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Lower Interbreath Interval Complexity Is Associated With
Extubation Failure in Mechanically Ventilated Patients During

Spontaneous Breathing Trials

Christopher E. White, MD, MSc, Andriy I. Batchinsky, MD, Corina Necsoiu, MD, Ruth Nguyen, MD,
Kerfoot P. Walker, III, MS, Kevin K. Chung, MD, Steven E. Wolf, MD, and Leopoldo C. Cancio, MD

Objective: To determine whether lower complexity of interbreath interval as
measured with nonlinear analysis techniques will identify patients who fail to
separate from mechanical ventilation after 30-minute spontaneous breathing
trials (SBTs).
Methods: Respiratory waveforms from SBT of patients in surgical or burn
intensive care units were recorded for later analysis. The decision to extubate
was made by attending physician. Extubated patients were observed for 48
hours; during this time, reintubation or noninvasive positive pressure venti-
lation was considered as a failure. Analysis of waveform data by software
was performed post hoc. Sample entropy (SampEn) and other nonlinear
measures were 48 hours of extubation.
Results: Thirty-two patients (24 burn, 8 trauma/surgical admissions; mean
age, 40.2 � 16.9 years; 26 men and 6 women) who were intubated �24
hours were extubated after SBT. Twenty-four patients were successfully
separated from mechanical ventilation and eight failed. Age, gender, and
mechanism of injury did not influence outcome. SampEn calculated for the
two groups presented in this study was different with the cohort that failed
extubation having a lower mean value (1.35 � 0.39 vs. 1.87 � 0.27;
p � 0.001). Other nonlinear metrics were moved in concert with SampEn.
The stationarity in the respiratory signal was not different between groups.
Conclusion: In intubated patients, the interbreath interval in those who were
successfully separated from mechanical ventilation was more irregular than
those who failed, as measured by nonlinear techniques. When available at
bedside, these metrics may be useful markers of pulmonary health and assist
in clinical decision making.
Key Words: Mechanical ventilation, Weaning, Respiratory variability, Sam-
ple entropy, Humans.

(J Trauma. 2010;68: 1310–1316)

The inability to tolerate separation from mechanical venti-
lation or the need for reintubation occurs in as many as

20% of mechanically ventilated patients and results in in-
creased intensive care unit (ICU) and hospital length of stay,
total hospital costs, and patient mortality.1–3 Conversely,
delaying extubation exposes the patient to the complications
and discomfort of unnecessary mechanical ventilation and
increased hospital costs.4 Multiple studies have shown that a
diverse collection of variables used to predict successful
separation from mechanical ventilation perform poorly and
add little to the physician’s clinical judgment.5 Recently,
attention has focused on the use of breathing variability as a
weaning predictor.6–9 Implicit in this approach is that healthy
subjects demonstrate considerable variability in breathing
patterns;10–12 however, in pulmonary disease states, breathing
variability is reduced from normal levels.13–15 Wysocki et al.9

have postulated that respiratory variability is related to pulmo-
nary load balance and that increased loading reduces breathing
variability. Data from healthy human volunteers as well as two
recent weaning studies support this hypothesis,8–10,16–21 al-
though contrasted findings have been reported.6,7,22

Breathing variability may be quantified by methods that
involve nonlinear dynamical analysis. A nonlinear system is
one whose behavior is not simply a summation of inputs into
the system; nonlinearity is a fundamental characteristic of
normal physiologic data.23 These methods are distinct from
variance, which measures dispersion about a mean, and take
into account the nonlinear physiologic response to stimuli. As
such, nonlinear methods may provide insight into organ
system interconnectivity and regulatory control.23,24

