
DISTRIBUTED COGNITIVE MAC FOR ENERGY-CONSTRAINED
OPPORTUNISTIC SPECTRUM ACCESS

Yunxia Chen, Qing Zhao
Department of Electrical and Computer Engineering

University of California, Davis, CA 94536
{yxchen,qzhao}@ece.ucdavis.edu

Ananthram Swami
Army Research Laboratory

Adelphi, MD 20783
aswami@arl.army.mil

ABSTRACT

We address the design of distributed cognitive medium ac-
cess control (MAC) protocols for opportunistic spectrum access
(OSA) under an energy constraint on the secondary users. The
objective is to maximize the expected number of informationbits
that can be delivered by a secondary user during its battery life-
time without causing interference to primary users. By absorbing
the residual energy level of the secondary user into the state
space, we formulate the energy-constrained OSA problem as
an unconstrained partially observable Markov decision process
(POMDP) and obtain the optimal spectrum sensing and access
policy. We analyze and reduce the computational complexityof
the optimal policy. We also propose a suboptimal solution to
energy-constrained OSA, whose computational complexity can
be systematically traded off with its performance. Numerical
examples are provided to study the impact of spectrum occupancy
dynamics, channel fading statistics, and energy consumption
characteristics of the secondary user on the optimal sensing and
access decisions.

I. INTRODUCTION

The exponential growth in wireless services has resulted inan
overly crowded spectrum. In contrast to the apparent spectrum
scarcity is the pervasive existence of spectrum opportunities.
Real measurements show that, at any given time and location,a
large portion of licensed spectrum lies unused [1]. Even when
a frequency band is actively used, the bursty arrivals of many
applications result in abundant spectrum opportunities atthe
millisecond scale. This has motivated opportunistic spectrum
access (OSA), envisioned by the DARPA XG program [2]. The
idea of OSA is to allow secondary users to identify and exploit
spectrum opportunities under the constraint that they do not cause
harmful interference to primary users.

There is a growing body of literature on the design of medium
access control (MAC) for OSA [3]–[8]. Most existing works
(see [3]–[6]) consider a network of geographically distributed
secondary users, each affected by a different set of primaryusers
whose spectrum access activities are static or slowly varying

0This work was prepared through collaborative participation in the Commu-
nications and Networks Consortium sponsored by the U. S. Army Research
Laboratory under the Collaborative Technology Alliance Program, Coopera-
tive Agreement DAAD19-01-2-0011. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposesnotwithstanding any
copyright notation thereon.

in time. The design objective is to allocate these spatially
varying spectrum opportunities among secondary users so that
the network-level spectrum efficiency is maximized subjectto
some regulatory constraint on interference to primary users.

The exploitation of temporal spectrum opportunities resulting
from the bursty traffic of primary users has been studied in
[7], [8]. Within the framework of partially observable Markov
decision process (POMDP), the optimal cognitive MAC protocol
that allows secondary users to independently search for and
exploit instantaneous spectrum opportunities has been developed
in [7]. This MAC protocol consists of a sensing strategy that
determines which channels in the spectrum to sense based
on spectrum occupancy dynamics and an access strategy that
determines whether to transmit over the sensed channels based
on sensing outcomes. The energy constraint of secondary users
is, however, not taken into account in [7], [8].

The incorporation of energy constraint can significantly com-
plicate the cognitive MAC design. Under the energy constraint,
sensing decisions should be made based on not only the spectrum
occupancy dynamics but also channel fading statistics, andaccess
decisions should take into account not only the availability but
also the fading condition of the sensed channel. This makes
the optimal sensing and access strategies opportunistic inboth
spectrum and time. Even the residual energy level of the sec-
ondary user will play an important role in decision-making.For
example, when the battery is depleting, should the user wait
for increasingly better channel realizations for transmission or
should it lower the requirement on channel given that sensing
also costs energy? Clearly, such decisions depend on the energy
consumption characteristics of secondary users.

As a starting point to energy-constrained OSA, this paper aims
to develop the fundamental limit on the expected number of
information bits that can be delivered by a secondary user during
its battery lifetime. By absorbing the residual energy level of the
secondary user into the state space, we show that the energy-
constrained OSA problem can be formulated as an unconstrained
POMDP. Based on the theory of POMDP, we obtain the optimal
sensing and access policy which not only provides a performance
benchmark but also enables us to study the impact of spectrum
occupancy dynamics, channel fading statistics, and energycon-
sumption characteristics of the secondary user on the optimal
sensing and access decisions. However, our complexity analysis
indicates that the optimal policy is computationally expensive.
We therefore exploit the underlying structure of the problem
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to reduce the computational complexity of the optimal policy.
We also provide a suboptimal solution whose computational
complexity can be systematically traded off with its performance.
Referred to as the greedy-w strategy, this approach maximizes
the throughput of the secondary user in a fixed time window
of w slots. Simulation result shows that as the window size
w increases, the performance of the greedy-w strategy quickly
approaches the optimal performance.

