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ABSTRACT 

This paper investigates the design of an interferometric direction finding receiver 

using photonic components for signal mixing and a multi-layer perceptron for data 

analysis. The complete system was tested with a 2.4 GHz continuous signal in an 

anechoic chamber. Test results showed that the compact antenna and receiver design was 

capable of measuring direction of arrival with 1° resolution over a 180° field of view 

while keeping mean error below 0.5°. It was also demonstrated that the design is 

insensitive to phase alignment of receiver channels, thus simplifying future receiver 

design. Improvements were recommended for a design theoretically capable of providing 

0.25° angle resolution. 
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I. INTRODUCTION 

A. DIRECTION OF ARRIVAL ESTIMATION TECHNIQUES 

Direction finding (DF) methods are used to measure the direction of arrival 

(DOA) of an incident radio frequency wave and are sometimes referred to as 

radiolocation systems. They are often used to estimate the geographical direction or true 

bearing of an emitter and have applications in navigation, targeting, law enforcement, and 

wildlife management. Other applications include electronic signal intelligence, electronic 

warfare, signal identification, search & rescue, propagation analysis, and ionospheric 

research. DF may be accomplished using a separate subsystem that is not involved in the 

signal acquisition process (tasked DF). Another approach is to perform the DF as part of 

the signal acquisition process. By today’s standards, a high-performance DF array should 

have high angular (spatial) resolution, wide frequency bandwidth, wide field of view, a 

minimum number of array elements, and a minimum baseline length. 

1. Amplitude 

To estimate the DOA, a set of spatially separated signal amplitude samples can be 

collected. An amplitude-comparison monopulse determines the emitter’s DOA by 

comparing the received amplitudes in two or more adjacent receiver channels. Field of 

view can approach 360° with a DF accuracy of 2°–12° depending on the number of 

antenna elements used. The accuracy of a wideband (8–18 GHz) circular DF array that 

uses only amplitude comparison was considered in [1]. 

Rotating a high gain antenna with a small instantaneous field of view (e.g., 1°–

15°) over a total field of view of 360° can also be used to compute the emitter’s DOA. 

These rotating (spinning) DF techniques have good sensitivity over a large bandwidth 

and have an accuracy <1°. 

2. Phase 

Linear [2] or circular [3] DF phase interferometry uses phase sampling of the 

intercepted signal at each spatially distributed array element. The phase difference 
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between adjacent pairs of antenna elements with baseline spacing greater than a half-

wavelength results in a known DOA ambiguity problem. The problem extends from the 

fact that the phase difference is in the form of a periodic saw-tooth folding waveform as a 

function of the DOA. Consequently, the DOA estimate from a single baseline phase 

difference is ambiguous since it corresponds to several DOAs. Typically, a third element 

is added to the baseline with an inter-element spacing designed to successfully resolve 

the ambiguity [4]. 

Considering a direct relationship between the saw-tooth folding waveform a 

residue number system modulus, the Chinese Remainder Theorem is typically used to 

solve the congruence equations. Correlation between the theoretical and measured phase 

differences can also be used to estimate the DOA. For a correlation interferometer, DOA 

is obtained from the phase measurements for which the correlation is at a maximum [5], 

[6] Significant improvement in the DOA estimate can be realized using both the phase 

difference method and the phase difference rate measurements as presented in [7]. 

Linear or circular phase interferometry techniques have good DF accuracy (0.5°–

3°), but are fairly complex to implement since the saw-tooth folding waveform period is a 

function of frequency. In [8], two identical interferometer arrays consisting of three spiral 

antennas (short and long baseline) were tested in an anechoic chamber to quantify the 

sources of phase error. Practical error sources identified include phase slope errors as a 

result of baseline length or frequency errors, misalignment of the phase center and center 

of pedestal rotation, and coupling of the signals between receiver channels. 

An exact expression for the phase error probability density function for a digital 

interferometer was reported in [9] and [10]. As the frequency of the emitter changes or 

the bandwidth becomes wider, more antenna elements and baselines are required for 

ambiguity resolution. This is because the phase slopes are frequency dependent. 

Development of a frequency-independent phase comparison interferometer was reported 

in [11]. 

In [12], a preprocessing technique based on the optimum symmetrical number 

system and the robust symmetrical number system was investigated to provide a high 
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resolution, small baseline array. The spatial filtering operation was reduced into several 

parallel suboperations (moduli) through this preprocessing technique in order to reduce 

computational demands. When these different moduli were recombined, a significantly 

higher spatial resolution was achieved. 

3. Combined Phase and Amplitude 

Amplitude information can also be combined with the phase interferometer for a 

more efficient estimation of the DOA. A DF system consisting of two squinted antennas 

that function both as a phase interferometer and as an amplitude comparison monopulse 

system was reported in [13]. By retaining the amplitude information at each antenna 

element, an extended cost function was developed in [14] that incorporated the measured 

array amplitude response data by appropriately weighting the square of the baseline phase 

differences with the antenna gains.  

DF high frequency (HF) signals has been of interest for over forty years and 

present several antenna design problems due to the size of the aperture required. In [15], 

a wide aperture seven-element antenna array in a V formation (294 m wide) was reported 

to collect the amplitude and phase measurements of an ionospherically propagated HF 

sky wave signal (9–15 MHz). The location of the remote transmitter could be estimated 

at distances up to 1400 km by combining these DOA measurements with the knowledge 

of the ionosphere.  

4. Probability of Intercept 

The phase comparison and amplitude comparison techniques result in a 100% 

probability of intercept (POI). A rotating DF, however, results in less than a 100% POI. 

For a rotating DF system intercepting a rotating radar system, the longest intercept range 

comes from a main beam to main beam intercept. The mean-time-to-intercept for the 

rotating DF, however, can be many minutes due to the alignment required. The shortest 

intercept range comes from a side lobe to side lobe intercept. This alignment gives the 

shortest mean-time-to-intercept and can be less than one second.  
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5. Superresolution 

For single signals, conventional DF techniques can be used and typically involve 

a linear or circular interferometer to measure the incident wave’s phase and/or amplitude 

at each antenna element. For multiple signals, superresolution DF techniques are often 

used. These techniques can be broken down into beamforming superresolution 

(maximum likelihood methods, adaptive angular response, thermal noise algorithm) and 

eigen-based superresolution (multiple signal classification [MUSIC], Root-MUSIC, 

estimation of signal parameters via rotational invariance techniques [ESPRIT]). A DF 

algorithm for multiple wideband signals was developed in [16].  

The amplitude and phase measurement system is the method of choice since it is 

easier to implement and has good resolution capabilities. For the amplitude and phase 

measurement system, the multiple signal problem is sometimes solved by down-

converting the intercepted signal into a small bandwidth where the probability of there 

being just one emitter present is quite high. These techniques have the drawbacks of 

being limited in resolution and also requiring a large baseline. Superresolution techniques 

are computationally complex and can determine DOA with a high degree of accuracy for 

multiple signals. Drawbacks for superresolution techniques are due mostly to incorrect 

estimate of the model order (number of signals present) and inaccurate characterization of 

antenna array response. In addition, the element matching requirement is difficult to 

realize in a cluttered environment. Coherent signals (multipath) also lead to poor DF 

results. Also, a matched receiver channel for each antenna is required to support 

simultaneous sampling. Expensive receivers and the need for their calibration make 

superresolution methods unattractive for radio frequency (RF) DF with array  

antennas [17]. 

6. Neural Networks in DOA Estimation 

Recently, various approaches using multi-layer perceptrons (MLP) in DOA 

estimation have been demonstrated. In [18], the performance of several neural network 

structures was compared in determining DOA for multiple, simultaneous sources. Many 

of the recently proposed MLP approaches treat DOA estimation as a regression problem, 
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but [19] described a classification approach using 64 sectors (5.625° resolution) with an 

average success rate of 96.85% and in [20], the benefits of applying an MLP compared to 

using MUSIC or similar correlation techniques was discussed. Several simulations of 

MLP in DOA scenarios can be found in literature, but very little is written on practical 

demonstrations.  

B. NEURAL NETWORKS 

When dealing with regression problems, several approaches are possible; one 

simple approach is linear curve fitting. As the regression gets more complicated in terms 

of dimensions and interrelations between the input parameters, other approaches might be 

necessary.  

Artificial neural networks, or MLP, take their inspiration from the functionality of 

the human brain. A human brain is constructed from a large number of interconnected 

neurons operating in parallel. The connections between the neurons are called synapses, 

and each neuron is connected to about 104 other neurons. This intricate network of 

connections between the neurons is what gives the MLP its computational power. 

The processing element in the neuron is the perceptron. A perceptron can have 

one or many inputs, where each input can come from either the environment through a 

sensor or from the output of another perceptron. Each of these input connections is given 

a different weight, and the output is a sum based on these weighted inputs, defining a 

decision plane in the space of the input vectors. Training of the perceptron is the process 

of calculating these weights in order to span the decision plane for the neuron and is 

conducted until the learning factor, the gradient, approaches zero. Generally, additional 

criteria for training termination are defined, such as maximum number of iterations or a 

pre-determined error rate. One training iteration is referred to as an epoch [21]. 

Training can be conducted offline or online. In offline training, all training data 

are available at the beginning and weight values can be computed in advance. This has 

the benefit of providing instantaneous predictions with minimal errors. However, having 

a full training sample available might not be feasible, and in some cases, it might be 

necessary for the perceptron to learn after each sample. In online training, the instances of 
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the sample are given one by one, and the perceptron is trained and weights updated after 

each instance, giving it the ability to make decisions and learn over time. Initial decisions 

might have large errors, but these will decrease as more samples are processed. 

When several perceptrons are interconnected, the resulting network is regarded as 

a number of layers with a certain number of neurons in each layer. A network with one 

layer can only solve linear decision problems and is unable to perform nonlinear 

regression or make nonlinear Boolean decisions, such as exclusive-or. This limitation 

does not exist for MLP with one or several hidden layers. 

In the training of an MLP, the process is similar to training a single perceptron, 

with the exception that the output now is a non-linear function of the inputs. This causes 

the error from different layers to backpropagate from the output to the input layer, thus 

the name backpropagation algorithm. 

Outputs from the network can be determined in several ways depending on 

whether they are used for regression or classification, where softmax is the most common 

for classification problems. Softmax uses exponentiation and normalization in order to 

make the weighted output sum for the correct class significantly higher than the others, 

ideally close to one while others approach zero [21] and the sum of all outputs equals 

one. 

C. PRINCIPAL CONTRIBUTIONS 

Initial work consisted of a thorough investigation of the system used for 

demonstration in [22] in order to become familiar with system functions and 

construction. It was discovered that several components were less than optimal for future 

work, which is why it was decided to completely redesign the system. The added 

functionality of a receiving antenna array was another driving factor in this decision, 

since it put new demands on system performance and capabilities. 

