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Abstract

Random geometric graphs have been one of the fundamentalsnfod reasoning about wireless
networks: one places points at random in a region of the plane (typically a squargrale), and then
connects pairs of points by an edge if they are within a fixethdice of one another. In addition to giving
rise to a range of basic theoretical questions, this clasarafom graphs has been a central analytical
tool in the wireless networking community.

For many of the primary applications of wireless networksyéver, the underlying environment
has a large number of obstacles, and communication can akdyplace among nodes when they are
close in spacandwhen they have line-of-sight access to one another — consateexample, urban
settings or large indoor environments. In such domainsstédnedard model of random geometric graphs
is not a good approximation of the true constraints, sinéz bt designed to capture the line-of-sight
restrictions.

Here we propose a random-graph model incorporating botierimitations and line-of-sight con-
straints, and we prove asymptotically tight results #econnectivity. Specifically, we consider points
placed randomly on a grid (or torus), such that each node@ams to a fixed distance along the row
and column it belongs to. (We think of the rows and columnssa®eéts” and “avenues” among a reg-
ularly spaced array of obstructions.) Further, we showwhten the probability of node placementis a
constant factor larger than the threshold for connectinigar-shortest paths between pairs of nodes can
be found, with high probability, by an algorithm using onbchl information. In addition to analyzing
connectivity ands-connectivity, we also study the emergence of a giant corappas well an approx-
imation question, in which we seek to connect a set of givetesan such an environment by adding a
small set of additional “relay” nodes.
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1 Introduction

Most of today’s approaches to wireless computing and conicatians are built on architectures where base
stations connect the wireless devices to a supportingsiméreture. However, since the overwhelming trend
is to transmit information in packets, over standard profgca dominant focus in the wireless research
community is on more decentralized approaches where natge@te to relay packets on behalf of other
nodes. This focus is at the heart of current work on mobilecdretworks (MANETS) [17, 18].

Such networks can be viewed as consisting of a collectionookes, representing wireless devices,
positioned at various points in some physical region. Thieefess) “links” of the network, joining pairs
of nodes that can directly communicate with one anotherpegdominantly short-range and constrained
by line-of-sight; this is an inevitable result of the sciyaf radio frequency (RF) spectrum and physical
constraints on the propagation of RF and optical signale wWays in which these physical limits on direct
communication affect the overall performance of the nekwer fundamental issue that motivates much of
the theoretical work in this area.

Random Geometric Graphs. Given this framework, random geometric graphs have emeageddom-
inant model for theoretical analysis of distributed wisslenetworks. One places points uniformly at
random in a geometric region (typically a disc or a squama],then, for aange parameter, one connects
each pair of nodes that are within distancaf one another. This model is the subject of a book by Penrose
[20], and we refer the reader there for extensive backgrowedalso note that the enormously influential
work of Gupta and Kumar on the capacity of wireless netwosksamed in this model as well [13, 14].

One of the most basic questions is to determine how the pilapadd connectivity of a random geo-
metric graph depends on the humber of nodesd the range parameter A canonical result here is the
following theorem of Penrose [19]. If we plaeepoints uniformly at random in a unit square, and then
continuously increase the range parametewith high probability the resulting geometric graph beesm
k-connected at the smallest valuerofor which there are no nodes of degreek. In other words, the
graph becomek-connected at the moment that all trivial obstaclek-tmnnectivity (i.e. low-degree nodes)
disappear. An analogous type of result is familiar from silesl Erdos-Renyi random graph models [4].
(For further results and discussion on thresholds in rangeometic graphs, see Goel et al. [11].)

For modeling distributed wireless networks, the assumpdibrandom node placement has proved to
be a reasonable abstraction for the lack of structure in hmoigions, given that most frameworks for ad
hoc networks assume some arbitrary initial “scatteringhofles, or that nodes reach their positions as a
result of arbitrary mobility. More problematic is the fatiat the analysis takes place in regions with no
obstructions — in other words, that a node can communicatealiother nodes within distancee This is
at odds with the underlying constraints in many applicatiohdistributed wireless networks, where there
can generally be a large number of obstructions limiting mamication between nearby nodes due to a lack
of direct line-of-sight contact.

In other words, while random geometric graphs model wirelkestworks in open spaces, we lack a
corresponding model for wireless networks in some of thasthtommon domains: urban settings, large
indoor environments, or any other context in which thereotstacles limiting visibility. With such a model
would come the ability to address a range of basic theokgirodblems. In particular, we are guided by the
following genre of question:

How do connectivity and other structural properties of mmdyeometric graphs change once
we introduce line-of-sight constraints?

An understanding of such issues could help provide a frame¥ar reasoning more generally about the
performance of distributed wireless networks in obstrdigevironments.
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The present work: Connectivity in line-of-sight networks. In this paper, we propose a random-graph
model incorporating both range limitations and line-affgiconstraints, and we prove asymptotically tight
results fork-connectivity. We also consider related structural qoesti including the emergence of a giant
component, as well as some of the algorithmic issues raigéideomodel.

