
 
 

 
AFRL-RH-WP-TR-2015-0092 

 
 
Physiological Indicators of Workload in a 

Remotely Piloted Aircraft Simulation 
 

Michael Hoepf 
Oak Ridge Institute for Science and Education 

 

Matt Middendorf 
Middendorf Scientific Services 

 

Samantha Epling  
Ball Aerospace 

 

Scott Galster 
Air Force Research Laboratory 

 
October 2015 

 
Interim Report 

 
  

 
Distribution A: Approved for public release. 

  
 

STINFO COPY 
 
 

AIR FORCE RESEARCH LABORATORY 
711 HUMAN PERFORMANCE WING, 

HUMAN EFFECTIVENESS DIRECTORATE, 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 

AIR FORCE MATERIEL COMMAND 
UNITED STATES AIR FORCE

 



 
 

 
NOTICE AND SIGNATURE PAGE 

 
Using Government drawings, specifications, or other data included in this document for any purpose other than 
Government procurement does not in any way obligate the U.S. Government. The fact that the Government 
formulated or supplied the drawings, specifications, or other data does not license the holder or any other person 
or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may 
relate to them.  
 
This report was cleared for public release by the 88th Air Base Wing Public Affairs Office and is 
available to the general public, including foreign nationals. Copies may be obtained from the Defense 
Technical Information Center (DTIC) (http://www.dtic.mil). 
 
AFRL-RH-WP-TR-2015-0092 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
//signed//      //signed// 
Kevin D. Schmidt      Scott M. Galster  
Work Unit Manager      Chief, Applied Neuroscience Branch  
Applied Neuroscience Branch    Warfighter Interface Division 
 
 
 
//signed// 
William E. Russell  
Warfighter Interface Division  
Human Effectiveness Directorate  
711Human Performance Wing 
 
 
This report is published in the interest of scientific and technical information exchange, and its publication does 
not constitute the Government’s approval or disapproval of its ideas or findings. 
 
 
 
 

 

http://www.dtic.mil/


i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if 
it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 
2015-10-07 Interim Report      17 October 2014 – 1 October 2015 

4.  TITLE AND SUBTITLE 
 

    Physiological Indicators of Workload in a Remotely Piloted Aircraft Simulation 

5a.  CONTRACT NUMBER 
FA8650-14-D-6501-0009 

5b.  GRANT NUMBER 
5c.  PROGRAM ELEMENT NUMBER 

 
6.  AUTHOR(S) 

**Michael Hoepf, +Matt Middendorf, #Samantha Epling, and *Scott Galster 
 

5d.  PROJECT NUMBER 

5e.  TASK NUMBER 
5f.  WORK UNIT NUMBER 

 H0HJ (53290813) 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

**ORISE 4692 Millennium Drive, Suite 101Belcamp, Maryland 21017 ,+Middendorf Scientific 
Services, #Ball Aerospace & Technologies 2875 Presidential Drive Fairborn OH 454324 

 
 

     REPORT NUMBER 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING 
Air Force Materiel Command 
Air Force Research Laboratory* 
711Human Performance Wing 
Human Effectiveness Directorate 
Warfighter Interface Division 
Applied Neuroscience Branch 
Applied Adaptive Aiding Section 
Wright-Patterson Air Force Base, OH 45433 

        AGENCY ACRONYM(S) 
       711 HPW/RHCP 
11. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER(S) 
 
AFRL-RH-WP-TR-2015-0092 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Distribution A: Approved for public release. 

13.  SUPPLEMENTARY NOTES 
88 ABW Cleared 02/10/2015; 88ABW-2016-0538. Report contains color. 

14.  ABSTRACT 
Toward preventing performance decrements associated with mental overload in remotely piloted aircraft (RPA) operations, 
the current research investigated the feasibility of using physiological measures to assess cognitive workload. Two RPA 
operators were interviewed to identify factors that impact workload in target tracking missions. Performance, subjective 
workload, cortical, cardiac and eye data were collected. One cardiac and several eye measures were sensitive to changes in 
workload as evidenced by performance and subjective workload data. This research advances the literature toward real-time 
workload mitigation in RPA field operations. 

