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ABSTRACT

Adversaries in Networks

Report Title

As systems become more distributed, they are vulnerable to new forms of attack.

An adversary could seize control of several nodes in a network and reprogram

them, unbeknownst to the rest of the network. Strategies are needed that can

ensure robust performance in the presence of these sorts of attacks. This thesis

studies the adversarial problem in three scenarios.



First is the problem of network coding, in which a source seeks to send data to a

destination through a network of intermediate nodes that may perform arbitrarily

complicated coding functions. When an adversary controls nodes in the network,

achievable rates and upper bounds on capacity are found, and Polytope Codes

are introduced, which are a nonlinear class of codes specially designed to handle

adversaries in a network coding framework.



Second, multiterminal source coding is studied, in which several nodes make

correlated measurements, independently encode them, and transmit their encodings

to a common decoder, which attempts to recover some information. Two

special cases of this problem are studied when several of the nodes may be controlled

by an adversary: the problem of Slepian and Wolf, in which the decoder

attempts to perfectly decode all measurements, and the CEO Problem, in which

the decoder attempts to estimate a source correlated with the measurements.



Finally, adversarial attacks are studied against power system sensing and estimation.

In this problem, a control center receives various measurements from

meters in a power grid, and attempts to recover information about the state of the

system. Attacks of various degrees of severity are studied, as well as countermeasures

that the control center may employ to prevent these attacks.
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As systems become more distributed, they are vulnerable to new forms of attack.

An adversary could seize control of several nodes in a network and reprogram

them, unbeknownst to the rest of the network. Strategies are needed that can

ensure robust performance in the presence of these sorts of attacks. This thesis

studies the adversarial problem in three scenarios.

First is the problem of network coding, in which a source seeks to send data to a

destination through a network of intermediate nodes that may perform arbitrarily

complicated coding functions. When an adversary controls nodes in the network,

achievable rates and upper bounds on capacity are found, and Polytope Codes

are introduced, which are a nonlinear class of codes specially designed to handle

adversaries in a network coding framework.

Second, multiterminal source coding is studied, in which several nodes make

correlated measurements, independently encode them, and transmit their encod-

ings to a common decoder, which attempts to recover some information. Two

special cases of this problem are studied when several of the nodes may be con-

trolled by an adversary: the problem of Slepian and Wolf, in which the decoder

attempts to perfectly decode all measurements, and the CEO Problem, in which

the decoder attempts to estimate a source correlated with the measurements.

Finally, adversarial attacks are studied against power system sensing and es-

timation. In this problem, a control center receives various measurements from

meters in a power grid, and attempts to recover information about the state of the
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system. Attacks of various degrees of severity are studied, as well as countermea-

sures that the control center may employ to prevent these attacks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Increasingly, we are surrounded by distributed systems comprised of many nodes

interacting with one another. From the internet to cell phones to sensor networks,

everything is made up of many small pieces. This trend creates new security

problems, which require new methods to build systems that are robust against

various forms of attack. In this thesis, we consider one potential form of an attack

against a network, that of a malicious adversary entering the network, seizing and

controlling a group of nodes, unbeknownst to the rest of the network. We study this

scenario in several contexts, analyzing the impact of the adversary, and designing

strategies to counteract its presence. In particular, we focus on two problems from

information theory: multiterminal source coding and network coding, in addition

to a problem in power system sensing and estimation.

There are several applications in communication networks in which one user

may wish to relay data through other nodes toward a second user, when those

relay nodes may not be reliable or trustworthy. Consider, for example, a wireless

ad hoc network. In such a network, nodes may enter and exit the network often,

and messages need to be transmitted through. Nodes need to learn about each

other, establish communication paths, and update them as the network changes.

It is easy to imagine that a node could enter the network without any intention of

following the agreed-upon protocol. It could at first appear to act honestly, so as to

establish itself as a relay point in the network, but then it could forward messages

incorrectly, jam its neighbor’s signals, or eavesdrop on others’ communication.

1
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Even in the wired setting, nodes may be vulnerable to malicious reprogramming.

Internet routers can be hacked into and compromised, or simply fail and transmit

unreliable information. These concerns motivate our study of network coding in

the presence of adversarial nodes.

Network coding is a concept in network information theory that allows nodes

in a network to perform potentially elaborate operations to transmit data through

a network. In Chapter 2, we study this problem with adversarial nodes. We give

upper bounds on communication rates, and present a class of nonlinear codes called

Polytope Codes, which is the first class of codes capable of achieving capacity for

a general class of networks with adversarial nodes. In particular, we show that

these codes achieve capacity for a certain class of planar networks.

Now consider a sensor network. This could involve a large number of cheap

nodes gathering data to be collected by a central receiver that acts as a fusion

center, organizing and analyzing the aggregate information. Should some of the

sensors be seized by an adversary, the fusion center should use strategies to make

its decisions robust against these attacks. The topology of a sensor network made

up of many nodes communicating directly to a single fusion center is exactly that

of multiterminal source coding, which is our second major area of study. We are

mostly interested in the tradeoff between the adversary’s impact on the quality

of the information collected at the fusion center (referred to as the decoder in

the sequel), and the amount of data is transmitted from the sensors to the fusion

center. We study two main subcases of the multiterminal source coding problem

with adversarial nodes: in Chapter 3, the problem of Slepian and Wolf, in which

the decoder attempts to recover all data that was available at the sensors; and in

Chapter 4, the CEO Problem, in which the decoder estimates a quantity observed
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by each sensor through a noisy channel. For both these problems, we give achiev-

able schemes and outer bounds on the sets of achievable communication rates. In

some cases, these bounds match.

Finally, we consider the power system. The power grid in this country—and

most others—serves to deliver reliable electricity to millions of homes and offices,

and its continued operation is vital part of the infrastructure of our society. There-

fore, any potential vulnerabilities are a serious concern. The system itself is a vast

network of generators, transmission lines, transformers, and switches. It is im-

portant for the continuing operation of the grid that operators in control centers

have reliable up-do-date information about the current state of the system. To this

end, numerous meters are deployed throughout the grid, measuring voltage and/or

power flow. These meters report their findings back to control centers, who use

the gathered data to make decisions. If an adversary were able to manipulate the

meter readings sent to the control center, then it could potentially influence the

trajectory of the power state, and even cause blackouts. In Chapter 5, we present

some results that allow us to identify vulnerable parts of the power system to these

attacks, and detection strategies to find them if they occur.

1.2 Byzantine Attack

The notion of an adversary controlling a subset of nodes in a network, unbeknownst

to the other nodes, is sometimes known as Byzantine attack. The term Byzantine

is conspicuous, and deserves a moment’s explanation. According to Greek legend,

in the 7th century BC lived King Byzas, who in 667 BC founded the city of

Byzantium on the shores of the Bosphorus Strait connecting the Mediterranean
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sea to the Black sea, the location of present day Istanbul. Byzantium kept its

name and became a chief city of the Roman Empire, which by the 4th century

AD had become so large and difficult to govern that it began to fracture between

east and west. In 330 AD, the emperor Constantine I moved the capital of the

eastern part to Byzantium, and renamed the city Constantinople. In its day, it

was usually called the Eastern Roman Empire, or simply the Roman Empire, since

it survived for almost a millennium longer than the western half. However, partly

out of confusion, and partly out of a desire to differentiate it from the earlier and

unified Roman Empire, by the nineteenth century the eastern empire came to be

known by historians as the Byzantine Empire, even though the empire came into

being at the very moment that Byzantium was renamed.

Long after the empire collapsed after Constantinople fell to the Ottomans in

1453, the Byzantine Empire became known for being excessively beaurocratic and

decadent. Hence the word “Byzantine” came to mean overly complicated, hard

to understand, or unnecessarily obtuse. In its entry on the word “byzantine”,

the Oxford English Dictionary sites the 1937 book Spanish Testament by Arthur

Koestler as an early written example of this use of the word. He wrote “In the old

days people often smiled at the Byzantine structure of the Spanish army” [1]. By

the latter half of the 20th century, this meaning of the word was common.

In 1980, Marshall Pease, Leslie Lamport, and Robert Shostak wrote [2], titled

“Reaching Agreement in the Presence of Faults,” which was based partially on

earlier work by Lamport and others [3, 4]. Two years later, the same authors

wrote [5], in which they renamed the same problem “the Byzantine Generals’

Problem.” This version of the problem is described follows. A number of generals

of the Byzantine army are separately encamped outside an enemy city. They must
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come to an agreement about whether to attack the city. They do this by sending

messengers from one to another, indicating each general’s opinion or preference for

their course of action. This is complicated by the fact that some of the generals

are traitors ; that is, they may send inconsistent or meaningless messages, and

therefore make it more difficult for the honest generals to reach agreement. The

result of [2] and [5] is that consensus among the honest generals can be reached as

long as fewer than one third of the generals are traitors.

On his website, Lamport describes the process leading to the more colorful

naming of the problem:

I have long felt that, because it was posed as a cute problem

about philosophers seated around a table, Dijkstra’s dining philoso-

pher’s problem received much more attention than it deserves. (For

example, it has probably received more attention in the theory com-

munity than the readers/writers problem, which illustrates the same

principles and has much more practical importance.) I believed that

the problem introduced in [2] was very important and deserved the

attention of computer scientists. The popularity of the dining philoso-

phers problem taught me that the best way to attract attention to a

problem is to present it in terms of a story.

There is a problem in distributed computing that is sometimes

called the Chinese Generals Problem, in which two generals have to

come to a common agreement on whether to attack or retreat, but

can communicate only by sending messengers who might never arrive.

I stole the idea of the generals and posed the problem in terms of a

group of generals, some of whom may be traitors, who have to reach
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a common decision. I wanted to assign the generals a nationality that

would not offend any readers. At the time, Albania was a completely

closed society, and I felt it unlikely that there would be any Albanians

around to object, so the original title of this paper was The Albanian

Generals Problem. Jack Goldberg was smart enough to realize that

there were Albanians in the world outside Albania, and Albania might

not always be a black hole, so he suggested that I find another name.

The obviously more appropriate Byzantine generals then occurred to

me.

When he says “obviously more appropriate,” he is evidently referring to the fact

that “Byzantine” can describe the generals in two ways: first, it is their nationality;

second, some of their actions are undoubtedly byzantine.

A critical component of the problem description in the original Byzantine Gen-

erals’ Problem is that the traitors may send arbitrary messages to other generals,

and the honest generals must reach agreement no matter what the traitors do.

This notion of robust performance in the face of arbitrary behavior is at the heart

of Byzantine attack, and at the heart of the adversary model for the work in this

thesis.

An important distinction should be made between two possible interpretations

of this sort of model. The interpretation originally intended by [2, 5] is that of

errors; that is, the generals represent identical units which should in principle pro-

duce the same, unless one suffers from a random fault. If a system is designed to be

robust against Byzantine failures, then it will always come to the correct decision

even if the faulty unit behaves in an arbitrary manner. The second interpretation,

and the one we mostly use in this thesis, is that of a true adversary: an intelligent
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entity motivated to defeat the aims of the network if it can, one that will study the

network operation and search for a vulnerability. These two interpretations are

usually mathematically equivalent, but our choice of the second one does motivate

some choices we make in our modeling of the problem. For example, in our work on

network coding, discussed in Chapter 2, we adopt a model in which the adversary

controls nodes in the network. As we will discuss our network coding literature

review in Section 1.3.1, this differs from some earlier work on adversarial attacks

in network coding. In particular, [6, 7] studied the problem of an adversary con-

trolling links in the network, as opposed to nodes. They seem to be using the first

interpretation of Byzantine attack, such that adversarial actions represent errors

on communication channels between nodes, and as long as the number of these er-

rors is small, no matter what each error is, they can guarantee performance. Our

view, instead, is that the attacks represent an adversary taking control of nodes

in a network, and therefore able to alter any transmission made by those nodes.

This leads to a mathematically different problem, and, it turns out, a harder one.

Another important element in studying Byzantine and adversarial attacks has

to do with placing a limit the adversary’s power. The problem should be designed

so that successful strategies are robust against attacks of a certain size. Obviously,

if the adversary controls the entire network, then no strategy could ever defeat

it. Therefore, we allow the adversary to perform arbitrary actions, but subject to

being able to control only a certain number of nodes in the network. The honest

users of network cannot know for certain that the number of nodes to come under

the adversary’s control will not exceed the threshold, but it they can at least make

a performance guarantee if it does not exceed the threshold. Should the adversary

size exceed the threshold, performance could degrade. We can therefore think of

the limit on adversary size not as a priori knowledge of the power of the adversary,
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but rather as a parameter with which we can trade off robustness to attacks with

performance. As we will see, handling more adversaries requires more redundancy

in the system, which means performance decreases.

1.3 Network Coding

1.3.1 Related Work

A classical problem in graph theory is the maximal flow problem. That is, given

a directed graph composed of nodes and capacity-limited edges, we wish to find

the flow of maximum size from a source to a sink. A flow is given by a quantity

associated with each edge, representing the amount of some commodity flowing

through that edge, and upper bounded by the edge capacity. Flow must be con-

served at each node, except for the source, which produces the commodity, and

the sink, which consumes it. In 1956, Ford and Fulkerson [8] showed that the flow

maximizing the amount of the commodity that travels from the source to the des-

tination is given by the minimum cut of the graph. This is known as the max-flow

min-cut theorem. By a cut, we mean a way to split the network into two parts,

such that the source is in one part and the sink in the other. The value of a cut is

given by the total capacity of all edges from the part with the source to the part

with the sink. The min-cut is the minimum cut value over all cuts separating the

source from the sink.

Even though the problem studied by Ford and Fulkerson was purely mathemat-

ical in nature—the commodity is an abstract notion, and is often imagined to be,

for example, water flowing through pipes—the result can immediately be applied
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to communicating in a network. Nodes in the graph represent machines able to

receive and transmit messages along communication links, which are represented

by edges. The edge capacities represent communication limits of the communi-

cation links. A flow through the graph can be converted into a routing strategy,

whereby the numbers of data packets received and transmitted by intermediate

nodes is given by the flow. In this setup, nodes in the network do nothing except

copy received information to their outgoing communication links.

The classical max-flow min-cut result cannot be applied to the problem of mul-

ticast: the case that a single source wishes to transmit the same message to more

than one destination. Here the “water as information” metaphor breaks down,

because data packets, unlike water, can be duplicated, so a node with an incoming

bit stream can reproduce it one several outgoing links. More significantly, data can

be combined in nontrivial ways. In particular, more intelligent intermediate nodes

can do coding : in principle, a node’s output can be an arbitrary function of its

input. In the landmark paper [9], it was found that if this so-called network coding

is allowed, then for multicast, the min-cut can be achieved to each destination

simultaneously.

In the last decade, network coding has become one of the pillars of network

information theory. While the achievability proof used in [9] relied on a random

coding argument over arbitrary coding functions, it was shown in [10] that for

multicast it is sufficient to use only linear codes: that is, the values transmitted

on each link are elements taken from a finite field, and each node takes linear

combinations over that field of its input to produce its output. In [11], an alge-

braic framework for network coding was presented, which led to a necessary and

sufficient conditions for the success of a linear code in a general setting, as well as
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polynomial time encoding and decoding. The idea of random linear network coding

was first suggested in [12] and elaborated in [13]. In this approach, linear coding is

performed with the coefficients chosen randomly; with high probability, the result

is a good network code that can achieve the network capacity for multicast. Ran-

dom linear coding does not require an outside authority which knows the complete

network topology in order to design good codes; instead, nodes may work in a

more distributed manner without losing any communication rate. A polynomial

time algorithm for finding good linear network codes was given in [14]. Network

coding for practical use has been studied and/or demonstrated in [15, 16, 17, 18].

While linear coding is sufficient to achieve capacity for multicast, for some

problems with multiple sources, linear codes are insufficient. It was shown in [19]

that standard network coding problems fall into three categories: (1) coding is un-

necessary, and routing is enough to achieve capacity; (2) linear coding is sufficient,

and optimal linear codes can be found in polynomial time, and (3) determining

whether a linear code can achieve a given communication rate is NP-hard. They

also gave an example of a network in the third category for which a nonlinear code

can outperform any linear code. It was pointed out in [20] that even this code is

not far from linear, and [20] introduced the class of vector linear codes, whereby

several elements from a finite field can be transmitted on each link. However, [21]

provided an example for which even these codes are insufficient for general multi-

source multi-destination problems. The work in this thesis on network coding

with adversaries shows that even for the single-source single-destination problem,

nonlinear network coding is required to achieve capacity. This indicates that the

general adversary problem may differ substantially from the standard network

coding problem.
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Another branch of study on network coding involves the so-called entropic re-

gion. For n correlated random variables, one may calculate the joint entropy using

Shannon’s entropy measure for any subset of the variables. There are 2n−1 non-

trivial subsets, so any set of variables can be associated with a 2n−1 dimensional

vector. Any vector for which there exists such a set of random variables is called

entropic. The closure of the set of all entropic vectors is often written Γ̄∗. Any

linear bound on Γ̄∗ is known as an information inequality. The framework of the

entropic region and information inequalities was introduced in [22]. The posi-

tivity of conditional entropy and conditional mutual information compose a set

of information inequalities known as the Shannon type inequalities. It was first

shown in [23] that there exist non-Shannon type inequalities: that is, Γ̄∗ is strictly

smaller than the set of vectors satisfying the Shannon type inequalities. It can

be shown that any network coding problem can be expressed in terms of Γ̄∗; if Γ̄∗

were completely known, then all network coding problems would be immediately

solved. Moreover, it was shown in [24] that non-Shannon type inequalities can

be relevant in network coding problems. This indicates that the general network

coding problem is identical to that of characterizing Γ̄∗. In [25], it was shown that

Γ̄∗ is identical to the set of group characterizable vectors derived from subgroups

of a finite group. Therefore, so-called coset codes based on finite groups can in

principle solve any network coding problem. Linear codes are special cases of these

codes. An interesting property of our Polytope Codes used to defeat adversaries,

discussed in Chapter 2, is that they do not appear to be special cases of coset

codes.

The first consideration of network coding with security concerns was [26], which

considered the problem of an eavesdropper able to overhear the messages sent on

a fixed number of communication links in a network. This was based partially on
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the foundational work on information-theoretic security by Shannon [27] as well

as Wyner’s wiretap channel [28]. In [26], it is shown that when the eavesdropper’s

capabilities are always identical, linear codes are sufficient to achieve the highest

possible communication rate without allowing the eavesdropping to learn anything

about the message. The same problem but with communication links of differing

capacity was studied in [29]. In this setup, the eavesdropper has varying power

depending on which links it is able to overhear, and [29] finds that many standard

linear coding techniques fail, and one must be more careful in designing the code

so as to maximize secure communication rate. This is a different sort of adversary

to the ones we consider, but it is a similar finding, in that when the adversary

has different levels of power depending on where it is in the network, the problem

becomes harder.

Adversarial attacks on network coding were first considered in [30], which

looked at detecting adversaries in a random linear coding environment. The first

major work on correcting adversaries in network coding was [6, 7]. This two-part

paper looked at the multicast network coding problem in which the adversary

controls exactly z unit-capacity links in the network. This was introduced as “net-

work error correction”, and, as mentioned above, considered the errors as channel

failures rather than adversarial actions. In [31], the same problem is studied,

providing distributed and low complexity coding algorithms to achieve the same

asymptotically optimal rates. In addition, [31] looks at two adversary models

slightly different from the omniscient one considered in [6, 7] and in this thesis.

They show that higher rates can be achieved under these alternate models. In our

study of multiterminal source coding, we explore similar ways of slightly reducing

the power of the adversary, but for the rest of this thesis, we always assume the

worst case adversary that is completely omniscient. In [32], a more general view
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of the adversary problem is given, whereby the network itself is abstracted into an

arbitrary linear transformation.

These works seek to correct for the adversarial errors at the destination. An

alternative strategy known as the watchdog, studied for wireless network coding

in [33], is for nodes to police downstream nodes by overhearing their messages to

detect modifications. In [34], a similar approach is taken, and they found that

nonlinear operations similar to ours can be helpful, just as we do.

The work presented in Chapter 2 on an adversary able to control a fixed number

of nodes in a network rather than a fixed number of edges has previously appeared

in [35, 36]. Simultaneously with this work, a slightly different adversarial network

coding problem was considered in [37, 38]. In these papers, the adversary controls

a fixed number of edges, as in [6, 7], but the edges may unequal capacity. They

find that this problem also requires nonlinear coding to achieve capacity. It seems

that linear coding is sufficient when the adversary has uniform power, no matter

where it is—as in the unit-capacity edge problem—but when its power can vary,

such as the node problem or the unequal-edge problem, nonlinear coding may be

required.

1.3.2 Contributions

Our primary contribution is a class of network codes to defeat adversaries called

Polytope Codes. These were originally introduced in [35] under the less descriptive

term “bounded-linear codes”. Polytope Codes are nonlinear codes, and they im-

prove over linear codes by allowing error detection inside the network. This allows

adversaries to be more easily identified, whereby the messages they send can be
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ignored. We also prove a cut-set upper bound on achievable rates in networks with

node-based adversaries. This cut-set bound is a form of the Singleton bound [39],

originally proved for classical error-correcting codes. We show that for a class of

planar networks, Polytope Codes can achieve the rate given by this cut-set bound,

which means that they achieve the capacity for these networks. We also show that

the cut-set bound is not always achievable, by giving an example network with a

strictly smaller capacity.

We briefly describe the high-level idea behind Polytope Codes, because the

same idea is at the heart of our achievable results for multiterminal source coding.

It is easy to grasp and it comprises the majority of this thesis, so we momentarily

dwell on it. Consider three nodes in a network, which we name Xander, Yvaine, and

Zoe for convenience. Let X and Y be two correlated random variables with joint

distribution p(x, y). Suppose Xander and Yvaine observe X and Y respectively,

and both independently report their observation to Zoe. One or both of them

may be a traitor; i.e. taking instructions from an adversary, so their transmissions

to Zoe could be incorrect. From her received information, Zoe can estimate the

empirical joint distribution of X and Y , which we denote q(x, y). Since one of

Xander and Yvaine may not be trustworthy, q(x, y) could differ from the true

empirical distribution. However, if both Xander and Yvaine were honest, then

Zoe can expect q(x, y) to be close—or exactly equal to—p(x, y). Therefore, if q

is not close to p, then Zoe can conclude that one of her friends must be lying.

Note that Zoe may not be able to tell which person has done so, but now both

Xander and Yvaine are suspect, which means that if Zoe can gather information

from other nodes, those nodes might be more reliable, assuming the adversary has

influence over a limited number of nodes. Consider the situation also from the

adversary’s perspective. If Xander is a traitor, he has two choices in what he tells
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Zoe. He could report a value for X that will cause q to be close to p, or not. If

the former, then he is constrained in his choice for what he tells Zoe, which means

he has reduced ability to cause damage. If the latter, he partially gives away his

position. The key in designing strategies to defeat adversaries is to allow checks

to be made, like the one Zoe made by comparing q to p. The more checks, the

more rock-or-hard-place decisions the adversary must make, thereby diminishing

its influence.

The main building block of the Polytope Code is special probability distri-

butions over polytopes in real vector fields. These distribution produce random

variables like X and Y that are sent through the network. Their empirical dis-

tributions are compared at internal nodes in the network, just as Zoe does. This

allows for error detection inside the network. The special polytope structure over

the real vector field allows for the internal comparisons to be particular effective,

in a way that would not occur with probability distributions over a finite field.

1.4 Multiterminal Source Coding

1.4.1 Related Work

Multiterminal source coding was introduced by Slepian and Wolf in [40]. They

considered the situation that two separate encoders observe correlated random

variables, and each independently transmit encoded versions of their observations

to a common decoder, which attempts to recover the sources exactly, with small

probability of error. They found the remarkable result that the sum-rate—the total

communication rate from both encoders to the decoder—can be made as small as
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if a single encoder could observe both sources simultaneously and compress them

jointly. A proof of the same result of the same result was given in [41]. This

paper used the technique of random binning, whereby a random ensemble of codes

is created by placing each possible observed source sequence into bins uniformly

at random. Given a particular binning, the encoding process consists simply of

transmitting to the encoder the index of the bin containing the observed source

sequence. With high probability, the codes created by this process are good.

The notion of source coding with side information was studied in [42, 43].

These papers considered the same setup as the Slepian-Wolf problem, except now

the decoder is interested only in recovering one of the two sources. The other

source and the associated encoder provides only so-called side information, since

it is used only to help recover the target source. The description of the achievable

rate region for this problem required the use of an auxiliary random variable, which

represents a quantized or degraded version of the side information.

A similar problem in the rate-distortion framework was studied in [44]. Here,

the decoder has complete side information (i.e. uncoded), and wishes to recover a

target source, but it may accept some degradation in its source estimate, as long

as the estimate satisfies a distortion constraint. The solution of this problem gives

the trade-off between communication rate from the encoder, and distortion of the

source estimate produced at the decoder.

All the above problems involved at most two sources, but achievable strate-

gies used to solve them naturally generalize to many sources, many encoders, and

many distortion constraints. This general achievable scheme is sometimes known

as the Berger-Tung achievable scheme [45, 46]. Another common term for it—

and perhaps more descriptive—as quantize-and-bin. The idea is that each encoder
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quantizes its measured source, in a manner prescribed by an auxiliary random

variable along the lines of [42, 43]; then, the encoders use random binning, exactly

following the proof of the Slepian-Wolf result in [41]. The achievable rate-distortion

region given by this strategy has a very intuitive form, but unfortunately it is not

always optimal for multiterminal source coding problems. In [47], Korner and Mar-

ton provide a surprisingly simple example for which an achievable strategy strictly

better than Berger-Tung exists. Despite considerable effort, the most general form

of the problem remains unsolved, even for two sources. Still, a steadily growing

number of special cases have been solved.

One such special case of the multiterminal source coding problem which ad-

ditional structure is known as the CEO Problem. It was introduced for discrete

memoryless sources in [48]. In the CEO Problem (so-named because the decoder

represents a company’s CEO that has supposedly dispatched his or her employees

as encoders to gather data and report back), the decoder is interested in recover-

ing a single source with some distortion, but this source is not directly observed

by any encoder. Instead, the encoders observe noisy versions of the source, such

that the noise for each encoder is conditionally independent given the source. This

conditional independence structure of the sources comprises a clean structure that

appears to make the problem more tractable. In [48], it was found that with a large

number of encoders each observing the source through the same noisy channel, the

distortion of the estimate found at the decoder falls exponentially fast with the

sum-rate from all the sources. Moreover, they exactly characterize the optimal

error exponent. Again, the achievable strategy used is Berger-Tung.

A significant sub-class of multiterminal source coding is the quadratic Gaussian

setup. Here, sources are Gaussian and distortion constraints are quadratic. These
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assumptions tend to make problems more tractable and allow the use of powerful

tools, such as the entropy power inequality, which was originally stated by Shannon

[49] and proved in [50, 51]. For example, the complete rate-distortion region for

the two-terminal source coding problem in the quadratic Gaussian setup was found

in [52].

The quadratic Gaussian CEO Problem was introduced in [53]. In a result along

the lines of that of [48] it is shown that with many encoders measuring a noisy

version of the source with identical noise variance, the achievable distortion falls

asymptotically with the sum-rate like K/R, where R is the sum rate and K is

a constant depending only on the source characteristics. Moreover, they exactly

characterize K. The exact rate-distortion function for finite sum-rate was found

in [54]. The rate-distortion region for a finite number of sources and nonidentical

encoder measurements was discovered simultaneously in [55] and [56]. All these

results again use only the Berger-Tung strategy to prove achievability. The con-

verse arguments make heavy use of the entropy power inequality, and follow the

essential argument first proposed in [54], which is also based partially on [57].

There is a modest amount of work in the literature on source coding under

adversarial attack. Perhaps the closest commonly-studied relative is the multiple

descriptions problem, introduced with early work in [58, 59, 60]. The problem

here is that two encoders observe a single source. They must each independently

transmit encoded versions to a common decoder. However, the transmissions may

fail to arrive, so they should be designed so that each one leads to a quality

estimate, but if both arrive, an even better estimate can be produced. This problem

has elements of the idea of an attack on source coding: each encoder need to be

designed for the possibility that other encoders may fail. A significant general
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achievability result was given in [61]. This strategy has been shown to be optimal

in the case that there is no excess rate [62] and the quadratic Gaussian case [57].

More recently, [63] studied so-called robust distributed source coding. The problem

there was somewhat closer to ours: it is in effect a combination of the multiple

descriptions problem and the CEO problem. Nodes observe noisy versions of the

source, and must encode these sources in such a way that the more arrive, the

better the decoder’s estimate.

Prior versions of the work presented in Chapter 3 and 4 of this thesis has

appeared in [64, 65, 66, 67, 68].

1.4.2 Contributions

In Chapter 3 we consider the Slepian-Wolf problem, and in Chapter 4 the CEO

problem, both under adversarial attack. For the Slepian-Wolf problem—wherein

the decoder seeks to exactly recover all sources with small probability of error—we

exactly characterize the achievable rate regions for three setups:

1. A variable-rate model, in which the decoder can in real-time allocate trans-

mission rate to the encoders. Here, we place a guarantee on the sum-rate

that will be achieved, but cannot promise exactly how this rate is allocated,

because it depends on the actions of the adversary.

2. A randomized fixed-rate model, in which the rate for each encoder is fixed

beforehand, but the encoders have private randomness that is hidden from

the adversary.

3. A deterministic fixed-rate model, in which the encoders do not have private

randomness. This is the most pessimistic model, but therefore the most
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robust against powerful adversaries. Moreover, this model most closely cor-

responds to the model used in other chapters of this thesis.

For all these models, we allow a very general model of the information known to

the adversary. In particular, we assume the adversary has access to the output

of an arbitrary noisy channel, which takes as input the sources observed by the

encoders. This model allows for an adversary that knows nothing, an adversary

that knows everything, or any in between. We also allow for a very general view

of what the decoder knows about which nodes the adversary may control as well

as what information the adversary has access to.

Our achievable strategies for the Slepian-Wolf problem are generalizations of

the random binning approach of [41]. The variable-rate achievable strategy for the

first setup is the most substantially different, in that it involves numerous small

messages being sent between encoders and the decoder. After each message the

decoder chooses which encoder to hear from next, thereby allocating rate in real

time.

One peculiarity about the Slepian-Wolf problem in the presence of an adver-

sary is that it is not reasonable to expect the decoder to recover all the sources

exactly, as we can without an adversary. This is because an adversarial node may

simply choose not to transmit any useful information about its associated source.

Moreover, it may not be possible for the decoder to learn exactly which nodes are

the traitors. We therefore require only that the estimates produced by the decoder

are accurate only for honest nodes, even if it does not know which ones those are.

This allows the decoder to place a guarantee on the number of correct estimates

that it produces, but it means that the estimates are arguably not useful without

post-processing.
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This inherent difficulty with the Slepian-Wolf problem motivates our study

of the CEO problem in chapter 4. The advantage of this problem is that no

single node has a monopoly on any information about the target source, so we

can guarantee quality of the source estimate at the decoder in all cases. We study

this problem in both the discrete memoryless case, for which we generalize the

results of [48], as well the quadratic Gaussian case, for which we generalize the

results of [55, 56]. For the discrete memoryless problem, we present upper and

lower bounds on the sum-rate error exponent for many encoders with statistically

identical observations. For the quadratic Gaussian problem, we present inner and

outer bounds on the rate-distortion region for a finite number of encoders with

nonuniform measurements.

For the CEO problem, we focus only on the most pessimistic model, corre-

sponding to the deterministic fixed-rate model discussed above for the Slepian-

Wolf problem, and assuming the adversary is omniscient. Our achievable results

are derived from a unified achievable scheme for both the discrete memoryless and

quadratic Gaussian problems. Our achievable scheme for the adversarial problem

is a generalization of the non-adversarial Berger-Tung strategy, and can be ap-

plied to a similarly general form of the problem. Our outer bounds are based on

a specific type of attack by the adversary, which can be viewed as a form of the

Singleton bound [39].
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1.5 Power System Sensing and Estimation

1.5.1 Related Work

Power system state estimation was introduced by Schweppe, Wildes, and Rom in

[69]. State estimation took as input measurements of power flows taken in the

power system and produced an estimate of the voltages and phases on all busses in

the system. Ever since this first introduction of state estimation, it has been neces-

sary to deal with bad data. Traditionally, bad data were assumed to be caused by

random errors resulting from a fault in a meter and/or its attendant communica-

tion system. These errors are modeled by a change of variance in Gaussian noise,

which leads to an energy (l2) detector (see [70, 71, 72, 73, 74]). Another classical

detector as the so-called largest normalized residue (LNR) detector [69, 70], which

has the form of a test on the l∞ norm of the normalized measurement residual.

Observability is an important consideration when measuring the system state.

A system is observable only if there are enough meters so that there is no bus

whose voltage could change without having an effect on some meter. The problem

to determine whether the system is observable has been studied in [75, 76]. In [77],

a purely topological condition for observability was given.

Recently, Liu, Ning, and Reiter studied the problem that several meters are

seized by an adversary that is able to corrupt the measurements from those meters

as received by the control center [78]. This differs from previous investigations of

the problem in that the false data at various meters can be simultaneously crafted

by the adversary to defeat the state estimator, as opposed to independent errors

caused by random faults. It is observed in [78] that there exist cooperative and
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malicious attacks on meters that all known bad data techniques will fail to detect.

The authors of [78] gave a method to adjust measurements at just a few meters in

the grid in such a way that bad data detector will fail to perceive the corruption

of the data.

Another recent work that is similar to ours is by Gorinevsky, Boyd, and Poll

[79]. They study attempt to find a small number of faults in a power system by

formulating a convex problem that is likely to lead to a sparse solution. Their

work is partially inspired by the recent development of compressed sensing and l1

minimization techniques [80]. In their problem, the desired sparsity has to do with

the small number of faults they expect in the problem. In our work on adversarial

attacks, we expect a small number of adversaries in the network; therefore, a

similar approach is applicable.

Prior versions of our work on power system sensing in the presence of adver-

saries have appeared in [81, 82, 83].

1.5.2 Contributions

In Chapter 5, we present several results extending the work of [78]. We note that

the observation made therein can be made even stronger: if an adversary has the

ability to adjust the measurements from enough meters, then no algorithm at the

control center will ever be able to detect that an adjustment has been made. This

can be viewed as a fundamental limit on the ability of the classical formulation

of state estimation to handle cooperative attacks. We also show that there is a

close relationship between the attacks described in [78] and system observability.

For this reason, we refer to the attacks of [78] as unobservable attacks. This
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relationship allows us to extend the topological results of [77] to give an efficient

algorithm to calculate attacks of this nature require a small number of adversarial

meters. Our algorithm is based on the special structure of the power system, and

makes use of techniques to efficiently minimize submodular functions [84, 85, 86].

Our algorithms allows an operator of a power system to find the places in which

it is most vulnerable to these attacks.

Unobservable attacks may be executed by the adversary only if it controls

enough meters. We also study the problem in the regime that it is not able to

perform this attack. Here, we develop a heuristic that allows us to find attacks

that minimize the energy of the measurement residual, and therefore are likely to

cause the most damage. We also present a decision theoretic formulation in which

the control center attempts detect malicious data injections by an adversary. The

adversary has the freedom to choose which meters it takes control of, and what

sort of attack it performs; therefore, this detection problem cannot be formulated

as a simple hypothesis test, and the uniformly most powerful test may not exist.

We study the generalized likelihood ratio test (GLRT) for this problem. The

GLRT is not optimal in general, but it is known to perform well in practice and

its performance has shown to be close to optimal when the detector has access

to a large number of data samples [87, 88, 89]. We also find that when there is

only a single meter controlled by the adversary, the GLRT is identical to the LNR

detector [70], which provides some theoretical underpinning to this already-in-use

test.

For large systems and possible many adversaries, it is not feasibly to implement

the exact GLRT. Instead, we study a convex relaxation based on the l1 norm,

which is likely to produce sparse solutions. We perform numerical simulations that
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demonstrate that the GLRT and its convex relaxation both outperform traditional

detectors.

1.6 Organization

Chapter 2: We introduce node-based adversarial attacks on network coding. We

give our upper bound on achievable rates. We proceed to introduce Polytope Codes

through several examples, culminating in the general theory and the fundamental

properties. Then we prove that Polytope Codes achieve the capacity for a class of

planar networks. Finally, we provide an example with capacity strictly less than

the cut-set bound.

Chapter 3: We study the Slepian-Wolf problem with adversarial nodes. We

present our model, then give a simple example illustrating it and our basic tech-

nique. We go on to find the exact achievable rate region for the three cases de-

scribed above: variable rate, randomized fixed-rate, and deterministic fixed-rate.

Chapter 4: We investigate the CEO problem under adversarial attack, for

both the discrete memoryless case and the quadratic Gaussian case. We present

our unified achievable Berger-Tung-like achievable scheme. We apply it to calculate

bounds on the achievable error exponent for the discrete memoryless case and the

rate region for the quadratic Gaussian case. Then we find outer bounds for both

cases.

Chapter 5: We present our work on power system sensing and estimation, in

the presence of malicious attacks on meters. We describe unobservable attacks,

and prove the relationship between them and system observability. We go on to
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use this to find an efficient algorithm to find these attacks, and show that it is

able to find optimal attacks. We present a Bayesian formulation of the problem,

which we argue has some advantages as compared with the traditional model.

We give a decision theoretic framework for the problem, and find the find the

generalized likelihood ratio test that results from it. We perform some numerical

simulations on various detectors for these problem, including the GLRT and its

convex relaxation.

Chapter 6: We offer some concluding remarks and thoughts on future direc-

tions.
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CHAPTER 2

NODE-BASED ATTACKS ON NETWORK CODING AND

POLYTOPE CODES

2.1 Introduction

This chapter studies network coding in a network with one source and one desti-

nation when any s nodes may be controlled by an adversary. These node-based

attacks differ from the edge-based attacks first considered in [6, 7]. There, the

adversary can control any z unit-capacity links. In [6, 7], it is shown that the ca-

pacity with z adversarial links is exactly 2z less than the min-cut of the network,

which is the capacity with no adversary present. The precise result is quoted in

Sec. 2.4.

Defeating node-based attacks is fundamentally different from defeating edge-

based attacks. First, the edge problem does not immediately solve the node prob-

lem. Consider, for example, the Cockroach network, shown in Fig. 2.1. Suppose we

wish to handle any single adversarial node in the network. One simple approach

would be to apply to edge result from [6, 7]: no node controls more than two unit-

capacity edges, so we can defeat the node-based attack by using a code that can

handle an attack on any two edges. However, note that the achievable rate for this

network without an adversary is 4, so subtracting twice the number of bad edges

leaves us with an achievable rate of 0. As we will show, the actual capacity of the

Cockroach network with one traitor node is 2. Relaxing the node attack problem

to the edge attack problem is too pessimistic, and we can do better if we treat the

node problem differently.
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Node-based attacks and edge-based attacks differ in an even more significant

way. When the adversary can control any set of z unit-capacity edges, it is clear

that it should always take over the edges on the minimum cut of the network.

However, if the adversary can control any set of s nodes, it is not so obvious: one

node may have many more output edges than another, so depending on which

nodes the adversary takes over, it may control various numbers of edges. It may

face a choice between a node directly on the min-cut, but with few output edges,

and a node away from the min-cut, but with many output edges. For example, in

the Cockroach network, node 4 has only one output edge, but it is on the min-cut

(which is between nodes S, 1, 2, 3, 4, 5 and D); node 1 has two output edges, so it

is apparently more powerful, but it is also one step removed from the min-cut, and

therefore its ability to influence the destination may be limited. This uncertainty

about where a network is most vulnerable seems to make the problem hard. Indeed,

we find that linear network coding techniques fail to achieve capacity, so we resort

to nonlinear codes, and in particular Polytope Codes, to be described. We further

discuss the relationship between the edge problem and the node problem in Sec. 2.3,

in which we show that the edge problem is subsumed by the node problem.

Many achievability results in network coding have been proved using linear

codes over a finite field. In this chapter we demonstrate that linear codes are

insufficient for this problem. Moreover, we develop a class of codes called Polytope

Codes, originally introduced in [35] under the less descriptive term “bounded-linear

codes”. Polytope codes are used to prove that a cut-set bound, stated and proved

in Sec. 2.4, is tight for a certain class of networks. Polytope Codes differ from

linear codes in three ways:

1. Comparisons: A significant tool we use to defeat the adversary is for internal
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Figure 2.1: The Cockroach Network. All edges have capacity 1. With a single
traitor node, the capacity is 2, but no linear code can achieve a rate higher than
4/3. A proof of the linear capacity is given in Sec. 2.13. A capacity-achieving
linear code supplemented by nonlinear comparisons is given in Sec. 2.6, and a
capacity-achieving Polytope Code is given in Sec. 2.8.

nodes in the network to perform comparisons: they check whether their

received data could have occurred if all nodes had been honest. If not, then

a traitor must have altered one of the received values, in which case it can

be localized. The result of the comparison, a bit representing whether or

not it succeeded, can be transmitted downstream through the network. The

destination receives these comparison bits and uses them to determine who

may be the traitors, and how to decode. These comparison operations are

nonlinear, and, as we will demonstrate in Sec. 2.6, incorporating them into a

standard finite-field linear code can increase achieved rate. However, even a

code composed of a linear code supplemented by these nonlinear comparison

operations is insufficient to achieve capacity for some networks; Polytope

Codes also incorporate comparisons, but of a more sophisticated variety.

2. Joint Type Codebooks via Probability Distributions: Unlike usual linear net-

work codes, Polytope Codes make use of probability distributions. In many

ways they are more like random codes, such as those used in the standard
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proof of Shannon’s channel coding theorem, but they differ from these as

well. Each Polytope Code is governed by a joint probability distribution

on a set of random variables, one for each edge in the network. Given the

distribution, codewords are selected to be sequences with joint type exactly

equal to the distribution. Contrast this with randomly generated codewords,

which would, with high probability, have joint type close to the base distribu-

tion. Here we use an entirely deterministic process to generate the codebook:

we simply list all sequences with type equal to the given distribution, and

associate each one with a message. The advantage of this method of code

construction is that an internal node will know exactly what joint type to ex-

pect of its received sequences, because it knows the original distribution. The

comparisons discussed above consist of checking whether the observed joint

type matches the expected distribution. If it does not, then the adversary

must have influenced one of the received sequences, so it can be localized.