To motivate the model, consider a stylized abstractionroitéid-range wireless communication in an
urban environment: there amestreets running east-westavenues running north-south, and wireless nodes
can be placed at intersections of streets and avenues. Bdehhasangew — it can see up tay blocks
north and south along the avenue it lies on, and up bbocks east and west along the street it lies on.

More concretely, we have an underlying §ebf lattice points{(z,y) : =,y € {1,2,...,n}}. We
measure distance using the metric, though to prevent complications arising from bamdeffects in this
presentation, we define the distance between points ashhibag form a torus:

d((x7y)7 (x,7y,)) = mln(]w - .%,’,"I'L - ‘.Z' - (L'/D + mln(‘y - y/’an - ’y - y,‘)

For a specifiedange parametew, we say that two points arautually visiblef they are in the same row or
the same column of the torus, and if they are within distanhcecstw from one another. We view the range
w as implicitly being a function of, and in this paper we will make the assumption tha asymptotically
bounded below byn n and above by some polynomial in specifically, we assumien = o(w) and that
w = O(n?) for a value of§ < 1 to be specified below.

We now study the random gragh that results if, for som@lacement probability > 0, we locate a
node at each point df' independently with probability, and then connect those pairs of nodes that are
mutually visible. Asp increases, the torus becomes more crowded with nodes, andgtlting grapiz
is more likely to be connected. Our main result states, riyughat the smallest value gf at whichG
becomesk-connected with high probability is asymptotically the saas the smallest value pfat which
the minimum degree id is k£ with high probability.

More concretely, for a critical value of the placement phulity p* = O(h“T"), we find that in an
interval of widthO(%) aroundp*, the random graply goes from being:-connected with arbitrarily small
probability to being:-connected with probability arbitrarily close to Moreover, the probability that has
no nodes of degree k undergoes a comparable transition in a correspondingvaitaroundp*. We state
this theorem about-connectivity as follows. First, we write = n’ where we assume that>> Inn and
0 < %” Note that wedo not preclude the case whefe= o(1).

_1 3
Theorem 1.1 Letk > 1 be a fixed positive integer and let= =2 ln";f mlnnten Then
0 Cp — —00
lim Pr(G isk-connectedi= ¢ e ¢, — ¢
n—oo
1 Cp — 00
where

2k—2(1 _ %5)k€_26
CEE

A =

The proof of this result, which occupies Section 2 of the pamguires techniques quite different from
the analysis of standard geometric random graphs, due oéief-sight constraints. One way to appreciate
why this appears necessary is to consider that, as wewahe resulting model interpolates between two
well-known, but qualitatively different random graph mteddeWhenw = 1, so that a node can only see



neighboring points, we have site percolation on a latticgelrstudied problem that is still not completely
well understood. At the other extreme, when= n and nodes can see all points in their row and column, it
is easy to see that the model is equivalent to a purely gitagbrétic one in which we start with the complete
bipartite graphi(,, ,, and keep each edge with probabiljty Note that our bounds an preclude either of
these exact extremes, but our analysis for the “middle rgid w that we consider involves ingredients
from both extremes, combining techniques from “classicaiidom graph analysis with the combinatorics
of the underlying grid of points.

The present work: Further results. We consider the emergence of a giant component in our model. W
prove that ifp = ¢/w for ¢ > 1 andw — oo, then with high probabilityG contains a component with a
linear fraction of all the nodes.

We also consider the problem of how nodes in such a randonhgr@ap construct paths between each
other, possessing knowledge of their own coordinates théraise having only local information. We
show that wherp exceeds the threshold for connectivity by a fixed (relagivehall) constant factor —
i.,e. p = C'lnn/w — then a simple decentralized algorithm allows a given pairazles atl;-distanced
to construct, with high probability, a path 6f(d/w + Inn) edges while involving only)(d/w + wlnn)
nodes in the computation. This is nearly optimal, even witdbal information, sinc&)(d/w) is a simple
lower bound on the length of any path between nodds atistanced (and hence also a lower bound on the
number of nodes who need to participate in the constructidneopath).

Finally, we consider a basic algorithmic problem in a nond@m version of the line-of-sight model:
given an input set of nodes, we would like to add a small setiditmnal nodes so that the full set becomes
connected. More concretely, suppose we are given a set esraighointsX C T, such that the graph ol
(defined by visibility with respect to the range parameigrs not connected. We would like to add further
nodes, at a sét C T, whereY should be as small as possible subject to the constrainthteajraph on
X UY should be connected. We think of the additional nodess “relays” that connect the original nodes
in X under line-of-sight constraints; as a result, we refer o als theRelay Placemergroblem.

By considering the graph of mutual visibility, and viewirgetnodes irt” as Steiner nodes, an instance
of Relay Placement can be easily cast as an instance dfidde-Weighted Steiner Trgmoblem. The
general Node-Weighted Steiner Tree problem is inapproiento within a factor of2(log n) [16]. For the
class of line-of-sight networks that we study here, howeawershow how to exploit the underlying visibility
structure to obtain a constant-factor approximation. Irigalar, we make use of a graph-theoretic notion
that we callcohesivenessvhich suggests some combinatorial questions of indepdrierest.