Our group has previously applied a panel of nonlinear
analysis tools for the assessment of waveforms and estab-
lished that lower cardiovascular regulatory complexity, as
sampled from electrocardiographic signal irregularity, is as-
sociated with adverse outcomes in prehospital trauma pa-
tients.25 In this study, we explored the utility of nonlinear
analysis tools in the assessment of perturbations in the respi-
ratory domain. Sample entropy (SampEn) is a relatively new
statistic measuring regularity of nonlinear, clinical, and ex-
perimental time series data. It examines the data for similar
epochs (groups of consecutive points of the same length) in
which more frequent and more similar epochs yield lower
values of this metric.26 This allows comparison of patterns to
analyze which is the most regular (i.e., the least complex).
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Additionally, SampEn may be more powerful than previously
used time series measures of regularity, such as approximate
entropy (ApEn), especially in shorter data sets.26,27 In addi-
tion, we complement the assessment of signal irregularity
with methodologically distinct waveform analysis tools such
as those derived from analysis of signal amplitude distribu-
tion as a function of time,28 entropy of symbol dynamics
distributions,29,30 and assessment of baseline shifts or station-
arity of the signal.30

The purpose of this study was to measure the regularity
of breathing patterns of intubated patients undergoing spon-
taneous breathing trials (SBTs) using a comprehensive anal-
ysis of respiratory waveforms. We hypothesize that patients
who successfully separate from mechanical ventilation will
have a more irregular breathing pattern than those who fail
extubation as measured by methodologically different non-
linear metrics. A comparative assessment of the utility of
these measures as applied to respiratory physiology is pro-
vided below.

PATIENTS AND METHODS

Subjects and Protocol
Appropriate institutional review board approval was

obtained before the initiation of this study. Because this was
an observational study and all data were analyzed post hoc, it
was considered minimal risk, and an informed consent was
waived. The subjects were prospectively recruited from one
Level I trauma center with separate burn and surgical/trauma
ICUs during a 9-month period. For burn patients, all burn
resuscitations were performed in standard fashion according
to the Modified Brooke Formula.31 Both ICUs used an iden-
tical SBT protocol. Criteria for inclusion into this study were
mechanical ventilation with an endotracheal tube for �24
hours, regardless of underlying disease, and the ICU attend-
ing physician’s judgment that the patient was ready for SBT
and possible extubation at the end of the trial. Readiness
criteria are listed in Table 1.32 All SBTs were performed with
5 cm H2O of both positive end-expiratory pressure (PEEP)
and pressure support (PS) for 30 minutes. Sedation and
analgesia were continued during SBTs at the physician’s
discretion. The patient was monitored during this time by a
respiratory therapist and returned to the previous ventilator
settings if the patient had one or more signs of cardiopulmo-
nary distress listed in Table 2. If the patient tolerated the SBT,
then measurement of respiratory rate (RR), rapid shallow
breathing index (RSBI), and negative inspiratory force (NIF)

were performed by the respiratory therapist, and the physi-
cian in charge was contacted and notified of results of SBT.
The decision to extubate after “passed” SBT was made by the
ICU attending physician. Subjects not extubated after SBT or
subjects reintubated for elective surgery �48 hours after
extubation were not included in our study. Once extubated,
patients were supplied with supplemental oxygen by air
entrapment mask or nasal cannula. Separation from mechan-
ical ventilation was considered a failure if the subject required
any ventilatory support, including noninvasive positive pres-
sure ventilation, within 48 hours of extubation. Subjects who
had undergone separation from mechanical ventilation and
failed, or who had passed and were later reintubated for
further surgery, were not considered again for analysis.

