

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

APPLICATION OF OPTICAL FLOW SENSORS FOR
DEAD RECKONING, HEADING REFERENCE,

OBSTACLE DETECTION, AND OBSTACLE
AVOIDANCE

by

Tarek M. Nejah

September 2015

Thesis Advisor: Zachary Staples
Co-Advisor: Clark Robertson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Electrical Engineer’s thesis

4. TITLE AND SUBTITLE
APPLICATION OF OPTICAL FLOW SENSORS FOR DEAD RECKONING,
HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE
AVOIDANCE

5. FUNDING NUMBERS

6. AUTHOR(S) Nejah, Tarek M.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A novel approach for dead reckoning, heading reference, obstacle detection, and obstacle avoidance
using only one optical mouse sensor was presented in this thesis. Odometry, position tracking, and
obstacle avoidance are important issues in mobile robotics. Traditional odometry and motion-tracking
sensors provide relative displacement data on a frame-to-frame basis, and they are usually mounted in
arrays to provide accurate measurements with small estimation errors. Optical flow sensors stand as a
tempting solution for robot self-localization and dead reckoning. In this work, using only one inexpensive
optical mouse sensor, we were able to perform optical odometry, dead reckoning, and heading reference.
Also, obstacle detection and avoidance remains a challenging area of research. Most of the existing works
are based on stereo imaging and computation of the time-to-contact. These techniques are complex and
usually require the use of more than one vantage point. The use of one optical mouse sensor as an
obstacle-detection sensor was proposed in this work. The detection process is simple and is based on the
surface-quality factor variation. As far as we know, no one has ever used this technique to perform
obstacle-detection and avoidance. Using one sensor for motion tracking and one sensor for object
detection in association with an Arduino microcontroller, we built an indoor ground robot capable of
environment sensing, obstacle avoidance, and position tracking. The behavior of the robot can be
monitored from a remote station. The experimental results obtained were promising and can be further
improved.
14. SUBJECT TERMS
robotics, optical flow sensors, optical flow techniques, optical mouse sensors, dead reckoning,
position tracking, obstacle detection, obstacle avoidance.

15. NUMBER OF
PAGES

153
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

APPLICATION OF OPTICAL FLOW SENSORS FOR DEAD RECKONING,
HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE

AVOIDANCE

Tarek M. Nejah
Captain, Tunisia Air Force

National Diploma of Engineer in Telemechanic, Aviation School of Borj El Amri, 2005

Submitted in partial fulfillment of the
requirements for the degree of

ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Approved by: Zachary Staples
Thesis Advisor

Clark Robertson
Co-Advisor

Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A novel approach for dead reckoning, heading reference, obstacle detection, and

obstacle avoidance using only one optical mouse sensor was presented in this thesis.

Odometry, position tracking, and obstacle avoidance are important issues in mobile

robotics. Traditional odometry and motion-tracking sensors provide relative displacement

data on a frame-to-frame basis, and they are usually mounted in arrays to provide

accurate measurements with small estimation errors. Optical flow sensors stand as a

tempting solution for robot self-localization and dead reckoning. In this work, using only

one inexpensive optical mouse sensor, we were able to perform optical odometry, dead

reckoning, and heading reference. Also, obstacle detection and avoidance remains a

challenging area of research. Most of the existing works are based on stereo imaging and

computation of the time-to-contact. These techniques are complex and usually require the

use of more than one vantage point. The use of one optical mouse sensor as an obstacle-

detection sensor was proposed in this work. The detection process is simple and is based

on the surface-quality factor variation. As far as we know, no one has ever used this

technique to perform obstacle-detection and avoidance. Using one sensor for motion

tracking and one sensor for object detection in association with an Arduino

microcontroller, we built an indoor ground robot capable of environment sensing,

obstacle avoidance, and position tracking. The behavior of the robot can be monitored

from a remote station. The experimental results obtained were promising and can be

further improved.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVES ...1
B. ORGANIZATION ...2
C. BENEFIT OF STUDY ...3

II. OPTICAL FLOW OVERVIEW ..5
A. OPTICAL FLOW DEFINITION ...5

1. Apparent Motion Definition..5
2. Motion Field Definition ...6

B. OPTICAL FLOW COMPUTATION ALGORITHMS7
1. Lucas-Kanade Method ..7
1. Horn-Schunk Method ..8

C. OPTICAL FLOW MOTION FIELD ESTIMATION MODELS10
D. APPLICATION OF OPTICAL FLOW SENSORS11

III. DEAD RECKONING AND ODOMETRY FOR INDOOR ROBOTS
USING AN OPTICAL MOUSE SENSOR ..13
A. ROTARY DIGITAL OPTICAL ENCODERS13

1. Absolute Encoder ...14
2. Incremental Encoder ...15

B. OPTICAL MOUSE SENSORS ..17
C. MOTION TRACKING ...18

IV. EXPERIMENTAL SETUP AND RESULTS ..23
A. HIGH PERFORMANCE OPTICAL MOUSE SENSOR ADNS-

3080..23
B. DC MOTOR SHIELD ...31
C. ARDUINO DUE ...32
D. PARALLAX STANDARD SERVO ...34
E. XBEE-PRO 900 DIGIMESH RF MODULES36
F. TRAJECTORY-FOLLOWER ROBOT ..37
G. OBSTACLE DETECTION AND AVOIDANCE ROBOT49

V. CONCLUSION AND RECOMMENDATIONS ...61
A. RESULTS FOR TRAJECTORY-FOLLOWER ROBOT61
B. RESULTS FOR OBSTACLE DETECTION AND AVOIDANCE

ROBOT ...61

 viii

C. FUTURE WORK ...62

APPENDIX A. ADNS-3080 SENSOR SCRIPTS ...65
A. MAIN CODE ..65
B. HEADER FILE ..66
C. CPP FILE ...68
D. KEYWORDS FILE ...75

APPENDIX B. DC MOTORS SCRIPTS ..77
A. MAIN CODE ..77
B. HEADER FILE ..78
C. CPP FILE ...79
D. KEYWORDS FILE ...83

APPENDIX C. TRAJECTORY-FOLLOWER-ROBOT SCRIPTS85
A. MAIN CODE ..85
B. HEADER FILE ..85
C. CPP FILE ...88
D. KEYWORDS FILE ...106

APPENDIX D. OBSTACLE DETECTION AND AVOIDANCE ROBOT
SCRIPTS ...107
A. MAIN CODE ..107
B. HEADER FILE ..108
C. CPP FILE ...110
D. KEYWORDS FILE ...134

LIST OF REFERENCES ..135

INITIAL DISTRIBUTION LIST ...137

 ix

LIST OF FIGURES

 Definition of optical flow (after [3]). ...6

 Optical flow field estimated by a non-moving observer.10

 Optical flow field estimated by a moving observer.11

 Example of rotary optical encoder (from [11]). ...14

 Binary and Gray encoding disc (from [12]). ..14

 Example of channels A and B outputs (from [13]).16

 Incremental encoder (from [14]). ...16

 Example of reference frames configuration. ..19

 Block Diagram of ADNS-3080 (from [17]). ...24

 Pinout of ADNS-3080 (from [17]). ...24

 ADNS-3080 registers (from [17]). ...25

 Timing between subsequent operations (from [17]).26

 “Product_ID” and “Revision_ID” registers (from [17]).27

 “Motion” register (from [17]). ...28

 “Delta_X” and “Delta_Y” registers (from [17]).28

 “Configuration_bits” register (from [17]). ...29

 “SQUAL” register (from [17])...29

 Focal length, object distance, and image distance (from [18]).30

 DC Motor Shield parts (from [20]). ...31

 Arduino Due Board (from [21]). ..33

 Arduino Due ports (from [21]). ...34

 Parallax Standard Servo (from [22]). ...35

 Parallax Standard Servo Wiring Diagram (from [22]).35

 Timing diagram for centered servo. ...35

 XBee-PRO 900 DigiMesh RF module (from [23]).36

 UART Data Flow Diagram (from [23]). ..37

 Example of a typical FMS (from [24]). ...38

 Indoor robot embedded system. ...39

 Communication protocol between the Arduino Due and the ADNS-
3080 sensor. ...40

 x

 Right turn of θ degrees. ..42

 Example of right turn. ..43

 Example of heading and distance to target computation.44

 Example of four-waypoint trajectory. ..46

 Principle of operation of the trajectory-follower robot47

 (continued on next page). ...47

 Location of the different parts of the four-wheel robot.50

 First scenario. ...52

 Second scenario. ..53

 Third scenario. ...54

 Principle of operation of the obstacle-detection and avoiding robot.55

 First-scenario protocol. ..56

 Second-scenario protocol. ..57

 Third-scenario protocol. ...59

 Detection and avoidance protocol for a non-zero-surface-quality-
factor threshold. ...60

 Example of detection and avoidance protocol using optimal control.63

 xi

LIST OF TABLES

Table 1. Optical flow based navigation works and approaches (after [3]).12

Table 2. Three-bit digital word-to-angle conversion of an absolute encoder.15

Table 3. Example of output channels state diagram. ...17

Table 4. Characteristics of some Avago mouse-chip sensors.18

Table 5. DC Motor Shield ports. ..32

Table 6. Theta angle and distance to target for all possible scenarios.45

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

UAV Unmanned Aerial Vehicle

GPS Global Positioning System

INS Inertial Navigation System

2D Two Dimensions

3D Three Dimensions

SPI Serial Peripheral Interface

IAS Image Acquisition System

DSP Digital Signal Processor

NCS Non Chip Select

NPD Non Power Down

SCLK Serial Clock

MOSI Master-Out-Slave-In

MISO Master-In-Slave-Out

MSB Most Significant Bit

LSB Least Significant Bit

SQUAL Surface Quality

PWM Pulse Width Modulation

IDE Integrated Development Environment

DAC Digital to Analog Converter

SS Slave Select

WSN Wireless Sensor Network

ISM Industrial Scientific and Medical

UART Universal Asynchronous Receiver Transmitter

FMS Flight Management System

FMC Flight Management Computer

CDU Control/Command Display Unit

SONAR Sound Navigation and Ranging

LIDAR Light Detection and Ranging

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Inspired by the way flying insects rely on optical estimation for landing, obstacle

avoidance, distance estimation, and speed regulation, optical flux has been, for decades,

an interesting area of research for many robotics researchers. Optical flow techniques

present an effective solution to navigation and environmental interaction problems that

many ground and aerial robots encounter. To be more specific, the integration of optical

flux in robotics allows accurate measurements of traveled distance, altitude, and velocity.

Different optical flow algorithms (Lucas-Kanade method, Horn-Schunck method, Image

interpolation method, Block matching algorithm, etc.) have been generated and adopted

to mimic the behavior of flying insects. A variety of optical flow sensors have been used.

The most popular sensors are optical mice, omnidirectional vision systems, and binocular

vision systems. Motion field-estimation models such as Pin-Hole Image Plane and

Spherical Imaging Surface provide rotational velocities, translational velocities, and

terrain information expressed in the camera body frame; however, this work shows that

optical flow can also be estimated from an inexpensive optical mouse sensor with a

narrow field of view.

A. THESIS OBJECTIVES

Usually, in a typical ground based robot, shaft encoders mounted to the wheels

provide motion estimation. These encoders are set to measure the speed of the platform

and the distance run. Unfortunately, wheels can easily slip on uneven surfaces or when

colliding with obstacles. This phenomenon results in position and distance estimation

errors. Odometry and dead reckoning rely on the data generated by motion sensors to

estimate change in position over time. As a small and inexpensive optical flow sensor, the

optical mouse turns out to be a good solution for these problems. An optical mouse or a

camera navigation system has no moving parts, no contact with the floor, and does not

care about the sliding effect of the wheels. As a result, position estimation and distance

measurements can be accurate. In this thesis, an optical flow sensor is implemented as an

optical odometer and a dead reckoning sensor in a ground mobile indoor robot. We

2

determine the traveled distance and the instantaneous position of the vehicle from the

generated data delivered by the optical sensor to an Arduino microcontroller. The

microcontroller controls the speed, heading of the robot, and flow of data coming in and

out from the different sensors used. In addition to odometry and dead reckoning, obstacle

detection and avoidance or environment recognition using optical flow sensors is one of

the objectives of this thesis. In addition, robotics and control system implementation in

embedded systems are explored.

B. ORGANIZATION

The second chapter involves a discussion of some optical flow algorithms

including Lucas-Kanade, Horn-Schunck and others that have been generated and adopted

to mimic the behavior of flying insects. We briefly discuss the different motion field-

estimation models such as Pin-Hole Image Plane and Spherical Imaging Surface. The

different computations and calculations related to most optical flow sensors such as

optical mice, omnidirectional vision systems and binocular vision systems are addressed.

Also, we briefly discuss the different optical flow sensors commonly used in robotics for

dead reckoning and distance measurement.

In the third chapter, we introduce optical flow sensors as a solution to the

problems met by typical shaft encoders and optical encoders. We explain how optical

flow techniques can improve dead-reckoning performances of ground controlled robots.

We deal with the different rotation matrices, translations, and homogeneous

transformations used to express the position and velocity of the robot relative to the

different frames involved (i.e., world frame, robot frame, and sensor frame).

The experimental part of the thesis is described in Chapter IV, where all the steps

and methodologies considered to successfully implement and use an optical mouse sensor

as an optical odometer, dead-reckoning, and obstacle-detection and avoidance sensor in a

ground mobile indoor robot are described. All the components used in the

experimental part are described in detail (Arduino Due, ADNS 3080, XBEE PRO 90

transceiver, DC motors board, etc.).

 3

Finally, the work accomplished and results obtained are summarized in Chapter

V, and some ideas of how this work can be further improved are provided.

C. BENEFIT OF STUDY

A systematic investigation into optical flow sensor-based-robotics navigation

systems is presented. This work may be considered in the future as a framework for

further studies and investigations concerned with solving the navigation and obstacle

avoidance problems encountered by ground and aerial robots.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. OPTICAL FLOW OVERVIEW

The majority of unmanned aerial vehicles (UAVs) are equipped with Global

Positioning Systems (GPSs) and inertial navigation systems (INSs). With no ability to

sense terrain features, these navigation systems cannot offer a safe and optimized mode

of operation when navigating in GPS degraded zones or indoor environments [1]. One of

the main problems faced in the development of fully automated vehicles (ground and

aerial robots) is the perception of the environment; thus, it is necessary to be able to

detect still and moving objects in order to reduce risk of collision. Motion estimation is a

process that involves studying moving objects in a video sequence, seeking the

correlation between two back-to-back images to predict the change in position of the

content. There are several motion estimation methods. The most widely used methods are

optical flow techniques. Optical flow is a visual displacement field that explains

variations in a moving image in terms of image points.