Relay Placement is clearly related to certain algorithariegallery problems (see e.g. [8, 9] and the
VC-dimension results in [15, 23]), since there too one igipig nodes in a region subject to visibility
constraints. However, the problems considered in thealitee on art-gallery problems have a different
focus, as they are concerned with placing nodes so as toseatine region, as opposed to adding Steiner
nodes so as to create a connected visibility graph, as werdo he

2 Connectivity

This section is devoted to the proof of Theorem 1.1. We witlaantrate first on the case whetg— c and
to avoid trivialities we will assume that, = ¢. Thus until further notice, we will assume that

(1—36)Inn+ glnlnn—l—c
2w '

p:



The overall outline of the proof is as follows. We imagine iaddnodes in two stages — most of the
nodes in the first stage, and a few final nodes in the second.stdgw, suppose the grapth formed by
nodes added in the first stage can be disconnected by theodedésome seb of fewer thank nodes. We
argue that with high probability, any two componedtand K of H — .S come “close” to one another at
many disjoint locations on the tords— in particular, at each of these locations, there is somet @dithe
torus that sees nodes in bafhand K. When we then add nodes in the second stage, it is enough that a
node is placed at one of these points that can see both comtppaad we argue that there are enough such
points that this happens with high probability.

2.1 Minimum degree computation

We first show, by analogy with the random gra@h ,,, that the threshold fok-connectivity coincides with
the threshold for there being no vertices of degree lesskihdihe proof is given in the appendix.
Proposition 2.1 lim Pr(G contains a vertex of degree k) = 1 — e~ .

n—oo

2.2 Probabilistic part of proof

We imagine placing nodes at random according to the follgwivo-stage process. We place a node at each
point with probabilityp; in the first stage. We then independently place a node at exetwvpith probability
p2 in the second stage. We choose

(1—36)Inn+ %lnlnn—l—c— (Inn)~* - Inn

p1 =

2w = 3w
andp- so that this is equivalent to the original placement proeats probability p, in which case
1
P2

For ease of terminology, we say that a nodeeid if it was placed in the first stage, and we say that it is
blueif it is placed in the second stage at a point not hit by the §itage. LetH denote the subgraph ¢6f
consisting only of red nodes.

For each point inl’, we define its fourarmsto be the four sets af) points that are visible from it
in a single direction (north, south, east, and west). Weh&urpartition each arm of point z into 10
consecutive segments , s, . . ., ago Of lengthw/10. A segment is said to beeak otherwisestrong if it
contains fewer tha% Inn red nodes. An arm is said to lmeightyif all its segments are strong. We first
claim

Lemma 2.2 With high probability there does not exist a red hode whick &l arma on which we can find
1000 red vertices, each having an arm orthogonaktevhich is not mighty.

Proof. For a fixed pointz and armu, the probability that the arm contains a weak segment cambeded
by
1
10 Pr (Bin(w/lo,pl) < 50 In n) < ¢~ (Inn)/400 _ ), —1/400

So the probability that there is a red node as described ist#ftement is bounded by

w _
8712 <1000>p%000n 1000/400 _ 0(1). -



Lemma 2.3 With high probability H does not contain a vertex of degree less thaimInn that has a
neighborw such thatw contains an arm orthogonal tow which is hot mighty.

Proof. The probability that contains such a pair, w is bounded by

Inlnn
n Pl Z < ) p1)4w—t(2n—1/400)

Inlnn

t
< 95 ~1/400 Z ( (4+o0(1 elnn> o—2c+o(1)

=o(1) m

Lemma 2.4 With high probability does not contain a red vertex with at mést 1 red neighbors and at
least one blue neighbour.

Proof. The probability thatd contains such a vertexis bounded by

k—1
4w
n2p1 ; ( ; >pt(1 )4“’ t(4wp2) ~ 4 pwpe = o(1). [ ]

Lemma 2.5 With high probabilityH does not contain a blue vertex with fewer thared neighbours.

Proof. The probability thatd contains such a vertexis bounded by

k—1
2 dwl 4 do—t D2
n?ppy ()P —p) T~ S = o(1). m
t=0

b1

Let&y, &9, &3, and&, denote the events that the properties in Lemmas 2.2, 2.3a2d42.5 respectively
hold.

2.3 Non-probabilistic part of proof

For this next part, we assume that the high-probability ®/eansidered thus far all occur; in particular, we
assume thad(G) > k and that&,, &, £, and&,y all hold.

Recall thatH is the subgraph off consisting only of the red nodes. L&tbe an arbitrary set of — 1
red vertices, and letfg = H — S. Our goal is to show that iff g has multiple connected components, then
with high probability they will all be linked up by the addt of the blue nodes.

