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ABSTRACT 

A novel approach for dead reckoning, heading reference, obstacle detection, and 

obstacle avoidance using only one optical mouse sensor was presented in this thesis. 

Odometry, position tracking, and obstacle avoidance are important issues in mobile 

robotics. Traditional odometry and motion-tracking sensors provide relative displacement 

data on a frame-to-frame basis, and they are usually mounted in arrays to provide 

accurate measurements with small estimation errors. Optical flow sensors stand as a 

tempting solution for robot self-localization and dead reckoning. In this work, using only 

one inexpensive optical mouse sensor, we were able to perform optical odometry, dead 

reckoning, and heading reference. Also, obstacle detection and avoidance remains a 

challenging area of research. Most of the existing works are based on stereo imaging and 

computation of the time-to-contact. These techniques are complex and usually require the 

use of more than one vantage point. The use of one optical mouse sensor as an obstacle-

detection sensor was proposed in this work. The detection process is simple and is based 

on the surface-quality factor variation. As far as we know, no one has ever used this 

technique to perform obstacle-detection and avoidance. Using one sensor for motion 

tracking and one sensor for object detection in association with an Arduino 

microcontroller, we built an indoor ground robot capable of environment sensing, 

obstacle avoidance, and position tracking. The behavior of the robot can be monitored 

from a remote station. The experimental results obtained were promising and can be 

further improved. 
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I. INTRODUCTION 

Inspired by the way flying insects rely on optical estimation for landing, obstacle 

avoidance, distance estimation, and speed regulation, optical flux has been, for decades, 

an interesting area of research for many robotics researchers. Optical flow techniques 

present an effective solution to navigation and environmental interaction problems that 

many ground and aerial robots encounter. To be more specific, the integration of optical 

flux in robotics allows accurate measurements of traveled distance, altitude, and velocity. 

Different optical flow algorithms (Lucas-Kanade method, Horn-Schunck method, Image 

interpolation method, Block matching algorithm, etc.) have been generated and adopted 

to mimic the behavior of flying insects. A variety of optical flow sensors have been used. 

The most popular sensors are optical mice, omnidirectional vision systems, and binocular 

vision systems. Motion field-estimation models such as Pin-Hole Image Plane and 

Spherical Imaging Surface provide rotational velocities, translational velocities, and 

terrain information expressed in the camera body frame; however, this work shows that 

optical flow can also be estimated from an inexpensive optical mouse sensor with a 

narrow field of view.  

A. THESIS OBJECTIVES 

Usually, in a typical ground based robot, shaft encoders mounted to the wheels 

provide motion estimation. These encoders are set to measure the speed of the platform 

and the distance run. Unfortunately, wheels can easily slip on uneven surfaces or when 

colliding with obstacles. This phenomenon results in position and distance estimation 

errors. Odometry and dead reckoning rely on the data generated by motion sensors to 

estimate change in position over time. As a small and inexpensive optical flow sensor, the 

optical mouse turns out to be a good solution for these problems. An optical mouse or a 

camera navigation system has no moving parts, no contact with the floor, and does not 

care about the sliding effect of the wheels. As a result, position estimation and distance 

measurements can be accurate. In this thesis, an optical flow sensor is implemented as an 

optical odometer and a dead reckoning sensor in a ground mobile indoor robot. We 
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determine the traveled distance and the instantaneous position of the vehicle from the 

generated data delivered by the optical sensor to an Arduino microcontroller. The 

microcontroller controls the speed, heading of the robot, and flow of data coming in and 

out from the different sensors used. In addition to odometry and dead reckoning, obstacle 

detection and avoidance or environment recognition using optical flow sensors is one of 

the objectives of this thesis. In addition, robotics and control system implementation in 

embedded systems are explored.  

B. ORGANIZATION 

The second chapter involves a discussion of some optical flow algorithms 

including Lucas-Kanade, Horn-Schunck and others that have been generated and adopted 

to mimic the behavior of flying insects. We briefly discuss the different motion field-

estimation models such as Pin-Hole Image Plane and Spherical Imaging Surface. The 

different computations and calculations related to most optical flow sensors such as 

optical mice, omnidirectional vision systems and binocular vision systems are addressed. 

Also, we briefly discuss the different optical flow sensors commonly used in robotics for 

dead reckoning and distance measurement.  

In the third chapter, we introduce optical flow sensors as a solution to the 

problems met by typical shaft encoders and optical encoders. We explain how optical 

flow techniques can improve dead-reckoning performances of ground controlled robots. 

We deal with the different rotation matrices, translations, and homogeneous 

transformations used to express the position and velocity of the robot relative to the 

different frames involved (i.e., world frame, robot frame, and sensor frame). 

The experimental part of the thesis is described in Chapter IV, where all the steps 

and methodologies considered to successfully implement and use an optical mouse sensor 

as an optical odometer, dead-reckoning, and obstacle-detection and avoidance sensor in a 

ground mobile indoor robot are described. All the components used in the 

experimental part are described in detail (Arduino Due, ADNS 3080, XBEE PRO 90 

transceiver, DC motors board, etc.).  



 3 

Finally, the work accomplished and results obtained are summarized in Chapter 

V, and some ideas of how this work can be further improved are provided.  

C. BENEFIT OF STUDY 

A systematic investigation into optical flow sensor-based-robotics navigation 

systems is presented. This work may be considered in the future as a framework for 

further studies and investigations concerned with solving the navigation and obstacle 

avoidance problems encountered by ground and aerial robots. 
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II. OPTICAL FLOW OVERVIEW 

The majority of unmanned aerial vehicles (UAVs) are equipped with Global 

Positioning Systems (GPSs) and inertial navigation systems (INSs). With no ability to 

sense terrain features, these navigation systems cannot offer a safe and optimized mode 

of operation when navigating in GPS degraded zones or indoor environments [1]. One of 

the main problems faced in the development of fully automated vehicles (ground and 

aerial robots) is the perception of the environment; thus, it is necessary to be able to 

detect still and moving objects in order to reduce risk of collision. Motion estimation is a 

process that involves studying moving objects in a video sequence, seeking the 

correlation between two back-to-back images to predict the change in position of the 

content. There are several motion estimation methods. The most widely used methods are 

optical flow techniques. Optical flow is a visual displacement field that explains 

variations in a moving image in terms of image points. 

A. OPTICAL FLOW DEFINITION 

Optical flow can be expressed as a function of image pixels (Apparent Motion 

Definition) or a function of azimuth and elevation angles (Motion Field Definition), as 

stated in [2]. 

1. Apparent Motion Definition 

In robotics, optical flow can be perceived as an object’s apparent motion from the 

eye of an embedded camera and can be computed as the difference between two 

successive images and expressed according to [3] as 

 [ ], ( , )Tx y f x y=  . (0) 

The optical flow here is represented as the relative displacements in the x and y 

directions over a time t, and (x,y) represent any point on the image plane. The unit for the 

point motion can be pixels per frame or pixels per seconds. 
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2. Motion Field Definition 

Optical flow can also be perceived as the relative three-dimensional (3D) motion 

between the camera and the scene into the image plane. The relative motion can be 

represented by different motion field models. A simplified optical-flow motion field 

model is described in Figure 1. The optical-flow motion field can be expressed, as shown 

by Haiyang et al. [3], as 

 

 m
VOF
d

= . (2) 

 

 Definition of optical flow (after [3]). 

 

The observer speed is denoted by V. The distance separating the observer from 

the object along the optical axis is denoted by d. The optical flow is expressed in radians 

per seconds or degrees per seconds. The movement of the observer relative to the static 

environment is the Ego Motion (EM); whereas, the Object Motion (OM) stands for the 

displacement of independent objects. As a result, the optical-flow field contains 

information for both EM and OM. 
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B. OPTICAL FLOW COMPUTATION ALGORITHMS 

Thanks to the huge progress made in image processing and computer vision, 

many algorithms have been adopted to determine optical flow from two consequent 

images. According to [4] and [5], we find that most of these algorithms operate under 

specific assumptions that can be mathematically written as 

 ( , , ) ( , , )I x y t I x x y y t tδ δ δ= + + +  (3) 

and 
   0x y tI x I y I+ + =  , (4) 

where the light intensity or image brightness of a point (x,y) on the two-dimensional (2D) 

image plane at time t is here denoted by I(x,y,t), and Ix, Iy, and It are, respectively, the 

partial derivatives of the intensity function with respect to x, y, and t. Equation (3) implies 

that local variations of the image intensity can only be caused by the movement of the 

object with respect to the observer. Equation (4) implies that the motion over a tiny 

neighborhood of pixels is uniform. In robotics, two of the most popular optical-flow-

intensity algorithms are the Lucas-Kanade and the Horn-Schunk algorithms. Other 

methods based on features other than intensity can be used to compute optical flow but 

are not addressed here because they are not as popular as the Lucas-Kanade and Horn-

Schunk algorithms. A survey of the different optical flow algorithms can be found in [2] 

and [6]. 

1. Lucas-Kanade Method 

The Lucas-Kanade method is a differential method used for OF estimation. This 

method was developed by Bruce D. Lucas and Takeo Kanade. It presumes the flow is 

constant around a considered pixel p and solves the equation of optical flow for all pixels 

in that neighborhood using the least squares method [7]. The optical flow equations may 

be applied for all the pixels belonging to a window of center p. Considering a window of 

n pixels (q1, q2,…,qn), we see that the local velocity or image flow vector ( , )TV x y=  

must satisfy 
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1 1 1

2 2 2

( ) ( )  ( ) 

( ) ( )  ( )

( ) ( )  ( )

x y t

x y t

x n y n t n

I q x I q y I q

I q x I q y I q

I q x I q y I q

+ = −

+ = −

+ = −

 

 



 

. (5) 

In matrix representation, these equations can be written as 

 

1 1 1

2 2 2

                     .                     
( )     ( ) ( ) 
( )    ( ) ( )

      
                      

( )( )    ( )

           

x y t

x y t

t nx n y n

A V B
I q I q I q
I q I q I qx

y
I qI q I q

=

  − 
   −    =        

−    






 

. (6) 

By rearranging the matrix form shown above, we express the image flow vector v as 

 1 ( )T TV A A A B−=  (7) 

 

1
2

1 1 1

2

1 1 1

( )                ( ) ( ) ( ) ( )  

      

( ) ( )       ( ) ( ) ( )

           

n n n
x i x i y i x i t i

i i i
n n n

y i x i y i y i t i
i i i

I q I q I q I q I q
x
y

I q I q I q I q I q

−

= = =

= = =

   
−   

    
=     

     −   
   

∑ ∑ ∑

∑ ∑ ∑





. (8) 

1. Horn-Schunk Method 

The difference between the Lucas-Kanade and Horn-Schunk methods is that the 

first algorithm assumes smoothness in the flow over a small set of pixels; however, the 

second algorithm assumes that the motion is uniform over the whole image. As a result, 

the Horn–Schunck algorithm results in a higher density of flow vectors than the Lucas-

Kanade algorithm; however, it is much more sensitive to noise [6]. In the Horn-Schunk 

method, the flow for a 2D image stream is presented as a global energy function that 

must be minimized [8], that is, 

 ( ) ( )2 2 2 2
x y tE I u I v I u v dxdyα= + + + ∇ +∇∫∫ , (9) 

where 
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 ( , )   ;     ( , ) dx dyu x f x y v y f x y
dt dt

= = = = = =  , (10) 

and 

 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
. (11) 

The optical flow vector is represented by ( , )TV u v= . Larger values for α, the constant of 

regularization, result in smoother flows. Using the Finite Differences Method, we can 

approximate the Laplacians of u and v, respectively, 

 2 ( , ) ( , )u u x y u x y∇ = −  (12) 

and 
 2 ( , ) ( , )v v x y v x y∇ = − . (13) 

The quantities ( , )u x y and ( , )v x y are, respectively, two weighted averages of u and v 

computed in the surrounding area of the (x,y) point. By solving the associated Multi-

Dimensional Euler-Lagrange equations, we can minimize the general expression of the 

flow, with the result [8] 

 ( ) 2 2 0x x y tI I u I v I uα+ + − ∇ =  (14) 

and 
 ( ) 2 2 0y x y tI I u I v I vα+ + − ∇ = . (15) 

By substituting (12) and (13), respectively, into (14) and (15), we get 

 2 2 2
x x y x tI u I I v u I Iα α + + = −   (16) 

and 
 2 2 2

x y y y tI I u I v v I Iα α + + = −  . (17) 

The pair of linear equations above is true for each point in the image; however, since the 

neighboring values of the flow field are involved, an iterative solution must be 

considered: 

 
( ) ( )1 1

2 2 2 2 2 2   ;    
k k k k

x x y t y x y tk k k k

x y x y

I I u I v I I I u I v I
u u v v

I I I Iα α
+ +

+ + + +
= − = −

+ + + +
 (18) 
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As stated earlier, many algorithms have been adopted to compute optical flows; however, 

this is not possible without the availability of some optical flow motion field estimation 

models capable of projecting 3D relative motions on a 2D image plane. 

C. OPTICAL FLOW MOTION FIELD ESTIMATION MODELS 

Whether the objects are moving in the scene or the observer is moving through 

the scene, optical flow allows movement detection. Essentially, there are two main 

approaches for the derivation of the optical flow motion field estimation models. The first 

one is the pin-hole image plane approach, and the second one is the spherical imaging 

surface approach.  The optical flow motion-field estimation models take care of the 

projection of a relative 3D motion onto a 2D image plane. Optical flow sensing is mainly 

realized by considering a camera as a sensor. Let us suppose that a moving camera takes 

two successive images, one at time t and the other at time t+1. The two images are 

compared to each other to translate all the information relative to rotational velocities, 

translational velocities, and surface information. From Figure 2 and Figure 3, it can be 

seen that the resulting optical flow field is not the same when the camera is moving. In 

this case, the optical flow field contains information about the observer translational 

velocity. This is usually how dead reckoning and optical odometry for mobile robots 

equipped with optical flow sensors works. 

 

 

 Optical flow field estimated by a non-moving observer. 
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 Optical flow field estimated by a moving observer. 

 

Pin-hole image plane and spherical imaging surface approaches are described in detail  

in [3]. 

D. APPLICATION OF OPTICAL FLOW SENSORS 

In robotics, optical flow sensors have been widely used as navigation sensors 

mounted to indoor and outdoor robots to complete a variety of navigation tasks. Capable 

of keeping track of any displacement, optical flow sensors have been used as optical 

odometers to ensure accurate measurement of distance. Even though typical encoders 

such as shaft and optical encoders present a considerable margin of error when dealing 

with distance measurement, optical flow sensors have not been able to totally replace 

them due to redundancy issues.  