3. Distributions over Polytopes: The final difference between classical error con-

trol codes and Polytope Codes—and the one for which the latter are named—

comes from the nature of the probability distributions discussed above. These

distributions are uniform over the set of integer lattice points on polytopes

in real vector fields. This choice for distribution provides two useful proper-

ties. First, the entropy vector for these distributions can be easily calculated

merely from properties of the linear space in which the polytope sits. In this

sense, they share characteristics with finite-field linear codes. In fact, a Poly-

tope Code can almost always be used in place of a linear code. The second

useful property has to do with how the comparisons inside the network are

used. The distributions over polytopes are such that if enough comparisons

succeed, the adversary is forced to act as an honest node and transmit cor-
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rect information. This property will be elaborated in examples in Sec. 2.7

and Sec. 2.8, as well as stated in its most general form in Sec. 2.9.

Our main result, that the cut-set bound can be achieved using Polytope Codes

for a class of planar networks, is stated in Sec. 2.5. Planarity requires that the

graph can be embedded in a plane such that intersections between edges occur

only at nodes. This ensures that enough opportunities for comparisons are avail-

able, allowing the code to more well defeat adversarialy attacks. Before proving

the result in Sec. 2.10, we develop the theory of Polytope Codes through several

examples in Sec. 2.6, 2.7, 2.8; we also discuss some general properties of Polytope

Codes in Sec. 2.9.

In Sec. 2.11–2.13, we provide some additional comments on this problem.

Sec. 2.11 shows that the cut-set bound is not always tight, by giving an exam-

ple with a tighter bound. Sec. 2.12 includes a tighter version of the cut-set bound

than that stated in Sec. 2.4, along with an illustrating example of the need for a

more general bound. Sec. 2.13 provides a proof that linear codes are insufficient

for the Cockroach network.

2.2 Problem Formulation

Let (V,E) be an directed acyclic graph. We assume all edges are unit-capacity,

and there may be more than one edge connected the same pair of nodes. One node

in V is denoted S, the source, and one is denoted D, the destination. We wish

to determine the maximum achievable throughput from S to D when any set of s

nodes in V \ {S,D} are traitors ; i.e. they are controlled by the adversary. Given

a rate R and a block-length n, the message W is chosen at random from the set
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{1, . . . , 2nR}. Because each edge is unit capacity, it holds a value Xe ∈ {1, . . . , 2n}.

A code is be made up of three components:

1. an encoding function at the source, which produces values to place on all the

output edges given the message,

2. a coding function at each internal node i ∈ V \{S,D}, which produces values

to place on all output edges from i given the values on all input edges to i,

3. and a decoding function at the destination, which produces an estimate Ŵ

of the message given the values on all input edges.

Suppose T ⊆ V \ {S,D} with |T | = s is the set of traitors. They may subvert

the coding functions at nodes i ∈ T by placing arbitrary values on all the output

edges from these nodes. Let ZT be the set of values on these edges. For a particular

code, specifying the message W as well as ZT determines exactly the values on all

edges in the network, in addition to the destination’s estimate Ŵ . We say that a

rate R is achievable if there exists a code operating at that rate with some block-

length n such that for all messages, all sets of traitors T , and all values of ZT ,

W = Ŵ . That is, the destination always decodes correctly no matter what the

adversary does. Let the capacity C be the supremum over all achievable rates.

2.3 Node Problem vs. Edge Problem

The first major work on network coding in the presence of adversaries, [6, 7],

studied the problem in which a fixed number of unit-capacity edges are controlled

by the adversary. A more general form of the problem, in which the adversary

32

48



controls a fixed number of edges of possibly differing capacities, was studied in

[37, 38]. We argue in this section that even the latter problem is subsumed by the

node problem studied in this chapter. In fact, we prove a somewhat stronger fact,

that the node problem is equivalent to what we call the limited-node problem.

The limited-node problem is a generalization of the node problem, in which a

special subset of nodes are designated as potential traitors, and the code must only

guard against adversarial control of any s of those nodes. Certainly the limited-

node problem subsumes the all-node problem, since we may simply take the set

of potential traitors to be all nodes. Furthermore, it subsumes the unequal-edge

problem studied in [37, 38], because given an instance of the unequal-edge problem,

an equivalent all-node problem can be constructed as follows: create a new network

with every edge replaced by a pair of edges of equal capacity with a node between

them. Then limit the traitors to be only these interior nodes.

We now show that the all-node problem actually subsumes the limited-node

problem, and therefore also the unequal-edge problem. In Sec. 2.11, we construct

an instance of the limited-node problem for which the cut-set bound is not tight.

Because of the equivalence of these two problem shown in this section, this indicates

that for even the all-node problem, the cut-set bound is not tight in general.

Let (V,E) be a network under a limited-node adversarial attack, where there

may be at most s traitors constrained to be in U ⊆ V , and let C be its capacity.

We construct a sequence of all-node problems, such that finding the capacity of

these problems is enough to find that of the original limited-node problem. Let

(V (M), E(M)) be a network as follows. First make M copies of (V,E). That is,

for each i ∈ V , put i(1), . . . , i(M) into V (M), and for each edge in E, create M

copies of it connected the equivalent nodes, each with the same capacity. Then,
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for each i ∈ U , merge i(1), . . . , i(M) into a single node i∗, transferring all edges that

were previously connected to any of i(1), . . . , i(M) to i∗. Let C(M) be the all-node

capacity of (V (M), E(M)) with s traitors. For large M , this network will be such

that for any i /∈ U , a traitor taking over one of the respective nodes is almost

useless because it commands such a small fraction of the information flow through

the network. That is, we may almost assume that the traitors will only ever be

nodes in U . This is stated explicitly in the following theorem.

Theorem 1 For any M , C(M) is related to C by

1

M
C(M) ≤ C ≤ 1

M − 2s
C(M). (2.1)

Moreover,

C = lim
M→∞

1

M
C(M) (2.2)

and if C(M) can be computed to arbitrary precision for any M in finite time, then

so can C.

Proof: We first show that 1
M
C(M) ≤ C. Take any code on (V (M), E(M)) achieving

rate R when any s nodes may be traitors. We use this to construct a code on (V,E),

achieving rate R/M when any s nodes in U may be traitors. We do this by first

increasing the block-length by a factor of M , but maintaining the same number

of messages, thereby reducing the achieved rate by a factor of M . Now, since

each edge in (V,E) corresponds to M edges in (V (M), E(M)), we may place every

value transmitted on an edge in the (V (M), E(M)) code to be transmitted on the

equivalent edge in the (V,E) code. That is, all functions executed by i(1), . . . , i(M)

are now executed by i. The original code could certainly handle any s traitor nodes

in U . Hence the new code can handle any s nodes in U , since the actions performed
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by these nodes have not changed from (V (M), E(M)) to (V,E). Therefore, the new

code on (V,E) achieving rate R/M for the limited-node problem.

Now we show that C ≤ 1
M−2s

C(M). Take any code on (V,E) achieving rate

R. We will construct a code on (V (M), E(M)) achieving rate (M − 2s)R. This

direction is slightly more difficult because the new code needs to handle a greater

variety of traitors. The code on (V (M), E(M)) is composed of an outer code and

M copies of the (V,E) code running in parallel. The outer code is a (M,M − 2s)

MDS code with coded output values w1, . . . , wM . These values form the messages

for the inner codes. Since we use an MDS code, if w1, . . . , wM are reconstructed at

the destination such that no more than s are corrupted, the errors can be entirely

corrected. The jth copy of the (V,E) code is performed by i∗ for i ∈ U , and by

i(j) for i /∈ U . That is, nodes in U are each involved in all M copies of the code,

while nodes not in U are involved in only one. Because the (V,E) code is assumed

to defeat any attack on only nodes in U , if for some j, no nodes i(j) for i /∈ U

are traitors, then the message wj will be recovered correctly at the destination.

Therefore, one of the wj could be corrupted only if i(j) is a traitor for some i /∈ U .

Since there are at most s traitors, at most of the w1, . . . , wM will be corrupted, so

the outer code corrects the errors.

From (2.1), (2.2) is immediate. We can easily identify M large enough to

compute C to any desired precision.

�
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2.4 Cut-Set Upper Bound

It is shown in [6, 7] that, if an adversary controls z unit-capacity edges, the network

coding capacity reduces by 2z. This is a special case of a more general principle:

an adversary-controlled part of the network does twice as much damage in rate as

it would if that part of the network were merely removed. In particular, the fol-

lowing theorem, proved in [6, 7], gives the capacity for multicast and an adversary

controlling z unit-capacity edges:

Theorem 2 (Theorem 4 in [6] and Theorem 4 in [7]) In a multicast prob-

lem with source S and destinations D1, . . . , DK, the network coding capacity with

an adversary capable of controlling any z unit-capacity edges is

C = min
k

mincut(S;Dk)− 2z. (2.3)

Moreover, the capacity can be achieved using linear codes.

The doubling effect seen in (2.3) is for the same reason that, in a classical error

correction code, the Hamming distance between codewords must be at least twice

the number of errors that can be corrected; this is the Singleton bound [39]. We

now give a cut-set upper bound for node-based adversaries in network coding that

makes this explicit.

A cut in a network is a subset of nodes A ⊆ V containing the source but not

the destination. The cut-set upper bound on network coding without adversaries

is the sum of the capacities of all forward-facing edges [9]; that is, edges (i, j) with

i ∈ A and j /∈ A. All backward edges are ignored.

In the adversarial problem, backward edges are more of a concern. This is

because the argument relies on values on certain edges crossing the cut being un-
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affected by changes in the values on other edges crossing the cut. This is not

guaranteed in the presence of a backwards edge. We give an example of the com-

plication in Sec. 2.12. To avoid the issue, we state here Theorem 3, a simplified

cut-set bound that applies only to cuts without backward edges. This bound will

be enough to prove our main result, stated in Sec. 2.5, giving the capacity of a

certain class of networks, but for the general problem Theorem 3 can be tightened.

We expand on the issue of backwards edges, and state a tighter version of the cut-

set bound in Sec. 2.12. Unlike the problem without adversaries, we see that there

is not necessarily a single cut-set bound. Some more elaborate cut-set bounds are

found in [37, 38]. This paper studies the unequal-edge problem, but the bounds can

be readily applied to the node problem. It was originally conjectured in [37] that

even the best cut-set bound is not tight in general. In Sec. 2.11, we demonstrate

that there can be an active upper bound fundamentally unlike a cut-set bound.

The example used to demonstrate this, though it is a node adversary problem, can

be easily modified to confirm the conjecture stated in [37].

Theorem 3 Consider a cut A ⊆ V with the source S in A, the destination D not

in A, and with no backward edges; that is, there is no edge (i, j) ∈ E with i /∈ A

and j ∈ A. If there are s traitor nodes, then for any set T ⊂ V with |T | = 2s, the

following upper bound holds on the capacity of the network:

C ≤ |{(i, j) ∈ E : i ∈ A \ T, j /∈ A}|. (2.4)

Proof: Divide T into two disjoint sets T1 and T2 with |T1| = |T2| = s. Let

E1 and E2 be the sets of edges out of nodes in T1 and T2 respectively that cross

the cut; that is, edges (i, j) with i ∈ A ∩ T1 or i ∈ A ∩ T2, and j /∈ A. Let Ē be

the set of all edges crossing the cut not out of nodes in T1 or T2. Observe that the
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upper bound in (2.4) is precisely the total number of edges in Ē. Since there are

no backwards edges for the cut A, the values on edges in Ē are not functions of

the values on edges in E1 or E2. In particular, if the adversary alters a value on

an edge in E1 or E2, it cannot change the values in Ē.

Suppose (2.4) does not hold. If so, there would exist a code with block-length

n achieving a rate R higher than the right hand side of (2.4). For any set of edges

F ⊆ E, for this code, we can define a function

XF : 2nR →
∏

e∈F

2n (2.5)

such that for a message w, assuming all nodes act honestly, the values on edges

in F is given by XF (w). Since R is greater than |Ē|, there exist two messages w1

and w2 such that XĒ(w1) = XĒ(w2).

We demonstrate that it is possible for the adversary to confuse the message w1

with w2. Suppose w1 were the true message, and the traitors are T1. The traitors

replace the messages going along edges in E1 with XE1(w2). If there are edges

out of nodes in T1 that are not in E1—i.e. they do not cross the cut—the traitors

do not alter the messages on these edges from what would be sent if they were

honest. Thus, the values sent along edges in Ē is given by XĒ(w1). Now suppose

w2 were the true message, and the traitors are T2. They now replace the messages

going along edges in E2 with XE2(w1), again leaving all other edges alone, meaning

that the values on Ē are XĒ(w2) = XĒ(w1). Note that in both these cases, the

values on E1 are XE1(w2), the values on E2 are XE2(w1), and the values on Ē are

XĒ(w1). This comprises all edges crossing the cut, so the destination receives the

same values under each case; therefore it cannot differentiate w1 from w2. �

We illustrate the use of Theorem 3 on the Cockroach network, reproduced in

Fig. 2.2, with a single adversary node. To apply the bound, we choose a cut A
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Figure 2.2: The Cockroach Network. All edges have capacity 1. With one traitor,
the cut-set bound of Theorem 3 gives an upper bound on capacity of 2 by setting
A = {S, 1, 2, 3} and T = {1, 2}.

and a set T with |T | = 2s = 2, since we consider a single traitor node. Take

A = {S, 1, 2, 3, 4, 5}, and T = {1, 4}. Four edges cross the cut, but the only ones

not out of nodes T are (3, D) and (5, D), so we may apply Theorem 3 to give an

upper bound on capacity of 2. Alternatively, we could take A = {S, 1, 2, 3} and

T = {1, 2}, to give again an upper bound of 2. Note that there are 6 edges crossing

this second cut, even though the cut-set bound is the same. It is not hard to see

that 2 is the smallest upper bound given by Theorem 3 for the capacity of the

Cockroach network. In fact, rate 2 is achievable, as will be shown in Sec. 2.6 using

a linear code supplemented by comparison operations, and again in Sec. 2.8 using

a Polytope Code.

2.5 Capacity of A Class of Planar Networks

Theorem 4 Let (V,E) be a network with the following properties:

1. It is planar.
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2. No node other than the source has more than two unit-capacity output edges.

3. No node other than the source has more output edges than input edges.

If s = 1, the cut-set bound given by Theorem 3 is tight for this network.

Polytope Codes are used to prove achievability for this theorem. The complete

proof is given in Sec. 2.10, but first we develop the theory of Polytope Codes by

means of several examples in Sec. 2.6–2.8 and general properties in Sec. 2.9.

Perhaps the most interesting condition in the statement of Theorem 4 is the

planarity condition. Recall that a graph is said to be embedded in a surface (usually

a two-dimensional manifold) when it is drawn in this surface so that no two edges

intersect. A graph is planar if it can be embedded in the plane [90].

2.6 A Linear Code with Comparisons for the Cockroach

Network

The Cockroach network satisfies the conditions of Theorem 4. Fig 2.1 shows a

plane embedding with both S and D on the exterior, and the second condition is

easily seen to be satisfied. Therefore, since the smallest cut-set bound given by

Theorem 3 for a single traitor node is 2, as we have discussed, Theorem 4 claims

that the capacity of the Cockroach network is 2. In this section, we present a

capacity-achieving code for the Cockroach network that is a linear code over a

finite-field supplemented by nonlinear comparisons. This illustrates the usefulness

of comparisons in defeating adversaries against network coding. Before doing so, we
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provide an intuitive argument that linear codes are insufficient. A more technical

proof that the linear capacity is in fact 4/3 is given in Sec. 2.13.

Is it possible to construct a linear code achieving rate 2 for the Cockroach

network? We know from the Singleton bound-type argument—the argument at

the heart of the proof of Theorem 3—that, in order to defeat a single traitor node,

if we take out everything controlled by two nodes, the destination must be able to

decode from whatever remains. Suppose we take out nodes 2 and 3. These nodes

certainly control the values on (5, D) and (3, D), so if we hope to achieve rate 2,

the values on (1, D) and (4, D) must be uncorruptable by nodes 2 and 3. Edge

(1, D) is not a problem, but consider (4, D). With a linear code, the value on this

edge is a linear combination of the values on (1, 4) and (2, 4). In order to keep

the value on (4, D) uncorruptable by node 2, the coefficient used to construct the

value on (4, D) from (2, 4) must be zero. In other words, the value on (1, 4) should

be merely forwarded to (4, D). By a symmetric argument removing nodes 1 and 2,

the value on (3, 5) should be forwarded to (5, D). But now we can remove nodes

1 and 3, and control everything received by the destination. Therefore no linear

code can successfully achieve rate 2.

This argument does not rigorously show that the linear capacity is less than 2,

because it shows only that a linear code cannot achieve exactly rate 2, but it does

not bound the achievable rate with a linear code away from 2. However, it is meant

to be an intuitive explanation for the limitations of linear codes for this problem,

as compared with the successful nonlinear codes that we will subsequently present.

The complete proof that the linear capacity is 4/3 is given in Sec. 2.13.

We now introduce a nonlinear code to achieve the capacity of 2. We work in

the finite field of p elements. Let the message w be a 2k-length vector split into
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Figure 2.3: A nonlinear code for the Cockroach Network achieving the capacity of
2.

two k-length vectors x and y. We will use a block length large enough to place

one of 2pk values on each link. In particular, enough to place on a link some linear

combination of x and y plus one additional bit. For large enough k, this extra bit

becomes insignificant, so we still achieve a rate of 2.

The scheme is shown in Figure 2.3. Node 4 receives the vector y from both 1

and 2. It forwards one of these copies to D (it does not matter which). In addition,

it performs a nonlinear comparison between the two received copies of y, resulting

an one additional bit comprised of one of the special symbols = or 6=. If the two

received copies of y agree, it forwards =, otherwise it sends 6=. The link (4, D) can

accommodate this, since it may have up to 2pk messages placed on it. Node 5 does

the same with its two copies of the vector x+ y.

The destination’s decoding strategy depends on which of the two comparison

bits sent from nodes 4 and 5 are = or 6=, as follows:

• If the bit from node 4 is 6= but the bit from 5 is =, then the traitor must be

either node 1, 2, or 4. In any case, the vector x− y received from node 3 is

certainly trustworthy. However, x+ y is trustworthy as well, because even if
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node 2 is the traitor, its transmission must have matched whatever was sent

by node 3, because if not node 5 would have transmitted 6=. Since it did not,

the destination can trust both x+ y and x− y, from which it can decode the

message w = (x, y).

• If the message from 5 is 6= but the message from 4 is =, then we are in the

symmetric situation and can reliably decode w from x and y.

• If both the messages from 4 and 5 are 6=, then the traitor must be node 2,

in which case x and x− y are trustworthy, so the destination can decode w.

• If both messages are =, then the destination cannot eliminate any node as

a possible traitor. However, at most one of x, y, x+ y, x − y can have been

corrupted by the traitor, because no node controls more than one of the

vectors received at the destination. For instance, if node 1 is the traitor, it

may choose whatever it wants for x, and the destination would never know.

However, node 1 cannot impact the value of y without inducing a 6=, because

its transmission to node 4 is verified against that from node 2. Similarly,

node 3 controls x− y but not x+ y. Nodes 4 and 5 control only y and x+ y

respectively. Node 2 controls nothing, because both y and x+ y are checked

against other transmissions. Therefore, if the destination can find three of

x, y, x + y, x − y that all agree on the message w, then this message must

be the truth because only one of them could be corrupted, and w can be

decoded from the other two. Conversely, there must be a group of three of

x, y, x+y, x+2y that agree, because at most one has been corrupted. Hence,

the destination can always decode w.

Even though our general proof of Theorem 4 uses a Polytope Code, which differs

significantly from this one, the manner in which the comparisons comes into play is
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essentially the same. The key insight is to consider the code from the perspective

of the traitor. Suppose it is node 1, and consider the choice of what value for y

to send along edge (1, 4). If it sends a false value for y, then the comparison at

node 4 will fail, which will lead the destination to consider the upper part of the

network suspect, and thereby ignore all values influenced by node 1. The only

other choice for node 1 is to cause the comparison at node 4 to succeed; but this

requires sending the true value of y, which means it has no hope to corrupt the

decoding process. This is the general principle that makes our codes work: force

the traitor to make a choice between acting like an honest node, or acting otherwise

and thereby giving away its position.

We make one further note on this code, having to do with why the specific

approach used here for the Cockroach network fails on the more general problem.

Observe that in order to make an effective comparison, the values sent along edges

(1, 4) and (2, 4) needed to be exactly the same. If they had been independent

vectors, no comparison could be useful. This highly constrains the construction of

the code, and even though it succeeds for this network, it fails for others, such as

the Caterpillar network, to be introduced in the next section. The advantage of

the Polytope Code is that it deconstrains the types of values that must be available

in order to form a useful comparison; in fact, it becomes possible to have useful

comparisons between nearly independent variables, which is not possible with a

code built on a finite-field.
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Figure 2.4: The Caterpillar Network. One node may be a traitor, but only one of
the black nodes: nodes 1–4.

2.7 An Example Polytope Code: The Caterpillar Network

The Caterpillar Network is shown in Figure 2.4. We consider a slightly different

version of the node-based Byzantine attack on this network: at most one node

may be a traitor, but only nodes 1–4. This network is not in the class defined in

the statement of Theorem 4, but we introduce it in order to motivate the Polytope

Code.

Even though this problem differs from the one defined earlier in that not every

node in the network may be a traitor, it is easy to see that we may still apply the

cut-set bound of Theorem 3 as long as we take the set T to be a subset of the

allowable traitors. If we apply Theorem 3 with A = {S, 1, 2, 3, 4} and T = {1, 2},

we find that the capacity of this network is no more than 2. As we will show, the

capacity is 2.

Before we demonstrate how rate 2 is achieved, consider what is required to do

so for this network. Of the four values on the edges (1, 5), (2, 6), (3, 7), (4, 8), one

may be corrupted by the adversary. This means that these four values must form a

(4, 2) MDS code. That is, given any uncorrupted pair of these four values, it must
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be possible to decode the message exactly. Since each edge has capacity 1, in order

to achieve rate 2, the values on each pair of edges must be independent, or nearly

independent. For example, we could take the message to be composed of two

elements x, y from a finite field, and transmit on these four edges x, y, x+ y, x− y.

However, as we will argue, this choice does not succeed.

Now consider the two edges (9, D) and (10, D). As these are the only edges

incident to the destination, to achieve rate 2, both must hold values guaranteed to

be uncorrupted by the traitor. We may assume that nodes 5–8 forward whatever

they receive on their incoming edges to all their outgoing edges, so node 10 receives

all four values sent from nodes 1–4. From these, it can decode the entire message, so

it is not a problem to construct a trustworthy value to send along (10, D). However,

node 9 has access to only three of the four values sent from nodes 1–4, from which it

is not obvious how to construct a trustworthy value. The key problem in designing

a successful code is to design the values placed on edges (1, 5), (2, 6), (3, 7) to be

pairwise independent, but such that if one value is corrupted, it is always possible

to construct a trustworthy value to transmit on (9, D). This is impossible to

do using a finite field code. For example, suppose if node 9 receives values for

x, y, x+ y, one of which may be corrupted by the traitor. If the linear constraint

among these three values does not hold—that is, if the received value for x + y

does not match the sum of the value for x and the value for y—then any of the

three values may be the incorrect one. Therefore, from node 9’s perspective, any

of nodes 1, 2, or 3 could be the traitor. In order to produce a trustworthy symbol,

it must rule out at least one node as a possible traitor. If, for example, it could

determine that the traitor was either node 1 or 2 but not 3, then the value sent

along (3, 7) could be forwarded to (9, D) with a guarantee of correctness. Sending

x, y, x+ y along the edges (1, 5), (2, 6), (3, 7) does not allow this. In fact, sending
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any three elements of a finite field, subject by a single linear constraint, cannot

work, but a Polytope Code can.

2.7.1 Coding Strategy

We now begin to describe a capacity-achieving Polytope Code for the Caterpillar

network. We do so first by describing how the code is built out of a probability

distribution, and the properties we might like this probability distribution to have.

Subsequently, we give an explicit construction for a probability distribution derived

from a polytope over a real vector field, and show that it has the desired properties.

Let X, Y, Z,W be jointly distributed random variables on the same finite alpha-

bet X. Assume all probabilities on these random variables are rational. For a block

length n that is a multiple of the lowest common denominator of the joint distribu-

tion of X, Y, Z,W , we may consider the set of all joint sequences (xnynznwn) with

joint type exactly equal to this joint distribution. Denote this set T n
p (XY ZW ).

We know from the theory of types that

|T n
p (XY ZW )| ≥ 1

(n+ 1)|X|4
2nH(XY ZW ). (2.6)

Our coding strategy will be to associate each element of T n
p (XY ZW ) with a

distinct message. Given the message, we find the associated four sequences

xn, yn, zn, wn, and transmit them on the four edges out of nodes 1,2,3,4 respec-

tively. Doing this requires placing a sequence in Xn on each edge. Therefore the

rate of this code is

log |T n
p (XY ZW )|
n log |X| ≥ H(XY ZW )

log |X| − |X|4 log(n+ 1)

n log |X| . (2.7)

Note that for sufficiently large n, we may operate at a rate arbitrarily close to

H(XY ZW )
log |X|

.
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Because of the adversary, the actual sequences sent out of nodes 1–4 may dif-

fer from what is sent out of the source. Let x̃n, ỹn, z̃n, w̃n be the four sequences

as they actually appear on the four edges; at most one of these may differ from

xn, yn, zn, wn. We may now define random variables X̃, Ỹ , Z̃, W̃ to have joint dis-

tribution equal to the joint type of (x̃n, ỹn, z̃n, w̃n). This is a formal definition; these

variables do not actually exist, but nodes that have access to these sequences can

construct the related random variables. For example, node 9 observes x̃n, ỹn, z̃n,

so it knows exactly the joint distribution of X̃, Ỹ , Z̃. The advantage of this coding

strategy is that node 9 can now check whether the distribution of these random

variables matches that of X, Y, Z. If the distributions differ, a traitor must be

present.

The sequences placed on the edges out of nodes 1–4 must be such that nodes

9 and 10 can successfully find trustworthy values to place on edges (9, D) and

(10, D). In order for this to be possible, any two of X, Y, Z,W must determine the

others. Moreover, as we have discussed, the significant difficulty is allowing node

9 to narrow down the list of possible traitors to just two out of nodes 1–3. The

following property on the variables allows this.

Property 1 The distribution of (X, Y, Z) is such that for any three random vari-

ables (X̃, Ỹ , Z̃) satisfying

(X̃, Ỹ ) ∼ (X, Y ) (2.8)

(X̃, Z̃) ∼ (X,Z) (2.9)

(Ỹ , Z̃) ∼ (Y, Z) (2.10)

the following holds:

(X̃, Ỹ , Z̃) ∼ (X, Y, Z). (2.11)
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Suppose we have random variables X, Y, Z,W such that (X, Y, Z) satisfy Prop-

erty 1. We will show in Sec. 2.7.2 that such a set of random variables exists. The

process at node 9 to transmit a message to the destination is as follows. Node 9

observes X̃, Ỹ , Z̃. If the joint distribution of these three variables matches that of

(X, Y, Z), then all three sequences x̃n, ỹn, z̃n are trustworthy, because if a traitor is

among nodes 1–3, it must have transmitted the true value of its output sequence,

or else the empirical type would not match, due to the fact that any two of the four

variables determine the other two. Therefore, node 9 forwards x̃n to the destina-

tion, confident that it is correct. Meanwhile, node 10 can also observe X̃, Ỹ , Z̃, and

so it forwards ỹn to the destination. If the two distributions are different, then by

Property 1, one of (2.8), (2.9), or (2.10) must not hold. Suppose, for example, that

(X̃, Ỹ ) 6∼ (X, Y ). If both node 1 and 2 were honest, then by our code construction,

(2.8) would hold. Since it did not, one of nodes 1 or 2 must be the traitor. We

have thereby succeeded in reducing the number of nodes that may be the traitor

to two, so node 9 may forward z̃n to the destination with confidence. Similarly,

whichever pairwise distribution does not match, node 9 can always forward the

sequence not involved in the mismatch. Meanwhile, node 10 may forward w̃n to

the destination, since in any case the traitor has been localized to nodes 1–3. The

destination always receives two of the four sequences, both guaranteed correct;

therefore it may decode.

2.7.2 The Polytope Distribution

All that remains to prove that rate 2 can be achieved for the Caterpillar network is

to show that there exists variablesX, Y, Z,W such that any two variables determine

the other two, satisfying Property 1, and such that H(XY ZW )
log |X|

= 2. In fact, this
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Table 2.1: A simple distribution satisfying Property 1.

x y z Pr(X = x, Y = y, Z = z)
0 0 0 0
0 0 1 1/3
0 1 0 1/3
0 1 1 0
1 0 0 1/3
1 0 1 0
1 1 0 0
1 1 1 0

is not quite possible. If the entropy requirement holds exactly, then X, Y, Z,W

must be pairwise independent, and if so Property 1 cannot hold, because we can

take X̃, Ỹ , Z̃ to be jointly independent with X̃ ∼ X , Ỹ ∼ Y , and Z̃ ∼ Z. This

satisfies (2.8)–(2.10) but not (2.11). In fact, we need only show that a suitable

set of variables exists such that H(XY ZW )
log |X|

≥ 2 − ε for arbitrarily ε > 0. This is

possible, and indicates that the set of distributions satisfying Property 1 is not a

topologically closed set.

The most unusual aspect of the Polytope Code is Property 1 and its gener-

alization, to be stated as Theorem 5 in Sec. 2.9. Therefore, before constructing

a distribution used to achieve rate 2 for the Caterpillar network, we illustrate in

Table 2.1 a very simple distribution on three binary variables variables satisfy-

ing Property 1. This distribution is only on X, Y, Z; to simplify we momentarily

leave out W , because it is not involved in Property 1. We encourage the reader

to manually verify Property 1 for this distribution. Observe that X, Y, Z given in

Table 2.1 may be alternatively expressed as being uniformly distributed on the set

of x, y, z ∈ {0, 1} satisfying x+ y+ z = 1. This set is a polytope, which motivates

the more general construction of the distribution to follow.

We now construct the distribution used to achieve rate 2 for the Caterpillar
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network. For any positive integer k, consider the set of x, y, z, w ∈ {−k, . . . , k}

satisfying

x+ y + z = 0 (2.12)

3x− y + 2w = 0. (2.13)

This is the set of integer lattice points in a polytope. Let X, Y, Z,W be uniform

over these points. Observe first that this distribution satisfies the requirement that

any two variables determine the others. The region of (x, y) pairs with positive

probability is shown in Figure 2.5. Note that even though the subspace defined

by (2.12)–(2.13) projected onto the (x, y) plane is two-dimensional, X and Y are

not statistically independent, because the boundedness of Z and W requires that

X and Y satisfy certain linear inequalities. Nevertheless, the area of the polygon

shown in Figure 2.5 grows as O(k2). Hence the rate of the code resulting from this

distribution is

logH(XY ZW )

log |X| =
logO(k2)

log(2k + 1)
. (2.14)

For large k, this can be made arbitrarily close to 2. When k is large, any pair of

the four variables are nearly statistically independent, in that their joint entropy

is close to the sum of their individual entropies. We have therefore constructed

something like a (4, 2) MDS code. In fact, if we reinterpret (2.12)–(2.13) as con-

straints on elements x, y, z, w of a finite field, the resulting finite subspace would be

exactly a (4, 2) MDS code. This illustrates a general principle of Polytope Codes:

any code construction on a finite field can be immediately used to construct a

Polytope Code, and many of the properties of the original code will hold over.

The resulting code will be substantially harder to implement, in that it involves

much longer block-lengths, and more complicated coding functions, but it allows

properties like Property 1 to hold.
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Figure 2.5: An example polytope projected into the (x, y) plane.

All that remains is to verify Property 1 on the polytope distribution. Assuming

X̃, Ỹ , Z̃ satisfy (2.8)–(2.10), we may write

E
[
(X̃ + Ỹ + Z̃)2

]
= E

[
X̃2 + Ỹ 2 + Z̃2 + 2X̃Ỹ + 2X̃Z̃ + 2Ỹ Z̃

]
(2.15)

= E
[
X2 + Y 2 + Z2 + 2XY + 2XZ + 2Y Z

]
(2.16)

= E
[
(X + Y + Z)2] (2.17)

= 0 (2.18)

where (2.16) holds from (2.8)–(2.10), and because each term in the some involves

at most two of the three variables; and (2.18) holds because X + Y + Z = 0 by

construction. Now we may write

(X̃, Ỹ , Z̃) = (X̃, Ỹ ,−X̃ − Ỹ ) (2.19)

∼ (X, Y,−X − Y ) (2.20)

= (X, Y, Z) (2.21)

where (2.20) holds by (2.8). This concludes the proof of Property 1.

Observe that the linear constraint X + Y + Z = 0 was in no way special; the

proof could work just as well under any linear constraint with nonzero coefficients

for all three variables. This completes the proof of correctness for the Polytope

Code for the Caterpillar network.
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2.8 A Polytope Code for the Cockroach Network

We return now to the Cockroach network, and demonstrate a capacity-achieving

Polytope Code for it. We do this not to find the capacity for the network, because

we have already done so with the simpler code in Sec. 2.6, but to illustrate a

Polytope Code on a network satisfying the conditions of Theorem 4, which are

somewhat different from the Caterpillar network.

In Sec. 2.6, we illustrated how performing comparisons and transmitting com-

parison bits through the network can help defeat traitors. In Sec. 2.7, we illustrated

how a code can be built out a distribution on a polytope, and how a special prop-

erty of that distribution comes into play in the operation of the code. To build a

Polytope Code for the Cockroach network, we combine these two ideas: the pri-

mary data sent through the network comes from the distribution on a polytope,

but then comparisons are performed in the network in order to localize the traitor.

The first step in constructing a Polytope Code is to describe a distribution over

a polytope. That is, we define a linear subspace in a real vector field, and take a

uniform distribution over the polytope defined by the set of vectors with entries

in {−k, . . . , k} for some integer k. The nature of this distribution depends on the

characteristics of the linear subspace. For our code for the Cockroach network, we

need one that is the equivalent of a (6, 2) MDS code. That is, the linear subspace

sits in R
6, has dimension 2, and is defined by four constraints such that any two

variables determine the others. One choice for the subspace, for example, would
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be the set of (a, b, c, d, e, f) satisfying

a+ b+ c = 0 (2.22)

a− b+ d = 0 (2.23)

a+ 2b+ e = 0 (2.24)

2a+ b+ f = 0. (2.25)

Let the random variables A,B,C,D,E, F have joint distribution uniformly dis-

tributed over the polytope defined by (2.22)–(2.25) and a, b, c, d, e, f ∈ {−k, . . . , k}.

By a similar argument to that in Sec. 2.7, for large k,

H(ABCDEF )

log(2k + 1)
≈ 2. (2.26)

We choose a block length n and associate each message with a joint sequence

(anbncndnenfn) with joint type exactly equal to the distribution of the six variables.

For large n and k, we may place one sequence an–fn on each unit capacity edge

in the network and operate at rate 2. These six sequences are generated at the

source and then routed through the network as shown in Fig. 2.6. For convenience,

the figure refers to the variables as scalars instead of vectors, but we always mean

them to be sequences.

As in Sec. 2.7, we define Ã, B̃, C̃, D̃, Ẽ, F̃ to have joint distribution equal to

the type of the six sequences an they actually appear in the network, which may

differ from the sequences sent by the source because of the adversary. In addition to

forwarding one sequence as shown in Fig. 2.6, nodes 4 and 5 perform more elaborate

operations. In particular, they compare the types of their received sequences with

the original distribution. For example, node 4 receives the two sequences bn and

cn, from which it can construct B̃ and C̃. It checks whether the joint distribution

of (B̃, C̃) matches that of (B,C), and forwards a single bit relaying whether they
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Figure 2.6: A capacity-achieving Polytope Code for the Cockroach Network.

agree along the edge (4, D) in addition to the sequence cn. This single bit costs

asymptotically negligible rate, so it has no effect on the achieved rate of the code

for large n and k. Node 5 performs a similar action, comparing the distribution of

(D̃, Ẽ) with that of (D,E), and transmitting a comparison bit to the destination.

We now describe the decoding operation at the destination. The first step is

to compile a list of possible traitors. We denote this list L ⊆ {1, . . . , 5}. The

destination does this in the following way. Since the code is entirely known, with

no randomness, it can determine whether all its received data could be induced

if each node were the traitor. That is, it considers each possible message, each

possible traitor, and each possible set of values on the output edges of that traitor.

Any given combination of these three things gives a deterministic set of values

received at the destination, which may be compared to the set of values that the

destination has in fact received. If a node i is such that it could have been the

traitor and induced the set of values received at the destination, for any message

and any action by node i, then i is put onto L. This process ensures that the

true traitor, even though it may not be known by the destination, is surely in L.

Note that this procedure could in principle be done for any code, not necessarily
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a Polytope Code.

The next step in the decoding process is to use L to decide from which of

the four symbols available at the destination to decode. Since any pair of the six

original symbols contain all the information in the message, if at least two of the

four symbols a, c, d, f can be determined to be trustworthy by the destination, then

it can decode. The destination discards any symbol that was touched by all nodes

in L, and decodes from the rest. For example, if L = {2}, then the destination

discards c, d and decodes from a, f . If L = {2, 4}, the destination discards just

c—because it is the only symbol touched by both nodes 2 and 4—and decodes

from a, d, f . If L = {1, . . . , 5}, then it discards no symbols and decodes from all

four.

The prove the correctness of this code, we must show that the destination never

decodes from a symbol that was altered by the traitor. This is easy to see if |L| = 1,

because in this case the destination knows exactly which node is the traitor, and

it simply discards all symbols that may have been influenced by this node. Since

no node touches more than two of the symbols available at the destination, there

are always at least two remaining from which to decode.

More complicated is when |L| ≥ 2. In this case, the decoding process, as de-

scribed above, sometimes requires the destination to decode from symbols touched

by the traitor. For example, suppose node 2 were the traitor, and L = {2, 4}. The

destination discards c, since it is touched by both nodes 2 and 4, but it decodes

from the other available symbols: a, d, f . In particular, the destination uses d to

decode, even though it is touched by node 2. Therefore, to prove correctness we

must show that it was impossible for node 2 to have transmitted to node 5 any-

thing but the true value of d. What we use to prove this is the fact that L contains
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node 4. That means that node 2 must have acted in a way such that it appears to

the destination that node 4 could be the traitor. This induces constraints on the

behavior of node 2. For instance, the comparison that occurs at node 5 between

d and e must succeed. If it did not, then the destination would receive a bit indi-

cating a failed comparison from node 5. This precludes node 4 being the traitor,

because if it were, it could not have induced this failed comparison bit. Therefore

the distribution of (D̃, Ẽ) must be identical to that of (D,E). This constitutes a

constraint on node 2 in its transmission of d. Moreover, (D̃, F̃ ) ∼ (D,F ), because

the destination may observe d and f , so it could detect a difference between these

two distributions if it existed. Since both are untouched by node 4, if the distri-

butions did not match then node 4 would not be placed on L. Finally, we have

that (Ẽ, F̃ ∼ (E, F ). This holds simply because neither e nor f are touched by

the traitor node 2. Summarizing, we have

(D̃, Ẽ) ∼ (D,E), (2.27)

(D̃, F̃ ) ∼ (D,F ), (2.28)

(Ẽ, F̃ ) ∼ (E, F ). (2.29)

Given these three conditions, we apply Property 1 to conclude that (D̃, Ẽ, F̃ ) ∼

(D,E, F ). We may do this because, as we argued in Sec. 2.7, Property 1 holds

for for any three variables in a polytope subject to a single linear constraint with

nonzero coefficients one each one. Since we have constructed the 6 variables to be

a (6, 2) MDS code, this is true here (e.g. in the space defined by (2.22)–(2.25), the

three variables D,E, F are subject to D + E − F = 0). Since e and f together

specify the entire message, in order for this three-way distribution to match, the

only choice for d is the true value of d. This concludes the proof for this case,

because we have shown that in order for node 2 to act in a way so as to cause

L = {2, 4}, it cannot have altered the value of d at all. Therefore the destination
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is justified it using it to decode the message.

The above analysis holds for any L containing {2, 4}. That is, if node 2 is the

traitor, and 4 ∈ L, then node 2 cannot corrupt d. It is enough to prove correctness

of the code to prove a similar fact for every pair of nodes. In particular, we wish

to show that if node i is the traitor, and node j ∈ L, then node i can only corrupt

values also touched by node j. This implies that if node i is the traitor, it cannot

corrupt any symbol not touched by any node in L. Therefore the destination is

justified in only discarding symbols touched by every node in L.

Moreover, it is enough to consider each unordered pair only once. For example,

as we have already proven this fact for i = 2 and j = 4, we do not need to perform

a complete proof for i = 4 and j = 2. This is justified as follows. Suppose node 4 is

the traitor and 2 ∈ L. We know from the above argument that when node 2 is the

traitor and 4 ∈ L, d is uncorrupted, meaning (Ã, D̃, F̃ ) ∼ (A,D, F ). This means

that if (Ã, D̃, F̃ ) 6∼ (A,D, F ) and 4 ∈ L, then 2 /∈ L. Hence, if 2, 4 ∈ L, then

(Ã, D̃, F̃ ) ∼ (A,D, F ). Since when node 4 is the traitor, a and f are uncorrupted,

this implies that the only choice for d transmitted by is the true value of d.

