
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SURVIVABILITY AS A TOOL FOR EVALUATING OPEN
SOURCE SOFTWARE

by

David J. Cummings

June 2015

Thesis Advisor: Timothy H. Chung
Second Reader: Rama D. Gehris

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704�0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson Davis Highway, Suite 1204, Arlington, VA 22202�4302, and
to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

06-19-2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 09-01-2014 to 06-19-2015
4. TITLE AND SUBTITLE

SURVIVABILITY AS A TOOL FOR EVALUATING OPEN SOURCE SOFTWARE
5. FUNDING NUMBERS

6. AUTHOR(S)

David J. Cummings

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis explores the application of traditional survivability analysis to the open source software (OSS) development process. It
postulates that combat systems face potential threats from cyber warfare professionals aiming to manipulate software embedded in
the systems. The research highlights current Department of Defense (DOD) interest in OSS, and explains a method for evaluating the
capability of OSS programs to withstand cyber warfare attacks. Survivability concepts are demonstrated in a scenario involving an
adversary inserting malicious code into the source repository of FlightGear, an open source flight simulator. Analysis is conducted on
five open source programs to illustrate commonality in the evaluation process. It is determined that survivability analysis is a feasible
method for OSS software evaluation, and could be used as a tool to compare OSS alternatives.

14. SUBJECT TERMS

software, survivability, open source software, unmanned aerial vehicle
15. NUMBER OF

PAGES 109
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2�89)

Prescribed by ANSI Std. 239�18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

SURVIVABILITY AS A TOOL FOR EVALUATING OPEN SOURCE SOFTWARE

David J. Cummings
Lieutenant, United States Navy

B.S., California Polytechnic University, San Luis Obispo, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2015

Author: David J. Cummings

Approved by: Timothy H. Chung
Thesis Advisor

Rama D. Gehris
Second Reader

Clifford Whitcomb
Chair, Department of Systems Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis explores the application of traditional survivability analysis to the open source
software (OSS) development process. It postulates that combat systems face potential
threats from cyber warfare professionals aiming to manipulate software embedded in the
systems. The research highlights current Department of Defense (DOD) interest in OSS,
and explains a method for evaluating the capability of OSS programs to withstand cyber
warfare attacks. Survivability concepts are demonstrated in a scenario involving an adver-
sary inserting malicious code into the source repository of FlightGear, an open source flight
simulator. Analysis is conducted on five open source programs to illustrate commonality
in the evaluation process. It is determined that survivability analysis is a feasible method
for OSS software evaluation, and could be used as a tool to compare OSS alternatives.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Background . 1

1.2 Scope . 2

1.3 Benefits of Study . 4

1.4 Research Questions . 4

1.5 Methodology . 5

1.6 Thesis Outline . 6

2 Literature Review 9
2.1 Introduction . 9

2.2 Software. 9

2.3 Open Source Software . 11

2.4 Unmanned Aerial Vehicles . 22

3 Survivability Analysis 27
3.1 Introduction . 27

3.2 Need for Survivability Analysis 27

3.3 Threats . 28

3.4 Scenario . 31

3.5 Analysis . 33

3.6 Conclusion . 48

4 Data Analysis 49
4.1 Introduction . 49

4.2 Software Program Development 50

4.3 Example Analyses . 53

4.4 Collective Analysis . 57

4.5 Conclusion . 60

vii

5 Conclusion and Future Work 61
5.1 Conclusion . 61

5.2 Future Work . 63

5.3 Summary . 71

Appendix: Program Code 73
A.1 githubIssuesAalysis.py . 73

A.2 analyzeGithubData.py . 77

List of References 79

Initial Distribution List 85

viii

List of Figures

Figure 2.1 Number of open source projects over time since 2007. 13

Figure 2.2 Global aerial drone market through year 2024. 23

Figure 3.1 Ariane 5 rocket destruction after launch 29

Figure 3.2 Number of issues opened and closed over time for FlightGear. . . 36

Figure 3.3 Trend lines representing the number of issues opened and closed
over time for FlightGear. 37

Figure 3.4 Cumulative issues, or backlog of issues, for FlightGear over time 38

Figure 3.5 Number of developers who were working on FlightGear as com-
pared to the number of issues generated for FlightGear over time 38

Figure 3.6 Number of developers who were working on FlightGear as com-
pared to the number of commits provided by developers over time 40

Figure 4.1 General organization of the Github application program interface
(API) . 51

Figure 4.2 Ardupilot issue open and close dates over time 53

Figure 4.3 ArduPilot issue open and close dates with trend lines 54

Figure 4.4 Total ArduPilot issues that remained open over time 55

Figure 4.5 MAVLink issue open and close dates over time 56

Figure 4.6 MAVLink issues open and close dates with trend lines 56

Figure 4.7 Total MAVLink issues that remained open over time 57

Figure 4.8 Number of issues opened and closed over time for six open source
software (OSS) programs . 58

Figure 4.9 Issue backlogs for six OSS programs 59

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 2.1 Comparison of titles used for developers on the open source Apache
Project and representative proprietary software projects 15

Table 2.2 Open source programs used by the Aerial Combat Swarms project 25

Table 3.1 Essential events and elements for the open source software develop-
ment process . 35

Table 4.1 Issues analysis results for several open source projects related to
unmanned aerial vehicles (UAV) software development 58

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ARSENL Advanced Robotic Systems Engineering Laboratory

ACS Aerial Combat Swarms

AAA anti-aircraft artillery

API application program interface

CIO Chief Information Officer

CSV comma-separated values

CAC Common Access Card

CVE Computer Vulnerabilities and Exposures

CRUSER Consortium for Robotics and Unmanned Systems Education and Research

C2 Command and Control

COTS commercial-off-the-shelf

DARPA Defense Advanced Projects Research Agency

DOD Department of Defense

E3A Essential Events and Elements Analysis

GUI graphical user interface

GCS ground control station

HTTP Hyper Text Transfer Protocol

IT information technology

IEEE Institute of Electrical and Electronics Engineers

ISR intelligence surveillance and reconnaissance

xiii

IOC initial operating capability

IADS integrated air defense system

JSF Joint Strike Fighter

LFTE Live-Fire Test and Evaluation

MCWL Marine Corps Warfighting Laboratory

MIT Massachusetts Institute of Technology

MASINT measurement and signature intelligence

NPS Naval Postgraduate School

ONR Office of Naval Research

OPNAV Office of the Chief of Naval Operations

OpenBSD Open Berkeley Software Distribution

OSI Open Source Initiative

OSS open source software

PACFLT Pacific Fleet

SLOC source lines of code

SEA South East Asia

SRWBR short range wide band radio

SAM surface-to-air missile

TCP transmission control protocol

URL uniform resource locator

U.S. United States

xiv

USCG United States Coast Guard

USG United States government

UAS unmanned aerial system

UAV unmanned aerial vehicles

UDP user datagram protocol

WWII World War II

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Executive Summary

The Department of Defense (DOD) relies on software to execute important strategic mis-
sion requirements. Combat systems employed by the DOD are becoming progressively
more dependent on software to be effective, as evidenced by some aircraft whose engines
cannot be started without a software card relaying mission information to onboard comput-
ers. The DOD has many uses for software, so it is important for the organization to make
informed decisions when choosing between software alternatives. A poor choice of soft-
ware could have significant implications on the budget, the readiness, and the capability of
the armed services.

One category of software receiving special attention is open source software. In 2009, the
DOD Chief Information Officer (CIO) reiterated that OSS should be evaluated along with
proprietary software when choosing alternatives for DOD applications. Open source soft-
ware is highly suitable for rapid prototyping and experimentation, and low upfront cost and
availability of source code make OSS ideal for DOD research and development. The idea
of OSS being embedded in operational combat systems is troubling to some because public
access of open source code allows anyone, including enemies, to gain insight to system
capabilities, but proprietary software may not be as secure as one might think, and OSS not
as vulnerable. This thesis aims to evaluate the ability of the OSS development process to
guard against attackers by determining the suitability of individual OSS programs for DOD
missions.

The scope of the thesis is narrowed by studying DOD OSS programs embedded in hard-
ware systems, specifically software utilized by small UAVs. At the Naval Postgraduate
School (NPS), Advanced Robotic Systems Engineering Laboratory (ARSENL) supports
ongoing research involving UAVs and UAV swarm operations, and OSS is an essential
part of their operating scheme. Several OSS programs used by the lab are taken as a sam-
ple and analyzed to evaluate their survivability. Initial data gathering from one program,
FlightGear, provides information to demonstrate how survivability applies to the OSS de-
velopment process. Data from several other programs is retrieved using a separate software
program developed for the research.

xvii

Survivability analysis is demonstrated by designing a scenario in which an adversary inserts
malicious software to an OSS program by gaining access to the community of software de-
velopers building the code. Nine steps outline events allowing the adversary to successfully
compromise UAV autopilot software, represented by FlightGear, and kill an aircraft. The
goal of the survivability analysis is to identify the likelihood of events in the scenario oc-
curring, and subsequently, the combined probability that aircraft is killed. In the case of
the FlightGear scenario, event probabilities are determined by analyzing characteristics of
FlightGear’s open source project, including activity level of the development community as
judged by issue reports and commit logs. This data represents one indicator of the general
health of FlightGear and its resistance to attack.

One underlying theory of the thesis is that data associated with open source projects re-
flects their resilience against cyberattacks, and by this premise, the first step in evaluating
an OSS program is to gather information about it. Many open source software programs
are hosted by websites such as GitHub, GitLab, BitBucket, and SourceForge, which act as
cloud-based repositories, storing the project’s source code online and allowing simultane-
ous collaboration by developers in separate geographic locations. The websites track and
archive activities related to development of programs and report information such as the
number of people working on the code, the number of inputs each programmer provides,
the unresolved bugs in the program, and the programming languages used for development.
Obtaining this information manually by scrolling through websites and clicking on links is
not efficient, so a software program is developed to automatically access project data and
store it for analysis. The program is written in the Python programming language, and uses
several tools to gather data from GitHub, where most of the applications used by ARSENL
are kept. Time constraints for the thesis limited the program development, so it is only able
to process project issues (bugs or feature requests), which is an important metric for OSS
programs, but should not be the only data included in OSS analysis. Plans are laid out for
development of a more thorough program in Section 5.2.

Collected data is graphically analyzed using the Microsoft Excel spreadsheet program.
Specific indications of project health come from trends in data, such as the number of
issues opened over the time period analyzed. An increasing trend in opened issues means
there is high project activity and many developers working on the project. This is a healthy

xviii

sign, showing interest in the project and support from the community. A malicious code
insertion will have a difficult time surviving inspection by many programmers working on
the project, therefore, an increasing trend in issues being opened suggests better resilience
to attack. This logic is applied to the survivability analysis by reducing event probabilities,
which increases the likelihood that such a program would survive a malicious insertion
attempt. In this way, survivability analysis successfully demonstrates its usefulness for
evaluating OSS programs.

Upon completing the thesis, it was apparent there are many avenues for further research.
While survivability analysis is demonstrated to work for a small sample of OSS programs,
it needs to be validated by expanding its scope through application to other program types.
The outcomes of the survivability analysis also need to be verified by cross-checking results
with those produced by known OSS validation techniques. In addition, the program devel-
oped for the thesis needs to be expanded to capture more data. It could also be improved to
perform data analysis instead of just data collection. It would be helpful for people choos-
ing between OSS alternatives to see immediate results about an OSS program’s suitability
for a specific application by inputting a project name and receiving immediate results from
the data analysis program. In its current state, collected data requires manual analysis us-
ing a different spreadsheet program. These topics could all supply opportunities for further
research to provide better understanding of the potential role of survivability analysis in
OSS software development and selection.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

Acknowledgments

I thank my thesis advisor, Tim Chung, for providing major support throughout my research.
He was consistently available to answer questions and determined to provide the tools
necessary for me to succeed. Professor Chung was especially helpful in the development of
a software program that was crucial to the completion of my thesis. Thanks to my second
reader, Rama Gehris, who provided insight about software topics and offered excellent
advice for the flow and structure of the document. Thanks to Naval Postgraduate School
(NPS) staff working in the Advanced Robotic Systems Engineering Laboratory (ARSENL)
lab, including Michael Day and Michael Clement, who provided information about open
source software (OSS), and to students in the thesis working group, who made the daily
grind of thesis work—especially toward the end—enjoyable and entertaining.

Thanks to the professors and faculty of the Systems Engineering Department and Mechani-
cal Engineering Department at NPS, especially Chris Adams, Matt Boensel, Ron Giachetti,
and Mark Stevens, who provided the academic background and analytic tools necessary to
progress through my research. Special thanks to Barbara Berlitz for her instruction about
the thesis process at NPS and her detailed review of my finished product.

HUGE thanks to my beautiful wife, Chelsea, and our two daughters, Lyla and Emmy,
for empathizing with me, for remaining supportive when I could not be home, and for
providing constant encouragement as I proceeded through the research process. Thank
you!

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

CHAPTER 1:

Introduction

1.1 Background
Software had its origin in the middle of the 20th century, and since then software develop-
ment has expanded rapidly. The Department of Defense (DOD) uses software extensively
and relies on software-based systems for most of its critical capabilities. In order for United
States (U.S.) military services to maintain a tactical advantage, they must stay at the leading
edge of essential technology areas, including software development. One form of software
that has received increasing attention in the last decade is open source software (OSS). As
an example, about three-quarters of the world’s large companies planned to add Linux-
based servers to their information technology systems over the past 10 years [1]. The OSS
software community has the support of commercial companies interested in utilizing open
source approaches to develop new technology. For example, one illustrative open source
project whose organizational structure is governed by the Linux Foundation, “Dronecode,”
aims to standardize unmanned aerial vehicles (UAV) software and promote cooperation
among developers for consumer and commercial UAV applications [2].

Due to advances in OSS development and backing from major commercial companies, the
government should expand its interest in OSS programs and OSS methodology. Although
open source software is currently used in the DOD, apprehension sometimes blocks its
implementation in sensitive areas such as combat system development. OSS programs
need to be analyzed to support DOD understanding and awareness of their potential to
improve technology used by U.S. military forces.

Like consumer software, military software technology has expanded rapidly in recent years,
largely due to the advancing complexity of military systems. The F-22 Raptor, which
demonstrated initial operating capability (IOC) in 2005, employs around two million lines
of code to operate its avionics system [3]. In contrast, the F-35 Joint Strike Fighter (JSF),
with an anticipated IOC date before December 2016, already has 24 million lines of code in
its software system [4]. Software required to support the advanced capability of the newer

1

fighter is constantly forced to keep pace as hardware technology improves. Over 10 years’
time, the demand for software grew by 10 times the original amount, and this trend will
likely continue for future aircraft designs. Such developments highlight the DOD need for
acquiring new software and understanding how it will continue to impact combat systems
in the future.

While OSS may seem unconventional or even out of place in the traditional military ac-
quisition landscape, it may be more suitable than proprietary software for certain DOD
applications. In fact, in a memorandum published by the chief information officer of the
DOD, OSS is designated as “commercial computer software that shall be given appropri-
ate statutory preference” when considering software for any DOD function [5]. As such,
this research aims to highlight characteristics of the OSS development process and evaluate
OSS projects based on data gathered from their open source repositories.

1.2 Scope
The scope of this thesis involves military hardware systems that incorporate software in
their designs. Generally, the systems in question are heavily dependent on software and
would not be useful without their software-based elements. Examples are modern mili-
tary aircraft, air defense systems, ships, radar systems, unmanned underwater systems and
unmanned aerial vehicles. The advent of OSS in these classes of assets or systems is rare,
which motivates this thesis to explore its potential capability and viability within this scope.

The primary system of focus for this thesis is the unmanned aerial vehicles. In addition to
the surge in commercial development and military use in the past decade, significant work
has been conducted by software developers and hobbyists alike who generate, implement,
and deploy code used by small civilian UAVs and drones. This technology could poten-
tially be very useful for military initiatives working on developing aligned systems for the
military. One goal of the thesis is to assess whether OSS is feasible for use in military
systems such as UAVs. The same methods used here are anticipated to be applicable to
other OSS software under consideration for use by the military. Ideally, these insights may
provide an analytic framework to generate guidance for decision makers that may support
the inclusion of OSS to more programs of interest within the DOD.

2

This research does not, however, seek to directly compare proprietary software and open
source software in depth. While general aspects are discussed, no formal evaluation is
performed to promote or devalue one development method over another. There is potential
for a comparative study; however, it is not the focus of this report, as such assessments
are largely dictated by the specific requirements on the software system and/or operational
context. Chapter 5 discusses options for further exploration into these topics.