Another application of optical flow sensors is obstacle avoidance. Researchers are 

motivated to use optical flow sensors as obstacle avoidance sensors due to the fact that 

they have a wide field-of-view. By only mounting a few of them on a robot, we can cover 

all of the surrounding area. 

Altitude hold is a new application of optical flow sensors. Some researchers used 

them as a direct feedback to micro UAVs to maintain a specific altitude and control the 

yaw angle. Under degraded GPS performance, optical flow sensors can also stand as 

solutions for dead reckoning. They can give accurate estimates of current position and 
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speed based on previous calculations. In addition, combined with inertial navigation 

systems, they can provide precise measurements of height, altitude, and horizontal and 

ground velocities which can be used for hovering control. Inspired by honeybees’ grazing 

landing, some researchers have demonstrated the possibility of integrating optical flow 

sensors for stabilization and landing on fixed and moving platforms. These applications 

are very attractive when it comes to military deployments and emergency landings. A 

summary of the different applications of optical flow sensors and some of the works 

already done is provided in Table 1. 

Table 1.   Optical flow based navigation works and approaches (after [3]).  

Navigation functions Authors Robotic 
platform 

OF computation 
technique 

Landing on moving 
platform 

ONERA-UNICE-
ANU 

Quad-rotor Lucas-Kanade 
algorithm 

Velocity and height 
estimation 

UNSW-ADFA-UTS Helicopter Image interpolation 
algorithm 

Obstacle avoidance  Flying wing Optical mouse sensor 
Altitude keeping EPFL Ultra-light 

MAV 
Image interpolation 

algorithm 
Estimation hovering UAEH-UTC Eight-rotor 

VTOL 
Lucas-Kanade 

algorithm 
Velocity estimation ETHZ Quad-rotor Block matching 

algorithm 
OF comparison: vision 
vs. navigation sensors 

WVU Small fixed-
wing 

Sift feature 
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III. DEAD RECKONING AND ODOMETRY FOR INDOOR 
ROBOTS USING AN OPTICAL MOUSE SENSOR 

Dead reckoning is the estimation of position and can also be referred to as self-

localization or position tracking. Odometry is the estimation of speed and distance. In the 

case of ground robots, sensors are usually attached to the wheels, and the collected data is 

analyzed to estimate the motion of the robot. The most popular and widely used sensors 

are the absolute and incremental rotary optical encoders. Unfortunately, these sensors 

generate unbounded errors, especially when paths are not straight. Inertial sensors are 

also used for dead-reckoning and odometry applications, but they suffer from the same 

type of errors. One factor behind the lack of precision of rotary encoders is that when a 

wheel-based robot slips, the wheels do not spin, leading to zero data collected by the 

sensors. This is the major handicap for indoor and outdoor robots; therefore, sensors 

based solely on optical flow computation must be adopted in robotics to solve the 

problems of inaccuracy and unreliability of traditional sensors. Among all the optical 

flow sensors, the use of an array of high speed optical flow mice has been proposed as a 

solution for dead reckoning and odometry issues [9]–[10].  

A. ROTARY DIGITAL OPTICAL ENCODERS 

An optical encoder is an electronic device that converts the angular position or 

motion of an axle to a digital code or sequence of pulses. The optical encoder’s disc is a 

glass or plastic disc containing transparent and dark spots. A light source emits the light. 

Depending on whether the light reflects over the white surface or the black surface of the 

disc, we see that the photo detectors detect the optical pattern resulting from the disc’s 

position. Optical encoders usually consist of infrared emitting diodes and NPN 

phototransistors. The emitting diode and detector are mounted side-by-side on parallel 

axes. The code collected is then converted by a microcontroller to an absolute or relative 

position measurement. In the case of absolute encoders, a unique digital word 

corresponds to a specific rotation of the shaft; however, as the shaft rotates, an 
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incremental encoder generates digital pulses leading to the measurement of a relative 

position. An example of a rotary optical encoder is displayed in Figure 4. 

 

 

 Example of rotary optical encoder (from [11]). 

 

1. Absolute Encoder 

There are two popular types of absolute encoder: the gray and binary code 

encoders. From Figure 5, it can be seen that the main difference resides in the 

arrangement of dark and white spots. In the following, we consider a three-bit-digital-

word absolute encoder; thus, we need three emitting diodes and three photo detectors 

mounted in parallel axes. The conversion from binary word to angle rotation is shown in 

Table 2. 

 

 

 Binary and Gray encoding disc (from [12]). 
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Table 2.   Three-bit digital word-to-angle conversion of an absolute encoder.  

Decimal code Rotation range in degrees Binary code Gray code 

0 0 to 45 000 000 

1 45 to 90 001 001 

2 90 to 135 010 011 

3 135 to 180 011 010 

4 180 to 225 100 110 

5 225 to 270 101 111 

6 270 to 315 110 101 

7 315 to 360 111 100 

 

For a three bit digital word, we get 23=8 angle rotations or distinct shaft positions. For a 

n-bit digital word, we have 2n distinct angle rotations; thus, increasing the number of bits 

per digital word, significantly increases the precision of the position measurement. The 

gray code is preferred over the binary code since the uncertainty during one transition is 

always one bit. 

2. Incremental Encoder 

As shown in Figure 6 and Figure 7, the incremental or relative encoder has two 

sensors whose outputs are considered channels and called, respectively, channel A and 

channel B. The two output channels, A and B, are in quadrature, meaning they are 90 

degrees out of phase. Waveforms A and B are decoded to produce a count-up pulse or a 

countdown pulse. Often, an additional output channel (INDEX) is added to count full 

revolutions. It is also used to define the zero position. 
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 Example of channels A and B outputs (from [13]). 

 
 

 

 Incremental encoder (from [14]). 

 

The principle of operation of an incremental encoder is illustrated in Table 3. For 

example, if the last value collected from A and B was 00 and the current value is 01, it 

means the wheel rotated a half step in the clockwise direction. Steps refer to the angle 

slots available on the wheel. By counting the number of steps the wheel rotated, we can 

determine precisely the position of the wheel at any time. The velocity can be determined 

from the angle of rotation and the time taken to perform the rotation. Generally, 

incremental encoders are preferred over absolute encoders since they give better results in 

term of precision and accuracy, with fewer electronic components involved. 
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Table 3.   Example of output channels state diagram. 

 

Phase 
Clockwise rotation Counter-clockwise rotation 

A B A B 

1 0 0 1 0 

2 0 1 1 1 

3 1 1 0 1 

4 1 0 0 0 

 

B. OPTICAL MOUSE SENSORS 

The idea of using optical mice as optical flow sensors is a powerful lure for 

robotics researchers due to several factors. First of all, mouse chips are capable of 

tracking 2D motions at very high resolutions. Second, they are small, light, and easy to 

mount on any robotics platform. Finally, the chips are abundant on the market and are 

inexpensive compared to the other optical flow sensors. The common problem of optical 

mouse sensors is that they are mainly designed to work on surfaces located a few 

millimeters from the sensor. Consequently, research was done to allow the application of 

these sensors where the platform or the robot is farther than a few millimeters from the 

tracking terrain. To accomplish this, optical imaging systems used in optical mice were 

modified with non-standard lenses, allowing the refocusing of light onto the sensor. The 

lenses used differ from one application to another according to the distance required 

between the sensor and the ground. Actually, this approach has been proven to work for 

different distances ranging from 2.0 cm above the surface for wheel-based robots to tens 

of meters for flying robots [15]–[16]. 

Three main factors need to be considered when selecting an optical mouse sensor 

for a certain application. These factors are the frame rate, the image size, and the 

resolution. The number of snapshots the sensor is capable of taking per second represents 

the frame rate. The higher the frame rate of the sensor, the greater is its ability to detect 

small motions. That means increased capabilities to track high speed movements. High 
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speed motion tracking also depends on the image size. That means if two sensors have 

the same frame rate, the one capable of taking larger images gives better results. For 

example, a 30 × 30-pixel-image sensor is better than an 18  × 18-pixel-image sensor. 

Finally, the last characteristic to consider in an optical mouse sensor is the resolution. The 

resolution of a sensor is usually expressed in counts per inch (cpi) and reflects the 

number of steps the sensor reports during a displacement of one inch. In other words, a 

high resolution sensor of 1600 cpi detects more surface details than a low resolution 

sensor of 400 cpi. The basic principles of operation for optical mice are described in 

detail in the next chapter as we introduce all the electronic components used to perform 

the experimental part of this thesis. The performances of different Avago-brand mouse 

chips are compared in Table 4.  

Table 4.   Characteristics of some Avago mouse-chip sensors. 

Name Type Rated resolution 
(cpi) 

Rated speed 
(inches/s) 

Frame 
rate (fps) 

Image size 
(pixels) 

ADNS-2610 Optical 400 12 1500 18×18 

ADNS-2051 Optical 400/800 14 at 1500 fps 500-2300 18×18 

ADNS-5060 Optical 1050 30 - 19×19 

ADNS-3080 Optical 400/1600 40 at 6400 fps 500-6469 30×30 

ADNS-7050 Laser 800 20 - 22×22 

ADNS-9500 Laser 5000 150 - 30×30 

 

C. MOTION TRACKING 

In robotics, three main reference frames are used to translate the motion of an 

object within a specific space. The first is the world frame, referred to as W frame. The 

second is the robot frame, referred to as R frame. The final one is the sensor frame, 

referred to as S frame. It is important to consider that the number of S frames depends on 

the number of sensors used since every sensor has its own frame. Let us consider the 

configuration of frames shown in Figure 8.  
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 Example of reference frames configuration. 

 

At the beginning, or at t=0, the W and R frames coincide. This means that the sensor and 

robot positions relative to the W frame are, respectively, 

 
0 0

     ;       0
00

W R W
S S S RO O d O

   
   = = =   

  
  

. (19) 

As the robot moves, the position of the robot frame and sensor frame relative to the 

absolute frame change. Using rotation matrices and homogeneous transformations, we 
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can represent all possible motion of the robot with respect to the W frame. The rotation 

matrix of frame R relative to frame W is given by 

 
cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

W
R R

θ θ
θ θ

− 
 =  
 
 

. (20) 

Also, the rotation matrix of frame S relative to frame R is given by 

 
1 0 0
0 1 0
0 0 1

R
S R I

 
 = = 
 
 

. (21) 

The robot position represented in the W frame system can be written as 

 
cos( )
sin( )

      0

R
W

R R

d
O d

α
α

 
 =  
 
 

, (22) 

and the sensor position represented in the R frame system can be written as 

 
0

0

R
S SO d

 
 =  
 
 

. (23) 

Using the different rotation matrix and positions of frames relative to each other, we get 

the corresponding homogeneous transformations 

 

cos( )      sin( )        0        cos( )
sin( )         cos( )        0        sin( )                       
   0                 0             1       0      0       0        1

R
W W

RW R R
R

d
dR OT

θ θ α
θ θ α

−
 

= =  
             0

   0                 0             0               1

 
 
 
 
 
 

 (24) 

and 

 

   1           0            0          0
   0           1            0                                 
   0           0            1          0   0      0       0        1
   0     

R R SR S S
S

dR OT
 

= =  
 

      0            0          1

 
 
 
 
 
 

. (25) 

The position of the sensor relative to the world frame at any time t is given by 
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   1    1

R W
W W R W S S

R R
O OP T P T

   
= × = × =      

   
, (26) 

which can be written 

 

cos( )      sin( )        0        cos( )
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R
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. (27) 

Now, the sensor’s position coordinates relative to the world frame are 

 
sin( ) cos( )

cos( ) sin( )
                0

S R
W

S S R

d dx
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z
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  = = +  

      

. (28) 

For each single motion of the robot (translation or rotation) we must solve these 

equations to know the position of the robot. With only two equations and three 

unknowns, it is difficult to determine the position of the robot. That is why, usually, 

multiple sensors are mounted on a moving platform. With only one sensor, dead 

reckoning is a complex problem to solve in robotics. In the next chapter, we present our 

solution that not only makes dead reckoning and odometry with only one sensor possible, 

but also remove the complexity of jumping from one frame to another by directly 

representing the position of the robot in the W frame. 
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IV. EXPERIMENTAL SETUP AND RESULTS 

The main goal of this work is the design and development of an efficient, 

inexpensive, reliable, and simple obstacle avoidance and dead reckoning optical flow 

sensor that can be used in varying light conditions. All the steps taken to make this work 

achievable are outlined in this chapter. The work done throughout this thesis involved 

commercially available components, C++ coding, and custom algorithms. The 

components used to realize the experimental part of this thesis are the ADNS-3080, the 

Arduino Due, a DC motor board connected to four motors, a Parallax servo motor, and 

two XBEE modules.  

A. HIGH PERFORMANCE OPTICAL MOUSE SENSOR ADNS-3080 

The ADNS-3080 belongs to the family of ADNS optical mouse sensors 

manufactured by Avago Technologies. It is considered to be a high performance optical 

flow mouse sensor due to its key features that include the following [17]: 

• Up to 40-inches per second (ips) and 15-g speed motion detection 

• 500 to 6469-frames per second (fps) programmable frame rate 

• 400 or 1600-counts per inch (cpi) selectable resolution 

• 30 × 30 pixels image size 

Accessing the sensor for data communication is possible through a four-wire 

Serial Peripheral Interface (SPI). The ADNS-3080 consists of an Image Acquisition 

System (IAS), a Digital Signal Processor (DSP), and a serial port. The IAS includes a 

tiny camera, a lens, and an illumination system. The DSP processes the microscopic 

terrain images captured by the IAS and determines the distance, the direction, and the Δx 

and Δy relative displacements. An external microcontroller can be used to access 

(read/write) the different registers of the sensor by using the SPI. The block diagram and 

pinout of the ADNS-3080 are shown in Figures 9 and 10, respectively. 
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 Block Diagram of ADNS-3080 (from [17]). 

 

 

 Pinout of ADNS-3080 (from [17]). 

 

The SPI is a synchronous serial port used to read the data from the different 

registers of the sensor or to select specific parameters such as resolution. To activate the 

serial connection, NPD must be set to high, RESET to low, and NCS to low. If NCS goes 

high during a transaction, the transaction is aborted and the SPI is deactivated. The clock 

input (SCLK) is always generated by the microcontroller. If multiple sensors are 
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connected to the same master, the NCS can be used to select one sensor and deselect the 

other. Every register in the ADNS-3080 has a unique address. The different registers and 

reset values are illustrated in Figure 11. 