We now complete the proof of correctness of the proposed Polytope Code for

the Cockroach network by considering all unordered pairs of potential traitors in

the network:

(1, 2) Suppose node 2 is the traitor and 1 ∈ L. Since both these nodes share no

symbols, we must show that neither c nor d can be corrupted by node 2. We
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have

(Ã, B̃, Ẽ, F̃ ) ∼ (A,B,E, F ), (2.30)

(D̃, Ẽ) ∼ (D,E), (2.31)

(C̃, D̃, F̃ ) ∼ (C,D, F ), (2.32)

where (2.30) follows because these symbols are not touched by node 2, (2.31)

follows because the comparison at node 5 must succeed, and (2.32) follows

because node 1 would be discarded as a possible traitor if (C̃, D̃, F̃ ) did not

match at the destination. We may apply Property 1 on D,E, F to conclude

that (D̃, Ẽ, F̃ ) ∼ (D,E, F ), therefore d cannot be corrupted. That c cannot

be corrupted follows from (2.32).

(1, 3) Suppose node 1 is the traitor and 3 ∈ L. We must show that node 1 cannot

corrupt a. We have that (Ã, C̃, D̃) ∼ (A,C,D), because these three symbols

are not touched by node 3, and are available at the destination. Since c and

d determine the message, this single constraint is enough to conclude that

node 1 cannot corrupt a. This illustrates a more general principle: when

considering the pair of nodes (i, j), if the number of symbols available at the

destination untouched by both i or j is at least as large as the rate of the

code, we may trivially conclude that no symbols can be corrupted. In fact,

this principle works even for finite-field linear codes.

(1, 4): Follows exactly as (1, 3).

(1, 5): Follows exactly as (1, 3).

(2, 3): Follows exactly as (1, 2).

(2, 4): Proof above.

(2, 5): Follows exactly as (2, 5).
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(3, 4): Follows exactly as (1, 3).

(3, 5): Follows exactly as (1, 3).

(4, 5): Follows exactly as (1, 3).

2.9 The Polytope Code

We now describe the general structure of Polytope Codes and state their important

properties. Given a matrix F ∈ Z
u×m, consider the polytope

Pk =
{
x ∈ Z

m : Fx = 0, |xi| ≤ k for i = 1, . . . , m
}
. (2.33)

We may also describe this polytope in terms of a matrix K whose columns form a

basis for the null-space of F . Let X be an m-dimensional random vector uniformly

distributed over Pk. Take n to be a multiple of the least common denominator

of the distribution of X and let T n
p (X) be the set of sequences xn with joint type

exactly equal to this distribution. In a Polytope Code, each message is associated

with an element of T n
p (X). By the theory of types, the number of elements in this

set is at least 2n(H(X)−ε) for any ε > 0 and sufficiently large n. Given a message

and the corresponding sequence xn, each edge in the network holds a sequence

xni for some i = 1, . . . , m. As we have seen in the example Polytope Codes in

Sec. 2.7 and 2.8, the joint entropies of p for large k can be calculated just from the

properties of the linear subspace defined by F . The following lemma states this

property in general.

Lemma 1 For any S ⊆ {1, . . . , m}

lim
k→∞

H(XS)

log k
= rank(KS) (2.34)
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where KS is the matrix made up of the rows of K corresponding to the elements

of S.

Proof: For any S ⊂ {1, . . . , m}, let Pk(XS) be the projection of Pk onto the

subspace made up of dimensions S. The number of elements in Pk is Θ(krank(KS)).

That is, there exist constants c1 and c2 such that for sufficiently large k

c1k
rank(KS) ≤ |Pk(XS)| ≤ c2k

rank(KS). (2.35)

For S = {1, . . . , m}, because X is defined to be uniform on Pk, (2.35) gives

lim
k→∞

H(X)

log k
= lim

k→∞

log |Pk|
log k

= rank(K). (2.36)

Moreover, by the uniform bound

lim
k→∞

H(XS)

log k
≤ rank(KS). (2.37)

For any S ⊂ {1, . . . , m}, let T ⊂ {1, . . . , m} be a minimal set of elements such

that rank(KS,T ) = rank(K); i.e. such that XS,T completely specify X under the

constraint FX = 0. Note that rank(KT ) = rank(K)− rank(KS). Hence

lim
k→∞

H(XS)

log k
= lim

k→∞

H(XS,T )

log k
− H(XT |XS)

log k
(2.38)

≥ lim
k→∞

H(X)

log k
− H(XT )

log k
(2.39)

≥ rank(K)− rank(T ) (2.40)

= rank(KS). (2.41)

Combining (2.37) with (2.41) completes the proof �

Recall that in a linear code operating over the finite field F, we may express

the elements on the edges in a network x ∈ F
m as a linear combination of the

message x = Kw, where K is a linear transformation over the finite field, and w
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is the message vector. Taking a uniform distribution on w imposes a distribution

on X satisfying

H(XS) = rank(KS) log |F|. (2.42)

This differs from (2.34) only by a constant factor, and also that (2.34) holds only in

the limit of large k. Hence, Polytope Codes achieve a similar set of entropy profiles

as standard linear codes. They may not be identical, because interpreting a matrix

KS as having integer values as opposed to values from a finite field may cause its

rank to change. However, the rank when interpreted as having integer values can

never be less than when interpreted as having finite field values, because any linear

equality on the integers will hold on a finite field, but not vice versa. The matrix

KS could represent, for example, the source-to-destination linear transformation

in a code, so its rank is exactly the achieved rate. Therefore, in fact, the Polytope

Code always achieves at least as high a rate as the identical linear code. Often,

when designing linear codes, the field size must be made sufficiently large before

the code works; here, sending k to infinity serves much the same purpose, albiet

in an asymptotic way.

In Sec. 2.7 and 2.8, we saw that Property 1 played an important role in the

functionality of the Polytope Codes. The following theorem states the more general

version of this property. It compromises the major property that Polytope Codes

possess and linear codes do not.

Theorem 5 (Fundamental Property of Polytope Codes) Let X ∈ R
m be a

random vector satisfying FX = 0. Suppose a second random vector X̃ ∈ R
m

satisfies the following L constraints:

AlX̃ ∼ AlX for l = 1, . . . , L (2.43)
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where Al ∈ R
ul×m. The two vectors are equal in distribution if the following prop-

erties on F and the Al hold:

1. There exists a positive definite matrix C such that

F TCF =

L∑

l=1

AT
l ΣlAl (2.44)

for some Σl ∈ R
ul×ul.

2. There exists an l∗ and a matrix G∗ such that F X̃ = 0 is equivalent to X̃ =

G∗Al∗X̃ for any random vector X̃. This is equivalent to

[
Al∗

F

]

having full

column rank.

Proof: The following proof follows almost exactly the same argument as the

proof of Property 1 in Sec. 2.7. We may write

E
[
(F X̃)TC(F X̃)

]
=

m∑

l=1

E
[
(AlX̃)TΣl(AlX̃)

]
(2.45)

=

m∑

l=1

E
[
(AlX)TΣl(AlX)

]
(2.46)

= E
[
(FX)TC(FX)

]
(2.47)

= 0 (2.48)

where (2.45) and (2.47) follow from (2.44); (2.46) follows from (2.43), and because

each term in the sum involves AlX for some l; and (2.48) follows because FX = 0.

Because C is positive definite, we have that F X̃ = 0. Therefore, by the second

property in the statement of the theorem, X̃ = G∗Al∗X̃. Hence

X̃ = G∗Al∗X̃ (2.49)

∼ G∗Al∗X (2.50)

= X. (2.51)
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This completes the proof. �

As an example of an application of Theorem 5, we use it to prove again

Property 1 in Sec. 2.7. Recall that variables X, Y, Z ∈ {−k, . . . , k} satisfying

X +Y +Z = 0, and the three pairwise distributions of X̃, Ỹ , Z̃ match as stated in

(2.8)–(2.10). In terms of the notation of Theorem 5, we have m = 3, L = 3, and

F =

[

1 1 1

]

, (2.52)

A1 =






1 0 0

0 1 0




 , (2.53)

A2 =






1 0 0

0 0 1




 , (2.54)

A3 =






0 1 0

0 0 1




 . (2.55)

To satisfy the second condition of Theorem 5, we may set l∗ = 1, since the

single linear constraint X + Y + Z = 0 implies that









X

Y

Z









=









1 0

0 1

−1 −1









︸ ︷︷ ︸

G∗






X

Y




 . (2.56)

In fact, we could just as well have set l∗ to 2 or 3. To verify the first condition, we

need to check that there exist Σl for l = 1, 2, 3 and a positive definite C (in this

case, a positive scalar, because F has only one row, so C ∈ R
1×1) satisfying (2.44).

If we let

Σl =






σl,11 σl,12

σl,21 σl,22




 (2.57)
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then, for instance,

AT
1Σ1A1 =









σ1,11 σ1,12 0

σ1,21 σ1,22 0

0 0 0









. (2.58)

The right hand side of (2.44) expands to

3∑

l=1

AT
l ΣlAl =









σ1,11 + σ2,11 σ1,12 σ2,12

σ1,21 σ1,22 + σ3,11 σ3,12

σ2,21 σ3,21 σ2,22 + σ3,22









. (2.59)

Therefore, for suitable choices of {Σl}3l=1, we can produce any matrix for the right

hand side of (2.44). We may simply set C = 1 and calculate the resulting matrix

for the left hand side, then set {Σl}3l=1 appropriately. This allows us to apply

Theorem 5 to conclude that (X̃, Ỹ , Z̃) ∼ (X, Y, Z).

In our proof of Theorem 4, we will not use Theorem 5 in its most general form.

Instead, we state three corollaries that will be more convenient. The first is a

generalization of the above argument for more than three variables.

Corollary 1 Let X satisfy FX = 0 for some F ∈ Z
1×m with all nonzero values.

If X̃ satisfies

(X̃i, X̃j) ∼ (Xi, Xj) for all i, j = 1, . . . , m (2.60)

(X̃2, · · · , X̃m) ∼ (X2, · · · , Xm) (2.61)

then X̃ ∼ X.

Proof: We omit the explicit construction of the Al matrices corresponding to

the conditions (2.60), (2.61). The second condition for Theorem 5 is satisfied

by (2.61), since the linear constraint FX = 0 determines X1 given X2 · · ·Xm. To
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X̃1 X̃2

X̃3

X̃4

Z̃ X̃1 X̃2

X̃3

X̃4

Z̃

Figure 2.7: The constraints on the random vector X̃ in Corollaries 2 (left) and 3
(right). Rectangles represent a constraint on the marginal distribution of all en-
closed variables; lines represent pairwise constraints on the two connected variables.

verify the first condition, note that from the conditions in (2.60), we may construct

an arbitrary matrix on the right hand side of (2.44) for suitable {Σl}Ll=1. Therefore

we may simply set C = 1. �

Corollary 1 considers the case with m variables and m− 1 degrees of freedom;

i.e. a single linear constraint. The following corollary considers a case with m

variables and m− 2 degrees of freedom.

Corollary 2 Let F ∈ Z
2×m be such that any 2×2 submatrix of F is non-singular.

Let X satisfy FX = 0. The non-singular condition on F implies that any m − 2

variables specify the other two. Assume that m ≥ 4, and for convenience let

Z = (X5, . . . , Xm) and Z̃ = (X̃5, . . . , X̃m). If X̃ satisfies

(X̃1, X̃2, Z̃) ∼ (X1, X2,Z), (2.62)

(X̃3, X̃4, Z̃) ∼ (X3, X4,Z), (2.63)

(X̃1, X̃3) ∼ (X1, X3), (2.64)

(X̃2, X̃4) ∼ (X2, X4), (2.65)

(X̃1, X̃4) ∼ (X1, X4) (2.66)

then X̃ ∼ X. Fig. 2.7 diagrams the constraints on X̃.
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Proof: We prove Corollary 2 with two applications of Corollary 1. First, con-

sider the group of variables (X1X2X4Z). These m − 1 variables are subject to a

single linear constraint, as in Corollary 1. From (2.62), (2.65), and (2.66) we have

all pairwise marginal constraints, satisfying (2.60). Furthermore, (2.62) satisfies

(2.61). We may therefore apply Corollary 1 to conclude

(X̃1, X̃2, X̃4, Z̃) ∼ (X1, X2, X4,Z). (2.67)

A similar application of Corollary 1 using (2.63), (2.64), and (2.66) allows us to

conclude

(X̃1, X̃3, X̃4, Z̃) ∼ (X1, X3, X4,Z). (2.68)

Observe that (2.67) and (2.68) share the m variables (X̃1, X̃4, Z̃), which together

determine X̃2 and X̃3 in exactly the same way that (X1, X4,Z) determine X2 and

X3. Therefore we may combine (2.67) and (2.68) to conclude X̃ ∼ X. �

All five constraints (2.62)–(2.66) are not always necessary, and we may some-

times apply Theorem 5 without (2.66). However, this depends on an interesting

additional property of the linear constraint matrix F , as stated in the third and

final corollary to Theorem 5.

Corollary 3 Let F ∈ Z
2×m be such that any 2×2 submatrix of F is non-singular,

and let X satisfy FX = 0. In addition, assume

|KX1X2Z| |KX3X4Z| |KX1X3Z| |KX2X4Z| < 0 (2.69)

where again K is a basis for the null space of F , and KXS
for S ⊂ {1, . . . , m} is

the matrix made up of the rows of K corresponding to the variables (Xi)i∈S. If X̃

satisfies (2.62)–(2.65) (Fig. 2.7 diagrams these constraints), then X̃ ∼ X.
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Proof: Either (2.62) or (2.63) satisfies the second condition in Theorem 5. To

verify the first condition, first let G =
∑

l A
T
l ΣlAl. In the four constraints (2.62)–

(2.65), each pair of variables appears together except for (X1, X4) and (X2, X3).

Therefore, for suitable choices of Σl, we can construct any G satisfying G1,4 =

G2,3 = G3,2 = G4,1 = 0. We must show that such a G exists satisfying

F TCF = G (2.70)

for some positive definite C.

We build G row-by-row. By (2.70), each row of G is a linear combination of

rows of F ; i.e. it forms the coefficients of a linear equality constraint imposed on

the random vector X. Since G1,4, the first row of G represents a linear constraint

on the variables X1, X2, X3,Z. Since any m − 2 variables specify the other two,

there is exactly one linear equality constraint on these m − 1 variables, up to a

constant. This constraint can be written as
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X1 KX1

X2 KX2

X3 KX3

Z KZ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (2.71)

since the vector X1, X2, X3,Z forms a linear combination of the columns of

KX1,X2,X3,Z. Hence, the first row of G is a constant multiple of the coefficients

in (2.71). In particular,

G1,1 = α|KX2X3Z|, (2.72)

G1,2 = −α|KX1X3Z| (2.73)
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for some constant α. Since G2,3 = 0, the second row of G represents the linear

constraint on X1, X2, X4,Z. Using similar reasoning as above gives

G2,1 = β|KX2X4Z|, (2.74)

G2,2 = −β|KX1X4Z| (2.75)

for some constant β. Moreover, by (2.70) G is symmetric, so G1,2 = G2,1, and by

(2.73) and (2.74)

β = −|KX1X3Z|
|KX2X4Z|

α. (2.76)

Positive definiteness of C is equivalent to positive definiteness of the upper left

2× 2 block of G, so the conditions we need are

0 < G1,1 = α|KX2X3Z|, (2.77)

0 < G1,1G2,2 −G1,2G2,1 (2.78)

= α2

[ |KX2X3Z| |KX1X4Z| |KX1X3Z|
|KX2X4Z|

− |KX1X3Z|2
]

. (2.79)

We may choose α to trivially satisfy (2.77), and (2.79) is equivalent to

|KX1X3Z| |KX2X4Z|
(

|KX2X3Z| |KX1X4Z| − |KX2X4Z| |KX1X3Z|
)

> 0 (2.80)

which may also be written as (2.69). �

The necessity of satisfying (2.69) in order to apply Theorem 5 substantially

complicates code design. When building a linear code, one need only worry about

the rank of certain matrices; i.e. certain determinants need be nonzero. Here, we

see that the signs of these determinants may be constrained as well.
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2.10 Proof of Theorem 4

To prove Theorem 4, we need to specify a Polytope Code for each network sat-

isfying conditions 1–3 in the statement of the theorem. This involves specifying

the linear relationships between various symbols in the network, the comparisons

that are done among them at internal nodes, and then how the destination uses

the comparison information it receives to decode. We then proceed to prove that

the destination always decodes correctly. The key observation in the proof is that

the important comparisons that go on inside the network are those that involve a

variable that does not reach the destination. This is because those symbols that

do reach the destination can be examined there, so further comparisons inside

the network do not add anything. Therefore we will carefully route these non-

destination symbols to maximize the utility of their comparisons. In particular,

we design these paths so that for every node having one direct edge to the desti-

nation and one other output edge, the output edge not going to the destination

holds a non-destination variable. The advantage of this is that any variable, before

exiting the network, is guaranteed to cross a non-destination variable at a node

where the two variables may be compared. The existence of non-destination paths

with this property depends on the planarity of the network. This is described in

much more detail in the sequel.

Notation: For an edge e ∈ E, with e = (i, j), where i, j ∈ V , let head(e) = i

and tail(e) = j. For a node i ∈ V , let Ein(i) be the set of edges e with tail(e) = i,

and let Eout(i) be the set of edges e with head(e) = i. Let Nin(i) be the set of input

neighbors of i; that is, the set of head(e) for each e ∈ Ein(i). Similarly, let Nout(i)

be the set of output neighbors of i. For integers a, b, let Va,b be the set of nodes

with a inputs and b outputs. We will sometimes refer to such nodes as a-to-b. For
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l ∈ {1, 2}, let l̄ = 2 − l. A path is defined as an ordered list of edges e1, . . . , ek

satisfying tail(el) = head(el+1) for l = 1, . . . , k−1. The head and tail of a path are

defined as head(e1) and tail(ek) respectively. A node i is said to reach a node j if

there exists a path with head i and tail j. By convention, a node can reach itself.

Consider an arbitrary network satisfying the conditions of Theorem 4. By

condition (3), no node has more output edges than input edges. Therefore the

min-cut is that between the destination and the rest of the network. Let M be the

value of this cut; i.e., the number of edges connected to the destination. We now

state a lemma giving instances of the cut-set upper bound on capacity in terms of

quantities that make the bound easier to handle than Theorem 3 itself. We will

subsequently show that the minimum upper bound given by Lemma 2 is achievable

using a Polytope Code; therefore, the cut-set bound gives the capacity.

Lemma 2 For i, j ∈ V , let di,j be the sum of |Ein(k)| − |Eout(k)| for all nodes

k reachable from either i or j, not including i or j. That is, if k is a-to-b, it

contributes a − b to the sum. Recall that this difference is always positive. Let ci

be the total number of output edges from node i, and let ei be the number of output

edges from node i that go directly to the destination. For any distinct pair of nodes

i1, i2,

C ≤M − ei1 − ei2. (2.81)

Moreover, if there is no path between i1 and i2,

C ≤ M + di1,i2 − ci1 − ci2 . (2.82)

Proof: Applying Theorem 3 with A = V \ {D}, T = {i1, i2} immediately gives

(2.81). To prove (2.82), we apply Theorem 3 with T = {i1, i2}, and

A = {k ∈ V : k is not reachable from i1 or i2} ∪ {i1, i2}. (2.83)
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Observe that there are no backwards edges for the cut A, because any node in Ac is

reachable from either i1 or i2, so for any edge (j, k) with j ∈ Ac, k is also reachable

by from i1 or i2, so k is also not in A. Therefore we may apply Theorem 3. Since

all output neighbors of i1 and i2 are not in A, each output edge of i1 and i2 crosses

the cut. Hence (2.4) becomes

C ≤ |{e ∈ E : head(e) ∈ A, tail(e) /∈ A}| − c1 − c2. (2.84)

Since no node in the network has more output edges than input edges, the difference

between the first term in (2.84)—the number of edges crossing the cut—and M is

exactly the sum of |Ein(k)| − |Eout(k)| for all k ∈ Ac. Hence

|{e ∈ E : head(e) ∈ A, tail(e) /∈ A}| −M = di1,i2. (2.85)

Combining (2.84) with (2.85) gives (2.82). �

Next, we show that we may transform any network satisfying the conditions

of Theorem 4 into an equivalent one that is planar, and made up of just 2-to-2

nodes and 2-to-1 nodes. We will go on to show that the upper bound provided by

Lemma 2 is achievable for any such network, so it will be enough to prove that a

transformation exists that preserves planarity, does not reduce capacity, and does

not change the bound given by Lemma 2.

We first replace any a-to-b node i with a cascade of a− b 2-to-1 nodes followed

by a b-to-b node. This transformation is illustrated in Fig. 2.8. Denote the b-to-b

node in the transformation i∗. Since no node in the original network has more than

two output edges, the resulting network contains only 1-to-1 nodes, 2-to-2 nodes,

and 2-to-1 nodes. We will shortly argue that the 1-to-1 nodes may be removed

as well. Certainly these transformations maintain the planarity of the network.

Moreover, any rate achievable on the transformed network is also achievable on
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i i∗

Figure 2.8: An illustration of the transformation from a 4-to-2 node to an equiva-
lent set of 2-to-1 and 2-to-2 nodes.

the original network. This is because if node i is transformed via this operation

into several nodes, any coding operation performed by these nodes can certainly

be performed by node i. Additionally, the traitor taking control of node i in the

original network does exactly as much damage as the traitor taking control of i∗

in the transformed network, since it controls all edges sent to other nodes. Now

consider the minimum upper bound given by Lemma 2 after this transformation.

The only nodes with positive ej values will be i∗ nodes, and ei∗ = ei. Hence

(2.81) cannot change. In (2.82), if we take i∗1 and i∗2, then the bound is the same

in the transformed network. Taking one of the 2-to-1 nodes instead of a i∗ node

cannot result in a lower bound, because they have no more output edges, so no

higher c values, and no fewer reachable nodes with fewer outputs than inputs, so no

smaller d values. Therefore, the minimal bound given by (2.82) for the transformed

network is the same as that of the original network. Moreover, in the transformed

network di1,i2 is equal simply to the number of 2-to-1 nodes reachable from i1 or

i2 not including i1, i2.

We may additionally transform the network to remove 1-to-1 nodes, simply

be replacing the node and the two edges connected to it by a single edge. The

traitor can always take over the preceding or subsequent node and have at least

as much power. The only exception is when the 1-to-1 node is connected only to

the source and destination. In this case, instead of removing the node, we may
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add a additional edge to it from the source, turning it into a 2-to-1 node. Such

a transformation does not change the capacity, nor the planarity or the Lemma 2

bounds.

We also assume without loss of generality that all nodes in the network are

reachable from the source. Certainly edges out of these nodes cannot carry any

information about the message, so we may simply discard this portion of the

network, if it exists, without changing the capacity.

We will show that the smallest bound given by Lemma 2 is achievable using a

Polytope Code. If we take i1 and i2 to be two nodes with at least one direct link to

the destination, (2.81) gives that the capacity is no more than M − 2. Moreover,

since ei ≤ ci ≤ 2 for any node i, neither (2.81) nor (2.82) can produce a bound less

than M − 4. Therefore the minimum bound given by Lemma 2 can take on only

three possible values: M − 4,M − 3,M − 2. It is not hard to see that M − 4 is

trivial achievable; indeed, even with a linear code. Therefore the only interesting

cases are when the cut-set bound is M − 3 or M − 2. We begin with the latter,

because the proof is more involved, and contains all the necessary parts to prove

the M − 3 case. The M − 3 proof is subsequently given in Section 2.10.5.

Assume that the right hand sides of (2.81) and (2.82) are never smaller than

M − 2. We describe the construction of the Polytope Code to achieve rate M − 2

in several steps. The correctness of the code will be proved in Lemmas 3–6, which

are stated during the description of the construction process. These Lemmas are

then proved in Sections 2.10.1–2.10.4.

1) Edge Labeling: We first label all the edges in the network except those in
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Ein(D). These labels are denoted by the following functions

φ : E \ Ein(D) → V2,1 (2.86)

ψ : E \ Ein(D) → {0, 1}. (2.87)

For a 2-to-1 node v, let Λ(v) be the set of edges e with φ(e) = v. The set

Λ(v) represents the edges carrying symbols that interact with the non-destination

symbol that terminates at node v. The set of edges with φ(e) = v and ψ(e) = 1

represent the path taken by the non-destination symbol that terminates at node

v. The following Lemma states the existence of labels φ, ψ with the necessary

properties.

Lemma 3 There exist functions φ and ψ with the following properties:

A The set of edges e with φ(e) = v and ψ(e) = 1 form a path.

B If φ(e) = v, then either tail(e) = v or there is an edge e′ with head(e′) = tail(e)

and φ(e′) = v.

C For every 2-to-2 node i with output edges e1, e2, either ψ(e1) = 1, ψ(e2) = 1, or

φ(e1) 6= φ(e2).

Note that if property (B) holds, Λ(v) is a union of paths ending at v. From property

(A), the edges on one of these paths satisfy ψ(e) = 1.

2) Internal Node Operation: Assume that φ and ψ are defined to satisfy prop-

erties (A)–(C) in Lemma 3. Given these labels, we will specify how internal nodes

in the network operate. Every edge in the network will hold a symbol representing

a linear combination of the message, as well as possibly some comparison bits. We

also define a function

ρ : E → {1, . . . , |Eout(S)|} (2.88)
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that will serve as an accounting tool to track symbols as they pass through the

network. We begin by assigning distinct and arbitrary values to ρ(e) for all e ∈

Eout(S) (ρ therefore constitutes an ordering on Eout(S)). Further assignments of ρ

will be made recursively. This will be made explicit below, but if a symbol is merely

forwarded, it travels along edges with a constant ρ. When linear combinations

occur at internal nodes, ρ values are manipulated, and ρ determine exactly how

this is done.

For every node i with 2 input edges, let f1, f2 be these edges. If i is 2-to-

2, let e1, e2 be its two output edges; if it is 2-to-1, let e be its output edge. If

φ(f1) = φ(f2), then node i compares the symbols on f1 and f2. If node i is 2-to-2,

then φ(el) = φ(f1) for either l = 1 or 2. Node i transmits its comparison bit on

el. If node i is 2-to-1, then it transmits its comparison bit on e. All 2-to-2 nodes

forward all received comparison bits on the output edge with the same φ value as

the input edge on which the bit was received. All 2-to-1 nodes forward all received

comparison bits on its output edge.

We divide nodes in V2,2 into the following sets. The linear transformation

performed at node i will depend on which of these sets it is in.

W1 = {i ∈ V2,2 : ψ(f1) = ψ(f2) = 0, φ(f1) 6= φ(f2)} (2.89)

W2 = {i ∈ V2,2 : ψ(f1) = ψ(f2) = 0, φ(f2) = φ(f2)} (2.90)

W3 = {i ∈ V2,2 : ψ(f1) = 1 or ψ(f2) = 1} (2.91)

We will sometimes refer to nodes in W2 as branch nodes, since they represent

branches in Λ(φ(f1)). Moreover, branch nodes are significant because a failed

comparison at a branch node will cause the forwarding pattern within Λ(φ(f1)) to

change. For an edge e, Xe denotes the symbol transmitted on e. The following

gives the relationships between these symbols, which are determined by internal
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nodes, depending partially on the comparison bits they receive. For each node i,

the action of node i depends on which set it falls in as follows:

• W1: Let l be such that φ(el) = φ(f1). The symbol on f1 is forwarded

to el, and the symbol on f2 is forwarded onto el̄. Set ρ(el) = ρ(f1), and

ρ(el̄) = ρ(f2).

• W2: Let l be such that φ(el) = φ(f1) = φ(f2). Let l′ be such that ρ(fl′) <

ρ(fl̄′). We will show in Lemma 4 that our construction is such that ρ(f1) 6=

ρ(f2) at all nodes, so l′ is well defined. If neither f1 nor f2 hold a failed

comparison bit, the output symbols are

Xel = γi,1Xf1 + γi,2Xf2 (2.92)

Xel̄
= Xfl′

(2.93)

where coefficients γi,1, γi,2 are nonzero integers to be chosen later. Set output

ρ values to

ρ(el) = ρ(fl̄′) (2.94)

ρ(el̄) = ρ(fl′). (2.95)

Note that the symbol on the input edge with smaller ρ value is forwarded

without linear combination. If the input edge fl′ reports a failed comparison

anywhere previously in Λ(φ(f1)), then (2.93) changes to

Xel̄
= Xf

l̄′
. (2.96)

• W3: Let l be such that ψ(fl) = 1, and l′ be such that ψ(el′) = 1 and

φ(el′) = φ(fl). The symbol on fl is forwarded to el′ , and the symbol on

fl̄ is forwarded to el̄′ , with the following exception. If φ(f1) = φ(f2) and

there is a failed comparison bit sent from fl̄, then the forwarding swaps: the
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symbol on fl is forwarded to el̄′, and the symbol on fl̄ is forwarded to el′ .

Set ρ(el′) = ρ(fl) and ρ(el̄′) = ρ(fl̄). Again, ρ is consistent along forwarded

symbols, but only when all comparisons succeed.

• V2,1: Let l be such that ψ(fl) = 1. The symbol from fl̄ is forwarded on e,

unless there is a failed comparison bit sent from fl̄, in which case the symbol

from fl is forwarded on e. Set ρ(e) = ρ(fl̄).

See Fig. 2.9 for an illustration of the linear transformations performed at internal

nodes and how they change when a comparison fails. The following Lemma gives

some properties of the internal network behavior as prescribed above.

Lemma 4 The following hold:

1. For any integer a ∈ {1, . . . , |Eout(S)|}, the set of edges with e with ρ(e) = a

form a path (we refer to this in the sequel as the ρ = a path). Consequently,

there is no node i with input edges f1, f2 such that ρ(f1) = ρ(f2).

2. If there are no failed comparisons that occur in the network, then the lin-

ear transformations are such that the decoder can decode any symbol in the

network except those on non-destination paths.

3. Suppose a comparison fails at a branch node k with input edges f1, f2 with

v = φ(f1) = φ(f2). Assume without lack of generality that ρ(f1) < ρ(f2).

The forwarding pattern within Λ(v) changes such that symbols sent along

the ρ = ρ(f2) path are not decodable at the destination, but what was the

non-destination symbol associated with v is decodable.

3) MDS Code Construction: The rules above explain how the symbols are

combined and transformed inside the network. In addition, when the initial set of

78

94



6 2

2 6

3

3 6

6

5 8

4

87

87

7
1

9 5

9
5

1

84

a b

b

c

c

d

e

e

f

g

g

h

h
i

i

i [d, e, f ]

a, b

a, b, c

a, b, c

d, e

d, e [f ]

d, e, f

d, e, f

d, e, f [i]

v

Figure 2.9: An example of the linear transformations performed in Λ(v) for some
v (labeled as such). Solid edges denote φ(e) = v, dashed edges denote φ(e) 6= v.
Thick edges denote ψ(e) = 1. Near the head of each edge is the corresponding ρ
value. Also shown is the symbol transmitted along that edge, given initial symbols
a–i at the furthest upstream edges in the network. When several symbols are
written on an edge, this indicates that the edge carries a linear combination of
those symbols. The symbols indicated in brackets are those carried by the edges
when the comparison at the indicated black node fails. Symbols on edges labeled
without brackets do not change when the comparison fails.

symbols are sent into the network from the source, they are subject to linear con-

straints. We now describe exactly how this is done. Assume that no comparisons

fail in the network, so the linear relationships between symbols are unmodified.

For a 2-to-1 node v, let e∗v be the edge with φ(e∗v) = v, ψ(e∗v) = 1, and tail(e∗v) = v;

i.e. it is the last edge to hold the non-destination symbol terminating at v. Ob-

serve that it will be enough to specify the linear relationships among the symbols

on {e∗v : v ∈ V2,1} as well as the M edges in Ein(D). These collectively form the

Polytope Code equivalent of a (M + |V2,1|,M − 2) MDS code. We must construct
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this code so as to satisfy certain instances of (2.69), so that we may apply The-

orem 5 as necessary. The following Lemma states the existence of a set of linear

relationships among the M + |V2,1| variables with the required properties.

Lemma 5 For each 2-to-1 node v, let Ξ(v) be the set of edges e with tail(e) = D

such that there is an edge e′ with tail(e′) = head(e), φ(e′) = v, and ψ(e′) = 1. That

is, the symbol on e, just before being sent to the destination, was compared against

the non-destination symbol associated with v. Note that any edge e ∈ Ein(D) is

contained in Ξ(v) for some 2-to-1 node v. There exists a generator matrix K ∈

Z
M+|V2,1|×M−2 where each row is associated with an edge in {e∗v : v ∈ V2,1}∪Ein(D)

such that for all v1, v2 ∈ V2,1 and all f1 ∈ Ξ(v1), f2 ∈ Ξ(v2), the constraints

(X̃f1, X̃f2, Z̃) ∼ (Xf1 , Xf2,Z) (2.97)

(X̃e∗v1
, X̃e∗v2

, Z̃) ∼ (Xe∗v1
, Xe∗v2

,Z) (2.98)

(X̃f1, X̃e∗v1
) ∼ (Xf1 , Xe∗v1

) (2.99)

(X̃f2, X̃e∗v2
) ∼ (Xf2 , Xe∗v2

) (2.100)

imply

(X̃f1 , X̃f2, X̃e∗v1
, X̃e∗v2

Z̃) ∼ (Xf1 , Xf2, Xe∗v1
, Xe∗v2

Z̃) (2.101)

where

Z = (Xe : e ∈ Ein(D) \ {f1, f2}). (2.102)

4) Decoding Procedure: To decode, the destination first compiles a list L ⊂ V

of which nodes may be the traitor. It does this by taking all its available data:

received comparison bits from interior nodes as well as the symbols it has direct

access to, and determines whether it is possible for each node, if it were the traitor,

to have acted in a way to cause these data to occur. If so, it adds this node to

L. For each node i, let Ki be the linear transformation from the message vector
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W to the symbols on the output edges of node i. With a slight abuse of notation,

regard KD represent the symbols on the input edges to D instead. For a set of

nodes S ⊂ V , let KD⊥S be a basis for the subspace spanned by KD orthogonal to

⋂

j∈S

span(Kj→D). (2.103)

The destination decodes from KD⊥LW. If i is the traitor, it must be that i ∈ L,

so

rank(KD⊥L) ≥M − dim

(
⋂

j∈S

span(Kj)

)

(2.104)

≥M − rank(Ki) (2.105)

≥M − 2 (2.106)

where we used the fact that node i has at most two output edges. Since KD⊥L has

rank at least M − 2, this is a large enough space for the destination to decode the

entire message. The follow Lemma allows us to conclude that all variables in the

subspace spanned by KD⊥L are trustworthy.

Lemma 6 Consider any pair of nodes i, j. Suppose i is the traitor, and acts in a

way such that j ∈ L. Node i cannot have corrupted any value in KD⊥{i,j}W.

2.10.1 Proof of Lemma 3

We begin with φ(e) = ψ(e) = ∅ for all edges e, and set φ and ψ progressively. First

we describe some properties of the graph (V,E) imposed by the fact that the right

hand sides of (2.81) and (2.82) are never less than M − 2.

Given a 2-to-1 node v, let Γv be the set of nodes for which v is the only reachable

2-to-1 node. Note that other than v, the only nodes in Γv are 2-to-2. Moreover,
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if v can reach another 2-to-1 node, Γv is empty. We claim that Γv forms a path.

If it did not, then there would be two 2-to-2 nodes i1, i2 ∈ Γv for which there is

no path between them. That is, di1,i2 = 1 and ci1 = ci2 = 2, so (2.82) becomes

C ≤M − 3, which contradicts our assumption that the cut-set bound is M − 2.

Furthermore, every 2-to-2 node must be able to reach at least one 2-to-1 node.

If not, then we could follow a path from such a 2-to-2 node until reaching a node

i1 all of whose output edges lead directly to the destination. Node i1 cannot be

2-to-1, so it must be 2-to-2, meaning ei1 = 2. Taking any other node i2 with a

direct link to the destination gives no more than M − 3 for the right hand side of

(2.81), again contradicting our assumption.

The first step in the edge labeling procedure is to specify the edges holding

non-destination symbols; that is, for each 2-to-1 node v, to specify the edges e

for which φ(e) = v and ψ(e) = 1. To satisfy property (A), these must form a

path. For any node i ∈ Nin(D), the output edge of i that goes to the destination

has no φ value, so to satisfy property (C), the other output edge e must satisfy

ψ(e) = 1. Moreover, by property (B), if φ(e) = v, then there is a path from

head(e) to v. Hence, if i ∈ V2,2 ∩ Γv for some 2-to-1 node v, then it is impossible

for the two output edges of i to have different φ values; hence, by property (C),

one of its output edges e must satisfy ψ(e) = 1. Therefore, we need to design the

non-destination paths so that they pass through Γv for each v, as well as each node

in Nin(D).

For each 2-to-1 node v, we first set the end of the non-destination path associ-

ated with v to be the edges in Γv. That is, for an edge e, if head(e), tail(e) ∈ Γv,

set ψ(e) = 1 and φ(e) = v. Now our only task is to extend the paths backwards

such that one is guaranteed to pass through each node in Nin(D).
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i

j

S

Dk

j′

Figure 2.10: A diagram of the planar embedding being used to prove that a node
k ∈ Nin(D) on the interior of Ci,j is reachable from i. Solid lines are single edges;
dashed lines represent paths made up of possibly many edges. Thick lines corre-
spond to edges in Ci,j.

Construct an embedding of the graph (V,E) in the plane such that S is on

the exterior face. Such an embedding always exists [90]. If we select a set of

edges making up an undirected cycle—that is, edges constituting a cycle on the

underlying undirected graph—then all nodes in the network not on the cycle are

divided into those on the interior and those on the exterior, according to the

planar embedding. Take i, j ∈ Nin(D) such that i can reach j, and let Ci,j be the

undirected cycle composed of a path from i to j, in addition to the edges (i, D)

and (j,D). We claim that if a node k ∈ Nin(D) is on the interior of Ci,j , then it is

reachable from i. Since S is on the exterior face of the graph, it must be exterior

to the cycle Ci,j. There exists some path from S to k, so it must cross the Ci,j at

a node j′. Observe that j′ must be on the path from i to j, so it is reachable from

i. Therefore i can reach j′ and j′ can reach k, so i can reach k. This construction

is diagrammed in Fig. 2.10.

We may travel around node D in the planar embedding, noting the order

in which the nodes Nin(D) connect to D. Call this order u1, . . . , uM . Take any

i ∈ Nin(D), and suppose i = ul. We claim that the set of nodes in Nin(D) reachable
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from ul forms a contiguous block around ul in the {u} ordering, where we regard

u1 and uM as being adjacent, so two contiguous blocks containing u1 and uM is

considered one contiguous block.

Suppose this were not true. That is, for some i ∈ Nin(D) there exists a j ∈

Nin(D) reachable from i that is flanked on either side in the {u} ordering by nodes

k1, k2 ∈ Nin(D) not reachable from i. The order in which these four nodes appear

in {u} in some cyclic permutation or reflection of

(i, k1, j, k2). (2.107)

Neither k1 nor k2 can be on the interior of Ci,j , because, as shown above, any such

node is reachable from i. However, if they are both on the exterior, then the order

in (2.107) cannot occur, because D is on the boundary of Ci,j.

By contiguity, if a node i ∈ Nin(D) can reach any other node in Nin(D), it

can reach a node immediately adjacent to it in the {u} ordering. Suppose i can

reach both the node j1 ∈ Nin(D) immediately to its left and the node j2 ∈ Nin(D)

immediately to its right. We show that in fact i can reach every node in Nin(D).

In particular, there can be only one such node, or else there would be a cycle.

Node i has only two output edges, one of which goes directly to D. Let i′ be the

tail of the other. Both j1 and j2 must be reachable from i′.

We claim it is impossible for both j1 to be exterior to Ci,j2 and j2 to be exterior

to Ci,j1. Suppose both were true. We show the graph must contain a cycle. Let C̄

be the undirected cycle composed of the path from i′ to j1, the path from i′ to j2,

and the edges (j1, D), (j2, D). Every node on C̄ is reachable from i. Since both j1

is exterior to Ci,j2 and j2 is exterior to Ci,j1, it is easy to see that i must be on the

interior of C̄. Therefore any path from S to i must cross the cycle at a node k′,

reachable from i. Since k′ is on a path from S to k′, i is also reachable from k′, so
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ii′

j1

S D

j2

k′

Ci,j1

Ci,j2

Figure 2.11: A diagram of the planar embedding being used to prove that a node
reaching its two neighbors in Nin(D) can reach every node in Nin(D). Solid lines
are single edges; dashed lines represent paths made up of possibly many edges.
Thick lines correspond to the undirected cycle C̄. Undirected cycles Ci,j1 and Ci,j2

are indicated.

there is a cycle. See Fig. 2.11 for a diagram of this.

Therefore, we may assume without loss of generality that j2 is in the interior of

Ci,j1. Suppose there were a node j3 ∈ Nin(D) not reachable from i. Node j3 must

be on the exterior of Ci,j1, because we have shown that nodes in Nin(D) on the

interior are reachable from i. Therefore, in the {u} order, these four nodes must

appear in some cyclic permutation or reflection of (i, j3, j1, j2). However, this is

impossible, because both j1 and j2 were assumed to be adjacent to i. Therefore, i

can reach every node in Nin(D).

Take a node i that can reach 2-to-1 nodes v1, v2 ∈ Nin(D). Suppose that i

cannot reach every node in Nin(D). Therefore, the nodes it can reach in in Nin(D)

are either entirely to its right or entirely to its left in the {u} ordering, or else,

by contiguity, node i would be able to reach the adjacent nodes on both sides.

Suppose without loss of generality that they are all to its right, and that v2 is

further to the right than v1. We claim that v1 is on the interior of Ci,v2 . Suppose it
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were on the exterior. By contiguity, every node in Nin(D) on the exterior of Ci,v2

must be reachable from i. Since we have already argued that every node in Nin(D)

on the interior of Ci,v2 is reachable from i, this means i can reach every node in

Nin(D), which we have assumed is not the case.

