
Fault Diagnostics in Power Electronics Based 

Brake-by-Wire Systems 

Abu! Masrur1
, Senior Member, IEEE, Hongjie Wu2

, Member, IEEE, Chunting Chris Mi2
, Senior Member, fEEE, 

ZhiHang Chen2
, Yi L. Murphe/, Senior Member, IEEE. 

1U S. Army RDECOM-TARDEC, Warren, Michigan, USA. 

2Department of Electrical and Computer Engineering, 

University of Michigan-Dearborn, Dearborn, Michigan, USA. 

Abstract - A de motor based brake-by-wire system is studied for the purpose of fault diagnostics of the 

power electronic switches. The voltage and current generated in the switching circuit under normal and 

six faulted conditions are observed. A hierarchical fuzzy diagnostic system has been developed to detect 

certain types of fault conditions in any specific solid state power switch at the moment immediately after 

the occurrence of the fault. The hierarchical fuzzy diagnostic system has been tested and validated using 

data from both simulation and lab setup with a I /3 hp DC motor and a DC/DC converter. The system 

performance has been compared with two different fuzzy diagnostic systems and the results are 

presented. The hierarchical fuzzy diagnostic system trained on the simulated model has the capability of 

detecting certain types of faulty conditions occurring in a brake-by-wire system setup in a lab in less 

than 0.0009s and pinpointing to the specific type of faults within less than 0.013s. 

Keywords - fuzzy logic, multi-class fault detection, brake-by-wire, power electronics, de motor, de-de 

converter. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
22 MAY 2006 

2. REPORT TYPE 
Journal Article 

3. DATES COVERED 
  22-05-2006 to 22-05-2006  

4. TITLE AND SUBTITLE 
Fault Diagnostics in Power Electronics Based Brake-by-Wire Systems 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Abul Masrur; Hongjie Wu; Chunting Mi; ZhiHang Chen; Yi Murphey 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Department of Electrical and Computer Engineering,University of 
Michigan-Dearborn,Dearborn,MI,48128 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
; #15906 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000 

10. SPONSOR/MONITOR’S ACRONYM(S) 
TARDEC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
#15906 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
A de motor based brake-by-wire system is studied for the purpose of fault diagnostics of the power
electronic switches. The voltage and current generated in the switching circuit under normal and six
faulted conditions are observed. A hierarchical fuzzy diagnostic system has been developed to detect
certain types of fault conditions in any specific solid state power switch at the moment immediately after
the occurrence of the fault. The hierarchical fuzzy diagnostic system has been tested and validated using
data from both simulation and lab setup with a I /3 hp DC motor and a DC/DC converter. The system
performance has been compared with two different fuzzy diagnostic systems and the results are presented.
The hierarchical fuzzy diagnostic system trained on the simulated model has the capability of detecting
certain types of faulty conditions occurring in a brake-by-wire system setup in a lab in less than 0.0009s
and pinpointing to the specific type of faults within less than 0.013s. 

15. SUBJECT TERMS 
fuzzy logic, multi-class fault detection, brake-by-wire, power electronics, de motor, de-de converter. 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

Same as
Report (SAR) 

18. NUMBER
OF PAGES 

22 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



I. lNTRODUCTlON 

The automotive industry has gtven increased attention towards the replacement of 

mechanical/hydraulic systems in vehicles using either fully or partially electric systems. In addition to 

the main propulsion, work has progressed towards the replacement o 1· various auxiliary devices, which 

are currently operated using mechanical, hydraulic, or pneumatic methods. These devices include 

steering, brakes, suspension, and various mechanical pumps. The mechanical systems are relatively 

heavy and difficult to package. On the other hand, electrical systems are easier to package since the 

wiring is flexible. Electrical systems use motors and solenoids as actuators and have fast response. 

However, if the motor system fails, the entire electrical system related to the motor ceases to function 

properly. A motor system consists of battery, wiring, power electronics, embedded controller, and the 

motor itself 

In this paper we present our research on fault diagnostics in brake-by-wire systems. Brake-by-wire 

systems and other X-by-wire systems with fully electro-mechanical devices or partial mechanical 

backup systems have been studied by various researchers [1-12]. Some of these works discuss the 

behavior of the brake in the context of the whole vehicle and how the brake system behavior irlfluences 

the overall vehicle performance. Others discuss electro-hydraulic systems including slip control, precise 

computation of the brake force, traction control, etc. However, in the literature, research work on fault 

diagnostics in the motor and its controller in brake-by-wire systems has not been reported in depth. 

