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ABSTRACT


The usage of non-collocated sources and receivers in multistatic sonar networks (MSNs)
has emerged as a promising area of opportunity in sonar systems. This thesis addresses
point coverage sensing problems in MSNs, where a number of points of interest (targets)
must be monitored. For detection we assume cookie-cutter sensors and a two-dimensional
homogenous environment. Based on current algorithms and the theory of detection discs,
we develop the new preprocessing algorithm LOC-GEN-II to determine possible locations
for sources given a set of targets and receivers. The high efficiency of this algorithm is
based on the greedy-like approach it is built upon and allows a significant reduction of
computing time compared to a recent algorithm from the literature.


We also address the problem of optimally placing multiple sources and receivers for a
given set of targets. Up to now, this problem was solved with the simplification of setting
receivers randomly and placing only sources optimally. We develop LOC-GEN-II further
into a two-step process of determining near optimal positions for receivers and sources
successively. The procedure is implemented as a faster one-step solution and a slower
iterative approach, which leads to better detection results. With this approach we show that
the newly developed algorithms allow solution of multiple sensor placement problems in
an acceptable time with significantly better detection results compared to the benchmark.
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Executive Summary


For decades, information from sonar systems has been used to detect underwater threats in
anti-submarine warfare (ASW). Due to increased tensions between Russia and the North
Atlantic Treaty Organization (NATO), detection of underwater threats has become impor-
tant in recent times again, especially the usage of active multistatic sonar networks (MSNs)
with separated sources and receivers. These systems have various advantages compared
to conventional monostatic systems like flexibility, adaptability, more complicated coun-
termeasures for the opponent, and lower costs. However, the mathematical relations for
multistatic systems are more complex, which makes the solution of the layout of optimal
detection problems much harder.


This thesis addresses point coverage problems in which a number of discrete locations are
to be monitored. We assume a cookie cutter sensor in a two-dimensional homogenous
environment. We neglect target aspect dependency and blind zones of sonar systems, and
we do not perform target tracking.


First we review the concept of detection discs (DDs) for optimal sensor positions. Based on
the detection range of a sensor—range of the day (RoD)—these are circles around targets
with radii related to the RoD and the nearest sensor. Intersections or center points of these
DDs are possible optimal positions for sensors. Additionally, optimal sensor positions
must always be at non-dominated points. These points allow detection of the same or more
targets than all other points, but never fewer or different ones.


The benchmark preprocessing algorithm to determine optimal sensor locations, which is
based on this concept and was developed by Craparo and Karataş (2014), compares all
possible sensor locations with each other. Due to the high complexity of this algorithm,
computing times become unacceptably large with extensive problems. We develop a new
preprocessing algorithm (LOC-GEN-II) based on an iterative greedy-like approach. Com-
pared to the benchmark algorithm, it diminishes complexity and computing time signifi-
cantly by reducing the possible candidate points and thus the remaining computing opera-
tions in each iteration step.


Following preprocessing, the optimal solution for sensor positions must be done. Exact op-
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timal algorithms (OPT-LOC) and near optimal algorithms (Greedy-LOC), both developed
by Craparo and Karataş (2014), provide a benchmark. We investigate the possibility to re-
duce overall computing time by varying the handover from preprocessing to optimal sensor
positioning. This is realized by terminating the preprocessing at earlier stages in order to
not investigate all possible candidate positions. LOC-GEN-II allows this processing based
on the greedy-like approach it uses for candidate point selection. Reduction of computing
times is possible, but only in subordinate magnitude.


In the following subsection, we investigate the number of final candidate points in the re-
duced candidate point list. We develop a relationship between number of targets and num-
ber of final candidate points using regression. The class of the candidate point (intersection
point or center point of DD) is the pivotal criterion for the trend of the preprocessing time.
Increasing target numbers lead to increasing numbers of final candidate points. Analyzing
the influence of the detection range (RoD) leads to the interesting result of decreasing the
number of candidate points for large values of RoD.


In the second part of this thesis, we develop two algorithms to deploy both kinds of sensors
for a given set of targets. The benchmark is an algorithm developed by Craparo and Karataş
(2014) which allows optimal positioning of sources for a given set of fixed targets and re-
ceivers. Based on the general idea of LOC-GEN-II, we use the concept of DD to solve
the problem in a two-step or iterative approach. For a set of targets, our first algorithm,
Adapt-LOC, calculates DDs to determine locations for the receivers, which are then used
to compute optimal source locations. Compared to the benchmark algorithm, Adapt-LOC
delivers considerably better detection results. We then develop Iter-LOC, an iterative algo-
rithm to place both types of sensors locally optimally. This leads to another improvement
of detection probability. For both Adapt-LOC and Iter-LOC, we compare near optimal
greedy solutions with locally optimal integer linear programs (ILPs) solutions, and we find
that ILP clearly outperforms the greedy approach.


Craparo, E. M., & Karataş, M. (2014). Sensor optimization in multistatic underwater sen-


sor networks. (submitted manuscript, in review)
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CHAPTER 1:


Introduction


1.1 Motivation


Sonar systems have been in use in underwater warfare to detect submarines for decades.
Throughout this time, development of the systems proceeded and also found applications in
non-military fields (Urick, 1983, p. 2). Researchers distinguish between active and passive
sonar systems as well as between monostatic and multistatic systems. Active sonar systems
are the main systems used in anti-submarine warfare (ASW). Due to increased tensions
between NATO and Russia in recent times, the threat of underwater attacks (as physical
attack or as espionage) increased significantly, thus making detection of underwater targets
very important today (Daerden, 2015; Braw, 2014; Marcus, 2014).


An active sonar system consists of a source and a receiver. The source sends out a pulse of
underwater sound (ping), which is reflected by the underwater environment and possibly
a target in the area. The reflected signal is detected by a receiver which makes it possible
to determine information about the objects in the vicinity, including their locations. In
a monostatic sonar system, source and receiver are collocated and form a so-called post
(Ozols & Fewell, 2011, p. 5). The principle can be seen in Figure 1.1 (left). In a multistatic
sonar network (MSN), source and receiver are not necessarily collocated (see Figure 1.1,
right), which has numerous advantages compared to the monostatic case, although such
systems are mathematically far more complicated. Advantages of MSNs are:


• Reduced costs: Washburn and Karataş (2015, p. 1) mention that receivers cost less
than sources, which can reduce the overall cost of the system, because one source can
be used in combination with several receivers. Also, in its fiscal year 2015 budget
estimates, United States Navy (2014, p. 23) underlines this with numbers, stating a
multistatic source to be five times more expensive than a sonar receiver. Because of
reduced military budgets and further reductions planned, cost optimization becomes
more and more important nowadays (Simeone, 2014).


• Countermeasures: Receivers do not send out underwater signals; thus, they do not
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Figure 1.1: Geometry of Sonar Detection�left: monostatic case; right: multistatic case


reveal their positions to the possible target. This makes countermeasures of the target
against the receivers more difficult, because the receivers are very hard to detect. In
contrast, a source (and so also a sonar post as used in the monostatic case) will always
be detected by the target by sending out its first ping.


• Flexibility: In a monostatic case researchers are fixed to the physical combination
of source and receiver, whereas in a MSN, the receivers can, for example, be a field
of sonobuoys fielded in an area of interest (AoI), and the source could be an active
source, dipped via helicopter at specific points in the AoI or a ship, which sends
out pings. This makes MSNs much more flexible and adaptable to solving specific
detection problems.


• Precision: Coon (1997) shows that fusion of target information gathered by different
receivers and resulting from only one ping of one source leads to an increased preci-
sion of detection. Additionally, this data fusion can lead to reduced “false alarms that
monostatic active systems are normally prey to” (Washburn & Karataş, 2015, p. 1).


The complications with MSN arise due to the different geometry in comparison to the
monostatic case, as can be seen in Figure 1.1. In the monostatic case the detection prob-
ability depends mainly on the distance between post and target. In case of a multistatic
constellation, the distances between target and source as well as target and receiver are rel-
evant (Fewell & Ozols, 2011, p. 8). This results in the fact that determination of optimal
places for sources and receivers for a given fixed set of targets becomes mathematically
complicated.
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1.2 Literature Review
Multistatic sensor networks are a wide area of research for radar detection of targets in
the air and near the surface or sonar detection of targets under water. We will only regard
the sonar detection part in this thesis, but the relation to radar detection problems has to
be mentioned. Multistatic radar detection for point and barrier coverage can be found in
Johnsen and Olsen (2006) and Gong, Zhang, Cochran, and Xing (2013).


Two main questions occur related to sonar research: Which problem do we want to solve,
and are we interested in a single point of time or a series of looks into the AoI. For the first
question three main detection problems can be found in literature: area coverage, barrier
coverage and point coverage problems. Many research projects deal with area coverage
problems. Ngatchou, Fox, and El-Sharkawi (2006) optimize the coverage of an area while
minimizing the number of required sensors. Ozols and Fewell (2011) give a detailed study
of different geometric patterns of sources, receivers, and posts to find the optimal coverage
of the whole AoI. DelBalzo, McNeal, and Kierstead (2005) and DelBalzo and Stangl
(2009) focus on the optimal placement of sonobuoys in an area and the optimal path to
bring them to their locations. For the second question a large area of research deals with the
tracking of targets and the automated following of a tracked target (and so the investigation
of time series of detections). This is challenging for the multistatic case, as can be seen
in Coon (1997), Coraluppi and Grimmet (2003), Fewell and Ozols (2011), Orlando and
Ehlers (2011), and Ozols and Fewell (2011).


For this thesis we focus on point coverage problems and a single glance at one point of
time. Our focus lies in the optimal placement of sources and receivers to cover a given set
of targets in a distinct area.


1.2.1 Multistatic Detection Theory
The detection of a multistatic sonar system is based on the transmission loss (TL) of the
ping on its way from the source to the target (traversing distance dt,s) and then from the
target to the receiver (traversing distance dt,r). It can be calculated as follows:


T L = 20 · log(dt,s ·dt,r)+α · (dt,s +dt,r)≈ 20 · log(dt,s ·dt,r) = 20 · log(ρ2
t,s,r) (1.1)
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Figure 1.2: Geometry of Multistatic Sonar Detection�The signal is sent by the sources (s1
and s2) and re�ected by the targets (t1 and t2). The distances between sources and receivers are
shown for two cases, but they do not primarily a�ect the detection.


where ρt,s,r is referred to as the equivalent monostatic range, because it can be used to
determine the probability of detection of the multistatic configuration using “a monostatic
detection probability curve” (Ozols & Fewell, 2011, p. 2). For more information see Cra-
paro & Karataş, 2014; Kuhn, 2014; Ozols & Fewell, 2011; and Fewell & Ozols, 2011.


The geometry of a small MSN can be seen in Figure 1.2, which illustrates why multistatic
sonar geometry becomes mathematically challenging. In this case only two sources, two
targets, and three receivers are shown, but even with this small configuration the geometric
possibilities for detection become numerous.


Different monostatic detection curves are used in literature, such as Fermi-shape, exponential-
shape or cookie-cutter. An overview of these can be found in Kuhn, 2014, p. 4. For this
thesis the assumed detection curve of the sensor has cookie-cutter shape, which means
perfect detection within a specific range (ρ0) and no detection outside. This leads to the


4







detection probability of a target as in Equation 1.2:


pt,s,r =


1 if ρb ≤
√


dt,s ·dt,r =
√


ρ2
t,s,r ≤ ρ0,


0 otherwise,
(1.2)


Here, ρb is the so-called blind zone of the sensor where no detection is possible due to
the fact that sent and reflected signals reach the receiver almost at the same time, and ρ0


is the range of the day (RoD); every target up to this distance from the monostatic sonar
post would be detected by the sensor. Bowen and Mitnick (1999) and Fewell and Ozols
(2011) make detailed calculations including this blind zone, which makes the solution of
multistatic sonar problem much more complex. To focus on the main topic and reduce
the complexity of the modeled system, blind zones will not be considered in this thesis.
Equation 1.2 implies that target t is detected by receiver r due to a ping of source s with
probability one if ρt,s,r ≤ ρ0. Keeping in mind that we can have many sources and receivers,
the combination of possible detection triplets for a specific target t̃ becomes large, and the
overall detection probability is the following (Kuhn, 2014, p. 4):


P̃t = max
(s,r)∈S×R


P̃t,s,r (1.3)


where in our study, one receiver-source pair detecting t̃ is sufficient for overall detection.


For the multistatic case, the contour shapes around the source and receiver for a fixed ρ0


form so-called Cassini ovals (see Figure 1.3; Fewell & Ozols, 2011, p. 5). Due to the
assumption of a cookie-cutter sensor, all targets inside the contour can be observed. The
shape changes from a circle to an ellipse to a dog-bone shape with increasing distance
between source and receivers up to ds,r ≤ 2 ·ρ0. For ds,r ≥ 2 ·ρ0 two separated, oval-shaped
regions of detection remain. This case, in particular, shows advantages of MSNs compared
to monostatic situations, because observation of spatially disjoint areas with one system
pair is possible. A system with several receivers located around a single source in different
distances has an opportunity to cover a large AoI (possibly disjoint AoIs) with a minimum
numbers of elements. But it also makes clear that the geometry of detection in MSNs is
much more complex compared to a monostatic network.
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Figure 1.3: Cassini Ovals for Di�erent Values of ds,r with RoD= ρ0�ds,r = 0 represents the
monostatic case and the con�guration for a sonar post. Inside the contour line the inequality
dt,s ·dt,r ≤ ρ2


0 is ful�lled; a target placed inside the shape or on the contour line can be detected
by the source-receiver pair.


Some targets in an AoI can contain high value units (HVUs) and may therefore have a
higher priority of observation. To take this into account while determining the overall
probability of detection of the set of targets T , one can introduce values related to the
targets (wt). The resulting overall measure of performance and the objective value of the
problem (Craparo & Karataş, 2014, p. 9) becomes, in relation with 1.3,


Pmax = ∑
t∈T


wt ·Pt . (1.4)


1.2.2 Concept of Detection Discs for Multistatic Sonar Systems
As shown in section 1.2.1 a cookie-cutter sensor has perfect detection when ρs,t,r ≤ ρ0.
This opens the opportunity to use “detection discs” (see Craparo & Karataş, 2014, p. 6)
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with radius ρt which represents the area around a target t, where a placed source-receiver
pair would definitely detect the target. In the case in which only positions of targets are
given, Kuhn (2014, p. 14) introduces these as range of the day circles (RDCs) with radii
ρ0. They represent the possible locations of the collocated sensors (posts) for targets to be
detected. An example can be seen in Figure 1.4.


ρ0


t1


t2


t3


t4
t5 t6


t7t8
t9 t10


t11


p1


p2


p3 p4


p5


p6 p7


Figure 1.4: Detection Disc Example�Detection discs for a set of several targets, where the sensor
has a cookie-cutter shape with detection radius ρ0. This con�guration leads to the following
detection discs, where sensors should be placed to detect the targets ti at the locations p j.


We first explain the theory for collocated posts. Every post (e.g., p1) positioned inside
a detection disc (DD) will detect at least one target, for example, a sensor inside the red
circle will detect definitely target t4. But it is also possible that one post can detect multiple
targets, as in case of the triple {t1, t2, t3}. The RDCs of three targets have a small region in
common, so that by positioning p2 inside this region, we will detect all three of them. The
blue group of targets can be separated into two parts, {t5, t6, t8} and {t6, t7}. Each of the
subsets has its own common region, but the two subsets have no overall common region.


To partition the RDCs in such configurations, one can use the notation of clusters G ⊆ T .
“A cluster G ⊆ T is a maximal set of targets, where the RDCs of all targets t ∈ G have
at least one point in common” (Kuhn, 2014, p. 16). With this example Figure 1.4 can be
divided in the following clusters or subsets:


G1 = {t4}, G2 = {t1, t2, t3}, G3 = {t5, t6, t8}, G4 = {t6, t7},


G5 = {t9, t10}, G6 = {t9, t11}, G7 = {t10, t11}.
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For each cluster one sensor is needed to detect all targets in that cluster. For the whole set
of targets T , the number of clusters and therefore the number of mutually exclusive subsets
Gi is an upper bound on the number of sensors needed to detect all targets. Coming back to
the example, the blue group with the two clusters G3 and G4 needs two sensors (p3 and p4)
so all targets {t5, t6, t7, t8} can be detected. Despite the whole group being connected, the
related clusters have only target t6 in common. Thus G3 and G4 are subsets not dominating
each other (this becomes important in Chapter 2). The green-colored group consists of
three mutually independent clusters {G5,G6,G7}. In order to detect the three targets of this
subset, only two of the three possible sensor positions (p5, p6, p7) are sufficient. If one
picks, for example, p5 and p6, the first sensor allows detection of {t9, t10}, the second of
{t9, t11}, where G5∩G6 contains all three targets of the green group. This example shows a
case where all clusters of the groups consist of different elements, but not all of the clusters
must be considered for a sensor position, because the combination of some of the clusters
ensures the covering of all elements.


In a real world situation one may have more information about the setup of AoI; for ex-
ample, one may know the position of targets ti ∈ T ∀i and receivers r j ∈ R ∀ j. This is the
setup which Craparo and Karataş (2014) use to determine optimal source positions, and,
moreover, it is the starting configuration for the work of this thesis. In such a situation
one can define DDs for every receiver-target combination. These receiver discs (RDs) have
their centers at the target positions and radii of


∆t,r =
ρ2


0
dt,r


. (1.5)


Equivalently to RDCs for posts, every source which is placed inside or on the edge of
this RD leads to a detection of the target by at least one receiver. Since we assume perfect
detection characteristic of the sensors and only one receiver of the whole set R must be able
to detect a specific target t, the largest value of ∆t,r for any receiver determines the maximal
possible detection range; see Equation 1.6. This is achieved when the distance between
target and receiver is minimal (dt,r∗(t) = min


∀i
dt,ri), leading to the following (Craparo &
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Karataş, 2014, p. 6);


pt =


{
1 if dt,s∗(t) ≤ ρ


2
0/dt,r∗(t)


0 otherwise
∀t ∈ T. (1.6)


Equation 1.6 reflects the detection probability of a target t, given its nearest source s∗(t)


and receiver r∗(t). Similarly, one can start from a setup with given targets and sources,
what leads to source discs (SDs), which represent the places where receivers have to be
placed to detect a given set of of targets and sources. In this case the detection probability
is calculated via


pt =


{
1 if dt,r∗(t) ≤ ρ


2
0/dt,s∗(t)


0 otherwise
∀t ∈ T. (1.7)


These relations are visualized in Figure 1.5 and Figure 1.6. The first figure shows a setup
with four targets and two receivers. Around every target, its RDCs can be seen and therefore
the set of all locations for posts to detect the targets. Intersecting RDCs show areas where
one post can detect more than one target. For example, this is the case between t1 and
t2, where r1 is located. Moreover, one can see the RDs related to the two receivers in
blue and black. In this example the receiver discs of r1 associated with t1 and t2 overlap,
which means one source sk placed somewhere in the intersection region allows detection
of both targets. But the corresponding RDs belonging to t3 and t4 neither overlap with each
other nor with the discs of t1 and t2. Thus a detection of all targets using only receiver
r1 is not possible. When we look now at receiver r2, we observe a common region of the
RDs corresponding to t2, t3, and t4. Placing a source in this (small) intersection region
would guarantee a detection of these three targets using only receiver r2. But there is no
intersection with the disc of target t1, therefore a complete detection of all targets using
r2 is not possible either. Furthermore, there is a region where all receiver discs (related to
both receivers, r1 and r2) overlap. If one places a source in this region, for example, at
the location of the green circle, one would be able to detect all four targets using only one
source and the two given receivers r1 and r2.


Figure 1.6 shows the corresponding SDs for the target configuration of Figure 1.5 and the
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t1


t2


t3


t4
r1


r2


RDC
r1’s RD
r2’s RD


Figure 1.5: Receiver Discs for a Given Set of Targets ti and Receivers r j�RDCs are
depicted as red discs, RDs of r1 as black discs, RDs of r2 as blue discs. Intersection regions
of RDs represent areas which allow detection of correspondent targets when placing a source in
these regions.


placement of the source s at the location of the green circle. As can clearly be seen, the
associated SDs show two overlapping regions for each pair of targets. Positioning two
receivers in these regions, let us say at the positions of the triangles, allows the detection of
all four targets with a set of one source and two receivers.


t1


t2


t3


t4
s1


RDC
s1’s SD


Figure 1.6: Source Discs for a Given Set of Targets ti and Sources s j�RDCs are depicted
as red discs, SDs of s1 as green discs. Intersection regions of SDs represent areas which allow
detection of correspondent targets when placing a source in these regions.


1.3 Objectives
Detection and observation of a given set of targets is the focus of this thesis. This can be, for
example, oil platforms, offshore wind generators, or other stationary maritime facilities of
high value. To protect these HVUs a point coverage problem with stationary targets/objects
has to be solved. The aim is to observe all these targets with the minimum set of multistatic
sensors (sources and receivers). Therefore we must find optimal positions for these sensors
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under the restriction that we have only a specific set of sensors available for a given obser-
vation problem. Starting from the basic principles of multistatic sonar detections, two main
questions are covered in this thesis:


• Using DDs, how can the search be optimized for the optimal positions of a set of
sources for a target and receiver configuration? How can clusters and subsets of
target be applied for a better preprocessing of data? Can different algorithms in
the preprocessing be combined to make it more efficient? Are there possibilities to
estimate the number of non-dominated sets for a given configuration of sensors?


• Starting from the problem solved in first bullet point, how can we expand the prob-
lem statement to the situation that only target positions are known? How can one
iteratively solve the problem of optimal source and receiver placement? Is placement
at one time or successive placement more advantageous, and is one of the two ways
impossible to solve in an admissible computing time?


1.4 Scope, Limitations, and Assumptions
For simplicity we assume a two-dimensional setup of the problem with homogeneous envi-
ronmental conditions. The positions of the targets are assumed to be known and fixed. The
targets may have different values. A weight factor w(t) is used to determine the importance
of a specific target, with w(t) ∈ [0,1]; higher values mean higher priority. Additionally, for
the first part of the analysis the receivers positions are also given and fixed. Once a source
is placed optimally according to the algorithm, it is also set as stationary.


The sensors have cookie-cutter probability function of detection with RoD= ρ0. For de-
tection it is sufficient that one source-receiver pair can detect the target; although multiple
detections are possible, they will not be considered in this thesis. Also, for simplicity, the
blind zones of the sensors are neglected in this study. The detection results reflect a snap-
shot of the situation assuming that all sources send out one ping at a specific point of time
and the resulting reflections are used by the receivers to determine whether an object is
present at each target. Target tracking is not taken into account in this study.
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1.5 Contributions and Outline
In Chapter 2 we show the theory of dominated and non-dominated sets of possible source
positions for a given set of targets and receivers using DDs. The theory, developed by
Craparo and Karataş (2014), is used to generate a new algorithm for preprocessing, which
is based on a greedy-like approach to eliminate dominated sets. This can be found in
Sections 2.2-2.5. In Section 2.6 the handover between preprocessing and optimization part
of the calculation is investigated to optimize computing time further. Additionally, as the
last part of Chapter 2, the relationship between number of targets, sensors and possible
sensor locations is investigated in Section 2.7.


The second part of the study in Chapter 3 uses these results to build a solution approach
for the more general problem of having only the targets fixed in the AoI. This is done in
Section 3.1. We first describe a two-step process that involves successively placing sources
and then, based on their position, receivers (or vice versa). This process can be found in
Section 3.2. Another solution uses the iterative repetition of this process until a locally
optimal solution is reached; this can be found in Section 3.3. Finally, we compare these
two methods to evaluate their performance for different problem configurations.
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CHAPTER 2:


Optimization of Candidate Point Determination Using


Detection Discs and Non-Dominated Point Sets


2.1 Problem Formulation
The determination of the optimal position of a set of sources for a given set of targets and
receivers can be done using different approaches. Kuhn (2014, p. 23) used for the bistatic
case the iterative divide best sector (DiBS) algorithm. This “partitions [in each iteration
step] the area of possible solutions into sectors” and selects the one with the highest upper
bound of an objective function. This dividing and selecting is repeated, until a termination
condition (sector size or optimality gap) is fulfilled. Problems arise with multiple sensors
(sources), since the complexity of the algorithm to find optimal positions becomes com-
putationally not solvable in acceptable time (Kuhn, 2014, p. 39). Washburn and Karataş
(2015) compute the detection probability using random positions for both sources and re-
ceivers. So they do not optimally place the sources, but develop analytical functions to
approximate the detection probability for a given set of sources and receivers.


For this section of the thesis we assume a quadratic AoI with randomly placed targets
t ∈ T and receivers r ∈ R. The targets have weights 0≤ wt ≤ 1 related to their importance,
where 0 means totally unimportant and 1 highly important. The task is to find the optimal
positions of sources s ∈ S, which allow the detection of the most targets t. The numbers
of elements in T and R and S can vary. Craparo and Karataş (2014, p. 6) are the first to
develop an algorithm for the optimal solution for this MSN problem.


2.2 Detection Discs for Optimal Source Placement
The theoretical background, proofs, and general optimization algorithms written in this
subsection are all based on the work of Craparo and Karataş (2014); the remainder of this
section is also based on their work.


The probability of detecting target t using its nearest source s∗(t) and receiver r∗(t) can be
found in 1.6. This equation implies the existence of disc-shaped regions δt around every
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target position. When at least one source is placed inside a specific disc δt̃ , the dependent
target t̃ will be detected by at least one source-detector pair. The DDs can be combined
in a detection disc set (DDS) with D = {δ1,δ2, ...δT} and the placement of sources in
overlapping regions of DDs lead to detection of multiple targets with a single source.


