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ABSTRACT

We consider a recently proposed information disclosure vulnerability called blind
return-oriented programming (BROP). Under certain conditions, this attack allows a
return-oriented programming attack against previously unknown binaries. We precisely
enumerate the assumptions for a successful BROP attack to take place. We analyze pre-
requisite knowledge to perform a BROP attack, including the need to exploit a stack-based
buffer overflow. In particular, we examine the types of buffer-handling functions and
canaries that may render these functions useless for exploitation purposes. We survey
network service binaries, to examine how often different BROP requirements are satisfied
in real software, including the presence of certain gadgets and the behavior on crashes.

We find if an optimized attack fails, a “first principles” BROP attack is unlikely to succeed.
Our survey shows that certain required gadgets are rare, limiting a first principles attack.
We show the presence of required gadgets fluctuates with binary version number and build
conditions. The majority of the services we survey do not appear vulnerable to BROP due
to missing gadgets or re-randomization on crash. We suggest some ameliorations that may
further limit the applicability of this attack.
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CHAPTER 1:
Introduction

Cyber attacks have evolved over time in order to counter ever-developing cyber de-
fense methods. Defenses such as address space layout randomization (ASLR) and non-
executable stacks have forced attackers to find new ways to deploy attacks. A new wave of
recently deployed attacks employ memory disclosure side-channels to leak address layout
information.

Bittau et al. describe one such approach, introducing the blind return-oriented program-
ming (BROP) attack [1]. A traditional return-oriented (ROP) attack requires advance ac-
cess to the binary to discover usable ROP gadgets. In comparison, BROP requires no prior
access to the binary, and demonstrates the ability to perform a ROP attack under a strictly
weaker set of assumptions. We analyze the requirements for this new attack and critically
review if and how real-world binaries satisfy these prerequisites. We do this in consider-
ation of views that BROP is dangerous because it “requires minimal knowledge and can
easily be distributed to amateurs” [2]. To our knowledge, there has been no prior analysis
of the potential impact of BROP beyond its original description.

The primary contributions of this project are:

• We enumerate the precise prerequisites for a BROP attack and survey real-world
services to investigate if they satisfy these prerequisites.

• We find that several required gadgets (i.e., syscall, pop rax, and pop rdx) appear
to be a limiting factor for a first principles attack BROP attack. In particular, the rax
gadget is present in less than 30% of our surveyed binaries, and the syscall gadget
in less than 20% of binaries. We believe this could impact BROP’s effectiveness
nearly as much as scarcity of rdx gadgets, acknowledged by Bittau et al.

• As a result, we suggest that, if the “optimized” BROP attack fails, a first principles
BROP attack appears unlikely to succeed and is a poor fall-back option.

• We show the gadget composition for a binary changes with the version and build
environment, making it difficult to summarize the frequency of a gadget’s appearance
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in a service without access to the binary. For example, in some cases, the binary for
Redis lacks the gadgets necessary for a first principles attack and, in other cases, has
them.

• We compare our surveyed binaries to the target used for BROP’s proof-of-concept
attack. We find that these binaries have weaker PLT signatures, making employing
an optimized attack more difficult.

• We re-investigate the claim of Bittau et al. that “most of the PLT entries will not cause
a crash regardless of arguments because they are system calls that return EFAULT on
invalid parameters.” While we find that 40% of PLT entries for the nginx binary are
system calls, this number can be as low as 5% in the other services.

• We find the majority of the services we survey do not appear vulnerable to BROP,
due to missing gadgets or re-randomization on crash.

• We survey and suggest some controls to reduce the threat of BROP attacks.

1.1 Relevance
The Navy has a demonstrated interest in both cyber attack and defense technologies. For
example, one Small Business Innovation Research (SBIR) project sponsored by the Navy
is focused on developing software that can proactively detect compromise and crash safely,
instead of continuing in an unsafe mode, during or after an attack [3]. This project specifi-
cally mentions ROP attacks as a motivating case for the new defense technology. Another
Navy project attempts to harden systems against ROP-style attacks, called Stochastic Com-
piler Hacks as Software Immunization Mechanisms (SCHSIM). Fugate and Petrie discuss
SCHISM, describing a technical solution for creating simulated software diversity in order
to prevent software monocultures [4]. The idea for SCHISM is to diversify binaries that are
using the same service, to ensure that an attack on one system could not work on another
system the exact same way, since the binary on each system would be different for the same
service.

Investigating and understanding the limits of BROP could inform these Navy efforts. For
example, the automated diversity created by SCHISM motivates a BROP attack, which op-
erates without a priori knowledge of a binary and works even in the presence of unexpected
diversity. Our project suggests some weaknesses to the effectiveness of BROP which may
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be leveraged to construct more effective defenses.

1.2 Organization
The remainder of this thesis is organized as follows. In Chapter 2, we present background
on ROP and BROP necessary to understand our analysis. In Chapter 3, we present an
enumerated list of the assumptions necessary for conducting a successful BROP attack,
expanding on those discussions in the paper originally describing BROP. In Chapter 4,
we analyze these assumptions and survey real-world services to see how often these as-
sumptions are satisfied. In Chapter 5, we present approaches— based on the enumerated
assumptions, analysis findings, and existing literature— to harden systems against BROP
attacks.

3



THIS PAGE INTENTIONALLY LEFT BLANK

4



CHAPTER 2:
Background

In this chapter, we briefly summarize both return-oriented programming (ROP), and the
Blind ROP technique introduced by Bittau et al. [1].

2.1 Return-Oriented Programming
Return-oriented programming (ROP) is an attack method allowing an attacker to execute
arbitrary code. The method is effective even in the presence of various stack smashing
protections (SSP), such as non-executable memory protection. Rather than write payload
code to memory and execute this injected exploit code, ROP uses control of the program
counter to create new program control flow, chaining together segments of existing code
already accessible from the target program’s address space [5]. The first version of this style
of attack focused on code in the C library, and was called return-to-libc. Later versions of
this attack demonstrated that the entire binary could be leveraged in this manner.

The segments of code used by the attacker to implement their exploit are called gadgets.
ROP gadgets are “short blocks placed on the stack that chain several of instruction se-
quences together” [6]. Discovering useful gadgets is a necessary pre-requisite step in
launching a successful ROP attack. Shacham describes an efficient algorithm for static
analysis of x86 binaries to discover gadgets [6]. The need for mining binaries to discover
useful gadgets has led to the development of several “gadget finding tools.” Example tools
include ROP Gadget Finder [7], Ropper [8], RP++ [9] and MSFrop [10] (part of the Metas-
ploit framework [10]). ROPSHELL [11] is a web-based gadget finding tool where users
upload a target binary and it reports back an analysis of gadgets.

2.2 Blind ROP
Bittau et al. introduce a type of ROP attack, called blind ROP (BROP). This attack weak-
ens the requirement that access to the target binary be prerequisite to a ROP-style attack.
The attack leverages a novel technique of exploiting a timing side-channel to leak infor-
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mation about the effect of an exploit action. BROP falls into a category of similar, recent
attacks leveraging information leaks to circumvent ASLR and memory protection, called
implementation disclosure attacks. Mohan observes that “since finding and closing all in-
formation leaks is well known to be prohibitively difficult and often intractable for many
large software products, these attacks constitute a very dangerous development in the cyber-
threat landscape; there is currently no well-established, practical defense” [12].

The BROP attack requires apriori knowledge of a stack vulnerability and how to trigger
it. Using this vulnerability, the attacker can remotely discover gadgets through a trial-
and-error discovery process. This process depends on a stop gadget, which is any gadget
that causes the service to pause or block in a manner that that can be differentiated from
a crash. The feedback from the stop gadget creates a timing side-channel, allowing the
remote attacker to procedurally probe the target address space and discover other gadgets,
eventually performing a write syscall. When complete, the code portion of the target
binary is sent to the remote attacker using this syscall, thereby facilitating local analysis of
the binary and allowing a second-stage ROP attack.

As described, BROP is generic enough to work even when both memory protection and
ASLR are employed. As part of gadget discovery, however, the target service crashes
repeatedly to elicit timing behavior; thus, it must be the case that the service restarts on
crash without re-randomizing its address space. For canary circumvention, Bittau et al.

describe a method called generalized stack reading. This technique involves using another
trial-and-error type discovery mechanism, placing data onto the stack byte-by-byte. The
remote attacker observes if the service crashes or not, to determine whether the input had
overwritten the stack with a valid canary value. When a no-crash state is observed, the
data written to the stack has overwritten the canary with a valid value. Once the canary
is discovered, the BROP attack proceeds with gadget discovery, each time overwriting the
canary value exactly and the return address.

Bittau et al. provide a proof-of-concept attack implementation for 64-bit Linux binaries,
called Braille (see Appendix A). This proof-of-concept demonstration targets nginx ver-
sion 1.4.0, which has a known stack vulnerability (CVE-2013-2028) that “triggers an inte-
ger signedness error and a stack-based buffer overflow” [13].