Fault diagnostics technology for internal combustion (IC) engine vehicles has been well investigated 

[13-15], but much less so in electrical system diagnostics. Moseler and lsermann et al described a black 

box type model using a polynomial differential-algebraic equation with application to a brushless de 

machine [ 12]. There the authors estimated system parameters under normal and faulted conditions, and 

compared the same with the current system parameter values, and if any discrepancy with the normal 
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condition was seen, a faulty condition was declared. However, the parameter-estimated model can 

easily lose the intuitive focus of the system, and in general cannot point towards the specific problem 

and its location. In addition, the model can encounter a topological change after a fault, and hence the 

premises based on which the model was originally developed and the parameters estimated, may not 

hold anymore. 

This paper is focused on the power electronics swi tchcs since they are often considered to be the 

weakest link in the brake-by-wire system, i.e. in the whole link from the brake pedal to the brake shoe 

actuator. The objective is to accurately locate any faults within the power electronics of a brake-by-wire 

system as soon as they occur. We developed a brake-by-wire (BBW) system model using Simplorer 

software that implements the full control of the power electronics switches and emulates six different 

faulty conditions. We also developed a bench setup for a brake-by-wire system. The simulated model 

and the bench tests are compared under normal and faulty conditions. A hierarchical fuzzy diagnostic 

system has been developed and trained to detect all specified faulty conditions in a brake-by-wire 

system. The hierarchical fuzzy diagnostic system is designed based on the structure of the BBW system. 

It has the capabilities of detecting faulty conditions immediately after they occur, and pinpointing to 

specific faulty conditions within less than 0.02s on the bench setup BBW. The performance of the 

hierarchical fuzzy diagnostic system is also compared with two other fuzzy diagnostic systems, and the 

results are presented in the paper. 

II. A THEORETICAL MODEL OF THE BRAKE-BY-WIRE SYSTEM 

Figure 1 illustrates a quarter-model of the system architecture of a fully electro-mechanical brake­

by-wire system currently under study. The motor selected for the study is a brushed DC motor, which is 

inexpensive and is available in the automotive industry abundantly. The motor can be either permanent 
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magnet based or have a field winding. The system has 4 actuator motors corresponding to each wheel. 

The position signal from the brake pedal is fed to a controller which generates a control signal to 

activate one or more of the four brake motors. Each motor may have a separate control wire from the 

controller to allow the four actuators to run independently, which is more robust during a failure of one 

or more of the actuators. 

We developed a simulation model for the brake-by-wire system illustrated in Figme l. The block 

diagram of the simulated system is shown in Figure 2. The input to the system is the pedal position and 

pedal speed, which are transformed to Trcf, the reference torque. 

Vlheel 

Battery 

Figure I. Architecture of a brake-by-wire system. 

Pedal 
Posit ion 

v• 
Torque 

Power 
Electronics 

.----. r------, 
f-----1~ J V\ihe el 

.__ ______ ____, 

Figure 2. The system diagram for a brake-by-wire system 

The electromechanical system can be described through the following equations: 
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dl 
V = R 1 + L _ a + K<J)w 

0 
(I a 0 dt 

dw 
T = J - + B (I) + TL 

dt 

where Va is the armature voltage, Ia is the am1ature current, Ra is the armature resistance, La is the 

(1) 

(2) 

(3) 

armature leakage inductance, K is motor constant, <I> is total flux per pole, co is angular speed of the 

motor, Tis the output torque of the motor, J is inertia, B is damping, and his the load torque (braking 

force) . 

The motor voltage can be derived from the brake pedal position and pedal force. If the pedal force 

(or corresponding torque) is Tref, then the required motor voltage in Figure 2 is given by: 

T L dT 
V * = R ~ + _a ____!5!_ + K<J)m (4) 

0 

° Kct> K<J) df 

The power electronics circuit to actuate the motor is illustrated in Figure 3. Based on (4), a 

reference voltage is obtained from the de battery through PWM (pulse width modulation) techniques. In 

Figure 3, the motor voltage is 

(5) 

where D is the switching duty ratio of switch A, and VB is the battery voltage. 
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Figure 3. The inverter circui t d iagram fo r the brake-by-wire system 

III. SIMULATION STUDIES OF FAULTY CONDITIONS OF BRAKE-BY-WIRE SYSTEMS 

The system model shown in Figure 3 is implemented by using Simplorer based simulation. The 

simulated brake-by-wire system can simulate various faulty conditions ofthe four-switch scheme shown 

in Figure 3. Figure 4 shows the simulated current and voltage waveforms under normal and different 

faulty conditions. The ratings and parameters of the test motor are shown in Table I. It should be noted 

that the particular motor used was a higher voltage motor, rather than one would normally encounter in 

an automotive environment. This is due to the limitation of available resources. Nevertheless, the 

principles are well illustrated. In these simulations, the duty ratio of switch A is set to 70%. 