Using this, optimal source position can be found by


1. Identification of maximal subsets of targets detectable by each source
2. Identification of possible candidate position for each subset
3. Maximization of detected number of targets by selection of source locations from


possible candidate positions


The main computational challenges can be found in steps one and two, because they are of
high complexity. To solve these problems, we need the following elements:


• D ⊆ D: mutually overlapping detection disc set (MODDS): a set of detection discs
D is mutually overlapping if ∃x ∈ AoI which is covered by δt , ∀δt ∈ D


• D0 ⊆ O, with O as set of all MODDS
• R(D0)≡


{
x|x covered by δt , ∀δt ∈ D0


}
• Maximal sets of mutually overlapping detection discs: a maximal MODDS is not a


subset of any other MODDS; i.e., D0 is maximal if ∀x ∈ R(D0), 6 ∃δt /∈ D0 covering
x


• M ⊆ D: set of all maximal sets of mutually overlapping detection disc (MODD)
• τ0: set of targets detected by source at x ∈ R(D0); if D0 ∈M, then τ0 is the maximal


set of targets detectable with a source at x


Using this Craparo and Karataş (2014) prove (see also Figure 2.1):


1. Possible optimal source locations X can be found within intersection regions of all
maximal sets of MODD, X =


⋃
D0∈M


R(D0).


2. ∀D0 ∈M, R(D0) contains either a target location, or an intersection point it,t ′ between
the boundaries of two detection discs.


Considering all of this, we can restrict our set of candidate positions for source placement to
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xt


R(D0)
δt


xt ′


δt ′


xt
R(D0)


δt


xt ′


δt ′
it,t ′,1


it,t ′,2


Figure 2.1: Optimal Point Positions�Candidate points xc for optimal point positions of sources
lie within R(D0). In case of no intersections one point inside the detection disc becomes a
candidate position (left, e.g., xc = xt). When detection discs intersect, one of the intersection
points it,t ′, j becomes a candidate position (right, e.g. xc = it,t ′,1).


the centers of DDs (xc = {x1,x2, ...,xT}) and the intersection points of DDs (I =
⋃


t,t ′∈T
It,t ′).


For the calculation of the intersection points, see Appendix A. Thus one can iterate over
all centers and intersection points of all DDs to create the whole set of candidate locations
(C = {x1,x2, ...,xT}


⋃
I) and determine for each of them the set of targets τ(c), which can


be detected by the specific point. Then one can erase from this set all non-maximal subsets
of targets as well as any duplicate sets to derive the reduced set of candidate locations.
Craparo and Karataş (2014, p. 8) develop a five-step algorithm (LOC-GEN; see Figure 2.2)
to do this preprocessing of data:


0. Input parameters are: set of receivers R with positions xr,∀r ∈ R, set of targets T with positions
xt ,∀t ∈ T , RoD ρ0


1. Compute distances between targets and receivers dt,r,∀t ∈ T,r ∈ R, find dt,r∗(t) = min
r


dt,r,∀t ∈ T ,


determine distances between all targets dt,t ′ ,∀t, t ′ ∈ T
2. Create DDs with δt ∈ D, center xt and radius ρ2


0/dt,r∗(t),∀t ∈ T
3. For all pairs of DDs δt ,δt ′ ∈D calculate all intersection points It,t ′ and build the set of all intersections


points I =
⋃


t,t ′∈T
It,t ′ , where each It,t ′ can have between zero and two entries


4. Generate the set of all possible candidate location points C = {x1,x2, ...,xT}
⋃


I
5. Generate the reduced candidate point set by eliminating all points in C which do not represent a set of


MODDs


Figure 2.2: Preprocessing to determine the set of all possible optimal source locations
C using algorithm LOC-GEN


This final set of candidate locations is guaranteed to contain an optimal set of source loca-
tions. Craparo and Karataş develop two different approaches to select among these loca-
tions. One is an exact algorithm named OPT-LOC; Craparo and Karataş solve this integer


15







linear program (ILP) using general algebraic modeling system (GAMS) (see Figure 2.3).
They also obtain a near-optimal solution based on a greedy algorithm (see Figure 2.4,
GREEDY-LOC). The GAMS code can be found as a supplemental download at the Naval
Postgraduate School (NPS) Dudley Knox Library.


Indices and Sets:
t ∈ T targets,
c ∈C candidate point locations,
τ(c) set of targets detected by source at c.


Parameters:
wt value of target t


k number of available sources


Decision Variables:


xc =


{
1 if source is placed at candidate location c


0 otherwise


yt =


{
1 if target t is detected
0 otherwise


Formulation:


max
x,y


z = ∑
t


wt · yt (2.1a)


Subject to


yt ≤ ∑
c|t∈τ(c)


xc ∀t ∈ T (2.1b)


∑
c


xc ≤ k (2.1c)


0≤ yt ≤ 1 ∀t ∈ T (2.1d)
xc ∈ {0,1} ∀c ∈C (2.1e)


Figure 2.3: Integer linear program OPT-LOC to determine the optimal source positions
based on the set of possible optimal position C


2.3 Implementation of Preprocessing
The most complex algorithm in the optimization process is the preprocessing, realized by
LOC-GEN. Craparo and Karataş (2014, p. 8) show that the algorithm has a complexity
of O(|T |5). A realization of the preprocessing runs through to whole set of targets and
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Input Parameters:
T set of targets,
C set of candidate source locations,
τ(c) set of targets detected by source at c,


wt value of target t,


k number of available sources left to place.


Initialization:
Initialize set of (nearly optimal) source locations GL =∅
Initialize set of detected targets GT =∅


Greedy Selection:
While |GL| ≤ k, do:


GL← GL∪ argmax
c


∑
t∈GT∪τ(c)


wt


GT ←
⋃


c∈GL


τ(c)


Figure 2.4: Greedy algorithm Greedy-LOC to determine the nearly optimal source posi-
tions based on the set of possible optimal position C


determine all intersection points of the DDs. All intersection points and center points form
the candidate list C. For each of these points the detectable targets τ(c) are calculated.
Iterating through all c,c′ ∈ C s.t. c 6= c′ one can eliminate all locations c, which are not-
maximal subsets, i.e., for which τ(c)⊆ τ(c′).


An example of this procedure can be seen in Figure 2.5. Four targets (xi, i = 1, . . . ,4)
form eight intersection points of the detections discs (iki, j, i, j = 1..4,k = 1,2, where i and
j are targets and k refers to the kth intersection point of the detection discs of targets i


and j). Therefore, C initially contains 12 elements as possible source locations. One can
now determine the set of detectable targets for each location. Iterating through all c ∈
C leads to the detectable targets for each point as can be seen in Table 2.1. All center
points of the targets are dominated, because they are all dominated by at least two of the
intersection points. Thus, they can be eliminated from the final candidate location list.
Points


{
i12,3, i


1
1,3, i


2
1,2


}
are non-dominated, while


{
i22,3, i


2
1,3, i


1
1,2


}
are dominated; thus the


second set can also be eliminated. All elements in the first set can detect the same targets,
which means they are equivalent for the optimization process. This makes it sufficient
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x1


x2


x3 x4i11,2


i12,3


i11,3
i21,2


i21,3


i22,3
i13,4


i23,4


Figure 2.5: Source Location Reduction�All dominated points can be eliminated from the
Candidate Point List C, therefore �nd all c whose τ(c) are not-maximal subsets of targets.{


i12,3, i
1
1,3, i


2
1,2


}
and


{
i13,4, i


2
3,4


}
are two sets of points representing maximal subsets of targets.


These are non-dominated subsets. As possible location points for further analysis only i12,3 and


i23,4 are chosen.


to take only one point out of this set into account for a possible source location. The
second non-dominated set contains


{
i13,4, i


2
3,4


}
. As in the first case, the elements enable the


detection of the same targets, which is the reason that only only one point is considered
in the following calculations. Thus to detect the four targets xi, i = 1, . . . ,4, a set of two
MODDs is necessary, represented by the points i12,3 and i13,4. This way the preprocessing
algorithm leads to a reduction of the candidate point list from twelve to two entries in the
final candidate location list.


Table 2.1: Example of Dominated Location Elimination�Starting with twelve possible lo-
cations, one can eliminate all center points as dominated locations. The locations colored in red


are an example of non-dominated positions; an equivalent set would be
{


i11,3, i
2
3,4


}
Center Point Detected Targets Intersection Point Detected targets


x1 1 i11,2 1,2
x2 2 i12,3 1,2,3
x3 3 i11,3 1,2,3
x4 4 i21,2 1,2,3


i21,3 1,3
i22,3 2,3
i13,4 3,4
i23,4 3,4
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Craparo and Karataş (2014) use a direct implementation of the LOC-GEN algorithm from
Figure 2.2 for the preprocessing. The intersection points and the set of all detectable tar-
gets for each of the entries in the set of possible candidate positions are calculated. Then
the set of detectable targets for each of the candidate points is compared with the sets of
detectable targets for all other candidate points. If a set is maximal, its candidate point is
stored in the reduced candidate list. With increasing numbers of targets the computing time
becomes large, because the algorithm does an exhaustive search of candidate locations.
The complexity of O(|T 5|) makes the algorithm ineffective for large numbers of targets,
which is why Craparo and Karataş (2014, p. 15) state that a more efficient implementation
of searching dominated sets should be developed.


2.4 Enhanced Preprocessing Algorithm
We now describe LOC-GEN-II, which is an adaption of LOC-GEN that performs this pre-
processing more efficiently. LOC-GEN-II appears in Figure 2.6; the changes in comparison
to Figure 2.2 are printed in blue. The full MATLAB code of LOC-GEN-II can be found in
Appendix B as well as by supplemental download at the NPS Dudley Knox Library.


0. Input parameters are: receivers R, xr,∀r ∈ R; targets T , xt ,∀t ∈ T , RoD ρ0.
1. Compute dt,r,∀t ∈ T,r ∈ R, find dt,r∗(t) = min


r
dt,r,∀t ∈ T , determine dt,t ′ ,∀t, t ′ ∈ T .


2. Create DDs with δt ∈ D, center xt and radius ∆t = ρ2
0/dt,r∗(t),∀t ∈ T .


3. For all pairs of DDs δt ,δt ′ ∈ D calculate all ikt,t ′ and build I =
⋃


t,t ′∈T,k
{ikt,t ′}.


4. For each intersection point ikt,t ′ , determine the targets that can be detected from this location, τ(ikt,t ′).
5. Build the center point list P =


⋃
t∈T
{xt}.


6. If a target’s DD has at least one intersection point, erase its center location from the list of center
points P.


7. Generate the final reduced candidate point list C∗ by eliminating points in P and I which do not
represent a set of MODDs by the following process:


• Step 1. For each pair of center points xi and x j, i 6= j, calculate the distance between them,
dist(i, j). If dist(i, j)< ∆i and dist(i, j)> ∆ j, erase xi from P. Otherwise, leave xi in P.


• Step 2. Set C∗ = P.
• Step 3. While I 6= /0, find an intersection point that covers as many targets as possible. That is,


find a point ikt,t ′ ∈ I such that |τ(ikt,t ′)|= max
ik
t′′ ,t′′′∈I


|τ(ikt ′′,t ′′′)|. (Break ties arbitrarily.) Then, for each


ikt ′′,t ′′′ such that τ(ikt ′′,t ′′′)⊆ τ(ikt,t ′), erase ikt ′′,t ′′′ from I. Finally, add ikt,t ′ to C∗ and erase it from I.
8. Return C∗.


Figure 2.6: Enhanced preprocessing algorithm to determine the set of all possible optimal source
locations C, LOC-GEN-II
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There are two key differences between LOC-GEN and LOC-GEN-II. The first difference
between the algorithms is that LOC-GEN-II discards a number of locations without com-
parison to other locations; this results in improved efficiency. A second difference is that
LOC-GEN-II does not compare all possible pairs of locations; rather, it only compares
locations of the same type (center point or intersection point).


The following lemma describes the insight that allows us to discard some locations without
comparison to other locations:


Lemma 2.1. For each target whose DD has at least one intersection point, the center point


of the DD can be discarded as an optimal source location. The center point of a DD need


only be included in the set of candidate source locations if the DD has no intersections.


Proof. Consider a maximal set of mutually overlapping detection discs D0 ∈M that covers
region R(D0), and suppose the center point of a particular disc, xt , lies within R(D0). As
noted by Craparo and Karataş (2014), the boundary of region R(D0) consists of portions of
the boundaries of detection discs δt ∈ D0. Suppose the boundary of region R(D0) consists
of the boundary of a single detection disc, as in Figure 2.7 (left). In this case, R(D0)


contains no intersection points, and thus is must be represented by a center point in the
set of possible optimal source locations. For the particular example in Figure 2.7 (left),
x1 is a final candidate point, while x2 is dominated. Thus, the center of a disc with no
intersections can, but need not be a final candidate point. Suppose now that the boundary
consists of portions of the boundaries of multiple detection discs, as in Figure 2.7 (center).
Craparo and Karataş (2014) prove that in this case there always exist intersection points
ik1,2 ∈ R(D0), and thus R(D0) need not be represented by a center point. For our particular
example, i11,2 and i21,2 are each sufficient as candidate point, because each is an element of
R(D0), which is a MODD. As consequence, the centers x1 and x2 can always be discarded,
even if one of them lies in R(D0). Combining the two cases leads to a configuration as
can be seen in Figure 2.7, right. The intersecting discs δ2 and δ3 form the common region
DII


0 ∈ M with i12,3 ∈ R(DII
0 ) and with i22,3 ∈ R(DII


0 ). As a consequence, x2 and x3 can be
discarded, because DII


0 can be sufficiently characterized by one of the intersection points.
But because R(DI


0) 6= R(DII
0 ) and with R(DI


0) = δ1, this boundary is identical with the
boundary of the disc δ1. The disc δ1 has no intersection and so the center x1 must be an
additional candidate point for this configuration.
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Figure 2.7: Optimal Point Positions�Candidate points xc for optimal point positions of sources
lie within R(D0).


Implementing this in the algorithm, at the beginning all targets without any intersections
of their DDs are investigated. Let these form the set P, a reduced set of target locations.
Possible configurations of DDs without intersections can be seen in Figure 2.8 in the first
two rows; the final possible candidate position is written above each of the graphics. The
center points of non-overlapping DDs are all final possible candidate locations (Case IV).
Overlapping DDs with the center of the larger disc not included in the area of the smaller
disc always have the center point of the smaller DD as a final possible location (II, III).
If both centers are part of both disc areas, either center point could be taken as a possible
location (I). In the implementation we choose the center point of the larger DD. Combi-
nations of overlapping DDs are possible and a mixture of the rules is used to determine
the possible candidate location, as can be seen in Case V. {C1,C2} and {C2,C3} represent
the case depicted in I, {C1,C3} Case II. So a sensor at xC2 is the final possible location.
It enables the detection of all three targets. (Point xC1 would also accomplish this.) For
each element in the set P, its affiliation to one of the Cases I to V is verified and the cen-
ter point accordingly saved as a final candidate location into C∗ or disregarded for further
calculations.


In the last row of Figure 2.8, possible combinations of DDs with and without intersection
points can be seen. Although these combinations could lead to a further reduction of the
final candidate point list, these configurations are not incorporated in the algorithm. The
two groups of DDs (with and without intersection points) are processed completely inde-
pendently of each other. In Case VI it would be necessary to put xC1 into the reduced list,
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Figure 2.8: Detection Discs with no Intersections�Possible candidate points for optimal
source location for di�erent con�gurations of DDs without intersection. The non-dominated
DDs are colored in RED and its center points are possible candidate locations. The dominated
DDs are colored in BLUE; the center point of these discs can be neglected in further calculations.


in Cases VII and VIII one of the intersection points i1C2,C3, i2C2,C3. Yet, the computational
effort to combine the processing of the two classes is comparably large. For example, for
the group of non-intersecting discs, LOC-GEN-II only has to consider the distances to all
other center points of DDs without intersections (amount O(|T |). Whereas, incorporating
the intersecting DDs would enlarge the work for each center point in the magnitude of
O(|T |2), because then one has to assess the distances to all intersection points of all discs.
Accordingly, computing time would grow quickly, which contradicts the aim of the new
preprocessing algorithm to be lean and fast.


Fortunately, this modification does not sacrifice optimality: although we may add a dom-
inated location to C∗, we will never fail to include a non-dominated location. To see this,
consider a location x. Assume without loss of generality that x is an intersection point. If x
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is dominated by another intersection point y, LOC-GEN-II will not add x to C∗. However, if
x is not dominated by any other intersection point but is dominated only by a center point,
then LOC-GEN-II will add x to C∗. This is in contrast to LOC-GEN, which only adds
non-dominated points to the final candidate point set. For example, in Case VI, LOC-GEN
would put only xC1 into the reduced list. Separating the two preprocessing parts determines
xC1 from non-intersecting DDs and one of the intersection points i1C2,C3, i2C2,C3 from the
intersecting discs as possible locations. As a result two points are written in the list, both
being equivalent with respect to the targets detectable from each. As a consequence, LOC-
GEN-II leads to a possible enlarged set of reduced candidate locations without losing any
important locations. However, this is accompanied by less computational complexity and
shorter computing time in the preprocessing stage. Moreover, the follow-on algorithms
for choosing among these locations have been shown to run quickly O(|(C∗)||T |). So a
slightly enlarged number of elements in the final candidate list C∗ has as a consequence a
much lower increase in computing time compared to the rise in complexity of combining
the two preprocessing parts. Section 2.5 demonstrates this improvement computationally.


After having preprocessed targets whose DDs have no intersections, LOC-GEN-II con-
siders the intersection points. For the greedy-like approach to find the rest of the final
candidate locations in C∗, LOC-GEN-II proceeds iteratively. As long as there is an ele-
ment in the list of intersection points I, LOC-GEN-II determines the element with the most
detectable targets. Coming back to the example in Figure 2.5, this would be i12,3 in the
first iteration step. Then the algorithm stores this position in the final candidate location
list C∗ and searches through all other intersection points. If an intersection point is found
which has the same or a subset of detectable targets, it is erased from I. For the example in
Figure 2.5 this would delete all points in the set


{
i11,2, i


1
1,3, i


2
1,2, i


2
1,3, i


2
2,3


}
; thus after the first


iteration step, there would only be I =
{


i13,4, i
2
3,4


}
left. The algorithm repeats this step of


searching for the largest set of detectable targets and eliminating all dominated intersection
points until I is the empty set. Back to the example in Figure 2.5, in the second iteration
step, point i13,4 would be added to C∗, then i13,4 and i23,4 would be eliminated from I, because
τ(i23,4) ⊆ τ(i13,4). As result, I = /0 leads to the termination of the algorithm in the second
iteration step. This makes the algorithm very efficient, as can be seen in Section 2.5, be-
cause in each iteration step the number of elements which have to be investigated in the
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following step is reduced drastically.


To determine an approximation of the order of LOC-GEN-II, one has to examine the two
steps on their own. The number of targets without any intersection of its DD can never be
larger than |T |, because it cannot exceed the number of targets. Step one of the algorithm
has to compare each of these elements with one another, thus leading to a complexity of
O(|T |2). The second step has to investigate all intersection points between the DDs, which
can be at most |T |2. So, looping through these intersection points and comparing their
covered targets has a complexity of O((|T |2)2 · |T |) = O(|T |5). Because the number of
intersection points will normally be below |T |2, this upper bound is a pessimistic one, as it
is for LOC-GEN. Additionally, the number of elements, which have to be considered in the
following step, are reduced by LOC-GEN-II in the preceding iteration step. Therefore the
number of iteration steps can be bounded below with |T | · log(|T |). The number reflects the
complexity of algorithms that bisect the number of elements in each iteration step, such as
Quick Sort or Merge Sort (Rosen, 2011, p. 367). LOC-GEN-II may not be able to divide
the number of remaining elements in the following step in halves, but it is an estimation of
the best performance the algorithm could reach. So the overall complexity of LOC-GEN-II
will be in the magnitude of the following, where |T | · log(|T |) has to be squared, because
in each iteration step LOC-GEN-II has to compare the point with each entry remaining in
the list


O(|T |5)≥ O(LOG-GEN-II)≥ O(|T |2 · log(|T |))


Further improvements occur due to accumulating the calculation of required intermediate
results. For example, the event of finding an intersection point between two DDs does not
only lead to the calculation and storage of those intersection points; it also results also in the
direct elimination of the corresponding center points from the list of center points. Thus,
calculations and different steps of the process are now merged, which reduces computing
time.


An example of the result of the whole process can be seen in Figure 2.9. On the left side,
the given set of targets ti, i = 1..10,(×××) and receivers r j, j = 1..10,(N) are displayed. In
preprocessing, first the candidate point list is generated (right side, 2) and reduced by all
targets without intersecting DDs (here none) and all dominated intersection points. This
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results in the final list of candidate positions C∗ (left, ck,k = 1, ..5,•••, and right, ×××). OPT-
LOC or GREEDY-LOC is then used to determine optimal locations for a given number
of sources (here two sources, right side, ◦). As result, the two sources would enable the
detection of the seven targets x2,x4,x5,x6,x7,x8,x9.
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Figure 2.9: Determination of Optimal Source Positions�Starting with a set of targets and
receivers (left) the preprocessing delivers the list of all possible source location candidates (right),
which are reduced to the �nal set of candidate locationsguaranteed to contain the optimal source
locations.


2.5 Computational Comparison of LOC-GEN and LOC-
GEN-II


We now describe the results of different simulation experiments comparing LOC-GEN
and LOC-GEN-II. We use the following computer configuration: AMD K16 Mullins Pro-
cessor (A4-6210) with four kernels and 1800MHz clock frequency per kernel, 100MHz
BUS clock frequency, operating system Microsoftr Windows 8.1 64-Bit, 6144 MBytes
DDR3 RAM with clock frequency 798.4 MHz. Software was MATLABr R2014b, ver-
sion 8.4.0.150421. We consider the following scenario: A square area of size 10×10 units
has to be investigated. It contains m targets and k receivers, which are all randomly placed.
The RoD is set to ρ0. The task is to find the final reduced set of candidate source locations
C∗.
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We compare LOC-GEN-II and LOC-GEN in order to find out whether they deliver equiv-
alent results for candidate locations. Positions of targets and receivers for both algorithms
are the same for each instance. In 50 trials, all experiments lead to identical numbers of final
candidate locations in C∗, with the same targets detectable by equivalent candidate loca-
tions. Two examples represent these results. The first configuration (m = k = 15,ρ0 = 1.0;
see Figure 2.10) has as result a set of eleven candidate locations in C∗. The starting points
of LOC-GEN are 33 possible locations; for LOC-GEN-II the number is reduced to 25, be-
cause the DDs of eight targets have intersections and thus their center points are discarded.
The computing times are 0.1250 seconds for LOC-GEN-II and 0.3281 seconds for LOC-
GEN. In the second example (m = 150,k = 50,ρ0 = 0.6; see Figure 2.11), it becomes clear
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Figure 2.10: Final Candidate Locations for 15 Targets and 15 Receivers�left: LOC-GEN-
II, right: LOC-GEN. Although some candidate locations do not coincide, they do represent the
same targets detectable by them. For example, c11 of LOC-GEN was not chosen by LOC-GEN-II,
but the equivalent location at (x,y)≈ (2,9). Both can detect the three targets in the upper left
corner.


that separation in dominated and non-dominated candidate locations becomes challenging
and computationally not trivial. Both algorithms end up with a set C∗ with 140 entries,
where LOC-GEN started with 1,512 possible locations and LOC-GEN-II with 1,362. In
this case of a very high number of DDs in a relatively small area, all DDs have at least
one intersection. Because of that, no center points of the discs are taken into account by
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Figure 2.11: Final Candidate Point Location for 150 Targets and 50 Receivers�left: LOC-
GEN-II, right: LOC-GEN. Example of growth of candidate position number with rising number
of targets and receivers.


LOG-GEN-II. The computing times are 3.5014 seconds (LOC-GEN-II) and 5.1623 sec-
onds (LOC-GEN). The main reason for the lower computing time of LOC-GEN-II is the
successive reduction of the number of remaining candidate points. Our implementation of
LOC-GEN takes each candidate point and for it loops through the whole list of candidate
points C. So it always needs |C|2 steps. LOC-GEN-II reduces in each iteration step the list
of remaining candidate locations by eliminating dominated or equivalent locations. The
number of points, which have to be taken into account in the following step, decreases
sometimes drastically, until no elements are left in the I. As consequence, LOC-GEN-II
never loops through all elements in C but through a greatly decreased number of elements,
as can be seen in Figure 2.12. Note that this elimination could also easily be incorporated
into LOC-GEN; however, LOC-GEN still compares center points and intersection points,
while LOC-GEN-II considers these two classes of points separately.


The reduction of entries in the candidate point list per iteration step leads to a termination
of the LOG-GEN-II in case one after four steps, in case two after 140 steps. These are
the iterations based on the intersection points of DDs, and so of the second part of LOG-
GEN-II. It must be considered that LOC-GEN-II also analyzes the targets whose DD have
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Figure 2.12: Iterative Reduction of Elements in Candidate Point List�Number of remaining
candidate points in each iterations step using LOC-GEN-II algorithm. Left side: m = k = 15,ρ0 =
1.0; right side: m = 150,k = 50,ρ0 = 0.6. The great decrease of remaining elements has as e�ect
the �nalization of the preprocessing in essentially fewer iterations steps, compared to LOC-GEN,
which always needs |C| iteration steps in our implementation


no intersections (the first part of LOG-GEN-II). This adds for the first case seven steps to
the algorithm. In contrast, LOC-GEN loops through all pairs of elements of the starting set
C, which includes all intersection points and all center points (33 in case one and 1,512 in
case two). The right graph of Figure 2.12 illustrates the effective reduction of remaining
candidate points. Using LOC-GEN-II to find all possible optimal locations, the calculation
aborts after 140 iteration steps, which is less than one tenth of the 1,512 steps LOG-GEN
needs. This is the main reason for the significantly lower computing times of LOC-GEN-II.