15.  SUBJECT TERMS   

Cognitive workload, cortical measures, cardiac measures, eye tracking, and physiological workload. 
16.  SECURITY CLASSIFICATION OF: 17. LIMITATION  

OF ABSTRACT: 
SAR 

18.  NUMBER OF 
PAGES 

   44 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

         Kevin D. Schmidt 
19b.  TELEPHONE NUMBER (Include Area Code) 

 
 Standard Form 298 (Rev. 8-98)         

Prescribed by ANSI Std. Z39-18 



ii 

TABLE OF CONTENTS 
Section              Page 
List of Figures ................................................................................................................................ iii 

List of Tables ................................................................................................................................. iii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

1.0 SUMMARY ......................................................................................................................... 1 

2.0 INTRODUCTION ............................................................................................................... 1 

2.1 Workload .......................................................................................................................... 3 

2.2 Cortical Measures ............................................................................................................. 3 

2.3 Cardiac Measures ............................................................................................................. 4 

2.4 Eye Tracking .................................................................................................................... 4 

2.5 Remotely Piloted Aircraft (RPA) ..................................................................................... 5 

3.0 METHODS .......................................................................................................................... 5 

3.1 Participants ....................................................................................................................... 5 

3.2 Apparatus and Measures .................................................................................................. 6 

3.3 Procedure ........................................................................................................................ 11 

4.0 RESULTS .......................................................................................................................... 12 

4.1 Performance ................................................................................................................... 14 

4.2 Subjective Workload ...................................................................................................... 14 

4.3 Cortical Measures ........................................................................................................... 15 

4.4 Cardiac Measures ........................................................................................................... 16 

4.5 Eye Measures ................................................................................................................. 17 

5.0 DISCUSSION .................................................................................................................... 17 

5.1 Limitations ..................................................................................................................... 19 

5.2 Implications and Future Research .................................................................................. 19 

6.0 CONCLUSIONS................................................................................................................ 20 

7.0 REFERENCES .................................................................................................................. 21 

APPENDIX A - Screenshots ........................................................................................................ 28 

APPENDIX B - EEG Reference ................................................................................................... 36 

LIST OF ABBREVIATIONS AND ACRONYMS ..................................................................... 38 

 



iii 

LIST OF FIGURES 

 Page 

Figure 1    Timeline of key events. The number in parenthesis indicates the trial time in seconds, 
and the darker blocks are events associated with a second HVT, which were present in half of the 
trials................................................................................................................................................. 6 

Figure 2    Interaction between number of HVTs and route on performance (+SE) .................... 14 

Figure 3    Saccade amplitude (+SE) for country and city conditions for each participant. 
Amplitude values are absolute values and in arbitrary units…………………………………….16 

 

LIST OF TABLES 

 Page 

Table 1    2x 2 x 2 Factorial Design. ............................................................................................. 11 

Table 2    Means, SEs (in parenthesis), and ANOVA results (F values and probabilities for the 
comparison between easy and difficult task levels) for dependent variables (excluding EEG) ... 13 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 

ACKNOWLEDGMENTS 
 

The authors would like to thank Chelsey Credlebaugh and Jonathan Mead for their assistance in 
data reduction and preparation of this manuscript, as well as Chuck Goodyear for his help with 
data analysis. We would also like to thank Kevin Durkee, Noah DePriest, and Mark Squire for 
their technical support. This research was supported in part by an appointment to the Student 
Research Participation Program at the U.S. Air Force Research Laboratory, Human Effectiveness 
Directorate, Warfighter Interface Division, Applied Neuroscience Branch administered by the 
Oak Ridge Institute for Science and Education through an interagency agreement between the 
U.S. Department of Energy and USAFRL.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

1 
Distribution A: Approved for public release.                           88ABW Cleared 02/10/2016; 88ABW-2016-0538. 

1.0 SUMMARY 
  
This report describes an experiment conducted in the Human Universal Measurement and 
Assessment Network (HUMAN) Laboratory. Toward preventing performance decrements 
associated with mental overload in remotely piloted aircraft (RPA) operations, the current 
research investigated the feasibility of using physiological measures to assess cognitive 
workload. Two RPA operators were interviewed to identify factors that impact workload in 
target tracking missions. Performance, subjective workload, cortical, cardiac and eye data were 
collected. One cardiac and several eye measures were sensitive to changes in workload as 
evidenced by performance and subjective workload data. The report also contains a discussion of 
physiological data processing techniques and challenges (i.e., eye-artifacts and the interpretation 
of cortical measures), and suggestions for future research. Potential applications of this research 
include closed loop systems that employ advanced augmentation strategies, such as adaptive 
automation. Thus, by identifying physiological measures well suited for monitoring workload in 
a realistic simulation, this research advances the literature toward real-time workload mitigation 
in RPA field operations. 
 
 
2.0 INTRODUCTION 
 
U.S. armed forces are increasing using RPA to accomplish missions in hostile territory. One 
proposal to accomplish more with less is to allow operators to control multiple aircraft 
simultaneously (Rose, Arnold, & Howse, 2013). However, piloting one aircraft remotely is a 
complex task, and operating additional aircraft could increase task demands sharply. This is 
potentially problematic because most people perform their best within an optimal range of 
cognitive workload. That is, both cognitive underload and overload can negatively impact 
performance (Young & Stanton, 2002). 
 
