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a static Stark effect, which was recently measured to high accuracy [J. A. Sherman et al., Phys. Rev. Lett. 108, 
153002 (2012)]. However, room temperature operation of the clock at 10^{-18} inaccuracy requires a dynamic 
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element for which theoretically and experimentally derived values disagree significantly. We determine this 
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D etermination of t he 5d6s 3D1 state lifetime and b lackbody ra diation clock shift in Yb 

K. Beloy,1• * J. A. Sherman,1• 2• t N.D. Lemke, 1• 2 N. Hinkley,1• 2 C. W. Oates,1 and A. D. Ludlow1 

1 National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA 
2 University of Colorado, Department of Physics, Boulder, Colorado 80309, USA 

(Dated: August 3, 2012) 

The Stark shift of the ytterbium optical clock transition due to room temperature blackbody 
radiation is dominated by a static Stark effect, which was recently measured to high accuracy 
[J. A. Sherman et al., Phys. Rev. Lett. 108, 153002 (2012)]. However, room temperature operation 
of the clock at 10-18 inaccuracy requires a dynamic correction to this static approximation. This 
dynamic correction largely depends on a single electric dipole matrix element for which theoreti
cally and experimentally derived values disagree significantly. We determine this important matrix 
element by two independent methods, which yield consistent values. Along with precise radiative 
lifetimes of 6s6p 3P1 and 5d6s 3D 1 , we report the clock's blackbody radiation shift to 0.05% precision. 

PACS numbers: 06.30.Ft,32.60.+i,32.70.Cs 

Alkaline-earth-like atoms, such as Yb [1], Sr [2-4], and 
Hg [5] feature intrinsically narrow 1So +-+ 3Po optical 
transitions capable of serving as stable and accurate fre
quency references [6] when cooled and held in an optical 
lattice trapping potential [7, 8]. Accurate knowledge of 
clock transition frequencies advances timekeeping tech
nology and enables new tests of physics [9- 11]. 

Atomic frequency references are defined by an ideal 
system: atoms at rest in a null-field, zero-temperature 
environment [12]. If a physical realization deviates from 
these ideals, researchers must account for corrections to 
the measured transition frequency and, importantly, un
certainty present in these corrections. Here, we explore 
the dominant ytterbium clock correction [1, 13] due to 
room-temperature blackbody radiat ion (BBR). 

The polarizing effect of BBR. largely mimics that of a 
static electric field due to the low frequency nat ure of 
BBR relative to optical transitions involving clock states 
(see Fig. 1). Writing the BBR clock frequency shift [14] 

1 Lla(O) 2 LlliBBR = - 2 - h - (E }T[1 + T/clock(T)j, (1) 

highlights its similarity to a static Stark shift, where 

Lla(O) = ae(O) - a9 (0) = 145.726(3) a.u., (2) 

is the differential static polarizability between clock 
states lg) = l6s21So) and le) = l6s6p 3Po) , now known to 
high accuracy J13] (a.u. = atomic units [15]) . (E 2)T ~ 
(8.3193 Vfcm) (T / 300 K)4 is t he time-averaged electric 
field intensity of BBR. at absolute temperature T [16]. 
A small dynamic correction T/clock(300 K) < 0.02 ac
counts for the frequency dependence of Lla(w). Over 
90% of T/clock depends on coupling between 6s6p 3Po and 
neighboring 5d6s 3D 1 (see [14] and supplemental material 

• kyle.beloy@nist.gov 
t jeff.sherman@nist.gov 

FIG. 1. (color online) Most of the room-temperature BBR 
energy spectrum (thick red line) is far infrared of t ransitions 
involving the Yb clock states. The states' polarizabilities 
(see Eq. (3)], largely constant over much of the BBR spec
t rum, are balanced at the ' magic' trapping frequency w·. 