To prove these results with statistically significant data, we conduct two main experiments
with the common elements of AoI of size (10×10) units, RoD of ρ0 = 0.6 and the follow-
ing settings:


1. m = 5,10,15, . . . ,125 targets and k = 25,50,75,100 receivers are placed randomly
in the AoI. For each of these configurations we measure the time for preprocessing
using LOC-GEN. We replicate this experiment 2×150 times. We repeat this experi-
ment using LOC-GEN-II. For all replications the placement of targets and receivers
are chosen randomly.


2. m = 50,100,150, . . . ,500 targets and k = 50 receivers are placed randomly in the
AoI. For each of these configurations we measure the time for preprocessing using
LOC-GEN. We replicate the experiment 100 times. We repeat this experiment using
LOC-GEN-II. For all replications the placement of targets and receivers are chosen
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randomly.


Besides computing time, we also store the number of candidate locations at beginning and
end of each process. We discuss these results in section 2.7.
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Figure 2.13: Candidate Point Reduction�Comparison of Algorithms�25 Receivers�
Preprocessing time to compute the �nal set of candidate locations for di�erent numbers of
targets and 25 receivers, RoD ρ0 = 0.6, using LOC-GEN and LOC-GEN-II.
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Figure 2.14: Candidate Point Reduction�Comparison of Algorithms�100 Receivers�
Preprocessing time to compute the �nal set of candidate locations for di�erent numbers of targets
and 100 receivers, RoD ρ0 = 0.6, using LOC-GEN and LOC-GEN-II.
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The results of experiment one for 25 and 100 receivers can be seen in Figure 2.13 and Fig-
ure 2.14, and for experiment two in Figure 2.16. All graphs have as common elements the
significant difference between computing times of both algorithms and an increase of com-
puting time with rising number of targets. This growth can be observed in the logarithmic-
scaled plot as an approximately straight line for a large number of targets. For a rising
numbers of targets LOC-GEN-II shows a lower increase in computing time compared to
LOC-GEN. In the graphs also error bars are depicted, which represent the standard devia-
tion of the runs for each design point (see Figure 2.13). Especially for a large number of
targets, the reduction in computing time using LOC-GEN-II becomes obvious. There can
also be configurations of higher numbers of receivers and very small numbers of targets,
where LOC-GEN-II does not perform better than LOC-GEN. However, in these cases the
overall computing time is comparably small. With an increasing number of targets (above
|T | > 50) and thus an increasing computing time, LOC-GEN-II outperforms LOC-GEN
significantly. This can be explained by the fact that executing a computer program con-
sists of two main parts: administrative procedures of the programming language and the
task-based computing time. Examples of the first kind are memory allocation, variable im-
plementation and so forth. The task itself means the execution of mathematical operations
like finding intersection points, looping through lists, and so forth. The above mentioned
configuration (small number of targets, relatively higher number of receivers) results in
only very few possible candidate locations (e.g., 10 to 20 possible locations in the overall
candidate list C). With this, MATLAB spends the main part of computing time for the ad-
ministrative part, whereas the pure mathematical computations use only a small amount of
the overall time. As a consequence, both algorithms need almost the same computing time,
because the administrative part requires an equal amount of time for each. This explains
also the large variations in these results, depicted by the error bars. When the number of
targets becomes large compared to the number of receivers, the mathematical part of the
computation overtakes the administrative part, leading to better performance of LOC-GEN-
II. In terms of absolute values of computing time and for |T | = 125, the following results
can be observed:


• |R|= 25: computing time for LOC-GEN= 1.32±0.212 seconds
computing time for LOC-GEN-II= 0.619±0.130 seconds
LOC-GEN-II is on average 53% faster
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• |R|= 100: computing time for LOC-GEN= 4.18±0.807 seconds
computing time for LOC-GEN-II= 2.79±0.631 seconds
LOC-GEN-II is on average 33% faster


The large standard deviations of different runs for one set of parameters can be explained
by chosen random locations for receivers and targets for each run. Figure 2.15 shows all
preprocessing times for experiment one using LOC-GEN-II algorithm. With an increasing
number of targets as well as receivers, computing time grows, but the impact of |R| is much
less important. Although a doubling of the |T | has as an effect an approximately multiply-
ing tenfold of the computing time, doubling |R| results in nearly doubled computing time.
Thus, number of targets is the driving parameter for preprocessing time. When one also
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Figure 2.15: Candidate Point Reduction�Computing Time�LOC-GEN-II�Preprocessing
time to compute the �nal set of candidate locations for di�erent numbers of targets and receivers,
RoD ρ0 = 0.6, using LOC-GEN-II.


takes into account the results of experiment two, the efficiency of LOC-GEN-II becomes
even more apparent. The large number of targets in the AoI have, as a consequence, a large
number of intersection points and also possible source locations. Thus, an algorithm that
reduces this number of candidate points in each step has a greater advantage compared to an
algorithm that has to cycle through all intersection points. As a result, LOC-GEN-II needs
on average less computing time. For more than 100 targets the differences exceed the sum
of the standard deviations of both algorithms and they grow further with a rising number of
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targets (see Figure 2.16). To put it in numbers, LOC-GEN-II starts with 40% lower com-


0.01


0.10


1.00


10.00


100.00


1000.00


50 100 150 200 250 300 350 400 450 500


M
ea


n 
C


om
pu


tin
g 


tim
e 


[s
]


# of Targets


LOC-GEN-II
LOC-GEN


Figure 2.16: Candidate Point Reduction�Comparison of Algorithms�Large Number of
Targets�Preprocessing time to compute the �nal set of candidate locations for experiment two
with large number of targets and 50 receivers, RoD ρ0 = 0.6, using LOC-GEN and LOC-GEN-II.


puting time than LOC-GEN for 50 targets, is around 45% faster for 100 up to 250 targets,
and reaches 56% better performance for 500 targets. LOC-GEN needs 800.21± 116.966
seconds to preprocess a set of 500 targets and 50 receivers, where LOC-GEN-II requires
351.84±64.003 seconds. Moreover, the one-standard deviation error bars do not, overlap
for most of the problem sizes, considered.


To summarize, LOC-GEN-II achieves significantly better computational performance com-
pared to the LOC-GEN algorithm, while delivering an equivalent final set of possible can-
didate locations for sources. It leads to a decrease of computing time between 30% up to
more than 50% with statistical significance of the results, proven by several replications of
different design points.


2.6 Connection of Preprocessing and Optimal Source Lo-
cation


We now investigate the whole process of finding optimal source locations, and specifically
overall computing time required. Therefore, we implement LOC-GEN-II as preprocessing


32







algorithm and OPT-LOC (see Figure 2.3) and GREEDY-LOC (see Figure 2.4) to find op-
timal source positions. To solve the OPT-LOC ILP, we use GAMS Release 24.2.1 r43572
for x86_64/MS Windows; for all other calculations we use MATLAB in the configuration
of Section 2.5. The question is whether it is more efficient to terminate LOC-GEN-II early
and begin with a larger set of candidate locations. The reason for these thoughts is the
lower complexity of GREEDY-LOC (O = (|C∗|2)) compared to LOC-GEN-II (O(|T |5)).
We develop the following procedure:


• m = 20,40, ..,200 targets and k = 50 receivers with ρ0 = 0.6 are placed randomly
in the AoI, and l = 10,20, . . . ,50 sources can be optimally placed. For each design
point, 100 replications are computed.


• Preprocessing starts with LOC-GEN-II until one of the following criteria is fulfilled:


1. x = 0.1,0.125, . . . ,0.4% of the starting number of candidate points |P
⋃


I| are
found to be final candidate locations, or


2. 10 · l final candidate locations are found by LOC-GEN-II


• then the remaining elements of P
⋃


I are added to C∗


• and OPT-LOC and GREEDY-LOC are used to determine optimal source locations.


The thresholds x = 0.1,0.125, ..,0.4% were determined experimentally to be the magni-
tude where a significant reduction of preprocessing work could be eliminated by an early
termination of LOC-GEN-II compared to processing the whole set. The second threshold
10 · l has its root in the fact that LOC-GEN-II uses a greedy-like approach. The possible
candidate locations are put in descending order of their ability to detect targets in the final
candidate set, starting with the most promising locations. Although the targets are assigned
weights wt in the optimization process, we find that the probability that a final optimal
source location will not be in the 10 · l best results from LOC-GEN-II is insignificantly
low. With these criteria a sharing between the burden between complex preprocessing and
substantially faster optimization processes is realized.


The results of this experiment can be seen in Figure 2.17, where the computing times for
different parts of the process are depicted for the cases of a present or absent break in
preprocessing. As expected, preprocessing time can be reduced using an earlier abortion,
but way computing time of the optimization process increases. On the other hand, when
there is no break in preprocessing we see a larger preprocessing but shorter optimization
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time. Moreover, the largest reductions can be reached for small numbers of targets (|T | ≤
60), where preprocessing time itself is small. Overall, the absolute gain from the earlier
termination is not large. Computing time for Greedy-LOC is abbout an order of magnitude
below the two other processes and shows only a slight dependency on target number and
abortion of preprocessing, therefore it can be neglected.


0.0001


0.001


0.01


0.1


1


10


20 40 60 80 100 120 140 160 180 200


Pr
oc


es
sin


g 
tim


e 
[s


]


# of Targets


Prep w break Greedy w break
Opt w break Prep w/o break
Greedy w/o break Opt w/o break


Figure 2.17: Reduction of Preprocessing and Optimization Time�Overview�The com-
puting time for preprocessing and optimization for di�erent number of targets and complete or
aborted preprocessing.


The resulting summation of preprocessing and optimization computing times can be seen in
Figure 2.18. Here it becomes obvious that the effect of a breakdown of preprocessing does
not lead to a significant reduction of the overall computing time. Although the reduction
reaches 10% to 20% of the overall computing time, the different runs show so many vari-
ations (reflected by overlapping one-standard deviation error bars), making a distinction
between the two different preprocessing ways is not reasonable.


This leads to the result that abortion of preprocessing has an effect on the overall computing
time, but this effect shows large variations and the increase of performance is not as high as
expected. Therefore, the disadvantages of a reduced preprocessing algorithm (incorpora-
tion of break criteria in preprocessing is computationally challenging and have as outcome
suboptimal preprocessing result) outweigh the slight advantages in computing time, which
leads to the decision to discard this possibility of further reduction of computing time in
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Figure 2.18: Reduction of Sum of Preprocessing and Optimization Time�Overview�
The sum of the computing time for preprocessing and optimization for di�erent number of targets
and complete or aborted preprocessing.


this work.


2.7 Investigation of Number of Elements in the Candidate
Point Lists


Craparo and Karataş (2014, p. 15) show an increase of candidate locations with the number
of targets for a fixed number of 50 receivers before and after preprocessing. The increase
before preprocessing is obvious, because enlarging the number of targets results in higher
numbers of center points as well as intersections between DDs and in more candidate lo-
cations. But the simulation shows an approximately an exponential gain in the number of
candidate locations after preprocessing. This increase is not obvious and was not explained
in the study; for this reason we now take a closer look at these observations. Analyzing
the number of elements in C∗ (see experiment one, Section 2.5) leads to Figure 2.19. The
numbers coincide with the observations Craparo and Karataş make in their simulation for
k = 50 receivers and different numbers of targets.


By introducing additional variation in the number of receivers, an interesting observation
can be made. Between 25 and 65 targets a shift in the slope of the curves can be observed.
For low |T | the configuration with the smallest |R| leads to the highest |C∗|. However, high
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Figure 2.19: Number of Elements in the Final Candidate Location List�Number of can-
didate points in the �nal list after preprocessing for m = 5, . . .125 targets and k = 25, . . .100
receivers.


|T | and small |R| result in the lowest |C∗|. To analyze this problem, two phenomena are
addressed in this section, based on new simulation setups.


1. How can it be explained that for different numbers of receivers and rising number of
targets the increase in the number of elements in C∗ changes?


2. How is the number of elements in the final possible location list C∗ related to the
number of targets and receivers?


For a set of m = 5,10, . . . ,100 targets and k = 20,40, . . . ,100 receivers, all randomly po-
sitioned in an AoI of 10× 10 units, and ρ0 = 0.6, LOC-GEN-II is used to generate the
final candidate location list. For each configuration 100 replications are made. The overall
number of elements in C∗ is analyzed, as well as the number of elements in C∗ generated by
center points (CPs) or by intersection points (IPs) of DDs. The results appear in Figure 2.20
and Figure 2.21; error bars in the first plot illustrate the standard deviation between differ-
ent replications. For up to 50 targets the increase of candidate locations with rising number
of targets is subexponential; for more targets it flattens to nearly exponential. This can
be observed by the curves, having in the logarithmic scale a clear concave shape up to 50
targets and then converging to a constant slope. Relative variations between different repli-
cations become smaller with a higher number of targets, making a distinct discrimination
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Figure 2.20: Final Candidate Points Distribution�Number of candidate points in the �nal
list after preprocessing for di�erent number of targets and receivers.


between results for different receiver numbers possible. The reason for this phenomenon
can be seen in Figure 2.21 and is based on the composition of the final candidate location
list. Whether an element in C∗ is a CP or an IP of DDs has the main influence on the
increase.
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Figure 2.21: Final Candidate Points Distribution�Number of candidate points from CPs and
IPs after preprocessing for di�erent number of targets and receivers.
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These two groups of points follow an opposing trend. A small number of targets is related
to few IPs; many of the DDs even do not overlap. So target positions themselves are very
often the only possible location to detect the corresponding target. As consequence, CPs
are dominating elements in the final candidate location list, when target numbers are low.
With increasing |T |, the number of center points as possible candidate locations can only
grow with O(|T |), whereas the number of intersection points grow with O(|T |2). More-
over, a DD with at least one IP can never have the CP as a possible candidate location, as
shown in Lemma 2.1. As a consequence, a rising number of intersections leads to a cor-
responding decrease in CPs as candidate locations. This behavior is clearly observable in
Figure 2.21 with an exponential increase of IPs and a stagnation or decrease of CPs when
target numbers grow.


Superimposed, one can observe the influence of the receiver numbers on the curves and the
composition of CPs and IPs. A configuration with a large number of receivers implies a
high density of them. This results in a high probability that a receiver is closer to a target
location and so the minimal distance between target and receiver dt,r∗ becomes smaller. But
this means also larger radii of the DDs, which leads to a higher possibility of overlapping
and intersecting each other in an AoI with constant size. As a consequence, the number
of IPs as candidate locations as well as final candidate positions rises. On the other hand,
more DDs have intersections, so their CPs are automatically erased from the candidate
point list, leading to fewer CPs in the final candidate list. When, additionally, the target
number becomes larger, the trend of more IPs and less non-intersected DDs is intensified,
what results in an accelerated decrease of CPs, as can be seen in the violet and green curves,
especially.


On the other hand, very few receivers and thus a lower density of them enlarge the smallest
distance to targets on average. The possibility of smaller DDs increases, leading to fewer
IPs. Relatively more DDs will have no intersections; hence the number of CPs in the final
list is comparably large also for a higher number of targets (see especially black and red
lines in Figure 2.21). For 20 receivers the number of CPs has a nearly constant level of 20
for 30≤ |T | ≤ 100. Having 100 receivers instead, the magnitude drops down from four to
one for the same range of target numbers.


Putting these results together, the number of CPs has the most significant influence on the
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number of candidate location points for small target numbers. For larger values of |T | the
number of IPs has the most influence. Additionally, the number of receivers influences the
composition of CPs and IPs substantially. This leads to the effect shown in Figure 2.20, in
which a flipping of the curves for different numbers of receivers with an increasing number
of targets can be observed.


For the above mentioned experiment, the following relative changes in the number of can-
didate points can be observed when doubling the number of targets (see Table 2.2). They
show clearly the overall trend of increasing elements in the final candidate location list with
rising numbers of target sets as well as the influence of varying receiver sets. Equivalent


Table 2.2: Increase in Number of Candidate Points with Rising Target Number for
Di�erent Numbers of Receivers


targets number of receivers
from - to 20 40 60 80 100


5−10 0.8898 0.8341 0.8619 0.8105 0.8003
10−20 0.8700 0.8560 0.8142 0.8255 0.8524
15−30 0.8772 0.8346 0.8218 0.9130 0.9351
20−40 0.8781 0.8376 0.9286 0.9818 1.0217
25−50 0.8617 0.9264 0.9635 1.0875 1.1886
30−60 0.8263 0.9688 1.0483 1.1730 1.2652
35−70 0.8697 0.9761 1.1084 1.2426 1.3616
40−80 0.8885 1.0630 1.1710 1.3258 1.4424
45−90 0.9284 1.0620 1.2642 1.4423 1.4625
50−100 0.9393 1.1496 1.3229 1.4559 1.5556


numbers can also be found in the data of experiment one in section 2.5. The reason for
this is the same magnitude of the parameters in both experiments. For experiment two of
Section 2.5 the range of increase in number of candidate points goes from 1.245 (doubling
from 50 to 100 targets) up to 2.167 (doubling from 250 to 500 targets). To determine a
model for the number of final candidate points as a function of receiver and target number,
we construct a regression model based on the simulation data. We use the JMP software
to find the best model using the Minimum BIC stopping rule and considering the variables
up to the power of three and their interactions. This setup captures the expected increase of
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candidate locations with increasing target numbers. The result is shown in Equation 2.2:


xFCP =−19.4983+0.9178 ·m+0.1350 · k+0.0029 · (m−69.0476)2+


0.0011 · (k−60.7143)2 +0.0041 · (m−69.0476)(k−60.7143) (2.2)


where m is the number of targets, k the number of receivers, and xFCP the fitted number
of candidate points. The corresponding output of JMP can be seen in Figure 2.22. All
parameters are significant at an extremely high level and the overall performance of the
fit is with a value of R2


ad j = 0.999664, exceedingly high. The strong dependency between


Response # CP
Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)


0.999672
0.999664
1.948386
64.50635
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Parameter Estimates
Term
Intercept
# Targets
# Receivers
(# Targets-69.0476)*(# Targets-69.0476)
(# Receivers-60.7143)*(# Receivers-60.7143)
(# Targets-69.0476)*(# Receivers-60.7143)


Estimate
-19.49829
0.9177856
0.1354947
0.0028921
0.0010731
0.0041323


Std Error
0.434036
0.003618
0.005111
1.286e-5
0.000209
0.000145


t Ratio
-44.92
253.65
26.51


224.85
5.13


28.42


Prob>|t|
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*


Sorted Parameter Estimates
Term
# Targets
(# Targets-69.0476)*(# Targets-69.0476)
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# Receivers
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Estimate
0.9177856
0.0028921
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Std Error
0.003618
1.286e-5
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Figure 2.22: Regression Fit for Number of Candidate Points as Function of Number of
Targets and Receivers�Result of JMP model regression �t using targets and receivers numbers
as input (linear, quadratic and cross terms).


the number of candidate points and number of targets can be seen in the relatively large
coefficients for these parameters and the prediction profiler plot; the weaker dependency
to the number of receivers shows especially in the prediction profiler plot. The results
underline the observations that the target number has the main impact on the number of
final candidate points, whereas the receiver number plays only an inferior role. Comparing
the fitted results with the simulation data, especially for a low number of receivers and
targets, one can observe larger differences and the fitted values can lie outside the one
standard deviation error bars (see Figure 2.23). But for the values |T | > 20 of |R| >> 20
the fir lies within these error bars. With increasing |T |, the predicted number of candidate
points using the regression fit converges very quickly to the simulation results. For more
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than 40 targets the difference between the two curves is negligible and in some parts the
curves even overlap, as can be seen for |T | > 50 and |R| = 60. So, for the given AoI of
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Figure 2.23: Final Candidate Point Numbers from Simulation and Regression-Fit�
Number of candidate points for di�erent numbers of receivers over the number of targets, where
the simulations results and the one standard deviation error bars (solid lines) as well as the results
using the �tted Equation 2.2 (dashed lines) are displayed.


10×10 units and RoD of ρ0 = 0.6, Equation 2.2 can be used to determine an approximation
for the number of candidate points in the final list, given a specific number of targets and
receivers.


Theoretical thoughts lead to the question of whether the increase of elements in the final
target list flattens out or even decreases, if more and more targets are in a fixed area. This
is implied because a limited AoI filled with more and more targets should lead at some
point to a saturation, when additional CPs or IPs do not dominate existing areas. Moreover,
a rising density of receivers and targets should lead to a small number of super-dominant


candidate points which enable the detection of a very large number of targets and so leading
to elimination of a huge amount of dominated candidate points. The reason is that the
high density enforces the probability of a receiver-target combination lying very close to
each other and so resulting in a very large detection disc encompassing a large number of
smaller detection discs. Therefore, we conducted simulations with very high numbers of
targets (up to 2,000) in order to verify or refute this conjecture. Because the calculation for
this large number of targets exceeds the possibilities of a normal desktop computer, we use
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the NPS HAMMING Cluster for these calculations. And even with this supercomputer the
processing time of a single configuration set is high that only 10 to 25 replications for each
design point are possible. A small set of the results is shown in Table 2.3. It shows the rapid


Table 2.3: Computing Time and Remaining Candidate Locations for High Target Num-
bers and Di�erent Numbers of Receivers


# targets # receivers # CPs Start # CPs End Computing Time [s]
250 50 3,224 296 14.41
500 50 13,282 956 228.01


1,000 50 52,863 3,456 6,967.65
1,500 50 116,074 7,264 45,217.54
500 25 7,385 635 112.16


1,000 25 29,513 2074 2,169.11
2,000 25 120,741 7,651 56,454.89
100 100 954 95 1.21
250 100 5,701 425 34.90
500 100 22,592 1,483 636.48


1,000 100 91,172 5,583 21,367.80


growth of computing time with high numbers of targets. A doubling of m, while keeping
all other parameters fixed, results in 20 to 40 times greater computing times. With this,
even the supercomputer is not able to solve for example the configuration of m = 1,800
and k = 50 with ten replications in four days. Thus, the calculation of those parameter
settings had to be aborted. For the outcomes we are able to solve, we do not see a decrease
in the trial number of CPs


To investigate the effect with other means, in a last experiment, we vary the RoD instead
of the number of targets. In a setting with k = 25 receivers and targets in the range m =


100,150, . . .300, we consider ρ0 = 0.5,1, . . .5. The results can be seen in Figure 2.24.
The plot shows clearly an increase of number of final and initial candidate points up to a
specific level of the RoD and then a decrease. For the initial points this decrease starts at
ρ0 = 2.5 and is not very steep. This means that at a specific level of the RoD, the DDs
become so large that multiple intersections between circles go down and the number of
potential positions for sources decrease. For the final candidate points the decrease starts
at ρ0 = 1.5. The number drops quickly and reaches a level below 10 candidate points for
ρ0 ≥ 4. This means that, starting with a RoD of two, larger DDs start to dominate smaller
ones, leading to some candidate points which dominate a large amount of other candidate
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Figure 2.24: Final Number of Candidate Points (solid lines) and Starting Number of
Candidate Points (dashed lines) for Di�erent Numbers of RoD�Number of candidate
points over RoD and standard deviation errorbars showing a decrease with larger RoDs.


points. For extreme values of a RoD greater than four, there are a few DDs that are so large
that they include a major amount of the present candidate points for this set. As a result,
only a few of these super-dominant points will be present after eliminating the dominated
points. So the assumption that larger DDs lead to dominating points of higher order, for
example, which detect a vast amount of targets, is proven, and so also a higher density of
targets and recaivers—which has as a consequence larger DDs—would lead to this result,
if the problem could be solved in an acceptable time.


Taking also the time for preprocessing into account (see Figure 2.25), one can see the
interesting effect, that the computing time develops with rising RoD in a way between the
two numbers of points with a slight tendency to the number of final points. For future work,
a closer look could be taken into this relation to determine an estimation of the connection
between preprocessing time, RoD, and the number of starting and final candidate points.
This would be helpful to assess for a given configuration of sensors and targets the number
of candidate points and expected computing before having to solve the whole problem.
Thus it would be possible to identify problems which are not solvable in an affordable time
with existing computer technology.
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Figure 2.25: Final Number of Candidate Points (solid lines), Starting Number of Candi-
date Points (dashed lines), and Preprocessing Time (dash-dotted) for Di�erent Num-
bers of RoD�Number of candidate points, resp. computing time over RoD.
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CHAPTER 3:


Improved Placement of Sources and Receivers


This chapter deals with the improved placement of sources and receivers for a given set
of targets—we present two main algorithms, Adapt-LOC and Iter-LOC, as well as their
advantages as well as their limitations.


To make the results comparable, the general setting for all computational experiments in
this chapter is always the same: in a square area with dimensions 10× 10 = 100 units2, a
number of m targets t ∈ T are randomly placed. Given a RoD ρ = 0.6 and the target weights
0 ≤ wt ≤ 1 characterizing their value, the task is to place k receivers r ∈ R and l sources
s ∈ S in a way that maximizes the expected value of the targets detected. In this setting,
we compare the results obtained from our algorithm with those obtained by OPT-LOC and
Greedy-LOC.


