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Abstract— Oligonucleotide-templated nanoclusters consisting of a
few atoms of silver (DNA/Ag NCs) have been made into a new
molecular probe that “lights up” upon target DNA binding,
termed a NanoCluster Beacon (NCB). We discovered that
interactions between silver nanoclusters and a proximal, guanine-
rich DNA strand can lead to tremendous red fluorescence
enhancement [1]. Here we show that dark silver nanoclusters
templated on an ssDNA can be lit up into a palette of colors
(green, yellow/orange, and red) by employing different proximal
sequences, potentially enabling the use of NCBs in multiplexed
assays. We tested a suite of nanocluster-nucleation sequences and
found the sequences that created strong red fluorescence
enhancement share a common 5’-CsNNNNNC, motif, where N is
either a thymine (T) or an adenine (A) base. We optimized the
design of NCBs by testing the effect of different lengths of an
interaction stem. The highest signal-to-background (S/B) ratio,
175, was achieved when the stem length was 3 base pairs long.

Noble metal nanoclusters; light-up probes; DNA-templated
silver nanoclusters; fluorescent probes

L INTRODUCTION

Noble metal nanoclusters are collections of small numbers
of gold or silver atoms (2-30 atoms) with physical sizes close
to the Fermi wavelength of an electron (~0.5 nm for gold and
silver) [2]. Providing the missing link between atomic and
nanoparticle behavior in noble metals, these nanoclusters have
shown dramatically different optical, electronic, and chemical
properties as compared to those of much larger nanoparticles or
bulk materials [2-4]. Owing to discrete density of states, metal
clusters behave like molecular systems and yield fluorescence
emission in the UV-visible range. Gold and silver clusters were
first made in rare gas matrices, where their fluorescence
emission and absorption spectra were correlated to size
differences, as predicted by the jellium model [2]. The first
organic synthesis produced clusters with little fluorescence and
limited solubility. It was not until early 2000’s when highly
fluorescent, water-soluble noble metal nanoclusters were
reported, opening new opportunities for biological labels [5, 6].
Till now, a variety of organic materials and biomolecules have
served as templates (or encapsulation agents which stabilize
nanoclusters with well-defined sizes and protect them against
agglomeration following reduction) for aqueous synthesis of
fluorescent nanoclusters, including dendrimers [7, 8], polymers
[9], small molecule ligands [3, 4], peptides [10], proteins [11],
and oligonucleotides [1, 12-16].

Among those water-soluble noble metal nanoclusters newly
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developed, DNA-templated silver nanoclusters (DNA/Ag NCs)
have attracted great interest in analytical chemistry and
quantitative biology owing to a number of useful photophysical
properties (see Discussion for details). Although DNA/Ag NCs
have been demonstrated in cellular imaging [17] and metal ion
detection [18, 19], the understanding of this new type of
organic/inorganic composite fluorophores is still limited. In the
relatively unexplored physical size region of nanoclusters,
many unknowns, such as the transition from fluorescent cluster
behavior to the non-fluorescent behavior of larger nanoparticles
and the detailed physical chemistry properties of clusters,
remain to be addressed. From an application perspective,
making fluorescent silver clusters into Forster energy transfer
pairs and finding effective methods to turn on clusters’
fluorescence (i.e. light-up probes) or shift their spectra (i.e.
colorimetric probes) upon target recognition can lead to the
development of new molecular sensing tools, accelerating the
widespread use of nanocluster fluorophores in analytical
chemistry and quantitative biology.

Recently we demonstrated controlled conversion of
DNA/Ag NCs between bright and dark states by guanine
proximity (Fig. 1a), with bulk fluorescence changed more than
500 fold [1]. Based on this finding, we designed a new
molecular probe, termed a NanoCluster Beacon (NCB), that
“lights up” upon binding with a DNA target. As illustrated in
Fig. 1b, an NCB consists of two linear probes, one bearing
non-fluorescent silver nanoclusters (i.e. NC probe) and the
other having a guanine-rich tail (i.e. G-rich probe). The two
probes are designed to bind in juxtaposition to a target DNA,
allowing guanine bases on one probe to interact with non-
fluorescent nanoclusters on the other probe, transforming those
non-fluorescent nanoclusters into bright red-emitting clusters.
Not relying on Forster energy transfer as the fluorescence
on/off switching mechanism, NCBs have the potential to reach
an ultrahigh signal-to-background (S/B) ratio in molecular
sensing. Since the fluorescence enhancement is caused by
intrinsic nucleobases, our detection technique is simple,
inexpensive, and compatible with commercial DNA
synthesizers. While NCBs are clearly promising as future
probes in quantitative biology, their design rules have yet been
addressed. Here we show that the dark nanoclusters templated
on an ssDNA can be lit up into three distinct colors (green,
yellow/orange, and red) by employing different proximal
sequences, potentially enabling the use of NCBs in multiplexed
assays. We also tested different nanocluster-nucleation
sequences and found the sequences that created strong red
fluorescence enhancement share a common 5’-C;NNNNNC,
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Figure 1. (a) Schematic and data showing the red fluorescence enhancement of DNA-templated silver nanoclusters (DNA/Ag NCs) caused by guanine proximity.
The excitation and emission peaks for the light-up NCs are at 580 nm and 636 nm, respectively. (b) NanoCluster Beacon (NCB, consisting of a NC probe and a G-
rich probe) detection scheme. NCBs light up in presence of DNA target. In absence of target, NCBs remain dark.

motif, where N is either a thymine (T) or an adenine (A) base.
We optimized the design of NCBs by testing the effect of
different lengths of an interaction stem. The highest signal-to-
background (S/B) ratio of 175, a factor of 5 better than
conventional molecular beacons, was achieved when the stem
length was 3 base pairs long.