A. OPTICAL FLOW DEFINITION

Optical flow can be expressed as a function of image pixels (Apparent Motion

Definition) or a function of azimuth and elevation angles (Motion Field Definition), as

stated in [2].

1. Apparent Motion Definition

In robotics, optical flow can be perceived as an object’s apparent motion from the

eye of an embedded camera and can be computed as the difference between two

successive images and expressed according to [3] as

 [], (,)Tx y f x y=  . (0)

The optical flow here is represented as the relative displacements in the x and y

directions over a time t, and (x,y) represent any point on the image plane. The unit for the

point motion can be pixels per frame or pixels per seconds.

 6

2. Motion Field Definition

Optical flow can also be perceived as the relative three-dimensional (3D) motion

between the camera and the scene into the image plane. The relative motion can be

represented by different motion field models. A simplified optical-flow motion field

model is described in Figure 1. The optical-flow motion field can be expressed, as shown

by Haiyang et al. [3], as

 m
VOF
d

= . (2)

 Definition of optical flow (after [3]).

The observer speed is denoted by V. The distance separating the observer from

the object along the optical axis is denoted by d. The optical flow is expressed in radians

per seconds or degrees per seconds. The movement of the observer relative to the static

environment is the Ego Motion (EM); whereas, the Object Motion (OM) stands for the

displacement of independent objects. As a result, the optical-flow field contains

information for both EM and OM.

 7

B. OPTICAL FLOW COMPUTATION ALGORITHMS

Thanks to the huge progress made in image processing and computer vision,

many algorithms have been adopted to determine optical flow from two consequent

images. According to [4] and [5], we find that most of these algorithms operate under

specific assumptions that can be mathematically written as

 (, ,) (, ,)I x y t I x x y y t tδ δ δ= + + + (3)

and
 0x y tI x I y I+ + =  , (4)

where the light intensity or image brightness of a point (x,y) on the two-dimensional (2D)

image plane at time t is here denoted by I(x,y,t), and Ix, Iy, and It are, respectively, the

partial derivatives of the intensity function with respect to x, y, and t. Equation (3) implies

that local variations of the image intensity can only be caused by the movement of the

object with respect to the observer. Equation (4) implies that the motion over a tiny

neighborhood of pixels is uniform. In robotics, two of the most popular optical-flow-

intensity algorithms are the Lucas-Kanade and the Horn-Schunk algorithms. Other

methods based on features other than intensity can be used to compute optical flow but

are not addressed here because they are not as popular as the Lucas-Kanade and Horn-

Schunk algorithms. A survey of the different optical flow algorithms can be found in [2]

and [6].

1. Lucas-Kanade Method

The Lucas-Kanade method is a differential method used for OF estimation. This

method was developed by Bruce D. Lucas and Takeo Kanade. It presumes the flow is

constant around a considered pixel p and solves the equation of optical flow for all pixels

in that neighborhood using the least squares method [7]. The optical flow equations may

be applied for all the pixels belonging to a window of center p. Considering a window of

n pixels (q1, q2,…,qn), we see that the local velocity or image flow vector (,)TV x y=  

must satisfy

 8

1 1 1

2 2 2

() () ()

() () ()

() () ()

x y t

x y t

x n y n t n

I q x I q y I q

I q x I q y I q

I q x I q y I q

+ = −

+ = −

+ = −

 

 



 

. (5)

In matrix representation, these equations can be written as

1 1 1

2 2 2

 .
() () ()
() () ()

()() ()

x y t

x y t

t nx n y n

A V B
I q I q I q
I q I q I qx

y
I qI q I q

=

  − 
   −    =        

−    






 

. (6)

By rearranging the matrix form shown above, we express the image flow vector v as

 1 ()T TV A A A B−= (7)

1
2

1 1 1

2

1 1 1

() () () () ()

() () () () ()

n n n
x i x i y i x i t i

i i i
n n n

y i x i y i y i t i
i i i

I q I q I q I q I q
x
y

I q I q I q I q I q

−

= = =

= = =

   
−   

    
=     

     −   
   

∑ ∑ ∑

∑ ∑ ∑





. (8)

1. Horn-Schunk Method

The difference between the Lucas-Kanade and Horn-Schunk methods is that the

first algorithm assumes smoothness in the flow over a small set of pixels; however, the

second algorithm assumes that the motion is uniform over the whole image. As a result,

the Horn–Schunck algorithm results in a higher density of flow vectors than the Lucas-

Kanade algorithm; however, it is much more sensitive to noise [6]. In the Horn-Schunk

method, the flow for a 2D image stream is presented as a global energy function that

must be minimized [8], that is,

 () ()2 2 2 2
x y tE I u I v I u v dxdyα= + + + ∇ +∇∫∫ , (9)

where

 9

 (,) ; (,) dx dyu x f x y v y f x y
dt dt

= = = = = =  , (10)

and

2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
. (11)

The optical flow vector is represented by (,)TV u v= . Larger values for α, the constant of

regularization, result in smoother flows. Using the Finite Differences Method, we can

approximate the Laplacians of u and v, respectively,

 2 (,) (,)u u x y u x y∇ = − (12)

and
 2 (,) (,)v v x y v x y∇ = − . (13)

The quantities (,)u x y and (,)v x y are, respectively, two weighted averages of u and v

computed in the surrounding area of the (x,y) point. By solving the associated Multi-

Dimensional Euler-Lagrange equations, we can minimize the general expression of the

flow, with the result [8]

 () 2 2 0x x y tI I u I v I uα+ + − ∇ = (14)

and
 () 2 2 0y x y tI I u I v I vα+ + − ∇ = . (15)

By substituting (12) and (13), respectively, into (14) and (15), we get

 2 2 2
x x y x tI u I I v u I Iα α + + = −  (16)

and
 2 2 2

x y y y tI I u I v v I Iα α + + = −  . (17)

The pair of linear equations above is true for each point in the image; however, since the

neighboring values of the flow field are involved, an iterative solution must be

considered:

() ()1 1

2 2 2 2 2 2 ;
k k k k

x x y t y x y tk k k k

x y x y

I I u I v I I I u I v I
u u v v

I I I Iα α
+ +

+ + + +
= − = −

+ + + +
 (18)

 10

As stated earlier, many algorithms have been adopted to compute optical flows; however,

this is not possible without the availability of some optical flow motion field estimation

models capable of projecting 3D relative motions on a 2D image plane.

C. OPTICAL FLOW MOTION FIELD ESTIMATION MODELS

Whether the objects are moving in the scene or the observer is moving through

the scene, optical flow allows movement detection. Essentially, there are two main

approaches for the derivation of the optical flow motion field estimation models. The first

one is the pin-hole image plane approach, and the second one is the spherical imaging

surface approach. The optical flow motion-field estimation models take care of the

projection of a relative 3D motion onto a 2D image plane. Optical flow sensing is mainly

realized by considering a camera as a sensor. Let us suppose that a moving camera takes

two successive images, one at time t and the other at time t+1. The two images are

compared to each other to translate all the information relative to rotational velocities,

translational velocities, and surface information. From Figure 2 and Figure 3, it can be

seen that the resulting optical flow field is not the same when the camera is moving. In

this case, the optical flow field contains information about the observer translational

velocity. This is usually how dead reckoning and optical odometry for mobile robots

equipped with optical flow sensors works.

 Optical flow field estimated by a non-moving observer.

 11

 Optical flow field estimated by a moving observer.

Pin-hole image plane and spherical imaging surface approaches are described in detail

in [3].

D. APPLICATION OF OPTICAL FLOW SENSORS

In robotics, optical flow sensors have been widely used as navigation sensors

mounted to indoor and outdoor robots to complete a variety of navigation tasks. Capable

of keeping track of any displacement, optical flow sensors have been used as optical

odometers to ensure accurate measurement of distance. Even though typical encoders

such as shaft and optical encoders present a considerable margin of error when dealing

with distance measurement, optical flow sensors have not been able to totally replace

them due to redundancy issues.

Another application of optical flow sensors is obstacle avoidance. Researchers are

motivated to use optical flow sensors as obstacle avoidance sensors due to the fact that

they have a wide field-of-view. By only mounting a few of them on a robot, we can cover

all of the surrounding area.

Altitude hold is a new application of optical flow sensors. Some researchers used

them as a direct feedback to micro UAVs to maintain a specific altitude and control the

yaw angle. Under degraded GPS performance, optical flow sensors can also stand as

solutions for dead reckoning. They can give accurate estimates of current position and

 12

speed based on previous calculations. In addition, combined with inertial navigation

systems, they can provide precise measurements of height, altitude, and horizontal and

ground velocities which can be used for hovering control. Inspired by honeybees’ grazing

landing, some researchers have demonstrated the possibility of integrating optical flow

sensors for stabilization and landing on fixed and moving platforms. These applications

are very attractive when it comes to military deployments and emergency landings. A

summary of the different applications of optical flow sensors and some of the works

already done is provided in Table 1.

Table 1. Optical flow based navigation works and approaches (after [3]).

Navigation functions Authors Robotic
platform

OF computation
technique

Landing on moving
platform

ONERA-UNICE-
ANU

Quad-rotor Lucas-Kanade
algorithm

Velocity and height
estimation

UNSW-ADFA-UTS Helicopter Image interpolation
algorithm

Obstacle avoidance Flying wing Optical mouse sensor
Altitude keeping EPFL Ultra-light

MAV
Image interpolation

algorithm
Estimation hovering UAEH-UTC Eight-rotor

VTOL
Lucas-Kanade

algorithm
Velocity estimation ETHZ Quad-rotor Block matching

algorithm
OF comparison: vision
vs. navigation sensors

WVU Small fixed-
wing

Sift feature

 13

III. DEAD RECKONING AND ODOMETRY FOR INDOOR
ROBOTS USING AN OPTICAL MOUSE SENSOR

Dead reckoning is the estimation of position and can also be referred to as self-

localization or position tracking. Odometry is the estimation of speed and distance. In the

case of ground robots, sensors are usually attached to the wheels, and the collected data is

analyzed to estimate the motion of the robot. The most popular and widely used sensors

are the absolute and incremental rotary optical encoders. Unfortunately, these sensors

generate unbounded errors, especially when paths are not straight. Inertial sensors are

also used for dead-reckoning and odometry applications, but they suffer from the same

type of errors. One factor behind the lack of precision of rotary encoders is that when a

wheel-based robot slips, the wheels do not spin, leading to zero data collected by the

sensors. This is the major handicap for indoor and outdoor robots; therefore, sensors

based solely on optical flow computation must be adopted in robotics to solve the

problems of inaccuracy and unreliability of traditional sensors. Among all the optical

flow sensors, the use of an array of high speed optical flow mice has been proposed as a

solution for dead reckoning and odometry issues [9]–[10].

A. ROTARY DIGITAL OPTICAL ENCODERS

An optical encoder is an electronic device that converts the angular position or

motion of an axle to a digital code or sequence of pulses. The optical encoder’s disc is a

glass or plastic disc containing transparent and dark spots. A light source emits the light.

Depending on whether the light reflects over the white surface or the black surface of the

disc, we see that the photo detectors detect the optical pattern resulting from the disc’s

position. Optical encoders usually consist of infrared emitting diodes and NPN

phototransistors. The emitting diode and detector are mounted side-by-side on parallel

axes. The code collected is then converted by a microcontroller to an absolute or relative

position measurement. In the case of absolute encoders, a unique digital word

corresponds to a specific rotation of the shaft; however, as the shaft rotates, an

 14

incremental encoder generates digital pulses leading to the measurement of a relative

position. An example of a rotary optical encoder is displayed in Figure 4.

 Example of rotary optical encoder (from [11]).

1. Absolute Encoder

There are two popular types of absolute encoder: the gray and binary code

encoders. From Figure 5, it can be seen that the main difference resides in the

arrangement of dark and white spots. In the following, we consider a three-bit-digital-

word absolute encoder; thus, we need three emitting diodes and three photo detectors

mounted in parallel axes. The conversion from binary word to angle rotation is shown in

Table 2.

 Binary and Gray encoding disc (from [12]).

 15

Table 2. Three-bit digital word-to-angle conversion of an absolute encoder.

Decimal code Rotation range in degrees Binary code Gray code

0 0 to 45 000 000

1 45 to 90 001 001

2 90 to 135 010 011

3 135 to 180 011 010

4 180 to 225 100 110

5 225 to 270 101 111

6 270 to 315 110 101

7 315 to 360 111 100

For a three bit digital word, we get 23=8 angle rotations or distinct shaft positions. For a

n-bit digital word, we have 2n distinct angle rotations; thus, increasing the number of bits

per digital word, significantly increases the precision of the position measurement. The

gray code is preferred over the binary code since the uncertainty during one transition is

always one bit.

2. Incremental Encoder

As shown in Figure 6 and Figure 7, the incremental or relative encoder has two

sensors whose outputs are considered channels and called, respectively, channel A and

channel B. The two output channels, A and B, are in quadrature, meaning they are 90

degrees out of phase. Waveforms A and B are decoded to produce a count-up pulse or a

countdown pulse. Often, an additional output channel (INDEX) is added to count full

revolutions. It is also used to define the zero position.

 16

 Example of channels A and B outputs (from [13]).

 Incremental encoder (from [14]).

The principle of operation of an incremental encoder is illustrated in Table 3. For

example, if the last value collected from A and B was 00 and the current value is 01, it

means the wheel rotated a half step in the clockwise direction. Steps refer to the angle

slots available on the wheel. By counting the number of steps the wheel rotated, we can

determine precisely the position of the wheel at any time. The velocity can be determined

from the angle of rotation and the time taken to perform the rotation. Generally,

incremental encoders are preferred over absolute encoders since they give better results in

term of precision and accuracy, with fewer electronic components involved.

 17

Table 3. Example of output channels state diagram.

Phase
Clockwise rotation Counter-clockwise rotation

A B A B

1 0 0 1 0

2 0 1 1 1

3 1 1 0 1

4 1 0 0 0

B. OPTICAL MOUSE SENSORS

The idea of using optical mice as optical flow sensors is a powerful lure for

robotics researchers due to several factors. First of all, mouse chips are capable of

tracking 2D motions at very high resolutions. Second, they are small, light, and easy to

mount on any robotics platform. Finally, the chips are abundant on the market and are

inexpensive compared to the other optical flow sensors. The common problem of optical

mouse sensors is that they are mainly designed to work on surfaces located a few

millimeters from the sensor. Consequently, research was done to allow the application of

these sensors where the platform or the robot is farther than a few millimeters from the

tracking terrain. To accomplish this, optical imaging systems used in optical mice were

modified with non-standard lenses, allowing the refocusing of light onto the sensor. The

lenses used differ from one application to another according to the distance required

between the sensor and the ground. Actually, this approach has been proven to work for

different distances ranging from 2.0 cm above the surface for wheel-based robots to tens

of meters for flying robots [15]–[16].