A receiving antenna array was added to low-noise amplifiers to achieve 

reasonable signal amplitude for later processing stages. Correct signal amplitude was 

achieved through adding a voltage controlled attenuator in each signal path. In order to 
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make phase alignment of the channels possible, voltage controlled phase shifters were 

introduced. The two latter components were carefully characterized in order to determine 

necessary control considerations for them. 

This design used a higher drive voltage for the laser modulator inputs than 

previous designs, facilitating a higher output signal and thus less need for amplification 

of signals after passing through photodetectors. Previously used active envelope detectors 

were replaced with more robust passive detectors, resulting in a more stable system with 

less complex power supply demands. 

The first major contribution in this work is the demonstration of phase and 

amplitude balancing of a Mach-Zehnder optical modulator used for analog phase 

interferometry applications. Design considerations for the dual drive electrode signal 

paths are described and verified by experimental testing. 

The second major contribution is the investigation of MLP for DOA estimation in 

a phase interferometry system and the experimental testing of this system. Performance is 

experimentally tested and system degradation over time is quantified in order to provide 

guidance on recalibration intervals and future design considerations. 

The third major contribution is the demonstration that an MLP post-processing 

approach eliminates all necessary phase balancing of the interferometric receiver, 

yielding substantial benefits in minimizing construction complexity of the receiving 

front-end. 

D. THESIS OUTLINE 

This thesis was initiated as a development of an existing test system. In Chapter 

II, this previous system is described, and its possibilities and limitations are discussed. In 

the same chapter, necessary additional capabilities and modifications are proposed. 

Chapter III discusses the Mach-Zehnder interferometric modulator (MZM), since this 

component is driving much of the design considerations for the entire system. Another 

driving factor in the system design is the testing environment, which is described, 

quantified, and analyzed in Chapter IV. Inputs from previous chapters are used in the 
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theoretical system design performed in Chapter V, and this theoretical design is 

transformed into a realizable system of physical commercial off-the-shelf (COTS) 

components in Chapter VI, which contains a detailed description of the design 

implementation. 

Test procedures, data collection, and output data formatting are described in 

Chapter VII together with system calibration procedures and verification of receiver 

electrical performance calculations. This chapter also discusses processing of the output 

data and considerations for the design of system post-processing algorithms. 

Results from training of post-processing networks are shown together with system 

performance test results in Chapter VIII. These results are discussed in Chapter IX 

together with proposals for some areas of this research where future work is needed. 
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II. PREVIOUS BENCH TEST DESIGN AND NECESSARY 
MODIFICATIONS 

This chapter provides an overview of the design previously used for bench testing 

and discusses major necessary system modification based on findings in previous 

research as well as new discoveries and assumptions. 

A. PREVIOUS DESIGN 

Experimental testing of a photonic DF array with robust symmetric number 

system (RSNS) preprocessing was performed by [22] using a configuration as pictured in 

Figure 1. An HP 83711B signal generator provided a 2.4 GHz CW signal at 6 dBm to the 

test system. This signal was supplied to each MZM as a reference at one of their dual 

inputs. The CW signal was also routed through manual phase shifters in order to generate 

three individual channels with phase shifts emulating those from a real antenna array. 

These three individually phase shifted signals were supplied to each MZM’s second 

electrode. 

Optical input to the three MZMs was generated by a high-power 1550 nm DFB 

laser and was split and routed to the modulators through a three-way optical fiber splitter. 

In each MZM, the optical intensity of the laser was modulated by the combination of the 

reference signal at one electrode and one of the phase shifted signals at the other. Each of 

the three modulated laser signals was converted back to an electrical signal using indium 

gallium arsenide (InGaAs) photodetectors (PDs). 

Since only the amplitude of the modulation on these three signals was of interest, 

a direct current (DC) blocking capacitor was used to remove any DC components in the 

PD output signals. Each of the signals was amplified by two cascaded low-noise 

amplifiers (LNA) in order to achieve sufficient signal amplitude for the envelope detector 

to operate properly. The maximum detected envelope output was determined by adjusting 

the gain of an instrumentation amplifier operating on the output from the previous 

envelope detector. Outputs from these three amplifiers were connected to a CompactRIO 

(cRIO) real-time controller and fed through a comparator network implemented on the 
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field-programmable gated array (FPGA) in the controller. The RSNS-to-binary algorithm 

converted these inputs to DOA through a look-up table as described by [23]. 

Figure 1.  Block Diagram of Previous System Design [from 22] 

 

 

 Bench testing of the system showed that DOA measurement should be possible 

using RSNS preprocessing. Some errors were found, however, and these were suspected 

to be attributable to drifting modulator bias point and change in amplifier gain due to 

temperature shift. To mitigate the bias drift, which is a common problem in the MZM, 

constant calibration had to be performed during each test cycle. Minimizing drifting due 

to temperature shift was achieved through performing the test cycles in the evenings, 

when temperatures in the lab environment were expected to be more stable [22]. 
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Suggested improvements to the design included bias control circuits for the 

modulators, amplifiers with increased stability, and adaptive gain control. Another 

approach suggested but not documented was temperature stabilization through various 

modes of cooling. 

During the initial investigation of the system, additional factors possibly 

contributing to system instability were found. Several components were determined to 

have poor performance at the frequency used, and therefore were replaced with parts 

designed for operation at 2.4 GHz. Some of these components, most notably the Bias-

Tees and the DC blocking capacitors, most certainly contributed to the instabilities 

described by [22]. The plastic boards used for mounting of equipment possessed very 

poor electric and thermic conductivity, possibly resulting in voltage differences between 

what was supposed to constitute common ground at different parts of the system. The 

poor thermal performance might have contributed to temperature differences in the 

system, further increasing the impact on system stability as previously described. 

Generally, receiving RF systems are very sensitive to noise, and minimizing all 

sources of internal noise is an important part of the engineering of such systems. 

Amplifiers need to be added as early as possible in the system, so as to amplify as little as 

possible of this internally generated noise. In the previously described design, 48 dB of 

gain was added after the PD, amplifying noise related to laser instability, RF interference, 

MZM anomalies, and PD dark current. This amplification approach was necessary due to 

the low modulation voltages at the MZM electrodes, resulting in very low modulation on 

the laser output. 

B. SYSTEM MODIFICATIONS 

Most notably, the hardware used in [22] needed the addition of a design for 

receiving and adapting signals for the assembly to be useful in the detecting and 

processing systems. The reason for this need stemmed from the fact that future testing of 

the concept would be performed with aerially conveyed electromagnetic signals in an 

anechoic chamber. This move from a lab bench environment toward a more realistic 

scenario was part of the system maturity process aimed at finding a system for field use. 
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The receiving system needed to be interoperable with systems described in  

Figure 1. The antenna sub-system was defined and under construction when the design 

was initiated why some requirements were derived from the antenna design. 

The primary functions for the receiving system were to 

• amplify signals from antenna outputs (#0–3 in Figure 1) to a signal level 
useful for driving the MZM, depicted as red irregular hexagons in Figure 1  

• split signals from the reference antenna (#0 in Figure 1) 

These primary functions needed to be sustained continuously for as long as one 

testing in the anechoic chamber was performed, most probably a few hours at a time. The 

testing might need to be repeated 10 times or more. Due to the fact that all testing was to 

be performed in a relatively clean, dry, and temperature-controlled lab environment, the 

need for extensive environmental requirements was assumed to be low. Performance 

focus was on signal quality and stable, predictable output to the MZM. 

In order to calibrate the system, as well as increase testing capabilities and future 

development, some analogue signal manipulation functions were needed. These were 

considered secondary to the two functions listed previously. 

• apply phase shift to signals 

• control DC bias levels 

• provide signal measurement locations without disrupting the signal path 

In addition to these added functionalities, several of the described stability and 

noise problems needed to be addressed: 

• thermal stability 

• reliable common ground 

• increased signal levels 

• verified performance at 2.4 GHz 

This chapter provided a brief overview of previous work on a photonic DF 

receiver, and its identified limitations were also described. From these limitations, a 

number of added functionalities were derived, together with some other improvements 
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that were deemed necessary after investigation of the previous system design. Before 

proceeding to a more detailed design of the system used for this research, the MZM needs 

to be discussed since it is at the heart of the system analysis. This is done in the following 

chapter.  
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III. PHOTONIC COMPONENTS USED IN THE DESIGN:  
MACH-ZEHNDER OPTICAL MODULATOR 

Early work by Mach [24] and Zehnder [25] led to them, separately and 

unknowing of each other’s efforts, discovering novel interferometric effects in light. The 

Mach-Zehnder interferometer was devised in 1891–1892 [26] based on their findings and 

allows a light source to be modulated by splitting its light into two separate beams. These 

light beams are sent through paths of different length, thus creating a relative phase 

difference between them. When the two beams are merged back together, the intensity of 

the resultant merged light beam is a function of the beams’ relative phase difference. The 

extreme cases occur at zero and π phase difference. In the first case, the merged light 

beams are in phase and add together without destructive interference, yielding output 

intensity equal to the input. In the latter case, the two separate beams are inverse and 

cause a perfect destructive interference with a theoretical output intensity equal to zero. 

Another finding from the same time is the linear electro-optic effect. Sometimes 

referred to as Pockels effect, it laid the foundation for the Mach-Zehnder modulator 

(MZM). In this device, the incoming laser beam is split into two paths. These two paths 

are produced from a material with appropriate electro-optic characteristics, causing a 

delay in each path relative to a voltage supplied to electrodes affecting the individual 

paths. Different versions of the MZM exist, but the two most common are the single-

electrode and the dual-electrode (DE-MZM); the latter is also referred to as the dual-drive 

MZM, as shown in Figure 2. 
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Figure 2.  Schematic Picture of Dual-Electrode MZM 

 

The voltage required to change the optical phase π radians is referred to as , or 

the switching voltage of the MZM. Applying voltages to the electrodes of a DE-MZM 

with a relative difference of Vπ changes the state of the modulator output from totally 

constructive to totally destructive interference, thus the term switching voltage. The 

transfer function of the DE-MZM transmission factor  as a function of the drive 

voltages has been formulated as [27]: 

   (1) 

where  and  are the drive voltages at the two input electrodes. By adding a bias 

voltage , the operating point of the MZM can be shifted to suit the needs for the 

specific application in which the modulator is used. 

  (2) 

When optical fiber communication links were introduced, it was commonly 

believed that direct modulation of the laser diode would be the prevalent technique for 

data transfer. Problems with chirp in this construction limits the practical use of direct 

modulation to about 10 Gb/s, but due to its low cost and small size, it is widely used for 

low data rates over short distances. Development of the MZM for laser applications has 
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been driven by the data communication community, and its importance increases with the 

ever higher demands for high data rate communication over long distances.  

