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Abstract — Autonomous and intelligent recognition of printed or 
hand-written text image is one of the key features to achieve 
situational awareness. A neuromorphic model based intelligent 
text recognition (ITR) system has been developed in our 
previous work, which recognizes texts based on word level and 
sentence level context represented by statistical information of 
characters and words. While quite effective, sometimes the 
existing ITR system still generates results that are 
grammatically incorrect because it ignores semantic and 
syntactic properties of sentences. In this work, we improve the 
accuracy of the existing ITR system by incorporating parts-of-
speech tagging into the text recognition procedure. Our 
experimental results show that the tag-assisted text recognition 
improves sentence level success rate by 33% in average. 
 
Keywords – cogent confabulation, text recognition, parts-of-
speech tagging 

I. INTRODUCTION 

Autonomous and intelligent recognition of printed or hand-
written text image is one of the key features to achieve 
situational awareness. Although generally effective, 
conventional Optical Character Recognition (OCR) tools or 
pattern recognition techniques usually have difficulties in 
recognizing images that are noisy, or even incomplete due to 
the damages to the printing material, or obscured by marks or 
stamps. However, such tasks are not too difficult for humans 
as we predict the missing information by associating it with 
its context.  

Many human cognitive processes involve two interleaved 
steps, sensing and information association. Together, they 
provide higher accuracy. In our previous work [1][2][11], a 
proof-of-concept prototype of context-aware Intelligence Text 
Recognition (ITR) system is developed. The ITR system is 
inspired by the human cognitive process. Instead of relying 
on complicated signal processing, it combines large number 
of simple, fuzzy and independent pattern classification 
models with powerful information association function. The 
lower layer of the ITR system performs pattern matching of 
the input image using a simple non-linear autoassociative 
neural network model called Brain-State-in-a-Box (BSB) [3]. 
It matches the input image with the stored alphabet. Each 
BSB model is analogous to a cortical column in the primary 
sensory area that performs the preliminary detection. 

Sometimes, multiple matching patterns may be found for one 
input character image. The upper layer of the ITRS performs 
information association using the cogent confabulation model 
[4]. It enhances those BSB outputs that have strong 
correlations in the context of word and sentence and 
suppresses those BSB outputs that are weakly related. In this 
way, it selects those characters that form meaningful words 
and sentences. Each confabulation model is analogous to a 
cortical column in the sensory association area that associates 
the primary detections to form high level cognition.  

One of the major limitations of the current ITR system lies in 
its sentence confabulation function. Current sentence 
confabulation model fills in missing words (or narrow down 
ambiguous words) simply based on the word level and phrase 
level probabilities extracted from the training text. It ignores 
semantic and syntactic properties of sentences. We believe 
that linguistic knowledge could be used to improve the 
accuracy of sentence confabulation and generate more 
meaningful outputs.  

In this work, we overcome this limitation by integrating 
parts-of-speech (POS) tagging with sentence confabulation. 
Part-of-speech tagging is a powerful Natural Language 
Processing tool for categorizing useful information. It is 
usually used to identify the function of words in a known text 
in order to build relational database [12] or distinguish 
different pronunciations for speech recognition [14]. Due to 
the simplicity of the cogent confabulation model, the 
integration with POS tagging can be achieved naturally. 
When used in the ITR system for text image recognition, the 
tag-assisted sentence confabulation improves sentence level 
success by 33% in average. 

The remainder of the paper is organized as follows. A 
brief introduction of background in cogent confabulation and 
POS tagging is provided in Section 2. In Section 3 we 
introduce the modeling and operation of tag-assisted sentence 
confabulation. The overall ITR system with POS tagging is 
also described. The experimental results and discussions are 
presented in Section 4. Section 5 summarizes the work. 

II. BACKGROUND 
A. Cogent confabultion 

Cogent confabulation [4] is an emerging computational model 
that mimics the Hebbian learning, the information storage and 
inter-relation of symbolic concepts, and the recall operations 
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of the human brain. Based on the theory, the cognitive 
information process consists of two steps: learning and recall. 
During the learning step, the knowledge links are established 
and strengthened as symbols are co-activated. During recall, a 
neuron receives excitations from other activated neurons. A 
“winner-takes-all” strategy takes place within each lexicon. 
Only the neurons (in a lexicon) that represent the winning 
symbol will be activated and the winner neurons will activate 
other neurons through knowledge links. At the same time, 
those neurons that did not win in this procedure will be 
suppressed. 