The thesis is intended to apply to a broad range of software systems used by the military and
Department of Defense. Despite the focus on UAVs, the presented methodology is designed
so that parallels can be drawn and ideally applied to a wide range of software systems with
varying objectives. As discussed, the primary context of the system analysis in this study
is the unmanned aerial system context. This operational environment nominally involves
one or more UAVs being controlled autonomously or via human-in-the-loop constructs,
with communication and/or data links possibly providing information to external (typically
ground-based) command stations. As these UAV systems rapidly continue to advance with
the emergence of new technologies, the role of software and its integration becomes ever
increasingly important for achieving successful system-of-systems operation.

Such holistic perspectives may further facilitate future concepts employing these UAV
capabilities. One example of this type of system-of-systems is a UAV swarm cooperat-
ing to achieve an objective. Research is currently being conducted at Naval Postgrad-
uate School (NPS) involving swarm concepts, which are of particular interest to opera-
tional stakeholders such as Pacific Fleet (PACFLT), Office of the Chief of Naval Oper-
ations (OPNAV), Office of Naval Research (ONR), United States Coast Guard (USCG),
Defense Advanced Projects Research Agency (DARPA), and Marine Corps Warfighting
Laboratory (MCWL). As such, this thesis is conducted in support of the Secretary of the
Navy initiative for the Consortium for Robotics and Unmanned Systems Education and
Research (CRUSER) and projects being conducted in the Advanced Robotic Systems En-
gineering Laboratory (ARSENL), which utilizes OSS extensively to demonstrate swarm
capabilities.

3

1.3 Benefits of Study
This thesis highlights the potential ability of OSS to be embedded in DOD hardware sys-
tems by analyzing a case study of OSS programs used in UAV swarms. The analysis
provides a methodology for the evaluation of OSS programs under consideration as alter-
natives to proprietary software, and provides tools to streamline data gathering from OSS
repositories.

The thesis also bridges the gap between DOD software development community and the
rapidly-growing OSS community by discussing recent trends in software development, in-
cluding the influence of open source developers on robotics software and unmanned system
software. It calls attention to these issues to help widen the field of view of DOD personnel
as they consider future methods for development of software dependent systems. More
specifically, the thesis benefits unmanned systems development in the Department of De-
fense by dispelling rumors of OSS inadequacy, and discussing real world examples of OSS
programs successfully implemented in DOD mission environments.

Finally, the thesis is expected to also benefit the open source software development commu-
nity by providing an additional tool for use in evaluating projects and potentially guiding
their development in a manner that aligns with operational and/or acquisition requirements.
For example, the idea of survivability is not discussed significantly in OSS literature, but
it provides a context within which military programs may be evaluated. The process for
survivability analysis discussed in the thesis provides an initial blueprint for evaluating
software projects based on data generated from their source code repositories. The meth-
ods for defining individual event probabilities for attacks on open source projects could
allow project managers to refine their efforts to build quality software and to strengthen
their software development communities.

1.4 Research Questions
This thesis addresses several specific research questions. The questions are designed to
provide some direction and scope for the research without overly constraining the analysis
or limiting the resulting findings. The primary goals of this thesis are captured in the
following research questions.

4

1. How can the concepts of traditional aircraft combat survivability be used to evaluate
the capability of OSS to withstand an attack from an adversary?

2. What attributes of an OSS software program make it more capable to withstand an
attack from an adversary?

3. How can OSS project data be retrieved in a repeatable manner in order to feed OSS
survivability analyses?

4. How could an adversary destroy a system or force a mission failure by manipulating
software embedded in the system?

5. What is the best way to retrieve publicly-available data from websites that host OSS
project repositories?

6. How can OSS project data be analyzed and presented to provide decision makers
guidance for selecting suitable OSS programs?

1.5 Methodology
This section discusses the methodology used to address the research questions proposed
in Section 1.4. Tools used to answer the research questions include a literature review,
data gathering, programming of software scripts for analysis support, and a survivability
analysis. The information obtained throughout the research is combined and evaluated to
provide results conclusions, and areas for future work, as discussed in Chapter 5.

1.5.1 Literature Review
A thorough review of literature related to OSS and DOD system software is conducted,
including news articles, websites, books, journal articles, research papers, conference pro-
ceedings and working papers. The materials are surveyed and organized, such that the body
of information and sources can be easily accessed as the research progresses. The initial
review enables a foundation for relevant OSS topics and supports subsequent methodology
development regarding OSS capabilities.

1.5.2 Data Gathering
In order to compare and contrast OSS projects, data is required to help analyze their quali-
ties. Due to the open nature of OSS, most projects are hosted on websites that provide de-

5

scriptive information about, for example, the people who work on the software, the amount
of work completed on a monthly basis, and the overall size of the software project (as mea-
sured by source lines of code (SLOC)). While readily available, such data must be retrieved
and organized in a fashion that facilitates analysis of interest. Investigation and develop-
ment of supporting software scripts helps with data collection and aggregation processes in
support of efficient and reproducible results.

1.5.3 Analyses
The primary method for analysis of OSS programs is borrowed from traditional aircraft
combat survivability. Methods for survivability analysis are adapted to fit the OSS develop-
ment paradigm, including the identification of events that could allow an enemy to exploit
the OSS development process by introducing vulnerabilities into software embedded in an
autonomous UAV. A good survivability analysis is based on a thorough understanding of
the events that lead to a kill and a good definition of the event probabilities. Several existing
OSS programs are examined to determine values for individual event probabilities in the
sequence an attacker might use manipulate a program.

Probability definitions are based on data obtained from projects’ source code repositories.
Most OSS is stored on web-based repositories that provide access to community members
who work on the projects from different geographic locations, and due to the open nature
of the projects, the data is often accessible by the general public. GitHub, a popular website
that hosts many of the software programs used by ARSENL, provides most of the data in-
corporated in this thesis, and a software program is written to help fetch data from GitHub.
Analysis of several OSS programs provides an indication of the programs’ suitability for
use in DOD systems.

1.6 Thesis Outline
The thesis is organized by chapters. There are a total of five chapters, beginning with
an introduction and ending with results and conclusions. This section discusses what the
reader can expect in each section.

Chapter 1 provides an introduction for the thesis. It discusses minimal background infor-

6

mation and outlines the scope and research questions to be addressed. It substantiates the
subject matter and gives the reader an overview of what to expect from the analysis.

Chapter 2 provides a review of the literature related to the thesis topic. It discusses findings
from journal articles and reports on OSS development and use. The chapter gives the reader
sufficient background knowledge to comprehend analyses discussed in following chapters.

Chapter 3 discusses the survivability analysis that is performed. It gives an introduction to
traditional survivability techniques and discusses the way they are adapted for use in this
analysis. It provides a scenario for the open source development process to define how an
adversary might attack a specific project. Data for several projects are examined to provide
a means for quantifying their performance and capability of defense.

Chapter 4 details methods used to gather data about OSS projects used in the analysis.
It discusses a software program that is developed to help retrieve data from GitHub, and
presents the data that is gathered.

Chapter 5 discusses conclusions and results of the thesis. It provides recommendations
for the use of open source software in DOD systems. Finally, it discusses possibilities for
future work and topics that need to be examined further.

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

CHAPTER 2:

Literature Review

2.1 Introduction
Chapter 2 introduces topics related to the analysis covered by the thesis, including the soft-
ware development process, open source software, DOD software, UAVs, and UAV soft-
ware. Content in this chapter provides background information that supports subsequent
discussion, and also acts as a reference guide for later chapters. Most of the material dis-
cussed in Chapter 2 is derived from various outside sources, which are provided at the end
of the thesis in the reference list.

2.2 Software
Software is known as “the entire set of programs, procedures and routines associated with
the operation of a computer system” [6]. It contrasts hardware, which is the physical com-
ponents of a computer or system that are controlled by software. Software engineering was
born when computers began to have a significant role in technology in the 1950s, but it was
not until the late 1970s when software was available for development by hobbyists due to
increased accessibility of personal computers. In its short lifespan, software has taken on
many unique forms, its capability has grown immensely, and its presence in everyday life
has become ubiquitous.

In the context of this study, the word “software” is used to describe the programs that
cooperate with hardware to control or operate physical systems. There is some discussion
of software as it exists on a desktop computer or network server, but the primary focus
for software investigated in this thesis is in the context of military combat systems. An
example of such software is that which is used to, e.g., manipulate the control surfaces on
an autonomous UAV. This software can, for example, accept inputs such as stick positions
or waypoint locations from a ground-based pilot (human or computer), and deliver output
to hardware components such as motors or servos onboard the aircraft, which adjust their
states based on the commands received.

9

This type of software is already used extensively in every branch of the military, and is often
significantly large and complex, requiring substantial resources for its design, development,
maintenance, testing, and deployment. Even more pressing, the necessity of such software
is increasingly critical in DOD systems, further requiring matched growth in the ability to
educate, train, and manage associated personnel.

2.2.1 Trends and Importance
Software has been a major part of technology development in the last 50 years, although
its development and use has grown most substantially since the end of the 20th century
and into the 21st century. The spectrum of its utility continues to expand in new and inno-
vative directions. A measure of the extent of this expansion is to look at the demand for
software engineers and developers. From 2007 to 2012, the number of software jobs in
the U.S. grew by 31 percent, which reflects a rate that is three times faster than the overall
job rate growth in the U.S. [7]. The increase in available job positions for programmers
also indicates the demand signal for software is getting stronger. For example, U.S. au-
tomaker Ford Motor Company reports that their most essential positions involve software
and systems engineering [8]. An examination of the modern automobile immediately high-
lights why Ford requires so many technically, and specifically software, oriented jobs, due
to the significant integration of software into many automotive sub-systems. For example,
computers are no longer limited to mechanical sensors and timing control, but are ma-
jor elements used in environment control, entertainment systems, electronic components,
engine performance monitoring, directional control, and enhanced braking. All of these
computer-controlled components require software to run properly, and increasingly, major
automakers must employ a team of software engineers who can design, build, integrate,
and maintain this software.

This trend in software usage is paralleled in the DOD with increasingly complex and inte-
grated combat systems. In order for the U.S. to remain relevant among world competitors,
it must match and exceed other countries’ military technology development. Just as in com-
mercial products ranging from smart phones to home appliances to automobiles, software
continues to play a substantial role in the upgrade and/or creation of nearly all combat sys-
tem capabilities. Due to software’s importance, the DOD has a strong interest in the way

10

it is procured, developed, secured, used, deployed, stored and maintained. New combat
system programs are extremely dependent on advanced software to complete their mission
requirements. The F-35 Joint Strike Fighter is one example of a sizable program that is
burdened by rising software costs due to its high complexity. As recently as 2014, major
testing has been delayed due to software development problems resulting from uncertainty
in software requirements and software version control [9].

2.3 Open Source Software
Software produced today can be placed in one of two broad categories based on the way it
is licensed, proprietary software and open source software. Proprietary software is written
with the intent of maintaining control over the source code that lies behind the various pro-
grams, and companies that create proprietary software treat their work as if it is patented.
They prevent users from understanding exactly how the programs work in an effort to
maintain an edge over competitors. These types of programs typically come with sizable
licensing fees that customers pay up front, and these fees can present a substantial cost,
especially if multiple copies of the software are required.

The term “open source software” is used primarily to describe a software product that
allows the user to access the source code behind it. The Chief Information Officer (CIO) for
the DOD defines open source software as “software for which the human-readable source
code is available for use, study, reuse, modification, enhancement, and redistribution by
the users of that software. In other words, OSS is software for which the source code
is ‘open.”’ [5]. This type of software is controlled by special open source licenses, and
there are several unique licenses which differentiate OSS projects by governing how source
code can be manipulated and redistributed (see Section 2.3.2). The philosophy of open
source software promotes sharing of ideas instead of protecting them, and it aims to achieve
a higher level of technology by using cooperative techniques. It has been tremendously
successful in certain applications such as the Mozilla Firefox web browser and the Apache
web server [10].

Open source software is often mistaken to mean “free” software. It may be true in some
instances that open source software is offered free-of-charge, but there are other instances
when it is not. It is important to understand that using OSS will not always be cheaper

11

than using a proprietary equivalent. Often times the initial acquisition cost of open source
software is small or nonexistent, but there may be costs tied to the software for things like
training, software upgrades, and maintenance [11]. Cost is always a big driver of software
selection, and it should be considered even when using OSS acquired free of charge.

2.3.1 Open Source Software in the DOD
Though perhaps not immediately apparent, the DOD, in fact, uses OSS in many ways. Ac-
cording to an assessment of various programs in the DOD conducted over a decade ago,
the DOD was already using at least 115 open source software programs [12]. In 2003, the
software was used in applications such as infrastructure support, software development,
security, and research, and in recent years, the role of OSS has expanded to computing
infrastructure, graphics, geospatial imaging, database management, and modeling and sim-
ulation [13].

Furthermore, the trend of increased OSS usage does not show signs of slowing. Figure 2.1
shows the estimated number of open source projects by year since 2007. The rising trend
of the data in Figure 2.1 indicates increasing popularity of OSS, and when combined with
DOD policy preferentially adopting open source solutions [5], such growth in OSS is likely
to become more prevalent in years to come. As such, going forward, it is increasingly
imperative to understand how to evaluate OSS in order to select well-suited projects, if
available.

2.3.2 Open Source Software Licenses
The role of intellectual property is of significant relevance in any discussion on OSS, and
copyright law provides protection for developers who write software code. Generally,
source code cannot be adjusted, reused, or redistributed without the specific approval from
the author. If developers want to allow users access to the code that they write, approval is
facilitated through a software license bound to the code. Most proprietary software restricts
users from seeing the source code and prohibits any adjustment or redistribution. Such re-
strictions are the primary distinctions in which OSS differs from proprietary software.

Licenses can be written to include essentially anything that the code’s author desires. Pro-

12

Figure 2.1: Number of open source projects over time since 2007. Adapted from [14]

grams under the umbrella of OSS typically share some general characteristics. Arguably,
the most important quality of OSS is that it is termed “free.” The word “free” is not used in
the economic sense, but in the sense of liberty, as in the freedom to do what one wants with
the product. Open source licenses aim to guard this freedom and protect the programmers
who build open source code.

Developers have created “free” programs since the beginning of software to maximize cre-
ative development and to learn from one another. It was not until 1998 when a formalized
definition of OSS was created. At this time, the Open Source Initiative (OSI) was estab-
lished to provide governance over open source license definitions. OSI is a non-profit,
community-recognized body for reviewing and approving licenses that conform to their
definition of open source [15]. The following requirements must be included in an OSS
license for OSI approval.

1. Must allow redistribution of the software
2. Must make the source code available with the program
3. Must allow modifications and derived works
4. May restrict source code distribution under certain circumstances

13

5. Must not discriminate against persons or groups
6. Must not discriminate against fields of endeavor
7. Must apply to all to whom the program is distributed
8. Must not be specific to a product
9. Must not restrict other software

10. Must be technology-neutral

The software community claims these attributes are essential for a program to be consid-
ered OSS. While there are several types of OSS licenses in existence, they all share these
baseline characteristics.

The vast majority of operational open source software is governed by a relatively small
number of licenses. These include the Apache License (2.0), the Massachusetts Institute
of Technology (MIT) License, the GNU General Public License, and the Mozilla Public
License 1.1. It is good to have a general understanding of the primary licenses that are used
because 90 percent of all OSS software uses just the top 10 license types [16].

Awareness of the details of the governing license is essential for any software development
initiative, whether open or otherwise, to avoid infringing on copyright law. For example, the
GNU General Public License requires that modified code be redistributed under the same
license. For a government project, such a requirement may preclude the use of software
for certain use cases or applications, as, for example, the DOD may not want developed
software to be redistributed to the public for security and/or classification reasons.

Perhaps even more relevant in the open source community, OSS licenses are an impor-
tant part of software development, as they protect both the authors and the users of OSS
programs, and additionally, give developers freedom to define how their code must be used.

2.3.3 Open Source Software Development Process
The development process for OSS differs depending on the project. Many software devel-
opers enjoy these types of projects due to the inherent freedom they provide. Although OSS
development does not follow one single set of guidelines, most successful projects employ
some sort of structure that mimics one or more of those used by companies developing pro-
prietary software. One example is the Apache web server project, which is a widely used

14

open source software program designed for server computers for hosting websites. Now a
large project that has been under development since early 1995 [17], the vast majority of
websites use this software, and Apache is considered very secure and robust [18]. A pre-
vious study analyzed several aspects of this and other open source software programs [10].
In the case of Apache, it was noted that among the community of developers contributing
to the project, there exists a well-defined structure and hierarchy for different types of de-
velopers. The developers who contribute the most and are active the longest typically have
higher levels of responsibility and access to the primary source code.