The most common material for MZM manufacturing is titanium-indiffused 

lithium niobate (Ti:LiNbO3) [26]. It is used due to its Pockel’s effect, low insertion loss, 

and the availability of LiNbO3 wafers for production of components. Ti:LiNbO3 

modulators have very low chirp if used in dual drive mode and have a high extinction 

ratio (typically 20 dB) paired with a low insertion loss (typically 5 dB). These 

characteristics are desirable for laser modulation, especially at high data rates (typically 

40 Gb/s) and long distances. 

The electro-optic characteristic in lithium niobate poses some challenges for 

design and manufacturing. Applying a voltage to the electrodes of the MZM results in an 

electric field along a specific crystal axis but will affect the refractive index along one or 

more of the three crystal axes. Due to this, the MZM is sensitive to the polarization of the 

light entering the structure and the alignment of the voltage across the lithium niobate 

substrate [26]. The polarization sensitivity of the MZM demands the use of polarization-

maintaining fiber from the laser source all the way through the modulator; otherwise the 

device and its operation will be unstable. 

Since the modulator is ferroelectric, its electric-dipole moment is temperature 

dependent. This causes its bias point to shift proportionally to the temperature change. 

This can be mitigated either by keeping the temperature at a controlled level or through 

constant monitoring of the bias voltage [26], [28], [29]. 

Another challenge in a design using a Ti:LiNbO3 modulator is its relatively high 

switching voltage (typically 4V). The switching voltage is dependent on the length of the 

structure; the longer the lithium niobate structure, the lower the switching voltage. There 

is also an inverse relationship between structure length and bandwidth, resulting in the 

length of the MZM being a trade-off between low switching voltage and high bandwidth. 

To achieve 40 Gb/s of bandwidth, the maximum possible length corresponds to a 

switching voltage between 3V and 5V. These longer structure lengths needs to have 

matched propagation speeds along the optical path and the electrical, assuring that the 
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waves propagate at equal speed. Several MZM designs target this issue with the 

electrodes forming a transmission line along the optical path [26]. 

The high switching voltage needed to drive the MZM is generally manageable 

when the modulator is used for transmitting data, since the voltages needed are of the 

same order as electrical digital signals. When an MZM is used in an RF receiver system, 

it poses more of a challenge. For an electronic support (ES) receiver, a sensitivity of –

80dBm is not uncommon. Amplifying such a low signal level to the typical +25 dBm 

needed to drive the MZM optimally demands a total system gain of more than 100 dB. 

Due to the piezoelectric properties of lithium niobate, there exist acoustic effects 

due to the drive frequency used in the MZM. Most of these effects are only present at 

frequencies below 1 GHz, but they may also affect performance at higher  

frequencies [26]. 

This chapter described the basic construction and characteristics of the dual port 

MZM. The understanding of voltage biasing and drive voltage in relation to output 

intensity is adamant in the system design of the front-end receiving layout. This is 

discussed in Chapter V, but the test environment must first be defined, since this puts 

some important restrictions on receiver design. The following chapter describes the 

fundamental parameters of the planned test environment. 
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IV. DESCRIPTION OF TEST ENVIRONMENT 

The RSNS receiver system is designed for anechoic chamber tests at Naval 

Postgraduate School (NPS) in Spanagel Hall, Room Sp-604. This room is electrically 

shielded, and the floor, walls, and ceiling are clad with RF absorbent material. A rotating 

pedestal is used for mounting the receiver system in the chamber, and the distance from 

the transmit antenna to the center of the pedestal is 5.7 m. The test environment is 

depicted in Figure 3. 

Figure 3.  Transmission Antenna and Anechoic Chamber as Seen From 
Receiver Antenna Array 

 

For the measurements to be considered performed in the far-field, the following 

criteria needs to be met [30]: 

   (3) 

where  is the aperture size of the transmission antenna. A Tecom 201302 log-periodic 

antenna (shown in Figure 4) with a baseline of 20 cm was used for transmission and it is 

clear that the measurements were performed in the far-field since 
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   (4) 

The transmission antenna was fed with a 2.4 GHz continuous wave (CW) signal 

generated by an HP 83711B signal generator, amplified by a HP 8348A amplifier to 25 

dBm at the antenna input. Transmission polarization can be selected as vertical or 

horizontal depending on what input is used on the Tecom antenna. Since vertically 

polarized dipole antennas need to be used as receivers, a vertical polarization was 

selected for the transmission antenna. 

Figure 4.  Transmission Antenna (Tecom 201302) Used for Emission of Test 
Signal 

 

The test environment has been specified in this chapter, providing necessary data 

for designing the receiver system. Test environment data, together with an understanding 

of the MZM function, were used to derive specifications for the receiver design described 

in the following chapter. 
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V. SYSTEM DESIGN 

This chapter provides a system design analysis of the DF receiver. 

A. SYSTEM FEASIBILITY ANALYSIS 

There were some restrictions imposed on the design. First of all, there were 

already some interfaces in place, and those must be addressed. Secondly, the budget for 

the construction was limited by the amount allowed by the Department of Defense 

without the need for involving the slower and more extensive acquisition process. 

The primary and secondary functions performed by the system were typical for 

most RF front-ends, and the technology is mature and widespread. Economic factors 

needed to be considered, since high performance RF components in general are costly. 

Due to the fact that the budget was limited, price was a driving factor in the design of the 

system. 

All primary and secondary functions could be performed by commercially 

available off-the-shelf (COTS) components. A brief survey showed that there were 

innumerable providers of RF components for laboratory use. This yielded the conclusion 

that two approaches should be feasible: 

• a system consisting of sub-components interconnected by cables 

• a system consisting of surface-mounted components interconnected by a 
circuit board 

B. SYSTEM OPERATIONAL REQUIREMENTS 

In this section, the necessary requirements for proper system operations are 

described.  

1. Distribution and Deployment 

The system was used in a lab environment for testing and evaluation purposes. 

Personnel operating the system were expected to have extensive knowledge of the system 

construction and function. The surrounding environment was expected to be at room 

temperature and have low impact on system performance. The only environmental factor 
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that might affect system performance was circular motion due to the rotating pedestal the 

system was mounted to in the anechoic chamber. 

Since the system was used for confirming results in [22] and was not meant for 

extended use, endurance and long-term performance played a minor part in the design. 

2. Performance Parameters 

As mentioned previously, signal quality and economy were at the core of the 

design. This is reflected in the following list of performance parameters: 

• input sensitivity 

• output voltage 

• noise figure 

• frequency 

• voltage standing wave radio (VSWR) 

• impedance 

• price 

3. Interfaces and Interoperability 

The pedestal in the anechoic chamber had a pattern of holes meant for attaching 

equipment to its top. An appropriate number of these holes needed to be used to fix the 

receiver system to the pedestal, and corresponding holes were needed in the receiver 

assembly. 

In order to minimize temperature differences between the components in the 

receiver, all components needed to be mounted on a common surface with high thermal 

conductivity. 

Electrical connections in the signal path must all comply with International 

Electrotechnical Commission (IEC) 60169-15 (SMA connector, 50Ω). 

Input sensitivity had to be matched to the expected output signal level from the 

antenna elements, and output signal level had to be sufficient to drive the MZM. Control 
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voltage levels were restricted by available output voltages for the National Instruments 

(NI) cRIO real-time computer used for measurement and control. 

4. Environment 

The receiver system was expected to be operational for a limited amount of time. 

In order to minimize environmental impact, reusability of the components was 

considered. If there was a choice between similar components where one could only be 

used for this system and the other might be reused for other experiments in the 

laboratory, the latter was chosen.  

5. Maintenance and Support Concept 

Due to the expected short life span of the system and its very limited experimental 

use, maintenance and support concepts were not considered in the design. 

6. Technical Performance Measures 

Generally, the deriving of technical performance measures (TPMs) is an iterative 

process based on breaking down the system step by step into smaller detail (Blanchard, 

2008). In this design, due to the fairly well-specified demands, interfaces, and 

interactions of the system, the TPMs were derived in a very detailed way based on the 

requirements and performance of adjacent systems. This is illustrated in Table 1. 
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Table 1.   System TPMs 

Parameter Value Unit 

Input sensitivity <1 dBm 

Output voltage 0-4 Vpp 

Noise figure <5 dB 

Frequency 2.4 GHz 

VSWR <5 :1 

Impedance 50 Ω 

Control voltage 0-10 V 

Phase shift 0-360 degrees 

 

C. FUNCTIONAL ANALYSIS 

This section describes a functional breakdown of system functionalities. 

1. Amplification 

The amplification function received the signal from the antenna as its input. The 

purpose was to amplify the signal to a level that could drive the MZMs almost to their Vπ 

levels. The output needed to take into consideration varying input levels and provide 

some form of gain control to keep the output voltage at correct levels. It also needed to 

compensate for potential losses in other components in the signal path. 

2. Signal Split 

Signal splitting needed to be performed for the reference signal in order to 

distribute it to all three MZMs. Due to the behavior of the modulators and the principle 

for mixing signals in them, it was very important that the splitting function distributed the 

power equally between the output channels and did not introduce phase differences 

between the outputs. Since this function was passive, low loss was essential to the overall 

performance of the entire system. 
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3. Phase Shift 

The phase shifting function needed to be able to act individually on all three 

measurement channels, possibly on the reference channel as well. It had to be able to 

perform phase shifts of up to one full period for the frequencies used in the receiver. Low 

loss was important in this component just as it was for all passive components in the 

signal path. 

4. DC Voltage Control 

Since MZM operation depended on where the input signals were biased, some 

form of DC voltage control was needed. The DC control function had to be able to 

change the bias voltage over at least one . 

5. Signal Measurement 

This function was needed for two reasons. First and foremost, it was needed for 

gain control of the amplifying function, but it would also provide necessary points for 

error tracking if diagnostics needed to be performed on the system in case of malfunction. 

Ideally this function allows for signal sampling without disruption of the main signal 

path; this was needed to be able to observe the system while operational. 

The relative importance of the five main functions is shown by their size in the 

diagram depicted in Figure 5.  
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Figure 5.  System Functions 
 

 

 

D. REQUIREMENTS ALLOCATION 

Having the environment requirements in mind, a modular approach to the design 

was deemed most suitable. The concept of surface mounting all components on a circuit 

board was discarded, since this approach would disrupt the reusability of system 

components. A circuit board solution would most probably be the favored solution for a 

mass-produced system yielding substantial economic advantages compared to 

connectorized modules. In this case, however, a single system meant for limited use was 

designed. 

The five main functions listed previously were all translated fairly easily into 

connectorized sub-components available as COTS items. Due to the TPMs listed 

previously, the following translation of function into sub-component was made: 

• Amplification: Low noise amplifiers (LNA) 

• Signal split: Power divider 

• Phase shift: Voltage controlled phase shifter 
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• DC voltage control: Bias-T 

• Signal measurement: Directional coupler 

E. ANALYSIS AND DESIGN OPTIMIZATION 

In RF design, especially when low noise is important, amplification should be 

done as close as possible to the incoming signal interface, in this case, as close to the 

antennas as possible. Generally, voltage-controlled LNAs have poorer performance and 

are more expensive compared to fixed gain LNAs. The problem with using fixed gain 

LNAs is that the design requires the system to be able to vary the overall system gain. 

