
NanoCluster Beacon – A New Molecular Probe for 

Homogeneous Detection of Nucleic Acid Targets 

Hsin-Chih Yeh, Jaswinder Sharma, Jason J. Han, Jennifer S. Martinez, and James H. Werner 
Center for Integrated Nanotechnologies, Los Alamos National Laboratory 

Los Alamos, New Mexico, U.S.A.

Abstract— Oligonucleotide-templated nanoclusters consisting of a 
few atoms of silver (DNA/Ag NCs) have been made into a new 
molecular probe that “lights up” upon target DNA binding, 
termed a NanoCluster Beacon (NCB). We discovered that 
interactions between silver nanoclusters and a proximal, guanine-
rich DNA strand can lead to tremendous red fluorescence 
enhancement [1]. Here we show that dark silver nanoclusters 
templated on an ssDNA can be lit up into a palette of colors 
(green, yellow/orange, and red) by employing different proximal 
sequences, potentially enabling the use of NCBs in multiplexed 
assays. We tested a suite of nanocluster-nucleation sequences and 
found the sequences that created strong red fluorescence 
enhancement share a common 5’-C3NNNNNC4 motif, where N is 
either a thymine (T) or an adenine (A) base. We optimized the 
design of NCBs by testing the effect of different lengths of an 
interaction stem. The highest signal-to-background (S/B) ratio, 
175, was achieved when the stem length was 3 base pairs long. 

Noble metal nanoclusters; light-up probes; DNA-templated 
silver nanoclusters; fluorescent probes 

I.  INTRODUCTION 

Noble metal nanoclusters are collections of small numbers 
of gold or silver atoms (2-30 atoms) with physical sizes close 
to the Fermi wavelength of an electron (~0.5 nm for gold and 
silver) [2]. Providing the missing link between atomic and 
nanoparticle behavior in noble metals, these nanoclusters have 
shown dramatically different optical, electronic, and chemical 
properties as compared to those of much larger nanoparticles or 
bulk materials [2-4]. Owing to discrete density of states, metal 
clusters behave like molecular systems and yield fluorescence 
emission in the UV-visible range. Gold and silver clusters were 
first made in rare gas matrices, where their fluorescence 
emission and absorption spectra were correlated to size 
differences, as predicted by the jellium model [2]. The first 
organic synthesis produced clusters with little fluorescence and 
limited solubility. It was not until early 2000’s when highly 
fluorescent, water-soluble noble metal nanoclusters were 
reported, opening new opportunities for biological labels [5, 6]. 
Till now, a variety of organic materials and biomolecules have 
served as templates (or encapsulation agents which stabilize 
nanoclusters with well-defined sizes and protect them against 
agglomeration following reduction) for aqueous synthesis of 
fluorescent nanoclusters, including dendrimers [7, 8], polymers 
[9], small molecule ligands [3, 4], peptides [10], proteins [11], 
and oligonucleotides [1, 12-16].  

Among those water-soluble noble metal nanoclusters newly 

developed, DNA-templated silver nanoclusters (DNA/Ag NCs) 
have attracted great interest in analytical chemistry and 
quantitative biology owing to a number of useful photophysical 
properties (see Discussion for details). Although DNA/Ag NCs 
have been demonstrated in cellular imaging [17] and metal ion 
detection [18, 19], the understanding of this new type of 
organic/inorganic composite fluorophores is still limited. In the 
relatively unexplored physical size region of nanoclusters, 
many unknowns, such as the transition from fluorescent cluster 
behavior to the non-fluorescent behavior of larger nanoparticles 
and the detailed physical chemistry properties of clusters, 
remain to be addressed. From an application perspective, 
making fluorescent silver clusters into Főrster energy transfer 
pairs and finding effective methods to turn on clusters’ 
fluorescence (i.e. light-up probes) or shift their spectra (i.e. 
colorimetric probes) upon target recognition can lead to the 
development of new molecular sensing tools, accelerating the 
widespread use of nanocluster fluorophores in analytical 
chemistry and quantitative biology. 

Recently we demonstrated controlled conversion of 
DNA/Ag NCs between bright and dark states by guanine 
proximity (Fig. 1a), with bulk fluorescence changed more than 
500 fold [1]. Based on this finding, we designed a new 
molecular probe, termed a NanoCluster Beacon (NCB), that 
“lights up” upon binding with a DNA target. As illustrated in 
Fig. 1b, an NCB consists of two linear probes, one bearing 
non-fluorescent silver nanoclusters (i.e. NC probe) and the 
other having a guanine-rich tail (i.e. G-rich probe). The two 
probes are designed to bind in juxtaposition to a target DNA, 
allowing guanine bases on one probe to interact with non-
fluorescent nanoclusters on the other probe, transforming those 
non-fluorescent nanoclusters into bright red-emitting clusters. 
Not relying on Főrster energy transfer as the fluorescence 
on/off switching mechanism, NCBs have the potential to reach 
an ultrahigh signal-to-background (S/B) ratio in molecular 
sensing. Since the fluorescence enhancement is caused by 
intrinsic nucleobases, our detection technique is simple, 
inexpensive, and compatible with commercial DNA 
synthesizers. While NCBs are clearly promising as future 
probes in quantitative biology, their design rules have yet been 
addressed. Here we show that the dark nanoclusters templated 
on an ssDNA can be lit up into three distinct colors (green, 
yellow/orange, and red) by employing different proximal 
sequences, potentially enabling the use of NCBs in multiplexed 
assays. We also tested different nanocluster-nucleation 
sequences and found the sequences that created strong red 
fluorescence enhancement share a common 5’-C3NNNNNC4 
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preparation process, and potential to achieve an extraordinarily 
high S/B ratio as it does not rely on Főrster energy transfer as 
fluorescence on/off switching mechanism. Our method is 
unique not only because it requires only a single preparation 
step (i.e. nanocluster formation on NC probes), but because 
there is no need to remove excess silver ions or borohydride 
ions from solution after NC formation is completed, as these 
are essentially non-fluorescent. All these benefits were made 
possible by taking advantage of a poorly understood 
conversion dynamic process of DNA/Ag NCs, a dynamic 
process neither being shared by organic dyes nor by 
semiconductor quantum dots. While dynamic processes in 
fluorophores are often viewed as a drawback, we have learned 
how to reprogram/control such a process to create a new signal 
transduction mode for molecular sensing.  

IV. CONCLUSION 

Recently we demonstrated controlled conversion of 
DNA/Ag NCs between bright and dark states and, based upon 
this finding, designed a new molecular probe, NanoCluster 
Beacon, for homogeneous detection of nucleic acid targets [1]. 
Not relying on Főrster energy transfer as the fluorescence 
on/off switching mechanism, NCBs have the potential to reach 
an ultrahigh signal-to-background (S/B) ratio in molecular 
sensing. Since the fluorescence enhancement is caused by 
intrinsic nucleobases, our detection technique is simple, 
inexpensive, and compatible with commercial DNA 
synthesizers. Here we demonstrate a palette of NCB light-up 
colors can be produced from the same origin by employing 
different proximal sequences. We also show the nanocluster-
nucleation sequences capable of achieving strong red 
fluorescence enhancement share a common 5’-C3NNNNNC4 
motif. 
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