Therefore, v1 is on the interior of Ci,v2. We may construct a path from S to v1,

passing through all nodes in Γv1 . This path must cross Ci,v2 at a node k, reachable

from i. Node j can reach both v1 and v2, so it cannot be in Γv1 . However, j is on

a path passing through Γv1 , so it can reach all nodes in Γv1 . Therefore there exists

a path from i to v1, passing through Γv1 .

If i can reach every node in Nin(D), then as shown above, either v1 is in the

interior of Ci,v1, or v2 is in the interior of Ci,v2 . Therefore, by the same argument

to that just used for the case that i cannot reach every node in Nin(D), there is

either a path from i to v1 through Γv1 or a path from i to v2 through Γv2 .

Fix a 2-to-1 node v1 ∈ Nin(D). Consider the set of nodes that are:

• contained in V2,2 ∩Nin(D),

• not in Γv for any 2-to-1 node v,

• can reach v1,

• cannot reach any other node also satisfying the above three conditions.

We claim there are at most two such nodes. Suppose there were two such nodes

i1, i2 both to the left of v1 in the {u} ordering. If i1 were further to the left, then

i1 could reach i2, since i1 can reach v1 and the nodes reachable from i1 must form

a contiguous block. Hence i1 would not qualify. Therefore there can be at most

one such node to the left of v1 and at most one to the right. Denote these two
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nodes i and j respectively, if they exist. By contiguity, every node satisfying the

first three conditions must be able to reach either i or j. Moreover, all such nodes

to the left of v1 form a single path ending in i, and those on the right form a single

path ending in j. We will proceed to extend two non-destination paths backwards

to i and j. Then, we may further extend these two paths backwards through all

nodes in V2,2 ∩ Nin(D) that can reach v1, and then backwards to the source on

arbitrary paths. Hence, we need only find paths from i to the head of Γv for some

v, and a distinct one of the same for j.

Both i and j can reach at least one 2-to-1 node other than v1. Suppose i can

reach another 2-to-1 node v2 ∈ Nin(D). By the argument above, there is a path

from i to the leftmost of v1, v2 through Γv1 or Γv2 respectively. Similarly, if j

can reach a 2-to-1 node v3 ∈ Nin(D) with v3 6= v1, there is a path from j to the

rightmost of v1, v3, through the associated Γ. This is true even if v2 = v3.

Suppose there is no 2-to-1 node in Nin(D) reachable from node i other than

v1. There still must be a 2-to-1 node v2 reachable from i, though v2 /∈ Nin(D).

Since v2 is not adjacent to the destination, it must be able to reach a 2-to-1 node

that is. Therefore Γv2 = ∅, so any path from i to v2 trivially includes Γv2 . If j

can also reach no 2-to-1 nodes in Nin(D) other than v1, there must be some 2-to-1

node v3 /∈ Nin(D) reachable from j. We may therefore select non-destination paths

from i to v2 and j to v3, unless v2 = v3. This only occurs if this single node is

the only 2-to-1 node other than v1 reachable by either i or j. We claim that in

this case, either i or j can reach the tail of Γv1 . Therefore we may extend the

non-destination path for v1 back to one of i or j, and the non-destination path

for v2 = v3 to the other. Every node can reach some 2-to-1 node in Nin(D), so

v2 can reach v1, or else i and j would be able to reach a different 2-to-1 node in
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Nin(D). By a similar argument to that used above, v1 must be on the interior of

the undirected cycle composed of the path from i to v2, the path from j to v2,

and the edges (i, D), (j,D). If not, v1 would not be between i and j in the {u}

ordering. Note this is true even if i can reach j or vice versa. Since S must be

exterior to this cycle, any path from S to v1 including Γv1 must cross either the

path from i to v2 or j to v2 at a node k. Node k must be able to reach the head

of Γv1 , so either i or j can reach Γv1 .

Once the non-destination paths are defined, we perform the following algorithm

to label other edges so as to satisfy property (C). We refer to an edge e as labeled

if φ(e) 6= ∅. We refer to a node as labeled if any of its output edges are labeled.

Any node unlabeled after the specifications of the non-destination paths must not

be in Nin(D), and must be able to reach at least two different 2-to-1 nodes.

1. For any edge e such that there exists an e′ ∈ Eout(tail(e)) with ψ(e
′) = 1, set

φ(e) = φ(e′). Observe now that any path eventually reaches a labeled edge.

Furthermore, the tail of any unlabeled edge cannot be a node contained in

Γv for any v, so it can lead to at least two 2-to-1 nodes.

2. Repeat the following until every edge other than those connected directly to

the destination is labeled. Consider two cases:

• There is no 2-to-2 node with exactly one labeled output edge: Pick an

unlabeled node i. Select any path of unlabeled edges out of i until

reaching a labeled node. Let v be the label of a labeled output edge

from this node. For all edges e on the selected path, set φ(e) = v.

Observe that every node on this path was previously an unlabeled 2-to-

2 node. Hence every node on this path, except the last one, has exactly

one labeled output edge.
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• There is a 2-to-2 node i with exactly one labeled output edge: Let v1 be

the label on the labeled output edge. Select any path of unlabeled edges

beginning with the unlabeled output edge from i until reaching a node

with an output edge labeled v2 with v2 6= v1. This is always possible

because any unlabeled edge must be able to lead to at least two 2-to-1

nodes, including one other than v1. For all edges e on the selected path,

set φ(e) = v2. Observe that before we labeled the path, no node in the

path other than the last one had an output edge labeled v2, because if

it did, we would have stopped there. Hence, after we label the path, if

a node now has 2 labeled output edges, they have different labels.

Note that in the above algorithm, whenever an edge e becomes labeled, if there was

another edge e′ with head(e) = head(e′), either e′ was unlabeled, or φ(e) 6= φ(e′).

Therefore, the final φ values satisfy property (B).

2.10.2 Proof of Lemma 4

Observe that for any 2-to-2 node, the two ρ values on the input edges are identical

to the two ρ values on the output edges. For a 2-to-1 node, the ρ value on the

output edge is equal to the ρ value on one of the input edges. Therefore beginning

with any edge in Eout(S), we may follow a path along only edges with the same ρ

value, and clearly we will hit all such edges. Property (1) immediately follows.

Property (2) follows from the fact that 2-to-2 nodes always operate such that

from the symbols on the two output edges, it is possible to decode the symbols on

the input edges. Therefore the destination can always reverse these transformations

to recover any earlier symbols sent in the network. The only exception is 2-to-1
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nodes, which drop one of their two input symbols. The dropped symbol is a non-

destination symbol, so it is clear that the destination can always decode the rest.

We now prove property (3). We claim that when the comparison fails at node

k, it is impossible for the destination to decode Xf2 . We may assume that the

destination has direct access to all symbols on edges immediately subsequent to

edges in Λ(v). This can only make Xf2 easier to decode. Recall that ρ(f1) < ρ(f2),

so Xf1 is forwarded directly on the output edge of k not in Λ(v). Therefore the

destination can only decode Xf2 if it can decode the symbol on the output edge

of k in Λ(v). Continuing to follow the path through Λ(v), suppose we reach an

edge e1 with tail(e1) = k′, where k′ is a branch node. Let e2 be the other input

edge of k′. Even if ρ(e1) < ρ(e2), meaning k′ would normally forward Xe1 outside

of Λ(v), because e1 carries a failed comparison bit, k′ will instead forward Xe2

outside of Λ(v). Again, the destination can only decode Xf2 (or equivalently Xe1)

if it can decode the symbol on the output edge of k′ in Λ(v). If we reach a node

interacting with the non-destination symbol associated with v, then because of the

failed comparison bit, the formerly non-destination symbol is forwarded outside of

Λ(v) and the symbol to decode continues traveling through Λ(v). It will finally

reach v, at which point it is dropped. Therefore it is never forwarded out of Λ(v),

so the destination cannot recover it.

2.10.3 Proof of Lemma 5

From Corollary 3, it is enough to prove the existence of a K matrix satisfying

|Ke∗v1 ,e
∗
v2

,Z| |Kf1,f2,Z| |Ke∗v1 ,f1,Z
| |Ke∗v2 ,f2,Z

| < 0. (2.108)

90

106



We construct a Vandermonde matrix K to satisfy (2.108) for all v1, v2 and all f1, f2

in the following way. We will construct a bijective function (an ordering) α given

by

α : {e∗v : v ∈ V2,1} ∪Nin(D) → {1, . . . ,M + |V2,1|}. (2.109)

For each v ∈ V2,1, set α(e
∗
v) to an arbitrary but unique number in 1, . . . , |V2,1|. We

may now refer to a 2-to-1 node as α−1(a) for an integer a ∈ {1, . . . , |V2,1|}. Now

set α(e) for e ∈ Ein(D) such that, in α order, the edge set {e∗v : v ∈ V2,1} ∪Nin(D)

is written

e∗α−1(1), e
∗
α−1(2), . . . , e

∗
α−1(|V2,1|)

,

Ξ(α−1(|V2,1|)),Ξ(α−1(|V2,1| − 1)), . . . ,Ξ(α−1(1)). (2.110)

That is, each Ξ(v) set is consecutive in the ordering, but in the opposite order as

the associated non-destination edges e∗v. Now let K be the Vandermone matrix

with constants given by α. That is, the row associated with edge e is given by

[

1 α(e) α(e)2 · · · α(e)M−3

]

. (2.111)

We claim the matrix K given by (2.111) satisfies (2.108). Fix v1, v2, and f1 ∈

Ξ(v1), f2 ∈ Ξ(v2). Due to the Vandermonde structure of K, we can write the

determinant of a square submatrix in terms of the constants α(e). For instance,

|Ke∗v1 ,e
∗
v2

,Z| = [α(e∗v2)− α(e∗v1)]
∏

e∈Z

[α(e)− α(e∗v1)][α(e)− α(e∗v2)]

·
∏

e,e′∈Z,α(e)<α(e′)

[α(e′)− α(e)] (2.112)

where we have assumed without loss of generality that the rows of KZ are ordered
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according to α. Expanding the determinants in (2.108) as such gives

|Ke∗v1 ,e
∗
v2

,Z| |Kf1,f2,Z| |Ke∗v1 ,f1,Z
| |Ke∗v2 ,f2,Z

| (2.113)

= [α(e∗v2)− α(e∗v1)][α(f2)− α(f1)][α(f1)− α(e∗v1)][α(f2)− α(e∗v2)]

·
∏

e∈Z

[α(e)− α(e∗v1)]
2[α(e)− α(e∗v2)]

2[α(e)− α(f1)]
2[α(e)− α(f1)]

2

·
∏

e,e′∈Z,α(e)<α(e′)

[α(e′)− α(e)]4. (2.114)

Recall f1 ∈ Ξ(v1), f2 ∈ Ξ(v2). Since we chose α such that the Ξ sets are in opposite

order to the edges e∗v, we have

[α(e∗v2)− α(e∗v1)][α(f2)− α(f1)] < 0. (2.115)

Moreover, since all the Ξ sets have larger α values than the edges e∗v,

α(f1)− α(e∗v1) > 0, (2.116)

α(f2)− α(e∗v2) > 0. (2.117)

Hence, there is exactly one negative term in (2.114), from which we may conclude

(2.108).

2.10.4 Proof of Lemma 6

The random vector W is distributed according to the type of the message vector

as it is produced as the source. We formally introduce the random vector W̃

representing the message as it is transformed in the network. As in our examples,

this vector is distributed according to the joint type of the sequences as they

appear in the network, after being corrupted by the adversary. For each edge e, we

define Xe and X̃e similarly as random variables jointly distributed with W and W̃

respectively with distributions given by the expected and corrupted joint types.
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For every pair of nodes (i, j), we need to prove both of the following:

If i is the traitor, and j ∈ L, i cannot corrupt values in KD⊥{i,j}W. (2.118)

If j is the traitor, and i ∈ L, j cannot corrupt values in KD⊥{i,j}W. (2.119)

In fact, each of these implies the other, so it will be enough to prove just one.

Suppose (2.118) holds. Therefore, if the distribution observed by the destination

of KD⊥{i,j}W̃ does not match that of KD⊥{i,j}W̃, then at least one of i, j will not

be in L. If they both were in L, it would have had to be possible for node i to

be the traitor, make it appear as if node j were the traitor, but also corrupt part

of KD⊥{i,j}W . By (2.118), this is impossible. Hence, if j is the traitor and i ∈ L,

then the distribution of the KD⊥{i,j}YD must remain uncorrupted. This vector

includes KD⊥jW , a vector that can certainly not be corrupted by node j. Since

rank(KD⊥j) ≥M−2, and there are onlyM−2 degrees of freedom, the only choice

node j has to ensure that the distribution of KD⊥{i,j}W matches p is to leave this

entire vector uncorrupted. That is, (2.119) holds.

Fix a pair (i, j). We proceed to prove either (2.118) or (2.119). Doing so will

require placing constraints on the actions of the traitor imposed by comparisons

that occur inside the network, then applying one of the corollaries of Theorem 5 in

Sec. 2.9. Let K⊥i be a basis for the space orthogonal to Ki. If node i is the traitor,

we have thatK⊥iW̃ ∼ K⊥iW. Moreover, since j ∈ L, KD⊥jW̃) ∼ KD⊥jW. These

two constraints are analogous to (2.63) and (2.62) respectively, where the symbols

on the output of node i are analogous to X1, X2. The subspace ofKD orthogonal to

bothKi andKj corresponds to Z in the example. We now seek pairwise constraints

of the form (2.64)–(2.66) from successful comparisons to apply Theorem 5.

Being able to apply Theorem 5 requires that KD⊥j has rank M − 2 for all j.

Ensuring this has to do with the choices for the coefficients γi,1, γi,2 used in (2.92).
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A rank deficiency in KD⊥j is a singular event, so it is not hard to see that random

choices for the γ will cause this to occur with small probability. Therefore such γ

exist.

We now discuss how pairwise constraints on the output symbols of i or j are

found. Consider the following cases and subcases:

• i, j ∈ W1 ∪W2: Suppose node i is the traitor. Let e1, e2 be the output edges

of node i. For each l = 1, 2, we look for constraints on Xel by following the

ρ = ρ(el) path until one of the following occurs:

– We reach an edge on the ρ = ρ(el) path carrying a symbol influenced

by node j: This can only occur immediately after a branch node k

with input edges f1, f2 where ρ(f1) = ρ(el), ρ(f2) < ρ(f1), and Xf2 is

influenced by node j. At node k, a comparison occurs between X̃f1 ,

which is influenced by node i but not j, and X̃f2 . If the comparison

succeeds, then this places a constraint on the distribution of (X̃f1 , X̃f2).

If the comparison fails, the forwarding pattern changes such that the

ρ = ρ(el) path becomes a non-destination path; i.e. the value placed on

el does not affect any variables available at the destination. Hence, the

subspace available at the destination that is corruptible by node i is of

dimension at most one.

– We reach node j itself : In this situation, we make use of the fact that

we only need to prove that node i cannot corrupt values available at the

destination that cannot also be influenced by node j. Consider whether

the ρ = ρ(el) path, between i and j, contains a branch node k with

input edges f1, f2 such that ρ(f1) = ρ(el) and ρ(f2) > ρ(f1). If there

is no such node, then Xel cannot influence any symbols seen by the
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destination that are not also being influenced by j. That is, Xel is in

span(Ki→D ∩Kj→D), so we do not have anything to prove. If there is

such a branch node k, then the output edge e of k with ρ(e) = ρ(f2)

contains a symbol influenced by i and not j. We may now follow the

ρ = ρ(e) path from here to find a constraint on Xel. If a comparison

fails further along causing the forwarding pattern to change such that

the ρ = ρ(e) path does not reach the destination, then the potential

influence of Xel on a symbol seen by the destination not influenced by

node j is removed, so again we do not have anything to prove.

– The ρ = ρ(el) path leaves the network without either of the above oc-

curring : Immediately before leaving the network, the symbol will be

compared with a non-destination symbol. This comparison must suc-

ceed, because j cannot influence the non-destination symbol. This gives

a constraint X̃el.

We may classify the fates of the two symbols out of i as discussed above as

follows:

1. Either the forwarding pattern changes such that the symbol does not

reach the destination, or the symbol is in span(Ki→D ∩Kj→D), and so

we do not need to prove that it cannot be corrupted. Either way, we

may ignore this symbol.

2. The symbol leaves the network, immediately after a successfully com-

parison with a non-destination symbol.

3. The symbol is successfully compared with a symbol influenced by node

j. In particular, this symbol from node j has a strictly smaller ρ value

than ρ(el).
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We divide the situation based on which of the above cases occur for l = 1, 2

as follows:

– Case 1 occurs for both l = 1, 2: We have nothing to prove.

– Case 1 occurs for (without loss of generality) l = 1: Either case 2

or 3 gives a successful comparison involving a symbol influenced by

X̃el̄
. Applying Corollary 1 allows us to conclude that X̃el̄

cannot be

corrupted.

– Case 2 occurs for both l = 1, 2: If the two paths reach different non-

destination symbols, then we may apply Lemma 5 to conclude that node

i cannot corrupt either X̃e1 nor X̃e2 . Suppose, on the other hand, that

each path reaches the same non-destination path, in particular the one

associated with 2-to-1 node v. Since φ(e1) 6= φ(e2), assume without loss

of generality that φ(e1) 6= v. We may follow the path starting from e1

through Γ(v) to find an additional constraint, after which we may apply

Corollary 2. All symbols on this path are influenced by X̃e1. This path

eventually crosses the non-destination path associated with v. If the

symbol compared against the non-destination symbol at this point is

not influenced by j, then the comparison succeeds, giving an additional

constraint. Otherwise, there are two possibilities:

∗ The path through Γ(v) reaches j: There must be a branch node

on the path to Γ(v) before reaching j such that the path from e1

has the smaller ρ value. If there were not, then case 1 would have

occurred. Consider the most recent such branch node k in Γ(v)

before reaching j. Let f1, f2 be the input edges to k, where f1 is

on the path from e1. We know ρ(f1) < ρ(f2). The comparison at

k must succeed. Moreover, this successful comparison comprises
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a substantial constraint, because the only way the destination can

decode Xf2 is through symbols influenced by node j.

∗ The path through Γ(v) does not reach j: Let k be the first common

node on the paths from i and j through Γ(v). Let f1, f2 be the input

edges of k, where f1 is on the path from i and f2 is on the path from

j. If the comparison at k succeeds, this provides a constraint. If it

fails, then the forwarding pattern changes such that the ρ = ρ(f1)

path becomes a non-destination path. Since we are not in case 1,

ρ(e1) 6= ρ(f1), but a symbol influenced by Xe1 is compared against

a symbol on the ρ = ρ(f1) path at a branch node in Γ(v). This

comparison must succeed, providing an additional constraint.

– Case 3 occurs for (without loss of generality) l = 1, and either case 2 or

3 occurs for l = 2: We now suppose instead that node j is the traitor.

That is, we will prove (2.119) instead of (2.118). Recall that a successful

comparison occurs at a branch node k with input edges f1, f2 where X̃f1

is influenced by X̃e1 , X̃f2 is influenced by node j, and ρ(f2) < ρ(f1). Let

e′1, e
′
2 be the output edges of node j, and suppose that ρ(e′1) = ρ(f2);

i.e. the symbol Xf2 is influenced by Xe′1
. The success of the comparison

gives a constraint on X̃e′1
. Since ρ(f2) < ρ(f1), we may continue to

follow the ρ = ρ(f2) path from node k, and it continues to be not

influenced by node i. As above, we may find an additional constraint

on Xe′1
by following this ρ path until reaching a non-destination symbol

or reaching another significant branch node. Furthermore, we may find

a constraint on X̃e′2
in a similar fashion. This gives three constraints on

X̃e′1
, X̃e′2

, enough to apply Corollary 2, and conclude that node j cannot

corrupt its output symbols.
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• i ∈ W3∪V2,1 \Nin(D), j ∈ W1∪W2: Assume node i is the traitor. If i ∈ V2,1

with single output edge e such that ψ(e) = 1, then node i controls no sym-

bols received at the destination and we have nothing to prove. Otherwise,

it controls just one symbol received at the destination, so any single con-

straint on node i is enough. Let e′ be the output symbol of i with ψ(i) = 0.

Since we assume i /∈ Nin(D), the ρ = ρ(e′) path is guaranteed to cross a

non-destination path after node i. As above, follow the ρ = ρ(e′) path until

reaching a branch node k at which the symbol is combined with one influ-

enced by node j. If the comparison at node k succeeds, it gives a constraint

on X̃e′. If the comparison fails, then the forwarding pattern will change such

that the ρ = ρ(e′) path will fail to reach the destination, so we’re done.

• i ∈ W1 ∪ W2, j ∈ Nin(D): Assume node i is the traitor. By construction,

since one output edge of j goes directly into the destination, the other must

be on a non-destination path. Hence, j only controls one symbol at the

destination, so we again need to place only one constraint on node i. Let

e ∈ Eout(i) be such that φ(e) 6= φ(e′) for all e′ ∈ Eout(j). This is always

possible, since the two output edges of i have different φ values, and since

one output edge of j goes directly to the destination, only one of the output

edges of j has a φ value. Let v = φ(e). Follow the path from e through Λ(v)

until reaching the non-destination symbol at node k with input edges f1, f2.

Assume X̃f1 is influenced by X̃e and X̃f2 is a non-destination symbol. The

comparison between these two symbols must succeed, because node j cannot

influence either X̃f1 or X̃f2 . This places the necessary constraint on X̃e.

• i, j ∈ W3 ∪ V2,1: Nodes i, j each control at most one symbol available at the

destination, so either one, in order to make it appear as if the other could be

the traitor, cannot corrupt anything.

98

114



2.10.5 Proof of Theorem 4 when the Cut-set Bound isM−3

We now briefly sketch the proof of Theorem 4 for the case that the cut-set bound

isM−3. The proof is far less complicated than the above proof for theM−2 case,

but it makes use of many of the same ingredients. First note that the set of 2-to-2

nodes i that cannot reach any 2-to-1 nodes must form a path. We next perform

a similar edge labeling as above, defining φ and ψ as in (2.86)–(2.87). Properties

(A) and (B) must still hold, except that edges may have null labels, and property

(C) is replaced by

C’ For every 2-to-2 node that can reach at least one 2-to-1 node, at least one of

its output edges must have a non-null label.

Internal nodes operate in the same way based on the edge labels as above, where

symbols are always forwarded along edges with null labels. The decoding process

is the same. Proving an analogous version of Lemma 6 requires only finding a

single constraint on one of i or j. This is always possible since one is guaranteed

to have a label on an output edge, unless they are both in the single path with no

reachable 2-to-1 nodes, in which case they influence the same symbol reaching the

destination.

Interestingly, this proof does not make use of the planarity of the graph. We

may therefore conclude that for networks satisfying properties (2) and (3) in the

statement of Theorem 4, the cut-set bound is always achievable if the cut-set is

strictly less than M − 2.
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Figure 2.12: The Calamari Network, having capacity strictly less than the cut-
set bound. All edges have unit-capacity. There is at most one traitor, but it is
restricted to be one of the black nodes.

2.11 Looseness of the Cut-set Bound

So far, the only available upper bound on achievable rates has been the cut-set

bound. We have conjectured that for planar graphs this bound is tight, but that

still leaves open the question of whether there is a tighter upper bound for non-

planar graphs. It was conjectured in [37] that there is such a tighter bound, and

here we prove this conjecture to be true. We have already shown in Sec. 2.3 that the

limited-node and all-node problems are equivalent. Fig. 2.12 shows the Calamari1

Network, a limited-node problem for which there is an active upper bound on

capacity other than the cut-set. It is easy to see that in the transformation from

limited-node to all-node used to prove their equivalence in Sec. 2.3 does not change

the cut-set bound. Therefore, the looseness of the cut-set bound for the Calamari

Network implies that even for the all-node problem, the cut-set bound is not tight

in general. Furthermore, it is not hard to transform the Calamari Network into an

unequal-edge problem; this therefore confirms the conjecture in [37].

1Calamari is the cockroach of the sea. I think.
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In the Calamari Network, there may be at most one traitor, but it is restricted

to be one of the black nodes. The cut-set bound is 2, but in fact the capacity is

no more than 1.5.

Consider a code achieving rate R. For i = 1, 2, 3, 4, let Xi be the random

variable representing the value on the output edge of node i. Let Y be the value

on edge (9, D) and let Z be the value on (10, D). Let p be the honest distribution

on these variables, and define the following alternative distributions:

q3 = p(x1x2x4)p(x3)p(y|x1x2x3)p(z|x3x4), (2.120)

q4 = p(x1x2x3)p(x4)p(y|x1x2x3)p(z|x3x4). (2.121)

We may write

R ≤ Iq3(X1X2X4; Y Z) (2.122)

because, if node 3 is the traitor, it may generate a completely independent version

of X3 and send it along edge (3, 7), resulting in the distribution q3. In that case,

assuming the destination can decode properly, information about the message must

get through from the honest edges at the start of the network, X1, X2, X4, to what

is received at the destination, Y, Z. From (2.122), we may write

R ≤ Iq3(X1X2X4;Z) + Iq3(X1X2X4; Y |Z) (2.123)

≤ Iq3(X4;Z) + I(X1X2;Z|X4) + 1 (2.124)

= Iq3(X4;Z) + 1 (2.125)

where in (2.124) we have used that the capacity of (9, D) is 1, and in (2.125) that

X1X2 − X4 − Z is a Markov chain according to q3. Using a similar argument in

which node 4 is the traitor and it acts in a way to produce q4, we may write

R ≤ Iq4(X3;Z) + 1. (2.126)
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Note that

q3(x3x4z) = q4(x3x4z). (2.127)

In particular, the mutual informations in (2.125) and (2.126) can both be written

with respect to the same distribution. Therefore,

2R ≤ Iq3(X4;Z) + Iq3(X3;Z) + 2 (2.128)

= Iq3(X3X4;Z) + Iq3(X3;X4)− Iq3(X3;X4|Z) + 2 (2.129)

≤ Iq3(X3X4;Z) + 2 (2.130)

≤ 3 (2.131)

where (2.130) follows from the positivity of conditional mutual information and

that X3, X4 are independent according to q3, and (2.131) follows because the ca-

pacity of (10, D) is 1. Therefore, R ≤ 1.5.

Observe that all inequalities used in this upper bound were so-called Shannon-

type inequalities. For the non-Byzantine problem, there is a straightforward pro-

cedure to write down all the Shannon-type inequalities relevant to a particular

network coding problem, which in principle can be used to find an upper bound.

This upper bound is more general than any cut-set upper bound, and in some

multi-source problems it has been shown to be tighter than any cut-set bound.

This example illustrates that a similar phenomenon occurs in the Byzantine prob-

lem even for a single source and single destination. As the Byzantine problem seems

to have much in common with the multi-source non-Byzantine problem, it would

be worthwhile to formulate the tightest possible upper bound using only Shannon-

type inequalities. However, it is yet unclear what the “complete” list of Shannon

type inequalities would be for the Byzantine problem. This example certainly

demonstrates one method of finding them, but whether there are fundamentally

different methods to find inequalities that could still be called Shannon-type, or
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S D

Figure 2.13: The Beetle Network. All edges have unit-capacity except the dashed
edge, which has zero capacity.

even how to compile all inequalities using this method, is unclear. Moreover, it has

been shown in the non-Byzantine problem that there can be active non-Shannon-

type inequalities. It is therefore conceivable that non-Shannon-type inequalities

could be active even for a single source under Byzantine attack.

2.12 More on Cut-Set Bounds

We first give an example network illustrating the necessity of requiring no back-

wards edges in Theorem 3. This example—the Beetle network, shown in Fig. 2.13—

is also interesting in that it has a zero-capacity edge which strictly increases capac-

ity. We then proceed to state and prove a cut-set bound tighter than Theorem 3,

which allows cuts with backwards edges but has a more elaborate method of de-

termining the upper bound given a cut. For other cut-set bounds on adversarial

problems, see [37, 38].

2.12.1 The Beetle Network

The Beetle Network, shown in Figure 2.13, under the presence of a single traitor

node, has two interesting properties. First, there is a cut with a backwards edge for
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which the value of the right hand side of (2.4) is strictly less than capacity. This

illustrates the need for the condition in Theorem 3 that cuts have no backwards

edges. Second, it has a zero capacity edge, the presence of which has a positive

effect on the capacity. That is, the capacity of this network, as we will demonstrate,

is 1, but if the zero-capacity edge (4, D) were removed, the capacity would be 0, as

can easily be verified by Theorem 3. The reason for this is that, as we have seen,

comparison operations can increase capacity, so we can use the zero-capacity edge

to hold a comparison bit.

We may apply Theorem 3 with A = {S, 1, 2, 3, 4} and T = {1, 2} to conclude

that the capacity is no more than 1. We will shortly present a code to achieve rate

1. Now consider the cut A = {S, 1, 2, 4}. For this cut (3, 4) is a backwards edge,

so we cannot apply Theorem 3. Note that if we set T = {1, 2}, the right hand side

of (2.4) would evaluate to 0, strictly less than capacity.

We now present a simple linear code with a comparison for the Beetle Network

achieving rate 1. Each unit-capacity edge carries a copy of the message w. That

is, the source sends w along all three of its output links, and nodes 1, 2, and 3

each receive one copy of w and forward it along all of their output links. Node 4

receives a copy of w from the source and and one from node 3. It compares them

and sends to the destination one of the symbols = or 6= depending on whether the

two copies agreed. Because w may be a vector of arbitrary length, sending this

single bit along edge (4, D) takes zero rate, so we do not exceed the edge capacity.

The decoding procedure is as follows. Let w1, w2, and w3 be the values of w

received at the destination from nodes 1, 2, and 3 respectively. If either w2 6= w3

or the destination receives 6= from node 4, then certainly the traitor must by one

of nodes 2, 3, or 4, so w1 is trustworthy and the destination decodes from it. Now
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consider the case that w2 = w3 and the destination receives = from node 4. The

destination decodes from w2 or w3. Certainly if the traitor is either node 1 or

4, then w2 = w3 = w. If the traitor is node 3, then w2 = w, so we still decode

correctly. If the traitor is node 2, then it must send the same value of w to both the

destination and node 3, because node 3 simply forwards its copy to the destination,

and we know w2 = w3. Furthermore, this value of w must be the true one, because

otherwise node 4 would observe that the copy sent along edge (3, 4) is different

from that sent from the source, so it would transmit 6= to the destination. Since

it did not, node 2 cannot have altered any of its output values. Therefore the

destination always decodes correctly.

2.12.2 Tighter Cut-Set Upper Bound

The following theorem is a tighter cut-set bound than Theorem 3, as it allows cuts

with backwards edges.

Theorem 6 Fix a cut A ⊆ V with S ∈ A and D /∈ A. Also fix sets of nodes T

and T ∗ with T ∗ ⊂ T and

|T |+ |T ∗| ≤ 2s. (2.132)

Let B be the set of nodes that can reach a node in A \ T . Then

C ≤ |{(i, j) ∈ E : i ∈ A \ T, j /∈ A}|+ |{(i, j) ∈ E : i ∈ A ∩ T \ T ∗, j ∈ Ac ∩B}|.

(2.133)

Proof: Choose a coding order on the nodes in T \ T ∗ written as

(t1, . . . , t|T\T ∗|). (2.134)
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That is, if there is a path from tu to tv, then u ≤ v. Let

T1 = T ∗ ∪ {t1, . . . , ts−|T ∗|}, (2.135)

T2 = T ∗ ∪ {ts−|T ∗|, . . . , t|T\T ∗|}. (2.136)

Note that |T1|, |T2| ≤ s and T1 ∪ T2 = T . For l = 1, 2, let El be the set of edges

(i, j) with i ∈ T1 \ T ∗ and j ∈ Ac \B. Let E∗ be the set of edges (i, j) with i ∈ T ∗

and j ∈ Ac. Finally, let EA be the set of edges crossing the cut; that is, edges

(i, j) with i ∈ A and j /∈ A. Let Ẽ = EA \E1 \E2 \E∗. Observe that (2.133) can

equivalently be written

C ≤ |Ẽ|. (2.137)

Suppose (2.133) were not true. Then there would exist a code achieving a rate

R such that

R > |Ẽ|. (2.138)

We will consider two possibilities, one when T1 are the traitors and they alter the

values on E1 ∪ E∗, and one when T2 are the traitors and they alter the values on

E2 ∪ E∗. Note that there are may be edges out of the set of traitors whose values

are not altered; on these edges the traitors will act honestly, performing the code

as it is designed. We will show that by (2.138), it is possible for the traitors to act

in such a way in these two cases that even though the messages at the source are

different, all values sent across the cut are the same; therefore the destination will

not be able to distinguish all messages.

Let xE∗ be one possible value sent on the edges in E∗. Both possible sets of

traitors may influence the values on E∗, and in both cases they will place xE∗ on

these edges. For any set of edges F , define the function

XF : 2nR ×
∏

e∈E∗

2n →
∏

e∈F

2n (2.139)
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such that when the message is w, and all nodes act honestly except for T ∗ which

place xE∗ on E∗, the values on edges in F is given by XF (w, xE∗).

Consider an edge (i, j) ∈ Ẽ. We claim that the value on this edge depends

only on the message and xE∗ ; it does not depend on the values placed on E1 or

E2 by the traitors. If i is a traitor, then by construction i acts honestly on this

edge. Consider any path from the source passing through (i, j). We wish to show

that at no point a value is placed on an edge in this path that deviates from the

honest code, except at edges in E∗. The only other point at which it might occur

would be at an earlier edge (i′, j′). However, (i′, j′) is on a path leading to i. If

i ∈ A \ T , then j′ ∈ B, so (i′, j′) /∈ E1 ∪ E2, so the value on this edge is not

changed by the traitor. If i ∈ T , then j must be in B, meaning j′ is also in B, so

again (i′, j′) /∈ E1 ∪ E2. Therefore the values placed on Ẽ is exactly XẼ(w, xE∗)

no matter which set of nodes T1 or T2 is the traitor. By (2.138), there exists two

messages w1 and w2 such that

XẼ(w1, xE∗) = XẼ(w2, xE∗). (2.140)

We now specify the two cases that confuse messages w1 and w2 at the destina-

tion:

1. The true message is w1 and the traitors are T1. They place xE∗ on E∗ and

XE1(w2, xE∗) on E1. Let x′E2
be the value placed on E2 in this case. Recall

that the values on Ẽ are given by (2.140).

2. The true message is w2 and the traitors are T2. They place xE∗ on E∗ and

x′E2
on E2. Again, the values on Ẽ are given by (2.140). Moreover, because

of our choice of T1 and T2 in terms of the coding order in (2.135)–(2.136),

edges in E2 are entirely downstream of those in E1, so the values on E1 are
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XE1(w2, xE∗).

The values on all edges crossing the cut in both cases are the same. Therefore, all

values received by the destination are the same, so it must make an error on one

of the two messages. �

Note that if A has no backwards edges, then B ⊂ A, so the second term in

(2.133) would be 0. Hence we recover Theorem 3.

We briefly illustrate an application of Theorem 6 on the Beetle Network for the

cut with a backwards edge. Let A = {S, 1, 2, 4} and T = {1, 2}. The set B consists

of {S, 1, 2, 3, 4}, so the second term in (2.133) counts the edge (2, 3). Therefore

(2.133) gives an upper bound is 1. This is a correct bound, even though it would

not be had the second term in (2.133) not been included.

2.13 Proof of Bound on Linear Capacity for the Cockroach

Network

We show that no linear code for the Cockroach Network, shown in Figure 2.1, can

achieve a rate higher than 4/3. Fix any linear code. For any link (i, j), let Xi,j

be the value placed on this link. For every node i, let Xi be the set of messages

on all links out of node i, and Yi be the set of messages on all links into node i.

Let GXi→Yj
be the linear transformation from Xi to Yj, assuming all nodes behave

honestly. Observe that

YD = GXS→YD
XS(w) +

∑

i

GXi→YD
ei (2.141)
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where ei represents the difference between what a traitor places on its outgoing

links and what it would have placed on those links if it were honest. Only one

node is a traitor, so at most one of the ei is nonzero. Note also that the output

values of the source XS is a function of the message w. We claim that for any

achievable rate R,

R ≤ 1

n

[

rank(GXS→YD
)−max

i,j
rank(GXiXj→YD

)

]

(2.142)

where n is the block length used by this code. To show this, first note that for any

pair of nodes i, j there exist K,H1, H2 such that

GXS→YD
= K +GXi→YD

H1 +GXj→YD
H2 (2.143)

and where

rank(K) = rank(GXS→YD
)− rank(GXiXj→YD

). (2.144)

That is, the first term on the right hand side of (2.143) represents the part of the

transformation from XS to YD that cannot be influenced by Xi or Xj. Consider

the case that rank(K) < R. Then there must be two messages w1, w2 such that

KXS(w1) = KXS(w2). If the message is w1, node i may be the traitor and set

ei = H1(XS(w2)−XS(w1)). (2.145)

Alternatively, if the message is w2, node j may be the traitor and set

ej = H2(XS(w1)−XS(w2)). (2.146)

In either case, the value received at the destination is

YD = KXS(w1) +GXi→YD
H1XS(w2) +GXj→YD

H2XS(w1).

Therefore, these two cases are indistinguishable to the destination, so it must make

an error for at least one of them. This proves (2.142).
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Now we return to the specific case of the Cockroach Network. Observe that the

X4,D is a linear combination of X1,4 and X2,4. Let k1 be the number of dimensions

of X4,D that depend only on X1,4 and are independent of X2,4. Let k2 be the

number of dimensions of X4,D that depend only on X2,4, and let k3 be the number

of dimensions that depend on both X1,4 and X2,4. Certainly k1 + k2 + k3 ≤ n.

Similarly, let l1, l2, l3 be the number of dimensions of X5,D that depend only on

X2,5, that depend only on X3,5, and that depend on both respectively. Finally, let

m1 and m2 be the number of dimensions of X1,D and X3,D respectively.

We may write the following:

rank(GXS→Y4)− rank(GX2,X3→Y4) ≤ m1 + k1,

rank(GXS→Y4)− rank(GX1,X3→Y4) ≤ k3 + l1,

rank(GXS→Y4)− rank(GX1,X2→Y4) ≤ l3 +m2.

Therefore, using (2.142), any achievable rate R is bounded by

R ≤ 1

n
min{m1 + k1, k3 + l1, l3 +m2} (2.147)

subject to

k1 + k2 + k3 ≤ n, (2.148)

l1 + l2 + l3 ≤ n, (2.149)

m1 ≤ n, (2.150)

m2 ≤ n. (2.151)

It is not hard to show that this implies R ≤ 4/3.
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CHAPTER 3

SLEPIAN-WOLF

3.1 Introduction

Fig. 3.1 shows the multiterminal source coding problem of Slepian and Wolf [40].

At each time t = 1, . . . , n, a source generates an independent copy of the corre-

lated random variables Y1, . . . , YL according to the distribution p(y1 · · · yL). Each

sequence Y n
i is delivered to the corresponding node i. The L nodes operate inde-

pendently of one another. Node i encodes its observation at rate Ri and transmits

the encoded version to a common decoder, which attempts to exactly recover all the

sources with high probability. Slepian and Wolf characterized in [40] the complete

achievable rate region for this problem—that is, the set of rate vectors (R1, . . . , RL)

at which it is possible for the decoder to recover all sources—and they found that

the sum-rate can be made as low as the joint entropy of all sources:

H(Y1 · · ·YL). (3.1)

This is precisely the minimum rate that could be achieved if all the sources were

observed by a single node, as was originally shown by Shannon [49] in his source

coding theorem. The surprising result of Slepian-Wolf, then, is that no additional

sum-rate is required when the nodes are separated from each other.

In this chapter, we consider a modification to this classic problem in which an

adversary controls an unknown subset of nodes, and may transmit arbitrary data

to the decoder from those nodes. It is obvious that observations made by these

traitors are irretrievable unless the traitors choose to deliver them to the decoder.

Thus the best the decoder can hope to achieve is to reconstruct the observations
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Figure 3.1: The Slepian-Wolf multiterminal source coding problem. The sources
Y n
1 , . . . , Y

n
L are independent and identically distributed in time, and correlated in

space as specified by the joint distribution p(y1 · · · yL). Each source sequence Y n
i

is observed by node i and encoded at rate Ri to a common decoder. The decoder
produces an estimate Ŷ n

i for each source sequence, attempting to match the sources
exactly with high probability.

of the honest nodes. A simple procedure is to ignore the statistical correlations

among the observations and collect data from each node individually. The total

sum rate of such an approach is
∑

iH(Yi). One expects however that this sum

rate can be lowered if the correlation structure is not ignored.

Standard coding techniques for the Slepian-Wolf problem have no mechanism

for handling any deviations from the agreed-upon encoding functions by the nodes.

Even a random fault by a single nodes could have devastating consequences for

the accuracy of the source estimates produced at the decoder, to say nothing of

a Byzantine attack on multiple nodes. In particular, because Slepian-Wolf coding

takes advantage of the correlation among sources, manipulating the codeword for

one source can alter the accuracy of the decoder’s estimate for other sources. It

will turn out that for most source distributions, the sum rate given in (3.1) cannot
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be achieved if there is even a single traitor. Our goal is to characterize the lowes

achievable sum-rate for this problem, and in some cases the complete achievable

rate region.

3.1.1 Redefining Achievable Rate

The nature of Byzantine attack require three modifications to the usual notion of

achievable rate. The first, as mentioned above, is that small probability of error

is required only for honest sources, even though the decoder may not know which

sources are honest. This requirement is reminiscent of [5], in which the lieutenants

generals need only perform the commander general’s order if the commander is

not a traitor, even though the lieutenants might not be able to decide this with

certainty.

The next modification is that there must be small probability of error no matter

what the traitors do. This is essentially the definition of Byzantine attack.

The final modification has to do with which nodes are allowed to be traitors.