This can be accomplished using a voltage-controlled attenuator connected in series after a 

fixed gain LNA. 

Phase-shifting and DC-biasing components were added after the initial 

amplification was done, mainly because this reduced their noise contribution. Signal 

splitting was the final stage in the reference channel, and since four-channel power 

dividers are more common than three-channel ones, there was a fourth port available for 

signal measurement. The other three channels had the directional coupler in line with the 

output to the MZM. 

In this chapter, the functional design of a photonic DF system was discussed. The 

described system functions need to be translated into a component design able to meet the 

TPMs previously stated while requiring as little economic means as possible. In the 

following chapter, these system components are described and analyzed. 
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VI. SYSTEM DESIGN IMPLEMENTATION 

This chapter includes a detailed description of the system design, starting with a 

schematic description as shown in Figure 6. 

Figure 6.  System Block Diagram 

 

A. ANTENNA ARRAY 

Restrictions in prototype manufacturing limited the choice of antenna elements to 

dipole antennas. Four half-wave dipole elements, etched on individual printed circuit 

boards (PCB), were used. The antenna elements had an individual relative gain of 5.15 

dBi [30]. 

The distance  between measurement antenna elements and the reference 

antenna were given by [22]. 

   (5) 
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where  is the RF wavelength,  is the dynamic range of the desired RSNS system, 

and  is the number of sequences. Previous work examining RSNS preprocessing in a 

DF receiver was performed using a right-shifted RSNS with  and 

[22]. For ease of comparison of results, the same values were used in this 

system design. The scaling factor is reduced if the field of view (FOV) is decreased from 

180° and is determined by [32]: 

   (6) 

Reducing the FOV to 120° yielded a scaling factor of 1.1547, and the 

computation of the element distances resulted in 

  
The antenna array was fixed through an aluminum sheet with outer measurements 

30 × 60 cm, providing a ground plane for the array. 

The direct-ray propagation is described by the Friis equation, also known as the 

one-way link equation [33]. Received power  at the receiving antenna is computed as 

   (7) 

Gains for transmit and receive antennas  and  should be given in relative 

numbers, transmit power  in watts, and the distance between antenna elements  in 

meters. For the conditions given by the testing environment and the selected receiving 

antenna elements, the theoretical power at the output of the receiving antenna element 

was calculated to −17.8 dBm. 

The antenna array setup is shown in Figures 7 and 8. 
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Figure 7.  Antenna Array Pictured From the Front 

 

Figure 8.  Antenna Array Pictured From the Back 

 

Note: LNA shown attached directly to the output of receiver dipoles 
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B. BOARD MOUNTING (5052 H32 ALUMINUM, 0.1875IN) 

The physical layout of components on the board should have made signal 

measurements in various places easily accessible. To minimize reflections from the 

mounted components, a width smaller than that of the antenna array was chosen. A board 

size of 12 in x 36 in was used because it was the largest standard size pre-cut aluminum 

sheet that could fit on the pedestal behind the antenna array. 

1. Mechanical Considerations 

The board was mounted to the antenna pedestal at one end while the main part 

was extended out behind it. This could lead to the free part of the board flexing during 

movement, which in turn could impact the electrical characteristics of the system. To 

mitigate this, a light and strong enough material was used.  

5052 aluminum is commonly used in the industry for electronics casings and 

other applications where a combination of strength, conductivity, and low weight is 

desired. Another beneficial characteristic is its high corrosion resistance. 

2. Electrical Conductivity 

Vagabonding currents in small-signal systems can decrease performance or, in the 

worst case, destroy components. To mitigate these problems, a common ground with low 

overall impedance between parts in the system needed to be achieved. 

Pure aluminum has a resistivity of 2.826×10–8 ohms/m [34]. The 5052 aluminum 

alloy has a higher resistivity of 4.843×10–8 ohms/m, but is still lower than most other 

possible construction materials for the design, such as various iron alloys like stainless 

steel [35]. 

3. Thermal Conductivity 

Previous attempts to design a DF system based on RSNS processing and optical 

modulation indicated that temperature differences in the system might have been a cause 

to signal instability [22]. To mitigate extreme local temperature swings, resulting in 

differences in component operating temperatures, the construction material must have 
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good thermal conductivity. Aluminum alloys meet this requirement, and the low 

corrosion in the 5052 alloy means that surface conductivity does not degrade with time. 

4. Mounting Paste (MG Chemicals 847) 

Mounting paste for electrical components is generally designed for high thermal 

conductivity and very low electrical conductivity. As stated previously, good electrical 

and thermal connections between the mounting board and the components were both 

desired. Very few products with these properties were available on the market, and they 

generally had lower thermal performance than the electrically insulating and more 

common types. Mounting paste with exceptional performance both thermally and 

electrically was available, but could not be used for economic reasons. A paste with 

balanced characteristics in all aspects was chosen for the system. 

Figure 9 shows the completed board setup. 

Figure 9.  Receiver Components and MZM Mounted on Board 

 

Note: The directional couplers are not shown in this picture, but were installed later. 

C. RF RECEIVER AND MZM DRIVER 

Electrical components in the receiving and signal conditioning part of the design 

are described in this section. 
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1. Low Noise Amplifier (RF BAY LNA-2700) 

The combination of high gain, low noise, and competitive pricing [36] made the 

LNA-2700 the amplifier of choice in the system. The only limitation the amplifier 

brought to the design was its maximum output power of +10 dBm. This was enough for 

driving the three measurement channels, but not sufficient for the signal splitting needed 

in the reference channel, so a different amplifier had to be used in the final stage of that 

channel. Performance of every LNA was individually tested and found to be well within 

the manufacturer specifications [36]. 

2. RF Cables (Minicircuits 141-xSM+) 

The system components had little or no movement in relation to each other, and a 

semi-rigid type of coaxial cable could be used. To accommodate possible rearrangements 

of components and changes to the prototype during the construction, hand bendable 

cables were deemed to be most suitable. These can be re-used and rearranged several 

times without negative effects on performance, but still provide low loss and good noise 

characteristics. The cable type chosen for the design possessed all of these characteristics 

while being very affordable compared to equivalent alternatives [37]. SMA connectors 

were used for all RF connections throughout the system. 

3. Voltage Variable Attenuator (Minicircuits ZX73-2500) 

Variable-gain amplifiers were initially considered for the design, but poor 

performance paired with economic considerations deemed them less feasible for the 

system. To be able to regulate the overall system gain, a design with variable attenuators 

was chosen. In order to be able to alter gain and phase through computer control, the 

control voltage needed to be in the range of available outputs from the NI cRIO 

computer.  

Gain and phase control were critical in the design of this system, which is why a 

considerable amount of time was spent measuring these characteristics. The manufacturer 

supplied performance measurements at +3V and +5V supply voltage [38], but since 
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performance at 0V was considered more suitable for the design, measurements were 

performed to characterize the component at this supply voltage. 

Transfer functions for gain and phase in relation to control voltage was measured 

at two conditions: 0V supply voltage and +5V supply voltage. This is illustrated in Figure 

10. 

Figure 10.  Measured Attenuation Transfer Function for Voltage Variable 
Attenuator  

 
Note: a) @ 0V supply voltage, b) @ +5V supply voltage 

As shown in Figure 10, attenuation was not a linear function of the control 

voltage. The design was expected to require attenuations between –20 dB and 0 dB; the 

attenuation curve for 0V supply voltage provided the desired attenuation range while 

having a more favorable and predictable behavior. Minimum insertion loss at 0V supply 

voltage was –5 dB and was achieved at control voltages exceeding 7V. 
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Unfortunately, variable attenuators also affect the phase of the signal. The phase 

shift was a function of the control voltage, as seen in Figure 11.  

Figure 11.  Measured Phase Shift Transfer Function for Voltage Variable 
Attenuators 

 

Note: a) @ 0V supply voltage, b) @ +5V supply voltage 

From Figure 11, it is obvious that the phase shift was different for 0V and +5V 

supply voltage. The linked relationship between control voltage, attenuation, and phase 

shift was a complicating factor when calibrating the system. 

4. Phase Shifter (Minicircuits SPHSA-242) 

As previously discussed, the phase in each channel needed to be adjustable. A 

thorough survey of the market showed that there were very few connectorized products 
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available with the desired characteristic and none at a unit price below $1500. An 

approach with a surface mounted phase shifter was decided on and designed, as shown in 

Figure 12. The chosen component [39] matched all necessary characteristics at a unit 

price below $100, which included the necessary components for PCB fabrication. Due to 

the unknown performance of the PCB, a thorough characterization of the four phase 

shifters was performed. 

Figure 12.  Phase Shifter Mounted on PCB 

 

From Figure 13, it is clear that the assembled units could provide a full period 

phase shift for a control voltage range between 0V and +10V, thus meeting the functional 

needs of the component. 
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Figure 13.  Measured Phase Shift Transfer Function for Phase Shifters 

 

As was previously shown for the attenuators, both phase and attenuation were 

functions of the control voltage. This was also the case with the voltage variable phase 

shifters, as seen in Figure 14.  
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Figure 14.  Measured Attenuation Transfer Function for Phase Shifters 

 

The attenuation in each phase shifter was related to the control voltage as pictured 

in Figure 14. Maximum insertion loss was determined to occur at approximately a half 

period phase shift for all four phase shifters with some variations. Component insertion 

loss was found to be in the range between –3.5 dB and –8 dB. 

5. RF Amplifier (RF BAY LPA-4-14) 

It was previously mentioned that the LNA-2700 was unable to provide enough 

output power to drive all three MZM inputs through the splitter. Maximum output from 

the LNA-2700 was +10 dBm [36], and the four-way splitter constituted a –7 dBm 

attenuation [40], yielding a maximum output per port of +3 dBm if used together with the 

splitter to drive all reference inputs for the three MZMs. The LPA-4-14 could deliver +20 

dBm [41] on the output port, resulting in +13 dBm per MZM input after splitting. 



 40 

6. Bias-Tee (Minicircuits ZFBT-352-FT) 

In order to control the operating point of each MZM, a DC bias voltage might be 

needed. Several MZMs have a separate input port for the bias voltage, but unfortunately 

not the Fujitsu FTM7921ER used in this system. A bias-tee was thus needed in each of 

the four channels of the system to provide an input for biasing of the signal. Since 

amplifiers generally operate optimally with a signal biased at 0V, the bias-tee had to be 

inserted after all amplification was done. The possible addition of a bias voltage in the 

reference channel before splitting demanded a four-way splitter with DC pass-through. 

The bias-tee chosen for the system had low insertion loss and excellent standing-

wave performance [42]. 