 

 

 ADNS-3080 registers (from [17]). 
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Understanding write and read operations is crucial to understanding how to 

exchange data between the microcontroller and the sensor. Write operations consist of 

two bytes both sent by the master over the master-out-slave-in line (MOSI): one byte for 

the address and one byte for the data. The first byte containing the address has “1” as its 

most-significant bit (MSB). The second byte containing the data is read by the sensor on 

SCLK rising edges. Similarly, read operations consist of two bytes. The address byte has 

“0” as its MSB and is sent by the microcontroller over MOSI. The data byte is driven by 

the sensor over the master-in-slave-out line (MISO). The sensor reads MOSI bits on 

every SCLK rising edge and delivers MISO bits on falling edges of SCLK. Minimum 

timing between two subsequent operations needs to be respected. The time window to be 

respected between two back-to-back operations is depicted in Figure 12. 

 

 

 Timing between subsequent operations (from [17]). 

 

The ADNS-3080 has an 8-bit unsigned integer unique ID contained in the 

“Product_ID” register. The value contained in this register is always the same and is 
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usually read to make sure that the connection between the microcontroller and the sensor 

is functional. The “Revision_ID” register can also be used to identify the sensor’s 

version. Both the “Product_ID” and the “Revision_ID” registers are read only registers. 

The data, address, and reset values of the “Product_ID” and “Revision_ID” registers are 

illustrated in Figure 13. 

 

 

 “Product_ID” and “Revision_ID” registers (from [17]). 

 

The “Motion” register contains information about the sensor motion and 

resolution. If motion has occurred since the last time the register was read, the MSB is set 

to “1”; otherwise, it is set to “0.” The least-significant bit (LSB) allows the user to know 

the sensor resolution setting. If it is “0,” the resolution is 400 cpi (default value). If it is 

“1,” the resolution is 1600 cpi. Once a motion has been detected, the user needs to read 

the “Delta_X” and “Delta_Y” registers to determine the relative displacements Δx and 

Δy, respectively. The “Motion,” “Delta_X,” and “Delta_Y” registers are all read-only 

registers. To set the sensor resolution to 1600 cpi, the user needs to access the 

“Configuration_bits” register and set the RES bit to “1.” The data and reset value of the 

“Motion,” “Delta_X,” “Delta_Y,” and “Configuration_bits” registers are shown in 

Figures 14, 15, and 16, respectiveley. 
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 “Motion” register (from [17]). 
 

 

 “Delta_X” and “Delta_Y” registers (from [17]). 
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 “Configuration_bits” register (from [17]). 

 

As an optical flow sensor, the ADNS-3080 must be able to operate with a large 

number of valid features visible in an image or frame; thus, a surface quality “SQUAL” 

register has to be regularly checked to make sure that the sensor is working properly. The 

surface quality factor provides an accuracy indication of the relative displacements 

computed by the sensor. A low “SQUAL” value makes the data collected and computed 

by the sensor unreliable. The quality factor is directly related to the navigation surface. 

The “SQUAL” is maximized when the distance between the navigation surface and the 

imaging lens is optimized. The “SQUAL” register data and reset values are illustrated in 

Figure 17. 

 

 

 “SQUAL” register (from [17]). 

 

An imaging lens can significantly increase the maximum tracking speed. It 

provides a magnification factor equal to the rated tracking speed of the sensor divided by 

the desired speed. The magnification factor is also given by m=Si/So where Si is the 

image distance and So is the object distance. From Figure 18, it can be seen that Si is the 

distance from the camera to the lens, and So is the distance from the surface to the lens. 
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 Focal length, object distance, and image distance (from 
[18]). 

 

In other words, a 1/m wide surface patch will be focused onto a 1 mm wide image plane 

within the ADNS-3080. The focal length of the lens can be expressed, according to [19], 

as 

 1 1 1 1 1 1 1
/o i o o i if S S S mS S m S

= + = + = + . (29) 

Solving for So and Si, we get 

 1(1 )o
fS f f
m m

= + = +  (30) 

and 
 (1 )iS f mf f m= + = + . (31) 

By knowing the focal length of an imaging lens, the magnification ratio can be set so that 

the surface quality factor is maximized and the size of the surface focused onto the 

camera’s image plane increased.   
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B. DC MOTOR SHIELD 

A DC Motor Shield is used to control the speed and the direction of rotation of the 

wheels mounted to the indoor ground robot. The motor shield uses an H-bridge driver 

chip L298N integrated circuit that can drive up to two brushed DC motors or a four-wire 

two phase stepper motor. Each motor can be driven backwards or forwards. The speed of 

each motor is controlled by high quality, built-in pulse-width Modulated (PWM) signals 

generated by the microcontroller. The hardware diagram of the DC control board is 

shown in Figure 19. 

 

 DC Motor Shield parts (from [20]). 

 

To power the board, an external power supply is needed. The input voltage ranges 

from 6 to 35 volts. All the ports and pins available in the board are listed in Table 5. 

Motor A is controlled via ports IN1, IN2, and ENA. IN1 and IN2 are used to control the 

direction of rotation. When IN1 goes high and IN2 goes low, motor A rotates clockwise. 

On the other hand, when IN1 goes low and IN2 goes high, motor A rotates counter-

http://www.geekonfire.com/wiki/index.php?title=File:L298N_1.jpg
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clockwise. ENA is connected to a PWM port of the microcontroller to control the speed 

of the motor. The same applies for motor B on the IN3, IN4, and ENB ports. 

Table 5.   DC Motor Shield ports. 

Port  Description 

VMS/GND (inputs) Power supply pins (6V~35V) 

ENA (analog/digital 
input) 

TTL Compatible Enable Input of bridge A ( Motor A PWM 
pin) 

IN1 (digital input) TTL Compatible Inputs of bridge A 

IN2 (digital input) TTL Compatible Inputs of bridge A 

ENB (analog/digital 
input) 

TTL Compatible Enable Input of bridge B ( Motor B PWM 
pin) 

IN3 (digital input) TTL Compatible Inputs of bridge B 

IN4 (digital input) TTL Compatible Inputs of bridge B 

MOTORA (output) Output of bridge A 

MOTORB (output) Output of bridge B 

5V  (output) 5V  

 

C. ARDUINO DUE 

Arduino is an open-source physical computing platform that can be used to collect 

information from several sensors and control a variety of actuators, motors, lights, or 

other peripherals. All of the collection and control processes are controlled from a single 

thread of execution in the microcontroller. Arduino provides the user with different 

microcontroller boards that can be purchased preassembled or as do-it-yourself kits. 

Arduino is a simplified entry point to create and build digital devices and interactive 
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objects capable of sensing and controlling the physical world. Arduino also provides the 

user with an Integrated Development Environment (IDE) that supports C and C++ 

programming languages. The IDE is a clear and simple programming environment used 

to write programs for the Arduino board. Also, the IDE gives the opportunity to check the 

code for possible errors before uploading it to the microcontroller. The Arduino IDE 

software runs on Windows, Macintosh OSX, and Linux operating systems. 

Most of the Arduino boards run at 5.0 volts, except the Arduino Due which runs 

at 3.3 volts. The ADNS-3080 and the XBEE pro 90 modules both run at 3.3 volts. That 

means the maximum voltage that the I/O pins can tolerate is 3.3 volts. Forcing the optical 

mouse sensor or the transceiver module to operate at 5.0 volts can damage them. To 

avoid any possible incident, the Arduino Due was selected for our work. The Arduino 

Due front and back sides are displayed in Figure 20. 

 

 

 Arduino Due Board (from [21]). 

 

The Arduino Due board contains a 32-bit Atmel SAM3X8E-ARM processor. It 

has 12 analog inputs and 54 digital input/output pins. Twelve of the digital input/output 

pins can be used as PWM outputs. The Arduino Due also has a SPI to communicate with 

another microcontroller or one or more peripheral devices. MISO, MOSI, and SCLK 

lines are common for all devices. The chip-select or slave-select (SS) line is specific for 

every device. The microcontroller board operates at 84 MHz clock speed. It has two 

digital-to-analog converters (DACs), a reset, and an erase button. The Arduino Due 

pinout is shown in Figure 21. 
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 Arduino Due ports (from [21]). 
 

In this work, only one Arduino Due board was used. All the data traffic and 

control signals were managed by the microcontroller. The Arduino Due is the master and 

all the other parts of the ground robot (ADNS-3080 modules, XBEE pro 90, DC Motor 

Shield, and Parallax servo) were slaves.  

D. PARALLAX STANDARD SERVO 

The Parallax Standard Servo (see Figure 22) is designed to hold any position 

between 0 and 180 degrees. It is a high precision servo that can be controlled by a 

microcontroller or device capable of generating PWM signals. From Figure 23, it can be 

seen that the connection of the servo to any type of microcontroller is easy to realize. 
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 Parallax Standard Servo (from [22]). 

 

 

 Parallax Standard Servo Wiring Diagram (from [22]). 

 

The position of the servo shaft is directly controlled by the width of the PWM 

signal pulses. The servo needs a period of 20.0 ms between pulses to hold its position. To 

center the servo, the microcontroller must deliver a 1.5 ms pulse every 20.0 ms. The 

PWM signal required for a centered servo is shown in Figure 24. 

 

 

 Timing diagram for centered servo. 
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The pulse duration ranges from 0.75 to 2.25 ms. A 0.75 ms pulse corresponds to the servo 

shaft positioned at 0 degree. A 2.25 ms pulse corresponds to a servo shaft position of 180 

degrees. The center position corresponds to a servo shaft position of 90 degrees. So, 

depending on the pulse duration, the servo shaft can rotate either clockwise or counter-

clockwise.  

E. XBEE-PRO 900 DIGIMESH RF MODULES 

The XBee-PRO 900 RF modules (see Figure 25) were mainly engineered and 

designed to be used in wireless sensor networks (WSNs). They are reliable and require 

low power to operate efficiently. They operate within the ISM (industrial, scientific, and 

medical) 900-MHz frequency band to support up to 10 km (using high gain antennas) RF 

line-of-sight ranges and 156 kbps data rates. 

 

 XBee-PRO 900 DigiMesh RF module (from [23]). 

 

The XBee-PRO 900 can communicate with any host that has a Universal 

Asynchronous Receiver/Transmitter (UART) interface. At the source, the UART 

converts parallel-form data into serial-form data. At the destination, the UART receives 

the bits of data and reassembles them into bytes of data. Any microcontroller supporting 

a UART interface can be directly connected to the pins of the RF module. From Figure 

26, it can be seen that the UART system data flow diagram is based on a four-wire 

connection. RTS and CTS pins correspond, respectively, to Request-to-Send and Clear-

to-Send pin flow control pins. 
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 UART Data Flow Diagram (from [23]). 

 

F. TRAJECTORY-FOLLOWER ROBOT 

The idea of the trajectory-follower robot came from the principle of operation of 

the Flight Management System (FMS) in aircraft. The FMS is an embedded system that 

keeps track of the aircraft’s position by collecting data from its various sensors (GPS, 

INS, radio navigation tools, etc.). The FMS consists essentially of a Flight Management 

Computer (FMC) connected to the different sensors and a Control Display Unit (CDU). 

Before take-off, a flight plan is entered by the pilot via the CDU into the FMS.  The flight 

plan is the route the aircraft must follow to fly from the departure point to the destination 

point and contains all the waypoints needed to reach the destination. Once in flight, 

knowing the aircraft’s position and the flight plan, the FMS can guide the aircraft along 

the way by controlling the autopilot and the auto-throttle systems. The different parts of a 

typical FMS are displayed in Figure 27. 
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 Example of a typical FMS (from [24]). 

 

In this work, the Arduino Due plays the role of the FMC. A desktop computer 

plays the role of the CDU, and the DC motor board plays the role of the autopilot and 

auto-throttle systems. Using the Arduino IDE installed in the control unit, we uploaded 

the program containing the different waypoints to the microcontroller. Once the program 

was uploaded, the processor collects position information from the ADNS-3080 optical 

mouse sensor. Given the robot position and route plan, the Arduino Due controls the 

speed and direction of rotation of the wheels via the DC motor board. The position 

information and the robot maneuvers are displayed on a display unit located in a 

monitoring area. The control unit and the display unit can be located at the same place. 

An RF connection between the display unit and the onboard computer is established by 

using two XBee-PRO 900 modules. The emitter module is mounted to the robot and 

directly connected to the microcontroller via one of its four UART interfaces. The 

receiver module is directly connected to the display unit via the serial port. The different 

parts of the wheeled-robot’s onboard system are shown in Figure 28. 
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 Indoor robot embedded system. 

 

This work involved extensive coding and programming. Every component had to 

be programmed and tested separately, and all the resulting codes had to be combined into 

one final program. The resulting program allowed the microcontroller to read and edit the 

data contained in the different registers of the optical flow sensor, control the speed and 

direction of rotation for the motors, and continuously send information of position and 

behavior to the display unit. The master can access all the registers of the ADNS-3080 

chip. To track the robot’s position, the microcontroller initializes the sensor, configures 

its settings, and collects position data from all the registers involved in the dead 

reckoning process.  All the useful data are sent out to the display unit via the RF link. 

Getting a surface quality feedback from the sensor is very important since a high quality 

factor indicates that the ADNS-3080 can see a large number of terrain features; thus, its 
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ability to reliably track position improves. A significant drop in the quality factor 

indicates that the dead reckoning process is no longer reliable. 

 

 

 Communication protocol between the Arduino Due and 
the ADNS-3080 sensor. 
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The communication process between the microcontroller and the optical mouse sensor is 

described by the flowchart presented in Figure 29. 

As said before, traditional techniques of dead reckoning using data collected and 

measured by encoders attached to either the robot’s wheels or the engine axis suffer from 

slipping and crawling. Slipping occurs when wheels slide, and crawling occurs when an 

external force is exerted on the robot. The dead reckoning we propose here is slipping 

and crawling resistant since the position tracking function is attributed to one ADNS-

3080 sensor. The mouse sensor is not bound to any moving part and is capable of reading 

relative displacements even when an external force is behind the robot movement. 

Accurate dead reckoning using optical flow sensors usually involves the use of more than 

one sensor due to the fact that a robot change of direction is hard to measure using only 

one sensor. In some works, two optical mouse sensors have been used. In others, arrays 

of optical mouse sensors have been utilized. Indeed, the use of only one optical flow 

sensor for dead reckoning may seem like a bad idea unless the robot is also equipped with 

one or multiple other heading sensors. A novel and efficient mean of using one optical 

mouse sensor pointed at the ground as a heading and dead reckoning sensor is presented 

in this work. 

The first thing we must consider when using a two or four-wheeled robot is how 

to make a right or a left turn. A common technique is to vary the speed of the wheels. For 

instance, if the left wheels rotate faster than the right wheels, the vehicle moves to the 

right, and vice versa. The distance required to make a turn depends directly on how 

slowly the left (right) wheels spin and how quickly the right (left) wheels spin. With only 

one optical mouse sensor, this scenario is not appropriate since the robot position changes 

continuously during the turn; thus, the position tracking process cannot be reliable.  