Table I Parameters of the 1lotor used in the simulation and e:'qJeriment setup 

Rated voltage 1:!5V Rated ctnTent 3.2A 

Rated Po>ver 1/3 hp Rated speed 1800rpm 

_·\nuature resistance Ra 8.980 A.1mature leakage inductance 5.35mH 

1fndune constant K<l> 0.475volt-secirnd Inert w 0.6xl0-3 kg.m2 
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(b) Battery current, motor current, and motor voltage under the faulty operation of switch A open circuit. 
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(c). Battery current, motor current, and motor voltage under the fa ulty operation of both switch A and A' open. 
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(e). Banery current, motor current, motor voltage under the faulty operation of switch AA' short circuit. 

Figure 4. Voltage and current waveforms under normal and fault conditions. 

It is worth to note that at 70% duty ratio, the open circuit fault caused by a broken switch of B and 

A' cannot be detected. This can be explained by Figure 5. When A & B' are on, the current flows 

through switches. When A' & B are on, however, current flows through freewheel diodes D3 and D2, so 

Band A' open circuit fault does not have effect on the current and voltage across the motor. 

D1 

D2 

When (A and B') close AND (A' and B) open When (A' and B) close AND (A and B' ) open 

Figure 5. Faulty condition caused by open circuit fault of broken switches A and/or B' 

In order to detect the open circuit fault condition caused by B and A', a duty ratio of less than 50% 

must be applied. In other word, as soon as duty ratio of less than 50% is applied, the fault signal can be 

captured. 

It is also worth to point out that the fault conditions have symmetrical characteristic due to the 

symmetry of the power electronics circuit. For example, in Figure 3, switch A with open circuit fault 
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will result the same behavior as B' open circuit fault; similarly, B open circuit fault will result the same 

behavior as A' open circuit fault. In summary, at any given time one of the six faulty classes can occur 

in a circuit shown in Figure 3. They are: A open orB' open, A' open orB open, AA' open or BB' open, 

A orB ' short, A' orB short, AA' short or BB' short. 

A bench setup was implemented consisting of a pe1manent magnet (PM) brushed DC motor, a full 

bridge converter, and a dSP ACE controller. The bench setup system has the capabilities to generate 

current and voltage signals llilder normal operating condition as well as various faulty conditions. The 

signals generated by the bench setup and the simulation model have similar behaviors. 

For the lab setup experiments, we emulated the open circuit faults caused by simulating any one or 

more of the switches open. The parameters of the motor tested are same as those used in the simulation 

as shown in Table I. The faults being tested include: A orB' open; BorA' open, both A and B' open; 

both B and A' open. Figure 6 gives an example of the signals generated by the simulation program and 

the lab setup test when the circuit has a fault caused by switch A open circuited. In the experiments, the 

sampling of data has limited rate. Therefore, only average gets sampled, whereas in the simulation, the 

data can be sampled at very high rate to show the detailed switching behavior. For ease of comparison, 

the simulation data has to be processed. For this comparison. the simulated data was processed using 

I 000 point moving average. It can be seem that the test data matches the simulation very well. 
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Figure 6. Comparison of simulated and tested motor current, power supply current, and motor voltage in a fault condition 
(Switch A open) The "RED" curves were generated by the simulation program, the "BLUE" curves were generated by the 
lab setup for the simulation. 

IV. A HIERARCHICAL Fuzzy DIAGNOSTIC SYSTEM FOR FAULT DETECTION 

IN A BRAKE-BY-WIRE SYSTEM 

A::, we have shown in the previous section, the faulty conditions mani rest in three output signals, i.e. 

motor curTent, power supply and motor voltages, denoted as Imo~> Ibar and Vmot respectively. 

Fault diagnostics in Brake-By-Wire (B-B-W) is performed by developing an intelligent system that 

has the capability of detecting six different classes of faults as soon as they occur. Figure 7 illustrates 

the major computational blocks involved in the proposed fuzzy B-B-W fault diagnostic system that 

consists of two stages, offline training and online diagnostics. During the training stage, a set of training 

data is generated by either a simulation program, lab setup, or physical data from a B-B-W device. The 

training data set should contain three signals, 1:,,
0

, [to, te], 1~0, [to, te], v,:,
0

, [to, te], generated under the 
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scenario of i-th faulty condition, for i = 1, .. . , k, where k is the number of faulty conditions to be 

detected. The time interval [to, te] represents the simulation time used to generate the signals. 

{ 1~1 [to. tel 
I~ [to. te ]. 

' 

v:.O, [to. t e) , 

i=L .. . , k} 

S_I1, 
Signal i =1 . ... k 
Segmentation 

Tr= {S_FV1 1 i fault dingno::t 1 
= L .. . , k} A fuzzy learning 

System Feature program for multi-

AfhzzyB-B·W 
c 

extraction class fault 
diagnostics 

(a) OfOine training stage 

Normal! A faulty clnss -Imot(t- M, t] . 
Ibat[t-nt, t]. 