3.1 Source and Receiver Positioning Utilizing Detection
Discs


The investigated approach is based on the usage of DDs and a further development of the
LOC-GEN-II algorithm—the main procedure can be found in Figure 3.1 and is named
Adapt-LOC. As a starting point, only the positions of the targets are known. Thus it is
not possible to determine either the target-receiver distances or the radii of the resulting
DDs. Therefore, in the first step, all target positions are encircled with DDs based on
the RoD. Because a multistatic sonar system is used, a receiver within α ·ρ , where α is
a constant, can be used to detect the target. In a heuristic approach, we vary the radius
of the DDs by a fixed factor α , with the base case α = 1 and rt = ρ , as we calculate
intersection points of all DDs. The non-dominated candidate points (either IPs or CPs)
become possible receiver positions, and we use OPT-LOC or Greedy-LOC to determine
the k best of them. Now, we have a similar setting as in Chapter 2 and can use the same
approach again (combination of LOC-GEN-II and OPT-LOC or Greedy-LOC) to find the
optimal places for the l sources. In this section we use Greedy-LOC to determine the
locations of all sensors. The variation of α has, as a consequence, reduced target-receiver
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distances and larger target-source distances (dt,r < ρ and dt,s > ρ) for α < 1 and vice versa
dt,r > ρ and dt,s < ρ for α > 1 . This algorithm can be used as a two-step process (see


0. Input parameters are: targets T , xt ,∀t ∈ T , RoD ρ , α


1. Set dt = α ·ρ,∀t ∈ T , determine dt,t ′ ,∀t, t ′ ∈ T
2. Create DDs δt ∈ D, with center xt and radius dt ,∀t ∈ T
3. For all pairs of DDs δt ,δt ′ ∈ D calculate all It,t ′ and build I =


⋃
t,t ′∈T


It,t ′


4. Execute LOC-GEN-II as written in Figure 2.6
5. Choose k receiver locations using OPT-LOC or Greedy-LOC
6. Restart with LOC-GEN-II with the given sets of targets and receivers
7. Choose the l source locations using OPT-LOC or Greedy-LOC


Figure 3.1: Adapt-LOC to Find Best Places for Sources and Receivers Given a Set of
Targets�the main parts are highlighted in red


Figure 3.1) to place all receivers and sources. This is the base case computed in this thesis.
Alternatively, the sources and receivers could be split into groups, with each group placed
alternately until all are in place. The advantage of the second approach might be that the
combination of sources and receivers, placed up to a specific step, could add benefit to the
detection of additional targets in the next step, when placing the following subset of sources
and receivers. But in this thesis we focus on the base case of the new algorithm; the further
development can be done in future work.


The implementation of the base case algorithm in MATLAB can be found as a supplemental
download at the NPS Dudley Knox Library. For the implementation, the order of placing
the sensors is arbitrary. Accordingly we will use the terminology sensor type 1 and sensor


type 2 from now on.


Although it is not important whether sources or receivers are placed first, the number of
each sensor type is important. A placement of five sensors in the first step and ten in the
second step will lead to a different configuration of the near optimal positions compared to
the case of placing ten sensors first and five in the second step. The LOC-GEN-II algorithm
in step six of Figure 3.1 bases the placement of the sensors of type 2 on the location of the
targets and the k sensors of type 1. k = 5 leads a different set of shortest distances and thus
different radii of the DDs compared to k = 10, hence a different setting of candidate points,
from which Adapt-LOC determines the best ones.


To get an overview of the algorithm and its performance for different configurations of
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parameters, we use a nearly orthogonal Latin hypercube (NOLH) design, generated by a
spreadsheet of Sanchez (2011), to keep the design points and parameter configurations for
the first setting in a manageable size. Since all parameters m,k, l, and α can be varied, a
NOLH design yields a good approximation of the output values across the whole range of
the variables. We use the following ranges : m∈ [50,150], (k, l)∈ [5,50], and α ∈ [0.5,1.5].
The results (weighted percentage of detected targets and number of detected targets) can
be seen in Table 3.1. The first configuration represents the mid-point of the setting. The
following eight cases embody a situation when a smaller amount of receivers is placed at
first and in a second step a larger amount of sources (l > k). These are subdivided in two
groups with a starting target-receiver distance smaller then RoD (or α < 1) on the one hand
and α > 1 on the other. For the second block of eight settings, this subdivision into two
groups is equivalent, but now we look at a larger number of receivers and smaller number
of sources (k > l).


Table 3.1: Percentage of detected targets based on weights and overall number with Adapt-LOC
for di�erent con�gurations of targets, receivers, sources, and mean distance of receivers to the
targets compared to the random placement of the receivers with only optimal source placing
(benchmark).


# T # R # S Distance Adapt-LOC Benchmark Adapt-LOC Benchmark
m k l α weighted weighted # targets # targets


100 28 28 1 0.938 0.813 0.847 0.694
150 13 33 0.81 0.786 0.667 0.6568 0.551
119 22 42 0.5 0.976 0.892 0.903 0.773
63 39 47 0.94 1 0.999 1 0.999
75 11 25 0.56 0.866 0.731 0.710 0.567
88 19 50 1.31 0.999 0.988 0.998 0.934
69 5 36 1.13 0.925 0.861 0.769 0.673


144 30 44 1.25 0.974 0.909 0.914 0.812
106 8 16 1.38 0.560 0.444 0.453 0.352
113 36 5 0.69 0.455 0.300 0.362 0.251
131 50 19 0.88 0.841 0.713 0.751 0.628
56 25 11 0.75 0.889 0.581 0.764 0.473
94 47 39 0.63 1 0.987 1 0.942


125 44 30 1.44 0.876 0.863 0.788 0.771
50 42 22 1.19 0.973 0.937 0.912 0.832


138 16 8 1.06 0.402 0.305 0.328 0.254
81 3 13 1.5 0.628 0.604 0.536 0.514
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The standard deviations of the results are in the magnitude of 5% of the absolute values for
the improved placement, with 500 runs of every configuration. A test run with only 100
replications leads to the same magnitude of the standard deviations. This can be explained
by random placement of targets, so each experiment has a specific spatial target distribution
which may or may not be well detectable. For example, a configuration where many targets
are concentrated in a locally restricted area of the AoI will be easier to observe and so will
result in a higher percentage of detected targets in comparison to the case of all targets
being equally distributed over the whole area. So there is inherent variation in detection
probability even with the improved algorithm. Additionally, the benchmark algorithm with
randomly placed receivers has a higher standard deviation of the results (on average greater
than 7%) as a result of further variation due to randomness in the receiver positions.


Nevertheless, as an overall result, it can be observed that improved placement of receivers
and sources leads to better detection of the targets compared to the benchmark process
and the results of both procedures can be separated from each other. But the differences
between these two algorithms vary extremely for different parameter configurations with
a minimum of 2% in absolute detection percentage and a maximum of even more than
30%. Settings where both algorithms allow detection of all targets (Table 3.1, rows 4, 6,
and 12) are not further considered, because they do not allow differentiation between the
algorithms’ performance. As main trends, one can observe better performance with Adapt-
LOC when the sensor-target distance for the first step is less or equal to the RoD, and when
more sensors are placed in the first step (see the light-green-colored rows). The best perfor-
mance is reached with α = 0.75 and must sensors are placed in the first step; this leads to
an increased detection percentage of 30.9%. Values of α > 1.4 result in poorest improve-
ment with a negligible increase of 2%, which is lower than the standard deviation for this
experiment. But for α = 1.36 Adapt-LOC performs well again; that is why it is not possi-
ble to set up clear rules regarding which parameter combination leads to significantly better
results based on the NOLH designed configuration points. Therefore we conduct further
experiments over the whole range of the parameters to get an answer to this question.


Figure 3.2 shows the percentage of weighted target detection of a series of experiments for
m = 150 targets. Two random placement techniques are included in the graph: first the
random placement of the type 1 sensors, used by Craparo and Karataş (2014) (denoted as
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“Benchmark”), as well as complete random placement of both types of sensors, as used by
Washburn and Karataş (2015). The entirely random placement was the first used algorithm
and can so be seen as a base case. The graph reveals that all improved placements, even
the benchmark with only placing sensor type 2 optimally, significantly outperform the base
case. Detection rate of the benchmark algorithm is higher then the base case, but almost al-
ways below Adapt-LOC. Only α ≥ 1.5 results in fewer detected targets for some instances.
The reason for this is that placing many type 1 sensors with a large distance to the targets
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Figure 3.2: Improved Positioning of Receivers and Sources Using Adapt-LOC�Percentage
of detected weighted targets for improved and random placement of receivers and optimal source
placement. Both were placed at once, �rst the receivers and then the sources. α represents the
width of the detection discs of the targets for the �rst step of Figure 3.1, the set has m = 150
targets, and the number of receivers (k) and sources (l) determines the investigated con�guration.


(α � 1) in the first step has as a direct consequence the positioning of type 2 sensors in
close vicinity to the targets to achieve detection. If the number of type 2 sensors is much
lower than the number of type 1, only a few targets can be detected, because only a few
targets have a type 2 sensor in sufficiently close distance.


Another relationship can be discovered between radii of target DDs and detection probabil-
ity. A closer distance between target and first placed type 1 sensor always results in higher
detection performance. The best outcomes can be found for α ∈ {0,0.25,0.5}, which is
also a trend in the NOLH designed experiments. The justification for this is that if many
type 1 sensors are very close to targets, we have large DDs for the placement of type 2 sen-
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Table 3.2: Relation between Number of Di�erent Sensors, Radius of Target Detection
Discs and Detection Rate


# sensors type 1 # sensors type 2 radius of target DDs detection rate
k l α ∑mdetected/∑m


high low low very high
low high low low
high low high very low
low high high high


sors. Since these DDs have larger radii, the possibility of achieving multiple intersections
between them is higher, resulting in more candidate points for the optimal placement of
type 2 sensors. Hence, α < 1, up to a point, leads to better detection rates with an increas-
ing number of type 1 sensors (k) while the type 2 sensor number (l) is fixed. Such being the
case, when using Adapt-LOC to place sensors of both kinds (see Figure 3.1), one always
has to consider how many sensors are to be placed in each step, as well as the range of
the target-discs to find the best places for type 1 sensors. Table 3.2 summarizes the results.
Overall performance of the settings starting with α ≤ 0.75 is much better than settings with
larger values of α; therefore, in the following, only α ≤ 0.75 will be taken into account.
Figure 3.3 displays the results for this range of α with m = 200 targets. Again, Adapt-LOC
shows significantly higher detection rates compared to the benchmark algorithm. With a
standard deviation of around 5%, a clear distinction between the two kinds of placement is
possible; because of that, the improved placement overwhelms the partially random place-
ment. Up to 30% more targets can thus be detected by improved placement of both sensors,
where α = 0.5 shows the best overall performance. Two other visible trends in the graphs
are the increased detection with a larger number of either type 1 sensors or type 2 sensors.
More sensors lead to higher detection rate, as expected. We find that to achieve the highest
increase of performance using Adapt-LOC, one should choose α ≈ 0.5. Ten more sensors
of either increase the detection rate by approximately 10% for our instances. As conse-
quence, additional sensors to a given setting should always be equally distributed between
sources and receivers to gain the highest increase in performance.


Quantitative differences between Adapt-LOC and the benchmark can be seen in Figure 3.4.
Given is a set of targets (×××). In the left figure we see the candidate positions (•) and the
best locations (◦) for sensor type 1 (receivers) as chosen by Adapt-LOC. The middle plot
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Figure 3.3: Improved Positioning of Receivers and Sources using Adapt-LOC�Percentage
of detected weighted targets for improved and random placement of receivers and optimal source
placement for m = 200 targets. Only the random placements and the improved placements for
α ∈ {0,0.25,0.5,0.75} are displayed.


shows the selected positions of the type 1 sensors (◦), the candidate points for the positions
of sensor type 2 determined by LOC-GEN-II (•), and the optimally placed sensors of type 2
(4). The right plot shows the targets (×××) and randomly placed sensors of type 1 (◦) and, for
this configuration, the results for the optimal places of sensor type 2 (• and4). Adapt-LOC
detects 80% of the targets in this example, compared to 50% for the benchmark. Looking
at the structure of the result, Adapt-LOC shows a clustering of the type 1 sensors in the
space between groups of targets. For example, the group around (x,y)≈ (2,3) shows four
receivers in a group of nine detected targets, and only two sources are needed to achieve
detection. As another example the detection of six targets at (x,y) ∈ {(4.5,6.5),(0.5,2.5)}
is possible with only one source and two receivers.


But Adapt-LOC also has disadvantages. As mentioned before, for specific values of α ≥
1.5, the results become sometimes worse than the random placement of sensor type 1.
Another drawback is shown in Figure 3.5 for the case if α = 1. Radii of the DDs for type
1 sensor placement become ρ0. With this intersection points of the DDs and therefore
candidate points for sensor positioning are all ρ0 apart from the target positions. When in
the following step of Adapt-LOC the optimal positions of type 2 sensors are determined, the
optimal distance of these sensors to a target will often be ρ0, too. Thereby, sensor positions
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Figure 3.4: Sensor Placement for Partially Random and Improved Position Determina-
tion�Determination of optimal positions of type 1 sensors (left) for m = 50 targets, k = 20
receivers, l = 10 sources, and α = 0.5. Greedy-LOC was used to determine the optimal positions
of type 2 sensors (here source) for improved placement of type 1 sensors (middle) and randomly
placed receivers (right). Adapt-LOC (left and middle graph) allows detection of 80% of all tar-
gets, the partially random one as benchmark of 50%. Non-detected targets are labeled with their
number tx.


of type 1 and type 2 coincide frequently. What is omitted this way is the advantage of
multistatic detection systems to disperse receiver and source. In Figure 3.5, sensor positions
of type 1 (◦) and type 2 (4) coincide in nine of ten locations for Adapt-LOC (middle plot),
and the radii of the DDs in the left and middle figure match very often. These disadvantages
and the critical influence of individual parameter selection on the performance have to be
taken into account using Adapt-LOC. But when the parameters are set appropriately, large
improvements can be reached in comparison to the benchmark.


3.2 Near Locally Optimal Placement of Receivers and
Sources


We now extend Adapt-LOC to produce a locally optimal placement using an iterative
approaching—this further development is named Iter-LOC. As before, initially, only the
position of the targets is known. In the first step, we determine for type 1 sensors for a
specific value of α ∈ [0.25,0.75] as in Adapt-LOC. In the second step, the optimal posi-
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Figure 3.5: Sensor Placement for Random and Improved Position Determination�
Determination of optimal positions of sensors of type 1 (left) for m = 50 targets, k = 20 receivers,
l = 10 sources, and α = 1.0. Greedy-LOC was used to determine the optimal positions of sensor
of type 2 (here source) for improved placement of type 1 sensors (middle) and randomly placed
receivers (right). Adapt-LOC (left and middle graph) allows the detection of 60% of all targets,
the benchmark of 46%. Non-detected targets are labeled with their number tx.


tions of type 2 sensors are determined on the basis of the target and type 1 sensor positions,
again as in Adapt-LOC. After getting this first result, which is equivalent to the one in the
last section, we now iterate to find locally optimal solutions. The positions of the type 1
sensors are erased, and OPT-LOC or Greedy-LOC is used to recalculate their optimal lo-
cations based on the placement of targets and type 2 sensors. Afterward, all type 2 sensors
positions are erased and recalculated using OPT-LOC or Greedy-LOC, now for the given
places of targets and type 1 sensors. This process is repeated until no further improvement
can be reached with respect to target detection, where each iteration-step consists of two
single sub-steps to calculate positions of both kinds of sensors. Thus, Iter-LOC begins with
Adapt-LOC and proceeds using OPT-LOC or Greedy-LOC until no further improvement is
possessive. As result one gets a locally optimal positioning of sources and receivers based
on the location of targets. For the calculations in this section, we use Greedy-LOC to de-
termine the optimal locations of sensors. The reason for this is so that only the MATLAB
computing software is necessary and no additional software (GAMS) has to be used. This
becomes important when the HAMMING cluster-computer is used and a call of GAMS out
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of a MATLAB routine is not possible. Additionally, Iter-LOC uses a greedy-like approach
to determine candidate positions and so provides the preprocessed data in a greedy-like
format, such that the Greedy-LOC algorithm to determine near optimal locations should
lead to faster solutions of the problem.


In Figure 3.6 we see the results of using Iter-LOC with m = 100 targets in addition to the
results for all other algorithms discussed so far. A clear distinction between the outcomes
of the four ways of setting the sensors can be seen. The lowest results represent the random
placements (red and brown lines); these are always outperformed by Adapt-LOC when
α ∈ [0.25,0.75] (dashed lines). In these experiments the lower values of α perform better
than α = 0.75.
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Figure 3.6: Iterative Positioning of Receivers and Sources�Percentage of detected weighted
targets for Iter-LOC, Adapt-LOC, and random placement of receivers and sources for m = 100
targets. The iterative improved placements using Iter-LOC for α ∈ {0.25,0.5,0.75} are nearly
congruent with each other.


Using Iter-LOC different values of α ∈ [0.25,0.75], the detection rates nearly superimpose
with each other (solid lines). This means that the starting value of α has only a negligible
impact on the overall detection of targets when using Iter-LOC. This is reasonable because
α mainly effects the first positioning of the sensors of type 1. But after the first full iteration
of the local optimization process, these starting positions of the type 1 sensors get erased
and a complete new set of locations for them are determined. Thus the influence of α on
the detection rate is considerably reduced after the first iteration step. The results of Iter-
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LOC outperform all the other methods in all configurations of parameters and also lead to
an additional increase in target detection in comparison to Adapt-LOC, as can be seen in
Figure 3.6. For example, with the configuration k = 50, l = 10, α ∈ [0.25,0.5,0.75], almost
98% of the weighted targets can be detected; the best result of Adapt-LOC was 92% for
α ∈ [0.25, 0.5] and 0.74% for α = 0.75. Thus, at least an additional 6% more targets can
be detected using the same number of sensors. For the configuration α = 0.75, this values
jumps up to 24% more detected targets.


It can also be seen that the overall shape of the curves stays the same for Adapt-LOC and
Iter-LOC. Peaks of detection can be found for the largest number type 1 sensors, when
keeping the number of type 2 sensors constant and vice versa for the largest number of type
2 sensors for a constant type 1 sensor number. But the levels of detection for the iterative
placement are significantly higher.


The detection values of Iter-LOC for different combinations of parameters (m, k, l, α) can
be found in Table 3.3.


To show the great advantage of Iter-LOC the whole random placement of all sensors and
the benchmark with random placement of type 1 sensors as well as Adapt-LOC placement
are also displayed. The benchmark algorithm is still the random type 1 sensor and optimal
type 2 sensor placement.


The biggest improvements of Iter-LOC are highlighted in green and represent in excess
of 12% more detected targets compared to Adapt-LOC. Compared to the benchmark algo-
rithm, the increase in detected targets reaches almost 45%, which is an enormous enhance-
ment. Using the iterative approach, we also eliminate the comparably inferior results of
Adapt-LOC when choosing the “wrong” value for α . The difference of the detection rate
is less than 1% for all investigated values of α . Using the iterative approach, one always
gets locally optimal results regardless of which value of α had been chosen. The results for
m = 200 targets can be seen in Figure 3.7 and show even more clearly the great advantage
of Iter-LOC compared to random setting of type 1 sensor (solid orange line) and the Adapt-
LOC method (dashed red line). The configuration k = 50 and l = 10 reflects the superior
result of a more than 12% increase in target detection, which was also highlighted in Table
3.3.
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Table 3.3: Random, Partially Random, Adapt-LOC, and Iter-LOC Positioning of Re-
ceivers and Sources�Percentage of detected weighted targets for di�erent placement methods
di�erent number of targets.


# targets # 1 #2 Random Random Improved Iterative improved
m k l pure # 1 α = 0.5 α = 0.25 α = 0.5 α = 0.75


100 10 10 0.0452 0.3544 0.50660 0.535 0.5334 0.5256
100 50 10 0.1533 0.5435 0.9229 0.9777 0.9827 0.9824
100 50 30 0.3125 0.921 1 1 1 1
100 50 50 0.4092 1 1 1 1 1
150 10 10 0.0470 0.3022 0.4408 0.4603 0.4609 0.4631
150 30 10 0.1118 0.4171 0.6447 0.7228 0.7280 0.7253
150 50 10 0.1563 0.486 0.7762 0.8905 0.898 0.8924
150 10 30 0.1146 0.596 0.7019 0.7205 0.7232 0.7274
150 30 30 0.2427 0.767 0.9087 0.9432 0.9438 0.9404
150 50 30 0.3271 0.8536 0.9853 0.9990 0.9992 0.9986
150 10 50 0.1551 0.7951 0.8748 0.8758 0.888 0.8926
150 30 50 0.3242 09381 0.9967 0.9992 0.9995 0.9996
150 50 50 0.422 0.9881 1 1 1 1
200 10 10 0.0486 0.2744 0.393 0.4138 0.4161 0.4162
200 50 10 0.1627 0.4471 0.6929 0.8194 0.8325 0.8258
200 50 30 0.326 0.8055 0.9513 0.987 0.9877 0.9849
200 50 50 0.4352 0.9592 0.9997 1 1 1


To get an overview of the additional computer time needed to solve Iter-LOC, we show
the number of steps needed to achieve a detection probability deviating less than 0.1%
in the last two iterations in Figure 3.8. We determined this criterion empirically and find
that it leads to a sufficiently good solution while still restricting the number of iterations.
Lower limits did not lead to significantly better detection results but to a large increase in
iterations. According to the procedure, the lowest number of steps must always be five,
because each iteration consists of two steps and at least two iterations are needed to fulfill
the criterion. That is why the curves never go below this value. The number of steps starts
with a mean value around ten and lingers there for the different number of targets up to
the configuration k = 20, l = 30. Then the values start to swing and reach a maximum
of 20 to 30 for k ∈ [20,30] and l ∈ [40,50], and minimum values of five for k ∈ [40,50]
and l ∈ [30,50[. The smallest number of iterations is achieved when the target detection—
even with Adapt-LOC—reaches nearly 100%, and so no further iterations are necessary.
The highest number of iterations is needed in the “intermediate states” where the highest
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Figure 3.7: Iterative Positioning of Receivers and Sources�Percentage of detected weighted
targets for Iter-LOC, Adapt-LOC, and random placement of receivers and sources for m = 200
targets. Iter-LOC placements for α ∈ {0.25,0.5,0.75} fall nearly apart.
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Figure 3.8: Iterative Positioning of Receivers and Sources�Mean number of steps until in
the last four steps less than 0.1% change in the detected targets occurred; the minimum number
of steps must thus be �ve.


increase in detection rate can be reached due to the iterative approach. This tendency can,
for example, be observed for l = 20, where the iteration steps have a local maximum at
k = 50, which also represents the configuration with the highest gain in target detection.
This effect would also be expected for higher values of l > 30, but apparently the high


57







detection rate of Adapt-LOC overwhelms this effect leading to only a few iteration steps to
reach near optimal detection probability. Overall it can clearly be seen that the number of
iterations for this set of parameters stays in a computationally manageable order.


To estimate computational effort of Iter-LOC in comparison to the older methods and
Adapt-LOC, the mean computing time for 100 replications of an optimal placement using
random type 1 sensor placement, Adapt-LOC, and Iter-LOC are computed on the clus-
ter computer of NPS. The configuration was restricted to m ∈ {100,150,200}, (k, l) ∈
{10,20, . . .50}, and α = 0.5. This is sufficient because at this place we only want to esti-
mate the computing time of the new algorithms and find out whether they are computation-
ally manageable or not. Generating more efficient versions of these new algorithms could
be a task for further studies.


The computing times are depicted in Figure 3.9 and cannot be directly compared to the
computing times in Section 2.5, because different computers were used for calculations.
But the results allow an estimation whether Iter-LOC or the Adapt-LOC can be solved
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Figure 3.9: Computing Time for Di�erent Positioning Types of Receivers and Sources�
Mean computing time for m ∈ {100,150,200}, (k, l) ∈ {10,20, . . .50}, and α = 0.5 for random
sensor type 1 (dashed dotted), Adapt-LOC (dashed), and Iter-LOC (solid).


in an acceptable time frame. As a benchmark we use random type 1 sensor placement,
LOC-GEN-II for preprocessing and Greedy-LOC for optimal type 2 sensor positions; this
appears as dashed-dotted lines. The Adapt-LOC placement of both sensor types (dashed
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lines) needs approximately twice up to three times this reference time to solve the problems.
But this is still acceptable, especially taking into account the significantly increased target
detection rate with this new algorithm.


Switching to Iter-LOC, the computing time becomes, even for this set of parameters, ex-
ceedingly high. Compared to the benchmark algorithm, the computing is, in the case of
higher numbers of iterations, up to 100 times larger than the random type 1 sensor place-
ment. Compared with Adapt-LOC, on average a ten-folding of computing time takes place.
Thus, here a clear tradeoff has to take place between improved target detection by up to
12% compared to Adapt-LOC, and the increased computing time. Especially in the case of
high target numbers (m≥ 200) the computing time can become large—demonstrated by the
more than 100 seconds computing time to solve one configuration on a cluster computer.


An interesting effect is observed when running Iter-LOC with Greedy-LOC as a subroutine:
the optimal objective value does not always increase monotonically. This implies that a
solution in one iteration step could lead to slightly worse results compared to the former
one. Greedy-LOC delivers suboptimal solutions of the sensor placement problem. With
this, a situation can occur where, for example, all recent source positions (based on the
receiver positions of two steps back) are erased and newly calculated using detection discs
based on the actual receiver positions. But these detection discs can lead to another set of
best locations for the sources which might be a bit disadvantageous compared to the former
set. To investigate the tradeoffs involved in using a greedy approach to sensor placement,
we now use OPT-LOC as subroutine in Iter-LOC.


3.3 Exact Locally Optimal Placement of Receivers and
Sources


One disadvantage of using Opt-LOC as a subroutine in Iter-LOC is that different software
platforms have to be utilized. Due to restrictions of the cluster computer (it is impossible
to run a MATLAB routine with a GAMS subroutine on the cluster), this experiment is
conducted on a desktop computer with performance data as described in Chapter 2. This
shows one shortcoming of using two different software platforms, because an outsourced
solution of the problem on the faster cluster computer may not be possible. Computing
times for identical problems solved on the cluster computer and on the desktop computer
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grow by a factor of three in our experience, so computing times of the results in this section
are not directly comparable to those of the last.


