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ABSTRACT 

The U.S. Army conducts prescribed burns at Fort Ord, in Monterey County, 

California, and is reliant upon forecasting a delayed sea breeze for successful smoke 

management. This has been previously associated with opposing synoptic scale flow, 

static stability, and weakened thermal gradients. Evolution of the sea breeze in the 

complex coastline and topographic structure of the Monterey Bay area is the focus of this 

study.  

The CFSR and 12 km NAM combined with local observations in a multiquadric 

data assimilation system was used to characterize synoptic and mesoscale flow 

evolutions. Eight case studies were analyzed to better understand background synoptic 

flow and mesoscale response, characterize primary sensitivities, and develop “rules of 

thumb.” 

All case studies had delayed sea breeze onset until approximately 2000 UTC. A 5 

knot delayed sea breeze is triggered by a 5° cross-sectional thermal gradient in the 

presence of a 2–3 knot offshore synoptic scale component over Fort Ord regardless of 

synoptic flow strength or direction. A weaker 2 knot delayed sea breeze developed when 

strong static stability reduced vertical motion or in the absence of a background cross-

coast thermal gradient. These factors suggest key forecast parameters to anticipate sea 

breeze delay effectively lengthening a burn “window.” 
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I. INTRODUCTION 

The former Fort Ord in Monterey County, California, previously also known as 

Gigling Reservation, and Camp Ord, was established in 1917. Encompassing roughly 

28,000 acres, the largely undeveloped land area was first used to train infantry soldiers in 

support of World War I, and continued in this mission through the first Gulf War (Stahl 

2008), housing the 7th Infantry Division of the Army. Throughout its history, much of the 

open land in Fort Ord was utilized as an artillery and firing range (Stahl 2008). In its 

prime, the base was home to over 50,000 soldiers training to be the tip of the spear for the 

military fighting battles around the world (Stahl 2008). However, following the post-Cold 

War era, the Base Realignment and Closure (BRAC) Commission of 1988 sought to 

downsize the military base footprint. Thus, from 1990 to 1991, Fort Ord was placed on 

the National Priorities List (NPL) by the Environmental Protection Agency (EPA) as a 

federal Superfund site and identified for closure (Duymich 2012) due to groundwater 

contamination from multiple sources such as underground petroleum leakage, landfills, 

and ordnance ranges (Stahl 2008). Fort Ord was closed in 1994, leaving behind decades 

of dangerous ordnance strewn throughout the depths of the grounds, in a sense providing 

its own history lesson from previous war training exercises (Duymich 2015). Once the 

shelling stopped, however, the vegetation on the firing ranges rebounded, making 

ordnance removal difficult and dangerous. In the nearly 20 years since it closed, the 

former base had remained off-limits to all but a few official personnel. This isolation had 

the unintended effect of preserving valuable plant and animal species—some that had 

been lost to development elsewhere, and others unique to Fort Ord—which complicated 

the ordnance removal situation further. On April 20, 2012, in response to concerted 

preservation efforts by citizens, and local and state elected officials, the President of the 

United States, Barack Obama, authorized Proclamation 8803, which established the Fort 

Ord National Monument to preserve this historical landscape and its natural features 

(Obama 2012). 

In the aftermath of its closure, the Army along with the EPA and numerous other 

federal, state, and local organizations developed a plan for removal of ordnance at Fort 
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Ord in order to turn the grounds over from military to civilian control, with oversight 

from the Fort Ord Reuse Authority (FORA) (Youngblood et al. 2008). The cleanup 

process, projected through 2021, will cost the Army approximately $187 million (Stahl 

2008), with the majority of those funds allocated for ordnance removal. The Army 

expediently removed ordnance from 6,000 acres (Stahl 2008); however, the roughly 

6,560 acres referred to as the Impact Area Munitions Response Area (MRA) still 

remains, containing the majority of ordnance ranging from small arms casings to hand 

grenades and even larger 60mm mortars (Figure 1). While these munitions are old in age, 

they still remain extremely dangerous, as evident from various previous news articles in 

the Monterey Peninsula Herald, dating from 1943 through 1976, depicting numerous 

serious injuries and deaths to the civilian population who ventured into the areas for 

public recreation (Duymich 2012). Thus, the MRA is currently strictly marked with only 

those areas cleared as permissible for public traffic. In addition to this, the MRA happens 

to be home to approximately 90% of the remaining Central Maritime Chaparral in the 

world, the conservation of which is of vital interest to the habitat (Figure 2). As a result, 

vegetation and munitions clearance options were studied and investigated by the Army 

and EPA with assistance from the California Department of Toxic Substance Control 

(DTSC) to examine the best possible solution (Youngblood et al. 2008). 
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Figure 1.  Image depicting numerous munition types post prescribed burn  

  
Source: Duymich, C., 2012: Fort Ord Prescribed Burn Program 2012. Accessed 20 
October 2015. 

Figure 2.  Various maritime chaparral species local to Fort Ord  

 
Source: Duymich, C., 2012: Fort Ord Prescribed Burn Program 2012. Accessed 20 
October 2015. 
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After considering the possibilities and illustrating them through the Draft Final 

Technical Memorandum–Evaluation of Vegetation Clearance Methods Ordnance and 

Explosives Remedial Investigation / Feasibility Study (RI/FS), Former Fort Ord as well 

as Final Track 3 Impact Area Munitions Response Area (MRA) Munitions Response 

RI/FS, Former Fort Ord (Duymich et al. 2015), the Army and EPA agreed upon utilizing 

the Technology-aided Surface MEC Remediation, with Subsurface MEC Remediation in 

Selected Areas and Land Use Controls as the solution. This process encompasses 

prescribed burns to clear vegetation in the respective area(s) in order to access, remove 

and clean up the munitions and explosives of concern (MEC). Specifically, this process 

(Youngblood et al. 2008) requires a phased approach in which approximately 100-acre 

units may be burned at one time with no more than 800 acres burned per year. In doing 

so, a painstaking multitude of steps must be taken in preparation of the site as well as in 

the post-deployment phase of the operation. These actions include biological monitoring, 

which occurs before, during, and after the process to ensure vegetation recovery is in 

accordance to guidelines. Through this process, prescribed burns have proved to bring 

positive effects to the habitat such as resurgence in threatened and endangered species, 

habitat rejuvenation, and an abundance of new vegetation or “fire followers” (Duymich 

2012). In addition, mastication is essential in order to provide containment lines resulting 

in firefighter safety. These lines must be at least greater than 100 feet wide around the 

respective area and are site-specific. These buffer areas as well as fuel breaks and access 

roads provide logistical support for required equipment and vehicles in the prescribed 

burning process (Youngblood et al. 2008). To be successful, these actions and many 

others leading up to, during, and after the respective prescribed burn(s) must be 

coordinated through, and are dependent upon not only the military but also the actions of 

various civilian and federal organizations within and outside the local area.  

Specifically, and thus the motivation behind this research, the meteorological 

conditions are the greatest factors to either help or hinder the above-mentioned process. 

Successful smoke management is directly associated with light winds and strong  

vertical mixing, both of which are strongly affected by the local sea breeze. The lead 

meteorologist, Dr. Wendell Nuss, Chairman, the Department of Meteorology at the Naval 
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Postgraduate School (NPS), along with input from the Monterey National Weather 

Service (NWS) and the California Air Resources Board (CARB), is tasked with 

providing the weather outlook and forecast in support of prescribed burns (Duymich et al. 

2015). This support is depicted through the Fort Ord Prescribed Burn Weather Outlook 

and Forecast website (http://met.nps.edu/~nuss/fort-ord.html) created and maintained by 

Dr. Nuss. The resultant outlook is created from numerical model forecasts and checked 

against five specific weather parameters, which will be categorized in Chapter II, in order 

to generate a color-coded stoplight chart forecast for seven days. In addition, Dr. Nuss, 

with decades of local meteorology experience, adjusts the forecast if needed with the 

result also depicted in stoplight form containing additional reasoning and discussion as 

well as supporting weather products. Through the previous work of Taylor (1998) and 

Duvall (2004), the vital characteristic in prescribed burn forecasting for determining 

whether a window of time to burn will become available relies on the ability of the 

forecaster to accurately determine when the local area sea breeze front onset will be 

delayed from the typical mid-morning into the afternoon timeframe.  