6



2.2.1 Related Attacks
JIT-ROP [14] is another information disclosure attack that is able to overcome fine-grained
ASLR. Both JIT-ROP and BROP attempt to find gadgets in the binary in order to develop a
ROP attack, exploiting an information leak of some type. Unlike BROP, JIT-ROP is not an
interactive attack that proceeds adaptively based on crash/no-crash behavior: the attacker
sends a script that discovers gadgets and creates an attack to deliver. Additionally, JIT-ROP
requires two different vulnerabilities (a stack and heap vulnerability) be known prior to
attack, compared to BROP’s requirement that a stack vulnerability be known.

2.2.2 Prior BROP Analysis
The original paper describing BROP was published in 2014 at the IEEE Symposium on
Security & Privacy, one of the top-tier conferences in the security field. It has become
one of the most widely-cited papers from that year’s event, and generally accepted as an
impactful result. Many cite it as proof of concept for exploiting a type of timing side
channel, for exploiting fault analysis, for circumventing SSP and ASLR, etc. The most
common criticism is that the attack is noisy, (e.g., it can only “be conducted against systems
where repeated crashes should go unnoticed” [15] or “potentially detected by mechanisms
that monitor for an abnormal number of program crashes” [16]). To our knowledge, no
work has evaluated or surveyed other possible BROP limitations, such as those considered
in this work.

7
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CHAPTER 3:
Assumptions

In this chapter, we enumerate the attack assumptions required by Bittau et al. for launch-
ing a blind ROP attack [1]. These attack assumptions are effectively pre-requisites for a
successful BROP attack. Most assumptions are identified explicitly in the original paper or
implicitly from context. We enumerate these precisely, to discuss them further in Chapter 4.

3.1 Goal
The goal of a BROP attack is to access the binary of a remote target service when the
attacker has no other means of obtaining access to the binary. This is the simplest, general
goal as it allows one to bootstrap a follow-on ROP exploit with full knowledge of the ROP
gadgets made available by the binary.

Bittau et al. summarize the utility of BROP techniques compared to ROP techniques, char-
acterizing BROP as useful in many scenarios where ROP is unable to be employed di-
rectly, with the exception of PIE binaries where crashes cause the address space to be re-
randomized [1, Fig. 4]. Traditional ROP attacks require knowledge about canaries, linking
dependancies and access to the target service binary; BROP attacks work in the absence of
this knowledge.

3.2 Assumptions
We summarize the stated requirements upon which a successful BROP attack is contin-
gent, and attempt to state any implicit requirements not explicitly stated earlier by Bittau et

al. [1].

Assumption 3.1 (Execution Environment). The target service must be executing in some

64-bit x86 Linux environment.

Bittau et al. briefly discuss the possibility of extending BROP to other execution environ-
ments but, as stated, the techniques for the BROP attack have not been generalized to other
environments.
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Assumption 3.2 (Vulnerability Foreknowledge). The target service must be exploitable via

some known stack vulnerability. The attacker must have knowledge of how to exploit this

vulnerability to control of the value of the instruction pointer (a pre-requisite for any ROP

attack).

Bittau et al. briefly discuss the possibility of bootstraping BROP attacks from other scenar-
ios such as heap exploits but, as stated, the techniques for the BROP attack have not been
generalized to these.

Assumption 3.3 (Crash-Restart Execution). The target service must restart after a crash,

without re-randomizing its address space.

Assumption 3.4 (Observable Status). The attacker must be able to observe the status of the

service (crash or no-crash) during the attack and receive the final output of the exploited

service.

When considering remote attackers, the simplest interpretation of this requirement is for
the target service to be a network service. In the case that the service is sandboxed without
network access but remotely exploitable via some intermediary or proxy service, it must
be the case that the service’s status is inferable and that some mechanism allows the at-
tacker to receive the final output of a successful attack. At a minimum, it is necessary
for the target service to have permissions to employ the write syscall (expanded upon via
Assumptions 3.5–3.9).

Assumption 3.5 (Full RDI Control). The target binary must contain a gadget allowing the

attacker to control the rdi register’s contents.

Assumption 3.6 (Full RSI Control). The target binary must contain a gadget allowing the

attacker to control the rsi register’s contents.

Assumption 3.7 (Full RAX Control). The target binary must contain a gadget allowing

the attacker to control the rax register’s contents.

Assumption 3.8 (Weak RDX Control). It must be the case that the rdx register holds (or

can be populated by the attacker to hold) a positive, non-zero value.

Assumption 3.9 (Reachable syscall). The target binary must contain a reachable syscall.

10



pop rdi; ret // set file descriptor argument
pop rsi; ret // set buffer
pop rdx; ret // set length
pop rax; ret // set syscall number for write call
syscall

Figure 3.1: Example gadget chain satisfying Assumptions 3.5–3.9, leading to an invocation of
the write syscall.

The simplest gadget satisfying each of Assumptions 3.5–3.7 is a pop of the target register
followed by a ret. Assumption 3.8 can also be satisfied this way, yielding complete control
over rdx’s contents; alternatively, any function which populates rdx with a non-negative
value may be employed. For example, strcmp places the length of the string being com-
pared into this register. A series of gadgets simultaneously satisfying Assumptions 3.5–3.9
are listed in Figure 3.1.

Assumption 3.10 (Stack-Readable Canaries). Canary protections for the target service

must be circumventable via generalized stack reading.

Bittau et al. describe a method known as generalized stack reading for leaking canaries,
employed by BROP as a method of circumventing canary protections. They comment
“there are a few subtleties that apply to generalized stack reading” and Assumption 3.10
codifies the set of requirements implied by those subtleties.

3.3 BROP Optimizations
Bittau et al. propose a series of optimizations requiring fewer, but more specific, gadgets
to enhance the speed of the BROP attack by reducing the number of explicit gadgets that
must be discovered. They suggest finding two library calls, guessable by trial-and-error via
calling into the PLT, and a single BROP gadget (see Figure 3.2). Misaligning this BROP
gadget at different offsets yields two useful gadgets: a pop rdi gadget and a pop rsi gad-
get. This is a single gadget satisfying two assumptions simultaneously (Assumptions 3.5
and 3.6). The write() call replaces the need to find pop rax gadget and a syscall since
these gadgets are collected in order to make a write call. This is a single function call
satisfying two assumptions simultaneously (Assumptions 3.7 and 3.9). The strcmp() call

11



BROP Gadget:
pop rbx; pop rbp; pop r12; pop r13; pop r14; pop r15; ret;

Call to PLT:
call x // <write@plt>

Call to PLT:
call y // <strcmp@plt>

Figure 3.2: Set of gadgets simplifying Assumptions 3.5–3.9, based on [1, Fig. 7].

yields control of the rdx register (Assumption 3.8), but this is possibly unnecessary if that
register can be relied upon to hold a sane value during the attack.
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CHAPTER 4:
Analysis

In this chapter, we consider the assumptions introduced in Chapter 3 individually and in
combination, analyzing the likelihood these assumptions can be satisfied in a real-world
context. The five general areas we will consider are: finding the initial stack vulnerability;
using stack reading to circumvent canaries; likelihood the target binary is of the correct
composition to employ the attack; ability of an optimized attack to be deployed (i.e., locat-
ing the PLT; and commonness of services using a forking model that permits the attack).

4.1 Finding the Vulnerability
There is a possible tension between BROP’s objectives (i.e., to attack a service without
any foreknowledge of the binary) and its requirement for foreknowledge of a vulnerabil-
ity (Assumption 3.2). We investigate the process in which service vulnerabilities may be
discovered, to consider if vulnerability discovery typically presumes access to the binary.

Hutchins et al. describe the cyber kill chain as “a systematic process to target and engage an
adversary to create desired effects” [17], defining it as a seven phase process for intrusion.
The seven phases they describe are reconnaissance, weaponization, delivery, exploitation,
installation, command and control, and actions on objectives. In this exploit framework,
the process of initial discovery of a stack vulnerability prerequisite to a BROP attack would
be considered part of the reconnaissance phase. In this phase, one decides what the target
is and gathers the necessary information about the target to perform an attack. We find
there are at least three reasonable scenarios for reconnaissance that do not presume access
to the target binary:

Discovery with assistance. In this scenario, the attacker uses some third party who pro-
vides the required information. For example, consider an insider with direct knowl-
edge of a stack vulnerability in a closed-source service who may be unable to exfil-
trate the target binary itself. It is difficult to imagine a reasonable scenario where the
insider may be able to provide good knowledge in one realm (i.e., presence of the

13



vulnerability and how to exploit it), but incomplete knowledge in another (i.e., the
binary itself). Such a scenario may be possible, however, if divisions across the de-
velopment team prevents the insider from direct access to the complete binary, or if
controls are in place that prevent information transfer of the binary by unauthorized
staff. As a more reasonable example, consider an intermediary selling an exploit
but who has, otherwise, incomplete knowledge about the target system. This “as is”
knowledge may be incomplete for the purposes of the desired attack, but may be
leveraged to bootstrap the BROP exploit.

