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Hemorrhage remains a major cause of mortality following traumatic injury in both military
and civilian settings. Lower body negative pressure (LBNP) has been used as an experi-
mental model to study the compensatory phase of hemorrhage in conscious humans, as
it elicits central hypovolemia like that induced by hemorrhage. One physiological compen-
satory mechanism that changes during the course of central hypovolemia induced by both
LBNP and hemorrhage is a baroreflex-mediated increase in muscle sympathetic nerve activ-
ity (MSNA), as assessed with microneurography.The purpose of this review is to describe
recent results obtained using microneurography in our laboratory as well as those of others
that have revealed new insights into mechanisms underlying compensatory increases in
MSNA during progressive reductions in central blood volume and how MSNA is altered
at the point of hemodynamic decompensation. We will also review recent work that has
compared direct MSNA recordings with non-invasive surrogates of MSNA to determine the
appropriateness of using such surrogates in assessing the clinical status of hemorrhaging
patients.
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Hemorrhage remains a major cause of mortality following trau-
matic injury in both military and civilian settings. Although many
combat-related deaths are not survivable due to the severity of
injury, approximately 51% of casualties who died of wounds (i.e.,
expired after reaching a hospital) in Operations Iraqi Freedom
(OIF) and Enduring Freedom (OEF) have been classified as poten-
tially survivable; of these, 80% of the deaths were due to the
inability to control bleeding and effectively resuscitate hemorrhag-
ing patients (Eastridge et al., 2011). In the civilian setting, estimates
of mortality due to hemorrhage following trauma range from 21
to 39% of all trauma deaths, with exsanguination being the most
common cause of death among those found dead upon arrival of
emergency medical services (EMS) personnel (Sauaia et al., 1995;
Stewart et al., 2003). Consistently, hemorrhage is the second lead-
ing cause of death after trauma, with only central nervous system
(CNS) injury accounting for more mortality (Kauvar et al., 2006).
Severe CNS injury, however, is often irreparable, while hemor-
rhage is more amenable to development of advanced interventions
to reduce morbidity and mortality (Kauvar et al., 2006). Hence,
research efforts have been concentrated on improving techniques
used to diagnose the severity of blood loss, control bleeding, and
return volume to the hemorrhaging patient.

To our knowledge, the first direct measurement of sympathetic
nerve activity during hemorrhage was performed in chloralose-
anesthetized cats by Gernandt et al. (1946). From this direct
measurement as well as indirect measurements, primarily made
in anesthetized animal models, it was clear by 1967 that the sym-
pathetic nervous system was activated during the early phases
of hemorrhage as a compensatory response to maintain arterial

blood pressure (Chien, 1967). Subsequently, sympathoexcitation
during the early stages of hemorrhage was demonstrated via
direct measurement of activity in nerves supplying renal, hepatic,
adrenal, splenic, and cardiac vascular beds in a variety of animal
species (Ninomiya et al., 1971; Skoog et al., 1985; Koyama et al.,
1988, 1992; Malpas et al., 1998). Schadt and Ludbrook (1991) later
proposed that the physiological response to hemorrhage occurs in
two phases. Phase I, evident in animals until 25–35% of blood vol-
ume is lost, consists of sympathoexcitation, which contributes to
the maintenance of baseline levels of blood pressure. Phase II then
occurs when compensatory mechanisms are exhausted, sympa-
thoinhibition occurs, and blood pressure decreases precipitously
(Schadt and Ludbrook, 1991).

Lower body negative pressure (LBNP) was introduced in the
1960s as an experimental perturbation to study the physiological
responses produced by central hypovolemia in healthy humans;
from the earliest studies, LBNP was seen as a model to study the
acute responses to hemorrhage (Wolthuis et al., 1974). In 2001,
the notion of using LBNP to develop clinical assessment tools
for determination of the severity of hemorrhage and accurate
definition of resuscitative strategies was advanced (Convertino,
2001). In 2004, we extended this concept by summarizing litera-
ture that suggested that LBNP could be used to investigate both the
compensatory phase of hemorrhage and subsequent decompen-
sation (defined herein as the loss of compensatory physiological
responses that maintain blood pressure) in conscious humans
(Cooke et al., 2004). Application of negative pressure to the lower
body redistributes blood from the central thoracic and splanch-
nic circulations into the legs, thereby reducing venous return
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and cardiac filling, producing central hypovolemia without actual
blood loss. Indeed, the regional vascular changes elicited by LBNP
have been demonstrated to be similar to those induced by hemor-
rhage (Taneja et al., 2007). Furthermore, LBNP produces periph-
eral tissue dysoxia that is not sustained long enough to induce
alterations in systemic lactate, pH, and base excess (Ward et al.,
2010). While LBNP is a useful model to study the compensatory
responses to loss of central blood volume and the subsequent loss
of these responses, LBNP does not model prolonged hemorrhage
eventuating in circulatory shock with accompanying metabolic
acidosis. Additionally, physiological responses induced by LBNP
are not accompanied by tissue trauma or pain as in hemorrhage
induced by traumatic injury. Table 1 shows ranges of effective
central blood loss (or fluid redistribution) produced by different
levels of LBNP; we initially proposed these ranges of central hypov-
olemia based on comparison of cardiovascular responses to LBNP
and hemorrhage (Cooke et al., 2004), but these equivalencies have
more recently been confirmed via computer modeling (Summers
et al., 2009).