A computational model for cogent confabulation is proposed 
in [4]. Based on this model, a lexicon is a collection of 
symbols. A knowledge link (KL) from lexicon A to B is a 
matrix with the row representing a source symbol in A and the 
column representing a target symbol in B. The (i, j)th entry of 
the matrix represents the strength of the synapse between the 
source symbol si and the target symbol tj. It is quantified as 
the conditional probability P(si | tj). The collection of all 
knowledge links is called a knowledge base (KB). The 
knowledge bases are obtained during the learning procedure. 
During recall, the excitation level of all symbols in each 
lexicon is evaluated. Let l denote a lexicon, Fl denote the set 
of lexicons that have knowledge links going into lexicon l, 
and Sl denote the set of symbols that belong to lexicon l. The 
excitation level of a symbol t in lexicon l can be calculated as: 

        ���� � � � ���� 	
� �
������� � � ������������ , � � ��.  
The function I(s) is the excitation level of the source symbol 
s. Due to the “winner-takes-all” policy, the value of I(s) is 
either “1” or “0”. The parameter p0 is the smallest meaningful 
value of P(si | tj). The parameter B is a very large positive 
constant called the bandgap. The purpose of introducing B in 
the function is to ensure that a symbol receiving N active 
knowledge links will always have a higher excitation level 
than a symbol receiving (N-1) active knowledge links, 
regardless of the strength of the knowledge links.  

B. Stanford parts-of-speech tagging 

Part-of-speech (POS) tagging [5][6] is a matured technique 
developed for natural language processing. One of the most 
widely used probabilistic tagging systems is the Stanford POS 
Tagger [8]. It is based on the 36 word level tags specified by 
the Penn Treebank Tagging system. Table 1 lists some 
examples of these tags. During the training procedure, it scans 
the manually tagged training text to extract features, which is 
the tagging (t) of a word and the context (h) of the word to be 
tagged (i.e. one word before and after it.) The condition 
probably p(t|h) is then calculated for maximum entropy.  

For testing, a sentence without tags is given, the Stanford 
POS Tagger use the training data to calculate the entropy of 
the sentence with different tag sequences using the following 
equation:[6] 

 � � ! "#�$�"���$�%�$& ��
'�(&��)

 

p�(h) is the empirical probability of the sequence of tags for 
the sentence. p(t|h) is the conditional probability of the tag, 
and f(h,t) is a constrain function used to improve the accuracy 
of special cases. T is the set of all possible tags while X is the 
set of all possible tag sequences available from the training 
data. The maximum entropy tag sequence is selected as the 
most likely one, and the tags are assigned to each word. 

Table 1 Examples of Penn Treebank Tags 

In addition to probabilistic model such as the Stanford tagger, 
some work incorporates rule based technique as well. The 
authors of reference [7] use conditional probability to 
establish confidence scores for rule-based and statistical 
driven POS tag confabulation. When a discrepancy between 
the models occurs, the one with higher confidence level is 
chosen. Their study shows significant tag accuracy 
improvement when there is a suitable rule to distinguish 
between different candidates from the statistical model. 
However, when no rules are identified, the Text-to-Speech 
tagging generates more error than a pure probability model.  

From our perspective, the ITR system is designed to 
recognize text purely based on knowledge (i.e. statistics) 
extracted from standard corpora. Rule-based tagging limits 
the flexibility of the design and introduces significant 
overhead that may not yield sufficient accuracy improvement 
to offset the throughput reduction.  

III. TAG-ASSISTED SENTENCE CONFABULATION 
A. Original sentence confabulation framework 

Similar to the original sentence confabulation framework [8] 
we assume that the maximum length of a sentence is 20 
words. Any sentence that is longer than 20 words will be 
truncated. We also assume that the empty space is a word. 
Any sentence that is shorter than 20 words will be padded 
with empty spaces. 

The original sentence confabulation framework consists of 
two levels of lexicons. Lexicons 0 through 19 belong to the 
first level. Each level 1 lexicon associates to a single word in 
the sentence. The ith lexicon represents the ith word. 
Lexicons 20~38 belong to the second level. Each level 2 
lexicon associates to a pair of adjacent words. The lexicon 
labeled (20+i) represents the pair of words in the (i+1)th and 

Tag Function Example 

CC Coordinating conjunction and, or, but… 

CD Cardinal number one, two, three, … 
DT Determiner the, this, any,… 
EX Existential there there, 

IN Preposition or subordinating conjunction of, for, with,… 
JJ Adjective worthy, clean, sick,… 

NN Noun, singular or mass kettle, curiosity, …. 
NNS Noun, plural infants, noses, … 
VB Verb, base form tell, eat, … 

VBD Verb, past  tebse told,  began, … 
… … … 
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(i+2)th location. Associated to each lexicon is a collection of 
symbols. A symbol is a word or a pair of words that appears 
in the corresponding location. We use SA to denote the set of 
symbols associated to lexicon A. 