Feature F\lt] Fuzzy B-B-W detected at timet. 
extraction Fault 

Ymot[t-M, t] Diagnostic 

(b). Online fault diagnostic stage 

Figure 7. Computational steps in a fuzzy B-B-W fault diagnostic system. 

Based on the B-B-W system presented in Figure 3 and the simulation model described in Section III, 

we need to design a fault diagnostic system that has the capability of detecting the following six faulty 

classes as soon as they occur in the system. 

• Class 1: switch A or B' is open 

• Class 2: switch B or A' is open 

• Class 3: both switches A and A' are open 

• Class 4: Switch A is short orB' is short 

• Class 5: Switch A' is short orB is short 

• Class 6: Both switches A and A' are short or both switches Band B' are short 

The first computational step is to segment the signals of i-th faulty class into a set of segments, S _I;, 

and extract the signal features from each segment in S_I;, fori= 1, ... , k. All feature vectors extracted 
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from signal sel'nw nt<.: fo rm a training data set which is used bv a fuzzy leaming algorithm to generate a 

fuzzy knowledge base that consists of fuzzy rules and 1uzzy membersh tp functions. At the online 

diagnostic stage. at any given time t, the condition of the B-B- W system is detected based on the 

behavior of the tnree "tgnals, Imot[t-.6.! ,t], Ibat lt-L\t ,tj , Vmotlt- r ,tJ wtthm the ume interval [t-M , t]. The 

feature vector~ an.: '-'X tracted from these three signal segments and the: results are sent to the fuzzy B-B­

W diagnostic . .;;. ·t ·m. which in turn determines whether the B-B W system is under nom1al operation 

condi tion, 0r t ' t'• \ •· p ·. f the six faulty condi tion ThP. follow i nt, two c-uh ~ L " ' ;0~1s will describe the two 

major computat .. 1l ,_., mponents in the fuzzy B-B-W fault Jiagnostic syste-m, signal segmentation and 

feature selection anci a hierarchical fuzzy multi-class diagnostic system. 

A. Signal Segmentution and Feature Extraction 

Under each faulty condition i, the three signals 1;wt [0, te] , !~at [0, te], v,;,ot [0, te], i = 1, .. . , 6, are fust 

segmented into three sequence of segments denoted as S _I ~lot , S _I ~at, S _ V ;not , where 

s_r:/10/ = {S _ I ;/1()/ lU -- l )L\t,jM] I j = I, ... ,n,&nL\t = tJ 

S_I ~at = {S _1~(1/ k i l)L'lt , jllt] I j = I, ... ,n,&nL\t = t.} 

s_ v :lOt = {S - V,,'/1,.[1 j - l )L'lt , jM] I j = I, ... ,n,&nL\1 = t.} 

(6) 

(7) 

(8) 

We use S_ l1 to denote all the segments generated from 1;
1101 

[0, te], 1~01 [0, te], V,;,
0

, [0, te], i.e. S Ii 

Since the three signals are acquired simultaneously, they are segmented into three sequences that 

consist of the same number of fixed sized segments. In every sequence, the two adjacent segments are 

overlapped by 1/3 of each segment in order to maintain continuity of information flow between 

segments. Figure 8 illustrates the segmentation scheme. Each blue line indicates the beginning of a 

segment, and the first subsequent red line indicates the ending of the previous segment and the second 
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one indicates the ending of the current segment. The signal between a red line and the subsequent blue 

line is the overlap portion of the two adjacent segments. 

Each segment is represented by three features, minimum, maximum, and average values within the 

segment. At time interval [(j -l)~t,j~t] , a feature vector is defined as: 

Fvi ( . i i i . Pi fJ i fJ i . vi vi v i) j = mrn_aj,max_ a j ,ave _ aj,m1n_ j ,max_ j, ave _ j, m1n_ j ,max_ j ,ave_ j 

where a~ , p; , and V) are the jth segment of 1~10, , I:,a, , and V,:,o,, respectively, generated by simulating 

the ith faulty class. The output from the feature extraction block at the training stage is a set of feature 

vectors, FVi, defmed as follows: FVi = { Fv; I j = l, ... ,n}. The training data used by the fuzzy learning 

program contain all the feature vectors in FVi for all i = I , .. . . , k. 

At the online diagnostic stage, fault detection is based on the three signals acquired within the time 

interval [t- l:!.t, t]. From the three signal segments, Im01(t- ~~ ,t], Ibat[t- M ,t], V mot[t- l:!.t ,t], a feature vector 

FV(t] is extracted, where FV[t] = 

{ min_ a(t),max_ a(t),ave _ a(t),min_fJ(t),max_ fJ (t ),are _ fJ(t),min_V(t),max_V(t) ,ave _ V(t)}. 