7. Four-way Power Splitter (Minicircuits ZB4PD-462W) 

The reference channel needed to be distributed to all three MZMs, assuring that 

the signals at all three MZM inputs had identical phase and amplitude. For measurement 

and calibration purposes, an additional fourth output port was deemed necessary for the 

reference channel providing trigger signals to external instruments. The need for matched 

phase and amplitude at all four outputs was a driving criteria in component selection. 

Thorough analysis of available products with desired performance and comparison of 

price per unit resulted in the choice of [40]. The component was characterized and found 

to exceed manufacturer-provided specifications. The total loss per channel in the splitter 

was typically –7 dBm, out of which –6 dBm is the theoretical loss due to dividing the 

signal power by 4. 

8. Directional Coupler (narda microline 4202B-10) 

Four −10 dB couplers were available for the experiments. If possible, −20 dB or 

−30 dB would have been preferred to maximize signal level to the MZM, but since the –

10 dB couplers were provided at no cost and performed reasonably well, they were used 

in the system. 
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D. OPTICAL SIGNAL PATH 

This section describes functionalities in optical components used in the design. 

1. Laser Diode (EM4 EM253-080-053) 

An EM4 laser with maximum optical output power of 80 mW was used. The laser 

diode was mounted in a Newport 744 butterfly mount with integrated cooling and 

controlled by a Thorlabs ITC 510 laser diode combi controller.  

2. Optic Fiber 

Performance of an interferometric modulator is strongly dependent on the 

polarization of the laser input. For stable performance of the modulator, it is absolutely 

necessary to maintain stable light polarization at the MZM input over time. This demands 

polarization maintaining (PM) optical fiber and connectors. 

Initial problems with system stability were thoroughly investigated and found to 

depend on the three-way laser splitter provided from previous research. The splitter and 

its connectors were not constructed to be PM, so the splitter had to be redesigned and 

modified. New connectors in the optical path were used, allowing for polarization 

alignment adjusting. Performance of the splitter was tested and verified after assembly 

using a Thor Labs PM300 optical power meter and a S144A sensor. 

3. Mach-Zehnder Modulator (Fujitsu FTM7921ER) 

The MZM was provided from previous research with a photonic RSNS DF 

system implementation. Due to economic reasons, no further investigation into replacing 

it with other modulators was done. Since this modulator was designed for differential 

drive, it employed dual input ports with a 180° relative phase shift between the two 

inputs. This meant that constructive interference, and thus maximum transmission, 

occurred when signals at the two inputs were exactly out of phase. Destructive 

interference, yielding minimum transmission, occurred at 0° relative phase shift between 

the inputs. Figures 15 and 16 demonstrate 0° and 180° relative phase shifts, respectively. 



 42 

Figure 15.  Simulation of Fujitsu FTM7921ER at 0° Phase Shift 

 

Note: Simulated at 2.4 GHz with 1.5 Vpp drive voltages. The drive voltages are shown in 
a), and the resulting transmission factor is shown in b). 
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Figure 16.  Simulation of Fujitsu FTM7921ER at 180° Phase Shift 

 

Simulated at 2.4 GHz with 1.5 Vpp drive voltages. Drive voltages are shown in a), and the 
resulting transmission factor is shown in b). 
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The effect of adding a bias voltage is shown in Figure 17.  

Figure 17.  Simulation of Fujitsu FTM7921ER at 180° Phase Shift With 
Added Bias Voltage 

 

Note: Simulated at 2.4 GHz with 1.5 Vpp drive voltages and 1.5V bias added. The drive 
voltages are shown in a), and the resulting transmission factor is shown in b). 

Insertion loss was measured to range between 5–7 dB, which was consistent with 

specifications. During construction and bench testing, the MZM dependency on stable 

polarization of the input laser was found to play a significant role in modulator output 

stability. Temperature instability and bias voltage drift was also observed. 
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4. Photo Detector (New Focus Model 1014) 

Conversion from the optical to the electrical domain was performed in a battery-

powered 45 GHz PD. Due to the low output levels from the PD, an LNA was deemed 

necessary before an envelope detector could be employed. 

E. BACK END ELECTRICAL SIGNAL PATH 

This section describes the functionalities of components appearing after the 

optical signal had been converted back to the electrical domain. 

1. DC Blocker (Minicircuits BLK-18-S+) 

The selected DC block was specified for operating up to 18 GHz with low 

insertion loss. Removing the DC bias in the output signal served the purpose of feeding 

the LNA with a signal biased at 0V for optimal performance. 

2. Envelope Detector (HP 8473B) 

In previous research, an active envelope detector was used, employing a slight 

gain to the detected envelope. Since the approach used in the design of this system 

yielded a significantly higher output level, a simpler and more robust envelope detector 

was used. The HP 8473B is a passive device capable of operating at 0.01–18 GHz. 

3. Instrumentation Amplifier (INA114) 

To optimize system output levels for sampling, a final stage of amplification was 

performed. The amplifier was adjustable and capable of bringing peak output voltages to 

8V. The board and amplifier were reused from previous work, but resistor values were 

modified to achieve a correct adjustment range. 

F. REAL-TIME COMPUTER (NATIONAL INSTRUMENTS CRIO-9012) 

The cRIO is a real-time computer with an FPGA array optimized for being 

programmed and controlled in LabView. 
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1. Output Modules (NI 9269) 

Three four-port output modules were installed in the cRIO chassis used in this 

system. All output ports were fully isolated, so the negative output for each port had to be 

electrically connected to ground. Each port was capable of providing output voltages 

between −10V and +10V with a resolution of 16 bits. Maximum output current per port 

was 10 mA and max total output per module was 20 mA. 

2. Input Module (NI 9215) 

One four-port input module was installed in the cRIO capable of sampling 

voltages between −10V and +10V with a resolution of 16 bits. 

3. Control Voltage Amplifier (TCA0372) 

Initial trials with the system showed that the cRIO was unable to provide enough 

current to the output control ports. This was mitigated by adding operational amplifiers to 

each output port of the cRIO, designed to operate as voltage following amplifiers with a 

1:1 input-output voltage relation, as shown in Figure 18. To ensure correct operation at 

0V control voltage, the amplifiers were designed to be supplied with ±12V. The design 

was able to provide control voltages between 0V and 10V with a maximum current of 1A 

per output. 
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Figure 18.  Control Voltage Amplifier Installation 

 

4. LabView 2009 Applications 

Two separate LabView program instances were used in the system design. One 

program was implemented in the cRIO with functions for controlling output module 

voltages and sampling of voltages at the input module ports. A graphical user interface 

for user interaction and control of the cRIO was running at a desktop computer 

communicating with the cRIO through a twisted-pair LAN, as shown in Figure 19. 

Figure 20 depicts the second program, which was run completely on the desktop 

computer and had functions for grabbing the output data from the previous program and 

writing it to a local file. These files constituted the raw test data from the system.  
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Figure 19.  Block Diagram of LabView Application Running on cRIO Real-
Time Computer 
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Figure 20.  Block Diagram of LabView Application on Host Computer 

 

G. GAIN CALCULATIONS 

Total receiver gain was calculated for best and worst insertion loss in the phase 

shifters. The maximum and minimum gain values were then applied a maximum 

attenuation in the attenuator. Results from these calculations are shown in Table 2 and 

Table 3.  It was shown that the measurement channels had a relative gain between +8 dB 

and +39.5 dB, while the reference channels had a gain between −5 dB and +26.5 dB. 
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Table 2.   Gain Calculations for Measurement Channels (mod7, mod8, and 
mod9) 

Component Maximum gain Minimum gain 

LNA-2700 24 24 

ZX73-2500 −5 −5 

SPHSA-242 −3.5 −8 

LNA-2700 24 24 

Total gain 39.5 35 

Max attenuated 12,5 8 

Table 3.   Gain Calculations for Reference Channel 

Component Maximum gain Minimum gain 

LNA-2700 24 24 

ZX73-2500 −5 −5 

SPHSA-242 −3.5 −8 

LPA-4-14 18 18 

ZB4PD-462W −7 −7 

Total gain 26.5 22 

Max attenuated −0.5 −5 

 

The theoretical input signal level was previously computed to −17.8 dBm. 

Applying the gains computed in Table 2 and Table 3 yielded the dynamic ranges for the 

channels shown in Table 4. 
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Table 4.   MZM Drive Input Power Control Range 

 

Minimum Maximum 

Measurement channels −9.8 dBm (0.20 Vpp) 21.7 dBm (7.69 Vpp) 

Reference channels −22.8 dBm (46 mVpp) 8.7 dBm (1.72 Vpp) 

 

The values computed in Table 4 describe the MZM drive range available for the 

system. The moduli channels were able to drive the MZM well over , and the 

reference channels were able to drive the MZM to about a half . 

This chapter described the conversion of system functionalities into physical 

components and some important measures to apply during the construction of the test 

system. The test assembly was built during the spring of 2015 and was installed in the 

anechoic test chamber in June 2015. In the following chapter, the test procedure and 

collection of test data are discussed. 
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VII. TEST DESCRIPTION AND DATA COLLECTION 

This chapter includes a review of the testing and data collection methods. 

A. EQUIPMENT 

Tests were performed at NPS in Monterey, CA. An anechoic chamber located in 

Spanagel Hall, Room Sp-604, was used throughout the entire test procedure, and all 

doors to the chamber were kept closed during each test cycle to ensure consistent signal 

environment and maximum shielding from potential interfering signals. 

A 2.4 GHz continuous signal was generated by an HP 83711B Synthesized CW 

Generator with an output power of 1 dBm and amplified by an HP 8348A amplifier to 25 

dBm. The signal was fed to a Tecom 201302 log-periodic antenna connected for vertical 

polarization. 

Measurements during calibration were done with a Tektronix DSA8200 Digital 

Signal Analyzer containing two optical input modules (80C10B), one electrical input 

module (80E03), and one phase reference module (82A04-60G). Each optical module 

had two input ports, one for 1290–1330 nm (not used in this test) and one for 1520–1620 

nm. The electrical module had two 20 GHz electrical inputs. The phase reference module 

was not used in this test. 

B. PROCEDURE 

This section describes system calibration and testing procedures. 