Discovery using an identical binary. In this scenario, the attacker may be able to interact
with the target binary, but be otherwise unable to study it. Such access opens the
possibility of using other tools to assist in vulnerability discovery, such as remote
fuzzing. System monitoring likely prevents effectively fuzzing live targets during
reconnaissance, as its particularly “noisy” and increases the risk of the attacker being
noticed, stopped or caught early in the attack (which is, itself, noisy). Instead, this
scenario makes most sense when the attacker has local access to an identical, dupli-
cate system they may use for reconnaissance. For example, consider some closed-
source embedded system from which the attacker is unable to extract the binary, but
with which the attacker may interact. Otherwise, it is difficult to imagine a scenario
in which an attacker has access to an identical target (for discovery of the stack vul-
nerability) but is otherwise compelled to use a blind attack.

Discovery using a non-identical binary. In this scenario, the attacker can obtain a no-
tional binary for the service, but not necessarily one in an identical configuration
as deployed on the target system. Examples include building a open-source service
without knowledge of the compiler flags, or details of build options or exact de-
pendencies associated with the target binary. In this scenario, the attacker knows
the target and may discover the presence and method of exploitation for the stack
vulnerability, generally. This information may be as simple to discover as using a
vulnerability database. Some databases, like the National Vulnerability Database1,
provide resources to see if the target has any known stack buffer overflow vulnerabil-
ities; other databases, such as Exploit Database 2, offer information on how to trigger

1https://nvd.nist.gov/
2https://www.exploit-db.com/
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and exploit the vulnerability.

We acknowledge that all the above scenarios additionally require that, once the vulner-
ability is found, the remainder of the BROP assumptions are also satisfied. The above,
however, provides some context suggesting the possible applicability of BROP, or at least
suggests some caveats on the idea of a “blind” attack.

4.2 Canary Circumvention
Assumption 3.10 requires stack protections be circumventable via stack reading. A natural
question is: what protections can be circumvented by stack reading? In this section, we
attempt to characterize existing stack protections in terms of their susceptibility to general-
ized stack reading.

Canaries are a form of stack protection in which data is placed between the return address
and any buffers in the stack frame. The idea is that attacks writing to some buffer in an
attempt to overwrite the return address will also overwrite the canary. This protection
mechanism is inserted by the compiler, along with canary-checking logic which attempts
to detect if a canary has been overwritten before the function returns. The technique was
first described by Cowan et al. for the StackGuard GCC patches [18]. Depending on the
details of how elements are laid out on the stack, several different methods may be available
to bypass the protection afforded by canaries. The following are some methods described
in the open literature:

Overwriting the Canary. This method overwrites the canary exactly, so canary spoilage
cannot be detected by the stack protection logic. Generalized stack reading is an
implementation of this approach.

Exploiting Canary-less Functions. When canaries are employed, they may not pro-
tect all functions. For example, the default for GCC v4.8 is to employ the
-fstack-protector flag [19], where canaries are inserted to protect “functions that
call alloca and functions with buffers larger than 8 bytes,” per the man page. So an
attacker may exploit a 5-byte buffer, in the absence of other buffers local to the frame,
as there should be no canary inserted. Some canary insertion logic protects buffers
at all locations (e.g., the -fstack-protector-all flag).
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Exploiting Pointers Before the Canary. This method relies on overwriting other pointers
in the current stack frame. Bulba and Kil3r describe a method of overwriting the
pointer to a buffer before exploitation, to skip over the canary and overwrite just the
return address [20]. Similar techniques can be used to overwrite entries in the GOT
to invoke payloads without modifying the return address [21].

Exploiting Exception Handlers. By overwriting exception handlers and triggering an ex-
ception, it is possible to invoke a payload before canary-handling logic is even in-
voked. Similar techniques allow overwriting atexit handlers to invoke a payload
immediately after canary-handling logic is invoked [21].

Exploiting Some Other Vulnerability. For example, exploiting format string vulnerabil-
ity allows to write any value any place. This, however, does not qualify as a buffer
overflow and is out of the bounds of the assumed set-up for a BROP attack.

4.2.1 Canary Types
To consider the effectiveness of stack reading for overwriting a canary, we review the va-
riety of canaries available for stack protection. The following is a list of canary types that
we consider:

Terminator Canary. This canary is a special constant (0x000aff0d) that includes values
terminating many string manipulating functions: null (0x00), linefeed (0x0a), end-
of-file (0xff) and newline (0x0d) characters [22]. The intention of this canary is to
cause those functions employed to copy data into a buffer to terminate, when they
attempt to overwrite the canary. This type of canary is available in all versions of
StackGuard [23].

Null Canary. This canary uses a constant sequence of null bytes (0x00000000), and can
be considered a special type of terminator canary [24]. To our knowledge, no current
stack protection implementations use this type of canary.

Random Canary. This canary is a 64-bit random value chosen when a program executes.3

This type of canary is available in StackGuard prior to v2.0.1 and all versions of
ProPolice.

3In some versions of ProPolice, when randomization is turned off or not available this defaults to a type
of terminator canary with value 0xff0a0000 [25], [26].
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Table 4.1: Buffer-handling function families

Family Terminator Operators
Null Terminating 0x00 stpcpy, stpncpy, strcpy, strncpy, strcat,

strncat, [v]sprintf, [vf]scanf
Line Terminating 0x0a scanf, gets, fgets, getc, getchar, fgetc
Custom Terminating user-specified memccpy
Wide-Null Terminating L’\0’ wcpcpy, wcpncpy, wcscpy, wcsncpy
No Terminator none bcopy, memcpy, memmove, mempcpy,

wmemcpy, wmempcpy

Random XOR Canary. This canary is formed by xor-ing the return address with a ran-
dom value, performing a “one-time-pad encryption” of the return address [23].
Canary-checking logic verifies the canary matches the return address xor the random
value before returning; thus, if the return address changes but the canary does not
(i.e., it is skipped or overwritten with an identical value) the attack will be detected.
This type of canary is available in StackGuard v1.21, but is no longer supported.
PointGuard provides a similar protection mechanism for Windows by encrypting re-
turn pointers [27].

4.2.2 Effectiveness of Stack Reading
To evaluate the effectiveness of stack reading to overwrite canaries, we consider those
string operators that would be exploited to write data to a buffer. We group functions into
families based on their terminating behavior: Null, Wide-Null, Line and Custom Termi-
nating families (see Table 4.1). For example, strcpy is unable to write bytes following a
null byte into the target buffer, since the function terminates on the first 0x00 encountered.
Thus, overwriting any canary containing an intermediate null byte cannot be accomplished
by exploiting a single invocation of the strcpy function; however, a loop using multiple in-
vocations of strcpy may have the correct properties to write the following bytes. In general,
such features are not implied by Assumption 3.2, which requires the attacker is aware of
the existence and method to exploit the overflow in general, without prior knowledge of
which compiler-inserted canary protections may be used.

When a terminator canary is used for stack protection, stack reading cannot be employed
in the case that the known stack vulnerability (Assumption 3.2) requires exploiting a func-
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Table 4.2: Stack reading effectiveness against different canary types

Canary Type Value Overwritable
Terminator Canary 0x000aff0d
Random Canary 64-bit random value
Random XOR Canary 64-bit “encrypted” return pointer

tion from the Null or Line Terminating families. Similar problems exist for the random
canary, as there is a 1/256 chance that a random byte will be a terminating character for the
Null, Line and Custom Terminating families. For 64-bit canaries, the total probability that
some terminating character exists in a random canary becomes 1/32. Thus, we consider
terminator canaries to partially prevent stack reading, and random canaries to provide low-
probability partial prevention against stack reading. Against a random XOR canary, stack
reading has no significant probability of success as long as the canary or random value re-
main secret: in general, it is not possible to overwrite the canary via stack reading and also
modify the return pointer. These observations are summarized in Table 4.2.

We find that generalized stack reading cannot be used to reliably circumvent all types of ca-
naries. For example, buffer exploits requiring misuse of function families with terminating
values cause stack reading to have a non-negligible probability of failure for both random
and terminator canaries, depending on the target function being exploited.

4.3 Binary Composition Survey
Assumptions 3.5–3.9 are requirements on the binary composition of the service which are
prerequisites for performing a BROP attack against that target. In this section, we survey
a variety of network services to determine if these assumptions are commonly satisfied.
In particular, among the selected target services we survey, we resolve: (i) if the essential
BROP binary composition requirements appear to be satisfied (i.e., if a “first principles”
attack is possible); (ii) if the binary composition requirements appear to be satified to per-
form an optimized attack (i.e., the attack described by Bittau et al. requiring fewer but more
complex gadgets).

We perform our survey by selecting a variety of target services written in C or C++ available
on Linux (see Table 4.3). Our survey data is gathered following two methods:
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Table 4.3: Services selected for the binary composition survey.