The fuzzy B-B-W fault diagnostic system will use the fuzzy knowledge bases generated at the 

training stage to derive the diagnostic decision, with the B-B-W system under normal or one of the six 

faulty conditions. 
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one segment 

_ L::---'---
540 

Figure 8. Illustration ofthe signal segmentation process. 

B. A hierarchical fuzzy diagnostic system for B-B-W fault detection 

Fuzzy logic has been popular in engineering fault diagnostics [ 16-20]. However, there has not been 

much discussion in the literature on different fuzzy system architectures for multi-class fault detection. 

There are a number of approaches that can be used to model a fuzzy multi-class classification problem. 

In th1s paper we present a hierarchical fuzzy diagnostic system, F, designed on the basis of the B-B-W 

system structure. Figure 9 illustrates the diagnostic stage of F. F has six fault diagnostic systems, Fi, for 

i = 1, 2, .. . , 6. F 1 is designed to detect normal condition from abnormal condition. This is the first 

diagnostic system that F calls to detect the current condition of the B-B-W system. When the F 1 decides 

that the current condition of B-B-W is normal, F immediately exits to process the next signal segment. 

Since most of the time a B-B-W is under normal condition, this system architecture ensures a fast 

detection. When F 1 detects an abnormal condition, it activates F2
, which is designed to detect whether 

the B-B-W system is in short or open circuit condition. If it is in the short circuit condition, then F3 is 

activated, which decides whether the B-B-W system is single switch or double switch short. If it is 
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single switch short, F5 is called to find out whether A orB' is short, or whether A' orB is short. If F2 

decides that the B-B-W system is in an open circuit fault, F4 is called to find out whether the B-B-W 

system is single switch or double switch open. If it is single switch open, F6 is called to find out whether 

A orB' is open, or A ' orB is open. 

t = t+~t 

Ibat [t- ~( ,t], 
lmot[t- ~~ ,t], 
Ymot[t-~f ,t] 

p5 

Feature 
Extract ion 

Single switch short 

A orB' short A' orB short 

Feature 
vector FV[t] 

Short circuit 

FJ 

pl 

(normal vs. abnormal) 
normal 

abnormal 

p2 

(open vs. short circuit) 

p4 
(single switch short vs. 
double switches short) 

(single switch open vs. 
double switches open) 

p6 

Both A and A' 
are short OR 
both Band B' 
are short 

Single switch open 

A orB' open A ' orB open 

Both A and A' 
are open OR 
both Band B' 
are open 

Figure 9: A hierarchical fuzzy diagnostic system for fault detection in a brake-by-wire system. 

Fuzzy reasoning is performed within the context of a fuzzy system model, which consists of control , 

solution variables, fuzzy sets, proposition (rule) statements, and the underlying control mechanisms that 

tie all these together into a cohesive reasoning environment. All six fuzzy diagnostic systems in F share 

the same input space, a 9-dimensional feature space as described in the last section. Therefore each 

fu t h 9 t 1 · bl FV _ {/min 1max 1ave 1 min 1max I tille vmin vmax v ave } d zzy sys em as con ro vana es, - mot ' mot ' mot ' bat ' bat ' bat ' mot ' mot ' mot ' an one 

solution variable, y, to indicate whether the input vector FV is likely to be in class 0 or class 1. The 
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fuzzy learning algorithm presented in [20] is used to generate funy knowledge base for each fuzzy 

system based on the data generated by the simulation model presented in the last section. 

V. E 'PER1MENT' AND ,'YSTF. 1 ~·VAlUATION 

We use the simulation model described in the last section to generate training and testing data. The 

simulation system has the following simulation parameters: DC motor with Vnc = 100V, Ra = 8.98 ohm, 

L:.~ - 11 ()n')J5 I-I, Initial Speed = (650/60)*2*n rad/s, Fricti0n Torque = 0.1 Nm. The inverter''> 

parameters were set to PWM Frequency = 5 kHz. Three s1gna1s, the battery current Ibat, the motor 

c'.lrr0 "'t r, 11 ., ::md the motor voltage Vmot. are measured for all :::i:v hu lty classes presented above. Each 

faulty event was triggered at the end of first second, and the entire simulation takes 2 seconds. 

The train ing data are collected and segmented as follows. For every faulty class, the faulty part of 

the signals has a duration of 15 ms., namely, 15000 data samples were generated under 1 micro second 

sampling rate. All three signals Imot, Ibat and V mot for each faulty class are segmented simultaneously 

into segments of 60 samples in each, with an overlap of 20 san1ples between two adjacent segments. 

The faulty portion ofthe signals was segmented into 378 segments. 

A feature vector is extracted from three signal segments, Imor, hat and V mot that occur at the same 

time interval as described in the last section. All those feature vectors are divided into 7 data sets, C0• 

C 1, ..• ( '6• where Co contains the feature vectors extracted from the normal signal segments, and C1, ..• , 

C6 contain the feature vectors representing the respective faulty classes. Each Ci is divided randomly 

into a training and a test set in a ratio of2: 1. 

