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Abstract

Random geometric graphs have been one of the fundamental models for reasoning about wireless
networks: one placesn points at random in a region of the plane (typically a square or circle), and then
connects pairs of points by an edge if they are within a fixed distance of one another. In addition to giving
rise to a range of basic theoretical questions, this class ofrandom graphs has been a central analytical
tool in the wireless networking community.

For many of the primary applications of wireless networks, however, the underlying environment
has a large number of obstacles, and communication can only take place among nodes when they are
close in spaceandwhen they have line-of-sight access to one another — consider, for example, urban
settings or large indoor environments. In such domains, thestandard model of random geometric graphs
is not a good approximation of the true constraints, since itis not designed to capture the line-of-sight
restrictions.

Here we propose a random-graph model incorporating both range limitations and line-of-sight con-
straints, and we prove asymptotically tight results fork-connectivity. Specifically, we consider points
placed randomly on a grid (or torus), such that each node can see up to a fixed distance along the row
and column it belongs to. (We think of the rows and columns as “streets” and “avenues” among a reg-
ularly spaced array of obstructions.) Further, we show thatwhen the probability of node placement is a
constant factor larger than the threshold for connectivity, near-shortest paths between pairs of nodes can
be found, with high probability, by an algorithm using only local information. In addition to analyzing
connectivity andk-connectivity, we also study the emergence of a giant component, as well an approx-
imation question, in which we seek to connect a set of given nodes in such an environment by adding a
small set of additional “relay” nodes.
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1 Introduction

Most of today’s approaches to wireless computing and communications are built on architectures where base
stations connect the wireless devices to a supporting infrastructure. However, since the overwhelming trend
is to transmit information in packets, over standard protocols, a dominant focus in the wireless research
community is on more decentralized approaches where nodes cooperate to relay packets on behalf of other
nodes. This focus is at the heart of current work on mobile ad hoc networks (MANETs) [17, 18].

Such networks can be viewed as consisting of a collection of nodes, representing wireless devices,
positioned at various points in some physical region. The (wireless) “links” of the network, joining pairs
of nodes that can directly communicate with one another, arepredominantly short-range and constrained
by line-of-sight; this is an inevitable result of the scarcity of radio frequency (RF) spectrum and physical
constraints on the propagation of RF and optical signals. The ways in which these physical limits on direct
communication affect the overall performance of the network is a fundamental issue that motivates much of
the theoretical work in this area.

Random Geometric Graphs. Given this framework, random geometric graphs have emergedas a dom-
inant model for theoretical analysis of distributed wireless networks. One placesn points uniformly at
random in a geometric region (typically a disc or a square), and then, for arange parameterr, one connects
each pair of nodes that are within distancer of one another. This model is the subject of a book by Penrose
[20], and we refer the reader there for extensive background; we also note that the enormously influential
work of Gupta and Kumar on the capacity of wireless networks is framed in this model as well [13, 14].

One of the most basic questions is to determine how the probability of connectivity of a random geo-
metric graph depends on the number of nodesn and the range parameterr. A canonical result here is the
following theorem of Penrose [19]. If we placen points uniformly at random in a unit square, and then
continuously increase the range parameterr, with high probability the resulting geometric graph becomes
k-connected at the smallest value ofr for which there are no nodes of degree< k. In other words, the
graph becomesk-connected at the moment that all trivial obstacles tok-connectivity (i.e. low-degree nodes)
disappear. An analogous type of result is familiar from classical Erdos-Renyi random graph models [4].
(For further results and discussion on thresholds in randomgeometic graphs, see Goel et al. [11].)

For modeling distributed wireless networks, the assumption of random node placement has proved to
be a reasonable abstraction for the lack of structure in nodelocations, given that most frameworks for ad
hoc networks assume some arbitrary initial “scattering” ofnodes, or that nodes reach their positions as a
result of arbitrary mobility. More problematic is the fact that the analysis takes place in regions with no
obstructions — in other words, that a node can communicate with all other nodes within distancer. This is
at odds with the underlying constraints in many applications of distributed wireless networks, where there
can generally be a large number of obstructions limiting communication between nearby nodes due to a lack
of direct line-of-sight contact.

In other words, while random geometric graphs model wireless networks in open spaces, we lack a
corresponding model for wireless networks in some of their most common domains: urban settings, large
indoor environments, or any other context in which there areobstacles limiting visibility. With such a model
would come the ability to address a range of basic theoretical problems. In particular, we are guided by the
following genre of question:

How do connectivity and other structural properties of random geometric graphs change once
we introduce line-of-sight constraints?

An understanding of such issues could help provide a framework for reasoning more generally about the
performance of distributed wireless networks in obstructed environments.

