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ABSTRACT 

The use of hexavalent chromium in metal coating operations, as per electrolytic 

processing, is subject to increasingly restrictive regulations due to its carcinogenic and 

toxic properties. Yet, these coatings are critical for corrosion resistance in aircraft parts 

such as hydraulic systems. This has led to many efforts to find high quality “non-

electrolytic” coating processes. The guiding hypothesis of this work was that a version of 

the Reduction Expansion Synthesis (RES) process, previously used to produce submicron 

metal particles, could be developed to create metal coating. This study involved the 

production of coatings by a variety of RES-like protocols, based on mixing metal nitrates, 

urea, and sometimes other reagents with uncoated metal wires, then heating (ca. 900 C) 

in an inert atmosphere. The primary tools employed to study the coatings were optical 

microscopy, X-ray diffraction, scanning electron microscope, and energy dispersive X-

ray microprobe. The first protocol created essentially a carbon surface layer. This was 

mitigated in later protocols, and the coatings contained the desired metals. However, the 

coating morphology was imperfect and contained impurities. Clearly, metal can be 

deposited with RES like processes, but further development will be needed to create 

metal layers of acceptable quality. 
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I. INTRODUCTION 

This chapter provides an overview of the benefits of commercial metal coating 

techniques and highlights the harmful qualities that sparked our interest in pursuing this 

area of study. Of particular concern is that while metal plating processes have been 

around for decades, so have the serious human and environmental dangers that are 

negative consequences of these production methods. Namely, the use of hexavalent 

chromium (CrVI) in electrolytic coating techniques, long regarded as the premier means 

for preventing wear and corrosion of some metals is now strictly minimized and highly 

regulated by government agencies for its toxicity. These restrictions are also affecting the 

ability of the Department of Defense (DOD) to maintain mission ready and capable 

assets, as it struggles to identify environmentally friendly coating alternatives that offer 

the same or better performance parameters. 

A. OVERVIEW  

Metal coating, commonly referred to as surface finishing, is one of the oldest 

innovations known for enhancing the form and function of the material it protects. It can 

be used as a surface protectant on metallic and non-metallic objects called substrates. Its 

long history has played a major role in community infrastructures around the world, 

influencing practically every industry available, and increasing the overall quality of life 

for millions.  

Two of the most widely used metal finishing are arguably chromium (chrome) 

plating and nickel plating. These coating techniques create hard, corrosion-resistant, 

durable surfaces in various non-engineering and engineering applications. Such 

techniques are critical from a military standpoint given, for example, that U.S. Navy 

aircraft carriers experienced failures of the aircraft launching system within a year of 

service as a result of wear and corrosion [1]. Furthermore, as  detailed elsewhere [1], the 

dramatic improvement to the service life as a result of electroless nickel coating being 

applied to the aircraft catapult covers. This particular example illustrates the huge 

benefits of metal coating applications to the operational capability and reliability of the 
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military’s aircraft launching mechanism. Meanwhile, chrome plating in the form of 

hexavalent chromium (CrVI) has been regarded as the “gold standard” against corrosion 

in military applications for decades [2]. Its uses range from electronics to aircrafts 

components.   

While metal coatings have advanced the dependability and durability of many 

systems, certain coating application processes have raised concerns and drawn criticism 

for their adverse effects. Specifically, chrome coating is problematic as it involves 

electrolytic (high current) coating in extremely low pH acid baths using highly toxic 

chrome precursors [3, 4]. For these and other reasons, there is a push to find greener 

alternatives or suitable replacements for existing coating processes that pose substantial 

environmental risks [2-5].   

B. HISTORY 

The earliest civilizations harnessed applications of metal coating in an effort to 

decorate and preserve artifacts. Ingo et al. researched plating methods used by early 

craftsmen [6]. They recorded that mercury silvering and gilding techniques were used at 

that time to cover metal objects with thin sheets of silver or gold. Furthermore, these 

researchers discovered that for centuries, the metal plating industry was dominated by 

mercury-based coating methods because of their relatively low cost and aesthetic appeal. 

By the mid-1800s, electroplating techniques were introduced and eventually, they 

outperformed these mercury-based methods [6]. At that time, electroplating was easily 

scalable and revolutionized the industry at a time when mercury was exposed for its 

toxicity [6]. In time, mercury-based coating techniques were virtually discontinued 

because they grew to be more expensive due to their harmful risks. 

Today, there are a growing number of metal coating/plating techniques available 

for commercial use. These include, but are not limited to, the following: electroplating, 

sputtering, thermal spraying, and plasma spraying [7]. Chrome and/or nickel coatings are 

typically applied by one of these methods. Consumers weigh performance and life-cycle 

costs when choosing the best product for the application, however, it is also equally 

important to calculate the risks.     
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1. Electroplating 

Electroplating occurs by immersing a conductive metal in an aqueous solution of 

the coating metal and supplying the cell with an electrical current [8, 9]. The material 

being coated serves as the cathode also referred to as the negative electrode. The anode 

consists of either the same metal in the aqueous solution or a chemically inactive metal, 

like copper or platinum, used only as a path for the electrons to flow [9]. The metal to be 

coated becomes negatively charged and attracts the positively charged ions in the 

solution, which triggers the electrodeposition of the coating onto the surface of the 

material.  

Chrome electroplating is illustrated in Figure 1, which depicts an unknown 

component cathode and a lead (Pb) anode connected to a power source and submerged in 

a plating bath containing chromium trioxide (CrO3) and sulfuric acid (H2SO4) [10]. The 

positively charged Cr ions from the solution are attracted to the negatively charged 

component and deposit onto the surface, creating a chrome coating [10]. Toxic CrVI mist 

is emitted into the environment from the plating bath. Hazardous byproducts including 

sludge and contaminated parts collect in the tank, all of which require special handling 

and disposal [10].     

 
Figure 1.  Chrome electroplating uses chromic acid solutions to apply coatings 

with thicknesses between 0.001” to 0.015,” from [10]. 
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Decorative electrodeposition of nickel is usually done in conjunction with a 

chrome overlay, Ni-Cr coating [11]. Recently, Ni-Cr plating has seen improved corrosion 

protection with the development of a microdiscontinuous chromium layer to combat 

surface porosity normally affecting the Cr topcoat (see Figure 2) [11, 12]. As detailed 

elsewhere [12], microdiscontinuous chromium protects steel, zinc, copper, aluminum, 

and other materials. Nickel coatings used in engineering applications offer similar 

protection and pollution challenges to chrome coating, the difference being that nickel 

coating processes have mostly transitioned to cleaner alternatives. As such, nickel coating 

processes using non-electrolytic techniques are now widely employed; meanwhile 

chrome coating is still almost universally applied via electrolytic methods. The use of 

some metals in electroplating such as cadmium and lead however, are restricted by the 

Environmental Protection Agency (EPA) due to their toxic quality [7].  

  
Figure 2.  Nature on corrosion pitting on: (left) single-layer nickel plus 

chromium and (right) microdiscontinuous chromium over nickel, 
from [11] 

Lou et al. [9] describe the electroplating treatment process as involving immersion 

of the material being coated in a series of baths, outlined in Figure 3. They further 

indicate that specific chemical compositions of electroplating baths are mostly 

proprietary but the fundamentals of electroplating are geared towards the same results—

bolstering surface appearance, providing protection, or enhancing material properties.  
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Figure 3.  Electroplating process flow chart, from [9]. 

Today, electroplating continues to be one of the leading metal coating techniques 

despite a growing demand for technological advances to eliminate the adverse effects 

associated with its use. Manufacturers employing this coating method are now burdened 

with meeting and maintaining compliance with Occupational Safety and Health 

Administration (OSHA) and Environmental Protection Agency regulations for worker 

safety and pollution prevention [2, 3]. 

2. Electroless plating 

Electroless plating is an autocatalytic coating technique that results from a 

controlled chemical reaction between a metal substrate and a reducing agent [13, 14]. The 
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main difference between electroless plating and electroplating is that metal deposition is 

not driven by current source. The absence of a current flow permits a constant deposition 

rate throughout the coating process, which is directly responsible for the thickness 

uniformity on complex surface geometries [13, 14]. According to [13, 14], major 

advantages of electroless plating over other techniques include uniform coating 

distribution illustrated in Figure 4, less porosity which increases the effectiveness of the 

protective layer, and reduced energy consumption through the absence of an external 

power supply.  

 
Figure 4.  The constant deposition rate in electroless nickel plating techniques 

produces a uniform coating thickness on complex surfaces, 
from [14].      

Schlesinger [13] describes the electroless deposition process illustrated in Figure 

5 as following follows two different methods. One plating sequence includes solutions to 

sensitize and catalyze the metal to be coated. The alternate plating sequence includes a 

catalyzing solution with a mixed colloid followed by an activation process to remove 

unwanted surface layers formed by interaction of stabilizers in solution. A material is 

treated with either the first or the second electroless plating bath sequence based on the 

inherent behavioral properties of the substrates in solution [14]. As discussed in detail 

elsewhere [15], electroless plating has not been perfected for use with chrome plating 
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applications, in particular on a steel substrate, due to susceptibility of the electroless 

plating bath to become contaminated.     

 

 
Figure 5.  Electroless deposition schematic, from [13]. 

3. Sputtering  

Sputtering is a PVD process that results when a high temperature or inert gas is 

supplied to a vacuum chamber containing a target material and a substrate [7, 16, 17]. 

Highly accelerated Argon ions hit a target surface, transferring significant kinetic energy 

to atoms on the surface. This causes the surface atoms to “sputter,” that is, they leave the 

surface, very energetically, and freeze when they hit a cold surface and condense as 

illustrated in Figure 6 [16, 17]. The geometry of the system determines how many of the 

sputtered atoms hit the substrate. The positioning of the substrate within the chamber 

allows for one side to be coated at a time. 
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Figure 6.  Sputtering deposition process, from [17]. 

Based on [17], some advantages with the use of this technique include infinite 

substrate options, no unwanted alteration of substrate properties, thickness uniformity on 

the plate being coated, low costs, low energy, and no pollution. The sputter deposition 

coating method is commonly used for developing thin films in integrated circuits, but has 

seen commercial use in chrome plating applications. Indeed, it is not appropriate for large 

substrates as the cost of the matching large vacuum chambers and associated pumps is 

prohibitive. 