(SM)). But, critically, a measurement [17] and recent pre
cise calculation [18] of the electric dipole matrix element 

V = l(6s6p 3Po iiD II5d6s 3Dt)l, 

differ by ~ 3 standard deviat ions. 
In this work, we independently determine V in or

der to accurately compute T/clock and t he clock correc
tion LlliBBR· We present two distinct approaches re
sulting in good agreement. First, we describe a semi
empirical technique which combines existing polarizabil
ity data with atomic theory to constrain V. Then we de
scribe a measurement of the 5d6s 3D 1 radiative lifetime 
in trapped Yb. Since 5d6s 3D 1 decays predominantly to 
the 6s6p 3PJ manifold, Vis readily extracted. Finally, we 
discuss current accuracy limitations imposed by LlliBBR· 

Method I: Semi-empirical technique-Accurately mea
sured experimental parameters, such as the differential 
static polarizability [Eq. (2)], also depend on electric 
dipole coupling between 6s6p 3P0 and 5d6s 3Dt, and sub
sequently can be used to const rain t he value of V [19]. 
The electric dipole polarizability of clock state n due to 
radiation at an off-resonant frequency wj21r reads 

(3) 
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where 〈n′||D||n〉 is a reduced electric dipole matrix ele-
ment and ωn′n/2π = (Wn′ −Wn) /h is the corresponding
transition frequency. As ω → 0, we recover the familiar
static polarizability expression.

The so-called ‘magic’ trapping frequency ω∗, which
balances the polarizabilities of the clock states [6],

∆α(ω∗) ≡ αe(ω∗)− αg(ω∗) = 0, (4)

has been measured to high accuracy in Yb [1, 20]. Equa-
tions (2) and (4) may be combined to yield

∆α(0) + b∆α(ω∗) = 145.726(3) a.u., (5)

where b is arbitrary but may be chosen to to our benefit.
In the linear combination

αn(0) + b αn(ω∗) =
1

h̄

2

3

∑
n′ 6=n

|〈n′||D||n〉|2 1

ωn′n

×
(

1 + b
ω2
n′n

ω2
n′n − ω∗2

)
, (6)

the term in parenthesis serves as a ‘scale factor’ rela-
tive to each transition’s static polarizability contribu-
tion. For instance, for a choice b = −1, this scale fac-
tor tends to zero for ωn′n � ω∗ because these transi-
tions contribute nearly identically to both polarizabil-
ities αn(0) and αn(ω∗) [see Eq. (3)]. We find advan-
tage in choosing a value b ≈ −1 such that contributions
from certain low-lying transitions are suppressed in the
linear combination ∆α(0) + b∆α(ω∗), along with con-
tributions from the higher-lying transitions. In Table
IV we present contributions to Eq. (6) from the lowest-
lying transitions in each clock state for both b = 0 and
b = −0.75. In each case, we write the contribution
from 6s6p 3P0 → 5d6s 3D1 in terms of unspecified ma-
trix element D. Other contributions are derived from
experimental lifetimes in Refs. [21–23]. Transitions to
the closely spaced states (4f13)5d6s6p

(
7
2 ,

5
2

)
1

and 6p2 3P1

(‘mixed states’ in Table IV) are exceptions; these con-
tributions were estimated with a CI+MBPT calculation
similar to Ref. [18]. It is evident from Table IV how
the choice of b affects the relative importance of cer-
tain transitions. For example, while the ‘mixed states’
contribute sizably to the differential static polarizability
∆α(0), their contribution to ∆α(0)−0.75∆α(ω∗) is neg-
ligible. Moreover, contributions from higher-lying transi-
tions not explicitly shown in the table—which contribute
at the ∼ 10% level for both state polarizabilities [24]—
are also largely suppressed with the choice b = −0.75.
Specifically, the ‘scale factor’ in Eq. (6) is nearly zero for
the lowest of these transitions (for which ωn′n ≈ 2ω∗),
rising to just 0.25 for the highest-lying, least important
transitions.

Tallying contributions from all transitions, we find

∆α(0)− 0.75∆α(ω∗) = 26.8D2 − 64(8) + 0(6), (7)

in atomic units. Here the first two terms on the r.h.s. ac-
count for contributions from all transitions in Table IV;

TABLE I. Contributions to the static polarizability αn(0) and
linear combination αn(0) − 0.75αn(ω∗) [refer to Eq. (6)] for
the lowest-lying transitions from the clock states (a.u.).