A knowledge link (KL) from lexicon A to B is a * +, 
matrix, where M and N are the cardinalities of symbol sets SA 
and SB. The i,jth entry of the knowledge link gives the 
conditional probability -�.�/� , where . � �0 , and  / � �1 . 
Symbols i and j are referred as source symbol and target 
symbol. 

For our sentence completion system, between any two 
lexicons there is a knowledge link. If we consider the lexicons 
as vertices and knowledge links as directed edges between the 
vertices, then they form a complete graph. 

B. Sentence confabulation framework with POS tagging 

With the addition of tags, a new level of lexicons is added. 
Lexicon 39~58 are the POS tags for word lexicons 0~19. The 
structure of knowledge links is exactly the same as in the 
original confabulation model. 

During training, the reference text is passed through Stanford 
POS tagger first to generate their respective tags. Knowledge 
links are established between word lexicons and tag lexicons, 
but not between word-pair lexicons and tag lexicons. This is 
because the word pair knowledge links are derivatives of the 
word knowledge links; therefore they are not needed to build 
knowledge links with tags. 

Since a sentence without tags is given for testing, the 
confabulation model automatically assumes all tags are 
possible candidates for all tag lexicons.  The system 
calculates excitation level for all candidates during each 
iteration and eliminates the least excited one. This elimination 
method allows multiple candidates to compete throughout the 
confabulation process and provides more cognitive capacity. 

The concept of multiple tag candidates racing has also been 
proposed in reference [9]. The authors show that if a single 
tag is chosen in each decision iteration, the tag error rate is 
compounded. They use the data provided in [10] to show that 
the accuracy of Penn Treebank tag is about 92%. For a 
sentence with 15 words, the probability of fully correct tag 
confabulation drops down to (0.92)15 = 28.6%. By allowing 
multiple candidates and learning based statistical model, the 
full sentence tag accuracy can be improved to 79.5%.  

C. Training and recall functions 

 
Figure 1 Training Function Lexicon Structure 

Just like the original sentence confabulation model, the tag-
assisted version is also divided into two parts, Training and 
Recall. The Training function uses reference text with tags to 
build the knowledge base, while the Recall function use the 
knowledge base to confabulate incomplete sentences with no 
tags.  

Figure 1 shows an example of a given training sentence and 
its corresponding lexicon structure. The sentence is “the 
treasure may be hard to find”. The tags are:  
the_DT treasure_NN may_MD be_VB hard_JJ to_TO find_VB 

In order to extend it to 20 words, we pad 14 empty words and 
tags to the end of the sentence. Each word will then be enter 
into lexicon 0~19 respectively as symbols, and each word pair 
will be enter into lexicon 20~38. Then the tags following each 
word will be entered into lexicon 39~58. The system will 
adjust the value of all knowledge links between lexicons to 
learn from the sentence and tag. For example, the KL from 
lexicon 0 to lexicon 1 will be adjusted by increasing the 
conditional probability -�2�$32�2�435�6432� . The KL from 
lexicon 0 and lexicon 39 will also be adjusted by increasing 
the conditional probability -�2�$32�2782�. Obviously, if the 
words and tags have frequent co-occurrence, their 
corresponding entry in the knowledge link will have a high 
value.  

Once all training texts are processed, the training process is 
complete and all final knowledge links are available for the 
Recall function. 

Figure 2 is a very simple illustration of the recall function that 
uses the confabulation model to complete a test sentence with 
an unknown word and tags. 

 
Figure 2 Tag-assisted Sentence Confabulation 

For the sake of illustration, the testing sentence is the same as 
the training sentence in Figure 1, with the word “treasure” 
missing and without pre-processed POS tags. Each square 
still represent lexicons at different levels and question marks 
indicate pieces of missing information. As we can see, given 
a sentence with one missing word, the associated word pair 
lexicon are also unknowns. 