II. PROBLEM STATEMENT

Consider a spectrum consisting ofN slotted channels, each
with bandwidthBn (n = 1, · · · , N ). The spectrum is licensed
to a primary network. LetSn ∈ {0 (occupied),1 (idle)} denote
the availability of channeln in a slot. We assume that the
spectrum occupancyS

∆
= [S1, . . . , SN ] ∈ {0, 1}N follows a

discrete Markov process with2N states.

We consider an ad hoc secondary network where there is no
central coordinator or dedicated communication/control channel.
Secondary users, each powered by a battery with initial energy
E0, independently seek instantaneous spectrum opportunities in
theseN channels. At the beginning of each slot, a secondary user
with data to transmit chooses at mostM (1 ≤ M ≤ N ) channels
to sense and then decides whether to access these channels
according to the sensing outcomes. Our goal is to determine
the sensing and access decisions sequentially in each slot so as
to maximize the total expected number of information bits that
can be delivered by a secondary user during its battery lifetime.
For ease of presentation, we assumeM = 1. Our results can be
generalized toM > 1.

A. Protocol Structure

A channel only presents an opportunity to a pair of secondary
users if it is available at both the transmitter and the receiver.
Hence, spectrum opportunities need to be identified jointlyby
the transmitter and the receiver [9]. Next, we briefly comment
on the implementation of the protocol.

Suppose that the transmitter and the receiver have tuned to
the same channel after the initial handshake as described in
[9]. At the beginning of a slot, the transmitter and the receiver
hop to same channel1. If the channel is sensed to be available,
the transmitter generates a random backoff time. If the channel
remains idle when its backoff time expires, it transmits a short
request-to-send (RTS) message to the receiver, indicatingthat
the channel is available at the transmitter. Upon receivingthe
RTS, the receiver estimates the channel fading condition using
the RTS, and then replies with a clear-to-send (CTS) message
if the channel is also available at the receiver. The receiver
also informs the transmitter of the current fading condition by
piggybacking the estimated channel state to the CTS. After a
successful exchange of RTS-CTS, the transmitter and the receiver
can communicate over this channel. At the end of this slot, the
receiver acknowledges every successful data transmission. Note
that at the beginning of each slot, the transmitter and the receiver

1Note that the protocols developed in this paper can ensure the transceiver
synchronization without the help of any dedicated communication or control
channel. See details in III-C.

can also choose not to hop to any channel and turn to sleep mode
until the beginning of next slot.

B. Energy Model

We assume that channels between the secondary user and its
destination follow a block fading model. That is, the channel gain
in a slot is a random variable (RV) identically and independently
distributed (i.i.d.) across slots but not necessarily i.i.d. across
channels.

Let Es(n) and Etx(n) denote, respectively, the energy con-
sumed in sensing and accessing channeln in a slot. For sim-
plicity, we assume that sensing energy consumptionEs(n) is
identical for all channels:Es(n) = es for everyn. Note that the
transmission energy consumptionEtx(n) is a RV depending on
the current fading condition of channeln. In general, the better
the channel condition, the lower the required transmissionenergy.
Let L be the number of power levels at which the secondary user
can transmit andεk the energy consumed in transmitting at the
k-th power level in a slot. The transmission energy consumption
Etx(n) thus has realizations restricted to a finite setEtx given by

Etx(n) ∈ Etx
∆
= {εk}

L
k=0, (1)

where0 < ε1 < . . . < εL < ∞ and ε0 = 0 indicates that the
secondary user does not transmit. We also consider the energy
ep consumed in sleeping mode of the secondary user.

Let E denote the residual energy level of a secondary user at
the beginning of a slot. Note thatE is a RV determined by the
channel conditions and the sensing and access decisions in all
previous slots. Thus,E belongs to finite setEr given by

E ∈ Er
∆
= {e : e = E0 −

L
∑

k=0

ck(es + εk) − cep,

e ≥ 0, c, ck ≥ 0, c, ck ∈ Z} ∪ {0},

(2)

whereck is the number of slots when the secondary user chooses
to sense a channel and then transmit over it at thek-th power
level andc is the number of slots when the secondary user turns
to sleeping mode.