Figure 3.10 and Figure 3.11 compare the performance of Iter-LOC when Greedy-LOC and
OPT-LOC are used as subroutines. One trend that is observable in the results is a declining
performance in target detection with the following order of configurations: Iter-LOC with
OPT-LOC, Iter-LOC with Greedy-LOC, Adapt-LOC with OPT-LOC, and Adapt-LOC with
Greedy-LOC. As expected, the exact Iter-LOC algorithm outperforms all other algorithms
without exception and results in the best set of detected targets. But Iter-LOC with Greedy-
LOC is nearly as good. OPT-LOC allows up to 1% more detected targets compared with
the near locally optimal solutions using Greedy-LOC for m = 100 targets (see Figure 3.10)
and up to 2.5% for m = 200 targets (see Figure 3.11). The overall detection rate of the
benchmark algorithm can thus be outperformed by more than 45.5%, which is a significant
increase in performance. The greedy approach is, with up to 44%, not much inferior, but
better results of the exact algorithm make that one the method of choice. It can also be seen
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Figure 3.10: Locally Optimal Positioning of Receivers and Sources Using Greedy-LOC
and OPT-LOC�Percentage of detected weighted targets for improved placements and random
placement of receivers and sources for m = 100 targets. Exact locally optimal approach using
OPT-LOC (solid lines) compared to near optimal locations using Greedy-LOC (dashed) and the
benchmark (red line).


that for both optimizations the gap between Iter-LOC and Adapt-LOC becomes larger with
increasing target numbers (see here especially Figure 3.11). Adapt-LOC achieves 14% less
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Figure 3.11: Locally Optimal Positioning of Receivers and Sources Using Greedy-LOC
and OPT-LOC�Percentage of detected weighted targets for improved placements and random
placement of receivers and sources for m = 200 targets. Exact locally optimal approach using
OPT-LOC (solid lines) compared to near optimal locations using Greedy-LOC (dashed) and the
benchmark (red line).


detection for a configuration with k = 50 and l = 10 compared to Iter-LOC. As a result
Iter-LOC should always be preferred with respect to detection performance.


But also keeping computing time and iteration steps in mind, one sees great disadvantages
of Iter-LOC, especially when using Greedy-LOC. As stated before, detection rates are not
always increasing in successive iteration steps when using Greedy-LOC. Whereas, using
OPT-LOC, each successive iteration step must always lead to better or at least the same per-
formance. Solving the ILP cannot result in detection discs, which lead to decreased target
detection in successive iterations and so detection rates are monotonically increasing. The
outcome of this fact is a lower number of iterations, especially for larger target numbers,
when using OPT-LOC (see Figure 3.12). The curves of the exact approach (solid lines)
never exceed 14 steps and show a relatively smooth trend. On the contrary, when using
Greedy-LOC we perform up to 37 steps and see distinct peaks for specific configurations
of parameters (dashed lines).


This first drawback of using Iter-LOC with Greedy-LOC is underlined by the corresponding
computing times, which are displayed in Figure 3.9 in the last section. Even on a cluster-
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Figure 3.12: Locally Optimal Iterative Positioning of Receivers and Sources�Mean num-
ber of iterations until in the four following steps less than 0.1% change in the detected targets
occurred; the minimum number of iteration steps must so be �ve.


computer a solution of moderate problems could need more than 160 seconds, which is a
computing time more than 100 times larger than the benchmark. As stated previously, com-
puting times are not directly comparable for different methods because different computer
systems had been used, but Figure 3.13 shows better overall performance when using Iter-
LOC with OPT-LOC. The multiplication factor to the benchmark performance goes down
to 50 as maximum value and a problem solution can be achieved in less than 250 seconds
on a standard computer. On a cluster-computer, which on average performs three times
faster than the standard computer, this would be equivalent to 80 seconds for Iter-LOC
with OPT-LOC and so half the computing time of Iter-LOC with Greedy-LOC.


This result is remarkable, because using Iter-LOC with OPT-LOC needs recurrent writing
and reading of intermediate results in files by both software tools (GAMS and MATLAB).
This is necessary in each iteration step and represents a very time consuming procedure.
But even with this time consuming procedure Iter-LOC with OPT-LOC needs only half
the equivalent computing time of Iter-LOC with Greedy-LOC. A further development of
the connection and data handover between the two programs would have a great gain in
performance as an implication and could be investigated in future studies. But even with
reduced performance of Iter-LOC with OPT-LOC used in this thesis, it still outperforms
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Figure 3.13: Computing Time for Iterative Exact Locally Optimal Positioning of Receivers
and Sources�Mean computing time for m ∈ [100,150,200], (k, l) ∈ [10,20, . . .50] and α = 0.5
for random sensor type 1 (dashed dotted), Adapt-LOC (dashed) and Iter-LOC placement (solid).


in both cases, the numbers of iterations as well as the computing time itself, Iter-LOC
with Greedy-LOC significantly. With this, the Iter-LOC with Greedy-LOC has only one
advantage in comparison to the Iter-LOC with Opt-LOC: the restriction to one software
platform. In all other categories (target detection and computing time in iterative and one-
step approach, as well as number of iterations), it is always outperformed by Iter-LOC
with OPT-LOC; therefore, the greedy approach should only be used if one has to stick to
one software platform. In all other cases the Iter-LOC with OPT-LOC should be used as
method of choice.


But even though the exact location determination leads to great detection values, a clear
balancing of benefit (additional target detection) and expenditure (increased computing
time) has to take place whether using Iter-LOC or Adapt-LOC. When the application is not
time critical and the number of sensors and targets does not become too large (m < 500
targets, resp. m+ k + l < 500), Iter-LOC should be used. But if the number of targets
and sensors gets far beyond these values or the problem is time critical, the computational
time of problem dissolution reaches unacceptable levels and the usage of cluster computers
to solve the problems is inevitable. If cluster computing is not usable due to restrictions
in operating GAMS out of MATLAB then this is not a viable solution. Therefore, future
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work should also focus on implementing the solution of OPT-LOC in MATLAB instead
of GAMS. This should be possible, because MATLAB offers also optimization toolboxes,
but this work was beyond the scope of this thesis. The implementation of the OPT-LOC in
MATLAB would make it possible to make all calculations on one software platform, which
is applicable to the cluster computer and does not need successive writing and reading of
files. As a result, overall performance of the exact locally optimal algorithm should thus be
increased drastically.
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CHAPTER 4:


Conclusion


Optimal sensor placement in multistatic environments is a mathematically highly com-
plex problem. Researchers in the past have attempted this, usually facing the problem of
unacceptably long computing times due to the complexity of the problem when multiple
sensors have to be placed (Craparo & Karataş, 2014; Kuhn, 2014). Introducing DDs opens
new possibilities to determine optimal sensor placement in multistatic sonar environments.
The starting point for the preprocessing always has to be the determination of these points
as either intersection points or center points of DDs. Sensor placement can only be op-
timal at non-dominated points, for which reason the key of successfully developing fast
preprocessing algorithms is the theory of dominated and non-dominated points and the
rapid separation of these two classes of points. Recent preprocessing uses this theory in
its benchmark algorithm, but compares every candidate point with one another. Due to
the high complexity of this algorithm, computing time becomes unacceptably large with
greater problems.


We have developed the LOC-GEN-II algorithm, a fast method to solve this problem based
on an iterative greedy-like approach. This process reduces the necessary calculations in
each iteration step by determining the most dominant point and eliminating all of those
candidate locations that are dominated by it. This leads to a reduction of computing time
of up to 56%.


Following preprocessing, a sensor placement has to be found. We have investigated the
possibility to reduce overall computing time of preprocessing and optimal sensor position
by terminating the preprocessing at earlier stages and not investigating all possible can-
didate positions. LOC-GEN-II allows this proceeding based on the greedy-like approach
being used for candidate point selection. Reduction of computing times is possible, but
only in subordinate magnitude. Due to computationally higher complexity of this com-
bined processing and the comparably low performance gain, it is not recommended to be
used.
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Additionally, we have investigated the number of final candidate points in the reduced
candidate point list. We observed a relationship between target number and number of
final candidate locations. The class of the point (IP or CP of DD) has the most significant
influence on the trend of the preprocessing time for different numbers of targets. Increasing
numbers of targets lead to an ascending number of final candidate points. Using regression,
we are able to make very good predictions for several combinations of numbers of targets
and sensors. Analyzing the influence of the detection range (RoD) leads to the interesting
result of a decreasing number of candidate points for larger values of RoD.


Continuing on, we have developed an algorithm to deploy both kinds of sensors for a given
set of targets. The benchmark was the recent algorithm which allowed optimal positioning
of sources for a given set of targets and receivers, both of which are already in place.
Thus, placement of both types of sensors in multistatic systems has not been possible in
a reasonable time up to now. Based on LOC-GEN-II, we use the concept of DD to solve
the optimization problem in a two-step or iterative approach. For a set of targets we use
an adapted LOC-GEN-II algorithm to identify locations for the receivers. Based on this
choice, we determine optimal source locations using LOC-GEN-II as an existing placing
algorithm. Compared to the benchmark algorithm, we obtain considerably better detection
results, and it is possible to increase the number of detected targets by up to 30%.


We have also developed an iterative approach for placing both types of sensors. In the
first step, we execute the calculation stated in the paragraph above. Starting from this first
guess, in each iteration step the positions of type 1 sensors are erased and recalculated
based on the positions of targets and type 2 sensors from the previous step. With these new
positions of type 1 sensors and targets, we calculate improved locations for the placement
of type 2 sensors. This ends the first iteration step, and we repeat the process until only
slight enhancements of detection are possible. This process leads to improved detection
probability of up to 44% compared to the benchmark and, additionally, clearly outperforms
the one-step algorithm. For both placement processes (one-step and iterative), near optimal
greedy solutions as well as locally optimal ILP solutions are compared. Interestingly, for
the iterative approach, ILP outperforms the greedy approach in terms of iteration steps,
though not necessarind in terms of computing time.


For a higher number of targets, computing time grows rapidly. This leads to problems,


66







especially for the iterative approach, and shows the limitations of the developed algorithms.
Another limitation is the fact that the iterative algorithms only guarantees a locally optimal
solutions, not globally optimal.


For further analysis globally optimal solutions could be developed, with the restriction of
solving the problem in an adequate time. Another possibility is implementing the ILP
solution into MATLAB and so restricting the whole calculation process on one software
platform. Up to now, the preprocessing has taken place in MATLAB and the optimization
in GAMS, which requires time consuming calls of the different programs and storing tem-
porary results in files in each step. Combining both algorithms in one software platform
(e.g., MATLAB) should therefore lead to a significant reduction of computing time. An-
other interesting work with respect to the preprocessing part could be a closer look into the
relation between possible candidate point number, final candidate point number, and RoD
and their relation with respect to the configuration of the experimental setting.
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APPENDIX A:


Calculation of Intersection Points of Detection Discs


Assume two DDs δi, center (xi,yi), radius ri and δ j, center (x j,y j), radius r j. The distance
between their centers can be calculated via di j =


√
(xi− x j)2 +(yi− y j)2 and these discs


intersect if di j ≤ ri + r j and they overlap if di j < ri + r j. The intersection points (xi j,yi j),
resp. (x′i j,y


′
i j) of the DDs can than be calculated using the following formulae (Craparo &


Karataş, 2014, p. 16):


xi j,x′i j =
xi + x j


2
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APPENDIX B:


MATLAB Implementation Of LOC-GEN-II


1 c l c
2 c l e a r a l l
3 %------------------------------------- PARAMETERS TO BE CHANGED


-------------------------------------%


4 m=10; % length of area A


5 n =10; % width of area A


6 nS =10; % 5:5:50 % Numbers of Sources - also declare in line 20


7 nT =50; % 20:20:200 % Starting number of targets - also declare in line 21


8 nR=50; % number of receivers = default 50


9 n u m t r i a l s =100; % number of trials to run = default 100


10 rho = 0 . 6 ; % range of the day = default 0.6


11 p l o t g r a p h =0; % plotgraph = 1 to activate plot


12 %------------------------------------- PARAMETERS TO BE CHANGED (END)


---------------------------------%


13


14 DATA= z e r o s ( n u m t r i a l s * l e n g t h ( nS ) * l e n g t h ( nT ) , 1 4 ) ;
15 A v e r a g e R e s u l t s = z e r o s ( l e n g t h ( nS ) * l e n g t h ( nT ) , 1 3 ) ;
16 i n d =0;
17 d a t a _ i n d =0;
18


19 f o r nS=10 % 5:5:50 % Number of sources


20 f o r nT = 5 0 ; % 20:20:200 % Number of targets


21 i n d = i n d + 1 ;
22 % Generate all needed Matrizes to make the calculation faster


23 c o v e r e d _ g r e e d y = z e r o s ( n u m t r i a l s , 1 ) ;
24 g r e e d y _ t i m e = z e r o s ( n u m t r i a l s , 1 ) ;
25 o p t _ t i m e = z e r o s ( n u m t r i a l s , 1 ) ;
26 c o v e r e d _ o p t = z e r o s ( n u m t r i a l s , 1 ) ;
27 p e r c e n t _ c o v e r e d = z e r o s ( n u m t r i a l s , 1 ) ;
28 NumberofCPsBefore= z e r o s ( n u m t r i a l s , 1 ) ;
29 NumberofCPsAfter= z e r o s ( n u m t r i a l s , 1 ) ;
30 c r e a t e C P _ t i m e = z e r o s ( n u m t r i a l s , 1 ) ;
31 sum_W= z e r o s ( n u m t r i a l s , 1 ) ;
32 c o v e r a g e _ r a t i o = z e r o s ( n u m t r i a l s , 1 ) ;
33 % Run through the number of trials for each congifuration to get statistical


significant results


34 f o r t r i a l = 1 : n u m t r i a l s
35 nS
36 nT
37 t r i a l
38 %Set initial values to zero


39 DistTR= z e r o s ( nT , nR ) ; % target-receiver distance matrix


40 DistTT= z e r o s ( nT , nT ) ; % target-target distance matrix
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41 T a r g e t s V i s i b l e = z e r o s ( nT ^2 , nT ) ; % matrix with targets visible from


intersection points


42 TargVisBinComp = ones ( nT ^2 , nT ) ; % binary matrix: ones = target not visible


from intersection point


43 N u m b e r I n t e r s e c t i o n = z e r o s ( nT ^ 2 , 4 ) ; % matrix for internal relation of


datection disc numbers


44 N u m I n t e r s e c t i o n s = z e r o s ( nT , 1 ) ; % vector with # of intersection points of


each detection disk


45 r a d i u s = z e r o s ( nT , nR ) ; % radius of contours for each target and


receiver set


46 PoD= z e r o s ( nT* 2 , nT ) ; % PoD of each target by a receiver for


every CP


47 CPReduced= z e r o s ( nT , 2 ) ; % matrix of reduced CP-set, maximum # of


not diminated CPs is nT


48


49 % random coordinates for receivers


50 R=rand ( nR , 2 ) ; R ( : , 1 ) =R ( : , 1 ) *m; R ( : , 2 ) =R ( : , 2 ) *n ;
51 % random coordinates for targets


52 T=rand ( nT , 2 ) ; T ( : , 1 ) =T ( : , 1 ) *m; T ( : , 2 ) =T ( : , 2 ) *n ;
53 % random weights for targets


54 W=rand ( 1 , nT ) ; sum_W( t r i a l ) =sum (W) ;
55


56 % create the target-receiver distance matrix and radius matrix


57 f o r t =1 : nT
58 f o r r =1 : nR
59 DistTR ( t , r ) = s q r t ( ( R( r , 1 )−T ( t , 1 ) ) ^2+(R( r , 2 )−T ( t , 2 ) ) ^2 ) ;
60 r a d i u s ( t , r ) = rho ^ 2 . / DistTR ( t , r ) ;
61 end
62 end
63 max_rad ius =max ( r a d i u s , [ ] , 2 ) ;
64 % create the target-target distance matrix


65 f o r t i =1 : nT
66 f o r t j =1 : nT
67 DistTT ( t i , t j ) = s q r t ( ( T ( t i , 1 )−T ( t j , 1 ) ) ^2+(T ( t i , 2 )−T ( t j , 2 ) ) ^2 ) ;
68 end
69 end
70


71 t i c
72 C o u n t T o t I n t e r = 0 ;
73 % Set all target positions as possible canditate points


74 ReduceCen te r = T ;
75 % find the intersection points of all disks


76 f o r i n t 1 =1: nT−1 % target A


77 f o r i n t 2 = i n t 1 +1: nT % target B


78 % compute the (x1,y1) and (x2,y2) intersection points of disks


79 x1 =(T ( i n t 2 , 1 ) +T ( i n t 1 , 1 ) ) / 2 + ( T ( i n t 2 , 1 )−T ( i n t 1 , 1 ) ) * ( max_rad ius ( i n t 1 )
^2−max_rad ius ( i n t 2 ) ^2 ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) − ( T ( i n t 2 , 2 )−T ( i n t 1
, 2 ) ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) * s q r t ( ( ( max_rad ius ( i n t 1 ) + max_rad ius (
i n t 2 ) ) ^2−DistTT ( i n t 1 , i n t 2 ) ^2 ) * ( DistTT ( i n t 1 , i n t 2 ) ^2−( max_rad ius (
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i n t 1 )−max_rad ius ( i n t 2 ) ) ^2 ) ) ;
80 y1 =(T ( i n t 2 , 2 ) +T ( i n t 1 , 2 ) ) / 2 + ( T ( i n t 2 , 2 )−T ( i n t 1 , 2 ) ) * ( max_rad ius ( i n t 1 )


^2−max_rad ius ( i n t 2 ) ^2 ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) + ( T ( i n t 2 , 1 )−T ( i n t 1
, 1 ) ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) * s q r t ( ( ( max_rad ius ( i n t 1 ) + max_rad ius (
i n t 2 ) ) ^2−DistTT ( i n t 1 , i n t 2 ) ^2 ) * ( DistTT ( i n t 1 , i n t 2 ) ^2−( max_rad ius (
i n t 1 )−max_rad ius ( i n t 2 ) ) ^2 ) ) ;


81 x2 =(T ( i n t 2 , 1 ) +T ( i n t 1 , 1 ) ) / 2 + ( T ( i n t 2 , 1 )−T ( i n t 1 , 1 ) ) * ( max_rad ius ( i n t 1 )
^2−max_rad ius ( i n t 2 ) ^2 ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) + ( T ( i n t 2 , 2 )−T ( i n t 1
, 2 ) ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) * s q r t ( ( ( max_rad ius ( i n t 1 ) + max_rad ius (
i n t 2 ) ) ^2−DistTT ( i n t 1 , i n t 2 ) ^2 ) * ( DistTT ( i n t 1 , i n t 2 ) ^2−( max_rad ius (
i n t 1 )−max_rad ius ( i n t 2 ) ) ^2 ) ) ;


82 y2 =(T ( i n t 2 , 2 ) +T ( i n t 1 , 2 ) ) / 2 + ( T ( i n t 2 , 2 )−T ( i n t 1 , 2 ) ) * ( max_rad ius ( i n t 1 )
^2−max_rad ius ( i n t 2 ) ^2 ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) − ( T ( i n t 2 , 1 )−T ( i n t 1
, 1 ) ) / (2 * DistTT ( i n t 1 , i n t 2 ) ^2 ) * s q r t ( ( ( max_rad ius ( i n t 1 ) + max_rad ius (
i n t 2 ) ) ^2−DistTT ( i n t 1 , i n t 2 ) ^2 ) * ( DistTT ( i n t 1 , i n t 2 ) ^2−( max_rad ius (
i n t 1 )−max_rad ius ( i n t 2 ) ) ^2 ) ) ;


83 % if the intersection points are real (means they actually intersect)


appoint them to the matrix IP.


84 % If a disk has intersection points, the center point of the disk will


never become a candidate point,


85 % because it will always be subdominant to one of the points on the


edge


86 i f ( i s r e a l ( x1 ) ==1) && ( i s r e a l ( y1 ) ==1) && ( i snan ( x1 ) ==0) && ( i snan ( y1 )
==0) && ( i s i n f ( x1 ) ==0) && ( i s i n f ( y1 ) ==0)


87 % Increase the counter for the intersections of both disks related


to the target pair


88 N u m I n t e r s e c t i o n s ( i n t 1 ) = N u m I n t e r s e c t i o n s ( i n t 1 ) + 1 ;
89 N u m I n t e r s e c t i o n s ( i n t 2 ) = N u m I n t e r s e c t i o n s ( i n t 2 ) + 1 ;
90 % Because an intersection exists, erase the center point from the


Candidate Point List of the targets


91 ReduceCen te r ( i n t 1 , : ) = z e r o s ;
92 ReduceCen te r ( i n t 2 , : ) = z e r o s ;
93 % Increase the counter of the overall number of intersections


94 C o u n t T o t I n t e r = C o u n t T o t I n t e r + 2 ;
95 % Fill matrix with targets numbers and coordinates of interscetion


points for further calculation


96 N u m b e r I n t e r s e c t i o n ( C o u n t T o t I n t e r −1 ,1 :2 ) = [ i n t 1 , i n t 2 ] ;
97 N u m b e r I n t e r s e c t i o n ( C o u n t T o t I n t e r , 1 : 2 ) = [ i n t 1 , i n t 2 ] ;
98 N u m b e r I n t e r s e c t i o n ( C o u n t T o t I n t e r −1 ,3 :4 ) = [ x1 , y1 ] ;
99 N u m b e r I n t e r s e c t i o n ( C o u n t T o t I n t e r , 3 : 4 ) = [ x2 , y2 ] ;


100 % Fill matrix of visible targets from each intersection point with


visible target number (int3) and set binary element to ZERO (


visible)


101 f o r i n t 3 = 1 : nT
102 i f s q r t ( ( x1−T ( i n t 3 , 1 ) ) ^2+( y1−T ( i n t 3 , 2 ) ) ^2 ) < max_rad ius ( i n t 3 )


+0.00001
103 T a r g e t s V i s i b l e ( C o u n t T o t I n t e r −1, i n t 3 ) = i n t 3 ;
104 TargVisBinComp ( C o u n t T o t I n t e r −1, i n t 3 ) = 0 ;
105 end
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106 i f s q r t ( ( x2−T ( i n t 3 , 1 ) ) ^2+( y2−T ( i n t 3 , 2 ) ) ^2 ) < max_rad ius ( i n t 3 )
+0.00001


107 T a r g e t s V i s i b l e ( C o u n t T o t I n t e r , i n t 3 ) = i n t 3 ;
108 TargVisBinComp ( C o u n t T o t I n t e r , i n t 3 ) = 0 ;
109 end
110 end
111 end
112 end
113 end
114 % Erase all rows in matrixes for discs with NO intersactions


115 T a r g e t s V i s i b l e ( a l l ( T a r g e t s V i s i b l e ==0 ,2) , : ) = [ ] ;
116 TargVisBinComp ( a l l ( TargVisBinComp ==1 ,2) , : ) = [ ] ;
117 N u m b e r I n t e r s e c t i o n ( a l l ( N u m b e r I n t e r s e c t i o n ==0 ,2) , : ) = [ ] ;
118 % Eliminate all rows in the Candidate Point List of the targets with


intersections


119 ReduceCen te r ( a l l ( ReduceCen te r ==0 ,2) , : ) = [ ] ;
120 % Starting number of candidate points


121 NumberofCPsBefore ( t r i a l ) = s i z e ( ReduceCenter , 1 ) + C o u n t T o t I n t e r
122


123 % Now generate the Reduced Candidate Point List


124 % FIRST STEP: Find the Candidate Points of the discs with NO intersection


125 % A target position is a Candidate Point, if there is NO other disc without


intersection in the disc


126 % OR


127 % there is another disc without intersection in the disc AND the inner disc


does not include the center point of the outer disc


128 I n d e x Z e r o s = f i n d ( ~ N u m I n t e r s e c t i o n s ) ;
129 CPreducedCounte r = 0 ;
130 f o r i = 1 : l e n g t h ( I n d e x Z e r o s )
131 Flag = 1 ;
132 f o r j = 1 : l e n g t h ( I n d e x Z e r o s )
133 i f DistTT ( I n d e x Z e r o s ( i ) , I n d e x Z e r o s ( j ) ) < max_rad ius ( I n d e x Z e r o s ( i ) ) &&


DistTT ( I n d e x Z e r o s ( i ) , I n d e x Z e r o s ( j ) ) > max_rad ius ( I n d e x Z e r o s ( j ) )
134 Flag = 0 ;
135 end
136 end
137 i f Flag == 1
138 CPreducedCounte r = CPreducedCounte r + 1 ;
139 CPReduced ( CPreducedCounter , : ) = ReduceCen te r ( i , : ) ;
140 % Build up the PoD Matrix needed for the greedy algorithm : If CP Y


sees target X, then element X in the column Y of the POD matrix is


set to ONE


141 PoD ( CPreducedCounter , I n d e x Z e r o s ( i ) ) = 1 ;
142 end
143 end
144 S t a r t I n t e r s e c t i o n P o i n t s = CPreducedCounte r + 1 ;
145


146 % SECOND STEP - iteratively:
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147 % A - find the Intersection Point which detects the most targets (most


dominant), put it in the Reduced Candidate Point List


148 % B - eliminate all intersection points which are dominated by the point from


step A from the Candidate Point List


149 % Repeat A and B as long there are intersection points in the Candidate Point


List (= elements in matrix 'TargetsVisible ')


150 l a e u f e r 2 = 0 ;
151 whi le ( ~ isempty ( T a r g e t s V i s i b l e ) )
152 l a e u f e r 2 = l a e u f e r 2 + 1 ;
153 T a r g v i s ( l a e u f e r 2 ) = s i z e ( T a r g e t s V i s i b l e , 1 ) ;
154 % Find the first most dominant intersection point


155 dominan t = f i n d ( max ( nT−sum ( TargVisBinComp , 2 ) ) ==(nT−sum ( TargVisBinComp , 2 ) )
, 1 ) ;


156 dominan tBin = TargVisBinComp ( dominant , : ) ;
157 % determine which targets can be detected from this intersection point


158 VisElm = T a r g e t s V i s i b l e ( dominant , : ) ;
159 VisElm ( a l l ( VisElm ==0 ,1) ) = [ ] ;
160 % Add the dominant intersection point to the Reduced Candidate Point List


161 CPreducedCounte r = CPreducedCounte r +1 ;
162 CPReduced ( CPreducedCounter , : ) = N u m b e r I n t e r s e c t i o n ( dominant , 3 : 4 ) ;
163 % Generate the PoD Matrix endtry for the intersection point


164 f o r l o o p c o u n t e r = 1 : l e n g t h ( VisElm )
165 PoD ( CPreducedCounter , VisElm ( l o o p c o u n t e r ) ) = 1 ;
166 end
167 % Loop through all remaining intersection points.