For the purpose of evaluating the structured hierarchical fuzzy diagnostic system, we implemented 

two additional fuzzy diagnostic systems modeled with a fault-against-normal scheme. Figure 10 and 11 

illustrate the architectures of these two systems. The single 7 -class fuzzy classification system has the 
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same 9 control variables as the structured fuzzy diagnostic system, and it has one output variable that 

has 7 terms representing the normal class and the 6 faulty classes. 

Featw-e F 1 · a - -class Fnzzy 

~ •• [t.- M, t] 
Extraction .:·1.,,.1>t.ficatiou System 

:r,.,,[t-M. t] 
v ,..,,[t-flt . t] 

Normal 
"A or B' open I A' orB open I 

' open or BB • open/ [AA 
lA o 
[AA 

r B' short I A' or B short I 
' short orBB' short] 

Figure 10. A single 7-class fu zzy fault classification system. 

The fuzzy diagnostic system shown in Figure 11 is a set of six independently trained fuzzy 

diagnostic systems, each of which was trained by one faulty class against the normal class. The decision 

module, WTA (Winner-Take-All), selects the output class that has the highest fuzzy belief value. 

A orB' open 
vs N.or.mlll 

\.,[t· AI , t] A' orB open 
r_,[t-Lif. t] vs No.rmal 

v..,,[t- M. t] 
AA' open or 

I BB' opEn YS I FeM= Normal 
ET.inctio n 

!Feature 
A orB' short 

vector vs normal 
Fvltl 

.,, A: orB short 
vs . .lfor.m~! 

AA' short or 
BB' short YS 

Normal. 

\VTA 

I • 

--
-

"A orB' open/ A' or B open/ AB ' 
A'B open! A orB' short I A' 
rt f 

open or 
orB sho 
AB' sh ort or A'B short 
f-----
r--

Nonnal 

Figure 11 . F2: A fuzzy diagnostic system modeled using a fault-against-normal scheme. 

Table II through Table VI shows the performances of these three fuzzy diagnostic systems on the 

test data set. Table II shows that the single fuzzy system for 7-class fault diagnostic system completely 

missed the faulty class A ' orB open. Table III lists the detailed performances of the six individual fuzzy 

diagnostic systems used in the fault vs normal scheme, and Table IV lists the entire system performance 

after a WT A scheme is applied to the outputs from the six fuzzy diagnostic systems. The faulty class A 

or B ' open has a rather low detection rate. The performances of all the six fuzzy diagnostic system in 

the hierarchical fuzzy diagnostic system are listed in Table V. All six individual fuzzy diagnostic 
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systems performed well. Table VI lists the performRn ·e of the hierarchical fuzzy diagnostic system on 

all classes. It gave 100% detection on the normal c l:ts'· and three faulty classes, and more than 99% on 

rhe other r;m:.e fau:ty classes. 

T<~ ble II. Diagnostic performances of f'1 ·~ L- sir.gle fuzzy classification system. 

Case 
Normal 
A orB' Open 
A' orB Open 
AA' or BB' Open 
A orB' short 
A ' orB short 
AA' or BB' short 
Total 

Correct Rate 
L00 
96.78 
() 

tno 
1l\() 

100 
:oo 
8-+.27 

Table III. The performances of six fuzzy diagnostics modeled 
using Fault vs. Normal scheme used in F2. 

Faulty Type Normal class Correct Fault class Correct Overall Correct Rate 
Rate(%) Rate(%) 

F1
: normal vs. A orB' Open 100 100 

F2
: normal vs. A' or B Open 100 100 

F3
: normal vs. AA' or BB' 100 98.51 

Open 
F :normal vs. A orB' short 100 95.07 
F5

: normal vs. A' or B short 100 100 
F6

: normal vs. AA' or BB' 100 100 
short 

Table IV. The performance of F2: the fuzzy fault vs. normal 
system with a WTA decision 

Case Correct Rate 
Normal 100 
A orB' Open 85.48 
A' orB Open 100 
AA' or BB' Open 95.52 
A orB' short 95.07 
A' orB short 100 
AA' or BB' short 100 
Total 96.44 

(%) 
100 
100 
99.21 

97.22 

100 
100 
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Table V. The performances of the six fuzzy diagnostics used in 
F3: the hierarchical fault diagnostic system 

Faulty Type Class 0 correct Class 1 Correct 
rate(%) Rate(%) 

F 1
: class 0: normal vs. class 1 abnormal 100 100 

F2
: class 0: open vs. class 1: short fault 100 100 

F3: class 0: single switches short vs. class 100 98.51 
1: double switches short 
F4: class 0: single switches open vs. class 99.25 99.25 
1: double switches open 
F5: class 0: A orB' short vs. class 1: A' or 100 100 
B short 
F6: class 0: A orB' short vs. class 1: A ' or 100 99.30 
B short 