Many projects’ organizational structures are similar to Apache’s, where often, developers
can be grouped based on their level of involvement. Some examples of unofficial titles
of people submitting code to the project include “release manager,” “senior core group
members,” “core group members,” and “standard developers.” For example, Table 2.1
lists the developer titles used in the Apache program and their proprietary counterparts
[10]. Despite the difference in the openness of the software, these positions within an OSS
project hierarchy often reflect similar software engineering positions that a commercial
software firm, such as Microsoft, would employ for a given software project.

Apache Project (OSS) Proprietary Software
Release Manager Project Manager

Senior Core Group Member System Architect
Core Group Member Project Member
Standard Developer Tester

Table 2.1: Comparison of titles used for developers on the open source Apache Project and
representative proprietary software projects

No matter how loosely structured a development process for OSS, successful programs can
be seen to follow common development management schemes. Open source software is
most often created by “massive parallel development” [19], in which, typically, a single
lead developer (or group of “core” developers for a large project) organizes the project
and guides its direction. Secondary developers write code, test the software, and can often
make recommendations for the project.

In a study looking at several sources describing the OSS development process, Acuna notes
that Institute of Electrical and Electronics Engineers (IEEE) standard practices are used for

15

many OSS projects [20]. IEEE defines five categories of design which encompass 28 total
activities. Of the 28, 15 areas are specifically mentioned in the studies examining different
open source software projects. Despite the popular theory that OSS development varies
drastically from proprietary software, in reality, there are more parallels and similarities
than there are differences.

Largely in response to potential misconceptions surrounding OSS, the DOD chief informa-
tion officer published answers to several frequently asked questions regarding OSS [21].
The paper addressing the FAQs discusses how code progresses from primary developers
to the finished product. The project is first created and the source code is placed into a
trusted repository on the internet, where only certain developers (i.e., “trusted developers”)
have access. The trusted developers are typically those who either started the project itself
or those members of the software development community hand-selected by the founding
developers. Once the project is online, general users and developers typically have access
to the source code and can download, manipulate, and distribute it as they wish. As they
continue to use this software, these developers can often directly provide feedback in the
form of bug reports and modification requests. Although some users can change the ex-
isting code in order to make improvements or address a bug they have found, these users
cannot simply change the source code that exists in the trusted repository because they
are intentionally not granted access. For a general developer to incorporate his changes
into the original source code, the trusted developers first evaluate the potential contribu-
tion for quality and adherence to compatibility and coding conventions, and then allow the
change if they approve said changes or additions. In this way, OSS can progress from a
small project to a large repository of code that is potentially actively used, maintained, and
updated by a large group of software developers.

One notable stark contrast to proprietary software development is the common lack of face-
to-face meetings that occur among OSS software developers, and as such, OSS projects are
usually characterized by large numbers of involved individuals who are not usually co-
located (nor need they be). Such teams of OSS developers leverage remote communication
and collaboration tools, such as online repositories and software management systems,
real-time chat and discussion forums, email distribution lists, as well as conventional web-
sites to maintain connectivity. The source code usually resides on a server typically readily

16

accessible via the internet. Using these techniques, developers remain aware of the ongo-
ing progress of the project and the contributions of community members. Although this
visibility and transparency is often touted as a strength of OSS, as will be seen in the anal-
ysis presented in this thesis, such access via online portals provides a potential avenue for
anonymity among people working on the project, in that members can often join an open
source repository and provide inputs without supplying their true name or other identifying
information.

Developer Incentive for Contributing to OSS
At first glance, one might think it counter-intuitive that a software developer would want
to share work freely after spending time and effort in the software’s implementation. In
other words, not immediately evident is how such a system could continue to exist, with
developers producing code and distributing it without payment or exchange of goods in
return. However, as detailed below, numerous motivating factors continue to inspire open
source programmers and allow these types of projects to progress, let alone exist.

A possible reason an individual may be motivated to engage an open source software
project is his or her interest in learning about how a particular program or function works.
By joining an open source project, the developer gains access to a wealth of information
provided by a diverse team of programmers of varying skills and backgrounds. One study
highlights that “learning is one of the driving forces that motivate developers to get involved
with OSS projects because it provides the intrinsic satisfaction for OSS developers” [22].
These learning opportunities hold value that cannot necessarily be measured in quantifiable
dollars, but is measurable in education and increased technical abilities [23].

Other OSS contributors may be paid employees of commercial corporations assigned to
work on open source projects, as it is in the interest of commercial software companies
such as Google or Microsoft to provide inputs to open source projects. With OSS popu-
larity increasing, large projects are beginning to have significant influence in the software
community as a whole. These companies want to ensure that they remain aware of tech-
nology progression and provide direction at times. One of the ways they do this is by
maintaining a paid staff dedicated to being involved with open source projects. One ex-
ample is the Dronecode [24], which is an open source project structured under the Linux

17

Foundation. The project was founded and is still supported by commercial entities such as
3D Robotics, Baidu, Laser Navigation, and Walkera [25], which employ software develop-
ers to actively participate, guide, and/or lead development efforts.

Programmers can also use open source collaboration for résumé building. If a developer
provides a significant impact to an open project, such investment in time and training has
often been rewarded with additional employment opportunities or advancement. In addition
to potential job offers arising from demonstrated software development skill sets, a current
employee might also use open source work as a measure of professional development and
value to negotiate a pay raise. Despite the general notion that programmers build OSS
without selfish interest in mind, there are many ways to profit from such efforts [26].

Although monetary motives are plausible and often likely, some people enjoy writing code
simply for the satisfaction gained by helping others. This altruistic mindset can have a
lasting impact on the software community, as mentors teach apprentices and knowledge is
passed freely among collaborators, as evidenced by the success of various online discus-
sion boards providing such help forums, including those focused on computation and/or
programming questions such as StackOverflow [27]. Many software developers share a
common desire to help each other progress in their field [28], ultimately leading to not
only progress of the software project, but also the cultivation of an increasing population
of software developers that can contribute to that and other software projects.

2.3.4 Advantages and Disadvantages
Regardless of motivation, OSS continues to gain popularity across diverse swaths of ap-
plication areas, research domains, and consumer sectors. In providing a perspective or
philosophy that may be different from traditional software development methods, various
benefits or penalties exist to the use of open source software.

The advantages of open source software are often debated due to the number of people
and companies on either side of the argument, however, there is research that shows some
undeniable benefits of existing open source software programs and their impact on the
DOD. The benefits are technically oriented, such as higher security and higher reliability,
and business oriented, such as lower cost and higher business functionality. Many of the

18

highlights presented here summarize a study on the benefits and drawbacks of OSS [29],
in which the study team interviewed 13 software and information technology (IT) firms to
draw from their experience with OSS.

Competition
Competition among vendors is generally accepted as being healthy for the software engi-
neering market. Open source software allows people with similar interests and goals to
come together and work toward a common cause. These people are often motivated by
personal interest and often work on open source projects during their free time, and may
build software because the commercial-off-the-shelf (COTS) software already in existence
does not offer a solution that satisfies their needs. As these OSS initiatives develop and
offer new software alternatives, commercial suppliers are forced to honor the upgrades and
advances in features and functionality. Ultimately, the extra competition leads to better
software technology. Even if OSS is not used directly, the existence of these options such
as OpenOffice [30] and LibreOffice [31] forces commercial programs like Microsoft Word
to stay current and keep up with competing programs. The competition also affects the cost
of commercial products. Without open source products on the market, proprietary software
would likely demand a higher value which would translate to higher cost for the consumer.

Security
There are some open source products designed specifically with security in mind. One
such product used by the DOD is Open Berkeley Software Distribution (OpenBSD), an
operating system that touts its security and reliability as one of its strongest features. Critics
of open source software claim that due the accessibility of OSS, any foreign entity could
infiltrate a critical program with malicious software [32]. Proponents defend open source
software, saying that malicious software would have to pass under the watchful eye of every
developer working on the project, which could number in the hundreds or thousands of
programmers for large projects. Morgan and Finnegan’s study highlights that the majority
of firms interviewed thought OSS provided higher security due to “the availability of source
code, the reduced threat of viruses, and the extra awareness of security in the design phase
of projects.” [29]

19

When considering the security of software, it is important to note that regardless of whether
a piece of software is open source or not, there is potential for it to have security flaws. As
such, numerous researchers have studied and generated statistics comparing the security
flaws of proprietary software to open source versions (such as Internet Explorer compared
to Mozilla Firefox), which typically conclude that vulnerabilities are, in fact, much more
prevalent in commercial versions [33]. However, the implicit benefit leveraging a larger
number of people working with OSS to improve prevention of bugs from being introduced
or residing in the code base relies heavily on the skills and initiative of the specific user and
developer community for that software project. For example, some open source projects
are highly active and are likely to better exhibit the aforementioned advantage, whereas
other projects are less actively managed or developed. In the latter case, if software users
do not search for issues, the issues have a higher probability of remaining in the code [34].
Even though these studies find in favor of OSS in many cases, OSS under consideration for
use or inclusion should be carefully assessed to include evaluation of the vibrancy of the
given project as a potential indicator of its level of security.

Creativity
One measure of creativity is the speed at which functions are developed for a software
project. This “growth rate” projects experience serves as an indicator of the level of inno-
vation that a project possesses. Paulson et al. gathered empirical data showing creativity
to be higher in open source projects when compared to proprietary projects [35]. Typically
growth is highest at the start of projects and decreases over time. The study compared the
growth rate of proprietary and open source projects by analyzing the number of functions
created over the lifetime of the projects. The results consistently showed that the number
of functions created, as measured by growth rate over their lifespan, was higher for open
source projects.

There could be several reasons for higher creativity in OSS, including the intrinsic moti-
vation for OSS programmers to help their fellow community members [28]. Also, good
developers in open source communities are recognized and typically highlighted quickly,
while commercial employees often cannot receive broad recognition (outside of the com-
pany) by releasing their code. Open source developers can select which software they
develop, and tailor their work to applications that interest them most.

20

Further, usually people who write code for open source projects are users of the products.
This vested interest spurs motivation to design high-quality code that meets their current
and future needs. OSS also encourages users to view and be familiar with projects that
are similar to the ones they are working on, which has the additional benefit of enhancing
the community’s understanding of the technology involved and allows developers to uti-
lize portions that have already been accomplished. As such, availability of existing open
source projects avoids having to reinvent sections or sub-routines or entire libraries. In this
way, open source software can potentially support a faster development process and enable
advancing the software technology quickly.

Progression
The fact that OSS is used by a growing number of people is a good indicator that it has
significant advantages over proprietary software. Over 60 percent of corporations cur-
rently use OSS and consider OSS options before looking into proprietary programs. Over
50 percent of these companies also say that at least half of their engineers participate in
open source projects [14]. Companies are clearly seeing good results from open source
programs, as evidenced by their willingness to fund OSS projects and their adoption of
OSS applications for their own use. Perhaps the biggest indicator that OSS is becoming
more embedded in the software community is that companies are paying to be involved
by allowing their employees to make open source contributions without receiving specific
compensation.

Disadvantages
In the previously cited study, Morgan and Finnegan also highlight several disadvantages
that companies have experienced using OSS [29]. One of the most common is lack of ex-
pertise, which often prevents people from considering open source options. Often, project
managers fear that their employees have too little experience with the OSS to facilitate a
smooth transition. The apprehension can often be attributed to unfamiliarity, which could
potentially be overcome by introducing open source concepts and including such OSS op-
tions when considering types of software to use, purchase, or integrate.

Another common disadvantage is often the lack of documentation [36], which is consis-

21

tently a larger problem for OSS than for commercial projects. The root of this problem for
certain OSS projects may be due to the given open source process being less formalized
than in proprietary companies, or due to other reasons such as the absence of self-regulation
or governance over development procedures for open source, or simply less time devoted
to proper documentation. Another issue is that the primary users of OSS are often the de-
velopers themselves, and do not need as much documentation as an end user who did not
participate in building the code. As a result, novice-friendly documentation may be harder
to generate. In contrast, the end user of commercial products is not only unfamiliar with
the development, but cannot view the source code, so the documentation must necessarily
be focused on clarity and simplicity.

On the business end, users of OSS may often find it difficult to adopt the software be-
cause there is a lack of support. Despite acquiring an application free of charge, support
often comes at a premium and can sometimes be inadequate or slow. Another problem for
businesses is often the lack of accountability in some open source programs, and compa-
nies may have liability concerns when using OSS. OSS licenses almost always contain a
clause indicating the authors are not responsible for anything the user does with the code.
In contrast, proprietary companies can have reliability or security guarantees written into
contracts to protect the customers.

2.4 Unmanned Aerial Vehicles
As the prevalence of UAVs increases, so to does the software enabling automated or even
autonomous capabilities in these systems, as the commands performed by a pilot in a con-
ventional aircraft are replaced by software-generated commands in an UAV. To highlight
this point, the U.S. Air Force began developing unmanned aircraft in 1960 after concerns
over pilot attrition during the Cold War [37]. Since then, the drone market has expanded in
the military and in civilian sectors substantially. In 2010, 41 percent of aircraft in the DOD
were unmanned [38]. Figure 2.2 shows the expected increase in market capitalization for
drones in civilian and military sectors [39].

Two types of UAVs exist. These are remotely piloted aircraft and autonomous aircraft.
Most UAVs used in current combat are remotely piloted, meaning a person makes nearly
all decisions related to basic flight and mission. Other aircraft are autonomously controlled,

22

Figure 2.2: Global aerial drone market through year 2024. From [39]

meaning an aircraft operates without the intervention of a pilot [40]. A relatively new
advent in unmanned flight is the use of multiple UAVs cooperating toward a common goal,
also known as a swarm of UAVs.

2.4.1 Swarm Concept
Many of the OSS programs studied in this analysis are used by ARSENL as a part of the
Aerial Combat Swarms (ACS) project. A group of aircraft is considered a UAV swarm
if they can communicate with each other and perform cooperative tasks as a group [41].
Swarms can be advantageous due to the low cost of individual aircraft, and in the case
of warfighting effectiveness, a group of several or many aircraft may have the ability to
overwhelm advanced defensive systems that could otherwise easily handle one larger plane.

Live-fly (i.e., outdoor) swarm UAV research and development is currently limited due to
civilian regulations prohibiting operations of two or more drones (another term for UAV)
at once [42]. Some exceptions exist, leveraging access to military resources and venues,
allowing for efforts in UAV swarms at various institutions such as NPS. For example, NPS

23

researchers have a goal to conduct experiments involving up to 100 UAVs in simultaneous
flight operations [43] in the ACS project. Due to the numbers of aircraft involved in the
operation, human interaction with individual aircraft is necessarily limited, and instead,
success of the swarm will be dependent on software-derived capabilities via advanced au-
tonomous software.

2.4.2 Software Components in the Swarm Environment
ARSENL uses software in several capacities during UAV swarm operations. On the indi-
vidual aircraft, software is used in flight control systems, in payload management systems,
in communications systems, in sensor processing, and in Command and Control (C2) sys-
tems. There is often a command station which utilizes software to provide individual and/or
group instructions to various aircraft in the swarm. Depending on the size of the swarm,
multiple stations can be used.

The State of Open Source Software for UAVs
OSS for UAVs has been in production since at least 2003 [44], as there are many projects
designed specifically for drones including APM/Ardupilot, OpenPilot, and PaparazziUAV.
The community is made up of primarily hobbyists who build software and hardware for
small aircraft on their free time. OSS for UAV has recently drawn interest from large or-
ganizations such as the Linux Foundation, which, in 2014, enabled the Dronecode Project,
which aims to unite software developers, hobbyists, and commercial companies in the com-
mon goal of creating a standard for drone OSS development. The project has already drawn
1200 programmers who provide over 150 daily code commits (submissions of written code)
on some projects [25]. This support and popularity showcases the growing potential of open
source solutions for drone software.