Let H be the set of honest nodes, and T = {1, · · · , L}\H the set of traitors. A

statement that a code achieves a certain rate must include the list of sets of nodes

that this code can handle as the set of traitors. That is, given such a list, we say

that a rate is achieved if there exists a code with small probability of error when

the actual set of traitors is in fact on the list. Hence a given code may work for

some lists and not others, so the achievable rates will depend on the specified list.

It will be more convenient to specify not the list of allowable sets of traitors, but

rather the list of allowable sets of honest nodes. We define H ⊂ 2{1,··· ,L} to be this

list. Thus small probability of error is required only when H ∈ H. One special
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case is when the code can handle any group of at most s traitors. That is,

H = Hs , {S ⊂ {1, · · · , m} : |S| ≥ L− s}.

Observe that achievable rates depend not just on the true set of traitors but also

on the collection H, because the decoder’s willingness to accept more and more

different groups of traitors allows the true traitors to get away with more without

being detected. Thus we see a trade off between rate and security—in order to

handle more traitors, one needs to be willing to accept a higher rate.

3.1.2 Fixed-Rate Versus Variable-Rate Coding

In standard source coding, an encoder is made up of a single encoding function.

We will show that this fixed-rate setup is suboptimal for this problem, in the sense

that we can achieve lower sum rates using variable-rate coding. By variable-rate

we mean that the number of bits transmitted per source value by a particular

node will not be fixed. Instead, the decoder chooses the rates at “run time” in the

following way. Each node has a finite number of encoding functions, all of them

fixed beforehand, but with potentially different output alphabets. The coding ses-

sion is then made up of a number of transactions. Each transaction begins with

the decoder deciding which node will transmit, and which of its several encoding

functions it will use. The node then executes the chosen encoding function and

transmits the output back to the decoder. Finally, the decoder uses the received

message to choose the next node and encoding function, beginning the next trans-

action, and so on. Thus a code is made up of a set of encoding functions for each

node, a method for the decoder to choose nodes and encoding functions based on

previously received messages, and lastly a decoding function that takes all received

messages and produces source estimates.
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Note that the decoder has the ability to transmit some information back to the

nodes, but this feedback is limited to the choice of encoding function. Since the

number of encoding functions need not grow with the block length, this represents

zero rate feedback.

In variable-rate coding, since the rates are only decided upon during the coding

session, there is no notion of an L-dimensional achievable rate region. Instead, we

only discuss achievable sum rates.

3.1.3 Traitor Capabilities

An important consideration with Byzantine attack is the information to which the

traitors have access. First, we assume that the traitors have complete knowledge

of the coding scheme used by the decoder and honest nodes. Furthermore, we

always assume that they can communicate with each other arbitrarily. For variable-

rate coding, they may have any amount of ability to eavesdrop on transmissions

between honest nodes and the decoder. We will show that this ability has no effect

on achievable rates. We assume with fixed-rate coding that all nodes transmit

simultaneously, so it does not make sense that traitors could eavesdrop on honest

nodes’ transmissions before making their own, as that would violate causality.

Thus we assume for fixed-rate coding that the traitors cannot eavesdrop.

The key factor, however, is the extent to which the traitors have direct access to

information about the sources. We assume the most general memoryless case, that

the traitors have access to the random variable W , where W is i.i.d. distributed

with (Y1 · · ·YL) according to the conditional distribution r(w|y1 · · · yL). A natural

assumption would be that W always includes Yi for traitors i, but in fact this need

115

131



not be the case. An important special case is where W = (Y1, · · · , YL), i.e. the

traitors have perfect information.

We assume that the distribution of W depends on who the traitors are, and

that the decoder may not know exactly what this distribution is. Thus each code

is associated with a function R that maps elements of H to sets of conditional dis-

tributions r. The relationship between r and R(H) is analogous to the relationship

between H and H. That is, given H, the code is willing to accept all distributions

r ∈ R(H). Therefore a code is designed based on H and R, and then the achieved

rate depends at run time on H and r, where we assume H ∈ H and r ∈ R(H).

We therefore discuss not achievable rates R but rather achievable rate functions

R(H, r). In fact, this applies only to variable-rate codes. In the fixed-rate case, no

run time rate decisions can be made, so achievable rates depend only on H and R.

3.1.4 Main Results

Our main results give explicit characterizations of the achievable rates for three

different setups. The first, which is discussed in the most depth, is the variable-

rate case, for which we characterize achievable sum rate functions. The other two

setups are for fixed-rate coding, divided into deterministic and randomized coding,

for which we give L-dimensional achievable rate regions. We show that randomized

coding yields a larger achievable rate region than deterministic coding, but we

believe that in most cases randomized fixed-rate coding requires an unrealistic

assumption. In addition, even randomized fixed-rate coding cannot achieve the

same sum rates as variable-rate coding.

We give the exact solutions later, but describe here some intuition behind them.
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For variable-rate, the achievable rates, given in Theorem 7, are based on alternate

distributions on (Y1 · · ·YL). Specifically, given W , the traitors can simulate any

distribution q̄(yT|w) to produce a fraudulent version of Y n
T , then report this se-

quence as the truth. Suppose that the overall distribution q(y1 · · · yL) governing

the combination of the true value of Y n
H with this fake value of Y n

T could be pro-

duced in several different ways, with several different sets of traitors. In that

case, the decoder cannot tell which of these several possibilities is the truth, which

means that from its point of view, many nodes might be honest. Since the error

requirement described in 3.1.1 stipulates that the decoder must produce a correct

estimate for every honest node, it must attempt to decode the source values asso-

ciated with each potentially honest node. Thus the sum rate must be at least the

joint entropy, when distributed according to q, of the sources associated with all

potentially honest nodes. The supremum over all possible simulated distributions

is the achievable sum rate.

For example, suppose H = HL−1. That is, at most one node is honest. Then the

traitors are able to create the distribution q(y1 · · · yL) = p(y1) · · ·p(yL) no matter

which group of L−1 nodes are the traitors. Thus every node appears as if it could

be the honest one, so the minimum achievable sum rate is

H(Y1) + · · ·+H(YL). (3.2)

In other words, the decoder must use an independent source code for each node,

which requires receiving nH(Yi) bits from node i for all i.

The achievable fixed-rate regions, given in Theorem 8, are based on the Slepian-

Wolf achievable rate region. For randomized fixed-rate coding, the achievable

region is such that for all S ∈ H, the rates associated with the nodes in S fall into

the Slepian-Wolf rate region on the corresponding random variables. Note that
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for H = {{1, · · · , L}}, this is identical to the Slepian-Wolf region. For H = HL−1,

this region is such that for all i, Ri ≥ H(Yi), which corresponds to the sum

rate in (3.2). The deterministic fixed-rate achievable region is a subset of that of

randomized fixed-rate, but with an additional constraint stated in Section 3.6.

3.1.5 Randomization

Randomization plays a key role in defeating Byzantine attacks. As we have

discussed, allowing randomized encoding in the fixed-rate situation expands the

achievable region. In addition, the variable-rate coding scheme that we propose

relies heavily on randomization to achieve small probability of error. In both fixed

and variable-rate coding, randomization is used as follows. Every time a node

transmits, it randomly chooses from a group of essentially identical encoding func-

tions. The index of the chosen function is transmitted to the decoder along with

its output. Without this randomization, a traitor that transmits before an honest

node i would know exactly the messages that node i will send. In particular, it

would be able to find fake sequences for node i that would produce those same

messages. If the traitor tailors the messages it sends to the decoder to match one

of those fake sequences, when node i then transmits, it would appear to corrobo-

rate this fake sequence, causing an error. By randomizing the choice of encoding

function, the set of sequences producing the same message is not fixed, so a traitor

can no longer know with certainty that a particular fake source sequence will re-

sult in the same messages by node i as the true one. This is not unlike Wyner’s

wiretap channel [28], in which information is kept from the wiretapper by intro-

ducing additional randomness. See in particular Section 3.5.4 for the proof that

variable-rate randomness can defeat the traitors in this manner.
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3.1.6 Organization

The rest of this chapter is organized as follows. In Section 3.2, we develop in

detail the case that there are three nodes and one traitor, describing a coding

scheme that achieves the optimum sum rate. In Section 3.3, we formally give the

variable-rate model and present the variable-rate result. In Section 3.4, we discuss

the variable-rate achievable rate region and give an analytic formulation for the

minimum achievable sum rate for some special cases. In Section 3.6, we give the

fixed-rate models and present the fixed-rate result. In Sections 3.5 and 3.7, we

prove the variable-rate and fixed-rate results respectively.

3.2 Three Node Example

3.2.1 Potential Traitor Techniques

For simplicity and motivation, we first explore the three-node case with one traitor.

That is, L = 3 and

H = {{1, 2}, {2, 3}, {1, 3}}.

Suppose also that the traitor has access to perfect information (i.e. W =

(Y1, Y2, Y3)). Suppose node 3 is the traitor. Nodes 1 and 2 will behave honestly,

so they will report Y1 and Y2 correctly, as distributed according to the marginal

distribution p(y1y2). Since node 3 has access to the exact values of Y1 and Y2,

it may simulate the conditional distribution p(y3|y2), then take the resulting Y3

sequence and report it as the truth. Effectively, then, the three random variables
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will be distributed according to the distribution

q(y1y2y3) , p(y1y2)p(y3|y2).

The decoder will be able to determine that nodes 1 and 2 are reporting jointly

typical sequences, as are nodes 2 and 3, but not nodes 1 and 3. Therefore, it can

tell that either node 1 or 3 is the traitor, but not which one, so it must obtain

estimates of the sources from all three nodes. Since the three streams are not

jointly typical with respect to the source distribution p(y1y2y3), standard Slepian-

Wolf coding on three encoders will not correctly decode them all. However, had we

known the strategy of the traitor, we could do Slepian-Wolf coding with respect

to the distribution q. This will take a sum rate of

Hq(Y1Y2Y3) = H(Y1Y2Y3) + I(Y1; Y3|Y2)

where Hq is the entropy with respect to q. In fact we will not do Slepian-Wolf

coding with respect to q but rather something slightly different that gives the

same rate. Since Slepian-Wolf coding without traitors can achieve a sum rate of

H(Y1Y2Y3), we have paid a penalty of I(Y1; Y3|Y2) for the single traitor.

We supposed that node 3 simulated the distribution p(y3|y2). It could have just

as easily simulated p(y3|y1), or another node could have been the traitor. Hence,

the minimum achievable sum rate for all H ∈ H is at least

R∗ , H(Y1Y2Y3) + max{I(Y1; Y2|Y3), I(Y1; Y3|Y2), I(Y2; Y3|Y1)}. (3.3)

In fact, this is exactly the minimum achievable sum rate, as shown below.
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3.2.2 Variable-Rate Coding Scheme

We now give a variable-rate coding scheme that achieves R∗. This scheme is

somewhat different from the one we present for the general case in Section 3.5,

but it is much simpler, and it illustrates the basic idea. The procedure will be

made up of a number of rounds. Communication from node i in the first round

will be based solely on the first n values of Yi, in the second round on the second

n values of Yi, and so on. The principle advantage of the round structure is that

the decoder may hold onto information that is carried over from one round to the

next.

In particular, the decoder maintains a collection V ⊂ H representing the sets

that could be the set of honest nodes. If a node is completely eliminated from V,

that means it has been identified as the traitor. We begin with V = H, and then

remove a set from V whenever we find that the messages from the corresponding

pair of nodes are not jointly typical. With high probability, the two honest nodes

report jointly typical sequences, so we expect never to eliminate the honest pair

from V. If the traitor employs the q discussed above, for example, we would

expect nodes 1 and 3 to report atypical sequences, so we will drop {1, 3} from V.

In essence, the value of V contains our current knowledge about what the traitor

is doing.

The procedure for a round is as follows. If V contains {{1, 2}, {1, 3}}, do the

following:

1. Receive nH(Y1) bits from node 1 and decode yn1 .

2. Receive nH(Y2|Y1) bits from node 2. If there is a sequence in Yn
2 jointly

typical with yn1 that matches this transmission, decode that sequence to yn2 .
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If not, receive nI(Y1; Y2) additional bits from node 2, decode yn2 , and remove

{1, 2} from V.

3. Do the same with node 3: Receive nH(Y3|Y1) bits and decode yn3 if possible.

If not, receive nI(Y1; Y3) additional bits, decode, and remove {1, 3} from V.

If V is one of the other two subsets of H with two elements, perform the same

procedure but replace node 1 with whichever node appears in both elements in

V. If V contains just one element, then we have exactly identified the traitor, so

ignore the node that does not appear and simply do Slepian-Wolf coding on the

two remaining nodes.

Note that the only cases when the number of bits transmitted exceeds nR∗ are

when we receive a second message from one of the nodes, which happens exactly

when we eliminate an element from V. Assuming the source sequences of the two

honest nodes are jointly typical, this can occur at most twice, so we can always

achieve a sum rate of R∗ when averaged over enough rounds.

3.2.3 Fixed-Rate Coding Scheme

In the procedure described above, the number of bits sent by a node changes from

round to round. We can no longer do this with fixed-rate coding, so we need

a different approach. Suppose node 3 is the traitor. It could perform a black

hole attack, in which case the estimates for Y n
1 and Y n

2 must be based only on the

messages from nodes 1 and 2. Thus, the rates R1 and R2 must fall into the Slepian-

Wolf achievability region for Y1 and Y2. Similarly, if one of the other nodes was the

traitor, the other pairs of rates also must fall into the corresponding Slepian-Wolf
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region. Putting these conditions together gives

R1 ≥ max{H(Y1|Y2), H(Y1|Y3)}

R2 ≥ max{H(Y2|Y1), H(Y2|Y3)}

R3 ≥ max{H(Y3|Y1), H(Y3|Y2)}

R1 +R2 ≥ H(Y1Y2)

R1 +R3 ≥ H(Y1Y3)

R2 +R3 ≥ H(Y2Y3).

(3.4)

If the rates fall into this region, we can do three simultaneous Slepian-Wolf codes,

one on each pair of nodes, thereby constructing two estimates for each node. If

we randomize these codes using the method described in Section 3.1.5, the traitor

will be forced either to report the true message, or report a false message, which

with high probability will be detected as such. Thus either the two estimates for

each node will be the same, in which case we know both are correct, or one of the

estimates will be demonstrably false, in which case the other is correct.

We now show that the region given by (3.4) does not include sum rates as low

as R∗. Assume without loss of generality that I(Y1; Y2|Y3) achieves the maximum

in (3.3). Summing the last three conditions in (3.4) gives

R1 +R2 +R3 ≥
1

2

(
H(Y1Y2) +H(Y1Y3) +H(Y2Y3)

)

= H(Y1Y2Y3) +
1

2

(
I(Y1; Y2|Y3) + I(Y1Y2; Y3)

)
. (3.5)

If I(Y1Y2; Y3) > I(Y1; Y2|Y3), (3.5) is larger than (3.3). Hence, there exist source

distributions for which we cannot achieve the same sum rates with even randomized

fixed-rate coding as with variable-rate coding.

If we are interested only in deterministic codes, the region given by (3.4) can no

longer be achieved. In fact, we will prove in Section 3.7 that the achievable region
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reduces to the trivially achievable region where Ri ≥ H(Yi) for all i when L = 3,

though it is nontrivial for L > 3. For example, suppose L = 4 and H = H1. In this

case, the achievable region is similar to that given by (3.4), but with an additional

node. That is, each of the 6 pairs of rates must fall into the corresponding Slepian-

Wolf region. In this case, we do three simultaneous Slepian-Wolf codes for each

node, construct three estimates, each associated with one of the other nodes. For

an honest node, only one of the other nodes could be a traitor, so at least two of

these estimates must be correct. Thus we need only take the plurality of the three

estimates to obtain the correct estimate.

3.3 Variable-Rate Model and Result

3.3.1 Notation

Let Yi be the random variable revealed to node i, Yi the alphabet of that vari-

able, and yi a corresponding realization. A sequence of random variables revealed

to node i over n timeslots is denoted Y n
i , and a realization of it yni ∈ Yn

i . Let

M , {1, · · · , L}. For a set S ⊂ M, let YS be the set of random variables {Yi}i∈S,

and define yS and YS similarly. By Sc we mean M\S. Let T n
ε (YS)[q] be the strongly

typical set with respect to the distribution q, or the source distribution p if un-

specified. Similarly, Hq(YS) is the entropy with respect to the distribution q, or p

if unspecified.
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3.3.2 Communication Protocol

The transmission protocol is composed of T transactions. In each transaction, the

decoder selects a node to receive information from and selects which of K encod-

ing functions it should use. The node then responds by executing that encoding

function and transmitting its output back to the decoder, which then uses the new

information to begin the next transaction.

For each node i ∈ M and encoding function j ∈ {1, · · · , K}, there is an as-

sociated rate Ri,j . On the tth transaction, let it be the node and jt the encoding

function chosen by the decoder, and let ht be the number of t′ ∈ {1, · · · , t − 1}

such that it′ = it. That is, ht is the number of times it has transmitted prior to the

tth transaction. Note that it, jt, ht are random variables, since they are chosen by

the decoder based on messages it has received, which depend on the source values.

The jth encoding function for node i is given by

fi,j : Y
n
i × Z× {1, · · · , K}ht → {1, · · · , 2nRi,j} (3.6)

where Z represents randomness generated at the node. Let It ∈ {1, · · · , 2nRit,jt}

be the message received by the decoder in the tth transaction. If it is hon-

est, then It = fit,jt(Y
n
it , ρit , Jt), where ρit ∈ Z is the randomness from node it

and Jt ∈ {1, · · · , K}ht is the history of encoding functions used by node it so

far. If it is a traitor, however, it may choose It based on W n and it may have

any amount of access to previous transmissions I1, · · · , It−1 and polling history

i1, · · · , it−1, j1, · · · , jt−1. But, it does not have access to the randomness ρi for any

honest node i. Note again that the amount of traitor eavesdropping ability has no

effect on achievable rates.

After the decoder receives It, if t < L it uses I1, · · · , It to choose the next node
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it+1 and its encoding function index jt+1. After the T th transaction, it decodes

according to the decoding function

g :
T∏

t=1

{1, · · · , 2nRit,jt} → Yn
1 × · · · × Yn

L.

Note that we impose no restriction whatsoever on the size of the total number

of transactions T . Thus, a code could have arbitrary complexity in terms of the

number of messages passed between the nodes and the decoder. However, in our

below definition of achievability, we require that the communication rate from

nodes to decoder always exceeds that from decoder to nodes. Therefore while the

number of messages may be very large, the amount of feedback is diminishingly

small.

3.3.3 Variable-Rate Problem Statement and Main Result

Let H ⊂ M be the set of honest nodes. Define the probability of error

Pe , Pr
(
Y n
H 6= Ŷ n

H

)

where (Ŷ n
1 , · · · , Ŷ n

L ) = g(I1, · · · , IT ). The probability of error will in general de-

pend on the actions of the traitors. Note again that we only require small proba-

bility of error on the source estimates corresponding to the honest nodes.

We define a rate function R(H, r) defined for H ∈ H and r ∈ R(H) to be

α-achievable if there exists a code such that, for all pairs (H, r) and any choice of

actions by the traitors, Pe ≤ α,

Pr

( T∑

T=1

Rit,jt ≤ R(H, r)

)

≥ 1− α

and logK ≤ αnRi,j for all i, j. This last condition requires, as discussed above,

that the feedback rate from the decoder back to the nodes is arbitrarily small
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compared to the forward rate. A rate function R(H, r) is achievable if for all

α > 0, there is a sequence of α-achievable rate functions {R′
k(H, r)}∞k=1 such that

lim
k→∞

R′
k(H, r) = R(H, r).

Note that we do not require uniform convergence.

The following definitions allow us to state our main variable-rate result. For

any H ∈ H and r ∈ R(H), let r̃(w|yH) be the distribution of W given YH when W

is distributed according to r(w|yM). That is,

r̃(w|yH) =
∑

yHc∈YHc

p(yHc|yH)r(w|yHyHc).

The extent to whichW provides information about YHc is irrelevant to the traitors,

since in order to fool the decoder they must generate information that appears to

agree only with YH as reported by the honest nodes. Thus it will usually be more

convenient to work with r̃ rather than r. For any S ∈ H and r′ ∈ R(S), let

QS,r′ ,

{

p(yS)
∑

w

r̃′(w|yS)q̄(ySc|w) : ∀q̄(ySc|w)
}

. (3.7)

If Sc were the traitors and W were distributed according to r′, then QS,r′ would

be the set of distributions q to which the traitors would have access. That is, if

they simulate the proper q̄(ySc|w) from their received W , this simulated version of

YS and the true value of YSc would be jointly distributed according to q. For any

V ⊂ H, define

Q(V) ,
⋂

S∈V

⋃

r′∈R(S)

QS,r′,

U(V) ,
⋃

S∈V

S.

That is, for some distribution q ∈ Q(V), for every S ∈ V, if the traitors were Sc,

they would have access to q for some r′ ∈ R(S). Thus any distribution in Q(V)
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makes it look to the decoder like any S ∈ V could be the set of honest nodes, so

any node in i ∈ U(V) is potentially honest.

Theorem 7 A rate function R(H, r) is achievable if and only if, for all (H, r),

R(H, r) ≥ R∗(H, r) , sup
V⊂H, q∈QH,r∩Q(V)

Hq(YU(V)). (3.8)

See Section 3.5 for the proof.

We offer the following interpretation of this result. Suppose we placed the

following constraint on the traitors’ behavior. Given W n, they must produce a

value of Y n
T in an i.i.d. fashion, then report it as the truth. That is, they choose a

value of YT at time τ based only onW at time τ , making each choice in an identical

manner. Then each traitor i takes the produced value of Y n
i and behaves for the

duration of the coding session exactly as if it were honest and this was the true

source sequence. We can now easily classify all possible behaviors of the traitors

simply by specifying the manner in which they generate YT fromW , which is given

by some distribution q̄(yT|w). The joint distribution of YH and YT will be given by

q(yM) = p(yH)
∑

w

r̃(w|yH)q̄(yT|w). (3.9)

By (3.7), q ∈ QH,r. If q is also contained in QS,r′ for some S ∈ H and r′ ∈ R(S),

then again by (3.7), there exists a distribution q̄′(yS|w) such that

q(yM) = p(yS)
∑

w

r̃′(w|yS)q̄′(yS|w). (3.10)

Since (3.9) and (3.10) have exactly the same form, the decoder will not be able

to determine whether H is the set of honest nodes with W distributed according

to r, or S is the set of honest nodes with W distributed according to r′. On the

other hand, if for some S ∈ H, q /∈ QS,r′ for all r
′ ∈ R(S), then the decoder should
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be able to tell that S is not the set of honest nodes. We have not yet said how it

might know, but intuition suggests that it should be possible. Hence, if there is

no S containing a certain node i for which

q ∈
⋃

r′∈R(S)

QS,r′ (3.11)

then the decoder can be sure that i is a traitor and it may be ignored. Let V be

the collection of all S ∈ H for which (3.11) holds. Every node in U(V) looks to

the decoder like it could be honest; all the rest are surely traitors. Thus, in order

to make sure that the decoder reconstructs honest information perfectly, it must

recover Y n
i for all i ∈ U(V), which means the sum rate must be at least Hq(YU(V)).

Observe that

q ∈
⋂

S∈V

⋃

r′∈R(S)

QS,r′ = Q(V).

As already noted, q ∈ QH,r, so q ∈ QH,r ∩ Q(V). Moreover, for any V ⊂ H, every

element of QH,r ∩Q(V) can be produced with the proper choice of q̄(yT|w). Hence

Hq(YU(V)) can be as high as

sup
V⊂H, q∈QH,r∩Q(V)

Hq(YU(V)) = R∗(H, r)

but no higher. Thus it makes sense that this rate and no better can be achieved if

we place this constraint on the traitors. Therefore Theorem 7 can be interpreted

as stating that constraining the traitors in this manner has no effect on the set of

achievable rates.

3.4 Properties of the Variable-Rate Region

It might at first appear that (3.8) does not agree with (3.3). We discuss several

ways in which (3.8) can be made more manageable, particularly in the case of
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perfect traitor information (i.e. W = YM), and show that the two are in fact

identical. Let R∗ be the minimum rate achievable over all H ∈ H and r ∈ R(H).

Thus by (3.8), we can write

R∗ = sup
H∈H,r∈R(H)

R∗(H, r) = sup
V⊂H, q∈Q(V)

Hq(YU(V)). (3.12)

This is the quantity that appears in (3.3). Note also that for perfect traitor infor-

mation,

QS,r′ = {q(yM) : q(yS) = p(yS)}. (3.13)

This means that QH,r ∩ Q(V) = Q(V ∪ {H}). Therefore (3.8) becomes

R∗(H, r) = sup
V⊂H:H∈V, q∈Q(V)

Hq(YU(V)).

The following lemma simplifies calculation of expressions of the form

supq∈Q(V)Hq(YU(V)).

Lemma 7 Suppose the traitors have perfect information. For any V ⊂ H, the

expression

sup
q∈Q(V)

Hq(YU(V)) (3.14)

is maximized by a q satisfying (3.13) for all S ∈ V such that, for some set of

functions {σS}S∈V,

q(y1 · · · yL) =
∏

S∈V

σS(yS). (3.15)

Proof: By (3.13), we need to maximize Hq(YU(V)) subject to the constraints that

for each S ∈ V and all yS ∈ YS, q(yS) = p(yS). This amounts to maximizing the

Lagrangian

Λ = −
∑

yU(V)∈YU(V)

q(yU(V)) log q(yU(V)) +
∑

S∈V

∑

yS∈YS

λS(yS)
(
q(yS)− p(yS)

)
.
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Note that for any S ⊂ U(V),

∂q(yS)

∂q(yU(V))
= 1.

Thus, differentiating with respect to q(yU(V)) gives, assuming the log is a natural

logarithm,

∂Λ

∂q(yU(V))
=− log q(yU(V))− 1 +

∑

S∈V

λS(yS).

Setting this to 0 gives

q(yU(V)) = exp

(

− 1 +
∑

S∈V

λS(yS)

)

= |YU(V)c |
∏

S∈V

σS(yS)

for some set of functions {σS}S∈V. Therefore setting

q(y1 · · · yL) =
q(yU(V))

|YU(V)c |

satisfies (3.15), so if σS are such that (3.13) is satisfied for all S ∈ V, q will maximize

Hq(YU(V)). �

Suppose L = 3 and H = H1. If V = {{1, 2}, {2, 3}}, then q̃(y1y2y3) =

p(y1y2)p(y3|y2) is in Q(V) and by Lemma 7 maximizes Hq(Y1Y2Y3) over all

q ∈ Q(V). Thus

sup
q∈Q(V)

Hq(Y1Y2Y3) = Hq̃(Y1Y2Y3) = H(Y1Y2Y3) + I(Y1; Y3|Y2).

By similar reasoning, considering V = {{1, 2}, {1, 3}} and V = {{1, 3}, {2, 3}}

results in (3.3). Note that if V1 ⊂ V2, then Q(V1) ⊃ Q(V2), so V2 need not be

considered in evaluating (3.8). Thus we have ignored larger subsets of H1, since

the value they give would be no greater than the others.

We can generalize to any collection V of the form

{{S1, S2}, {S1, S3}, · · · , {S1, Sk}}
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in which case

sup
q∈Q(V)

= H(YS1YS2) +H(YS3|YS1) + · · ·+H(YSk|YS1).

Employing this, we can rewrite (3.12) for H = Hs and certain values of s. For

s = 1, it becomes

R∗ = H(Y1 · · ·YL) + max
i,i′∈M

I(Yi; Yi′|Y{i,i′}c).

Again, relative to the Slepian-Wolf result, we always pay a conditional mutual

information penalty for a single traitor. For s = 2,

R∗ = H(Y1 · · ·YL)

+ max

{

max
S,S′⊂M:|S|=|S′|=2

I(YS; YS′|Y(S∪S′)c), max
i,i′,i′′∈M

I(Yi; Yi′; Yi′′|Y{i,i′,i′′}c)
}

where I(X ; Y ;Z|W ) = H(X|W ) +H(Y |W ) + H(Z|W )− H(XY Z|W ). For s =

L − 1, R∗ is given by (3.2). There is a similar formulation for s = L − 2, though

it is more difficult to write down for arbitrary L.

With all these expressions made up of nothing but entropies and mutual in-

formations, it might seem hopeful that (3.14) can be reduced to such an ana-

lytic expression for all V. However, this is not the case. For example, consider

V = {{1, 2, 3}, {3, 4, 5}, {5, 6, 1}}. This V is irreducible in the sense that there is

no subset V′ that still satisfies U(V′) = {1, · · · , 6}, but there is no simple distri-

bution q ∈ Q(V) made up of marginals of p that satisfies Lemma 7, so it must be

found numerically. Still, Lemma 7 simplifies the calculation considerably.
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3.5 Proof of Theorem 7

3.5.1 Converse

We first show the converse. Fix H ∈ H and r ∈ R(H). Take any V ⊂ H, and

any distribution q ∈ QH,r ∩ Q(V). Since q ∈ QH,r, there is some q̄(yT|w) such

that YH and YT are distributed according to q. Since also q ∈ QS,r′ for all S ∈ V

and some r′ ∈ R(S), if the traitors simulate this q̄ and act honestly with these

fabricated source values, the decoder will not be able to determine which of the

sets in V is the actual set of honest nodes. Thus, the decoder must perfectly

decode the sources from all nodes in U(V), so if R(H, r) is a precisely α-achievable

rate function, R(H, r) ≥ Hq(YU(V)).

3.5.2 Achievability Preliminaries

Now we prove achievability. To do so, we will first need the theory of types. Given

yn ∈ Yn, let t(yn) be the type of yn. Given a type t with denominator n, let

Λn
t (Y ) be the set of all sequences in Yn with type t. If t is a joint y, z type with

denominator n, then let Λn
t (Y |zn) be the set of sequences yn ∈ Yn such that (ynzn)

have joint type t, with the convention that this set is empty if the type of zn is not

the marginal of t.

We will also need the following definitions. Given a distribution q on an alpha-

bet Y, define the η-ball of distributions

Bη(q) ,

{

q′(Y) : ∀y ∈ Y : |q(y)− q′(y)| ≤ η

|Y|

}

.
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Note that the typical set can be written

T n
ε (Y ) = {yn : t(yn) ∈ Bε(p)}.

We define slightly modified versions of the sets of distributions from Section 3.3.3

as follows:

Q̆
η
S,r′ ,

⋃

q∈Q
S,r′

Bη(q),

Q̆η(V) ,
⋂

S∈V

⋃

r′∈R(S)

Q̆
η
S,r′.

These sets are nearly the same as those defined earlier. We will eventually take the

limit as η → 0, making them identical to QS,r′ and Q(V), but it will be necessary

to have slightly expanded versions for use with finite block length.

Finally, we will need the following lemma.

Lemma 8 Given an arbitrary n length distribution qn(yn) and a type t with de-

nominator n on Y, let qi(y) be the marginal distribution of qn at time i and q̄(y) =

1
n

∑n
i=1 qi(y). If Y n is distributed according to qn and Pr(Y n ∈ Λn

t (Y )) ≥ 2−nζ,

then D(t‖q̄) ≤ ζ.

Proof: Fix an integer ñ. For ĩ = 1, · · · , ñ, let Y n(̃i) be independently generated

from qn. Let Γ be the set of types tn on supersymbols in Yn with denominator ñ

such that tn(yn) = 0 if yn 6∈ Λn
t (Y ). Note that

|Γ| ≤ (ñ+ 1)|Y|
n

.

If Y nñ = (Y n(1), · · · , Y n(ñ)), then

Pr
(

Y nñ ∈
⋃

tn∈Γ

Λñ
tn(Y

n)
)

= Pr(Y n(̃i) ∈ Λn
t (Y ), ∀̃i)

≥ 2−nñζ .
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But

Pr
(

Y nñ ∈
⋃

tn∈Tn

Λñ
tn(Y

n)
)

=
∑

tn∈Γ

Pr(Y nñ ∈ Λñ
tn(Y

n)

≤
∑

tn∈Γ

2−ñD(tn‖qn)

≤ (ñ+ 1)|Y|
n

2−ñmintn∈Γ D(tn‖qn).

For any tn ∈ Γ, letting ti be the marginal type at time i gives 1
n

∑n
i=1 ti = t.

Therefore

ζ +
1

nñ
|Y|n log(ñ + 1) ≥ min

tn∈Γ

1

n
D(tn‖qn)

≥ min
tn∈Γ

1

n

n∑

i=1

D(ti‖qi) (3.16)

≥ D(t‖q̄) (3.17)

where (3.16) holds by [91, Lemma 4.3] and (3.17) by convexity of the Kullback-

Leibler distance in both arguments. Letting ñ grow proves the lemma. �

The achievability proof proceeds as follows. Section 3.5.3 describes our pro-

posed coding scheme for the case that traitors cannot eavesdrop. In Section 3.5.4,

we demonstrate that this coding scheme achieves small probability of error when

the traitors have perfect information. Section 3.5.5 shows that the coding scheme

achieves the rate function R∗(H, r). In Section 3.5.6, we extend the proof to in-

clude the case that the traitors have imperfect information. Finally, Section 3.5.7

gives a modification to the coding scheme that can handle eavesdropping traitors.

3.5.3 Coding Scheme Procedure

Our basic coding strategy is for a node to transmit a sequence of small messages

to the decoder until the decoder has received enough information to decode the
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node’s source sequence. After receiving one of these messages, the decoder asks

for another small message only if it is unable to decode the sequence. If it can, the

decoder moves on to the next node. This way, the rate at which a node transmits

is as small as possible. Once each node’s source sequence has been decoded, the

decoder attempts to use them to accumulate information about which nodes could

be traitors. It is in this step that it uses its knowledge of the power of the traitors to

tell the difference between a node that could be honest under some circumstances

and one that is surely a traitor. After this, the decoder goes back across all the

nodes again, repeating the same procedure for the next block of source values and

ignoring those nodes that it knows to be traitors. The decoder repeats this again

and again, gathering more information about which nodes could be traitors each

time. The precise description of the coding strategy follows.

1) Random Code Structure: Fix ε > 0. The maximum number of small mes-

sages that could be sent by node i when transmitting a certain sequence to the

decoder is Ji =
⌈
log |Yi|

ε

⌉

. Each of these small messages is represented by a function

to be defined, taking the source sequence as input and producing the small message

as output. In addition, as we discussed in 3.1.5, it is necessary to randomize the

messages at run time in order to defeat the traitors. Thus, node i has C different

but identically created subcodebooks, each of which is made up of a sequence of Ji

functions, one for each small messages, where C is an integer to be defined. Hence

the full codebook for node i is composed of CJi separate functions. In particular,

for i = 1, · · · , L and c = 1, · · · , C, let

f̃i,c,1 : Y
n
i → {1, · · · , 2n(ε+ν)},

f̃i,c,j : Y
n
i → {1, · · · , 2nε}, j = 2, · · · , Ji

with ν to defined later. Thus, a subcodebook associates with each element of
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Yn
i a sequence of about n(log |Yi| + ν) bits chopped into small messages of length

n(ε + ν) or nε. We put tildes on these functions to distinguish them from the

fs defined in (3.6). The f̃s that we define here are functions we use as pieces of

the overall encoding functions f . Each one is constructed by a uniform random

binning procedure. Define composite functions

F̃i,c,j(y
n
i ) , (f̃i,c,1(y

n
i ), · · · , f̃i,c,j(yni )).

We can think of F̃i,c,j(y
n
i ) as an index of one of 2n(jε+ν) random bins.

2) Round Method: Our coding scheme is made up of N rounds, with each round

composed of m phases. In the ith phase, transactions are made entirely with node

i. We denote Y n
i (I) as the Ith block of n source values, but for convenience, we

will not include the index I when it is clear from context. As in the three-node

example, all transactions in the Ith round are based only on Y n
M(I). Thus the total

block length is Nn.

The procedure for each round is identical except for the variable V(I) main-

tained by the decoder. This represents the collection of sets that could be the

set of honest nodes based on the information the decoder has received as of the

beginning of round I. The decoder begins by setting V (1) = H and then pares it

down at the end of each round based on new information.

3) Encoding and Decoding Rules: In the ith phase, if i ∈ U(V(I)), the decoder

makes a number of transactions with node i and produces an estimate Ŷ n
i of Y n

i .

The estimate Ŷ n
i is of course a random variable, so as usual the lower case ŷni refers

to a realization of this variable. If i 6∈ U(V(I)), then the decoder has determined

that node i cannot be honest, so it does not communicate with it and sets ŷni to a

null value.
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For i ∈ U(V(I)), at the beginning of phase i, node i randomly selects a c ∈

{1, · · · , C} according to the uniform distribution. In the first transaction, node

i transmits (c, f̃i,c,1(Y
n
i )). That is, along with the small message itself, the node

transmits the randomly selected index c of the subcodebook that it will use in this

phase. As the phase continues, in the jth transaction, node i transmits f̃i,c,j(Y
n
i ).

After each transaction, the decoder must decide whether to ask for another

transaction with node i, and if not, to decode Y n
i . In the random binning proof

approach to the traditional Slepian-Wolf problem, the decoder decides which se-

quence in the received bin to select as the source estimate by taking the one

contained in the typical set. Here we use the same idea, except that instead of the

typical set, we use a different set for each transaction, and if there is no sequence

in this set that falls into the received bin, this means not that we cannot decode

the sequence but rather that we have not yet received enough information from

the node and must ask for another transaction. The set associated with the jth

transaction needs to have the property that its size is less than 2n(jε+ν), the num-

ber of bins into which the source space has been split after j messages, so that it

is unlikely for two elements of the set to fall into the same bin. Furthermore, in

order to ensure that we eventually decode any sequence that might be chosen by

the node, the set should grow after each transaction and eventually contain all of

Yn
i .

Now we define this set. First let Si , {1, · · · , i} ∩ U(V(I)), the nodes up to i

that are not ignored by the decoder, and let ŷnSi−1
be the source sequences decoded

in this round prior to phase i. The set associated with transaction j is

Tj(ŷ
n
Si−1

) , {yni : Ht(ŷn
Si−1

yni )
(Yi|YSi−1

) ≤ jε}. (3.18)

To be specific, after j transactions, if there are no sequences in Tj(ŷSi−1
) matching
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the received value of F̃i,c,j, the decoder chooses to do another transaction with

node i. If there is at least one such sequence, call it ŷni , choosing between several

possibilities arbitrarily.

Observe that

|Tj(ŷnSi−1
)| ≤ (n+ 1)|Yi×YSi−1

|2njε.

Hence Tj satisfies the size property that were discussed above. Moreover, it grows

with j to eventually become Yn
i . Finally, we have chosen Tj in particular because

it has the property that when a sequence yni falls into Tj for the first time, the

rate at which node i has transmitted to the decoder is close to the entropy of the

type of yni . This means that we can relate the accuracy of the decoded sequences

to the achieved rate, which will allow us to prove that the coding scheme achieves

the claimed rate.

4) Round Conclusion: At the end of round I, the decoder produces V(I + 1)

by setting

V(I + 1) =

{

S ∈ V(I) : t(ŷnU(V(I))) ∈
⋃

r′∈R(S)

Q̆
η
S,r′

}

(3.19)

for η to be defined such that η ≥ ε and η → 0 as ε → 0. As we will show, it is

essentially impossible for the traitors to transmit messages such that the type of the

decoded messages does not fall into Q̆
η
H,r, meaning that H is always in V(I). This

ensures that the true honest nodes are never ignored and their source sequences

are always decoded correctly.
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3.5.4 Error Probability

Define the following error events:

E1(I, i) , {Ŷ n
i (I) 6= Y n

i (I)},

E2(I) , {H 6∈ V(I)},

E3(I) , {t(Ŷ n
U(V(I))(I)) /∈ Q̆

η
H,r}.

The total probability of error is

Pe = Pr

(
N⋃

I=1

⋃

i∈H

E1(I, i)

)

.

As we have said but not yet proved, H will usually be in V(I) (i.e. E2(I) does not

occur), so we do not lose much by writing

Pe ≤ Pr

(
N⋃

I=1

[

E2(I + 1) ∪
⋃

i∈H

E1(I, i)

])

.

Let

AI , Ec
2(I + 1) ∩

⋂

i∈H

Ec
1(I, i)

for I = 1, · · · , N , so

1− Pe ≥ Pr(A1, · · · ,AN) =
N∏

I=1

Pr(AI |A1, · · · ,AI−1).

Observe that AI depends only on Ŷ n
M(I) and Y

n
M(I), both of which are independent

of all events before round I given that H ∈ V(I) (i.e. Ec
2(I) occurs), since this

is enough to ensure that Ŷ n
i (I) is non-null. Since A1, · · · ,AI−1 includes Ec

2(I),

we can drop all conditioning terms expect it. Note also that Ec
2(1) occurs with

probability 1. Therefore

1− Pe ≥
n∏

I=1

Pr(AI |Ec
2(I))

=
n∏

I=1

[1− Pr(Ac
I |Ec

2(I))] ≥ 1−
n∑

I=1

Pr(Ac
I |Ec

2(I))
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so

Pe ≤
N∑

I=1

Pr
(

E2(I + 1) ∪
⋃

i∈H

E1(I, i)
∣
∣
∣E

c
2(I)

)

.

By (3.19), if H is in V(I) but not in V(I + 1), then t(Ŷ n
U(V(I))(I)) /∈ Q̆

η
H,r. Thus

E2(I + 1) ∩ Ec
2(I) ⊂ E3(I) ∩ Ec

2(I)

so

Pe ≤
N∑

I=1

Pr
(

E3(I) ∪
⋃

i∈H

E1(I, i)
∣
∣
∣E

c
2(I)

)

≤
N∑

I=1

Pr
(

E3(I)
∣
∣Ec

2(I),
⋂

i∈H

Ec
1(I, i)

)

+

N∑

I=1

Pr
( ⋃

i∈H

E1(I, i)
∣
∣
∣E

c
2(I)

)

≤
N∑

I=1

Pr
(

E3(I)
∣
∣
∣

⋂

i∈H

Ec
1(I, i)

)

+
N∑

I=1

∑

i∈H

Pr(E1(I, i)|Ec
2(I)) (3.20)

where we have dropped the conditioning on Ec
2(I) in the first term because it

influences the probability of E3(I) only in that it ensures that Ŷ n
i for i ∈ H are

non-null, which is already implied by
⋂

i∈H Ec
1(I, i).