In this work, we opted for another technique to reduce the complexity associated 

with the above method. In order to make a turn, the right and left wheels rotate at the 

same speed but in opposite directions. For example, when the right wheels rotate forward 

and the left wheels rotate backward, the robot makes a left turn. Contrarily, when the 

right wheels rotate backward and the left wheels rotate forward, the robot makes a right 

turn. In both cases the robot maintains its current position. Only a change in direction 



 42 

occurs. In other words, a right or left turn causes only the robot to spin about its ZR-axis. 

An example of a right turn is illustrated in Figure 30. As we can see, the position of the 

robot remains unchanged; however, after the manoeuver, the robot points θ degrees to the 

right.  

 

 Right turn of θ degrees. 

 
 

Similar to an aircraft equipped with an FMS, the trajectory-follower robot needs 

to move from one point to another. Given the robot’s current position and the next 

waypoint, the onboard computer has to compute the route to follow in order to reach the 

next destination and then compute the necessary commands to be executed by the motor 

system. The problem to solve is how to compute and track a change in direction.  In this 

work, after attempting several methods, we determined how to accomplish this using the 

same sensor, and there is no need to add an additional payload to the platform. When a 

turn is being executed, only a change in the relative displacement Δx is detected. No 

changes in the relative displacement Δy occur. The change relative to the x axis 

corresponds to an arc of length 
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 posx Rθ= × . (32) 

For example, a 90-degree right or left turn corresponds to an x-displacement of ± R × π/2.  

The different phases required to execute a 45 degree right turn are listed in the following 

flowchart (Figure 31). 

 

 

 Example of right turn. 

 

The turn speed and direction depend directly on the command signals sent out by 

the onboard computer to the DC motor board. Given the robot type, the DC motor board 

can be connected to either two or four DC motors.  The wheels are directly mounted to 

the DC motors. To move from one point to another, the microcontroller needs to first 

determine the direction and then the distance required to reach the next destination. Every 

time the robot reaches one waypoint, new computations need to be done. Once done with 

the computation of direction and distance, the Arduino Due asks the motor system to 
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translate the data computed into displacement. Meanwhile, the Arduino Due also collects 

position information from the dead-reckoning sensor. Every time a destination is reached, 

the robot stops for a period of few seconds to give the microcontroller enough time to 

calculate the next set of instructions.  Consider the example shown in Figure 32. If the 

robot is to go from point (xk,yk) to point (xk+1,yk+1), the heading angle and the distance to 

target are, respectively, 
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 Example of heading and distance to target computation. 

 

The θ and D values calculated above are not valid for all scenarios. Depending on 

the position of one point with respect to the previous one, we see that the heading angle 

and distance to target values may vary. From Table 6, we conclude that there are nine 

possible scenarios. 
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Table 6.   Theta angle and distance to target for all possible scenarios.  

 

With all cases addressed for calculating the heading and distance, we now discuss 

the algorithm adopted and executed by the trajectory-follower robot. At time t=0, the 

world frame and the robot frame coincide. All the robot positions are only relative to the 

world frame. Note that at every waypoint, the robot has to make a θ-turn in the direction 

opposite to the initial one he made to reach that point. Before every new computation of 

heading and distance to target, the robot frame x- and y-axis are, respectively, oriented 

the same way as the world frame x- and y-axis. An example of four-waypoint trajectory is 

illustrated in Figure 33. 
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 Example of four-waypoint trajectory. 

 

The behavior of the trajectory-follower robot is explained in more detail in the 

flowchart presented in Figure 34. The flowchart considers all possible scenarios. 
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 Principle of operation of the trajectory-follower robot 
(continued on next page).  
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Figure 34. Principle of operation of the trajectory-follower robot (continued from 

previous page). 
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G. OBSTACLE DETECTION AND AVOIDANCE ROBOT   

Collision avoidance is the set of maneuvers or actions that a robot executes to 

successfully avoid possible impacts with surrounding objects. An autonomous vehicle 

cannot avoid collision if its onboard system is unable to detect the presence of objects, so 

collision avoidance must always be preceded by collision detection. In other words, if a 

robot is not equipped with collision detection sensors, it is impossible for it to avoid 

collision with possible obstacles. A hindrance must first be detected and then avoided.  

The most widely used sensors for obstacle detection and avoidance are Sound 

Navigation and Ranging (SONAR) sensors. Active SONARs emit pulses of sounds and 

listen for possible echoes. The time from emission until the echo is received reflects the 

distance to the detected object. SONARs are known to be very directional. That means 

they have a narrow field-of-view. In order for a robot equipped with SONARs to 

effectively detect and avoid obstacles, more than one sensor is needed. Some of the 

obstacle avoidance robots available in the market have up to sixteen SONARs to allow 

360-degree obstacle detection. At least eight sensors are mounted to the front part of the 

robot to efficiently avoid frontal collisions. The information collected by SONARs is 

affected by the direction, orientation, and shape of the obstacle.  

The sensor field-of-view is quite important when it comes to obstacle detection 

and avoidance tasks. If the robot is unable to see enough features, it cannot detect all the 

surrounding obstacles, so the probability of collision increases. The Hokuyo laser field of 

view ranges from 240 to 270 degrees. The light detection and ranging (LIDAR) Neato 

XV-11 is characterized by a 360-degree field of view. The LIDARs seem to be the best 

solution for obstacle detection and avoidance problems; however, they are expensive and 

heavy compared to optical flow sensors. All these problems have inspired scientists to 

investigate optical flow sensor capabilities to replace SONARs and LIDARs.  

Optical flow sensors have been used in the last two decades to achieve obstacle 

detection and avoidance. The majority of existing works are based on the computation of 

time-to-contact, which requires the implementation of complex algorithms. In this work, 

we propose a simple, novel, and effective method to perform obstacle detection and 
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avoidance tasks. Only one ADNS-3080 sensor is used. The main function of the sensor is 

first to detect possible objects in front of the ground robot and then assist the onboard 

computer to properly calculate the instructions needed to avoid a possible crash. The set 

of instructions computed by the microcontroller is executed by the motor system to steer 

the robot away from the threatening object. To realize this, we used the same platform as 

in part F but equipped it with an additional ADNS-3080 sensor headed forward. The 

sensor is mounted on top of an articulated Parallax Standard Servo. The servo is fixed to 

the upper part of the platform.  The locations of the different parts of the robot are shown 

in Figure 35. 

 

 

 Location of the different parts of the four-wheel robot. 

 

Building a robot that needs to detect and avoid obstacles in order to go from one 

point to another is a challenging task. In addition to having obstacle detection and 

avoidance capabilities, such a robot needs to be capable of tracking its own position; thus, 
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a dead reckoning sensor is required. The good news is that we developed a position 

tracking sensor (Part F). As a result, we only had to determine how to simultaneously 

access both sensors such that the robot could execute the obstacle avoidance algorithm 

while continuously knowing its current position and next direction.  

The act of communicating with two sensors at the same time and managing the 

data coming in and out of the onboard computer was accomplished via the SPI protocol. 

We said earlier that if multiple sensors have to be connected to a same master, the NCS 

pin can be used to select one sensor and deselect the other, so the microcontroller can 

decide which sensor to communicate with by momentarily turning off the NCS input of 

one sensor and turning on the NCS input of the other one. When position information is 

needed, the position-tracking data flow must be authorized and the obstacle-detection 

data flow inhibited, and vice versa.  

With the dead reckoning mechanism implemented previously, the only thing 

remaining is how to detect obstacles.  One of the most important registers of the ADNS-

3080 is the “SQUAL” register. The data contained in this register reflects how reliable 

the sensor is. When there is enough light in the room and no obstacle surrounding the 

sensor, the surface quality factor is large (around 100). On the other hand, as the robot 

gets closer to an obstacle, this value decreases and drops all the way to zero when the 

robot is a few centimeters from the object. By closely tracking fluctuations in the surface 

quality factor, environmental sensing becomes possible. With this collision-detection 

concept, the microcontroller has to develop and send out to the motor system the set of 

instructions necessary to avoid crashing into the detected threat. From Figures 36, 37, and 

38, it can be seen that depending on how the obstacles are arranged, the robot calls 

different protocols and mechanisms to avoid collision.  As the robot heads towards the 

destination point, the SQUAL register data varies. When the surface quality factor equals 

zero, the robot stops for few seconds and checks for the possible existence of obstacles on 

the right side. If there are no obstacles, the robot makes a 90-degree right turn and then 

moves forward. Meanwhile, the obstacle-detection sensor is headed toward the obstacle 

via the Parallax servo. Once the surface quality factor exceeds a specific threshold (50 in 

this case), the robot makes a 90-degree left turn and moves toward the destination. 
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 First scenario. 

 

The second scenario involves the existence of obstacles on the right side. The 

robot checks for the possible existence of obstacles on the left side. If the way is clear, 

the robot makes a 90-degree left turn and keeps moving forward until the ADNS-3080 

detects the obstacle’s end. After that, the robot makes a 90-degree right turn and moves 

towards the destination. 
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 Second scenario. 

 

The worst-case scenario occurs when the robot is trapped in a set of three 

obstacles. The vehicle has no option but to choose to go one way or the other (right/left). 

There are more changes of direction and maneuvers to be executed in this case. Here, the 

detection of the obstacle’s end has to be executed twice. The first turn is a 180-degree 

turn. In all scenarios, the robot changes direction more than once. Without the second 

ADNS-3080 position-tracking sensor, reaching the desired destination is infeasible. The 

main advantage of using an optical mouse sensor for collision detection is that it does not 

care about the shape of the obstacle; however, after several tests, we noticed that the use 

of dark obstacles leads to better results. 
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 Third scenario. 
 

The principle of operation of the obstacle-detection and avoiding robot is 

described in detail in the flowchart shown in Figure 39. 
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 Principle of operation of the obstacle-detection and 
avoiding robot. 
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The first, second, and third scenario protocols are depicted, respectively, in 

Figures 40, 41, and 42. 

 

 

 First-scenario protocol. 
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 Second-scenario protocol. 
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 Third-scenario protocol. 

 

When the obstacle’s end-detection process is running, the surface-quality-

threshold value was set to 50 so that possible objects located far behind the obstacle do 

not affect the detection’s outcome.  In this work, we choose for the robot to stop only a 

few centimeters from the detected obstacle. That explains the choice of the zero-surface-

quality value for obstacles detection. We ran other tests for different values of the surface 

quality factor, and the results were interesting. In order to detect the obstacle and start the 

obstacle-avoidance process from long distances, a non-zero-surface-quality-factor 

threshold was selected. That means when the “SQUAL” data is less than the threshold, an 

obstacle is detected.  In that case and considering the three different types of obstacle 

configurations stated earlier, the detection and avoidance processes are exactly the same. 

Only one protocol is needed to successfully detect and avoid the different configurations 

of obstacles. From Figure 43, it can be seen that the robot starts the obstacle-avoidance 

process without even getting close to the obstacle.  The change of the surface-quality-

threshold value was accomplished by varying the position of the imaging lens; in other 

words, varying the object and image distances implemented the desired change. To 
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summarize, the surface quality factor values for obstacle and obstacle’s end detection can 

be chosen according to the type of application. If the application requires the knowledge 

of the nature of the obstacles, the first option is recommended. On the other hand, if the 

application does not care about what kind of obstacle is in the robot’s way, the second 

option might be the most practical since it saves time and makes the robot execute fewer 

maneuvers. 

 

 Detection and avoidance protocol for a non-zero-surface-
quality-factor threshold. 
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V. CONCLUSION AND RECOMMENDATIONS 

Using two optical mouse chips as position tracking and environment-sensing 

sensors onboard an indoor-ground robot, we successfully implemented dead reckoning 

and obstacle-detection and avoidance. The experimental results obtained were promising 

and can be further improved.  

A. RESULTS FOR TRAJECTORY-FOLLOWER ROBOT 

The trajectory-follower robot performances proved that an optical flow sensor can 

be used at the same time as a heading and a relative-displacement calculator. As far as we 

know, the application of an optical mouse chip as a heading sensor has never been 

reported before. The originality of this work also resides in the fact that the majority of 

existing work has used arrays of optical mouse sensors or one optical mouse sensor in 

association with different other sensors to perform self-localization or dead reckoning, 

which is not the case here.  

B. RESULTS FOR OBSTACLE DETECTION AND AVOIDANCE ROBOT 

In robotics, obstacle detection and obstacle avoidance have been investigated by 

many researchers. Most of the reported works use techniques based on the time-to-

contact computation and stereo imaging. These techniques are complex and require more 

than one vantage point. In this work and for the first time, we proposed a simple and 

reliable method based on the surface-quality-factor variation. The experimental results 

obtained were impressive. By using only one optical mouse sensor headed forward, we 

were able to detect and avoid collisions with obstacles of different shapes and colors. 

Unlike SONARs, the method we used cannot be affected by the obstacle’s shape; 

however, the experimental tests proved that the results for obstacle detection are better 

when the obstacle has a dark color. 



 62 

C. FUTURE WORK 

One problem we identified during this work was keeping the robot running in a 

straight line. Once the robot rotates to the desired heading, the intended path is always a 

straight line. We adopted the use of an open-loop control system to run the left and right 

wheels at the same speed. The difference in PWM signals was not very significant, but 

we were able to drive the robot in a straight line for a few meters.  The implementation of 

a closed-loop control system to solve the problem might be one of the most important 

recommendations for future works. This can be done by using the relative displacements 

Δx and Δy as feedback signals returned to the microcontroller. Before computing the duty 

cycles of the two different PWM signals to be sent to the DC motor board, the 

microcontroller can check the feedback signals and then decide which wheels need to 

rotate faster than the others.  

The experimental tests proved that the accuracy of the turn was better for angles 

greater than 20 degrees. In this work, we did not take into consideration the friction force 

resulting from the nature of the terrain. That is why, from time to time during a turn, the 

robot’s wheels slip. If future work includes the friction parameter in the computation 

process of turns, the results should improve. Note that the friction force depends directly 

on the type of surface on which the robot is traversing. The precision in position 

measurement is highly affected by the variation of the surface quality factor; thus, the 

results would be more accurate if the robot was running over the same surface during the 

time of the experiment. 

The technique adopted in this thesis can be the subject of future improvement.   