III. OPTIMAL ENERGY-CONSTRAINED OSA

The energy-constrained OSA can be formulated a constrained
POMDP, which is usually more difficult to solve than an un-
constrained one. By absorbing the residual energy level of the
secondary user into the state space, we reduce a constrained
POMDP to an unconstrained one. Based on the theory of
POMDP, we obtain the spectrum optimal sensing and access
policy.

A. An Unconstrained POMDP Formulation

State Space In each slot, the network state is characterized by
the current spectrum occupancyS ∈ {0, 1}N and the residual
energy levelE ∈ Er of the secondary user at the beginning of
this slot. The state spaceS can be defined as

(S, E) ∈ S
∆
= {(s, e) : s ∈ {0, 1}N , e ∈ Er}. (3)
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Action SpaceAfter the state transition of spectrum occupancy at
the beginning of each slot, the secondary user can either choose
a channela ∈ {1, . . . , N} to sense or turn to sleep (a = 0).
If the secondary user chooses channela to sense, then it will
obtain a sensing outcomeΘa ∈ {0, 1, . . . , L} which reflects the
occupancy state and the fading condition of the chosen channel:
Θa = 0 indicates that channela is busy (i.e.,Sa = 0) andΘa =
k (k = 1, . . . , L) indicates that channela is idle (i.e.,Sa = 1) and
the fading condition requires the secondary user to transmit at the
k-th power level (i.e.,Etx(a) = εk). Given sensing outcomeΘa,
the secondary user decides whether to transmit over the chosen
channel. LetΦa(k) ∈ {0 no access,1 access} (k = 0, . . . , L)
denote the access decision under sensing outcomeΘa = k. Since
we have assumed perfect spectrum sensing, the access decision
underΘa = 0 (busy) is simple:Φa(0) = 0 (no access). In this
case, secondary users will not collide with primary users.

The action spaceA consists of all sensing decisionsa and
access decisionsΦa

∆
= [Φa(1), . . . , Φa(L)]:

(a,Φa) ∈ A
∆
= {(0, [0, . . . , 0])} ∪ {(a, φ) : a ∈ {1, . . . , N},

φ
∆
= [φ(1), . . . , φ(L)] ∈ {0, 1}L}. (4)

Note that the access decisionΦ0 associated with sensing action
a = 0 (sleeping mode) is determined byΦ0(k) = 0 for all
1 ≤ k ≤ L.

Network State TransitionRecall that the network state consists
of two parts: the spectrum occupancyS and the residual energyE
of the secondary user. At the beginning of each slot, the spectrum
occupancyS transits independently of the residual energyE

according to transition probabilities{ps,s′}, whereps,s′ denotes
the probability that the spectrum occupancy state transitsfrom
s ∈ {0, 1}N to s

′ ∈ {0, 1}N . In this paper, we assume that
the spectrum occupancy dynamics{ps,s′} are known and remain
unchanged during the battery lifetime of the secondary user.

If the secondary user decides to choose channela ∈
{1, . . . , N} to sense in this slot, then it will consumees in
sensing andΦa(Θa)εΘa

in transmitting. Thus, at the end of
this slot, the residual energy of the secondary user reducesto
E′ = TE(E | a, Θa, Φa(Θa)):

TE(E | a, Θa, Φa(Θa))

=

{

E − ep, a = 0,

max{E − es − Φa(Θa)εΘa
, 0}, a 6= 0,

(5)

whereep is energy consumed in the sleeping mode.

Observations Due to partial spectrum sensing, the secondary
user does not have full knowledge of the spectrum occupancy
state in each slot. It, however, can obtain the occupancy state of
the chosen channela ∈ {1, . . . , N} from sensing outcome (i.e.,
observation)Θa ∈ {0, 1, . . . , L}. Let q

(a)
s (k) be the probability

that the secondary user observesΘa = k in the chosen channel
a given current spectrum occupancy stateS = s. Under perfect
spectrum sensing, we have that

q(a)
s

(k) = Pr{Θa = k |S = s}

=

{

1[k 6=0]pa(k), if a 6= 0, sa = 1,

1[k=0], if a 6= 0, sa = 0,

(6)

where pa(k)
∆
= Pr{Etx(a) = εk} is the probability that the

fading condition of channeln requires the secondary user to
transmit at thek-th power level, and1[x] is the indicator function:
1[x] = 1 if x is true and 0 otherwise. Note that{pa(k)}L

k=1

are determined by the fading statistics of channela and are
independent of the spectrum occupancy state. From (6), we can
see that

∑L

k=0 q
(a)
s (k) = 1 for any spectrum occupancy state

s ∈ S and any chosen channela ∈ {1, . . . , N}.