Three main factors need to be considered when selecting an optical mouse sensor

for a certain application. These factors are the frame rate, the image size, and the

resolution. The number of snapshots the sensor is capable of taking per second represents

the frame rate. The higher the frame rate of the sensor, the greater is its ability to detect

small motions. That means increased capabilities to track high speed movements. High

 18

speed motion tracking also depends on the image size. That means if two sensors have

the same frame rate, the one capable of taking larger images gives better results. For

example, a 30 × 30-pixel-image sensor is better than an 18 × 18-pixel-image sensor.

Finally, the last characteristic to consider in an optical mouse sensor is the resolution. The

resolution of a sensor is usually expressed in counts per inch (cpi) and reflects the

number of steps the sensor reports during a displacement of one inch. In other words, a

high resolution sensor of 1600 cpi detects more surface details than a low resolution

sensor of 400 cpi. The basic principles of operation for optical mice are described in

detail in the next chapter as we introduce all the electronic components used to perform

the experimental part of this thesis. The performances of different Avago-brand mouse

chips are compared in Table 4.

Table 4. Characteristics of some Avago mouse-chip sensors.

Name Type Rated resolution
(cpi)

Rated speed
(inches/s)

Frame
rate (fps)

Image size
(pixels)

ADNS-2610 Optical 400 12 1500 18×18

ADNS-2051 Optical 400/800 14 at 1500 fps 500-2300 18×18

ADNS-5060 Optical 1050 30 - 19×19

ADNS-3080 Optical 400/1600 40 at 6400 fps 500-6469 30×30

ADNS-7050 Laser 800 20 - 22×22

ADNS-9500 Laser 5000 150 - 30×30

C. MOTION TRACKING

In robotics, three main reference frames are used to translate the motion of an

object within a specific space. The first is the world frame, referred to as W frame. The

second is the robot frame, referred to as R frame. The final one is the sensor frame,

referred to as S frame. It is important to consider that the number of S frames depends on

the number of sensors used since every sensor has its own frame. Let us consider the

configuration of frames shown in Figure 8.

 19

 Example of reference frames configuration.

At the beginning, or at t=0, the W and R frames coincide. This means that the sensor and

robot positions relative to the W frame are, respectively,

0 0

 ; 0
00

W R W
S S S RO O d O

   
   = = =   

  
  

. (19)

As the robot moves, the position of the robot frame and sensor frame relative to the

absolute frame change. Using rotation matrices and homogeneous transformations, we

 20

can represent all possible motion of the robot with respect to the W frame. The rotation

matrix of frame R relative to frame W is given by

cos() sin() 0
sin() cos() 0

0 0 1

W
R R

θ θ
θ θ

− 
 =  
 
 

. (20)

Also, the rotation matrix of frame S relative to frame R is given by

1 0 0
0 1 0
0 0 1

R
S R I

 
 = = 
 
 

. (21)

The robot position represented in the W frame system can be written as

cos()
sin()

 0

R
W

R R

d
O d

α
α

 
 =  
 
 

, (22)

and the sensor position represented in the R frame system can be written as

0

0

R
S SO d

 
 =  
 
 

. (23)

Using the different rotation matrix and positions of frames relative to each other, we get

the corresponding homogeneous transformations

cos() sin() 0 cos()
sin() cos() 0 sin()
 0 0 1 0 0 0 1

R
W W

RW R R
R

d
dR OT

θ θ α
θ θ α

−
 

= =  
  0

 0 0 0 1

 
 
 
 
 
 

 (24)

and

 1 0 0 0
 0 1 0
 0 0 1 0 0 0 0 1
 0

R R SR S S
S

dR OT
 

= =  
 

 0 0 1

 
 
 
 
 
 

. (25)

The position of the sensor relative to the world frame at any time t is given by

 21

 1 1

R W
W W R W S S

R R
O OP T P T

   
= × = × =      

   
, (26)

which can be written

cos() sin() 0 cos()
sin() cos() 0 sin()

 0 0 1 0
 0 0 0

R

RW W R
R

d
d

P T P

θ θ α
θ θ α

−

= × =

0

0
1 1

Sd
   
   
   ×
   
   

  

. (27)

Now, the sensor’s position coordinates relative to the world frame are

sin() cos()

cos() sin()
 0

S R
W

S S R

d dx
O y d d

z

θ α
θ α

− +  
  = = +  

      

. (28)

For each single motion of the robot (translation or rotation) we must solve these

equations to know the position of the robot. With only two equations and three

unknowns, it is difficult to determine the position of the robot. That is why, usually,

multiple sensors are mounted on a moving platform. With only one sensor, dead

reckoning is a complex problem to solve in robotics. In the next chapter, we present our

solution that not only makes dead reckoning and odometry with only one sensor possible,

but also remove the complexity of jumping from one frame to another by directly

representing the position of the robot in the W frame.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. EXPERIMENTAL SETUP AND RESULTS

The main goal of this work is the design and development of an efficient,

inexpensive, reliable, and simple obstacle avoidance and dead reckoning optical flow

sensor that can be used in varying light conditions. All the steps taken to make this work

achievable are outlined in this chapter. The work done throughout this thesis involved

commercially available components, C++ coding, and custom algorithms. The

components used to realize the experimental part of this thesis are the ADNS-3080, the

Arduino Due, a DC motor board connected to four motors, a Parallax servo motor, and

two XBEE modules.

A. HIGH PERFORMANCE OPTICAL MOUSE SENSOR ADNS-3080

The ADNS-3080 belongs to the family of ADNS optical mouse sensors

manufactured by Avago Technologies. It is considered to be a high performance optical

flow mouse sensor due to its key features that include the following [17]:

• Up to 40-inches per second (ips) and 15-g speed motion detection

• 500 to 6469-frames per second (fps) programmable frame rate

• 400 or 1600-counts per inch (cpi) selectable resolution

• 30 × 30 pixels image size

Accessing the sensor for data communication is possible through a four-wire

Serial Peripheral Interface (SPI). The ADNS-3080 consists of an Image Acquisition

System (IAS), a Digital Signal Processor (DSP), and a serial port. The IAS includes a

tiny camera, a lens, and an illumination system. The DSP processes the microscopic

terrain images captured by the IAS and determines the distance, the direction, and the Δx

and Δy relative displacements. An external microcontroller can be used to access

(read/write) the different registers of the sensor by using the SPI. The block diagram and

pinout of the ADNS-3080 are shown in Figures 9 and 10, respectively.

 24

 Block Diagram of ADNS-3080 (from [17]).

 Pinout of ADNS-3080 (from [17]).

The SPI is a synchronous serial port used to read the data from the different

registers of the sensor or to select specific parameters such as resolution. To activate the

serial connection, NPD must be set to high, RESET to low, and NCS to low. If NCS goes

high during a transaction, the transaction is aborted and the SPI is deactivated. The clock

input (SCLK) is always generated by the microcontroller. If multiple sensors are

 25

connected to the same master, the NCS can be used to select one sensor and deselect the

other. Every register in the ADNS-3080 has a unique address. The different registers and

reset values are illustrated in Figure 11.

 ADNS-3080 registers (from [17]).

 26

Understanding write and read operations is crucial to understanding how to

exchange data between the microcontroller and the sensor. Write operations consist of

two bytes both sent by the master over the master-out-slave-in line (MOSI): one byte for

the address and one byte for the data. The first byte containing the address has “1” as its

most-significant bit (MSB). The second byte containing the data is read by the sensor on

SCLK rising edges. Similarly, read operations consist of two bytes. The address byte has

“0” as its MSB and is sent by the microcontroller over MOSI. The data byte is driven by

the sensor over the master-in-slave-out line (MISO). The sensor reads MOSI bits on

every SCLK rising edge and delivers MISO bits on falling edges of SCLK. Minimum

timing between two subsequent operations needs to be respected. The time window to be

respected between two back-to-back operations is depicted in Figure 12.

 Timing between subsequent operations (from [17]).

The ADNS-3080 has an 8-bit unsigned integer unique ID contained in the

“Product_ID” register. The value contained in this register is always the same and is

 27

usually read to make sure that the connection between the microcontroller and the sensor

is functional. The “Revision_ID” register can also be used to identify the sensor’s

version. Both the “Product_ID” and the “Revision_ID” registers are read only registers.

The data, address, and reset values of the “Product_ID” and “Revision_ID” registers are

illustrated in Figure 13.

 “Product_ID” and “Revision_ID” registers (from [17]).

The “Motion” register contains information about the sensor motion and

resolution. If motion has occurred since the last time the register was read, the MSB is set

to “1”; otherwise, it is set to “0.” The least-significant bit (LSB) allows the user to know

the sensor resolution setting. If it is “0,” the resolution is 400 cpi (default value). If it is

“1,” the resolution is 1600 cpi. Once a motion has been detected, the user needs to read

the “Delta_X” and “Delta_Y” registers to determine the relative displacements Δx and

Δy, respectively. The “Motion,” “Delta_X,” and “Delta_Y” registers are all read-only

registers. To set the sensor resolution to 1600 cpi, the user needs to access the

“Configuration_bits” register and set the RES bit to “1.” The data and reset value of the

“Motion,” “Delta_X,” “Delta_Y,” and “Configuration_bits” registers are shown in

Figures 14, 15, and 16, respectiveley.

 28

 “Motion” register (from [17]).

 “Delta_X” and “Delta_Y” registers (from [17]).

 29

 “Configuration_bits” register (from [17]).

As an optical flow sensor, the ADNS-3080 must be able to operate with a large

number of valid features visible in an image or frame; thus, a surface quality “SQUAL”

register has to be regularly checked to make sure that the sensor is working properly. The

surface quality factor provides an accuracy indication of the relative displacements

computed by the sensor. A low “SQUAL” value makes the data collected and computed

by the sensor unreliable. The quality factor is directly related to the navigation surface.

The “SQUAL” is maximized when the distance between the navigation surface and the

imaging lens is optimized. The “SQUAL” register data and reset values are illustrated in

Figure 17.

 “SQUAL” register (from [17]).

An imaging lens can significantly increase the maximum tracking speed. It

provides a magnification factor equal to the rated tracking speed of the sensor divided by

the desired speed. The magnification factor is also given by m=Si/So where Si is the

image distance and So is the object distance. From Figure 18, it can be seen that Si is the

distance from the camera to the lens, and So is the distance from the surface to the lens.

 30

 Focal length, object distance, and image distance (from
[18]).

In other words, a 1/m wide surface patch will be focused onto a 1 mm wide image plane

within the ADNS-3080. The focal length of the lens can be expressed, according to [19],

as

 1 1 1 1 1 1 1
/o i o o i if S S S mS S m S

= + = + = + . (29)

Solving for So and Si, we get

 1(1)o
fS f f
m m

= + = + (30)

and
 (1)iS f mf f m= + = + . (31)

By knowing the focal length of an imaging lens, the magnification ratio can be set so that

the surface quality factor is maximized and the size of the surface focused onto the

camera’s image plane increased.

 31

B. DC MOTOR SHIELD

A DC Motor Shield is used to control the speed and the direction of rotation of the

wheels mounted to the indoor ground robot. The motor shield uses an H-bridge driver

chip L298N integrated circuit that can drive up to two brushed DC motors or a four-wire

two phase stepper motor. Each motor can be driven backwards or forwards. The speed of

each motor is controlled by high quality, built-in pulse-width Modulated (PWM) signals

generated by the microcontroller. The hardware diagram of the DC control board is

shown in Figure 19.

 DC Motor Shield parts (from [20]).

To power the board, an external power supply is needed. The input voltage ranges

from 6 to 35 volts. All the ports and pins available in the board are listed in Table 5.

Motor A is controlled via ports IN1, IN2, and ENA. IN1 and IN2 are used to control the

direction of rotation. When IN1 goes high and IN2 goes low, motor A rotates clockwise.

On the other hand, when IN1 goes low and IN2 goes high, motor A rotates counter-

http://www.geekonfire.com/wiki/index.php?title=File:L298N_1.jpg

 32

clockwise. ENA is connected to a PWM port of the microcontroller to control the speed

of the motor. The same applies for motor B on the IN3, IN4, and ENB ports.

Table 5. DC Motor Shield ports.

Port Description

VMS/GND (inputs) Power supply pins (6V~35V)

ENA (analog/digital
input)

TTL Compatible Enable Input of bridge A (Motor A PWM
pin)

IN1 (digital input) TTL Compatible Inputs of bridge A

IN2 (digital input) TTL Compatible Inputs of bridge A

ENB (analog/digital
input)

TTL Compatible Enable Input of bridge B (Motor B PWM
pin)

IN3 (digital input) TTL Compatible Inputs of bridge B

IN4 (digital input) TTL Compatible Inputs of bridge B

MOTORA (output) Output of bridge A

MOTORB (output) Output of bridge B

5V (output) 5V

C. ARDUINO DUE

Arduino is an open-source physical computing platform that can be used to collect

information from several sensors and control a variety of actuators, motors, lights, or

other peripherals. All of the collection and control processes are controlled from a single

thread of execution in the microcontroller. Arduino provides the user with different

microcontroller boards that can be purchased preassembled or as do-it-yourself kits.

Arduino is a simplified entry point to create and build digital devices and interactive

 33

objects capable of sensing and controlling the physical world. Arduino also provides the

user with an Integrated Development Environment (IDE) that supports C and C++

programming languages. The IDE is a clear and simple programming environment used

to write programs for the Arduino board. Also, the IDE gives the opportunity to check the

code for possible errors before uploading it to the microcontroller. The Arduino IDE

software runs on Windows, Macintosh OSX, and Linux operating systems.

Most of the Arduino boards run at 5.0 volts, except the Arduino Due which runs

at 3.3 volts. The ADNS-3080 and the XBEE pro 90 modules both run at 3.3 volts. That

means the maximum voltage that the I/O pins can tolerate is 3.3 volts. Forcing the optical

mouse sensor or the transceiver module to operate at 5.0 volts can damage them. To

avoid any possible incident, the Arduino Due was selected for our work. The Arduino

Due front and back sides are displayed in Figure 20.

 Arduino Due Board (from [21]).

The Arduino Due board contains a 32-bit Atmel SAM3X8E-ARM processor. It

has 12 analog inputs and 54 digital input/output pins. Twelve of the digital input/output

pins can be used as PWM outputs. The Arduino Due also has a SPI to communicate with

another microcontroller or one or more peripheral devices. MISO, MOSI, and SCLK

lines are common for all devices. The chip-select or slave-select (SS) line is specific for

every device. The microcontroller board operates at 84 MHz clock speed. It has two

digital-to-analog converters (DACs), a reset, and an erase button. The Arduino Due

pinout is shown in Figure 21.