168 % Find all dominated intersection points and erase the related entries


169 % A Point is DOMINATED if it sees the same or fewer targets then the


DOMINANT point


170 % BUT it must not see any other target, not visible for the dominant point


171 f o r subdominan t = 1 : s i z e ( T a r g e t s V i s i b l e , 1 )
172 i f ( sum ( VisElm == f i n d ( T a r g e t s V i s i b l e ( subdominant , : ) ~ =0 ,1 ) ) ==1)
173 i f ( sum ( dominan tBin . * T a r g e t s V i s i b l e ( subdominant , : ) ) ==0)
174 N u m b e r I n t e r s e c t i o n ( subdominant , : ) = z e r o s ;
175 T a r g e t s V i s i b l e ( subdominant , : ) = z e r o s ;
176 TargVisBinComp ( subdominant , : ) = ones ;
177 N u m I n t e r s e c t i o n s ( f i n d ( T a r g e t s V i s i b l e ( 1 , : ) ~ =0 ,1 ) ) =


N u m I n t e r s e c t i o n s ( f i n d ( T a r g e t s V i s i b l e ( 1 , : ) ~ =0 ,1 ) )−1;
178 end
179 end
180 end
181 % Clear out the related elms to this dominant point from the working data


to find the next most dominant intersection point


182 N u m b e r I n t e r s e c t i o n ( dominant , : ) = z e r o s ;
183 T a r g e t s V i s i b l e ( dominant , : ) = z e r o s ;
184 TargVisBinComp ( dominant , : ) = ones ;
185 N u m I n t e r s e c t i o n s ( VisElm ( 1 ) ) = N u m I n t e r s e c t i o n s ( VisElm ( 1 ) )−1;
186 % Eliminate all empty rows in the matrices


187 T a r g e t s V i s i b l e ( a l l ( T a r g e t s V i s i b l e ==0 ,2) , : ) = [ ] ;
188 TargVisBinComp ( a l l ( TargVisBinComp ==1 ,2) , : ) = [ ] ;
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189 N u m b e r I n t e r s e c t i o n ( a l l ( N u m b e r I n t e r s e c t i o n ==0 ,2) , : ) = [ ] ;
190 end
191 % Eliminate all empty rows in the matrices


192 CPReduced ( a l l ( CPReduced ==0 ,2) , : ) = [ ] ;
193 PoD ( a l l ( PoD==0 ,2) , : ) = [ ] ;
194 NumberofCPsAfter ( t r i a l ) = CPreducedCounte r ;
195 c r e a t e C P _ t i m e ( t r i a l ) = t o c ;
196


197 %---------------------------------- End of new algorithm to calculate the Canditate


Point List ----------------------------------%


198


199 %------------------------------------- CREATE THE TXT FILES FOR K, a and P


-------------------------------------%


200 f id_D = fopen ( ’MATLAB_D. t x t ’ , ’w’ ) ;
201 f o r i =1 : s i z e ( PoD , 1 ) %number of candidate points


202 f o r t =1 : nT %number of targets


203 i f PoD ( i , t ) ==1
204 P _ s t r = s t r c a t ( ’CP ’ , num2str ( i ) , ’ . t ’ , num2str ( t ) ) ;
205 f p r i n t f ( f id_D , ’%s \ r \ n ’ , P _ s t r ) ;
206 end
207 end
208 end
209 f c l o s e ( f id_D ) ;
210


211 f i d _ t = fopen ( ’MATLAB_t . t x t ’ , ’w’ ) ;
212 f o r t =1 : nT
213 t _ s t r = s t r c a t ( ’ t ’ , num2str ( t ) ) ;
214 f p r i n t f ( f i d _ t , ’%s \ r \ n ’ , t _ s t r ) ;
215 end
216 f c l o s e ( f i d _ t ) ;
217


218 f i d _ r = fopen ( ’MATLAB_r . t x t ’ , ’w’ ) ;
219 f o r r =1 : nR
220 r _ s t r = s t r c a t ( ’ r ’ , num2str ( r ) ) ;
221 f p r i n t f ( f i d _ r , ’%s \ r \ n ’ , r _ s t r ) ;
222 end
223 f c l o s e ( f i d _ r ) ;
224


225 f i d _ s = fopen ( ’MATLAB_s . t x t ’ , ’w’ ) ;
226 f o r s =1 : nS
227 s _ s t r = s t r c a t ( ’ s ’ , num2str ( s ) ) ;
228 f p r i n t f ( f i d _ r , ’%s \ r \ n ’ , s _ s t r ) ;
229 end
230 f c l o s e ( f i d _ s ) ;
231


232 f id_CP = fopen ( ’MATLAB_CP. t x t ’ , ’w’ ) ;
233 f o r i =1 : s i z e ( CPReduced , 1 ) +1
234 CP _s t r = s t r c a t ( ’CP ’ , num2str ( i ) ) ;
235 f p r i n t f ( f id_CP , ’%s \ r \ n ’ , CP_ s t r ) ;
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236 end
237 f c l o s e ( f id_CP ) ;
238


239 fid_W = fopen ( ’MATLAB_W. t x t ’ , ’w’ ) ;
240 f o r t =1 : nT
241 W_str= s t r c a t ( ’ t ’ , num2str ( t ) , 3 2 , num2str (W( t ) ) ) ;
242 f p r i n t f ( fid_W , ’%s \ r \ n ’ , W_str ) ;
243 end
244 f c l o s e ( fid_W ) ;
245


246 i f p l o t g r a p h ==1
247 d i s p l a y ( ’ p l o t t i n g ’ )
248 % PLOTS THE CIRCLES AROUND POINTS OF INTERESTS


249 % T(i,1) and T(i,2) are the (x,y) coordinates of the center of the circle


i


250 % r(i) is the radius of the circle i


251 % 0.05 is the angle step


252 f i g u r e ( 1 )
253 s u b p l o t ( 1 , 2 , 1 )
254 c s t r i n g = ’ rgbcmyk ’ ; % color string


255 f o r t =1 : nT
256 ang = 0 : 0 . 0 5 : 2 . 1 * pi ;
257 xp= max_rad ius ( t ) * cos ( ang ) ;
258 yp= max_rad ius ( t ) * s i n ( ang ) ;
259 p l o t ( T ( t , 1 ) +xp , T ( t , 2 ) +yp , ’ k ’ ) ;
260 hold a l l
261 end
262 s u b p l o t ( 1 , 2 , 1 )
263 s c a t t e r ( CPReduced ( : , 1 ) , CPReduced ( : , 2 ) , 6 5 , ’ o ’ , ’ M a r k e r f a c e C o l o r ’ , ’ r e d ’ , ’


MarkerEdgeColor ’ , ’ r ’ ) ;
264 s c a t t e r (R ( : , 1 ) ,R ( : , 2 ) , 6 0 , ’ ^ ’ , ’ MarkerEdgeColor ’ , ’ b ’ , ’ MarkerFaceColo r ’ , ’ b ’ , ’


LineWidth ’ , 1 . 5 ) ;
265 s c a t t e r ( T ( : , 1 ) ,T ( : , 2 ) , 7 0 , ’ x ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ LineWidth ’ , 2 . 0 ) ;
266 l a b e l s 3 = num2str ( ( 1 : s i z e ( CPReduced , 1 ) ) ’ , ’ c_{%d} ’ ) ;
267 t e x t ( CPReduced ( : , 1 ) , CPReduced ( : , 2 ) , l a b e l s 3 , ’ h o r i z o n t a l ’ , ’ l e f t ’ , ’


v e r t i c a l ’ , ’ t o p ’ , ’ FontAngle ’ , ’ i t a l i c ’ , ’ F o n t S i z e ’ , 1 4 , ’ Fontname ’ , ’ Times
New Roman ’ ) ;


268 l a b e l s 2 = num2str ( ( 1 : s i z e (R , 1 ) ) ’ , ’ r_{%d} ’ ) ;
269 t e x t (R ( : , 1 ) , R ( : , 2 ) , l a b e l s 2 , ’ h o r i z o n t a l ’ , ’ c e n t e r ’ , ’ v e r t i c a l ’ , ’ t o p ’ , ’


FontAngle ’ , ’ i t a l i c ’ , ’ F o n t S i z e ’ , 1 4 , ’ Fontname ’ , ’ Times New Roman ’ ) ;
270 l a b e l s 1 = num2str ( ( 1 : s i z e ( T , 1 ) ) ’ , ’ t _{%d} ’ ) ;
271 t e x t ( T ( : , 1 ) , T ( : , 2 ) , l a b e l s 1 , ’ h o r i z o n t a l ’ , ’ l e f t ’ , ’ v e r t i c a l ’ , ’ bot tom ’ , ’


FontAngle ’ , ’ i t a l i c ’ , ’ F o n t S i z e ’ , 1 4 , ’ Fontname ’ , ’ Times New Roman ’ ) ;
272 a x i s s q u a r e
273 a x i s t i g h t
274 a x i s ( [ 0 m 0 n ] ) ;
275 hold o f f
276 % subplot 2 contains the number of remaining CPs in the candidate list in


each step
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277 % using the algorithm to eliminate subdominant candicate points


278 s u b p l o t ( 1 , 2 , 2 )
279 p l o t ( T a r g v i s ) ; a x i s s q u a r e ; x l a b e l ( ’ I t e r a t i o n s t e p ’ ) ; y l a b e l ( ’ Number o f


r e m a i n i n g c a n d i d a t e p o i n t s ’ ) ;
280 hold o f f
281 end
282 d i s p l a y ( ’ ALL DONE . . . ’ )
283


284 % Greedy algorithm --------------------------------------------------------


285 PdHOLD=PoD ;
286 weighted_PdHOLD=PdHOLD . * repmat (W, s i z e (PdHOLD, 1) , 1 ) ;
287 t i c
288 c o v e r e d = z e r o s ( 1 , s i z e ( PoD , 1 ) ) ;
289 s e l e c t e d = z e r o s ( 1 , nS ) ;
290 f o r k =1: nS
291 % find CP that covers the most targets


292 c o v e r e d ( : ) =sum ( weighted_PdHOLD , 2 ) ;
293 % choose it


294 bes tCP = f i n d ( c o v e r e d ==max ( c o v e r e d ) ) ;
295 c o v e r e d _ g r e e d y ( t r i a l ) = c o v e r e d _ g r e e d y ( t r i a l ) +max ( c o v e r e d ) ;
296 choose = bes tCP ( 1 ) ; % index of candidate point selected


297 t a r g e t s c o v e r e d = f i n d (PdHOLD( choose , : ) ==1) ;
298 % remove targets associated with the CP that we just chose


299 weighted_PdHOLD ( : , t a r g e t s c o v e r e d ) =0;
300 end
301 g r e e d y _ t i m e ( t r i a l ) = t o c ;
302 % End greedy algorithm --------------------------------------------------------


303 % call GAMS to solve optimally


304 %! GAMS cookie_MIP.gms


305 ! c : \GAMS\ win64 \ 2 4 . 2 \GAMS cookie_MIP . gms
306 load z . d a t ;
307 load comptime . d a t ;
308


309 o p t _ t i m e ( t r i a l ) =comptime ;
310 c o v e r e d _ o p t ( t r i a l ) =z ;
311 p e r c e n t _ c o v e r e d ( t r i a l ) = c o v e r e d _ g r e e d y ( t r i a l ) / c o v e r e d _ o p t ( t r i a l ) ;
312 c o v e r a g e _ r a t i o ( t r i a l ) = c o v e r e d _ o p t ( t r i a l ) / sum_W( t r i a l ) ;
313 d a t a _ i n d = d a t a _ i n d +1;
314 DATA( d a t a _ i n d , : ) =[ d a t a _ i n d nS nT nR NumberofCPsBefore ( t r i a l ) NumberofCPsAfter (


t r i a l ) c r e a t e C P _ t i m e ( t r i a l ) o p t _ t i m e ( t r i a l ) g r e e d y _ t i m e ( t r i a l ) c o v e r e d _ o p t
( t r i a l ) c o v e r e d _ g r e e d y ( t r i a l ) p e r c e n t _ c o v e r e d ( t r i a l ) sum_W( t r i a l )
c o v e r a g e _ r a t i o ( t r i a l ) ] ;


315 end
316 average_NumberofCPsBefore =mean ( NumberofCPsBefore ) ;
317 average_NumberofCPsAf te r =mean ( NumberofCPsAfter ) ;
318 a v e r a g e _ c r e a t e C P _ t i m e =mean ( c r e a t e C P _ t i m e ) ;
319 a v e r a g e _ g r e e d y _ t i m e =mean ( g r e e d y _ t i m e ) ;
320 a v e r a g e _ o p t _ t i m e =mean ( o p t _ t i m e ) ;
321 a v e r a g e _ c o v e r e d _ g r e e d y =mean ( c o v e r e d _ g r e e d y ) ;
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322 a v e r a g e _ c o v e r e d _ o p t =mean ( c o v e r e d _ o p t ) ;
323 a v e r a g e _ p e r c e n t _ c o v e r e d =mean ( p e r c e n t _ c o v e r e d ) ;
324 w o r s t _ g r e e d y _ p e r f o r m a n c e =min( p e r c e n t _ c o v e r e d ) ;
325 a v e r a g e _ c o v e r a g e _ r a t i o =mean ( c o v e r a g e _ r a t i o ) ;
326


327 A v e r a g e R e s u l t s ( ind , : ) =[ nS nT nR average_NumberofCPsBefore average_NumberofCPsAf te r
a v e r a g e _ c r e a t e C P _ t i m e a v e r a g e _ o p t _ t i m e a v e r a g e _ g r e e d y _ t i m e


a v e r a g e _ c o v e r e d _ o p t a v e r a g e _ c o v e r e d _ g r e e d y a v e r a g e _ p e r c e n t _ c o v e r e d
w o r s t _ g r e e d y _ p e r f o r m a n c e a v e r a g e _ c o v e r a g e _ r a t i o ] ;


328 A v e r a g e R e s u l t s ( ind , : )
329 end
330 end
331


332 save C o m p l e t e _ S o l u t i o n _ B a s e DATA A v e r a g e R e s u l t s


LOC-GEN-II Implementation - This code shows the LOC-GEN-II implementation in MATLAB.


We used the implementation of Craparo and Karata³ (2014) as frame and implemented the new


preprocessing algorithm. The algorithm to �nd the optimal solutions using GAMS or the near


optimal greedy approach was completely taken from the algorithm of Craparo and Karata³ (2014).
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Supplementals


• Computer code of the LOC-GEN-II algorithm implemented in MATLAB—to be
used with Appendix A


• Computer code of the Adapt-LOC and Greedy-LOC algorithm and their subroutines
implemented in MATLAB


The supplementals are available at Dudley Knox Library of the Naval Postgraduate School
in Monterey, CA.
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%% Routine to determine in a set of nT given targets the successive
% placement of nS Sources and nR Receivers utilizing Detection
% Discs. The Receivers and Sensor added per step are defined in nRPart,
% nSPart. The algorithm determins in the first step the detection discs
% with radius rho*0.5, the intersection points of the DDs are possible
% type 1 sensor locations. Then the nRPart(step) position which see the most
% targets are selected as receiver locations. This set is then transferred
% in the next step to find nSPart(step) first optimal type 2 sensor locations, using the
% algorithm LOC-GEN-II. After the whole step all targets, detected by the
% given targets and receivers up to now are eliinated from the target list
% and disregarded for the following step. This uses the given set of
% sensors type 2 and remaining targets to detect the next nRPart(step+1)
% type 1 sensors. Then all type 1 sensors and remaining targets are used
% to determine the next nSPart(step+1) tyoe 2 sensors. At the end, all
% detected targets in this step+1 are erased an another cycle of the whole
% process starts until all type 1 and 2 sensors are set.

%% %-------------------------------------    PARAMETERS TO BE CHANGED  -------------------------------------%
clc
clear all
m=10;              % length of area A
n=10;              % width of area A
nT=150;            % Starting number of targets
% definition of partition of of receiver and source setting - both must
% have the same number of elements
nS=20;              % Numbers of Sources - must sum up
nSPart = [20]; %[3,3,3,3,3];
nR=30;             % number of receivers - must sum up
nRPart = [30]; %[3,3,3,3,3];
% definition of the order of placing unknowns 
%   order = 1 : Receivers first, than Sources
%   order = 0 : Sources first, thatn Receivers
orderPL = 0;
%
weightfactor=1;     % paremeter to control the different weighing of the targets (factor =1) 
                    % of all weighing them with one (factor = 0)
%  
GreedyOptParm = 1;  % set the optimality algorithm to Greedy (1) or GAMS with NLP (0)
%
numtrials=20;        % number of trials to run = default 100
rho=0.6;            % range of the day = default 0.6
plotgraph=0;   
Alpha = 0.5;        

for trial = 1:numtrials
%% % determine the random position with nT targets and the weighting matrix
T=rand(nT,2);T(:,1)=T(:,1)*m;T(:,2)=T(:,2)*n;
% random weights for targets                                              
if weightfactor == 1
    W=rand(1,nT);sum_W(trial)=sum(W);
elseif weightfactor == 0
    W=ones(1,nT);sum_W(trial)=sum(W);    
end
% configure for the order of the placement
if orderPL == 1
    nElm1 = nR; nElm2 = nS;
    nElm1Part = nRPart; nElm2Part = nSPart; 
elseif orderPL == 0
    nElm2 = nR; nElm1 = nS;  
    nElm2Part = nRPart; nElm1Part = nSPart; 
end

% Because we only have the targets, the radius is for al DD RoD*Alpha
% this valus as starting value is based on the investigation that the best
% results using this as a one-step-algorithm can be achieved  
RadElm1(1:nT,1:nElm1)=(rho*Alpha);
MRadElm1=max(RadElm1,[],2);
% create the target-target distance matrix
for ti=1:nT
    for tj=1:nT
        DistTT(ti,tj)=sqrt((T(ti,1)-T(tj,1))^2+(T(ti,2)-T(tj,2))^2);
    end
end

%% % Iteratively place receivers and sources according to the distribution in nRPart and nSPart. 
IterT = T; IterW = W; IternT=nT; IterDistTT = DistTT; IterMRadElm1 = MRadElm1;
Elm1Pos = zeros(nElm1,2); Elm2Pos = zeros(nElm2,2);
nElm1Pos = [0,cumsum(nElm1Part)]; nElm2Pos = [0,cumsum(nElm2Part)];
OptRun = 1;
% 1. Call the function OptimalReceivers to calculate to best places for 
% next nRPart(OptimalRunner) receivers. First call for Weights =1,
% second for Weights as in W
[Elm1Pos(1+nElm1Pos(OptRun):nElm1Pos(OptRun+1),:),CPRedElm1] = ElementOnePlacement(IterT, nElm1Part(OptRun),IternT,IterMRadElm1,IterW,IterDistTT,GreedyOptParm);
% create the target-element distance matrix and radius matrix for the
% elements which were found up to now.
clear IterDistElm2 radElm2 MRadElm2
for t=1:IternT
    for r=1:nElm1Pos(OptRun+1)
        IterDistElm1(t,r)=sqrt((Elm1Pos(r,1)-IterT(t,1))^2+(Elm1Pos(r,2)-IterT(t,2))^2);
        radElm2(t,r)=rho^2./IterDistElm1(t,r);
    end
end
MRadElm2=max(radElm2,[],2);
% 2. Call the function OptimalSources to calculate to best places for 
% next nSPart(OptimalRunner) Sources based on all receivers
[Elm2Pos(1+nElm2Pos(OptRun):nElm2Pos(OptRun+1),:),CPRedElm2,DetTarget,CoveredOptimal] = ElementTwoPlacement(IterT,nElm2Part(OptRun),IternT,MRadElm2,IterW,IterDistTT,GreedyOptParm);

% Determine the detected targets and erase them from the target list
IterT(DetTarget,:) = 0;IterT(all(IterT==0,2),:)=[];
IterW(DetTarget) = 0;IterW(all(IterW==0,1))=[];
IternT = IternT - length(DetTarget);
IterDistTT(DetTarget,:)=0;IterDistTT(all(IterDistTT==0,2),:)=[];IterDistTT = transpose(IterDistTT);
IterDistTT(DetTarget,:)=0;IterDistTT(all(IterDistTT==0,2),:)=[];IterDistTT = transpose(IterDistTT);
IterMRadElm1(DetTarget,:) = 0;IterMRadElm1(all(IterMRadElm1==0,2),:)=[];

SumCovered = CoveredOptimal;
SumDetTarget = length(DetTarget);

%% Plotting of the last result of the trials
if plotgraph==1
    display('plotting')    
    figure(OptRun)
    subplot(1,2,1)
    cstring='rgbcmyk'; % color string
    for t=1:IternT
        ang=0:0.05:2.1*pi; 
        xp=MRadElm1(t)*cos(ang);
        yp=MRadElm1(t)*sin(ang);
        plot(T(t,1)+xp,T(t,2)+yp,'k');
        hold all    
    end
    scatter(CPRedElm1(:,1),CPRedElm1(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
    scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
    for i = 1 : nElm1
            scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
    end
    axis square
    axis tight
    axis ([0 m 0 n]);
    subplot(1,2,2)
    cstring='rgbcmyk'; % color string
    for t=1:IternT
        ang=0:0.05:2.1*pi; 
        xp=MRadElm2(t)*cos(ang);
        yp=MRadElm2(t)*sin(ang);
        plot(T(t,1)+xp,T(t,2)+yp,'k');
        hold all    
    end
    scatter(CPRedElm2(:,1),CPRedElm2(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
    scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
    for i = 1 : nElm2
            scatter(Elm2Pos(i,1),Elm2Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
    end
    for i = 1 : nElm1
            scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'^','MarkerEdgeColor','g','LineWidth',1.5);
    end
    axis square
    axis tight
    axis ([0 m 0 n]);
    hold off
end

 for OptRun = 2:1:length(nElm1Part)
    % 1. Call the function OptimalReceivers to calculate to best places for 
    % next nRPart(OptimalRunner) receivers. First call for Weights =1,
    % second for Weights as in W
    clear IterDistElm1 radElm1 MRadElm1
    for t=1:IternT
        for r=1:nElm1Pos(OptRun+1)
            IterDistElm1(t,r)=sqrt((Elm2Pos(r,1)-IterT(t,1))^2+(Elm2Pos(r,2)-IterT(t,2))^2);
            radElm1(t,r)=rho^2./IterDistElm1(t,r);
        end
    end
    MRadElm1=max(radElm1,[],2);
    
    [Elm1Pos(1+nElm1Pos(OptRun):nElm1Pos(OptRun+1),:),CPRedElm1,DetTarget,CoveredOptimal] = ElementTwoPlacement(IterT, nElm1Part(OptRun),IternT,MRadElm1,IterW,IterDistTT,GreedyOptParm);
    % create the target-element distance matrix and radius matrix for the
    % elements which were found up to now.
    clear IterDistElm2 radElm2 MRadElm2
    for t=1:IternT
        for r=1:nElm2Pos(OptRun+1)
            IterDistElm2(t,r)=sqrt((Elm1Pos(r,1)-IterT(t,1))^2+(Elm1Pos(r,2)-IterT(t,2))^2);
            radElm2(t,r)=rho^2./IterDistElm2(t,r);
        end
    end
    MRadElm2=max(radElm2,[],2);
    % 2. Call the function OptimalSources to calculate to best places for 
    % next nSPart(OptimalRunner) Sources based on all receivers
    [Elm2Pos(1+nElm2Pos(OptRun):nElm2Pos(OptRun+1),:),CPRedElm2,DetTarget,CoveredOptimal] = ElementTwoPlacement(IterT,nElm2Part(OptRun),IternT,MRadElm2,IterW,IterDistTT,GreedyOptParm);

    % Determine the detected targets and erase them from the target list
    IterT(DetTarget,:) = 0;IterT(all(IterT==0,2),:)=[];
    IterW(DetTarget) = 0;IterW(all(IterW==0,1))=[];
    IternT = IternT - length(DetTarget);
    IterDistTT(DetTarget,:)=0;IterDistTT(all(IterDistTT==0,2),:)=[];IterDistTT = transpose(IterDistTT);
    IterDistTT(DetTarget,:)=0;IterDistTT(all(IterDistTT==0,2),:)=[];IterDistTT = transpose(IterDistTT);
    IterMRadElm1(DetTarget,:) = 0;IterMRadElm1(all(IterMRadElm1==0,2),:)=[];
    SumCovered = CoveredOptimal + SumCovered;
    SumDetTarget = length(DetTarget) + SumDetTarget;
    %% Plotting of the last result of the trials
    if plotgraph==1
        display('plotting')    
        figure(OptRun)
        subplot(1,2,1)
        cstring='rgbcmyk'; % color string
        for t=1:IternT
            ang=0:0.05:2.1*pi; 
            xp=MRadElm1(t)*cos(ang);
            yp=MRadElm1(t)*sin(ang);
            plot(T(t,1)+xp,T(t,2)+yp,'k');
            hold all    
        end
        scatter(CPRedElm1(:,1),CPRedElm1(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
        scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
        for i = 1 : nElm1
                scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
        end
        axis square
        axis tight
        axis ([0 m 0 n]);
        subplot(1,2,2)
        cstring='rgbcmyk'; % color string
        for t=1:IternT
            ang=0:0.05:2.1*pi; 
            xp=MRadElm2(t)*cos(ang);
            yp=MRadElm2(t)*sin(ang);
            plot(T(t,1)+xp,T(t,2)+yp,'k');
            hold all    
        end
        scatter(CPRedElm2(:,1),CPRedElm2(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
        scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
        for i = 1 : nElm2
                scatter(Elm2Pos(i,1),Elm2Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
        end
        for i = 1 : nElm1
                scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'^','MarkerEdgeColor','g','LineWidth',1.5);
        end
        axis square
        axis tight
        axis ([0 m 0 n]);
        hold off
    end
 end