Let L be the set of points ifi’ with coordinateqi, j), where each of and; is a multiple of3w. For
each connected componeiitof Hg, and for each point € L, letvg, denote the node ik that is closest
toz in L distance. We claim

Lemma 2.6 vk, lies within thew x w box B, centered atr.



Proof. Let a red node beinkif it is not in .S. Assume without loss of generality that the point located

at the origin of the torus, which we denote= 0. Suppose that = vxo = (a,b) is N-E of 0 and that it
does not lie inBy. v has at least one arm containing a pink nadeT his follows from the occurrence é%.

If the degree ob is less tharin In n then we can use the non-occurrence&pto argue that the two arms of
w orthogonal tavw are mighty. If the degree afis greater thamn In n then we can use the non-occurrence
of & to argue that there is a choicelafln n — 4000 w’s such that the two arms af orthogonal tovw are
mighty. Leta denote the arm of containing aw with mighty arms. Note that every segment of a mighty
arm contains at leas Inn pink nodes.

Case 1: «is the South arm of.

If a < w/2 then any pink node on is either inBy or closer to0 thanvg. Similarly, if b > w/2 then
any pink node on is closer to) thanvgg. So we can assume that> w/2 > b. Also, if (a,b’) € o then
we must have) > b’ = —b” where we can assume thax v < w —b.

Choose such a pink node, —b") with a mighty West arn. Now choose a pink node = (a’, —b") €
B such that (i)a — ¢’ € [.4w,.5w] and (ii) the North army of w is mighty. Now choose a pink node
(d',c) € v such thate — b| < .1w. It follows that|a’| + |¢| < a + b+ .1w — .4w, contradiction.

Case 2a: « is the North arm ob anda > w/2.

Choose a pink nodéz, b') € o with a mighty West arm. Then choose a pink node = (da/, %) € 3
such that (iy —a’ € [.4w, .5w] and (ii) the South arny of w is mighty. Now choose a pink node’, v") € ~
such thatd” — b| < .1w. It follows that|a’| + |b"| < a + b+ .1w — .4w, contradiction.

Case 2b: « is the North arm ob anda < w/2.

We must have > w/2, elseviy € By. Choose a pink nodé, b') € o with a mighty West arnp.
Then choose a pink node = (a’,b') € 8 such that (i)ja — ¢’| < .1w and (ii) the South army of w is
mighty.

If b —b| < .7w then choose a pink node/’,b”) € ~ such that|t” — b| € [9w,w]. It follows
that|a’| + V'] < a + b+ 1w + .7Tw — .9w, contradiction. Otherwisgp — '| > .7w. We can choose
a pink nodey = (d’,b”) € ~ such that the West arm of y is mighty and|t’ — | > .9w. Choose
a pink nodez = (a”,b"”) € § such thatja” — o’/| < .1w and its South arma is mighty. Finally, we
note that there exists a pink node = (a”,b"”") € ¢ such thatt” — v"| € [.5w,.6w]. Then we have
la"| + [0 <a+b+w+ .lw— 9w+ .lw — .5w, contradiction.

The case whera is the West arm is dealt with as in Case 1 and the case whisrthe east arm is dealt
with as in Case 2=

Now, letJ and K be two distinct component df 5. Sincev, andvg, both lie in thew x w box around
x, there is some point(J, K, x) that is visible from both of them. We observe that

Lemma 2.7 The pointsz(J, K, z) andz(J, K, y) are distinct, for distinct points;,y € L.

Proof. z(J, K, x) lies in thew x w box aroundr, andz(J, K, y) lies in thew x w box aroundy, and these
boxes are disjoint, since andy are at leasBw apart. m

2.4 Finishing the proof

Note that if a node is placed atJ, K, x), then it will be a neighbor both of a point ihand K, and hence

J and K will belong to the same component @ In the second stage of node placement, a blue node will
be placed at each point.J, K, z) with probability p,. By Lemma 2.7, there argf—Q such points for a fixed
pair of componentd, K, and so the probability that no blue point is placed at anyeifirt is bounded by

o n?/(9w?) < —n2 /(20w Inn) < —n2-3%/(201nn)
(1 Pz) s e <e
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There are at most? components, since for any fixed point L, each component has a node in the w
box aroundr.

Thus, the probability that there exists a Setf size at most: — 1 and componentd, K of Hg, which
are not connected i¢ by a blue vertex is at moste—"""*/(20ln),2k=2 — (1), Thus, conditional on
there being no vertices of degrée- 1 or less, if we remove any sét of k£ — 1 vertices, then with high
probability the graph{ s has a component containing all of the red vertices. It folldmm &, thatG — S
is connected and 5@ itself is k-connected with high probability.

This finishes the casg, — c. If ¢, — —oo then one uses the Chebyshev inequality to show that with
high probability there are vertices of degree less thalf ¢, — oo then with high probability there are no
vertices of degree less thar(the expected number tends to zero), and the argument for ¢ implies that
G will be k-connected with high probability.

This completes the proof of Theorem 1.1.

3 TheExistence of a Giant Component

We now consider the existence ofji@nt component in our model of line-of-sight networks. Note hibia
sinceG itself hasO(n?p) vertices, a giant component is one witlin?p) vertices.