Optimal control for obstacle detection and avoidance is a very tempting challenge. To get 

from point A to point B, all the maneuvers executed by the robot to avoid the obstacle 

were essentially straight-line runs and 90-degree turns; however, with optimal control, 

the robot deviation from the collision trajectory can be set according to the rate of change 

in the surface quality. This way, we do not have to wait until the surface-quality factor 

drops all the way to zero in order to stop the robot and start the obstacle-avoidance 

procedure; rather, we can trace the rate of degradation in the surface-quality factor and 

accordingly change the speed of rotation of the left and right wheels to steer the robot 
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away from the obstacle. An example of how the robot can detect and avoid an obstacle 

using optimal control is shown in Figure 44. As can be seen, to get from point A to point 

B, the robot calls fewer mechanisms and executes fewer maneuvers. Once the robot 

recognizes that it has passed the obstacle, it changes its direction and heads toward point 

B.  

 

 Example of detection and avoidance protocol using 
optimal control. 
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APPENDIX A.  ADNS-3080 SENSOR SCRIPTS 

This appendix includes the Arduino scripts written to access the different registers 

of the ADNS-3080 sensor. These scripts allow the user to check the connection status 

between the Arduino Due microcontroller and the sensor. Using these scripts, the user 

can change some of the sensor’s default settings. 

A. MAIN CODE 

#include <T3080.h> 

#include <SPI.h> 

T3080 sensor; 

typedef unsigned long Time; 

void setup() { 

  sensor.init_1(); 

  Serial.begin(115200); 

  Serial.println(); 

  SPI.begin(); 

  SPI.setBitOrder(MSBFIRST); 

  SPI.setDataMode(SPI_MODE3); 

  SPI.setClockDivider(SPI_CLOCK_DIV16); 

  sensor.reset(); 

  sensor.init_2(); 

} 

void loop() { 

  static Time last_reset; 

  Time now = millis();   

  sensor.measurement(); 

  delay(500); 

} 
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B. HEADER FILE 

#ifndef T3080_h 

#define T3080_h 

#include "Arduino.h" 

// Register Map for the ADNS3080 Optical Optical Flow Sensor 

#define ADNS3080_PRODUCT_ID            0x00 

#define ADNS3080_REVISION_ID           0x01 

#define ADNS3080_MOTION                0x02 

#define ADNS3080_DELTA_X               0x03 

#define ADNS3080_DELTA_Y               0x04 

#define ADNS3080_SQUAL                 0x05 

#define ADNS3080_PIXEL_SUM             0x06 

#define ADNS3080_MAXIMUM_PIXEL         0x07 

#define ADNS3080_CONFIGURATION_BITS    0x0a 

#define ADNS3080_EXTENDED_CONFIG       0x0b 

#define ADNS3080_DATA_OUT_LOWER        0x0c 

#define ADNS3080_DATA_OUT_UPPER        0x0d 

#define ADNS3080_SHUTTER_LOWER         0x0e 

#define ADNS3080_SHUTTER_UPPER         0x0f 

#define ADNS3080_FRAME_PERIOD_LOWER    0x10 

#define ADNS3080_FRAME_PERIOD_UPPER    0x11 

#define ADNS3080_MOTION_CLEAR          0x12 

#define ADNS3080_FRAME_CAPTURE         0x13 

#define ADNS3080_SROM_ENABLE           0x14 

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER      0x19 

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER      0x1a 

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_LOWER      0x1b 

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_UPPER      0x1c 

#define ADNS3080_SHUTTER_MAX_BOUND_LOWER           0x1e 

#define ADNS3080_SHUTTER_MAX_BOUND_UPPER           0x1e 

#define ADNS3080_SROM_ID               0x1f 

#define ADNS3080_OBSERVATION           0x3d 
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#define ADNS3080_INVERSE_PRODUCT_ID    0x3f 

#define ADNS3080_PIXEL_BURST           0x40 

#define ADNS3080_MOTION_BURST          0x50 

#define ADNS3080_SROM_LOAD             0x60 

#define FRAME_LENGTH 900 

class T3080 

{ 

public: 

  T3080() { 

   

  ADNS3080_CHIP_SELECT = 4; // chip select pin 

  ADNS3080_RESET = 5; // chip reset pin 

  ADNS3080_POWER_DOWN = 6; // Power down pin 

     x_pos = 0; 

  y_pos = 0; 

  } 

   

 void measurement(); // sends values of dx and dy over the serial link 

and increments distx and disty respectively by dx and dy 

 void reset(); // reset sensor 

  byte read_register(byte address); 

  void init_1(); 

  void init_2(); 

  void write_register(byte address, byte data); 

    

private: 

     int ADNS3080_CHIP_SELECT; // chip select pin 

  int ADNS3080_RESET; 

  int ADNS3080_POWER_DOWN; 

     float x_pos; 

     float y_pos; 

}; 

#endif 
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C. CPP FILE 

#include"Arduino.h" 

#include"T3080.h" 

#include "SPI.h" 

 

void T3080::init_1() 

{ 

    pinMode(ADNS3080_CHIP_SELECT,OUTPUT); 

 pinMode(ADNS3080_POWER_DOWN,OUTPUT); 

 pinMode(ADNS3080_RESET,OUTPUT); 

 digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

 digitalWrite(ADNS3080_RESET, LOW); 

 digitalWrite(ADNS3080_POWER_DOWN,HIGH); 

} 

 

void T3080::init_2() 

{ 

  int retry = 0; 

  byte productId = 0; 

  byte revisionId = 0; 

   

 // PRODUCT ID VERIFICATION 

  while( retry < 10 ) { 

    delayMicroseconds(75); 

    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_PRODUCT_ID); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    productId = SPI.transfer(0x00); 
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  if( productId == 0x17 ) { 

         Serial.println("\n Found productId "); 

                Serial.print(productId, HEX);; 

            } 

      

            else{  

            Serial.println("\n False productId "); 

            Serial.print(productId, HEX);; 

            } 

    retry++; 

          } 

   if(productId != 0x17) { 

   delay(100); 

   exit(1); 

    } 

  

// REVISION ID VERIFICATION 

   delayMicroseconds(75); 

   // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_REVISION_ID); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    revisionId = SPI.transfer(0x00); 

    Serial.println("\n rev"); 

    Serial.print(revisionId, HEX); 

 

// Set resolution to 1600 counts/inch 

    delayMicroseconds(75); 

 // set the chip select to low to select the device 
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    digitalWrite(ADNS3080_CHIP_SELECT, LOW); 

 

 // send register address 

    SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80 ); 

  

 // send data 

 SPI.transfer(0x10);  

} 

 

byte T3080::read_register(byte address) 

{ 

    byte data = 0; 

    delayMicroseconds(75); 

    

   // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

 

    // send the device the register you want to read: 

    SPI.transfer(address); 

 

 // small delay 

 delayMicroseconds(75); 

 

 // send a value of 0 to read the first byte returned: 

    data = SPI.transfer(0x00); 

 

    // take the chip select high to de-select: 

    digitalWrite(ADNS3080_CHIP_SELECT, HIGH); 

 

 return data; 

} 

 

void T3080::write_register(byte address, byte data) 
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{ 

 delayMicroseconds(75); 

   

 // set the chip select to low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT, LOW); 

 

 // send register address 

    SPI.transfer(address | 0x80 ); 

  

 // send data 

 SPI.transfer(data); 

 

    // set the chip select to high to de-select the device 

    digitalWrite(ADNS3080_CHIP_SELECT, HIGH); 

  

} 

  

 void T3080::measurement()  

{ 

    byte motion = 0; 

 uint8_t dx = 0; 

 uint8_t dy = 0; 

 int8_t delta_x = 0; 

 int8_t delta_y = 0; 

 float DELTA_x = 0; 

 float DELTA_y = 0; 

 byte SQUAL = 0; 

  

 delayMicroseconds(75); 

    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_MOTION); 
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 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    motion = SPI.transfer(0x00); 

  

    delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_DELTA_X); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    dx = SPI.transfer(0x00); 

  

 delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_DELTA_Y); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    dy = SPI.transfer(0x00); 

  

 delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_SQUAL); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    SQUAL = SPI.transfer(0x00); 

    

  // check for overflow 

 if( (motion & 0x10) != 0 )  

 { 

  Serial.println("\n Attention Overflow"); 
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 } 

 else 

 { 

     Serial.println("\n No Overflow"); 

 } 

  

 // check resolution 

 if( (motion & 0x01) != 0 )  

 { 

  Serial.println("\n Resolution = 1600 counts/inch"); 

 } 

 else 

 { 

  Serial.println("\n Resolution = 400 counts/inch"); 

 } 

  

 // check for motion and update dx and dy 

 if( (motion & 0x80) != 0 )  

 { 

  Serial.println("\n Motion"); 

 } 

 else 

 { 

  Serial.println("\n No Motion"); 

 } 

  

  delta_x= (int8_t)dx; 

  delta_y= (int8_t)dy; 

   

  DELTA_x=(float)delta_x/1600.0; 

  DELTA_y=(float)delta_y/1600.0; 

   

  DELTA_x=DELTA_x/1.62914206; 
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  DELTA_y=DELTA_y/1.62914206; 

   

  DELTA_x=100*DELTA_x; 

  DELTA_y=100*DELTA_y; 

   

  x_pos=x_pos+DELTA_x; // x position in cm 

  y_pos=y_pos+DELTA_y; // y position in cm 

  //Display DELTA 

  Serial.print(DELTA_x, DEC); 

  Serial.print("                            "); 

  Serial.print(DELTA_y, DEC);  

  //Display x and y 

  Serial.print("                            "); 

  Serial.print(x_pos, DEC); 

  Serial.print("                            "); 

  Serial.println(y_pos, DEC);   

  //Display Quality 

  Serial.println("\n Quality"); 

  Serial.print(SQUAL, DEC); 

   

  // take the chip select high to de-select: 

  // digitalWrite(ADNS3080_CHIP_SELECT, HIGH); 

  //  delayMicroseconds(5); 

} 

 

void T3080::reset() 

{ 

    digitalWrite(ADNS3080_RESET,HIGH);                 // reset sensor 

 delayMicroseconds(10); 

 digitalWrite(ADNS3080_RESET,LOW);                  // return 

sensor to normal 

} 
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APPENDIX B.  DC MOTORS SCRIPTS  

The Arduino scripts contained in this appendix allow the user to test the four DC 

motors. Using these scripts, the user will be able to control the speed and direction of 

rotation of the right and left wheels.  

A. MAIN CODE 

#include <Motors.h> 

#include <SPI.h> 

Motors Motion; 

 

void setup() 

{ 

  Motion.initialize(); 

  Motion.forw();   

 

  Motion.speed_up();       //fade in from 0-255 

  Motion.forward();      //continue full speed forward 

  delay(2000);  

  Motion.slow_down();      //Fade out from 255-0 

  Motion.stop();       

  delay(2000);           // stop for 2 seconds   

 

  

  Motion.back();          

 

  Motion.speed_up();       //fade in from 0-255  

  Motion.backward();     //full speed backward 

  delay(2000);  

  Motion.slow_down();      //Fade out from 255-0 

  Motion.stop();       

  delay(2000);           // stop for 2 seconds 
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  Motion.forw();  

  Motion.forw_right();   // turn right 

  delay(3000); 

  Motion.stop(); 

  delay(2000);           // stop for 2 seconds 

  Motion.forw_left();    // turn left 

  delay(3000); 

  Motion.stop(); 

 } 

  

void loop() 

{  

   

} 

B. HEADER FILE 

#ifndef Motors_h 

#define Motors_h 

#include "Arduino.h" 

class Motors 

{ 

public: 

  Motors() { 

     ENA = 8;   //PWM control pin for right motors 

     ENB = 9;  //PWM control pin for left motors 

     In_1 = 10;  //1st direction control pin for right motors 

  In_2 = 11;  //2nd direction control pin for right motors 

     In_3 = 12;  //1st direction control pin for left motors 

  In_4 = 13;  //2nd direction control pin for left motors 

      

  } 
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  void initialize(); 

  void forw(); 

  void back(); 

  void forward(); 

  void backward(); 

  void stop(); 

  void speed_up(); 

  void slow_down(); 

  void forw_right(); 

  void forw_left(); 

 

private: 

             int ENA;  

  int ENB; 

  int In_1; 

  int In_2; 

  int In_3; 

  int In_4; 

}; 

#endif 

C. CPP FILE 

1. #include"Arduino.h" 

2. #include"Motors.h" 

3. #include "SPI.h" 

4.  

5. void Motors::initialize() 

6. { 

7.   delay(5000); 

8.   //Set control pins to be outputs 
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9.   pinMode(In_1, OUTPUT);   

10.   pinMode(In_2, OUTPUT); 

11.   pinMode(In_3, OUTPUT); 

12.   pinMode(In_4, OUTPUT); 

13.   pinMode(ENA, OUTPUT); 

14.   pinMode(ENB, OUTPUT); 

15. } 

16. void Motors::forw() // motors spinning clockwise 

17. {  

18.   digitalWrite(In_1, LOW);   

19.   digitalWrite(In_2, HIGH);  

20.   digitalWrite(In_3, LOW);   

21.   digitalWrite(In_4, HIGH);   

22. } 

23. void Motors::back() // motors spinning counter-clockwise 

24. { 

25.   digitalWrite(In_1, HIGH);   

26.   digitalWrite(In_2, LOW);   

27.   digitalWrite(In_3, HIGH);   

28.   digitalWrite(In_4, LOW);  

29. } 

30. void Motors::forward() //full speed forward 

31. {  

32.   digitalWrite(In_1, LOW);   

33.   digitalWrite(In_2, HIGH);  
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34.   digitalWrite(In_3, LOW);   

35.   digitalWrite(In_4, HIGH);    

36.   analogWrite(ENA, 255);    //set right motors to run at 

100% duty cycle 

37.   analogWrite(ENB, 255);    //set left motors to run at 

100% duty cycle 

38. } 

39. void Motors::backward() //full speed backward 

40. { 

41.   digitalWrite(In_1, HIGH);   

42.   digitalWrite(In_2, LOW);   

43.   digitalWrite(In_3, HIGH);   

44.   digitalWrite(In_4, LOW);  

45.   analogWrite(ENA, 255);   //set right motors to run at 

100% duty cycle 

46.   analogWrite(ENB, 255);   //set left motors to run at 100% 

duty cycle 

47. } 

48. void Motors::stop() //stop 

49. {  

50.   analogWrite(ENA, 0);    //set right motors to run at 0% 

duty cycle 

51.   analogWrite(ENB, 0);    //set left motors to run at 0% 

duty cycle 

52. } 

53.  
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54. void Motors::speed_up() 

55. {  

56.   // fade in from min to max in increments of 10 points: 

57.   for(int fadeValue = 0 ; fadeValue <= 255; fadeValue +=10)  

58.   {  

59.      // sets the value (range from 0 to 255): 

60.     analogWrite(ENA, fadeValue);    

61.     analogWrite(ENB, fadeValue);     

62.     // wait for 39.2 milliseconds to see the dimming effect     

63.     delay(39.2);                             

64.   }  

65. } 

66.  