Note that if the secondary user turns to sleep, then it will not
have any sensing outcome. We can define{q

(0)
s (k)} as arbitrary

values that satisfy
∑L

k=0 q
(0)
s (k) = 1. For simplicity, we define

q
(0)
s (k) = 1[k=0].

Reward Structure At the end of each slot, the secondary
user obtains a non-negative rewardR

(a,Φa(Θa))
E,Θa

depending on
its residual energyE at the beginning of this slot, the sensing
outcomeΘa, and the sensing and access decisions(a, Φa(Θa)).
Assuming that the number of information bits that can be
transmitted over a channel in one slot is proportional to the
channel bandwidth, we define immediate rewardR

(a,Φa(Θa))
E,Θa

as

R
(a,Φa(Θa))
E,Θa

∆
=

{

0, a = 0,

Φa(Θa)Ba1[E−es−εΘa
≥0], a 6= 0.

(7)

That is, a reward is obtained if and only if the secondary
chooses to sense and access (i.e., a 6= 0, Φa(Θa) = 1) an
idle channel (i.e., Θa 6= 0) and its residual energy is enough
to cope with the channel fade in the selected channel (i.e.,
E − es − εΘa

≥ 0). Note that no reward will be accumulated
once the battery energy level drops belowes + ε1, whereε1 is
the least required transmission energy. Hence, the total expected
accumulated reward represents the total expected number of
information bits that can be delivered by the secondary user
during its battery lifetime.

Belief State At the beginning of a slot, the secondary user
has the information of its own residual energyE but not the
current spectrum occupancy stateS. Its knowledge ofS based
on all past decisions and observations can be summarized by a
belief stateλ = {λs}s∈{0,1}N [10], whereλs is the conditional
probability (given the decision and observation history) that the
network state isS = s at the beginning of this slot prior to the
transition in the spectrum occupancy state.

At the end of a slot, the secondary user can update the belief
stateλ for future use based on sensing actiona and sensing
outcomeΘa in this slot. Specifically, letλ′ ∆

= Tλ(λ | a, k) denote
the updated belief state whose elementλ′

s
denotes the probability

that the current spectrum occupancy state isS = s given belief
stateλ at the beginning of this slot and the observationΘa = k

of chosen channela in the current slot. Applying Bayes rule, we
obtainλ′

s as

λ′
s

= Pr{S = s |λ, a, k}

=











∑

s′
λs′ps′,s, a = 0,

∑

s′
λs′ps′,s1[sa=1[k 6=0]]

∑

s′′

∑

s′
λs′ps′,s′′1[s′′

a
=1[k 6=0]]

, a 6= 0,

(8)

where the summations are taken over the space{0, 1}N of
spectrum occupancy stateS. Note that when the secondary user
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turns to sleeping mode (a = 0), no observation is made and
the belief state is updated according to the spectrum occupancy
dynamics{ps,s′}.

Unconstrained POMDP Formulation We have formulated the
energy-constrained OSA as a POMDP problem. A policyπ of
this POMDP is defined as a sequence of functions:

π
∆
= [µ1, µ2, . . .], µt : [0, 1]2

N

× Er → A,

where{a,Φa} = µt(λ, E) maps every information state(λ, E),
which consists of belief stateλ ∈ [0, 1]2

N

and residual energy
E ∈ Er, at the beginning of slott to a sensing decision
a ∈ {0, 1, . . . , N} and a set of access decisionsΦa =
[Φa(1), . . . , Φa(L)] ∈ {0, 1}L.

The design objective is to find the optimal policyπ∗ that
maximizes the total expected reward:

π∗ = arg max
π

Eπ

[

∞
∑

t=1

R
(a,Φa(Θa))
(S,E),Θa

(t)

∣

∣

∣

∣

∣

λ0

]

, (9)

whereλ0 is the initial belief state given by the stationary dis-
tribution of spectrum occupancy. We thus have an unconstrained
POMDP.