4. Thermal spraying 

Thermal spraying utilizes a gun that sprays liquefied coating material onto a 

roughened metal surface [7]. Reeve [18], suggested that concurrent coating of several 

components is possible, while a vacuum chamber is typical for spraying smaller pieces in 

order to prevent impurities on the surface layer. Zinc and aluminum are commonly used 

as coating metals with this technique on iron substrates [7]. Additionally, thermally 

sprayed Ni-Cr alloy is applied to on metals with operating temperatures around 1800°F 

[7]. There are a few limitations associated with its use that include “line-of-site” surfaces 

and uneven coating thicknesses due to surface contours [18]. This technology is 

commonly used in the aerospace industry to provide wear, corrosion, and thermal 

resistance in aircraft systems.  
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5. Plasma spraying 

Plasma spraying is a form of thermal spraying and involves similar protocols for 

coating an object. The process proceeds after powder is injected into a plasma jet then 

superheated before being sprayed onto the substrate through a high velocity plasma torch 

as shown in Figure 7 to create millimeter-thick coatings [7, 19, 20]. The high kinetic 

energy of the propelled atoms causes the strong bonding with the surface, ultimately 

producing corrosion and wear-resistant parts for high temperature operations [7, 19, 20]. 

It is widely used in aircraft engine components, particularly turbine blades.  

 
Figure 7.  Plasma spray process, from [20]. 

C. HEALTH AND ENVIRONMENTAL HAZARDS WITH METAL 
COATING PROCESSES 

Electroplating processes produce toxic gases that not only pollute the environment 

but impact worker health. Inhalation of toxic emissions, ingestion (e.g., from drinking water), 

or direct skin contact with plating solutions are typical sources of human exposure to 

electrolytic CrVI. Moreover, studies [2, 21–23] show that exposure to this hazard heightens 

human risks of lung cancer, skin lesions, and birth defects. A 2006 final rulemaking 

identified CrVI as being responsible for 10–45 cases of cancer for every 1000 workers, when 

compared to six other chemicals, including asbestos and benzene as seen in Figure 8 [2]. 

Under the same 2006 rule, OSHA proposed a dramatically lower CrVI exposure threshold; 
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see Figure 9, from 52μg/m3 to 5μg/m3 to mitigate health risks [2]. Occupational asthma has 

also been linked to chrome and nickel electroplating processes [21].  

 
Figure 8.  Cancer risk of hexavalent chromium (CrVI) in comparison to other 

known carcinogens, from [2]. 

 
Figure 9.  Hexavalent chromium (CrVI) occupational exposure limits, from 

[2]. 

D. ALTERNATIVE METAL COATING TECHNIQUES 

As previously mentioned, one of the main purposes of industrial metal coating 

systems is to protect against corrosion. This is especially critical for DOD, which spends 

billions annually on corrosion maintenance for its systems and infrastructures in Figure 

10 [24]. Based on these staggering expenditures, corrosion protection technologies will 

undoubtedly remain a priority for the sustainability of military operations.  
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Figure 10.  Department of Defense cost of corrosion studies, from [24] 

DOD’s primary mission has been to protect U.S. citizens and its interests; 

however, it, too, must comply with U.S. Statutes and governing agencies’ demand for the 

limited use of toxic coating materials. Therefore, in 2009, the Under Secretary of Defense 

issued a memorandum for secretaries of the military departments to limit the use of CrVI 

in coating systems; exceptional cases would require special approval [25]. Furthermore, 

the Secretary of Defense directed the following actions be taken to alleviate CrVI impact 

to operations:  

• Invest in appropriate research and development on substitutes. 

• Ensure testing and qualification and procedures are funded and conducted 
to qualify technically and economically suitable substitute materials and 
processes.  

• Approve the use of alternatives where they can perform adequately for the 
intended application and operating environment. Where CrVI is produced 
as a byproduct from use of manufacture of other acceptable chromium 
oxides, explore methods to minimize CrVI production. 
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• Update all relevant technical documents and specifications to authorize 
use of qualified alternatives and, therefore, minimize the use of materials 
containing CrVI. 

• Document the system-specific CrVI risks and efforts to qualify less toxic 
alternatives in the Programmatic Environment, Safety, and Occupational 
Health Evaluation for the system. Analyses should include any 
cost/schedule risks and life cycle cost comparisons among alternatives. 
Life cycle comparisons should address material handling and disposal 
costs and system overhaul cycle times/costs due to any differences in 
corrosion protection. 

• Share knowledge derived from research, development, testing and 
evaluations (RDT&E) and actual experiences with qualified alternatives.  

• Require the Program Executive Office (PEO) or equivalent level, in 
coordination with the Military Department’s Corrosion Control and 
Prevention Executive (CCPE), to certify there is no acceptable alternative 
to the use of CrVI on a new system. This requirement also applies to the 
operation and maintenance of a system during the Operations and Support 
phase of a system’s life cycle.  

• For such applications where acceptable alternatives to CrVI do not exist, 
CrVI may be used. [25] 

Some manufacturers have minimized the harmful effects from coating processes 

by replacing plating anodes—swapping out lead with platinum—altering the plating bath 

formulation, and instituting better wastewater treatment systems [4]. Unfortunately, these 

and other measures have led to increasing production costs. As a result, alternative 

coating techniques that provide the same or similar appearance characteristics, 

performance properties, and costs have been explored. Some of these advances include 

the use of trivalent chromium [5, 8, 15, 26–30], nanocrystalline structures of nickel-

tungsten [8], high velocity oxyfuel (HVOF) [3], and PVD [3]. Legg et al. [3] posed 

commercial replacements in Table 1 with performance and costs that rival electrolytic 

hard chrome processes.  
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Table 1.   Alternative coating technologies under evaluation, after [3].  

Technology Coating 
material 

Typical 
component 
application 

Typical 
purpose 

Comments 

HVOF Cr3C2/Mo-Ni-
Cr 

Piston Rings Wear OEM only 

HVOF Tribaloy 400, 
WC-Co 

Turbine Shafts, 
Al bearing 
surfaces 

Fretting, wear, 
corrosion, hot 
oxidation 

OEM and 
rebuild 

Sputter PVD CrN, Ti-Al-N, 
TiN 

Hydraulic 
shafts, molds, 
pump parts, 
gears, bearings 

Wear, release, 
erosion, 
corrosion, 
decorative 

OEM; cannot 
be thick enough 
for rebuild. No 
refinishing 
needed 

Plasma nitride 
+ PVD 

CrN, Ti-Al-N “Soft” steels, 
hydraulics, 
molds, shafts, 
piston rings 

Wear, fretting, 
corrosion, 
erosion 

For relatively 
soft steel, 
perhaps Al. No 
refinishing 
needed 

Arc PVD (thick 
coating) 

CrN, Ti-Al-N “Soft” steels, 
hydraulics, 
shafts 

Wear, fretting, 
corrosion, 
erosion 

For extended 
wear life, 
perhaps light 
rebuild 

Laser Cladding Tribaloy 400, 
WC-Co 

Bearing 
surfaces, 
turbine blades, 
shafts 

Wear, fretting, 
corrosion, 
erosion 

High local 
temperatures, 
good 
metallurgical 
bond. Must be 
refinished 

Laser CVD TiN Bearing 
surfaces, shafts 

OEM, rebuild, 
wear, fretting 

High local 
temperatures. 
No refinishing 
needed.  

 

1. Trivalent Chromium  

Many researchers instinctively targeted trivalent chromium as a viable 

replacement for CrVI because of its thermodynamic stability and benign qualities. It has 

been successfully used in decorative chrome plating applications, but has found no 

commercial success in functional or engineering applications, which require greater 

thicknesses against abrasion, friction, and wear [4, 29]. Some researchers have shown 
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that electrodeposition of chromium-carbide (Cr-C) layer with trivalent chromium can 

result in a thick coating for functional applications; however, this was detrimental to 

material hardness in some cases [27, 30].  

2. Nanocrystalline Structures of Nickel Tungsten 

Advances in nanotechnology have affected many sectors of industry, including 

coating systems. In [8], researchers form the Massachusetts Institute of Technology 

(MIT) Materials Science and Engineering department explored the use of nanotechnology 

to achieve a greener alternative to hexavalent chromium. These researchers focused their 

efforts on the use of nanotechnology in creating a metal with the same desirable 

properties of CrVI minus the hazards. Furthermore, they created nanocrystalline 

structures of nickel-tungsten and performed a comparative study with hex chrome to 

determine that they matched in reflectivity and nickel-tungsten was superior is corrosion 

resistance. As this stage of development, little is known about the negative impact from 

human interaction with nanoparticles or the cost necessary to scale this innovation. 

3. High Velocity Oxygen Fuel (HVOF) 

High velocity oxygen fuel coating is characteristic of a thermal spray coating 

process, enhancing anti-corrosion and anti-wear properties of the material to which it is 

applied. Legg et al[3]. researched the technical performance of thick HVOF coatings and 

determined this coating method to be a suitable alternative to electrolytic hexavalent 

chrome (EHC) after showing tremendous promise in abusive conditions, processing 

requirements, and costs. These researchers indicated that HVOF achieves coating 

thicknesses up to 1 mm, which is very useful in rebuilding worn components.  

In 2000, HVOF coating found its way into engineering applications used by 

DOD. Specifically, Schell et al. [31] collaborated with the Navy, Army, and Air Force 

Air Logistics Centers to substitute EHC plating on gas turbine engines using thermal 

spray and HVOF. This strategy was implemented to reduce hazardous waste and lower 

life-cycle costs over a 3 year trial period. In Figure 11, HVOF was determined to be 

cheaper than EHC in environmental, coating, pre-treating, and other processing costs for 
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a coated cylinder [3]. When further compared to EHC, HVOF processing has 

significantly lower yields in waste [31].  

 
Figure 11.  Cost factor comparison for coating of cylinder with an outside 

diameter of 125 mm and 300 mm high, from [3] 

4. Physical Vapor Deposition 

Physical vapor deposition (PVD) includes thermal evaporation and sputtering 

methods for the deposition of thin films onto a substrate [17]. As described elsewhere 

[17], PVD is employed in a number of applications, namely electronic devices, optical 

and conductive coatings, and surface modifications. When used in decorative 

applications, 3μm thick PVD processes cost less than EHC; however 15 μm PVD coating 

is far more costly as shown in Figure 11 [3]. These findings suggest that functional 

applications of PVD may not be an ideal replacement for EHC.        

E. MILITARY APPLICATIONS OF METAL COATING 

Metal coating systems are utilized by essentially every organization across every 

industry and the military is no exception. The Department of Defense is a large consumer 
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of this technology. The extensive and expensive inventory of military systems including 

ships, aircrafts, ground vehicles, weapons, etc., drove the need for standardization of 

manufacturing processes to ensure delivery of mission capable and mission ready 

products at a fair price. These measures were aimed at identifying dependable, durable, 

and maintainable equipment to optimize system performance.  

The Department of Defense has long established specifications for chrome and 

nickel plating to ensure that coated systems meet desired performance criteria prior to 

installation and subsequent use. Some examples of these of CrVI coated systems are 

highlighted in Figure 12 [2]. As shown, electrodeposition of hard chrome plating protects 

against wear but also permits rebuilding of worn parts in aircrafts, vehicles, weapons, 

hydraulic systems, and landing gear.      