Overall Correct 
Rate(%) 
100 

100 
99.21 

99.25 

100 

100 

Table VI: Overall performance of F3: the hierarchical fuzzy fault diagnostic system 

Case Correct Rate 
Normal 100 

A orB' Open 99.19 
A' orB Open 99.30 
AA' or BB' Open 99.25 
A orB' short 100 
A' orB short 100 
AA' or BB' short 100 
Total 99.68 

In order to evaluate the robustness of the proposed diagnostic method, we conducted a set of 

experiments using the data acquired through the lab test set up described in the last section. Due to 

sampling rate limitation ofthe data acquisition system, we were able to sample data at about every 10ms 

and only three faulty classes were generated: class 1: A orB' open; class 2: A' orB open; class 3: AA' 

or BB' open. Three fuzzy systems are: F1 is trained to detect normal vs. abnormal, F2 is trained to 

identify whether the current fault is {A orB' open, A' orB open} or AA' or BB' open, and F3 is trained 

to identify whether the current fault is {A or B'} open, or {A' or B} open. All three systems are trained 

on simulation data and tested on the lab generated data. 

19 



<.:;jq ·e the motor voltage signal from lab data is async ;('" 't' · and has a sampling rate that is 

cii f+c::-r t from motor current and battery cmTent, we cannot I''~ ·" thr three signals in system training. 

Tl M~· r;. ··t.· only battery current, Ibab and motor current, fmol arc •t cl ;n ~'ystem test on lab data. 

\\'lwn the hierarchy fuzzy diagnostic system, which is ra i. e on the simulation data described 

earl wr 1" tested on the lab generated data, it detected 1 Q()ll;fl mrreC'tl y for normal condition and J 00% 

cor red on fault conditions as soon as they occurred. Howc1 ~.-r tiiC. identification of the type of fault 

condition took a few segments after the faulty conditions occur. For class 1: A or B' open, was 

~dt:llllltt:u ~orrectly at the 5th segments after the faulty condiu .. uccurred; class 2: A' orB open vas 

;l 1 ·: ~ ··~~ _. ;rnmediately as class 2 fault as soon as it occmTcd· ·l:J· · "1: AA' or BB' open was identifier. 

correctly at the 14th segment after the faulty condition occurred. The hierarchical fuzzy diagnostic 

")'<:tei"Yl take<; about 0.0009s to make a diagnostic deci<;ion to,·" niv'"'n <;ignal segment on a computer with 

Windows XP system and a PM 1.73 processor. Any abnormal conditions are detected within 0.0009s 

after they occur. For the faulty class identity, class 2 is immediately identified, which takes 0.0009s; the 

da~~ I ~~ identified in 0.0045s, and class 2 is identified in 0.0 12b~. 

These results show that the proposed hierarchical fuzzy diagnostic system trained based on a 

simulated B-B-W model has the capability of correctly identifying all faulty conditions in real-time over 

a wide operating domain. 

VI. DISCUSSION AND CONCI 11<\10 ~ 

We have presented an analytical model of the brake-by-wire system using an electromechanical 

actuator and implemented a simulation of the same using the Simplorer software by Ansoft. We also 

developed a bench setup model ofbrake-by-wire system. A de rnolor was used as an actuator, since it is 

more abundantly available with the present automotive supplier base. A very simple system was used, 

since cost effectiveness is of prime concern in the automotive industry. However the methodology 

illustrated is easily extendible to other kinds of motors and the principles discussed here still remain 

valid. Both the simulated and the bench test systems have the capabilities of generating current and 

voltage signals under normal operating condition and faulty conditions. An innovative hierarchical 

fuzzy diagnostic system has been developed based on the structure of a B-B-W system to perform fault 
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diagnostics. The hierarchical fuzzy diagnostic system gives 99.68% classification accuracy on all signal 

segments generated by the simulation model. While tested on the data generated by the BBW system in 

a bench setup, the hierarchical fuzzy diagnostic system has the capability of detecting any faulty 

conditions in less than 0.0009s and pinpointing to the specific type offaults within less than 0.013s. This 

indicates that the proposed hierarchical fuzzy diagnostic system has the promise of being implemented 

easily in a real time environment in the automobile and operating robustly in a wide range of conditions. 

Although a brake-by-wire system was used with application in automotive environment in mind, the 

methodology is equally applicable to other systems where such motors are used, including 

manufacturing and other non-mobile platforms. These will be studied and reported by the authors in 

their possible future work. 

VII. REFERENCES 

[1] W. Jonner, H. Winner, L. Dreilich, and E. Schunck, "Electrohydraulic brake system- the first 
approach to brake-by-wire technology", SAE paper no. 960991, 1996. 