1. System Input Verification 

Theoretical system input from receiving dipole antennas was previously 

computed to −17.8 dBm. As shown in Figure 21, true antenna received power was 

slightly higher, measured to −17 dBm. This shows that previous system gain calculations 

in Table 2 to Table 4 were applicable and the receiver front end should have been able to 

operate as expected. 
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Figure 21.  Dipole Output Signal at 5.7m, 1 dBm Signal Generator Power 

 

Note: Output from dipole antenna measured to 91.76 mVpp or −17 dBm 

2. Calibration 

Identical peak-to-peak voltages on both input ports of the MZM were necessary 

for correct operation. With no control voltages applied to attenuators and phase shifters 

and all bias voltages set to 0V, MZM drive voltages typically appeared as in Figure 22.  
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Figure 22.  MZM Drive Signals With all Control Voltages at 0V 

 

The initial step in calibrating the system was determining optimal reference 

channel output level. In theory, the receiver reference channel should be able to drive the 

MZM at 1.72 Vpp, but to ensure stable performance, the output was set slightly lower at 

1.52 Vpp. This same amplitude was also used for the three measurement channels. 

Amplitude calibrated MZM inputs are shown in Figure 23.  
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Figure 23.  MZM Drive Voltage Set to Equal Amplitude 

 

As shown in Figure 24, applying a phase change with the phase shifter also 

affected signal amplitude, so several iterations of increasingly smaller adjustments 

needed to be performed to achieve signals as shown in Figure 25.  
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Figure 24.  MZM Drive Voltages Measured Relative Phase Shift Set to 180° 

 

Figure 25.  MZM Drive Voltages Measured Relative Phase Shift Set to 180° 
and Equal Amplitude 

 

Note: Optical output (C1) is also shown in this plot. 
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Since the measured phase shift was not compensated for differences in cable 

length, etc., true phase shift of 180° needed to be determined by finding maximum optical 

amplitude modulation at the MZM output. Comparing the values for C1 in Figure 25 with 

those in Figure 26, it is clear that the higher modulation was achieved at a different point. 

Measured phase shift represented a true phase shift of 180° at the MZM and could be 

used as a reference for computing the RSNS channel shifts for mod8 and mod9. 

Figure 26.  MZM Drive Voltages True Relative Phase Shift Set to 180° and 
Equal Amplitude 

 

Note: Maximum peak-to-peak optical output (C1) used for determining true 180° phase 
shift 

A similar approach was used to find the true 0° phase shift between input ports of 

the MZM, as shown in Figure 27 and Figure 28.  
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Figure 27.  MZM Drive Voltages Measured Relative Phase Shift Set to 0° and 
Equal Amplitude 

 

Note: The MZM output (C1) shown in this picture had an obviously high envelope. This 
envelope should be minimal for true 0° phase shift between input ports since the MZM is 

designed for complementary drive. 
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Figure 28.  MZM Drive Voltages True Relative Phase Shift Set to 0° and 
Equal Amplitude 

 

Note: Minimum peak-to-peak optical output (C1) used for determining true 0° phase shift 

In order to avoid the signal from modulating the MZM around its maximum or 

minimum transmission point as shown in Figure 29, each MZM was biased in between 

the maximum and minimum transmission point. 
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Figure 29.  Example of Ill-Biased System, True Phase Difference 180° 

 

Note: The plot shows distorted output intensity due to input signals driving the MZM 
over . 

Once the reference points for 0° and 180° phase shifts were established, the mod8 

and mod9 channels were adjusted to align their phase shifts with the RSNS code [22] as 

 
The last step of calibrating the system consisted of setting the output 

instrumentation amplifier to deliver a maximum signal output amplitude of about 8V. 

3. Test Procedure 

All data were gathered from the inputs of the cRIO and transferred to tab-

separated text files using a separate LabView program running on a PC. The cRIO and 

the computer were interconnected through a small, wired Internet protocol network. The 

complete setup is shown in Figures 30 and 31. 
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Figure 30.  Assembled System as Used During Testing 

 

Two procedures for generating data were used: stepped and continuous. Stepped 

data were gathered over antenna sweeps from −90° to +90° in 1° increments. The 

sampling speed of the training data was set to 10 Hz and with an approximate dwell time 

per step of 3.5 seconds, generating about 30 samples per angle increment. 

Recording of continuous data was done over antenna sweeps between −90° and 

+90° and was sampled at 1000 Hz. The higher sampling rate was necessary due to the 

fact that the antenna sweep speed was not configurable, where one full sweep took in the 

order of 1–2 seconds. These sweeps were performed in both directions (+90° to −90° and 

−90° to +90°), and 10 such sweeps were recorded in each data file. 
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Figure 31.  System in Test Chamber, DOA 0° 

 

C. DATA 

This section describes how test data were gathered during anechoic testing. 

1. Reference Data 

Due to the construction of the test chamber, true pedestal angle outputs were not 

available. The only reference data available for the measurements were the outer limits 

for pedestal movement; −90° and +90°. The incremental stepping in 1° steps when 

gathering data made it possible to map measurements to a reference angle by resolving 

these steps. 

2. System Output Data 

As described previously, data for two distinct types of antenna sweep patterns, 

stepped and continuous, were gathered. The stepped data were collected for 181 steps, 

representing 1° increments from −90° to +90°, and the total test cycle lasted for 

approximately 10–15 minutes and generated 6000–7000 data points per cycle. An 

example of the stepped output data is shown in Figure 32.  
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Figure 32.  Example Training Data 

 

These stepped data were collected primarily for testing the RSNS-to-DOA 

approach described by [23], but were also found to be very useful for training an MLP for 

determining DOA, as described later. For the RSNS case, the reason for stepping was to 

be able to determine true DOA as described previously through mapping of steps over the 

full 180° antenna sweep, as shown in Figure 33. 

Continuous data were gathered in order to investigate RSNS performance and 

possibilities to apply an interpolating approach to RSNS-to-DOA, but these data were 

instead used for testing performance of the MLPs. 
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Figure 33.  Example of Test Data for One Antenna Sweep 

 

Since the RSNS code is inherently amplitude sensitive, the recorded data needed 

to be preprocessed in order to compensate for the different peak values. For the RSNS 

code to work properly, all peaks in the individual moduli channels needed to be adjusted 

to have the same amplitude. Since signal amplitude depended on DOA, each channel was 

individually processed by interpolating the peak values over the entire data set and using 

the interpolated values for normalization of the channel at each time sample. An example 

of resulting normalized channel output is depicted in Figure 34.  
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Figure 34.  Example of Normalization of Recorded Test Data 

 

Note: a) Recorded test data from one antenna sweep, b) computed normalization 
coefficients, and c) normalized test data 

As shown in Figure 34, the attempted normalization procedure failed to fully 

compensate for the varying peak amplitudes but greatly improved the peak amplitude 
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uniformity in all channels. This had implications on the conversion from sampled raw 

data to RSNS coded data as discussed in the following section. 

3. RSNS Thresholding 

The normalized raw data were converted to RSNS coded data through 

thresholding, emulating the comparators in the RSNS-to-DOA design in [23]. Values for 

RSNS thresholds were calculated after [23] as 

   (8) 

where  is the moduli for the channel, , and  is the total number 

of channels in the RSNS system. In Figure 35, it is shown how the attempted RSNS code 

after thresholding appears to resemble an RSNS sequence. The RSNS sequence in the 

center part of the mentioned figure should be identical to what is shown in Figure 79. 

Left and right flanks in Figure 35 should be different since the RSNS code is only 

expected to be useful for ±60°, but the center part should be identical for the RSNS 

decoding of DOA to work.  
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Figure 35.  Attempted Reconstruction of RSNS Sequence 

 

However, the relatively small difference in the upper thresholds combined with 

previously described signal amplitude instability and variations with DOA resulted in 

errors in the attempted RSNS output and prevented proper interpretation of the RSNS 

code. Several attempts to recalibrate the system were made, but the behavior was found 

to be unrelated to calibration and rather to the previously discussed DOA-dependent 

amplitude variations. It should also be noted that the compensation for different peak 

amplitude was done as a function of DOA. This can be done when DOA is known during 

calibration, but when the equipment operates as a DOA measuring system, this angle is 

the unknown variable. This makes the RSNS approach infeasible to apply in a real 

environment since the compensation factor will never be known. 

Comparing the resolution in Figure 33 and Figure 35 revealed that much of the 

high-resolution information in the first figure was lost in the conversion to the lower 
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resolution of the latter one. This fact initiated another approach to resolve DOA from the 

raw data: the use of pattern recognition by employing MLPs. 

D. NEURAL NETWORK 

Resolving DOA from the combination of the states of the three measurement 

channels can be approached in several ways, either as a classification problem similar to 

pattern recognition or as a regression problem. The classification approach classifies a 

specific combination of input values to belong to a certain class, in this case a discrete 

representation of DOA. An MLP for regression analysis was tentatively tried in the initial 

design of the data processing, but was deemed unfit due to performance problems. 

1. MLP Structuring 

Experience from previous work on similar classification problems suggested that 

the numerical DOA values needed to be translated into a unary code representing discrete 

angles. The angular resolution of the system is determined by the resolution of the unary 

code used, which in turn is based on the properties of the training data. For this system, a 

resolution of 1° was chosen to demonstrate the functionality, and numeric angular values 

were represented by a string of 181 bits as 

    

Using the neural pattern recognition app in MATLAB, several different network 

structures were tentatively tested in an attempt to find the least complex network that still 

had acceptable performance. Vectors can be sufficiently well classified using a two-layer 

feed-forward network with tan-sigmoid hidden and softmax output neurons if the hidden 
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layer consists of a sufficient amount of neurons. A constructive approach was used to 

find that a hidden layer with 90 neurons had acceptable training time and reasonable 

performance, as shown in Figure 36. An increased number of neurons generally improves 

convergence, but too many may result in overfitting and poor performance. The network 

was trained with scaled conjugate gradient backpropagation. 

Figure 36.  Two-Layer MLP Used for DOA Estimation 

 

 

Outputs  for  from the network were determined using softmax  

  (9) 

where the outputs  from the output layer to the softmax function were calculated as 

  (10) 

Mod 7 data 

Mod 8 data 

Mod 9 data 

Hidden layer 

Output layer 

Bit 1 

Bit 2 

Bit 3 

Bit 181 
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in which  are the individual weights,  are the bias units, and  are the outputs from 
the hidden layer. These two functions were considered to constitute a single layer. 
Outputs from the hidden layer can be denoted as 

    (11) 

for  using weights  with inputs  and adding bias units  . In this 
case, the sigmoid function used was tan-sigmoid: 

 (12)
 

The softmax function generates posterior probabilities for selection, and the 

output with the highest posterior probability was set to one while all other outputs were 

set to zero. 

2. Data Pre-processing 

As previously described, training data consisted of time samples of each of the 

outputs from the photonic receiver. The data were imported to MATLAB and saved as a 

matrix where each row represented one time sample and the columns represented 

the individual receiver outputs. 

Since no true pedestal angle data were available, the discrete angles had to be 

determined from the data itself. The data recorded during antenna movement had to be 

removed, since the network needed to be trained only with data for which there existed a 

target value for comparison. During antenna movement, the exact antenna angle was not 

known. Training data preparation was done in three steps: 

• Detection of approximate transition between discrete angle increments 

• Removal of data points during antenna transition 

• Detection of exact angle increment timing 

Absolute differences in amplitude between adjacent time samples for each 

channel were computed and summed. Through peak detection, the location of these 

transitions could be determined, and sample data during transitions, as shown in Figure 
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37, was removed. Once the data were cleaned of inconsistencies, another iteration of 

difference summing and peak detection was performed and the corresponding angles 

labeled to the data. Output from the preparation was a matrix, where since 

transition data was removed and the fourth column represented true DOA. 