Therefore, with millions of dollars invested by the Army (Stahl 2008), as well as a 

large logistical footprint required, protecting nearby communities surrounding Fort Ord 

with proper smoke management through accurate prediction of the timing of the onset of 

local sea breeze is vital.  
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II. BACKGROUND 

A. PRESCRIBED BURN: OCTOBER 24, 2003 

On October 24, 2003, approximately 500 acres were ignited by the U.S. Army to 

burn off vegetation in order to expose ordnance for safe removal from the property 

(Bakan 2004). While the weather parameters of mixing height, wind direction, wind 

speed, temperature, and relative humidity were in adherence to standards up to and 

during ignition, subsequently, the fire raged out of control, burning 1470 acres and 

billowing smoke at low altitude into the surrounding population centers (Figure 3; Bakan 

2004). While the fire spread only to adjacent Fort Ord land identified for a future 

prescribed burn before it was brought under control—and in the process exposed 

ordnance not previously known to be in the area—the overwhelming residents’ outcry 

against the low-altitude smoke, the resultant public relations setback, plus cost overruns 

to the Army to the tune of $364,579, only exemplify the necessity to better understand 

the weather dynamics of the region (Bakan 2004). 

Figure 3.  Imagery from October 24, 2003 uncontrolled prescribed burn  
at Fort Ord 

 
Source: Bakan, M., 2004: Fort Ord Prescribed Burn Review, Fort Ord BRAC Office 
CommunityBulletin#7,8pp. 
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The initial announcement for the October 24 prescribed burn was made on 

October 21, resulting in deployment of all of the logistical and firefighting crews to the 

area, as well as notifications to the public to inform the Monterey Bay area of the pending 

operation. Once the decision is made, continuous weather monitoring is conducted for the 

region to ensure necessary weather parameters (as denoted in Table 2) are within suitable 

limits. Dr. Nuss, Army officials, and officials from the EPA, California DTSC, and the 

California Air Resources Board continued this process right up until ignition of the burn. 

Of note, the National Weather Service had issued a fire weather warning to the region; 

however, the Red Flag Warning excluded regions along the immediate coast (Bakan 

2004). As depicted in the after action weather comparison chart in Table 1, all weather 

parameters were within the “preferred” limits except for the mixing level, which hovered 

around the minimum requirement. This low mixing height of approximately 1,000-ft 

upon ignition prevented the resulting smoke from ascending vertically in the atmosphere, 

instead causing it to blow horizontally (southwesterly) into the population center of the 

Monterey Peninsula. Further investigation into the NPS Profiler analysis on October 24, 

2003 also displayed the required mixing height of 1,500 ft delayed into midday vice 

morning (Figure 4). The delayed sea breeze onset (1400 PST) provided the initial 

favorable conditions; however, early morning low-level enhanced flow decreased the 

mixing height until 1100 PST. This resulted in a deteriorated prescribed burn window 

from 5 hours to 3 hours. Therefore, the resultant smoke did not ascend vertically, but was 

forced horizontally, affecting surrounding populated neighborhoods and further exposing 

the necessity for improved smoke management. 

 

 

 

 

 

 



 9

Table 1.   Comparison of prescribed and actual weather conditions 

 
Source: Bakan, M., 2004: Fort Ord Prescribed Burn Review, Fort Ord BRAC Office 
Community Bulletin #7, 8 pp. 

Figure 4.  NPS Profiler for Fort Ord on October 24, 2003  

 

 
Hatched area depicts the low mixing heights until midday. Source: Monterey Area 
Environment, 2015: NPS 915MHz profiler at Fort Ord mixing height: 2003. Accessed 06 
April 2015 
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The unintended result of the October 24, 2003, prescribed burn highlighted the 

necessity to dissect the localized weather patterns and behaviors in relation to the 

synoptic scale flow, and better understand how dynamic the Monterey Bay and Fort Ord 

regions are even within the 24-hr period—specifically the few hours leading up to burn 

operations. While reasons for the uncontrolled fire and enhanced smoke dispersion were 

not solely due to weather parameters but also firefighting procedures as noted in Bakan 

(2004), two specific lessons learned were noted in the review: 

 The ability to make reliable weather predictions even 48 hours before a 
fire is very limited. 

 Wind should be measured at higher elevations, not just on the ground, to 
more accurately predict where smoke will go. 

The Fort Ord Prescribed Burn Weather Outlook and Forecast website provides a 

seven-day forecast outlook. This stoplight chart highlights a respective potential burn day 

as green, thus providing a “window” for which to conduct a prescribed burn. Once the 

window is identified, Dr. Wendell Nuss contacts the Prescribed Burn Manager who in 

turn contacts the various supporting project meteorologists, operational personnel, and 

logistical personnel to begin coordination (Duymich and Coauthors 2015). As the 

operation nears, specifically within the 48-hr to 24-hr timeline, the prescribed burn 

weather parameters (Table 2) are continually monitored and reported. As noted in 

Duymich et al. (2015), these parameters are interactive and dynamic; thus, having one or 

more parameters exceeding limits may not necessarily cancel the operation if smoke 

behavior would still satisfy fire management preferences. Additionally, as more 

prescribed burns are conducted and lessons are learned, the weather parameters are 

adapted. For example, the October 24, 2003, Fort Ord prescribed burn, as denoted above, 

resulted in including transport wind speed into the weather parameters. One similarity, 

however, among all successful burn operations is the delayed onset of the sea breeze; 

thus, for this study; its evolution is of primary concern. Specifically, the goal is to exploit 

a 4–6 hour window with a mixing height above 1,500 feet highlighted by a climatological 

sea breeze delayed at least 2 hours to best support successful smoke management.  

 



 11

Table 2.   List of prescribed burn weather parameters 

 
Source: Duymich, C., 2012: Fort Ord Prescribed Burn Program 2012. Accessed 20 
October 2015. 

B. BASIC SEA BREEZE CIRCULATION 

Smoke management for Fort Ord Prescribed Burns is most successful through 

understanding the basic and specific Monterey Bay sea breeze structures and their impact 

on low-level winds and mixing height. The sea breeze is a thermal gradient driven 

mesoscale circulation resulting from physical processes active at the coastline (Wallace 

and Hobbs 2005). To best understand this phenomenon; one must first consider 

differences in thermal conductivity between the land and ocean. The land’s lower thermal 

conductivity results in a greater response to solar radiation, thus heating the land surface 

at a faster rate than the ocean (Nuss 2003). The resultant warmer land surface creates the 

necessary horizontal thermal gradient to initiate the sea breeze circulation. Thus, the 

localized low pressure over land and high pressure over the ocean generates convergence 

at the surface vertically transporting the warmer air aloft creating offshore flow in the 

higher levels (Wallace and Hobbs 2005). As a result, in response to the offshore flow at 
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higher levels, air descends over the ocean in order to replace the air due to the surface 

level onshore flow (Figure 5). Additionally, the strength of the sea breeze is proportional 

to the magnitude of the respective thermal gradient (Nuss 2003). The process is reversed 

in the late afternoon or early evening to create a land breeze circulation resulting from a 

reversal in the thermal gradient. While the basic sea breeze is well understood, numerous 

factors alter the basic circulation to delay, strengthen, or weaken the circulation. These 

modifying influences include the synoptic-scale background flow, stability, clouds, 

coastline shape, and topography, which must be considered to better characterize sea 

breeze circulations in a particular region (Nuss 2003).  

Figure 5.  Schematic of coastal flow resulting in sea breeze circulation 

  
Source: Nuss, W., 2003: Coastal Meteorology: Course Notes for MR4240. Department of 
Meteorology, Naval Postgraduate School, Monterey, California, 68 pp. 

C. MONTEREY BAY SEA BREEZE CHARACTERISTICS 

Previous Monterey Bay sea breeze studies shed light onto the unique features 

influencing the localized sea breeze. Specifically, topography, synoptic flow, and stability 

have been identified as key contributors that characterize the Monterey Bay sea breeze 

onset. Wexler (1946) first classified sea breezes based on background flow 

characterizations into either gradual growth, resulting from calm or gradual winds, and 
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frontal, resulting from an offshore gradient wind (Taylor 1998). Round (1993) utilized 

the NPS Profiler from Fort Ord expanding the work of Wexler (1946) into the specific 

Monterey Bay categories of gradual development, clear onset, frontal, double surge, 

unclassifiable, and no sea breeze (Taylor 1998). Round (1993) also found the Monterey 

Bay sea breeze onset develops most frequently around 1000 PST with strongest intensity 

from April to June (Knapp 1994). Additionally, Knapp (1994) further validated these 

results confirming a 1000 PST sea breeze onset with a climatological weakening of 

intensity through September. Knapp (1994) also defined the large-scale synoptic flow 

patterns influencing the Monterey Bay as a Ridge, Trough, Gradient, and Miscellaneous 

regimes (Taylor 1998). Duvall (2004) specifically investigated the modifying influences 

of the sea breeze circulation previously mentioned from August 01–31, 2003. Her work 

provided data to illustrate that offshore flow, cooling surface temperatures, and the 

presence of a marine layer weakened the strength of the Monterey Bay sea breeze. Foster 

(1996) best highlights the necessity to understand the Monterey Bay sea breeze as his 

study, for the summer days of 1993–1995, showed a sea breeze occurred 92% of the time 

(Taylor 1998). These studies highlight the consistent and persistent influence of the 

Monterey Bay sea breeze on the local flow pattern most of the time.  