Theorem 3.1

(@ If p = £ wherec > 1 andw — oo then with high probabilityG' contains a component witfil —
0(1))(1 — 2?)n? /w vertices, where, is the unique solution 0, 1) of ze~* = ce~¢.

(b) If p = £ wherec < 1/(4e) andw — oo then with high probability the largest componentGrhas size
O(Inn).

To prove part (a) of the theorem, we first require a lemma atimuexistence of a giant component in
the random graplt! = B,, ,, , whereq = d/m. Here we creaté] by including each edge of the complete
bipartite graphi,,, ,,, independently with probability.

Lemma3.2 If d > 1 then with high probability? contains a componerf, with (1 — o(1))(1 — z4)m
vertices on each side of the partition, whetgis the unique solution if0, 1) of ze=* = de~?. Furthermore
C, contains(1 — o(1))(1 — z2)m edges.

Proof. We follow the proof of the existence of a giant component vanlching processes as elaborated in
Chapters 10.4 and 10.5 of Alon and Spencer [1]. Note that digeest of a vertex off has a distribution
which is asymptotically Poisson with medmand the proof in [1] can easily be adapted#o This will show
thatC,, has~ (1 —z4)m vertices on each side. To get the number of edges, imagimadhel where we fix
the number of edges as~ dm. Suppose now we put in— 1 random edges and obtain a giant component
Cy with (1 — o(1))(1 — z4)m vertices on each side. Now put in théh random edge. The probability it is
not part of the giant component, is ~ z2. This show§ E(C,)| ~ (1 — z3)m in expectation. By adding
two random edges we can estimate the variance and then ubgsbeeg’s inequality.m

Now divide the torusl’ into N = n?/w? sub-squares, Ss, ..., Sy of sizew x w. Fix a particular sub-
squareS; and consider the bipartite grapgh with w + w verticesR; U C; (rows/columns) where there is an
edge(z,y) € R; x C; if the gridpoint of T" corresponding tdz, y) is occupied by a node a¥. Applying
Lemma 3.2 withm = w andd = ¢ we see that with probabilityl — o(1)), H; contains a giant component
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Figure 1: The sub-squares used in the analysis of the giampcoent.

I'; with (1 — o(1))(1 — x.)w vertices on each side aritl — o(1))(1 — x2)w? edges. When translated into a
subgraph of~, we see thaf; induces a subgrapfi; with (1 — o(1))(1 — x2)w? vertices. This is because
each edge off; corresponds to a vertex 6f.

We divide each sub-squafg further into 16w/4 x w/4 sub-squares. We choosesgecialsub-squares
Si1,-..,5.4. These will either be afl, 2), (2,1),(3,4), (4,3) or at(1,3), (2,4), (3,1), (4,2) where(i, j)
denotes the sub-square in rawcolumnj, 1 < 4,5 < 4. We then have these two sorts of sub-square
alternate along the rows and columnsioés in Figure 1.

Each special sub-square is associated with a directian=1f then the direction is North. If = 4 then
the direction is South. If = 1 then the direction is West andjf= 4 then the direction is East.

Now with high probability each of the 4 special sub-squargiscantain ~ (1—z.)w/4 useablecolumns
(North or South sub-squares) or rows (East or West sub-egudnat correspond to vertices of a giant
component of the corresponditdg;. We say that a squars; is goodif H; contains a giant component with
~ (1 — 2?)w? edges and each special sub-square-hd$ — x.)w/4 useable rows or columns, depending
on its direction.

If H, is good then we choosg — z.)w/5 random rows or columns from the useable rows or columns
of each the four special sub-squares. Ket; be the set of rows or columns chosen frofy. We observe
that conditional orf5; being good, the set;; ; are uniformly random and independent of each other.

We are now in a position to usaixed percolation Let £ denote then/w x n/w lattice £ with site
percolationpy = 1—o(1) and bond percolatiopy = 1—o0(1). Here we place a vertex at sités the square
S; is good. If two adjacent siteH;, H; 1 say are good then we join them by an edge in the lattice if the
following holds: Let the adjacent special squaressheandsS,; ;. We add the edge iX; , N X, 41,5 # 0.

If this occurs then there are a pair of nodeshfu € I';, v € [';41 such thatu, v are in the same row or
column and are at distaneew apart. Hencé'; andl’; . ; will form part of the same component @.

In this model of percolation the giant cluster will contailmast all of the points; for example this
follows from a simple generalisation of Theorem 1.1 of Déwt@nd Pisztora [7]. In which case almost all
of the giantd; will part of the same component 6f. This completes the proof of part (a) of Theorem 3.1.

To prove part (b) of the theorem, we first note that-aregular, N-vertex graph contains. N (er)*~!
trees withk vertices. This is proved for example in Claim 1 of [10]. Thhe £xpected number éfvertex
trees inG is bounded by:?(4ewp)k~! = n2(dec)*~1 = o(1) if k > Alnn andA is sufficiently large.

