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ABSTRACT 

Combat models and simulations aim to find a balance between complexity and 

simplicity. Both oversimplification and too much detail can lead to erroneous findings. In 

simulations that require representation of human behavior, modelers rely on prior 

scripting to find the balance. However, this technique cannot depict dynamic behavior 

during the simulation run. This inadequate representation of entity behavior can cause 

misleading or incomplete results. This thesis investigates the implementation of 

knowledge representation in combat models in order to enhance entity behavior. The new 

method does not try to include more details in the model than the scripting method, but it 

tries to enhance the entity decision making to create more realistic outcomes. A 

knowledge base along with reasoning capabilities was linked to a combat model to mimic 

the memory and the brain of an entity. To demonstrate the feasibility of this approach, an 

ontology development tool called Protégé was linked to a combat model called 

COMBATXXI. Besides achieving dynamic behavior, the new method has other 

advantages over previous approaches, such as better separation of specification and 

implementation, loosely-coupled components to allow code reuse, use of well-established 

reasoners for free, and exploitation of partially-sensed information. 
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I. INTRODUCTION 

A. BACKGROUND 

Reasoning, in computer science, is different from automation and iterative 

computation. It is a complex operation that aims to mimic the human brain, and it is often 

accompanied by a knowledge representation scheme to mimic the human memory. 

Systems that use knowledge representation and reasoning are called knowledge-based 

systems, and they are favored over conventional procedural techniques by their simplicity 

and separation of knowledge from reasoning (Smith, 1985). It is not sufficient for entities 

in modeling and simulation systems to rely solely on iterative and selective computation 

or, more specifically, on fixed logic and scripted behaviors.  

Combined Arms Analysis Tool for the 21st Century (COMBATXXI) is an 

analytical simulation used to support acquisition and other studies. It is a closed form 

simulation where the different entities in the model do not receive user input during the 

simulation run. Currently, entities behave and make decisions based on coded script and 

their attributes that are stored in the data base. This method is inefficient because the 

script has to be very detailed. Moreover, this method does not provide realistic behavior 

because entities lack dynamic reasoning as their knowledge of the battle space grows and 

changes. Therefore, there is a need to implement artificial intelligence in the 

COMBATXXI system. Specifically, the actions of the entities should depend on what the 

system believes and not only on what is explicitly represented. That is, entities should use 

a reasoner to make use of implicit knowledge in decision making.  

B. RESEARCH PROBLEM 

The primary research question is determining the feasibility of using a knowledge 

representation system with inference capability in a closed form combat simulation (such 

as COMBATXXI) to support dynamic decision making. 

The subsidiary questions are: 

 How can a knowledge representation scheme be implemented in 
COMBATXXI? 
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 How can the knowledge base be modified during simulation execution? 

 How can new knowledge inferred from simulation data affect entity 
decisions and influence entity behaviors. 

C. OBJECTIVES 

In order to better represent knowledge in COMBATXXI, we identify the 

following objectives: 

 Describe a suitable knowledge representation scheme for COMBATXXI, 
and find a way to connect COMBATXXI with that knowledge 
representation scheme. 

 Find example areas of COMBATXXI that can be represented with the 
new methodology. 

 Determine the type of reasoning that needs to be accomplished in 
COMBATXXI. 

 Construct ontology and implement it in a software application. 

 Develop a way to pass data between COMBATXXI and the software 
application. 

D. THESIS ORGANIZATION 

Chapter I gives the motivation of the thesis as well as a general idea how to 

answer the research question. 

Chapter II provides an overview of the simulation system (COMBATXXI) and its 

parts. Second, it provides a brief history of knowledge representation and its applications. 

Third, it introduces ontology development and Protégé.  

Chapter III details the methodology used to design the technical approach for 

addressing the research questions. We show the reader, at the conceptual level, how 

COMBATXXIcan be connected to an Ontology. 

Chapter IV describes the implementation of the idea given in chapter III in detail. 

It gives the reader the steps to recreate the study. In addition, we discuss the results and 

comment on their relationship to the research question. 
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Chapter V provides overall conclusions of the research and a discussion of 

possible future work. 
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II. LITERATURE REVIEW 

A. COMBATXXI 

1. System Overview 

a. Architecture 

COMBATXXI is the Combined Arms Analysis Tool for the 21st Century 

developed by the TRADOC Analysis Center-White Sands Missile Range (TRAC-

WSMR) and the Marine Corps Combat Development Command. It is a closed-form 

discrete-event simulation at the brigade and lower levels with the intent to model ground 

combat, air mobile forces, amphibious operations, logistics and casualty handling, and 

urban operations (Balogh et al., 2014). 

Figure 1 shows that COMBATXXI can be decomposed into five major 

components: the preprocessing tool, the databases, run manager, the simulation engine, 

and the output tools. First, the preprocessing tool is an interface that allows construction 

of scenarios. It is called SITS (scenario integration tool suite). Second, there are two 

databases. The COMBATXXI database is a performance and configuration database, and 

it contains the data used by all of the models in the simulation. Its data comes from 

authorized sources and subject matter experts. The second database is the operation and 

planning database which is specific to the scenario being built. It receives its data from 

those who are building the scenario. Third, the run manager keeps track of input, output, 

multiprocessing, and the random seed during the production mode. Fourth, the output 

tools are used for playback display and post-processing analysis. Finally, the simulation 

engine is the core component of the system that executes the scenario. Thus, it handles 

the discrete event queue, timing, and simulation logic. In addition, it describes the 

environment and the support services such as information access, data logging, and entity 

interaction control. The system also has the capability to reuse critical scenario 

components through the library tools. 
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Figure 1.  COMBATXXI architecture 

b. Entities and Behaviors 

Entities are the agents in the model (see Figure 2). Some examples are tanks, 

aircraft, and soldiers. An entity has several characteristics such as name, kind, domain, 

profile, state, actions, and behaviors. This necessary data is received from the scenario’s 

XML file and the configuration database. The entities interact with each other and the 

environment through functionality and decision modules (FMs and DMs, respectively). 

Only FMs have access to an entity’s ground truth. FMsalso model physical interactions 

and connect the entity to simulation services.  
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Figure 2.  Entity composition and external interactions (from Balogh et al., 2014) 

Behaviors are user defined action sequences that control an entity’s reaction to 

some conditions. The behaviors are activated by trigger events during the simulation. 

Behaviors can be created using three methods: Compound Orders, Behavior Specification 

Language (BSL), and Python Scripts. Compound Orders are the easiest to use, but they 

produce static behaviors. They are composed of primitive orders which are the lowest 

level commands to create behaviors in COMBATXXI. The BSL is the native scripting 

language in COMBATXXI. On the other hand, Python is an external scripting language. 

It creates more complex and dynamic behaviors by giving the entities some memory, but 

it is the most difficult for scenario developers to use. 
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c. Input and Output 

COMBATXXI has different tools to manage the data. The management consists 

of importing, exporting, and modification for the purpose of either working with a server, 

comparing scenarios, or simply for displaying the data. When needed, data is stored in 

Data Objects which fill themselves through structured query language (SQL) queries to 

the databases. These databases are implemented in different database management 

systems such as Microsoft Access and OpenOffice. Besides the database files, the 

COMBATXXI scenarios use configuration files, scenario XML files, communication 

configuration files, situational awareness files, behavior scripts, and environment files. 

For the output, the model events store information to different logger files based on the 

user choice at the start of scenario execution. 

2. Hierarchical Task Networks 

a. Basic HTN Overview 

HTN is a common problem-solving technique that abstracts away much of the 

problem’s details by reducing the problem to a hierarchical structure (Erol et al., 1995). 

Specifically, it enables automated planning. Its original purpose was to bridge the gap 

between AI planning and operations research management and scheduling. In HTN 

planning, the world is described in states, and the state transitions are called actions or 

tasks (Erol et al., 1995). A task network consists of a collection of tasks to be performed. 

Each task has a name and a list of arguments that can be constant or variable, and it can 

be a primitive, compound, or goal task. A primitive task is executed directly while a 

compound task is a list of goal and primitive tasks. The goal task is a desired property in 

the field of study. The plan to solve a problem is considered achievable when all 

compound tasks are reduced to primitive ones and the goal state can be reached. The task 

network also has constraints on the tasks by either bounding the argument variables or 

imposing an order on the tasks. A specific branch of the HTN is executed only if the 

related constraint is met. Handling interactions among compound tasks is the most 

challenging part in HTNs because the planning could be undecidable when the subtasks 
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are interleaved or there is a recursion (Erol et al., 1994). Figure 3 shows the basic HTN 

planning algorithm. 

 
 

Figure 3.  The basic HTN planning algorithm (from Erol et al., 1995) 

b. Example 

A hierarchical task network can produce a plan to mimic the behavior of some 

unit moving to its destination. The compound task would be “move to destination,” and 

the goal task would be “Arrive at destination.” The compound task could be decomposed 

into checking the availability of means of transportation, mounting the vehicle, driving to 

objective, and walking to objective. Since changing the plan whenever circumstances 

change is a human behavior, the HTN has to capture this. To account for changes, 

interrupt nodes were added to HTNs in the tasks where problems could occur. When an 

interrupt node is hit, the plan gets reevaluated from the beginning. For this example, 

problems could occur in the route. For instance, the vehicle could overheat or the terrain 

could be too difficult to navigate using a vehicle. The traversal of the HTN tree starts by 

checking the constraints “At destination,” then “At base,” and “transportation means 

available.” Based on these constraints, the unit would either drive or walk, and then 

reevaluate the constraint “At destination.” This procedure guarantees the unit does not get 

stuck in any task. Figure 4 shows the design of the HTN for this scenario. 
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Figure 4.  Movement-to-destination behavior in a HTN. 

B. DISCRETE EVENT SIMULATION 

1. Definition 

Fishman (1978, p. 1) defines a discrete event system as “one in which a 

phenomenon of interest changes value or state at discrete moments of time rather than 

continuously with time.” He states that the “concepts, methods, and procedures for 

modeling the behavior of a discrete event system, for translating the model  into code 

executable on a digital computer, and for analyzing sample sequences that emerge from 

the program’s execution … comprise the topic of discrete event simulation.” (Fishman, 

1978, p. 1) Also, Law and Kelton (2000) define discrete-event simulation as “the 

modeling of a system as it evolves over time by a representation in which the state 

variables change instantaneously at separate points in time.” They define event as “an 

instantaneous occurrence that may change the state of the system.” (Law & Kelton, 2000, 
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p. 6)A Discrete Event Simulation (DES) model has states, events, and scheduling 

relationships between events. States have constant parameters and variables. The values 

of the variables describe the state of the simulation at a given point in time. The values of 

the variables remain constant for a certain period of time then change. This change is 

called state transition or an event. Thus, for any given event, there is at least one state 

variable that changes its value. Events are organized via a scheduling procedure which 

allows events to schedule each other. The time between the events can be fixed or can be 

variable. Figure 5 illustrates the common event processing cycle. 

 
Figure 5.  Next event algorithm (from Buss, 2014) 

An initial event, which occurs at time 0.0, sets all state variables to initial values 

and schedules at least one other event. The event list keeps track of pending events in 

time order with at least their identifiers and scheduled times. The model stops when the 

event list is empty. 