67. void Motors::slow_down() 

68. {  

69.   // fade out from max to min in increments of 10 points: 

70.   for(int fadeValue = 255 ; fadeValue >= 0; fadeValue -=10)  

71.   {  

72.     // sets the value (range from 0 to 255): 

73.     analogWrite(ENA, fadeValue); 

74.     analogWrite(ENB, fadeValue); 

75.     // wait for 39.2 milliseconds to see the dimming effect     

76.     delay(39.2);   

77.   } 

78. } 



 83 

79. void Motors::forw_right() //forward turn to the right 

80. {  

81.   digitalWrite(In_1, HIGH);   

82.   digitalWrite(In_2, LOW);  

83.   digitalWrite(In_3, LOW);   

84.   digitalWrite(In_4, HIGH);  

85.   analogWrite(ENA, 200);     

86.   analogWrite(ENB, 200);     

87. } 

88.  

89. void Motors::forw_left() //forward turn to the right 

90. { 

91.   digitalWrite(In_1, LOW);   

92.   digitalWrite(In_2, HIGH);  

93.   digitalWrite(In_3, HIGH);   

94.   digitalWrite(In_4, LOW);    

95.   analogWrite(ENA, 200);    

96.   analogWrite(ENB, 200);    

97. } 

D. KEYWORDS FILE 

Motors KEYWORD1 
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back KEYWORD2 

forward KEYWORD2 

backward KEYWORD2 



 84 

stop KEYWORD2 
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slow_down KEYWORD2 
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APPENDIX C.  TRAJECTORY-FOLLOWER-ROBOT SCRIPTS  

The Arduino scripts in this appendix depict the algorithm adopted to perform the 

trajectory-following task. These scripts contain all the coding necessary to keep track of 

the robot position while moving from one uploaded waypoint to another. 

A. MAIN CODE 

#include <Destination.h> 

#include <SPI.h> 

Destination trajectory; 

typedef unsigned long Time; 

void setup() { 

  trajectory.init_1(); 

  Serial.begin(115200); 

  Serial.println(); 

  SPI.begin(); 

  SPI.setBitOrder(MSBFIRST); 

  SPI.setDataMode(SPI_MODE3); 

  SPI.setClockDivider(SPI_CLOCK_DIV16); 

  trajectory.reset(); 

  trajectory.init_2(); 

  trajectory.initialize(); 

 trajectory.decision(); 

} 

void loop() { 

 } 

B. HEADER FILE 

#ifndef Destination_h 

#define Destination_h 

#include "Arduino.h" 

// Register Map for the ADNS3080 Optical Optical Flow Sensor 
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#define ADNS3080_PRODUCT_ID            0x00 

#define ADNS3080_REVISION_ID           0x01 

#define ADNS3080_MOTION                0x02 

#define ADNS3080_DELTA_X               0x03 

#define ADNS3080_DELTA_Y               0x04 

#define ADNS3080_SQUAL                 0x05 

#define ADNS3080_PIXEL_SUM             0x06 

#define ADNS3080_MAXIMUM_PIXEL         0x07 

#define ADNS3080_CONFIGURATION_BITS    0x0a 

#define ADNS3080_EXTENDED_CONFIG       0x0b 

#define ADNS3080_DATA_OUT_LOWER        0x0c 

#define ADNS3080_DATA_OUT_UPPER        0x0d 

#define ADNS3080_SHUTTER_LOWER         0x0e 

#define ADNS3080_SHUTTER_UPPER         0x0f 

#define ADNS3080_FRAME_PERIOD_LOWER    0x10 

#define ADNS3080_FRAME_PERIOD_UPPER    0x11 

#define ADNS3080_MOTION_CLEAR          0x12 

#define ADNS3080_FRAME_CAPTURE         0x13 

#define ADNS3080_SROM_ENABLE           0x14 

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER      0x19 

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER      0x1a 

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_LOWER      0x1b 

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_UPPER      0x1c 

#define ADNS3080_SHUTTER_MAX_BOUND_LOWER           0x1e 

#define ADNS3080_SHUTTER_MAX_BOUND_UPPER           0x1e 

#define ADNS3080_SROM_ID               0x1f 

#define ADNS3080_OBSERVATION           0x3d 

#define ADNS3080_INVERSE_PRODUCT_ID    0x3f 

#define ADNS3080_PIXEL_BURST           0x40 

#define ADNS3080_MOTION_BURST          0x50 

#define ADNS3080_SROM_LOAD             0x60 

#define FRAME_LENGTH 900 
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class Destination 

{ 

public: 

  Destination() { 

   

  ADNS3080_CHIP_SELECT = 4; // chip select pin 

  ADNS3080_RESET = 5; // chip reset pin 

  ADNS3080_POWER_DOWN = 6; // Power down pin 

  ENA = 8;   //PWM control pin for right motors 

     ENB = 9;  //PWM control pin for left motors 

     In_1 = 10;  //1st direction control pin for right motors 

  In_2 = 11;  //2nd direction control pin for right motors 

     In_3 = 12;  //1st direction control pin for left motors 

  In_4 = 13;  //2nd direction control pin for left motors 

     x_sensor = 0; 

  y_sensor = 0; 

  } 

   

  void measurement(); // sends values of dx and dy over the serial link 

and increments distx and disty respectively by dx and dy 

  void reset(); // reset sensor 

  void init_1(); 

  void init_2(); 

  void initialize(); 

  void forward(); 

  void backward(); 

  void stop(); 

  void spin_right(); 

  void spin_left(); 

  void decision(); 

      

private: 
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     int ADNS3080_CHIP_SELECT;  

  int ADNS3080_RESET; 

  int ADNS3080_POWER_DOWN; 

     float x_sensor; 

     float y_sensor; 

  int ENA;  

  int ENB; 

  int In_1; 

  int In_2; 

  int In_3; 

  int In_4; 

}; 

#endif 

 

C. CPP FILE 

#include"Arduino.h" 

#include "SPI.h" 

#include"Destination.h" 

 

void Destination::init_1() 

{ 

    pinMode(ADNS3080_CHIP_SELECT,OUTPUT); 

 pinMode(ADNS3080_POWER_DOWN,OUTPUT); 

 pinMode(ADNS3080_RESET,OUTPUT); 

 digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

 digitalWrite(ADNS3080_RESET, LOW); 

 digitalWrite(ADNS3080_POWER_DOWN,HIGH); 

} 

 

void Destination::init_2() 

{ 

  int retry = 0; 
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  byte productId = 0; 

  byte revisionId = 0; 

   

 // PRODUCT ID VERIFICATION 

  while( retry < 10 ) { 

    delayMicroseconds(75); 

    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_PRODUCT_ID); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    productId = SPI.transfer(0x00); 

      

  if( productId == 0x17 ) { 

         Serial.println("\n Found productId "); 

                Serial.println(productId, HEX);; 

            } 

      

            else{  

            Serial.println("\n False productId "); 

            Serial.println(productId, HEX);; 

            } 

    retry++; 

          } 

   if(productId != 0x17) { 

   delay(100); 

   exit(1); 

    } 

  

// REVISION ID VERIFICATION 

   delayMicroseconds(75); 
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   // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_REVISION_ID); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    revisionId = SPI.transfer(0x00); 

    Serial.println("\n rev"); 

    Serial.print(revisionId, HEX); 

 

// Set resolution to 1600 counts/inch 

    delayMicroseconds(75); 

 // set the chip select to low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT, LOW); 

 

 // send register address 

    SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80 ); 

  

 // send data 

 SPI.transfer(0x10);  

} 

 

 void Destination::measurement()  

{ 

    byte motion = 0; 

 uint8_t dx = 0; 

 uint8_t dy = 0; 

 int8_t delta_x = 0; 

 int8_t delta_y = 0; 

 float DELTA_x = 0; 

 float DELTA_y = 0; 

 byte SQUAL = 0; 
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 delayMicroseconds(75); 

    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT,LOW); 

    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_MOTION); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    motion = SPI.transfer(0x00); 

  

    delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_DELTA_X); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    dx = SPI.transfer(0x00); 

  

 delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_DELTA_Y); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    dy = SPI.transfer(0x00); 

  

 delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_SQUAL); 

 // small delay 

 delayMicroseconds(75); 
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 // send a value of 0 to read the first byte returned: 

    SQUAL = SPI.transfer(0x00); 

    

    delta_x= (int8_t)dx; 

     

 delta_y= (int8_t)dy; 

   

    DELTA_x=(float)delta_x/1600.0; 

    DELTA_y=(float)delta_y/1600.0; 

   

    DELTA_x=DELTA_x/1.605066; 

    DELTA_y=DELTA_y/1.605066; 

   

    DELTA_x=100*DELTA_x; 

    DELTA_y=100*DELTA_y; 

   

    x_sensor=x_sensor+DELTA_x; // x position in cm 

    y_sensor=y_sensor+DELTA_y; // y position in cm 

   

   /*  //Display DELTA 

    Serial.print(DELTA_x, DEC); 

    Serial.print("                            "); 

    Serial.print(DELTA_y, DEC);  

    //Display x and y 

    Serial.print("                            "); 

    Serial.print(x_sensor, DEC); 

    Serial.print("                            "); 

    Serial.println(y_sensor, DEC);   */ 

    //Display Quality 

    /* Serial.println("\n Quality"); 

    Serial.print(SQUAL, DEC); */ 

   

} 
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void Destination::decision() 

{ 

    measurement(); 

 const float Raduis = 14.7; // cm 

 /* float X_path[]={0.00, -100.00, -100.00}; 

 float Y_path[]={100.00, 0.00, 200.00}; */ 

 /* float X_path[]={-100.00, -100.00, 0.00}; 

 float Y_path[]={0.00, 200.00, 100.00}; */ 

 float X_path[]={-100.00, -100.00, -50.00, 0.00, 0.00 }; 

 float Y_path[]={100.00, 200.00, 200.00, 300.00, 100.00 }; 

 /* float X_path[]={0}; 

 float Y_path[]={200.00}; */ 

 float x_0 = 0; 

 float y_0 = 0; 

 float Theta = 0; 

    float Theta_deg = 0;  

  

 for(int i = 0; i<5; i++) { 

    Serial.print("\n The destination "); 

    Serial.print(" is: "); 

    Serial.print(X_path[i]); 

 Serial.print(" , "); 

 Serial.println(Y_path[i]); 

  

   if (((Y_path[i])-y_0) > 0) 

   { 

 if (((X_path[i])-x_0) > 0) 

 { 

  Theta = atan2(abs((X_path[i])-x_0),abs((Y_path[i])-y_0)); 

  Theta_deg= Theta*180/3.14; 

  Serial.print("\n Spinning Right "); 

     Serial.print(" "); 
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     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

     while ( (abs(x_sensor) < (Theta*Raduis) ) )  

    { 

   measurement(); 

         spin_right();     

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

       { 

         measurement(); 

   forward();       

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.print("\n Spinning Left "); 

     Serial.print(" "); 

     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

  while ( (abs(x_sensor) < (Theta*Raduis) ) )  

    { 

   measurement(); 

         spin_left();     

    } 
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  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Destination reached "); 

 } 

    

 else if (((X_path[i])-x_0) < 0) 

 { 

  Theta = atan2(abs((X_path[i])-x_0),abs((Y_path[i])-y_0)); 

  Theta_deg= Theta*180/3.14; 

  Serial.print("\n Spinning Left "); 

     Serial.print(" "); 

     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

     while ( (abs(x_sensor) < (Theta*Raduis) ) )  

    { 

   measurement(); 

         spin_left();     

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

       { 

         measurement(); 

   forward();       

    } 

  stop();  
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  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.print("\n Spinning Right "); 

     Serial.print(" "); 

     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

  while ( (abs(x_sensor) < (Theta*Raduis) ) )  

    { 

   measurement(); 

         spin_right();     

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Destination reached "); 

 } 

  

 else 

 { 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

       { 

         measurement(); 

   forward();       

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 
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  Serial.println(" Destination reached "); 

 } 

  } 

///////////////////////////////////////////////////////////////////////

//// 

   

   else if (((Y_path[i])-y_0) < 0) 

   { 

 if (((X_path[i])-x_0) > 0) 

 { 

  Theta = atan2(abs((Y_path[i])-y_0),abs((X_path[i])-x_0)); 

  Theta_deg= Theta*(180/3.14)+90; 

  Serial.print("\n Spinning Right "); 

     Serial.print(" "); 

     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

     while ( (abs(x_sensor) < ((Theta+(3.14/2))*Raduis) ) )  

  { 

   measurement(); 

         spin_right();     

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

        { 

         measurement(); 

   forward();       

     } 
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  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.print("\n Spinning Left "); 

     Serial.print(" "); 

     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

  while ( (abs(x_sensor) < ((Theta+(3.14/2))*Raduis) ) )  

  { 

   measurement(); 

         spin_left();     

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Destination reached "); 

 } 

    

 else if (((X_path[i])-x_0) < 0) 

 { 

     Theta = atan2(abs((Y_path[i])-y_0),abs((X_path[i])-x_0)); 

  Theta_deg= Theta*(180/3.14)+90; 

  Serial.print("\n Spinning Left "); 

     Serial.print(" "); 

     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

  while ( (abs(x_sensor) < ((Theta+(3.14/2))*Raduis) ) )  

  { 

   measurement(); 
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         spin_left();     

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

        { 

         measurement(); 

   forward();       

     } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.print("\n Spinning Right "); 

     Serial.print(" "); 

     Serial.print(Theta_deg); 

  Serial.print(" "); 

  Serial.println("Degrees"); 

  while ( (abs(x_sensor) < ((Theta+(3.14/2))*Raduis) ) )  

  { 

   measurement(); 

         spin_right();     

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Destination reached "); 

 } 
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 else 

 { 

  Serial.println("\n Spinning Left 180 Degrees "); 

  while ( (abs(x_sensor) < (3.14*Raduis) ) )  

  { 

   measurement(); 

         spin_left();     

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

       { 

         measurement(); 

   forward();       

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println("\n Spinning Right 180 Degrees "); 

  while ( (abs(x_sensor) < (3.14*Raduis) ) )  

  { 

   measurement(); 

         spin_right();     

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 
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  y_sensor = 0; 

  Serial.println(" Destination reached "); 

 } 

  } 

///////////////////////////////////////////////////////////////////////

//// 

   

  else 

   { 

 if (((X_path[i])-x_0) > 0) 

 { 

     Serial.println("\n Spinning Right 90 Degrees "); 

  while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

  { 

   measurement(); 

         spin_right();    // spin right 90 degrees 

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

       { 

         measurement(); 

   forward();       

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println("\n Spinning Left 90 Degrees "); 
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  while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