 PercentCovered(trial) = SumCovered / sum_W(trial);
 PercentTargetsCovered(trial) = SumDetTarget/nT;
 


%% % Compare with random placment of receivers
RRandom=rand(nR,2);RRandom(:,1)=RRandom(:,1)*m;RRandom(:,2)=RRandom(:,2)*n;
[TargetsRandom,WeightedRandom, timeRandom] = RandomReceiverPlacement(T,nS,nT,nR,rho,RRandom,W,DistTT);

PercentRandom(trial) = WeightedRandom / sum_W(trial);
PercentTargetsRandom(trial) = length(TargetsRandom) / nT;
RandomTime(trial) = timeRandom;
end



function [Elm2Pos,CPReducedElm2] = ElementOnePlacement(TPos,NumElm,NumT,MaxRad,Weights,DistTT,GreedyOpt)
% function to determine the optimal places of a number of receivers given a
% set of targets at coordinates TargetPosition 
% Inputs: Targetpositions (vector), Number of Receivers to be placed,
%   Number of targets , max radius of the detections discs, Target weights
%   (if these are not further defined set them all to one), Matrix with with
%   the distance between all targets, Operator to determine the optimality
%   algorithm (1 = Greedy, 0 = GAMS NLP Solver)
% Outputs: Position of the newly set Receivers and all points which were candidate 
%   points for the Receiver positions

%% % ------------------------Start of optimal Receiver placement ------------------    
nT = NumT;T=TPos;nR = NumElm;
max_radius = MaxRad; TargetWeights = Weights;
TargetsVisibleT = zeros(nT^2,nT);TargVisBinCompT = ones(nT^2,nT);
NumberIntersectionT = zeros(nT^2,4);NumIntersectionsT = zeros(nT,1);
PoDT=zeros(nT*2,nT);
CountTotInter = 0;
% Set all target positions as possible Receiver-Positions
ReduceCenterT = T;
% find the intersection points of all Target-disks
for int1=1:nT-1 % target A 
    for int2=int1+1:nT % target B
        % compute the (x1,y1) and (x2,y2) intersection points of disks
        x1=(T(int2,1)+T(int1,1))/2 + (T(int2,1)-T(int1,1)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) - (T(int2,2)-T(int1,2))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        y1=(T(int2,2)+T(int1,2))/2 + (T(int2,2)-T(int1,2)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) + (T(int2,1)-T(int1,1))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        x2=(T(int2,1)+T(int1,1))/2 + (T(int2,1)-T(int1,1)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) + (T(int2,2)-T(int1,2))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        y2=(T(int2,2)+T(int1,2))/2 + (T(int2,2)-T(int1,2)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) - (T(int2,1)-T(int1,1))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        % if the intersection points are real (means they actually intersect) appoint them to the matrix IP. 
        % If a disk has intersection points, the center point of the disk will never become a candidate point, 
        % because it will always be subdominant to one of the points on the edge
        if (isreal(x1)==1) && (isreal(y1)==1) && (isnan(x1)==0) && (isnan(y1)==0) && (isinf(x1)==0) && (isinf(y1)==0)
            % Increase the counter for the intersections of both disks related to the target pair
            NumIntersectionsT(int1) = NumIntersectionsT(int1) + 1;
            NumIntersectionsT(int2) = NumIntersectionsT(int2) + 1;
            % Because an intersection exists, erase the center point from the Candidate Point List of the targets
            ReduceCenterT(int1,:)= zeros;
            ReduceCenterT(int2,:)= zeros;
            % Increase the counter of the overall number of intersections
            CountTotInter = CountTotInter + 2;          
            % Fill matrix with targets numbers and coordinates of interscetion points for further calculation
            NumberIntersectionT(CountTotInter-1,1:2) = [int1,int2];
            NumberIntersectionT(CountTotInter,1:2) = [int1,int2];
            NumberIntersectionT(CountTotInter-1,3:4) = [x1,y1];
            NumberIntersectionT(CountTotInter,3:4) = [x2,y2];           
            % Fill matrix of visible targets from each intersection point with visible target number (int3) and set binary element to ZERO (visible) 
            for int3 = 1 : nT
                if sqrt((x1-T(int3,1))^2+(y1-T(int3,2))^2)<max_radius(int3)+0.00001
                    TargetsVisibleT(CountTotInter-1,int3) = int3;
                    TargVisBinCompT(CountTotInter-1,int3) = 0;
                end
                if sqrt((x2-T(int3,1))^2+(y2-T(int3,2))^2)<max_radius(int3)+0.00001
                    TargetsVisibleT(CountTotInter,int3) = int3;
                    TargVisBinCompT(CountTotInter,int3) = 0;
                end
            end
        end
    end  
end
% Erase all rows in matrixes for discs with NO intersactions
TargetsVisibleT(all(TargetsVisibleT==0,2),:) = [];TargVisBinCompT(all(TargVisBinCompT==1,2),:) = [];NumberIntersectionT(all(NumberIntersectionT==0,2),:) = [];
% Eliminate all rows in the Candidate Point List of the targets with intersections
ReduceCenterT(all(ReduceCenterT==0,2),:) = [];

%% % Now generate the Reduced Candidate Point List 
% FIRST STEP: Find the Candidate Points of the discs with NO intersection
% All these points are candidate locations because the DD have the same
% size and so no circle can ly within another without intersecting another
IndexZeros = find(~NumIntersectionsT);
CPreducedCounterT = 0;
for i = 1:length(IndexZeros)
    CPreducedCounterT = CPreducedCounterT + 1;
    CPReducedT(CPreducedCounterT,:) = ReduceCenterT(i,:);
    % Build up the PoD Matrix needed for the greedy algorithm : If CP Y sees target X, then element X in the column Y of the POD matrix is set to ONE 
    PoDT(CPreducedCounterT,IndexZeros(i)) = 1;
end

% SECOND STEP - iteratively: 
% A - find the Intersection Point which detects the most targets (most dominant), put it in the Reduced Candidate Point List
% B - eliminate all intersection points which are dominated by the point from step A from the Candidate Point List 
% Repeat A and B as long there are intersection points in the Candidate Point List (= elements in matrix 'TargetsVisible')
laeufer2 = 0;
while(~isempty(TargetsVisibleT))
    laeufer2 = laeufer2 + 1;
    % Find the first most dominant intersection point
    dominant = find(max(nT-sum(TargVisBinCompT,2))==(nT-sum(TargVisBinCompT,2)),1);
    dominantBin = TargVisBinCompT(dominant,:);
    % determine which targets can be detected from this intersection point
    VisElm = TargetsVisibleT(dominant,:);
    VisElm(all(VisElm==0,1))=[];
    % Add the dominant intersection point to the Reduced Candidate Point List 
    CPreducedCounterT = CPreducedCounterT+1;
    CPReducedT(CPreducedCounterT,:) = NumberIntersectionT(dominant,3:4);
    % Generate the PoD Matrix endtry for the intersection point 
    for loopcounter = 1 : length(VisElm)
        PoDT(CPreducedCounterT,VisElm(loopcounter)) = 1;
    end
    % Loop through all remaining intersection points. 
    % Find all dominated intersection points and erase the related entries 
    % A Point is DOMINATED if it sees the same or fewer targets then the DOMINANT point 
    % BUT it must not see any other target, not visible for the dominant point 
    for subdominant = 1 : size(TargetsVisibleT,1)
        if (sum(VisElm == find(TargetsVisibleT(subdominant,:)~=0,1))==1)
            if (sum(dominantBin .* TargetsVisibleT(subdominant,:))==0)
                NumberIntersectionT(subdominant,:) = zeros;
                TargetsVisibleT(subdominant,:) = zeros;
                TargVisBinCompT(subdominant,:) = ones;
                NumIntersectionsT(find(TargetsVisibleT(subdominant,:)~=0,1)) = NumIntersectionsT(find(TargetsVisibleT(subdominant,:)~=0,1))-1;
            end
        end
    end
    % Clear out the related elms to this dominant point from the working data to find the next most dominant intersection point
    NumberIntersectionT(dominant,:) = zeros;
    TargetsVisibleT(dominant,:) = zeros;
    TargVisBinCompT(dominant,:) = ones;
    NumIntersectionsT(VisElm(1)) = NumIntersectionsT(VisElm(1))-1;
    % Eliminate all empty rows in the matrices
    TargetsVisibleT(all(TargetsVisibleT==0,2),:) = [];
    TargVisBinCompT(all(TargVisBinCompT==1,2),:) = [];
    NumberIntersectionT(all(NumberIntersectionT==0,2),:) = [];
end
% Eliminate all empty rows in the matrices
PoDT(all(PoDT==0,2),:) = [];
clear OptValues;

%% % Now choose between Greedy or the optimal algorithm 
% Greedy = 1, optimal = 0
if GreedyOpt == 1
    % Greedy algorithm --------------------------------------------------------
    PdHOLD=PoDT;
    weighted_PdHOLD=PdHOLD.*repmat(TargetWeights,size(PdHOLD, 1),1);
    covered=zeros(1,size(PoDT,1));
    for k=1:nR
        % find CP that covers the most targets
        covered(:)=sum(weighted_PdHOLD,2);
        % choose it
        bestCP=find(covered==max(covered));
        choose=bestCP(1); % index of candidate point selected
        OptValues(k)=choose;
        Elm2Pos(k,:) = CPReducedT(choose,:);
        % remove targets associated with the CP that we just chose
        weighted_PdHOLD(:,find(PdHOLD(choose,:)==1))=0;
    end
elseif GreedyOpt == 0
    % Optimal algorithm ----------------------------------------------------
    %% %-----------------  CREATE THE TXT FILES FOR K, a and P ----        
    fid_D = fopen('MATLAB_D.txt','w');
    for i=1:size(PoDT,1)  %number of candidate points
        for t=1:nT       %number of targets
            if PoDT(i,t)==1
                P_str=strcat('CP',num2str(i),'.t',num2str(t));
                fprintf(fid_D, '%s\r\n', P_str);
            end
        end
    end
    fclose(fid_D);

    fid_t = fopen('MATLAB_t.txt','w');
    for t=1:nT
        t_str=strcat('t',num2str(t));
        fprintf(fid_t, '%s\r\n', t_str);
    end
    fclose(fid_t);

    fid_r = fopen('MATLAB_r.txt','w');
    for r=1:nR
        r_str=strcat('r',num2str(r));
        fprintf(fid_r, '%s\r\n', r_str);
    end
    fclose(fid_r);

    fid_s = fopen('MATLAB_s.txt','w');
    for s=1:nR
        s_str=strcat('s',num2str(s));
        fprintf(fid_r, '%s\r\n', s_str);
    end
    fclose(fid_s);

    fid_CP = fopen('MATLAB_CP.txt','w');
    for i=1:size(CPReducedT,1)+1
        CP_str=strcat('CP',num2str(i));
        fprintf(fid_CP, '%s\r\n', CP_str);
    end
    fclose(fid_CP);

    fid_W = fopen('MATLAB_W.txt','w');
        for t=1:nT
            W_str=strcat('t',num2str(t),32,num2str(TargetWeights(t)));
            fprintf(fid_W, '%s\r\n', W_str);
        end
    fclose(fid_W);
    %% %-----------------  Call GAMS                                ---- 
    ! c:\GAMS\win64\24.2\GAMS.exe cookie_MIP.gms
    load gams_optimal_cps.txt
    OptValues = gams_optimal_cps;
    
    Elm2Pos = CPReducedT(OptValues,:);
    
end

CPReducedElm2 = CPReducedT;


function [ElmOutPos, CPElmOut, DetTarget, CoveredOptimal] = ElementTwoPlacement(TPos,NumElm,NumT,MaxRad,Weights,DistTT,GreedyOpt)
% function to determine the optimal places of a number of receivers given a
% set of targets at coordinates TargetPosition 
% Inputs: Targetpositions (vector), Number of Receivers to be placed,
%   Number of targets , max radius of the detections discs, Target weights
%   (if these are not further defined set them all to one), Matrix with with
%   the distance between all targets, Operator to determine the optimality
%   algorithm (1 = Greedy, 0 = GAMS NLP Solver)
% Outputs: Position of the newly set Receivers and all points which were candidate 
%   points for the Receiver positions
% ------------------------Start of optimal Receiver placement ------------------  
%% 
nT = NumT; T=TPos; nS = NumElm; TargetWeights = Weights;
TargetsVisibleR = zeros(nT^2,nT);TargVisBinCompR = ones(nT^2,nT);
NumberIntersectionR = zeros(nT^2,4);NumIntersectionsR = zeros(nT,1);
PoDR=zeros(nT*2,nT);
CountTotInter = 0;
max_radius = MaxRad;

% Set all target positions as possible canditate points
ReduceCenter = T;
%% % find the intersection points of all disks
for int1=1:nT-1 % target A 
    for int2=int1+1:nT % target B
        % compute the (x1,y1) and (x2,y2) intersection points of disks
        x1=(T(int2,1)+T(int1,1))/2 + (T(int2,1)-T(int1,1)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) - (T(int2,2)-T(int1,2))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        y1=(T(int2,2)+T(int1,2))/2 + (T(int2,2)-T(int1,2)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) + (T(int2,1)-T(int1,1))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        x2=(T(int2,1)+T(int1,1))/2 + (T(int2,1)-T(int1,1)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) + (T(int2,2)-T(int1,2))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        y2=(T(int2,2)+T(int1,2))/2 + (T(int2,2)-T(int1,2)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) - (T(int2,1)-T(int1,1))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
        % if the intersection points are real (means they actually intersect) appoint them to the matrix IP. 
        % If a disk has intersection points, the center point of the disk will never become a candidate point, 
        % because it will always be subdominant to one of the points on the edge
        if (isreal(x1)==1) && (isreal(y1)==1) && (isnan(x1)==0) && (isnan(y1)==0) && (isinf(x1)==0) && (isinf(y1)==0)
            % Increase the counter for the intersections of both disks related to the target pair
            NumIntersectionsR(int1) = NumIntersectionsR(int1) + 1;
            NumIntersectionsR(int2) = NumIntersectionsR(int2) + 1;
            % Because an intersection exists, erase the center point from the Candidate Point List of the targets
            ReduceCenter(int1,:)= zeros;
            ReduceCenter(int2,:)= zeros;
            % Increase the counter of the overall number of intersections
            CountTotInter = CountTotInter + 2;          
            % Fill matrix with targets numbers and coordinates of interscetion points for further calculation
            NumberIntersectionR(CountTotInter-1,1:2) = [int1,int2];
            NumberIntersectionR(CountTotInter,1:2) = [int1,int2];
            NumberIntersectionR(CountTotInter-1,3:4) = [x1,y1];
            NumberIntersectionR(CountTotInter,3:4) = [x2,y2];           
            % Fill matrix of visible targets from each intersection point with visible target number (int3) and set binary element to ZERO (visible) 
            for int3 = 1 : nT
                if sqrt((x1-T(int3,1))^2+(y1-T(int3,2))^2)<max_radius(int3)+0.00001
                    TargetsVisibleR(CountTotInter-1,int3) = int3;
                    TargVisBinCompR(CountTotInter-1,int3) = 0;
                end
                if sqrt((x2-T(int3,1))^2+(y2-T(int3,2))^2)<max_radius(int3)+0.00001
                    TargetsVisibleR(CountTotInter,int3) = int3;
                    TargVisBinCompR(CountTotInter,int3) = 0;
                end
            end
        end
    end  
end
% Erase all rows in matrixes for discs with NO intersactions
TargetsVisibleR(all(TargetsVisibleR==0,2),:) = []; TargVisBinCompR(all(TargVisBinCompR==1,2),:) = []; NumberIntersectionR(all(NumberIntersectionR==0,2),:) = [];
% Eliminate all rows in the Candidate Point List of the targets with intersections
ReduceCenter(all(ReduceCenter==0,2),:) = [];

%% % Now generate the Reduced Candidate Point List 
% FIRST STEP: Find the Candidate Points of the discs with NO intersection
% A target position is a Candidate Point, if there is NO other disc without intersection in the disc
% OR
% there is another disc without intersection in the disc AND the inner disc does not include the center point of the outer disc 
IndexZeros = find(~NumIntersectionsR);
CPreducedCounter = 0;
for i = 1:length(IndexZeros)
    Flag = 1;
    for j = 1:length(IndexZeros)
        if DistTT(IndexZeros(i),IndexZeros(j)) < max_radius(IndexZeros(i)) && DistTT(IndexZeros(i),IndexZeros(j)) > max_radius(IndexZeros(j))
            Flag = 0;
        end
    end
    if Flag == 1
        CPreducedCounter = CPreducedCounter + 1;
        CPReducedR(CPreducedCounter,:) = ReduceCenter(i,:);
        % Build up the PoD Matrix needed for the greedy algorithm : If CP Y sees target X, then element X in the column Y of the POD matrix is set to ONE 
        PoDR(CPreducedCounter,IndexZeros(i)) = 1;
    end
end

% SECOND STEP - iteratively: 
% A - find the Intersection Point which detects the most targets (most dominant), put it in the Reduced Candidate Point List
% B - eliminate all intersection points which are dominated by the point from step A from the Candidate Point List 
% Repeat A and B as long there are intersection points in the Candidate Point List (= elements in matrix 'TargetsVisible')
laeufer2 = 0;
while(~isempty(TargetsVisibleR))
    laeufer2 = laeufer2 + 1;
    % Find the first most dominant intersection point
    dominant = find(max(nT-sum(TargVisBinCompR,2))==(nT-sum(TargVisBinCompR,2)),1);
    dominantBin = TargVisBinCompR(dominant,:);
    % determine which targets can be detected from this intersection point
    VisElm = TargetsVisibleR(dominant,:);
    VisElm(all(VisElm==0,1))=[];
    % Add the dominant intersection point to the Reduced Candidate Point List 
    CPreducedCounter = CPreducedCounter+1;
    CPReducedR(CPreducedCounter,:) = NumberIntersectionR(dominant,3:4);
    % Generate the PoD Matrix endtry for the intersection point 
    for loopcounter = 1 : length(VisElm)
        PoDR(CPreducedCounter,VisElm(loopcounter)) = 1;
    end
    % Loop through all remaining intersection points. 
    % Find all dominated intersection points and erase the related entries 
    % A Point is DOMINATED if it sees the same or fewer targets then the DOMINANT point 
    % BUT it must not see any other target, not visible for the dominant point 
    for subdominant = 1 : size(TargetsVisibleR,1)
        if (sum(VisElm == find(TargetsVisibleR(subdominant,:)~=0,1))==1)
            if (sum(dominantBin .* TargetsVisibleR(subdominant,:))==0)
                NumberIntersectionR(subdominant,:) = zeros;
                TargetsVisibleR(subdominant,:) = zeros;
                TargVisBinCompR(subdominant,:) = ones;
                NumIntersectionsR(find(TargetsVisibleR(1,:)~=0,1)) = NumIntersectionsR(find(TargetsVisibleR(1,:)~=0,1))-1;
            end
        end
    end
    % Clear out the related elms to this dominant point from the working data to find the next most dominant intersection point
    NumberIntersectionR(dominant,:) = zeros;
    TargetsVisibleR(dominant,:) = zeros;
    TargVisBinCompR(dominant,:) = ones;
    NumIntersectionsR(VisElm(1)) = NumIntersectionsR(VisElm(1))-1;
    % Eliminate all empty rows in the matrices
    TargetsVisibleR(all(TargetsVisibleR==0,2),:) = [];
    TargVisBinCompR(all(TargVisBinCompR==1,2),:) = [];
    NumberIntersectionR(all(NumberIntersectionR==0,2),:) = [];
end
% Eliminate all empty rows in the matrices
CPReducedR(all(CPReducedR==0,2),:) = [];
PoDR(all(PoDR==0,2),:) = [];


clear OptValues;

%% % Now choose between Greedy or the optimal algorithm 
% Greedy = 1, optimal = 0
if GreedyOpt == 1
    % Greedy algorithm --------------------------------------------------------
    PdHOLD=PoDR;
    weighted_PdHOLD=PdHOLD.*repmat(TargetWeights,size(PdHOLD, 1),1);
    covered=zeros(1,size(PoDR,1));
    CoveredOptimal = 0;
    for k=1:nS
        % find CP that covers the most targets
        covered(:)=sum(weighted_PdHOLD,2);
        % choose it
        bestCP=find(covered==max(covered));
        choose=bestCP(1); % index of candidate point selected
        OptValues(k)=choose;
        ElmOutPos(k,:) = CPReducedR(choose,:);
        % remove targets associated with the CP that we just chose
        weighted_PdHOLD(:,find(PdHOLD(choose,:)==1))=0;
        CoveredOptimal = CoveredOptimal + max(covered);
    end
elseif GreedyOpt == 0
    % Optimal algorithm ----------------------------------------------------
    %% %-----------------  CREATE THE TXT FILES FOR K, a and P ----        
    nR = NumElm;
    PoDT = PoDR;
    fid_D = fopen('MATLAB_D.txt','w');
    for i=1:size(PoDT,1)  %number of candidate points
        for t=1:nT       %number of targets
            if PoDT(i,t)==1
                P_str=strcat('CP',num2str(i),'.t',num2str(t));
                fprintf(fid_D, '%s\r\n', P_str);
            end
        end
    end
    fclose(fid_D);

    fid_t = fopen('MATLAB_t.txt','w');
    for t=1:nT
        t_str=strcat('t',num2str(t));
        fprintf(fid_t, '%s\r\n', t_str);
    end
    fclose(fid_t);

    fid_r = fopen('MATLAB_r.txt','w');
    for r=1:nR
        r_str=strcat('r',num2str(r));
        fprintf(fid_r, '%s\r\n', r_str);
    end
    fclose(fid_r);

    fid_s = fopen('MATLAB_s.txt','w');
    for s=1:nR
        s_str=strcat('s',num2str(s));
        fprintf(fid_r, '%s\r\n', s_str);
    end
    fclose(fid_s);

    fid_CP = fopen('MATLAB_CP.txt','w');
    for i=1:size(CPReducedR,1)+1
        CP_str=strcat('CP',num2str(i));
        fprintf(fid_CP, '%s\r\n', CP_str);
    end
    fclose(fid_CP);

    fid_W = fopen('MATLAB_W.txt','w');
        for t=1:nT
            W_str=strcat('t',num2str(t),32,num2str(TargetWeights(t)));
            fprintf(fid_W, '%s\r\n', W_str);
        end
    fclose(fid_W);
    %% %-----------------  Call GAMS                                ---- 
    ! c:\GAMS\win64\24.2\GAMS.exe cookie_MIP.gms
    load gams_optimal_cps.txt
    OptValues = gams_optimal_cps;
    
    load z.dat;
    CoveredOptimal = z;
    
    ElmOutPos = CPReducedR(OptValues,:);
    weighted_PdHOLD=PoDT.*repmat(TargetWeights,size(PoDT, 1),1);
    for i = 1 : length(OptValues)
        weighted_PdHOLD(:,find(PoDT(OptValues(i),:)==1))=0;
    end
end

CPElmOut = CPReducedR;
DetTarget=find(sum(weighted_PdHOLD)==0);



%% Routine to determine in a set of nT given targets the iterative
% placement of nS Sources and nR Receivers utilizing Detection
% Discs. The algorithm determins in the first step the detection discs
% with radius rho*Alpha, the intersection points of the DDs are possible
% type 1 sensor locations. Then the nElm1 position which see the most
% targets are selected as sensor type 1 locations. This set is then transferred
% in the next step to find nElm2 optimal type 2 sensor locations, using the
% algorithm LOC-GEN-II. This results in a percentage of target detection. 
% The posistions of type 1 sensors are erased and based on the placement of 
% sensors of type 2 and the targets the optimal places for all 
% type 1 sensors are recaucluated using LOC-GEN-II. If this results in a better 
% detection rate of the targets, this setup is the new optimal placement and the 
% process is repeated with erasing the positions of type 2 sensors and recalculating 
% them based on the targets and new optimal places of type 1 sensors. These steps
% are repeated until no further improvement can be reached. 
% The result is a localy optimal placement of sensors and receivers. 