II. METHODS
A. Preparation of silver nanoclusters on DNA

All DNA strands were purchased from Integrated DNA
Technologies Incorporated and were purified by desalting.
DNA/Ag NCs were made using the protocol developed by
[14]. NC-bearing strand was first dissolved in ultrapure
deionized water. Silver nanoclusters were formed by adding
AgNO; (99.9%. Sigma-Aldrich) to the DNA solution, followed
by reduction with sodium borohydride. Final concentrations
were 15 pM in DNA strand, 90 pM in AgNOs, and 90 pM in
NaBH; in 20 mM pH 6.6 sodium phosphate buffer. The
aqueous solution of NaBHy4 was prepared by dissolving NaBHy
powder in water and adding the required volume to the
DNA/Ag" mixture within 30 seconds, followed by vigorous
shaking for 5 seconds. The reaction was kept in the dark at
room temperature for 18 hours before use.

B. Experiments

Fluorescence was measured using a Varian Cary Eclipse
Fluorescence Spectrophotometer. The images of samples were
acquired by a digital camera while the samples were placed on
a gel imager (InGenius, Syngene).

III. RESULTS AND DISCUSSION

An important feature of NCBs is that dark Ag NCs on a
DNA motif can be lit up into distinct colors, creating a
complementary palette. This is achieved by bringing different
DNA sequences (i.e. proximal sequences) into proximity of the
originally dark Ag NCs (templated on a 5’-C3TTAATC,
motif). As shown in Fig. 2, three distinct light-up colors (green,
yellow/orange, and red) were obtained by employing three
different proximal sequences. This important characteristic,
having multiple light-up colors from the same origin, is not
commonly shared by organic dyes or semiconductor quantum
dots, opening opportunities for NCBs in multiplexed assays.

Our initial study investigated the magnitude of fluorescence
enhancement created by proximal sequences of varying
guanine content [1]. Here, we further investigate the red
fluorescence enhancement by testing six NC-bearing strands

having an identical hybridization sequence but different NC-
nucleation sequences. As shown in Fig. 3, strong red
fluorescence emission after hybridization was seen from
Seq 1, Seq 2 and Seq_5 samples. These three sequences share
a common 5°-C;NNNNNC, motif, where N is either a thymine
(T) or an adenosine (A) base. However, only Seq 1 and Seq 2
had low background fluorescence before hybridization.
Another important feature to note in the Fig. 3 experiment is
that the emission spectra of all the six samples changed in
some ways after hybridization — either from nearly no
fluorescence to a strong emission (e.g. Seq 1 sample) or from
one color to another (Seq 4 and Seq 5 samples). This
characteristic leads to the possibility of creating NCBs with a
variety of color-change scenarios upon target recognition,
which will enrich our fluorescence detection tool box in the
near future.
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Figure 2. Dark DNA/Ag NCs templated on the NC-nucleation sequence 5°-
C;TTAATC; can be lit up into three distinct colors by bringing different DNA
sequences (proximal sequences) into their proximity. (a) Photograph of the four
samples under UV (365 nm) irradiation. The proximal sequences used are:
none (S0). 3™-Tn (S1). 3°- (GsA);Gs (S2). and 3’~(GsT);G; (S3). respectively.
(b) Normalized excitation/emission spectra of S1, S2 and S3 samples.
Dashlines represent the excitation spectra and solid lines represent the emission
spectra. Normalization scale is set differently for easy visualization.

The design of NCB can be optimized by allowing the NC
probe and the G-rich probe to form a short “stem™ on the NCB
interaction arm (Fig. 4a). Such a short stem helps to bring the
NC-nucleation sequence closer to the proximal sequence,
resulting in tighter interactions. As a consequence, the light-up
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Figure 3. (a) Photograph of 6 pairs of samples under UV (365 nm) irradiation. In each pair of samples, the sample on the left contains one of the six NC-bearing
strands (with Ag NCs on them). The sample on the right contains both the NC-bearing strand and a common G-rich strand (having proximal sequence of 3’-
(G4T)3Gs3). (b) Chart showing the integrated red fluorescence emission (595 nm — 800 nm, by 580 nm excitation) of the six NC-bearing strands (NC-nucleation
sequence shown in parenthesis) before and after hybridization with the common G-rich strand and the associated enhancement ratio. Seq 1. Seq 2 and Seq 5
samples showed strong red fluorescence emission after hybridization. Using a Ag:DNA molar ratio of 12:1 duning NC formation process, the enhancement ratio for
Seq 1 sample was found greater than 1,500x. The NC-nucleation sequences Seq 1. Seq 2 and Seq 3 are from [20]. Seq 4 is from [14, 16] and Seq 5 and Seq 6

are from [21].

emission is enhanced. As shown in Fig. 4b, target-specific
fluorescence increased with increasing stem length up to 4 base
pairs, but background fluorescence continued to grow beyond
that. The highest S/B ratio, 175, was achieved when the stem
was 3 base pairs long, which is five times better than the S/B
ratio obtained by the stem length of 2 base pairs.