A partial list of software used by ARSENL at NPS in their software design and develop-
ment in support of UAV swarm research is shown in Table 2.2. Licenses used by each
program are shown for general reference, and more information regarding the differences
between each license can be found online [45]. The association column indicates whether
the OSS program is used directly for ACS development, or indirectly as a dependency for
another part of the ACS development process. Many of the programs are related to one

24

Project name Project function License Association
ArduPilot aircraft autopilot GNU GPL 3 ACS
MissionPlanner mission control GNU GPL ACS
MAVLink message marshaling LGPL ACS
MAVProxy ground control station GNU GPL 3 ACS
JSBSim flight dynamics model LGPLv2 ACS
Sik Firmware firmware for radios M. Smith ACS
ACS ROS autonomous functionality (none) ACS
PX4 Firmware PX4 FMU driver BSD 3-clause ACS
PX4 Nuttx real time OS BSD ACS
matplotlib graph plotter BSD, PSF dependency
NumPy scientific computing BSD dependency
eSpeak speech synthesizer GPL 3.0+ dependency
wxPython GUI applications WXwindows-3.0 dependency
wxWidgets cross-platform GUI library WXwindows-3.0 dependency
ccache compiler cache GPL 3.0+ dependency
NuttX real time embedded OS BSD 3-clause dependency
OpenCV computer vision BSD dependency
PIL image processing BSD 3-clause dependency
autoconf compiler GPL 3.0+ dependency
arduino electronics prototyping GPL 2.0+ dependency
urllib3 connection pooling MIT dependency
CMake build system BSD 3-clause dependency

Table 2.2: Open source programs used by the Aerial Combat Swarms project

another and they have several uses, including software development, aircraft control, air-
craft communication, ground control operation, sensor processing, and data management.
The majority of software used by the lab for ACS is open source. ACS is one example
that showcases the potential of OSS. The programs that ARSENL use continue to provide
advanced capabilities for conducting experiments with large groups of unmanned aircraft.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 3:

Survivability Analysis

3.1 Introduction
This chapter introduces the concept of survivability, explores its utility in the context of
UAVs, and uses it to analyze the ability of the open source development process to defend
against attack. The methodology for completing a survivability analysis is shown using
data gathered from one OSS program, and conclusions are drawn regarding the program’s
resilience against such an attack.

3.2 Need for Survivability Analysis
Since the early 1970s, one of the most important fields of study for the development of
U.S. military aircraft has been aircraft combat survivability. During the conflict in South
East Asia, the U.S. experienced significant aircraft losses as a result of enemy integrated
air defense systems, and in 11 years of conflict, approximately 5000 helicopters and fixed-
wing aircraft were downed by the North Vietnamese [46]. By 1965, enemy air defenses
were significantly developed since previous major conflicts including World War II (WWII)
and the Korean War. The North Vietnamese’s integrated air defense system (IADS) was
more advanced, incorporating surface-to-air missiles (SAMs) acquired from Russia that
were capable of reaching altitudes higher than the operational ceiling of most fixed-wing
aircraft in the U.S. inventory. This forced aircraft into low-altitude attack profiles which
were well inside the engagement envelope of anti-aircraft artillery (AAA) systems. Aircraft
designers did not anticipate this kind of resistance and consequently, the aircraft were not
well-equipped to avoid or sustain hits from SAM and AAA systems.

The tactics and combat systems employed by the U.S. were also inadequate to carry out the
missions required during the conflict. The first laser-guided bomb was not fully developed
until midway through the war in 1968, and up until this time, aircraft were using primarily
unguided munitions (dumb-bombs) to destroy targets [47]. Between 1965 and 1968, Op-
eration Rolling Thunder pitted the vast might of America’s military power against supply

27

lines and strategic targets in North Vietnam. The primary goals of the operation were to
prove that the U.S. was in control of the conflict and to destabilize the Democratic Republic
of Vietnam. Unfortunately, after 643,000 tons of bombs were dropped and an estimated $
900 million spent, the desired effects on the North Vietnamese government had not been
achieved, and only $ 300 million in damage was estimated to be done. In addition, 900
U.S. aircraft were lost by the time the operation was halted. The aircraft were not designed
to survive this type of environment, and the mission was not successful.

The concept of combat survivability was developed to understand why the U.S. was los-
ing so many aircraft to enemy air defense systems. The DOD wanted to preserve planes
and helicopters by making them less vulnerable and less susceptible to enemy fire. While
originally intended for aircraft, the topic now impacts the design and development of many
military systems, including ships and ground vehicles. Although aircraft combat surviv-
ability analysis has spread from aircraft to other vehicles and equipment, it is still primarily
focused on the structure, hardware, and physical components of systems. Live-Fire Test
and Evaluation (LFTE) is a statutory requirement for military hardware systems to achieve
before they move beyond low rate initial production, but the testing primarily involves
evaluating the effects of munitions and missiles on systems [48]. The following analysis
extends the concepts of traditional survivability to software, applying survivability meth-
ods to evaluate how software embedded in a hardware system (such as an aircraft’s flight
control software) would survive an attack. Part of a survivability analysis involves iden-
tifying the various threats that a system could face during operation so that the system’s
survivability can be evaluated according to each threat. Section 3.3 discusses some of the
threats faced by UAV software.

3.3 Threats
Due to the variable nature of factors that affect a system’s ability to survive an attack, air-
craft and ship survivability is always evaluated with a specific threat in mind. Survivability
only pertains to one specific threat engaging one specific aircraft or system due to wide
ranging threat capabilities and circumstantial aspects such as environmentals, tactics, doc-
trine, and operator quality that effect it. A UAV, especially one operating autonomously,
relies heavily on software so that it can complete objectives without continuous inputs from

28

the human operator. UAV software could face threats from several sources, and the threats
could target several portions of the software. In the following sections, threats are bro-
ken into three categories, unintended failures, unintended vulnerabilities, and malicious
software insertions, and failure modes of UAVs are examined at the end of Section 3.3.

3.3.1 Unintended Failure
An unintentional failure could occur due to a simple flaw in the aircraft’s software. Just like
mechanical systems onboard a UAV, not all software always operates as intended by the
designer, and there are many historical examples of software causing catastrophic failure
and complete system destruction due bugs in the code. In 1996, the Ariane 5 rocket flew
for approximately 40 seconds after launch before it self-destructed as a result of a software
error. Figure 3.1 shows an image of the rocket exploding shortly after launch.

Figure 3.1: Ariane 5 rocket destruction after launch

This accident was attributed in part to software that attempted to convert a 64 bit floating
number into a 16-bit signed integer so it could be used for a calculation [49]. The integer
value did not capture enough information for the calculation due to its relative small size,
and this caused an overflow in the computer hardware which led to loss of guidance and at-
titude information. With no guidance, the rocket quickly diverged from its intended course
and its computer system initiated a self-destruct command.

A bug such as this could cause an unintentional failure mode in a UAV, and in order to
prevent such a loss, thorough testing is conducted at the developmental and operational
level to ensure that all modes of software operation are checked in anticipated operating

29

environments. The probability of this type of error happening is directly related to the
talent of the software engineers who design the software and the technology involved in
the software’s code.

3.3.2 Unintended Vulnerability
Another possible threat to the aircraft’s software is a vulnerability an enemy could take
advantage of. All software has bugs (or vulnerabilities) [50], and sometimes hackers are
able to exploit these bugs for their own good. This threat is similar to an unintentional
failure, but it involves a bug that opens the software up to enemies, allowing them to control
components of the system via the software vulnerability. This threat represents an enemy’s
accessibility to the rest of the system, and as such, these bugs could lead to the destruction
of the aircraft or failure of its mission.

An excellent recent example of this from OSS is the “Heartbleed” problem [51] which
enabled collection of encrypted data from secure web-sites. It should be noted that it was
found by a paid Google staffer specifically looking for OSS vulnerabilities. This clearly
makes the case for having DOD staffers employed in a similar capacity.

3.3.3 Malicious Software Insertion
The third and final threat to software is an intentional insertion of malicious code into
the source of a program. In OSS programs, an adversary could attempt this by gaining
access to the general development community involved in designing software for the UAV.
Open source projects generally have limited restrictions for people attempting to join their
development groups, so a malicious code insertion to a program in this setting is feasible.
Whether or not the insertion remains with the source code long enough to make it into the
program’s release depends on the quality of the open source development process.

This type of threat could also occur in a program developed by a proprietary company. An
adversary could gain access to the development community, potentially by being hired to
work for the company, and once employed, he could insert malicious software just like in
the case of an OSS project. Another way this could be accomplished is by hacking the
proprietary software company’s computer servers through the internet. Once the adversary

30

has a connection to the location of the code, he could adjust it or contribute malicious code.

3.3.4 Failure Modes
The mission of a UAV could be compromised by the failures in several ways. An aircraft
could simply be diverted from its planned route profile due to initiation of altered code at
a specific time after it began operations. The malicious software could do this by forcing
the system to adjust pre-programmed track points and to disregard inputs generated from a
friendly ground control station. The software could be programmed to land the aircraft at
a location inside the enemy’s country so they could capture the vehicle.

The software could also disrupt the sensors onboard the UAV so that they fail to record data,
or spoof the system by providing false recordings. Depending on how it is designed, the
software could operate in this way without the user knowing it, in which case the UAV could
continue operations until the user realized they were getting bad information, effectively
disrupting the mission as long as the code remained hidden. Ordinance control software
could also be adjusted to render kinetic weapons useless, or worse, detonate them while
they are still attached to the aircraft.

The prevalence of software embedded in the components of modern systems provides many
avenues for failures to take place. This analysis specifically examines the survivability of
an OSS project that faces the threat of a malicious software insertion, and the primary piece
of the process that is analyzed is the OSS development cycle. In order to provide a frame
of reference for the discussion, a scenario is presented in Section 3.4 which describes the
type of attack being considered and the individual events that form the attack.

3.4 Scenario
The operational scenario in this analysis involves a UAV, an operator working through a
ground control station (GCS), an adversary, and the flight control software required by the
UAV system. For simplicity, only one software component onboard the UAV (flight control
software) is examined in this scenario. The program, called FlightGear’ is an actual OSS
program that can be used as a flight simulator. Theoretically, an adversary could attempt
to exploit others such as mission control software, navigation software, or communications

31

software, and interactions between these different software systems would likely affect the
overall probability of survival of the entire system. Follow on research could include con-
siderations for the relationships between programs and how the integration of the software
onboard an UAV could affect the overall survivability of the aircraft.

Several key subjects are established to define characters and roles that are played in the
scenario.

• Trusted developer (aka “caretaker”) – The primary developer on a project, with
authority to approve code submissions provided by the general development commu-
nity.
• General Developer – A programmer who provides input to the project, including

bug reports and newly designed code. A general developer does not have authority
to merge his or her code with the original source. This is accomplished by the trusted
developer
• Adversary – The individual whose goal is to undermine the software by creating

malicious code and submitting it to be added to the source. He disguises the mali-
cious code so that it appears harmless, hoping the trusted developers do not notice
and accept it
• User – A customer who downloads the software and uses it for its intended purpose
• Flight Control Software – The software program employed by the UAV to control

its position in three-dimensional space. For data gathering, this fictional software is
represented by an actual flight simulation software used by numerous aviation- and
UAV-related development efforts called “FlightGear”

3.4.1 Detailed Events
The operational environment involves the U.S. conducting sanctioned UAV operations near
the border of an enemy country. On a periodic basis, the U.S. conducts intelligence surveil-
lance and reconnaissance (ISR) operations across the enemy country border using low-
observable stealth UAVs. The enemy country learns of the UAV operations inside its border
and decides to take action, employing their intelligence team to retrieve information about
the aircraft’s characteristics including the software.

32

The enemy country decides to utilize a software programmer to attack the software used
by the UAV (represented by FlightGear). The adversary examines the different types of
software onboard the UAV and decides to attempt to alter the flight control software by
gaining access to the user development community involved in constructing the OSS used
for controlling the flight of the UAV. He then downloads the source code and explores it to
discover vulnerabilities and to determine a method to exploit its underlying framework. He
writes one or more pieces of code and requests the code be added to the source by a trusted
developer.

The specific intent of the software code that he inserts is to input weaknesses into the pro-
gram that could then be taken advantage of while the system is operational. This malicious
code is then reviewed by the trusted developers, mistakenly accepted, and unfortunately
merged with the source code, so that general users now have access to the new source code
with the malicious software embedded in it. The adversary’s code remains integrated with
the source code until it is released and distributed to the public, at which point the user
downloads the software package and checks the source code for errors and vulnerabilities,
but does not notice the malicious code.

Believing the code to be safe, the user launches the UAV and initiates an autonomous mis-
sion. The aircraft automatically heads toward the enemy country border, crosses it, and
begins flying a surveillance pattern and gathering information. The malicious software
initiates, and the ground control station immediately loses contact with the UAV. The ad-
versary’s addition to the flight control program causes the aircraft to break normal protocol
and fly into the ground, nullifying the UAVs mission and allowing the enemy to achieve an
attrition kill on the aircraft.

3.5 Analysis
After describing the scenario, the survivability of FlightGear can be determined by ana-
lyzing the program. The approach used in this analysis involves breaking down the ad-
versary’s engagement of the OSS development process into parts, gathering and analyzing
data related to the open source project, assigning probabilities to individual events in the
engagement, and calculating an overall probability of survival for the scenario.

33

3.5.1 Essential Events and Elements Analysis
The first task is to isolate and define events in the engagement essential to the end result,
which is a UAV no longer capable of carrying out its mission. These critical events can
be determined by performing an Essential Events and Elements Analysis (E3A), which
defines the events by examining the processes that lead to them. “Any combat operation,
action, or incident that consists of a timewise sequence or combination of interrelated ac-
tions involving one or more parameters and variables associated with a system is referred
to as a process [52].” Processes generally have one or more outcomes, referred to as events,
which have associated probabilities they will or will not occur. The first step in defining
the events is to define the processes by which they are created, followed by assignment of
probabilities to the outcomes of those events based on data and analysis of the scenario.
In addition to defining the events, questions are posed to help determine the probability
of the events taking place in the given scenario. The E3A was conducted for the scenario
presented in Section 3.4, and the results are presented in Table 3.1. The table begins with
the final undesired event and proceeds in a reverse time line to end up at final entry, which
is at the first undesired event in the scenario.

The next step in the process is to define event probabilities for each of the processes laid out
in the E3A, which occurs in traditional survivability by gathering performance data about
systems (such as an aircraft and an anti-aicraft SAMs) involved in the scenario. As such, in
order for this analysis to be completed, a representative OSS program needed to be used as
an example for the scenario. The program selected for this analysis was “FlightGear,” and
the data gathering process is explained further in Section 3.5.2

3.5.2 Data
The actual program called “FlightGear” does perform flight control functions, as the soft-
ware in the scenario suggests, although it is is not a full blown autopilot, but a flight simula-
tor that has similar functionality. Instead of having to control an actual aircraft, it controls a
simulated object, but generally speaking, the purpose of the open source software does not
significantly impact the outcome of the survivability analysis, and therefore it was selected
to represent the fictional software in the scenario. FlightGear is selected in part due to the
nature of the data available for the project and the format it is stored in. FlightGear is hosted

34

Essential Events and Elements Questions
1. Friendly control of the aircraft is lost What is the profile of the new flight path?

Can control be reacquired?
2. Malicious code initiates programmed
flight path

What is the intent of the malicious code?
What impact does initiation have on the
UAV’s behavior?

3. Code remains un-flagged by every user
group

How much time transpired between the
malicious code commit and the UAV
flight?

4. UAV user does not spot bad segment of
code

How thorough was the user’s search for
anomalies in the source code?

5. Bad code passes final checks by trusted
developers and is included in the final build
of the software

Have the primary developers had previ-
ous success locating vulnerabilities in the
source code?

6. Malicious code is not spotted by general
developers working on the project

Is the general development community ac-
tive? Have the general developers had pre-
vious success locating vulnerabilities in the
source code?

7. Bad code is merged with the source Who was the trusted developer that ap-
proved the merge? How did the adversary
package the code to disguise its malicious
intent?

8. Adversary provides commit including
malicious code

How long was the user in the community
before delivering the code?

9. Adversary gains access to the devel-
opment community working on the UAV’s
flight control software

Are there any restrictions to joining the de-
velopment community?

Table 3.1: Essential events and elements for the open source software development process

on a website called Gitorious.org [53] where the source code repository is also located, and
from here, trusted and general software developers work on the code and submit updates
to the source. Data regarding bugs in the project is stored on another website managed by
Google [54], and is presented in tables which allow the data to be exported directly to a
comma-separated values (CSV) file. Other data such as the number of active developers
and the number of commits for the project was gathered from a website called OpenHub,
which tracks information on many OSS projects [55].

After pulling the data from these websites, it was combined into a spreadsheet so that it

35

could be compared and analyzed. The different aspects of the program were compared
and graphed to obtain trends in the data that indicated information about the health of the
project.