1



The present work: Connectivity in line-of-sight networks. In this paper, we propose a random-graph
model incorporating both range limitations and line-of-sight constraints, and we prove asymptotically tight
results fork-connectivity. We also consider related structural questions, including the emergence of a giant
component, as well as some of the algorithmic issues raised by the model.

To motivate the model, consider a stylized abstraction of limited-range wireless communication in an
urban environment: there aren streets running east-west,n avenues running north-south, and wireless nodes
can be placed at intersections of streets and avenues. Each node hasrangeω — it can see up toω blocks
north and south along the avenue it lies on, and up toω blocks east and west along the street it lies on.

More concretely, we have an underlying setT of lattice points{(x, y) : x, y ∈ {1, 2, . . . , n}}. We
measure distance using theL1 metric, though to prevent complications arising from boundary effects in this
presentation, we define the distance between points as though they form a torus:

d((x, y), (x′, y′)) = min(|x − x′|, n − |x − x′|) + min(|y − y′|, n − |y − y′|).

For a specifiedrange parameterω, we say that two points aremutually visibleif they are in the same row or
the same column of the torus, and if they are within distance at mostω from one another. We view the range
ω as implicitly being a function ofn, and in this paper we will make the assumption thatω is asymptotically
bounded below byln n and above by some polynomial inn; specifically, we assumeln n = o(ω) and that
ω = O(nδ) for a value ofδ < 1 to be specified below.

We now study the random graphG that results if, for someplacement probabilityp > 0, we locate a
node at each point ofT independently with probabilityp, and then connect those pairs of nodes that are
mutually visible. Asp increases, the torus becomes more crowded with nodes, and the resulting graphG
is more likely to be connected. Our main result states, roughly, that the smallest value ofp at whichG
becomesk-connected with high probability is asymptotically the same as the smallest value ofp at which
the minimum degree inG is k with high probability.

More concretely, for a critical value of the placement probability p∗ = O( ln n
ω ), we find that in an

interval of widthO( 1
ω ) aroundp∗, the random graphG goes from beingk-connected with arbitrarily small

probability to beingk-connected with probability arbitrarily close to1. Moreover, the probability thatG has
no nodes of degree< k undergoes a comparable transition in a corresponding interval aroundp∗. We state
this theorem aboutk-connectivity as follows. First, we writeω = nδ where we assume thatω ≫ ln n and
δ < 6

8k+7 . Note that wedo not preclude the case whereδ = o(1).

Theorem 1.1 Letk ≥ 1 be a fixed positive integer and letp =
(1− 1

2
δ) ln n+ k

2
ln lnn+cn

2ω . Then

lim
n→∞

Pr(G is k-connected) =











0 cn → −∞

e−λk cn → c

1 cn → ∞

where

λk =
2k−2(1 − 1

2δ)ke−2c

(k − 1)!
.

The proof of this result, which occupies Section 2 of the paper, requires techniques quite different from
the analysis of standard geometric random graphs, due to theline-of-sight constraints. One way to appreciate
why this appears necessary is to consider that, as we varyω, the resulting model interpolates between two
well-known, but qualitatively different random graph models. Whenω = 1, so that a node can only see
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neighboring points, we have site percolation on a lattice, awell-studied problem that is still not completely
well understood. At the other extreme, whenω = n and nodes can see all points in their row and column, it
is easy to see that the model is equivalent to a purely graph-theoretic one in which we start with the complete
bipartite graphKn,n and keep each edge with probabilityp. Note that our bounds onω preclude either of
these exact extremes, but our analysis for the “middle region” of ω that we consider involves ingredients
from both extremes, combining techniques from “classical”random graph analysis with the combinatorics
of the underlying grid of points.

The present work: Further results. We consider the emergence of a giant component in our model. We
prove that ifp = c/ω for c > 1 andω → ∞, then with high probabilityG contains a component with a
linear fraction of all the nodes.

We also consider the problem of how nodes in such a random graph can construct paths between each
other, possessing knowledge of their own coordinates but otherwise having only local information. We
show that whenp exceeds the threshold for connectivity by a fixed (relatively small) constant factor —
i.e. p = C ln n/ω — then a simple decentralized algorithm allows a given pair of nodes atL1-distanced
to construct, with high probability, a path ofO(d/ω + ln n) edges while involving onlyO(d/ω + ω ln n)
nodes in the computation. This is nearly optimal, even with global information, sinceΩ(d/ω) is a simple
lower bound on the length of any path between nodes atL1-distanced (and hence also a lower bound on the
number of nodes who need to participate in the construction of the path).

Finally, we consider a basic algorithmic problem in a non-random version of the line-of-sight model:
given an input set of nodes, we would like to add a small set of additional nodes so that the full set becomes
connected. More concretely, suppose we are given a set of nodes at pointsX ⊂ T , such that the graph onX
(defined by visibility with respect to the range parameterω) is not connected. We would like to add further
nodes, at a setY ⊂ T , whereY should be as small as possible subject to the constraint thatthe graph on
X ∪ Y should be connected. We think of the additional nodesY as “relays” that connect the original nodes
in X under line-of-sight constraints; as a result, we refer to this as theRelay Placementproblem.