4 Finding Paths Between Nodes

Thus far, we have considered the existence of paths betwasasnn random line-of-sight networks. In
terms of the motivating applications, it is also interegtin consider the algorithmic problem faced by a



pair of nodes andt trying to construct a path between them in such a network. dtisider a decentralized
model in which each node knows only its own coordinates awgdlof its neighbors id; given the
coordinates of, the nodes must pass a messagettby forwarding it through a sequence of intermediate
nodes. We consider the standard goal in wireless ad-homgoutve wish to construct ag-¢ path with a
small number of edges, while consulting a small number efrmediate nodes [22].

We show that it is possible to find good paths by decentralimedns when the placement probabifity
is a constant factor larger than the threshold for connigetiv

Theorem 4.1 Letp = C'Inn/w for a constantC' to be specified below. There is a decentralized algorithm
that, givens and ¢, with high probability constructs an-t path with O(d(s,t)/w + Inn) edges while
involving O(d(s,t)/w + w1nn) nodes in the computation.

We note that this bound is nearly optimal, sirfegl(s,t)/w) is a simple lower bound on the number
of edges and the numbers of nodes involved in &yath. For example, i andt are selected at random
(so thatd(s, t) is linear in expectation), then given our upper boundssdrom Section 2, both bounds in
Theorem 4.1 ar€(d(s,t)/w), since the other terms are of asymptotically lower order.

To begin the proof of Theorem 4.1, 1&8f = n? and letS;, Ss, ..., Sy be the collection of allu x w
sub-squares obtained by choosingonsecutive rows and columns. @&}, H;, i = 1,2,..., N be defined
similarly to that done in Section 3. We first observe the folt.

Lemma4.2 (a) With high probabilityG,, Gs, ..., Gy are all connected. (b) With high probability the
diameter ofGG; isat mostD Inn, ¢ = 1,2,..., N, whereD is some absolute constant.

Proof. The proof of (a) is simple(z; is connected iffH; is connected. IH; is not connected then then
there exist non-empty subsets C Ry, L C (4, |K| + |L] < w such thatK U L induces a connected
component off;. The probability that such a pair exist is at most

w) (w ke Ktl-1(7 \k(w—O)+L(w—k)
2 <k><€><k+€—1>p (1=p)

2<k+L<n
k+e
(w_e)k (g)@ kle * pk+€e—((k+4)w—2k’f)p
k 14 k474

k+¢
2 e2C'lnn
<Z
P ockro<n \ exp {clnn <1 — wékfé)}

e2Clnn

9 ( k40
- —_— = O((Inn)2wn=9).
iy
Pocizicn N "7
So if C > 3 we can inflate this latter probability estimate #%/w to account for all ofz;, G, ..., Gx.
The proof of part (b) is more involved, but it is a standarccakdtion; see for example Bollobas and
Klee [5]. m

The next thing we observe is that we can now assume that adl afrall vertices are mighty. This is
again a simple calculation, similar to that given for thegdrof (2.2). This also allows us to specify the
value of C in the expressiop = C'lnn/w: it should be large enough for Lemma 4.2 to hold and for all



arms of all nodes to be mighty. (In fact, as will be clear frdma subsequent discussion, we will need only
a weak variant of mightiness in the analysis.)

We now describe the decentralized algorithm to pass a medsam a nodes to a nodet (thereby
constructing ars-t path). The algorithm consists of two stages. First, stgrdins, the message is passed
between nodes on the row gfmoving the “short way” around the torus toward the columa &ach node
passes the message to its farthest neighbor on the arm imtteetcdirection; since all arms are mighty,
the message travels dn-distance of at least/2 in each step. This process stops, at a nedehen the
message is about to “overshoot” the columrt.oAt this point, the message is then passed between nodes
in the column ofu, according to the same rule. This process stops when theageessabout to overshoot
the row oft.

The second stage now begins, with the message at arthdébelongs to a subsstof sizew x w, such
that B also containg. The message is now propagated by breadth-first search nodgs withinD Inn
steps, but only including nodes that belong to thefselere D is the constant from Lemma 4.2. (Note that
by our assumption that nodes know the coordinates of theesahd their neighbors, a node can determine
which subset of its neighbors lie ii and hence should be included in the BFS.) By Lemma 4.2, the nod
t will be reached by this BFS, since the subgraplizafestricted toB is connected and with appropriately
short paths.

The bound on the number of edges in the resultifigpath follows directly from the definition of the
two stages. To bound the number of nodes involved in the ctatipo, we observe th&@(d(s, t) /w) nodes
are involved in the first stage, and the second stage invalvesst the total number of nodesiify which
is O(pw?) = O(wInn) with high probability.