Since 2004, we have used LBNP both to increase our under-
standing of physiological responses to hemorrhage and to develop
new means of assessing the physiological status of bleeding
patients (Convertino et al., 2008; Ward et al., 2010). Just as in
animal models, one physiological compensatory mechanism that
changes early in humans during the course of both LBNP and
hemorrhage is a baroreflex-mediated increase in muscle sympa-
thetic nerve activity (MSNA), usually accessed via placement of an
electrode in the peroneal nerve (Rea et al., 1991). The purpose of
this review is to describe recent results obtained using microneu-
rography that have revealed new insights into how compensatory
increases in MSNA occur during central hypovolemia, how MSNA
is altered at the point of hemodynamic decompensation, and
whether non-invasive surrogates of MSNA are appropriate for use
in assessing the physiological status of hemorrhaging patients.

MSNA DURING THE COMPENSATORY PHASE OF CENTRAL
HYPOVOLEMIA
At low levels of central hypovolemia elicited by mild LBNP in
humans, MSNA increases in the absence of alterations in heart
rate (HR) or blood pressure (Sundlof and Wallin, 1978a; Victor
and Leimbach, 1987). This initial increase in MSNA occurs in a

Table 1 | Ranges of fluid displacement induced by lower body negative

pressure and equivalent amounts of blood loss during hemorrhage.

LBNP Hemorrhage

10–20 mmHg, 400–550 ml fluid

displaced

400–550 ml, (∼10% of total blood

volume)

20–40 mmHg, 500–1000 ml fluid

displaced

550–1000 ml, (∼10–20% of total

blood volume)

≥40 mmHg, ≥1000 ml fluid

displaced

>1000 ml, >20% of total blood

volume

Hemorrhage data are from humans and represent approximations and ranges

derived from the literature. LBNP, lower body negative pressure. From Cooke

et al. (2004).

similar fashion whether measured from the radial nerve in the arm
or the peroneal nerve in the leg, and is therefore a reflection of gen-
eralized sympathetic activation to muscle vascular beds (Rea and
Wallin, 1989). Importantly, the response in MSNA to relatively
low levels of LBNP (i.e., −10 mmHg) is identical to the MSNA
response to blood loss of 450 ml, demonstrating the effectiveness
of LBNP as an experimental model of hemorrhage (Figure 1; Rea
et al., 1991).

Because arterial pressure was unchanged, the increase in MSNA
elicited by low levels of LBNP or hemorrhage was originally
ascribed to deactivation of cardiopulmonary baroreceptors alone,
without contribution from arterial baroreceptors (Rea et al., 1991).
In fact, so many investigators have used low levels of LBNP
(≤20 mmHg) to “selectively” unload cardiopulmonary barorecep-
tors that this has recently been referred to as “dogma” (Fu et al.,
2009). Subsequent work, however, has conclusively demonstrated
that deactivation of arterial baroreceptors also contributes to sym-
pathoexcitation induced by non-hypotensive hypovolemia. First,
non-hypotensive hypovolemia reduces the diameter of both the
ascending thoracic aorta (Taylor et al., 1995) and the carotid
artery (Lacolley et al., 1992), sites of the stretch-sensitive aortic
and carotid arterial baroreceptors. Second, Floras et al. (2001)
demonstrated that, during LBNP of only −5 mmHg, MSNA
increased while parasympathetic modulation of HR (assessed via
power spectral analysis) decreased, which is a manifestation of
arterial baroreceptor unloading. Third, MSNA increases during
mild hypovolemia in both intact control subjects and in cardiac
transplant patients, indicating a greater contribution to sympa-
thoexcitation of sinoaortic baroreflexes than ventricular receptors

FIGURE 1 | Comparison of relationships between central venous

pressure (CVP) and muscle sympathetic nerve activity (MSNA) during

−10 mmHg LBNP and 450 ml hemorrhage in nine human subjects.