 
Figure 12.  Functions and applications of hexavalent chromium in the military, 

from [2]. 
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Electrolytic nickel plating has mostly been replaced with electroless processes. As 

previously mentioned in [1], electroless nickel plating has seen a successful transition 

into military applications, particularly aerospace components as seen in Figure 13.   

 
Figure 13.  Aerospace applications of electroless nickel plating, from [1]. 

F. REDUCTION EXPANSION SYNTHESIS (RES) 

The RES method is a recently developed technique for rapid generation of 

metal and metal alloy particles, including nanoparticles, from a physical mixture of 

metal nitrate, oxide or hydroxide species and urea. This mixture is heated in an inert 

environment at low temperatures (ca. 700°C) [32, 33] and leads to the rapid 

production of metal and metal alloy particles, primarily on the micron and sub-micron 
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size scale.  The basis of the technology is that metal oxides in the vicinity of volatile 

reducing radicals and molecules produced by the thermal decomposition of urea, etc., 

are reduced to metal.  The final metal particle size is generally of the scale of the 

precursor species. Since metal oxide particles of the micron/sub-micron scale are 

readily produced just by grinding, this is a simple and rapid method for producing 

micron/sub-micron scale metal. In contrast, the major commercialized techniques 

employed for making small metal particles, such as “atomization”, are limited to 

particles of order 20 + microns. Although the RES technique has been shown to work 

very effectively [32,33] in making metal particles much smaller than those available 

commercially, there is no effort to commercialize at this time.  

The fundamental guiding hypothesis of the proposed work is related to the 

demonstrated RES method. Specifically, it is postulated that if an (metal) object is 

coated with a typical RES mixture (ca. Cr-nitrate and urea), the RES process (heating 

in an inert environment) will lead to the generation of a metal surface layer on the 

object rather than metal particles. 

G. MOTIVATION 

As mentioned in [24], DOD spends billions annually in corrosion prevention and 

remediation. This spending is in part due to compliance with regulatory requirements on 

worker safety and hazardous waste removal associated with electrolytic hexavalent 

chromium. Costs will continue to climb if proven alternatives are not widely 

implemented.  

Although extensive research has turned up a number of viable replacements to 

electrolytic coating processes, none has quite matched the totality of effectiveness of 

EHC needed to trigger a major shift in its usage.        

With DOD restrictions placed on the use of hexavalent chromium in various 

applications due to serious health and environmental risks, it is important to continue to 

investigate alternatives that will provide the same or better performance capabilities in 

critical military applications. 
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H. GOALS AND OBJECTIVES 

This study is part of a broad effort to find satisfactory nonelectrolytic approaches 

for producing Cr or Ni coatings on metals. This effort is needed because current 

technologies are no longer acceptable to DOD as these produce toxic and carcinogenic 

byproducts. The specific focus of this study was to test the efficacy of a variation on the 

Reduction Expansion Synthesis (RES) method for creating Cr or Ni coatings on different 

metal substrates. . RES involves the rapid heating of a metal nitrate and urea mixture in 

an inert atmosphere to produce pure metal of submicron and nano-size particles [32, 33]. 

In this study, RES was modified using a number of protocols to “encourage” film growth 

on specified substrates, rather than particle formation.  
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II. EXPERIMENTAL METHODS 

In this chapter the experimental procedures surrounding the generation of metal 

coatings using variations of the Reduction Expansion Synthesis (RES) method are 

discussed in detail. These protocols were intended to test non-electrolytic, RES-based, 

approaches to creating Ni or Cr coatings as both types of metal coating are widely 

employed, on a number of metals, including stainless steel and magnesium. Due to the 

novelty of this endeavor, the experiments were tweaked as the study progressed. 

Specifically, temperature settings, precursor ratios, and even additives were modified to 

converge on a novel RES based method that would result in the nonelectrolytic 

deposition of surface layers of Cr or Ni for a variety of metals. The surface cleaning 

method for the substrates, followed by three variations on particle RES, called Protocols 

I, II and III, are discussed in detail below.  

Each metal included in this investigation was treated with the RES based electro-

less Cr and Ni coating. This was followed by characterization of the specimens using 

optical microscopy, energy dispersive spectroscopy, and X-ray diffractometry to 

determine the morphology, topography, and composition of the surface layer post-

treatment.  

A. SURFACE PRE-TREATMENT OF METAL SUBSTRATES 

Various metal wire specimens, ranging from 1–2 inches in length, were used as 

metal substrates during the experimentation process. The preliminary investigation was 

carried out with no surface-cleaning of the wires. This served to establish a baseline for 

future testing. The metal substrates as seen in Figure 14 consisted of the following: 1.15 

mm brass wire, 1 mm copper wire, 0.5 mm tungsten wire, 1 mm stainless steel wire, and 

0.05 mm nickel wire.   
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Figure 14.  Metal wires used in the RES-based nonelectrolytic analysis (a) 25–

0.05mm braided nickel wire, (b) stainless steel, (c) copper, and (d) 
tungsten. Not shown but also analyzed was brass.  

1. Surface cleaning  

Following the baseline experiments, all successive tests were performed on clean 

wire samples. Consistent with commercial surface pre-treatment practices, this step was 

necessary to promote proper adhesion of the reduced metal from the RES process to the 

surface of the substrate. A commercial MAAS metal polish-cleaner was applied to a lint-

free cloth and used to scrub. Next, the substrates were submerged in ethyl alcohol 

(ethanol) in a glass beaker. The beaker containing the samples was placed in a water bath 

contained in a Branson 2510 ultrasonic cleaner as shown in Figure 15. The ultrasonic 

cleaner transferred sound waves to the beaker that attacked the surface of the metals and 

in turn removed contaminants form the object. The substrates were immersed in the 

ultrasonic cleaner for 3 minutes.       
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Figure 15.  The substrates were placed in a glass beaker containing ethanol 

solvent then cleaned in a Branson 2510 Ultrasonic Cleaner.  

B. RES PROCESS: PROTOCOL I 

 The RES technique was carried out by physically mixing a metal nitrate with urea 

in a mortar and pestle until the product appeared visibly homogenous or consistent in 

color and texture as shown in Figure 16. The ratio of urea to metal nitrate was held 

constant at 2:1 in these early experiments.   

 
Figure 16.  Physical mixture of Cr-nitrate and urea (left) and Ni-nitrate and urea 

mixture (right). 
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Chromium (III) nitrate nonahydrate (Sigma-Aldrich 99.0 pct) and nickel (II) 

nitrate hexahydrate (Sigma-Aldrich 97.0 pct) with urea mixtures, in separate experiments, 

were added to an alumina boat containing brass, copper, stainless steel, tungsten, and 

nickel substrates. The alumina boat was covered with a second alumina boat then placed 

in a 20 mm diameter quartz tube. Fittings were attached to both ends of the tube to create 

a controlled environment. A hose leaving one of the end fittings was connected to a 

compressed nitrogen gas (N2) bottle through a Matheson Tri-gas flowmeter. A small hose 

leaving the other end fitting was positioned underneath a vent hood to collect the exhaust 

gases. The preloaded quartz tube was placed in a Lindberg Blue M tube furnace such that 

the alumina boat remained just outside of the furnace enclosure while warming up. N2 

was applied to the tube at a rate of 100 sccm to purge the system of air for about 15 

minutes while the furnace was simultaneously being heated to 850°C as illustrated in 

Figure 17. Portable fans were positioned directly below the end fittings to prevent failure 

of the o-rings due to elevated temperature conditions.     

 
Figure 17.  RES arrangement with quartz tube positioned in the clamshell 

Lindberg Blue M tube furnace and portable cooling fans. 
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Once the temperature reached 850°C, the gas flow rate was reduced to 10 sccm, 

and the quartz tube position shifted/pushed until the alumina boat was at the center of the 

pre-heated furnace. It was repeatedly noted that after this shift of the cold alumina boat to 

the furnace center, that the furnace temperature dropped by more than 200 degrees. It also 

was repeatedly noted that within 2 minutes of the shift process, a white byproduct was 

observed downstream of the flow. Once the temperature stabilized at the set temperature, 

requiring approximately 5 min, the process proceeded for precisely 3 additional minutes. 

Once the 3 minutes elapsed, the quartz tube was shifted back to the original position such 

that the alumina boat was again outside the heated zone. Immediately after this was 

accomplished the gas flow rate increased to 100 sccm. After 10 minutes the flow of 

nitrogen gas was halted and the alumina boat was allowed to cool to room temperature. 

Once cooled, the contents in the alumina boat were collected for analysis.  

C. RES PROCESS: PROTOCOL II  

After performing several experiments using a different precursor to urea ratio and 

constant temperature, the RES process was modified for varied results. First, the 

temperature was increased to 1000°C to enhance combustion during the synthesis 

process. Second, a reagent, sodium carbonate monohydrate (Na2CO3) (Sigma-Aldrich 

99.5 pct), was added to the urea and metal nitrate mixture to remove what appeared to be 

the formation of excess carbon on the surface using the process described in Section B. 

D. RES PROCESS: PROTOCOL III 

Simply combining the modified mixture described in the RES Protocol II was 

deemed insufficient in promoting a uniform coating on the substrate surface. Therefore, 

an additional tweak to the experimental conditions was necessary to better achieve the 

desired results. The major difference between Protocol II and III was the application of 

the mixture to the substrate. With the introduction of the reagent to mixture as in Protocol 

II, the mixture became drier and possessed a powder-like quality. In order to make a 

solution for coating the substrates from this dry powder, approximately 5 ml of ethanol 

was added to the mixture with a mass ratio of 1:4 (powder:ethanol). Simply dipping the 

substrates into the wetted powder mix was sufficient to create an adherent layer.  
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1. The Dipping Method  

The cleaned substrate was dipped in the wet mixture described in Protocol III 

above then allowed to air dry for approximately 90 seconds. The substrate was then 

dipped and dried for 2 more cycles. Small amounts of ethanol were added to the mixture 

during the dipping process to maintain wetness. After the final dip and the substrate 

dried, it was placed in an empty alumina boat for RES processing.   

E. RES PROCESS: STANDARD PROTOCOL 

The purpose of the standard protocol was to determine the impact of temperature 

on the surface layer of the metal substrate. This step was performed using a clean—

polished and ultrasonically bathed—stainless steel wire sample. After cleaning, the wire 

sample placed in an empty alumina boat, capped with a second boat, then subjected to 

RES treatment at a temperature of 1000°C. No coating mixture was employed during this 

process.   

F. CHARACTERIZATION  

Material characterization was conducted to determine whether or not the metal 

nitrate was reduced to pure metal during the synthesis process and whether chromium 

metal or nickel metal successfully coated the surface of the individual substrates used. 

The following characterization techniques were used to analyze the resultants of the 

obtained: optical microscopy, scanning electron microscopy (SEM) with energy 

dispersion spectroscopy (EDS), and X-ray diffractometry/diffraction (XRD). Each 

characterization technique provided unique information about the samples and allowed 

for a comparative analysis pre and post treatment by the RES method. 