n′ αn(0) αn(0)− 0.75αn(ω∗)

clock state n = 6s2 1S0

6s6p 3P1 2 −1
6s6p 1P1 100 −4
(4f13)5d6s2

(
7
2
, 5
2

)
1

21 1

clock state n = 6s6p 3P0

5d6s 3D1 20.3D2 26.8D2

6s7s 3S1 37 −65
6s6d 3D1 22 −3
6s8s 3S1 2 0
mixed states 39 0

the uncertainty is dominated by that of the matrix el-
ement 〈6s7s 3S1||D||6s6p 3P0〉 [23]. The additional term
0(6) accounts for contributions from all higher-lying tran-
sitions not given explicitly in Table IV. We ascribe an
uncertainty to this term based on experimental upper
limits to the polarizabilities of the two clock states [24],
along with theoretical input from Ref. [18] and present
CI+MBPT calculations. Equating the r.h.s. of (7) to
experimental result (5) gives D = 2.80(7) a.u. We com-
pare this result with other determinations and new data
below.
Method II: lifetime measurement—Alternatively, mea-

surement of the 5d6s 3D1 radiative lifetime τa yields D
since D2 = (3πε0h̄c

3ζ0)(2J ′ + 1)/(ω3
0τa), where J ′ = 1;

ω0/2π ≈ 2.1587× 1014 Hz and ζ0 = 0.64(1) are the radi-
ated frequency and branching ratio to 3P0, respectively.
ζ0 is accurately computable because LS-coupling remains
valid [25]. In the cascade 5d6s 3D1 → 6s6p 3P1 → 6s2 1S0

[see Fig. 2(a)], atoms emit a 556 nm photon during the
second decay which is technically easier to detect than
the first radiated (infrared) photon [17]. Other states
populated by the decay (3P0 and 3P2) are long-lived. If
atoms are instantaneously excited at time t0 to 3D1, flu-
orescence from 3P1 follows a double exponential [17, 26],

y(t) = A×Θ(t− t0)
[
e−(t−t0)/τa − e−(t−t0)/τb

]
+y0, (8)

where τb is the radiative lifetime of 3P1 (τb > τa), A is
a scaling factor and y0 accounts for stray detected light.
The Heaviside unit-step Θ(t− t0) models rapid atom ex-
citation at t0. Decay branching ratios affect only the
normalization of Eq. (8), not its time dependence [27].

We describe the cooling and confinement of Nat ≈ 104

atoms of 171Yb in a one-dimensional optical lattice else-
where [1]. As depicted in Fig. 2(b), a resonant ‘π-pulse’ of
578 nm light [28] coherently transfers atoms from 1S0 to
the long-lived 3P0 state. Then, a brief (τe = 25 ns) reso-
nant pulse of 1388 nm light excites more than half of these
atoms to 3D1. An event counter accumulates the arrival
times of radiated 556 nm photons into 5 ns bins. Heat-
ing due to photon scattering, background gas collisions,
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FIG. 2. (color online) We measure the 5d6s 3Dt radiative life
time via cascade decay. a) Key lifetimes are labeled 'fa and 
-ro. Double-arrowed lines indicate laser transitions. Wavy 
lines are important decay channels. b) A representative pulse 
t iming diagram. c) Typical fluorescence data , fit (red line) to 
Eq. (8). An inset highlights the signal and fit near an excita
tion time to = 523.3(6) ns. d) Observed lifetimes vary with 
atomic density, p. Lines are linear regression fits. Logarithmic 
scaling emphasizes data at low p with negligible interaction 
effects. Error bars represent standard uncertainties obtained 
from nonlinear fits, and uncertainty in p estimates. 

and accumulation in 3P2 limit the number of excitations 
per loading cycle to about 200. T hough we estimate a 
modest light collection/detection efficiency(~ 0.1 %), we 
typically observe Nat X (1.5 X 10-5) green photons per 
excitation. Biases due to photon 'pile-up' in counter bins 
are negligible. Between 106- 107 excitations are sufficient 
to obtain satisfactory decay profiles [e.g., Fig. 2(c)]. 

We fit fluorescence signals to Eq. (8) with a 
statistically-weighted Levenberg-Marquardt routine. 
Though covariance in A, Ta, and Tb can be significant, 
simulations establish that fitting biases become negli
gible with sufficient count totals. In large data sets, 
event counter technical noise synchronous with a timing 
oscillator overwhelms the signal shot noise. Re-binning 
data into 20 ns chunks removes much of t his noise, but 
does not significantly alter the results. A maximum 
likelihood method yielded statistically similar fits. 

Atomic interactions, such as collective emission ('su
perradiance', 'subradiance') or radiation t rapping may 
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FIG. 3. (color online) The present measurement ( *) and semi
empirical result (t) (open red circles) are compared to other 
determinations. Measurements a-j are from, respect ively, 
(29-36), (17), (37). We note that the small error bar on hac
counts only for statistical uncertainty. Green points k-m are 
calculations (38), (18), (39). When necessary, we infer lifetimes 
from reported matrix elements or natural linewidths. We as
sign an error bar to the 'ra prediction of l using the authors' 
estimate of uncertainty in a highly correlated polarizability. 