Waveform Analysis
During the SBT, respiratory flow and pressure wave-

forms were continuously monitored on the Draeger Evita XL
Ventilator (Drager Medical, Lubeck, Germany), and the sub-
jects were instructed not to speak during the recording period.
The waveform data were retrieved from the ventilator for
off-line analysis by using an RS232 connection recorded at
500 Hz to the DREW digital data acquisition system.33

Recorded data were stored on a personal computer and
analyzed by personnel who were blinded to the results of the
SBT. Two-hundred breath data sets, which were the most
consistently available in all investigated subjects, were im-
ported into WinCPRS software (Absolute Aliens Oy, Turku,
Finland). Peaks denoting the beginning of each consecutive
respiration were automatically identified by means of an
isoelectric line-shift algorithm by the software in every data
set, and correct identification of all the peaks was then
manually verified. Both respiratory flow and pressure were
used for peak detection to increase the reliability of the
process. The software generated the instantaneous interbreath
interval (IBI) time series. Before entropy calculations, linear
trends were removed in all segments of the analyzed data.
Analysis algorithms are identical to those reported before.25,34

The following waveform analysis techniques were applied:

1. ApEn and SampEn measure the amount of irregularity in
the IBI.26,34,35 ApEn determines the conditional probabil-
ity of finding specific patterns in the time series; i.e., the
logarithmic likelihood that a run of patterns that is close
remains close on the next incremental comparison. The
template patterns are constructed from the signal itself,

TABLE 1. Readiness Criteria for Spontaneous Breathing
Trial

Significantly improved or resolved need for mechanical ventilation

Minimal ventilatory support required

Adequate oxygenation with PaO2/FIO2 �200

FIO2 �40%

PEEP � 5 cm H2O to keep SPO2 �92%

pH �7.25

No confirmed or suspected upper airway obstruction

TABLE 2. Manifestations of Intolerance to SBT

Significant dyspnea

RR �30 bpm

Diaphoresis

Use of accessory muscles/thoracoabdominal paradox

Tachycardia (HR �120 bpm or increased 20% from baseline)

SBP �180 mm Hg or �90 mm Hg or need for vasopressors

SPO2 �90%

Change in mental status (coma, confusion, agitation, and anxiety)

HR, heart rate; SBP, systolic blood pressure; SPO2, pulse oximetry oxygen
saturation.
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and no a priori knowledge of the system is needed.
SampEn is a similar concept to ApEn, with the computa-
tional difference that the vector comparison with itself is
removed. For both ApEn and SampEn, the dimension
parameter m used for calculation was 2, and the filter
parameter r was 20% of the standard deviation (SD; see
Richman and Moorman26 for a discussion of techniques).

2. Similarity of distributions (SODs) explores the probability
of similar IBI signal amplitude distributions as a function
of time.28

3. Symbol-dynamics indices: Symbol-distribution entropy
(DisNEn) and bit-per-word entropy (BPWEn) collectively
measure the probability of patterns within the IBI time
series. These metrics are based on re-creation of the
dynamics of a complex system in phase space. The order
in which the dynamics of the system visit the possible
encoded regions creates a symbol distribution sequence,
DisNEn. Symbol sequences are encoded into words (2–3
symbols in length), the frequency of occurrence of each
word is then counted, and the normalized entropy BPWEn
of these words is calculated from a histogram.29

4. Signal stationarity (StatAv) assesses whether the mean
and the SD of the signal change over time during each data
set.30

Statistical Analysis
SAS version 9.1 (SAS Institute, Cary, NC) was used for

statistical analysis. Normality of continuous variables was
assessed with the Shapiro-Wilk test. Univariate analysis was
performed with two samples, Student’s t test or Mann-
Whitney U test as appropriate for continuous variables, and
Fisher’s exact test for categorical variables. In addition,
Spearman correlation coefficients were calculated to deter-
mine relationships between variables. A p value of �0.05
was considered indicative of statistical significance.