2. Example 

A simple example of DES models an incident that happens periodically with a 

changing frequency of occurrence (see Figure 6). The state keeps track of the number of 

occurrences of the incident with a state variable N initialized to zero. The parameter is 

Start

Advance Time 
to Earliest 
Scheduled 

Event

Remove Event
Execute State 
Transitions for 

Event

Schedule 
EventsStop No

Schedule Initial 
Event

Event List 
Empty?Yes
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used to generate the different times between the occurrences. The events are “Run” and 

“Arrival.” The event “Run” schedules the event “Arrival” to occur after time “𝑡𝐴.” 

Finally, each event changes some state variables as shown under the events in Figure 6. 

 
Figure 6.  Single-incident event graph (from Buss, 2014) 

 

C. SEMANTIC WEB AND WEB SERVICES 

1. Semantic Web 

The use of semantic web (SW) concepts and technologies has solved many 

problems of information overload and time constraint in different domains, and has 

enabled information superiority (Childers, 2006).  

The Extensible Markup Language (XML) provides a framework for describing, 

structuring, and exchanging data which can be used over a network. It is the W3C 

standard for creating vocabularies of a domain (Extensible Markup Language, 2014). 

XML documents must follow some rules to be parseable by XML parsers. First, tags 

come in pairs. For example, <name>Jack</name> is a well-formed expression in an 

XML document. Second, XML is hierarchical. This feature is important for human 

readability as well as for organization. However, the machine does not know the meaning 

of an XML document.  

SW languages such as Resource Description Framework (RDF) and Web 

Ontology Language (OWL)are XML documents that promote semantic interoperability. 
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Figure 7 shows the different layers of the semantic web (Childers, 2006) in a depiction of 

increasing levels of semantic specificity.  

 
Figure 7.  Illustration of the levels of interoperability required for machine 

understanding of data across systems (from Obrst, 2006). 

RDF allows describing resources or adding metadata (Hjelm, 2001). A resource 

can be any object. Naming conflicts are resolved using the Uniform Resource Identifier. 

(URI) RDF is a W3C specification and it can be serialized in XML for interoperability. 

An RDF assertion is composed of a subject, a predicate, and an object. RDF is not 

hierarchical. Below is an example of an RDF document that describes a book by its title 

and owner (Childers, 2006). 

 
<rdf :RDF 

xmlns:rdf = “http://www.w3.org/1999/02/22-RDFSyntax-ns#” 
xmlns:ex = “http:// www.resources.org/” 
xmlns:dc= “http://purl.org/dc/elements/1.1”> 
<rdf :Description rdf :about = “ex:book”> 

<dc:title>Practical RDF</dc:title> 
<dc:creator> Shelley Powers </dc:creator> 

</rdf:Description> 
</rdf:RDF> 
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RDF can be extended to RDF Schema to describe whole concepts instead of 

specific resources. The RDF Schema brings an object-oriented feature by defining classes 

and properties which enables the creation of ontologies. However, it is still not expressive 

enough to show constraints and logic (Passin, 2004). 

OWL is the next layer up in the SW representation. It is the standard for creating 

ontologies that can be serialized as RDF/XML for interoperability. In addition, there is an 

OWL Application Program Interface (API) for manipulating and querying ontologies. 

Another way to explore ontologies is to use other languages, such as the Semantic Web 

Rule Language (SWRL) and Sparql Protocol and RDF Query Language (SPARQL), to 

query and reason about classes, properties, and instances. SWRL is a combination of 

OWL-DL and the Rule Markup Language. The following example shows a SWRL rule 

that finds all instances of “HostileContact” with speed greater than five and sets their 

“isThreat” property to true (Childers, 2006). 

HostileContact(?x) ∧ speed(?x, ?speed) ∧ 
swrlb:greaterThanOrEqual(?speed, 5)→ isThreat(?x, true) 

 

Some of the limitations that SWRL faces are its difficult syntax, predicate 

restriction to the Boolean type, and lack of support of SW reasoners. This latter problem 

was reduced using new rule engines for SWRL while keeping the DL reasoners for 

reasoning with OWL constructs (Childers, 2006). 

SPARQL is used for querying RDF expressions. Two common tools for building 

SW applications that use SPARQL are Jena and Twinkle. The following example shows 

a simple syntax of the SPARQL language that queries all subjects with speed of 10 and 

course equal to 45(Childers, 2006). 

PREFIX taml: <http://usw.xml.wg/> 
SELECT ?x ?targetSpeed ?targetCourse 
FROM <file:TAMLExample.rdf> 
WHERE  
{ 

?x taml:Speed ?targetSpeed. 
?x taml:Course ?targetCourse. 
FILTER (?targetSpeed = “10” && ?targetCourse= “45.0”) 

} 
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2. Web Services 

Web services are technologies that enable interoperability among many 

applications regardless of the platform and the language (Chappel et al., 2002). They are 

composed of three major elements: Simple Object Access Protocol (SOAP), Web Service 

Description Language (WSDL), and Universal Description, Discovery, and Integration 

(UDDI). SOAP prepares the XML documents and encodes Remote Procedure Calls 

(RPC) for transport. Particularly SOAP Version 1.2 “provides the definition of the XML-

based information which can be used for exchanging structured and typed information 

between peers in a decentralized, distributed environment.” (Mitra, 2007) WSDL 

describes the information needed to communicate with a server. More specifically, it 

gives the answers to the questions: Who? What? Where? Why? How? UDDI permits 

clients to easily find web services. SOAP messages are sent over Internet protocols 

(David et al., 2002). Figure 8 shows a simple web service architecture. 

 
Figure 8.  Simple web service interaction (from David et al., 2002) 

The Mobility Common Operational Picture (M-COP) project represents a good 

example of the use of web services in modeling and simulation in DOD. Richmond et al. 

examined in detail how ground mobility information can be represented, and looked at 

the Web Services that would support the M-COP. The M-COP data model provided a 

core set of information requirements which included raw data and logic products to 

support movement planning for ground mobility. The different categories of information 

requirements included, but were not limited to: terrain, obstacles, weather, maneuver 

analysis, forces, and threat analysis. The connection between the M-COP model and 
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other systems was envisioned to be through web services using Machine-to-Machine 

Messaging that takes the form of SOAP over HTTP. The model was also open to other 

interoperability techniques. The Joint Consultation Command and Control Information 

Exchange Data Model (JC3IEDM) is a common data model for interchange of operations 

data across different systems in multi-national coalitions. M-COP planned to map its 

information model to that of JC3IEDM for wider application.  

D. ONTOLOGY 

1. Definition 

An ontology is an “explicit formal specification of the terms in a domain and 

relations among them,” (Gruber, 1993) and are widely used. Some of their purposes are 

sharing common structure of information, reusing and analyzing domain knowledge, and 

separating domain knowledge from operational knowledge. An ontology is composed of 

classes (concepts), slots (properties), and facets (restrictions). An ontology plus the 

instances of its classes constitute the knowledge base (Noy et al., 2001). 

2. Ontology Development 

In practical terms, first we determine the scope of the ontology. Second, we 

enumerate all possible terms in the ontology without worrying about the structure of the 

ontology. Then, we define the classes, subclasses, and super-classes, and we define the 

slots from the list of terms constructed above. A slot should be attached to the most 

general class having the property. Next, we describe the allowed values for the properties. 

Facets describe the type of the value, the cardinality, and the domain and the range if the 

type is an instance. Finally, we create the instances (Noy et al., 2001).  

The class hierarchy should be checked using the “is-a” and “kind-of” relations. 

Generally, a class has between two and twelve subclasses. Multiple-inheritance is 

allowed, but class cycles are not allowed. To introduce a new subclass instead of a 

property, the new subclass should have additional properties, additional restrictions, or 

participates in a different relationship. Another perspective that helps distinguishing 

between new classes or new properties is to evaluate the importance and the implications 
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of the term in the ontology. For example, the way an improvised explosive device (IED) 

is packaged could be a property of an IED named package_type if it does not have any 

implications for the other objects. However, if this concept is important, then we need to 

create three disjoint subclasses named packaged_IED, suicide_Bomber_IED, and 

vehicle_Borne_IED based on the delivery method (Teters, 2013).  

Sometimes, it is useful to have an inverse of a property without entering the 

values in both slots. The use of inverse slots allows the system to automatically enter the 

values. It is useful also to declare a default value for the slots unless the user changes it. 

Finally, it is common to capitalize class names, use prefix has- or suffix –of for slot 

names (Noy et al. 2001). 

E. KNOWLEDGE-BASED SYSTEMS 

1. Introduction 

Many old systems placed emphasis only on heuristics to solve problems, but the 

new design paradigm for intelligent systems stressed the need for expert knowledge and 

knowledge handling facilities (Mylopoulos et al.,1983). Before going into the details of 

this domain and defining its concepts, an informal organization chart is provided in 

Figure 9 to give a general overview of the domain. It is a non-exhaustive and informal 

categorization. Categories might not be disjoint as in the case of types of reasoning or 

subclasses of KB systems. 
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Figure 9.  KB-systems organization chart
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Knowledge is a relation between a knower and an abstract entity that is either true 

or false (Luger, 2005).This abstract entity is called a proposition. If the knower knows the 

proposition, we take it to be true. Representation is a relationship between the problem 

domain and computational domain where the second takes the place of the first. The 

outcomes of inference systems are considered either observations or possible actions 

(Luger, 2005). The second one is the representor that is often a symbol from an alphabet. 

Therefore, knowledge representation is the field of study concerned with using symbols 

to represent propositions. Reasoning is a form of computation that manipulates the 

symbols to produce (infer) more propositions from explicit ones. However, it is difficult 

to decide which proposition to use. It can lead to incomplete logic when an important 

proposition is left out, or it can even lead to unsound logic when incorrect answers are 

returned (Brachman & Lavesque, 2003). Therefore, there have been several attempts to 

provide sufficiently precise notations to represent knowledge and then come up with 

different reasoning techniques. All the resulting propositions are considered to be the 

knowledge base that models the universe of interest. The notation used is called the 

representation scheme. There are declarative and procedural schemes (Mylopoulos, 

1980).   

2. Representation Schemes and Reasoning 

a. Logical Representation Schemes 

In this scheme, the knowledge base consists of logical formulas as the atomic 

units, and they can be added or deleted. It generally uses constants, variables, predicates, 

and quantifiers in a first order or higher order logic. The simplicity of first order logic 

makes it a good first step to study knowledge representation and reasoning.  