Service Type
apache web server
axis2c web server
cyrus mail server
dovecot mail server
gsoap web server
jabberd2 XMPP server
lighttpd web server
mongoDB database
nginx web server
openswan IPsec daemon
postfix mail server
postgreSQL database
redis database
sendmail mail server
tengine web server
wu-ftp FTP server

Pre-built target binaries. Survey the gadgets of each service binary as available by de-
fault on Ubuntu (i.e., the most recent version as distributed under Ubuntu 14.04.01
via the apt-get package manager).

Compiled target binaries. Survey the gadgets of each service binary as it is built from
source on different platforms: (i) on Ubuntu 14.04.01 using GCC 4.8.4, (ii) on Fedora
22 using GCC 5.1.1 and (iii) on CentOS 7.1.1503 using GCC 4.8.3.

When building from source, we survey the past ten releases (when available) and build
using all default options following their build instructions. These two data sources high-
light how different compiler versions and different target platforms may impact the binary
composition with respect these gadgets.

The tool we use for surveying the gadgets in each binary is rp++, an open-source gadget-
finding tool that works with 64-bit binaries. We use the tool’s option to limit the found
gadget size to count gadgets precisely and avoid counting the same gadget multiple times.
Without this option, if the binary contained pop rbx; pop rax; ret; and one searched
for the gadget pop rax; ret;, the default behavior is for the tool to discover two gadgets:
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$ ./rp-lin-x64 -f a.out -r 2 |grep "pop r14 \; pop r15 \ ret \;"
0x00450f84: pop r14 ; pop r15 ; ret ; (1 found)
0x0045157d: pop r14 ; pop r15 ; ret ; (1 found)
0x00451a41: pop r14 ; pop r15 ; ret ; (1 found)
$ ./rp-lin-x64 -f a.out -r 2 |grep "pop rdi \ ret \;"
0x00450f87: pop rdi ; ret ; (1 found)
0x00451580: pop rdi ; ret ; (1 found)
0x00451a44: pop rdi ; ret ; (1 found)

Figure 4.1: Example rp++ output, showing an rdi gadget at an offset of each BROP gadget.

Table 4.4: Survey of /usr/bin and /usr/sbin, percentage of binaries containing each gadget.

OS Binaries syscall (%) rax (%) rsi (%) rdi (%) rdx (%)
Ubuntu 1144 15.65 26.22 61.71 97.2 8.83
Centos 1810 17.51 19.56 63.87 100.0 10.0
Fedora 1861 19.13 21.17 64.05 100.0 12.31

one gadget containing pop rax and a larger gadget containing both pop rax and pop rbx.
It is also important to note rp++ has the ability to discover gadgets at any alignment (see
Figure 4.1) and restricts itself to discovering gadgets in portions of the binary that would
be loaded into memory marked executable. These features prevent us from discovering
false-positive gadgets, from double-counting gadgets and from missing gadgets.

4.3.1 Survey: First Principles BROP Attack
The “first principles” BROP attack is based only on Assumptions 3.5–3.9, requiring five
gadgets. We survey both pre-built target binaries (see Table 4.5) and compiled target bi-
naries for Ubuntu (see Table B.1), CentOS (see Table B.2) and Fedora (see Table B.3) for
the presence of these gadgets. As a point of comparison, we also survey the binaries under
/usr/bin and /usr/sbin for each distribution (see Table 4.4).

While the total number of each gadget vary across versions of the same service, and across
the same version compiled using different tools (i.e., on different platforms), the significant
trends remain fairly stable. Among the services we survey, we find that rdx gadgets were
relatively rare, followed in scarcity by syscall and rax. There was no strong correlation
between the size of the binary and the number of rdx, rax and syscall gadgets: larger
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Table 4.5: Gadgets for a “first principles” BROP attack, pre-built services on Ubuntu 14.04.01.

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

apache 2.4.7 637528 0 122 1 189 0
openswan 2.6.38 1031824 14 59 14 188 0

postgreSQL 9.3.9 5633016 64 17 23 6 4
axis2c server 1.6.0 14648 0 0 0 1 0

cyrus 2.4.17 198000 0 7 0 20 0
wu-ftpd 2.6.1 548343 0 19 0 54 0

gsoap 2.8.16 455352 2 20 1 34 3
postfix 2.11.0 14280 0 0 0 1 0

mongoDB 2.4.9 2158112 289 246 4 709 30
nginx 1.4.6 873176 1 175 2 383 0

lighttpd 1.4.33 198200 0 43 0 49 0
dovecot 2.2.9 79920 0 11 0 19 1

redis 2.8.4 635248 2 119 1 220 0
sendmail 8.14.4 819072 11 59 1 243 0

jabberd2 c2s 2.2.17 167000 0 24 0 63 0
tengine 2.1.1 6091896 1 85 0 267 0

binaries do not make it more likely for these gadgets to appear, or appear more frequently.
In particular, we find at most 5 rdx gadgets, regardless of binary size (MongoDB being a
notable exception to this). In contrast, there is an apparent correlation between the size of
the binary and the other gadgets; we find ~3 rsi gadgets and ~6 rdi gadgets for every 1
KB.

Given the scarcity of some gadgets, the prerequisites for a “first principles” attack are not
satisfied for 80% of the pre-built binaries we survey. For each service, we try to build the 10
most recent versions of the service from source on Ubuntu, CentOS and Fedora and survey
if the attack prerequisites are satisfied in any of those versions (see Table 4.6). Ignoring
MongoDB (which satisfies the prerequisites in all experiments), we find 98% of binaries
we survey on Ubuntu do not satisfy the prerequisites (93% for CentOS, 81% for Fedora).

There are some interesting exceptions to the trends we observe. In particular, MongoDB
exhibits an unusually high number of all pre-requisite gadgets. Redis shows strong varia-
tion across our experiments: on Ubuntu, every version lacked rdx gadgets; when built on
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Table 4.6: Versions of compiled target binaries satisfying the prerequisites for a “first principles”
attack, totals by platform (see Appendix B.1–B.3 for details).

Service Ubuntu CentOS Fedora
redis 0 3 10
postgreSQL 0 0 0
mongoDB 10 10 10
lighttpd 0 0 0
nginx 0 0 0
tengine 1 1 1
dovecot 0 0 0

CentOS, three versions produced this gadget; when built on Fedora, all versions of Redis
contained this gadget (in fact, all gadgets). Tengine demonstrates a similar build variability:
across all versions, some prerequisite gadget is missing when compiled on each platform,
except version 1.4.6 when built on CentOS and version 1.5.2 when built on Fedora.

In general, the relative scarcity of some gadgets make a first principles attack unfeasible for
many of the services we survey. The optimized attack we survey next, however, reduces the
number of primitive gadgets required, substituting new requirements related to the presence
of specific PLT entries.

4.3.2 Survey: Optimized Attack
The BROP optimization described by Bittau et al. obviates the need for certain explicit
gadgets, substituting the use of select functions and a specialty gadget (see Figure 3.2). We
survey both pre-built target binaries (see Table 4.7) and compiled target binaries for Ubuntu
(see Table B.4), CentOS (see Table B.5) and Fedora (see Table B.6) for the prerequisites for
this optimized attack. Again, as a point of comparison, we also survey the binaries under
/usr/bin and /usr/sbin for each distribution (see Table 4.8).

Of the pre-built binaries we survey, we find 75% satisfy the prerequisites for the optimized
BROP attack. Of the binaries compiled from source, we find 94% satisfy the prerequisites
for the optimized BROP attack, in all versions and regardless of target platform surveyed.
When comparing to earlier results, we see nearly all services lacking prerequisites for a
“first principles” attack have the requirements for the optimized BROP attack. Bittau et
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Table 4.7: Gadgets for an optimized BROP attack, pre-built services on Ubuntu 14.04.01.

Binary Gadgets
Service Version Size BROP strcmp Found write found

apache 2.4.7 637528 0 True True
openswan 2.6.38 1031824 193 True True

postgreSQL 9.3.9 5633016 1 True True
axis2c server 1.6.0 14648 1 True False

cyrus 2.4.17 198000 20 True True
wu-ftpd 2.6.1 548343 52 True True

gsoap 2.8.16 455352 35 True False
postfix 2.11.0 14280 1 False False

mongoDB 2.4.9 2158112 730 True True
nginx 1.4.6 873176 399 True True

lighttpd 1.4.33 198200 49 True True
dovecot 2.2.9 79920 19 True True

redis 2.8.4 635248 229 True True
sendmail 8.14.4 819072 259 True True

jabberd2 c2s 2.2.17 167000 64 True True
tengine 2.1.1 6091896 289 True True

Table 4.8: Survey of /usr/bin and /usr/sbin for optimized attacks, percentage of binaries
containing each gadget.