Issues
The first metric analyzed was the activity level of the project, which was evaluated using
the number of issues that were open and closed at a given time. In open source software,
issues represent bugs or change requests added by general developers and testers, and they
indicate the activity level of developers in the community working on the project. The
importance of issues is further explained in Section 4.2.2. One of the ways that open
source repositories allow projects to track activity is by including time stamps on issues
that track when they are opened, when they are updated, and when they are closed. This
data can provide a visual picture (such as the one shown in Figure 3.2) of the activity
level of developers working on the project, showing how often issues are brought up by
developers, and more importantly, how often the issues are solved and closed. One way to
identify general trends in the data is to add trend lines, which is shown for FlightGear in
Figure 3.3.

Figure 3.2: Number of issues opened and closed over time for FlightGear.

As shown in Figure 3.3, the general trend of issues opening during the time period was

36

Figure 3.3: Trend lines representing the number of issues opened and closed over time for
FlightGear.

positive, while the general trend of issues closing during the time period was negative.
This was not a good sign for the project, as the scenario inevitably led to a large number of
issues that remain open over time. This problem is illustrated in Figure 3.4, which shows
the cumulative number of issues in an open state as time progressed during the analysis
period.

As shown in Figure 3.4, FlightGear had a backlog which generally increased over time from
July 2009 to December 2014. This indicates that there was a lot of work for the project
managers to handle. As the software program approached release dates, the managers were
forced to address the entire backlog of issues, which likely prevented them them from
spending a lot of time on other important release tasks such as testing. This type of backlog
increases the probability that an adversary’s malicious code will pass incremental reviews
and make it into the release.

Developers
Another method for determining the general health of an OSS project is by looking at the
number of developers involved with the project, which provides an indication of general
interest in the project and how many people are viewing the code. It is useful to compare

37

Figure 3.4: Cumulative issues, or backlog of issues, for FlightGear over time

the number of developers on a project to issues opened over time as a method for relating
the different characteristics and determining justification for assigning activity levels to a
project. Figure 3.5 shows the number of developers who were involved in the FlightGear
over time and the number of issues that were opened over time.

Figure 3.5: Number of developers who were working on FlightGear as compared to the number
of issues generated for FlightGear over time

As shown in Figure 3.5, the number of developers working on the project decreased over

38

time as did the number of issues being opened. It is interesting to note that in the time
sample shown in Figure 3.2 the general trend for issues opened during the time period
increases, while in Figure 3.5 the issues opened shows a decreasing trend. This is due
to the different time periods that are analyzed. In Figure 3.2, the time period runs from
2009 to 2015, while in Figure 3.5 the period analyzed is from 2012 to 2015. This indicates
that toward the end of both periods, the project saw a significant decrease in developers,
and consequently, activity on the project. The decreasing trend toward the end of the time
frame could have been due to decreasing popularity of FlightGear, competing products,
or mounting issues that developers were unable to control. Regardless, Figure 3.5 clearly
indicates that the issues opened per month and the number of developers working on the
project per month experienced a negative trend, which translates to a lack of health and a
higher probability for an attacker to be successful in manipulating the software by passing
unwanted code to the source.

Figure 3.6 shows similar data, but instead of the number of issues being opened, the number
of commits each month is showed over time along with the number of developers working
on the project. In open source development, programmers submit code for addition to the
source repository in the form of commits, which generally arrive as text files that incorpo-
rate lines of software code. Projects with high numbers of developers increase their chance
of creating quality software products, and similarly, high commit numbers in projects re-
flect high activity and good health.

Similar to Figure 3.5, Figure 3.6 shows decreasing levels for both developers and commits,
which is not a healthy sign for the project. A decreasing activity level on an open source
software program will lead to high workload for the developers who remain with the project
and reduce the time they are able to put into each code commit and open issue. FlightGear’s
decreasing activity level decreased the programmer’s capability of finding and weeding out
malicious code presented by an adversary. This then increased the susceptibility of the
software.

FlightGear’s data was used so support hypotheses for individual probabilities that make
up the survivability equation presented in Equation 3.1. Other considerations were taken
into account and several assumptions were made to assist in defining the probabilities for
the scenario described in Section 3.4. The next section discusses the probabilities for each

39

Figure 3.6: Number of developers who were working on FlightGear as compared to the number
of commits provided by developers over time

event and assignment of probabilities based on the data gathered from FlightGear’s project
repository website.

3.5.3 Event Probabilities
The overall survivability of an open source software program is calculated using the likeli-
hood of individual events that make up the process. There are nine events that contribute to
an aircraft kill as outlined in Table 3.1, and they are listed here with amplifying descriptions
and specific values for the FlightGear OSS project.

Probability of Access
The probability that the adversary will gain access to the general development associated
with a given software project is based on the project’s restrictions and the adversary’s pro-
gramming capability. Most OSS projects have very few restrictions preventing people from
gaining access to the source code and providing contributions. The nature of OSS is one
that thrives on inclusion and it encourages maximum participation to fuel creativity and co-
operation in development. When restrictions are imposed on the development community,
it limits the number of programmers involved and decreases the potential of the project, so

40

most projects require only a username, password and email address to join. While a devel-
oper’s profile is viewable by the community, it is not often required to display identifiable
information about the individual who created the account.

Not all projects are unrestricted, for example, the DOD hosts a website called www.forge.mil
that requires a Common Access Card (CAC) for access [56]. This limits participation to
members of the military, government civilians and employees of the DOD, which drasti-
cally decreases the probability of an adversary accessing the development community, but
also limits the creative power of projects hosted on the website, as discussed above.

FlightGear is (formerly) hosted on a website called www.gitorious.org [53]. The web-
site does not require any identifiable information to establish an account and an adversary
would have no problem joining the development community, so the probability for him to
gain access is 100 percent.

Pa = 1.0

Probability of Commit

The probability that the adversary would provide a commit to the source code is based
on his ability to produce the code. Given the correct resources, a talented developer who
knows the programming language could easily build a piece of code and submit it if given
sufficient time and resources to build it.

For FlightGear, it was assumed that the adversary was well-versed in the programming
language and the sophistication for the required code was low. This provided a high prob-
ability (98 percent) that he could provide a commit.

Pc|a = 0.98

Probability of Merge

The probability of merge is the first probability in the process that is impacted by the
quality of the OSS development process in question. In order for the code provided by
the adversary to be incorporated into the source code, it first needs to pass an inspection

41

by one of the trusted developers working on the projects. In this step, trusted developers
look specifically for bugs and vulnerabilities inside the commit, and if they find something
suspicious, they block it from the source code and likely terminate the user’s presence in
the development community. Not only does the adversary need to produce something that
disrupts the aircraft’s mission, he has to disguise it to appear as if it has another purpose.
The adversary’s ability to do this is largely dependent on his coding abilities.

The trusted developers cannot spend excessive time reviewing each commit or the project
will not progress. If there is a large number of commits in the queue to be reviewed,
they will not be able to allocate a lot of time to each commit and the probability of merge
will increase. For FlightGear, the project backlog was high during the time frame under
consideration, as shown in Figure 3.4. Due to the high backlog, the chance for the adversary
to achieve a merge was determined to be higher than a typical OSS project would permit.
Talented caretakers working with a low backlog could reduce the probability significantly,
but for FlightGear it was determined to be 90 percent.

Pm|c = 0.90

Probability for Code to Stay

The next step in the development process is to wait for the source code to be finalized for
a release. During the wait period, the general users have access to the code commit that
was provided by the adversary because it is now part of the source. They can view, test and
provide changes to the code as they see fit. In order for the adversary’s code to end up in
the final release, it has to survive the scrutiny of the general developers. The probability
that it will stay is based on how much time transpires between the commit and the release,
and the capability of the general developers to spot the malicious code.

For flight gear, two months was assumed to transpire before the final release, and the ca-
pability of the general developers was assessed based on the backlog of issues and the
activity level. Activity level was evaluated to be average but declining as discussed in Sec-
tions 3.5.2 and 3.5.2. The backlog was unusually high, causing the developer’s capability to
be assessed as low, and the time that the code had to survive was also low, so the probability

42

the code would stay with the source was evaluated to be relatively high, at 80 percent.

Ps|m = 0.80

Probability of Release

The probability the bad code is built into the final release is based on the talent of the project
manager in spotting vulnerabilities and the backlog existing in the project. Just as during
the merge process, a high backlog causes the project manager to limit the amount of time
he can commit to reviewing the code before a release. For FlightGear, the project had a
high backlog, which increased the probability that the malicious code would stay with the
source through release.

The project manager was assessed to be very capable and experienced, which was based
on statistics gathered from OpenHub [55]. The website ranks project managers based on
their history and performance on prior projects, and the manager for FlightGear had a high
ranking of 7 out of 10. Therefore, the probability of release for FlightGear was assessed to
be a relatively low 70 percent.

Pr|s = 0.70

Probability User does not Spot Malicious Code

One of the major benefits of OSS is that the user or customer can view the source code
before using it, and consequently, the user acts as another layer of defense against mali-
cious attacks. When using a proprietary product, the user is forced to trust the claims of
the provider regarding the security and reliability of the software, but for an open source
project, a thorough code review by the customer could highlight a bug or vulnerability. The
probability of a user finding the malicious code is based on how thorough the user’s review
is and their experience with the coding language used.

For this scenario, the assumption was made that the user did a cursory review of the source
code, but did not spend extensive resources testing before putting the program to use. This
assumption led to a high probability that the user did not spot the bad code. With a more

43

refined review process, the probability could be lowered substantially.

Pu|r = 0.95

Probability of No Flag

A certain amount of time will pass between the release of the code and its first operational
use in theater. During this time, the malicious code will still be attached to the source code,
which is available for inspection by the general developers on the project and the other
users of the program. There is the potential for many eyes to be scanning the code for vul-
nerabilities during the time between release and usage. The probability that the malicious
code survives this stage is based on the length of time between release and operational use
as well as the size and capability of the group using and testing the newly released software.

For the scenario, the assumption was made that the code was released after the time period
of analysis used in Section 3.5.2, and there was only two months between the release time
and the operational use. With the declining activity indicated by analysis of FlightGear’s
data, especially toward the end of the analysis period, it was assessed that the users and
developers would likely not discover the bad code.

Pn|u = 0.80

Probability Malicious Code Initiates

Even if the OSS process fails to identify the adversary’s code, the software still has to carry
out the functions for which it is designed. There are no perfect software programs, and
as such, there is always a chance that they will fail at their given task. This probability is
based entirely on the quality of the adversary’s code.

For FlightGear, it was assumed that the talent level of the adversary was high and therefore
the code was likely to initiate. All initial conditions required by the software package were
assumed to occur, so there was a high probability that the code would load and initiate

44

properly.
Pi|n = 0.80

Probability Code Causes Kill

Finally, there is a probability that even if the malicious code initiates, it will not have the
effect on the UAV that was intended by the programmer. This probability is based on the
quality of the adversary’s code and the design of the UAV. If the aircraft is designed with
survivability in mind, the architecture may be able to withstand an attack on its software.
This is similar to the traditional probability of kill given a hit on an aircraft. Just because a
missile detonates on or near an aircraft does not guarantee that the aircraft will be prevented
from carrying out its mission.

In the scenario, it was assumed that no design considerations were taken into account for
software survivability on the UAV. It was also assumed that the quality of the malicious
code was very high. This led to a probability of 95 percent that the aircraft would be
neutralized given initiation of the software code.

Pk|i = 0.95

3.5.4 Overall Probability of Kill

The overall probability of kill is simply calculated using the values for individual event
probabilities defined in Section 3.5.3. The equation for the overall probability of kill is
then represented by [46]:

Pk = Pa ·Pc|a ·Pm|c ·Ps|m ·Pr|s ·Pu|r ·Pn|u ·Pi|n ·Pk|i (3.1)

= (1.0)(0.98)(0.9)(0.8)(0.7)(0.95)(0.8)(0.95)(0.95)

= 0.339

45

As a result, the probability of survival of the aircraft is calculated by the following equation.

PS = 1−Pk

= 1−0.339 = 0.661

A 34 percent kill probability is not ideal, and very few military commanders would trust
strategic operations to a combat system with such a high chance of attrition. The assump-
tions made in this scenario are not necessarily realistic, but they do bring attention to the
potential of skilled adversaries with access to OSS development processes to jeopardize
system software. There are many ways to reduce event probabilities discussed in Section
3.5.3 in order to reduce the probability of kill significantly.

3.5.5 Survivability Enhancements
By performing the survivability analysis on FlightGear, it became evident that many vari-
ables influence a project’s susceptibility and vulnerability to attack. The health of a pro-
gram’s development community is the primary factor aiding its resistance to attack. The
following list includes some ways by which an OSS project could increase its chances to
defend against an attack.

Larger Development Community When a large number of developers spend time work-
ing on a program, there are more opportunities to discover of a bug or vulnerability, and
a large development community also prevents significant backlogs of work from forming.
Open source software projects should strive to encourage membership and keep high level
programmers working on the software.

Active Community Members A large development community is of no use if the mem-
bers are not actively participating in code development and review. Open source project
managers should utilize project statistics to verify that the members of their development
communities are active, and if needed, they should increase activity by setting project goals
and ensuring members stay motivated to work on them. One method for increasing activ-
ity could be to insert paid staff into open source project communities, thereby generating

46

interest and support for projects of interest.

Project Maturity When selecting an open source software program for use, project man-
agers should be aware of the maturity of the program. Even if an OSS project has a lot of
members, it may not be very secure due to its lack of history and testing. If possible, OSS
programs with long histories should be chosen because projects that have existed a long
time have likely withstood several iterations, each with improvements and bug fixes.

Low Backlog A good measure for a project’s wellness is activity, which can be evaluated
based on community members’ management of issues. When there are many issues that
need to be addressed, developers are required to spend time fixing problems instead of
improving the software. Programs with a low backlog should be chosen to ensure proper
time is devoted to reviewing code before major releases.

Restricted Development Community One sure way of improving a program’s sur-
vivability is by restricting entrance to the development community. Websites such as
www.forge.mil, which requires a CAC log-in, ensure that the members adding code to
the project have had background checks and can be trusted with sensitive material. The
downside to restricting access to the community is the creative potential of the software
development process is limited.

Larger User Base Users of OSS can be thought of as testers, each with the ability to
examine the source code and report issues back to the development community. With more
people using the software, there is a better chance that vulnerabilities will be discovered
before they can cause harm.

Summary The vulnerability of a UAV to an attack on its software depends on what types
of attacks the designers anticipate. In the example of FlightGear, the aircraft designers
did not anticipate the software would be attacked. It is always safer to anticipate that the
worst scenario will occur. Due to continuing advances in cyber warfare techniques, UAV

47

designers should always consider the consequences of one or more software modules being
compromised. Understanding the competency of the enemy and the threats is paramount.

3.6 Conclusion
In survivability terms, a 66 percent chance of withstanding an attack is not highly desirable,
so if FlightGear was being considered for use in a military hardware system, it would likely
be turned down for a more resilient alternative. It is important to keep in mind that this one
example is not representative of any other OSS program, and therefore general conclusions
regarding the viability of OSS for military hardware applications should not be drawn from
the analysis in this chapter. The primary motive for Chapter 3 is to prove the concept of
survivability as a tool for evaluating open source programs based on their development
communities and project statistics. There were many assumptions made in the scenario for
FlightGear that do not accurately represent reality, but were inserted for completeness of
the analysis. Refinement of the process to assign event probabilities is needed, and further
information on this topic is discussed in Chapter 5.

48

CHAPTER 4:

Data Analysis

4.1 Introduction
An effective survivability analysis requires accurate event probabilities to provide informa-
tive results. In the analysis of FlightGear, these probabilities were estimated based on data
gathered from the project’s host website, www.gitorious.org [53]. This website provided
easy access to information such as project issues by allowing visitors to export data listed
in tables on the website to a CSV file, however the process to fetch data from the site took
a lot of time and effort. The data was also spread out over several tables, which had to be
combined onto one sheet after export to facilitate the analysis. Another complicating factor
was Gitorious’s merge with GitLab in March of 2015, after which the data for FlightGear
was no longer available in the form it was originally downloaded.

In this chapter, a new method for data gathering is introduced with the intention to provide
a repeatable process which can be used to quickly retrieve data from multiple OSS projects.
The scope of this study is primarily focused on the open source software programs used
by ARSENL for their swarm UAV research, which are shown in Table 2.2. Most of the
programs in the list are hosted by a repository called GitHub. GitHub stores a lot of data on
individual projects, including issue open dates, issue close dates, commits per month, lines
of code, contributors over time, and programming languages used, but the data cannot be
downloaded directly from the website as with Gitorious.

Instead of providing data directly through a graphical user interface (GUI), GitHub uses
an application program interface (API) [57] to provide access to data incorporated by open
source projects hosted on their website. It was determined that the best way to gather data
from the OSS projects used by ARSENL was to develop a software program that could
communicate with the API to pull data needed for the analysis. Ideally, an application
would have been designed and developed to access data from any OSS project by interfac-
ing with all major hosting repositories. The scope and time constraints of this study limited
the development of a program to retrieve information from GitHub, but possibilities for

49

future application development are discussed in Chapter 5.