TABLE II. The uncertainty in lifetimes 'fa and 'rb due to 
atomic interact ions is largely statistical since we report ex
t rapolations to zero atomic density. Covariant fit biases and 
distortions due to Zeeman oscillations are estimated from 
Monte-Carlo simulations. Uncertainties due to 1388 nm pulse 
duration (-re) and stray light are statistically limited. 

Atomic interactions 
Fit biases 
Zeeman quantum beats 
1388 nm finite excitation 
1388 nm stray light 
Event counter t iming 
Total (quadrature sum) 

u(-ra ) (ns) 
4.3 
0.9 
3.0 
3.3 
3.4 
0.2 
7.1 

u(-ro) (ns) 
3.3 
1.5 
3.0 
4.3 
4.6 
0.4 
7.4 

influence radiative decay. We probed these effects by 
varying the atomic density p undergoing decay [40]. Re
sults [Fig. 2(d)] indicate non-negligible shortening of Ta 

at high p. In the limit of slow dipole dephasing [41], col
lective emission shortens an observed decay lifetime as 
r = To(1 + pL>-.2 / 4)- 1, where To is the single atom value, 
L is the length of a pencil-shaped atomic cloud, and >.. 
is the radiated wavelength [42]. For p = 109 cm-3 and 
L = 0.1 mm, the modification in this simple model is 
about 5%. We see the opposite effect in 3P1 , an increase 
of Tb at high p. We explored both effects by varying 
578 nm and 1388 nm excitation pulse areas, altering the 
relative populations of 1So, 3Po, and 3D 1 , but observed 
no substantial change in the systematic effect; further 
investigation is warranted. Never theless, the effects of in
teractions on observed lifetimes are made negligible over 
the lowest decade of examined densities [see Fig. 2(d)]. 
Quenching due to cold-collisions and lattice scattering is 
negligible. 

Potential systematic effects arise from finite 1388 nm 
pulse duration Te, and spurious excitation due to poor ex
tinction. We varied Te from 25 ns to 90 ns and observed 
no significant systematic effect on fitted state lifetimes. 
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TABLE III. The present results, expressed as reduced matrix
elements (a.u.), are compared with selected literature values.

D
∣∣〈6s6p 3P1||D||6s2 1S0〉

∣∣
Experiment 2.77(4) 0.542(2)
Semi-empirical 2.80(7) —
Experiment [17] 2.58(10) 0.547(16)
Calculation [38] 2.61(10) 0.54(8)
Calculation [18] 2.91(7) 0.587
Calculation [39] 2.58(23) 0.41(1)

We configured the apparatus for fast actuation and high
(60 dB) extinction of the 1388 nm light. A single-mode
fiber-coupled mechanical shutter (500µs rise-time) pre-
cedes a fiber-coupled acousto-optic modulator (AOM).
A second (free-space) AOM, driven with a tuned delay,
aids in pulse shaping and extinction. A beam dump, iris,
and baffles minimize the influence of scattered light. The
final AOM imposes a 160 MHz frequency shift, detuning
scattered light from resonance and increasing effective
extinction. With up to 1 mW of deflected 1388 nm light
focused to a 30 µm spot (an intensity I = 7×105 W/m2),

we attain a Rabi frequency Ω ∝
√
ID exceeding 1 GHz.

We observed no significant changes to τa and τb when
varying an optical attenuator over 4 dB to test for de-
pendence on Ω and stray light intensity.

We systematically excited to both hyperfine compo-
nents 3D1(F ′ = 1

2 ,
3
2 ), which are split by 3.07(7) GHz. We

observe no hyperfine quantum beats [43] due to the large
splitting and selective laser excitation. We observed no
Zeeman oscillations [17] or significantly different results

when an applied magnetic field ~B varied from 0.01 mT
to 0.1 mT. 1388 nm excitation light propagated along

the lattice axis and was polarized perpendicular to ~B.
We detected 556 nm photons ≈ 45◦ from the lattice axis
with largely polarization insensitive optics. We observed
a slight dependence on the number of excitations per
loading cycle but believe this effect is due to atomic inter-
actions since increased scattering reduces the atom num-
ber. Varying the lattice laser intensity over 50% yielded
no significant change in observed lifetimes.