By considering the graph of mutual visibility, and viewing the nodes inY as Steiner nodes, an instance
of Relay Placement can be easily cast as an instance of theNode-Weighted Steiner Treeproblem. The
general Node-Weighted Steiner Tree problem is inapproximable to within a factor ofΩ(log n) [16]. For the
class of line-of-sight networks that we study here, however, we show how to exploit the underlying visibility
structure to obtain a constant-factor approximation. In particular, we make use of a graph-theoretic notion
that we callcohesiveness, which suggests some combinatorial questions of independent interest.

Relay Placement is clearly related to certain algorithmicart-gallery problems (see e.g. [8, 9] and the
VC-dimension results in [15, 23]), since there too one is placing nodes in a region subject to visibility
constraints. However, the problems considered in the literature on art-gallery problems have a different
focus, as they are concerned with placing nodes so as to see the entire region, as opposed to adding Steiner
nodes so as to create a connected visibility graph, as we do here.

2 Connectivity

This section is devoted to the proof of Theorem 1.1. We will concentrate first on the case wherecn → c and
to avoid trivialities we will assume thatcn = c. Thus until further notice, we will assume that

p =
(1 − 1

2δ) ln n + k
2 ln ln n + c

2ω
.
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The overall outline of the proof is as follows. We imagine adding nodes in two stages — most of the
nodes in the first stage, and a few final nodes in the second stage. Now, suppose the graphH formed by
nodes added in the first stage can be disconnected by the deletion of some setS of fewer thank nodes. We
argue that with high probability, any two componentsJ andK of H − S come “close” to one another at
many disjoint locations on the torusT — in particular, at each of these locations, there is some point of the
torus that sees nodes in bothJ andK. When we then add nodes in the second stage, it is enough that a
node is placed at one of these points that can see both components; and we argue that there are enough such
points that this happens with high probability.

2.1 Minimum degree computation

We first show, by analogy with the random graphGn,p, that the threshold fork-connectivity coincides with
the threshold for there being no vertices of degree less thank. The proof is given in the appendix.

Proposition 2.1 lim
n→∞

Pr(G contains a vertex of degree< k) = 1 − e−λk .

2.2 Probabilistic part of proof

We imagine placing nodes at random according to the following two-stage process. We place a node at each
point with probabilityp1 in the first stage. We then independently place a node at each point with probability
p2 in the second stage. We choose

p1 =
(1 − 1

2δ) ln n + k
2 ln ln n + c − (ln n)−1

2ω
≥

ln n

3ω

andp2 so that this is equivalent to the original placement processwith probabilityp, in which case

p2 ∼
1

2ω ln n
.

For ease of terminology, we say that a node isred if it was placed in the first stage, and we say that it is
blue if it is placed in the second stage at a point not hit by the firststage. LetH denote the subgraph ofG
consisting only of red nodes.

For each point inT , we define its fourarms to be the four sets ofω points that are visible from it
in a single direction (north, south, east, and west). We further partition each armα of point x into 10
consecutive segmentsα1, α2, . . . , α10 of lengthω/10. A segment is said to beweak, otherwisestrong, if it
contains fewer than150 ln n red nodes. An arm is said to bemighty if all its segments are strong. We first
claim

Lemma 2.2 With high probability there does not exist a red node which has an armα on which we can find
1000 red vertices, each having an arm orthogonal toα which is not mighty.

Proof. For a fixed pointx and armα, the probability that the arm contains a weak segment can be bounded
by

10Pr

(

Bin(ω/10, p1) ≤
1

50
ln n

)

≤ e−(ln n)/400 = n−1/400.

So the probability that there is a red node as described in thestatement is bounded by

8n2

(

ω

1000

)

p1000
1 n−1000/400 = o(1).
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Lemma 2.3 With high probabilityH does not contain a vertexv of degree less thanln ln n that has a
neighborw such thatw contains an arm orthogonal tovw which is not mighty.

Proof. The probability thatH contains such a pairv,w is bounded by

n2p1

ln lnn
∑

t=1

(

4ω

t

)

pt
1(1 − p1)

4ω−t(2n−1/400)

≤ 2n−1/400
ln ln n
∑

t=1

(

(4 + o(1))e ln n

t

)t

e−2c+o(1)

= o(1) .

Lemma 2.4 With high probabilityH does not contain a red vertex with at mostk − 1 red neighbors and at
least one blue neighbour.

Proof. The probability thatH contains such a vertexv is bounded by

n2p1

k−1
∑

t=0

(

4ω

t

)

pt(1 − p1)
4ω−t(4ωp2) ∼ 4λkωp2 = o(1).