We first bound the first term in (3.20) by showing that for all I,

Pr
(

E3(I)
∣
∣
∣

⋂

i∈H

Ec
1(I, i)

)

≤ α

2N
. (3.21)

If the traitors receive perfect source information, then as we have already noted in

(3.13), QH,r only puts a constraint on the YH marginal of distributions, and the

same is true of Q̆η
H,r. In particular, t(Ŷ n

U(V(I))(I)) ∈ Q̆
η
H,r is equivalent to Ŷ n

H(I)

being typical. Conditioning on
⋂

i∈H Ec
1(I, i) implies that Ŷ n

H(I) = Y n
H(I), so

Pr
(

E3(I)
∣
∣
∣

⋂

i∈H

Ec
1(I, i)

)

≤ Pr(Y n
H(I) ∈ T n

ε (YH))
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meaning (3.21) holds for sufficiently large n by the AEP. Thus (3.21) is only non-

trivial if the traitors receive imperfect source information. This case is dealt with

in Section 3.5.6.

We now consider the second term of (3.20), involving Pr(E1(I, i)|Ec
2(I)) for

honest i. Conditioning on Ec
2(I) ensures that i ∈ U(V(I)) for honest i, so Ŷ n

i (I)

will be non-null. The only remaining type of is a decoding error. This occurs if

for some transaction j, there is an sequence in Tj(ŶSi−1
) different from Y n

i that

matches all thus far received messages. That is, if

∃j, y′ni ∈ Tj(Ŷ
n
Si−1

)\{Y n
i } : F̃i,c,j(y

′n
i ) = F̃i,c,j(Y

n
i ).

However, Si−1 may contain traitors. Indeed, it may be made entirely of traitors.

Thus, we have to take into account that Ŷ n
Si−1

may be chosen to ensure the ex-

istence of such an erroneous y′ni . The node’s use of randomizing among the C

subcodebooks is the method by which this is mitigated, as we will now prove.

Let

k1(y
n
i , ŷ

n
Si−1

) , |{c : ∃j, y′ni ∈ Tj(ŷ
n
Si−1

)\{yni } : F̃i,c,j(y
′n
i ) = F̃i,c,j(y

n
i )}|.

That is, k1 is the number of subcodebooks that if chosen could cause a decoding

error at some transaction. Recall that node i chooses the subcodebook randomly

from the uniform distribution. Thus, given yni and ŷnSi−1
, the probability of an error

resulting from a bad choice of subcodebook is k1(y
n
i , ŷ

n
Si−1

)/C. Furthermore, k1 is

based strictly on the codebook, so we can think of it as a random variable defined

on the same probability space as that governing the random codebook creation.

Averaging over all possible codebooks,

Pr(E1(I, i)|Ec
2(I)) ≤ E

∑

yni ∈Y
n
i

p(yni ) max
ŷn
Si−1

∈Yn
Si−1

k1(y
n
i , ŷ

n
Si−1

)

C
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where the expectation is taken over codebooks.

Let C be the set of all codebooks. We define a subset C1, then show that the

probability of error can be easily bounded for any codebook in C\C1, and that the

probability of a codebook being chosen in C1 is small. In particular, let C1 be the

set of codebooks for which, for any yni ∈ Yn
i and ŷnSi−1

∈ Yn
Si−1

, k1(y
n
i , ŷ

n
Si−1

) > B,

for an integer B ≤ C to be defined later. Then

Pr(E1(I, i)|Ec
2(I)) ≤ Pr(C\C1)

∑

yn
i
∈Yn

i

p(yni ) max
ŷn
Si−1

∈Yn
Si−1

B

C

+ Pr(C1)
∑

yni ∈Y
n
i

p(yni ) max
ŷn
Si−1

∈Yn
Si−1

C

C

≤ B

C
+ Pr(C1). (3.22)

Recall that k1 is the number of subcodebooks that could cause an error. Since

each subcodebook is generated identically, k1 is a binomial random variable with

C trails and probability of success P , where P is the probability that one particular

subcodebooks causes an error. Thus

P = Pr
(
∃j, y′ni ∈ Tj(ŷ

n
Si−1

)\{yni } :

F̃i,c,j(y
′n
i ) = F̃i,c,j(y

n
i )
)

≤
Ji∑

j=1

∑

y′ni ∈Tj(ŷnSi−1
)\{yni }

Pr
(
Fi,c,j(y

′n
i ) = Fi,c,j(y

n
i )
)

≤ Ji

∣
∣
∣Tj(ŷ

n
Si−1

)
∣
∣
∣ 2−n(jε+ν)

≤ Ji(n+ 1)|Yi×YSi−1
|2−nν ≤ 2n(ε−ν)

for sufficiently large n. For a binomial random variable Y with mean Ȳ and any

κ, we can use the Chernoff bound to write

Pr(Y ≥ κ) ≤
(
eȲ

κ

)κ

. (3.23)
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Therefore

Pr(k1(y
n
i , ŷ

n
Si−1

) > B) ≤
(
eCP

B + 1

)B+1

≤ 2nB(ε−ν)

if ν > ε and n is sufficiently large. Thus

Pr(C1) = Pr(∃yni , ŷnSi−1
: k1(y

n
i , ŷ

n
Si−1

) > B)

≤
∑

yni

∑

ŷnsi−1

Pr(k1(y
n
i , ŷ

n
Si−1

) > B)

≤
∑

yni

∑

ŷn
Si−1

2nB(ε−ν)

= 2n[log |Yi|+log |YSi−1
|+B(ε−ν)]. (3.24)

Combining (3.20) with (3.21), (3.22), and (3.24) gives

Pe ≤
α

2
+

N∑

I=1

∑

i∈H

(
B

C
+ 2n[log |Yi|+log |YSi−1

|+B(ε−ν)]

)

≤ α

2
+NL

(
B

C
+ 2n[log |YM|+B(ε−ν)]

)

which is less than α for sufficiently large n if

B >
log |YM|
ν − ε

and

C ≥ 3NLB

α
>

3NL log |YM|
α(ν − ε)

.

3.5.5 Code Rate

The discussion above placed a lower bound on C. However, for sufficiently large

n, we can make 1
n
logC ≤ ε, meaning it takes no more than ε rate to transmit

the subcodebook index c at the beginning of the phase. Therefore the rate for

phase i is at most (j + 1)ε + ν, where j is the number of transactions in phase
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i. Transaction j must be the earliest one with ŷni ∈ Tj(ŷSi−1
), otherwise it would

have been decoded earlier. Thus j is the smallest integer for which

Ht(ŷn
Si−1

ŷn
i
)(Yi|YSi−1

) ≤ jε

meaning

jε ≤ Ht(ŷn
Si−1

ŷni )
(Yi|YSi−1

) + ε. (3.25)

By (3.19), for all S ∈ V(I + 1), t(ŷn
U(V(I))) ∈

⋃

r′∈R(S) Q̆
η
S,r′, meaning

t(ŷU(V(I))) ∈
⋂

S∈V(I+1)

⋃

r′∈R(S)

Q̆
η
S,r′ = Q̆η(V(I + 1)).

Furthermore, from (3.21) we know that with probability at least 1−α, t(ŷU(V(I))) ∈

Q̆
η
H,r. Therefore

t(ŷU(V(I))) ∈ Q̆
η
H,r ∩ Q̆η(V(I + 1)). (3.26)

Combining (3.25) with (3.26) gives that with high probability, the rate for all of

round I is at most

∑

i∈U(V(I))

[

Ht(ŷn
Si−1

ŷni )
(Yi|YSi−1

) + 2ε+ ν
]

≤ Ht(ŷU(V(I)))

(
YU(V)

)
+ L(2ε+ ν)

≤ sup
q∈Q̆η

H,r
∩Q̆η(V(I+1))

Hq

(
YU(V)

)
+ L(2ε+ ν)

≤ sup
q∈Q̆η

H,r
∩Q̆η(V(I+1))

Hq

(
YU(V(I+1))

)

+ sup
q
Hq(YU(V(I))\U(V(I+1))) + L(2ε+ ν)

≤ sup
V⊂H, q∈Q̆η

H,r
∩Q̆η(V)

Hq(YU(V))

+ log
∣
∣YU(V(I))\U(V(I+1))

∣
∣ + L(2ε+ ν). (3.27)

Whenever U(V(I))\U(V(I + 1)) 6= ∅, at least one node is eliminated. Therefore

the second term in (3.27) will be nonzero in all but at most L rounds. Moreover,
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although we have needed to bound ν from below, we can still choose it such that

ν → 0 as ε→ 0. Thus if N is large enough, the rate averaged over all rounds is no

more than

Rε(H, r) , sup
V⊂H, q∈Q̆η

H,r
∩Q̆η(V)

Hq(YU(V)) + ε̇

where ε̇→ 0 as ε→ 0. This is a precisely α-achievable rate function. By continuity

of entropy,

lim
ε→0

Rε(H, r) = sup
V⊂H, q∈QH,r∩Q(V)

Hq(YU(V)) = R∗(H, r)

so R∗(H, r) is achievable.

3.5.6 Imperfect Traitor Information

We now consider the case that the traitors have access to imperfect information

about the sources. The additional required piece of analysis is to prove (3.21).

That is

Pr(t(V̂ nẐn) /∈ Q̆
η
H,r|V̂ n = V n) ≤ α

2N
(3.28)

where we define for notational convenience V , YH(I) and Z , YT∩U(V(I))(I).

Observe that we can drop the hat from V̂ n if we wish because of the conditioning

term.

To help explain the task in proving (3.28), we present a similar argument to

the one we used in Section 3.3.3 to interpret Theorem 7: we impose a constraint

on the traitors, then demonstrate that (3.28) would be easy to prove under this

constraint. Suppose that, given W n, the traitors apply a function h : Wn → Zn

to get the sequence Z̃n = h(W n), then report this Z̃n as the truth. Assuming the

decoder successfully decodes Ẑn so that Ẑn = Z̃n, V n and Ẑn would be distributed
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according to

qn(vnzn) =
∑

wn

[
n∏

τ=1

p(vτ )r(wτ |vτ )
]

1{zn = h(wn)}.

By Lemma 8, the only V, Z types t that could be generated from this distribution

with substantial probability are those for which t is close to q̄(vz). Furthermore,

we can write

q̄(vz) = p(v)
∑

w

r(w|v)q̄(z|w)

for some q̄(z|w). Thus q̄(vz) ∈ QH,r by (3.7), so t ∈ Q̆η
H,r for some small η. This

would prove (3.28).

However, we cannot place any such limitations on the traitors’ behavior. Our

goal will be to show that for any action, there exists a function h such that the

behavior just described produces nearly the same effect. Observe that a trans-

mission made by the traitors is equivalent to a bin, or subset, of Zn. That is,

all sequences that would produce this transmission if the nodes were honest. The

decoder will choose an element of this bin as Ẑn, making its decision by selecting

one that agrees with V n (specifically, by always taking elements in Tj). Because

the traitors do not know V n exactly, they must select their transmitted bin so that

for every likely vn, the bin contains some sequence agreeing with it. That is, each

element of the bin agrees with a certain set of vns, and the union of all these sets

must contain all likely values of vn given W n. We will show that the distribution

of the sizes of these “agreement sets” is highly non-uniform. That is, even though

no single element of the bin agrees with all likely vn, a small number of elements of

the bin agree with many more vns that the others. Therefore, transmitting this bin

is not much different from choosing one of these “special” elements and reporting

it as the truth.

The manner in which the traitors choose a bin based on W n is complicated

147

163



by two factors. First, they must choose a subcodebook index c to use for each

traitor in U(V(I)) before transmitting any information. Second, the exact rate at

which each traitor transmits depends on the number of small messages that it takes

for the decoder to construct a source estimate, which the traitors will not always

know a priori. Let j , {ji}i∈T∩U(V(I)) be the vector representing the number of

transactions (small messages) that take place with each traitor in U(V(I)). There

are JT ,
∏

i∈T∩U(V(I)) Ji different possible values of j. For a given j, each set of

messages sent with this number of transactions is represented by a bin. Let Bj be

the set of these bins. Note that we include all choices of subcodebook indices in this

set; there are many different binnings for a given j, any of which the traitors may

select. Now the traitors’ behavior is completely described by a group of potentially

random functions gj : W
n → Bj for all j. That is, if the traitors receive W n, and

the numbers of transactions are given by j, then their transmitted bin is gj(W
n).

Note that when we refer to a bin, we mean not the index of the bin but the actual

set of sequences in that bin. Thus gj(W
n) is a subset of Zn.

Consider a joint v, z type t. We are interested in the circumstances under which

(V nẐn) has type t. Recall that in a given phase, the value of j determines what

source sequences can be decoded without receiving additional messages from the

node. In particular, only those sequences in Tj can be decoded. Thus, in order

to decode Ẑn such that (V nẐn) has type t, j must be such that in every phase,

sequences of the proper type fall into Tji . Specifically, by (3.18), we need for every

i,

Ht(Yi|YSi−1
) ≤ jiε.

Hence
∑

i∈T∩U(V(I))

jiε ≥ Ht(Z|V ).

Let R(j) be the total rate transmitted by all the traitors in U(V(I)) given j. The
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transmitted rate by node i is jiε+ ν, so

R(j) =
∑

i∈T∩U(V(I))

[jiε+ ν] ≥ Ht(Z|V ) + ν.

Therefore if (V nẐn) ∈ Λn
t (V Z), then there exists a j such that R(j) ≥ Ht(Z|V )+ν

and gj(W
n) ∩ Λn

t (Z|V n) is not empty. Let δ , ε
4N

,

δt,j , Pr((V nW n) ∈ T n
ε (VW ), gj(W

n) ∩ Λn
t (Z|V n) 6= ∅)

and

P ,

{

t : max
j:R(j)≥Ht(Z|V )+ν

δt,j ≥
δ

(n + 1)|V×Z|JT

}

.

We will show that P ⊂ Q̆
η
H,r, so that

Pr(t(V nẐn) /∈ Q̆
η
H,r|H ∈ V(I))

≤ Pr(t(V nẐn) /∈ P|H ∈ V(I))

≤ Pr((V nW n) /∈ T n
ε (VW ))

+
∑

t∈Pc

Pr((V nW n) ∈ T n
ε (VW ), (V nẐn) ∈ Λn

t (V Z))

≤ δ +
∑

t∈Pc

Pr((V nW n) ∈ T n
ε (VW ), ∃j :

R(j) ≥ Ht(Z|V ) + ν, gj(W
n) ∩ Λn

t (Z|V n) 6= ∅)

≤ δ +
∑

t∈Pc

∑

j:R(j)≥Ht(Z|V )+ν

δt,j

≤ δ + (n+ 1)|V×Z|JT
δ

(n + 1)|V×Z|JT
= 2δ =

α

2N

for sufficiently large n.

Fix t ∈ P. We show that t ∈ Q̆
η
H,r. There is some j with

R(j) ≥ Ht(Z|V ) + ν (3.29)

and δt,j ≥ δ
(n+1)|V×Z|JT

. Any random gj is a probabilistic combination of a number

of deterministic functions, so if this lower bound on δt,j holds for a random gj, it
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must also hold for some deterministic gj. Therefore we do not lose generality to

assume from now on that gj is deterministic. We also drop the j subscript for

convenience.

Define the following sets:

An
ε (V |wn) , {vn ∈ T n

ε (V |wn) : g(wn) ∩ Λn
t (Z|vn) 6= ∅},

An
ε (W ) ,

{

wn ∈ T n
ε (W ) : Pr(V n ∈ An

ε (V |wn)|W n = wn) ≥ δ

2(n+ 1)|V×Z|JT

}

.

Applying the definitions of P and δt,j gives

δ

(n + 1)|V×Z|JT

≤ Pr((V nW n) ∈ T n
ε (VW ) : g(W n) ∩ Λn

t (Z|V n) 6= ∅)

=
∑

wn∈Tn
ε (W )

p(wn) Pr(V n ∈ An
ε (V |wn)|W n = wn)

≤ Pr(W n ∈ An
ε (W )) +

δ

2(n+ 1)|V×Z|JT

meaning Pr(W n ∈ An
ε (W )) ≥ δ

2(n+1)|V×Z|JT
. Fix wn ∈ An

ε (W ). Since An
ε (V |wn) ⊂

T n
ε (V |wn),

|An
ε (V |wn)| ≥ δ

2(n+ 1)|V×Z|JT
2n(H(V |W )−ε). (3.30)

Note also that

|An
ε (V |wn)| ≤

∑

vn∈Tn
ε (V |wn)

|g(wn) ∩ Λn
t (Z|vn)|

=
∑

zn∈g(wn)

|Λn
t (V |zn) ∩ T n

ε (V |wn)|. (3.31)

Let k2(z
n, wn) , |Λn

t (V |zn) ∩ T n
ε (V |wn)|. This value is the size of the “agreement

set” as described above. Applying (3.30) and (3.31) gives

∑

zn∈g(wn)

k2(z
n, wn) ≥ δ

2(n+ 1)|V×Z|JT
2n(H(V |W )−ε)

≥ 2n(H(V |W )−2ε) (3.32)
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for sufficiently large n. We will show that there is actually a single z̃n ∈ g(wn) such

that k2(z̃
n, wn) represents a large portion of the above sum, so z̃n itself is almost

as good as the entire bin. Then setting h(wn) = z̃n will give us the properties we

need. Note that

∑

zn∈Zn

k2(z
n, wn) =

∑

vn∈Tn
ε (V |wn)

|Λn
t (Z|vn)|

≤ 2n(H(V |W )+Ht(Z|V )+ε). (3.33)

Moreover

k2(z
n, wn) ≤ |T n

ε (V |wn)| ≤ 2n(H(V |W )+ε)

so if for all zn we let l(zn) be the integer such that

2n(H(V |W )−l(zn)ε) < k2(z
n, wn) ≤ 2n(H(V |W )−(l(zn)−1)ε). (3.34)

then l(zn) ≥ 0 for all zn. Furthermore, if k2(z
n, wn) > 0, then l(zn) ≤ L ,

dH(V |W )
ε

e. Let M(l) = |{zn ∈ Zn : l(zn) = l}|. Then from (3.33), for some l,

2n(H(V |W )+Ht(Z|V )+ε) ≥
∑

zn∈Zn

k2(z
n, wn)

≥
∑

zn∈Zn:l(zn)=l

k2(z
n, wn)

≥ M(l)2n(H(V |W )−lε)

giving

M(l) ≤ 2n(Ht(Z|V )+(l+1)ε). (3.35)

For any bin b ∈ Bj, let M̃(l, b) , |{zn ∈ b : l(zn) = l}|. Observe that when the bin

b was created, it was one of 2nR(j) bins into which all sequences in Zn were placed.

Thus the probability that any one sequence was placed in b was 2−nR(j). Hence

M̃(l, b) is a binomial random variable with M(l) trials and probability of success
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2−nR(j). Hence by (3.29) and (3.35),

EM̃(l, b) ≤M(l)2−nR(j)

≤ 2n(Ht(Z|V )+(l+1)ε)2−n(Ht(Z|V )+ν)

= 2n((l+1)ε−ν).

We want to disregard all codebooks for which M̃(l, b) is much larger than its

expectation. In particular, let C2 be the set of codebooks such that for any group

of nodes, subcodebooks, type t, transactions j, sequence wn ∈ Wn, bin b and integer

l, either M̃(l, b) ≥ 2nε if (l+1)ε− ν ≤ 0 or M̃(l, b) ≥ 2n((l+2)ε−ν) if (l+1)ε− ν > 0.

We will show that the probability of C2 is small, so we may disregard it. Again

using (3.23), if (l + 1)ε− ν ≤ 0,

Pr(M̃(l, b) ≥ 2nε) ≤
[ e

2n(−lε+ν)

]2nε

≤ 2−2nε

and if (l + 1)ε− ν > 0,

Pr(M̃(l, b) ≥ 2n((l+2)ε−ν)) ≤
[ e

2nε

]2n((l+2)ε−ν)

≤ 2−2n((l+2)ε−ν)

both for sufficiently large n. Therefore

Pr(C2) ≤ 2LCL(n+ 1)|YM|JT|W|n2n(|YM|+ν)

·




∑

0≤l≤ ν
ε
−1

2−2nε

+
∑

ν
ε
−1<l≤L

2−2n((l+2)ε−ν)





which vanishes as n grows.

We assume from now on that the codebook is not in C2, meaning in particular

that M̃(l, g(wn)) ≤ 2nε for (l + 1)ε − ν ≤ 0 and M̃(l, g(wn)) ≤ 2n((l+2)ε−ν) for

(l + 1)ε − ν > 0. Applying these and (3.34) to (3.32) and letting l̃ be an integer
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defined later,

2−n2ε ≤ 2−nH(V |W )
∑

zn∈g(wn)

k2(z
n, wn)

≤
L∑

l=0

M̃(l, g(wn))2−n(l−1)ε

=
∑

0≤l<l̃

M̃(l, g(wn))2−n(l−1)ε

+
∑

l̃≤l≤ ν
ε
−1

M̃(l, g(wn))2−n(l−1)ε

+
∑

ν
ε
−1<l≤L

M̃(l, g(wn))2−n(l−1)ε

≤
∑

0≤l<l̃

M̃(l, g(wn))2nε +
∑

l̃≤l≤ ν
ε
−1

2nε2−n(l̃−1)ε

+
∑

ν
ε
−1<l≤L

2n((l+2)ε−ν)2−n(l−1)ε

≤
∑

0≤l<l̃

M̃(l, g(wn))2nε + L2n(−l̃+2)ε + L2n(3ε−ν).

Therefore

∑

0≤l<l̃

M̃(l, g(wn)) ≥ 2−n3ε
(

1− L2n(−l̃+4)ε − L2n(5ε−ν)
)

.

Setting l̃ = 5 and ν > 5ε ensures that the right hand side is positive for suffi-

ciently large n, so there is at least one zn ∈ g(wn) with |T n
ε (V |wn) ∩ Λn

t (V |zn)| ≥

2n(H(V |W )−4ε). Now we define h : Wn → Zn such that h(wn) is such a zn for
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wn ∈ An
ε (W ) and h(wn) is arbitrary for wn /∈ An

ε (W ). If we let Z̃n = h(W n), then

Pr((V nZ̃n) ∈ Λn
t (V Z))

≥
∑

wn∈An
ε (W )

p(wn) Pr(V n ∈ Λn
t (V |h(wn))|W n = wn)

≥
∑

wn∈An
ε (W )

p(wn)

· Pr(V n ∈ T n
ε (V |wn) ∩ Λn

t (V |h(wn))|W n = wn)

≥ Pr(W n ∈ An
ε (W ))2−n(H(V |W )+ε)2n(H(V |W )−4ε)

≥ δ

2(n+ 1)|V×Z|
2−n5ε.

The variables (V nW nZ̃n) are distributed according to

qn(vnwnzn) =

[
n∏

τ=1

p(vτ )r(wτ |vτ )
]

1{zn = h(wn)}.

Let qτ (vwz) be the marginal distribution of qn(vnwnzn) at time τ . It factors as

qτ (vwz) = p(v)r(w|v)qτ(z|w).

Let q̄(vz) , 1
n

∑

τ qτ (vz) and q̄(z|w) , 1
n

∑

τ qτ (z|w). Then

q̄(vz) = p(v)
∑

w

r(w|v)q̄(z|w)

so by Lemma 8,

D

(

t
∥
∥
∥p(v)

∑

w

r(w|v)q̄(z|w)
)

≤ −1

n
log

(
δ

2(n+ 1)|V×Z|

)

+ 5ε.

Therefore t ∈ Q̆
η
H,r for sufficiently large n and some η such that η → 0 as ε→ 0.

3.5.7 Eavesdropping Traitors

We consider now the case that the traitors are able to overhear communication

between the honest nodes and the decoder. If the traitors have perfect information,
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then hearing the messages sent by honest nodes will not give them any additional

information, so the above coding scheme still works identically. If the traitors

have imperfect information, we need to slightly modify the coding scheme, but the

achievable rates are the same.

The important observation is that eavesdropping traitors only have access to

messages sent in the past. Thus, by permuting the order in which nodes are polled

in each round, the effect of the eavesdropping can be eliminated. In a given round,

let H′ be the set of honest nodes that transmit before any traitor. Since the

additional information gain from eavesdropping will be no more than the values of

Y n
H′, the rate for this round, if no nodes are eliminated (i.e. U(V(I+1)) = U(V(I))),

will be no more than the rate without eavesdropping when the traitors have access

to W ′n = (W n, Y n
H′). The goal of permuting the transmission order is to find an

ordering in which all the traitors transmit before any of the honest nodes, since

then the achieved rate, if no nodes are eliminated, will be the same as with no

eavesdropping. If you are reading this, email me with the magic word porcupine,

and I will send you twenty dollars. It is possible to determine when such an order

occurs because it will be the order that produces the smallest rate.

More specifically, we will alter the transmission order from round to round in

the following way. We always choose an ordering such that for some S ∈ V, the

nodes Sc transmit before S. We cycle through all such orderings until for each

S, there has been one round with a corresponding ordering in which no nodes

were eliminated. We then choose one S that never produced a rate larger than

the smallest rate encountered so far. We perform rounds in a order corresponding

to S from then on. If the rate ever changes and is no longer the minimum rate

encountered so far, we choose a different minimizing S. The minimum rate will
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always be no greater than the achievable rate without eavesdropping, so after

enough rounds, we achieve the same average rate.

3.6 Fixed-Rate Coding

Consider an L-tuple of rates (R1, · · · , RL), encoding functions fi : Yn
i →

{1, · · · , 2nRi} for i ∈ M, and decoding function

g :

L∏

i=1

{1, · · · , 2nRi} → Yn
1 × · · · × Yn

L.

Let Ii ∈ {1, · · · , 2nRi} be the message transmitted by node i. If node i is honest,

Ii = fi(Y
n
i ). If it is a traitor, it may choose Ii arbitrarily, based on W n. Define

the probability of error Pe , Pr
(
Y n
H 6= Ŷ n

H

)
where Ŷ n

M = g(I1, · · · , IL).

We say an L-tuple (R1, · · · , RL) is deterministic-fixed-rate achievable if for any

ε > 0 and sufficiently large n, there exist coding functions fi and g such that,

for any choice of actions by the traitors, Pe ≤ ε. Let Rdfr ⊂ R
L be the set of

deterministic-fixed-rate achievable L-tuples.

For randomized fixed-rate coding, the encoding functions become

fi : Y
n
i × Z → {1, · · · , 2nRi}

where Z is the alphabet for the randomness. If node i is honest, Ii = fi(Y
n
i , ρi),

where ρi ∈ Z is the randomness produced at node i. Define an L-tuple to be

randomized-fixed-rate achievable in the same way as above, and Rrfr ⊂ R
L to be

the set of randomized-fixed-rate achievable rate vectors.

For any S ⊂ M, let SW(YS) be the Slepian-Wolf rate region on the random
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variables YS. That is,

SW(YS) ,

{

RS : ∀S′ ⊂ S :
∑

i∈S′

Ri ≥ H(YS′|YS\S′)
}

.

Let

R∗
rfr , {(R1, · · · , RL) : ∀S ∈ H : RS ∈ SW(YS)},

R∗
dfr , {(R1, · · · , RL) ∈ R∗

rfr : ∀S1, S2 ∈ H :

if ∃r ∈ R(S2) : Hr(YS1∩S2|W ) = 0,

then RS1∩S2 ∈ SW(YS1∩S2)}

The following theorem gives the rate regions explicitly.

Theorem 8 The fixed-rate achievable regions are given by

Rdfr = R∗
dfr and Rrfr = R∗

rfr.

3.7 Proof of Theorem 8

3.7.1 Converse for Randomized Coding

Assume (R1, · · · , RL) is randomized-fixed-rate achievable. Fix S ∈ H. Suppose

Sc are the traitors and perform a black hole attack. Thus Ŷ n
S must be based

entirely on {fi(Y n
i )}i∈S, and since Pr(YS 6= ŶS) can be made arbitrarily small, by

the converse of the Slepian-Wolf theorem, which holds even if the encoders may

use randomness, RS ∈ SW(YS).
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3.7.2 Converse for Deterministic Coding

Assume (R1, · · · , RL) is deterministic-fixed-rate achievable. The converse for ran-

domized coding holds equally well here, so (R1, · · · , RL) ∈ R∗
rfr. We prove by

contradiction that (R1, · · · , RL) ∈ R∗
dfr as well. Suppose (R1, · · · , RL) ∈ R∗

rfr\R∗
dfr,

meaning that for some S1, S2 ∈ H, there exists r ∈ R(S2) such that Hr(YS1∩S2 |W ) =

0 but RS1∩S2 /∈ SW(YS1∩S2). Consider the case that H = S1 and r is such that

Hr(S1 ∩H|W ) = 0. Thus the traitors always have access to Y n
S1∩H

.

For all S ∈ H, let D(YS) be the subset of T n
ε (YS) such that all sequences in

D are decoded correctly if Sc are the traitors and no matter what messages they

send. Thus the probability that Y n
S ∈ D(YS) is large. LetD(YS1∩H) be the marginal

intersection ofD(YS1) and D(YH). That is, it is the set of sequences y
n
S1∩H

such that

there exists yn
S1\H

and yn
H\S1

with (ynS1∩Hy
n
S1\H

) ∈ D(YS1) and (ynS1∩HyH\S1) ∈ D(YH).

Note that with high probability Y n
S1∩H

∈ D(YS1∩H). Suppose Y
n
S1∩H

∈ D(YS1∩H) and

(Y n
S1∩H

Y n
H\S1

) ∈ D(YH), so by the definition of D, Ŷ n
S1∩H

= Y n
S1∩H

. Since RS1∩H /∈

SW(YS1∩H), there is some y′nS1∩H ∈ D(YS1∩H) mapping to the same codewords as

YS1∩H such that y′nS1∩H 6= Y n
S1∩H

. Because the traitors have access to YS1∩H, they can

construct y′nS1∩H, and also find y′n
S1\H

such that (y′nS1∩Hy
′n
S1\H

) ∈ D(YS1). If the traitors

report y′n
S1\H

, then we have a contradiction, since this situation is identical to that

of the traitors being Sc
1, in which case, by the definition of D, Ŷ n

S1∩H
= y′nS1∩H.

3.7.3 Achievability for Deterministic Coding

Fix (R1, · · · , RL) ∈ R∗
dfr. Our achievability scheme will be a simple extension of the

random binning proof of the Slepian-Wolf theorem given in [41]. Each encoding

function fi : Yn
i → {1, · · · , 2nRi} is constructed by means of a random binning
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procedure. Decoding is then performed as follows. For each S ∈ H, if there is at

least one ynS ∈ T n
ε (YS) matching all received codewords from S, let ŷni,S be one such

sequence for all i ∈ s. If there is no such sequence, leave ŷni,S null. Note that we

produce a separate estimate ŷni,S of Y
n
i for all S 3 i. Let ŷni equal one non-null ŷni,S.

We now consider the probability of error. With high probability, ŷni,H = Y n
i for

honest i. Thus all we need to show is that for all other S ∈ H with i ∈ S, ŷi,S is null

or also equal to Y n
i . Fix S ∈ H. If there is some r ∈ R(S) with Hr(YH∩S|W ) = 0,

then by the definition of R∗
dfr, RH∩S ∈ SW(YH∩S). Thus with high probability the

only sequence ynH∩S ∈ T n
ε (YH∩S) matching all received codewords will be Y n

H∩S, so

ŷni,S = Y n
i for all i ∈ H ∩ S.

Now consider the case that Hr(YH∩S|W ) > 0 for all r ∈ R(S). For convenience,

let V = YH∩S and Z = YT. Let RV =
∑

i∈H∩SRi and RZ =
∑

i∈T Ri. Since

RS ∈ SW(YS), RV + RZ ≥ H(V Z) + η for some η. Let bV (v
n) be the set of

sequences in Vn that map to the same codewords as vn, and let bZ ⊂ Zn be the

set of sequences mapping to the codewords sent by the traitors. Then V may be

decoded incorrectly only if there is some v′n ∈ bV (V
n) and some zn ∈ bZ such that

v′n 6= V n and (v′nzn) ∈ T n
ε (V Z). For some wn ∈ Wn,

Pr(∃v′n ∈ bV (V
n)\{V n}, zn ∈ bZ :

(v′nzn) ∈ T n
ε (V Z)|W n = wn)

≤ Pr(V n /∈ T n
ε (V |wn)|W n = wn) +

∑

vn∈Tn
ε (V |wn)

p(vn|wn)

· 1{∃v′n ∈ bV (v
n)\{vn}, zn ∈ bZ : (v′nzn) ∈ T n

ε (V Z)}

≤ ε+ 2−n(H(V |W )−ε)
∑

zn∈bZ∩Tn
ε (Z)

k3(z
n, wn) (3.36)

where

k3(z
n, wn) , |{vn ∈ T n

ε (V |wn) : ∃v′n ∈ bV (v
n) ∩ T n

ε (V |zn)\{vn}}|.
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On average, the number of typical vn put into a bin is at most 2n(H(V )−RV +ε), so we

can use (3.23) to assume with high probability than no more than 2n(H(V )−RV +2ε)

are put into any bin. Note that

∑

zn∈Tn
ε (Z)

k3(z
n, wn) ≤

∑

zn∈Tn
ε (Z)

∑

vn∈Tn
ε (V |wn)

|bV (vn) ∩ T n
ε (V |zn)\{vn}|

=
∑

vn∈Tn
ε (V |wn)

∑

v′n∈bV (vn)∩Tn
ε (V |zn)\{vn}

|T n
ε (Z|v′n)|

≤ 2n(H(V |W )+ε)2n(H(V )−RV +2ε)2n(H(Z|V )+ε)

= 2n(H(V Z)+H(V |W )−RV +4ε).

The average k3 sum over typical zn in a given bin is thus

2n(H(V Z)+H(V |W )−RV −RZ+4ε) ≤ 2n(H(V |W )+4ε−η).

We can use an argument similar to that in Section 3.5.6, partitioning T n
ε (Z) into

different l values, to show that with high probability, since H(V |W ) > 0, for all

bins bZ ,
∑

zn∈Tn
ε (Z)∩bZ

k3(z
n, wn) ≤ 2n(H(V |W )+5ε−η).

Applying this to (3.36) gives

Pr(∃v′n ∈ bV (V
n)\{vn}, zn ∈ bZ : (v′nzn) ∈ T n

ε (V Z)|W n = wn) ≤ ε+ 2n(6ε−η).

Letting η > 6ε ensures that the probability of error is always small no matter what

bin bZ the traitors choose.

3.7.4 Achievability for Randomized Coding

We perform essentially the same coding procedure as with deterministic coding,

expect we also apply randomness in a similar fashion as with variable-rate coding.
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The only difference from the deterministic coding scheme is that each node has a

set of C identically created subcodebooks, from which it randomly chooses one,

then sends the chosen subcodebook index along with the codeword. Decoding is

the same as for deterministic coding. An argument similar to that in Section 3.5.4

can be used to show small probability of error.
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CHAPTER 4

THE CEO PROBLEM

4.1 Introduction

In this chapter, we study the CEO Problem under adversarial attack. The CEO

Problem is a special case of multiterminal source coding shown in Fig. 4.1. A

source sequence Xn is generated i.i.d. in time from a distribution p(x). The de-

coder is interested in recovering Xn, but no nodes can observe it directly. Instead,

node i for i = 1, . . . , L observes Y n
i , a corrupted form of Xn. Node i then encodes

is observation at rate Ri to the decoder, which produces an estimate X̂n, which it

attempts to make close to Xn subject to some distortion constraint. The source

sequences (Xn, Y n
1 , . . . , Y

n
L ) are i.i.d. in time and correlated in space. The distri-

bution of these variables is structured so that the Y n
i are conditionally independent

given Xn. This conditional independence requirement is the characteristic prop-

erty of the CEO Problem, and appears to make the problem simpler to solve. At

a given time t ∈ {1, . . . , n}, we assume that the sources X(t), Y1(t), . . . , YL(t) are

distributed according to

p(xy1 · · · yL) = p(x)
L∏

i=1

p(yi|x). (4.1)

For the adversarial problem, we assume that the adversary controls any s of the

L nodes. We adopt the “deterministic fixed-rate” model, in the terms of Chapter 3,

and we assume the adversary has complete access to all sources. This model is

as pessimistic as possible, but to ensure robust performance we err on the side of

giving traitors more power rather than less.

Unlike the Slepian-Wolf problem, the CEO Problem has the advantage that
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p(x)

p(y1|x)

p(y2|x)

p(y3|x)

p(y4|x)

p(yL|x)

Xn

Y n
1

Y n
2

Y n
3

Y n
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Y n
L

Node 1

Node 2

Node 3

Node 4

Node L

R1

R2

R3

R4

RL

X̂n

Decoder

Figure 4.1: The CEO Problem. The sources sequences Y n
i are each corrupted

versions of Xn. The former sequences are observed by nodes 1 to L and encoded
versions are transmitted to the decoder, which attempts to recover Xn.

no node has a monopoly on any knowledge about the target source X . Therefore

there is no need to redefine the notion of achievability from the usual definition for

non-adversarial problems. That is, a guarantee on a certain level of distortion at

the decoder for a certain set of rates from the nodes is a true guarantee, without

any qualifications due to the presence of the adversary.

The ultimate goal is to characterize the rate-distortion region, which consists

of all vectors (R1, . . . , RL, D) for which there exists a code scheme that achieves

average distortion D between the true source Xn and the estimate X̂n, given the

data rate Ri from node i to the decoder for i = 1, . . . , L. In Sec. 4.3, we provide

a coding scheme that is a generalization of the Berger-Tung scheme [45, 46]. This

scheme yields an inner bound on the rate-distortion that applies to problems even

more general than the CEO Problem. However, since we cannot prove that it is

tight in general (indeed, the general CEO problem even without an adversary is

open), we focus on two more specific regimes, in which we have somewhat better

success.
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First, we study the CEO problem with discrete sources, in which sources ob-

served by nodes have the same conditional distribution for each node, and in the

regime with many nodes and high rates. It was shown in [48] for the non-adversarial

problem that with many nodes, the distortion falls exponentially with the sum-

rate, and they characterize the rate of exponential decay. In Sec. 4.4, we use the

inner bound found in Sec. 4.3 to find a lower bound on the exponential decay rate

with adversaries. In Sec. 4.5, we provide an upper bound on this decay rate.

The second regime in which we study the problem in more detail is the quadratic

Gaussian version. Here, all sources are Gaussian and the target distortion func-

tion is quadratic. Without adversaries, the complete rate-distortion region was

characterized in [55] and [56]. In Sec. 4.6, we use the inner bound from Sec. 4.3

to find an inner bound on the quadratic Gaussian problem with adversaries. In

Sec. 4.7, we derive an outer bound on the rate-region of the quadratic Gaussian

problem with adversaries. Furthermore, along the lines of the asymptotic results

for discrete sources originally proved in [48] and extended to our results in Sec. 4.4

and 4.5, we derive some asymptotic results for the quadratic Gaussian problem. It

was originally shown in [53] that for many nodes the minimum achievable distor-

tion fell like K/R for sum-rate R. The exact value for the constant K was found

in [54]. In Sec. 4.8, we use our previously derived bounds in Sec. 4.6 and Sec. 4.7

to state and prove bounds on the proportionality constant K for the adversary

problem.
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4.2 Problem Description

Given block length n and rates Ri for i = 1, . . . , L, the encoding function for agent

i is given by

fi : Y
n
i → {1, . . . , 2nRi}. (4.2)

The decoding function at the decoder is given by

φ :
L∏

i=1

{1, . . . , 2nRi} → X̂n (4.3)

where X̂ is the alphabet of the estimate of X , which may differ from X. Denote by

Ci the codeword from the set {1, . . . , 2nRi} sent by node i to the decoder. Honest

node choose their transmissions by setting Ci = fi(Y
n
i ). If i is a traitor, then it may

select Ci in any manner it chooses, including using information about the honest

coding strategy or the true values of the sources. Finally, the decoder produces its

estimate of Xn by setting X̂n = φ(C1, . . . , CL).

The distortion function is given by

d : X× X̂ → R. (4.4)

This function measures the quality of the estimate X̂n produced at the source; our

goal will be to minimize the expected value for a given set of rates. For a given set

of source values (xn, yn1 , . . . , y
n
L), we define the maximum possible distortion over

all possible actions of the traitors to be

D(xn, yn1 , . . . , y
n
L) = max

T⊂{1,...,L}:
|T |=s

max
CT

1

n

n∑

t=1

d(x(t), x̂(t)). (4.5)

In this expression T runs over all possible sets of traitors. We also maximize

over CT , the codewords sent by the traitors, ensuring that any potentially traitor

actions are considered. Observe that even the choice of which agents to capture
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may be a function of the source values. Note also that in (4.5) x̂n is a function of

CL given by φ, and CH is in turn a function of ynH given by the fi.

We say the rate-distortion vector (R1, . . . , RL, D) is achievable if for sufficiently

large n and any ε > 0 there exists encoding and decoding functions f1, . . . , fL and

φ as specified in (4.2) and (4.3) such that

E
[
D(Xn, Y n

1 , . . . , Y
n
L )
]
≤ D + ε. (4.6)

Let D(R1, . . . , RL) be the minimum achievable distortion for rates R1, . . . , RL.