In creating a knowledge base, it is a good idea to start with the individuals; for 

example, Jack, Mary, BMW, and Burger King. Next, we define and limit the types of 

individuals as objects; for example, Man, Car, and Restaurant. Then we define the 

attributes that the individuals can have such as Happy, Fast, and Closed. Using these 

three components, we can construct unary predicates such as Man (Jack), Car (BMW), 

Restaurant (Burger King), Happy (Jack), Fast (BMW), and Closed (Burger King). To 
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construct n-ary predicates, we introduce relationships such as FriendOf, MadeIn, and 

Purchased. They are used as follows: FriendOf (Jack, Mary), MadeIn (BMW, Germany), 

and Purchased (BMW, Jack). All these predicates are called basic facts, and can be 

implemented using relational databases. There are also Complex Facts which include the 

basic facts plus quantifiers and connectives such as: ∃ x (Happy(x) ɅPurchased (BMW, 

x)). The previous complex fact means that there is someone who is happy and has 

purchased a BMW. Basic and complex facts are sufficient to represent the world. 

However, they do not guarantee an error-free representation. Therefore, another type of 

facts was introduced. Terminological facts include disjointness, subtypes, exhaustiveness, 

symmetry, inverses, type restrictions, and full definitions. Finally, it is possible that we 

cannot determine the details and the properties of an individual in advance. To address 

this issue, it is useful to introduce new abstract individuals to link the concrete 

individuals to any new property that we want to add. For example, if we want to add the 

date Jack bought the BMW and the price. It is not efficient to search for previous 

predicates and change them (i.e., change Purchase (BMW, Jack) to Purchase (BMW, 

Jack, 2010, $30000)). However, new rules should be added as follows: action (p) ^ agent 

(p, Jack) ^ object (p, BMW) ^ time (p, 2010) ^ price (p, $30000). This process is called 

reification.  

This scheme is characterized by simplicity and economy of notation, availability 

of formal semantics, and easiness of information retrieval and constraint checks. 

However, it is not scalable because of lack of organizational principles, and it does not 

fully represent procedural and heuristic knowledge. Moreover, to determine that a 

proposition is a logical consequence of others is generally unsolvable. This is known as 

the fundamental computational intractability of first-order entailment (Brachman & 

Lavesque, 2003). These advantages and disadvantages can be summarized in 

expressiveness and efficiency. Since efficiency is as important as expressiveness, there 

needs to be a trade-off between them to achieve an optimized representation and 

reasoning scheme (Luger, 2005). Some of the techniques of reasoning are resolution, 

induction, approximation, and horn clauses. The idea of horn clauses, for example, was to 

limit the scope to only some subsets of first-order logic. This solved the computation 
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issue while limiting the scope. The question then became whether the new scope was 

expressive enough for the respective problem domain (Brachman & Lavesque, 2003). 

b. Network Representation Schemes 

In an attempt to better organize the knowledge base, the universe of discourse has 

been described in terms of objects (nodes) and associations (edges). Thus, the knowledge 

base became a directed graph. This scheme is called semantic networks or conceptual 

graphs. Data manipulation is achieved through four basic operations: deletion, union, 

insertion, and simplification. Moreover, the reasoning algorithms follow the links and use 

graph theory to retrieve information and solve problems. The basic application of 

semantic nets is to represent a fact or an action like the one described in the first order 

logic. Figure 10 shows the fact that Jack bought a BMW. More advanced applications in 

this scheme dealt with natural language processing; defining a word means traversing the 

network until the meaning becomes understood. Finding the relationship between two 

words means finding a link through a common node (Luger, 2005).  

 
 

Jack purchased BMW madeIn Germany

isA

Car

isA

Country

isA

Man

 
 
 

Figure 10.  Semantic network of the operation made by Jack 

Some of the advantages of this scheme are the easiness of information retrieval, 

organization, and visual representation. The downside of this technique is the lack of 

formal semantics and standard terminology (Mylopoulos, 1983), even though Simmons 

(Simmons, 1973) addressed this issue by using the structure of the English language to 
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limit the relationships to agent, action, object, instrument, location, and time. This list 

was further expanded later by Schank and Rieger in 1974 (Luger, 2005). 

c. Procedural Representation Schemes 

In this scheme, the knowledge base is a collection of procedures of some language 

with the clauses divided into facts and rules. The schemes belonging to this class can be 

differentiated based on their activation mechanisms and control structures. For example, 

in PLANNER scheme the knowledge base is a collection of assertions and theorems. The 

theorems are executed in the backtracking technique based on searches or modifications 

of the knowledge base (Mylopoulos, 1983). Production systems are another type of this 

scheme. They are rule-based systems that use either data-driven reasoning or goal-driven 

reasoning. They follow the forward-chaining computation. They have a working memory 

(volatile database). The working memory is a tuple of the form: (type attribute: 

specification). For example, (person name: Jack age: >25 curriculum: 

computerScience).The rules are usually written in the form: if conditions then actions. 

The production system operates in a cycle of three elements, and it halts when no rules 

are applicable to the working memory. First, it finds the applicable rules. Second, it 

chooses which rules to fire. Finally, it performs the actions of the fired rules. The actions 

can add, remove, or modify the working memory. For example, IF (student name: Jack) 

THEN ADD (person name: Jack). Production systems were successful in solving many 

practical problems through their modularity, fine-grained control, and transparency 

(Brachman & Lavesque, 2003). 

Like resolution, automated theorem-proving is an inference procedure that tries 

all possibilities in the knowledge base to reason about the truth of a given proposition. 

This is inefficient and sometimes infeasible. In addition, sometimes we want to control 

the reasoning process via providing more information specific to the situation or limiting 

the scope of reasoning. 
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d. Frame-Based Representation Schemes 

In all previous representation schemes, every piece of information was 

independent. This caused the knowledge about any object to be scattered across the 

knowledge base, which is inefficient. Object-oriented representation is an approach to 

help create a structured and organized knowledge base. In 1975, Minsky used the term 

frame as the data structure representing a stereotypical situation. The frame has slots for 

the objects that play a role in the scene and for the relationships amongst them. There are 

two types: individual frames represent a single object, and generic frames represent a 

class of objects. Therefore, the individual frame is an instance of the generic one. A 

frame is a list of slots. Notice that this is similar to the working memory of the production 

systems. Much of the reasoning in the frame system is done through inheritance of 

properties and procedures. It is done in three steps. First, the user instantiates some 

generic frame. Second, the new instance fills in its slots via inheritance. Third, the 

inherited procedures run, and possibly instantiate new instances. Extensions to the frame 

system included the use of multiple slot fillers, slot facets, and meta-frames. Finally, even 

though object-oriented programming and frame-based representations were developed 

concurrently sharing many features, they differ in the fact that frame-based systems tend 

to be more centralized and work in a cycle whereas object-oriented programming has 

independent objects sending each other messages (Brachman & Lavesque, 2003). 

3. Examples of Reasoners 

As seen in Figure 9, reasoning takes different forms such as constraint solving, 

deductive classification, and theorem proving. Reasoners also use different techniques 

such as description logic and non-monotonic logic. Therefore, many reasoners have been 

implemented. The RacerPro reasoner provides consistency checking, classification, and 

OWL Query Language (OWL-QL) resolution (Abburu, 2012). Pellet can check ontology 

consistency and classify taxonomies, and it is able to connect with Protégé and Jena. 

Unlike RacerPro, Pellet is an open source java-based reasoned (Sirin, 2005).Finally, 

HermiT fully supports OWL2, and is the fastest reasoner in classifying complex 

ontologies. HermiT is an open-source java library, and it can handle ontologies according 



 24 

to the OWL API (Horrocks, 2013). Tables 1 and 2 provide more information on 

comparative capabilities and performance. The unit under the reasoners is “seconds.” 

Table 1.   Reasoners performance evaluation (after Horrocks, 2013) 
OntologyName Classes Properties HermiT Pellet FaCT++  
EMap(Feb09) 13737 2 1.1 0.4 34.2  
GOTermDB(Feb06) 20526 1 1.3 1.3 6.1  
DLPExtDnS397 96 186 1.3 timeout 0.05  
Biological Process(Feb09) 16303 5 1.8 4.0 8.0  
MGEDOntology 229 104 2.1 19.6 0.04  
NCIThesaurus(Feb09) 70576 189 58.2 12.3 4.4  
OBI(Mar10) 2638 83 150.0 timeout 17.2  
FMALite(Feb09) 75145 3 211.1 timeout timeout  
FMA-constitutional part 41648 168 1638.3 timeout 396.9  
GALEN-doctored 2748 413 1.8 timeout 2.5  
GALEN-undoctored 2748 413 6.7 outofmem. 11.6  
GALEN-module1 6362 162 outofmem. timeout timeout  
GALEN-full 23136 950 outofmem. timeout timeout        

Table 2.   Reasoners compatibility and support (after Abburu, 2012) 
  

 Pellet RACER FACT++ HermiT 

Methodology Tableaubased Tableau based Tableaubased Hypertableau based 

Soundness Yes Yes Yes Yes 
Completeness Yes Yes Yes Yes 

Expressivity SROIQ(D) SHIQ SROIQ(D SROIQ(D) 

NativeProfile DL,EL DL DL DL 

RuleSupport Yes(SWRL) Yes(SWRL) No Yes(SWRL) 

OWL API Yes Yes Yes Yes 

OWLLinkAPI Yes Yes Yes Yes 

ProtégéSupport Yes Yes Yes Yes 

NeOnSupport Yes No No Yes 

Jena Support Yes No No No 

Impl.Language Java LISP C++ Java 

Availability Opensource Commercial OpenSource Open source 
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F. PROTÉGÉ 

1. Introduction 

Protégé was developed in 1987 as a small application for knowledge acquisition 

in knowledge-based systems. It incorporates Open Knowledge Base Connectivity 

(OKBC) model, relational databases, XML, RDF, and OWL. All knowledge 

representation schemes mentioned earlier can coexist in one system. That is, a piece of 

software can incorporate and implement some of the capabilities of these schemes. For 

example, Protégé is mainly frame-oriented, but it also uses the logical and the network 

representation schemes by adding plugins for reasoners and graphical visualization. In 

addition, in later versions, Protégé became mainly axiom-oriented which is based on the 

procedural representation. 

2. Evolution of Protégé 

a. Protégé-I 

Expert systems were based on the idea of a central inference engine that 

knowledge engineers can use with different knowledge bases resulting in different expert 

systems. The knowledge engineer had to become familiar with the problem domain such 

as the concepts and the reasoning strategies, and then he or she had to formalize the 

domain in a generic way. However, the domain expert was only a source of knowledge in 

the beginning and during testing. The construction of knowledge bases by the knowledge 

engineers was a difficult and time-consuming task, besides the possible errors that can 

occur because of misunderstanding between the knowledge engineer and the domain 

expert. The original Protégé aimed at solving this issue by allowing the domain expert to 

construct the knowledge base. The expert system had three components: the knowledge 

engineer provides the structure by building the knowledge acquisition tool (for example, 

forms with widgets (text fields, check-boxes) to enter information), the domain expert 

instantiates the domain concepts through the knowledge acquisition tool, and finally the 

end user interacts with the system for decision support. The first component is further 

achieved through Protégé. The methodology is that knowledge acquired in a stage is the 

meta-knowledge for the following stage, as shown in Figure 11 (Gennari et al.,2003). 
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Figure 11.  The use of Protégé in expert systems (from Gennari et al., 2003) 

Protégé-I was limited to one inference engine, therefore the system was only well-

suited for some specific applications. 

b. Protégé-II 

The main goal of this version was to make the problem-solving methods 

independent from the knowledge base, make each component of the system reusable, and 

create the mapping between the knowledge base and the problem-solving method. In 

addition, the notion of ontologies was introduced, and ontologies became the basis for the 

knowledge acquisition tools. They used a frame-based formalism which consists of 

classes, instances, slots, and facets. There are three approaches in building an ontology: 

domain (focus on the concepts of a domain), method (focuses on the requirements 

through input and output of methods), and application (specific implementation). 