Lemma 2.5 With high probabilityH does not contain a blue vertex with fewer thank red neighbours.

Proof. The probability thatH contains such a vertexv is bounded by

n2p2

k−1
∑

t=0

(

4ω

t

)

pt
1(1 − p1)

4ω−t ∼
λkp2

p1
= o(1).

Let E1, E2, E3, andE4 denote the events that the properties in Lemmas 2.2, 2.3, 2.4, and 2.5 respectively
hold.

2.3 Non-probabilistic part of proof

For this next part, we assume that the high-probability events considered thus far all occur; in particular, we
assume thatδ(G) ≥ k and thatE1, E2, E3, andE4 all hold.

Recall thatH is the subgraph ofG consisting only of the red nodes. LetS be an arbitrary set ofk − 1
red vertices, and letHS = H − S. Our goal is to show that ifHS has multiple connected components, then
with high probability they will all be linked up by the addition of the blue nodes.

Let L be the set of points inT with coordinates(i, j), where each ofi andj is a multiple of3ω. For
each connected componentK of HS, and for each pointx ∈ L, let vKx denote the node inK that is closest
to x in L1 distance. We claim

Lemma 2.6 vKx lies within theω × ω boxBx centered atx.
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Proof. Let a red node bepink if it is not in S. Assume without loss of generality that the pointx is located
at the origin of the torus, which we denotex = 0. Suppose thatv = vK0 = (a, b) is N-E of 0 and that it
does not lie inB0. v has at least one arm containing a pink nodew. This follows from the occurrence ofE3.
If the degree ofv is less thanln ln n then we can use the non-occurrence ofE2 to argue that the two arms of
w orthogonal tovw are mighty. If the degree ofv is greater thanln ln n then we can use the non-occurrence
of E1 to argue that there is a choice ofln ln n − 4000 w’s such that the two arms ofw orthogonal tovw are
mighty. Letα denote the arm ofv containing aw with mighty arms. Note that every segment of a mighty
arm contains at least151 ln n pink nodes.

Case 1: α is the South arm ofv.
If a ≤ ω/2 then any pink node onα is either inB0 or closer to0 thanvK0. Similarly, if b > ω/2 then

any pink node onα is closer to0 thanvK0. So we can assume thata > ω/2 ≥ b. Also, if (a, b′) ∈ α then
we must have0 > b′ = −b′′ where we can assume thatb ≤ b′′ ≤ ω − b.

Choose such a pink node(a,−b′′) with a mighty West armβ. Now choose a pink nodew = (a′,−b′′) ∈
β such that (i)a − a′ ∈ [.4ω, .5ω] and (ii) the North armγ of w is mighty. Now choose a pink node
(a′, c) ∈ γ such that|c − b| ≤ .1ω. It follows that|a′| + |c| ≤ a + b + .1ω − .4ω, contradiction.

Case 2a: α is the North arm ofv anda ≥ ω/2.
Choose a pink node(a, b′) ∈ α with a mighty West armβ. Then choose a pink nodew = (a′, b′) ∈ β

such that (i)a−a′ ∈ [.4ω, .5ω] and (ii) the South armγ of w is mighty. Now choose a pink node(a′, b′′) ∈ γ
such that|b′′ − b| ≤ .1ω. It follows that|a′| + |b′′| ≤ a + b + .1ω − .4ω, contradiction.

Case 2b: α is the North arm ofv anda < ω/2.
We must haveb > ω/2, elsevK0 ∈ B0. Choose a pink node(a, b′) ∈ α with a mighty West armβ.

Then choose a pink nodew = (a′, b′) ∈ β such that (i)|a − a′| ≤ .1ω and (ii) the South armγ of w is
mighty.

If |b − b′| ≤ .7ω then choose a pink node(a′, b′′) ∈ γ such that|b′′ − b| ∈ [.9ω, ω]. It follows
that |a′| + |b′′| ≤ a + b + .1ω + .7ω − .9ω, contradiction. Otherwise,|b − b′| > .7ω. We can choose
a pink nodey = (a′, b′′) ∈ γ such that the West armδ of y is mighty and|b′ − b′′| ≥ .9ω. Choose
a pink nodez = (a′′, b′′) ∈ δ such that|a′′ − a′| ≤ .1ω and its South armε is mighty. Finally, we
note that there exists a pink nodew = (a′′, b′′′) ∈ ε such that|b′′ − b′′′| ∈ [.5ω, .6ω]. Then we have
|a′′| + |b′′′| ≤ a + b + ω + .1ω − .9ω + .1ω − .5ω, contradiction.

The case whereα is the West arm is dealt with as in Case 1 and the case whereα is the east arm is dealt
with as in Case 2.