 34

 Arduino Due ports (from [21]).

In this work, only one Arduino Due board was used. All the data traffic and

control signals were managed by the microcontroller. The Arduino Due is the master and

all the other parts of the ground robot (ADNS-3080 modules, XBEE pro 90, DC Motor

Shield, and Parallax servo) were slaves.

D. PARALLAX STANDARD SERVO

The Parallax Standard Servo (see Figure 22) is designed to hold any position

between 0 and 180 degrees. It is a high precision servo that can be controlled by a

microcontroller or device capable of generating PWM signals. From Figure 23, it can be

seen that the connection of the servo to any type of microcontroller is easy to realize.

 35

 Parallax Standard Servo (from [22]).

 Parallax Standard Servo Wiring Diagram (from [22]).

The position of the servo shaft is directly controlled by the width of the PWM

signal pulses. The servo needs a period of 20.0 ms between pulses to hold its position. To

center the servo, the microcontroller must deliver a 1.5 ms pulse every 20.0 ms. The

PWM signal required for a centered servo is shown in Figure 24.

 Timing diagram for centered servo.

 36

The pulse duration ranges from 0.75 to 2.25 ms. A 0.75 ms pulse corresponds to the servo

shaft positioned at 0 degree. A 2.25 ms pulse corresponds to a servo shaft position of 180

degrees. The center position corresponds to a servo shaft position of 90 degrees. So,

depending on the pulse duration, the servo shaft can rotate either clockwise or counter-

clockwise.

E. XBEE-PRO 900 DIGIMESH RF MODULES

The XBee-PRO 900 RF modules (see Figure 25) were mainly engineered and

designed to be used in wireless sensor networks (WSNs). They are reliable and require

low power to operate efficiently. They operate within the ISM (industrial, scientific, and

medical) 900-MHz frequency band to support up to 10 km (using high gain antennas) RF

line-of-sight ranges and 156 kbps data rates.

 XBee-PRO 900 DigiMesh RF module (from [23]).

The XBee-PRO 900 can communicate with any host that has a Universal

Asynchronous Receiver/Transmitter (UART) interface. At the source, the UART

converts parallel-form data into serial-form data. At the destination, the UART receives

the bits of data and reassembles them into bytes of data. Any microcontroller supporting

a UART interface can be directly connected to the pins of the RF module. From Figure

26, it can be seen that the UART system data flow diagram is based on a four-wire

connection. RTS and CTS pins correspond, respectively, to Request-to-Send and Clear-

to-Send pin flow control pins.

 37

 UART Data Flow Diagram (from [23]).

F. TRAJECTORY-FOLLOWER ROBOT

The idea of the trajectory-follower robot came from the principle of operation of

the Flight Management System (FMS) in aircraft. The FMS is an embedded system that

keeps track of the aircraft’s position by collecting data from its various sensors (GPS,

INS, radio navigation tools, etc.). The FMS consists essentially of a Flight Management

Computer (FMC) connected to the different sensors and a Control Display Unit (CDU).

Before take-off, a flight plan is entered by the pilot via the CDU into the FMS. The flight

plan is the route the aircraft must follow to fly from the departure point to the destination

point and contains all the waypoints needed to reach the destination. Once in flight,

knowing the aircraft’s position and the flight plan, the FMS can guide the aircraft along

the way by controlling the autopilot and the auto-throttle systems. The different parts of a

typical FMS are displayed in Figure 27.

 38

 Example of a typical FMS (from [24]).

In this work, the Arduino Due plays the role of the FMC. A desktop computer

plays the role of the CDU, and the DC motor board plays the role of the autopilot and

auto-throttle systems. Using the Arduino IDE installed in the control unit, we uploaded

the program containing the different waypoints to the microcontroller. Once the program

was uploaded, the processor collects position information from the ADNS-3080 optical

mouse sensor. Given the robot position and route plan, the Arduino Due controls the

speed and direction of rotation of the wheels via the DC motor board. The position

information and the robot maneuvers are displayed on a display unit located in a

monitoring area. The control unit and the display unit can be located at the same place.

An RF connection between the display unit and the onboard computer is established by

using two XBee-PRO 900 modules. The emitter module is mounted to the robot and

directly connected to the microcontroller via one of its four UART interfaces. The

receiver module is directly connected to the display unit via the serial port. The different

parts of the wheeled-robot’s onboard system are shown in Figure 28.

 39

 Indoor robot embedded system.

This work involved extensive coding and programming. Every component had to

be programmed and tested separately, and all the resulting codes had to be combined into

one final program. The resulting program allowed the microcontroller to read and edit the

data contained in the different registers of the optical flow sensor, control the speed and

direction of rotation for the motors, and continuously send information of position and

behavior to the display unit. The master can access all the registers of the ADNS-3080

chip. To track the robot’s position, the microcontroller initializes the sensor, configures

its settings, and collects position data from all the registers involved in the dead

reckoning process. All the useful data are sent out to the display unit via the RF link.

Getting a surface quality feedback from the sensor is very important since a high quality

factor indicates that the ADNS-3080 can see a large number of terrain features; thus, its

 40

ability to reliably track position improves. A significant drop in the quality factor

indicates that the dead reckoning process is no longer reliable.

 Communication protocol between the Arduino Due and
the ADNS-3080 sensor.

 41

The communication process between the microcontroller and the optical mouse sensor is

described by the flowchart presented in Figure 29.

As said before, traditional techniques of dead reckoning using data collected and

measured by encoders attached to either the robot’s wheels or the engine axis suffer from

slipping and crawling. Slipping occurs when wheels slide, and crawling occurs when an

external force is exerted on the robot. The dead reckoning we propose here is slipping

and crawling resistant since the position tracking function is attributed to one ADNS-

3080 sensor. The mouse sensor is not bound to any moving part and is capable of reading

relative displacements even when an external force is behind the robot movement.

Accurate dead reckoning using optical flow sensors usually involves the use of more than

one sensor due to the fact that a robot change of direction is hard to measure using only

one sensor. In some works, two optical mouse sensors have been used. In others, arrays

of optical mouse sensors have been utilized. Indeed, the use of only one optical flow

sensor for dead reckoning may seem like a bad idea unless the robot is also equipped with

one or multiple other heading sensors. A novel and efficient mean of using one optical

mouse sensor pointed at the ground as a heading and dead reckoning sensor is presented

in this work.

The first thing we must consider when using a two or four-wheeled robot is how

to make a right or a left turn. A common technique is to vary the speed of the wheels. For

instance, if the left wheels rotate faster than the right wheels, the vehicle moves to the

right, and vice versa. The distance required to make a turn depends directly on how

slowly the left (right) wheels spin and how quickly the right (left) wheels spin. With only

one optical mouse sensor, this scenario is not appropriate since the robot position changes

continuously during the turn; thus, the position tracking process cannot be reliable.

In this work, we opted for another technique to reduce the complexity associated

with the above method. In order to make a turn, the right and left wheels rotate at the

same speed but in opposite directions. For example, when the right wheels rotate forward

and the left wheels rotate backward, the robot makes a left turn. Contrarily, when the

right wheels rotate backward and the left wheels rotate forward, the robot makes a right

turn. In both cases the robot maintains its current position. Only a change in direction

 42

occurs. In other words, a right or left turn causes only the robot to spin about its ZR-axis.

An example of a right turn is illustrated in Figure 30. As we can see, the position of the

robot remains unchanged; however, after the manoeuver, the robot points θ degrees to the

right.

 Right turn of θ degrees.

Similar to an aircraft equipped with an FMS, the trajectory-follower robot needs

to move from one point to another. Given the robot’s current position and the next

waypoint, the onboard computer has to compute the route to follow in order to reach the

next destination and then compute the necessary commands to be executed by the motor

system. The problem to solve is how to compute and track a change in direction. In this

work, after attempting several methods, we determined how to accomplish this using the

same sensor, and there is no need to add an additional payload to the platform. When a

turn is being executed, only a change in the relative displacement Δx is detected. No

changes in the relative displacement Δy occur. The change relative to the x axis

corresponds to an arc of length

 43

 posx Rθ= × . (32)

For example, a 90-degree right or left turn corresponds to an x-displacement of ± R × π/2.

The different phases required to execute a 45 degree right turn are listed in the following

flowchart (Figure 31).

 Example of right turn.

The turn speed and direction depend directly on the command signals sent out by

the onboard computer to the DC motor board. Given the robot type, the DC motor board

can be connected to either two or four DC motors. The wheels are directly mounted to

the DC motors. To move from one point to another, the microcontroller needs to first

determine the direction and then the distance required to reach the next destination. Every

time the robot reaches one waypoint, new computations need to be done. Once done with

the computation of direction and distance, the Arduino Due asks the motor system to

 44

translate the data computed into displacement. Meanwhile, the Arduino Due also collects

position information from the dead-reckoning sensor. Every time a destination is reached,

the robot stops for a period of few seconds to give the microcontroller enough time to

calculate the next set of instructions. Consider the example shown in Figure 32. If the

robot is to go from point (xk,yk) to point (xk+1,yk+1), the heading angle and the distance to

target are, respectively,

()
()

11

1
tan k k

k k

x x
y y

θ +−

+

 −
=  

−  
 (33)

and

 () ()2 2
1 1k k k kD x x y y+ += − + − . (34)

 Example of heading and distance to target computation.

The θ and D values calculated above are not valid for all scenarios. Depending on

the position of one point with respect to the previous one, we see that the heading angle

and distance to target values may vary. From Table 6, we conclude that there are nine

possible scenarios.

 45

Table 6. Theta angle and distance to target for all possible scenarios.

With all cases addressed for calculating the heading and distance, we now discuss

the algorithm adopted and executed by the trajectory-follower robot. At time t=0, the

world frame and the robot frame coincide. All the robot positions are only relative to the

world frame. Note that at every waypoint, the robot has to make a θ-turn in the direction

opposite to the initial one he made to reach that point. Before every new computation of

heading and distance to target, the robot frame x- and y-axis are, respectively, oriented

the same way as the world frame x- and y-axis. An example of four-waypoint trajectory is

illustrated in Figure 33.

 46

 Example of four-waypoint trajectory.

The behavior of the trajectory-follower robot is explained in more detail in the

flowchart presented in Figure 34. The flowchart considers all possible scenarios.

 47

 Principle of operation of the trajectory-follower robot
(continued on next page).

 48

Figure 34. Principle of operation of the trajectory-follower robot (continued from

previous page).

 49

G. OBSTACLE DETECTION AND AVOIDANCE ROBOT

Collision avoidance is the set of maneuvers or actions that a robot executes to

successfully avoid possible impacts with surrounding objects. An autonomous vehicle

cannot avoid collision if its onboard system is unable to detect the presence of objects, so

collision avoidance must always be preceded by collision detection. In other words, if a

robot is not equipped with collision detection sensors, it is impossible for it to avoid

collision with possible obstacles. A hindrance must first be detected and then avoided.

The most widely used sensors for obstacle detection and avoidance are Sound

Navigation and Ranging (SONAR) sensors. Active SONARs emit pulses of sounds and

listen for possible echoes. The time from emission until the echo is received reflects the

distance to the detected object. SONARs are known to be very directional. That means

they have a narrow field-of-view. In order for a robot equipped with SONARs to

effectively detect and avoid obstacles, more than one sensor is needed. Some of the

obstacle avoidance robots available in the market have up to sixteen SONARs to allow

360-degree obstacle detection. At least eight sensors are mounted to the front part of the

robot to efficiently avoid frontal collisions. The information collected by SONARs is

affected by the direction, orientation, and shape of the obstacle.

The sensor field-of-view is quite important when it comes to obstacle detection

and avoidance tasks. If the robot is unable to see enough features, it cannot detect all the

surrounding obstacles, so the probability of collision increases. The Hokuyo laser field of

view ranges from 240 to 270 degrees. The light detection and ranging (LIDAR) Neato

XV-11 is characterized by a 360-degree field of view. The LIDARs seem to be the best

solution for obstacle detection and avoidance problems; however, they are expensive and

heavy compared to optical flow sensors. All these problems have inspired scientists to

investigate optical flow sensor capabilities to replace SONARs and LIDARs.

Optical flow sensors have been used in the last two decades to achieve obstacle

detection and avoidance. The majority of existing works are based on the computation of

time-to-contact, which requires the implementation of complex algorithms. In this work,

we propose a simple, novel, and effective method to perform obstacle detection and

 50

avoidance tasks. Only one ADNS-3080 sensor is used. The main function of the sensor is

first to detect possible objects in front of the ground robot and then assist the onboard

computer to properly calculate the instructions needed to avoid a possible crash. The set

of instructions computed by the microcontroller is executed by the motor system to steer

the robot away from the threatening object. To realize this, we used the same platform as

in part F but equipped it with an additional ADNS-3080 sensor headed forward. The

sensor is mounted on top of an articulated Parallax Standard Servo. The servo is fixed to

the upper part of the platform. The locations of the different parts of the robot are shown

in Figure 35.

 Location of the different parts of the four-wheel robot.

Building a robot that needs to detect and avoid obstacles in order to go from one

point to another is a challenging task. In addition to having obstacle detection and

avoidance capabilities, such a robot needs to be capable of tracking its own position; thus,

 51

a dead reckoning sensor is required. The good news is that we developed a position

tracking sensor (Part F). As a result, we only had to determine how to simultaneously

access both sensors such that the robot could execute the obstacle avoidance algorithm

while continuously knowing its current position and next direction.

The act of communicating with two sensors at the same time and managing the

data coming in and out of the onboard computer was accomplished via the SPI protocol.

We said earlier that if multiple sensors have to be connected to a same master, the NCS

pin can be used to select one sensor and deselect the other, so the microcontroller can

decide which sensor to communicate with by momentarily turning off the NCS input of

one sensor and turning on the NCS input of the other one. When position information is

needed, the position-tracking data flow must be authorized and the obstacle-detection

data flow inhibited, and vice versa.

With the dead reckoning mechanism implemented previously, the only thing

remaining is how to detect obstacles. One of the most important registers of the ADNS-

3080 is the “SQUAL” register. The data contained in this register reflects how reliable

the sensor is. When there is enough light in the room and no obstacle surrounding the

sensor, the surface quality factor is large (around 100). On the other hand, as the robot

gets closer to an obstacle, this value decreases and drops all the way to zero when the

robot is a few centimeters from the object. By closely tracking fluctuations in the surface

quality factor, environmental sensing becomes possible. With this collision-detection

concept, the microcontroller has to develop and send out to the motor system the set of

instructions necessary to avoid crashing into the detected threat. From Figures 36, 37, and

38, it can be seen that depending on how the obstacles are arranged, the robot calls

different protocols and mechanisms to avoid collision. As the robot heads towards the

destination point, the SQUAL register data varies. When the surface quality factor equals

zero, the robot stops for few seconds and checks for the possible existence of obstacles on

the right side. If there are no obstacles, the robot makes a 90-degree right turn and then

moves forward. Meanwhile, the obstacle-detection sensor is headed toward the obstacle

via the Parallax servo. Once the surface quality factor exceeds a specific threshold (50 in

this case), the robot makes a 90-degree left turn and moves toward the destination.