RESULTS
Sixty-four nonconsecutive subjects underwent 73 SBTs

with 5 cm H2O PEEP and PS for 30 minutes, and 33 subjects
were subsequently extubated at the completion of the SBT
(five subjects were given two SBTs and two subjects were
given three SBTs, all successfully separating from mechani-
cal ventilation on the last SBT). Of these subjects, one data
set was excluded from analysis because of artifacts in the
signal. A total of 24 subjects were successfully separated
from the mechanical ventilation. There were eight failures
with one failure rescued with noninvasive positive pressure
ventilation (5 burn, 2 trauma, and 1 surgical admission). The
mean duration for time to failure was 22.4 hours (range,
0.96–47.25 hours). Hypoxia was cited as the reason for
reintubation in five subjects, whereas tachypnea, hypercap-
nia, and upper airway edema were named in the remaining
three subjects. There were no deaths in either cohort during
the study period. The characteristics of the two groups, along
with RR, duration of IBI, NIF, and RSBI calculated during
SBT, are provided in Table 3. Age, sex, and mechanism of
injury and duration of mechanical ventilation did not influ-
ence outcome, and there was no difference in recorded
weaning parameters between groups. However, the Acute

Physiology and Chronic Health Evaluation II score on ad-
mission was higher in the success group (p � 0.05).

Nonlinear results are provided in Table 4. As measured
by SampEn, the IBI in the success group was more irregular
than in the failure group, in which the subjects had a lower
SampEn and thus a more regular IBI distribution. ApEn,
however, was not different between groups. SOD was lower
in the success group, implying a more dissimilar signal
distribution, and higher in the failure group, pointing to a
more regular signal amplitude distribution. The StatAv value,
which measures baseline shifts in the signal, was not different
among groups (see below for discussion of this metric).
BPWEn and DisNEn changed in concordance with SampEn
and denoted lower signal irregularity in the failure group
(Table 4). Finally, there was no correlation between nonlinear
values and time to failure.

DISCUSSION
The primary finding of this study is that in intubated

patients undergoing SBT, the IBIs of those who failed to
separate from mechanical ventilation were more regular than
in those who were successfully extubated. This finding im-
plies a lower regulatory complexity of respiration as mea-
sured by different nonlinear methods. As collective measures
of regulatory complexity, these methods may then be useful
markers in predicting outcome of SBT when available at
bedside. It is also interesting to note that RR, NIF, and RSBI
did not differ between groups, and that all subjects who were
extubated had weaning parameters predictive of success.

To explore the complexity of the respiratory signal, we
used different statistical techniques. First, entropy metrics

TABLE 3. Group Characteristics

Variable Pass (N � 24) Fail (N � 8) p

Age 37 � 17 49 � 15 0.08

APACHE II score 13 � 4 9 � 3 0.02

RR mean 30.86 � 30.12 26.15 � 8.37 0.78

NIF �33 � 10 �35 � 11 0.60

RSBI 47 � 29 40 � 27 0.78

Ventilated days 4.71 � 3.63 4.30 � 3.95 0.75

Sex, F (%) 13 38 0.15

MECH, surgical/burn (%) 21/79 38/63 0.38

Mean � SD.
MECH, mechanism of injury.

TABLE 4. Nonlinear Results

Variable Pass (N � 24) Fail (N � 8 ) p

SampEn 1.87 � 0.27 1.35 � 0.39 0.00

ApEn 0.97 � 0.06 0.93 � 0.11 0.36

SOD 0.17 � 0.03 0.23 � 0.05 0.02

DisNEn 0.82 � 0.06 0.75 � 0.06 0.01

BPwEN 4.94 � 0.38 4.51 � 0.34 0.01

StatAv 0.33 � 0.13 0.30 � 0.10 0.88

Mean � SD.
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(ApEn, SampEn, DisNEn, and BPWEn) were used to mea-
sure the amount of irregularity in the signal. Both ApEn and
SampEn calculate the (logarithmic) likelihood that clusters of
patterns that are close in time remain close in the next
incremental comparison; that is, how knowing one portion of
the signal will allow forecasting of the next portion as it is
moved forward in time. They are nonlinear metrics that are
scale and model independent and produce nonnegative num-
bers that can be used for comparisons across studies; a higher
number represents higher irregularity. SampEn differs from
ApEn by disallowing self-matches and appears more robust,
because SampEn can provide meaningful clinical results
using data sets as short as 100 beats or breaths in length.26,35