Circles and lines represent mean ± SE values. *P < 0.05 compared with
baseline. From Cooke et al. (2004) using data modified from Rea et al.
(1991).
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fusion of RSNA has also been observed in anesthetized sheep made
hypotensive by severe hemorrhage (Batchinsky et al., 2007b). We
have suggested that this phenomenon may represent sympathetic
baroreflex deafferentation (Cooke et al., 2009), as the fused bursts
observed during intense LBNP are similar in both their pulse asyn-
chrony and their structure to those observed after bilateral blocks
of glossopharyngeal and vagus nerves (Fagius et al., 1985). It is
also possible that loss of pulse-synchrony and continuous burst
firing may occur in some individuals as a strategy to continue
to maintain blood pressure during severe reductions in venous
return. In support of this concept, Salmanpour et al. (2011) have
recently shown that extreme baroreceptor unloading requiring
high sympathetic outflow (induced by −80 mmHg LBNP) recruits
a subpopulation of large postganglionic axons in some but not all
individuals.

MSNA AT HEMODYNAMIC DECOMPENSATION
In a classic paper, Barcroft et al. (1944) observed that the onset of
fainting produced by experimental hemorrhage in man was pre-
ceded by a profound vasodilation in the forearm and a decrease
in systemic vascular resistance, suggesting inhibition of the com-
pensatory sympathetic activation that had occurred before this
point. As it became possible to directly measure sympathetic nerve
activity in humans, a variety of case reports and experimental
studies appeared showing an inhibition of sympathetic activity
associated with the development of presyncope in both healthy
humans (Burke et al., 1977; Sanders and Ferguson, 1989; Scherrer
et al., 1990; Hayoz et al., 1996; Iwase et al., 2000; Cooke and Con-
vertino, 2002) and in patient populations (Wallin and Sundlof,
1982; Yatomi et al., 1989; Converse et al., 1992; Jardine et al.,
1996, 1998, 2002; Morillo et al., 1997). On the basis of these
data, it was concluded that hemodynamic decompensation (i.e.,
presyncope) was associated with and possibly caused by sympa-
thetic neural withdrawal (Convertino and Cooke, 2002; Cooke
et al., 2004). Recently, however, we have observed that sympathetic
withdrawal does not occur in all subjects at the point of hemody-
namic decompensation (Figure 5); in fact, 41% of our subjects
did not demonstrate any diminution of MSNA despite the onset
of hypotension and presyncopal symptoms (Cooke et al., 2009).
Subsequently,Vaddadi et al. (2010) showed that increases in MSNA
induced by orthostatic stress were preserved through the point of
syncope in 90% of patients previously diagnosed with vagova-
gal syncope. It is therefore apparent that sympathetic withdrawal
is not an absolute requirement for the onset of hemodynamic
decompensation in both healthy humans and in patients with a
history of syncope. Indeed, careful perusal of some of the litera-
ture frequently cited to support the proposition that sympathetic
withdrawal precipitates cardiovascular collapse reveals that blood
pressure begins to decrease while MSNA remains elevated dur-
ing the compensatory phase of hypovolemia (Wallin and Sundlof,
1982; Sanders and Ferguson, 1989; Converse et al., 1992; Jardine
et al., 1996, 1998; Mosqueda-Garcia et al., 1997; Iwase et al., 2000),
an observation confirmed more recently (Kamiya et al., 2005).
Taken together, these data refute the concept that cessation of
sympathetic nerve activity precedes and causes hypotension, the
subsequent reduction in cerebral perfusion pressure, and syncope
in all subjects.