Now, letJ andK be two distinct component ofHS . SincevJx andvKx both lie in theω×ω box around
x, there is some pointz(J,K, x) that is visible from both of them. We observe that

Lemma 2.7 The pointsz(J,K, x) andz(J,K, y) are distinct, for distinct pointsx, y ∈ L.

Proof. z(J,K, x) lies in theω × ω box aroundx, andz(J,K, y) lies in theω × ω box aroundy, and these
boxes are disjoint, sincex andy are at least3ω apart.

2.4 Finishing the proof

Note that if a node is placed atz(J,K, x), then it will be a neighbor both of a point inJ andK, and hence
J andK will belong to the same component inG. In the second stage of node placement, a blue node will
be placed at each pointz(J,K, x) with probabilityp2. By Lemma 2.7, there aren

2

9ω2 such points for a fixed
pair of componentsJ,K, and so the probability that no blue point is placed at any of them is bounded by

(1 − p2)
n2/(9ω2) ≤ e−n2/(20ω3 ln n) ≤ e−n2−3δ/(20 lnn)
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There are at mostω2 components, since for any fixed pointx ∈ L, each component has a node in theω × ω
box aroundx.

Thus, the probability that there exists a setS of size at mostk − 1 and componentsJ,K of HS , which
are not connected inG by a blue vertex is at mostω4e−n2−3δ/(20 lnn)n2k−2 = o(1). Thus, conditional on
there being no vertices of degreek − 1 or less, if we remove any setS of k − 1 vertices, then with high
probability the graphHS has a component containing all of the red vertices. It follows fromE4 thatG − S
is connected and soG itself isk-connected with high probability.

This finishes the casecn → c. If cn → −∞ then one uses the Chebyshev inequality to show that with
high probability there are vertices of degree less thank. If cn → ∞ then with high probability there are no
vertices of degree less thank (the expected number tends to zero), and the argument forcn → c implies that
G will be k-connected with high probability.

This completes the proof of Theorem 1.1.

3 The Existence of a Giant Component

We now consider the existence of agiant component in our model of line-of-sight networks. Note herethat
sinceG itself hasO(n2p) vertices, a giant component is one withΩ(n2p) vertices.

Theorem 3.1

(a) If p = c
ω wherec > 1 and ω → ∞ then with high probabilityG contains a component with(1 −

o(1))(1 − x2
c)n

2/ω vertices, wherexc is the unique solution in(0, 1) of xe−x = ce−c.

(b) If p = c
ω wherec < 1/(4e) andω → ∞ then with high probability the largest component inG has size

O(ln n).

To prove part (a) of the theorem, we first require a lemma aboutthe existence of a giant component in
the random graphH = Bm,m,q whereq = d/m. Here we createH by including each edge of the complete
bipartite graphKm,m independently with probabilityq.

Lemma 3.2 If d > 1 then with high probabilityH contains a componentCg with (1 − o(1))(1 − xd)m
vertices on each side of the partition, wherexd is the unique solution in(0, 1) of xe−x = de−d. Furthermore
Cg contains(1 − o(1))(1 − x2

d)m edges.

Proof. We follow the proof of the existence of a giant component via branching processes as elaborated in
Chapters 10.4 and 10.5 of Alon and Spencer [1]. Note that the degree of a vertex ofH has a distribution
which is asymptotically Poisson with meand and the proof in [1] can easily be adapted toH. This will show
thatCg has∼ (1−xd)m vertices on each side. To get the number of edges, imagine themodel where we fix
the number of edges asµ ∼ dm. Suppose now we put inµ− 1 random edges and obtain a giant component
C ′

g with (1 − o(1))(1 − xd)m vertices on each side. Now put in theµth random edge. The probability it is
not part of the giant componentCg is ∼ x2

d. This shows|E(Cg)| ∼ (1 − x2
d)m in expectation. By adding

two random edges we can estimate the variance and then use Chebyshev’s inequality.

Now divide the torusT into N = n2/ω2 sub-squaresS1, S2, . . . , SN of sizeω × ω. Fix a particular sub-
squareSi and consider the bipartite graphHi with ω + ω verticesRi ∪Ci (rows/columns) where there is an
edge(x, y) ∈ Ri × Ci if the gridpoint ofT corresponding to(x, y) is occupied by a node ofG. Applying
Lemma 3.2 withm = ω andd = c we see that with probability(1 − o(1)), Hi contains a giant component
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Figure 1: The sub-squares used in the analysis of the giant component.

Γi with (1 − o(1))(1 − xc)ω vertices on each side and(1 − o(1))(1 − x2
c)ω

2 edges. When translated into a
subgraph ofG, we see thatHi induces a subgraphGi with (1 − o(1))(1 − x2

c)ω
2 vertices. This is because

each edge ofHi corresponds to a vertex ofG.
We divide each sub-squareSi further into 16ω/4 × ω/4 sub-squares. We choose 4specialsub-squares

Si,1, . . . , Si,4. These will either be at(1, 2), (2, 1), (3, 4), (4, 3) or at(1, 3), (2, 4), (3, 1), (4, 2) where(i, j)
denotes the sub-square in rowi, columnj, 1 ≤ i, j ≤ 4. We then have these two sorts of sub-square
alternate along the rows and columns ofT as in Figure 1.