1. Sample Preparation 

The following preparation processes were important in analyzing the morphology 

of the samples through the cross sectional arrangement of the treated substrates. Sample 

preparation for material characterization was carried out in four stages. These stages were 

sequential and destructive but would prove necessary in collecting a complete analysis of 

the substrates post-treatment.     
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a. Stage 1:  Cutting 

The treated substrates were cut using a commercial diagonal wire cutting pliers. 

The substrates were cut to a height that just exceeded the height of the specimen support 

springs. Cutting the treated wire led to pinching of the cross-sectional surface of the 

substrate.   

b. Stage 2:  Mounting 

After the treated substrates were oriented vertically in the holders, they were hot 

mounted using a commercial conductive filled phenolic mounting compound, 

KonductoMet. The sample was hot mounted in the hand operated hydraulic Buehler: 

SimpliMet 2 mounting press as seen in Figure 18. After 10 minutes the heater was 

removed from around the compound and replaced with a cooling fin. Once cooled, the 

phenolic pucks seen in Figure 17, were raised from the chamber and prepared for 

characterization.  

 
Figure 18.  SimpliMet 2 mounting press used for hot mounting the samples in a 

phenolic puck. 
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Figure 19.  Phenolic pucks containing RES-treated substrates. 

c. Stage 3: Grinding 

  The phenolic pucks were transferred to the Buehler EcoMet 4 variable speed 

grinder-polisher with AutoMet 2 power head for grinding shown in Figure 20. The 

grinding conditions were set to a speed of 150–200 rpm and 4–6 lbs of pressure. A steady 

water flow was applied during grinding to reduce friction during substrate contact with 

the grinder. The grinding sequence was performed on 120, 220, 320, 500, 800, 1200, and 

2400 sodium carbide grit paper. Due to pinching of the substrate that occurred during 

cutting, extensive grinding was required in order to produce a smooth cross section for 

observation in the optical microscope and SEM just below the pinch.     
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Figure 20.  Buehler EcoMet 4 variable speed grinder-polisher with an AutoMet 

2 power head.  

d. Stage 3 – Polishing  

Polishing of the samples was carried out using an EcoMet 3 variable speed 

grinder-polisher with an AutoMet 2 power head as seen in Figure 21. Polishing was 

performed to remove the abrasions caused by grinding. Using the EcoMet 3, the samples 

were mounted in holder and which was lowered onto a micro-cloth with a pressure of 4–7 

lbs. A 1 micron alumina solution was applied to the polishing pad every 3 minutes for 30 

minutes. Next a 0.05 micron alumina solution was applied to a separate polishing pad for 

the same duration as the 1 micron treatment. Polishing with the VibroMet 2 served as an 

additional step towards achieving a smoother finish. The polishing process using the 

Vibromet 2 called for the 1 micron and 0.05 micron alumina solution in sequential steps 

for approximately 2 hours.    



 30 

 
Figure 21.  Buehler EcoMet 3 variable speed grinder-polisher with a AutoMet 2 

power head (left) and a VibroMet 2 for final finishing (right). 

2. Optical Microscopy 

Optical microscopy was performed using a Nikon Epiphot 200 optical microscope 

as seen in Figure 22. This characterization technique was utilized as an intermediate step 

between the macroscopic images and the high resolution SEM equipment. The aim was 

to capture images in the longitudinal and cross-sectional planes at low magnification. To 

analyze topography in the longitudinal plane, both the pretreated and post-treated samples 

wires were physically positioned on the stage for comparative analysis. However, the 

geometry of the substrates resulted in an uncontrollable deflection of the light near the 

rounded edges, rendering the collection of images an arduous task.        
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Figure 22.  Nikon Epiphot 200 Optical Microscope. 

3. Scanning Electron Microscopy-Energy Dispersive Spectroscopy  

Scanning Electron Microscopy (SEM) was conducted using a Zeiss Neon 40 field 

emission scanning electron microscope with Energy Dispersive Spectroscopy (EDS) as 

seen in Figure 23. This characterization technique was carried out to collect micrographs 

showing the morphology and topography of the substrates pre- and post-treatment. It was 

necessary to place the samples in a drying oven for approximately 24 hours prior to SEM 

to ensure no moisture present that would affect its critical components. The instrument 

parameters during characterization were set to a voltage of 20 kV, a working distance 

between 6–8 mm, and an aperture size of 60 μm. SEM would assist in determining if a 

coating was present on the surface of the treated samples. EDS was conducted to 

determine the elemental characteristics of the treated substrates based on the collected 

SEM images. EDS provided a quantitative analysis of the surface layer on the substrates 

that provided chemical composition data as a function of position within the polished 

wire cross sections. For example, this technique could confirm chrome or nickel 

deposition, excess carbon, excess oxygen, etc.  
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Figure 23.  Zeiss Neon 40 Field Emission Scanning Electron Microscope with 

Energy Dispersive Spectroscopy. 

4. X-ray Diffraction  

X-ray diffraction was conducted with a Rigaku Miniflex 600 at 40kV and 15mA 

as shown in Figure 24. The characterization technique was performed to measure the 

geometrical arrangement of the diffracted X-rays. The intensity versus the 2θ angle was 

measured over a range from 10–90 degrees. The resulting diffraction patterns were 

further analyzed using a Rigaku PDXL2 software package to determine the 

crystallographic structure of the samples. XRD was performed on the powder samples 

collected from RES Protocol II and III process. This was necessary in order to determine 

whether the precursors were reduced to pure metal during RES.     
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Figure 24.  Rigaku MiniFlex 600 used for X-ray diffraction.  
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III. RESULTS AND DISCUSSION 

The results obtained were based on visual observations and analysis of data 

collected from the characterization techniques described in Chapter II. The findings 

varied according to the RES protocol employed, with each modification to the procedures 

producing different or improved results over previous experiments. In this Chapter the 

results from the various characterization techniques showing the impact of the precursor-

urea ratios, additional reagents, temperature, direct application of the mixture to the 

substrate metal, and substrate selection are presented and discussed in detail. 

A. RES BASELINE EXPERIMENTS 

The baseline experiments were carried out using RES Protocol I without cleaning 

the metal substrates. In these early tests metal substrates were physically surrounded with 

a paste mixture containing a 2:1 ratio of urea to chromium nitrate, where chromium 

nitrate served as the precursor. Nickel nitrate was reserved for later experiments. Visual 

observations obtained following treatment of the substrates are listed in Table 2. Based 

on initial observations, none of the substrates used in the preliminary experiments 

appeared shiny in color, consistent with metallic chrome, but instead were covered with a 

black powdery substance resembling soot. The substrates from the baseline experiments 

were treated a second time under identical conditions but no noticeable changes in 

appearance were observed.  

Table 2.   RES coating method baseline experiments.  

Substrate Coating Mixture Visual Observations1 
Brass chromium nitrate + urea III, IV 
Stainless Steel chromium nitrate + urea II, IV 
Tungsten chromium nitrate + urea II, IV 
Copper chromium nitrate + urea I, IV 

                                                 
1 I = Light patches of dark areas on the surface; II = Dark coating on the entire surface; III = Large 

patches of dark areas on the surface; IV = Black powder particles remained in the alumina boat as 
byproduct   
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The small substrates identified in Table 2 were magnified under a light 

microscope to acquire more qualitative detail of the surface features after baseline 

treatment. Optical images of the substrates in the longitudinal frame were obtained before 

and after these early experiments to detect possible changes to the surface topography 

invisible to the naked eye. Prior to treatment, the unpolished brass metal as seen in Figure 

25(a), had a shiny exterior and coarse structure with grooves along the entire surface. 

After being treated, optical images of the brass substrate highlighted the random 

dispersion of black particles covering the majority of the exposed areas as shown in 

Figure 25(b). The stainless steel substrate originally possessed a metallic finish, which 

was mostly covered with black particles after undergoing the combustion process as seen 

in Figure 26. The pre-treated tungsten substrate as seen in Figure 27(a), possessed 

longitudinal markings. After treatment, optical images of the tungsten substrate revealed 

black powder deposition in Figure 27(b) that was not distributed evenly across the 

surface. The copper substrate, not shown, had similar characteristics as the other three 

samples showing deposition of particles on the surface in a random array.   

 
Figure 25.  Optical images of the brass substrate in its longitudinal axis. Image 

(a.) is the as-is brass sample without surface preparation. Image (b.) 
is brass after the initial attempt to chrome coat. The post treated 

sample appears to have a layer of black particles.  
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Figure 26.  Side by side comparison of optical images of the stainless steel 

substrate in the longitudinal plane (a.) untreated sample and (b.) 
treated sample. 

 
Figure 27.  Optical images of tungsten substrate in the longitudinal plane. (a.) 

Untreated tungsten metal in (b.) Little evidence of metal on the 
surface of the tungsten wire.  

The baseline experiment in which the brass substrate and the coating mixture were 

physically combined in the boat produced the dark powder particles shown in Figure 28. 

These particles were collected and characterized using XRD to determine the identity of the 

crystalline solid particles. The diffraction pattern seen in Figure 29 was indicative of a 

phase separation of the chromium nitrate to Carlsbergite (CrN0.95) or chromium nitride, 

during thermal decomposition of the physical mixture. There was no evidence showing a 

breakdown of the brass surface layer having a direct interaction with the resulting powder.  
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Figure 28.  Black powder particles remaining in the alumina boat following 

treatment of the brass substrate.   

 
Figure 29.  XRD of the black powder particles recovered from the alumina boat 

used in the brass experiment. The powder was determined to be 
chromium nitride (CrN0.95). 

The tungsten and stainless steel wires were combined in the same boat with the 

coating mixture during the experiment. Consistent with the brass substrate the powder 

particles analyzed were also determined to be chromium nitride having a 1:1 solubility of 
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chromium to nitrogen in Figure 30. The XRD pattern corresponding to the copper 

substrate listed in Table 2 was also consistent in classifying the residual particles as 

chromium nitride. Bai et al. [34] produced chromium oxide from the thermal 

decomposition of Cr-urea mixture heated to 300°C in air for 2 hours. The major 

difference between both analyses is the environmental condition during treatment. In the 

case of the RES process, after urea fully decomposed under the high temperatures, the 

gases produced were pushed downstream under the steady nitrogen gas flow and nitrogen 

deposited on the remaining chromium metal to form chromium nitride.         

 
Figure 30.  XRD pattern for the powder particles produced during the treatment 

of stainless steel and tungsten in the RES baseline experiment.  

B. RES PROTOCOLS  

To limit the amount of carbon produced in the surface coating and oxidation, 

various modifications to the baseline experiments were employed. As in all commercial 

coating processes, it is critical to ensure the surface of the metal being coating is properly 
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prepared through aggressive cleaning in order to produce strong bonds with the coating 

metals. Once the surfaces were prepared as described in the Chapter II, a number of 

experiments were performed varying the parameters of different substrates to converge 

on successful chrome or nickel coatings.   