4.2.1 Error Exponent for Discrete Sources

We now describe the error exponent problem for discrete sources. Assume that the

distribution of Yi given X is uniform for all i. That is, the distribution p(yi|x) does

not depend on i. We may therefore specify the problem in terms of a distribution

p(x, y). We assume a Hamming distortion given by

dH(x, x̂) =







0 if x = x̂

1 if x 6= x̂

. (4.7)

For a fixed number of nodes L, sum-rate R, and s traitors, let the minimum

achievable distortion be

D(R,L, s) = inf
R1,...,RL:R1+···+RL≤R

D(R1, . . . , RL). (4.8)

Let the minimum achievable distortion at sum-rate R, for any number of nodes,

and with the fraction of traitors no more than β, be

D(β,R) = inf
L,s:s≤βL

D(R,L, s). (4.9)
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Observe that we assume that as the number of nodes L grows, the fraction of

traitors s/L remains fixed at β ∈ [0, 1]. Our goal is to see how the fraction β

of traitors affects achievable rates. Finally, our quantity of interest is the error

exponent given by

E(β) = lim
R→∞

− logD(β,R)

R
. (4.10)

A lower bound on the error exponent is stated and proved in Sec. 4.4, and an upper

bound in Sec. 4.5.

4.2.2 The Quadratic Gaussian Problem

In the quadratic Gaussian version of the problem, X is a Gaussian random variable

with zero mean and variance σ2
X . The sources observed by the nodes are given by

Yi = X +Ni for i = 1, . . . , L (4.11)

where Ni is a Gaussian random variable with zero mean and variance σ2
Ni
. The

distortion function is quadratic, given by

d(x, x̂) = (x− x̂)2. (4.12)

An inner bound on the rate-distortion region for this problem is stated and proved

in Sec. 4.6, and an outer bound in Sec. 4.7.

In addition, we characterize the asymptotic behavior of the distortion as a

function of the sum-rate for many nodes. In particular, the minimum achievable

distortion for sum-rate R falls likeKσ2
X/R, and we are interested inK as a function

of β, again the fraction of traitors s/L, which is kept fixed for large L. For formally,

let D(R,L) be the minimum achievable distortion for L agents where the sum-rate
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is at most R. In the case that all agents have the same quality of observation (i.e.

σ2
Ni

= σ2
N for all i), let D(R) = limL→∞D(R,L). Finally define

K(β) = lim
R→∞

R
D(R)

σ2
X

. (4.13)

That is, D(R) goes like Kσ2
X/R for large R. Bounds on K(β) are stated and

proved in Sec. 4.8.

4.3 Achievability Scheme for Adversarial Attacks

We give an inner bound on the rate-distortion region for a somewhat broader class

of problems than the CEO Problem as described in Sec. 4.2. We keep the basic

format of the problem, in that the nodes observe Yi for i = 1, . . . , L and the decoder

is interested in recovering X subject to some distortion constraint, but we relax

the condition that the Yi need by conditionally independent given X . Instead, we

allow any distribution among these L+ 1 variables given by

p(xy1 · · · yL). (4.14)

The following theorem gives an inner bound on the rate-distortion region for this

problem.

Theorem 9 Let Ui for i = 1, . . . , L be random variables with alphabets Ui respec-

tively, jointly distributed with X, Y1, . . . , YL such that the following Markov chain

constraints are satisfied:

Ui − Yi − (X, Y1, . . . , Yi−1, Yi+1, . . . , YL,

U1, . . . , Ui−1, Ui+1, . . . , UL) for i = 1, . . . , L. (4.15)
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We may write the distribution of these random variables as

Pr(X = x, Y1 = y1, . . . , YL = yL, U1 = u1, . . . , UL = uL)

= p(x, y1 · · · yL)
L∏

i=1

Q(ui|yi) (4.16)

where Q(ui|yi) completely specifies the variable Ui. The tuple (R1, . . . , RL, D) is

achievable if there exist {Uk} such that:

• For all S ⊂ {1, . . . , L} with |S| = L− 2s and all A ⊂ S,

∑

i∈A

Ri ≥ I(YA;UA|US\A). (4.17)

• For all distributions q(uL), there exists a function

fq :

L∏

i=1

Ui → X̂ (4.18)

such that the following property holds for all pairs of sets S ∈ {1, . . . , L} with

|S| = L− s and conditional distributions r(uSc|x, uS): Let

r(x, uL) =

[
∑

yS

p(x, yS)
∏

i∈S

Q(ui|yi)
]

r(uSc|x, uS). (4.19)

If q(uL) = r(uL), then

D ≤ Er

[
d(X, fq(U1, . . . , UL))

]
(4.20)

where the expectation is take over the distribution r(x, uL) defined in (4.19).

We offer the following intuition for this result. Node i sends to the decoder

a degraded—or quantized—version of its measurement represented by Ui. If all

nodes were honest, the joint distribution of (X,UL) would be given by

∑

yL

p(x)

L∏

i=1

p(yi|x)Q(ui|yi). (4.21)
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However, due to the presence of the traitors, the joint distribution of (X,UL) that

actually occurs, which is represented by r(x, uL), may not match the distribution

that would result with no traitors. Since the decoder can observe only UL, it can

only recover q(uL), from which it must choose the estimation function fq. From

q, the decoder can identify sets of nodes S that may be the set of honest agent as

the ones satisfying (4.19) for some r. However, there may be several possible sets

that are indistinguishable to the decoder, and for each set many possibilities for

r, each one representing a particular choice of action by the traitors. The decoder

must construct its estimate by choosing a function fq that satisfies the distortion

constraint for each of these possibilities, as (4.20) stipulates.

Fig. 4.2 shows the structure of the achievability strategy. The overall con-

figuration is the same as the standard non-adversarial Berger-Tung strategy, in

that Slepian-Wolf coding is used to relay quantized versions of the sources to the

destination, after which the destination estimates X from its recovered data. How-

ever, several of the blocks need to be changed from the non-adversarial strategy.

In fact, for this problem the Slepian-Wolf blocks are almost exactly analogous to

the strategies to defeat adversarial attack on the Slepian-Wolf problem studied in

Chapter 3.

The following subsections give the proof of Theorem 9.

4.3.1 Coding Strategy

Descriptions of the codebook, and the encoding and decoding rules follow. We

assume the existence of random variables Ui for i = 1, . . . , L and functions fq for

all distribution q(uL) satisfying the conditions of Theorem 9.

170

186



Node i

Quantizer
Slepian-Wolf
Encoder

Adversarial
Slepian-
Wolf

Decoder

Estimator
fq

Y n
i Un

i
Ri

Ûn
1

Ûn
2

Ûn
i

Ûn
L−1

Ûn
L

Decoder

X̂n

Figure 4.2: Diagram of achievable strategy for CEO-type problems. The strategy,
described in detail in Sec. 4.3.1, differs from the standard Berger-Tung strategy
mostly in the two blocks in the decoder. The Slepian-Wolf decoding block needs
to be aware of the possibility of adversarial manipulations in recovering the Ui,
and the estimation function fq used in the final block depends on the empirical
distribution of the recovered Ui.

1) Random Code Structure: Each node i forms its codebook in the following

way. It generates 2n(I(Yi;Ui)+δ) n-length codewords at random from the marginal

distribution of Ui. Let C
(n)
i be the codeword set. These codewords are then placed

into 2nRi bins uniformly at random.

2) Encoding Rule: Upon receiving Y n
i , node i selects uniformly at random an

element of

C
(n)
i ∩ T (n)

ε (Ui|Y n
i ).

We denote this selected sequence Un
i . Node i then sends to the decoder the index

of the bin containing Un
i .

3) Decoding Rule: For each S ⊂ {1, . . . , L} with |S| = L− s, the decoder looks

for a group of codewords in T
(n)
ε (US) that matches the received bins from all agents

in S. If there is exactly one such a sequence, call it Ûn
i [S] for all i ∈ S. If there is

no such sequence or more than one, define this to be null.
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For all i, if there is exactly one non-null value of Ûn
i [S] among all S 3 i, then

call this sequence Ûn
i . If the values of Ûn

i [S] are all null or they are inconsistent,

then set Ûn
i arbitrarily.

Let t(uL) be the type of ÛnL. Let V be the collection of sets S for which Ûn
S is

jointly typical. This can be written as

‖t(uS)− p(uS)‖∞ ≤ ε
∏

i∈S |Ui|
for all S ∈ V. (4.22)

Let q(uL) be the distribution minimizing

‖t(uL)− q(uL)‖∞ (4.23)

subject to

q(uS) = p(uS) for all S ∈ V. (4.24)

The decoder chooses for its estimate X̂n = fq(u
L), using the function corresponding

to this distribution q(uL).

4.3.2 Error Analysis

Consider the following error events:

1. Node i can find no conditionally typical codewords given the sequence Y n
i .

That is, the set

C
(n)
k ∩ T (n)

ε (Ui|Y n
i ) (4.25)

is empty. With high probability, this does not occur by the standard proof

of the point-to-point rate-distortion theorem [92].
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2. The sequence Un
H is not jointly typical, where H is the true set of honest

agents. That this occurs with low probability follows from the fact that Y n
H

with be jointly typical with high probability, and the Markov Lemma [46].

3. There is a jointly typical codeword u′nH different from Un
H but with u′nk in the

same bin as Un
i for all i ∈ H . It is shown in [93] that this occurs with low

probability if for all A ⊂ H ,

∑

i∈A

Ri ≥ I(UA; YA|UH\A). (4.26)

This follows from (4.17) even though the size of H is L−s rather than L−2s,

by the following argument. We partition A as A = S1 ∪ · · · ∪ SB ∪A′, where

the sets Sb satisfy |Sb| = L− 2s for b = 1, . . . , B, and |A′| ≤ L− 2s. Also let

S ′ be a set with S ′ = L− 2s and A′ ⊂ S ′ ⊂ H . We may write

∑

i∈A

Ri =
B∑

b=1

∑

i∈Sb

Ri +
∑

i∈A′

Ri (4.27)

≥
B∑

b=1

I(YSb
;USb

) + I(YA′;UA′|US′\A′) (4.28)

=
B∑

b=1

[
H(USb

)−H(USb
|YSb

)
]
+H(UA′|US′\A′)−H(UA′|YA′US′\A′)

(4.29)

≥ H(US1 · · ·USB
|UH\A) +H(UA′|UH\AUS1 · · ·USB

)

−
B∑

b=1

H(USb
|YSb

)−H(UA′ |YA′US′\A′) (4.30)

= H(UA|UH\A)−
B∑

b=1

H(USb
|YSb

)−H(UA′|YA′US′\A′) (4.31)

= H(UA|UH\A)−H(UA|YAUH\A) (4.32)

= I(YA;UA|UH\A) (4.33)

where (4.28) follows from several applications of (4.17), (4.30) follows because
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conditioning reduces entropy, (4.31) follows from the chain rule, and (4.32)

follows because UA − YA − UH\A is a Markov chain.

4. For some S 6= H and i ∈ H ∩ S, Ûn
i [S] 6= Un

i . This can only occur if there

is a jointly typical sequence that matches the bins sent by nodes in H ∩ S

other than the true value of Un
H∩S. Note that |H ∩ S| ≥ L− 2s, so by (4.17)

and the argument in (4.27)–(4.33), for all A ⊂ H ∩ S, we have

∑

i∈A

Ri ≥ I(UA; YA|UH∩S\A). (4.34)

Therefore, again by the argument in [93], with high probability the only

jointly typical sequence in the bins sent from nodes in H ∩S will be the true

value of Un
H∩S, so this error event does not occur.

4.3.3 Distortion Analysis

We have shown that error events (1)–(4) as described in Sec. 4.3.2 occur with small

probability. Let us assume they do not occur. Hence for all i ∈ H , Ûn
k = Un

k . Since

Un
H is jointly typical, H ∈ V. For all S ∈ V, we have that ‖t(uS) − p(uS)‖∞ ≤
ε∏

i∈S Ui
. Certainly if ε = 0, then this implies t(uS) = p(uS). Moreover, if ε = 0 then

the solution of the optimization problem in (4.23)–(4.24) would yield q(uL) = t(uL).

By continuity, when ε is nonzero, there must be some constant C for which, for

sufficiently small ε,

‖q(uL)− t(uL)‖∞ ≤ Cε. (4.35)

Moreover, by (4.24), q(uH) = p(uH).

Let t(x, uL) be the joint type of (Xn, ÛnL). The average distortion is given by

1

n

n∑

t=1

d(x(t), fq(û1(t), . . . , ûL(t))) =
∑

x,uL

t(x, uL)d(x, fq(u1, . . . , uL)). (4.36)
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Let

r(x, uL) = q(uL)t(x|uL). (4.37)

Because q(uL) and t(uL) are close as given by (4.35), we can write

‖r(x, uL)− t(x, uL)‖∞ = ‖(q(uL)− t(uL))t(x|uL)‖∞ ≤ ‖q(uL)− t(uL)‖∞ ≤ Cε.

(4.38)

Therefore the average distortion is upper bounded by

∑

x,uL

(r(x, uL) + Cε)d(x, fq(u1, . . . , uL)) (4.39)

≤
∑

x,uL

r(x, uL)d(x, fq(u1, . . . , uL)) + Cε max
x,x̂

d(x, x̂) (4.40)

≤ D + Cε max
x,x̂

d(x, x̂) (4.41)

where (4.41) follows from (4.20), which we may apply because r(x, uL) satisfies

(4.19) with S = H , since r(uS) = q(uS) = p(uS) and r(u
L) = q(uL). The theorem

follows by sending ε→ 0.

4.4 Inner Bound on Error Exponent for Discrete Sources

We use Theorem 9 to prove a lower bound on the error exponent for discrete

sources. Recall that in this problem the distribution of Yi given X is identical for

all i. We therefore describe our results in terms of the distribution of X and one

Yi, given by p(x, y). We introduce two auxiliary random variables U and J . The

variable J takes values in J and is independent of (X, Y ) with marginal distribution

PJ(j); X → (Y, J) → U is a Markov chain. The conditional distribution of U is

given by Q(u|y, j), and we define for convenience

Q̃(u|x, j) =
∑

y

p(y|x)Q(u|y, j). (4.42)
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We also introduce the vector γj for all j ∈ J. Let

F (PJ , Q, γ) =

min
x1,x2∈X

∑

j

γjD(Q̃λ,j‖Q̃(u|x1, j))

I(Y ;U |X, J) (4.43)

where

Q̃λ,j =
Q̃1−λ(u|x1, j)Q̃λ(u|x2, j)

∑

u

Q̃1−λ(u|x1, j)Q̃λ(u|x2, j)
(4.44)

and λ is chosen so that

∑

j

γjD(Q̃λ,j‖Q̃(u|x1, j)) =
∑

j

γjD(Q̃λ,j‖Q̃(u|x2, j)). (4.45)

It was shown in [48] that the error exponent without an adversary is given by

E(0) = max
PJ ,Q

F (PJ , Q, PJ). (4.46)

The following theorem, our lower bound, recovers this quantity as a lower bound

at β = 0.

Theorem 10 For a fraction β of traitors, the error exponent is lower bounded by

E(β) ≥ max
PJ ,Q

min
γ
F (PJ , Q, γ) (4.47)

where we impose the constraints that

∑

j

γj ≥ 1− 2β and γj ≤ PJ(j) for all j ∈ J. (4.48)

To prove Theorem 10, we follow the path of [48] by presenting the bound in

two steps, the second a generalization of the first. In Sec. 4.4.1 we state a prove a

lemma that constitutes our loose bound. Then in Sec. 4.4.2, we tighten this bound

to complete the proof of Theorem 10.
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4.4.1 Preliminary Bound

Lemma 9 Let U be a random variable such that X − Y − U is a Markov Chain

and the distribution of U is given by Q(u|y). Let

Q̃(u|x) =
∑

y

p(y|x)Q(u|y).

The error exponent is lower bounded by

E(β) ≥ max
Q

min
x1,x2

(1− 2β)D(Q̃λ‖Q̃(u|x1))
I(Y ;U |X)

where

Q̃λ(u) =
Q̃(u|x1)1−λQ̃(u|x2)λ

∑

u

Q̃(u|x1)1−λQ̃(u|x2)λ
(4.49)

and λ is such that D(Q̃λ‖Q̃(u|x1)) = D(Q̃λ‖Q̃(u|x2)).

Proof: We prove the lemma by applying Theorem 9. To do so, we must specify

the auxiliary random variables Ui as well as the function fq as a function of q(uL).

For each i, Ui has distribution conditioned on Yi given by Q(u|y). We construct fq

as follows. Given q(uL), select any set S with |S| = L− s and q(uS) = p(uS). Let

fq(u
L) = max

x
p(x|uS). (4.50)

Set Ri = I(Y ;U |X) + ε for all i. Note that the sum-rate is given by

R = L I(Y ;U |X) + Lε. (4.51)
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We now show that (4.17) is satisfied for sufficiently large L. For any S with

|S| = L− 2s and A ⊂ S, we may write

I(YA;UA|US\A) = H(UA|US\A)−H(UA|YAUS\A) (4.52)

≤ H(UA|US\AX) +H(X)−H(UA|YAUS\A)) (4.53)

= H(UA|X)−H(UA|YA) +H(X) (4.54)

=
∑

i∈A

[
H(Ui|X)−H(Ui|Yi)] +H(X) (4.55)

=
∑

i∈A

I(Yi;Ui|X) +H(X) (4.56)

= |A|I(Y ;U |X) +H(X) (4.57)

=
∑

i∈A

Ri +H(X)− |A|ε (4.58)

where (4.54) follows because UA − X − US\A and UA − YA − US\A are Markov

chains, (4.55) follows because Ui does not depend on Uj or Yj for j 6= i after

conditioning on Yi or X , and (4.57) because all the Ui are distributed identically.

Note that (4.58) satisfies (4.17) if |A| ≥ H(X)/ε. If |A| < H(X)/ε, then S \ A

grows with L because s = βL so |S| = (1 − 2β)L; thus the conditioning term

causes I(YA;UA|US\A) to shrink, and (4.17) is sure to be satisfied for sufficiently

large L.

We now need to evaluate the right hand side of (4.20) to find the achieved

distortion. For any r(x, uL), let

r(x, x̃, x̂, uL) = r(x, uL)p(x̃|uH∩S)p(x̂|uS). (4.59)

The variables X̃ and X̂ defined in this distribution are defined formally and have

no counterpart in the operation of the code. However, note that we may upper
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bound the achieved distortion by

D ≤ Er

[
dH(X, fq(U1, . . . , UL))

]
(4.60)

≤ Er

[
dH(X, X̂)] (4.61)

≤ Er

[
dH(X, X̃)

]
+ Er

[
dH(X̃, X̂)

]
(4.62)

where (4.61) follows because the true function fq chooses the most likely value of

X given US, whereas X̂ is defined to be a randomly chosen value according to the

a posterior probability, which will certainly be a worse estimate; and (4.62) follows

by the triangle inequality. We proceed to evaluate the two terms in (4.62). The

first term depends only on the distribution of X and X̃, which we may write

r(x, x̃) =
∑

uL

r(x, uL)p(x̃|uH∩S) =
∑

uH∩S

p(x, uH∩S)p(x̃|uH∩S) (4.63)

because r(x, uH) = p(x, uH). The second term in (4.62) depends only on the

distribution of X̃ and X̂ , which we may write

r(x̃, x̂) =
∑

uL

r(uL)p(x̃|uH∩S)p(x̂|uS) (4.64)

=
∑

uS

p(uS)p(x̃|uH∩S)p(x̂|uS) (4.65)

=
∑

uS

p(x̂, uS)p(x̃|uH∩S) (4.66)

=
∑

uH∩S

p(x̂, uH∩S)p(x̃|uH∩S) (4.67)

where we have used the fact that r(uS) = p(uS). Note that the distribution of

(X, X̃) is identical to that of (X̃, X̂). Hence the two terms of (4.62) are the same,
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and we need only bound one of them. We may therefore write

D/2 ≤ Er

[
dH(X, X̃)

]
= Prr(X 6= X̃) (4.68)

=
∑

x1,x2∈X:x1 6=x2

p(x1, uH∩S)p(x2|uH∩S) (4.69)

=
∑

x1,x2∈X:x1 6=x2

p(x1)Q̃(uH∩S|x1)p(x2)Q̃(uH∩S|x2)
p(uH∩S)

. (4.70)

Let γ = |S ∩H|/L. Certainly γ ≥ 1 − 2β. Let t be the type of uS∩H. This is

a type in space, rather than in time, and it is well defined because the alphabets

for Ui is the same for each i. For x1 ∈ X,

p(x1)Q̃(uS∩H|x1)
p(uS∩H)

=
p(x1)2

−γL[D(t‖Q̃(u|x1))+H(t)]

∑

x

p(x)2−γL[D(t‖Q̃(u|x))+H(t)]

≤ 2−γL[D(t‖Q̃(u|x1))−minx D(t‖Q̃(u|x))−δ]

for any δ > 0 and sufficiently large L. Therefore

∑

uS∩H∈ΛγL
t (U)

p(x1)Q̃(uS∩H|x1)p(x2)Q̃(uS∩H|x2)
Pr(uS∩H)

≤ 2γLH(t)2−γL[D(t‖Q̃(u|x1))−minx D(t‖Q̃(u|x))−δ]

· p(x2)2−γL[D(t‖Q̃(u|x2))+H(t)]

≤ 2−γL[D(t‖Q̃(u|x1))+D(t‖Q̃(u|x2))−minx D(t‖Q̃(u|x))−δ]

for sufficiently large L. Therefore, using the fact that the number of types t is

polynomial in L,

D/2 ≥ min
x1,x2:x1 6=x2

min
t
γ
[
D(t‖Q̃(u|x1)) +D(t‖Q̃(u|x2))−min

x
D(t‖Q̃(u|x))− δ

]

= min
t

min2
x

γD(t‖Q̃(u|x))− δ (4.71)
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where min2 takes the second smallest value. It can be shown that this term

involving the second smallest value of x is the minimum Chernoff Information.

That is,

− logD

L
≥ min

x1,x2

γD(Q̃λ‖Q̃(u|x1))− δ − log 2

L

where Q̃λ and λ are defined by (4.49). Recalling that γ ≥ 1 − 2β and taking the

limit as δ → 0 gives

lim
L→∞

− logD

L
≥ min

x1,x2

(1− 2β)D(Q̃λ‖Q̃(u|x1)).

Applying (4.51) proves Lemma 9.

�

4.4.2 Tighter Bound

Now we improve this bound by introducing the additional auxiliary random vari-

able J . Following the essential argument of [48], we alter our application of Theo-

rem 9 so that the nodes are split into groups, each with a different method of quan-

tization. Partition {1, · · · , L} into disjoint sets Rj such that
∣
∣|Rj| − PJ(j)L

∣
∣ ≤ 1

for all j. For all i ∈ Rj , the conditional distribution of Ui given Yi is given by

Q(u|y, J = j). If i ∈ Rj, we set Ri = I(Y ;U |X, J = j). Checking (4.17) follows

along similar lines as it did in Sec. 4.4.1. The sum-rate becomes

R =
∑

j

|Rj |I(Y ;U |X, J = j) ≤ L I(Y ;U |X, J) + O(1). (4.72)

The definition of fq is the same as in Sec. 4.4.1, accounting for the different distri-

bution of the underlying variables. Let γj = |Rj ∩ S ∩H|/L. Then
∑

j

γj ≥ 1− 2β and γj ≤ PJ(j) ∀j ∈ J. (4.73)
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Let tj be the type of uRj∩S∩H . Thus

Q̃(uS∩H |x) =
∏

j

2−Lγj [D(tj‖Q̃(u|x,j))+H(tj)]. (4.74)

Applying this to (4.70) yields

− logD

L
≥ min

tj
min2

x

∑

j∈J

γjD(tj‖Q̃(u|x, j))− δ − log 2

L

≥ min
x1,x2

∑

j

γjD(Q̃λ,j‖Q̃(u|x1, j))− δ − log 2

L
(4.75)

where Q̃λ,j is given by (4.44) and (4.45). Extending (4.75) to minimize over all

γj satisfying (4.73), then combining the result with (4.72) completes the proof of

Theorem 10.

4.5 Outer Bound on Error Exponent for Discrete Sources

Recall the definition of F (PJ , Q, γ) in Sec. 4.4, as we use it again in the statement

of our upper bound on the error exponent, which is stated as follows.

Theorem 11 For a β fraction of traitors, the error exponent is upper bound as

E(β) ≤ min
γ

max
PJ ,Q

F (PJ , Q, γ) (4.76)

where γ and PJ are constrained so that

∑

j

γj ≥ 1− 2β and γj ≤ PJ(j) for all j ∈ J. (4.77)

Note that the upper bound in Theorem 11 differs from the lower bound in The-

orem 10 only by a reordering of the maximum and minimum. Moreover, the two

bounds meet at β = 0 and together recover the result of [48], giving the error

exponent with no adversary, as stated in (4.46). The proof of Theorem 11 follows.
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Proof: Recall that if node i is honest, the codeword Ci transmitted to the

decoder is given by fi(Y
n
i ). Define a distribution on Xn and CL as

P (xn, cL) =
∑

ynL

p(xn)

L∏

i=1

p(yni |xn)1(ci = fi(y
n
i )).

We will refer to various marginals and conditionals of this distribution as well.

Let X̃t = (X(1), . . . , X(t − 1), X(t + 1), . . . , X(n)). For any t and x̃t, define

Ui(t, x̃t) to be a random variable distributed with X(t) and Yi(t) such that

Pr(X(t) = x, Yi(t) = y, Ui(t, x̃t) = c) = p(x, y) Pr(Ci = c|Yi(t) = y, X̃t = x̃t).

Note that X(t)− Y (t)− Ui(t, x̃t) is a Markov chain.

Suppose the adversary performs the following attack. It selects a set S ⊂

{1, . . . , L} with |S| = (1 − β)L and |H ∩ S| = (1 − 2β)L, where H is the true

set of honest nodes; i.e. Hc are the traitors. The set S is the traitors’ target set,

that they endeavor to fool the decoder into thinking may be the true set of honest

nodes. They generate a sequence X ′n from the distribution P (xn|cH∩S). Finally,

they construct CS\H just as honest nodes would if X ′n were the truth. That is,

from X ′n, they generate CS\H from the distribution P (cS\H|xn), and transmit this

CS\H to the decoder.

Observe that Xn, X ′n, CL will be distributed according to

P (xn, cH)P (x
′n|cH∩S)P (cS\H|x′n) =

P (xn, cH)P (x
′n, cS)

P (cH∩S)
.

This distribution is symmetric in xn and x′n. In particular, if S were the true set of

honest nodes, and the traitors performed an analogous attack selecting the set H

as their target set, then precisely the same distribution among Xn, X ′n, CL would

result, except that Xn and X ′n would switch roles. Hence, if the decoder achieves
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a distortion of D; that is, if X̂n is such that D ≥ 1
n
dH(X

n, X̂n), then it must also

be that D ≥ 1
n
dH(X

′n, X̂n), because the decoder can only generate one estimate,

but it must work in both situations. Therefore

D ≥ 1

2n
[dH(X

n, X̂n) + dH(X
′n, X̂n)]

≥ 1

2n
dH(X

n, X ′n) (4.78)

=
1

2n

n∑

t=1

Pr(X(t) 6= X ′(t))

=
1

2n

n∑

t=1

∑

x(t)6=x′(t),cL

P (x(t), cH)P (x
′(t), cS)

P (cH∩S)

=
1

2n

n∑

t=1

∑

x(t)6=x′(t),cH∩S

P (x(t), cH∩S)P (x
′(t), cH∩S)

P (cH∩S)
︸ ︷︷ ︸

D(t)

(4.79)

where we used the triangle inequality in (4.78). The expression in (4.79) can be

shown to be concave in P . We may write

P (x(t), cH∩S) =
∑

x̃t,ynH∩S

p(xn)
∏

i∈H∩S

p(yni |xn)1(ci = fi(y
n
i ))

=
∑

x(tc)

p(xn)
∏

i∈H∩S

∑

yi(t)

p(yi(t)|x(t))
∑

ỹi,t

p(ỹi,t|x̃t)1(ci = fi(y
n
i ))

=
∑

x̃t

p(xn)
∏

i∈H∩S

∑

y

p(y|x(t)) Pr(Ci = ci|X̃t = x̃t, Yi(t) = y)

= EX̃t
p(x(t))

∏

i∈H∩S

∑

y

p(y|x(t)) Pr(Ui(t, X̃t) = ci|Yi(t) = y)

= EX̃t
p(x(t))

∏

i∈H∩S

Pr(Ui(t, X̃t) = ci|X(t) = x(t)). (4.80)

Define for convenience

P (x, uH∩S|t, X̃t) = p(x)
∏

i∈H∩S

Pr(Ui(t, X̃t) = ui|X(t) = x).
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Substituting (4.80) and (4.5) into (4.79) and using concavity gives

D(t) ≥ EX̃t

∑

x1 6=x2
uH∩S

P (x1, uH∩S|t, X̃t)P (x2, uH∩S|t, X̃t)
∑

x3

P (x3, uH∩S|t, X̃t)

≥ |X|−1
EX̃t

max
x1 6=x2

∑

uH∩S

P (x1, uH∩S|t, X̃t)P (x2, uH∩S|t, X̃t)

max
x3

P (x3, uH∩S|t, X̃t)

Let

Ux =

{

uH∩S : x = argmax
x′

p(x′)
∏

i∈H∩S

Q̃(ui(t, X̃t)|x′)
}

.

Then

D(t) ≥ |X|−1
EX̃t

max
x1 6=x2

∑

x3

∑

uH∩S∈Ux3

P (x1, uH∩S|t, X̃t)P (x2, uH∩S|t, X̃t)

P (x3, uH∩S|t, X̃t)

≥ |X|−1
EX̃t

max
x1 6=x2,x3

∑

uH∩S∈Ux3

P (x1, uH∩S|t, X̃t)P (x2, uH∩S|t, X̃t)

P (x3, uH∩S|t, X̃t)
. (4.81)

For fixed x3, if both x1 and x2 are different from x3, we can always increase the

value in (4.81) by making x1 or x2 equal to x3. Hence, we need only consider cases

in which either x1 = x3 or x2 = x3. Thus

D(t) ≥ |X|−1
EX̃t

max
x1 6=x2

∑

uH∩S∈Ux2

P (x1, uH∩S|t, X̃t)

= |X|−1
EX̃t

max
x1 6=x2

p(x1) Pr(Ux2|x1, X̃t).

Using ideas from [48], we have that

Pr(Ux2 |x1, X̃t) ≥ 2−
∑

i∈H∩S D(Q
(i)
λ

‖Pr(Ui(t,X̃t)|x1))−o(L)

where

Q
(i)
λ (u) =

Pr1−λ(Ui(t, X̃t) = u|x1) Prλ(Ui(t, X̃t) = u|x2)
∆

(i)
λ

(4.82)

with ∆
(i)
λ a normalizing constant and λ chosen such that

∑

i∈H∩S

D(Q
(i)
λ ‖Pr(Ui(t, X̃t)|x1)) =

∑

i∈H∩S

D(Q
(i)
λ ‖Pr(Ui(t, X̃t)|x2)). (4.83)
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Hence

D(t) ≥ EX̃t
2−minx1,x2

∑
i∈H∩S D(Q

(i)
λ

‖Pr(Ui(t,X̃t)|x1))−o(L). (4.84)

Putting (4.84) back into (4.79) gives

− logD ≤ − log
1

2n

n∑

t=1

EX̃t
2−minx1,x2

∑
i∈H∩S D(Q

(i)
λ

‖Pr(Ui(t,X̃t)|x1))−o(L)

≤ 1

n

n∑

t=1

EX̃t
min
x1,x2

∑

i∈H∩S

D(Q
(i)
λ ‖Pr(Ui(t, X̃t)|x1)) + o(L) (4.85)

where we have used Jensen’s inequality in (4.85).

A chain of standard inequalities (see [48]) yields

R =

L∑

i=1

Ri ≥
1

n

n∑

t=1

EX̃t

L∑

i=1

I(Yi(t);Ui(t, X̃t|X(t)). (4.86)

Putting (4.85) together with (4.86) and using the fact that

∑

iAi
∑

iBi
≤ max

i

Ai

Bi

for any nonnegative Ai and Bi, we get

− logD

R
≤ max

t,x̃t

min
x1,x2

∑

i∈H∩S

D(Q
(i)
λ ‖Pr(Ui(t, x̃t)|x1)) + o(L)

L∑

i=1

I(Yi(t);Ui(t, x̃t)|X(t))

≤ max
Ui:X→Yi→Ui

min
x1,x2

1

L

∑

i∈H∩S

D(Q
(i)
λ ‖Q̃(ui|x1))

1

L

L∑

i=1

I(Yi;Ui|X)

+ ε. (4.87)

Observing that the choices of H and S could have been made differently by the

traitors, we introduce a vector γi for i = 1, . . . , L under the constraints

γi ∈
{

0,
1

L

}

and
∑

i

γi = 1− 2β. (4.88)
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This allows us to tighten (4.87) to

− logD

R
≤ min

γi
max

Ui:X→Yi→Ui

min
x1,x2

L∑

i=1

γiD(Q
(i)
λ ‖Q̃(ui|x1))

1

L

L∑

i=1

I(Yi;Ui|X)

+ ε. (4.89)

we claim that the value of (4.89) does not change if we replace (4.88) with

γi ≤
1

L
and

∑

i

γi ≥ 1− 2β. (4.90)

This is because we may use arbitrarily large L, so any γi satisfying (4.88) can

be closely approximated by a γi satisfying (4.90). Furthermore, we introduce a

variable I with values in {1, . . . , L} such that

Pr(U = u|I = i, Y = y) = Pr(Ui = u|Y = y)

and maintaining the condition γi ≤ PI(i) for all i = 1, . . . , L. Doing so gives

− logD

R
≤ min

γi
max
PI ,Q

min
x1,x2

∑

i

γiD(Q̃λ,i‖Q̃(u|x1, i))

I(Y ;U |X, I)

= min
γi

max
PI ,Q

F (PI , Q, γ).

Replacing I with a variable J over an arbitrary alphabet proves (4.76). Note that

in this process (4.82), (4.83), and (4.90) have become (4.44), (4.45), and (4.77)

respectively. �

4.6 Inner Bound on Rate-Distortion Region for the

Quadratic Gaussian Problem

With no adversary, the rate-distortion region for the quadratic Gaussion problem

was found simultaneously in [55] and [56]. They found that with s = 0, the tuple

(R1, . . . , RL, D) is achievable if and only if there exist ri for i = 1, . . . , L such that
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1. for all A ⊂ {1, . . . , L},
∑

i∈A

Ri ≥
∑

i∈A

ri +
1

2
log

1

D
− 1

2
log

(

1

σ2
X

+
∑

i∈Ac

1− exp(−2ri)

σ2
Ni

)

. (4.91)

2. the distortion D is bounded by

1

D
≤ 1

σ2
X

+
L∑

i=1

1− exp(−2ri)

σ2
Ni

. (4.92)

The following theorem gives our inner bound on the rate-distortion region with an

adversary.

Theorem 12 The tuple (R1, . . . , RL, D) is achievable if there exist ri for i =

1, . . . , L and for each matrix Σ ∈ R
L×L there exist constants ci(Σ) such that

1. for all S ⊂ {1, . . . , L} with |S| = L− 2s and all A ⊂ S,

∑

i∈A

Ri ≥
∑

i∈A

ri +
1

2
log

(

1

σ2
X

+
∑

i∈S

1− exp(−2ri)

σ2
Ni

)

− 1

2
log




1

σ2
X

+
∑

i∈S\A

1− exp(−2ri)

σ2
Ni



 (4.93)

2. for every S ⊂ {1, . . . , L} with |S| = L− s and every vector λ ∈ R
L for which

Σi,j = σ2
X +

σ2
Ni

1− exp(−2ri)
δi,j for all i, j ∈ S (4.94)

and λi = σ2
X for i ∈ H,

D ≥ EΣ,λ

(

X −
L∑

i=1

ci(Σ)Ui

)2

(4.95)

where by EΣ,λ we mean an expectation taken over a distribution on the vari-

ables (X,U1, . . . , UL) with covariance matrix





σ2
X λT

λ Σ




 . (4.96)
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Proof: Again we apply Theorem 9. We define Ui as

Ui = Yi +Wi (4.97)

where Wi is a Gaussian random variable with zero mean and variance σ2
Wi
. The

estimation function fq is determined by the sample covariance matrix of q(uL),

which we denote Σ. Then let

fq(u
L) =

L∑

i=1

ci(Σ)ui. (4.98)

Consider first the rate condition in the statement of Theorem 12. Define (just

for the section)

ri = I(Yi;Ui|X) =
1

2
log

σ2
Ni

+ σ2
Wi

σ2
Wi

.

There is a one-to-one correspondence between ri and σ
2
Wi
, so we can write every-

thing in terms of ri instead of σ2
Wi
. It is not hard to show that

I(YA;UA|US\A) =
∑

k∈A

rk +
1

2
log

(

1

σ2
X

+
∑

i∈S

1− exp(−2ri)

σ2
Ni

)

− 1

2
log




1

σ2
X

+
∑

i∈S\A

1− exp(−2ri)

σ2
Ni



 .

Hence (4.93) follows from (4.17).

Now consider the distortion condition in the statement of Theorem 12. Any

distribution r(x, uL) has a covariance matrix which we parameterize as in (4.96).

The condition (4.94) is precisely the same as (4.19) in that the marginal distribution

of US is exactly the honest distribution. Therefore (4.95) follows from (4.20). �
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4.7 Outer Bound on Rate-Distortion Region for the

Quadratic Gaussian Problem

The following theorem gives our outer bound on the rate-distortion region for the

quadratic Gaussian CEO Problem with an adversary.

Theorem 13 If the tuple (R1, . . . , RL, D) is achievable, then there exist ri for

ri = 1, . . . , L such that for all S ⊂ {1, . . . , L} with |S| = L− 2s and all A ⊂ S,

∑

i∈A

Ri ≥
∑

i∈A

ri +
1

2
log

1

D
− 1

2
log




1

σ2
X

+
∑

i∈S\A

1− exp(−2ri)

σ2
Ni



 , (4.99)

1

D
≤ 1

σ2
X

+
∑

i∈S

1− exp(−2ri)

σ2
Ni

. (4.100)

The region specified in our outer bound in Theorem 13 is identical to the rate region

for the non-Byzantine problem given in [55, 56], and stated in (4.91)–(4.92), except

that the two conditions on {1, . . . , L} have been replaced with conditions on S for

all sets of size L − 2s. Together our inner and outer bounds match at s = 0 and

recover the non-adversary result of [55, 56].

Proof: Assume (R1, . . . , RL, D) is achievable, and consider a code that achieves

it with codewords (C1, . . . , CL). We may assume without loss of generality that

the code achieves distortion D with probability at least 1 − ε, because we can

always repeat the code multiple times and apply the law of large numbers. Fix
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S ⊂ {1, . . . , L} with |S| = L− 2s. We may write

∑

i∈A

Ri ≥
∑

i∈A

1

n
H(Ci)

≥ 1

n
H(CA)

≥ 1

n
H(CA|CS\A)

≥ 1

n
I(Y n

A ;CA|CS\A)

=
1

n
I(Y n

A , X
n;CA|CS\A)

=
1

n
I(Xn;CA|CS\A) +

1

n
I(Y n

A ;CA|Xn, CS\A)

=
1

n
I(Xn;CS)−

1

n
I(Xn;CS\A) +

∑

i∈A

1

n
I(Y n

i ;Ci|Xn). (4.101)

We define (for this section)

ri =
1

n
I(Y n

i ;Ci|Xn). (4.102)

Lemma 3.1 in [56] states that for any B ⊂ {1, . . . , L},

1

σ2
X

exp

(
2

n
I(Xn;CB)

)

≤ 1

σ2
X

+
∑

i∈B

1− exp(−2ri)

σ2
Ni

(4.103)

which allows us to bound the second term in (4.101). Only the first term remains,

which we may rewrite as

1

n
I(Xn;CS) =

1

n
h(Xn)− 1

n
h(Xn|CS) =

1

2
log 2πeσ2

X − 1

n
h(Xn|CS). (4.104)

We will proceed to show that

1

n
h(Xn|CS) ≤

1

2
log 2πeD (4.105)

which, combined with (4.102), (4.103), and (4.104), allows us to extend (4.101) to

(4.99). Taking A = ∅ gives (4.100).

We now prove (4.105). Let H1, H2 be sets of size L− s such that S = H1 ∩H2.

If H1 is the true set of honest nodes, then they use the deterministic encoding
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functions fi to get CH1 from Y n
H1
. Meanwhile, the traitors, H1

c, choose CHc
1
. The

decoder’s estimate X̂n is a deterministic function of CL, but when H1 are the

honest nodes, we can think of it as a deterministic function of Y n
H1

and CH1
c . Thus

we can define the set

SD(X, YH1) =

{

(xn, ynH1
) : ∀cHc

1
,
1

n
d(xn, X̂n(ynH1

, cHc
1
)) ≤ D

}

.

This is the set of all (xn, ynH1
) pairs for which X̂n achieves the distortion constraint

no matter what the traitors do. Because we assume that distortion D is achieved

with probability nearly one, the probability of the set SD(X, YH) is also nearly

one. We define the set SD(X, YH2) in an analogous fashion, in the case that H2

is the true set of honest nodes. Since a code achieving distortion D must perform

no matter which nodes are the traitors, SD(X, YH2) is also a set with probability

nearly one.

Now define

QD(X, YS) = {(xn, ynS) : ∃ynH1\H2
, ynH2\H1

:

(xn, ynH1
) ∈ SD(X, YH1), (x

n, ynH2
) ∈ SD(X, YH2)}. (4.106)

That is, QD(X, YS) is the set of pairs (x
n, ynS) such that X̂n achieves the distortion

constraint for some ynH1\H2
when H1 are the honest nodes and some ynH2\H1

when

H2 are the honest nodes. Because the SD sets have probability nearly one, so does

QD.

For a fixed ynH∩S, define the conditional version of QD as

QD(X|ynS) = {xn : (xn, yS) ∈ QD(X, YS)}.
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Note that

1− ε ≤ Pr(QD(X, YS))

=

∫

QD(X,YS)

dxndynSp(x
n, ynS)

=

∫

dynSp(y
n
S)

∫

QD(X|yn
S
)

dxnp(xn|ynS)

=

∫

dynSp(y
n
S) Pr(QD(X|ynS)|ynS).