Each special sub-square is associated with a direction. Ifi = 1 then the direction is North. Ifi = 4 then
the direction is South. Ifj = 1 then the direction is West and ifj = 4 then the direction is East.

Now with high probability each of the 4 special sub-squares will contain∼ (1−xc)ω/4 useablecolumns
(North or South sub-squares) or rows (East or West sub-squares) that correspond to vertices of a giant
component of the correspondingHi. We say that a squareSi is goodif Hi contains a giant component with
∼ (1 − x2

c)ω
2 edges and each special sub-square has∼ (1 − xc)ω/4 useable rows or columns, depending

on its direction.
If Hi is good then we choose(1 − xc)ω/5 random rows or columns from the useable rows or columns

of each the four special sub-squares. LetXi,j be the set of rows or columns chosen fromSi,j. We observe
that conditional onSi being good, the setsXi,j are uniformly random and independent of each other.

We are now in a position to usemixed percolation. Let L denote then/ω × n/ω latticeL with site
percolationpV = 1−o(1) and bond percolationpE = 1−o(1). Here we place a vertex at sitei is the square
Si is good. If two adjacent sitesHi,Hi+1 say are good then we join them by an edge in the lattice if the
following holds: Let the adjacent special squares beSi,r andSi+1,s. We add the edge ifXi,r ∩ Xi+1,s 6= ∅.
If this occurs then there are a pair of nodes ofG, u ∈ Γi, v ∈ Γi+1 such thatu, v are in the same row or
column and are at distance≤ ω apart. HenceΓi andΓi+1 will form part of the same component inG.

In this model of percolation the giant cluster will contain almost all of the points; for example this
follows from a simple generalisation of Theorem 1.1 of Deuschel and Pisztora [7]. In which case almost all
of the giantsΓi will part of the same component ofG. This completes the proof of part (a) of Theorem 3.1.

To prove part (b) of the theorem, we first note that anr-regular,N -vertex graph contains≤ N(er)k−1

trees withk vertices. This is proved for example in Claim 1 of [10]. Thus the expected number ofk-vertex
trees inG is bounded byn2(4eωp)k−1 = n2(4ec)k−1 = o(1) if k ≥ A ln n andA is sufficiently large.

4 Finding Paths Between Nodes

Thus far, we have considered the existence of paths between nodes in random line-of-sight networks. In
terms of the motivating applications, it is also interesting to consider the algorithmic problem faced by a

8



pair of nodess andt trying to construct a path between them in such a network. We consider a decentralized
model in which each node knows only its own coordinates and those of its neighbors inG; given the
coordinates oft, the nodes must pass a message tot by forwarding it through a sequence of intermediate
nodes. We consider the standard goal in wireless ad-hoc routing: we wish to construct ans-t path with a
small number of edges, while consulting a small number of intermediate nodes [22].

We show that it is possible to find good paths by decentralizedmeans when the placement probabilityp
is a constant factor larger than the threshold for connectivity.

Theorem 4.1 Letp = C ln n/ω for a constantC to be specified below. There is a decentralized algorithm
that, givens and t, with high probability constructs ans-t path with O(d(s, t)/ω + ln n) edges while
involvingO(d(s, t)/ω + ω ln n) nodes in the computation.

We note that this bound is nearly optimal, sinceΩ(d(s, t)/ω) is a simple lower bound on the number
of edges and the numbers of nodes involved in anys-t path. For example, ifs andt are selected at random
(so thatd(s, t) is linear in expectation), then given our upper bounds onω from Section 2, both bounds in
Theorem 4.1 areO(d(s, t)/ω), since the other terms are of asymptotically lower order.

To begin the proof of Theorem 4.1, letN = n2 and letS1, S2, . . . , SN be the collection of allω × ω
sub-squares obtained by choosingω consecutive rows and columns. LetGi,Hi, i = 1, 2, . . . , N be defined
similarly to that done in Section 3. We first observe the following.

Lemma 4.2 (a) With high probabilityG1, G2, . . . , GN are all connected. (b) With high probability the
diameter ofGi is at mostD ln n, i = 1, 2, . . . , N , whereD is some absolute constant.