As explained above, the Monterey Bay synoptic scale flow significantly 

influences the respective sea breeze evolution. Estoque (1962) utilized a 5 ms-1 synoptic 

wind in a physical model to determine the resultant sea breeze response. An offshore 

wind only allowed the sea breeze front to penetrate 8 km inland vice 32 km inland with 

zero wind; however, the offshore flow concentrated the horizontal temperature gradient 

thus intensifying the sea breeze front (Arritt 1992). In contrast, an onshore flow allowed 

for further inland penetration of the sea breeze, but with weakened circulation. 

Additionally, a southerly synoptic flow impacts the sea breeze front similarly to the 

offshore case, but with further penetration whereas a northerly synoptic flow reacts as did 

the onshore case (Estoque 1962). Arritt (1992) further detailed the synoptic flow impact 

indicating opposing ambient winds as strong as 6 ms-1 (11.5–12 knots) restricted the sea 

breeze location to the coastline. Stronger ambient winds maintained the sea breeze 

offshore while weaker flow allowed the front to progress inland (Arritt 1992). 
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Specifically, offshore ambient winds result in a shallower, later-developing sea breeze 

with less inland penetration (Gahmberg et al. 2009). Gahmberg et al. (2009) provided 

additional detail to the synoptic flow through the Coriolis effect. All directions are as 

seen from the sea with ambient flows left of the offshore direction providing the strongest 

opposing winds as Coriolis effects provide additional support in the offshore direction 

(Gahmberg et al. 2009). A geostrophic wind from 0 to 100° right of the offshore direction 

and lighter than 7 ms-1, inhibits the sea breeze while also creating calm zones, which are 

not an emphasis of this particular study (Gahmberg et al. 2009). Geostrophic winds from 

0 to 60° right from the offshore direction at 10 m s-1 are strong enough to inhibit the sea 

breeze, maintaining it off the coast (Gahmberg et al. 2009). Their previous research was 

all conducted in the absence of topography using idealized coastal geometry. These 

studies depict the impacts of magnitude and direction of the synoptic flow on sea breeze 

development although how they apply to the complex topography of the Monterey Bay 

region is not clear.  

Static stability variations have also been shown to influence the evolution of sea 

breeze circulations. Estoque (1962) illustrated this through comparing a case with zero 

geostrophic wind as well zero geostrophic wind accompanied with an isothermal layer. 

The additional presence of an isothermal layer (strong static stability) inhibited sea breeze 

intensity as well as decreased sea breeze vertical structure (Estoque 1962). Arritt (1993) 

solidified Estoque’s (1962) conclusions utilizing the linear solution examining the 

horizontal and vertical wind components. In doing so, Arritt (1993) concluded strong 

static stability, specifically over the water, subdues both components with the stronger 

impact to the vertical than horizontal. Therefore, both Estoque (1962) and Arritt (1993) 

discovered strong static stability led to a less intense sea breeze. 

D. THESIS OBJECTIVES 

While many studies have been conducted on the general nature and development 

of the sea breeze, the multitude of parameters that can alter its development evolve 

differently due to geographically specific phenomenon. Specifically, the Monterey Bay 

area possesses a year-round consistent sea breeze generally occurring around the same 
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time during the day. The previous work conducted by Round (1993), Knapp (1994), and 

Duvall (2004) has addressed the general synoptic scale and local area effects of the 

Monterey Bay sea breeze and, in addition, Taylor (1998) addressed how these effects 

negatively impacted the Salinas Valley during a prescribed burn of Fort Ord on August 

25, 1997. However, the specific combinations of flow details that delay sea breeze 

penetration into Fort Ord are not well known. October 24, 2003, provided another 

example of the difficulty in forecasting a delayed sea breeze onset as a Fort Ord 

prescribed burn transported smoke at low levels into Seaside, Monterey, Carmel, and 

Pacific Grove (Bakan 2004). 

This study builds upon the above mentioned work and focuses on the following: 

 To identify the background synoptic scale and delayed mesoscale flow 
response that occurs within a 24-hr “window” of a prescribed burn 
operation that indicate a delayed onset of the Monterey Bay area sea 
breeze. 

 To characterize the primary sensitivities that may prevent a delayed sea 
breeze start-up. 

 To develop “rules of thumb” to increase forecaster accuracy to better and 
more accurately predict late sea breeze start-up to support the operator. 

This information will be essential to improve the support of the Joint U.S. Army 

and EPA endeavor of utilizing prescribed burns in order to safely and effectively remove 

ordnance from Fort Ord for further land development and conservation.  
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III. DATA AND METHODOLOGY 

This chapter details the data and methodology utilized in order to extract specific 

prescribed burn weather parameters from the North American Model (NAM) as well as 

the Climate Forecast System Reanalysis (CFSR) to further understand the synoptic and 

mesoscale weather patterns. Local area profiler data were used to select case studies 

while the models and cross sections further detailed the behavior of the sea breeze front 

into Fort Ord. 

A. DATA ACQUISITION AND STRUCTURE 

To characterize the synoptic scale patterns, the CFSR model was utilized. The 

CFSR is a global high-resolution model used to generate a best-estimate record of the 

ocean-atmosphere interaction. This reanalysis model provides approximately 38km 

(T382) resolution with 64 levels over a 31 year period from 1979 to 2009. This data is 

assimilated from historical and operational archives of observations providing a host of 

available parameters (Saha and Coauthors 2010). The Climate Forecast System version 2 

(CFSv2) along with the CFSR continues data from 2009 to the present to provide the 

necessary data in support of this research for the time frame covering 2013 and 2014 

(Saha and Coauthors 2014).  

In order for the CFSR data to be in a usable structure for the purposes of this 

research, various steps occurred. First, the latitude/longitude grid of the CFSR data was 

interpolated to a 25 km grid on a Lambert conformal map projection (Nuss 2015). These 

interpolated fields of sea-level pressure, temperature, surface temperature, geopotential 

height, u wind component, v wind component, and surface pressure at six-hour intervals 

were used to diagnose the synoptic scale flow patterns (Nuss 2015). The interpolated 

fields can also be used for diagnostic calculations. 

VISUAL developed by Nuss and Drake (1995) is a diagnostic and display 

program utilizing the National Center for Atmospheric Research (NCAR) graphics and 

Graphical Kernel System (GKS) primitives allowing the user to manipulate and produce 

numerous plots for various specified parameters (Nuss and Drake, 1995). Specifically, for 
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the CFSR data supporting the synoptic flow, a VISUAL script was written displaying 

geopotential height, wind speed, and wind direction at 850 mb on a horizontal sub grid 

producing a postscript image used to analyze the synoptic scale background flow.  

To characterize the mesoscale patterns, the NAM model was utilized along with 

local observations to create a 1.25 km resolution local analysis. This analysis is referred 

to as the “mbay-anal.” The NAM is an operational model run by the National Centers for 

Environmental Prediction (NCEP) providing multiple domains in support of numerous 

weather parameters across the Continental United States (CONUS) (NOAA 2015). This 

study employed the 12km resolution NAM as it provides an accurate representation of 

the mesoscale environment inside the 48-hour window (NOAA 2015). The NAM 

forecasts served as the first guess in a multiquadric (MQ) based data assimilation system. 

The MQ analysis blended the NAM 12 km data with available local observations to 

produce hourly 1.25 km resolution analysis of the flow over the Monterey Bay Area. The 

MQ analysis system has been described for its two dimensional application by Nuss and 

Titley (1994). For this study a three dimensional version was used. 

As with the CFSR data, the mbay-anal. data was plotted using VISUAL to depict 

the local flow patterns on an hourly basis. The mesoscale flow was characterized by 

displaying temperature, wind speed, and wind direction on a subdomain in grid 

coordinates with the observations overlaid. In order to further describe the sea breeze 

front onset, VISUAL provides the capability for cross-section plots (Nuss and Drake 

1995). As a result, the potential temperature and cross sectional wind direction and 

magnitude within designated latitude and longitude endpoints were generated to show the 

circulations in the vertical.  

B. METHODOLOGY 

The purpose of this paper is to highlight patterns in the synoptic scale and relate 

them to the local area environment in order to enhance forecast accuracy inside the 24 

hour window prior to a prescribed burn operation. First, archived profiler data was 

examined to classify a potential “burn day(s).” As such, this is not an exhaustive study of 

sea breeze evolution under varying synoptic patterns but instead is on sea breeze 
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variation under a fairly consistent large-scale flow pattern. Once completed, each 

respective day was then analyzed by employing the CFSR and mbay-anal. models to 

depict the environment. In addition, cross sections were further used to illustrate the 

nature of the sea breeze front as it progressed through the Monterey Bay into Fort Ord.  