5 Relay Placement: An Approximation Algorithm

Finally, we discuss an approximation result for the RelacBinent problem: given a set of nodes on a grid,
we would like to add a small number of additional nodes sottafull set becomes connected. As before,
we are given am x n torus of pointsI’. Let K = (7', E') be the graph defined on the pointsiafin which

we join two points by an edge if they can see one another. Als@re given a cost, for each pointr € T,

and for asetX C T we definec(X) =3 ¢,

Let X = {z1,z2,..., 2} be a given set of points il. We consider the problem of choosing a set of
additional points” = {y1, ..., ys} such that[X UY] is a connected. We call a Steiner sefor X'; nodes
placed aft” can act as “relays” for an initial set of terminal nodes pthaeX . Our goal is to find a Steiner
set whose total cost as small as possible.

This is an instance of thBlode-Weighted Steiner Trgeoblem in the graphi, with X as the set of
given terminals and” as the set of additional Steiner nodes whose total cost wé twaminimize. In
general, there is af(log n) hardness of approximation for this problem [16] (and thimé&tched in [16] by
a corresponding upper bound). However, the special steictithe graphi allows us to efficiently find a
Steiner set whose cost is within a constant factor of minimtihis is the content of the following theorem,
which we prove in the remainder of the section.

Theorem 5.1 There is a polynomial-time algorithm that produces a Steg®t whose total cost is within a
factor of6.2 of optimal.

The crucial combinatorial property &f that we use is captured by the following definition. We say tha
a graphH is d-cohesivdf every connected subset &f has a spanning tree of maximum degded hat is,
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given any connected subsgebf V' (H ), we can choose a sétof edges, each with both endss$h such that
(S, F') is a tree of maximum degreé

We note that it is easy to construct graphs that arelnmihesive for any specifiedt for example, any
graph containing an inducelif; 4., is notd-cohesive. In fact, although it is not crucial for our purgss
here, we note that the cohesiveness is a combinatorial fiyogfe7 that is almost entirely characterized by
this particular type of obstruction; if we letG) denote the minimurd for which G is d-cohesive and we
let o(G) denote the maximurafor which G contains an induced’; ;, then we can prove the following.

Proposition 5.2 ¢(G) < k(G) < ¢(G) + 1.

Returning to the line-of-sight grapR’, a direct application of Proposition 5.2 implies thdtis 5-
cohesive. With somewhat more care, we can show

Lemma 5.3 The graphK is 4-cohesive.

Proof. A direct application of Proposition 5.2 implies that is 5-cohesive, but we can do better via the
following argument. For each edge Af, define itslengthto be the number of rows or columns Bfthat
separate its ends. Now, consider an arbitrary connecteskstilof /&, and let(S, ') be a spanning tree of
S whose total edge length is minimum.

We claim that the maximum degree(d, F') is four. For suppose not; then some nede S has degree
at least five, and hence there are two nodes € S that lie on the same arm af, and for which(u, v)
and (u,w) are both edges i". In other wordsu, v, w lie in the same row or column df, in this order,
andu andw are close enough to see one another. It follows that) is also an edge ok. But now
(S, FU{(v,w)} —{(u,w)} is a spanning tree & whose total length is strictly less than that(sf F'), a
contradiction. m

We now describe the approximation algorithm and its analydie first define weights on the edges of
K as follows. First, we say that th€-reduced cost;X of a nodev is equal ta0 if v € X, and equal ta,
otherwise. We define* (Y') = 3_ _, ¢,. For each edge = (v,w) of K, we define itsveightw, to be

max(cX,cX). For a subgraph of K, letw(A) denote its total edge weight.
Now, let Y* be a Steiner set foX of minimum cost, and lef\* be a Steiner tree faK of minimum

total edge weight. (Note that the Steiner nodes\bfmay be different from¥*.) The 4-cohesiveness of

K implies a corresponding gap dfbetween the cost of the optimal Steiner ¥étand the weight of the

optimal Steiner tred*.
Lemma5.4 w(A*) < 4e(Y™).

A Steiner tree whose edge weight is within a constant fagter 1.55 of optimal can be computed in
polynomial time via an algorithm from [21]. LeY’ be a Steiner tree fak computed using this algorithm.
Let Y’ be the Steiner nodes df. By charging the costs of nodes ¥ to the weights of distinct incident
edges in\’, we have

Lemma5.5 ¢(Y') < w(A).

Finally, we useY’ as our Steiner set foK. Using Lemma 5.4 and Lemma 5.5, together with the
approximation guarantee for the edge weighf\Gfwe obtain a bound ofy < 6.2 on¢(Y”) relative to the
optimume(Y™):

c(Y") < w(N) < yw(A*) < dye(YH).

11



Acknowledgement. We thank Geoffrey Grimmett and Agoston Pisztora for thewiea w.r.t. mixed
percolation.

References

[1] N. Alon and J.H. Spencef,he Probabilistic Methodwiley, (second edition) 2000.

[2] C. Bettstetter, “On the minimum node degree and conwigégtof a wireless multihop network.” in
Proceedings, 3rd ACM International Symposium on Mobile AatHletworking and Computing (Mo-
biHoc '02),pages 80-91, June 2002.

[3] C. Bettstetter, “On the connectivity of ad hoc netwatkBhe Computer Journal, Special Issue on
Mobile and Pervasive Computing, vol. 47, no. 4, pp. 432-2004.