Figure 37.  Example of Intermediate Data Points During Antenna Movement 

 

The next step was to adapt the DOA data to a 181-bit unary coding. For ease of 

programming and training of the network, the matrix representing DOA was 

separated from the  matrix representing time samples of voltage outputs from the 

receiver. These two matrices were used as input and target for the training of the MLP, 

and training performance was recorded. Training was done using 64-bit MATLAB 

R2014b in MacOS X 10.10.5 on a 2010 MacBook Pro with Intel Core i7 processor at 

2.66 GHz and 8 GB of 1067 MHz DDR3 RAM. The trained networks were stored as 

MATLAB matrix-only functions in order to be able to apply the networks to test data for 

performance evaluation. 
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3. Data Post-processing 

Recorded test data were imported in MATLAB and saved as an  matrix with 

each row representing a time sample and the columns representing each of the receiver 

outputs. Each data set contained 10 continuous full antenna sweeps in each direction. The 

previously trained networks were applied to each test data set and the resulting 

matrix was converted to a  vector containing the numerical representations of the 

angular outputs from the network.  

Since there was no true DOA data to compare the output to, the pedestal angle 

was interpolated from the angle classification results from the network. Because of this 

approach, the computed errors were not fully comparable to true DOA but were well 

suited for comparison of performance between different data sets in this system. 

The test procedure, gathering of test data, and formatting of these data were 

described in this chapter. These methods were employed on the system mounted in the 

anechoic chamber at NPS during July and August 2015, and the results are discussed in 

the following chapter. 
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VIII. EXPERIMENTAL TESTING RESULTS 

This chapter contains results from experimental testing in the anechoic chamber 

with data processed as described in Chapter VII. 

A. NETWORK TRAINING 

Networks were trained for a maximum of 1000 iterations until either the 

validation error was 0 or the gradient of improvement became less than 1×10–6. Training 

statistics for all networks except the unaligned system are listed in Table 5.  Training time 

and resulting validation error was approximately the same for the unaligned system, but 

unfortunately were never documented.  

Table 5.   MLP Training Statistics 

Dataset Training time (s) Number of iterations Validation error 

04AUG 196 231 0.91×10–6 

05AUG network1 284 332 1.51×10–6 

05AUG network2 412 401 2.82×10–6 

06AUG network1 281 309 1.44×10–6 

06AUG network2 215 261 1.84×10–6 

Note: Training was stopped due to a gradient of improvement below 1×10–6 in all cases. 

The differences in training time may be related to the quality of the training data. 

By inspection, some of the training data sets appeared slightly noisier than others, and 

this might have been the reason for the differing number of iterations needed to achieve 

necessary network performance. Using a faster computer for training should reduce the 

training time considerably.  
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B. TRAINING DATA AND TEST DATA FROM SAME DAY 

This section contains results from test data and networks trained on data recorded 

within one or a few hours of each other, as shown in Figures 38–62. Results show how 

the system performed when fairly recently bias calibrated and trained. The complete 

output consisted of results for 20 continuous antenna sweeps, 10 in either direction. For 

each test set, one antenna sweep in either direction was further analyzed. Sweeps 

analyzed in detail were those considered worst cases; this was done in order to determine 

maximum angle error for the system. 

Each test result consisted of five plots, the first showing the full resulting dataset, 

the second and third showing performance for a positive antenna sweep, and the fourth 

and fifth showing performance for a negative antenna sweep. As described earlier, true 

DOA was not available but interpolated. Residues with errors greater than 10° were 

considered as outliers and removed from mean error calculations. The number of 

removed outliers and absolute mean error is shown in each residue plot, and these outliers 

are shown as circles in the curve fit plots. A total number of 1310 samples were used for 

each detailed analysis. 
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Figure 38.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, Aug. 4, 2015 

 

Note: Test data recorded Aug. 4, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015 
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Figure 39.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), Aug. 4, 
2015 

 

Note: Test data recorded Aug. 4, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015 
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Figure 40.  Residues for One Positive Antenna Sweep (−90° – +90°), Aug. 4, 
2015 

 

Note: Test data recorded Aug. 4, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015. Curve fitted to estimate true DOA. 

Misclassification was detected in one sample out of 1310 total samples, yielding a 

misclassification rate of 7.6336×10−4. The mean angle error after this outlier was 

removed was computed to 0.33694°. 
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Figure 41.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), Aug. 4, 
2015 

 

Note: Test data recorded Aug. 4, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015 
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Figure 42.  Residues for One Negative Antenna Sweep (+90° – −90°), Aug. 4, 
2015 

 

Note: Test data recorded Aug. 4, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015. Curve fitted to estimate true DOA. 

Misclassification was detected in 10 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0076. The mean angle error after these outliers were removed 

was computed to 0.40932°. 
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Figure 43.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, Aug. 5, 2015 (network 1) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 1) 
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Figure 44.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), Aug. 5, 
2015 (network 1) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 1) 
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Figure 45.  Residues for One Positive Antenna Sweep (−90° – +90°), Aug. 5, 
2015 (network 1) 

 
Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 

Aug. 5, 2015 (network 1). Curve fitted to estimate true DOA. 

Misclassification was detected in 16 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0122. The mean angle error after these outliers were removed 

was computed to 0.377°. 
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Figure 46.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), Aug. 5, 
2015 (network 1) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 1) 
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Figure 47.  Residues for One Negative Antenna Sweep (+90° – −90°), Aug. 5, 
2015 (network 1) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 1). Curve fitted to estimate true DOA. 

Misclassification was detected in 29 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0221. The mean angle error after these outliers were removed 

was computed to 0.40517°. 
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Figure 48.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, Aug. 5, 2015 (network 2) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 2) 
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Figure 49.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), Aug. 5, 
2015 (network 2) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 2) 
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Figure 50.  Residues for One Positive Antenna Sweep (−90° – +90°), Aug. 5, 
2015 (network 2) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 2). Curve fitted to estimate true DOA. 

Misclassification was detected in 13 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0099. The mean angle error after these outliers were removed 

was computed to 0.33708°. 
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Figure 51.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), Aug. 5, 
2015 (network 2) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 2) 
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Figure 52.  Residues for One Negative Antenna Sweep (+90° – −90°), Aug. 5, 
2015 (network 2) 

 

Note: Test data recorded Aug. 5, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 (network 2). Curve fitted to estimate true DOA. 

Misclassification was detected in 18 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0137. The mean angle error after these outliers were removed 

was computed to 0.30589°. 
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Figure 53.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, Aug. 6, 2015 (network 1) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 1) 
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Figure 54.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), Aug. 6, 
2015 (network 1) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 1) 
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Figure 55.  Residues for One Positive Antenna Sweep (−90° – +90°), Aug. 6, 
2015 (network 1) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 1). Curve fitted to estimate true DOA. 

Misclassification was detected in 17 samples out of 1310 total samples, yielding a 

misclassification rate of 0.013. The mean angle error after these outliers were removed 

was computed to 0.32987°. 
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Figure 56.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), Aug. 6, 
2015 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 1) 
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Figure 57.  Residues for One Negative Antenna Sweep (+90° – −90°), Aug. 6, 
2015 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 1). Curve fitted to estimate true DOA. 

Misclassification was detected in three samples out of 1310 total samples, 

yielding a misclassification rate of 0.0023. The mean angle error after these outliers were 

removed was computed to 0.36787°. 
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Figure 58.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, Aug. 6, 2015 (network 2) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 2) 
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Figure 59.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), Aug. 6, 
2015 (network 2) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 2) 
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Figure 60.  Residues for One Positive Antenna Sweep (−90° – +90°), Aug. 6, 
2015 (network 2) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 2). Curve fitted to estimate true DOA. 

Misclassification was detected in eight samples out of 1310 total samples, 

yielding a misclassification rate of 0.0061. The mean angle error after these outliers were 

removed was computed to 0.33784°. 
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Figure 61.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), Aug. 6, 
2015 (network 2) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 2) 
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Figure 62.  Residues for One Negative Antenna Sweep (+90° – −90°), Aug. 6, 
2015 (network 2) 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 6, 2015 (network 2). Curve fitted to estimate true DOA. 

Misclassification was detected in two samples out of 1310 total samples, yielding 

a misclassification rate of 0.0015. The mean angle error after these outliers were removed 

was computed to 0.4213°. 

C. TRAINING DATA AND TEST DATA FROM DIFFERENT DAYS 

This section contains results from test data and networks trained on data recorded 

one and two days in between each other. Results in Figures 63–67 show how the system 

performed when training was approximately 24 hours old, while Figures 68–72 show 

performance for training 48 hours old. The complete output consists of results for 20 

continuous antenna sweeps, 10 in either direction. For each test set, one antenna sweep in 
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either direction was further analyzed. Sweeps analyzed in detail were those considered 

worst cases; this was done in order to determine maximum angle error for the system. 

Each test result consists of five plots, the first showing the full resulting dataset, 

the second and third showing performance for a positive antenna sweep, and the fourth 

and fifth showing performance for a negative antenna sweep. Residues with errors greater 

than 90° were considered as outliers and removed from mean error calculations. The 

number of removed outliers and absolute mean error are shown in each residue plot, and 

these outliers are shown as circles in the curve fit plots. A total number of 1310 samples 

were used for each detailed analysis. 

When the previous results for same-day testing were computed, outliers were 

considered to differ 10° or more from the interpolated DOA. Due to the different limits 

used for the removal of outliers, the results are not fully comparable between the two 

tests. Results show how performance degrades as the training gets older. 
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Figure 63.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, One Day between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 
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Figure 64.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), One Day 
between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 
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Figure 65.  Residues for One Positive Antenna Sweep (−90° – +90°), One Day 
between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015. Curve fitted to estimate true DOA. 

Misclassification was detected in 28 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0214. The mean angle error after these outliers were removed 

was computed to 6.8761°. 
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Figure 66.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), One 
Day between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015 
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Figure 67.  Residues for One Negative Antenna Sweep (+90° – −90°), One 
Day between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 5, 2015. Curve fitted to estimate true DOA. 

Misclassification was detected in 44 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0336. The mean angle error after these outliers were removed 

was computed to 8.3544°. 
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Figure 68.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, Two Days between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015  
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Figure 69.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), Two 
Days between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015 
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Figure 70.  Residues for One Positive Antenna Sweep (−90° – +90°), Two 
Days between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015. Curve fitted to estimate true DOA. 