B. Optimal Policy

Let V (λ, E) be the value function, which denotes the maxi-
mum expected remaining reward that can be accrued when the
current information state is(λ, E). We notice from (7) that the
value function is given byV (λ, E) = 0 for any information
state(λ, E) with residual energyE < es + ε1. For any other
information state, its value functionV (λ, E) is the unique
solution to the following equation:

V (λ, E) = max
(a,φ)∈A

L
∑

k=0

u
(a)
k [R

(a,φ(k))
E,k

+ V (Tλ(λ | a, k), TE(E | a, k, φ(k)))],

(10)

where Tλ(λ | a, k) is the updated belief state given in (8),
TE(E | a, k, φ(k)) is the reduced battery energy given in (5),
and u

(a)
k

∆
= Pr{Θa = k |λ} is the probability of observing

Θa = k given belief stateλ, which is determined by the spectrum
occupancy dynamics and the channel fading statistics:

u
(a)
k =

∑

s′∈{0,1}N

λs′

∑

s∈{0,1}N

ps′,s q(a)
s

(k). (11)

In principle, by solving (10), we can obtain the optimal sensing
and access actions(a∗,Φ∗

a) that achieve the maximum expected
rewardV (λ, E) for each possible information state(λ, E). We
can also obtain the maximum expected number of information
bits Vopt that can be delivered by a secondary user during its
battery lifetime asVopt = V (λ0, E0), where λ0 is the initial
belief state.

C. Transceiver Synchronization

Without a dedicated communication or control channel, trans-
ceiver synchronization is a key issue in distributed MAC design
for OSA networks [9]. Specifically, a secondary user and its
intended receiver need to hop to the same channel at the

beginning of each slot in order to carry out the communication
[9]. Here we show that the optimal sensing and access policy
developed in Section III-B ensures transceiver synchronization.

The protocol structure described in Section II-A ensures that
both the transmitter and the receiver have the same information
on the occupancy state and the fading condition of the sensed
channel in each slot. Hence, at the end of each slot, the transmit-
ter and the receiver will reach the same updated belief stateλ

using (8) and the same residual energyE of the transmitter using
(5). Since the channel selection is determined by the information
state (λ, E), the transmitter and the receiver will hop to the
same channel in the next slot,i.e., transceiver synchronization is
maintained.

IV. OPTIMAL POLICY WITH REDUCED COMPLEXITY

Although the value function given in (10) can be solved
iteratively, it is computationally expensive. In this section, we
first identify the sources of high complexity of the optimal policy
and then reduce the complexity accordingly.

A. Complexity of the Optimal Policy

We measure the computational complexity of a policy as the
number of multiplications required to obtain all sensing and
access actions during the secondary user’s battery lifetime T

when initial belief state and battery energy are given.

From (10), we notice that the optimal sensing and access
action in the first slot depends on the value functions of all
possible information states during the battery lifetimeT . Hence,
the computational complexity of the optimal policy is determined
by the number of multiplications required to calculate the value
functions of all possible information states.

Following the complexity analysis in [11], we can calculate
the number of all possible information states(λ, E) during the
secondary user’ battery lifetime. Specifically, noting from (8)
that the updated belief state is the same under all non-zero
sensing outcomes (k 6= 0), we can see that each information
state(λ, E) can transit to at mostL + 1 different information
states under sensing actiona 6= 0 but only one under sensing
actiona = 0. Hence, for fixed initial information state(λ0, E0),
the number of all possible information states is on the orderof
O((N(L + 1))T−1), which is exponential in the battery lifetime
T and polynomial in the numberN of channels. Moreover, from
(10) and (11), we can see that it requiresO(3|A|2N2N(L + 1))
multiplications to calculate each value function, where|A| is the
size of the action space,2N is the dimension of the belief state,
andL+1 is the number of possible observations. Therefore, the
computational complexity of the optimal policy is on the order
of O(3|A|2N2N (L + 1)(N(L + 1))T−1). We can see that the
complexity is mainly caused by the following three factors:1)
the numberO((N(L + 1))T−1) of possible information states;
2) the size|A| of the action space, and 3) the dimension2N of
the belief state. We will address the first factor in Section V. In
this section, we focus on the other two factors.
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B. Reduction of Action Space Size

Careful inspection of (5), (7) and (10) reveals that the quantity
R

(a,φ(k))
E,k + V (Tλ(λ | a, k), TE(E | a, k, φ(k))) inside the square

parenthesis of (10) only depends on thek-th entry φ(k) of the
access decisionφ and is independent ofφ(i) (i 6= k). We can
thus simplify (10) as

V (λ, E) = max
a∈{0,1,...,N}

{

L
∑

k=0

u
(a)
k max

φ(k)∈{0,1}
[R

(a,φ(k))
E,k

+ V (Tλ(λ | a, k), TE(E | a, k, φ(k)))]}.

(12)

Note that the maximization in (12) is taken over the space with
size O(2NL) increasing linearly with the numberL of power
levels, while that in (10) is taken over the action spaceA whose
sizeO(N2L) increases exponentially withL.

In Proposition 1, we show that the optimal access decisionΦ
∗
a

for sensed channela is of threshold type.