 52

 First scenario.

The second scenario involves the existence of obstacles on the right side. The

robot checks for the possible existence of obstacles on the left side. If the way is clear,

the robot makes a 90-degree left turn and keeps moving forward until the ADNS-3080

detects the obstacle’s end. After that, the robot makes a 90-degree right turn and moves

towards the destination.

 53

 Second scenario.

The worst-case scenario occurs when the robot is trapped in a set of three

obstacles. The vehicle has no option but to choose to go one way or the other (right/left).

There are more changes of direction and maneuvers to be executed in this case. Here, the

detection of the obstacle’s end has to be executed twice. The first turn is a 180-degree

turn. In all scenarios, the robot changes direction more than once. Without the second

ADNS-3080 position-tracking sensor, reaching the desired destination is infeasible. The

main advantage of using an optical mouse sensor for collision detection is that it does not

care about the shape of the obstacle; however, after several tests, we noticed that the use

of dark obstacles leads to better results.

 54

 Third scenario.

The principle of operation of the obstacle-detection and avoiding robot is

described in detail in the flowchart shown in Figure 39.

 55

 Principle of operation of the obstacle-detection and
avoiding robot.

 56

The first, second, and third scenario protocols are depicted, respectively, in

Figures 40, 41, and 42.

 First-scenario protocol.

 57

 Second-scenario protocol.

 58

 59

 Third-scenario protocol.

When the obstacle’s end-detection process is running, the surface-quality-

threshold value was set to 50 so that possible objects located far behind the obstacle do

not affect the detection’s outcome. In this work, we choose for the robot to stop only a

few centimeters from the detected obstacle. That explains the choice of the zero-surface-

quality value for obstacles detection. We ran other tests for different values of the surface

quality factor, and the results were interesting. In order to detect the obstacle and start the

obstacle-avoidance process from long distances, a non-zero-surface-quality-factor

threshold was selected. That means when the “SQUAL” data is less than the threshold, an

obstacle is detected. In that case and considering the three different types of obstacle

configurations stated earlier, the detection and avoidance processes are exactly the same.

Only one protocol is needed to successfully detect and avoid the different configurations

of obstacles. From Figure 43, it can be seen that the robot starts the obstacle-avoidance

process without even getting close to the obstacle. The change of the surface-quality-

threshold value was accomplished by varying the position of the imaging lens; in other

words, varying the object and image distances implemented the desired change. To

 60

summarize, the surface quality factor values for obstacle and obstacle’s end detection can

be chosen according to the type of application. If the application requires the knowledge

of the nature of the obstacles, the first option is recommended. On the other hand, if the

application does not care about what kind of obstacle is in the robot’s way, the second

option might be the most practical since it saves time and makes the robot execute fewer

maneuvers.

 Detection and avoidance protocol for a non-zero-surface-
quality-factor threshold.

 61

V. CONCLUSION AND RECOMMENDATIONS

Using two optical mouse chips as position tracking and environment-sensing

sensors onboard an indoor-ground robot, we successfully implemented dead reckoning

and obstacle-detection and avoidance. The experimental results obtained were promising

and can be further improved.

A. RESULTS FOR TRAJECTORY-FOLLOWER ROBOT

The trajectory-follower robot performances proved that an optical flow sensor can

be used at the same time as a heading and a relative-displacement calculator. As far as we

know, the application of an optical mouse chip as a heading sensor has never been

reported before. The originality of this work also resides in the fact that the majority of

existing work has used arrays of optical mouse sensors or one optical mouse sensor in

association with different other sensors to perform self-localization or dead reckoning,

which is not the case here.

B. RESULTS FOR OBSTACLE DETECTION AND AVOIDANCE ROBOT

In robotics, obstacle detection and obstacle avoidance have been investigated by

many researchers. Most of the reported works use techniques based on the time-to-

contact computation and stereo imaging. These techniques are complex and require more

than one vantage point. In this work and for the first time, we proposed a simple and

reliable method based on the surface-quality-factor variation. The experimental results

obtained were impressive. By using only one optical mouse sensor headed forward, we

were able to detect and avoid collisions with obstacles of different shapes and colors.

Unlike SONARs, the method we used cannot be affected by the obstacle’s shape;

however, the experimental tests proved that the results for obstacle detection are better

when the obstacle has a dark color.

 62

C. FUTURE WORK

One problem we identified during this work was keeping the robot running in a

straight line. Once the robot rotates to the desired heading, the intended path is always a

straight line. We adopted the use of an open-loop control system to run the left and right

wheels at the same speed. The difference in PWM signals was not very significant, but

we were able to drive the robot in a straight line for a few meters. The implementation of

a closed-loop control system to solve the problem might be one of the most important

recommendations for future works. This can be done by using the relative displacements

Δx and Δy as feedback signals returned to the microcontroller. Before computing the duty

cycles of the two different PWM signals to be sent to the DC motor board, the

microcontroller can check the feedback signals and then decide which wheels need to

rotate faster than the others.

The experimental tests proved that the accuracy of the turn was better for angles

greater than 20 degrees. In this work, we did not take into consideration the friction force

resulting from the nature of the terrain. That is why, from time to time during a turn, the

robot’s wheels slip. If future work includes the friction parameter in the computation

process of turns, the results should improve. Note that the friction force depends directly

on the type of surface on which the robot is traversing. The precision in position

measurement is highly affected by the variation of the surface quality factor; thus, the

results would be more accurate if the robot was running over the same surface during the

time of the experiment.

The technique adopted in this thesis can be the subject of future improvement.

Optimal control for obstacle detection and avoidance is a very tempting challenge. To get

from point A to point B, all the maneuvers executed by the robot to avoid the obstacle

were essentially straight-line runs and 90-degree turns; however, with optimal control,

the robot deviation from the collision trajectory can be set according to the rate of change

in the surface quality. This way, we do not have to wait until the surface-quality factor

drops all the way to zero in order to stop the robot and start the obstacle-avoidance

procedure; rather, we can trace the rate of degradation in the surface-quality factor and

accordingly change the speed of rotation of the left and right wheels to steer the robot

 63

away from the obstacle. An example of how the robot can detect and avoid an obstacle

using optimal control is shown in Figure 44. As can be seen, to get from point A to point

B, the robot calls fewer mechanisms and executes fewer maneuvers. Once the robot

recognizes that it has passed the obstacle, it changes its direction and heads toward point

B.

 Example of detection and avoidance protocol using
optimal control.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX A. ADNS-3080 SENSOR SCRIPTS

This appendix includes the Arduino scripts written to access the different registers

of the ADNS-3080 sensor. These scripts allow the user to check the connection status

between the Arduino Due microcontroller and the sensor. Using these scripts, the user

can change some of the sensor’s default settings.

A. MAIN CODE

#include <T3080.h>

#include <SPI.h>

T3080 sensor;

typedef unsigned long Time;

void setup() {

 sensor.init_1();

 Serial.begin(115200);

 Serial.println();

 SPI.begin();

 SPI.setBitOrder(MSBFIRST);

 SPI.setDataMode(SPI_MODE3);

 SPI.setClockDivider(SPI_CLOCK_DIV16);

 sensor.reset();

 sensor.init_2();

}

void loop() {

 static Time last_reset;

 Time now = millis();

 sensor.measurement();

 delay(500);

}

 66

B. HEADER FILE

#ifndef T3080_h

#define T3080_h

#include "Arduino.h"

// Register Map for the ADNS3080 Optical Optical Flow Sensor

#define ADNS3080_PRODUCT_ID 0x00

#define ADNS3080_REVISION_ID 0x01

#define ADNS3080_MOTION 0x02

#define ADNS3080_DELTA_X 0x03

#define ADNS3080_DELTA_Y 0x04

#define ADNS3080_SQUAL 0x05

#define ADNS3080_PIXEL_SUM 0x06

#define ADNS3080_MAXIMUM_PIXEL 0x07

#define ADNS3080_CONFIGURATION_BITS 0x0a

#define ADNS3080_EXTENDED_CONFIG 0x0b

#define ADNS3080_DATA_OUT_LOWER 0x0c

#define ADNS3080_DATA_OUT_UPPER 0x0d

#define ADNS3080_SHUTTER_LOWER 0x0e

#define ADNS3080_SHUTTER_UPPER 0x0f

#define ADNS3080_FRAME_PERIOD_LOWER 0x10

#define ADNS3080_FRAME_PERIOD_UPPER 0x11

#define ADNS3080_MOTION_CLEAR 0x12

#define ADNS3080_FRAME_CAPTURE 0x13

#define ADNS3080_SROM_ENABLE 0x14

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER 0x19

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER 0x1a

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_LOWER 0x1b

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_UPPER 0x1c

#define ADNS3080_SHUTTER_MAX_BOUND_LOWER 0x1e

#define ADNS3080_SHUTTER_MAX_BOUND_UPPER 0x1e

#define ADNS3080_SROM_ID 0x1f

#define ADNS3080_OBSERVATION 0x3d

 67

#define ADNS3080_INVERSE_PRODUCT_ID 0x3f

#define ADNS3080_PIXEL_BURST 0x40

#define ADNS3080_MOTION_BURST 0x50

#define ADNS3080_SROM_LOAD 0x60

#define FRAME_LENGTH 900

class T3080

{

public:

 T3080() {

 ADNS3080_CHIP_SELECT = 4; // chip select pin

 ADNS3080_RESET = 5; // chip reset pin

 ADNS3080_POWER_DOWN = 6; // Power down pin

 x_pos = 0;

 y_pos = 0;

 }

 void measurement(); // sends values of dx and dy over the serial link

and increments distx and disty respectively by dx and dy

 void reset(); // reset sensor

 byte read_register(byte address);

 void init_1();

 void init_2();

 void write_register(byte address, byte data);

private:

 int ADNS3080_CHIP_SELECT; // chip select pin

 int ADNS3080_RESET;

 int ADNS3080_POWER_DOWN;

 float x_pos;

 float y_pos;

};

#endif

 68

C. CPP FILE

#include"Arduino.h"

#include"T3080.h"

#include "SPI.h"

void T3080::init_1()

{

 pinMode(ADNS3080_CHIP_SELECT,OUTPUT);

 pinMode(ADNS3080_POWER_DOWN,OUTPUT);

 pinMode(ADNS3080_RESET,OUTPUT);

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 digitalWrite(ADNS3080_RESET, LOW);

 digitalWrite(ADNS3080_POWER_DOWN,HIGH);

}

void T3080::init_2()

{

 int retry = 0;

 byte productId = 0;

 byte revisionId = 0;

 // PRODUCT ID VERIFICATION

 while(retry < 10) {

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_PRODUCT_ID);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 productId = SPI.transfer(0x00);

 69

 if(productId == 0x17) {

 Serial.println("\n Found productId ");

 Serial.print(productId, HEX);;

 }

 else{

 Serial.println("\n False productId ");

 Serial.print(productId, HEX);;

 }

 retry++;

 }

 if(productId != 0x17) {

 delay(100);

 exit(1);

 }

// REVISION ID VERIFICATION

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_REVISION_ID);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 revisionId = SPI.transfer(0x00);

 Serial.println("\n rev");

 Serial.print(revisionId, HEX);

// Set resolution to 1600 counts/inch

 delayMicroseconds(75);

 // set the chip select to low to select the device

 70

 digitalWrite(ADNS3080_CHIP_SELECT, LOW);

 // send register address

 SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80);

 // send data

 SPI.transfer(0x10);

}

byte T3080::read_register(byte address)

{

 byte data = 0;

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 // send the device the register you want to read:

 SPI.transfer(address);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 data = SPI.transfer(0x00);

 // take the chip select high to de-select:

 digitalWrite(ADNS3080_CHIP_SELECT, HIGH);

 return data;

}

void T3080::write_register(byte address, byte data)

 71

{

 delayMicroseconds(75);

 // set the chip select to low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT, LOW);

 // send register address

 SPI.transfer(address | 0x80);

 // send data

 SPI.transfer(data);

 // set the chip select to high to de-select the device

 digitalWrite(ADNS3080_CHIP_SELECT, HIGH);

}

 void T3080::measurement()

{

 byte motion = 0;

 uint8_t dx = 0;

 uint8_t dy = 0;

 int8_t delta_x = 0;

 int8_t delta_y = 0;

 float DELTA_x = 0;

 float DELTA_y = 0;

 byte SQUAL = 0;

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_MOTION);

 72

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 motion = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_DELTA_X);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 dx = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_DELTA_Y);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 dy = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_SQUAL);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 SQUAL = SPI.transfer(0x00);

 // check for overflow

 if((motion & 0x10) != 0)

 {

 Serial.println("\n Attention Overflow");

 73

 }

 else

 {

 Serial.println("\n No Overflow");

 }

 // check resolution

 if((motion & 0x01) != 0)

 {

 Serial.println("\n Resolution = 1600 counts/inch");

 }

 else

 {

 Serial.println("\n Resolution = 400 counts/inch");

 }

 // check for motion and update dx and dy

 if((motion & 0x80) != 0)

 {

 Serial.println("\n Motion");

 }

 else

 {

 Serial.println("\n No Motion");

 }

 delta_x= (int8_t)dx;

 delta_y= (int8_t)dy;

 DELTA_x=(float)delta_x/1600.0;

 DELTA_y=(float)delta_y/1600.0;

 DELTA_x=DELTA_x/1.62914206;

 74

 DELTA_y=DELTA_y/1.62914206;

 DELTA_x=100*DELTA_x;

 DELTA_y=100*DELTA_y;

 x_pos=x_pos+DELTA_x; // x position in cm

 y_pos=y_pos+DELTA_y; // y position in cm

 //Display DELTA

 Serial.print(DELTA_x, DEC);

 Serial.print(" ");

 Serial.print(DELTA_y, DEC);

 //Display x and y

 Serial.print(" ");

 Serial.print(x_pos, DEC);

 Serial.print(" ");

 Serial.println(y_pos, DEC);

 //Display Quality

 Serial.println("\n Quality");

 Serial.print(SQUAL, DEC);

 // take the chip select high to de-select:

 // digitalWrite(ADNS3080_CHIP_SELECT, HIGH);

 // delayMicroseconds(5);

}

void T3080::reset()

{

 digitalWrite(ADNS3080_RESET,HIGH); // reset sensor

 delayMicroseconds(10);

 digitalWrite(ADNS3080_RESET,LOW); // return

sensor to normal

}

 75

D. KEYWORDS FILE

T3080 KEYWORD1

measurement KEYWORD2

reset KEYWORD2

read_register KEYWORD2

write_register KEYWORD2

init_1 KEYWORD2

init_2 KEYWORD2

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

APPENDIX B. DC MOTORS SCRIPTS

The Arduino scripts contained in this appendix allow the user to test the four DC

motors. Using these scripts, the user will be able to control the speed and direction of

rotation of the right and left wheels.