1. NPS Profiler at Fort Ord 

The mixing height and surface wind direction are the first two basic ingredients 

necessary to support a potential prescribed burn operation. Therefore, the NPS profiler at 

Fort Ord offers an archived database from 1994 to the present depicting these parameters 

on an hour versus altitude plot. The 915 MHz Doppler wind profiler, located at Marina 

Municipal Airport (36.69°N latitude, 121.76°W longitude), plots mixing height using 

surface virtual temperature as well as wind speed and direction from the surface to 5,000 

feet above sea level (Figure 6 for profiler location; Gahard 2003). In addition, the profiler 

site provides an hourly depiction of the surface meteorology to include wind speed, wind 

direction, temperature/dew point, sea level pressure, shortwave irradiance, and longwave 

irradiance. For the purposes of this research, the mixing height, surface wind direction, 

and surface wind speed were the only parameters necessary to select potential burn days.  

The calendar year window for burn operations occurs from July through 

December with the months of September through November as the primary focal months. 

Therefore, those focal months were the baseline of this study for the years of 2013 and 

2014. As delineated in Duymich et al. (2015) the target mixing height is above 1,500 feet 

to support appropriate smoke behavior. Additionally, the prescribed burn is only feasible 

with a delayed sea breeze onset occurring between 2000 UTC–2300 UTC vice the 

climatological 1700 UTC–1900 UTC onset. In analyzing the profiler data, a potential 

case study day was determined if the mixing height was greater than 1,500 feet beginning 

approximately 1600 UTC–1700 UTC and remaining until the sea breeze front had moved 

into the area and denoted by the hatched region on the profiler (Figure 7). Specifically, on 

October 4, 2013, the profiler data illustrated these criteria and was further supported by 

the surface meteorology from the profiler with the wind direction shifting from easterly 

to westerly at approximately 2200 UTC (Figure 8). Conducting this analysis from 
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September through November for 2013 and 2014 (182 days) resulted in 12 potential case 

studies (6.6%) supporting the necessary initial parameter guidelines for a prescribed burn.  

Figure 6.  Fort Ord aerial map 

  
 

NPS Profiler at Fort Ord (denoted by the star within the red circle) located at the Marina 
Municipal Airport. Source: Duymich, C., 2012: Fort Ord Prescribed Burn Program 2012. 
Accessed 20 October 2015. 
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Figure 7.   Wind and virtual temperature measurements by the NPS Profiler  
at Fort Ord on October 4, 2013  

 

 
 

Data depicting >1,500 feet mixing height through the time period of interest along with 
delayed onshore winds. Source: Monterey Area Environment, 2015: NPS 915MHz 
profiler at Fort Ord mixing height: 2003. Accessed 06 April 2015 
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Figure 8.  NPS surface measurements at Fort Ord for October 4, 2013  
 

 
 

Data depicting onshore flow occurring approximately 2200 UTC. Source: Monterey Area 
Environment, 2015: NPS meteorological station at Fort Ord wind profiler site: 2003. 
Accessed 06 April 2015 

2. CFSR Synoptic Pattern 

With the respective potential prescribed burn days decided upon, the next step in 

the process was to better understand the synoptic flow pattern(s) to expose their effect(s), 

if any, on the localized sea breeze front evolution. To do so, the 850 mb geopotential 

heights as well as the 850 mb wind speed and directions were plotted (see Figure 9) to 

characterize the respective dominant and supporting pressure system(s) in the region. 

These fields were plotted every six hours (0000 UTC, 0600 UTC, 1200 UTC, and 1800 

UTC) beginning 12 hours before the respective day of interest and running 36 hours 
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through the day of interest. For example, when analyzing October 4, 2013, the CFSR data 

fields were generated from 1200 UTC on October 3, 2013, to 0000 UTC on October 5, 

2013, every 6 hours. Therefore, this provided the necessary data to understand the 

synoptic structure prior to and during the timeframe of a prescribed burn.  

Figure 9.  CFSR data for 1200 UTC on October 4, 2013 
 

 
850 mb geopotential height are depicted with red contours lines. 850 mb wind barbs are 
depicted in blue. 
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From the synoptic perspective, the presumption was that all case studies selected 

for further analysis should depict a synoptic scale flow supportive of offshore flow that 

delayed the sea breeze front. As depicted in Figure 9, a high pressure system resides off 

the northern coast of California. This structure supports anticyclonic flow around the high 

bringing northeasterly winds into the Monterey Bay area. Additionally, strong winds (25–

35 knots) resulting from a tight geopotential height gradient along the coast also supports 

the initial reasoning of a delayed sea breeze onset. Northeasterly to southeasterly flow 

through the east in the synoptic scale was desired to enhance the localized offshore wind 

component which, in turn, works contrary to onshore sea breeze flow.  

3. Monterey Bay Local Area Pattern 

The characterization of a favorable synoptic scale flow pattern leads into further 

investigation of the Monterey Bay area to understand the local response. To illustrate the 

local response, the surface level temperature contours, wind direction, and wind speed 

were plotted with the local area observations included (Figure 10). The local area 

observations provided additional verification to validate the analyzed wind field. The 

mbay-anal was run every hour from 1200 UTC to 2300 UTC for all potential prescribed 

burn days of interest. Additionally, the surface temperature contours depicted the 

meridional gradient (cross-shore) in order to investigate its potential influence on the sea 

breeze evolution.  

As illustrated below, the wind direction depicts the location of the sea breeze front 

at the respective time based on a shift in wind direction from onshore to coast parallel or 

offshore. The observations also validate the direction and magnitude of the mbay-anal 

winds. This local structure illustrates the sea breeze front has progressed into the Fort Ord 

area for the day and time shown in Figure 10. Of note in this case, the wind speed and 

direction is light and southeasterly at the NPS profiler location, utilized to initially 

determine case studies, while westerly winds are evident in the Fort Ord area. Thus, 

strictly utilizing the NPS profiler would have provided an incorrect assessment of the sea 

breeze onset. Therefore, this example illustrates the potential topographic effects that 

further complicate the dynamics to correctly forecast prescribed burn weather parameters 
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and requires further analysis to understand the relationship between the synoptic and 

mesoscale features. 

Figure 10.  NAM 12 km data for 2000 UTC on October 2, 2014 
 

 
Surface temperature contours are depicted in red, wind barbs in blue, and observations in 
black. 

4. Mbay-anal. Local Area Cross Section  

To enhance the ability to characterize the sea breeze front, the mbay-anal was 

visualized through a cross section. The cross section was taken from the middle of the 

Monterey Bay (36.8, -122.0) through Fort Ord and into the Salinas Valley (36.5, -121.7) 
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covering a horizontal distance of 45.1 km. The cross sections were produced hourly from 

1600 UTC to 2300 UTC for each respective case study. This selected timeframe covered 

the pre- and post-sea breeze front evolution. Potential temperature as well as wind 

direction and magnitude in the direction of the cross section are plotted from the surface 

to 800 mb (Figure 11). Plotting the wind direction and magnitude best locates the sea 

breeze front where an onshore to offshore shift occurs. The respective synoptic flow is 

evident above the 900 mb level and the potential temperature provides the vertical 

thermodynamic structure that drives the sea breeze. As a result, these parameters best 

illustrate the location and structure to either support or resist the sea breeze front 

evolution.  

Figure 11.  NAM 12 km cross section for October 14, 2013  

 
Potential temperature contours are depicted in red. Wind direction and magnitude in 
direction of cross section are depicted in blue. 
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After examining the occurrence of the sea breeze onset timing through the mbay-

anal mesoscale analysis, the next step was to diagnose the potential connection between 

the synoptic and mesoscale circulations illustrated in the cross section. In reference to 

Figure 11, the cross section at 2000 UTC on October 14, 2013 can be characterized as a 

textbook example of the localized sea breeze. The potential temperature structure 

represents high pressure over the Monterey Bay region detailed by a tight vertical 

potential temperature gradient over the cooler air near the surface over the water. In 

contrast, low pressure is located inland as evident from the warmer temperature in the 

column over the land. The cross-sectional winds clearly show a sea breeze structure with 

low-level onshore flow progressing inland towards the thermal low. Conversely, winds 

inland ascend over the localized low pressure with offshore return (seaward) flow in the 

900 mb to 800 mb layer. Thus, the sea breeze onset has already occurred and has 

progressed into the Fort Ord region. This methodology was employed to all case studies 

for sea breeze characterization to obtain time and depth of the sea breeze flow.  
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IV. ANALYSIS AND RESULTS 

The 12 case studies which met the basic pattern out of a possible 182 days were 

examined to determine potential patterns connecting the synoptic scale wind field to its 

corresponding effect on the diurnal mesoscale flow thus delaying the local sea breeze 

response over Fort Ord. The 12 cases were characterized by their synoptic scale flow 

direction, their thermal gradient across the coast, and their background static stability. 