Another possible mechanism that may contribute to the onset
of cardiovascular collapse is resetting of baroreflexes, resulting in
a loss of synchrony between arterial blood pressure and compen-
satory responses such as sympathetic activation. During mild to
moderate central hypovolemia, the operating point of baroreflex-
mediated control of sympathetic nerve activity is shifted upward
without a change in gain, such that sympathetic nerve activity is
increased at any given DAP (Ichinose et al., 2004a,b). Addition-
ally, there is a tighter coupling between oscillations in arterial
blood pressure and MSNA, as quantitated using cross-spectral
analysis by an increase in the coherence function between these
variables (Furlan et al., 2000; Kamiya et al., 2005; Cooke et al.,
2009). This increase in coherence reflects greater baroreflex mod-
ulation of sympathetic activity compared with the baseline state
and both the increase in coherence and operating point may be
beneficial in mounting an appropriate compensatory response to
hypovolemia. Evidence exists, however, to suggest that this tight
coupling of blood pressure to sympathetic nerve activity may
be lost at the point of hemodynamic decompensation. Based on
their observation of sympathoinhibition (as measured by plasma
catecholamines) despite hypotension, Jacobs et al. (1995) first sug-
gested that the vasodepressor response at presyncope was due to
a sudden central resetting of baroreflexes. Recently, this question
was more fully investigated by Ichinose et al. (2006) using data
from subjects who either exhibited presyncope or did not during
central hypovolemia induced by LBNP. Approximately 1–2 min
prior to the onset of hemodynamic decompensation, the gain
of the baroreflex function relating DAP to MSNA was substan-
tially reduced in those subjects exhibiting presyncope but was
unchanged in non-presyncopal subjects (Ichinose et al., 2006).
Likewise, we have also demonstrated a loss of linearity between
the change in DAP and the change in MSNA just before the onset
of presyncope, suggesting disruption in the normal baroreflex-
mediated coordination between arterial pressure and sympathetic
activation (Cooke et al., 2009; Convertino et al., 2010). Taken
together, these results suggest that impairment of arterial barore-
flex control over sympathetic vasomotor activity may contribute
to the onset of hemodynamic decompensation. Such a sudden
attenuation of baroreflex function before hemodynamic decom-
pensation has also been noted for cardiovagal reflexes (Ogoh et al.,
2004; Ocon et al., 2011).

As mentioned above, there is also evidence to suggest that
the pattern of MSNA firing may be as important in determin-
ing the ability to withstand central hypovolemia as the absolute
level of MSNA. In an elegant study, Kamiya et al. (2005) deter-
mined the temporal occurrence of events immediately preceding
presyncope. During central hypovolemia induced by head-up
tilt, both the absolute levels of MSNA (expressed as burst fre-
quency and total activity) and the amplitude of LF oscillations
in MSNA (MSNALF) increased markedly; increases in MSNALF

were reflected in increases in LF oscillations of mean arterial pres-
sure (MAPLF). As subjects moved toward presyncope, MSNALF

and MAPLF decreased and were associated with a decrease in
MAP, despite the maintenance of MSNA burst frequency and total
activity at their elevated level. Interestingly, MSNA only decreased
after MAP had begun to fall. MSNA, MSNALF, and MAPLF were
maintained and did not decrease in those subjects who did not
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FIGURE 6 | Blood pressure (BP), muscle sympathetic nerve activity (MSNA) and end-tidal CO2 (et CO2) tracings for a single subject under conditions

of breathing with a sham (top) or active (bottom) device that provided resistance to inspiration. Au, arbitrary units. From Ryan et al. (2008).

22.4 au2 at presyncope under the sham resistance breathing con-
dition; with resistance breathing, MSNALF increased from 2.23 to
40.1 au2 at this same absolute time point. Moreover, the coherence
between DAP and MSNA, a measure of the strength of the rela-
tionship between these two variables, was increased from 0.80 in
the sham condition to 0.94 with resistance breathing at this same
time point. Thus, in this one subject, it is apparent that inspiratory