A. MAIN CODE

#include <Motors.h>

#include <SPI.h>

Motors Motion;

void setup()

{

 Motion.initialize();

 Motion.forw();

 Motion.speed_up(); //fade in from 0-255

 Motion.forward(); //continue full speed forward

 delay(2000);

 Motion.slow_down(); //Fade out from 255-0

 Motion.stop();

 delay(2000); // stop for 2 seconds

 Motion.back();

 Motion.speed_up(); //fade in from 0-255

 Motion.backward(); //full speed backward

 delay(2000);

 Motion.slow_down(); //Fade out from 255-0

 Motion.stop();

 delay(2000); // stop for 2 seconds

 78

 Motion.forw();

 Motion.forw_right(); // turn right

 delay(3000);

 Motion.stop();

 delay(2000); // stop for 2 seconds

 Motion.forw_left(); // turn left

 delay(3000);

 Motion.stop();

 }

void loop()

{

}

B. HEADER FILE

#ifndef Motors_h

#define Motors_h

#include "Arduino.h"

class Motors

{

public:

 Motors() {

 ENA = 8; //PWM control pin for right motors

 ENB = 9; //PWM control pin for left motors

 In_1 = 10; //1st direction control pin for right motors

 In_2 = 11; //2nd direction control pin for right motors

 In_3 = 12; //1st direction control pin for left motors

 In_4 = 13; //2nd direction control pin for left motors

 }

 79

 void initialize();

 void forw();

 void back();

 void forward();

 void backward();

 void stop();

 void speed_up();

 void slow_down();

 void forw_right();

 void forw_left();

private:

 int ENA;

 int ENB;

 int In_1;

 int In_2;

 int In_3;

 int In_4;

};

#endif

C. CPP FILE

1. #include"Arduino.h"

2. #include"Motors.h"

3. #include "SPI.h"

4.

5. void Motors::initialize()

6. {

7. delay(5000);

8. //Set control pins to be outputs

 80

9. pinMode(In_1, OUTPUT);

10. pinMode(In_2, OUTPUT);

11. pinMode(In_3, OUTPUT);

12. pinMode(In_4, OUTPUT);

13. pinMode(ENA, OUTPUT);

14. pinMode(ENB, OUTPUT);

15. }

16. void Motors::forw() // motors spinning clockwise

17. {

18. digitalWrite(In_1, LOW);

19. digitalWrite(In_2, HIGH);

20. digitalWrite(In_3, LOW);

21. digitalWrite(In_4, HIGH);

22. }

23. void Motors::back() // motors spinning counter-clockwise

24. {

25. digitalWrite(In_1, HIGH);

26. digitalWrite(In_2, LOW);

27. digitalWrite(In_3, HIGH);

28. digitalWrite(In_4, LOW);

29. }

30. void Motors::forward() //full speed forward

31. {

32. digitalWrite(In_1, LOW);

33. digitalWrite(In_2, HIGH);

 81

34. digitalWrite(In_3, LOW);

35. digitalWrite(In_4, HIGH);

36. analogWrite(ENA, 255); //set right motors to run at

100% duty cycle

37. analogWrite(ENB, 255); //set left motors to run at

100% duty cycle

38. }

39. void Motors::backward() //full speed backward

40. {

41. digitalWrite(In_1, HIGH);

42. digitalWrite(In_2, LOW);

43. digitalWrite(In_3, HIGH);

44. digitalWrite(In_4, LOW);

45. analogWrite(ENA, 255); //set right motors to run at

100% duty cycle

46. analogWrite(ENB, 255); //set left motors to run at 100%

duty cycle

47. }

48. void Motors::stop() //stop

49. {

50. analogWrite(ENA, 0); //set right motors to run at 0%

duty cycle

51. analogWrite(ENB, 0); //set left motors to run at 0%

duty cycle

52. }

53.

 82

54. void Motors::speed_up()

55. {

56. // fade in from min to max in increments of 10 points:

57. for(int fadeValue = 0 ; fadeValue <= 255; fadeValue +=10)

58. {

59. // sets the value (range from 0 to 255):

60. analogWrite(ENA, fadeValue);

61. analogWrite(ENB, fadeValue);

62. // wait for 39.2 milliseconds to see the dimming effect

63. delay(39.2);

64. }

65. }

66.

67. void Motors::slow_down()

68. {

69. // fade out from max to min in increments of 10 points:

70. for(int fadeValue = 255 ; fadeValue >= 0; fadeValue -=10)

71. {

72. // sets the value (range from 0 to 255):

73. analogWrite(ENA, fadeValue);

74. analogWrite(ENB, fadeValue);

75. // wait for 39.2 milliseconds to see the dimming effect

76. delay(39.2);

77. }

78. }

 83

79. void Motors::forw_right() //forward turn to the right

80. {

81. digitalWrite(In_1, HIGH);

82. digitalWrite(In_2, LOW);

83. digitalWrite(In_3, LOW);

84. digitalWrite(In_4, HIGH);

85. analogWrite(ENA, 200);

86. analogWrite(ENB, 200);

87. }

88.

89. void Motors::forw_left() //forward turn to the right

90. {

91. digitalWrite(In_1, LOW);

92. digitalWrite(In_2, HIGH);

93. digitalWrite(In_3, HIGH);

94. digitalWrite(In_4, LOW);

95. analogWrite(ENA, 200);

96. analogWrite(ENB, 200);

97. }

D. KEYWORDS FILE

Motors KEYWORD1

initialize KEYWORD2

forw KEYWORD2

back KEYWORD2

forward KEYWORD2

backward KEYWORD2

 84

stop KEYWORD2

speed_up KEYWORD2

slow_down KEYWORD2

forw_right KEYWORD2

forw_left KEYWORD2

 85

APPENDIX C. TRAJECTORY-FOLLOWER-ROBOT SCRIPTS

The Arduino scripts in this appendix depict the algorithm adopted to perform the

trajectory-following task. These scripts contain all the coding necessary to keep track of

the robot position while moving from one uploaded waypoint to another.

A. MAIN CODE

#include <Destination.h>

#include <SPI.h>

Destination trajectory;

typedef unsigned long Time;

void setup() {

 trajectory.init_1();

 Serial.begin(115200);

 Serial.println();

 SPI.begin();

 SPI.setBitOrder(MSBFIRST);

 SPI.setDataMode(SPI_MODE3);

 SPI.setClockDivider(SPI_CLOCK_DIV16);

 trajectory.reset();

 trajectory.init_2();

 trajectory.initialize();

 trajectory.decision();

}

void loop() {

 }

B. HEADER FILE

#ifndef Destination_h

#define Destination_h

#include "Arduino.h"

// Register Map for the ADNS3080 Optical Optical Flow Sensor

 86

#define ADNS3080_PRODUCT_ID 0x00

#define ADNS3080_REVISION_ID 0x01

#define ADNS3080_MOTION 0x02

#define ADNS3080_DELTA_X 0x03

#define ADNS3080_DELTA_Y 0x04

#define ADNS3080_SQUAL 0x05

#define ADNS3080_PIXEL_SUM 0x06

#define ADNS3080_MAXIMUM_PIXEL 0x07

#define ADNS3080_CONFIGURATION_BITS 0x0a

#define ADNS3080_EXTENDED_CONFIG 0x0b

#define ADNS3080_DATA_OUT_LOWER 0x0c

#define ADNS3080_DATA_OUT_UPPER 0x0d

#define ADNS3080_SHUTTER_LOWER 0x0e

#define ADNS3080_SHUTTER_UPPER 0x0f

#define ADNS3080_FRAME_PERIOD_LOWER 0x10

#define ADNS3080_FRAME_PERIOD_UPPER 0x11

#define ADNS3080_MOTION_CLEAR 0x12

#define ADNS3080_FRAME_CAPTURE 0x13

#define ADNS3080_SROM_ENABLE 0x14

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER 0x19

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER 0x1a

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_LOWER 0x1b

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_UPPER 0x1c

#define ADNS3080_SHUTTER_MAX_BOUND_LOWER 0x1e

#define ADNS3080_SHUTTER_MAX_BOUND_UPPER 0x1e

#define ADNS3080_SROM_ID 0x1f

#define ADNS3080_OBSERVATION 0x3d

#define ADNS3080_INVERSE_PRODUCT_ID 0x3f

#define ADNS3080_PIXEL_BURST 0x40

#define ADNS3080_MOTION_BURST 0x50

#define ADNS3080_SROM_LOAD 0x60

#define FRAME_LENGTH 900

 87

class Destination

{

public:

 Destination() {

 ADNS3080_CHIP_SELECT = 4; // chip select pin

 ADNS3080_RESET = 5; // chip reset pin

 ADNS3080_POWER_DOWN = 6; // Power down pin

 ENA = 8; //PWM control pin for right motors

 ENB = 9; //PWM control pin for left motors

 In_1 = 10; //1st direction control pin for right motors

 In_2 = 11; //2nd direction control pin for right motors

 In_3 = 12; //1st direction control pin for left motors

 In_4 = 13; //2nd direction control pin for left motors

 x_sensor = 0;

 y_sensor = 0;

 }

 void measurement(); // sends values of dx and dy over the serial link

and increments distx and disty respectively by dx and dy

 void reset(); // reset sensor

 void init_1();

 void init_2();

 void initialize();

 void forward();

 void backward();

 void stop();

 void spin_right();

 void spin_left();

 void decision();

private:

 88

 int ADNS3080_CHIP_SELECT;

 int ADNS3080_RESET;

 int ADNS3080_POWER_DOWN;

 float x_sensor;

 float y_sensor;

 int ENA;

 int ENB;

 int In_1;

 int In_2;

 int In_3;

 int In_4;

};

#endif

C. CPP FILE

#include"Arduino.h"

#include "SPI.h"

#include"Destination.h"

void Destination::init_1()

{

 pinMode(ADNS3080_CHIP_SELECT,OUTPUT);

 pinMode(ADNS3080_POWER_DOWN,OUTPUT);

 pinMode(ADNS3080_RESET,OUTPUT);

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 digitalWrite(ADNS3080_RESET, LOW);

 digitalWrite(ADNS3080_POWER_DOWN,HIGH);

}

void Destination::init_2()

{

 int retry = 0;

 89

 byte productId = 0;

 byte revisionId = 0;

 // PRODUCT ID VERIFICATION

 while(retry < 10) {

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_PRODUCT_ID);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 productId = SPI.transfer(0x00);

 if(productId == 0x17) {

 Serial.println("\n Found productId ");

 Serial.println(productId, HEX);;

 }

 else{

 Serial.println("\n False productId ");

 Serial.println(productId, HEX);;

 }

 retry++;

 }

 if(productId != 0x17) {

 delay(100);

 exit(1);

 }

// REVISION ID VERIFICATION

 delayMicroseconds(75);

 90

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_REVISION_ID);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 revisionId = SPI.transfer(0x00);

 Serial.println("\n rev");

 Serial.print(revisionId, HEX);

// Set resolution to 1600 counts/inch

 delayMicroseconds(75);

 // set the chip select to low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT, LOW);

 // send register address

 SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80);

 // send data

 SPI.transfer(0x10);

}

 void Destination::measurement()

{

 byte motion = 0;

 uint8_t dx = 0;

 uint8_t dy = 0;

 int8_t delta_x = 0;

 int8_t delta_y = 0;

 float DELTA_x = 0;

 float DELTA_y = 0;

 byte SQUAL = 0;

 91

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT,LOW);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_MOTION);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 motion = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_DELTA_X);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 dx = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_DELTA_Y);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 dy = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_SQUAL);

 // small delay

 delayMicroseconds(75);

 92

 // send a value of 0 to read the first byte returned:

 SQUAL = SPI.transfer(0x00);

 delta_x= (int8_t)dx;

 delta_y= (int8_t)dy;

 DELTA_x=(float)delta_x/1600.0;

 DELTA_y=(float)delta_y/1600.0;

 DELTA_x=DELTA_x/1.605066;

 DELTA_y=DELTA_y/1.605066;

 DELTA_x=100*DELTA_x;

 DELTA_y=100*DELTA_y;

 x_sensor=x_sensor+DELTA_x; // x position in cm

 y_sensor=y_sensor+DELTA_y; // y position in cm

 /* //Display DELTA

 Serial.print(DELTA_x, DEC);

 Serial.print(" ");

 Serial.print(DELTA_y, DEC);

 //Display x and y

 Serial.print(" ");

 Serial.print(x_sensor, DEC);

 Serial.print(" ");

 Serial.println(y_sensor, DEC); */

 //Display Quality

 /* Serial.println("\n Quality");

 Serial.print(SQUAL, DEC); */

}

 93

void Destination::decision()

{

 measurement();

 const float Raduis = 14.7; // cm

 /* float X_path[]={0.00, -100.00, -100.00};

 float Y_path[]={100.00, 0.00, 200.00}; */

 /* float X_path[]={-100.00, -100.00, 0.00};

 float Y_path[]={0.00, 200.00, 100.00}; */

 float X_path[]={-100.00, -100.00, -50.00, 0.00, 0.00 };

 float Y_path[]={100.00, 200.00, 200.00, 300.00, 100.00 };

 /* float X_path[]={0};

 float Y_path[]={200.00}; */

 float x_0 = 0;

 float y_0 = 0;

 float Theta = 0;

 float Theta_deg = 0;

 for(int i = 0; i<5; i++) {

 Serial.print("\n The destination ");

 Serial.print(" is: ");

 Serial.print(X_path[i]);

 Serial.print(" , ");

 Serial.println(Y_path[i]);

 if (((Y_path[i])-y_0) > 0)

 {

 if (((X_path[i])-x_0) > 0)

 {

 Theta = atan2(abs((X_path[i])-x_0),abs((Y_path[i])-y_0));

 Theta_deg= Theta*180/3.14;

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 94

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < (Theta*Raduis)))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < (Theta*Raduis)))

 {

 measurement();

 spin_left();

 }

 95

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

 else if (((X_path[i])-x_0) < 0)

 {

 Theta = atan2(abs((X_path[i])-x_0),abs((Y_path[i])-y_0));

 Theta_deg= Theta*180/3.14;

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < (Theta*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 stop();

 96

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < (Theta*Raduis)))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

 else

 {

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 97

 Serial.println(" Destination reached ");