  { 

   measurement(); 

         spin_left();    // spin left 90 degrees 

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Destination reached "); 

 } 

    

 else if (((X_path[i])-x_0) < 0) 

 { 

     Serial.print("\n Spinning Left 90 Degrees "); 

  while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

  { 

   measurement(); 

         spin_left();    // spin left 90 degrees 

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Moving toward destination "); 

  while  ( abs(y_sensor) < sqrt(pow(abs((X_path[i])-

x_0),2)+pow(abs((Y_path[i])-y_0),2)) )  

       { 

         measurement(); 

   forward();       

    } 

  stop();  

  delay(2000); 
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  x_sensor = 0; 

  y_sensor = 0; 

  Serial.print("\n Spinning Right 90 Degrees "); 

  while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

  { 

   measurement(); 

         spin_right();    // spin right 90 degrees 

  } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Destination reached "); 

 } 

  

 else 

 { 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Same Last Destination "); 

  Serial.println(" Destination reached "); 

 } 

  } 

  x_0 = X_path[i]; 

  y_0 = Y_path[i]; 

   

  } 

   

} 

  

void Destination::reset() 
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{ 

    digitalWrite(ADNS3080_RESET,HIGH);                 // reset sensor 

 delayMicroseconds(10); 

 digitalWrite(ADNS3080_RESET,LOW);                  // return 

sensor to normal 

} 

 

void Destination::initialize() 

{ 

  delay(5000); 

  //Set control pins to be outputs 

  pinMode(In_1, OUTPUT);   

  pinMode(In_2, OUTPUT); 

  pinMode(In_3, OUTPUT); 

  pinMode(In_4, OUTPUT); 

  pinMode(ENA, OUTPUT); 

  pinMode(ENB, OUTPUT); 

   

} 

 

void Destination::forward()  

{  

  digitalWrite(In_1, LOW);   

  digitalWrite(In_2, HIGH);  

  digitalWrite(In_3, LOW);   

  digitalWrite(In_4, HIGH);      

  analogWrite(ENA, 117);    //set right motors to run at duty cycle 

  analogWrite(ENB, 104);    //set left motors to run at  duty cycle 

  /* if  ( x_pos > 0 )  

      { 

        analogWrite(ENA, 145);     

        analogWrite(ENB, 150);     

      } 
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     else if  ( x_pos < 0 )  

      { 

     analogWrite(ENA, 150);     

        analogWrite(ENB, 130); 

   } 

       else   

       { 

        analogWrite(ENA, 150);     

        analogWrite(ENB, 130);  

       } */ 

    

} 

 

void Destination::backward()  

{ 

  digitalWrite(In_1, HIGH);   

  digitalWrite(In_2, LOW);   

  digitalWrite(In_3, HIGH);   

  digitalWrite(In_4, LOW);  

  analogWrite(ENA, 115);    

  analogWrite(ENB, 106);    

} 

 

void Destination::stop() //stop 

{  

  analogWrite(ENA, 0);    //set right motors to run at 0% duty cycle 

  analogWrite(ENB, 0);    //set left motors to run at 0% duty cycle 

} 

 

void Destination::spin_right() //forward turn to the right 

{  

  digitalWrite(In_1, HIGH);   

  digitalWrite(In_2, LOW);  



 106 

  digitalWrite(In_3, LOW);   

  digitalWrite(In_4, HIGH);  

  analogWrite(ENA, 200);     

  analogWrite(ENB, 200);     

} 

 

void Destination::spin_left() //forward turn to the right 

{ 

  digitalWrite(In_1, LOW);   

  digitalWrite(In_2, HIGH);  

  digitalWrite(In_3, HIGH);   

  digitalWrite(In_4, LOW);    

  analogWrite(ENA, 200);    

  analogWrite(ENB, 200);    

 } 

D. KEYWORDS FILE 

Destination KEYWORD1 

initialize KEYWORD2 

forward KEYWORD2 

backward KEYWORD2 

stop KEYWORD2 

spin_right KEYWORD2 

spin_left KEYWORD2 

measurement KEYWORD2   

reset KEYWORD2 

init_1 KEYWORD2 

init_2 KEYWORD2 

decision KEYWORD2 
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APPENDIX D.  OBSTACLE DETECTION AND AVOIDANCE 
ROBOT SCRIPTS  

The Arduino scripts in this appendix depict the algorithm adopted to perform the 

obstacle detection and avoidance tasks. These scripts contain all the coding necessary to 

move the robot from one point to another avoiding collision with obstacles on the way. 

A. MAIN CODE 

#include <Destination.h> 

#include <SPI.h> 

#include <Servo.h> 

Destination trajectory; 

typedef unsigned long Time; 

 

void setup() { 

  trajectory.init_1(); 

  Serial.begin(115200); 

  Serial.println(); 

  SPI.begin(); 

  SPI.setBitOrder(MSBFIRST); 

  SPI.setDataMode(SPI_MODE3); 

  SPI.setClockDivider(SPI_CLOCK_DIV16); 

  trajectory.reset(); 

  trajectory.init_2(); 

  trajectory.initialize(); 

  trajectory.decision(); 

} 

 

void loop() { 

 } 
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B. HEADER FILE 

#ifndef Destination_h 

#define Destination_h 

#include "Arduino.h" 

// Register Map for the ADNS3080 Optical Optical Flow Sensor 

#define ADNS3080_PRODUCT_ID            0x00 

#define ADNS3080_REVISION_ID           0x01 

#define ADNS3080_MOTION                0x02 

#define ADNS3080_DELTA_X               0x03 

#define ADNS3080_DELTA_Y               0x04 

#define ADNS3080_SQUAL                 0x05 

#define ADNS3080_PIXEL_SUM             0x06 

#define ADNS3080_MAXIMUM_PIXEL         0x07 

#define ADNS3080_CONFIGURATION_BITS    0x0a 

#define ADNS3080_EXTENDED_CONFIG       0x0b 

#define ADNS3080_DATA_OUT_LOWER        0x0c 

#define ADNS3080_DATA_OUT_UPPER        0x0d 

#define ADNS3080_SHUTTER_LOWER         0x0e 

#define ADNS3080_SHUTTER_UPPER         0x0f 

#define ADNS3080_FRAME_PERIOD_LOWER    0x10 

#define ADNS3080_FRAME_PERIOD_UPPER    0x11 

#define ADNS3080_MOTION_CLEAR          0x12 

#define ADNS3080_FRAME_CAPTURE         0x13 

#define ADNS3080_SROM_ENABLE           0x14 

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER      0x19 

#define ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER      0x1a 

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_LOWER      0x1b 

#define ADNS3080_FRAME_PERIOD_MIN_BOUND_UPPER      0x1c 

#define ADNS3080_SHUTTER_MAX_BOUND_LOWER           0x1e 

#define ADNS3080_SHUTTER_MAX_BOUND_UPPER           0x1e 

#define ADNS3080_SROM_ID               0x1f 

#define ADNS3080_OBSERVATION           0x3d 
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#define ADNS3080_INVERSE_PRODUCT_ID    0x3f 

#define ADNS3080_PIXEL_BURST           0x40 

#define ADNS3080_MOTION_BURST          0x50 

#define ADNS3080_SROM_LOAD             0x60 

#define FRAME_LENGTH 900 

 

class Destination 

{ 

public: 

  Destination() { 

   

  ADNS3080_CHIP_SELECT_1 = 4; // chip select pin 

  ADNS3080_CHIP_SELECT_2 = 2; // chip select pin 

  ADNS3080_RESET = 5; // chip reset pin 

  ADNS3080_POWER_DOWN = 6; // Power down pin 

  Servo_pwm = 3; //PWM control pin for servo 

  ENA = 8;   //PWM control pin for right motors 

      ENB = 9;  //PWM control pin for left motors 

     In_1 = 10;  //1st direction control pin for right motors 

     In_2 = 11;  //2nd direction control pin for right motors 

     In_3 = 12;  //1st direction control pin for left motors 

     In_4 = 13;  //2nd direction control pin for left motors 

     x_sensor = 0; 

  y_sensor = 0; 

  QUAL2 = 0; 

  } 

   

  void measurement(); // sends values of dx and dy over the serial link 

and increments distx and disty respectively by dx and dy (sensor 1)  

  void measurement2(); // sends values of dx and dy over the serial 

link and increments distx and disty respectively by dx and dy (sensor 

2)  

  void reset(); // reset sensor 
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  void init_1(); 

  void init_2(); 

  void initialize(); 

  void forward(); 

  void backward(); 

  void stop(); 

  void spin_right(); 

  void spin_left(); 

  void decision(); 

      

private: 

 

     int ADNS3080_CHIP_SELECT_1;  

  int ADNS3080_CHIP_SELECT_2; 

  int ADNS3080_RESET; 

  int ADNS3080_POWER_DOWN; 

     float x_sensor; 

     float y_sensor; 

  int QUAL2; 

  int ENA;  

  int Servo_pwm; 

  int ENB; 

  int In_1; 

  int In_2; 

  int In_3; 

  int In_4; 

   

}; 

 

#endif 

C. CPP FILE 

#include "Arduino.h" 
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#include "SPI.h" 

#include "Destination.h" 

#include "Servo.h"  

 

void Destination::init_1() 

{ 

    pinMode(ADNS3080_CHIP_SELECT_1,OUTPUT); 

 pinMode(ADNS3080_CHIP_SELECT_2,OUTPUT); 

 pinMode(ADNS3080_POWER_DOWN,OUTPUT); 

 pinMode(ADNS3080_RESET,OUTPUT); 

  

 digitalWrite(ADNS3080_CHIP_SELECT_1,LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH); 

 digitalWrite(ADNS3080_RESET, LOW); 

 digitalWrite(ADNS3080_POWER_DOWN,HIGH); 

  

 digitalWrite(ADNS3080_CHIP_SELECT_2,LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH); 

 digitalWrite(ADNS3080_RESET, LOW); 

 digitalWrite(ADNS3080_POWER_DOWN,HIGH); 

} 

 

void Destination::init_2() 

{ 

  // PRODUCT ID VERIFICATION for sensor 1 

  int retry_1 = 0; 

  byte productId_1 = 0; 

    

   while( retry_1 < 10 ) { 

    delayMicroseconds(75); 

    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT_1,LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH); 
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    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_PRODUCT_ID); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    productId_1 = SPI.transfer(0x00); 

      

  if( productId_1 == 0x17 ) { 

         Serial.println("\n Found productId for sensor 1 "); 

                Serial.println(productId_1, HEX); 

            } 

      

            else{  

            Serial.println("\n False productId for sensor 1 "); 

            Serial.println(productId_1, HEX); 

            } 

    retry_1++; 

          } 

   if(productId_1 != 0x17) { 

   delay(100); 

   exit(1); 

    } 

  

   // PRODUCT ID VERIFICATION for sensor 2 

  int retry_2 = 0; 

  byte productId_2 = 0; 

    

 while( retry_2 < 10 ) { 

    delayMicroseconds(75); 

    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT_2,LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH); 

    // send the device the register you want to read: 
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    SPI.transfer(ADNS3080_PRODUCT_ID); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    productId_2 = SPI.transfer(0x00); 

      

  if( productId_2 == 0x17 ) { 

         Serial.println("\n Found productId for sensor 2 "); 

                Serial.println(productId_2, HEX); 

            } 

      

            else{  

            Serial.println("\n False productId for sensor 2 "); 

            Serial.println(productId_2, HEX); 

            } 

    retry_2++; 

          } 

    if(productId_2 != 0x17) { 

   delay(100); 

   exit(1); 

    } 

  

// Set sensor 1 resolution to 1600 counts/inch 

    delayMicroseconds(75); 

 // set the chip select to low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT_1, LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH); 

 

 // send register address 

    SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80 ); 

  

 // send data 

 SPI.transfer(0x10);  
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// Set sensor 2 resolution to 1600 counts/inch 

    delayMicroseconds(75); 

 // set the chip select to low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT_2, LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH); 

 

 // send register address 

    SPI.transfer(ADNS3080_CONFIGURATION_BITS | 0x80 ); 

  

 // send data 

 SPI.transfer(0x10);  

} 

 

 void Destination::measurement()  

{ 

    byte motion = 0; 

 uint8_t dx = 0; 

 uint8_t dy = 0; 

 int8_t delta_x = 0; 

 int8_t delta_y = 0; 

 float DELTA_x = 0; 

 float DELTA_y = 0; 

 // byte SQUAL = 0; 

 uint8_t SQUAL1 = 0; 

  

 delayMicroseconds(75); 

    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT_1,LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_2,HIGH); 

    // send the device the register you want to read: 

    SPI.transfer(ADNS3080_MOTION); 

 // small delay 
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 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    motion = SPI.transfer(0x00); 

  

    delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_DELTA_X); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    dx = SPI.transfer(0x00); 

  

 delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_DELTA_Y); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    dy = SPI.transfer(0x00); 

  

 delayMicroseconds(75); 

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_SQUAL); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    SQUAL1 = SPI.transfer(0x00); 

    

    delta_x= (int8_t)dx; 

     

 delta_y= (int8_t)dy; 

   

    DELTA_x=(float)delta_x/1600.0; 
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    DELTA_y=(float)delta_y/1600.0; 

   

    DELTA_x=DELTA_x/1.605066; 

    DELTA_y=DELTA_y/1.605066; 

   

    DELTA_x=100*DELTA_x; 

    DELTA_y=100*DELTA_y; 

   

    x_sensor=x_sensor+DELTA_x; // x position in cm 

    y_sensor=y_sensor+DELTA_y; // y position in cm 

   

    //Display DELTA 

    Serial.print(DELTA_x, DEC); 

    Serial.print("                            "); 

    Serial.print(DELTA_y, DEC);  

    //Display x and y 

    Serial.print("                            "); 

    Serial.print(x_sensor, DEC); 

    Serial.print("                            "); 

    Serial.println(y_sensor, DEC);   

    //Display Quality 

    Serial.println("Quality"); 

    Serial.println(SQUAL1, DEC); 

   

} 

  

void Destination::measurement2()  

{ 

     

 // byte SQUAL = 0; 

 uint8_t SQUAL2 = 0; 

  

 delayMicroseconds(75); 
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    // take the chip select low to select the device 

    digitalWrite(ADNS3080_CHIP_SELECT_2,LOW); 

 digitalWrite(ADNS3080_CHIP_SELECT_1,HIGH); 

    

 // send the device the register you want to read: 

    SPI.transfer(ADNS3080_SQUAL); 

 // small delay 

 delayMicroseconds(75); 

 // send a value of 0 to read the first byte returned: 

    SQUAL2 = SPI.transfer(0x00); 

     