We report the radiative lifetimes τa = (329.3± 7.1) ns
and τb = (866.1± 7.4) ns. Table II enumerates measure-
ment uncertainties. We compare our results to existing
measurements and calculations in Fig. 3. Our result for
τb agrees with many prior measurements. Our result for
τa lies between the only other measurement [17] and a

recent calculation [18]. Our semi-empirical method ex-
hibits good agreement with the measurement. Table III
lists the results as inferred matrix elements.
BBR clock shift—The BBR Stark shift to the clock

frequency is found from the expression

∆νBBR = − 1

2hε0

∫ ∞
0

uT (ω) ∆α(ω) dω, (9)

where uT (ω) is the BBR spectral energy density cor-
responding to temperature T , given by Planck’s law.
A static approximation neglecting the slight frequency
dependence of ∆α(ω) over the BBR spectrum (refer
to Fig. 1) is formally obtained by making the sub-
stitution ∆α(ω) → ∆α(0) in Eq. (9). An improved
approximation takes into account the lowest-order fre-
quency dependence of the polarizability arising from the
low-lying 6s6p 3P0 → 5d6s 3D1 transition: ∆α(ω) →
∆α(0) + (2/3h̄)(D2/ω3

0)ω2. Integrating over ω analyt-
ically, we interpret the additional shift as ηclock(T ) ≈
80π2

63
D2

(h̄ω0)3
(kBT )2

∆α(0) ≈ 0.017
(

T
300 K

)2
from Eq. (1), where

kB is Boltzmann’s constant. A more thorough account
of small contributions from all other transitions, includ-
ing the 1S0 state and next-order terms (∝ T 4) yields

ηclock(T ) = 0.0173(5)

(
T

300 K

)2

+ 0.0006

(
T

300 K

)4

.

We omit higher order terms (∝ T 6, T 8, . . . ) which are
negligible at T <∼ 300 K. We provide more details of this
evaluation, including multipolar effects [14], in the SM.
Conclusion—Assuming an ideal BBR environment at

300 K, we use the present results to calculate ∆νBBR =
−1.2774(6) Hz. The present determination of ηclock sets
an uncertainty limit for ∆νBBR at 1.1× 10−18. In prac-
tice, uncertainty in ∆νBBR also arises from imprecise
knowledge of the thermal environment. In an existing
apparatus, we estimate an effective temperature uncer-
tainty of 1 K due to non-uniformity, corresponding to
a fractional clock uncertainty of 3.3 × 10−17 [1]. The
present results therefore motivate further efforts to con-
trol the thermal environment of the clock chamber [44].
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Supplemental Material

I. TABULATED RESULTS FOR ATOMIC FACTORS

Table IV presents transition frequencies and dipole matrix elements for transitions from the clock states, as well
as corresponding contributions to static polarizability αn(0), polarizability at the magic frequency αn(ω∗), and the
linear combination αn(0)−0.75αn(ω∗) for both clock states. Also provided are contributions to the atomic properties

α
(2)
n and ρn, which are discussed in the following section.

In the upper portion of Table IV, explicit values are given where experimental data is available, with uncertainties
being derived from the corresponding references. For remaining transitions, contributions to the static polarizability
are given as unknown parameters χ1,2,3. Corresponding contributions to the other atomic properties are a written as
a range (a, b)χ1,2,3, where the range (a, b) is determined purely by the atomic spectrum and magic frequency. This
helps illustrate the relative importance of the unknown contributions in each case. For example, while χ2 denotes
the combined contribution to static polarizablity αe(0) due to the ‘mixed states’, the associated contribution to
αe(0)− 0.75αe(ω

∗) is comparatively suppressed, necessarily being between −0.033χ2 and 0.004χ2.

In the middle portion of Table IV, contributions to the differential properties [e.g., ∆α(0) ≡ αe(0) − αg(0)] are
tallied. Here ∆(‘main states’) incorporates all values given explicitly in the upper portion of the table. ∆(‘mixed
states’) is estimated by CI+MBPT calculations similar to those described in Ref. [18], whereas ∆(‘all others’) is
estimated with CI+MBPT calculations together with additional theoretical input from Refs. [18, 24]. Theoretical
uncertainty for ∆(‘mixed states’) and ∆(‘all others’) is difficult to assess; the numbers given in the table represent
reasonable estimates of this uncertainty. We reiterate that methods developed in the main text minimize the influence
of these contributions.