Given a lexicon that has missing information, there is either a 
set of given candidates or all possible symbols associated to 
this lexicon are considered as candidates. In Figure 2, arrows 
are knowledge links from source lexicon to target lexicon. 
Arrows of different colors indicate that the knowledge links 
are used to excite lexicons on different levels. For example, 

DT NN MD VB NULL

the�treasure treasure�may may�be NULL�NULL

Lex 39 Lex 40 Lex 41 Lex 42 Lex 58

Lex 20 Lex 21 Lex 22 Lex 38

the treasure may be NULL
Lex 0 Lex 1 Lex 2 Lex 3 Lex 19

? ? ? ? NULL

the�? ?�may may�be NULL�NULL

the ? may be NULL
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IV. EXPERIMENTAL RESULTS 

As mentioned in Section III.D, knowledge link weight can 
greatly influence the quality of the sentence confabulation. In 
the experiments, we will first test the impact of different 
weights of knowledge links in order to search for the 
optimum weight scheme. Then we will compare the tag-
assisted confabulation with untagged confabulation to 
evaluate the effectiveness of incorporating POS tagging. 

The ITR system is trained with a training corpus consisting of 
73 folk tales, and the testing document is an untrained text in 
the same category. The testing document has 523 sentences, 
and the success rate in this section is always measured as 
number of correctly confabulated sentences over the number 
of total sentences.  A sentence is considered correct only if it 
is identical to the sentence in the original text. 

A. Knowledge link structure and weight testing  

To test the effectiveness of tag-assisted confabulation, we 
randomly introduce 3-pixel wide horizontal strikes to 10% 
characters of a scanned text image. The BSB character 
recognition is often unable to identify the correct character 
and give ambiguous results. Then it will be the responsibility 
of the word and sentence level confabulation to remove the 
ambiguity.  

In the first experiments, we vary the number of tag lexicons 
that have knowledge links with each word lexicon. The 
number is denoted as N. For an N-tag model, each word 
lexicon is connected to N tag lexicons. The ith word lexicon 
connects to the ith tag lexicon and its (N-1)/2 neighbors.  For 
example, for a 5-tag model, to calculate the excitation level of 
an unknown word lexicon, we only consider its direct tag 
lexicon and two nearby tag lexicons on each side of the direct 
tag.  

  
Figure 4 Results of KL structures test 

We compare the recall accuracy of different confabulation 
models by varying the number of linked tag lexicons from 0 
to 20. The results are given in Figure 4. In this experiment, 0-
tag means the confabulation does not use tag at all, 20-tag 
lexicons means the confabulation use all 20 tags for each 
unknown words. As we can see, while using too few POS 
tags leads to relatively poor accuracy, using too many tags is 

equally bad. This is because far away tags do not contribute 
as much information to determine an unknown word as its 
direct tag does. Due to the lack of deterministic relation, these 
remote tags will even increase noise in the confabulation 
procedure. Based on our experiments, the optimum number of 
linked tags is 9. This setting will be used in all following 
tests. 

Next we test the weight of some primary knowledge links. 
We speculate that the knowledge links between adjacent word 
lexicons and adjacent tag lexicons carries more information 
than others. And hence should play a more important role in 
confabulation than other knowledge links. In addition, the 
knowledge link between word and its direct tag should also 
be much stronger than others. It is our hypothesis that, scaling 
up the excitation value of these primary knowledge links will 
yield better confabulation results.  

 
Figure 5 Results of KL Weight Test  

In the second experiment, we selectively scale up the 
excitation value of each one of the above mentioned primary 
knowledge links. The scaling factor M is varied from 1 to 8. 
All other knowledge links have a scaling factor of 1. Figure 5 
shows the success rate of various weights for the three 
primary knowledge links. In the figure, W/TDW is used to 
represent the knowledge links between word and its direct 
tag; W/WAW is used to represent the knowledge links 
between adjacent words; T/TAW is used to represent the 
knowledge links between adjacent tag lexicons. In all these 
tests, we use 9 link-tag lexicons. The results show that setting 
the scaling factor of the KLs between adjacent tags (i.e. 
T/TAW) greater than 2 will degrade the system performance, 
while the scaling factor of KLs between words and their 
direct tags should be set to very high. 

We select the scaling factor with the highest success rate for 
each knowledge link category and form our optimum weight 
scheme.  