Misclassification was detected in 160 samples out of 1310 total samples, yielding 

a misclassification rate of 0.1221. The mean angle error after these outliers were removed 

was computed to 8.4441°. 
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Figure 71.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), Two 
Days between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015 
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Figure 72.  Residues for One Negative Antenna Sweep (+90° – −90°), Two 
Days between Training and Testing 

 

Note: Test data recorded Aug. 6, 2015, analyzed in network trained with data recorded 
Aug. 4, 2015. Curve fitted to estimate true DOA. 

Misclassification was detected in 166 samples out of 1310 total samples, yielding 

a misclassification rate of 0.1267. The mean angle error after these outliers were removed 

was computed to 9.9189°. 

Results plotted in Figure 63 to Figure 72 clearly show how performance degrades 

as the training gets older in relation to the test set. Performance results are shown for 

comparison in Table 6.   
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Table 6.   Performance Comparison between 24- and 48-Hour-Old Training 

Dataset Misclassification rate Mean error 

1 day old network 0.0214 6.8761° 

-:- 0.0336 8.3544° 

2 days old network 0.1221 8.4441° 

-:- 0.1267 9.9189° 

Note: Test data from Aug. 6, 2015 was tested on networks trained on data from Aug. 4, 
2015, and Aug. 5, 2015. 

Retraining appeared to be necessary less than 24 hours apart to preserve 

performance of the system. The most probable cause for the time varying errors was 

considered to be related to bias voltage drift in the MZM and could be minimized by 

adding a bias control circuit to the modulators. 

D. UNALIGNED DATA FROM AUG. 12, 2015 

In order to evaluate whether channel alignment played a role in performance, 

training and test data were recorded without aligning the channels. 

This section contains results from test data and networks trained on data recorded 

within a few hours of each other. Results show how the system performed when fairly 

recently bias calibrated and trained, as depicted in Figures 73–77. The complete output 

consists of results for 20 continuous antenna sweeps, 10 in either direction. For each test 

set, one antenna sweep in either direction was further analyzed. Sweeps analyzed in detail 

were those considered worst cases; this was done in order to determine the maximum 

angle error for the system. 

Each test result consists of five plots, the first showing the full resulting dataset, 

the second and third showing performance for a positive antenna sweep, and the fourth 
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and fifth showing performance for a negative antenna sweep. As described earlier, true 

DOA was not available but interpolated. Residues with errors greater than 10° were 

considered as outliers and removed from mean error calculations. The number of 

removed outliers and absolute mean error are shown in each residue plot, and these 

outliers are shown as circles in the curve fit plots. A total number of 1310 samples were 

used for each detailed analysis. 

Figure 73.  Complete Network Output Data for 10 Continuous Antenna 
Sweeps in Both Directions, Aug. 12, 2015 (not RSNS-aligned) 

 

Note: Test data recorded Aug. 12, 2015, analyzed in network trained with data recorded 
Aug. 12, 2015 (not RSNS-aligned) 
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Figure 74.  Curve Fit of One Positive Antenna Sweep (−90° – +90°), Aug. 12, 
2015 (not RSNS-aligned) 

 

Note: Test data recorded Aug. 12, 2015, analyzed in network trained with data recorded 
Aug. 12, 2015 (not RSNS-aligned) 
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Figure 75.  Residues for One Positive Antenna Sweep (−90° – +90°), Aug. 12, 
2015 (not RSNS-aligned) 

 

Note: Test data recorded Aug. 12, 2015, analyzed in network trained with data recorded 
Aug. 12, 2015 (not RSNS-aligned). Curve fitted to estimate true DOA. 

Misclassification was detected in 13 samples out of 1310 total samples, yielding a 

misclassification rate of 0.0099. The mean angle error after these outliers were removed 

was computed to 0.32803°. 
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Figure 76.  Curve Fit of One Negative Antenna Sweep (+90° – −90°), Aug. 
12, 2015 (not RSNS-aligned) 

 

Note: Test data recorded Aug. 12, 2015, analyzed in network trained with data recorded 
Aug. 12, 2015 (not RSNS-aligned) 

 



 118 

Figure 77.  Residues for One Negative Antenna Sweep (+90° – −90°), Aug. 
12, 2015 (not RSNS-aligned) 

 

Note: Test data recorded Aug. 12, 2015, analyzed in network trained with data recorded 
Aug. 12, 2015 (not RSNS-aligned). Curve fitted to estimate true DOA. 

Misclassification was detected in seven samples out of 1310 total samples, 

yielding a misclassification rate of 0.0053. The mean angle error after these outliers were 

removed was computed to 0.38153°. 

E. COMPARISON OF ALIGNED AND UNALIGNED SYSTEM 

A comparison of system performance between the aligned and unaligned system is shown 
in Table 7.   
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Table 7.   Performance Comparison between Aligned and Unaligned System 

Dataset Misclassification rate Mean error 

04AUG 0.00076 0.33694° 

-:- 0.00760 0.40932° 

05AUG network1 0.01220 0.37700° 

-:- 0.02210 0.40517° 

05AUG network2 0.00990 0.33708° 

-:- 0.01370 0.30589° 

06AUG network1 0.01300 0.32987° 

-:- 0.00230 0.36787° 

06AUG network2 0.00610 0.33784° 

-:- 0.00150 0.42130° 

   

12AUG 0.00990 0.32803° 

-:- 0.00530 0.38153° 

Averaged values 

  Aligned system 0.00892 0.36283° 
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Unaligned system 0.00760 0.35478° 

Note: Test data from Aug. 4, 2015, to Aug. 6, 2015, were recorded in a system aligned 
according to [23] and [22], while test data from Aug. 12, 2015, were recorded in an 

unaligned system. 

According to test data, phase alignment of the channels does not appear to play a 

significant part in system performance. 

In this chapter, the results from three different test cases were described. Initially 

it was shown that a system with channels phase aligned according to [23] and [22] was 

capable of determining DOA with a mean error better than 0.5°. Thereafter, it was 

demonstrated that system performance decreased as time between training and testing 

increased. Lastly, it was shown that the system was able to perform DOA measurement 

with a mean error better than 0.5° even when the channels were not phase aligned. In the 

following chapter, the implications of these results are discussed and recommendations 

for future work are provided. 
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IX. CONCLUDING REMARKS AND FUTURE 
CONSIDERATIONS 

Data from experimental tests showed that the system is capable of determining 

DOA by sampling the envelope values of the optical output amplitude. The design has a 

mean error less than 0.5°, which is consistent with best possible theoretical performance. 

Since the resolution is determined by discrete representations of DOA, best theoretical 

mean error magnitude is half the resolution. In this investigation, a resolution of 1° was 

chosen, but it should be possible to use finer steps. It is believed that a resolution of 0.25° 

should be feasible, resulting in a possible mean error of less than 0.125°. 

The strength of the pattern recognition approach lies in the use of discrete output 

values. Even though this approach limits output resolution, it serves the purpose of 

making output decisions from the network more robust. This robustness eliminates 

misclassifications, and by doing so, improves system performance. The relatively large 

number of output nodes limits training speed, but also greatly contributes to network 

classification performance. In this paper, it was shown that in more than 99% of the 

samples, DOA is determined with an average error better than 0.5°. The very few 

misclassifications for the correctly trained system should be easy to remove through 

spatial filtering in later stages of data processing.  

Once the network is trained, it can easily be applied to classify DOA in real-time. 

The training of the network can be relatively time consuming (~10 minutes), but applying 

it to data is almost instantaneous. A possible future approach would be to implement the 

network on an FPGA in a system operating on data in near real-time. 

The full duration of training the system was less than 10 minutes, and it is clear 

that performance is consistent for at least several hours from training. It was shown that 

performance was severely degraded when the trained system was used to estimate DOA 

24 hours or more after it was trained. The effects of this can probably be limited if an 

MZM bias control circuit is added to the design, since most of these errors are believed to 

stem from MZM bias point drift. 
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The results shown in Figure 73 to Figure 77 demonstrate that the MLP pattern 

recognition system is insensitive to how the channels are phase-aligned before training. 

This is a very important advantage in an interferometric DF system, since this means that 

no front-end calibration of phase is necessary and the phase shifters could be left out of 

future designs. All compensation for phase unbalance in the receiving system is 

performed in the training of the MLP, reducing complexity and cost in future systems. 

To fully determine true DOA accuracy, testing should be performed with a 

pedestal control system providing true DOA readings. These errors do not substantially 

affect the performance measurement for the 1° resolution system tested here, but will be 

necessary if better resolution systems are developed and tested. 

In this investigation, we used a single, continuous signal with fixed frequency. It 

should be possible to make the system wide-band capable by adding a fourth input to the 

network representing signal frequency. This should make the system capable of 

determining DOA over a wide range of frequencies but might increase training 

complexity. 

For future work, different antenna arrays should be investigated to determine 

optimal antenna element spacing.  
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APPENDIX. OVERVIEW OF ROBUST SYMMETRICAL 
PROCESSING 

Symmetrical folding waveforms are fundamental parts of engineering sciences, 

where sinusoidal waves are among the more commonly recognized examples. 

Electromagnetic transmission at RF consists of sinusoidal waveforms, either modulated 

or un-modulated. Performance of electronic warfare (EW) systems is strongly dependent 

on the systems’ ability to detect these waveforms and extract information from them. 

Symmetrical number systems are powerful for analyzing folding waveforms. 

Several forms of symmetrical number systems have been formulated to meet various 

analyzing needs and research questions, including the symmetric number system (SNS), 

the optimum symmetric number system (OSNS), and the robust symmetrical number 

system (RSNS).  

The RSNS is a number system based on modules with  sequences of 

integers. Each of these sequences is formed as [43]. 

   (13) 

The N-sequence RSNS is formed through repeating each term in Equation 13, 

yielding the integers in a folding period to be 

   (14) 

The resulting sequence has a period of [44], and to form the number 

system, each sequence is shifted either left or right by shift values  where 

. These shift values must meet the criteria of together forming a complete 

modulo  residue system. The incremental shift of each sequence gives the system an 

integer Gray code property, a characteristic that makes it unique when compared to the 

SNS and OSNS [43]. A three-sequence RSNS for moduli  is shown in 

Figure 78.  
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Figure 78.  Plot of Three-Sequence RSNS for Moduli   

 

The full N-sequence RSNS is periodic and has a fundamental period calculated 

after [45] as 

   (15) 

Ambiguous combinations of the sequence values exist in several positions of the 

fundamental period. These ambiguities limit the maximum unambiguous range , 

the system dynamic range, of the RSNS. Several closed-form expressions for the size and 

location of the dynamic range have been formulated in [44] and [45]–[47]. For a system 

where  and  with  even and , the closed form 

expression is 

   (16) 
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 The dynamic range can exist in one or several places of the fundamental period 

and its location for a system with  was computed by [23] after [44] to start 

at 733 and end at 865 with a total length of 133. The RSNS sequence used in [23] and 

[22] is shown in Figure 79.  

Figure 79.  Example of RSNS System Dynamic Range for  
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