Proposition 1: Given the belief stateλ and the residual
energy levelE of the secondary user at the beginning of a
slot, there exists a thresholdk∗

a associated with sensing action
a ∈ {1, . . . , N} such that the optimal access decisionΦ

∗
a =

[φ∗
a(1), . . . , φ∗

a(L)] is given by

φ∗
a(k) =

{

1, if k ≤ k∗
a,

0, if k > k∗
a,

(13)

Proof: Assumeφ∗
a(k∗

a) = 1 for some 1 ≤ k∗
a ≤ L.

For any 1 ≤ k ≤ k∗
a, we haveεk ≤ εk∗

a
. From (5), we

have TE(E | a, k, 1) ≥ TE(E | a, k∗
a, 1) and TE(E | a, k, 0) =

TE(E | a, k∗
a, 0). From (8), we haveTλ(λ | a, k) = Tλ(λ | a, k∗

a).
Combining the above observations and noting that the to-
tal expected rewardV (λ, E) increases withE for any fixed
λ, we can show thatBa + V (Tλ(λ | a, k), TE(E | a, k, 1)) ≥
V (Tλ(λ | a, k), TE(E | a, k, 0)). Thereforeφ∗

a(k) = 1 for any
1 ≤ k ≤ k∗

a. The existence ofk∗
a follows from the fact that

there are a finite number of observations.

Proposition 1 can help us avoid the search for optimal access
decisions in some scenarios, resulting in further complexity
reduction. Specifically, for each sensing actiona 6= 0, we can
calculate the optimal access decisionsφ∗

a(k) in a decreasing order
of sensing outcomek. Once we haveφ∗

a(k∗) = 1 for a certain
value ofk∗, we can determine the optimal access decisions for all
remaining sensing outcomesk < k∗ without further computation.

C. Reduction of Belief State Dimension

Assume that the spectrum occupancy evolves independently
across channels. It has been shown in [7] thatω

∆
= [ω1, . . . , ωN ],

whereωn denotes the probability (conditioned on all previous
decisions and observations) that channeln is available at the
beginning of a slot prior to the state transition, is a sufficient
statistic to belief stateλ. Note that the dimension ofω increases
linearly O(N) with the numberN of channels while that ofλ
increases exponentiallyO(2N ).

Applying the belief stateω, we can simplify the value function
given in (12). Specifically, letαn = Pr{S′

n = 1 |Sn = 0} denote
the probability that channeln transits from 0 (busy) to 1 (idle)

and βn = Pr{S′
n = 1 |Sn = 1} the probability that channeln

remains idle. Then, (12) reduces to

V̂ (ω, E) = max
a∈{0,1,...,N}

{(1 − ω′
a)

× V̂ (T̂λ(ω | a, 0), TE(E | a, 0, 0))

+ ω′
a

L
∑

k=1

pa(k) max
φ(k)∈{0,1}

[R
(a,φ(k))
E,k

+ V̂ (T̂λ(ω | a, k), TE(E | a, k, φ(k)))]},

(14)

whereω′
0

∆
= 0, ω′

a = ωaβa + (1− ωa)αa (a ∈ {1, . . . , L}) is the
probability that channela is available in the current slot given
ω, TE(E | a, k, φa(k)) is the reduced battery energy given in (5),

and the updated belief statêω
∆
= [ω1, . . . , ωN ] = T̂λ(ω | a, k) is

given by

ω̂n =











0, if a 6= 0, n = a, k = 0,

1, if a 6= 0, n = a, k 6= 0,

ω′
n, otherwise.

(15)

V. SUBOPTIMAL ENERGY-CONSTRAINED OSA

From (10), we notice that the optimal sensing and access
decisions in a slot rely on the value functions of all possible
information states in the remaining slots, which significantly
increases the computational complexity of the optimal policy.
In this section, we provide a suboptimal solution to energy-
constrained OSA, which reduces the number of value functions
used in decision-making. We show that the computational com-
plexity of this suboptimal strategy can be traded off with its
performance.

A. The Greedy-w Approach

Referred to as greedy-w approach, the proposed strategy max-
imizes the total expected reward in a time window ofw slots. Let
Y

(a)
w (λ, E) denote the maximum reward that can be accumulated

in a window of w slots given information state(λ, E) and
sensing actiona. We can calculateY (a)

w (λ, E) recursively by

Y
(a)
0 (λ, E) = 0

Y (a)
w (λ, E) =

L
∑

k=0

u
(a)
k max

φ(k)∈{0,1}
[R

(a,φ(k))
E,k

+ max
b∈{0,1,...,N}

Y
(b)
w−1(Tλ(λ | a, k), TE(E | a, k, φ(k)))],

(16)

whereu
(a)
k , Tλ(λ | a, k), andTE(E | a, k, φ(k)) are given in (11),

(8), and (5), respectively. From (16), we can see that for anyw,
Y

(a)
w (λ, E) = 0 if E < es + ε1.