Protégé-II has four subcomponents: Maitre (building ontologies), Dash 

(manipulating default layout of the knowledge acquisition KA-tools), mediator (used by 

domain experts to build and edit knowledge bases), and marble (mapping interpreter). 

The downside of Protégé-II is that it is difficult to change the ontology after building the 

knowledge base (Gennari et al., 2003). 

c. Protégé/Win 

The purpose of this version was to make Protégé operable under the Windows 

operating system, allow the inclusion of ontologies, integrate the subcomponents under 
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one software, and improve the knowledge acquisition tools. The latter improvement 

allowed the generation of multiple KA-tools with different views and formats from a 

single ontology (Gennari et al., 2003). 

d. Protégé-2000 

By popular demand, Protégé had to fix two issues: the limitation of changing the 

ontology after building the knowledge base from Protégé-II and domain-specific 

adaptation. The first problem was solved by basing the knowledge model on the OKBC 

which allowed classes and instance to be treated the same. In particular, it allowed the 

creation of meta-classes (templates). The second problem was solved by moving toward a 

plug-in architecture. The plug-ins allow users to customize and build a domain-specific 

interface through the addition and removal of tabs. Developers might also choose to build 

an entire application to control users’ interaction with the knowledge base through calls 

to the knowledge model API. There are also backend plug-ins if the user chooses a 

different storage format. Currently, the system uses a special-purpose file format, RDF 

files, XML files, and relational database format. The resultant architecture is shown in 

Figure 12 (Gennari et al., 2003). 

 
Figure 12.  Structure of Protégé 2000(from Gennari et al., 2003) 
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e. Protégé y.x 

Protégé was released to public in various versions depending on the underlying 

technologies, enhancements, or bug fixes. There were Protégé 0.x, 1.x, 2.x, 3.x, 4.x, and 

Web Protégé. However, it is only worth mentioning Protégé 3 and 4 because of their 

major changes and stability. Protégé 4 is not an improvement of Protégé 3. Protégé 4 

follows a totally different approach. Until now, they are both still used depending on the 

application. To work with frames, RDF, or OWL1.0,Protégé 3 is recommended whereas 

Protégé 4 is recommended for working with OWL2.0. In addition, in Protégé 3, direct 

access can be achieved by the Protégé-OWL API which is built on top of the frame-based 

system while Protégé 4 is built on top of the OWL API. Finally, Protégé 4 is optimized 

for large ontologies (“Choosing between versions of desktop Protégé,” 2013). 

f. An Example of Ontology Creation in Protégé 

Below are some steps to follow when creating an ontology. For more details, see 

the practical guide to building OWL ontologies (Horridge, 2011): 

 Create classes and subclasses 

 Make them disjoint 

 Add object properties to describe the relationship between two instances 
of a class 

 Add data properties to describe the relationship between instances and 
data values 

 Add axioms to classes (equivalent or subclasses) 

 Add a closure axiom (because an absent property does not mean it is false) 

 Add a covering axiom (any subclass should have a type) 

 Create instances 

 Perform object and data properties assertions 

 Run queries to retrieve more information than what is explicitly entered.  
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Figures 13, 14, and 15 show snapshots of the creation of an ontology that models 

a university consisting of teachers, students, and courses using some of the steps 

aforementioned. 

 
Figure 13.  Creating an Ontology in Protégé 

 

 
Figure 14.  Visualization of the university ontology in Protégé 
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Figure 15.  Using the reasoner to query some information 
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III. METHODOLOGY 

To reiterate, the research question is to investigate the use of automated reasoning 

in COMBATXXI entities’ behavior and their decision-making capabilities. This can be 

achieved by connecting a knowledge representation system with inference capability to 

COMBATXXI.As mentioned in Chapter I, this task can be divided into several subtasks. 

First, we have to determine a suitable knowledge representation system and a reasoner. 

Second, we need to choose a type of reasoning and the area of COMBATXXI to be 

tested. Third, we have to determine an appropriate means of communication with 

COMBATXXI. Finally, an evaluation of the results is also needed. 

A. POSSIBLE KNOWLEDGE REPRESENTATION AND REASONING 

SOFTWARE FOR INTEGRATION 

There are many options of knowledge representation systems, reasoners, and 

connection schemes as seen in Chapter II. First, knowledge representation and reasoning 

can be done separately, and then the information can be serialized using the already 

established Web Services technologies. Second, work can be done using Jena which is a 

Semantic Web framework for Java, with querying using SPARQL as shown in Chapter 

II. The Web Services and Semantic Web approaches would be more effective if we 

wanted to have knowledge representation and reasoning in a different machine than 

COMBATXXI. However, for this problem, all the work can be achieved on one machine. 

Therefore, a direct approach is more suitable by linking the two codebases through their 

APIs.  

B. CHOSEN APPROACH 

In this application, we aim to model memory and brain of a COMBATXXI entity 

in a specific scenario. To scope it more specifically, we look at the classification 

capability of an entity. Therefore, looking at the different knowledge representation 

schemes in Chapter II, the frame-based and axiom-based schemes seem the most 

promising, because for the classification capability we want to put the information in 

frames and describe it in statements. Looking at the types of reasoning, the deductive 



 32 

classifiers seem the most promising, because they help find more hidden classes for the 

information. Therefore, since Protégé incorporates many representation and reasoning 

capabilities such as the aforementioned, it is an appropriate knowledge representation and 

reasoning system that can model the knowledge structure, knowledge base (memory), 

and the thinking of entities. Protégé 3.x is built on top of OWL-Protégé while Protégé 4.x 

is built on top of the OWL API. The only compatible reasoners with Protégé 3.x are 

pellet and SWRL-IQ.The compatible reasoners with Protégé 4.x are Pellet, Fact++, 

Racer, JFact, and Hermit (Abburu, 2012). Since Java is used in COMBATXXI and in 

Protégé, it is convenient to also use it to connect the two systems. Therefore, the method 

chosen is to build ontologies in Protégé, use the OWL-Protégé or the OWL API, and use 

a reasoner to manipulate and query the ontologies based on entity situation, as part of 

behaviors represented as HTNs in COMBATXXI. Specifically, when an entity reaches a 

node in the HTN that requires collecting data about some concept, it calls and passes data 

as arguments to a Java method. Next, this method manipulates and queries the ontology. 

Finally, this method sends the results back to the entity’s behavior logic. Figure 16 shows 

how Java is used to link COMBATXXI and Protégé. The figure will be explained in 

details in the implementation section. 

CombatxxiToProtege.jar

Import owlapi
Import Hermit
Implementation of:
     Initialize ontology
     Compute anonymous class
     Ask the reasoner for type
Private helper functions.

Import owlapi
Initialize ontology
Compute anonymous class
Ask the reasoner for type 

sys.path.append("/CombatxxiToProtege.jar")
sys.path.append("/owlapi.jar")
 sys.path.append("/HermiT.jar")
def answer(arr):

m=Main()
return m.getAnswer(arr)

UtilityFuncsExp (Jython)

Main (Java)

Ontology(Java)

arr=["Contact"]
for j in environment:

arr.append(str(j.getAssignedName()))
ans=UtilityFuncsExp.answer(arr)[0]
if ans in ["ContactPossible","ContactLikely"]:

_htn_precon_ret=1

HTN(Jython)

This file was created in 
Protégé. Its structure is 

shown in figure 17 
(anonymous ontology)

Ontology(OWL)

 
Figure 16.  Process Diagram: COMBATXXI-Protégé Link 
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IV. IMPLEMENTATION AND ANALYSIS 

A. IMPLEMENTATION 

The implementation task consists of three subtasks. First, we need to set up a 

behavior in COMBATXXI that takes advantage of Protégé’s reasoning capabilities. 

Second, we need to construct an ontology using Protégé that acts as the knowledge base. 

Third, we need to link the two systems. The research question was determining the 

feasibility of using a knowledge representation system with inference capability in a 

closed form combat simulation. Testing boundary conditions or providing a stress test is 

outside the scope of this thesis. However, for the implementation, two examples were 

selected to prove the feasibility. First, an entity wants to classify an IED based on 

information obtained from the battle space. Second, an entity decides on a type of 

movement based on the level of threat. 

1. COMBATXXI 

Suppose an entity in COMBATXXI collects some information, such as detection 

of a man, truck, cellphone, trash, and disturbed Soil, and wants to determine if there is an 

IED in the vicinity and what kind of IED it could be, or it wants to know the level of 

threat in some area and decide what tactical action should be taken. The COMBATXXI 

Behavior Studio was used to specify the behavior. First, the entity adds any useful 

information from the environment in a list. For simplicity, the names of buildings were 

used to mimic any objects we want to add to the environment. Then it sends that 

information to a python file (here named UtilityFuncsExp.py) that links to the JAR files 

which will do all the work and return an answer. The following python code from 

UtilityFuncsExp.py file shows how this file links the Java project and the COMBATXXI 

HTN: 

import os, sys 

sys.path.append(os.path.join(os.path.dirname(__file__), “dist/CombatxxiToProtege”)) 

sys.path.append(os.path.join(os.path.dirname(__file__), 
“dist/lib/org.semanticweb.owl.owlapi.jar”)) 

sys.path.append(os.path.join(os.path.dirname(__file__), “dist/lib/org.semanticweb.HermiT.jar”)) 
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from owlAPI import Main 

def answer(arr): 

print arr 

m=Main() 

 return m.getAnswer(arr)  

Figures 17 and 18 show the HTNsspecifying the behavior for determining the IED and 

the level of threat. 

 
Figure 17.  HTN: Finding the IED type. 
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Figure 18.  HTN: movement type is determined based on the threat level. 

The HTN in Figure 18 plans a bounding over-watch movement if the answer is 

“ContactLikely,”  a traveling over-watch movement if the answer is “ContactPossible,” 

and a traveling movement if the answer is “ContactNotLikely.” This decision conforms 

to the Army Field Manual FM 3–21.10 Chapter 3. 

2. Ontology 

Two OWL ontologies were created using Protégé 4.3: Contact.owl and IED.owl. 

The steps described in Chapter II were followed. Figures 19 and 20 display snapshots of 

the different classes in the IED and Contact ontologies, respectively, in Protégé 4.3. 

Figure 21 shows a detailed explanation of the IED ontology. There are three subtypes of 

an IED based on the delivery method. It is a suicide bomber IED if the delivery method is 

a kind of a human. It is a vehicle borne IED if the delivery method is a kind of vehicle. It 

is a packaged IED if it is not one of the previous subtypes. The severity of each subtype 

is determined based on the number of indicators seen in the environment. A high impact 

IED has at least three indicators, a medium impact IED has two indicators, and a low 
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impact IED has exactly one indicator. The user can add any other type by defining a new 

subclass in the ontology. No other changes are needed in COMBATXII or in the 

connecting mechanism. This is one of the advantages to use of ontologies that will be 

discussed in more detail later; that is, analysts can adjust the decision-making more easily 

by modifying the data model (ontology) rather than modifying the software logic. 