Each case was slightly different but some cases had considerable similarity and will not 

be presented. The primary factor in all cases was the time when the sea breeze impacted 

Fort Ord. When this time was later than the typical 1000 PST–1100 PST onset, the three 

possible contributing factors were examined in detail. The cases are presented based on 

the most significant contributing factor. These eight cases illustrate patterns that were 

categorized into the following three flow patterns: synoptic flow influence, static stability 

influence, and temperature gradient influence.  

A. SYNOPTIC FLOW INFLUENCE 

Nine of the 12 cases appear to have a delayed sea breeze onset due to the 

influence of synoptic scale flow. Of these nine cases, five are detailed below as the other 

four cases displayed similar results. Wexler (1946), Estoque (1969), Arritt (1993), and 

Nuss (2003) all acknowledge the importance of the synoptic flow intensity and direction 

resulting in different sea breeze dynamics. Thus the most likely trigger for a delayed sea 

breeze onset is due to synoptic flow. This author is unaware of these concepts applied to 

the Monterey Bay under the strict constraints posed by burning operations. The first case 

explains the effect of a weak southerly synoptic flow pattern. The second case rotates the 

synoptic flow slightly north to easterly. The third case shows the effect of changing 

synoptic flow during the period of interest. In all cases, sea breeze onset was delayed 

until about 1900 UTC–2000 UTC. Lastly, the fourth and fifth cases both contain 

northeasterly-northerly flow but varying in strength with Case #5 stronger than Case #4.  
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1. October 02, 2014–Weak Southerly Flow  

October 02, 2014, shows a synoptic scale pattern of high pressure located off the 

Northern California coast and low pressure off the Southern California coast (Figure 12). 

From 1200 UTC (Figure 12c) to 1800 UTC (Figure 12d) the high pressure system 

weakens with the low pressure shifting further north. As a result, the 1200 UTC and 1800 

UTC analysis illustrate light (~10 knots) southerly winds over the Monterey Bay region. 

While the synoptic flow is not directly oriented to oppose the sea breeze circulation, it is 

still enough to provide an opposing component to act as a blocking mechanism to sea 

breeze development. Figure 13a shows the mesoscale analysis at 1600 UTC that 

illustrates a southerly-southeasterly flow over the area south of the Monterey Bay in 

direct opposition of the sea breeze. This opposing flow prolongs the diurnal land breeze. 

Strong offshore flow is also seen from the surface to 900 mb in the 1600 UTC cross 

section in Figure 14a. The 1900 UTC analysis (Figure 13d) shows an increased cross 

coast temperature gradient along with the sea breeze beginning to overwhelm the 

synoptic flow. Additionally, the cross section at 1900 UTC (Figure 14b) illustrates 

heating over the land seen by the increase in potential temperature on the right side of the 

figure, which acts to increase the cross sectional thermal gradient. As a result, the surface 

flow now exhibits an onshore flow in direct opposition to the synoptic flow. Observations 

over Fort Ord shown in Figure 15a indicate onshore flow at 2000 UTC over the Fort Ord 

area while southeasterly flow continues in the Salinas Valley. The sea breeze progresses 

into Fort Ord around 2000 UTC (Figure 15a) with a classical sea breeze structure of 

onshore flow at the surface to 950 mb, vertical flow east of Fort Ord, and return flow 

offshore above 900 mb illustrated by the cross section in Figure 15b. Consequently, due 

to the Monterey Bay orientation, southerly synoptic flow provides the opposing flow 

necessary to delay the sea breeze response and provide a larger window for prescribed 

burning operations. 

The orientation of the Salinas Valley with respect to the synoptic scale flow in 

this case produced considerable local variations in the flow. The Salinas Valley is 

oriented in the southeast to northwest direction and therefore a south-southeasterly 

synoptic flow develops a funneling effect through the valley. This influence is best seen 
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in the 1800 UTC (Figure 13c) and 1900 UTC (Figure 13d) analyses where the winds are 

oriented southeasterly through the Salinas Valley and are stronger (10 knots) than the 

respective observations at Fort Ord with weaker northeasterly winds (5 knots). This 

intensified wind flow through the valley continues to offset the diurnal effects of the sea 

breeze, while the weaker easterly flow over the Monterey Bay has already turned onshore 

consistent with the diurnal sea breeze flow. Additionally, Figure 13c and 13d shows a 

distinct front or wind shift line oriented parallel to the coast through the Fort Ord area. 

This is important to note as the NPS Profiler at 2000 UTC (not shown) does not provide 

evidence of the sea breeze onset or inland penetration that is clearly evident in the Fort 

Ord observations. Thus relying strictly on the NPS Profiler provides an inaccurate picture 

on the true environment over the burn operation’s area of interest. This case clearly 

shows how the unique topographic features of the Monterey area add to the complexity of 

the flow evolution due to the sea breeze. 
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Figure 12.  850 mb geopotential height and winds 

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 02 October 2014 
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Figure 13.  Surface temperature and winds 

 
1600 (a), 1700 (b), 1800 (c) and 1900 (d) UTC 02 October 2014 
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Figure 14.  Potential temperature and winds in the plain of the cross section 

 
1600 (a) and 1900 (b) UTC 02 October 2014 
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Figure 15.  Surface and cross section plots 

 
Surface temperature and winds (a) and potential temperature and winds in the plain of the 
cross section (b) at 2000 UTC 02 October 2014 
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2. October 03, 2014–Weak Southeasterly Flow 

The October 03, 2014, case presents some minor changes in the synoptic scale 

flow from the previous case study, but results in a similar delay in the sea breeze onset 

until 2100 UTC. Specifically, 1200 UTC (Figure 16c) and 1800 UTC (Figure 16d) depict 

weak 5–10 knots southeasterly flow into the Fort Ord region. While the synoptic flow is 

weaker than Case #1, the southeasterly synoptic flow direction directly counters the 

developing local sea breeze from a northwesterly direction. Figure 17a illustrates the 

synoptic flow response at 1600 UTC as the weak southeasterly synoptic flow results in 

weak southeasterly surface flow over the Fort Ord region. The cross section in Figure 19a 

also depicts offshore flow at 1600 UTC from the surface through the 800 mb levels. Of 

note, the cross section also shows sinking air from the 900 mb to 800 mb levels down to 

the surface over the ocean which is reflected in Figure 17a at 1600 UTC with stronger 

easterly winds over the Monterey Bay versus the calm/weak offshore flow observations 

over Fort Ord. As a result, the diurnal land breeze in tandem with the supporting synoptic 

flow holds back sea breeze development until after this time. Eventually, Figure 17d 

shows the winds beginning to shift northerly off the coast at 1900 UTC with calm 

variable winds observed at the coast depicting the interaction of the developing sea 

breeze with the opposing background winds. By 2000 UTC, Figure 18a depicts a distinct 

sea breeze front along the coast moving into Monterey but not advancing over Fort Ord 

until 2100 UTC as shown in Figure 18b. Figure 19b illustrates the sea breeze circulation 

at 2100 UTC with onshore flow at the surface vertically to 925 mb with the resulting 

upper level flow weakly offshore from 900 mb to 800 mb. Therefore, while the 

magnitude of the synoptic flow was weaker than on October 02, 2013, the direction of the 

ambient flow provides more direct opposition to the sea breeze resulting in the same 

impacts to the time of sea breeze onset.  

As with the previous case, the direction of the synoptic flow once again is 

impacted by the orientation of the Salinas Valley, providing a funneling effect for the 

southeasterly winds. The decreased magnitude of the winds to 5 knots vice 10 knots 

lessened the effect but still produced an impact by maintaining southeasterly flow in the 

Salinas Valley even after the sea breeze started near Fort Ord. Areas of intensified wind 
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magnitude in the observations at 1600 UTC (Figure 17a) and 1700 UTC (Figure 17b) in 

the Salinas Valley show 10 knot flow vice the 5 knot flow over Fort Ort for the same time 

periods. While minor, Figure 18a depicts the resultant impacts as the sea breeze at 2000 

UTC penetrates inland at Monterey but is restricted to the coastline in Marina due to the 

increased opposing flow from the Salinas valley. Although weak in magnitude, Figure 

18b shows the sea breeze at 2100 UTC throughout the region eventually overwhelms the 

opposing flow allowing penetration inland. As a result, in this case the NPS Profiler did 

not have as much variation from the Fort Ord observations as they both experienced the 

sea breeze onset at approximately the same time. Therefore, the synoptic flow direction 

made up for the magnitude deficiency to delay sea breeze onset by about the same 

amount in the previous case.  
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Figure 16.  850 mb geopotential height and winds  

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 03 October 2014 
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Figure 17.  Surface temperature and winds 

 
1600 (a), 1700 (b), 1800 (c) and 1900 (d) UTC 03 October 2014 

 

 

 

 



 
40

F
ig

ur
e 

18
.  