[2] R. Schwarz, R. Isermann, J. Bohm, J. Nell, P. Rietch, "Modeling and control of an 
electromechanical disk brake", SAE paper no. 980600, 1998. 

[3] R. Schwarz, R. Isermann, J. Bohm, J. Nell, P . Rietch, "Clamping force estimation for a brake-by­
wire actuator", SAE paper no. 1999-01-0482, 1999. 

[4] Kihong Park, Seung-Jin Heo, "A study on the brake-by-wire system using hardware-in-the-loop 
simulation", Int. J. ofVeh. Design, Vol. 36, No. 1, 2004, pg. 38-49. 

[5] S. Underwood, A. Khalil, I. Husain, H. Klode. B. Lequesne, S. Gopalakrishnan, A. Omekanda, 
"Switched reluctance motor based electromechanical brake-by-wire system", Int. J. of Vehicle 
Autonomous Systems, Vol. 2, No. 3/4, p. 278-276, 2004. 

[6] N. Ueki, J. Kubo, T. Takayama, I. Kanari, M. Uchiyama, "Vehicle dynamics electric control 
system for safe driving", Hitachi website article: 
http://www.hitachi.com/ICSFiles/afieldfile/2004/11/26/r2004 04 104 3.pdf 

[7] "Electro Mechanical and Electro Hydraulical Brake from Continental Teves", website article": 
http:/ /www.contitevesna.com/word/PressKi ts/F rankfurt:/Brakes%20 1 %20EMB e.doc 

[8] ECE staff, "Brush de motor", ECN magazine, 5115/2005. 
[9] T. Takayama and E. Suda, "The present and future of electric power steering", Int. J. of Vehicle 

Design, Vol15, No. 3/4/5, 1994, pp. 243-254. 
[IO] M. Lefebvre, "Brush de motors turning more advanced", ECN magazine, 3/112002. 
[II] R. Isermann, R. Schwarz, S. Stolzl, "Fault tolerant drive-by-wire systems", IEEE Control Sys. 

Mag., Oct 2002, pp. 64-81. 
[12] 0. Moseier, R. Isermann, "Application of Model-Based Fault Detection to a Brushless DC 

Motor", IEEE Trans. on Industrial Electronics, Vol. 47, No.5, Oct. 2000, pp. 1015-I020. 

2I 



[13] M. yherg ·Model-based Diagnosis of an Aut'""~rnnt ive Engine Using Several Types of Fault 
Models , ILLL Trans. on Control Systems Teclluolugy, Vol. 10, No.5, 2002, pp 679-689. 

f14] Yi Lu Murphey, Hong Guo, Jacob A Crossman. and Mark Coleman, "Automotive Signal 
Di:tgH<'SlJf·· TTsing Wavelets and Machine [ eR .,,.; s" 1PEE Trans. on Veh. Tech., Nov. 2000, pp. 
1650-1662 

[151 Jacor '' Crossman, Hong Guo, Yi Lu Murphey ~ d Johr Cardillo, "Automotive Signal Fault 
Diagnosuc<: . Part I: signal fault analysis, fea ture e 1n-11'ttOn., an.d quasi optimal signal selection," 
IEEE Trans. on Veh. Tech., July 2003, pp. 1063-l 075. 

[16] B. Das, J. V. Reddy, "Fuzzy-Logic-Based Faull C1assi:fication Scheme for Digital Distance 
Protection", IEEE Trans. on Power Delivery, Vol. 20. No.2, April2005, pp. 609- 616 

[17] D. Fucs~cl. R. lsermann, "Hierarchical motor di:1g:n0<:;s utilizing structural knowledge and a self­
learning enro-:fuzzy scheme", IEEE Trans. on lndu <>tria.l Electronics, Volume: 47, No. 5, Oct. 
2000,pp. 1070-1 077 

[18J S. Vasilic, M. Kezunovic, "Fuzzy ART Neural 1 eLwurk Algorithm for Classifying the Power 
System Fa dts", IEEE Trans. on Power Delivery T··"lY' qq , 2004, pp. 1-9 

[l9] Z. Chen B 7hang, Y. Murphey, H. Jia, and M t\ IVIa<:rur "Robust Fault Diagnosis in Electric 
Drives Using Machine Learning", International Symposium on Vehicular Power and Propulsion, 
IEEE Vehicular Tech. Society, Paris, Oct. 2004. 

[20] Yi Lu, Tie Qi Chen, and Brennan Hamilton, "A Fuzzy System for Automotive Fault Diagnosis:­
-Fast Rule Generation and Self-Tuning," IEEE TrRns on Vehicular Technology, Vol. 49, No. 1, 
11ar. 2000, pp. 651-660 

22 


	hppscan1
	hppscan2