SampEn calculated for the two groups presented in this study
was different with the cohort that failed extubation having a
lower mean value (1.35 � 0.39 vs. 1.87 � 0.27; p � 0.001),
although ApEn was not different (0.93 � 0.11 vs. 0.97 �
0.06, fail vs. success, respectively; p � 0.36). We hypothe-
size that this difference is the effect of the small data sets used
on this study. DisNEn and BPWEn tend to move in concert
with SampEn, and all were lower in the failure group. These
former two measures represent the signal distribution in
phase space and, albeit methodologically distinct from
SampEn, are complementary entropy measures of signal
irregularity. Similar to this study, changes in DisNEn and
BPWEn have followed the trend in SampEn in previous work
by our group during hemorrhagic shock in animals36 and burn
shock in humans.37

Another technique used, SOD, converts the signal into
histograms (amplitude distributions) that are set in arbitrary
time windows and then explores the probability that similar
histograms will recur as a function of time. SOD is indirectly
related to complexity and is scored as a probability between
0 (no recurrence) and 1 (complete overlap of histograms). It
is also robust in signal analysis and can provide meaningful
results in small data sets.27 In this study, SOD was higher in
the cohort that failed extubation (0.23 � 0.05 vs. 0.17 � 0.03,
respectively; p � 0.02).

Ectopic beats that occur during electrocardiogram re-
cording or coughing with respiratory recordings can create
noise and errors during signal analysis. These events can
cause nonstationary signals, identified by changes in the
mean and SD of the signal during the course of a data set.
Both SampEn and SOD are generally more robust to nonsta-
tionarities in patient data than other metrics; the effect of
noise on SampEn is predictable, causing a slightly greater
value. Assessment of the signal quality used for the above
comparisons was tested by means of StatAv. This metric
assesses baseline shifts in means and SDs over the time
course of the data set and is higher in less stationary signals.
StatAv was low, pointing to low signal nonstationarity, and
was also similar between the two groups (0.33 � 0.13 vs.
0.30 � 0.10, failure vs. success, respectively; p � 0.88),
which indicates equal effects of nonstationarity on the metrics
in both groups.

The respiratory center resides in the brain stem and
integrates input from multiple areas to include both central
and peripheral chemoreceptors, chest wall and muscle mech-

anoreceptors, pulmonary receptors, vagal afferents, the cere-
brum, and other central nonrespiratory centers.7,38–42 The
respiratory pattern is a nonlinear, dynamic output signal that
is a consequence of these mutual interactions, and the struc-
tural complexity of this signal may be a reflection of the
regulatory complexity of its control system. In fact, a princi-
pal hypothesis in complexity theory holds that system stability
“depends on the number, bias and types of interconnections
among the system’s constituents.”23 Conversely, greater sig-
nal regularity may be a surrogate for system isolation or
“decomplexification” in nonlinear systems; and multiple sys-
tem organ failure may be a consequence of this loss of
coupling between communicating organ systems.24,43,44 In
these cases, loss of signal complexity may be a result of a
relaxation of feedback mechanisms revealing more simple
control of the system or an adaptive strategy in times of
stress.23,44 This has been extensively studied in the heart
where decreased variability of R-R interval (RRI) was asso-
ciated with disease states and aging.45–49 In hemorrhage
and/or shock models, resuscitation is associated with a pro-
gressive increase in RRI variability.36,37