S
ur

fa
ce

 te
m

pe
ra

tu
re

 a
nd

 w
in

ds
 

 
20

00
 (

a)
 a

nd
 2

10
0 

(b
) 

U
T

C
 0

3 
O

ct
ob

er
 2

01
4 

yyYYYYYYYY'yyo o -CJ' yYYYYYYYYYYo o -



 
41

F
igure 19.  

P
otential tem

perature and w
inds in the plain of the cross section 
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3. October 14, 2013–Weak Easterly Flow 

October 14, 2013, builds upon the previous two case studies by again displaying 

weak synoptic scale winds, but this time from an easterly direction which also delayed 

the sea breeze onset until 2000 UTC. Figure 20 shows northeasterly flow at 0600 UTC 

(Figure 20a) shifting to easterly flow by 1200 UTC (Figure 20c) over the Monterey Bay 

and staying easterly from 1200 UTC to 1800 UTC (Figure 20d). While easterly winds do 

not directly oppose the local sea breeze over Fort Ord, frictional turning from the 

Monterey Bay coastline shape turns the winds more southeasterly, producing a 

component in opposition to the sea breeze. Figure 22a at 1600 UTC illustrates this as the 

synoptic flow above 900 mb presents a strong offshore component that assists in 

maintaining the weak opposing component of the remnant land breeze at the surface. 

Figure 21 depicts the evolution of 5 knot easterly synoptic flow, which prevents the 

cyclonic turning of the winds in the Monterey Bay until 1800 UTC. At 1900 UTC, the 

cross-coast thermal gradient intensifies so that the sea breeze flow is beginning to match 

the ambient flow. Figure 22b shows the establishment of the sea breeze at 2000 UTC at 

the surface with a complete return circulation supported in the 900 mb to 800 mb layer.  

As seen in the previous two cases, a weak synoptic flow of 5–10 knots provides 

enough of an opposing component to the sea breeze to impact sea breeze onset timing. 

Specifically to this case, a 5 knot easterly synoptic flow pattern is strong enough to 

support the already established land breeze to resist the sea breeze (Arritt 1992) and 

delays the sea breeze onset long enough to conduct a prescribed burn before the sea 

breeze front proceeds inland (Estoque 1962). This scenario provides the necessary 

ingredients for prescribed burning operations presenting substantial mixing heights, weak 

synoptic flow that is beneficial in opposing the sea breeze, and, most importantly, a 

delayed sea breeze onset at Fort Ord. 
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Figure 20.  850 mb geopotential height and winds 

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 14 October 2013 
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Figure 21.  Surface temperature and winds 

 
 

1600 (a), 1700 (b), 1800 (c) and 1900 (d) UTC 14 October 2013 
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Figure 22.  Potential temperature and winds in the plain of the cross section 

 
 

1600 (a) and 2000 (b) UTC 14 October 2013 
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4. October 01, 2014–Strong Northeasterly Flow 

In of all the previous cases, the synoptic scale flow was rather weak. The October 

01, 2014, case provides an example of stronger synoptic flow that also delays the sea 

breeze onset in the Monterey Bay area. As seen in Figure 23, a strong high pressure is 

present off the Northern California coast that results in tight packing of the geopotential 

heights lines (depicted in red) thus producing fairly strong 850 mb northeasterly flow. 

This flow is consistent in direction throughout the time frame from 0000 UTC through 

1800 UTC and remains strong (15–30 knots) over this time as well. This synoptic scale 

structure changes the direction and magnitude of the synoptic scale flow compared to the 

previous case studies, but is able to produce the end result by delaying the sea breeze 

advancement into Fort Ord until 2000 UTC. The surface winds over the Monterey Bay 

region are primarily easterly at 1600 UTC (Figure 24a) but shift to northeasterly over the 

south portion over land by 1700 UTC (Figure 24b). The 1600 UTC flow direction 

suggests it is decoupled from the strong northeasterly flow 850 mb. As mixing occurs, the 

surface flow over the higher elevation over Fort Ord develops a northeasterly flow. This 

northeasterly flow is mostly coast parallel and produces very little offshore flow. Surface 

onshore flow starts by 1900 UTC (Figure 24d) but is confined to the immediate coast 

until 2000 UTC (Figure 26a). Figure 25a shows the character of the synoptic flow at 1600 

UTC above the 900 mb level as a weak onshore flow at this time. The surface depicts a 

slight offshore breeze with calm transitional winds occurring at 950 mb. As the sea 

breeze develops by around 1900 UTC (Figure 25b) a weak offshore component develops 

above 900 mb as well as pronounced subsidence. This offshore flow and subsidence are 

consistent with the slight shift in the 850 mb flow to the east (Figure 23a) and flow 

descending the slope of the topography east of the Monterey Bay. This overall structure 

produces weak offshore flow that is strong enough to delay the sea breeze. However, 

once established, the sea breeze quickly strengthens into a deeper prominent onshore 

flow by 2000 UTC (Figure 26) with a strong cross coast thermal gradient. The subsidence 

seems to limit the depth of the sea breeze to be below 975 mb, much shallower than the 

previous cases.  
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Figure 23.  850 mb geopotential height and winds 

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 01 October 2014 
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Figure 24.  Surface temperature and winds 

 
1600 (a), 1700 (b), 1800 (c) and 1900 (d) UTC 01 October 2014 
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Figure 25.  Potential temperature and winds in the plain of the cross section 

 
 

1600 (a) and 1900 (b) UTC 01 October 2014 
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Figure 26.  Surface and cross section plots  

 
Surface temperature and winds (a) and potential temperature and winds in the plain of the 
cross section (b) at 2000 UTC 01 October 2014 
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5. October 04, 2013–Very Strong Northeasterly Flow 

October 04, 2013, produced the strongest synoptic scale flow that evolved over 

the day to delay the sea breeze until nearly 2200 UTC. High pressure is located west of 

Northern California featuring a strong zonal geopotential height gradient resulting in 

strong synoptic north-northeasterly flow of 25 knots into Fort Ord and the greater 

Monterey Bay region from 0000 UTC (Figure 27a) and 0600 UTC (Figure 27b). Figure 

27c shows this flow pattern shifting to more easterly by 1200 UTC with the synoptic 

wind maintaining its strength. By 1800 UTC (Figure 27d), the synoptic flow over the 

Monterey Bay weakens and turns more easterly. This relaxation occurs as a localized 

ridge over the California coast in the morning is displaced as low pressure progresses 

northward to relax the strong geopotential height gradient over the Monterey Bay and 

decrease the wind speed from 25 knots to 5–10 knots and shift the winds easterly-

southeasterly. As explained in the previous case study, this synoptic scale set up 

generates coast parallel surface flow as seen in all four panels of Figure 28. Figure 28 

depicts the hourly mesoscale flow over the Monterey area from 1600 UTC through 1900 

UTC with the 1600 UTC and 1700 UTC images showing northeasterly surface flow. By 

1800 UTC (Figure 28c) and 1900 UTC (Figure 28d) the northeasterly flow is maintained 

as a cross coast thermal gradient develops with warming inland. The lack of turning of 

the surface flow onshore through 1900 UTC (Figure 28d) is consistent with the shift in 

the 850 mb flow to the east which opposes the development of the sea breeze.  

The shift in synoptic scale winds to easterly-southeasterly is most evident in 

comparing the cross section at 1600 UTC (Figure 29a) to 2200 UTC (Figure 29b). For 

Figure 29a, the synoptic flow at 1600 UTC above 900 mb is weakly onshore with a weak 

land breeze apparent at the surface. In contrast, Figure 29b at 2200 UTC depicts offshore 

flow above 900 mb resulting from the synoptic wind shift. Of note, these winds are 

enhanced due to the already established sea breeze circulation at the surface providing 

additional return flow in the offshore direction above 900 mb. The horizontal surface 

flow in Figure 30 shows a distinct sea breeze front just west of Fort Ord at 2100 UTC 

(Figure 30a) and, within an hour at 2200 UTC (Figure 30b), the sea breeze front 
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progresses throughout Fort Ord producing pronounced onshore flow over the Monterey 

region extending into Salinas.  

Figure 27.  850 mb geopotential height and winds 

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 04 October 2013 
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Figure 28.  Surface temperature and winds 

 
1600 (a), 1700 (b), 1800 (c) and 1900 UTC 04 October 2013 
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Figure 29.  Potential temperature and winds in a cross section 

 
 

1600 (a), and 2200 (b) UTC 04 October 2013 
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B. STATIC STABILITY INFLUENCE 

Two of the 12 cases appear to have a delayed sea breeze onset due to the 

influence of static stability. As noted by Estoque (1962) and Arritt (1993), increased 

static stability tends to dampen sea breeze circulations and can therefore delay the onset. 