 
Figure 19.  IED ontology in Protégé 4.3, showing the class definition for the 

HighSBIED class 
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Figure 20.  Contact ontology in Protégé 4.3, showing the class definition for the 

ContactPossible class 
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Figure 21.  Structure of the IED ontology 

3. Java Connection 

Initially, the implementation used Protégé 3.5 for the ontology, the reasoner 

Pellet, and the Protégé-OWL API for the connecting mechanism, and everything worked 

fine. However, this did not scale well even with one property. When the number of 

classes and axioms were increased, the reasoner would sometimes fail and sometimes 

take an inordinate amount of time to perform the reasoning process, taking so long in 

other times. Table 3 shows the experiments conducted to study the scalability for the IED 

ontology. The aforementioned observations were not consistent, but generally from Test 

4 the system becomes unreliable. The reasoner was able to classify the ontology but not 

compute the inferred types. Explaining the aforementioned behavior and investigating 

how to increase the performance of reasoners is beyond the scope of this thesis. However, 
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there are different ways to try to address this issue: change the reasoner or move to a 

different Protégé version 

Table 3.   Testing the scalability issue 

Test1: IED ontology type 1:  (3 IED classes and 3 indicator classes) 

Test2: IED ontology type 2:   (3 IED classes and 6 indicator classes) 

Test3: IED ontology type 3:   (4 IED classes and 3 indicator classes) 

Test4: IED ontology type 4:   (4 IED classes and 6 indicator classes) 

Test5: IED ontology type 5:   (5 IED classes and 3 indicator classes) 

Test6: IED ontology type 6:   (5 IED classes and 6 indicator classes) 

Test7: IED ontology type 7:   (6 IED classes and 3 indicator classes) 

Test8: IED ontology type 8:   (6 IED classes and 6 indicator classes) 

 

Changing to Protégé 4.3, the OWL API, and the Hermit reasoner, the performance 

improved, and the reasoner did not fail for increased numbers of classes and properties. 

The Java code is completely different from the first implementation because the API 

changed. 

The Java Implementation contains 3 classes: 

TestMain: Gets an array of strings from the user and calls the main program. This 

emulates the message that would be received from COMBATXXI. Therefore, this class 

does not need to be included in the JAR file. 

Main:Calls all other code. 

Ontology: Initializes the ontology, gets a reasoner, and creates instances of the 

OWL API classes and interfaces: 

1. Get the main class  
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2. Create an anonymous class as a subclass of the main class(this will be the 
answer to our question) 

3. Based on the strings passed, find the links between them and the main 
class and add axioms to the anonymous class 

Figure 22 better explains this approach.Any ontology can be represented as a 

graph of classes and properties linked to each other. Class0 is the main class. The 

program creates an anonymous subclass of Class0. The strings passed are Class1, Class2, 

Class3, and Class4. The program then finds property0, property1, and property2.Next, it 

adds these properties to the anonymous class. Finally, the reasoner determines the type of 

the anonymous class.Classes X and properties X are added to show that there are other 

classes and properties that do not link the anonymous class to the passed strings. For 

more details, refer to the code with inline comments in Appendix A. 

anonymous

Class1

Class2 Class3 Class4

property0 propertyX property1 property2
propertyY

ClassX
ClassX ClassX

ClassX
ClassX

Class0

 
Figure 22.  Anonymous Ontology 

 

To replicate the connection, use a Java integrated development environment 

(IDE) such as Eclipse or Netbeans to create a new project. Then, add external jars (the 

plugins of Protégé 4.3 which are also the OWL API and the reasoner).Create the two 

classes Main and Ontology. Finally, create a JAR file consisting of these classes. 
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The code is generic and not specific to any ontology for the following reasons. 

First, based on the strings passed, it knows which ontology to load. Second, an unknown 

string is ignored. Third, if the ontology developer used the covering axiom feature 

provided by Protégé, the answer is guaranteed to return a type. 

B. RESULTS 

Figures 23, 24, and 25 show the results from COMBATXXI output console of the 

IED type behavior, and Figures 26, 27, and 28 show the results from COMBATXXI 

output console of the level-of-threat behavior. The examples show that the reasoner 

provides a different answer when the input is changed. 
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Figure 23.  COMBATXXI output: determining the IED-type when the entity sees nothing. The answer is low probability 

packaged IED (LowPIED). 

 

 
Figure 24.  COMBATXXI output: determining the IED-type when the entity sees some buildings, a man, and a box. The answer 

is low probability suicide bomber IED (LowSBIED). 
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Figure 25.  COMBATXXI output: determining the IED-type when the entity sees some buildings, trash, mortar shell and a truck. 

The answer is medium probability vehicle borne IED (MediumVBIED). 

 

 
Figure 26.  COMBATXXI output: determining the level-of-threat when the entity sees nothing. The answer is ContactNotLikely. 
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Figure 27.  COMBATXXI output: determining the level-of-threat when the entity sees some buildings, trash, truck, and a mortar 

shell. The answer is ContactPossible. 

 

 
Figure 28.  COMBATXXI output: determining the level-of-threat behavior when the entity sees some buildings, man, truck, and 

a metal plate. The answer is ContactLikely. 
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C. ANALYSIS 

The results proved the feasibility of using a knowledge representation system with 

inference capability in a closed form combat simulation. The IED and the threat type 

information were implemented in a knowledge representation system, and the connection 

to COMBATXXI was kept automatic to preserve the closed-form property of the model. 

1. Advantages over Normal Programming 

The new method is easier to maintain, because the specification is done in Protégé 

while the implementation is done in COMBATXXI. That is, the cognitive processing of 

entities can change based on user changes to the ontology, rather than on making changes 

to code. Moreover, the ontology and inference capabilities can be tested externally from 

the model.This is much more amenable to analyst activity than having to make code 

changes or do detailed testing of coded logic in the model. 

Besides separation of specification and implementation, Protégé offers implicit 

definition of objects which creates loosely coupled components that are difficult to design 

in normal programming. For example, in Protégé we can define an object that is white, 

can be decomposed into more than five elements, and can move faster than 20 km/h 

without worrying about what these objects are. Then, after a simple object manipulation 

such as addition, removal, and modification, the reasoner can classify the new object in a 

few lines of code. Behind the scene, Protégé uses its reasoners to solve the problem for 

us. This is the advantage of using an external knowledge representation and reasoning 

over normal programming. This method gives us the capability of these well-established 

reasoners for free. 

2. Sensing of Partial Information 

After modeling a sensor, the results are sometimes not useful. With this new 

method, we can use partial information that was not useful by itself, but by combining it 

with other partial information, and infer some useful information. For example, when an 

entity observes some trash, it cannot make any useful conclusion from this observation. 

However, the reasoner can relate this information to another previous observation and 
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infer the likelihood of an IED. That is, any level of reasoning can be performed based on 

the declarative knowledge base and information available from the model. 

3. Limitations 

To fully benefit from the new method, the simulation system has to have enough 

objects to reason about, and enough sensors capable of accessing those objects, because 

we cannot reason on information that is not available. In addition, there has to be a 

process to add objects and sensors to meet the requirement of new reasoning capabilities, 

because even a system with a plenty of objects and sensors cannot include everything. 

For example, if an analyst wants to introduce new reasoning capabilities, they need to 

enumerate all objects they need for their specific scenario. Then, on the COMBATXXI 

side, the scenario builder needs to create those objects and allow entities to see them or 

create sensors to access them. The IED example in this thesis needed several objects and 

sensors that could not be constructed due to time constraint. Therefore, the author had to 

create notional objects in the model to mimic the real objects. 
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V. CONCLUSION 

The author proved the feasibility of using a knowledge representation system with 

inference capability in a closed form combat simulation. This new method provides many 

advantages over normal programming such as better separation of specification in the 

knowledge base and implementation in the simulation system, creation of implicit 

loosely-coupled object, and less work to accomplish the same thing since Protégé is using 

well-established reasoners for free.  

However, the current thesis did not test that COMBATXXI entities have a 

dynamic reasoning as their knowledge of the battle space grows and changes, but it 

achieved the initial step toward this goal because the current system has the capability to 

grow the knowledge representation. Growing the knowledge space can be achieved by 

saving the ontology in the connecting mechanism by simply adding one line of code: 

OWLOntologyManager.saveOntology (ontology, format, IRI).That is, future work should 

save the ontology and query it more than once to test the dynamic reasoning as entities 

increase their knowledge of the battle space. 

In addition, the author did not need to create individuals or data properties, 

because the implementation is only an example to show the feasibility of the connection 

between Protégé and COMBATXXI. More complex cases may need to create individuals 

and data properties. Currently, the connecting mechanism treats the arguments as classes, 

and only uses object properties. The addition of individuals and data properties can be 

added in a similar way. Currently, the strings received from COMBATXXI should be the 

classes in our ontologies. For example, the strings “IED,” “box,” “disturbed earth” are the 

names of classes in our ontology. A parser/mapper class can be added in future work to 

receive any string from COMBATXXI and make the necessary changes to that string in 

order to be understood by the ontology. 

This thesis covered the types of questions: What? What kind? How? That is, an 

entity can reason over environment objects using these questions to get a single string 

back. For example, if an entity wants to know what it observed, the answer can be 
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friendly, neutral, or enemy. Second, if the entity knows there is something and wants to 

know its kind such as the kind of an IED, the response canbe “lowVBIED,” 

“mediumPIED,” or “highSVBIED.” Third, the entity wants to know how to move. The 

response can be line, wedge, or bounding over-watch. All these questions can be 

answered without modification of the connecting mechanism, but obviously there are 

other useful questions that need to be addressed. Future work could investigate the 

following questions: Yes/No questions? What are the elements of something? How 

many? That is, an entity asking these questions receives a Boolean value, a list, or a 

number. For example, did friendly forces clear the building? Is the largest enemy unit 

within range? What are the cover and conceal positions in this terrain? How many 

terrorists are expected in that building? As this thesis did, these questions can be 

classified into groups. Each group should be implemented in the connecting mechanism. 