In the respiratory system, loss of variability also occurs
in healthy human volunteers, in whom adding elastic or
resistive loads,16 or challenge with endotoxin17 decreased
breath-to-breath variability. It is reduced during sleep and
also degrades with age.12,50 In disease states such as restric-
tive or obstructive pulmonary disease, patients adopt more
constrained breathing patterns.13,15 Under stress, the fre-
quency to tidal volume (VT) ratio increases, and both VT and
respiratory period become more monotonic. This adaptive
strategy is more energy efficient because smaller breaths are
less costly than one breath twice as large.51 However, in
patients who fail weaning trails, this rapid shallow breathing
pattern occurs immediately after discontinuation of mechan-
ical ventilation3 and is also manifested simultaneously in the
electromyographic power spectrum of the diaphragmatic
muscles by changes in the ratio of high to low frequency
power.52,53 Assessed along two dimensions, respiratory sinus
arrhythmia, which couples heart rate variability with respira-
tion, is attenuated with hypoxia but strengthened by hyper-
carbia.54 Moreover, “programming” variability into mechanical
ventilators (i.e., fractal ventilation) improves gas exchange in
animal models, which may be the result of increased recruitment
of collapsed alveoli with nonlinear opening characteristics or
perhaps stronger coupling between nonlinear biological oscilla-
tors or both.55–57

Wysoki et al.9 compared 51 consecutive patients who
were mechanically ventilated �24 hours and measured mul-
tiple respiratory variables while undergoing an hour-long
SBT. In this study, patients were disconnected from the
ventilator and received only supplemental oxygen during the
SBT. The recordings were stratified into success and failure
to remain free of ventilatory support for �48 hours (those
who were reconnected to the ventilator during or at the end of
the SBT were considered failed trials), and coefficients of
variation (CV � SD expressed as a percentage of the mean)
were derived from data. All CVs of the respiratory variables
were higher in the patients who successfully separated from
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the ventilator than in the subjects who failed. These results
are consistent with the findings of Bien et al.8 in which 78
mechanically ventilated systemic inflammatory response syn-
drome patients who had undergone abdominal surgery were
studied for 30 minutes during SBT while receiving 5 cm H2O
PS. The CV of five respiratory variables were lower in the
failure group than in those who successfully extubated. Both
studies are in line with our data that increasing breathing
variability predicted successful separation from mechanical
ventilation.

El-Khatib et al.6 studied 52 intubated patients for vari-
ability in VT and peak inspiratory flow during synchronized
mechanical ventilation (rate �4 breaths/min) followed by
continuous positive airway pressure trials and showed that
increased variability in both variables was associated with
extubation failure. The majority of the patients in this latter
study had underlying lung disease and required a longer
duration of ventilator support. For this study, failure was
defined as reintubation within 24 hours not caused by stridor.
Of note, four patients in our study failed after 24 hours, with
none requiring reintubation beyond 48 hours; one was rein-
tubated for stridor. Although this study did not examine these
variables, it is different from our hypothesis that variability is
associated with improving respiratory health. In fact, these
results are in contrast with the two former studies in which
the CV of VT of both success groups was similar (25% and
28%, respectively)8,9 and also in line with the normal range of
tidal variation reported in the literature;10,21,58 however, the
CV for VT in the success group of El-Khatib et al.6 was 9%.6

Using ApEn, Engoren7 investigated the regularity of
RR and VT signals in three groups of postcardiac surgery
patients. The first group was studied within 12 hours of
surgery and underwent SBT with 5 cm H2O continuous
positive airway pressure; all were extubated successfully and
served as the control group. The second and third groups
consisted of 21 patients who were mechanically ventilated
�7 days and underwent 60 minute to 120 minute SBTs with
5 cm H2O PEEP and various levels of PS. These were then
stratified into success versus failure to wean (with or without
extubation), and many subjects contributed more than one
weaning attempt to the analysis. In this study, although VT did
not vary between groups, its ApEn was highest in those who
failed weaning trials with increasing RR across groups having
no effect on pattern. These results are in contrast to recent
studies.8,9 The two experimental groups presented by En-
goren were ventilator dependent at the time of the SBT,
which were subsequently conducted for 60 minutes to 120
minutes with 5 cm H2O of PEEP and higher levels of PS. In
fact, those with the highest variability were supported with a
mean of 12.2 � 4.6 cm H2O of PS. However, the use of PS
should reduce VT variability, because the pressure remains
the same for all breaths.59 Caminal et al.60 have shown an
indirect relationship between PS and the CV of VT, TI, and
total breath duration.9 This relationship reflects the unloading
of the respiratory system by the ventilator and results in
breathing patterns that are more characteristic of the ventila-
tor/patient interface than the patient’s own intrinsic
rhythm9,59 and highlights the need to assess “prevailing con-