Given belief stateλ and residual energyE of the secondary
user at the beginning of a slot, the greedy-w approach chooses
channelaw that maximizes the reward obtained in the nextw

slots to sense,i.e.,

aw = arg max
a∈{0,1,...,N}

Y (a)
w (λ, E). (17)
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Given sensing outcomek ∈ {1, . . . , L}, the access decision
φaw

(k) of the greedy-w approach is given by

φaw
(k) = arg max

φ∈{0,1}
{R

(aw,φ)
E,k

+ max
b∈{1,...,N}

Y
(b)
w−1(Tλ(λ | aw, k), TE(E | aw, k, φ))]}.

(18)

Since its channel selection is determined by the information state
(λ, E), the greedy-w approach ensures transceiver synchroniza-
tion as shown in Section III-C.

Next, we consider two extreme cases of the greedy-w strategy.

Case 1:Whenw = 1, the greedy-1 approach focuses solely on
maximizing the immediate reward. Specifically, the secondary
user employing greedy-1 approach chooses the channel with the
maximum expected immediate reward and transmits whenever
the channel is sensed to be available:

a1 = arg max
a∈{1,...,N}

L
∑

k=1

u
(a)
k R

(a,φa1(k))

E,k ,

φa1(k) = 1[k 6=0].

(19)

The greedy-1 approach has the lowest computational complexity
but worst performance as illustrated in Fig. 1.

Case 2:Consider the case when window sizew exceeds the
maximum battery lifetime of the secondary user. In this case,
the network reaches a terminating state in less thanw slots
regardless of the sensing and access strategies. Since no reward
is accumulated after the network reaches a terminating state, the
greedy-w approach is equivalent to the optimal strategy.

B. Complexity Vs. Performance
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Fig. 1. The number of information bits that can be transmitted by the secondary
user during its battery lifetime.N = 2, [B1, B2] = [1, 1], [α1, α2] = [0.2, 0.6],
[β1, β2] = [0.8, 0.8], es = 0.5, ep = 0.1, L = 2, Etx = {1, 2}, pn(1) = 0.8,
pn(2) = 0.2 for n = 1, 2.

We can see from (17) and (18) that the sensing and access
decisions made by the greedy-w approach in a slot only depend
on the value functions of all possible information states inthe
nextw slots. Hence, the total number of value functions required
to determine the sensing and access decisions during battery
lifetime T is on the order ofO((N(L + 1))w−1T ), which is
linear in T . Clearly, the computational complexity of greedy-w

approach increases withw.

Next, we compare the performance of the greedy-w approach
with the optimal performanceV (λ0, E0). In Fig. 1, we plot the

total expected number of information bits that can be delivered
by the secondary user during its battery lifetime as a function of
the initial energyE0. We considerN = 2 independently evolving
channels with different occupancy dynamics. As the window
size w increases, the performance of the greedy-w approach
improves. It quickly approaches the optimal performance asw

increases.

The above observations show that the computational complex-
ity of the greedy-w approach increases while its performance loss
as compared to the optimal performance decreases as the window
sizew increases. Hence, by choosing a suitablew, the greedy-w
approach can achieve a desired tradeoff between complexityand
performance.

VI. NUMERICAL EXAMPLES

Careful inspection of (10) reveals that a sensing and access
action (a, φ) ∈ A affects the total expected reward in three
ways: 1) it acquires an immediate rewardR(a,φ(k))

E,k in this
slot; 2) it transforms the current belief stateλ to Tλ(λ, a, k)
which summarizes the information of spectrum occupancy up
to this slot; 3) it causes a reduction in battery energy from
E to TE(E, a, k, φ(k)), leading to a shorter remaining battery
lifetime. Hence, to maximize the total expected reward during
battery lifetime, the optimal sensing and access policy should
achieve a tradeoff among gaining instantaneous reward, gaining
information for future use, and conserving energy. In this section,
we study the impact of spectrum occupancy dynamics, channel
fading statistics, and energy consumption characteristics on the
optimal sensing and access actions.