 }

 }

///

////

 else if (((Y_path[i])-y_0) < 0)

 {

 if (((X_path[i])-x_0) > 0)

 {

 Theta = atan2(abs((Y_path[i])-y_0),abs((X_path[i])-x_0));

 Theta_deg= Theta*(180/3.14)+90;

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((Theta+(3.14/2))*Raduis)))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 98

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((Theta+(3.14/2))*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

 else if (((X_path[i])-x_0) < 0)

 {

 Theta = atan2(abs((Y_path[i])-y_0),abs((X_path[i])-x_0));

 Theta_deg= Theta*(180/3.14)+90;

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((Theta+(3.14/2))*Raduis)))

 {

 measurement();

 99

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(Theta_deg);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((Theta+(3.14/2))*Raduis)))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

 100

 else

 {

 Serial.println("\n Spinning Left 180 Degrees ");

 while ((abs(x_sensor) < (3.14*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println("\n Spinning Right 180 Degrees ");

 while ((abs(x_sensor) < (3.14*Raduis)))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 101

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

 }

///

////

 else

 {

 if (((X_path[i])-x_0) > 0)

 {

 Serial.println("\n Spinning Right 90 Degrees ");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_right(); // spin right 90 degrees

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println("\n Spinning Left 90 Degrees ");

 102

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_left(); // spin left 90 degrees

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

 else if (((X_path[i])-x_0) < 0)

 {

 Serial.print("\n Spinning Left 90 Degrees ");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_left(); // spin left 90 degrees

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Moving toward destination ");

 while (abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)))

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 103

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Right 90 Degrees ");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_right(); // spin right 90 degrees

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

 else

 {

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Same Last Destination ");

 Serial.println(" Destination reached ");

 }

 }

 x_0 = X_path[i];

 y_0 = Y_path[i];

 }

}

void Destination::reset()

 104

{

 digitalWrite(ADNS3080_RESET,HIGH); // reset sensor

 delayMicroseconds(10);

 digitalWrite(ADNS3080_RESET,LOW); // return

sensor to normal

}

void Destination::initialize()

{

 delay(5000);

 //Set control pins to be outputs

 pinMode(In_1, OUTPUT);

 pinMode(In_2, OUTPUT);

 pinMode(In_3, OUTPUT);

 pinMode(In_4, OUTPUT);

 pinMode(ENA, OUTPUT);

 pinMode(ENB, OUTPUT);

}

void Destination::forward()

{

 digitalWrite(In_1, LOW);

 digitalWrite(In_2, HIGH);

 digitalWrite(In_3, LOW);

 digitalWrite(In_4, HIGH);

 analogWrite(ENA, 117); //set right motors to run at duty cycle

 analogWrite(ENB, 104); //set left motors to run at duty cycle

 /* if (x_pos > 0)

 {

 analogWrite(ENA, 145);

 analogWrite(ENB, 150);

 }

 105

 else if (x_pos < 0)

 {

 analogWrite(ENA, 150);

 analogWrite(ENB, 130);

 }

 else

 {

 analogWrite(ENA, 150);

 analogWrite(ENB, 130);

 } */

}

void Destination::backward()

{

 digitalWrite(In_1, HIGH);

 digitalWrite(In_2, LOW);

 digitalWrite(In_3, HIGH);

 digitalWrite(In_4, LOW);

 analogWrite(ENA, 115);

 analogWrite(ENB, 106);

}

void Destination::stop() //stop

{

 analogWrite(ENA, 0); //set right motors to run at 0% duty cycle

 analogWrite(ENB, 0); //set left motors to run at 0% duty cycle

}

void Destination::spin_right() //forward turn to the right

{

 digitalWrite(In_1, HIGH);

 digitalWrite(In_2, LOW);

 106

 digitalWrite(In_3, LOW);

 digitalWrite(In_4, HIGH);

 analogWrite(ENA, 200);

 analogWrite(ENB, 200);

}

void Destination::spin_left() //forward turn to the right

{

 digitalWrite(In_1, LOW);

 digitalWrite(In_2, HIGH);

 digitalWrite(In_3, HIGH);

 digitalWrite(In_4, LOW);

 analogWrite(ENA, 200);

 analogWrite(ENB, 200);

 }

D. KEYWORDS FILE

Destination KEYWORD1

initialize KEYWORD2

forward KEYWORD2

backward KEYWORD2

stop KEYWORD2

spin_right KEYWORD2

spin_left KEYWORD2

measurement KEYWORD2

reset KEYWORD2

init_1 KEYWORD2

init_2 KEYWORD2

decision KEYWORD2

 107

APPENDIX D. OBSTACLE DETECTION AND AVOIDANCE
ROBOT SCRIPTS

The Arduino scripts in this appendix depict the algorithm adopted to perform the

obstacle detection and avoidance tasks. These scripts contain all the coding necessary to

move the robot from one point to another avoiding collision with obstacles on the way.

A. MAIN CODE

#include <Destination.h>

#include <SPI.h>

#include <Servo.h>

Destination trajectory;

typedef unsigned long Time;

void setup() {

 trajectory.init_1();

 Serial.begin(115200);

 Serial.println();

 SPI.begin();

 SPI.setBitOrder(MSBFIRST);

 SPI.setDataMode(SPI_MODE3);

 SPI.setClockDivider(SPI_CLOCK_DIV16);

 trajectory.reset();

 trajectory.init_2();

 trajectory.initialize();

 trajectory.decision();

}

void loop() {

 }

 108

B. HEADER FILE

#ifndef Destination_h

#define Destination_h

#include "Arduino.h"

// Register Map for the ADNS3080 Optical Optical Flow Sensor

#define ADNS3080_PRODUCT_ID 0x00

#define ADNS3080_REVISION_ID 0x01

#define ADNS3080_MOTION 0x02

#define ADNS3080_DELTA_X 0x03

#define ADNS3080_DELTA_Y 0x04

#define ADNS3080_SQUAL 0x05

#define ADNS3080_PIXEL_SUM 0x06

#define ADNS3080_MAXIMUM_PIXEL 0x07

#define ADNS3080_CONFIGURATION_BITS 0x0a

#define ADNS3080_EXTENDED_CONFIG 0x0b

#define ADNS3080_DATA_OUT_LOWER 0x0c

#define ADNS3080_DATA_OUT_UPPER 0x0d

#define ADNS3080_SHUTTER_LOWER 0x0e

#define ADNS3080_SHUTTER_UPPER 0x0f

#define ADNS3080_FRAME_PERIOD_LOWER 0x10

#define ADNS3080_FRAME_PERIOD_UPPER 0x11

#define ADNS3080_MOTION_CLEAR 0x12

#define ADNS3080_FRAME_CAPTURE 0x13

#define ADNS3080_SROM_ENABLE 0x14

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER 0x19

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER 0x1a

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_LOWER 0x1b

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_UPPER 0x1c

#define ADNS3080_SHUTTER_MAX_BOUND_LOWER 0x1e

#define ADNS3080_SHUTTER_MAX_BOUND_UPPER 0x1e

#define ADNS3080_SROM_ID 0x1f

#define ADNS3080_OBSERVATION 0x3d

 109

#define ADNS3080_INVERSE_PRODUCT_ID 0x3f

#define ADNS3080_PIXEL_BURST 0x40

#define ADNS3080_MOTION_BURST 0x50

#define ADNS3080_SROM_LOAD 0x60

#define FRAME_LENGTH 900

class Destination

{

public:

 Destination() {

 ADNS3080_CHIP_SELECT_1 = 4; // chip select pin

 ADNS3080_CHIP_SELECT_2 = 2; // chip select pin

 ADNS3080_RESET = 5; // chip reset pin

 ADNS3080_POWER_DOWN = 6; // Power down pin

 Servo_pwm = 3; //PWM control pin for servo

 ENA = 8; //PWM control pin for right motors

 ENB = 9; //PWM control pin for left motors

 In_1 = 10; //1st direction control pin for right motors

 In_2 = 11; //2nd direction control pin for right motors

 In_3 = 12; //1st direction control pin for left motors

 In_4 = 13; //2nd direction control pin for left motors

 x_sensor = 0;

 y_sensor = 0;

 QUAL2 = 0;

 }

 void measurement(); // sends values of dx and dy over the serial link

and increments distx and disty respectively by dx and dy (sensor 1)

 void measurement2(); // sends values of dx and dy over the serial

link and increments distx and disty respectively by dx and dy (sensor

2)

 void reset(); // reset sensor

 110

 void init_1();

 void init_2();

 void initialize();

 void forward();

 void backward();

 void stop();

 void spin_right();

 void spin_left();

 void decision();

private:

 int ADNS3080_CHIP_SELECT_1;

 int ADNS3080_CHIP_SELECT_2;

 int ADNS3080_RESET;

 int ADNS3080_POWER_DOWN;

 float x_sensor;

 float y_sensor;

 int QUAL2;

 int ENA;

 int Servo_pwm;

 int ENB;

 int In_1;

 int In_2;

 int In_3;

 int In_4;

};

#endif

C. CPP FILE

#include "Arduino.h"

 111

#include "SPI.h"

#include "Destination.h"

#include "Servo.h"

void Destination::init_1()

{

 pinMode(ADNS3080_CHIP_SELECT_1,OUTPUT);

 pinMode(ADNS3080_CHIP_SELECT_2,OUTPUT);

 pinMode(ADNS3080_POWER_DOWN,OUTPUT);

 pinMode(ADNS3080_RESET,OUTPUT);

 digitalWrite(ADNS3080_CHIP_SELECT_1,LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH);

 digitalWrite(ADNS3080_RESET, LOW);

 digitalWrite(ADNS3080_POWER_DOWN,HIGH);

 digitalWrite(ADNS3080_CHIP_SELECT_2,LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH);

 digitalWrite(ADNS3080_RESET, LOW);

 digitalWrite(ADNS3080_POWER_DOWN,HIGH);

}

void Destination::init_2()

{

 // PRODUCT ID VERIFICATION for sensor 1

 int retry_1 = 0;

 byte productId_1 = 0;

 while(retry_1 < 10) {

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT_1,LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH);

 112

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_PRODUCT_ID);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 productId_1 = SPI.transfer(0x00);

 if(productId_1 == 0x17) {

 Serial.println("\n Found productId for sensor 1 ");

 Serial.println(productId_1, HEX);

 }

 else{

 Serial.println("\n False productId for sensor 1 ");

 Serial.println(productId_1, HEX);

 }

 retry_1++;

 }

 if(productId_1 != 0x17) {

 delay(100);

 exit(1);

 }

 // PRODUCT ID VERIFICATION for sensor 2

 int retry_2 = 0;

 byte productId_2 = 0;

 while(retry_2 < 10) {

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT_2,LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH);

 // send the device the register you want to read:

 113

 SPI.transfer(ADNS3080_PRODUCT_ID);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 productId_2 = SPI.transfer(0x00);

 if(productId_2 == 0x17) {

 Serial.println("\n Found productId for sensor 2 ");

 Serial.println(productId_2, HEX);

 }

 else{

 Serial.println("\n False productId for sensor 2 ");

 Serial.println(productId_2, HEX);

 }

 retry_2++;

 }

 if(productId_2 != 0x17) {

 delay(100);

 exit(1);

 }

// Set sensor 1 resolution to 1600 counts/inch

 delayMicroseconds(75);

 // set the chip select to low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT_1, LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH);

 // send register address

 SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80);

 // send data

 SPI.transfer(0x10);

 114

// Set sensor 2 resolution to 1600 counts/inch

 delayMicroseconds(75);

 // set the chip select to low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT_2, LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH);

 // send register address

 SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80);

 // send data

 SPI.transfer(0x10);

}

 void Destination::measurement()

{

 byte motion = 0;

 uint8_t dx = 0;

 uint8_t dy = 0;

 int8_t delta_x = 0;

 int8_t delta_y = 0;

 float DELTA_x = 0;

 float DELTA_y = 0;

 // byte SQUAL = 0;

 uint8_t SQUAL1 = 0;

 delayMicroseconds(75);

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT_1,LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_MOTION);

 // small delay

 115

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 motion = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_DELTA_X);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 dx = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_DELTA_Y);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 dy = SPI.transfer(0x00);

 delayMicroseconds(75);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_SQUAL);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 SQUAL1 = SPI.transfer(0x00);

 delta_x= (int8_t)dx;

 delta_y= (int8_t)dy;

 DELTA_x=(float)delta_x/1600.0;

 116

 DELTA_y=(float)delta_y/1600.0;

 DELTA_x=DELTA_x/1.605066;

 DELTA_y=DELTA_y/1.605066;

 DELTA_x=100*DELTA_x;

 DELTA_y=100*DELTA_y;

 x_sensor=x_sensor+DELTA_x; // x position in cm

 y_sensor=y_sensor+DELTA_y; // y position in cm

 //Display DELTA

 Serial.print(DELTA_x, DEC);

 Serial.print(" ");

 Serial.print(DELTA_y, DEC);

 //Display x and y

 Serial.print(" ");

 Serial.print(x_sensor, DEC);

 Serial.print(" ");

 Serial.println(y_sensor, DEC);

 //Display Quality

 Serial.println("Quality");

 Serial.println(SQUAL1, DEC);

}

void Destination::measurement2()

{

 // byte SQUAL = 0;

 uint8_t SQUAL2 = 0;

 delayMicroseconds(75);

 117

 // take the chip select low to select the device

 digitalWrite(ADNS3080_CHIP_SELECT_2,LOW);

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH);

 // send the device the register you want to read:

 SPI.transfer(ADNS3080_SQUAL);

 // small delay

 delayMicroseconds(75);

 // send a value of 0 to read the first byte returned:

 SQUAL2 = SPI.transfer(0x00);

 //Display Quality

 Serial.println("\n Quality");

 Serial.print(SQUAL2, DEC);

 QUAL2= SQUAL2;

}

void Destination::decision()

{

 measurement();

 measurement2();

 const float Raduis = 14.7; // cm

 float X_path[]={0.00 };

 float Y_path[]={300.00};

 float x1 = 0;

 float y1 = 0;

 float y2 = 0;

 float Theta = 0;

 float Theta_deg = 0;

 118

 Servo myservo; // create servo object to control a servo

 myservo.attach(Servo_pwm); // attaches the servo on pin 9 to the

servo object

 myservo.write(85);

 for(int i = 0; i<1; i++) {

 Serial.print("\n The destination ");

 Serial.print(" is: ");

 Serial.print(X_path[i]);

 Serial.print(" , ");

 Serial.println(Y_path[i]);

 Serial.println(" Moving toward destination ");

 while (Y_path[i] > (y1+y2))

 {

 measurement();

 measurement2();

 if (QUAL2!=0)