The background synoptic flow differed between these cases but did not appear to be the 

primary factor in sea breeze delay. In both cases, sea breeze onset was delayed until 

about 1900–2000 UTC. 

1. September 10, 2013 

On September 20, 2013, high pressure is located off the Pacific Northwest coast 

with weak low pressure off the southern coast of California. Figure 30 shows the 

evolution of the 850 mb synoptic flow from 0000 UTC to 1800 UTC on 10 September, 

where low pressure develops over the Northern California coast by 1800 UTC (Figure 

30d). As a result of the low over the Northern California coast, the flow around the 

Monterey Bay area is light and northwesterly during 1200 UTC (Figure 30c) and 1800 

UTC (Figure 30d). This onshore flow would lead one to initially conclude that the 

synoptic flow will enhance the localized sea breeze vice delaying it. However, this 

synoptic pattern is actually associated with initiating a coastal wind reversal (Nuss et al. 

1999) where the along-coast surface flow is southerly instead of northwesterly. Figure 

31a depicts southerly surface flow outside the bay at 1600 UTC and a light land breeze 

beginning at the coastline out towards the Monterey Bay with calm and variable winds 

further inland around Fort Ord. Additionally, there is no substantial surface temperature 

gradient across the coast or inland at this time. The 1600 UTC cross section in Figure 32a 

illustrates the vertical structure with strong static stability occurring from the surface to 

the 900 mb level across the entire cross section. This structure is indicative of a shallow 

marine layer capped by a very strong inversion, which again is associated with a coastal 

wind reversal (Nuss et al. 1999). Above 900 mb the synoptic onshore flow in the 

direction of the cross section is consistent with the 850 mb northwesterly flow. The static 

stability prevents its influence reaching the levels below 900 mb. Therefore, the diurnal 

land breeze circulation developed from overnight and early morning is still quite apparent 
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with downward circulation over Fort Ord, offshore flow at the surface out into the 

Monterey Bay. Thus the static stability is de-coupling the synoptic scale flow at 850 mb 

from the local flow.  

The necessary cross-coast temperature gradient to excite a sea breeze and rotate 

the flow onshore develops by 1900 UTC in Figure 31d, with light onshore flow along the 

coast slowly progressing inward with a counterclockwise turning of the winds through 

the north at the Fort Ord location. The 1900 UTC cross section (Figure 33b) illustrates 

the cross-coast static stability relaxing, allowing for a temperature gradient to develop 

across the coast as well as inland at the surface. Above the surface and the strong static 

stability layer, the synoptic scale northwesterly flow is maintained even though a sea 

breeze is beginning to develop. The 1900 UTC surface analysis (Figure 32d) shows the 

sea breeze penetrating inland somewhat but northeasterly flow is present over most of the 

Fort Ord region. This northeasterly flow represents an anticyclonic gyre setup in the 

southern part of the Monterey Bay due to the anticyclonic shear associated with the wind 

reversal. This circulation helps to maintain northeasterly flow over Fort Ord even with a 

sea breeze starting to develop. Eventually, the sea breeze northwesterly surface flow 

penetrates the Fort Ord region. 
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Figure 31.  850 mb geopotential height and winds 

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 10 September 2013 
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Figure 32.  Surface temperature and winds 

  
1600 (a), 1700 (b), 1800 (c) and 1900 (d) UTC 10 September 2013 
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Figure 33.  Potential temperature and winds in a cross section 

 
 

1600 (a) and 1900 (b) UTC 10 September 2013 
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2. November 01, 2013 

November 01, 2013 illustrates another example of the impact of static stability on 

the sea breeze onset unlike the previous case where a wind reversal occurred. Figure 33 

depicts high pressure located off the Northern California coast with low pressure moving 

toward Southern California in the second half of the time period. At 0000 UTC (Figure 

34a) and 0600 UTC (Figure 34b), the Monterey Bay area is under northeasterly flow 

associated with the high pressure to the northwest. As the pressure systems interact at 

1200 UTC (Figure 34c), the Monterey Bay region has light easterly winds just north of 

the Monterey Bay and light westerly winds just south of the Monterey Bay. Thus, the 

resultant synoptic scale winds in the area of interest are negligible as seen at 1200 UTC 

from Figure 34c. By 1800 UTC (Figure 34d), the 850 mb winds become southeasterly 

and are orientated parallel to the Salinas Valley. Figure 35a shows the surface winds at 

1600 UTC directed offshore across the entirety of Fort Ord. Specifically enhanced 

surface winds are apparent east of Fort Ord oriented in the southeast-northwest direction 

resulting from funneling of the synoptic scale winds through the Salinas Valley. This 

topographic feature plays an important role at the NPS Profiler located at Marina. As 

noted in the 1700 UTC (Figure 35b), 1800 UTC (Figure 35c) , and 1900 UTC (Figure 

35d) images, the winds observed at the NPS Profiler are not an accurate representation of 

the observed winds located at Fort Ord. For example, the 1900 UTC surface winds 

(Figure 35d) depict light offshore winds while Fort Ord observations for the same time 

depict light onshore flow from the sea breeze onset. 

The 1600 UTC cross section from Figure 36a illustrates offshore flow from not 

only the surface but throughout the vertical column extending from the surface to the 800 

mb level. No clear land breeze circulation pattern exists as the majority of the cross 

sectional offshore flow is in the same direction and is consistent with a synoptic scale 

southeasterly flow. Figure 36a at 1600 UTC also shows isothermal conditions at most of 

the vertical levels with nearly flat isentropes over the cross section. Between 1600 UTC 

and 1900 UTC (Figure 36b) a slightly increased cross coastal thermal gradient develops 

in the low levels which works to initiate the sea breeze. Interestingly enough, by 1900 

UTC, Figure 35d observations show onshore winds while the coast exhibits more of an 
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along coast orientation of the flow directed northeasterly. Thus 1900 UTC exhibits a non-

classical sea breeze type flow inland but not at the coast. Figure 36b also illustrates a 

light sea breeze circulation developing at 1900 UTC from the surface to 950-mb with 

onshore flow inland and lightly upward flow near the coast. Specifically, the 1900 UTC 

analysis (Figure 35d) shows the Salinas Valley offshore flow north of Fort Ord turning 

more coast parallel as opposing flow develops at the coast. At the same time, the flow 

over Fort Ord has turned onshore as a weak sea breeze. Thus while these are only 

approximately 10 miles separation between the Fort Ord and the NPS Profiler sites, 

vastly different flows exist. Another important parameter to note in this case is the weak 

temperature gradient across the coast. With the temperature over the ocean (64°F) only 8° 

different from inland (72°F) temperatures, the sea breeze takes longer to develop and is 

not as pronounced. This lack of warming over the land is the result of the static stability 

limiting the temperature rise.  

 Both cases presented in this section provide support for delayed sea breeze onset 

due to the presence of strong static ability. While the end result was the same, 

characteristics of each case were quite different. Case #1 possessed stronger static 

stability in the vertical than Case #2. Additionally, the cross coast surface temperature 

gradient for Case #1 was 15°F (57°F–72°F) while Case #2 was nearly half that at 8°F 

(64°F–72°F). Thus while both cases reached the same inland temperatures, the Case #1 

temperature gradient promoted stronger cross coast forcing but the stronger static 

stability delayed sea breeze onset due to its impact on vertical motion that slowed 

development of the full sea breeze circulations. In contrast, the weaker static stability of 

Case #2 resulted in the same timing of sea breeze onset even with a weaker temperature 

gradient. The weaker static stability allowed a stronger vertical circulation that aided sea 

breeze onset. As a result, these cases illustrate how static stability impacts vertical motion 

to influence the time of sea breeze onset. 
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Figure 34.  850 mb geopotential height and winds 

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 01 November 2013 
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Figure 35.  Surface temperature and winds 

 
 

1600 (a), 1700 (b), 1800 (c) and 1900 (d) UTC 01 November 2013 
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Figure 36.  Potential temperature and winds in a cross section 

 
 

1600 (a) and 1900 (b) UTC 01 November 2013 
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C. TEMPERATURE GRADIENT INFLUENCE 

One of the 12 cases appears to have a delayed sea breeze onset due to the absence 

of a temperature gradient. As noted by Nuss (2003), Wallace and Hobbs (2006), and 

Gahmberg et al. (2009), the sea breeze is a thermal induced circulation resulting from the 

cross coast thermal gradient. Hence, stronger thermal gradients should produce stronger 

sea breeze circulations and the opposite holds true for weak thermal gradients. Therefore, 

the absence of a thermal gradient should weaken and/or delay the sea breeze onset. In this 

case, sea breeze onset was delayed until about 2000–2100 UTC. Specifically, November 

21, 2013, depicts the influence of an absent temperature gradient. 