B. Evaluate the performance of tag-assisted confabulation 

Using the knowledge structure and weight discovered in 
previous experiments, we configure the ITRS to evaluate the 
effectiveness of incorporating POS tag in text recognition. 
The tag-assisted confabulation method is compared with no-
tag confabulation at various noise levels. The noise level 
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percentage means the ratio of characters in text with a 3-pixel 
wide horizontal strike. Note that the size of original character 
is 15x15 pixels, a 3-pixel wide strike is almost equivalent to 
20% distortion. 

Figure 6 shows that no-tag sentence confabulation quickly 
collapse as noise level increases. This is because each test 
sentence contains on average 28 characters and we only 
consider the sentence correct if all of its characters are 
correct. The noise level at character level is compounded into 
character and word level ambiguity. Without semantic 
information, which provides an overall structure for each 
sentence, the success rate is expected to drop exponentially as 
noise level increase.  

Tag-assisted confabulation shows clear improvements over 
no-tag confabulation at all noise levels. The improvement is 
minor at low noise level, but significant at high noise level. 
Overall, tag-assisted confabulation improves success rate by 
33% in average. 

 
Figure 6 Accuracy comparison between tag-assisted and 

no-tag sentence confabulation 

Some of the sentences recognized by ITR system with and 
without tag are listed in Table 2. The text in bold highlights 
the difference between the confabulation results with and 
without tag. As we can see, the integration with POS tag 
greatly improves the sentence structure syntactically and 
semantically.  

 
Figure 7 Runtime comparison between tag-assisted and 

non-tag confabulation 

The tag-assisted sentence confabulation achieves great 
improvement in accuracy at the cost of increased computation 
complexity. Figure 7 shows the computation time of tag-
assisted and non-tag confabulation as the percentage noise 
level varies from 10% to 30%. Although the tag-assisted 
confabulation is consistently slower than no-tag 
confabulation, the difference is decreasing as the noise level 
increases. At 10% noise level, tag-assisted confabulation is 
about 6.7 times slower than no-tag confabulation, while the 
number is reduced to 2.5 at 30% noise level. This is because, 
the tag-assisted confabulation consider all existing tags as 
potential candidate. This is a significant overhead at low 
noise level. However, as the noise level increases, the 
ambiguity of characters and words increases, but the 
ambiguity of tags does not increase. Therefore the overhead 
becomes less significant. 

Table 2 Examples of confabulated sentence 

Original and they returned as they came 
No-tag and they returned as they come 
Tagged and they returned as they came 
 

Original then cassim grew so envious that he could not sleep 
NO-tag then cassia grow so envious that he could not sleep 
Tagged then cassim grew so envious that he could not sleep 
 

Original whom ali baba took to be their captain 
NO-tag whim ali baby look to be their captain 
Tagged whom ali baba took to be their captain 
 

Original you pretend to be poor and yet you measure gold 
NO-tag you pretend to be poor end yet you measure fold 
Tagged you pretend to be poor and yet you measure gold 
 

Original which was full of oil 
NO-tag which was cult of iii 
Tagged which was full of oil 
 

Original ten mules loaded with great chests 
NO-tag ken mules lauded with great chests 
Tagged ten jules loaded with great chests 
 

Original we are certainly discovered 
NO-tag me fro certainty discovered 
Tagged we are certainly discovered 

V. CONCLUSIONS AND FUTURE WORKS 

We have introduced the modeling, training and recall 
techniques of tag-assisted sentence confabulation. The 
proposed technique incorporates semantic information with 
the confabulation model and it generates more sentences that 
are grammatically correct. As shown in our result section, the 
tag-assisted confabulation is especially effective at high noise 
level. The increase in success rate ranges from 10% to 55%. 
This is a very essential add-on to provide sematic information 
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to lexicon based algorithms in text recognition applications 
demanding high accuracy. 

On the other hand, the main drawback of implementing tag 
lexicons is longer execution time. In our experiment 
depending on the noise level, no-tag confabulation on average 
processes roughly 5 unknown lexicons and 22 knowledge 
links for each lexicon, while tag-assisted confabulation on 
average processes 25 unknown lexicons and 20 knowledge 
links for each lexicon. This overhead can be reduced by 
parallel processing. Applications that demand high 
throughput will have to evaluate the proposed confabulation 
method depending on the hardware available.  

Another weakness for the tag-assisted confabulation model is 
its dependency on context information at sentence level. This 
prohibits tag confabulations to perform well for short 
sentences due to less available information. One possible 
solution to this problem is to consider context at higher level. 
For example, use information from sentences before and after 
current one. This will be the direction of our future research.  
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