Since this is a convex combination nearly equal 1, each individual value must nearly

equal 1, so in particular the probability of QD(X|ynS) is nearly 1 given ynS.

Fix a codeword cS. Define

QD(X|cS) =
⋃

yn
S
:fS(y

n
S
)=cS

QD(X|ynS).

From the high probability property of QD(X|ynS), it follows that QD(X|cS) has

high probability conditioned on cS being sent. Hence

1

n
h(Xn|CS) ≤

1

n
max
cH∩S

logVol(QD(X|cH∩S)). (4.107)

Consider two elements xn, x′n of QD(X|cS). By definition, there must be some

sequences ynS, y
′n
S such that (xn, ynS), (x

′n, y′nS ) ∈ QD(X, YH∩S). From the definition

of QD, there must be sequences ynH1\H2
and y′nH2\H1

extending ynS and y′nS respectively

such that (xn, ynH1
) ∈ SD(X, YH1) and (x′n, y′nH2

) ∈ SD(X, YH2). Consider the case

that cS, cH1\H2
= fH1\H2

(ynH1\H2
), and cH2\H1

= fH2\H1
(y′nH2\H1

) are sent. First

observe that this set of messages could have been produced if Xn = xn, Y n
H1

= ynH1
,

and H1 were the set of honest nodes. Then the nodes in H2 \ H1, which are

all traitors, could send cH2\H1
. Since (xn, ynH1

) ∈ SD(X, YH1), by definition the

estimate x̂n produced at the decoder must satisfy 1
n
d(xn, x̂n) ≤ D. However, the

same set of messages could have been produced if Xn = x′n, Y n
H2

= ynH2
, and

H2 were the set of honest nodes, where H1 \H2 decide to send cH1\H2
. Since the
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decoder produces just one estimate for any input messages, the very same estimate

x̂n, by the same reasoning, must satisfy 1
n
d(x′n, x̂n) ≤ D. Hence, we have

1

n

n∑

t=1

(x(t)− x̂(t))2 ≤ D,

1

n

n∑

t=1

(x′(t)− x̂(t))2 ≤ D.

We may rewrite this as

‖x− x̂‖2 ≤
√
nD,

‖x′ − x̂‖2 ≤
√
nD.

Therefore by the triangle inequality, for any xn, x′n ∈ QD(X|cS),

‖x− x′‖2 ≤ 2
√
nD.

That is, QD(X|cS) has diameter at most 2
√
nD. The following lemma bounds the

volume of subsets of Rn as a function of their diameter. It is proved is Sec. 4.7.1.

Lemma 10 The volume of any subset of Rn is no more than that of the n-ball

with the same diameter.

Using Lemma 10, we have that the volume ofQD(X|cS) is no more than the volume

of an n-ball with radius
√
nD. It can be easily shown that such a ball has volume

no more than (2πeD)n/2. Applying this to (4.107) gives (4.105), completing the

proof. �

4.7.1 Proof of Lemma 10

Fix a set A ⊂ R
n with diameter 2r. That is, for any x, y ∈ A, ‖x − y‖2 ≤ 2r.

Consider the set sum

A− A = {x− y : x, y ∈ A}.
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Certainly for any point z ∈ A−A, ‖z‖2 ≤ 2r. Therefore, A−A is contained in the

n-ball of radius 2r. Let Cn be the volume of a unit n-ball, so an n-ball of radius r

has volume Cnr
n. Hence

Vol(A−A) ≤ Cn(2r)
n = 2nCnr

n. (4.108)

The Brunn-Minkowski inequality [92] states that for any A,B ⊂ R
n,

Vol(A+B)1/n ≥ Vol(A)1/n +Vol(B)1/n.

Therefore

Vol(A−A) ≥ [Vol(A)1/n +Vol(−A)1/n]n = 2nVol(A). (4.109)

Combining (4.108) with (4.109) gives

Vol(A) ≤ Cnr
n.

That is, the volume of A is no more than that of an n-ball with the same diameter.

4.8 Asymptotic Results for the Quadratic Gaussian Prob-

lem

The following theorem bounds the asymptotic proportionality constant K(β).

Theorem 14 For a fraction β of traitors

σ2
N

2σ2
X

1

1− 2β
≤ K(β) ≤ σ2

N

2σ2
X

√
1− β +

√
β

(1− β)(
√
1− β −√

β)
. (4.110)

At β = 0, the two bounds meet at σ2
N/(2σ

2
X), matching the result of [54]. They

also both diverge at β = 1/2. The ratio between them is monotonically increasing

195

211



in β and is never more than 4. The proof is stated in the next two subsections,

and both sides make use of the bounds already found on the rate-distortion region

in Sec. 4.6 and Sec. 4.7.

4.8.1 Proof of the Upper Bound on the Asymptotic Pro-

portionality Constant

We apply Theorem 12. For a given sum-rate R, let Ri = R/L for all i. Let r be

the largest possible value satisfying (4.93) where ri = r/L. It is not hard to show

that for large L and R, r is nearly equal to R.

We need to specify the function ci(Σ). First define for all A ⊂ {1, . . . , L}

X̂A = E(X|UA) =

∑

i∈A
Ui

σ2
N

1
σ2
X

+ |A|1−exp(−2r/L)
σ2
N

.

When X and UA are related according to the nominal distribution,

E(X − X̂A)
2 =

1
1
σ2
X

+ |A|1−exp(−2r/L)

σ2
N

.

If we fix |A|/L, for large L and R,

E(X − X̂A)
2 ≈ σ2

N

2R

L

|A| .

Also observe that if B ⊂ A,

E(X̂A − X̂B)
2 = E(X − X̂B)

2 − E(X − X̂A)
2.

We choose the ci in the following way. Given Σ, we look for a set Ĥ ⊂ {1, . . . , L}

of size (1 − β)L that has the expected distribution if H were the set of honest

agents. That is, for all i, j ∈ Ĥ,

Σi,j = σ2
X +

σ2
N

1− exp(−2r/L)
δi,j.
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If there is more than one such Ĥ , choose between them arbitrarily. Then define ci

such that
L∑

i=1

ciUi = X̂Ĥ .

Now we show that this choice achieves the upper bound given in Theorem 14. In

the worst case, the true set of honest agents H shares just (1 − 2β)L agents with

Ĥ . Because UĤ is distributed according to the nominal distribution,

E(X̂Ĥ − X̂Ĥ∩H)
2 = E(X − X̂Ĥ∩H)

2 − E(X − X̂Ĥ)
2

≈ σ2
N

2R

(

L

|Ĥ ∩H|
− L

|Ĥ|

)

≤ σ2
N

2R

(
1

1− 2β
− 1

1− β

)

).

Furthermore, since Ĥ ∩H contains only honest agents,

E(X̂Ĥ∩H −X)2 ≈ σ2
N

2R

L

|Ĥ ∩H|
≤ σ2

N

2R

1

1− 2β
.

Therefore by the Cauchy-Shwartz inequality

E(X̂Ĥ −X)2 ≤
(√

E(X̂Ĥ − X̂Ĥ∩H)
2 +

√

E(X̂Ĥ∩H −X)2
)2

≤ σ2
N

2R

(√
1

1− 2β
− 1

1− β
+

√
1

1− 2β

)2

=
σ2
N

2R

√
1− β +

√
β

(1− β)(
√
1− β −√

β)
.

Therefore in the for large L and R,

R
E(X̂Ĥ −X)2

σ2
X

≤ σ2
N

2σ2
X

√

(1− β) +
√
β

(1− β)(
√
1− β −√

β)
.
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4.8.2 Proof of the Lower Bound on the Asymptotic Pro-

portionality Constant

We apply Theorem 13. Let r =
∑L

i=1 ri. Certainly

R =

L∑

i=1

Ri ≥
L∑

i=1

ri = r.

We have that

1

D
≤ 1

σ2
X

+ min
S:|S|=(1−2β)L

∑

i∈S

1− exp(−2ri)

σ2
N

.

By concavity of the function 1 − exp(−2ri) in ri, this is maximized when all the

ri are equal. Hence

1

D
≤ 1

σ2
X

+ (1− 2β)L
1− exp(−2r/L)

σ2
N

.

Observe that

L(1− exp(−2r/L)) = L

(
2r

L
+ O(L−2)

)

= 2r + O(L−1).

Taking the limit as L→ ∞ gives

1

D
≤ 1

σ2
X

+
(1− 2β)2r

σ2
N

.

Therefore

K(β) = lim
R→∞

RD

σ2
X

≥ lim
r→∞

rD

σ2
X

≥ lim
r→∞

r

σ2
X

(
1
σ2
X

+ (1−2β)2r

σ2
N

) =
σ2
N

2σ2
X

1

1− 2β
.
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CHAPTER 5

MALICIOUS DATA ATTACKS ON POWER SYSTEM STATE

ESTIMATION

5.1 Introduction

Since the beginning of the development of power system state estimation [69], it

has been necessary to deal with bad data. Traditionally, bad data were assumed

to be caused by random errors resulting from a fault in a power meter and/or its

attendant communication system. These errors are modeled by a change of vari-

ance in Gaussian noise, which leads to an energy (L2) detector. In this chapter, we

study the problem that several meters are seized by an adversary that is able to

corrupt the measurements from those meters that are received by the control cen-

ter. This differs from previous investigations of the problem in that the malicious

data at various meters can be simultaneously crafted by the adversary to defeat

the state estimator, as opposed to independent errors caused by random faults.

This problem was first studied in [78], in which it was observed that there exist

cooperative and malicious attacks on meters that all known bad data techniques

will fail to detect. The authors of [78] gave a method to adjust measurements

at just a few meters in the grid in such a way that bad data detector will fail

to perceive the corruption of the data. In the sequel, we describe the attacks an

unobservable attacks, as they are closely related to the classical notion of unob-

servability of an estimation problem. We regard the existence of unobservable

attacks as a fundamental limit on the ability to detect malicious data attacks. We

therefore study the problem in two regimes: when the adversary can executed an

unobservable attack, and when it cannot or does not. In Sec. 5.3, we study the
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former case, by characterizing the conditions under which an unobservable attack

exists, and giving an efficient algorithm for finding small unobservable attacks.

This can provide some insight into how vulnerable a given power network is to

such an attack.

In the regime that an unobservable attack cannot be performed, it is possible for

the control center to detect malicious data attacks. Moreover, it is less clear what

the worst attacks are for the adversary. Therefore we study we study two aspects of

the problem: (i) attack detection and localization strategies at the control center;

(ii) attack strategies by the adversary.

We present in Sec. 5.4 a decision theoretic formulation of detecting malicious

data injection by an adversary. Because the adversary can choose where to attack

the network and design the injected data, the problem of detecting malicious data

cannot be formulated as a simple hypothesis test, and the uniformly most power

test does not exist in general. We propose a detector based on the generalized

likelihood ratio test (GLRT). GLRT is not optimal in general, but it is known

to perform well in practice and it has well established asymptotic optimality [87,

88, 89]. In other words, if the detector has many data samples, the detection

performance of GLRT is close to optimal.

We note that the proposed detector has a different structure from those used in

conventional bad data detectors which usually employ a test on the state estimator

residues errors [69, 70, 94]. The proposed the GLRT detector does not compute

explicitly the residue error. We show, however, that when there is at most one

attacked meter (a single attacked data), the GLRT is identical to the classical

largest normalized residue (LNR) test using the residue error from the minimum

mean square error (MMSE) state estimator. The asymptotic optimality of GLRT
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lends a stronger theoretic basis for the LNR test for the single bad data test.

Next we investigate malicious data attack from the perspective of an adversary

who must make a tradeoff between inflicting the maximum damage on state estima-

tion and being detected by the EMS at the control center. We define in Sec. 5.5 the

notion of Attacker Operating Characteristic (AOC) that characterizes the tradeoff

between the probability of being detected vs. resulting (extra) mean-square error

at the state estimator. We therefore formulate the problem of optimal attack as

minimizing the probability of being detected subject to causing the mean square

error (MSE) to increase beyond a predetermined level. Finding the attack with the

optimal AOC is intractable, unfortunately. We present a heuristic that allows us

to obtain attacks that with minimum attack power leakage to the detector while

increasing the mean square error at the state estimator beyond a predetermined

objective. This heuristic reduces to an eigenvalue problem that can be solved off

line.

Finally, in Sec. 5.6 we conduct numerical simulations on a small scale example

using the IEEE 14 bus network. For the control center, we present simulation

results that compare different detection schemes based on the Receiver operating

Characteristics (ROC) that characterize the tradeoff between the probability of

attack detection vs. the probability of false alarm. We show that there is a

substantial difference between the problem of detecting randomly appearing bad

data from detecting malicious data injected by an adversary. Next we compare

the GLRT detector with two classical detection schemes: the J(x̂) detector and

the (Bayesian) largest normalized residue (LNR) detector [69, 70]. Our test shows

improvement over the two well established detection schemes. From the adversary

perspective, we compare the Attacker Operating Characteristics (AOC). Our result
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shows again that the GLRT detector gives higher probability of detection than

that those of conventional detectors for the same amount MSE increase at the

state estimator.

5.2 Problem Formulation

A power system is composed of a collection of busses, transmission lines, and power

flow meters. We adopt a graph-theoretic model for such a system. Therefore the

power system is modeled as an undirected graph (V,E), where V represents the

set of busses, and E is the set of transmission lines. Each line connects two meters,

so each element e ∈ E is an unordered pair of busses in V . Fig 5.1 shows the graph

structure of the IEEE 14-bus test system, which we use in our simulations. The

control center receives measurements from various meters deployed throughout

the system, from which it performs state estimation. Meters come in two varieties:

transmission line flow meters, which measure the power flow through a single

transmission line, and bus injection meters, which measure the total outgoing

flow on all transmission lines connected to a single bus. Therefore each meter is

associated with either a bus in V or a line in E. We allow for the possibility of

multiple meters on the same bus or line. Indeed, in our simulations, we assume

that a meter is placed in every bus, and two meters on every line, one in each

direction.

The graph-theoretic model for the power system yields the following DC power
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Figure 5.1: IEEE 14 bus test system.

flow model, a linearized version of the AC power flow model [95]:

z = Hx+ a+ e (5.1)

e ∼ N (0,Σe),

a ∈ As = {a ∈ R
m : ‖a‖0 ≤ s}

where z ∈ R
m is the vector of power flow measurements, x ∈ R

n is the system

state, e is the Gaussian measurement noise with zero mean and covariance matrix

Σe, and vector a is malicious data injected by an adversary. Here we assume that

the adversary can at most control s meters. That is, a is a vector with at most

s non-zero entries (‖a‖0 ≤ s). A vector a is said to have sparsity s if ‖a‖0 = s.

The H matrix in (5.1) arises from the graph theoretic model as follows. For each

transmission line (b1, b2) ∈ E, the DC power flow through this line from bus b1 to
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bus b2 is given by

[ 0 · · · 0 Y(b1,b2)
︸ ︷︷ ︸

b1th element

0 · · · 0 −Y(b1,b2)
︸ ︷︷ ︸

b2th element

0 · · · 0 ] x (5.2)

where A(b1,b2) is the susceptance of the transmission line (b1, b2). Let h(b1,b2) be the

row vector in (5.2). If a meter measures the flow through the transmission line

connecting busses b1 and b2, then the associated row of H is given by h(b1,b2). If

a meter measures the power injection for bus b1, then the associated row of H is

given by
∑

b2:(b1,b2)∈E

h(b1,b2). (5.3)

5.2.1 A Bayesian Framework and MMSE Estimation

We consider in this paper a Bayesian framework where the state variables are ran-

dom vectors with Gaussian distribution N(µx,Σx). We assume that, in practice,

the mean µx and covariance Σx can be estimated from historical data. By sub-

tracting the mean from the data, we can assume without loss of generality that

µx = 0.

In the absence of an attack, i.e. a = 0 in (5.1), (z,x) are jointly Gaussian. The

minimum mean square error (MMSE) estimator of the state vector x is a linear

estimator given by

x̂(z) = argmin
x̂

E(‖x− x̂(z)‖2) = Kz (5.4)

where

K = ΣxH
T (HΣxH

T +Σe)
−1. (5.5)

The minimum mean square error, in the absence of attack, is given by

E0 = min
x̂

E(||x− x̂(z)||2) = Tr (Σx −KxHΣx) .
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If an adversary injects malicious data a ∈ As but the control center is unaware

of it, then the state estimator defined in (5.4) is no longer the true MMSE estimator

(in the presence of attack); the estimator x̂ = Kz is a “naive” MMSE estimator

that ignores the possibility of attack, and it will incur a higher mean square error

(MSE). In particular, it is not hard to see that the MSE in the presence of a is

given by

E0 + ‖Ka‖22. (5.6)

The impact on the estimator from a particular attack a is given by the second term

in (5.6). To increase the MSE at the state estimator, the adversary necessarily has

to increase the “energy” of attack, which increases the probability of being detected

at the control center.

5.3 Unobservable Attacks

Liu, Ning and Reiter observe in [78] that if there exists a nonzero s-sparse a for

which a = Hc for some c, then

z = Hx+ a+ e = H(x+ c) + e.

Therefore x cannot be distinguished from x + c at the control center. If both x

and x + c are valid network states, the adversary’s injection of data a when the

true state is x will lead the control center to believe that the true network state

is x + c, and vector c can be scaled arbitrarily. Since no detector can distinguish

x from x + c, we call hereafter an attack vector a unobservable if it has the form

a = Hc.

Note that it is unlikely that random bad data a will satisfy a = Hc. But an

adversary can synthesize its attack vector to satisfy the unobservable condition.
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5.3.1 Characterization of Unobservable Attacks

The following theorem demonstrates that this type of attack is closely related to

the classical notion of network observability [75].

Theorem 15 An s-sparse attack vector a comprises an unobservable attack if

and only if the network becomes unobservable when the s meters associated with

the nonzero entries of a are removed from the network; that is, the (m − s) × n

submatrix of H taken from the rows of H corresponding to the zero entries of a

does not have full column rank.

Proof: Without loss of generality, let H be partitioned into HT = [HT
1 | HT

2 ],

and submatrix H1 does not have full column rank, i.e. there exists a vector c 6= 0

such that H1c=0. We now have a = Hc ∈ As, which is unobservable by definition.

Conversely, consider an unobservable a = Hc ∈ As. Without loss of generality, we

can assume that the first m− s entries of a are zero. We therefore have H1c = 0

where H1 is the submatrix made of the first m− s rows of H. �

The implication from the above theorem is that the attack discovered in [78]

is equivalent to removing s meters from the network thus making the network not

observable.

Note that even though an unobservable attack is equivalent to the network

being made unobservable, the adversarial attack is still much more destructive.

When the network is unobservable because there are insufficient meters, the control

center can easily determine this; it knows exactly what aspects about the system

state it can gather information about, and which it cannot. However, in the case

of an unobservable adversarial attack, the control center does not know it is under
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attack, nor which of several possible attacks is being executed. Therefore the

situation is much more precarious, because the control center does not even know

what it does not know.

5.3.2 Graph-Theoretic Approach to Minimum Size Unob-

servable Attacks

To know how susceptible a power system is to this highly damaging unobservable

attack, it is important to know how few meters must be controlled by the adversary

before the attack can be performed. From Theorem 15, we know that there is an

unobservable s-sparse attack vector a if and only if it is possible to remove s rows

from H and cause H not to have full column rank. Finding the minimum such s

for an arbitrary H is a hard problem. However, it becomes easier given the extra

structure on H imposed by the network topology.

We now give a simple method to find sets of meters whose removal make the

system unobservable. Moreover, we show that it is possible to efficiently minimize

the size of the set of meters produced by this method; thereby one may efficiently

compute small sets of meters from which an adversary may execute an unobservable

attack.

For a set of lines A ⊆ E, let g(A) be the set of meters either on lines in A or on

busses adjacent to lines in A. Let h(A) be the number of connected components in

the graph (V,E \A); i.e. the original graph after all lines in A have been removed.

The following theorem gives a simple method for determining a number of meters

in g(A) to remove from the network to make it unobservable. The proof relies on

[77], which gave an efficient method to determine the observability of a network

207

223



based only on its topology.

Theorem 16 (Sufficient condition for unobservable attacks) For all A ⊆

E, removing an arbitrary subset of g(A) of size |g(A)|−h(A)+2 makes the system

unobservable.

Proof: Let V̄ and Ē be the sets of busses and lines respectively with a me-

ter placed on them. Theorem 5 in [77] states that the power system given by

(V,E, V̄ , Ē) is observable if and only if there exists a F ⊆ E comprising a span-

ning tree of V and an assignment function

φ : F → V̄ ∪ Ē (5.7)

satisfying:

1. If l ∈ Ē, then φ(l) = l.

2. If φ(l) ∈ V̄ , then line l is incident to the bus φ(l).

3. If l1, l2 ∈ F are distinct, then φ(l1) 6= φ(l2).

The principle behind this theorem is that a bus injection meter may “impersonate”

a single line meter on a line incident to the bus. If a bus b = φ(l) for some line

l, this represents the meter at b impersonating a meter on line l. The system is

observable if and only if a spanning tree F exists made up of transmission lines

with either real meters or impersonated meters by bus meters.

Not including the lines in A, the network splits into h(A) separate pieces.

Therefore, any spanning tree F must include at least h(A) − 1 lines in A. Any

assignment φ satisfying the conditions above must therefore employ at least h(A)−
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1 meters in g(A). Hence, if any |g(A)|−h(A)+2 of these meters are removed from

the network, only h(A)− 2 remain, which is not enough to create a full spanning

tree, so the network becomes unobservable. �

Example: Consider the IEEE 14-bus test system, shown in Fig. 5.1. Take

A = {(7, 8)}. Since bus 8 is only connected to the system through bus 7, removing

this line from the network cuts it into two pieces. Therefore h(A) = 2. The

set of meters g(A) consists of meters on the line (7, 8), and bus injection meters

at bus 7 and 8. Theorem 16 states that if we remove |g(A)| meters from this

set—that is, all the meters in g(A)—the system becomes unobservable. In our

simulation examples, we assume there are two meters on each line, therefore it

takes 4 meters to execute an unobservable attack. Furthermore, it is not hard to

employ Theorem 16 to find similar 4-sparse unobservable attacks on the 30-bus,

118-bus, and 300-bus test systems.

Theorem 16 provides a method to find unobservable attacks, but we would like

to find attacks using as few meters as possible. We use the theory of submodular

functions to show that the quantity |g(A)| −h(A)+ 2 can be efficiently minimized

over all sets of edges A. This significantly increases the usefulness of Theorem 16,

because it means we can efficiently find small unobservable attacks for arbitrary

power systems.

A submodular function is a real-valued function f defined on the collection of

subsets of a set W such that for any A,B ⊆W ,

f(A ∪B) + f(A ∩ B) ≤ f(A) + f(B). (5.8)

Moreover, a function f is supermodular if −f is submodular. There are several

known techniques to find the set A ⊆ W minimizing f(A) in time polynomial in

the size of W [84, 85, 86]. It is not hard to see that |g(A)| is submodular in A,
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and h(A) is supermodular. Therefore, their difference is submodular, so it can be

efficiently minimized.

5.4 Detection of Malicious Data Attack

In this section, we study the problem in the regime that the adversary cannot or

does not perform an unobservable attack as described in Sec. 5.3. In this regime,

it is possible to detect the adversary’s presence. We first formulate the detection

problem, then introduce the generalized likelihood ratio test (GLRT), as well as

some classical detectors.

5.4.1 Statistical Model and Attack Hypotheses

We now present a formulation of the detection problem at the control center. We

assume a Bayesian model where the state variables are random with a multivariate

Gaussian distribution x ∼ N(0,Σx). Our detection model, on the other hand, is

not Bayesian in the sense that we do not assume any prior probability of the attack

nor do we assume any statistical model for the attack vector a.

Under the observation model (5.1), we consider the following composite binary

hypothesis:

H0 : a = 0 versus H1 : a ∈ As \ {0}. (5.9)

Given observation z ∈ R
m, we wish to design a detector δ : Rm → {0, 1} with

δ(z) = 1 indicating a detection of attack (H1) and δ(z) = 0 the null hypothesis.

An alternative formulation, one we will not pursue here, is based on the extra
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MSE ‖Ka‖22 at the state estimator. See (5.6). In particular, we may want to

distinguish, for ‖a‖0 ≤ s,

H′
0 : ‖Ka‖22 ≤ C, versus H′

1 : ‖Ka‖22 > C. (5.10)

Here both null and alternative hypotheses are composite and the problem is more

complicated. The operational interpretation, however, is significant because one

may not care in practice about small attacks that only marginally increase the

MSE of the state estimator.

5.4.2 Generalized Likelihood Ratio Detector with L1 Norm

Regularization

For the hypotheses test given in (5.9), the uniformly most powerful test does not

exist. We propose a detector based on the generalized likelihood ratio test (GLRT).

We note in particular that, if we have multiple measurements under the same a,

the GLRT proposed here is asymptotically optimal in the sense that it offers the

fastest decay rate of miss detection probability [96].

The distribution of the measurement z under the two hypotheses differ only in

their means

H0 : z ∼ N(0,Σz)

H1 : z ∼ N(a,Σz), a ∈ As \ {0}

where Σz , HΣxH
T +Σe. The GLRT is given by

L(z) ,
max
a∈As

f(z|a)
f(z|a = 0)

H1

≷
H0

τ, (5.11)
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where f(z|a) be the Gaussian density function with mean a and covariance Σz,

and the threshold τ is chosen from under null hypothesis for a certain false alarm

rate. This is equivalent to

min
a∈As

aTΣ−1
z a− 2zTΣ−1

z a
H0

≷
H1

τ. (5.12)

Thus the GLRT reduces to solving

minimize aTΣ−1
z a− 2zTΣ−1

z a

subject to ‖a‖0 ≤ s.
(5.13)

For a fixed sparsity pattern, i.e. if we know the support but not necessarily

the actual values of a, the above optimization is easy to solve. In other words,

if we know a small set of suspect meters from which malicious may be injected,

the above test is easily computable. The sparsity condition on a makes the above

optimization problem non-convex, but for small s it can be solved exactly simply

by exhaustively searching through all sparsity patterns. For larger s, this is not

feasible. It is a well known technique that (5.13) can be approximated by a convex

optimization:

minimize aTΣ−1
z a− 2zTΣ−1

z a

subject to ‖a‖1 ≤ ν
(5.14)

where the L1 norm constraint is a heuristic for the sparsity of a. The constant ν

needs to be adjusted until the solution involves an a with sparsity s. This requires

solving (5.14) several times. A similar approach was taken in [79].

5.4.3 Classical Detectors with MMSE State Estimation

We will compare the performance of the GLRT detector with two classical bad

data detectors [69, 70], both based on the residual error r = z−Hx̂ resulted from
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the MMSE state estimator.

The first is the J(x̂) detector, given by

rTΣ−1
e r

H1

≷
H0

τ. (5.15)

The second is the largest normalized residue (LNR) test given by

max
i

|ri|
σri

H1

≷
H0

τ, (5.16)

where σri is the standard deviation of the ith residual error ri. We may regard

this is a test on the l∞-norm of the measurement residual, normalized so that each

element has unit variance.

The asymptotic optimality of the GLRT detector implies a better performance

of GLRT over the above two detectors when the sample size is large. For the

finite sample case, numerical simulations shown in Sec 5.6 confirm that the GLRT

detector improves the performance of the J(x̂) and LNR detectors. The interesting

exception is the case when only one meter is under attack, i.e. ‖a‖0 = 1 and

Σe = σ2
eI. In this case, the GLRT turns out to be identical to the LNR detector.

Therefore, the GLRT can be viewed as a generalization of the LNR detector, in

that it can be tuned to any sparsity level. Moreover, this provides some theoretical

justification for the LNR detector. The equivalence of the two detectors is stated

and proved in the following Proposition.

Proposition 1 When s = 1, the GLRT detector given in (5.12) is equivalent to

the LNR detector given in (5.16).

Proof: If s = 1, the left hand side of (5.12) becomes

min
i

min
ai

(Σ−1
z )iia

2
i − 2zT (Σ−1

z )iai (5.17)
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where (Σ−1
z )ii is the ith diagonal element of Σ−1

z , and (Σ−1
z )i is the ith row of Σ−1

z .

The second minimization can be solved in closed form, so (5.17) becomes

−max
i

[zT (Σ−1
z )i]

2

(Σ−1
z )ii

. (5.18)

We may therefore write the GLRT as

max
i

|zT (Σ−1
z )i|

√

(Σ−1
z )ii

H1

≷
H0

τ. (5.19)

The vector of numerators in (5.19) is given by r′ = Σ−1
z z. Note that the covariance

matrix of r′ is simply Σ−1
z . Therefore we may regard (5.19) as a test on the

maximum element of the r′ after each element is normalized to unit variance.

We now show that r′ is just a constant multiple of r, meaning that (5.19) is

identical to (5.16), saving a constant factor. Recall that r = (I−HK)z, where

I−HK = I −HΣxH
T (HΣxH

T +Σe)
−1

= (HΣxH
T +Σe −HΣxH

T )(HΣxH
T +Σe)

−1

= ΣeΣ
−1
z = σ2

eΣ
−1
z .

Thus r = σ2
er

′; the two detectors are identical. �

5.5 Attack Operating Characteristics and Optimal Attacks

We now study the impact of malicious data attack from the perspective of an

attacker. We assume that the attacker knows the (MMSE) state estimator and

the (GLRT) detector used by the control center. We also assume that the attacker

can choose s meters arbitrarily in which to inject malicious data. In practice,

however, the attacker may be much more limitted. Thus our results here are

perhaps more pessimistic than in reality.
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5.5.1 AOC and Optimal Attack Formulations

The attacker faces two conflicting objectives: maximizing the MSE by choosing

the best data injection a vs. avoiding being detected by the control center. The

tradeoff between increasing MSE of the state estimator and lower the probability of

detection is characterized by attacker operating characteristics (AOC), analogous

to the receiver operating characteristics (ROC) at the control center. Specifically,

AOC is the probability of detection of the detector Pr(δ(z) = 1 | a) as a function

of the extra MSE E(a) = E0 + ‖Ka‖22 (5.6) at the state estimator, where E0 is the

MMSE in the absence of attack.

The optimal attack in the sense of maximizing the MSE while limiting the

probability of detection can be formulated as the following constrained optimiza-

tion

max
a∈As

‖Ka‖22 subject to Pr(δ(z) = 1|a) ≤ β, (5.20)

or equivalently,

min
a∈As

Pr(δ(z) = 1|a) subject to ‖Ka‖22 ≤ C. (5.21)

In order to evaluate the true worst-case performance for any detector, (5.20) or

(5.21) would need to be solved. This is very difficult, due to the lack of analytical

expressions for the detection error probability Pr(δ(z) = 1|a). We propose a heuris-

tic for Pr(δ(z) = 1|a), which will allow us to approximate the above optimization

with one that is easier to solve.
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5.5.2 Minimum Residue Energy Attack

Given the naive MMSE state estimator x̂ = Kz (5.4-5.5), the estimation residue

error is given by

r = Gz, G , I−HK (5.22)

Substituting the measurement model, we have

r = GHx+Ga+Ge.

where Ga is the only term from the attack. Therefore, an attack vector a will be

more difficult to detect at the control center if Ga is small. Recall from (5.6), the

damage in MSE done by injecting a is ‖Ka‖22. We therefore consider the following

equivalent problems:

max
a∈As

‖Ka‖22 subject to ‖Ga‖22 ≤ η, (5.23)

or equivalently,

min
a∈As

‖Ga‖22 subject to ‖Ka‖22 ≥ C. (5.24)

The above optimizations remain difficult due to the constraint a ∈ As. However,

given a specific sparsity pattern S ⊂ {1, · · · , n} for which ai = 0 for all i /∈ S,

solving the optimal attack vector a for the above two formulations is a standard

generalized eignevalue problem.

In particular, for fixed sparsity pattern S, let aS be the nonzero subvector of

a, KS the corresponding submatrix of K, and GS similarly defined. The problem

(5.24) becomes

min
u∈Rn−s

‖GSu‖22 subject to ‖KSu‖22 ≥ C. (5.25)

Let QG , GT
SGS, QK , KT

SKS. It can be shown that the optimal attack pattern

has the form

a∗
S =

√

C

‖KSv‖22
v (5.26)
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where v is the generalized eigenvector corresponding to the smallest generalized

eigenvalue λmin of the following matrix pencil

QGv − λminQKv = 0.

The s dimensional symmetrical generalized eigenvalue problem can be solved the

QZ algorithm [97].

5.6 Numerical Simulations

We present some simulation results on the IEEE 14 bus system shown in Fig. 5.1

to compare the performance of the GLRT with the J(x̂) test and the LNR test

[69, 70]. For various sparsity levels, we find the minimum energy residue attack as

discussed in Sec. 5.5.2. The adversary may then scale this attack vector depending

on how much it wishes to influence the mean square error. We plot both the

ROC and AOC curves for various sparsity levels and all three detectors. For the

AOC curve, we fix a probability of false alarm and vary the length of the attack

vector along the direction minimizing the energy residue, plotting the MSE vs.

the probability of detection. For the ROC curve, we fix the length of the attack

vector, but very the detector’s threshold and plot the probability of false alarm vs.

probability of detector. In our simulations, we characterize the mean square error

increase at the control center using the ratio between the resulting MSE from the

attack and the MSE under no attack (i.e. a = 0) in dB.

Fig. 5.2 shows the ROC and AOC curves for the worst-case 2-sparse attack. We

implement the GLRT using exhaustive search over all possible sparsity patterns.

This is feasible because of the low sparsity level, so we need not resort to the L1

minimization as in (5.14). Observe that the GLRT performs consistently better
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than the other two conventional detectors.

Fig. 5.3 shows the ROC and AOC curves for the worst-case 3-sparse attack,

again using exhaustive search for the GLRT. Interestingly, the LNR test outper-

forms the GLRT at this sparsity level. We believe the reason for this is that the

GLRT has little recourse when there is significant uncertainty in the sparsity pat-

tern of the attack. In particular, the meters being controlled by the adversary here

are the bus injection meter at bus 1, and the two meters on the transmission line

between bus 1 and 2. These constitute three of the seven meters that hold any

information about the state at bus 1. Thus, it may be difficult for the detector

to determine which of the several meters around bus 1 are the true adversarial

meters. The GLRT does not react to this uncertainty: it can only choose the most

likely sparsity pattern, which is often wrong. Indeed, in our simulations the GLRT

identified the correct sparsity pattern only 4.2% of the time.

Continuing our analysis of 3-sparsity attacks, we conduct simulations when the

adversaries are placed randomly in the network, instead of at the worst-case meters.

Once their randommeters are chosen, we find the worst-case attack vector using the

energy residual heuristic. This simulates the situation that the adversaries cannot

choose their locations, but are intelligent and cooperative in their attack. The

resulting performance of the three detectors is shown in Fig. 5.4. Observe that we

have recovered the outperformance of the GLRT as compared to the conventional

detectors, if only slightly. When the placement of the adversaries is random, they

are not as capable of cooperating with one another, therefore their attack is easier

to detect.

We increase the sparsity level to 6, at which it is impossible to perform exhaus-

tive search for the GLRT. At this sparsity level, it becomes possible to perform an
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Figure 5.2: Above: ROC Performance of GLRT for the 2 sparsity case. MSE with
attack is 8db. SNR=10db. Below: AOC Performance of GLRT for the 2 sparsity
case. False alarm rate is 0.05. SNR=10dB.
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Figure 5.3: Above: ROC Performance of GLRT for the 3 sparsity case. MSE with
attack is 10db. SNR=10db. Below: AOC Performance of GLRT for 3 sparsity
case. False alarm rate is 0.05. SNR=10dB
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Figure 5.4: Above: ROC Performance of GLRT under random attack for 3 sparsity
case. MSE with attack is 6db. SNR=10db. Below: AOC Performance of GLRT
under random attack for 3 sparsity case. False alarm rate is 0.05. SNR=10dB
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unobservable attack, so it is not as illuminating to choose the worst-case sparsity

pattern, as that would be very difficult to detect. Instead, we again choose the

sparsity pattern randomly but optimize the attack within it. Fig. 5.5 compares

the performance of the GLRT implemented via L1 minimization as in (5.14) to the

two conventional detectors. Note again that the GLRT outperforms the others.
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Figure 5.5: ROC Performance of GLRT under random attack for 6 sparsity case.
MSE with attack is 6db. SNR=10db.

Finally, we present some numerical evidence that the residue energy described

in Sec. 5.5.2 works well as a heuristic in that it is roughly increasing with the

probability of detection Pr(δ(z) = 1|a) no matter what detector is used. For the

J(x̂) and LNR detectors, we consider the detection probability for all 1-sparse

vectors a satisfying ‖Ka‖22 = C. on the 14-bus test system. We plot in Fig. 5.6

the value of the residue energy vs. the true probability of detector of a for both

detectors. Observe that the scatter plots are roughly increasing.
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Figure 5.6: Comparison of the residue energy heuristic with the true detection
probability for 1-sparse attack vectors for both J(x̂) and LNR detectors.

We evaluate the performance of the residue energy heuristic on 2-sparse vectors

in the following way. For each pair of entries i, j of a, we optimize (5.24) where a

is constraint to have sparsity pattern {i, j}. We then evaluate the true probability

of detection for the two detectors, with the same parameter values as above. The

results are shown in Fig. 5.7 for the J(x̂) and LNR detectors. Again, the heuristic

appears to track the true probabilities reasonably well. This provides some jus-

tification for our use earlier in the ROC and AOC curves of approximating the

worst-case performance of these detectors by assume the maximum residue energy

attack.
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Figure 5.7: Comparison of the residue energy heuristic with the true detection
probability for 2-sparse attack vectors. Above: Scatter plot for the J(x̂) detector.
Below: Scatter plot for the LNR detector.
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CHAPTER 6

CONCLUSIONS

This thesis studied the problem of an adversary entering a network and taking

control of several nodes in it. We looked at several specific problems, and found

strategies to defeat the adversary for each. We believe that our most significant

contribution, at least for the information theory problems studied in Chapters 2–4,

is the idea that adversaries can be detecting by observing joint empirical statis-

tics. If the statistics do not match what was expected, then a traitor must be

present. This simple idea forms the basis of Polytope Codes against adversaries

in network coding, discussed in Chapter 2, as well as the achievable strategies

against adversaries in the Slepian-Wolf problem in Chapter 3, and the Berger-

Tung-like achievable strategy against adversaries in various multiterminal source

coding problems in Chapter 4. We believe that this basic idea can be applied

to more general network information theory problems. We now make some more

specific comments on possible future directions in each of the areas.

6.1 Network Coding

There are numerous networks for which the results of Chapter 2 do not solve the

network coding problem under node-based adversarial attack. The main result in

Chapter 2 is Theorem 4, which states that the cut-set upper bound is achievable

for a certain class of planar graph. Certainly it may be possible to generalize

Theorem 4, and find larger classes of networks for which the cut-set bound is

achievable. We believe that this should be possible with Polytope Codes. It would

be interesting to analyze the planarity condition in more depth: perhaps it could

lead to a more general theory of achievable rates given topological properties of
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the network.

However, as we have shown, the cut-set bound is not always achievable, so to

solve the general problem work would need to be done upper bounds as well. From

the complicated nature of the tighter upper bound given in Sec. 2.11, we suspect

that the solution to the general problem may be very difficult, and may require

significant tools that have yet to be developed.

Perhaps the most interesting question regarding this problem is whether Poly-

tope Codes can achieve capacity for general networks, or at least for all one-source

one-destination problems (or perhaps even multicast). As far as we know, they

are the best known strategy for defeating adversarial attacks on network coding,

as they do at least as well as linear codes, which are used to solve most problems.

6.2 Multiterminal Source Coding

The results of Chapter 3 find tight bounds on the set of achievable rates for vari-

ous forms of the Slepian-Wolf problem. Therefore we do not believe there is much

additional work that could be done in that area. However, the more general multi-

terminal source coding problems studied in Chapter 4 are wide open. Much more

work could be done on these problems in the presence of an adversary. One must

tread carefully, however, because many multiterminal source coding problems are

open even without adversaries, so there seems to be little hope to find tight re-

sults with adversaries. This was the reason that we chose problems to study in

Chapter 4 that had been completely solved in the no-adversary case, in the hope

that they could also be solved with adversaries. We provided bounds for these

problems in Chapter 4, but did not quite solve them. We conjecture that the in-
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ner bounds resulting from our Berger-Tung-like achievable scheme in Theorem 9

are tight for both the error exponent of the discrete CEO Problem, and the rate-

distortion region for the quadratic Gaussian CEO Problem, but we were unable to

prove either.

6.3 Power System Sensing and Estimation

Study of malicious data attacks on power systems is still in its infancy. Chapter 5

exclusively studied the effect of these attacks on state estimation. The data taken

by meters in the power system is used for other things, and it may be more inter-

esting to study the effect of malicious data attacks on these. What is primarily

missing from Chapter 5 is a sense of what the result of these attacks are. For exam-

ple, can they cause a black-out? The answer is unclear, because all we know is that

they may increase the mean square error of the state estimate. How this affects

the operation of the power grid depends on how the state estimate is employed

to make decisions at the control center. Indeed, it is often the case that control

decisions are made directly from measurements, without being processed by the

state estimator; this could induce further dangers if corrupted measurements are

not even corroborated against other measurements.

Another application of power measurements relates to the pricing of power

in the network. If measurements strongly influence the compensation of genera-

tors, there may be a strong economic incentive to manipulate them to one’s own

advantage.

Finally, phasor measurement units (PMUs) are increasingly being installed at

busses in the power grid [98]. These allow much more high quality measurements
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of voltage levels than has been previously available, including, for the first time,

phase differences between busses. How this new wealth of data may affect the

problem of malicious data attacks is as yet unclear.
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