OS Binaries strcmp (%) write (%) BROP (%)
Ubuntu 1144 65.65 68.53 97.12
Centos 1810 67.13 69.06 100.0
Fedora 1861 63.73 71.04 100.0

al. state that if “the program or one of its libraries does not use [strcmp] in which case the
attacker can perform a ‘first principles’ attack.” Based on our survey, however, we believe
it to be unlikely that a “first principles” attack has a greater chance of succeeding than the
optimized attack. We also leave to future work to test the validity of the assumption that
different versions of strcmp will actually change the value in rdx.
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4.4 Finding the PLT

Finding the PLT section of a binary is a necessary step for the optimized BROP attack,
to locate the function pointers to call strcmp and write. In this section, we evaluate the
requirements identified by Bittau et al. for locating the PLT for the optimized attack. It
is argued that the PLT has a unique signature which can be detected via probing: each
entry is 16 bytes apart, where “most of the PLT entries will not cause a crash regardless of
arguments because they are system calls that return EFAULT on invalid parameters”; thus,
the PLT can be located with “great confidence if a couple of addresses 16 bytes apart do
not cause a crash, and can verify that the same addresses plus six do not cause a crash” [1].

We survey the 16 services previously identified for our survey (see Section 4.3), scanning
PLT entries and noting the maximum number of consecutive syscalls (see Table 4.9). As
a point of comparison, we also investigate nginx 1.4.0, as the BROP proof-of-concept
exploit has been demonstrated against this binary. For nginx 1.4.0, we find the maximum
number of consecutive syscalls is five; this is larger than in any other service we survey.
Further, syscalls account for 44% of the PLT entries for this version of nginx; the other
services we survey have a much lower percentage of syscall entries for their PLTs. Based
on this survey, we believe it is not possible to conclude that most PLT entries are syscalls,
or that a large contiguous segment of the PLT tends to be populated by syscalls.

The BROP proof-of-concept attack code, however, require only a single (apparent) PLT
entry to decide the PLT has been located. This decision is based on the non-crashing
behavior at the 16-byte-aligned address, and at the address 6 bytes later (the location of the
resolver code). If this probe fails, the code jumps to offset 0x10 * 30, skipping 30 entries.
Thus, if an actual PLT entry fails this check, 29 PLT entries may be skipped during this
scan. Such a failed probe may result due to entries for memcpy or other library calls which
crash on invalid input. For a service like axis2c, where there are only 38 total PLT entries,
this may prove significant, especially since only 5% percent of PLT entries are syscalls (i.e.,
the PLT may never be discovered following this scanning approach). We defer for future
work any analysis of the more basic claim that most syscalls do not crash on invalid input.
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Table 4.9: Survey of syscalls in PLT, prebuilt services on Ubuntu 14.04.01.

Total PLT Total % Max Consecutive
Service Version Entries syscalls syscalls syscalls

apache2 2.4.7 2880 19 0.7 2
openswan 2.6.38 3147 43 1.4 3

postgreSQL 9.3.9 184 15 8.2 3
axis2c server 1.6.0 38 2 5.3 1

cyrus 2.4.17 1324 52 3.9 4
wu-ftp 2.6.1 114 26 22.8 3
gsoap 2.8.16 47 2 4.3 1

postfix 2.11.0 73 5 6.8 1
mongoDB 2.4.9 782 38 4.9 3

nginx 1.4.6 360 65 18.1 4
lighttpd 1.4.33 228 46 20.2 3
dovecot 2.2.9 201 27 13.4 2

redis 2.8.4 213 49 23.0 4
sendmail 8.14.4 113 9 8.0 2

jabberd2-c2s 2.2.17 355 25 7.0 2
tengine 2.1.1 321 65 20.2 2

4.5 Forking Model
Assumption 3.3 requires the target service does not re-randomize its address space after a
crash. Specifically, Bittau et al. discuss that “the BROP attack cannot target PIE servers
that re-randomize (e.g., execve) after a crash” [1]. We survey the 16 services previously
identified (see Section 4.3), manually inspecting their source code to determine how each
handles incoming connections. We characterize each service based on their connection-
handling behavior.

We distinguish between processes than handle connections in a single-thread model, those
that fork on each connection and those that utilize a thread pool. Services that fork on each
connection satisfy the forking model required for the BROP attack. For POSIX threads
and single-thread processes, a thread crash will cause the service to crash, generally. The
behavior on crash, however, is consequential to the effective forking model: some services
either do not restart and simply crash, while others are restarted by some background mon-
itor which detects the failure. For any service which is restarted on crash, it may either
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Table 4.10: Survey of forking models for connection handling.

Service Version Model Source
apache 2.4.7 hybrid server/mpm/worker/worker.c:1394

openswan 2.6.38 fork programs/pluto/pluto_crypt.c:899
postgreSQL 9.3.9 fork-exec src/backend/postmaster/postmaster.c:4185

axis2c server 1.6.0 thread pool transport/tcp/receiver/tcp_svr_thread.c:151
cyrus 2.4.17 fork-exec imap/smtpclient.c:71

wu-ftpd 2.6.1 inetd/fork src/ftpd.c:7042
gsoap 2.8.16 various -

postfix 2.11.0 fork-exec src/global/mail_run.c:90
mongoDB 2.4.9 thread pool src/mongo/db/db.cpp:281

nginx 1.4.6 fork src/os/unix/ngx_process.c:186
lighttpd 1.4.33 fork-exec src/lighttpd-angel.c:95
dovecot 2.2.9 fork src/lib-lda/smtp-client.c:100

redis 2.8.4 fork src/aof.c:961
sendmail 8.14.4 fork sendmail/daemon.c:636

jabberd2 c2s 2.2.17 single-thread router/main.c:343
tengine 2.1.1 fork src/os/unix/ngx_process.c:177

restart via fork or via fork-exec. Those which restart via fork also satisfy the BROP forking
model and are, effectively, following a forking model. These are annotated as, effectively,
adopting a fork model (see Table 4.10).

Of the 16 services surveyed, about half satisfy the requirement to restart without random-
ization, either by following a pure fork model or a hybrid model. For example, Apache
uses a hybrid multi-process multi-threaded model, creating a pool of connection-handling
processes, each of which maintains a thread pool; more importantly, processes are restarted
on crash via fork. WuFTP may be started either by inetd, which will fork-exec the service,
or as a standalone daemon that forks on each connection. We note that gSOAP is not really
a service itself, but rather a toolkit for building SOAP/XML web services, and it supports
various connection handling models.
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CHAPTER 5:
Preventions

In this chapter, we discuss ways of preventing BROP attacks from executing successfully.
We summarize arguments previously presented by Bittau et al. [1] and others, and express
arguments based on the analysis from prior chapters.

5.1 Behavioral Analysis
There are several methods proposed to detect when a BROP attack is being launched, using
either host-based or network-based controls.

Pfaff et al. present a method (HadROP) for stopping BROP, as well as any other ROP-style
attacks [2]. They claim that ROP attacks “trigger micro-architechtural events in modern
processors differently than conventional programs.” HadROP uses machine learning to
detect these differences and protect the target service.

From a networking standpoint, the way BROP works should allow a defender to describe
a list of behaviors, that upon seeing, would stop a targeted service. Bittau et al. [1] de-
scribe an “a fully automated exploit that yielded a shell in under 4,000 requests (20 min-
utes).” Since BROP’s generalized stack reading works by crashing the service this could
mean thousands of crashes on a service in a short time frame. Re-launching a service, and
rerandomizing, after the number of crashes within some period of time exceeds a specified
threshold may effectively reduce the threat of BROP attacks. Because of its high number
of crashes in a short amount of time, it is likely that a BROP attack would have a signature
that is distinct and identifiable. We leave future work exploring this aspect and proposing
specific.

5.2 Encrypting Pointers
Encryption of pointers, as done by ASLR-Guard and PointGuard could prove to be effective
BROP countermeasures [27], [28]. Similar to how XOR canaries work (see Section 4.2.1),
ASLR-Guard and PointGuard provide protection by encrypting pointers, XORing them
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with a random key. When pointers are encrypted, BROP would not be able to search for
portions of consecutive entries that mark the PLT, since alterations to the ESP would point
to unpredictable addresses. This protection may relegate BROP to being a brute force
attack, not being able to distinguish between usable gadgets and binary found in the text
segment.

5.3 Rerandomization
Seibert et al. note that BROP-style attacks, “can typically only be conducted on systems
where repeated crashing goes undetected, the application is restarted after crashing, and
memory is not re-randomized after restarting” [15]. This highlights a potentially sim-
ple preventions that can be implemented for BROP defense. When it is possible, re-
randomization after a crash is the most absolute way to prevent BROP from being suc-
cessful. Bittau et al. highlight that services that re-randomize after crashing are the bounds
of a BROP attack. When the re-randomization occurs, the search for gadgets must start
anew, preventing a BROP attack from progressing to its later stages.

Bittau et al. suggest rerandomization of canaries and address space after any crash in order
to protect from their attack [1]. Employing a fork-exec model for handling new connections
would cause the child to have a randomized address space. Execing, however, may not
always be practical after a fork, although those services following this model have a type
of built-inBROP protection.