resistance breathing increased the amplitude of MSNA oscilla-
tions and coherence between MSNA and arterial blood pressure,
and that this alteration in oscillatory pattern was associated with
improved tolerance to central hypovolemia. These data are con-
sistent with the concept that the maintenance of an increase in LF
oscillations of both MSNA and MAP may be associated with the
defense of blood pressure during severe central hypovolemia.
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Thus, there are several possible mechanisms involving alter-
ations in activation of sympathetic nerve activity to explain hemo-
dynamic decompensation during severe hypovolemia. Since sym-
pathetic withdrawal occurs in some individuals before presyncope
but not in others, it is no longer thought to be a prerequisite for
the ensuing hypotension (Cooke et al., 2009). It is also possible
that there is a central resetting of arterial baroreflex function that
alters sympathetic outflow (Ichinose et al., 2006); this scenario may
be especially prominent in those subjects in whom sympathetic
inhibition occurs despite progressive hypotension. Finally, there
is evidence to suggest that an increase in LF oscillations in both
MSNA and MAP may be protective during central hypovolemia
and that loss of these oscillations might precipitate hypotension
(Kamiya et al., 2005). It is important to note that these mechanisms
are not mutually exclusive and the contributions of each to the
process have yet to be fully revealed. Furthermore, it is also possible
and even probable that different mechanisms may predominate in
different individuals. Because of the scope of this review, we have
chosen to focus on those mechanisms preceding presyncope that
involve loss of compensatory alterations in MSNA, but it is likely
that loss of other compensatory responses may also contribute
to the inability to maintain blood pressure during severe hypo-
volemia. One intriguing hypothesis put forward by Dietz et al.
(1997) is that marked peripheral vasodilation is a major contribu-
tor to the fall in arterial pressure preceding vasovagal syncope. In
this regard, it is of interest that, during prolonged LBNP at a low
level (−15 mmHg), vasodilation of the forearm musculature was
observed despite the continued presence of a sustained compen-
satory increase in MSNA, suggesting that “sympathetic escape”
occurs (Joyner et al., 1990). This observation is currently being
investigated.

Implicit in the preceding discussion is the notion that there
are individual differences in the ability of healthy humans to
tolerate central hypovolemia before reaching the point of car-
diovascular collapse. Indeed, it has been known for many years
that there is a great deal of variability in the ability of patients
(Davis, 1949) and animals (Chien, 1967; Kim and Shoemaker,
1970) to survive traumatic hemorrhage; we have recently learned
that there is a genetic basis underlying this variability (Klemcke
et al., 2008, 2011). Likewise, individual differences in tolerance to
central hypovolemia induced by LBNP have also been described
(Sather et al., 1986) and attributed to differences in the release
of vasoactive hormones (Convertino and Sather, 2000b; Green-
leaf et al., 2000), compensatory tachycardia and vasoconstriction
(Convertino and Sather, 2000a,b;Greenleaf et al., 2000), cardiac
baroreflex gain (Convertino and Sather, 2000a; Convertino et al.,
in press), baroreflex gain of sympathetic nerve activation (Wijey-
sundera et al., 2001), and central blood volume and cerebral blood
velocity (Levine et al., 1994). In this regard, we have recently shown
that subjects demonstrating high tolerance (HT) to LBNP have a
greater ability to increase MSNA than subjects with low toler-
ance (LT; Convertino et al., in press). Additionally, the ability to
sustain the compensatory mechanisms described above involv-
ing both the baroreflex modulation of sympathetic activation and
the oscillatory component of that activation may also act to deter-
mine tolerance to central hypovolemia. For example, Ichinose et al.
(2006) described a sudden resetting of the DAP–MSNA baroreflex

in subjects who became presyncopal (i.e., those demonstrating
LT) during central hypovolemia but did not observe this resetting
in those who did not (HT). Furthermore, Kamiya et al. (2005)
observed a loss of MSNALF and MAPLF power in LT subjects before
presyncope elicited by head-up tilt, but no such loss in HT sub-
jects. As in previous reports (Sather et al., 1986; Convertino and
Sather, 2000a,b), we recently confirmed and expanded on these
results using our large database of subjects in which LBNP was
applied to the point of presyncope in all individuals. We classi-
fied subjects as HT if they completed at least the −60-mmHg
level of LBNP, and LT if they did not complete this level (Rickards
et al., 2011). As in the previous study using head-up tilt (Kamiya
et al., 2005), MAPLF increased in both LT and HT groups dur-
ing early stages of LBNP, but MAPLF decreased to baseline levels
in the LT group at −60 mmHg while it continued to increase
in the HT group (Rickards et al., 2011). A similar relationship
between the ability to increase orthostatic tolerance and the ability
to increase blood pressure oscillations has previously been shown
(Gulli et al., 2001). In our study, measurement of middle cerebral
artery velocity (MCAv) by transcranial Doppler revealed a simi-
lar oscillatory pattern to that observed with MAP, indicating that
the continued increase in amplitude of LF arterial pressure oscil-
lations observed in HT subjects was transferred to the cerebral
vasculature (Rickards et al., 2011). Although we did not report
MSNA in our paper, Figure 7 shows these responses during LBNP
in a HT and a LT subject. In the HT subject, MSNALF increased
from baseline (4.4 au2) to a maximum of 85.8 au2 just prior to
presyncope. In contrast, MSNALF did not increase in the LT sub-
ject at all (2.4 to 2.3 au2). Thus, we propose that the ability to
increase LF oscillations in MSNA, MAP, and MCAv is an inherent
characteristic associated with improved tolerance to central hypo-
volemia and therefore protects against the onset of hemodynamic
decompensation during severe hypovolemia.