%% %-------------------------------------    PARAMETERS TO BE CHANGED  -------------------------------------%
clc
clear all
m=10;              % length of area A
n=10;              % width of area A
nT=100;            % Starting number of targets
% definition of partition of of receiver and source setting - both must
% have the same number of elements
nS=30;              % Numbers of Sources - must sum up
nR=30;             % number of receivers - must sum up
% definition of the order of placing unknowns 
%   order = 1 : Receivers first, than Sources
%   order = 0 : Sources first, thatn Receivers
orderPL = 0;
%
weightfactor=1;     % paremeter to control the different weighing of the targets (factor =1) 
                    % of all weighing them with one (factor = 0)
%  
GreedyOptParm = 1;  % set the optimality algorithm to Greedy (1) or GAMS with NLP (0)
%
numtrials=1;        % number of trials to run = default 100
rho=0.6;            % range of the day = default 0.6
plotgraph=0;   
Alpha = 0.5;        % radius of the Target Discs for the first iteration step in multiplies of the RoD 
StoppingFlag = 0;   % Parameter to determine the end of the iterative process



for trial = 1:numtrials
%% % determine the random position with nT targets and the weighting matrix
    clear SumCovered PercentCovered
    T=rand(nT,2);T(:,1)=T(:,1)*m;T(:,2)=T(:,2)*n;
    % random weights for targets                                              
    if weightfactor == 1
        W=rand(1,nT);sum_W(trial)=sum(W);
    elseif weightfactor == 0
        W=ones(1,nT);sum_W(trial)=sum(W);    
    end
    % configure for the order of the placement
    if orderPL == 1
        nElm1 = nR; nElm2 = nS;
    elseif orderPL == 0
        nElm2 = nR; nElm1 = nS;  
    end

    % Because we only have the targets, the radius is for al DD RoD*0.5
    % this valus as starting value is based on the investigation that the best
    % results using this as a one-step-algorithm can be achieved  
    RadElm1(1:nT,1:nElm1)=(rho*Alpha);
    MRadElm1=max(RadElm1,[],2);
    % create the target-target distance matrix
    for ti=1:nT
        for tj=1:nT
            DistTT(ti,tj)=sqrt((T(ti,1)-T(tj,1))^2+(T(ti,2)-T(tj,2))^2);
        end
    end

    %% % Iteratively place receivers and sources Until no further improvement of detection is possible. 
    %Elm1Pos = zeros(nElm1,2); Elm2Pos = zeros(nElm2,2);
    OptRun = 1;
    % 1. Call the function OptimalReceivers to calculate to best places for 
    % next nRPart(OptimalRunner) receivers. First call for Weights =1,
    % second for Weights as in W
    [Elm1Pos,CPRedElm1] = ElementOnePlacement(T, nElm1, nT, MRadElm1, W, DistTT, GreedyOptParm);
    % create the target-element distance matrix and radius matrix for the
    % elements which were found up to now.
    for t=1:nT
        for r=1:nElm1
            IterDistElm1(t,r)=sqrt((Elm1Pos(r,1)-T(t,1))^2+(Elm1Pos(r,2)-T(t,2))^2);
            radElm2(t,r)=rho^2./IterDistElm1(t,r);
        end
    end
    MRadElm2=max(radElm2,[],2);
    % 2. Call the function OptimalSources to calculate to best places for 
    % next nSPart(OptimalRunner) Sources based on all receivers
    [Elm2Pos,CPRedElm2,DetTarget,CoveredOptimal] = ElementTwoPlacement( T, nElm2, nT, MRadElm2, W, DistTT, GreedyOptParm);

    % Determine the detected targets and calculate the percentage of detection
    SumCovered(OptRun) = CoveredOptimal;
    PercentCovered(OptRun) = CoveredOptimal/sum_W;

    PercentCoveredMax = CoveredOptimal/sum_W;
    Elm1Max = Elm1Pos;
    Elm2Max = Elm2Pos;
    
    %% Plotting of the last result of the trials
    if plotgraph==1
        display('plotting')    
        figure(OptRun)
        subplot(1,2,1)
        cstring='rgbcmyk'; % color string
        for t=1:nT
            ang=0:0.05:2.1*pi; 
            xp=MRadElm1(t)*cos(ang);
            yp=MRadElm1(t)*sin(ang);
            plot(T(t,1)+xp,T(t,2)+yp,'k');
            hold all    
        end
        scatter(CPRedElm1(:,1),CPRedElm1(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
        scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
        for i = 1 : nElm1
                scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
        end
        axis square
        axis tight
        axis ([0 m 0 n]);
        subplot(1,2,2)
        cstring='rgbcmyk'; % color string
        for t=1:nT
            ang=0:0.05:2.1*pi; 
            xp=MRadElm2(t)*cos(ang);
            yp=MRadElm2(t)*sin(ang);
            plot(T(t,1)+xp,T(t,2)+yp,'k');
            hold all    
        end
        scatter(CPRedElm2(:,1),CPRedElm2(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
        scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
        for i = 1 : nElm2
                scatter(Elm2Pos(i,1),Elm2Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
        end
        for i = 1 : nElm1
                scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'^','MarkerEdgeColor','g','LineWidth',1.5);
        end
        axis square
        axis tight
        axis ([0 m 0 n]);
        hold off
    end

    while StoppingFlag == 0;
        % step 1: 
        % Call the function ElementTwoPlacement to calculate to best places for 
        % nElm1 type 1 sensors. If they result in the same target detection
        % stop and return the values, else, go on to step 2.
        clear IterDistElm2 radElm1 MRadElm1
        for t=1:nT
            for r=1:nElm2
                IterDistElm2(t,r)=sqrt((Elm2Pos(r,1)-T(t,1))^2+(Elm2Pos(r,2)-T(t,2))^2);
                radElm1(t,r)=rho^2./IterDistElm2(t,r);
            end
        end
        OptRun = OptRun+1;
        MRadElm1=max(radElm1,[],2);
        [Elm1Pos,CPRedElm1,DetTarget,CoveredOptimal] = ElementTwoPlacement(T, nElm1, nT, MRadElm1, W, DistTT, GreedyOptParm);
      	% Determine the detected targets and calculate the percentage of detection
        SumCovered(OptRun) = CoveredOptimal;
        PercentCovered(OptRun) = CoveredOptimal/sum_W;
        
        if PercentCoveredMax <= PercentCovered(OptRun);
            PercentCoveredMax = PercentCovered(OptRun);
            Elm1Max = Elm1Pos;
            Elm2Max = Elm2Pos;
        end
        if plotgraph==1
            display('plotting')    
            figure(round((OptRun+1)/2))
            subplot(1,2,1)
            cstring='rgbcmyk'; % color string
            for t=1:nT
                ang=0:0.05:2.1*pi; 
                xp=MRadElm1(t)*cos(ang);
                yp=MRadElm1(t)*sin(ang);
                plot(T(t,1)+xp,T(t,2)+yp,'k');
                hold all    
            end
            scatter(CPRedElm1(:,1),CPRedElm1(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
            scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
            for i = 1 : nElm1
                    scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
            end
            axis square
            axis tight
            axis ([0 m 0 n]);
            subplot(1,2,2)
            hold off
        end
        
        %step 1: 
        % Call the function ElementTwoPlacement to calculate to best places for 
        % nElm2 type 2 sensors. If they result in the same target detection
        % stop and return the values, else, go to start of while loop.
        clear IterDistElm1 radElm2 MRadElm2
        for t=1:nT
            for r=1:nElm1
                IterDistElm1(t,r)=sqrt((Elm1Pos(r,1)-T(t,1))^2+(Elm1Pos(r,2)-T(t,2))^2);
                radElm2(t,r)=rho^2./IterDistElm1(t,r);
            end
        end
        OptRun = OptRun+1;
        MRadElm2=max(radElm2,[],2);
        [Elm2Pos,CPRedElm2,DetTarget,CoveredOptimal] = ElementTwoPlacement(T, nElm2, nT, MRadElm2, W, DistTT, GreedyOptParm);
        % Determine the detected targets and calculate the percentage of detection
        SumCovered(OptRun) = CoveredOptimal;
        PercentCovered(OptRun) = CoveredOptimal/sum_W;

        %% Plotting of the last result of the trials
        if plotgraph==1
            display('plotting')    
            figure(round(OptRun/2))
            subplot(1,2,1)
            cstring='rgbcmyk'; % color string
            for t=1:nT
                ang=0:0.05:2.1*pi; 
                xp=MRadElm1(t)*cos(ang);
                yp=MRadElm1(t)*sin(ang);
                plot(T(t,1)+xp,T(t,2)+yp,'k');
                hold all    
            end
            scatter(CPRedElm1(:,1),CPRedElm1(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
            scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
            for i = 1 : nElm1
                    scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
            end
            axis square
            axis tight
            axis ([0 m 0 n]);
            subplot(1,2,2)
            cstring='rgbcmyk'; % color string
            for t=1:nT
                ang=0:0.05:2.1*pi; 
                xp=MRadElm2(t)*cos(ang);
                yp=MRadElm2(t)*sin(ang);
                plot(T(t,1)+xp,T(t,2)+yp,'k');
                hold all    
            end
            scatter(CPRedElm2(:,1),CPRedElm2(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
            scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
            for i = 1 : nElm2
                    scatter(Elm2Pos(i,1),Elm2Pos(i,2),65,'o','MarkerEdgeColor','b','LineWidth',1.5);
            end
            for i = 1 : nElm1
                    scatter(Elm1Pos(i,1),Elm1Pos(i,2),65,'^','MarkerEdgeColor','g','LineWidth',1.5);
            end
            axis square
            axis tight
            axis ([0 m 0 n]);
            hold off
        end
        
        if PercentCoveredMax <= PercentCovered(OptRun)
            PercentCoveredMax = PercentCovered(OptRun);
            Elm1Max = Elm1Pos;
            Elm2Max = Elm2Pos;
        end
        if OptRun > 4 
            if SumCovered(OptRun) <= 1.001*SumCovered(OptRun-1) && SumCovered(OptRun) <= 1.001*SumCovered(OptRun-2) && SumCovered(OptRun) <= 1.001*SumCovered(OptRun-3) && SumCovered(OptRun) <= 1.001*SumCovered(OptRun-4)
                StoppingFlag = 1;
            end
        end
     end

     MeanPercentCoveredOpt(trial) = PercentCoveredMax;
     MeanPercentCoveredFirst(trial) = PercentCovered(1);
end



clc
clear all
%-------------------------------------    PARAMETERS TO BE CHANGED  -------------------------------------%
m=10;              % length of area A
n=10;              % width of area A
nS=10; % 5:5:50    % Numbers of Sources - also declare in line 20
nT=50; % 20:20:200 % Starting number of targets - also declare in line 21
nR=50;             % number of receivers = default 50
numtrials=100;     % number of trials to run = default 100
rho=0.6;           % range of the day = default 0.6
plotgraph=0;       % plotgraph = 1 to activate plot
%-------------------------------------    PARAMETERS TO BE CHANGED (END)---------------------------------%

DATA=zeros(numtrials*length(nS)*length(nT),14);
AverageResults=zeros(length(nS)*length(nT),13);
ind=0;
data_ind=0;

for nS=10 % 5:5:50                % Number of sources
    for nT = 50; % 20:20:200      % Number of targets
        ind = ind + 1;
        % Generate all needed Matrizes to make the calculation faster
        covered_greedy=zeros(numtrials,1);
        greedy_time=zeros(numtrials,1);
        opt_time=zeros(numtrials,1);
        covered_opt=zeros(numtrials,1);
        percent_covered=zeros(numtrials,1);
        NumberofCPsBefore=zeros(numtrials,1);
        NumberofCPsAfter=zeros(numtrials,1);
        createCP_time=zeros(numtrials,1);
        sum_W=zeros(numtrials,1);
        coverage_ratio=zeros(numtrials,1);
        % Run through the number of trials for each congifuration to get statistical significant results
        for trial = 1 : numtrials
            nS
            nT
            trial
            %Set initial values to zero
            DistTR=zeros(nT,nR);                % target-receiver distance matrix
            DistTT=zeros(nT,nT);                % target-target distance matrix
            TargetsVisible = zeros(nT^2,nT);    % matrix with targets visible from intersection points 
            TargVisBinComp = ones(nT^2,nT);     % binary matrix: ones = target not visible from intersection point
            NumberIntersection = zeros(nT^2,4); % matrix for internal relation of datection disc numbers   
            NumIntersections = zeros(nT,1);     % vector with # of intersection points of each detection disk
            radius=zeros(nT,nR);                % radius of contours for each target and receiver set    
            PoD=zeros(nT*2,nT);                 % PoD of each target by a receiver for every CP   
            CPReduced=zeros(nT,2);              % matrix of reduced CP-set, maximum # of not diminated CPs is nT
            
            % random coordinates for receivers
            R=rand(nR,2);R(:,1)=R(:,1)*m;R(:,2)=R(:,2)*n;
            % random coordinates for targets
            T=rand(nT,2);T(:,1)=T(:,1)*m;T(:,2)=T(:,2)*n;
            % random weights for targets                                              
            W=rand(1,nT);sum_W(trial)=sum(W);

            % create the target-receiver distance matrix and radius matrix
            for t=1:nT
                for r=1:nR
                    DistTR(t,r)=sqrt((R(r,1)-T(t,1))^2+(R(r,2)-T(t,2))^2);
                    radius(t,r)=rho^2./DistTR(t,r);
                end
            end
            max_radius=max(radius,[],2);
            % create the target-target distance matrix
            for ti=1:nT
                for tj=1:nT
                    DistTT(ti,tj)=sqrt((T(ti,1)-T(tj,1))^2+(T(ti,2)-T(tj,2))^2);
                end
            end

            tic
            CountTotInter = 0;
            % Set all target positions as possible canditate points
            ReduceCenter = T;
            % find the intersection points of all disks
            for int1=1:nT-1 % target A 
                for int2=int1+1:nT % target B
                    % compute the (x1,y1) and (x2,y2) intersection points of disks
                    x1=(T(int2,1)+T(int1,1))/2 + (T(int2,1)-T(int1,1)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) - (T(int2,2)-T(int1,2))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
                    y1=(T(int2,2)+T(int1,2))/2 + (T(int2,2)-T(int1,2)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) + (T(int2,1)-T(int1,1))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
                    x2=(T(int2,1)+T(int1,1))/2 + (T(int2,1)-T(int1,1)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) + (T(int2,2)-T(int1,2))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
                    y2=(T(int2,2)+T(int1,2))/2 + (T(int2,2)-T(int1,2)) * (max_radius(int1)^2-max_radius(int2)^2)/(2*DistTT(int1,int2)^2) - (T(int2,1)-T(int1,1))/(2*DistTT(int1,int2)^2) * sqrt(((max_radius(int1)+max_radius(int2))^2-DistTT(int1,int2)^2)*(DistTT(int1,int2)^2-(max_radius(int1)-max_radius(int2))^2));
                    % if the intersection points are real (means they actually intersect) appoint them to the matrix IP. 
                    % If a disk has intersection points, the center point of the disk will never become a candidate point, 
                    % because it will always be subdominant to one of the points on the edge
                    if (isreal(x1)==1) && (isreal(y1)==1) && (isnan(x1)==0) && (isnan(y1)==0) && (isinf(x1)==0) && (isinf(y1)==0)
                        % Increase the counter for the intersections of both disks related to the target pair
                        NumIntersections(int1) = NumIntersections(int1) + 1;
                        NumIntersections(int2) = NumIntersections(int2) + 1;
                        % Because an intersection exists, erase the center point from the Candidate Point List of the targets
                        ReduceCenter(int1,:)= zeros;
                        ReduceCenter(int2,:)= zeros;
                        % Increase the counter of the overall number of intersections
                        CountTotInter = CountTotInter + 2;          
                        % Fill matrix with targets numbers and coordinates of interscetion points for further calculation
                        NumberIntersection(CountTotInter-1,1:2) = [int1,int2];
                        NumberIntersection(CountTotInter,1:2) = [int1,int2];
                        NumberIntersection(CountTotInter-1,3:4) = [x1,y1];
                        NumberIntersection(CountTotInter,3:4) = [x2,y2];           
                        % Fill matrix of visible targets from each intersection point with visible target number (int3) and set binary element to ZERO (visible) 
                        for int3 = 1 : nT
                            if sqrt((x1-T(int3,1))^2+(y1-T(int3,2))^2)<max_radius(int3)+0.00001
                                TargetsVisible(CountTotInter-1,int3) = int3;
                                TargVisBinComp(CountTotInter-1,int3) = 0;
                               end
                            if sqrt((x2-T(int3,1))^2+(y2-T(int3,2))^2)<max_radius(int3)+0.00001
                                TargetsVisible(CountTotInter,int3) = int3;
                                TargVisBinComp(CountTotInter,int3) = 0;
                            end
                        end
                    end
                end  
            end
            % Erase all rows in matrixes for discs with NO intersactions
            TargetsVisible(all(TargetsVisible==0,2),:) = [];
            TargVisBinComp(all(TargVisBinComp==1,2),:) = [];
            NumberIntersection(all(NumberIntersection==0,2),:) = [];
            % Eliminate all rows in the Candidate Point List of the targets with intersections
            ReduceCenter(all(ReduceCenter==0,2),:) = [];
            % Starting number of candidate points 
            NumberofCPsBefore(trial) = size(ReduceCenter,1) + CountTotInter

            % Now generate the Reduced Candidate Point List 
            % FIRST STEP: Find the Candidate Points of the discs with NO intersection
            % A target position is a Candidate Point, if there is NO other disc without intersection in the disc
            % OR
            % there is another disc without intersection in the disc AND the inner disc does not include the center point of the outer disc 
            IndexZeros = find(~NumIntersections);
            CPreducedCounter = 0;
            for i = 1:length(IndexZeros)
                Flag = 1;
                for j = 1:length(IndexZeros)
                    if DistTT(IndexZeros(i),IndexZeros(j)) < max_radius(IndexZeros(i)) && DistTT(IndexZeros(i),IndexZeros(j)) > max_radius(IndexZeros(j))
                        Flag = 0;
                    end
                end
                if Flag == 1
                    CPreducedCounter = CPreducedCounter + 1;
                    CPReduced(CPreducedCounter,:) = ReduceCenter(i,:);
                    % Build up the PoD Matrix needed for the greedy algorithm : If CP Y sees target X, then element X in the column Y of the POD matrix is set to ONE 
                    PoD(CPreducedCounter,IndexZeros(i)) = 1;
                end
            end
            StartIntersectionPoints = CPreducedCounter + 1;

            % SECOND STEP - iteratively: 
            % A - find the Intersection Point which detects the most targets (most dominant), put it in the Reduced Candidate Point List
            % B - eliminate all intersection points which are dominated by the point from step A from the Candidate Point List 
            % Repeat A and B as long there are intersection points in the Candidate Point List (= elements in matrix 'TargetsVisible')
            laeufer2 = 0;
            while(~isempty(TargetsVisible))
                laeufer2 = laeufer2 + 1;
                Targvis(laeufer2) = size(TargetsVisible,1);
                % Find the first most dominant intersection point
                dominant = find(max(nT-sum(TargVisBinComp,2))==(nT-sum(TargVisBinComp,2)),1);
                dominantBin = TargVisBinComp(dominant,:);
                % determine which targets can be detected from this intersection point
                VisElm = TargetsVisible(dominant,:);
                VisElm(all(VisElm==0,1))=[];
                % Add the dominant intersection point to the Reduced Candidate Point List 
                CPreducedCounter = CPreducedCounter+1;
                CPReduced(CPreducedCounter,:) = NumberIntersection(dominant,3:4);
                % Generate the PoD Matrix endtry for the intersection point 
                for loopcounter = 1 : length(VisElm)
                    PoD(CPreducedCounter,VisElm(loopcounter)) = 1;
                end
                % Loop through all remaining intersection points. 
                % Find all dominated intersection points and erase the related entries 
                % A Point is DOMINATED if it sees the same or fewer targets then the DOMINANT point 
                % BUT it must not see any other target, not visible for the dominant point 
                for subdominant = 1 : size(TargetsVisible,1)
                    if (sum(VisElm == find(TargetsVisible(subdominant,:)~=0,1))==1)
                        if (sum(dominantBin .* TargetsVisible(subdominant,:))==0)
                            NumberIntersection(subdominant,:) = zeros;
                            TargetsVisible(subdominant,:) = zeros;
                            TargVisBinComp(subdominant,:) = ones;
                            NumIntersections(find(TargetsVisible(1,:)~=0,1)) = NumIntersections(find(TargetsVisible(1,:)~=0,1))-1;
                        end
                    end
                end
                % Clear out the related elms to this dominant point from the working data to find the next most dominant intersection point
                NumberIntersection(dominant,:) = zeros;
                TargetsVisible(dominant,:) = zeros;
                TargVisBinComp(dominant,:) = ones;
                NumIntersections(VisElm(1)) = NumIntersections(VisElm(1))-1;
                % Eliminate all empty rows in the matrices
                TargetsVisible(all(TargetsVisible==0,2),:) = [];
                TargVisBinComp(all(TargVisBinComp==1,2),:) = [];
                NumberIntersection(all(NumberIntersection==0,2),:) = [];
            end
            % Eliminate all empty rows in the matrices
            CPReduced(all(CPReduced==0,2),:) = [];
            PoD(all(PoD==0,2),:) = [];
            NumberofCPsAfter(trial) = CPreducedCounter;
            createCP_time(trial) = toc;
            
    %---------------------------------- End of new algorithm to calculate the Canditate Point List ----------------------------------%

    %-------------------------------------    CREATE THE TXT FILES FOR K, a and P -------------------------------------%        
            fid_D = fopen('MATLAB_D.txt','w');
            for i=1:size(PoD,1)  %number of candidate points
                for t=1:nT       %number of targets
                    if PoD(i,t)==1
                        P_str=strcat('CP',num2str(i),'.t',num2str(t));
                        fprintf(fid_D, '%s\r\n', P_str);
                    end
                end
            end
            fclose(fid_D);

            fid_t = fopen('MATLAB_t.txt','w');
            for t=1:nT
                t_str=strcat('t',num2str(t));
                fprintf(fid_t, '%s\r\n', t_str);
            end
            fclose(fid_t);

            fid_r = fopen('MATLAB_r.txt','w');
            for r=1:nR
                r_str=strcat('r',num2str(r));
                fprintf(fid_r, '%s\r\n', r_str);
            end
            fclose(fid_r);

            fid_s = fopen('MATLAB_s.txt','w');
            for s=1:nS
                s_str=strcat('s',num2str(s));
                fprintf(fid_r, '%s\r\n', s_str);
            end
            fclose(fid_s);

            fid_CP = fopen('MATLAB_CP.txt','w');
            for i=1:size(CPReduced,1)+1
                CP_str=strcat('CP',num2str(i));
                fprintf(fid_CP, '%s\r\n', CP_str);
            end
            fclose(fid_CP);

            fid_W = fopen('MATLAB_W.txt','w');
                for t=1:nT
                    W_str=strcat('t',num2str(t),32,num2str(W(t)));
                    fprintf(fid_W, '%s\r\n', W_str);
                end
            fclose(fid_W);

            if plotgraph==1
                display('plotting')    
                % PLOTS THE CIRCLES AROUND POINTS OF INTERESTS
                % T(i,1) and T(i,2) are the (x,y) coordinates of the center of the circle i
                % r(i) is the radius of the circle i
                % 0.05 is the angle step
                figure(1)
                subplot(1,2,1)
                cstring='rgbcmyk'; % color string
                for t=1:nT
                    ang=0:0.05:2.1*pi; 
                    xp=max_radius(t)*cos(ang);
                    yp=max_radius(t)*sin(ang);
                    plot(T(t,1)+xp,T(t,2)+yp,'k');
                    hold all    
                end
                subplot(1,2,1)
                scatter(CPReduced(:,1),CPReduced(:,2),65,'o','MarkerfaceColor','red','MarkerEdgeColor','r');
                scatter(R(:,1),R(:,2),60,'^','MarkerEdgeColor','b','MarkerFaceColor','b','LineWidth',1.5);
                scatter(T(:,1),T(:,2),70,'x','MarkerEdgeColor','k','LineWidth',2.0);
                labels3 = num2str((1:size(CPReduced,1))','c_{%d}'); 
                text(CPReduced(:,1), CPReduced(:,2), labels3, 'horizontal','left', 'vertical','top','FontAngle','italic','FontSize',14,'Fontname', 'Times New Roman');
                labels2 = num2str((1:size(R,1))','r_{%d}'); 
                text(R(:,1), R(:,2), labels2, 'horizontal','center', 'vertical','top','FontAngle','italic','FontSize',14,'Fontname','Times New Roman');
                labels1 = num2str((1:size(T,1))','t_{%d}');  
                text(T(:,1), T(:,2), labels1,'horizontal','left', 'vertical','bottom','FontAngle','italic','FontSize',14,'Fontname','Times New Roman');
                axis square
                axis tight
                axis ([0 m 0 n]);
                hold off
                % subplot 2 contains the number of remaining CPs in the candidate list in each step 
                % using the algorithm to eliminate subdominant candicate points
                subplot(1,2,2)
                plot(Targvis);axis square; xlabel('Iteration step'); ylabel('Number of remaining candidate points');
                hold off    
            end
            display(' ALL DONE... ')

    % Greedy algorithm --------------------------------------------------------
            PdHOLD=PoD;
            weighted_PdHOLD=PdHOLD.*repmat(W,size(PdHOLD, 1),1);
            tic
            covered=zeros(1,size(PoD,1));
            selected=zeros(1,nS);
            for k=1:nS
                % find CP that covers the most targets
                covered(:)=sum(weighted_PdHOLD,2);
                % choose it
                bestCP=find(covered==max(covered));
                covered_greedy(trial)=covered_greedy(trial)+max(covered);
                choose=bestCP(1); % index of candidate point selected
                targetscovered=find(PdHOLD(choose,:)==1);
                % remove targets associated with the CP that we just chose
                weighted_PdHOLD(:,targetscovered)=0;
            end
            greedy_time(trial)=toc;
    % End greedy algorithm --------------------------------------------------------
    % call GAMS to solve optimally
            %! GAMS cookie_MIP.gms
            ! c:\GAMS\win64\24.2\GAMS cookie_MIP.gms
            load z.dat;
            load comptime.dat;

            opt_time(trial)=comptime;
            covered_opt(trial)=z;
            percent_covered(trial)=covered_greedy(trial)/covered_opt(trial);
            coverage_ratio(trial)=covered_opt(trial)/sum_W(trial);
            data_ind=data_ind+1;
            DATA(data_ind,:)=[data_ind nS nT nR NumberofCPsBefore(trial) NumberofCPsAfter(trial) createCP_time(trial) opt_time(trial) greedy_time(trial) covered_opt(trial) covered_greedy(trial) percent_covered(trial) sum_W(trial) coverage_ratio(trial)];      
        end
        average_NumberofCPsBefore=mean(NumberofCPsBefore);
        average_NumberofCPsAfter=mean(NumberofCPsAfter);
        average_createCP_time=mean(createCP_time);
        average_greedy_time=mean(greedy_time);
        average_opt_time=mean(opt_time);
        average_covered_greedy=mean(covered_greedy);
        average_covered_opt=mean(covered_opt);
        average_percent_covered=mean(percent_covered);
        worst_greedy_performance=min(percent_covered);
        average_coverage_ratio=mean(coverage_ratio);

        AverageResults(ind,:)=[nS nT nR average_NumberofCPsBefore average_NumberofCPsAfter average_createCP_time  average_opt_time average_greedy_time  average_covered_opt average_covered_greedy average_percent_covered worst_greedy_performance average_coverage_ratio];
        AverageResults(ind,:)
    end
end

save Complete_Solution_Base DATA AverageResults