Similar in spirit to target re-randomization via exec, Friedman et al. describe a potential
prevention employing a technique called chronomorphic binaries. They develop a proof of
concept amelioration in which binaries“that change their in-memory instructions and layout
repeatedly” during their lifetime [29]. Friedman et al. specifically mention this defense as
applicable to BROP: by continually changing instructions and layout, the gadgets required
for a BROP attack could not be gathered fast enough to effectively execute the attack.

Another option would be to run a service under xinetd instead of stand alone. This offers
more protection as rerandomization would then occur on restart.
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5.4 Forcing a Weaker Attack
The findings of our binary survey suggest that a “first principles” attack has a far greater
chance of failure, due to missing gadgets (see Section 4.3.1). This suggests a potential
amelioration, by instrumenting binaries with mechanisms that force the attacker to default
to this weaker attack. In particular, inlining the functions strcmp and write may render the
attacker unable to perform an optimized BROP attack.

Similarly, changing the geometry of the PLT may prevent an optimized attack from suc-
ceeding in its search for this data structure. It is noteworthy that, when symbols are man-
ually resolved using dlopen, the PLT may not follow the pattern described by Bittau et al.
Future work may look into changing the way the PLT is formatted or guards to PLT entries,
such as function pointers that are expected to never be called and would cause a crash or
program re-randomization.

Relatedly, possible preventions may seek to weaken the first principles attack, by hardening
binaries through reducing the quantity of gadgets required for a BROP attack, like pop rdx.
It may be possible for build tools to select machine instructions in a way that avoids the
use of some first principles gadgets. Onarlioglu et al. describe a type of this protection that
could prove useful for stopping BROP attacks [30]. Their method transforms instructions
that could be offset to produce gadgets with into similar functioning, but more benign,
instructions.

29



THIS PAGE INTENTIONALLY LEFT BLANK

30



CHAPTER 6:
Conclusions

We have shown some of the abilities and limitations of the BROP attack. We have also
enumerated the assumptions that must be satisfied for a BROP attack to occur successfully.
Our work is based on the BROP attack described by Bittau et al., though we imagine variant
attacks, yet to be described, may impact this analysis and its conclusions.

We enumerate the precise prerequisites for a BROP attack. This helped us to analyze BROP
and find limits to the attack. We found that the technique of generalized stack reading as
a method for circumventing canaries may be more or less successful, depending on the
type of canaries. This limits the types of stack buffer overflows that could lead to a BROP
success.

We survey service binaries, finding that a first principals BROP attack is not a reliable fall-
back plan when an optimized attack fails. This is due to a lack required gadgets to perform
a first principles attack in many of the binaries surveyed. We believe that the majority of
the services we survey should not be vulnerable to BROP, either because they lack gadgets
or because they would re-randomize on crash.

From our survey, we find that 100% of manually built services had the required gadgets
for an optimized BROP attack, and 75% of prebuilt services also had these gadgets. More
generally, there appears to be a difference in gadget composition, depending on the environ-
ment and build options. This makes assessing the likelihood of a successful first principles
attack complicated without access to the binary. We leave investigating this further to future
work.

We show that syscall and pop rax gadgets, while not as rare as pop rdx gadgets, are
uncommon and may be a limiting factor for first principles attack. The rax gadget is
necessary to find a syscall gadget, yet we find that under 30% of common system utilities
contain an rax gadget, while under 20% have a syscall gadgets (see Table 4.4).

We find the existence of required gadgets in a service binary fluctuates with version number
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and build environment (see Appendix B). For example, we observe that only some binaries
for Redis built on CentOS 7.1.1503 have the prerequisite gadgets; when built on Fedora 22,
all versions have the necessary gadgets; when built on Ubuntu 14.04.01, no versions satisfy
these prerequisites.

We find that none of the services have signatures as strong as the proof of concept service,
with regards to system calls in a row in the PLT and percentage of the PLT that is system
calls. We believe, as it is, BROP may have difficulty with services that have small PLTs.

We observe that none of the surveyed services have as large a percentage of system calls in
their PLTs as the target service of the proof-of-concept exploit, nginx 1.4.0. Additionally,
we find that most of the entries in the services we surveyed, including nginx 1.4.0, are not
system calls. This contradicts certain assumptions of the optimized attack and suggests
limitations. We leave it as future work to explore this further. For example, it remains to be
seem if this is a weakness in practice, and whether all system calls in the PLT do produce
EFAULT on invalid parameters.
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APPENDIX A:
Braille Installation

The following instructions are for installing Braille reproducing the BROP demo against
nginx 1.4.0. These instructions were tested with 64-bit Ubuntu Server 14.04.2 LTS.

1. Download nginx
wget http://nginx.org/download/nginx-1.4.0.tar.gz

2. Download braille
wget http://www.scs.stanford.edu/brop/nginx-1.4.0-exp.tgz

3. tar -xzvf nginx-1.4.0-exp.tgz

4. Install dependencies
(a) sudo apt-get install make ruby

(b) sudo apt-get install libpcre3 libpcre3-dev

(c) sudo apt-get install zlibc zlib1g zlib1g-dev

5. Unizip and build nginx
(a) tar -xzvf nginx-1.4.0.tar.gz

(b) cd nginx-1.4.0

(c) ./configure

(d) add "-fstack-protector" to obj/Makefile CFLAGS
(e) make

(f) sudo make install

6. Start nginx
sudo /usr/local/nginx/sbin/nginx

7. Run BROP
nginx-1.4.0-exp/brop.rb 127.0.0.1
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APPENDIX B:
Survey Data

In the following sections, we present the raw data for the binary composition survey de-
scribed in Section 4.3.

B.1 Basic BROP Gadgets Survey on Ubuntu
The below data was gathered by surveying 10 versions of 7 different services building from
source using default options on Ubuntu.

Table B.1: Gadgets for a “first principles” BROP attack, building services on Ubuntu 14.04.01.

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

redis 2.6.5 3276994 4 142 3 253 0
2.6.7 3682371 2 148 2 268 0
2.6.6 3686355 2 147 2 270 0
2.6.9 3688470 4 148 3 269 0
2.6.8 3686763 4 148 2 268 0
2.6.11 3695250 4 148 1 268 0
2.6.10 3692970 4 149 3 269 0
2.6.13 3704840 6 149 3 270 0
2.6.12 3697058 8 150 3 268 0
2.6.14 3705120 6 149 2 271 0

postgreSQL 9.3.8 441914 0 15 1 43 0
9.3.9 441914 0 15 1 43 0
9.4.0 454719 0 18 3 43 0
9.4.1 454766 0 18 3 43 0
9.4.2 454913 0 18 1 43 0
9.4.3 454913 0 18 1 43 0
9.4.4 454913 0 18 1 43 0
9.3.7 441914 0 15 1 43 0
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Gadgets for a “first principles” BROP attack, building services on Ubuntu (continued).

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

9.3.6 441767 0 16 1 45 0
9.3.5 441762 2 15 1 44 0

mongoDB 3.1.4 11537432 776 1389 99 3649 92
3.1.5 13893975 738 1406 81 3677 88
3.1.6 14387925 825 37 28 13 4
3.1.7 22749569 1037 78 53 47 35
3.1.0 11601496 714 1422 88 3746 96
3.1.1 11376376 621 1352 96 3639 97
3.1.2 11520504 751 1379 92 3662 97
3.1.3 11446936 749 1369 90 3636 88
3.0.6 11686488 689 1403 91 3726 98
3.1.8 18671777 945 39 30 15 13

lighttpd 1.4.29 873388 2 44 0 46 0
1.4.28 861247 0 44 0 46 1
1.4.30 873868 0 44 0 46 0
1.4.31 868737 0 44 0 46 0
1.4.32 869377 0 44 0 46 0
1.4.33 870530 0 44 0 45 0
1.4.34 867803 0 44 0 45 0
1.4.35 853304 1 44 0 45 0
1.4.36 909685 1 47 1 49 0
1.4.37 929595 3 46 1 51 0

nginx 1.8.0 3403395 1 68 1 198 0
1.7.6 3342630 0 67 0 193 0
1.7.7 3362982 0 68 0 196 0
1.9.4 3447159 3 71 0 199 0
1.7.8 3373897 0 69 1 195 0
1.7.9 3396115 0 69 0 196 1
1.9.0 3431972 1 71 0 197 0
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Gadgets for a “first principles” BROP attack, building services on Ubuntu (continued).

