and
control systems, management information system (Version 3.0). Hill AFB, UT:
Software Technology Support Center.

Department of Defense (DoD). (2004). Software resources data report (SRDR) manual.
Retrieved from http://dcarc.pae.osd.mil//Files/Policy/DOD50004M2.pdf

Department of Defense (DoD). (2008). Major automated information system annual
report: Integrated strategic planning and analysis network. Retrieved from the
Acquisition Community Connection at the Defense Acquisition University
website: https://acc.dau.mil

Galorath Incorporated. (2001). SEER–SEM software estimation, planning and project
control: User’s manual. El Segundo, CA: Author.

Galorath Incorporated. (2011a). SEER for IT (information technology): Estimating IT
projects, IT project estimation software, IT project planning. Retrieved from
http://www.galorath.com/DirectContent/SEERforIT2.pdf

Galorath Incorporated. (2011b). Software maintenance cost estimation. Retrieved from
http://www.galorath.com/index.php/software_maintenance_cost

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 100 -
k^s^i=mlpqdo^ar^qb=p`elli

Naval Air Systems Command (NAVAIR). (2010). NAVAIR software logistics primer,
version 2.0. Retrieved from the Acquisition Community Connection at the
Defense Acquisition University website: https://acc.dau.mil

Nussbaum, D. (2010, Summer). Cost estimation techniques [Coursework, Class OA4702,
session 6.2]. Graduate School of Operational and Information Sciences, Naval
Postgraduate School, Monterey, CA.

Parthasarathy, M. (2007). Practical software estimation. Upper Saddle River, NJ:
Addison Wesley.

Quantitative Software Management (QSM). (2006). User’s guide to SLIM Estimate 6.3
for Windows. McLean, VA: Quantitative Software Management.

Reifer, D., Allen, J., Fersch, B., Hitchings, B., Judy, J., & Rosa, W. (2010). Software
maintenance: Software cost estimation metrics (Initial draft). Washington, DC:
Air Force Cost Analysis Agency.

Rendon, R., & Snider, K. (Eds.). (2008). Management of defense acquisition projects.
Reston, VA: American Institute of Flight.

Rosa, W., & Braxton, P., (2010, November). Software maintenance data collection
overview. PowerPoint presentation given at Headquarters U.S. Air Force, Air
Force Cost Analysis Agency, Washington, DC.

Salkind, N. (2004). Statistics for people who (think they) hate statistics. Thousand Oaks,
CA: Sage Publications.

Sneed, H. M. (2004). A cost model for software maintenance & evolution. Proceedings
of the 20th IEEE International Conference on Software Maintenance, 1063–
6773(4), 264–273.

Under Secretary of Defense for Acquisition, Technology, and Logistics (USD[AT&L]).
(2009, December). Implementation of the Weapons Systems Acquisition Reform
Act of 2009 (Directive-type memorandum [DTM] 09-027). Washington, DC:
Author.

United States Strategic Command (USSTRATCOM). (2004). ISPAN modernization cost
analysis requirements description (CARD). Omaha, NE: USSTRATCOM.

Weapons Systems Acquisition Reform Act of 2009, 10 U.S. C. § 2334 (2009).

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2011 SPONSORED RESEARCH TOPICS

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to
Shipyard Planning Processes

 Managing the Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st-century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting, Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

Financial Management

 Acquisitions via Leasing: MPS case

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Budget Scoring

 Budgeting for Capabilities-based Planning

 Capital Budgeting for the DoD

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition
Budgeting Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-term Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance
Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

 Risk Analysis for Performance-based Logistics

 R-TOC AEGIS Microwave Power Tubes

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management

 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module
Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to AEGIS and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