    //Display Quality 

    Serial.println("\n Quality"); 

    Serial.print(SQUAL2, DEC); 

 QUAL2= SQUAL2; 

   

} 

  

  

  

  

void Destination::decision() 

{ 

    measurement(); 

 measurement2(); 

 const float Raduis = 14.7; // cm 

 float X_path[]={0.00 }; 

 float Y_path[]={300.00}; 

 float x1 = 0; 

 float y1 = 0; 

 float y2 = 0; 

 float Theta = 0; 

    float Theta_deg = 0;  
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 Servo myservo;  // create servo object to control a servo  

    myservo.attach(Servo_pwm);  // attaches the servo on pin 9 to the 

servo object  

 myservo.write(85); 

  

 for(int i = 0; i<1; i++) { 

    Serial.print("\n The destination "); 

    Serial.print(" is: "); 

    Serial.print(X_path[i]); 

 Serial.print(" , "); 

 Serial.println(Y_path[i]); 

  

 

 Serial.println(" Moving toward destination "); 

 while  ( Y_path[i] > (y1+y2) )  

       { 

         measurement(); 

   measurement2(); 

   if (QUAL2!=0) 

   { 

     measurement(); 

     measurement2(); 

     forward();   

     y1=abs(y_sensor); 

   } 

   else 

   { 

   stop(); 

   delay(2000); 

   myservo.write(0);  

            delay(3000); 

   measurement2(); 

   if (QUAL2!=0) 
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   { 

     x_sensor = 0; 

              y_sensor = 0; 

     myservo.write(85);  

     delay(2000); 

     Serial.print("\n Spinning Right "); 

                 Serial.print(" "); 

                 Serial.print(90); 

              Serial.print(" "); 

              Serial.println("Degrees"); 

     while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

                   { 

                 measurement(); 

                       spin_right();     

                   } 

     stop();  

              delay(2000); 

     x_sensor = 0; 

              y_sensor = 0; 

     myservo.write(175);  

     delay(3000); 

     Serial.print("\n Moving forward "); 

     measurement2(); 

     while(QUAL2<50) 

                      { 

                 measurement(); 

        measurement2(); 

                       forward();  

        x1=abs(y_sensor); 

        }       

     stop();  

              delay(2000); 

     x_sensor = 0; 
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              y_sensor = 0; 

      while(abs(y_sensor) < 30) 

                      { 

                 measurement(); 

        measurement2(); 

                       forward();  

        }  

                 x1=x1+30;         

     stop();  

              delay(2000); 

     x_sensor = 0; 

              y_sensor = 0; 

     myservo.write(85);  

     Serial.print("\n Spinning Left "); 

                 Serial.print(" "); 

                 Serial.print(90); 

              Serial.print(" "); 

              Serial.println("Degrees"); 

     while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

                   { 

                 measurement(); 

                       spin_left();     

                   } 

     stop();  

              delay(2000); 

     x_sensor = 0; 

              y_sensor = 0; 

     while ( abs(y_sensor) < (Y_path[i]-y1) )  

     { 

      measurement(); 

               forward();    

     } 

     stop();  
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              y2=abs(y_sensor); 

     delay(2000); 

     x_sensor = 0; 

              y_sensor = 0; 

     Serial.print("\n Spinning Left "); 

                 Serial.print(" "); 

                 Serial.print(90); 

              Serial.print(" "); 

              Serial.println("Degrees"); 

     while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

                   { 

                 measurement(); 

                       spin_left();     

                   } 

     stop();  

              delay(2000); 

     x_sensor = 0; 

              y_sensor = 0; 

     Serial.print("\n Moving forward "); 

     measurement(); 

     while(abs(y_sensor)< x1) 

                      { 

                 measurement(); 

        forward();  

        }       

     stop();  

     delay(2000); 

     x_sensor = 0; 

              y_sensor = 0; 

     Serial.print("\n Spinning Right "); 

                 Serial.print(" "); 

                 Serial.print(90); 

              Serial.print(" "); 
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              Serial.println("Degrees"); 

     while ( (abs(x_sensor) < ((3.14/2)*Raduis) ) )  

                   { 

                 measurement(); 

                       spin_right();     

                   } 

     

   } 

    

   else 

   { 

           stop(); 

        myservo.write(85);  

        delay(2000); 

           myservo.write(175);  

                    delay(2000); 

           measurement2(); 

           if (QUAL2!=0) 

        { 

         stop(); 

      x_sensor = 0; 

                  y_sensor = 0; 

      Serial.print("\n Spinning left "); 

                     Serial.print(" "); 

                     Serial.print(90); 

                  Serial.print(" "); 

                  Serial.println("Degrees"); 

         while ( (abs(x_sensor) < ((3.14/2)*Raduis) 

) )  

                   { 

                 measurement(); 

                       spin_left();     

                   } 



 123 

         stop();  

                  delay(2000); 

         x_sensor = 0; 

                  y_sensor = 0; 

         myservo.write(0);  

         delay(3000); 

         Serial.print("\n Moving forward "); 

         measurement2(); 

         while(QUAL2<50) 

                      { 

                 measurement(); 

        measurement2(); 

                       forward();  

        x1=abs(y_sensor); 

        }       

         stop();  

                  delay(2000); 

         x_sensor = 0; 

                  y_sensor = 0; 

         while(abs(y_sensor) < 30) 

                      { 

                  measurement(); 

         measurement2(); 

                        forward();  

        }  

                     x1=x1+30;         

         stop();  

                  delay(2000); 

         x_sensor = 0; 

                  y_sensor = 0; 

         myservo.write(85);  

         Serial.print("\n Spinning Right "); 

                     Serial.print(" "); 
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                     Serial.print(90); 

                  Serial.print(" "); 

                  Serial.println("Degrees"); 

         while ( (abs(x_sensor) < ((3.14/2)*Raduis) 

) )  

                   { 

                 measurement(); 

                       spin_right();     

                   } 

         stop();  

                  delay(2000); 

         x_sensor = 0; 

                  y_sensor = 0; 

         while ( abs(y_sensor) < (Y_path[i]-y1) )  

          { 

        measurement(); 

                 forward();    

          } 

         stop();  

                  y2=abs(y_sensor); 

         delay(2000); 

         x_sensor = 0; 

                  y_sensor = 0; 

         Serial.print("\n Spinning Right "); 

                     Serial.print(" "); 

                     Serial.print(90); 

                  Serial.print(" "); 

                  Serial.println("Degrees"); 

         while ( (abs(x_sensor) < ((3.14/2)*Raduis) 

) )  

                   { 

                  measurement(); 

                        spin_right();     
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                   } 

         stop();  

                  delay(2000); 

         x_sensor = 0; 

                  y_sensor = 0; 

         Serial.print("\n Moving forward "); 

         measurement(); 

         while(abs(y_sensor)< x1) 

                      { 

                 measurement(); 

        forward();  

        }       

   

         stop();  

                  delay(2000); 

         x_sensor = 0; 

                  y_sensor = 0; 

         Serial.print("\n Spinning left "); 

                     Serial.print(" "); 

                     Serial.print(90); 

                  Serial.print(" "); 

                  Serial.println("Degrees"); 

         while ( (abs(x_sensor) < ((3.14/2)*Raduis) 

) )  

                   { 

                 measurement(); 

                       spin_left();     

                   } 

         stop();  

                  delay(2000); 

                  x_sensor = 0; 

                  y_sensor = 0; 

     } 
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     else 

     { 

        stop(); 

         x_sensor = 0; 

                     y_sensor = 0; 

      myservo.write(85);  

            delay(2000); 

            Serial.print("\n Spinning Right "); 

                        Serial.print(" "); 

                        Serial.print(90); 

                     Serial.print(" "); 

                     Serial.println("Degrees"); 

            while ( (abs(x_sensor) < 

((3.14/2)*Raduis) ) )  

                      { 

                    measurement(); 

                          spin_right();     

                      } 

             stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

       delay(2000); 

             Serial.print("\n Spinning Right "); 

                         Serial.print(" "); 

                         Serial.print(90); 

                      Serial.print(" "); 

                      Serial.println("Degrees"); 

             while ( (abs(x_sensor) < 

((3.14/2)*Raduis) ) )  

                      { 
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                    measurement(); 

                          spin_right();     

                      } 

             stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

       myservo.write(175);  

             delay(3000); 

             Serial.print("\n Moving forward "); 

             measurement2(); 

             while(QUAL2<50) 

                         { 

                    measurement(); 

           measurement2(); 

                          forward();  

          }       

             y1=y1-abs(y_sensor); 

       stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

             while(abs(y_sensor) < 30) 

                         { 

                    measurement(); 

           measurement2(); 

                          forward();  

          }  

                         y1=y1-30;         

             stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 
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             myservo.write(85);  

             Serial.print("\n Spinning Left "); 

                         Serial.print(" "); 

                         Serial.print(90); 

                      Serial.print(" "); 

                      Serial.println("Degrees"); 

             while ( (abs(x_sensor) < 

((3.14/2)*Raduis) ) )  

                      { 

                     measurement(); 

                           spin_left();     

                      } 

             stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

       myservo.write(175);  

             delay(3000); 

             Serial.print("\n Moving forward "); 

             measurement2(); 

             while(QUAL2<50) 

                         { 

                    measurement(); 

           measurement2(); 

                          forward();  

           x1=abs(y_sensor); 

          }       

             stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

             while(abs(y_sensor) < 30) 

                         { 



 129 

                    measurement(); 

           measurement2(); 

                          forward();  

          }  

                         x1=x1+30;         

             stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

             myservo.write(85);  

             Serial.print("\n Spinning Left "); 

                         Serial.print(" "); 

                         Serial.print(90); 

                      Serial.print(" "); 

                      Serial.println("Degrees"); 

             while ( (abs(x_sensor) < 

((3.14/2)*Raduis) ) )  

                      { 

                     measurement(); 

                           spin_left();     

                      } 

       stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

       while ( abs(y_sensor) < 

(Y_path[i]-y1) )  

             { 

            measurement(); 

                     forward();    

             } 

              stop();  

                       y2=abs(y_sensor); 
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              delay(2000); 

              x_sensor = 0; 

                       y_sensor = 0; 

              Serial.print("\n Spinning Left "); 

                          Serial.print(" "); 

                          Serial.print(90); 

                       Serial.print(" "); 

                       Serial.println("Degrees"); 

             while ( (abs(x_sensor) < 

((3.14/2)*Raduis) ) )  

                      { 

                    measurement(); 

                          spin_left();     

                      } 

             stop();  

                      delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

             Serial.print("\n Moving forward "); 

             measurement(); 

             while(abs(y_sensor)< x1) 

                         { 

                    measurement(); 

           forward();  

          }       

             stop();  

             delay(2000); 

             x_sensor = 0; 

                      y_sensor = 0; 

             Serial.print("\n Spinning Right "); 

                         Serial.print(" "); 

                         Serial.print(90); 

                      Serial.print(" "); 
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                      Serial.println("Degrees"); 

             while ( (abs(x_sensor) < 

((3.14/2)*Raduis) ) )  

                      { 

                    measurement(); 

                          spin_right();     

                      } 

     } 

       

   } 

    

   } 

                  

    } 

  stop();  

  delay(2000); 

  x_sensor = 0; 

  y_sensor = 0; 

  Serial.println(" Destination reached "); 

  

  } 

   

} 

 

  

void Destination::reset() 

{ 

    digitalWrite(ADNS3080_RESET,HIGH);                 // reset sensor 

 delayMicroseconds(10); 

 digitalWrite(ADNS3080_RESET,LOW);                  // return 

sensor to normal 

} 
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void Destination::initialize() 

{ 

   delay(5000); 

   //Set control pins to be outputs 

  pinMode(In_1, OUTPUT);   

  pinMode(In_2, OUTPUT); 

  pinMode(In_3, OUTPUT); 

  pinMode(In_4, OUTPUT); 

  pinMode(ENA, OUTPUT); 

  pinMode(ENB, OUTPUT); 

   

  /* Servo myservo;  // create servo object to control a servo  

                 // a maximum of eight servo objects can be created  

   myservo.attach(Servo_pwm);  // attaches the servo on pin 9 to the 

servo object  

   myservo.write(85);  

   delay(3000); 

   myservo.write(0);  

   delay(3000); 

   myservo.write(175);  

   delay(3000); 

   myservo.write(85);  

   delay(3000); */ 

} 

 

void Destination::forward()  

{  

  digitalWrite(In_1, LOW);   

  digitalWrite(In_2, HIGH);  

  digitalWrite(In_3, LOW);   

  digitalWrite(In_4, HIGH);      

  analogWrite(ENA, 115);    //set right motors to run at duty cycle 

  analogWrite(ENB, 106);    //set left motors to run at  duty cycle 



 133 

  /* if  ( x_pos > 0 )  

      { 

        analogWrite(ENA, 145);     

        analogWrite(ENB, 150);     

      } 

     else if  ( x_pos < 0 )  

      { 

     analogWrite(ENA, 150);     

        analogWrite(ENB, 130); 

   } 

       else   

       { 

        analogWrite(ENA, 150);     

        analogWrite(ENB, 130);  

       } */ 

} 

void Destination::backward()  

{ 

  digitalWrite(In_1, HIGH);   

  digitalWrite(In_2, LOW);   

  digitalWrite(In_3, HIGH);   

  digitalWrite(In_4, LOW);  

  analogWrite(ENA, 115);    

  analogWrite(ENB, 106);    

} 

 

void Destination::stop() //stop 

{  

  analogWrite(ENA, 0);    //set right motors to run at 0% duty cycle 

  analogWrite(ENB, 0);    //set left motors to run at 0% duty cycle 

} 

 

void Destination::spin_right() //forward turn to the right 
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{  

  digitalWrite(In_1, HIGH);   

  digitalWrite(In_2, LOW);  

  digitalWrite(In_3, LOW);   

  digitalWrite(In_4, HIGH);  

  analogWrite(ENA, 200);     

  analogWrite(ENB, 200);     

} 

 

void Destination::spin_left() //forward turn to the right 

{ 

  digitalWrite(In_1, LOW);   

  digitalWrite(In_2, HIGH);  

  digitalWrite(In_3, HIGH);   

  digitalWrite(In_4, LOW);    

  analogWrite(ENA, 200);    

  analogWrite(ENB, 200);    

 } 

D. KEYWORDS FILE 

Destination KEYWORD1 

initialize KEYWORD2 

forward KEYWORD2 

backward KEYWORD2 

stop KEYWORD2 

spin_right KEYWORD2 

spin_left KEYWORD2 

measurement KEYWORD2   

measurement2 KEYWORD2 

reset KEYWORD2 

init_1 KEYWORD2 

init_2 KEYWORD2 

decision KEYWORD2 
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