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

1.9.1 3439638 1 71 0 199 0
1.9.2 3445276 1 71 0 199 0
1.9.3 3446756 2 71 0 199 0

tengine 1.5.0 5582267 0 0 0 0 0
1.5.1 5583155 0 73 0 238 0
1.5.2 5587403 0 73 0 238 0
1.4.6 5483648 2 73 0 235 0
2.1.1 6091896 1 85 0 267 0
2.1.0 6062797 0 87 0 261 0
2.0.2 5805721 1 78 0 248 0
2.0.3 5884270 1 82 0 252 0
2.0.0 5771674 3 77 1 246 4
2.0.1 5805721 1 78 0 248 0

dovecot 2.2.12 300397 0 9 0 19 0
2.2.13 300373 0 9 0 19 0
2.2.10 300397 0 9 0 19 0
2.2.11 300397 0 9 0 19 0
2.2.16 304165 0 9 0 18 0
2.2.17 301523 0 9 0 18 1
2.2.14 304205 0 9 0 18 0
2.2.15 304205 0 9 0 18 0
2.2.18 301523 0 9 0 18 1
2.2.9 299621 0 9 0 19 0
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B.2 Basic BROP Gadgets Survey on CentOS
The below data was gathered by surveying 10 versions of 7 different services building from
source using default options on CentOS.

Table B.2: Gadgets for a “first principles” BROP attack, building services on CentOS 7.1.1503.

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

redis 2.6.5 3160887 4 156 3 253 0
2.6.7 3547064 5 164 4 269 1
2.6.6 3546944 3 162 4 277 1
2.6.9 3549019 3 163 4 269 0
2.6.8 3547248 4 162 5 269 0
2.6.11 3559875 2 162 2 269 0
2.6.10 3557623 4 163 2 270 0
2.6.13 3565385 5 163 1 271 0
2.6.12 3561683 3 164 1 269 1
2.6.14 3565657 5 163 1 271 0

postgreSQL 9.3.8 441747 0 15 2 44 0
9.3.9 441747 0 15 2 44 0
9.4.0 450418 0 18 2 43 0
9.4.1 450465 0 18 1 43 0
9.4.2 454708 0 18 1 44 1
9.4.3 454708 0 18 1 44 1
9.4.4 454708 0 18 1 44 1
9.3.7 441747 0 15 2 44 0
9.3.6 441600 0 15 1 43 1
9.3.5 437499 2 15 1 44 0

mongoDB 3.1.4 11537432 776 1389 99 3649 92
3.1.5 13893975 738 1406 81 3677 88
3.1.6 14387925 825 37 28 13 4
3.1.7 22749569 1037 78 53 47 35
3.1.0 11601496 714 1422 88 3746 96
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Gadgets for a “first principles” BROP attack, building services on CentOS (continued).

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

3.1.1 11376376 621 1352 96 3639 97
3.1.2 11520504 751 1379 92 3662 97
3.1.3 11446936 749 1369 90 3636 88
3.0.6 11686488 689 1403 91 3726 98
3.1.8 18671777 945 39 30 15 13

lighttpd 1.4.29 849595 1 42 0 45 1
1.4.28 837622 0 42 0 45 0
1.4.30 850059 0 42 0 45 1
1.4.31 844672 2 42 0 45 1
1.4.32 845320 2 42 0 45 1
1.4.33 - - - - - -
1.4.34 843930 0 43 0 43 0
1.4.35 830661 1 43 0 43 0
1.4.36 883690 0 47 0 47 0
1.4.37 - - - - - -

nginx 1.8.0 3283695 1 69 0 197 0
1.7.6 3229674 0 67 2 192 0
1.7.7 3248658 0 68 0 194 0
1.9.4 3321760 1 71 0 198 0
1.7.8 3255069 0 69 2 194 0
1.7.9 3272719 4 69 0 195 0
1.9.0 3311311 1 71 1 196 0
1.9.1 3314841 1 72 0 198 0
1.9.2 3319885 1 71 0 198 0
1.9.3 3321365 1 73 0 198 0

tengine 1.5.0 - - - - - -
1.5.1 5459180 2 73 0 237 0
1.5.2 5459244 2 73 0 237 0
1.4.6 5361625 2 72 1 233 1
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Gadgets for a “first principles” BROP attack, building services on CentOS (continued).

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

2.1.1 5969567 4 85 2 266 0
2.1.0 5941596 5 86 0 260 0
2.0.2 5696179 4 78 1 247 0
2.0.3 5770248 6 81 0 251 0
2.0.0 5659012 4 77 0 245 0
2.0.1 5696179 4 78 1 247 0

dovecot 2.2.12 293429 0 9 0 20 0
2.2.13 293405 0 9 0 20 0
2.2.10 293429 0 9 0 20 0
2.2.11 293429 0 9 0 20 0
2.2.16 296557 0 9 0 20 1
2.2.17 294331 0 9 0 20 0
2.2.14 296579 0 9 0 20 1
2.2.15 296579 0 9 0 20 1
2.2.18 294331 0 9 0 20 0
2.2.9 292533 2 9 0 20 0

B.3 Basic BROP Gadgets Survey on Fedora
The below data was gathered by surveying 10 versions of 7 different services building from
source using default options on Fedora.

Table B.3: Gadgets for a “first principles” BROP attack, building services on Fedora 22.

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

redis 2.6.5 3221896 2 154 2 243 2
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Gadgets for a “first principles” BROP attack, building services on Fedora (continued).

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

2.6.7 3601328 4 165 2 255 2
2.6.6 3601280 4 164 4 256 2
2.6.9 3607072 4 164 5 256 2
2.6.8 3601344 7 164 4 256 2
2.6.11 3613856 2 164 3 256 2
2.6.10 3611616 2 164 2 257 2
2.6.13 3624656 4 165 2 258 2
2.6.12 3615448 3 165 3 256 2
2.6.14 3625088 4 165 2 257 2

postgreSQL 9.3.8 441832 0 13 2 42 0
9.3.9 441832 0 13 2 42 0
9.4.0 450504 0 16 1 43 0
9.4.1 450552 0 16 1 44 0
9.4.2 454792 0 16 1 43 0
9.4.3 454792 0 16 1 43 0
9.4.4 454792 0 16 1 43 0
9.3.7 441832 0 13 2 42 0
9.3.6 441688 0 13 1 42 0
9.3.5 441680 2 14 1 42 0

mongoDB 3.1.4 11537432 776 1389 99 3649 92
3.1.5 13893975 738 1406 81 3677 88
3.1.6 14387925 825 37 28 13 4
3.1.7 22749569 1037 78 53 47 35
3.1.0 11601496 714 1422 88 3746 96
3.1.1 11376376 621 1352 96 3639 97
3.1.2 11520504 751 1379 92 3662 97
3.1.3 11446936 749 1369 90 3636 88
3.0.6 11686488 689 1403 91 3726 98
3.1.8 18671777 945 39 30 15 13
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Gadgets for a “first principles” BROP attack, building services on Fedora (continued).

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

lighttpd 1.4.29 864336 3 43 0 45 0
1.4.28 852176 2 43 1 45 0
1.4.30 868320 3 43 0 45 0
1.4.31 866448 4 43 0 45 0
1.4.32 860256 4 43 0 45 1
1.4.33 - - - - - -
1.4.34 - - - - - -
1.4.35 - - - - - -
1.4.36 897008 0 47 2 48 0
1.4.37 919768 0 46 1 51 0

nginx 1.8.0 3390136 4 64 2 212 0
1.7.6 3339176 2 62 2 178 0
1.7.7 3357784 2 63 2 180 0
1.9.4 3434760 7 68 1 179 0
1.7.8 3368664 6 64 2 176 0
1.7.9 3385416 6 64 1 177 0
1.9.0 3420264 4 69 1 178 0
1.9.1 3427928 4 67 2 180 0
1.9.2 3432888 4 67 1 180 0
1.9.3 3434056 4 67 1 179 0

tengine 1.5.0 5590048 8 70 2 218 0
1.5.1 5591016 6 70 2 218 0
1.5.2 5591304 6 70 2 218 1
1.4.6 5488248 5 69 2 214 0
2.1.1 6096040 3 79 1 245 0
2.1.0 6069272 3 78 3 241 0
2.0.2 5820056 3 73 3 229 0
2.0.3 5898648 3 75 2 233 0
2.0.0 5787344 5 72 3 227 0
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Gadgets for a “first principles” BROP attack, building services on Fedora (continued).

Binary Gadgets
Service Version Size syscall rsi rax rdi rdx

2.0.1 5820056 3 73 3 229 0
dovecot 2.2.12 288592 0 8 0 18 0

2.2.13 288592 0 8 0 18 0
2.2.10 288592 0 8 0 18 0
2.2.11 288592 0 8 0 18 0
2.2.16 290936 0 8 0 18 0
2.2.17 288720 0 8 0 18 0
2.2.14 290856 0 8 0 18 0
2.2.15 290856 0 8 0 18 0
2.2.18 288720 0 8 0 18 0
2.2.9 287984 0 8 0 18 0

B.4 Optimized BROP Gadgets Survey on Ubuntu
The below data was gathered by surveying 10 versions of 7 different services building from
source using default options on Ubuntu.

Table B.4: Gadgets for the optimized BROP attack, building services on Ubuntu 14.04.01.