 {

 measurement();

 measurement2();

 forward();

 y1=abs(y_sensor);

 }

 else

 {

 stop();

 delay(2000);

 myservo.write(0);

 delay(3000);

 measurement2();

 if (QUAL2!=0)

 119

 {

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(85);

 delay(2000);

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(175);

 delay(3000);

 Serial.print("\n Moving forward ");

 measurement2();

 while(QUAL2<50)

 {

 measurement();

 measurement2();

 forward();

 x1=abs(y_sensor);

 }

 stop();

 delay(2000);

 x_sensor = 0;

 120

 y_sensor = 0;

 while(abs(y_sensor) < 30)

 {

 measurement();

 measurement2();

 forward();

 }

 x1=x1+30;

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(85);

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 while (abs(y_sensor) < (Y_path[i]-y1))

 {

 measurement();

 forward();

 }

 stop();

 121

 y2=abs(y_sensor);

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Moving forward ");

 measurement();

 while(abs(y_sensor)< x1)

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 122

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)))

 {

 measurement();

 spin_right();

 }

 }

 else

 {

 stop();

 myservo.write(85);

 delay(2000);

 myservo.write(175);

 delay(2000);

 measurement2();

 if (QUAL2!=0)

 {

 stop();

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning left ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)

))

 {

 measurement();

 spin_left();

 }

 123

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(0);

 delay(3000);

 Serial.print("\n Moving forward ");

 measurement2();

 while(QUAL2<50)

 {

 measurement();

 measurement2();

 forward();

 x1=abs(y_sensor);

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 while(abs(y_sensor) < 30)

 {

 measurement();

 measurement2();

 forward();

 }

 x1=x1+30;

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(85);

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 124

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)

))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 while (abs(y_sensor) < (Y_path[i]-y1))

 {

 measurement();

 forward();

 }

 stop();

 y2=abs(y_sensor);

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)

))

 {

 measurement();

 spin_right();

 125

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Moving forward ");

 measurement();

 while(abs(y_sensor)< x1)

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning left ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) < ((3.14/2)*Raduis)

))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 }

 126

 else

 {

 stop();

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(85);

 delay(2000);

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) <

((3.14/2)*Raduis)))

 {

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 delay(2000);

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) <

((3.14/2)*Raduis)))

 {

 127

 measurement();

 spin_right();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(175);

 delay(3000);

 Serial.print("\n Moving forward ");

 measurement2();

 while(QUAL2<50)

 {

 measurement();

 measurement2();

 forward();

 }

 y1=y1-abs(y_sensor);

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 while(abs(y_sensor) < 30)

 {

 measurement();

 measurement2();

 forward();

 }

 y1=y1-30;

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 128

 myservo.write(85);

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) <

((3.14/2)*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(175);

 delay(3000);

 Serial.print("\n Moving forward ");

 measurement2();

 while(QUAL2<50)

 {

 measurement();

 measurement2();

 forward();

 x1=abs(y_sensor);

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 while(abs(y_sensor) < 30)

 {

 129

 measurement();

 measurement2();

 forward();

 }

 x1=x1+30;

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 myservo.write(85);

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) <

((3.14/2)*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 while (abs(y_sensor) <

(Y_path[i]-y1))

 {

 measurement();

 forward();

 }

 stop();

 y2=abs(y_sensor);

 130

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Left ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 Serial.println("Degrees");

 while ((abs(x_sensor) <

((3.14/2)*Raduis)))

 {

 measurement();

 spin_left();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Moving forward ");

 measurement();

 while(abs(y_sensor)< x1)

 {

 measurement();

 forward();

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.print("\n Spinning Right ");

 Serial.print(" ");

 Serial.print(90);

 Serial.print(" ");

 131

 Serial.println("Degrees");

 while ((abs(x_sensor) <

((3.14/2)*Raduis)))

 {

 measurement();

 spin_right();

 }

 }

 }

 }

 }

 stop();

 delay(2000);

 x_sensor = 0;

 y_sensor = 0;

 Serial.println(" Destination reached ");

 }

}

void Destination::reset()

{

 digitalWrite(ADNS3080_RESET,HIGH); // reset sensor

 delayMicroseconds(10);

 digitalWrite(ADNS3080_RESET,LOW); // return

sensor to normal

}

 132

void Destination::initialize()

{

 delay(5000);

 //Set control pins to be outputs

 pinMode(In_1, OUTPUT);

 pinMode(In_2, OUTPUT);

 pinMode(In_3, OUTPUT);

 pinMode(In_4, OUTPUT);

 pinMode(ENA, OUTPUT);

 pinMode(ENB, OUTPUT);

 /* Servo myservo; // create servo object to control a servo

 // a maximum of eight servo objects can be created

 myservo.attach(Servo_pwm); // attaches the servo on pin 9 to the

servo object

 myservo.write(85);

 delay(3000);

 myservo.write(0);

 delay(3000);

 myservo.write(175);

 delay(3000);

 myservo.write(85);

 delay(3000); */

}

void Destination::forward()

{

 digitalWrite(In_1, LOW);

 digitalWrite(In_2, HIGH);

 digitalWrite(In_3, LOW);

 digitalWrite(In_4, HIGH);

 analogWrite(ENA, 115); //set right motors to run at duty cycle

 analogWrite(ENB, 106); //set left motors to run at duty cycle

 133

 /* if (x_pos > 0)

 {

 analogWrite(ENA, 145);

 analogWrite(ENB, 150);

 }

 else if (x_pos < 0)

 {

 analogWrite(ENA, 150);

 analogWrite(ENB, 130);

 }

 else

 {

 analogWrite(ENA, 150);

 analogWrite(ENB, 130);

 } */

}

void Destination::backward()

{

 digitalWrite(In_1, HIGH);

 digitalWrite(In_2, LOW);

 digitalWrite(In_3, HIGH);

 digitalWrite(In_4, LOW);

 analogWrite(ENA, 115);

 analogWrite(ENB, 106);

}

void Destination::stop() //stop

{

 analogWrite(ENA, 0); //set right motors to run at 0% duty cycle

 analogWrite(ENB, 0); //set left motors to run at 0% duty cycle

}

void Destination::spin_right() //forward turn to the right

 134

{

 digitalWrite(In_1, HIGH);

 digitalWrite(In_2, LOW);

 digitalWrite(In_3, LOW);

 digitalWrite(In_4, HIGH);

 analogWrite(ENA, 200);

 analogWrite(ENB, 200);

}

void Destination::spin_left() //forward turn to the right

{

 digitalWrite(In_1, LOW);

 digitalWrite(In_2, HIGH);

 digitalWrite(In_3, HIGH);

 digitalWrite(In_4, LOW);

 analogWrite(ENA, 200);

 analogWrite(ENB, 200);

 }

D. KEYWORDS FILE

Destination KEYWORD1

initialize KEYWORD2

forward KEYWORD2

backward KEYWORD2

stop KEYWORD2

spin_right KEYWORD2

spin_left KEYWORD2

measurement KEYWORD2

measurement2 KEYWORD2

reset KEYWORD2

init_1 KEYWORD2

init_2 KEYWORD2

decision KEYWORD2

 135

LIST OF REFERENCES

[1] H. Chao, Y. Cao, and Y. Q. Chen, “Autopilots for small unmanned aerial
vehicles: A survey,” Int. J. Control Autom. Syst., vol. 8, no. 1, pp. 36–44, 2010.

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A
database and evaluation methodology for optical flow,” Int. J. Comput. Vis., vol.
92, no. 1, pp. 1–31, 2011.

[3] H. Chao, Y. Gu, and M. Napolitano, “A survey of optical flow techniques for
robotics navigation applications,” J. Intell Robot. Syst., vol. 73, pp. 361–372,
2014.

[4] M. J. Black and P. Anandan, “The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields,” Comp. Vis. Image Underst., vol.
63, no. 1, pp. 75–104, 1996.

[5] S. Roth and M. J. Black, “On the spatial statistics of optical flow,” Int. J. Comput.
Vis., vol. 74, no. 1, pp. 3–50, 2007.

[6] J. Barron, D. Fleet, and S. Beauchemin, “Performance of optical flow
techniques,” Int. J. Comput. Vis., vol. 12, no. 1, pp. 43–77, 1994.

[7] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” in Proc. DARPA Image Understanding Workshop,
1981, pp. 121–130.

[8] B. Horn and B. Schunck, “Determining optical flow,” Artif. Intell., vol. 17, pp.
185–203, 1981.

[9] A. Bonarini, M. Matteucci, and M. Restelli, “Automatic error detection and
reduction for an odometric sensor based on two optical mice,” in Proc. IEEE Int.
Conf. Robotics Automation (ICRA), Apr. 2005, pp. 1675–1680.

[10] S. Singh and K. Waldron, “Design and evaluation of an integrated planar
localization method for desktop robotics,” in Proc. IEEE Int. Conf. Robotics
Automation (ICRA), May 2004, vol. 2, pp. 1109–1114.

[11] DC motor encoder. (n.d.). The Tech Resources Wiki. Available: http://www.stab-
iitb.org/wiki/DC_Motor_Encoder. Accessed Aug. 6, 2015.

[12] Rotary encoder. (n.d.). Wikipedia. Available:
https://en.wikipedia.org/wiki/Rotary_encoder. Accessed Aug. 6, 2015.

http://www.stab-iitb.org/wiki/DC_Motor_Encoder
http://www.stab-iitb.org/wiki/DC_Motor_Encoder
https://en.wikipedia.org/wiki/Rotary_encoder

 136

[13] Incremental encoders. (2012, Aug. 9). Minarik Automation and Control. [Online].
Available: http://training.minarik.com/drupal/content/articles/incremental-
encoders

[14] Servo Motor glossary of terms. (n.d.). Oriental Motor. [Online]. Available:
http://www.orientalmotor.com/technology/articles/servo-motor-glossary.html.
Accessed Aug. 6, 2015.

[15] J. Bradshaw, C. Lollini, and B. Bishop, “On the development of an enhanced
optical mouse sensor for odometry and mobile robotics education,” in Proc. 39th
Southeastern Symp. Syst. Theory (SSST ’07), Mar. 2007, pp. 6–10.

[16] S. Thakoor, J. Morookian, J. Chahl, D. Soccol, B. Hine, and S. Zornetzer, “Insect-
inspired optical-flow navigation sensors,” NASA Jet Propulsion Laboratory,
Pasadena, CA, Tech. Rep. NPO-40173, Oct. 2005.

[17] Avago Technologies. (2008, Oct. 20). ADNS-3080 High-Performance Optical
Mouse Sensor. [Online]. Available:
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2009/ncr6_wjw
27/ncr6_wjw27/docs/adns_3080.pdf.

[18] Hyperphysics. (n.d.). Image formation by lenses and the eye. [Online]. Available:
http://hyperphysics.phy-astr.gsu.edu/hbase/class/phscilab/imagei.html. Accessed
Aug. 6, 2015.

[19] S. Bell, “High-Precision Robot Odometry Using an Array of Optical Mice,” in
IEEE colloquium, Oklahoma Christian University, 2011.

[20] Dual H-Bridge Motor Driver. GeekOnFire Wiki. Available:
http://www.geekonfire.com/wiki/index.php?title=Dual_H-Bridge_Motor_Driver.
Accessed Aug. 5, 2015.

[21] Arduino. (n.d.). Arduino Due. [Online]. Available:
https://www.arduino.cc/en/Main/arduinoBoardDue. Accessed Aug. 5, 2015.

[22] Parallax Inc., “Parallax Standard Servo (#900-00005).” Rocklin, CA: Parallax
Inc., 2011.

[23] Digi International Inc., “XBee-PRO 900/DigiMeshTM 900 OEM RF Modules.”
Minnetonka, MN: Digi International Inc., 2008.

[24] S. Brachmann. (2014, Jan. 20). GE seeks patent on flight control system to more
accurately predict fuel usage, arrival time. IPWatchdog. [Online]. Available:
http://www.ipwatchdog.com/2014/01/20/ge-seeks-patent-on-flight-control-
system-to-more-accurately-predict-fuel-usage-arrival-time/id=47580/

http://training.minarik.com/drupal/content/articles/incremental-encoders
http://training.minarik.com/drupal/content/articles/incremental-encoders
http://www.orientalmotor.com/technology/articles/servo-motor-glossary.html
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2009/ncr6_wjw27/ncr6_wjw27/docs/adns_3080.pdf
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2009/ncr6_wjw27/ncr6_wjw27/docs/adns_3080.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/class/phscilab/imagei.html
http://www.geekonfire.com/wiki/index.php?title=Dual_H-Bridge_Motor_Driver
https://www.arduino.cc/en/Main/arduinoBoardDue
http://www.ipwatchdog.com/2014/01/20/ge-seeks-patent-on-flight-control-system-to-more-accurately-predict-fuel-usage-arrival-time/id=47580/
http://www.ipwatchdog.com/2014/01/20/ge-seeks-patent-on-flight-control-system-to-more-accurately-predict-fuel-usage-arrival-time/id=47580/

 137

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. THESIS OBJECTIVES
	B. ORGANIZATION
	C. BENEFIT OF STUDY

	II. optical flow overview
	A. Optical flow definition
	1. Apparent Motion Definition
	2. Motion Field Definition

	B. Optical flow computation algorithms
	1. Lucas-Kanade Method
	1. Horn-Schunk Method

	C. OPTICAL FLOW MOTION FIELD ESTIMATION MODELS
	D. APPLICATION OF OPTICAL FLOW SENSORS

	III. DEAD RECKONING AND ODOMETRY FOR INDOOR ROBOTs USING AN OPtical mouse sensor
	A. rotary digital optical encoders
	1. Absolute Encoder
	2. Incremental Encoder

	B. optical mouse sensors
	C. MOtion tracking

	IV. Experimental setup and results
	A. high performance optical mouse sensor adns-3080
	B. dc motor shield
	C. arduino due
	D. Parallax standard servo
	E. XBee-PRO 900 DigiMesh RF modules
	F. Trajectory-Follower Robot
	G. Obstacle detection and Avoidance Robot

	V. conclusion and recommendations
	A. Results for trajectory-follower robot
	B. Results for obstacle detection and avoidance robot
	C. Future work

	appendix A. ADNS-3080 Sensor scripts
	A. Main Code
	B. Header File
	C. CPP File
	D. Keywords File

	appendix B. DC Motors scripts
	A. Main Code
	B. Header File
	C. CPP File
	D. Keywords File

	appendix C. Trajectory-follower-robot scripts
	A. Main Code
	B. Header File
	C. CPP File
	D. Keywords File

	appendix D. obstacle detection and avoidance robot scripts
	A. Main Code
	B. Header File
	C. CPP File
	D. Keywords File

	List of References
	initial distribution list