Of particular interest in this case is the lack of temperature contrast between the 

ocean and land temperatures. Specifically, Figure 37 shows the temperature range at the 

NPS Profiler for November 21, 2013 of 54°F–57°F (12°C–14°C) throughout the day 

which equates roughly to the November average water temperature of 56°F for the 

Monterey Bay. Consequently, the necessary ocean-land temperature gradient to drive a 

sea and land breeze is non-existent. Synoptically, Figure 38 shows low pressure situated 

inland of Monterey, California, and moving slightly south into Southern California by 

1800 UTC (Figure 38d). The 850 mb flow remains fairly constant in a northerly direction 

around 10 knots through 1200 UTC (Figure 38c). The winds shift slightly northeasterly 

and strengthen to 15 knots at 1800 UTC (Figure 38d). While this structure should provide 

additional onshore flow to support the development of the sea breeze due to Coriolis 

effects, the mesoscale flow at the surface is quite different.  

The 1600 UTC through 1900 UTC mesoscale analysis (Figure 39) depict light and 

variable flow in the Monterey Bay and Fort Ord regions with a distinct pattern emerging. 

Weak northwesterly flow is evident offshore from Monterey Bay over the entire period 

consistent with the synoptic flow. Very weak offshore to coast parallel flow develops 

over the Fort Ord area through the day. Additionally, Figure 39 also shows minor 

temperature increases from the Monterey Bay inland through Fort Ord of only 2°F–3°F, 

which is consistent with the lack of an onshore sea breeze by 1900 UTC (Figure 39d). 

The 1600 UTC cross section from Figure 40a shows no thermal gradient in the 900 mb to 

800 mb layer with only a slight thermal gradient at the surface. The slight one- to two-
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degree potential temperature difference from the land to ocean creates a weak land breeze 

circulation. Additionally, surface convergence occurs in the Monterey Bay moving winds 

vertically aiding the recirculation of the land breeze. By 1900 UTC (Figure 40b), a 

definitive cross-coast thermal gradient of approximately 3°F develops in the onshore 

direction in the surface to the 900 mb layer. Consequently, mixing occurs between the 

surface and synoptic flow with northwesterly flow inland from Fort Ord near the Salinas 

Valley. A weakened land breeze over Fort Ord coastward into the Monterey Bay as also 

represented in the 1900 UTC surface analysis in Figure 39a. By 2000 UTC, the synoptic 

flow (Figure 41a) and cross-coast thermal gradient combine to establish the sea breeze 

onset throughout the cross section at the surface level. As a result, the cross section 

illustrates strong support from the synoptic flow (Figure 41b) as the 900 mb to 800 mb 

wind is transported into the lower levels influencing the surface flow.  

This case once again shed light on the importance of understanding additional 

features influencing the dynamics of the sea breeze onset. Even with the steady support 

of synoptic flow supporting the production of the sea breeze, it was unable to develop in 

the absence of a cross-coast thermal gradient—specifically, ambient temperatures which 

remain consistent with the ocean temperature eliminate temperature gradients. 

Additionally, only a 2°F–3°F cross-coast temperature gradient was sufficient in order to 

begin the process to enable a sea breeze to develop.  
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Figure 37.  NPS Profiler at Fort Ord 

 

 
 

Measurements of virtual temperature and wind on 21 November 2013. Source: Monterey 
Area Environment, 2015: NPS 915MHz profiler at Fort Ord mixing height: 2003. 
Accessed 06 April 2015 
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Figure 38.  850 mb geopotential height and winds 

 
0000 (a), 0600 (b), 1200 (c) and 1800 (d) UTC 21 November 2013 
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Figure 39.  Surface temperature and winds 

 
 

1600 (a), 1700 (b), 1800 (c) and 1900 UTC 21 November 2013 
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Figure 40.  Potential temperature and winds in the plain of the cross section 

 
 

1600 (a) and 1900 (b) UTC 21 November 2013 
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Figure 41.  Surface and cross section plots  

 
Surface temperature and winds (a) and potential temperature and winds in the plain of the 
cross section (b) at 2000 UTC 21 November 2014 
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D. SUMMARY 

The 12 cases of flow patterns that resulted in a delayed sea breeze onset over Fort 

Ord show considerable variability in their characteristics. Synoptic scale flow that 

produces or evolves into a flow direction capable of providing an opposing cross coast 

flow speed of 2–5 knots (offshore) was the most likely pattern to delay the sea breeze 

onset. The offshore component could arise from a variety of synoptic wind directions and 

speeds. In addition to this primary effect, increased static stability was found to limit 

vertical motion and thereby delay the sea breeze onset. One case was found where the 

temperatures were generally cold with a weak thermal gradient resulting in delay of the 

sea breeze. These results are summarized in Table 3. 

Table 3.   Delayed sea breeze onset summary of results 
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Table 3 shows the results of each case study to show their similarities and/or 

differences. The wind barb and direction of the CFSR 850 mb imagery over the Monterey 

Bay at 1200 UTC provided the synoptic wind flow direction and speed. The magnitude of 

the cross sectional wind vector over Fort Ord at 1600 UTC represents the cross sectional 

opposing flow. The remaining values presented in Table 3 are acquired through utilizing 

the cross section plots for the time associated with each respective day’s sea breeze onset. 

The potential temperature values at the surface through the 900 mb levels are averaged 

for a point over Fort Ord and over the Monterey Bay with the resultant difference 

representing the cross sectional average thermal gradient. The sea breeze onset time was 

determined when the Fort Ord observations and cross sectional imagery displayed an 

onshore wind component. Finally, cross sectional surface wind vector magnitude at Fort 

Ord provides the sea breeze magnitude. 

Table 3 shows, for all eight case studies, that the sea breeze onset times were 

relatively consistent around 2000 UTC with approximately only a 30-minute variation. 

All the synoptic scale case studies provide a component of offshore flow resisting the 

development and penetration of the sea breeze. Interestingly, whether the synoptic scale 

flow was southerly, easterly, or northeasterly, the development of approximately a 5° 

thermal gradient triggered the sea breeze onset resulting in a magnitude of 5 knots. Static 

stability cases were not influenced by synoptic scale forcing as vertical motion is 

inhibited thus thermal gradient development triggered the sea breeze onset. As seen with 

synoptic scale cases, an approximate 5° thermal gradient triggered the sea breeze onset 

with a weaker 2 knot magnitude. Lastly, when the temperature of Fort Ord is 

representative of the Monterey Bay, the absence of a thermal gradient also inhibits sea 

breeze development. A 1° thermal gradient was sufficient to generate the sea breeze but a 

weaker 2 knot magnitude onshore flow occurs similar to the static stability cases.  

In summary, each delayed sea breeze onset type presents specific pros and cons in 

considering whether to conduct a prescribed burn. Various synoptic scale directions and 

speeds promote a delayed sea breeze with a 5° thermal gradient triggering the onset. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This research focused on identifying the background synoptic scale flow and 

associated delayed mesoscale flow response, characterized the primary sensitivities 

involved, and developed potential “rules of thumb” in order to increase forecaster 

accuracy for prescribed burning operations at Fort Ord. Various synoptic scale directions 

and speeds promote a delayed sea breeze with a 5° thermal gradient triggering the onset. 

Critical in the synoptic scale flow is to produce an offshore component (southeasterly) 

over Fort Ord during the sea breeze initiation period. This could be present initially or 

develop through the day as the synoptic pattern shifts. Cross coast opposing flow of 2–3 

knots was sufficient to delay the sea breeze by 3–4 hours. 

The sensitivity of the sea breeze onset to the various factors was surprisingly 

small. The opposing flow was in the 2–3 knot range in nearly all cases so it could not be 

determined what the response to a 6–8 knot flow might be. In addition, the cross coast 

thermal gradient of 4–5°C was pretty universal and sea breeze sensitivity seemed very 

small.  

Finally, the results of the study suggest several primary factors to look for in order 

to predict a delayed sea breeze onset. A southeasterly wind component of 2–3 knots over 

Fort Ord and a thermal gradient less than 5°C are critical factors to delay the sea breeze. 

Focusing on the evolution of these factors in the forecast should increase the ability to 

identify a delayed sea breeze. 
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B. RECOMMENDATIONS FOR FUTURE RESEARCH 

Two areas of further research were exposed through these case studies. First, this 

study was conducted over a two-year period for the months of September through 

November of 2013 and 2014. Due to the small sample size of potential prescribed burn 

days provided each year (approximately 5–10), a larger sample size using five to ten 

years will better sample the parameters that oppose sea breeze onset and help to better 

address the sensitivity of the sea breeze response to these factors. Idealized modeling 

approaches applied to the Monterey Bay region would help to better define the sensitivity 

of the sea breeze response to background synoptic flow direction, static stability, or 

absolute temperature specific to the region.   
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