[4] B. Bollobas. Random Graphs (2nd edition). Cambridgéversity Press, 2001.
[5] B. Bollobas and V. Klee, “Diameters of random bipariigaphs”, Combinatorica 4 (1984) 7-19

[6] M. Chrobak, J. Naor, and M. Novick. Using bounded degresngsing trees in the design of efficient
algorithms on claw-free graphs. In Proceedings of the Wianksn Algorithms and Data Structures,
Lecture Notes in Computer Science Vol 382, pages 147-162.

[7] J. Deuschel and A. Pisztora, “Surface order large dmrnatfor high-density percolation”, Probability
Theory and Related Fields 104 (1996) 467-482.

[8] A. Efrat, S. Har-Peled. Locating Guards in Art Galleri@ad IFIP International Conference on Theo-
retical Computer Science 2002, 181-192.

[9] A. Efrat, S. Har-Peled, J. S. B. Mitchell. Approximatiédgorithms for Two Optimal Location Prob-
lems in Sensor Networks. Broadnets 2005.

[10] A.M. Frieze and M. Molloy, Splitting an expander gra@lournal of Algorithms 33 (1999) 166-172.

[11] A.Goel, S. Rai, and B. Krishnamachari. Sharp thresh&d monotone properties in random geometric
graphs. ACM Symposium on Theory of Computing, 2004.

[12] G. Grimmett. Percolation. Springer-Verlag, 1989.

[13] P. Gupta and P. Kumar, “Critical power for asymptoticioectivity in wireless networks,” in Stochas-
tic Analysis, Control,Optimization and Applications: A Mone in Honor of W.H. Fleming, W.M.
McEneaney, G. Yin, and Q. Zhang (Eds.), Birkhauser, Bosteag.

[14] P. Gupta and P. Kumar, “The capacity of wireless netw@rlEEE Transactions on Information The-
ory, vol. 46, no. 2, March 2000,pp. 388-404, and “A corrattio the proof of alemma in 'The capacity
of wireless networks,” IEEE Transactions on Informationebry, vol. 49, no. 11, November 2000, p.
3117.

[15] G. Kalai and J. Matousek. Guarding galleries where yey®int sees a large area. Israel Journal of
Math., 101:125-139, 1997.

12



[16] Philip N. Klein, R. Ravi: A Nearly Best-Possible Approxation Algorithm for Node-Weighted
Steiner Trees. J. Algorithms 19(1): 104-115 (1995)

[17] M. Mauve, J. Widmer, H. Hartenstein. A Survey on Posit®ased Routing in Mobile Ad Hoc Net-
works. IEEE Network, Nov/Dec 2001.

[18] Mobile Ad-hoc Networks (MANET) Chatrter, http://wwwelf.org/html.charters/manet-charter.html

[19] M.D. Penrose, “On k-connectivity for a geometric randgraph,” Random Structures and Algorithms,
vol. 15, no. 2, pp. 145-164, 1999.

[20] M.D. Penrose. Random Geometric Graphs, vol. 5 of Oxfatutlies in Probability. Oxford University
Press, 2003.

[21] G. Robins and A. Zelikovsky. Improved Steiner Tree Appmation in Graphs. In Proc. 10th Ann.
ACM-SIAM Symp. on Discrete Algorithms, pages 770-779, 2000

[22] E. Royer and C.-K. Toh. A review of current routing protds for ad-hoc mobile wireless networks.
IEEE Personal Communications, 1999.

[23] P. Valtr, "Guarding galleries where no point sees a $arak,” Israel Journal of Mathematics, vol. 104,
pp. 1-16, 1998.

13



Appendix

Proof of Proposition 2.1. Let X; denote the number of vertices of degfee | < k. Then observe first
that

4w o
E[X] = n2p<l>pl(1—p)4 :
l
N n2-( —%5)lnn'4lwl‘ (1-30)Inn ‘ nle=2¢
2w il 2w n?(Inn)k
0 I<k—-2
A =k—-1

Thus the expected number of vertices of degree lesskharasymptotically\;. The rest of the proof is
quite standard. Le§;, denote the set of vertices of degree less thanG and letX = |S;|. Let X" denote
the number of pairs of vertices w € S, such that, w are within¢; distance2w of each other. LefX’
denote the number of vertices #), which are at/; distance greater thalw from any other vertex irby.
Then

X <X <X+ X"

Now

E [X"] < 160°n°p” (2‘;) (1—p)*~? =o(1)

using our upper bound ah ThusX = X' with high probability.
Now fix a positive integet. Then, wheréa), = a(a — 1) --- (a — t + 1), we compute

k-1 t k-1 t
<(n2 - 16tw2)p2pi(1 - p)4w—i> <E [(X/)t] < <n2pzpi(1 - p)4w—i>
1=0 =0

which implies that
lim E [(X");] = A\,

n—oo

and soX’ is asymptotically Poisson with mean, which implies the lemmam
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