In Table IV, contributions from the 6s6p 3P0 → 5d6s 3D1 transition are derived from our most accurate determination
(see main text) of the matrix element D ≡

∣∣〈6s6p 3P0||D||5d6s 3D1〉
∣∣ = 2.77(4). In Table V, we compare these results

with contributions derived from other determinations of this matrix element.

TABLE IV. Transition frequencies, matrix elements, and contributions to various atomic properties of interest for the Yb clock
states. The magic frequency is ω∗ = 0.06000 [1, 20]. (a, b)χ denotes a range (aχ, bχ). All values are in atomic units.

n′ ωn′n |〈n′||D||n〉| αn(0) αn(ω∗) αn(0)− 0.75αn(ω∗) α
(2)
n /103 ρn/103

clock state n = 6s2 1S0

6s6p 3P1 0.08198 0.542± 0.002a 2.39± 0.02 5.14± 0.04 −1.47± 0.01 0.355± 0.003 −0.219± 0.002
6s6p 1P1 0.11422 4.148± 0.002b 100.40± 0.09 138.7± 0.1 −3.601± 0.003 7.696± 0.007 −0.2760± 0.0003
(4f13)5d6s2

(
7
2
, 5
2

)
1

0.13148 2.03± 0.04c 20.8± 0.8 26± 1 1.10± 0.04 1.20± 0.05 0.063± 0.002
all others χ1 (1.00, 1.14)χ1 (0.15, 0.25)χ1 (0.00, 0.03)χ1 (0.000, 0.005)χ1

clock state n = 6s6p 3P0

5d6s 3D1 0.03281 2.77± 0.04a 156± 4 −67± 2 206± 5 145± 4 192± 5
6s7s 3S1 0.07020 2.0± 0.1d 37± 4 136± 16 −65± 8 7.4± 0.9 −13± 2
6s6d 3D1 0.10261 1.82± 0.03e 21.6± 0.7 33± 1 −3.02± 0.09 2.05± 0.06 −0.287± 0.009
6s8s 3S1 0.11084 0.64± 0.04d 2.4± 0.3 3.4± 0.4 −0.15± 0.02 0.20± 0.02 −0.012± 0.001
mixed states χ2 (1.33, 1.38)χ2 (−0.033, 0.004)χ2 (0.07, 0.08)χ2 (−0.0025, 0.0003)χ2

all others χ3 (1.00, 1.31)χ3 (0.02, 0.25)χ3 (0.00, 0.07)χ3 (0.000, 0.005)χ3

∆(main) 93± 6 −64± 16 142± 10 146± 4 179± 5
∆(mixed states) 39± 13 52± 17 0.0± 0.5 2.7± 0.9 0.1± 0.1
∆(all others) 16± 16 20± 20 0± 6 1± 1 0.08± 0.08

∆(total) 148± 21 8± 31 142± 11 149± 4 179± 5
∆(expt.) 145.726± 0.003 0 145.726± 0.003

a expt., present
b Ref. [21]
c weighted mean from four values compiled in Ref. [22]
d Ref. [23]
e Ref. [46]
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TABLE V. Comparison of the 6s6p 3P0 → 5d6s 3D1 contribution to the atomic properties in Table IV with different deter-
minations of the dipole matrix element. Here e specifies the excited clock state 6s6p 3P0. All values are in atomic units.

∣∣〈6s6p 3P0||D||5d6s 3D1〉
∣∣ αe(0) αe(ω∗) αe(0)− 0.75αe(ω∗) α

(2)
e /103 ρe/103

unspecified D 20.32D2 −8.666D2 26.82D2 18.88D2 24.92D2

expt., present 2.77± 0.04 156± 4 −67± 2 206± 5 145± 4 192± 5
semi-emp., present 2.80± 0.07 159± 8 −68± 3 210± 11 148± 7 195± 10
expt., Ref. [17] 2.58± 0.10 135± 10 −58± 4 179± 14 126± 10 166± 13
theor., Ref. [18] 2.91± 0.07 172± 8 −73± 4 227± 11 160± 8 211± 10
theor., Ref. [39] 2.58± 0.23 135± 24 −58± 10 179± 32 126± 22 166± 30

II. BBR CLOCK SHIFT

Atomic units are employed throughout this and the following section. The usual definitions, e = me = h̄ = 4πε0 = 1,
are supplemented with the additional definition kB = 1, where kB is Boltzmann’s constant. We also define a reference
temperature T0 equivalent to 300 Kelvin and having a value T0 = 9.50 × 10−4 in our system of units. We base our
unit system on SI electromagnetic expressions, with the Bohr magneton being given by µB = eh̄/2me = 1/2. The
speed of light c is used in favor of the fine structure constant α in expressions to follow to avoid notational confusion;
c = α−1 ≈ 137 in atomic units.