At present, we are still investigating the underlying
mechanism for the observed guanine proximity-induced
fluorescence enhancement. A number of reports have studied
the interactions between guanine bases and organic dyes [22-
24]. In most cases [22, 23], but not all [24], guanine-dye
interactions led to fluorescence quenching of excited
fluorophores. Believed to be a photoinduced charge transfer
phenomenon [22, 23], guanine-mediated fluorescence
quenching has been studied systematically on a variety of DNA
sequences and structures [25]. Guanine has the lowest
oxidation potential of all nucleobases and can donate electrons
to nearby fluorophores, quenching their fluorescence. Charge
transfer between nucleobases and Ag NCs has been recently
reported to lead to a long-lived, charge-separated trap state that
causes fluorescence intermittency (i.e. blinking) of Ag NCs on
microsecond time scale [26]. In our case, it is possible that
guanine bases serve as electron donors, converting oxidized-
NC species (in this case, non-emissive NCs) into reduced-NC
species (bright red-emitting NCs). To prove this electron-
transfer hypothesis, a proximal sequence rich of 7-
deazaguanines, which are stronger electron donors than
guanines [27], was made and tested [1]. Surprisingly, we found
no light-up effect from such a deazaguanine-rich proximal
sequence, weakening the electron transfer hypothesis. Another
experimental result that weakens the electron-transfer
hypothesis is that thymine proximity produced a green
fluorescence enhancement (S1 in Fig. 2), while adenine
proximity did not generate any measurable fluorescence
enhancement, with thymine being a worse electron donor than
adenine. The only difference between guanine and 7-
deazaguanine is the nitrogen atom at the guanine N7 site (in 7-
deazaguanine, it is replaced with a CH group). It was
previously reported that the guanine N7 site may be the
primary location for silver attachment to a DNA duplex [13].
Our 7-deazaguanine experiment (shown in [1], supporting

information) indicates that the guanine N7 site plays a critical
role in the observed red fluorescence enhancement.
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Figure 4. Optimization of NCB by changing the length of “stem™ on the
interaction arm. (a) Schematic of stem length optimization. (b) Integrated
fluorescence with and without target, and S/B ratio at different stem length. A
stem length of 3 base pairs gave the highest S/B ratio of 175.

As mentioned above, many intrigning and useful
photophysical properties of DNA/Ag NCs have been
discovered and reported in recent years, including high
fluorescence quantum yield (> 50%) [15]. good photostability
[15, 16], absorption/emission features throughout the visible
region [15, 20, 21]. blinking only on a microsecond time scale
[16, 26, 28], fluorescence recovery with low-energy secondary
excitation [29], strong two-photon-induced fluorescence [21],
and fluorescence recovery upon nanocluster transfer [17]. Our
discovery of guanine proximity-induced red fluorescence
enhancement adds to this list. As new signal transduction
modes emerge rapidly, a whole new class of nanobiosensors
based upon noble metal nanoclusters is expected to be realized
in the years to come. Our development of NCBs served as one
example and one starting point. There are many benefits of
using NCBs, including design simplicity, low cost, “one-step”
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preparation process, and potential to achieve an extraordinarily
high S/B ratio as it does not rely on Férster energy transfer as
fluorescence on/off switching mechanism. Our method is
unique not only because it requires only a single preparation
step (i.e. nanocluster formation on NC probes), but because
there is no need to remove excess silver ions or borohydride
ions from solution after NC formation is completed, as these
are essentially non-fluorescent. All these benefits were made
possible by taking advantage of a poorly understood
conversion dynamic process of DNA/Ag NCs, a dynamic
process neither being shared by organic dyes nor by
semiconductor quantum dots. While dynamic processes in
fluorophores are often viewed as a drawback, we have learned
how to reprogram/control such a process to create a new signal
transduction mode for molecular sensing.

IV. CONCLUSION

Recently we demonstrated controlled conversion of
DNA/Ag NCs between bright and dark states and, based upon
this finding, designed a new molecular probe, NanoCluster
Beacon, for homogeneous detection of nucleic acid targets [1].
Not relying on Forster energy transfer as the fluorescence
on/off switching mechanism, NCBs have the potential to reach
an ultrahigh signal-to-background (S/B) ratio in molecular
sensing. Since the fluorescence enhancement is caused by
intrinsic nucleobases, our detection technique is simple,
inexpensive, and compatible with commercial DNA
synthesizers. Here we demonstrate a palette of NCB light-up
colors can be produced from the same origin by employing
different proximal sequences. We also show the nanocluster-
nucleation sequences capable of achieving strong red
fluorescence enhancement share a common 5°-C;NNNNNC,
motif.
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