Finally, follow-on research can work towards more cognitive modeling in order to 

distinguish between manned systems and unmanned systems in simulations, since as of 

now, every system in simulations has only robotic behavior. 
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APPENDIX A. CONNECTING MECHANISM 

package owlAPI; 
 
import java.util.ArrayList; 
import java.util.Collection; 
import java.util.Set; 
import org.semanticweb.owlapi.model.OWLClass; 
import org.semanticweb.owlapi.reasoner.*; 
 
public class Main { 
 
    //just organizes the show by calling other methods, and returns the answer 
 
    public Collection<String> getAnswer(String[] arr) throws Exception { 
        //determine and initialize the ontology and a reasoner 
        Ontology ontology = new Ontology(); 
        ontology.init(arr); 
 
        //construct the anonymous class 
        OWLClass IED_Class = ontology.prepareClass(arr); 
        //System.out.println(“IED_Class: “ + IED_Class); 
 
        //reasoner2 was needed because reasoner1 was used inside ontology... 
        //if used Again, it does reason over gettingsupperClasses and the answer is thing 
        OWLReasoner reasoner = ontology.getReasoner(); 
        //System.out.println(“my reasoner is: “ + reasoner); 
 
        //ask reasoner2 to classify the anonymous class 
        NodeSet<OWLClass> inferredSuperclasses = reasoner.getSuperClasses(IED_Class, 
true); 
        System.out.println(“inferredSuperclasses: “ + inferredSuperclasses); 
 
        //put the superclasses in a collection (arraylist) instead of nodeSet 
        Collection<String> myStr = new ArrayList<String>(); 
        for (Node<OWLClass> node : inferredSuperclasses) { 
            Set<OWLClass> entities = node.getEntities(); 
            for (OWLClass entity : entities) { 
                myStr.add(entity.getIRI().getFragment()); 
                //System.out.println(“The answer is: “ + myStr); 
 
            } 
        } 
        return myStr; 
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    } 
} 
 
 
 
package owlAPI; 
 
import java.io.File; 
import java.net.URL; 
import java.util.ArrayList; 
import java.util.Collection; 
import java.util.Set; 
import org.semanticweb.HermiT.Reasoner; 
import org.semanticweb.owlapi.apibinding.OWLManager; 
import org.semanticweb.owlapi.model.*; 
import org.semanticweb.owlapi.reasoner.*; 
 
public class Ontology { 
 
    private OWLDataFactory factory; 
    private OWLOntology ontology; 
    private OWLOntologyManager manager; 
    private Collection<OWLObjectProperty> collectionProps = new 
ArrayList<OWLObjectProperty>(); 
    private OWLReasoner reasoner; 
 
   //#################################################################### 
//#      init                                                     #   
//#################################################################### 
    public void init(String[] arr) throws OWLOntologyCreationException { 
 
        //in combatxxi, the first element should be always the name of the ontology 
        String ontologyName = arr[0]; 
        //specify the absolute or the relative path for owl files 
        //File file = new File(“E:/thesis/Ontology/Testing/”+ontologyName+.”owl”); 
        URL url = getClass().getResource(“/owlAPI/files/” + ontologyName + .”owl”); 
        File file = new File(url.getPath()); 
 
        //create OWLManager. it will be used to load ontology and create 
        //OWLFactory 
        manager = OWLManager.createOWLOntologyManager(); 
        //load ontolgy 
        ontology = manager.loadOntologyFromOntologyDocument(file); 
  //System.out.println(“my ontology is: “ + ontology); 
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        //create owlFactory 
        factory = manager.getOWLDataFactory(); 
        //create reasonerFactory 
        OWLReasonerFactory reasonerFactory = new Reasoner.ReasonerFactory(); 
        //create reasoner 
        reasoner = reasonerFactory.createReasoner(ontology); 
        System.out.println(“my reasoner1 is: “ + reasoner); 
    } 
 
    
//###################################################################### 
 //#      prepare class                                  # 
//######################################################################  
    public OWLClass prepareClass(String[] arr) { 
        OWLOntologyID ontID = ontology.getOntologyID(); 
        IRI iri = ontID.getOntologyIRI(); 
        //get class from its iri (not directly from its ontology). 
        //class iri is ontology iri+#className 
        //here for simplicity I have main class name equals ontology name 
        OWLClass main_Class = factory.getOWLClass(IRI.create(iri + “#” + arr[0])); 
        System.out.println(“main_Class: “ + main_Class); 
        //this would create a class named xxx since it does not exist 
        // xxx= the name does not matter because I am not saving the class 
        //future work can save the classes to update the knowledge base 
        OWLClass anonymous_Class = factory.getOWLClass(IRI.create(iri + “#xxx”)); 
        //make the anonymous class a subclass of the main class  
        //we start by creating an axiom 
        OWLAxiom axiom = factory.getOWLSubClassOfAxiom(anonymous_Class, 
main_Class); 
        //then we add the axiom to the ontology 
        AddAxiom addAxiom = new AddAxiom(ontology, axiom); 
        // We now use the manager to apply the change 
        manager.applyChange(addAxiom); 
                //to save it permanently save the ontology at the end. 
 
        //get all object properties (in the entire ontology) 
        //only some properties pertain to our anonymous class 
        Set<OWLObjectProperty> props = ontology.getObjectPropertiesInSignature(); 
  //System.out.println(“props”+props); 
 
        //use private method to add object properties that have main class in domain 
        //to collectionProps collection. 
        getProps(props, main_Class); 
        //System.out.println(“collectionProps”+collectionProps); 
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        OWLClass[] namedClass = new OWLClass[arr.length - 1]; 
        //************************************************************ 
        //*       add related subclasses to anonymous class          * 
        //************************************************************ 
        //loop through these related properties 
        for (OWLObjectProperty prop : collectionProps) { 
            int propCounter = 0; 
            // System.out.println(“the property: “+prop); 
            //for earch property: get ranges 
            Set<OWLClassExpression> ranges = prop.getRanges(ontology); 
            //System.out.println(range); 
            //for each given class (passed from Combatxxi) see if it is related to  
            //this property. i.e it is in the range or a subclass of something in the range 
            for (int i = 0; i < arr.length - 1; i++) { 
                //i+1 because we already got arr[0] which is namedClass0. 
                namedClass[i] = factory.getOWLClass(IRI.create(iri + “#” + arr[i + 1])); 
                //System.out.println(“----The investigated namedClass[i]: “+namedClass[i]); 
 
                //for each class: find if it is a subclass (descendant) of the range of this property 
                for (OWLClassExpression range : ranges) { 
 
                    //----------for each range get the subclasses 
                    NodeSet<OWLClass> subclasses = reasoner.getSubClasses(range, false); 
                    //System.out.println(“subclasses of range: “+subclasses); 
                    //for each node in subclasses 
                    for (Node<OWLClass> subclassNode : subclasses) { 
                        //get subclasses from the nodes 
                        Set<OWLClass> entities = subclassNode.getEntities(); 
                        //compare each subclass to given class from cxxi 
                        for (OWLClassExpression subclass : entities) { 
                            ////System.out.println(“subclass: “+subclass); 
                            if (subclass != null && subclass instanceof OWLClass) { 
                                if (((OWLClass) subclass).getIRI().equals(namedClass[i].getIRI())) { 
                                    // if yes, increment a counter for this property and update  
                                    //anonymousClass with “some” restriction for this property 
 
                                    propCounter++; 
                                    //System.out.println(“--------propCounterInside: “+propCounter); 
                                    //create hasSomeValue expression 
                                    OWLClassExpression haspropClass = 
factory.getOWLObjectSomeValuesFrom(prop, namedClass[i]); 
 
                                    // make the anonymous class a subclass of a class that has  
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                                    //the previous expression through an axiom 
                                    OWLSubClassOfAxiomax = 
factory.getOWLSubClassOfAxiom(anonymous_Class, haspropClass); 
 
                                    // Add the axiom to our ontology 
                                    AddAxiom addAx = new AddAxiom(ontology, ax); 
                                    manager.applyChange(addAx); 
                                } 
                            } 
                        }//end for suclass in entities 
                    }//end node class in nodeset of classes 
                }//end ranges 
            }//end namedClass in the array 
 
            //update anonymousClass with “exactly” restriction for this property and its range 
(using counter) 
            //notice that if a property did not show up, its propCounter will 0 and it  
            //won’t be added to cardinality expression. 
            OWLObjectExactCardinality hasExactpropClass = 
factory.getOWLObjectExactCardinality(propCounter, prop); 
            // make the anonymous class a subclass of a class that has  
            //the previous expression through an axiom 
            OWLSubClassOfAxiom ax2 = 
factory.getOWLSubClassOfAxiom(anonymous_Class, hasExactpropClass); 
            // Add the axiom to our ontology 
            AddAxiom addAx2 = new AddAxiom(ontology, ax2); 
            manager.applyChange(addAx2); 
 
        }//end property in propCollection 
 
        return anonymous_Class; 
    } 
 
    //input: set of properties and a class 
    //output: collection of properties related to given class 
    private void getProps(Set<OWLObjectProperty> props, OWLClass main_Class) { 
        //for each property 
        for (OWLObjectProperty prop : props) { 
            //exclude properties without domains 
            if (!prop.getDomains(ontology).isEmpty()) { 
                //now for each domain of property 
                for (OWLClassExpression od : prop.getDomains(ontology)) { 
                    if (od != null && od instanceof OWLClass) { 
                        //if one of these domains equals the main class we want 
                        //this property 
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                        if (((OWLClass) od).getIRI().equals(main_Class.getIRI())) { 
                            collectionProps.add(prop); 
                        } 
                    } 
                } 
            } 
        } 
    } 
 
    
//###################################################################### 
   //#      getReasoner    # 
 //###################################################################### 
    public OWLReasoner getReasoner() { 
        OWLReasonerFactory reasonerFactory = new Reasoner.ReasonerFactory(); 
        OWLReasoner reasoner2 = reasonerFactory.createReasoner(ontology); 
        //System.out.println(“my reasoner2 is: “ + reasoner2); 
        return reasoner2; 
    } 
 
} 
 
  



 55 

APPENDIX B. OWL FILES 

<?xml version=“1.0”?> 
 
 
<!DOCTYPE rdf:RDF [ 
<!ENTITY owl “http://www.w3.org/2002/07/owl#” > 
<!ENTITY xsd “http://www.w3.org/2001/XMLSchema#” > 
<!ENTITY rdfs “http://www.w3.org/2000/01/rdf-schema#” > 
<!ENTITY rdf “http://www.w3.org/1999/02/22-rdf-syntax-ns#” > 
]> 
 
 
<rdf:RDF 
xmlns=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#” 
     xml:base=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact” 
     xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#” 
     xmlns:owl=“http://www.w3.org/2002/07/owl#” 
     xmlns:xsd=“http://www.w3.org/2001/XMLSchema#” 
     xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”> 
<owl:Ontology 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact”/> 
 
 
 
<!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Object Properties 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#hasIndicator --
> 
 
<owl:ObjectProperty 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#hasIndi
cator”> 
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<rdfs:domain 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Con
tact”/> 
<rdfs:range 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
</owl:ObjectProperty> 
 
 
 
<!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Classes 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Box --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Box”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Othe
r”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Building --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Buildin
g”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Car --> 
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<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Car”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Vehi
cle”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Chain --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Chain”
> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Met
al”/> 
</owl:Class> 
 
 
 
<!-- 
http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#ConcertinaWire --
> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Concer
tinaWire”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Othe
r”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contact --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
t”/> 
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<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#ContactLikely 
--> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tLikely”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
t”/> 
<owl:Class> 
<owl:complementOf> 
<owl:Class> 
<owl:unionOf rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tNotLikely”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tPossible”/> 
</owl:unionOf> 
</owl:Class> 
</owl:complementOf> 
</owl:Class> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Con
tact”/> 
</owl:Class> 
 