Initial experiments using RES Protocol I produced a surface with high carbon 

content as seen in the baseline experiments. This was verified using EDS 

characterization. A noticeable reduction in the carbon levels on the surface was observed 

after evaluating samples from RES Protocol II, but oxygen was unintentionally 

introduced in higher quantities as a result. The intention of RES Protocol III was to bring 

the metal released by the reducing inherent in RES in direct contact with the surface.   

Thus, the metal could coat the surface, but not require any volatile metal containing 

species to form. As noted, it is clear from the results of Protocol I, particularly the 

formation of metal containing particles in the alumina boat, that the metal is not volatile 

at any stage. It remains close to its original location. Thus, for the metal to collect on the 

wire surface it must initially be on the wire surface. Coating the wire with a metal 

containing precursor mix appears the best method for meeting this requirement. 

Table 3 contains various samples treated under the indicated experimental 

conditions. Some of the results highlighted are further discussed in detail according to the 

RES method employed. The majority of the samples collected from the various RES 

experiments were further analyzed using one or more of the characterization techniques 

described in Chapter II of this study. A summary of the results from applying these RES 

protocols on 26 metal substrates are captured in Table 4. Samples that did not undergo 

further analysis due to being deemed unsuccessful, were not the subject of further 

probing. 
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Table 3.   Sample preparation methods based on RES protocols employed.      

Sample No. Protocol2 Substrate3 Coating 
Mixture4 

Comments5 

1 I SS C1 1:2 
2 I SS C1 1:5 
3 I W C1 1:2 
4 I Br N1 1:2 
5 I Cu C1  1:2 
6 II W N2 1:2:4, 1000°C 
7  II SS N2 1:2:4, 1000°C 
8 III W N2 1:2:4 
9 III Cu C2 1:2:4 
10 III Cu N2 1:2:4 
11 III SS N2 1:2:4 
12 III Ni C2 1:2:4 
13  III Br C2  1:2:3 
14 III Ni C2  1:2:3 
15 III SS C2 1:2:3 
16 III W C2 1:2:4 
17 - SS none Control, 

1000°C 
18 III Cu C2 1:2:1,  850°C 
19 III W C2 1:2:1, 850°C 
20 III SS C2 1:2:1, 850°C 
21 III Cu C2 1:3:1 
22 III W C2 1:3:1 
23 III SS C2 1:3:1 
24 III SS C2 1:2:1 
25 III SS C2 1:2:2 
26 III SS C2 1:2:3 

                                                 
2 I = Surface pretreated with metal polish and rinsing with ethanol in an ultrasonic bath. No Na2CO3. 

Physical mixing in mortar and pestle. Mix and substrate physically combined in alumina boat only to 850° 
C for 5 min; II = Surface pretreated with repeated metal polishing and rinsing with ethanol. No Na2CO3. 
Physical mixing in mortar and pestle. Mix then added to substrate boat. Heated to 850° C for 3 min;  

III = Surface treatment with repeated metal polishing and rinsing with ethanol. A mix containing 
urea:metal nitrate:Na2CO3 wetted with ethanol. Wetted mix painted on substrate, dried, and repeated 3X. 
Heated to 1000° C for 3 min.   

3 SS = Stainless steel wire with a 1.0 mm diameter, 77% AT Fe, 18% AT Cr, and 5% Ni; Cu = Pure 
copper wire with a 1.0 mm diameter; W = Pure tungsten wire with a 0.5 mm diameter; Br = Brass wire 
with a 1.15 mm diameter; Ni = pure nickel wire with a 0.05 mm diameter  

4 C1 = Physical mixture with the ratio of chromium nitrate:urea; C2 = Physical mixture of the ration of 
chromium nitrate:urea:Na2CO3; N1 = Physical mixture of the ratio of nickel nitrate:urea; N2 = Physical 
mixture of the ratio of nickel nitrate:urea:Na2CO3  

5 Ratios of the compounds in the coating mixture and temperature settings inconsistent with normal 
treatment for specified RES protocol process 
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Table 4.   Summary of Results  

Sample No. Analysis Method6 Coating Thickness7 Comments8 
1 a, b 5 μm 3, 4 
2 a, b, c 5 μm 1, 5 
3 a  - - 
4 e - analysis on powder 

only 
5 visual only - - 
6 e - analysis on powder 

only 
7 e - analysis on powder 

only 
8 a, b, c - 2 
9 a, b, c, d - 2 
10 a - - 
11 a, b, c, d 16 μm 4, 6 
12 a, b, c - 1, 4 
13 visual only - - 
14 a - - 
15 a, b, c, d 15 μm (O), 10 μm 

(I) 
1, 3, 6 

16 a - - 
17 a, b, c - - 
18 a, b, c  - 1, 3 
19 a, b, c - 2, 3, 5 
20 a, b, c 10 μm 1, 4 
21 a, b, c - 1, 5 
22 a, b, c - 2, 5 
23 a, b, c 12 μm (O), <1 μm 

(I) 
2, 5 

24 a, b, c 8 μm (O), 8 μm (I) 1, 4 
25 a, b, c 11 μm (O), 5 μm (I) 1  
26 a, b, c 8 μm (O), 5 μm (I) 1, 5 

 

                                                 
6 a = Optical microscope; b = SEM; c = EDS spot analysis; d = EDS mapping; e = XRD 
7 O = outer surface layer; I = Inner surface layer 
8 1 = Metal oxide ratio in coating > 4/1 suggesting little oxidation; 2 = Metal Oxide ratio in coating < 

4/1 suggesting high oxidation; 3 = Clear indication of Cr enrichment in surface layer; 4 = Carbon < 10%, 
similar to bulk; 5 = Carbon > 10%  in the surface layer; 6 = Porous appearance in surface layer;  
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C. RES PROTOCOL I 

Samples 1–5, as indicated in Table 3, were treated using Protocol I (850°C for 5 

minutes). Samples 1–4 were treated with Cr-nitrate precursor:urea coating mixture, while 

Sample 5 was treated with Ni-nitrate precursor:urea coating mixture. Similar to the 

baseline experiments, the metal substrates were either completely covered in black 

powder or displayed a random dispersion of black particles on the surface after treatment. 

The stainless steel samples (Samples 1 and 2); however, revealed the formation of a 

surface layer, not observed in the bulk material. This was indicative of a possible 

successful coating on the surface, was further analyzed. The tungsten substrate (Sample 

3) revealed no distinct change in morphology. The brass substrate (Sample 4) showed 

little sign of powder deposition on the surface and received no additional 

characterization. Powder particles of the copper substrate (Sample 5) were analyzed to 

determine crystalline structure.  

1. Optical Microscopy 

Optical images of Sample 1 (SS 850°C w/1:2 mix) and Sample 2 (SS 850°C 

w/1:5 mix) revealed the formation of a surface layer in both cases, having similar 

appearances. The average thickness in both samples measured 5 μm (Figure 31).  

 
Figure 31.   (a) Surface layer formed on Sample 1 (SS @ 850°C w/1:2 mix) and 

(b.) surface layer formed on Sample 2 (SS @ 850°C w/1:5 mix).   
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Optical image for Sample 3 (W @ 850°C w/1:2 mix) as shown in Figure 32, 

revealed no distinct outer layer on the perimeter of the substrate. As a result of a 

perceived unsuccessful coating, Sample 3 (W @ 850°C w/1:2 mix) was not subjected to 

further characterization.  

 
Figure 32.  Optical image of the tungsten wire in Sample 3 showed no distinct 

surface coating.   

2. SEM 

SEM micrograph was obtained for Sample 1 (SS @ 850°C w/1:2 mix) confirming 

the presence of the surface layer observed from optical imaging. The layer as seen in 

Figure 33, presents a more detailed structure of the surface deposition. The coating 

formed was observed as being relatively uniform in size and distribution and even 

slightly raised from the flat surface.  
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Figure 33.  SEM micrograph of Sample 1 (SS @ 850°C w/1:2 mix) highlights a 

topcoat that was formed during the combustion synthesis process.  

3. EDS 

The SEM micrograph was collected in the EDS software to investigate the 

elemental composition across the selected region. In Sample 1 (SS @ 850°C w/1:2 mix) 

EDS spot analysis of the surface layer showed a strong signal of iron in the substrate 

compared to chromium, which was lower in the surface layer (Figure 34). This migration 

of the iron from the surface and deposition of chromium was indicative of chromium 

enrichment. There was also evidence of little oxidation in Sample 1. The resulting EDS 

spectrum and quantitative analysis of Sample 2 (SS @ 850°C w/1:5 mix) are shown in 

Figure 35. The analysis indicated impurities on the surface including nitrogen and oxygen 

that can be attributed to the decomposition of urea. The metal to oxygen ratio in the spot 

analysis was 6, suggesting little oxidation. However, the carbon content was 21 at%, 

more than twice the composition in the bulk material.    
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Figure 34.  EDS spot analysis of substrate (top) and surface layer (bottom) in 

Sample 1 (SS @ 850°C w/1:2 mix).  

 
Figure 35.  EDS analysis of the surface layer in Sample 2 (SS @ 850°C w/1:5 

mix).  
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4. XRD 

The powder particles generated from Sample 5 (Cu @ 850°C w/1:2 mix) as seen 

in Figure 36 showed a crystalline structure consisting of Ni metal, Ni oxides, and Ni 

nitrates.  
 

 
Figure 36.  XRD of powder collected from Sample 4 (Br @ 850°C w/1:2 mix).  

D. RES PROTOCOL II 

Protocol II was employed to remove impurities in the surface layer deposited 

during Protocol I. Sample 6 (tungsten) and Sample 7 (stainless steel) were treated using a 

coating mixture containing a 1:2:4 ratio of nickel nitrate:urea:Na2CO3, respectively. 

These experiments were performed at 1000°C for 3 minutes. Na2CO3 was added to help 

burn-off carbon.   

The notion that sodium carbonate solid could help burn carbon stemmed from the 

use of this material as a coal combustion catalyst. As demonstrated by Gow and Phillips 

[35] as well as Mims et al. [36] and Mims and Pabst [37-38] coal combustion particles of 
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carbonate are found directly on the coal surface. Upon heating, oxygen in the carbonate 

interacts with the underlying coal to produce carbon oxides. The sodium carbonate is 

regarded as a catalyst, rather than a reactive reagent, because oxygen in the gas phase 

regenerates the carbonate, and the cycle repeats over and over.  