NON-INVASIVE SURROGATE FOR MSNA FOR ASSESSING
THE SEVERITY OF HEMORRHAGE?
Because the autonomic nervous system serves to maintain cardio-
vascular homeostasis under a variety of physiological and patho-
logical stresses, a non-invasive surrogate for sympathetic and/or
vagal activation has long been sought for diagnostic use (Gold-
stein et al., 2011). Measures of HR variability (HRV) have received
a great deal of attention, as some of the time and frequency domain
measures have been associated with autonomic function. Specifi-
cally, power spectral analysis of intervals between R-waves (RRI) of
the ECG yields LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) powers;
LF power was originally thought to contain components of both
cardiac sympathetic and vagal (parasympathetic) function, while
HF power predominantly reflected parasympathetic function
(Akselrod et al., 1981). Many investigators have also suggested that
the ratio of LF/HF represents sympathovagal balance (Malliani
et al., 1991; Goldstein et al., 2011) and that these or other HRV
metrics might be useful in disclosing dysautonomia in such clinical
conditions as myocardial infarction, cardiac arrhythmias, diabetes,
and renal failure (Acharya et al., 2006; Montano et al., 2009).
Indeed, a PubMed search on the term “heart rate variability” yields
more than 14,300 references at the time of this writing (February
2012), yet we are unaware of any pathophysiological condition in
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without the confounding factors of anesthesia, species differences,
and tissue injury. During even mild LBNP, both arterial and car-
diopulmonary baroreceptors are unloaded, resulting in activation
of the sympathetic nervous system to increase HR and vasomo-
tor tone. Importantly, we now know that sympathetic activation
entails not only an increase in sympathetic nerve firing but also
an alteration in the pattern of firing, such that the amplitude of
LF oscillations in MSNA and, consequently, blood pressure is also
increased; both of these responses seem to be protective in that they
are associated with improved tolerance to central hypovolemia. At
some point, which occurs at different levels of central hypovolemia
for individual subjects, this compensation fails and hypotension
ensues. Although it was once thought that sympathetic withdrawal
always precipitated hemodynamic decompensation and hypoten-
sion, it is now clear that a diminution of absolute levels of MSNA
firing is not required in all individuals. Instead, it is possible
that loss of the compensatory increase in MSNALF may also be
involved, particularly in those subjects demonstrating HT to cen-
tral hypovolemia. Additionally, there may be an acute resetting
of the baroreflex at the level of the CNS such that coherence
between arterial blood pressure and sympathetic nerve activity
is lost. Determination of the mechanisms underlying the develop-
ment of presyncope in both healthy human subjects and patients
with diseases characterized by episodes of fainting continues to be
an ongoing area of research.

The search for a non-invasive surrogate of MSNA for both
research and clinical purposes continues. Certainly, an easily
obtainable non-invasive metric of sympathetic activation could be
of great importance for assessment of the severity of hemorrhage.
However, metrics based on determination of variability in both
RRIs and arterial blood pressure do not fulfill the necessary cri-
teria to perform effectively in this role. Before implementation of
any such metric, it is essential that investigators determine whether
the metric will be able to reliably track MSNA within individual
subjects rather than simply rely on analyses based on group mean

data. Importantly, gender differences in the MSNA response to
central hypovolemia must also be taken into account (Fu et al.,
2005; Carter et al., 2009). For use in trauma victims suspected of
hemorrhage, it will also be necessary for laboratory determination
of the efficacy of the metric in the face of blood loss combined
with other physiological stressors which can impact sympathetic
activation, such as heat stress (Cui et al., 2004a, 2011b), dehy-
dration (Kimmerly and Shoemaker, 2002, 2003; Fu et al., 2005),
mental or emotional stress (Carter et al., 2008), and ingestion of
alcohol (Carter et al., 2011), nicotine, or other drugs. All of these
stressors are commonly observed in conjunction with traumatic
hemorrhage in civilian and/or military settings. Because of the
complexity of this problem, it is possible that clinical assessment
of the severity of hemorrhage during the acute phase may be bet-
ter realized using artificial intelligence technologies that reflect the
integration of the sympathetic nervous response to hemorrhage
with changes in circulatory pressure and volume (Convertino et al.,
2011).
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