To sense or not to sense? The secondary user may choose to
sense in order to gain immediate reward and channel occupancy
information, but not to sense in order to conserve energy. Hence,
the optimal decision on whether to sense should strike a balance
between gaining reward/information and conserving energy. In
Fig. 2, we study the optimal sensing decision1[a∗ 6=0] in a
particular slot under different spectrum occupancy dynamics and
belief states.
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Fig. 2. The optimal decision1[a∗ 6=0] on whether to sense under different
spectrum occupancy dynamics and belief states.N = 2, [B1, B2] = [1, 1],
E0 = 4, es = 0.6, ep = 0.1, L = 2, Etx = {1, 2}, pn(1) = pn(2) = 0.5 for
n = 1, 2.

We considerN = 2 independently evolving channels with
identical spectrum occupancy dynamicsα1 = α2 = α and
β1 = β2 = β. We assume thatβ = 1 − α. Hence, the
stationary distribution of spectrum occupancy stateS is given by
ω1 = [0.5, 0.5]. Consider another belief stateω2 = [0, 0] with

6 of 7



which the secondary user has full information on the spectrum
occupancy prior to the state transition in this slot. Conditioned
on the belief states at the beginning of this slot, the conditional
probability that channeln is available can be calculated as
Pr{Sn = 1 |ω1} = 0.5 andPr{Sn = 1 |ω2} = α for n = 1, 2.
From Fig. 2, we find that the secondary user chooses not to
sense only when the conditional probabilityPr{Sn = 1 |ω}
that the channel is available is very small. We also find that
the secondary user always chooses to sense if the belief state is
given by the stationary distributionω1 of the spectrum occupancy
dynamics. The reason behind this is the monotonicity of the value
function V̂ (ω, E) in terms of battery energyE. Specifically, if
the secondary user chooses not to sense, then its belief state
at the beginning of next slot will remainω1 but its battery
energy will be reduced byep due to energy consumption in the
sleeping mode. The maximum total expected reward that can
be obtained is thus given bŷV (ω1, E − ep). Since V̂ (ω, E)
increases with the battery energyE for every fixedω, we have
V̂ (ω1, E) ≥ V̂ (ω1, E−ep) and hence the secondary user should
choose to sense whenever it has a stationary belief state.
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Fig. 3. The optimal access decision under different sensingenergy consumptions
es and channel fading statistics.N = 2, [B1, B2] = [1, 1], E0 = 8, ep = 0.1,
L = 3, Etx = {1, 2, 3}. In the upper plot,pn(1) = 0.5, pn(2) = 0.3, pn(3) =
0.2 for n = 1, 2, 3. In the lower plot,pn(1) = 0.3, pn(2) = 0.3, pn(3) = 0.4.

To access or not to access? Without an energy constraint,
the secondary user should always access the channel that is
sensed to be available. However, under the energy constraint,
the access decision should take into account both the energy
consumption characteristics and the channel fading statistics. For
example, when the sensed channel is available but has poor
fading condition, should the secondary user access this channel
to gain immediate reward or wait for better channel realizations
to conserve energy? In Fig. 3, we study the optimal access
decisionφ∗ under different sensing energy consumptionses and
channel fading statistics{pn(k)}L

k=1. We find that when sensing
energy consumptiones is negligible, the secondary user should
refrain from transmission under poor channel conditions and wait
for the best channel realization. However, whenes is large, it
should always grab the instantaneous opportunity regardless of
the fading condition because the sensing energy consumed in
waiting for the best channel realization may exceed the extra
energy consumed in combating the poor channel fading.

The access decision should also take into account the channel
fading statistics. Comparing the optimal access decisionsin the
upper and the lower plots of Fig. 3 when sensing energy is
es = 0.8. We find that if the probability that the channel expe-

riences deep fading is small (see the upper plot), the secondary
user should avoid transmitting under poor channel realizations
because the waiting time for a better channel realization isshort
and hence the energy wasted in waiting can still be lower than
the extra energy needed to combat the poor channel condition.
On the other hand, if the channel tends to have poor fading
conditions (see the lower plot), the secondary user should focus
on gaining immediate reward because of the long waiting time
for better channel realizations.

VII. CONCLUSION

In this paper2, we obtained the optimal sensing and access
policy for energy-constrained OSA by formulating the resulting
problem as an unconstrained POMDP. We proposed a suboptimal
solution, called greedy-w, whose computational complexity can
be systematically traded off with its performance. Numerical
results demonstrated that the optimal sensing and access deci-
sions should take into account not only the spectrum occupancy
dynamics but also the channel fading statistics and the energy
consumption characteristics of the secondary user.

Throughout this paper, we have assumed perfect spectrum
sensing,i.e., the sensing outcome reflects the true channel state.
Our future work on energy-constrained OSA will address the
design of spectrum sensing and access policy in the presenceof
spectrum sensing errors.
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