 The temperatures employed in coal combustion are generally greater than 800°C, 

hence it was reasonable to postulate under the conditions employed herein, that the 

carbonate could essentially act in the same fashion. That is, the oxygen in the carbonate 

can be expected to form volatile carbon oxides with the carbon in the surface layer 

created by the RES process. However, in the RES process the carbonate must be regarded 

as a reagent. There will be no “reforming” of the original material once oxygen is lost to 

the carbon combustion process. In coal combustion, carbonates are added at 

approximately the 1 wt% level because the material is a catalyst. In the RES process, the 

loading of carbonate must be far greater. There must be enough oxygen in the original 

loading to burn off excess carbon. Clearly, a potential caveat is that oxygen may not only 

react with carbon. Possibly the oxygen in the carbonate can oxidize metal as well, or even 

preferentially. This suggests that an overload of carbonate could have detrimental results. 

A second caveat is the ultimate disposition of any sodium after the carbonate loses all its 

excess oxygen.    

Prior to treatment, the physical mixture of the nickel nitrate, urea, and Na2CO3 

appeared as dry and light green powder particles. Following treatment, the metal 

substrates were found to be covered in clumps of white and dark gray flakes that were 

attached to the samples (Figure 37). The byproduct formed from the mixture and 

substrate added directly to the boat for RES was collected from the boat. Visual 

observations were white and gray powdered particles. XRD analysis was performed on 

the byproduct to determine phase identification. As seen in Figure 38, the composition of 

the powder contained Na2CO3, suggesting either reduction of that additive did not take 

place or that the carbonate reformed upon exposure to air. The presence of pure nickel 

metal indicated a reduction of the nickel nitrate during combustion. This reduction to 

pure metal has been proven by Luhrs et al. [32] by use of the RES process.   
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Figure 37.  (a.) Clumps of mixture attached to Sample 6 (tungsten) (left) and 

Sample 7 (stainless steel) (right) after treatment. (b.) The byproduct 
collected in the boat contained gray powder particles.  

 
Figure 38.  XRD pattern of the powder particles collected from the alumina boat 

after treatment using Protocol II.  
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E. RES PROTOCOL III 

The clumps of Na2CO3 attached to the surface of Sample 6 (tungsten) and Sample 

7 (stainless steel) were indicative of excess reagent added to the coating mixture. As a 

result, Protocol III was a 2-in-1 modification RES coating process by adding ethanol to 

the physical mix and changing the application of the coating mix to the substrate with a 

dipping method. The remaining samples underwent Protocol III with some variations to 

the experimental conditions, namely the precursor employed, the temperature, and the 

mixture ratios.    

1. Nickel Nitrate Experiments 

Sample 8 (tungsten), Sample 9 (stainless steel), and Sample 10 (copper) were 

dipped in a homogenous mixture of nickel nitrate, urea and Na2CO3 at a 1:2:4 ratio then 

heated to 1000°C for 3 minutes. Following RES-treatment, these samples were 

characterized using one or more of the following analytical techniques: optical 

microscopy, SEM, EDS spot analysis, and EDS mapping. Consistent with the chromium 

nitrate experiments, no powder particles were produced during this Protocol.   

a. Optical Microscopy 

Optical images were collected for each of the samples. When Sample 9 (stainless 

steel) was placed under the light microscope (Figure 39(a.)), a similar surface layer 

observed on the stainless steel substrates employed in experiments using chromium 

nitrate as the precursor was seen. Unlike those samples however, only one layer formed 

along the outer edge of Sample 9 (stainless steel) and the texture of the coating appeared 

coarse. A discontinuous layer was observed on the perimeter of Sample 8 (tungsten) as 

seen in Figure 39(b.), suggesting partial coating success. Magnification of Sample 10 

(copper) at 20X—higher magnifications were out of focus due to light diffraction—did 

not reveal alteration of the sample topography (Figure 439 (c.)). As a result, Sample 10 

(copper) was determined to be unsuccessful and was not exposed to advanced 

characterization.         
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Figure 39.  Optical images of (a.) A distinct surface layer on Sample 9 (stainless 

steel). (b.) Sample 8 (tungsten) appeared to have a partial coating 
that was discontinuous along the edge. (c.) Sample 10 (copper) 

showed no distinct surface layer. 

b. SEM  

Sample 9 (stainless steel) was characterized using SEM as seen in Figure 40. The 

backscattered detection imaging revealed a porous morphology in surface coating formed 

during treatment with the nickel nitrate-containing mixture. The secondary electron 

micrograph obtained showed the formation of a solid inner layer not previously observed 

as well as a bright outer region resulting from the emission of electrons from the edge.  
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Figure 40.  SEM micrographs of Sample 9 (stainless steel). (a.) Backscattered 

detection imaging showed a porous appearance in the coating 
formed. (b.) Secondary electron imaging presented a solid inner 

layer indicated by the orange arrow.   

Sample 8 was also characterized using SEM as shown in Figure 41. Consistent 

with optical imagery, the coating mixture did not adhere to the surface during treatment. 

The separations and cracking seen throughout the mixture supports the findings from this 

and previous protocols that suggest the surface properties of tungsten prevented cohesive 

bonding of the coating mix to the bulk material.    

 
Figure 41.  SEM micrograph revealed disorganized clumps of coating mixture 

around the outer surface showing little fusion between the mixture 
and the treated substrate.   
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c. EDS analysis 

EDS spot analysis and mapping of a selected region on Sample 9 (stainless steel) 

following treatment revealed negligible change, <2 at%, in the nickel content (Figure 42). 

Chromium was unexpectedly enriched in the sample compared to the bulk stainless steel 

metal as indicated by the stronger peaks observed. The surface was noticeably oxidized 

during treatment. Carbon content also increased suggesting deposition during as the urea 

decomposed under elevated temperatures. Leftover sodium from the reagent was also 

deposited on the surface.  

 
Figure 42.  EDS mapping of the target area (left) on Sample 9 (stainless steel).   

Sample 8 (tungsten) was further analyzed using EDS spectroscopy. The 

distribution of elements present at a targeted spot inside the clumps of coating mixture 

surrounding the metal is shown in Figure 43. Tiny traces of reduced nickel were 

identified along with considerable amounts of oxygen.   
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Figure 43.  EDS spot analysis on the outer edge of Sample 8 (tungsten) showed 

a weak nickel peak and the presence of oxygen on the surface. 

2. Chromium Nitrate Precursor 

Sample 12 (stainless steel), Sample 16 (tungsten), Sample 11 (copper), and 

Sample 14 (nickel) were treated with a coating mixture of 1:2:4 ratio of chromium 

nitrate:urea:Na2CO3 to 1000°C for 3 minutes. Sample 15 (stainless steel) was treated 

under the same conditions as the other samples except for being dipped in coating mix 

having a ratio of 1:2:3. All of the aforementioned samples were first subjected to optical 

microscopy to magnify the macroscopic features observed. Sample 13 (brass) only did 

not undergo characterization beyond visual observations due to limited metal deposition 

on the surface during treatment. No powder particles were produced during this RES 

process.  

a. Optical Microscopy 

Optical microscopy revealed a thin discontinuous dark layer was observed around 

the outer edges of Sample 12 (nickel) and Sample 11 (copper) as seen in Figure 44(a.) 

and (b.). This prompted the use of advanced characterization techniques using SEM and 

EDS software to gather more details on the coating formed. Two adjacent surface layers 

were discovered in Sample 15 (stainless steel) via the light microscope. The inner layer 

on Sample 15 (stainless steel) measured 9 μm and the outer layer was 11 μm in thickness. 
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Consistent with the previous protocols, the tungsten substrate used in Sample 16 showed 

no evidence of a topcoat using this protocol or previous protocols and as a result was not 

subjected to additional characterization.  

 
Figure 44.  Optical images of (a.) Sample 12 (nickel), (b.) Sample 15 (stainless 

steel), (c) Sample 16 (tungsten), and (d) Sample 11 (copper).  

b. SEM  

SEM micrographs of Sample 12 (nickel), Sample 15 (stainless steel), and Sample 

11 (copper) provided more detail of the focused outer region in ascertaining whether or 

not Protocol III was successful in producing chromium coating on the treated samples. 

The appearance of Sample 12 (nickel) as seen in Figure 45(a.) as viewed through the 

electron microscope did not show any structural changes in the material. Instead, the 

micrograph displayed brighter edges along the metal surface due to secondary electrons 

imaging. Characterization of Sample 15 (stainless steel) in Figure 45(b.) revealed 2 
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distinct morphological changes on the outer edge of the substrate. The inner layer 

contained small elongated pits throughout. The outer layer was very porous in appearance 

containing features similar to the inner region coupled with larger pockets in an 

organized arrangement. The SEM image of Sample 11 (copper) shown in Figure 45(c.) 

presented incomplete fusion of the coating mix to the surface, with areas of branchlike 

cracking. It is interesting to note that standard “hard chrome” coatings produced using 

electrodeposition methods contain a multitude of “micro cracks”. 

 
Figure 45.  SEM micrograph of Sample 12 (a.) revealed no distinct coating on 

the edges. In Sample 15 (b.) two distinct changes in morphology was 
observed after treatment. Sample 11 (c.) showed a partial adhesion 

of the coating mixture to the surface.  
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c. EDS Analysis 

Elemental analysis of Sample 12 (nickel) (Figure 46) revealed < 6 AT% 

deposition of chromium on the nickel surface. However, this metal deposition was not 

uniform since weak chromium peaks were also detected in the substrate. When compared 

to the bulk material, the treated sample contained <10 AT% oxygen on the edge 

suggesting little oxidation during the process. Furthermore, the elemental composition of 

the surface contained more than 30 AT% carbon. This is consistent with the light 

microscope observation of a dark thin layer. The carbon was deposited on the surface 

during decomposition of the urea.    

 
Figure 46.  EDS analysis of the outer region of Sample 12 showing mostly 

nickel metal, with traces of chromium, <10 AT% oxygen and a 
strong presence of carbon deposited during the breakdown of urea.    

EDS spot analysis of Sample 15 (stainless steel) targeted the surface layers 

identified in the characterization techniques previously discussed. A quantitative profile 

on targeted areas of the scanned SEM image is shown in Figure 45(b.). When compared 

to the bulk material in Figure 47(a.), the inner layer formed as seen in Figure 47(b.) 

displayed constant levels of carbon, a slight increase in the metal-oxide ratio now at 4 

AT%, and chromium enrichment on the surface. The results also indicated low carbon 
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content, < 5 AT%, on the outer layer as seen in Figure 47(c.), a metal-oxide ratio > 5/1 

suggesting little oxidation, and small amounts of sodium. EDS mapping of the selected 

region confirmed that this Protocol process introduced oxygen on the surface as well as 

traces of sodium on the outer edge as seen in Figure 47(d.).          

 
Figure 47.  EDS analysis of Sample 15 (stainless steel) (a.) Elemental 

composition of the bulk material. (b.) Inner layer formed (c.) The 
outer layer formed (d.) The EDS map of the scanned region.   