4.2 Software Program Development
Before starting from scratch to design a new application, a search was conducted to locate
existing software programs with some or all of the functionality required to pull data from
GitHub. A program called “Gitstats” retrieved some of the needed data, but it was not fully
adequate to satisfy the requirements for this analysis. The program was open source, so
an attempt was made to modify the source code so that it performed what was needed, but
eventually it was determined that the program would not work properly without significant
adjustment.

No existing program was suitable for the job, so a new program was developed to retrieve
the data. In order to structure the development process, a short list of requirements for the
program was developed, which included the ability to interface with GitHub’s website, to
access open source project data, to process the data, and to output it to a file. The Python
programming language was used to build the code due to its simplicity and its large tool
set. The program’s source code is provided in the appendix.

4.2.1 Tools
The GitHub API uses the Hyper Text Transfer Protocol (HTTP) to accept requests for
information and deliver them to the user, and software projects hosted by GitHub are broken
down into a hierarchical format so that all information about the project is hosted under one
web page. The data is listed on the web page or linked to the web page by uniform resource
locators (URLs). The basic organization of information on the API is shown in Figure 4.1.

Data are organized into three categories, data items, which are singular entities that do not
branch to further data, URLs, which lead to web pages representing more information, and
data groups, which are lists of information that may include data items, data groups and
URLs. To fetch data from GitHub, an HTTP-based program library called requests was
utilized, which manages the data transfer process and provides tools that help limit the
amount of code needed to perform the transfers [58]. Requests allows easy transfer of data
from URLs on the API, and it brings the data into the program in the form of objects and

50

Figure 4.1: General organization of the Github API

lists. The data can then be sorted and plucked from the lists for output.

Once the data was organized properly, another python package called csv was used to
output the data to a format that could be used for analysis [59]. The csv module takes data
bundled in lists and reorganizes it into the CSV format, which is understood by spreadsheet
programs such as Microsoft Excel.

51

With the help of these tools, a software program called GitHub Data Analysis was created,
and the program allowed GitHub data to be accessed, imported into the program, converted
to a different format, and output to a file. From there, the data was examined to gain
information about the open source program it was associated with. The types of data that
were captured by the program are discussed in 4.2.2.

4.2.2 Data Types
For an open source software project to be successful, it needs to maintain a high level
of activity, as outlined in Chapter 2. One method for evaluating the level of activity of
a project is by examining its issues, which are similar to change requests and initiated
by programmers in the development community. They come in many different forms,
including feature requests, bug reports, enhancements, and support requests. If a user finds
a bug in the code, he can post it to the project’s website as an issue, which is then opened by
developers who begin working to find a fix. Once a developer solves the issue, he submits
a change to the code and the change is then accepted by a trusted developer, merged into
the code base, closed, and archived. This is one example of normal initiation and closure
of an issue, but not all issues are addressed immediately due to limited resources or invalid
requests.

To evaluate project activity, issue open dates and issue close dates were obtained from the
API. These dates provided information about how often issues were initiated and how
quickly they were resolved, and they indicated the total number of issues that were open
at a given time. Issue data allowed estimates to be made about activity levels and overall
project health, just like it did for the case study about FlightGear, discussed in Chapter 3.

While the GitHub Data Analysis program worked well, it is not complete, and future itera-
tions need to analyze more data from open source projects. There is a lot more information
available on repository websites that reflects the quality of OSS projects, such as commits
over time, number of developers, lines of code, and programming languages used. Due to
time constraints, the program only captured data on project issues, but future development
considerations are discussed in more detail in Chapter 5.

52

4.3 Example Analyses

4.3.1 ArduPilot
The first project to be analyzed using data collected by the program was ArduPilot, an
autopilot for UAVs. It is the most popular open source autopilot on the market [60], and
it incorporates approximately 180,000 lines of code provided by over 200 contributors.
Generally, the project is thought to be healthy, with high activity and a strong development
community [60].

Github Data Analysis pulled data for 2323 issues from the project repository. Issue open
and issue close dates per month were then graphed over the past two years, shown as a
scatter plot in Figure 4.2.

Figure 4.2: Ardupilot issue open and close dates over time

Each data point in Figure 4.2 shows the number of issues opened or closed in that month.
The first indication that the data provides is that there was an increasing trend for issues
being opened and issues being closed as time progressed during the analysis period. This
is one indicator of good project activity, as higher issue counts equate to more software
developers working on the project. The indication of higher activity levels in Figure 4.2
represents increased health for the project.

53

It is helpful to visualize the general movement of the number of issues being opened and
closed over time, which can be seen better by adding trend lines to the plot, as shown in
Figure 4.3.

Figure 4.3: ArduPilot issue open and close dates with trend lines

The slopes of the data shown in Figure 4.3 are close, but the line for issues being closed
is slightly steeper than the line representing issues opened (0.093 versus 0.084), which is a
good sign for the project health of ArduPilot. A positive trend in opened issues means that
users and developers were uncovering problems in the program at an increasing rate, and a
positive trend for closed issues indicates solutions were developed for the problems at an
increasing rate as well. Issues were also being closed at a faster rate than they are being
opened. Going forward, this could mean that the project would see a decreased number of
total issues that remain open, or a decreased backlog of issues.

The backlog of issues is another indicator of project health, as discussed in Chapter 3. The
backlog for ArduPilot is shown in Figure 4.4.

Over two years, the number of issues remaining opened increased from zero to around
600, and this could have been due to a number of reasons. Some issues may not have
been addressed due to a lack of developers who had time to work on them. Others may
have been technically difficult problems for which a solution had not been discovered, or
the issues may not have represented a problem, fix, or bug that needed to be corrected to

54

Figure 4.4: Total ArduPilot issues that remained open over time

meet the project’s requirements. Issues can be posted by any members of the development
community, and they are not necessarily vetted by caretakers to confirm their worthiness to
be tracked. Furthermore, “Issues” also includes feature requests, and if bug fixes are being
given priority then feature requests can fall by the way-side. Also, if no one is actively
monitoring feature requests, there could be a fair number of duplicates as different users
request the same features.

It should be noted that only data relating to issues was available for the analysis of ArduPi-
lot, as well as the other OSS programs in this section, due to stalled development of the
data gathering program required for the analysis. Conclusions being made in Chapter 4 are
tempered by the understanding of incomplete data, and full analysis of these programs is
remanded for future work, as discussed in Chapter 5.

4.3.2 MAVLink
Another open source program used by ARSENL is MAVLink, which provides communi-
cation protocol for micro air vehicles [61]. MAVLink was analyzed in the same way as
ArduPilot. Figures 4.5, 4.6, and 4.7 show the the raw issue data, trend lines, and backlog
for MAVLink.

55

Figure 4.5: MAVLink issue open and close dates over time

Figure 4.6: MAVLink issues open and close dates with trend lines

The trend lines indicate an increase in issues being closed over time, which is similar to
ArduPilot. The data showing issues opened over time has a nearly flat slope that is slightly
negative, which is mainly due to the first data point in the series being abnormally high.
The abnormally high data point in MAVLink’s data set for opened issues could be the
result of a large number of issues introduced at the start of the project, when the code
was first established. If the first data points are removed, the trends for MAVLink look

56

Figure 4.7: Total MAVLink issues that remained open over time

similar to ArduPilot. The issue backlog for MAVLink reflects good project health during
this time frame because the number of open issues rises initially but falls toward the end
of the period, indicating that most of the issues were addressed and fixed. Like ArduPilot,
MAVLink is identified as a project with high activity on OpenHub [62]. Analysis of the
data gathered by the GitHub Data Analysis program indicate a similar conclusion, that
MAVLink has good activity and would likely withstand a malicious software insertion
better than a program like FlightGear.

4.4 Collective Analysis
Several other open source programs were analyzed for comparison. Table 4.1 shows the
consolidated results, and Figure 4.8 shows trend lines for each program’s issue open dates
and issue close dates.

Figure 4.8 allows the health of each program to be compared by examining the difference
between slopes of the trend lines representing the number of issues opened over time and
the number of issues closed over time. Ideally, the slope for the number of issues opened
should be lower than the slope for the number of issues closed. This would indicate the
project is able to limit the percentage of issues that remain open over time. For the projects
analyzed, all but two (MAVProxy and PX4 Firmware) have this characteristic.

57

Program Opened dates
trend line slope

Closed dates
trend line slope

Backlog
slope

Backlog at
finish

ArduPilot 0.0840 0.0930 0.6170 579
MAVLink 0.0165 0.0179 0.0225 66
MissionPlanner 0.0132 0.0147 0.3397 242
MAVProxy 0.0123 0.0085 0.0247 35
PX4 Firmware 0.1220 0.1137 0.1403 161

Table 4.1: Issues analysis results for several open source projects related to UAV software devel-
opment

Figure 4.8: Number of issues opened and closed over time for six OSS programs

Comparing the slopes of the trend lines between programs also provides information about
the relative activity level of each program. Open source programs with high slopes indicate
there were progressively more work activity events at the end of the analysis cycle versus
the beginning. The large end number could be attributed to an increase in activity events
being performed by each member of the development community, but more likely it is due
to an increase in the total number of developers working on the project. For example, the
slope of the trend lines for PX4 Firmware are large (about 0.12), which means the project
activity for that particular program increased rapidly over the time period analyzed. In
contrast, the slopes for MAVLink are small (0.016), which indicates MAVLink experienced

58

similar activity levels at the beginning and end of the analysis period. A small slope is not
necessarily a bad sign, but increasing activity is a reasonable indicator of future project
health.

Finally, one of the most important observations is the distance between lines for individ-
ual programs. This indicates the difference between the total number of issues opened
and closed over time, which contributes to the project backlog discussed in Section 4.3.1.
Figure 4.9 shows backlogs for the same six programs shown in Figure 4.8.

Figure 4.9: Issue backlogs for six OSS programs

Ideally, open source projects would maintain constant backlogs, closing issues at the same
rate they are opened. For the projects analyzed, a large separation between lines in Figure
4.8 led to a higher backlog. This was due to the higher number of issues opened as the
projects progressed, as compared to the number of issues closed. Figure 4.8 shows a large
separation between trend lines for Ardupilot which is the reason for its steep slope in Figure
4.9. In contrast, despite the steep slopes of the trend lines for PX4 Firmware, shown in
Figure 4.8, the lines are close together. The backlog for PX4 is therefore sloped mildly as
compared to some of the other projects like ArduPilot. Theoretically, lower backlogs are
good for open source projects as they indicate a low workload for developers as programs

59

prepare to release their products to users.

4.5 Conclusion
The issue data gathered for this analysis was similar to that obtained for the FlightGear case
study, and the analysis of issues provided results with similar characteristics. Data for five
projects was analyzed, and the results indicated that the projects had good activity levels,
as each one experienced an increase in issues opened over time and issues closed over
time during the period analyzed. While the analysis of issues provides some indication of a
project’s health and its ability to withstand an attack by an adversary, the examination needs
to go into more depth (including interactions between different metrics) to make plausible
conclusions about a program’s survivability. GitHub provides more data such as commits
and developer information, and Chapter 5 explores methods for increasing the benefit of
this analysis by gathering a larger representation of data for projects being evaluated. It
is presumed that future analysis techniques will allow for better predictions of the event
probabilities used to calculate a program’s survivability.

60

CHAPTER 5:

Conclusion and Future Work

5.1 Conclusion

While proprietary software companies compete to gain market share, open source software
continues to survive and flourish. Its growing popularity draws support and funding from
large commercial companies who see the benefits of community-developed, open software
products. OSS also helps the DOD carry out its mission in many different capacities,
including information security, database management, and software development.

While technology development in the military often lags industry, the Department of De-
fense understands the value of OSS. The DOD has indicated that open products should be
given consideration alongside proprietary options when choosing between software alter-
natives. Open source software is important now, and signs indicate that its prominence will
increase in the future.

An important consideration for the DOD is determining how it will secure its hardware and
software systems against cyberattacks. The expansion of cyber warfare is evident by the
military’s increased posture against such threats, and it is important to evaluate the ability
of military software to defend against cyber aggression. In small UAVs, software is both
vulnerable and susceptible to attack, and large hardware systems including aircraft and
ships are no different. Software needs to be developed with this threat in mind.

The concepts developed in this thesis address the question of software survivability. Meth-
ods for analyzing the survivability of software were developed and discussed on several
OSS projects used on small UAVs, and the analysis showcased the potential of surviv-
ability concepts to identify ways to reduce the probability UAVs are compromised by an
attack on their software. To introduce the survivability analysis process, a program called
FlightGear was analyzed by gathering data for the project, including issue dates, commit
dates, and developers over time. The OSS development process was segmented into several
events, and each of the events was assigned a probability based on heuristics and informa-

61

tion gleaned by analyzing data for FlightGear. After probabilities were assigned for each
event, the overall probability of survival for a small UAV utilizing the FlightGear software
was calculated. Based loosely on the data, along with several assumptions for the scenario,
it was determined that FlightGear only had a 60 percent chance of surviving and malicious
attack.

The results of the FlightGear analysis tested the concept of using traditional survivability to
evaluate the quality of the development process for an open source project. The data used
for the analysis was plucked from the websites manually, which took a substantial amount
of time. It was determined that in order for the analysis to be worthwhile, data needed to be
collected much more efficiently due to the large number of OSS projects in need of analysis.
A single military hardware system can contain many software programs, and to obtain data
for those programs manually by visiting websites is inefficient and cumbersome. To solve
this problem, a software program was designed to help facilitate data gathering for open
source projects.

Most of the open source programs used by ARSENL for UAV development are located on
the GitHub version control repository, so the program was designed to operate specifically
with this repository. The GitHub API was used as an interface for the GitHub Data Analysis
program to reach and obtain the data. Once the program had data, it organized it and
output it to a spreadsheet, where it could be analyzed using the Microsoft Excel spreadsheet
program.

Ardupilot was one of the open source software projects analyzed, and during the time pe-
riod of the analysis, ArduPilot showed high activity. The activity level was based on the
number of issues being opened and closed over time, and both categories of issues increased
during that span. This meant that the project experienced increasing levels of developer in-
volvement as time progressed. The average number of issues being closed out on a monthly
basis was lower than the number of issues being opened. This meant that the project was
also experiencing a significant buildup of issues waiting to be closed. Depending on the
nature of the issues remaining open, this could mean that the project was over-stressed at
some points of the analysis cycle, but general trends in the data still suggested that Ardupi-
lot maintained high activity levels, which indicates good project health.

62

By this analysis, Ardupilot is assessed to be a healthy OSS program, and this assessment is
supported in an independent analysis performed by Black Duck Software Inc. [60]. Healthy
OSS projects are more resistant to malicious attacks than projects with small user commu-
nities and minor activity levels, therefore, event probabilities described in Section 3.5.3
would be lower than average for a project like Ardupilot. This means that an aircraft using
Ardupilot would have a higher chance of surviving a cyberattack on its software.

The extensive research conducted for this study, combined with the results obtained by
the survivability analysis, provide some general guidance on ways which programs can be
guarded against attacks on their development processes. The research on these topics is
not exhaustive, however, and there is availability for expanded analysis and exploration
into these areas and related areas that could improve and validate the survivability analysis
procedures presented here.

5.2 Future Work
Nominally, the presented analysis would contribute more information to the assignment
of probabilities for individual events in the scenario by examining more programs, more
data, and more features of the projects. As discussed in Chapter 3, characteristics such as
the issue backlog disclose information about an open source project’s ability to withstand
an attack. The demonstrated methodology for evaluating a program’s survivability helps
validate event probabilities, but the analysis could be expanded and refined to provide more
evidence for quantifying the probabilities. The need for more research and future work is
discussed in Section 5.2.

The work performed in this thesis led to new ideas about software development and pro-
gram analysis. There are many more topics that should be considered and explored to
understand how development methods (especially open source methods) can be improved.
Potential avenues for future work are discussed in the following sections.

5.2.1 Data Requirements
The GitHub Data Analysis program only retrieved projects’ issues from their repository,
but GitHub provides a tremendous amount of additional data on each open source project.

63

Characteristics such as the number of lines of code incorporated in a project, the num-
ber of commits made per month, the commit frequency, the number of developers in the
community, and the languages used in the program can all be found on GitHub. Different
repositories, such as SourceForge, GitLab, BitBucket, and Codeplex, may offer even more
data pertaining to the OSS programs hosted on their websites. The quality of the surviv-
ability techniques discussed in Chapter 3 will increase with a better understanding of the
data associated with OSS projects being analyzed. The following sections list the benefits
of acquiring specific data types.