The energy shift to clock state n due to electric dipole coupling with thermal radiation reads

∆En = −2π

∫ ∞
0

u(ω)αn(ω) dω, (10)

where u(ω) is the spectral energy density at (angular) frequency ω and αn(ω) is the frequency-dependent polarizability,

αn(ω) =
2

3

∑
n′ 6=n

|〈n′||D||n〉|2 ωn′n

ω2
n′n − ω2

. (11)

The Cauchy principal value is implicitly taken for the integral of Eq. (10), as well as for the integral of Eq. (13) to
follow [47]. For BBR, the spectral energy density u(ω) may be written in terms of temperature T using Planck’s law,

u(ω) =
1

π2c3
ω3

eω/T − 1
,

and it follows that the energy shift may be recast as

∆En = −T
3

c3

∑
n′ 6=n

|〈n′||D||n〉|2 F
(ωn′n

T

)
, (12)

where F (y) is the function introduced by Farley and Wing [47],

F (y) =
2

3π

∫ ∞
0

dx

(
1

y + x
+

1

y − x

)
x3

ex − 1
. (13)

The function F (y) is displayed in Figure 4. The atomic transition frequencies all satisfy ωn′n � T0, and it follows
that for room temperature (or below), the factor F (ωn′n/T ) appearing in Eq. (12) may be well-approximated with
the leading terms of the asymptotic expansion F (y) = 4π3/45y+ 32π5/189y3 + 32π7/45y5 + . . . [14, 47]. The energy
shift may then be decomposed into respective terms,

∆En = −2π3T 4

15c3
α(0)
n −

16π5T 6

63c3
α(2)
n −

16π7T 8

15c3
α(4)
n − . . . , (14)

where we have introduced the frequency-independent atomic factors α
(k)
n ,

α(k)
n =

2

3

∑
n′ 6=n

|〈n′||D||n〉|2

ωk+1
n′n

. (15)
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FIG. 4. (color online) Function F (y) (solid) and it's asymptotic form truncated at the leading three terms (dashed). For Yb, 
all transition frequencies satisfy Wn'n/To > 34. We find the three-term asymptotic expansion of F (y ) to be accurate to better 
than 4 parts in 105 for y > 34. 

Noting the equivalence between a~) and the static polarizability, a~O) = an(O), we identify the leading term in 
Eq. (14) with the 'static approximation' of the energy shift. To connect with Eq. (1) of main text, we write ~VBBR = 
(~Ee - ~E9) / 27r with the static contribution factored out: 

_ 1r
2TJ (O) ( T ) 

4 
[ 407r

2TJ ~a<2> ( T ) 
2 

4 4 ~a<4) ( T ) 
4 l 

~VBBR - - 152 ~a To 1 + 21 ~a<0> To + B1r To ~a(0) To + · · · ' (16) 

where ~a(k) = aik) - a~k) is the differential atomic factor taken between the excited (e) and ground (g) clock states. 
The correction factor 1]ciock(T) can then be equated to the terms in square brackets succeeding the leading 1. 

III. EVALUATING T/clock(T) 

With ~a(O) known accurately from recent experimental measurement (13), the leading term of 1]clock is determined 
by the differential atomic factor ~a(2) . Table IV tabulates contributions to ~a(2), yielding a final result 

~a(2) = 1.49( 4) X 105 . 

We see that the 6s6p 3P0 ~ 5d6s 3D 1 transition dominates. While other contributions are smaller in comparison, they 
are nevertheless non-negligible at our accuracy. 