Sample 11 (copper) underwent EDS analysis including, spot selection and 

mapping across the scanned region. EDS mapping (Figure 48) summarized the elemental 

composition of the target area, which not only confirmed the presence of oxygen and 

carbon, not normally found in pure copper, but also highlighted the occurrence of 

chromium on the surface. The chromium layer formed supports the ability of the RES 

process to deposit metal on a surface, however, the process would require refinement in 

order to reduce the impurities (carbon and oxygen) and create a uniform coating.       
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Figure 48.  EDS mapping of Sample 11 (copper) revealed carbon (C), oxygen 

(O), chromium (Cr), and copper (Cu) in the scanned region.   

F. HEATING ONLY PROTOCOL 

A control study was conducted of the stainless steel metal substrates to determine 

if a surface layer could be produced simply by heating. Specifically, a typical stainless 

steel substrate was treated using Protocol I method, which is the standard heating 

protocol, which ends with a 3 minute soak at 1000°C in a flow of nitrogen gas. The 

substrate so treated was compared to a bulk stainless steel wire that was polished and 

cleaned to determine the impact of temperature on the surface properties and appearance 

of the substrate. Visual observations, as seen in Figure 49, revealed a color change from 

shiny metallic to dark gray after being subjected to a heat treatment at 1000°C in a 

nitrogen environment.  
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Figure 49.  Visual comparison of the bulk stainless steel (top) and the controlled 

sample (bottom).  

Optical images (Figure 50) revealed minimal impact to the sample topography as 

a result of the temperature gradient. A slight dark tint was observed around the edges of 

the heat treated sample, but no other contrasts in the surface features were observed under 

the light microscope. SEM images however, revealed a thin film along the contour of the 

heat treated sample compared not seen in the bulk material at higher magnifications as 

seen in Figure 51.  

 
Figure 50.  Optical images of stainless steel sample (a) clean stainless steel 

sample and (b) clean and heat treated stainless steel sample. No 
significant change to the morphology was observed.         
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Figure 51.  SEM micrographs of stainless steel samples at 1kX magnification. 

(a.) cleaned sample (b.) cleaned and heated 1000°C.      

The EDS elemental analysis (Figure 52) of the original stainless steel sample had 

a composition given in weight percent of 70Fe-18Cr-9Ni-3C. As evidenced by EDS, the 

heat treated sample showed presence of oxidation on the thin layer formed during 

treatment (Figure 53). Since the standard protocol was performed in an inert 

environment, one possible explanation for the oxygen intrusion is a breach in the 

experimental set-up.  

 
Figure 52.  EDS analysis of the outermost edge of the clean stainless steel wire 

only, showed low carbon content in the substrate, which is typical in 
the bulk material.  

a b
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Figure 53.  EDS analysis of the heat treated stainless steel wire showed some 

oxidation and carbon enrichment in the surface layer.   

G. EFFECT OF TEMPERATURE AND UREA RATIO CHANGES 

Sample 18 (copper), Sample 19 (tungsten) and Sample 20 (stainless steel) from 

Table 3 were treated with Protocol III at 850°C at a 1:2:1 ratio of Cr-nitrate:urea:Na2CO3. 

Sample 21 (copper), Sample 22 (tungsten), and Sample 23 (stainless steel) also 

underwent RES Protocol III but at 1000°C and a 1:3:1 ratio of Cr-nitrate:urea:Na2CO3. A 

comparative analysis of the copper, tungsten, and stainless steel samples was performed 

to determine the impact of these variables on the resulting surface characteristics.  

1. Comparison of Copper Substrate 

The copper substrates, Samples 18 and 21, were analyzed using the optical 

microscope, scanning electron microscope, and energy dispersive x-ray spectroscope. 

The findings are summarized according to the characterization technique employed. 

a. Optical Microscopy 

Optical images of both materials seen in Figure 52, looked virtually identical at 

first glance, but a closer look revealed more dark spots on Sample 21 per area, indicative 

of higher carbon deposits. Sample 21 contained more urea, the likely source of the greater 

occurrence of the carbon on the second sample.  
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Figure 54.  Optical images of the copper substrates used in (a.) Sample 18 and 

(b.) Sample 21. Both samples were very similar in appearance, 
contained dark patches on the surface.   

b. SEM 

Characterization of samples using SEM was carried out using secondary electron 

imaging. In Sample 18 (Figure 53(a.)) the amplified brightness at the outer edge was 

associated with the ejection of the secondary electrons for the surface. The dark area just 

inside of the surface edge had a porous appearance. The micrograph of Sample 21 

(Figure 53 (b.) was pretty uniform in surface topography. 

 
Figure 55.  Secondary electron SEM imaging of (a.) Sample 18 at 1:2:1and (b.) 

Sample 21 at 1:3:1 of chromium nitrate-urea-Na2Co3.  
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c. EDS  

Elemental analysis of both samples provided quantitative results of the material 
composition after treatment. The EDS spectrum of the outermost edge of Sample 18 is 
shown in Figure 54 (a.). It contained peaks of carbon and oxygen. The surface of Sample 
21 (Figure 54 (b.)), however, had stronger peaks of carbon and oxygen, which was 
attributed to the higher concentration of urea in the experiment. A small chromium peak 
was also observed in Sample 21, compared to no deposition of the same element found 
on Sample 18. No relationship to the findings and the temperature was identified.   

 
Figure 56.  EDS analysis of the surface of the copper substrates. (a.) Sample 18 

(1:2:1) contained less oxygen and carbon when compared to (b.) 
Sample 21 (1:3:1). Sample 21 also contained limited chromium 

deposits treatment.   

2. Comparison of Tungsten Substrate 

The tungsten substrates used in Samples 19 (1:2:1) and 22 (1:3:1) were subjected 
to optical microscopy, SEM, and EDS analysis. The results obtained are discussed for 
each analytical technique used to characterize each sample.  

a. Optical Microscopy 

The optical images of Samples 19 and 22 (Figure 55) revealed no distinct coating 

along the edges of both surfaces despite being treated under varying experimental conditions 

including urea ratio in the coating mixture and furnace temperature. Additionally, there were 

no changes to the surface topography or morphology as a result of treatment.  
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Figure 57.  Optical images of tungsten substrates in (a.) Sample 19 and (b.) 

Sample 22. Neither sample showed any distinctive surface layers or 
morphological changes after being treated. 

b. SEM  

SEM imaging of Samples 19 (1:2:1) and 22 (1:3:1) are shown in Figure 56. An 

outer layer approximately 22 μm thick was observed along the surface edge of Sample 

19. Sample 22, however, did not contain any such features.    

 
Figure 58.  SEM micrographs of the tungsten substrate in (a.) Sample 19 and 

(b.) Sample 22 at 1:2:1 and 1:3:1 ratios, respectively. The formation 
of an outer layer was observed in Sample 19. Sample 22 showed no 

such outside coating.  
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c. EDS 

Elemental analysis of the Tungsten Samples 19 (1:2:1) and 22 (1:3:1) provided 

details about the atomic structure that were not apparent with other characterization 

techniques. The EDS reports of both samples are shown in Figure 59. Oxygen was 

identified in both samples; however Sample 19 (1:2:1) contained a higher atomic 

percentage of the oxygen when compared to Sample 22 (1:3:1). The metal-oxide ratio in 

Sample 19 (1:2:1) was less than 2, which suggesting significant oxidation on the surface. 

Carbon was also discovered in both samples, with Sample 22 (1:3:1) having essentially a 

carbon layer on the surface. Chromium deposits were identified in the layer formed in 

Sample 19 (1:2:1). Sodium was also present in atomic composition of Sample 19. 

Chromium and sodium were not detected in Sample 22 (1:3:1).     

 
Figure 59.  EDS analysis of (a.) Sample 19 (1:2:1) and (b.) Sample 22 (1:3:1). 

Sample 19 contained more carbon and oxygen as compared to 
Sample 22. Chromium was discovered in the surface layer of 

Sample 19.   

3. Comparison of Stainless Steel Substrates 

The stainless steel substrates, Samples 20 (1:2:1) and 23 (1:3:1), were analyzed 

using the optical microscope, scanning electron microscope, and energy dispersive x-ray 

spectroscope. The findings are summarized according to the characterization technique 

employed. 
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a. Optical Microscopy 

Optical images were obtained for both samples as shown in Figure 58. A side-by-

side comparison revealed a very distinct surface layer in both samples. A dark trim also 

lined the outer coating formed in Sample 23 (1:3:1), suggesting a carbon layer. The 

coating thickness in Sample 20 (1:2:1) was measured at 10 μm. On the contrary, the outer 

layer in Sample 23 (1:3:1) was determined to be 12 μm. From the surface, it can be 

concluded that the varied temperature and the urea ratio employed in this analysis did not 

greatly alter the outcome.      

 
Figure 60.  Optical images of stainless steel substrates in (a.) Sample 20 (1:2:1) 

and (b.) Sample 23 (1:3:1).  

b. SEM 

Findings based on the obtained SEM micrographs in Figure 59 supported the 

altered surface structure observed using optical microscopy. An outer coating was seen 

on both samples showing a very distinct delineation between the microstructure in the 

bulk material compared to the outer layers formed.     
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Figure 61.  (a.) SEM micrographs of Sample 20 treated with a 1:2:1 coating 

mixture ratio to 850°C showed an outer layer on the surface. (b.) 
Sample 23 treated with a 1:3:1 coating mixture ratio to 1000°C 

showed an outer surface layer.  

c. EDS 

The elemental composition was taken using EDS spot analysis on the outer layer 

formed in Samples 20 and 23. The EDS spectrum corresponding to Sample 20 as seen in 

Figure 60, indicated the deposition of carbon and oxygen on the surface. Quantitative 

analysis of the same sample suggested little carbon deposited, because the amount 

measured 6 AT%, is consistent with the bulk material. The metal-oxide ratio was > 6/1, 

signifying little oxidation. In Sample 23 the presence of high oxidation and carbon levels 

were indicative of extra urea in the 3:1 ratio with the precursor. Sodium was also detected 

in the EDS spectrum, leftover from the reagent. The Fe-Cr ratio in Sample 23 was lower 

compared to the bulk material due to unexpected inter-diffusion of the species during 

treatment. Both the strong Ca peak and the weak Mg peak were found in the composition 

of the mounting puck for the samples. One likely explanation for the presence of these 

elements in the spot analysis is the proximity of the surface edge to the puck, where the 

analysis was performed.   
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Figure 62.  EDS analysis of the (a.) Sample 20, treated with a 1:2:1 coating 

mixture and (b.) Sample 23, treated with a coating mixture of 1:3:1. 
Both samples were employed in the RES-protocol III process.  

H. EFFECT OF PRECURSOR TO REAGENT RATIO 

Three stainless steel substrates (Samples 24–26) were treated with the procedure 

outlined in Protocol III at a temperature of 1000°C but with varying ratios of Na2CO3 to 

determine the impact regarding morphology, topography, and elemental composition of 

the layer formed. Sample 24 was treated with chromium nitrate-urea-Na2CO3 mixture at a 

ratio of 1:2:1. Sample 25 was treated with 1:2:2 coating mixture ratio. Sample 26 was 

treated with a 1:2:3 coating mixture ratio. Each sample underwent the same 

characterization analyses, which included optical microscopy, SEM, and EDS. The 

findings are discussed according to the technique employed.   