Development Community
The development community working on an open source project could provide ample in-
formation about project health. Programmers are required to have a profile (at minimum
a username and email) in order to work on projects, and they often provide more infor-
mation such as their name, their background, their work history, and their interests. This
information could provide insight to the health and well-being of a program. Of special im-
portance are the trusted developers, or caretakers of open source software, as they are the
few programmers who have special permissions to approve new software to be merged into
a repository’s code base and release new versions of the software to the users. Their back-
grounds are especially relevant because they are so involved in producing the programs.
Data points such as the number of other open source projects they have managed (a mea-
sure of experience) could predict the future success of their current open source projects.
Other attributes of the development community that could be explored are the number of
general developers working on the project, the profiles and histories of the general devel-
opers, and amount of time developers spend working on projects.

Lines of Code
The number of number of SLOC incorporated in an open source software project is another
category of data to explore. Projects with a large code bases are generally more mature,
if only because it takes time, people, and resources to write code. A project with many
lines of code must have existed long enough to gain popularity, otherwise it would have
failed due to lack of support. Programs need to be useful for developers to be motivated to
work on them, and if they do not have much value, they will not likely remain active. An

64

existing source for data on OSS lines of code is Black Duck’s OpenHub website [55]. The
website provides graphical information representing the total lines of code in projects and
the rate the code was developed. Use of this metric, however, comes with understanding
that since SLOC is not comparable between projects written in different languages, it may
provide less utility than other metrics which are applicable across all types of projects. It
may be useful to determine a relationship between SLOC and program language before
adding SLOC to survivability analysis procedures.

Commits
Commits are an indicator of project activity. Viewing the number of commits made over
time can show developer activity level, and there are many ways which commit data can be
manipulated to contribute to various metrics. Total commits for a project can be examined
to get an idea of overall project activity, and individual commit levels provide information
about the primary developers, such as their work consistency, dedication to the project,
and coding capability. One commit-related metric analyzed by Kolassa et al. is the time
between code contributions [63] for individual developers. Their research determined that
projects with lower commit frequencies were not as successful as projects with higher com-
mit frequencies. This theory could be expanded in future work to determine how commit
frequencies affect OSS survivability. Commits are a fundamental part of the open source
development process. They could be important for defining metrics for survivability.

Programming Language
Each software program is written in a certain programming language, some examples being
C++, C, Python, JavaScript, Java, XML, and Matlab. The language open source projects
use could reflect other characteristics of the code such as the security, the functionality,
and the performance capability of the projects. A separate analysis would be required to
determine if and how programming languages affect software programs. The languages
used could also provide information about the demographics of the developers writing the
program. If there are language preferences among known groups of developers, this infor-
mation could be used to categorize the community of people working on certain projects
and determine their motivation and capability for for working on them.

65

Issues
Issues were captured in this analysis, but there is more information that can be gleaned from
the data than what was gathered. There are many types of issues that can be generated for
a project, and bugs and vulnerabilities are just one type. Other project concerns such as
feature requests and integration questions show up in the repositories as issues as well.
Some issues provide significant information about project health or activity, while others
providing less fruitful statistics. One way that GitHub allows project managers to filter
their project’s issues is through labels, which allow categorization of each issue tracked
by in a project. If a project manager applies labels, users and developers can gain general
information about issues by simply looking at a glance. Labeling also allows programmers
and managers to prioritize which issues should be handled first, and issue labels could be
used to filter the unimportant issues out of the picture before performing a survivability
analysis.

Issue data could also be explored to determine correlations between developers, commits,
and issues. It may be useful to examine who makes a lot of commits, who generates issues,
and who closes issues, in order to discover which programmers achieve an equal balance
between writing code and fixing problems. This balance may be a desirable characteristic
for a project developer, or it may have little effect at all. Monitoring the breakdown of
commit work versus issue work could help determine how it relates to the success of a
project.

Open Source Repositories
There are several popular open source repositories used by OSS project managers. Only
GitHub was analyzed during this research, but others include GitLab, CloudForge, Bit-
bucket, Launchpad, and SourceForge [64] [65] [66]. Other hosting platforms need to be
reviewed and included in the data gathering process so that survivability techniques can be
applied to all programs of interest.

Not all repositories use the same framework for revision control. Git is a popular revision
control system used by GitHub and GitLab, among others, but other control systems in-
clude SVN, Bazaar, Mercurial, and Veracity [67]. Each has their own way of maintaining
repositories, which affects how their databases are accessed. The Github Data Analysis

66

program needs to be expanded to handle other revision control systems, and this will allow
a broader sample of open source projects to be analyzed.

5.2.2 Common Vulnerabilities and Exposures
The Computer Vulnerabilities and Exposures (CVE) list is published by the MITRE Corpo-
ration, and it is “...a dictionary of common names for publicly known information security
vulnerabilities” [68]. When software vulnerabilities in computer programs are discovered,
they are added to the list produced by MITRE, and computer security companies such as
Symantec use the list when designing software to defend against attacks.

The CVE list could be used as another tool to identify whether certain open source pro-
grams are appropriate for military applications. Data from the list could be gathered and
added to the data from open source repositories. If vulnerabilities were identified for an
open source project, they could be compared to vulnerabilities in proprietary projects to
determine how they might affect the operation of the program, and this could help define
event probabilities for a project’s survivability analysis.

The presence of known security flaws (which have been fixed) does not necessarily mean
that a program is not secure, but it likely means that more people are looking at the code. All
code has bugs, and finding the vulnerabilities depends on how hard users look for them. A
project with flaws that have been identified has likely been reviewed and tested extensively,
and this is good for any software project, including OSS, because scrutiny leads to better
product development. The CVE list is essential to a good security evaluation system, and
it would help substantiate an OSS software selection tool based on survivability.

5.2.3 Survivability
The survivability analysis introduced in Chapter 3 focused on one OSS program. It pre-
sented a means for calculating the survivability of the software program to withstand an
attack against a fictitious enemy. It is a good baseline for future survivability analyses to
expand on, but several portions of the study could be improved to evaluate other software
products. Potential topics to help improve the survivability analysis are discussed in the
following sections.

67

Threat Analysis
For FlightGear, a threat scenario was designed as an example, which was completely ficti-
tious, and no research was conducted to assess actual threats to OSS used in UAVs. One of
the fundamental principles of survivability is the threat to the object being analyzed, and in
order to defend against a threat, its capabilities must first be understood [69].

Primary threats designed to fight military aircraft are surface to air missiles, anti-aircraft ar-
tillery, and air-to-air weapons. An aircraft’s survivability depends on what threat it is going
against, who is operating the threat, and the environmental factors surrounding the scenario.
This is why extensive live-fire testing is performed for all major military systems [70]. Soft-
ware could benefit from the same type of testing if general guidelines and requirements for
procedural guidance were established. Conventional threats to aircraft have been studied
and documented for decades, but cyber warfare is a much younger movement, so threats
have not been evaluated or cataloged in as much depth. Each potential enemy should be
evaluated for their ability to conduct attacks on software, including their ability to infiltrate
open source software programs as in the scenario presented in Chapter 3. Once known
threats are established, individual programs could be evaluated on their ability to defend
against them.

Probability Assignment
Another cornerstone of survivability analysis is the correct identification of probabilities
associated with events in a scenario. E3A analyses help identify specific events that would
occur if an attack scenario were to take place. To determine the overall probability of sur-
vival against the threat, probabilities for each event in the E3A are computed and inserted
into the equation for the probability of kill, as in Section 3.5.4. The overall probability is
only valid if the individual event probabilities are sound, so the event probabilities are what
justify the validity of the survivability of a program.

In order to gather accurate event probabilities, the data needs to be updated and accurate,
and the methodology needs to be good. This thesis hypothesizes that repository data re-
lating to an open source project reflects the project’s quality, but this hypothesis needs
to be verified. One option is to research open source evaluation techniques, and several
models have already been designed to help determine the attributes that successful projects

68

share [71] [72] [73] [74]. These models could be used to verify the methodology of future
revisions of the GitHub Data Analysis program, and could give credibility to the assign-
ment of event probabilities.

OSS Project Differences
There is a wide range of open source project sizes, and some large project have been un-
der development for many years. These projects have big development communities and
extensive data that can be analyzed, but other programs are smaller, with little background
or history to draw from. There were five programs analyzed in Chapter 4. ARSENL uses
many more programs than the ones evaluated, but some of them were too small to be an-
alyzed by the GitHub Data Analysis program due to their issue counts, which would not
have provided useful information.

OSS programs with short histories should not be automatically disqualified for use, as there
are other indicators of project health other than issues. It may not be feasible to compare
all open source projects in the way demonstrated in Chapter 4 due to their widely differing
characteristics. Further research is needed to recommend other methods for categorizing
and analyzing smaller OSS programs. Once the survivability of individual programs being
used by a system is identified, an integrated analysis of all programs would be possible.

There are also differences between programs due to their functionality. Section 2.4.2 dis-
cusses the types of software used on UAVs. Some programs have a much bigger impact on
UAV survivability than others, for example, ordinance control software, if compromised,
could have a dramatic affect on an aircraft’s operation. A program used to capture and
record routine flight data would not have as big of an affect, but if the two programs were
integrated in such a way that an adversary could access the ordinance control software
through the data recording software, he could potentially cause serious damage by simply
adjusting the flight recorder. To fully understand the survivability of open source software
used in military systems, dependencies between software programs should be studied.

Proprietary software
The concepts of survivability for OSS could be adapted and applied to proprietary software.
The biggest hurdle to this task is acquiring data from commercial companies about their

69

programs. It is not in the nature of closed software developers to release information about
the products they create. In contrast to OSS, information about the development process of
proprietary software is rarely available, and neither are statistics such as issues, commits,
and number of developers working on a project.

Survivability of proprietary software could help determine a recommendation for the type
of project to use for a specific application. It would also be important if a system utilized
both proprietary and open source software, which is common. By identifying the vulnera-
bilities of all programs being used, a complete picture of a system’s probability of survival
could be developed.

5.2.4 Advanced Analysis Model
The software program that was developed for this thesis streamlined the process for gather-
ing data. It allowed multiple entries for issues to be collected simultaneously. The program
wrote the data to a CSV file format. The data needed to be analyzed manually using a
spreadsheet program. It would be ideal to design a program which grabbed more data and
processed it immediately.

A domain analysis should be conducted to understand more about how similar programs
work. This could be followed by a standard stakeholder analysis and functional break-
down for the potential computer program. Requirements should be developed to provide
guidance through the design process and maintain consistency during development.

The following sections describe recommendations for a follow-on program.

Data Fetch
The first need for a new program is a wider array of data. Section 5.2.1 describes several
types of data that could be useful for OSS program evaluation. The data needs to be taken
from GitHub and other websites that host OSS repositories. Developers need to research
the different revision control systems used by the host sites. After obtaining the data from
the repositories, it would be stored and managed by the program so it could be used for
output.

70

Data Manipulation
After storing the data locally, it needs to be processed. This could include combining
and separating data, performing mathematical analysis, applying statistical techniques, and
omitting unusable data. The processing would be where the most effort would be required.
After the data is processed, it needs to display output to the user.

Program output
The output of the program should be tailored to the needs of the stakeholders. One of
most useful products of the code utilized in the thesis was the graphical representation of
the issues over time. This was a great tool for visualizing attributes of individual projects
and comparing multiple projects at once. Graphics of some sort will likely be required for
follow on projects. They present the data concisely and allow decision-makers to better
understand information buried in the numbers.

The output could also provide direct recommendations for deciding between open source
alternatives. Decision-making analysis could be employed to help with these recommenda-
tions. The program may need to accept input from the user to define the scope of their needs
before performing the analysis and presenting the output. The program should backup any
recommendations by justifying them with data.

5.3 Summary
There are many directions in which this analysis could progress. Open Source Software
projects provide data which is generally open and available to study. This is one of the
great benefits of OSS. Recently, repository websites have improved, with many providing
their own graphs which show statistics about project health, activity levels, and popularity.
There are also organizations dedicated to the study and evaluation of open source projects,
for example, Black Duck Inc. performs analysis on many of the open source projects in
today’s market. As the popularity of OSS continues to increase, so will the need for critical
analysis of its capability. This thesis provides a starting point for survivability to be used
as a tool in the analysis and evaluation of OSS.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

APPENDIX: Program Code

The GitHub Data Analysis program source code is provided to support potential future
work. The program is actually broken into two text files, githubIssuesAnalysis.py and
analyzeGithubData.py, which are both shown here. The programs can be downloaded
from the following website: https://yoda:18080/dcumming/github_analysis or re-
quested from the author or his adviser. Chapter 5 can be referenced for ways to expand and
improve the program.

A.1 githubIssuesAalysis.py
1 """
2 Script to get issue information from GitHub using GitHub API
3

4 Uses basic ’ requests ’ package for Python to handle HTTP(S) requests (per GitHub API)
5 REF: http :// stackoverflow .com/questions/10625190/most−suitable−python−library−for−github−

api−v3
6

7 Author: T.H. Chung
8 """
9

10 import numpy as np
11 import requests # http :// docs.python−requests.org/en/ latest / user / quickstart /
12 # http :// docs.python−requests.org/en/ latest /
13 # http :// www.pythonforbeginners.com/requests/ using−requests−in−python
14 import json
15 import ssl
16 import os
17 import datetime
18

19 # Define the GitHub repository to be inspected
20 name_input = raw_input("Please enter full name of GitHub project (e .g. ’diydrones / ardupilot ’) :")
21 repo_name = ’ https :// api . github .com/repos/’ + name_input
22 projectNameList = repo_name. split (" /")
23 projectName = projectNameList[−1]
24 today_str = datetime . date . today () . strftime (’%Y%m%d’)

73

25 dataFile = projectName + ’_data_’ + today_str + ’ . txt ’
26

27

28 # 1. Inspect appropropriate path to records text file
29 # 2. Check if file with name is in that directory
30 recordFileExists = os . path . isfile (dataFile)
31

32 # 3. If yes , "load" text file into script variable
33 if (recordFileExists) :
34 # 3. "load" text file into script variable
35

36 print "Data file exists . Use ’ analyzeGithubStats .py’ to analyze %s" % dataFile
37

38 # Continue with processing
39 # Example: Access the first record with ’d [0]’
40 # Example: Access the ’ created_at ’ time of the first record with ’d [0][’ created_at ’]’
41

42 else :
43 # 4. If no, execute the " requests " code to get the actual data from the URL
44 r = requests . get (repo_name)
45

46 if (r .ok):
47 # Get the number of open issues for this repository
48 num_open_issues = r . json () [’open_issues_count’]
49 print ("Number of open issues : %d" % num_open_issues)
50 print ""
51

52 # Get header information regarding issues for the specified GitHub repository
53 # − Fetch up to 100 issues per page (maximum allowable, to minimize number of request calls

)
54 # EX: test = requests . get (’ https :// api . github .com/repos/diydrones / ardupilot / issues ?page=2&

per_page=100’)
55 test = requests . get (repo_name + ’/ issues ?per_page=100&state=all’)
56 if (test .ok):
57

58 # Determine number of pages, using header information
59 # REF: https :// developer . github .com/v3/issues /# list −issues−for−a−repository
60 # REF: https :// developer . github .com/guides/ traversing −with−pagination/
61 # Contained in the header

74

62 link_to_last_page = test . links [’ last ’][’ url ’]
63

64 # Parse ’ link_to_last_page ’ string to find total number of pages [check]
65 # EX: ’ https :// api . github .com/ repositories /7512484/ issues ?per_page=100&page=6’
66 parsed_url = link_to_last_page . split ("=")
67 num_pages = int(parsed_url [−1])
68 print link_to_last_page
69 print num_pages
70

71 repoItem = []
72 # Initialize variable to store all issue times
73 issue_times = []
74 create_times = []
75

76 # Iterate over all pages and get listing of issues
77 for page_num in range (1, num_pages+1):
78

79 # for page_num in range(1,2+1) :
80 issue_page = requests . get (’%s/issues?page=%d&per_page=100&state=all’ % (repo_name,

page_num))
81 print issue_page
82

83 # Capture the issues in JSON format to make it easier to parse
84 # Same as ’ issue_page . json () ’
85 repoItem.append(json . loads (issue_page . text or issue_page . content))
86 print ""
87

88 # Iterate over all issues on this page and print out the desired field
89

90 # Flatten the list (so it ’s only one−dimensional)
91 # REF: https :// coderwall .com/p/rcmaea/ flatten −a−list−of−lists−in−one−line−in−python
92 flatrepo = [item for sublist in repoItem for item in sublist]
93