ditions” (i.e., underlying disease, level of ventilator support,
mental status, secretions, drugs, fever, etc.) when studying
respiratory variability.9 Similarly, it may also explain the
conflicting data on respiratory variables given the longer
duration of mechanical ventilation in some studies.

This study was performed at one Level I trauma center
with separate burn and surgical/trauma ICUs, both combining
for �800 admissions during the study period. For logistic
reasons, more burn patients were enrolled in this study;
therefore, the results presented here may not be applicable to
other patient populations and need to be validated in a larger,
more diverse cohort. A second limitation of this study was
that sedation and analgesia were not strictly controlled during
the SBT but were left to the attending physician’s judgment.
General anesthesia has been shown to reduce breathing vari-
ability,9,61 and propofol may cause rapid shallow breathing if
continued during SBT.62 Both benzodiazepines and narcotics
depress the respiratory drive, and other drugs (e.g., � blockers
and � adrenergics) given at the time of SBT may affect the
measured respiratory pattern. Because it has been demon-
strated that the respiratory pattern may “speed up” or “slow
down” without changing entropy measures,7 it is not clear
what effect these drugs have on respiratory signal regularity.
However, enrollment in this study was made at the attending
physician’s discretion that the patient was ready for the SBT
and then possible extubation at the end of the trial. All SBTs
were done according to the protocol, with 5 cm H2O PEEP
and PS for 30 minutes, which had been established across
ICUs at our institution before initiation of the study. The
decision to extubate was made at the end of the SBT by the
attending physician, and no patient required reintubation
beyond 48 hours, a time point also chosen in two recent
studies.8,9

We examined the IBI with complexity metrics because
previous work demonstrated the fractal organization of this
respiratory variable12,58 and that the central respiratory con-
troller (rhythm generating function) was more constant than
its drive components.10 The use of SampEn has been exten-
sively studied and validated in the cardiac system and was
conducted here according to those methodologies. The SOD
has complemented the results of SampEn in recent RRI
studies.26,27,34,37 One data set was removed from analysis as a
result of artifacts, which made it impossible to analyze. Of the
remaining data sets, 200-breath recordings were compared in
toto (i.e., the signal was not edited and there were no
discontinuities within data sets) from both success and failure
groups for calculation of these complexity metrics and SOD;
therefore, phasing between data sets remained true. Finally,
this study was not designed to determine a threshold value for
the tested complexity metrics or SOD that could best discrim-
inate between successful separation and failure to separate
from mechanical ventilation. As such, a receiver operating
characteristic curve was not constructed for comparison
against other established weaning indices.

CONCLUSION
This study found that lower SampEn, BPWEn, and

DisNEn and a higher SOD of IBIs were associated with
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extubation failure. These findings imply a lower regulatory
complexity of respiration in patients who fail extubation as
measured by these metrics. Therefore, the above metrics may
be useful predictors of a patient’s ability to tolerate separation
from mechanical ventilation. An effort is underway to iden-
tify threshold values for the proposed nonlinear methods that
could best discriminate between successful separation and
failure to separate from mechanical ventilation. We have
developed both software and hardware to interface with
standard ventilators which will make calculations of these
metrics available in real time. Also, any number of respira-
tory variables can be measured simultaneously with this
microprocessor package, and when integrated together, may
be a useful marker of overall pulmonary health.
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