Proof. The proof of (a) is simple.G1 is connected iffH1 is connected. IfH1 is not connected then then
there exist non-empty subsetsK ⊆ R1, L ⊆ C1, |K| + |L| ≤ ω such thatK ∪ L induces a connected
component ofH1. The probability that such a pair exist is at most

∑

2≤k+ℓ≤n

(

ω

k

)(

ω

ℓ

)(

kℓ

k + ℓ − 1

)

pk+ℓ−1(1 − p)k(ω−ℓ)+ℓ(ω−k)

≤
2

p

∑

2≤k+ℓ≤n

(ωe

k

)k (ωe

ℓ

)ℓ
(

kℓe

k + ℓ

)k+ℓ

pk+ℓe−((k+ℓ)ω−2kℓ)p

≤
2

p

∑

2≤k+ℓ≤n





e2C ln n

exp
{

c ln n
(

1 − 2kℓ
ω(k+ℓ)

)}





k+ℓ

≤
2

p

∑

2≤k+ℓ≤n

(

e2C ln n

nC/2

)k+ℓ

= O((ln n)2ωn−C).

So if C ≥ 3 we can inflate this latter probability estimate byn2/ω to account for all ofG1, G2, . . . , GN .
The proof of part (b) is more involved, but it is a standard calculation; see for example Bollobás and

Klee [5].

The next thing we observe is that we can now assume that all arms of all vertices are mighty. This is
again a simple calculation, similar to that given for the proof of (2.2). This also allows us to specify the
value ofC in the expressionp = C ln n/ω: it should be large enough for Lemma 4.2 to hold and for all
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arms of all nodes to be mighty. (In fact, as will be clear from the subsequent discussion, we will need only
a weak variant of mightiness in the analysis.)

We now describe the decentralized algorithm to pass a message from a nodes to a nodet (thereby
constructing ans-t path). The algorithm consists of two stages. First, starting ats, the message is passed
between nodes on the row ofs, moving the “short way” around the torus toward the column oft. Each node
passes the message to its farthest neighbor on the arm in the correct direction; since all arms are mighty,
the message travels anL1-distance of at leastω/2 in each step. This process stops, at a nodeu, when the
message is about to “overshoot” the column oft. At this point, the message is then passed between nodes
in the column ofu, according to the same rule. This process stops when the message is about to overshoot
the row oft.

The second stage now begins, with the message at a nodev that belongs to a subsetB of sizeω×ω, such
that B also containst. The message is now propagated by breadth-first search to allnodes withinD lnn
steps, but only including nodes that belong to the setB. HereD is the constant from Lemma 4.2. (Note that
by our assumption that nodes know the coordinates of themselves and their neighbors, a node can determine
which subset of its neighbors lie inB and hence should be included in the BFS.) By Lemma 4.2, the node
t will be reached by this BFS, since the subgraph ofG restricted toB is connected and with appropriately
short paths.

The bound on the number of edges in the resultings-t path follows directly from the definition of the
two stages. To bound the number of nodes involved in the computation, we observe thatO(d(s, t)/ω) nodes
are involved in the first stage, and the second stage involvesat most the total number of nodes inB, which
is O(pω2) = O(ω ln n) with high probability.

5 Relay Placement: An Approximation Algorithm

Finally, we discuss an approximation result for the Relay Placement problem: given a set of nodes on a grid,
we would like to add a small number of additional nodes so thatthe full set becomes connected. As before,
we are given ann × n torus of pointsT . Let K = (T,E) be the graph defined on the points ofT , in which
we join two points by an edge if they can see one another. Also,we are given a costcx for each pointx ∈ T ,
and for a setX ⊆ T we definec(X) =

∑

x∈X cx.
Let X = {x1, x2, . . . , xk} be a given set of points inT . We consider the problem of choosing a set of

additional pointsY = {y1, . . . , ys} such thatK[X∪Y ] is a connected. We callY aSteiner setfor X; nodes
placed atY can act as “relays” for an initial set of terminal nodes placed atX. Our goal is to find a Steiner
set whose total cost as small as possible.

This is an instance of theNode-Weighted Steiner Treeproblem in the graphK, with X as the set of
given terminals andY as the set of additional Steiner nodes whose total cost we want to minimize. In
general, there is anΩ(log n) hardness of approximation for this problem [16] (and this ismatched in [16] by
a corresponding upper bound). However, the special structure of the graphK allows us to efficiently find a
Steiner set whose cost is within a constant factor of minimum. This is the content of the following theorem,
which we prove in the remainder of the section.

Theorem 5.1 There is a polynomial-time algorithm that produces a Steiner set whose total cost is within a
factor of6.2 of optimal.

The crucial combinatorial property ofK that we use is captured by the following definition. We say that
a graphH is d-cohesiveif every connected subset ofH has a spanning tree of maximum degreed. That is,
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given any connected subsetS of V (H), we can choose a setF of edges, each with both ends inS, such that
(S,F ) is a tree of maximum degreed.