 
 
<!-- 
http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#ContactNotLikely 
--> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tNotLikely”> 
<owl:equivalentClass> 
<owl:Class> 
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<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
t”/> 
<owl:Restriction> 
<owl:onProperty 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#hasI
ndicator”/> 
<owl:onClass 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
<owl:maxQualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>2</owl:maxQualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Con
tact”/> 
</owl:Class> 
 
 
 
<!-- 
http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#ContactPossible --
> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tPossible”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
t”/> 
<owl:Restriction> 
<owl:onProperty 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#hasI
ndicator”/> 
<owl:onClass 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
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<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>3</owl:qualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Con
tact”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#House --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#House”
> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Buil
ding”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Human --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Human
”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indicator --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indicat
or”/> 
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<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Kid --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Kid”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Hu
man”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Man --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Man”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Hu
man”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Metal --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Metal”
> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#MortarShell --
> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Mortar
Shell”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Mun
ition”/> 
</owl:Class> 
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<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Munition --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Muniti
on”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Other --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Other”
> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Plate --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Plate”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Met
al”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#RPG_Shell --
> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#RPG_S
hell”> 
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<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Mun
ition”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Rubble --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Rubble
”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Buil
ding”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#SteelTubes --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#SteelT
ubes”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Met
al”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Tank --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Tank”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Vehi
cle”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#TankRound --
> 
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<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#TankR
ound”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Mun
ition”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Trash --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Trash”
> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Othe
r”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Truck --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Truck”
> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Vehi
cle”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Vehicle --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Vehicl
e”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Indi
cator”/> 
</owl:Class> 
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<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Wall --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Wall”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Buil
ding”/> 
</owl:Class> 
 
 
 
<!-- http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Woman --> 
 
<owl:Class 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Woma
n”> 
<rdfs:subClassOf 
rdf:resource=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Hu
man”/> 
</owl:Class> 
 
 
 
<!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // General axioms 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Mortar
Shell”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#RPG_S
hell”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#TankR
ound”/> 
</owl:members> 
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</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Box”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Concer
tinaWire”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Trash”/
> 
</owl:members> 
</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#House”
/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Rubble
”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Wall”/
> 
</owl:members> 
</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Chain”
/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Plate”/
> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#SteelT
ubes”/> 
</owl:members> 
</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
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<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Human
”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Metal”/
> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Muniti
on”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Other”/
> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Vehicl
e”/> 
</owl:members> 
</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Car”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Tank”/
> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Truck”
/> 
</owl:members> 
</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Kid”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Man”/
> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Woma
n”/> 
</owl:members> 
</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
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<owl:members rdf:parseType=“Collection”> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tLikely”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tNotLikely”/> 
<rdf:Description 
rdf:about=“http://www.semanticweb.org/localadmin/ontologies/2014/12/Contact#Contac
tPossible”/> 
</owl:members> 
</rdf:Description> 
</rdf:RDF> 
 
 
 
<!-- Generated by the OWL API (version 3.4.2) http://owlapi.sourceforge.net --> 
 
 
<?xml version=“1.0”?> 
 
 
<!DOCTYPE rdf:RDF [ 
<!ENTITY owl “http://www.w3.org/2002/07/owl#” > 
<!ENTITY swrl “http://www.w3.org/2003/11/swrl#” > 
<!ENTITY swrlb “http://www.w3.org/2003/11/swrlb#” > 
<!ENTITY xsd “http://www.w3.org/2001/XMLSchema#” > 
<!ENTITY rdfs “http://www.w3.org/2000/01/rdf-schema#” > 
<!ENTITY rdf “http://www.w3.org/1999/02/22-rdf-syntax-ns#” > 
<!ENTITY protege “http://protege.stanford.edu/plugins/owl/protege#” > 
<!ENTITY xsp “http://www.owl-ontologies.com/2005/08/07/xsp.owl#” > 
]> 
 
 
<rdf:RDF xmlns=“http://www.owl-ontologies.com/Ontology1413246120.owl#” 
     xml:base=“http://www.owl-ontologies.com/Ontology1413246120.owl” 
     xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#” 
     xmlns:swrl=“http://www.w3.org/2003/11/swrl#” 
     xmlns:protege=“http://protege.stanford.edu/plugins/owl/protege#” 
     xmlns:xsp=“http://www.owl-ontologies.com/2005/08/07/xsp.owl#” 
     xmlns:owl=“http://www.w3.org/2002/07/owl#” 
     xmlns:xsd=“http://www.w3.org/2001/XMLSchema#” 
     xmlns:swrlb=“http://www.w3.org/2003/11/swrlb#” 
     xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”> 
<owl:Ontology rdf:about=“http://www.owl-ontologies.com/Ontology1413246120.owl”/> 
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<!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Object Properties 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#hasDeliveryMethod --> 
 
<owl:ObjectProperty rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”> 
<rdfs:range rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
<rdfs:domain rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
</owl:ObjectProperty> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#hasIndicator --> 
 
<owl:ObjectProperty rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”> 
<rdfs:domain rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<rdfs:range rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
</owl:ObjectProperty> 
 
 
 
<!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Classes 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
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<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Bike --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Bike”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Vehicle”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Box --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Box”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Other”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DisturbedSoil”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Trash”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Car --> 
 
<owl:Class rdf:about=“http://www.owl-ontologies.com/Ontology1413246120.owl#Car”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Vehicle”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#DeliveryMethod --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
</owl:Class> 
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<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#DisturbedSoil --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DisturbedSoil”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Other”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Trash”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#HighPIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#HighPIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:minQualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>3</owl:minQualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#HighSBIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#HighSBIED”> 
<owl:equivalentClass> 
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<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:minQualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>3</owl:minQualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#HighVBIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#HighVBIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:minQualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>3</owl:minQualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
</owl:Class> 
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<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Human --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Human”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#IED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:unionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
</owl:unionOf> 
</owl:Class> 
</owl:equivalentClass> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#IED1 --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED1”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
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<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SteelTubes”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Car”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#IED2 --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED2”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<rdfs:subClassOf> 
<owl:Restriction> 
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<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>0</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Man”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#IED3 --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED3”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>0</owl:qualifiedCardinality> 
</owl:Restriction> 
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</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Man”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>2</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Car”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#IED4 --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED4”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>0</owl:qualifiedCardinality> 
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</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DisturbedSoil”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#IED5 --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED5”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Box”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Trash”/> 
</owl:Restriction> 
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</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Human”/> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>2</owl:qualifiedCardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Indicator --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Kid --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Kid”> 
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<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Human”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#LowPIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#LowPIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:maxQualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:maxQualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#LowSBIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#LowSBIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
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<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:maxQualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:maxQualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#LowVBIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#LowVBIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:maxQualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>1</owl:maxQualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Man --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Man”> 
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<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Human”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#MediumPIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#MediumPIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>2</owl:qualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#MediumSBIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#MediumSBIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
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<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>2</owl:qualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#MediumVBIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#MediumVBIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasIndicator”/> 
<owl:onClass rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:qualifiedCardinality 
rdf:datatype=“&xsd;nonNegativeInteger”>2</owl:qualifiedCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Metal --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Metal”> 
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<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Munitions”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Other”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#MortarShell --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#MortarShell”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Munitions”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#RPG_Shell”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#TankRound”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Munitions --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Munitions”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Other”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Other --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Other”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Indicator”/> 
</owl:Class> 
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<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#PIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<owl:Class> 
<owl:complementOf> 
<owl:Class> 
<owl:unionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
</owl:unionOf> 
</owl:Class> 
</owl:complementOf> 
</owl:Class> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#RPG_Shell --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#RPG_Shell”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Munitions”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#TankRound”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#SBIED --> 
 



 85 

<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Human”/> 
</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:allValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Human”/> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#SodaCan --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SodaCan”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Metal”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Springs”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SteelTubes”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Springs --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Springs”> 
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<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Metal”/> 
<owl:disjointWith rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SteelTubes”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#SteelTubes --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SteelTubes”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Metal”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#TankRound --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#TankRound”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Munitions”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Trash --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Trash”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Other”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Truck --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Truck”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Vehicle”/> 
</owl:Class> 
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<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#VBIED --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”> 
<owl:equivalentClass> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#IED”/> 
<owl:Restriction> 
<owl:onProperty rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#hasDeliveryMethod”/> 
<owl:someValuesFrom rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Vehicle”/> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class> 
</owl:equivalentClass> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Vehicle --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Vehicle”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#DeliveryMethod”/> 
</owl:Class> 
 
 
 
<!-- http://www.owl-ontologies.com/Ontology1413246120.owl#Woman --> 
 
<owl:Class rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Woman”> 
<rdfs:subClassOf rdf:resource=“http://www.owl-
ontologies.com/Ontology1413246120.owl#Human”/> 
</owl:Class> 
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<!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // General axioms 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     --> 
 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#HighVBIED”/> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#LowVBIED”/> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#MediumVBIED”/> 
</owl:members> 
</rdf:Description> 
<rdf:Description> 
<rdf:type rdf:resource=“&owl;AllDisjointClasses”/> 
<owl:members rdf:parseType=“Collection”> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#PIED”/> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#SBIED”/> 
<rdf:Description rdf:about=“http://www.owl-
ontologies.com/Ontology1413246120.owl#VBIED”/> 
</owl:members> 
</rdf:Description> 
</rdf:RDF> 
 
 
 
<!-- Generated by the OWL API (version 3.4.2) http://owlapi.sourceforge.net --> 
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APPENDIX C. XML REPRESENTATION OF THE HIERARCHICAL 

TASK NETWORKS 

<?xml version=“1.0” encoding=“UTF-8” standalone=“no”?> 
<HTNNode AllowMsg=“true” Name=“SquadMove” Type=“DEFAULT”> 
 <Parent>null</Parent> 
 <DataMap> 
  <DataKey>start_loc,cxxi.model.objects.features.CMWayPoint,Way point at the start of the 
road</DataKey> 
  <DataKey>end_loc,cxxi.model.objects.features.CMWayPoint,Way point at the end of the 
road</DataKey> 
 </DataMap> 
 <Code IsFile=“false”/> 
 <Import>from HTN import UtilityFuncsExp</Import> 
 <HTNNode AllowMsg=“true” Name=“initInfo” Type=“DEFAULT”> 
  <Parent>SquadMove</Parent> 
  <Code IsFile=“false”>if _gt_activeNode.getVar(“isInited”) == None: 
 _gt_activeNode.putVar(“isInited,” 1) 
 _htn_precon_ret=1 
</Code> 
  <Import/> 
  <HTNNode AllowMsg=“true” Name=“addReplanTriggers” Type=“DEFAULT”> 
   <Parent>initInfo</Parent> 
   <Code IsFile=“false”># goal tracker events 
goalContainer.getCurrentExecutingStack().addReplanTrigger(“GoalTracker_FinishedMove”) 
</Code> 
   <Import/> 
  </HTNNode> 
  <HTNNode AllowMsg=“true” Name=“isCommander” Type=“DEFAULT”> 
   <Parent>initInfo</Parent> 
   <Code IsFile=“false”>if state.isCommander(): 
 _htn_precon_ret=1 
</Code> 
   <Import/> 
   <HTNNode AllowMsg=“true” Name=“findIED_Type” Type=“DEFAULT”> 
    <Parent>isCommander</Parent> 
    <Code IsFile=“false”>start = _gt_activeNode.getParam(“start_loc”).getLocation() 
end = _gt_activeNode.getParam(“end_loc”).getLocation() 
printMessage(“ ,” True) 
bldgs = UtilityFuncsExp.getBuildingsAlong(start, end, 15) 
print “number of buildings ,”len(bldgs) 
 
printMessage(“after import,” True) 
arr=[“IED”] 
for j in bldgs: 
 print j.getAssignedName() 
 arr.append(str(j.getAssignedName())) 
#m=test_Ontology() 
#print arr 
UtilityFuncsExp.answer(arr) 
 
if len(bldgs) &gt; 3: 
 _htn_precon_ret=1 
</Code> 
    <Import/> 
   </HTNNode> 
   <HTNNode AllowMsg=“true” Name=“determineNextBehavior” Type=“INTERRUPT”> 
    <Parent>isCommander</Parent> 
    <Code IsFile=“false”>printMessage(“MOVE IN FORMATION,” True) 
 
formationName = “INF_WEDGE” 
startCM = _gt_activeNode.getParam(“start_loc”) 
endCM = _gt_activeNode.getParam(“end_loc”) 
 