1. Optical Microscopy 

Optical microscopy of Samples 24–26 (Figure 61) revealed the formation of an 

inner and outer surface layer consistent with earlier observations on other stainless steel 

substrates treated. The coating thicknesses on Sample 24 (1:2:1) were determined to be 8 

μm on both the inner and outer layers formed. An inner coating of 5 μm and an outer 

coating of 11 μm were noted on the surface of Sample 25 (1:2:2). After being treated, 

Sample 26 (1:2:3) was observed as having an inner layer of 5 μm and an outer layer 8 

μm.       
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Figure 63.  (a.) Sample 24(stainless steel) at 1:2:1 ratio with chromium nitrate-

urea-Na2CO3. (b.) Sample 25 (stainless steel) at 1:2:2 ratio of 
chromium nitrate-urea-Na2CO3 (c.) Sample 26 (stainless steel) at 

1:2:3 ratio of chromium nitrate- urea-Na2CO3. 

2. SEM 

The SEM images of Sample 24 (1:2:1), Sample 25 (1:2:2), and Sample 26 (1:2:3) 

as seen in Figure 62, highlighted changes to the microstructural features on the surface of 

each the material. In Sample 24 a partial separation or vacancies between the two surface 

layers was observed. The outermost surface layer in Sample 25 also showed vacancies 

the outermost layer. The surface layer on Sample 26 was indicative of incomplete fusion 

between the species.     
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Figure 64.  (a.) SEM image of Samples 24 (stainless steel) treated in a coating 

mixture of 1:2:1. (b.) SEM image of Sample 25 (stainless steel) 
treated in a coating mixture of 1:2:2. (c.) SEM image of Sample 26 

(stainless steel) treated in a coating mixture of 1:2:3.  

a. EDS 

Spot analysis of targeted areas on the surface layers formed during treatment was 

studied in order to identify the elemental composition of the materials as a result of the 

varied experimental conditions. Based on the EDS spectrum for Sample 24 as seen in 

Figure 63 the carbon and oxygen contents were higher in the outer edge compared to the 

inner layer. Deposits of sodium were also observed on the outer layer in the same sample. 

These trends relating to the carbon and oxygen levels were consistent for the other 

samples as evidenced by the EDS spectrums for Sample 25–26 as shown in Figures 64 

and 65. In the surface layer of Sample 25, Fe-Cr was observed at 1.5/1 ratio, suggesting 

chromium enrichment or inter-diffusion of the species during treatment. The surface in 

Sample 26 was especially peculiar due to a decrease in Fe-Cr to less than 1. Sodium was 
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also identified in the elemental compositions of the 2 formed layers on Sample 25 and 

Sample 26 during treatment in order of increasing quantities.    

 
Figure 65.  EDS spectrums from spot analysis of the (a.) inner layer and (b.) 

outer layer formed on Sample 24 during treatment in a coating 
mixture of 1:2:1 at 1000°C.  

 
Figure 66.  EDS spectrums from spot analysis of the (a.) inner layer and (b.) 

outer layer formed on Sample 25 during treatment in a coating 
mixture of 1:2:2 at 1000°C.  
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Figure 67.  EDS spectrums from spot analysis of the (a.) inner layer and (b.) 

outer layer formed on Sample 26 during treatment in a coating 
mixture of 1:2:3 at 1000°C.  
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IV. CONCLUSION 

We researched a non-electrolytic process for producing chromium and nickel 

metal coating as a viable alternative to harmful electrolytic techniques employing 

hexavalent chromium. The basis of this study was that the RES method for producing 

submicron particles could be modified to coat macroscopic metal substrates. We 

performed a series of experiments by rapidly heating different metal substrates in a 

physical mixture of metal nitrates, urea, and eventually a “carbon combusting” reagent in 

an inert environment.  

The first protocol demonstrated that a layer could be created on metal surfaces; 

however, the layer was not pure, and in particular had excess carbon. Another result of 

the first protocol was the finding that chromium layers form most strongly on steel, and 

rather poorly on nickel, tungsten, copper and brass. Patches of chrome were found on 

metals other than steel only. The second protocol introduced a reagent to the coating 

mixture to limit the presence of carbon and consequently caused only partial 

decomposition of the additive. The third protocol was designed to both maximize the 

metal in the surface layer and remove carbon from the deposited layer. Specifically, a 

“solution” composed of chrome nitrate, urea and sodium carbonate dissolved in ethyl 

alcohol was used to “paint” a precursor layer directly onto the substrates. No metal was 

found in the alumina boat post-treatment, suggesting the method did preferentially leave 

metal in the surface layer. The other objective of the protocol was less successful. The 

addition of sodium carbonate did lead to minimal carbon in the surface layer but 

unfortunately, led to the addition of Na to the surface layer from the sodium carbonate. 

Hence, one impurity was removed, but another added.  

During this study, an interesting discovery was made surrounding the use of 

Na2CO3 in the RES Protocol process. We clearly demonstrated that it provided an 

effective means to burn-off carbon in the surface, and in doing so increased the metal 

deposit yield on both the stainless steel and copper substrates. Particularly, as we held the 

temperature constant and increased the ratio of Na2CO3 in the coating mixture, we saw a 

decreasing trend of carbon content. Additionally, inter-diffusion of Fe-Cr boundaries on a 
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number of the earlier treated stainless steel samples was observed. Na2CO3 kept Fe-Cr 

species from migrating as fast, resulting in a Cr enriched layer.    

We also found a preferential pattern for the coating mixtures to interact with 

selective metals from our batch of samples. Particularly, stainless steel showed 

tremendous promise after a distinct microstructural change to the surface layer was 

observed in every trial. Patches of chromium and nickel metal deposition were found on 

the surface of the copper and tungsten samples but the surfaces were clearly only partially 

covered. An in-depth analysis of brass metal was not performed to completely rule out its 

level of success, however, based solely on visual appearance the metal was marginally 

altered after treatment.  

It is unknown how the surface layers formed during analysis have impacted the 

functional properties of the bulk material. For instance, resistance to corrosion and wear 

typically go up when a metal object is coating with chromium or nickel. Based on our 

findings, there were impurities in the coating produced, but even an imperfect coating 

could have some added benefits. Indeed, it is well known that hard chrome coatings have 

many “micro cracks”. However, in practice this has been found to be an advantage. 

Lubricants fill these cracks, and apparently enhance the corrosion resistance of the 

“chrome” layer. Clearly, more research can be done to refine this process. For one, the 

experimental conditions—temperature, nitrogen gas flow rates, and metal nitrate-urea 

ratios—employed in this analysis may not have been in the right combination to force 

more promising results. Secondly, the substitution of the Na2CO3 reagent with another, 

for instance potassium carbonate, may have created a more stable coating structure.  
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V. RECOMMENDATIONS FOR FUTURE WORK 

There was strong evidence to support our claim that this innovative RES-based 

process for metal coating yielded partially successful results. First, it is clear that the 

method created multi-micron thick surface layers of distinct microstructure and 

composition, particularly on steel. This was substantiated by the resulting elemental 

composition of the surface layer showing chromium enrichment or deposition in the 

stainless steel and copper substrates as well as the distinct morphological changes to the 

surface features in both cases. Indeed, the stainless steel and copper substrates showed 

the most promise when treated with RES Protocol III however, our analysis did not 

extend beyond characterization of these materials. It is clear that more work is required in 

this area in order to better determine the larger impact and efficiency of RES treatment on 

the samples.  

A. TESTING OF RES PROTOCOL III SURFACE LAYERS 

For decades, metal coating has been known to protect the metal substrates against 

corrosion and enhance the material’s mechanical properties. Despite the presence of 

impurities in our metal coatings produced, no testing of the RES Protocol III surface 

layers was performed. This measure could provide more in-depth information about the 

treatment impact. For instance, a corrosion study in which an untreated and treated 

sample are immersed in a corrosive environment over time then removed and analyzed 

for metal erosion. Other performance testing criteria can be evaluated to provide more 

additional changes to the material properties.   For example, how does this process impact 

hardness, toughness, durability, etc. 

B. EMPLOYING PURE METALS AS SUBSTRATES 

Future experiments should be carried out with pure metals. Due to Cr and Ni 

contained in the bulk stainless steel, it was difficult to predict or fully classify the 

intermolecular behavior when treated with the mixtures containing either metal nitrate 

studied. Specifically, inter-diffusion of Fe-Cr during treatment limited the metal 

deposition yields on the surface. On the contrary, the Cr deposition on the pure copper 
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wire was easily identified and categorized due to the discrete species involved. Pure Fe 

wire, for example, would make a viable substrate for Cr or Ni surface overlay because it 

has a long and proven history as a valuable alloying element with Cr and Ni. 

Furthermore, it is thermodynamically stable at the operating temperatures employed in 

this analysis, suggesting metal deposition likely during treatment.  

C. EMPLOYING DIFFERENT REAGENTS 

The excess carbon contained in the layer observed in early experiments was 

inhibited by the addition of Na2CO3 to the metal nitrate-urea mixture. After RES Protocol 

III the elemental contribution of carbon in the localized outer layer was substantially 

lower than previously observed. The unintended consequence of introducing Na2CO3 was 

the deposition of sodium on the surface due to only partial decomposition of the reagent 

during treatment. It would be worth exploring other reagents i.e., potassium carbonate 

(K2CO3) and magnesium carbonate (MgCO3) in future steps to remove impurities and 

fully decompose without a trace.  

D. LOWER TEMPERATURE 

The presence of oxygen in the surface layer was attributed to the breakdown of 

the NOx groups in the nitrate at the high temperature (1000°C) employed in RES 

Protocol III. Urea undergoes thermal decomposition at roughly 550°C. Therefore, it is 

expected that by lowering the temperature there will be less breakdown of the NOx 

groups during treatment. If the temperature is too low, however, it is likely that the 

chemistry will not take place fully. The optimum temperature for future works is possibly 

in the range of 600–850°C.    

E. INCREASE NITROGEN FLOWRATES    

During treatment, the nitrogen gas flowrate was set to 10 sccm. This slow rate is 

believed to have led to the formation of carbon monoxide (CO) and ammonia (NH3) gas 

as urea decomposed. The CO contributed to the carbon deposited on the substrate 

surface, while the nitrogen in the ammonia led to nitrides and the nitrogen identified in 

through elemental analysis portion of the experiments. By increasing the flowrate, the 
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radicals produced during decomposition of the urea will not be able deposit on the 

substrate, but instead will be pushed out of the system through the discharge end of the 

quartz tube.  

   It may also be advisable to substitute argon for nitrogen. There was some 

evidence of nitrogen reacting with the substrates. 
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