94 # DUMP TO the text file so I don’t have to fetch in the future
95 # REF: https :// docs.python.org /2/ library / json .html
96 # REF: http :// stackoverflow .com/questions/12309269/write−json−data−to−file−in−

python
97 with open(dataFile , ’a’) as outfile :
98 json .dump(flatrepo , outfile , indent=4, separators =(’ , ’ , ’ : ’) , sort_keys=True)

75

99

100 """
101 Some nice references :
102

103 Interesting graphics or comments on metrics
104 [] http :// webapps.stackexchange.com/questions/41336/github−new−fixed−issues−statistics
105 [] http :// blog .comindware.com/solutions/bug−tracking−software/
106 [] http :// sqa . stackexchange .com/questions /1888/what−bug−statistics−are−most−useful−why
107 [] https :// github .com/StephenOTT/GitHub−Analytics
108 [] https :// www.dropbox.com/s/xrr37sefj0xpr93/Ruby%20Tuesday%20−%20Github%20Analytics.pdf
109

110 Interesting software
111 [] https :// github .com/michaelliao /githubpy
112 [] http :// stackoverflow .com/questions/10625190/most−suitable−python−library−for−github−api−

v3
113 []
114 """

76

A.2 analyzeGithubData.py

1 """
2 Script to output issue information obtained by githubIssuesAnalysis to CSV
3

4 Uses basic ’ requests ’ package for Python to handle HTTP(S) requests (per GitHub API)
5 REF: http :// stackoverflow .com/questions/10625190/most−suitable−python−library−for−github−

api−v3
6

7 Author: T.H. Chung
8 """
9

10 import numpy as np
11 import requests # http :// docs.python−requests.org/en/ latest / user / quickstart /
12 # http :// docs.python−requests.org/en/ latest /
13 # http :// www.pythonforbeginners.com/requests/ using−requests−in−python
14 import json
15 import ssl
16 import os
17 from pprint import pprint
18 import datetime
19 import csv
20

21 # Define the GitHub repository to be inspected
22 name_input = raw_input("Please enter full name of GitHub project (e .g. ’diydrones / ardupilot ’) :")
23 repo_name = ’ https :// api . github .com/repos/’ + name_input
24 projectNameList = repo_name. split (" /")
25 projectName = projectNameList[−1]
26

27 today_str = datetime . date . today () . strftime (’%Y%m%d’)
28 dataFile = projectName + ’_data_’ + today_str + ’ . txt ’
29

30 # Import the data file into variable ’d’
31 with open(dataFile) as json_data :
32 d = json . load(json_data)
33 json_data . close ()
34 # pprint (d) # If you want to print the record
35

36 # Initialize variables

77

37 data_list = [] # Store output data
38 num_open = 0 # Count number of open issues (to confirm total)
39

40 # Iterate through all records
41 for i in xrange (0, np. size (d)) :
42 data_row = []
43

44 # Determine opened and closed times for this issue
45 opened_time = d[i][’ created_at ’]
46 closed_time = d[i][’ closed_at ’]
47

48 # Append outputs to data_row
49 data_row.append(opened_time)
50 data_row.append(closed_time)
51

52 # Check if the issue has been not closed
53 if (closed_time == None): #
54 num_open += 1 # Update count of number of open issues
55 data_row.append(None)
56 else :
57 # Create datetime objects from time stamp strings
58 A = datetime . datetime . strptime (d[i][’ created_at ’], "%Y−%m−%dT%H:%M:%SZ")
59 B = datetime . datetime . strptime (d[i][’ closed_at ’], "%Y−%m−%dT%H:%M:%SZ")
60

61 # Compute duration of how long the issue remained open
62 duration = B − A
63

64 # Append duration data to row element
65 data_row.append(int (duration . total_seconds ()))
66

67 # Append data_row to the data_list
68 data_list .append(data_row)
69

70 # Write data elements to csv file
71 with open(projectName + ’_issueTimes_’ + today_str + ’ .csv’ , ’w’) as fp :
72 a = csv . writer (fp , delimiter =’ , ’)
73 a. writerows(data_list)

78

List of References

[1] K. Noyes. (2010). Linux is on the rise for business. [Online]. Available:
http://www.pcworld.com/article/207479/linux_on_the_rise_for_business.html

[2] L. Orsini. (2015). An open-source standard could spur drone development. [Online].
Available: http://readwrite.com/2014/10/31/linux-foundation-drone-open-source

[3] R. N. Charette. (2009). This car runs on code. [Online]. Available:
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

[4] J. Cheng. (2014). Army lab to provide software analysis for Joint Strike Fighter.
[Online]. Available: http://defensesystems.com/Articles/2014/08/14/Army-F-35-
Joint-Strike-Fighter-software-tests.aspx?p=1

[5] DOD Washington D.C., “Clarifying guidance regarding open source software,”
Washington, 2009.

[6] Merriam-Webster.com. Software. [Online]. Available: http://www.merriam-
webster.com/dictionary/software

[7] J. Bersin. (2013). The software economy : why software jobs are taking
over. [Online]. Available: http://www.forbes.com/sites/joshbersin/2013/08/05/the-
software-economy-why-software-jobs-are-taking-over/print/

[8] D. Seetharaman and T. Gaynor, “Calling all ‘ code -aholics ’: U . S . automakers
vie for tech talent,” 2013. [Online]. Available: http://www.dailystar.com.lb/Business/
International/2013/Jul-30/225547-calling-all-code-aholics-us-automakers-vie-for-
tech-talent.ashx

[9] M. Sullivan, “F-35 Joint Strike Fighter: problems completing software testing may
hinder delivery of expected warfighting capabilities,” no. March, 2014.

[10] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla,” ACM Transactions on Software
Engineering and Methodology, vol. 11, no. 3, pp. 309–346, July 2002. [Online].
Available: http://portal.acm.org/citation.cfm?doid=567793.567795

[11] R. Sabhlok. (2013). Open source software: the hidden cost of free.
[Online]. Available: http://www.forbes.com/sites/rajsabhlok/2013/07/18/open-
source-software-the-hidden-cost-of-free/

[12] The MITRE Corporation, “Use of free and open-source software (FOSS) in the U.S.
department of defense,” pp. 1–168, 2003.

79

[13] P. Koltun, “Free and open source software use: Benefits and compliance obligations,”
CrossTalk, vol. 24, no. 6, pp. 28–30, 2011. [Online]. Available: http://www.scopus.
com/inward/record.url?eid=2-s2.0-81555199735&partnerID=tZOtx3y1

[14] Black Duck Software, “Future of open source software,” Black Duck Software, Tech.
Rep., 2015. [Online]. Available: http://www.slideshare.net/mjskok/2012-future-of-
open-source-6th-annual-survey-results

[15] OSI. (2015). Open Source Initiative. [Online]. Available: http://opensource.org/about

[16] B. Duck. (2015). Black Duck Software. [Online]. Available: https://www.
blackducksoftware.com/resources/data/top-20-open-source-licenses

[17] Netcraft. (2015). March 2015 web survey. [Online]. Available: http:
//news.netcraft.com/archives/category/web-server-survey/

[18] ScriptRock. (2015). IIS vs Apache. [Online]. Available: http://www.scriptrock.com/
articles/iis-apache

[19] J. Feller and B. Fitzgerald, “A framework analysis of the open source software
development paradigm,” ICIS ’00 Proceedings of the twenty first international
conference on Information systems, pp. 58–69, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=359723

[20] S. Acuna, J. W. J. Castro, O. Dieste, and N. Juristo, “A systematic mapping study on
the open source software development process,” 16th International Conference on
Evaluation & Assessment in Software Engineering (EASE 2012), pp. 42–46, 2012.
[Online]. Available: http://digital-library.theiet.org/content/conferences/10.1049/ic.
2012.0005

[21] DOD Washington D.C. (2015). DoD open source software FAQ. [Online]. Available:
http://dodcio.defense.gov/opensourcesoftwarefaq.aspx#General_information_about_
OSS

[22] K. Kishida and Y. Ye, “Toward an understanding of the motivation of
open source software developers,” in 25th International Conference on Software
Engineering, 2003. Proceedings. Portland, OR: IEEE, 2003. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1201220

[23] M. Sherman. (2011). Careers 2.0 now does GitHub. [Online]. Available:
http://blog.stackoverflow.com/2011/03/careers-2-0-now-does-github/

[24] Dronecode Project. (2015). Linux Foundation collaborative projects. [Online].
Available: https://www.dronecode.org/

80

[25] G. Moody. (2014). Linux Foundation does open source drones. [Online].
Available: http://www.computerworlduk.com/blogs/open-enterprise/open-source-
drones-3580191/

[26] E. Haruvy, F. Wu, and S. Chakravarty, “Incentives for developer’s contributions
and product performance metrics in open source development: an empirical
exploration,” Tech. Rep., 2005. [Online]. Available: http://115.111.81.83:
8080/xmlui/handle/123456789/6277

[27] Stack Exchange Inc. (2015). Stack overflow. [Online]. Available: http:
//stackoverflow.com/

[28] J. Kahn. (2013). Open source as a civic duty. [Online]. Available:
http://opensource.com/life/13/8/open-source-civic-duty

[29] L. Morgan and P. Finnegan, “Benefits and drawbacks of open source software: An
exploratory study of secondary software firms,” IFIP International Federation for
Information Processing, vol. 234, pp. 307–312, 2007.

[30] Apache. (2015). OpenOffice. [Online]. Available: https://www.openoffice.org/

[31] LibreOffice. (2015). LibreOffice. [Online]. Available: https://www.libreoffice.org/

[32] D. Tuma, “Open source software : opportunities and challenges,” CrossTalk, no.
January, pp. 6–10, 2005.

[33] D. A. Wheeler. (2015). Why open source software/free software (OSS/FS,
FLOSS, or FOSS)? Look at the numbers! [Online]. Available: http:
//www.dwheeler.com/oss_fs_why.html

[34] R. Glass, Perspectives on Free and Open Source Software. Cambridge, MA: The
MIT Press, 2005.

[35] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-source and
closed-sou software products search Abstract,” Poista, vol. 30, no. 4, pp. 246–256,
2004.

[36] S. Dean. (2014). It’s 2014, and open source documentation is still lacking. [Online].
Available: http://ostatic.com/blog/its-2014-and-open-source-documentation-is-still-
lacking

[37] W. Wagner, Lightning Bugs and Other Reconnaissance Drones. Aero Publishers,
1982.

81

[38] A. Roberts. (2013). By the numbers: drones. [Online]. Available: http:
//www.cnn.com/2013/04/05/politics/drones-btn/

[39] M. Ballve. (2015). The drones report: market forecasts, regulatory barriers,
top vendors, and leading commercial applications. [Online]. Available:
http://www.businessinsider.com/uav-or-commercial-drone-market-forecast-2015-2

[40] International Civil Aviation Organization, Unmanned Aircraft Systems. ICAO, 2009,
vol. 23, no. 2. [Online]. Available: http://dx.doi.org/10.1016/B978-0-12-374518-
7.00016-X

[41] D. Werner. (2013). Drone swarm: networks of small UAVs offer big capabilities.
[Online]. Available: http://archive.defensenews.com/article/20130612/C4ISR/
306120029/

[42] Federal Aviation Administration. (2015). Unmanned Aircraft Systems. [Online].
Available: https://www.faa.gov/uas/

[43] T. Chung, “Countering adversarial unmanned systems,” unpublished.

[44] M. Bronz, J. M. Moschetta, P. Brisset, and M. Gorez, “Towards a long endurance
MAV,” International Jounral of Micro Air Vehicles, vol. 1, no. 4, pp. 244–245, 2009.

[45] OSI. (2015). Licenses and Standards. [Online]. Available: http://opensource.org/
licenses

[46] R. E. Ball, “Southeast Asia Conflict, 1964-1973,” in The Fundamentals of Aircraft
Combat Survivability Analysis and Design, Second Edition, 2nd ed., J. A. Schetz, Ed.
American Institute of Aeronautics and Astronautics, Inc., 2003, ch. 1, pp. 95–101.

[47] S. Rousseau. (2003). Laser-guided missiles. [Online]. Available: http:
//www3.nd.edu/~techrev/Archive/Spring2002/a9.html

[48] Defense Acquisition University. (2014). Live fire test and evaluation. [Online].
Available: https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=91336359-
3460-445d-9ede-cb4876a4e135

[49] J. L. Lions, “Ariane 5 Flight 501 Failure,” Paris, Tech. Rep., 1996. [Online].
Available: http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

[50] N. Barry. (2013). All bugs have software. [Online]. Available: http:
//nathanbarry.com/bugs-software/

82

[51] E. Limer. (2014). Heartbleed: why the internet’s gaping security hole is
so scary. [Online]. Available: http://gizmodo.com/heartbleed-why-the-internets-
gaping-security-hole-is-1560812671

[52] R. E. Ball, The Fundamentals of Aircraft Survivability, Analysis and Design, J. A.
Schetz, Ed. AIAA, 2003.

[53] Gitorious. (2015). FlightGear. [Online]. Available: https://www.gitorious.org/fg

[54] Google. (2015). FlightGear - bugs. [Online]. Available: https://code.google.com/
hosting/moved?project=flightgear-bugs

[55] OpenHub. (2015). FlightGear Statistics. [Online]. Available: https://www.openhub.
net/p/flightgear

[56] Defense Information Systems Agency. (2015). Forge.mil. [Online]. Available:
http://forge.mil/

[57] Github Inc. (2015). Github developer: API. [Online]. Available: https:
//developer.github.com/v3/

[58] K. Reitz. (2015). Requests: HTTP for humans. [Online]. Available:
http://docs.python-requests.org/en/latest/

[59] Python Software Foundation. (2015). CSV file reading and writing. [Online].
Available: https://docs.python.org/2/library/csv.html

[60] OpenHub. (2015). ardupilot. [Online]. Available: https://www.openhub.net/p/
ardupilot

[61] OpenHub. (2015). MAVLink. [Online]. Available: https://www.openhub.net/p/
mavlink

[62] OpenHub. (2015). MAVLink project summary. [Online]. Available: https:
//www.openhub.net/p/mavlink

[63] C. Kolassa, D. Riehle, and M. a. Salim, “The empirical commit frequency
distribution of open source projects,” Proceedings of the 9th International
Symposium on Open Collaboration - WikiSym ’13, pp. 1–8, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2491055.2491073

[64] J. Bowes. (2012). A code hosting comparison for open source projects. [Online].
Available: http://opensource.com/life/12/11/code-hosting-comparison

[65] Canonical LTD. (2015). Launchpad. [Online]. Available: https://launchpad.net/

83

[66] CollabNet Inc. (2015). CloudForge.org. [Online]. Available: https://cloudforge.com/

[67] G. Stansberry. (2008). 7 version control systems reviewed. [Online]. Available:
http://www.smashingmagazine.com/2008/09/18/the-top-7-open-source-version-
control-systems/

[68] MITRE. (2015). Common vulnerabilities and exposures. [Online]. Available:
https://cve.mitre.org/

[69] C. Adams, “Threats and threat effects,” unpublished.

[70] R. E. Ball, The Fundamentals of Aircraft Combat Survivability, Analysis and Design,
2nd ed., J. A. Schetz, Ed. AIAA, 2003.

[71] J. J. H. Piggott, “Open source software attributes as success indicators,” 2013.

[72] D. A. Wheeler. (2011). How to evaluate open source software / free software
programs. [Online]. Available: http://www.dwheeler.com/oss_fs_eval.html

[73] E. Petrinja, R. Nambakam, and A. Sillitti, “Introducing the opensource maturity
model,” Proceedings of the 2009 ICSE Workshop on Emerging Trends in Free/Li-
bre/Open Source Software Research and Development, FLOSS 2009, pp. 37–41,
2009.

[74] Qualipso. (2008). Trust and quality on free and open source systems. [Online].
Available: http://qualipso.icmc.usp.br/OMM/

84

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

85

	Introduction
	Background
	Scope
	Benefits of Study
	Research Questions
	Methodology
	Thesis Outline

	Literature Review
	Introduction
	Software
	Open Source Software
	Unmanned Aerial Vehicles

	Survivability Analysis
	Introduction
	Need for Survivability Analysis
	Threats
	Scenario
	Analysis
	Conclusion

	Data Analysis
	Introduction
	Software Program Development
	Example Analyses
	Collective Analysis
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	Summary

	Appendix: Program Code
	githubIssuesAalysis.py
	analyzeGithubData.py

	List of References
	Initial Distribution List