Binary Gadgets
Service Version Size BROP strcmp Found write Found

redis 2.6.5 3276994 265 True True
2.6.7 3682371 275 True True
2.6.6 3686355 276 True True
2.6.9 3688470 275 True True
2.6.8 3686763 275 True True
2.6.11 3695250 275 True True
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Gadgets for the optimized BROP attack, building services on Ubuntu (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

2.6.10 3692970 276 True True
2.6.13 3704840 277 True True
2.6.12 3697058 275 True True
2.6.14 3705120 277 True True

postgreSQL 9.3.8 441914 43 True True
9.3.9 441914 43 True True
9.4.0 454719 43 True True
9.4.1 454766 43 True True
9.4.2 454913 43 True True
9.4.3 454913 43 True True
9.4.4 454913 43 True True
9.3.7 441914 43 True True
9.3.6 441767 43 True True
9.3.5 441762 44 True True

mongoDB 3.1.4 11537432 3841 True True
3.1.5 13893975 3852 True True
3.1.6 14387925 8 True True
3.1.7 22749569 8 True True
3.1.0 11601496 3963 True True
3.1.1 11376376 3828 True True
3.1.2 11520504 3845 True True
3.1.3 11446936 3825 True True
3.0.6 11686488 3947 True True
3.1.8 18671777 8 True True

lighttpd 1.4.29 873388 44 True True
1.4.28 861247 44 True True
1.4.30 873868 44 True True
1.4.31 868737 44 True True
1.4.32 869377 44 True True
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Gadgets for the optimized BROP attack, building services on Ubuntu (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

1.4.33 870530 44 True True
1.4.34 867803 44 True True
1.4.35 853304 44 True True
1.4.36 909685 48 True True
1.4.37 929595 52 True True

nginx 1.8.0 3403395 214 True True
1.7.6 3342630 208 True True
1.7.7 3362982 210 True True
1.9.4 3447159 215 True True
1.7.8 3373897 210 True True
1.7.9 3396115 211 True True
1.9.0 3431972 213 True True
1.9.1 3439638 214 True True
1.9.2 3445276 215 True True
1.9.3 3446756 215 True True

tengine 1.5.0 5582267 255 True True
1.5.1 5583155 255 True True
1.5.2 5587403 256 True True
1.4.6 5483648 251 True True
2.1.1 6091896 289 True True
2.1.0 6062797 284 True True
2.0.2 5805721 268 True True
2.0.3 5884270 274 True True
2.0.0 5771674 265 True True
2.0.1 5805721 268 True True

dovecot 2.2.12 300397 18 True True
2.2.13 300373 18 True True
2.2.10 300397 18 True True
2.2.11 300397 18 True True
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Gadgets for the optimized BROP attack, building services on Ubuntu (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

2.2.16 304165 18 True True
2.2.17 301523 18 True True
2.2.14 304205 18 True True
2.2.15 304205 18 True True
2.2.18 301523 18 True True
2.2.9 299621 18 True True

B.5 Optimized BROP Gadgets Survey on CentOS
The below data was gathered by surveying 10 versions of 7 different services building from
source using default options on CentOS.

Table B.5: Gadgets for the optimized BROP attack, building services on CentOS 7.1.1503.

Binary Gadgets
Service Version Size BROP strcmp Found write Found

redis 2.6.5 3160887 266 True True
2.6.7 3547064 277 True True
2.6.6 3546944 278 True True
2.6.9 3549019 277 True True
2.6.8 3547248 277 True True
2.6.11 3559875 277 True True
2.6.10 3557623 278 True True
2.6.13 3565385 279 True True
2.6.12 3561683 277 True True
2.6.14 3565657 279 True True

postgreSQL 9.3.8 441747 43 True True
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Gadgets for the optimized BROP attack, building services on CentOS (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

9.3.9 441747 43 True True
9.4.0 450418 43 True True
9.4.1 450465 43 True True
9.4.2 454708 43 True True
9.4.3 454708 43 True True
9.4.4 454708 43 True True
9.3.7 441747 43 True True
9.3.6 441600 43 True True
9.3.5 437499 44 True True

mongoDB 3.1.4 11537432 3841 True True
3.1.5 13893975 3852 True True
3.1.6 14387925 8 True True
3.1.7 22749569 8 True True
3.1.0 11601496 3963 True True
3.1.1 11376376 3828 True True
3.1.2 11520504 3845 True True
3.1.3 11446936 3825 True True
3.0.6 11686488 3947 True True
3.1.8 18671777 8 True True

lighttpd 1.4.29 849595 44 True True
1.4.28 837622 44 True True
1.4.30 850059 44 True True
1.4.31 844672 44 True True
1.4.32 845320 44 True True
1.4.33 - - - -
1.4.34 843930 42 True True
1.4.35 830661 42 True True
1.4.36 883690 46 True True
1.4.37 - - - -
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Gadgets for the optimized BROP attack, building services on CentOS (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

nginx 1.8.0 3283695 214 True True
1.7.6 3229674 207 True True
1.7.7 3248658 209 True True
1.9.4 3321760 215 True True
1.7.8 3255069 209 True True
1.7.9 3272719 211 True True
1.9.0 3311311 213 True True
1.9.1 3314841 214 True True
1.9.2 3319885 215 True True
1.9.3 3321365 215 True True

tengine 1.5.0 - - - -
1.5.1 5459180 254 True True
1.5.2 5459244 255 True True
1.4.6 5361625 250 True True
2.1.1 5969567 288 True True
2.1.0 5941596 283 True True
2.0.2 5696179 267 True True
2.0.3 5770248 273 True True
2.0.0 5659012 264 True True
2.0.1 5696179 267 True True

dovecot 2.2.12 293429 20 True True
2.2.13 293405 20 True True
2.2.10 293429 20 True True
2.2.11 293429 20 True True
2.2.16 296557 20 True True
2.2.17 294331 20 True True
2.2.14 296579 20 True True
2.2.15 296579 20 True True
2.2.18 294331 20 True True
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Gadgets for the optimized BROP attack, building services on CentOS (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

2.2.9 292533 20 True True

B.6 Optimized BROP Gadgets Survey on Fedora
The below data was gathered by surveying 10 versions of 7 different services building

from source using default options on Fedora.

Table B.6: Gadgets for the optimized BROP attack, building services on Fedora 22.

Binary Gadgets
Service Version Size BROP strcmp Found write Found

redis 2.6.5 3221896 243 True True
2.6.7 3601328 255 True True
2.6.6 3601280 256 True True
2.6.9 3607072 256 True True
2.6.8 3601344 256 True True
2.6.11 3613856 257 True True
2.6.10 3611616 257 True True
2.6.13 3624656 258 True True
2.6.12 3615448 257 True True
2.6.14 3625088 258 True True

postgreSQL 9.3.8 441832 43 True True
9.3.9 441832 43 True True
9.4.0 450504 44 True True
9.4.1 450552 44 True True
9.4.2 454792 44 True True
9.4.3 454792 44 True True
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Gadgets for the optimized BROP attack, building services on Fedora (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

9.4.4 454792 44 True True
9.3.7 441832 43 True True
9.3.6 441688 43 True True
9.3.5 441680 43 True True

mongoDB 3.1.4 11537432 3841 True True
3.1.5 13893975 3852 True True
3.1.6 14387925 8 True True
3.1.7 22749569 8 True True
3.1.0 11601496 3963 True True
3.1.1 11376376 3828 True True
3.1.2 11520504 3845 True True
3.1.3 11446936 3825 True True
3.0.6 11686488 3947 True True
3.1.8 18671777 8 True True

lighttpd 1.4.29 864336 43 True True
1.4.28 852176 43 True True
1.4.30 868320 43 True True
1.4.31 866448 43 True True
1.4.32 860256 43 True True
1.4.33 — - - -
1.4.34 - - - -
1.4.35 - - - -
1.4.36 897008 46 True True
1.4.37 919768 49 True True

nginx 1.8.0 3390136 192 True True
1.7.6 3339176 189 True True
1.7.7 3357784 191 True True
1.9.4 3434760 191 True True
1.7.8 3368664 187 True True
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Gadgets for the optimized BROP attack, building services on Fedora (continued).

Binary Gadgets
Service Version Size BROP strcmp Found write Found

1.7.9 3385416 189 True True
1.9.0 3420264 190 True True
1.9.1 3427928 192 True True
1.9.2 3432888 192 True True
1.9.3 3434056 191 True True

tengine 1.5.0 5590048 228 True True
1.5.1 5591016 228 True True
1.5.2 5591304 229 True True
1.4.6 5488248 224 True True
2.1.1 6096040 260 True True
2.1.0 6069272 256 True True
2.0.2 5820056 241 True True
2.0.3 5898648 247 True True
2.0.0 5787344 238 True True
2.0.1 5820056 241 True True

dovecot 2.2.12 288592 18 True True
2.2.13 288592 18 True True
2.2.10 288592 18 True True
2.2.11 288592 18 True True
2.2.16 290936 18 True True
2.2.17 288720 18 True True
2.2.14 290856 18 True True
2.2.15 290856 18 True True
2.2.18 288720 18 True True
2.2.9 287984 18 True True
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