We note that it is easy to construct graphs that are notd-cohesive for any specifiedd; for example, any
graph containing an inducedK1,d+1 is not d-cohesive. In fact, although it is not crucial for our purposes
here, we note that the cohesiveness is a combinatorial property of G that is almost entirely characterized by
this particular type of obstruction; if we letκ(G) denote the minimumd for which G is d-cohesive and we
let ϕ(G) denote the maximumt for whichG contains an inducedK1,t, then we can prove the following.

Proposition 5.2 ϕ(G) ≤ κ(G) ≤ ϕ(G) + 1.

Returning to the line-of-sight graphK, a direct application of Proposition 5.2 implies thatK is 5-
cohesive. With somewhat more care, we can show

Lemma 5.3 The graphK is 4-cohesive.

Proof. A direct application of Proposition 5.2 implies thatK is 5-cohesive, but we can do better via the
following argument. For each edge ofK, define itslength to be the number of rows or columns ofT that
separate its ends. Now, consider an arbitrary connected subsetS of K, and let(S,F ) be a spanning tree of
S whose total edge length is minimum.

We claim that the maximum degree of(S,F ) is four. For suppose not; then some nodeu ∈ S has degree
at least five, and hence there are two nodesv,w ∈ S that lie on the same arm ofu, and for which(u, v)
and(u,w) are both edges inF . In other words,u, v,w lie in the same row or column ofT , in this order,
andu andw are close enough to see one another. It follows that(v,w) is also an edge ofK. But now
(S,F ∪ {(v,w)} − {(u,w)} is a spanning tree ofS whose total length is strictly less than that of(S,F ), a
contradiction.

We now describe the approximation algorithm and its analysis. We first define weights on the edges of
K as follows. First, we say that theX-reduced costcX

v of a nodev is equal to0 if v ∈ X, and equal tocv

otherwise. We definecX(Y ) =
∑

y∈Y cX
y . For each edgee = (v,w) of K, we define itsweightwe to be

max(cX
v , cX

w ). For a subgraphΛ of K, let w(Λ) denote its total edge weight.
Now, let Y ∗ be a Steiner set forX of minimum cost, and letΛ∗ be a Steiner tree forX of minimum

total edge weight. (Note that the Steiner nodes ofΛ∗ may be different fromY ∗.) The4-cohesiveness of
K implies a corresponding gap of4 between the cost of the optimal Steiner setY ∗ and the weight of the
optimal Steiner treeΛ∗.

Lemma 5.4 w(Λ∗) ≤ 4c(Y ∗).

A Steiner tree whose edge weight is within a constant factorγ ≤ 1.55 of optimal can be computed in
polynomial time via an algorithm from [21]. LetΛ′ be a Steiner tree forX computed using this algorithm.
Let Y ′ be the Steiner nodes ofΛ′. By charging the costs of nodes inY ′ to the weights of distinct incident
edges inΛ′, we have

Lemma 5.5 c(Y ′) ≤ w(Λ′).

Finally, we useY ′ as our Steiner set forX. Using Lemma 5.4 and Lemma 5.5, together with the
approximation guarantee for the edge weight ofΛ′, we obtain a bound of4γ ≤ 6.2 on c(Y ′) relative to the
optimumc(Y ∗):

c(Y ′) ≤ w(Λ′) ≤ γw(Λ∗) ≤ 4γc(Y ∗).
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Appendix

Proof of Proposition 2.1. Let Xl denote the number of vertices of degree0 ≤ l < k. Then observe first
that

E [Xl] = n2p

(

4ω

l

)

pl(1 − p)4ω−l

∼ n2 ·
(1 − 1

2δ) ln n

2ω
·
4lωl

l!
·

(

(1 − 1
2δ) ln n

2ω

)l

·
nδe−2c

n2(ln n)k

∼

{

0 l ≤ k − 2

λk l = k − 1

Thus the expected number of vertices of degree less thank is asymptoticallyλk. The rest of the proof is
quite standard. LetSk denote the set of vertices of degree less thank in G and letX = |Sk|. Let X ′′ denote
the number of pairs of verticesv,w ∈ Sk such thatv,w are withinℓ1 distance2ω of each other. LetX ′

denote the number of vertices inSk which are atℓ1 distance greater than2ω from any other vertex inSk.
Then

X ′ ≤ X ≤ X ′ + X ′′.

Now

E
[

X ′′
]

≤ 16ω2n2p2

(

8ω

2k

)

(1 − p)6ω−2k = o(1)

using our upper bound onδ. ThusX = X ′ with high probability.
Now fix a positive integert. Then, where(a)t = a(a − 1) · · · (a − t + 1), we compute

(

(n2 − 16tω2)p

k−1
∑

i=0

pi(1 − p)4ω−i

)t

≤ E
[

(X ′)t
]

≤

(

n2p

k−1
∑

i=0

pi(1 − p)4ω−i

)t

which implies that
lim

n→∞
E
[

(X ′)t
]

= λt
k

and soX ′ is asymptotically Poisson with meanλk, which implies the lemma.
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