# set the path to the goal 



 90 

goalPath = “HTN/Trees/MoveInFormation.xml” 
 
# add the goal to a unit 
UtilityFuncsExp.addGoal( 
    info.getMyAssignedName(), 
    1.0, 
    goalPath, 
    [formationName, startCM, endCM], 
    None) 
</Code> 
    <Import/> 
    <HTNNode AllowMsg=“true” Name=“nextBehavior” Type=“INTERRUPT”> 
     <Parent>determineNextBehavior</Parent> 
     <Code IsFile=“false”>_htn_precon_ret=1</Code> 
     <Import/> 
    </HTNNode> 
   </HTNNode> 
  </HTNNode> 
  <HTNNode AllowMsg=“false” Name=“endInit” Type=“INTERRUPT”> 
   <Parent>initInfo</Parent> 
   <Code IsFile=“false”>printMessage(“INIT FINISHED,” True) 
</Code> 
   <Import/> 
  </HTNNode> 
 </HTNNode> 
 <HTNNode AllowMsg=“true” Name=“events” Type=“DEFAULT”> 
  <Parent>SquadMove</Parent> 
  <Code IsFile=“false”/> 
  <Import/> 
  <HTNNode AllowMsg=“true” Name=“isGoalTrackerEvent” Type=“DEFAULT”> 
   <Parent>events</Parent> 
   <Code IsFile=“false”>if state.getLastTrigger().startswith(“doGoalTracker_”): 
 _htn_precon_ret=1 
</Code> 
   <Import/> 
   <HTNNode AllowMsg=“true” Name=“isFinishedMove” Type=“DEFAULT”> 
    <Parent>isGoalTrackerEvent</Parent> 
    <Code IsFile=“false”>if state.getLastTrigger() == “doGoalTracker_FinishedMove”: 
 _htn_precon_ret=1 
</Code> 
    <Import/> 
    <HTNNode AllowMsg=“true” Name=“finishedMove” Type=“GOAL”> 
     <Parent>isFinishedMove</Parent> 
     <Code IsFile=“false”>printMessage(“MISSION COMPLETE,” True) 
</Code> 
     <Import/> 
    </HTNNode> 
   </HTNNode> 
  </HTNNode> 
 </HTNNode> 
</HTNNode> 
 
 
<?xml version=“1.0” encoding=“UTF-8” standalone=“no”?> 
<HTNNode AllowMsg=“true” Name=“SquadMove” Type=“DEFAULT”> 
 <Parent>null</Parent> 
 <DataMap> 
  <DataKey>start_loc,cxxi.model.objects.features.CMWayPoint,Way point at the start of the 
road</DataKey> 
  <DataKey>end_loc,cxxi.model.objects.features.CMWayPoint,Way point at the end of the 
road</DataKey> 
 </DataMap> 
 <Code IsFile=“false”/> 
 <Import>from HTN import UtilityFuncsExp</Import> 
 <HTNNode AllowMsg=“true” Name=“initInfo” Type=“DEFAULT”> 
  <Parent>SquadMove</Parent> 
  <Code IsFile=“false”>if _gt_activeNode.getVar(“isInited”) == None: 
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 _gt_activeNode.putVar(“isInited,” 1) 
 _htn_precon_ret=1 
</Code> 
  <Import/> 
  <HTNNode AllowMsg=“true” Name=“addReplanTriggers” Type=“DEFAULT”> 
   <Parent>initInfo</Parent> 
   <Code IsFile=“false”># goal tracker events 
goalContainer.getCurrentExecutingStack().addReplanTrigger(“GoalTracker_FinishedMove”) 
</Code> 
   <Import/> 
  </HTNNode> 
  <HTNNode AllowMsg=“true” Name=“isCommander” Type=“DEFAULT”> 
   <Parent>initInfo</Parent> 
   <Code IsFile=“false”>if state.isCommander(): 
 _htn_precon_ret=1 
</Code> 
   <Import/> 
   <HTNNode AllowMsg=“true” Name=“isOverWatch” Type=“DEFAULT”> 
    <Parent>isCommander</Parent> 
    <Code IsFile=“false”>start = _gt_activeNode.getParam(“start_loc”).getLocation() 
end = _gt_activeNode.getParam(“end_loc”).getLocation() 
printMessage(“ ,” True) 
bldgs = UtilityFuncsExp.getBuildingsAlong(start, end, 15) 
print “number of buildings ,”len(bldgs) 
 
arr=[“Contact”] 
for j in bldgs: 
 print j.getAssignedName() 
 arr.append(str(j.getAssignedName())) 
#m=test_Ontology() 
#print arr 
ans=UtilityFuncsExp.answer(arr) 
 
print ans 
 
_gt_activeNode.putVar(“ans,” ans) 
 
 
if ans in [“ContactPossible,”“ContactLikely”]: 
 _htn_precon_ret=1 
</Code> 
    <Import/> 
    <HTNNode AllowMsg=“true” Name=“isBoundingOverWatch” Type=“DEFAULT”> 
     <Parent>isOverWatch</Parent> 
     <Code IsFile=“false”>if _gt_activeNode.getVar(“ans”) == 
“ContactLikely”: 
 _htn_precon_ret=1</Code> 
     <Import/> 
     <HTNNode AllowMsg=“true” Name=“boundingOverWatch” 
Type=“INTERRUPT”> 
      <Parent>isBoundingOverWatch</Parent> 
      <Code IsFile=“false”>#only the commanders bfv2 from bfvs, 
entity2from sqd5, and entity7 from sq4 (will be later left flank) 
# they will add goals to their units to go to boundingOverwatch 
printMessage(“MOVE IN BOUNDING OVERWATCH,” True) 
 
formationName = “INF_WEDGE” 
startCM = _gt_activeNode.getParam(“start_loc”) 
endCM = _gt_activeNode.getParam(“end_loc”) 
 
 
# set the path to the goal 
goalPath = “HTN/Trees/MoveInBoundingOverwatch.xml” 
 
# add the bounding overwatch goals to all units 
UtilityFuncsExp.addGoalToUnit( 
   state.getCurrentUnit().getName(), 
   1.0, 
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   goalPath, 
   [formationName, startCM, endCM], 
   None)</Code> 
      <Import/> 
     </HTNNode> 
    </HTNNode> 
    <HTNNode AllowMsg=“true” Name=“travelingOverwatch” Type=“INTERRUPT”> 
     <Parent>isOverWatch</Parent> 
     <Code IsFile=“false”>#only the commanders bfv2 from bfvs, 
entity2from sqd5, and entity7 from sq4 (will be later left flank) 
# they will add goals to their units to go to boundingOverwatch 
printMessage(“MOVE IN TRAVELING OVERWATCH,” True) 
 
formationName = “INF_WEDGE” 
startCM = _gt_activeNode.getParam(“start_loc”) 
endCM = _gt_activeNode.getParam(“end_loc”) 
‘‘‘ 
 
# set the path to the goal 
goalPath = “HTN/Trees/MoveInBoundingOverwatch.xml” 
 
# add the bounding overwatch goals to all units 
UtilityFuncsExp.addGoalToUnit( 
   state.getCurrentUnit().getName(), 
   1.0, 
   goalPath, 
   [formationName, startCM, endCM], 
   None) 
 
‘‘‘</Code> 
     <Import/> 
    </HTNNode> 
   </HTNNode> 
   <HTNNode AllowMsg=“true” Name=“traveling” Type=“INTERRUPT”> 
    <Parent>isCommander</Parent> 
    <Code IsFile=“false”>printMessage(“MOVE IN TRAVELING,” True) 
 
formationName = “INF_WEDGE” 
startCM = _gt_activeNode.getParam(“start_loc”) 
endCM = _gt_activeNode.getParam(“end_loc”) 
 
# set the path to the goal 
goalPath = “HTN/Trees/MoveInFormation.xml” 
‘‘‘ 
# add the goal to a unit 
UtilityFuncsExp.addGoal( 
    info.getMyAssignedName(), 
    1.0, 
    goalPath, 
    [formationName, startCM, endCM], 
    None) 
‘‘‘</Code> 
    <Import/> 
   </HTNNode> 
  </HTNNode> 
  <HTNNode AllowMsg=“false” Name=“endInit” Type=“INTERRUPT”> 
   <Parent>initInfo</Parent> 
   <Code IsFile=“false”>printMessage(“INIT FINISHED,” True) 
</Code> 
   <Import/> 
  </HTNNode> 
 </HTNNode> 
 <HTNNode AllowMsg=“true” Name=“events” Type=“DEFAULT”> 
  <Parent>SquadMove</Parent> 
  <Code IsFile=“false”/> 
  <Import/> 
  <HTNNode AllowMsg=“true” Name=“isGoalTrackerEvent” Type=“DEFAULT”> 
   <Parent>events</Parent> 
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   <Code IsFile=“false”>if state.getLastTrigger().startswith(“doGoalTracker_”): 
 _htn_precon_ret=1 
</Code> 
   <Import/> 
   <HTNNode AllowMsg=“true” Name=“isFinishedMove” Type=“DEFAULT”> 
    <Parent>isGoalTrackerEvent</Parent> 
    <Code IsFile=“false”>if state.getLastTrigger() == “doGoalTracker_FinishedMove”: 
 _htn_precon_ret=1 
</Code> 
    <Import/> 
    <HTNNode AllowMsg=“true” Name=“finishedMove” Type=“GOAL”> 
     <Parent>isFinishedMove</Parent> 
     <Code IsFile=“false”>printMessage(“MISSION COMPLETE,” True) 
</Code> 
     <Import/> 
    </HTNNode> 
   </HTNNode> 
  </HTNNode> 
 </HTNNode> 
</HTNNode> 
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