As mentioned previously, theoretical uncertainty is difficult to assess for contributions from 'mixed states' and 'all 
others'. For this reason, we also consider an alternative extraction of ~a(2) by defining a property 

_ (2) 0. 75 * _ 2 '\;"' 1 2 1 ( w~,n ) 
Pn = an + ~ [an(O)- an(w )] - -

3 
L...J l(n IIDIIn)l - 3- 1 - 0.75 2 •2 . 

w n':f:n wn'n wn'n - w 

From this definition, we get an expression for t.a<2) : 

~a(2) = ~p - 0
·
7
2
5 [~a(O) - ~a(w*)] = ~p - 30.3659(6) x 103 , 

w* 

where we have utilized a.ccurately known experimental parameters ~a(O), ~a(w*), and w* in the last equality. Since 
the last term is known precisely, uncertainty in ~a<2) is then commensurate with uncertainty in ~p. Table IV gives 
contributions to ~p, and we find ' mixed states' and ' all others' to give negligible contribution in this case. With ~p 
as given in Table IV, we then obtain 

which is in agreement with our result given above. 
Using ~a(2) = 1.49(4) x 105 we find the leading term to the dynamic correction factor to be: 

40 2T.2 A (2) 
7r 0 ua = 0 0173(5) 
21 ~a(O) · 
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Contributions to α
(k)
n scale as 1/ωk+1

n′n . This explains why 6s6p 3P0 → 5d6s 3D1—whose transition frequency is less

than half of all other transition frequencies—has an increased relative importance in ∆α(2) compared to ∆α(0). For
∆α(4), we find that 6s6p 3P0 → 5d6s 3D1 completely dominates, and we obtain for the next highest term of the dynamic
correction factor:

8π4T 4
0

∆α(4)

∆α(0)
= 0.00059(1).

Higher-order terms are found to be negligible. Finally, putting these results together, we find

ηclock(T ) = 0.0173(5)

(
T

T0

)2

+ 0.0006

(
T

T0

)4

,

where uncertainty in the second term may be neglected.

A. Magnetic dipole and higher-multipolar couplings

Thus far we have confined our attention to dominant electric dipole (E1) coupling to the BBR field. Additionally,
the atom couples to the BBR field via magnetic dipole (M1) and higher multipolar (E2, M2, . . . ) interactions. Porsev
and Derevianko [14] argued that for room temperature BBR, the M1 coupling could potentially lead to fractional
frequency shifts on the level of 10−18 in optical lattice clocks. Higher multipolar couplings were shown to be suppressed
below this level, and we neglect them here.

The M1 BBR shift is analogous to the E1 shift; it is given by Eq. (10) with the substitution and αn(ω)→ βn(ω)/c2,
with βn(ω) being the frequency-dependent magnetic polarizability. βn(ω) is defined analogously to αn(ω) [Eq. (11)],
but with the magnetic dipole operator µ replacing the electric dipole operator D. The additional factor c2 in the
substitution accounts for the different magnitudes of electric and magnetic fields in the BBR spectrum.

Due to parity selection rules (µ is an even-parity operator, whereas D is an odd-parity operator) the M1-allowed
transitions differ from the E1-allowed transitions. In particular, the 3P0 clock state has a low-frequency M1 transition
to the neighboring 3P1 state of the same fine structure manifold. For this transition, ωn′n/T0 ≈ 3.4, and it follows
that the asymptotic expansion of F (y) is not appropriate (see Fig 4). In this case, Eq. (12) (with D → µ/c) should
be used directly.

The M1 shift may be estimated by assuming the non-relativistic limit and absence of configuration mixing between
states. In the non-relativistic limit, the magnetic dipole operator is given by the expression µ = −µB(L+ 2S), where
L and S are the total orbital and spin angular momenta of the electrons, respectively. In the absence of configuration
mixing, it follows that the only non-vanishing M1 matrix element involving either clock state is the one connecting
the 3P0 clock state to the nearby 3P1 state. This matrix element may then be evaluated analytically, with the result∣∣〈nsnp 3P0||µ||nsnp 3P1〉

∣∣ =
√

2µB . Within these approximations, the room temperature M1 BBR shift to the 3P0

clock level is found to be

∆E
(M1)
3P0

≈ − T
3
0

2c5
F

(
ωfs

T0

)
,

where ωfs is the fine structure interval between the 3P0 and 3P1 states, and the factor F (ωfs/T0) ≈ 0.28 for Yb.
Interpreted as an additional contribution to ηclock(T0), we find:

η
(M1)
clock (T0) ≈ 1× 10−5.

We therefore conclude that M1 coupling to the BBR field is negligible.