One solution to offset this risk, though rarely implemented, is to monitor operator workload and 
provide augmentation before performance decrements occur (Wilson & Russell, 2007).  
Physiological measures, which have been shown to reflect changes in cognitive demand in 
various aviation environments (e.g., Christensen & Estepp, 2013; Roscoe, 1992; Veltman & 
Gaillard, 1998; Wilson & Russell, 2007), are well suited for this goal. However, before 
physiologically based workload monitoring systems can be adopted into RPA field operations, it 
is necessary to conduct testing in the lab using ecologically valid task environments. This is 
especially true as future RPA control stations might look much different than current systems, 
for example, integrating pilot and sensor duties to allow the simultaneous control of multiple 
aircraft. The current research aims to advance the current state of the art by investigating the 
utility of physiological measures for monitoring workload in a futuristic RPA control station.  
 
Researchers are continually exploring methods for assessing workload in real-time. Using 
functional magnetic resonance imaging (fMRI), researchers have shed significant light on the 
functioning of the human brain (Graham et al., 2010; Muller-Plath, 2008; Pouliot et al., 2012; Ye 
& Zhou, 2009). However, the current research utilizes non-invasive sensors, which can be worn 
while sitting and working on a computer.  The understanding of workload has been advanced by 
researchers using a variety of non-invasive physiological measures such as electroencephalogram 
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(EEG; Berka & Levendowski, 2007; Gevins, DuRousseau, Zhang, & Libove, 1993; Gevins, 
Smith, McEvoy, & Yu, 1997; Grimes, Tan, Hudson, Shenoy, & Rao, 2008; Lotte, Congedo, 
L´ecuyer, Lamarche, & Arnaldi, 2007; Wolpaw, McFarland, Neat, & Forneris, 1991), 
electrocardiogram (ECG; Jorna, 1992; Mulder, 1992; Porges & Byrne, 1992; & Roscoe, 1992) 
and eye tracking (Iqbal, Zheng, & Bailey, 2004; Jacob, 1991; Marshall, Pleydell-Pearce & 
Dickson, 2003). These researchers have demonstrated the feasibility of real-time workload 
assessment; however, there are several areas in which the field needs to be advanced before these 
methods can be applied to RPA operations. 
 
First, there is a need for research in realistic RPA task environments. Researchers often use 
conventional laboratory tasks to study physiological indicators of workload, such as Kirchner’s 
(1958) n-back (e.g., Grimes et al., 2008), or Comstock and Arnegard’s (1992) Multi-Attribute 
Task Battery (e.g., Christensen, Estepp, Wilson, & Russell, 2012). Such tasks afford researchers 
experimental control over specific components of workload. For example, by utilizing the n-back 
experimental paradigm, researchers can effectively manipulate working memory demand. While 
demonstrating that physiological measures have utility for monitoring workload in standard 
laboratory tasks is an important step, researchers have recommended that further sensor 
evaluation occur in realistic task environments (e.g., Zarjam, Epps, & Lovell, 2012). To 
implement physiologically based workload monitoring into field RPA operations, researchers 
will first need to show that such systems work in realistic RPA tasks in a laboratory setting.  
 
Second, there is a need for research that examines which physiological measures are best suited 
for RPA tasks. Each physiological measure can provide unique information, redundant 
information, or no information about workload. Before such technology can be implemented into 
the field, bulky/redundant sensors will need to be eliminated. That is, some sensors are better 
suited for some situations than others. For example, Hankins and Wilson (1998) found that only 
eye activity was related to workload during visually demanding flight segments, whereas heart 
rate (HR) was related to workload during flight segments heavily dependent on instrument use, 
and EEG demonstrated sensitivity to mental calculation. This finding is consistent with Wickens’ 
(1984) multiple resource theory (MRT), which distinguishes visual, auditory, tactile, and 
olfactory sources of input, processing, and action. We designed and implemented an experiment 
to address the research needs outlined above. The contributions of this research are two-fold: 
 
To address the first need, we utilize a high-fidelity next generation multiple aircraft management 
RPA simulator to examine workload under various conditions. To make the task as ecologically 
valid as possible, we interviewed two RPA subject matter experts (SMEs) to identify high 
workload situations. We then implemented experimental manipulations to control those 
situations. We also examine the operation of one vs. two RPA.  
 
To address the second need, we employ an array of physiological measures, including EEG, 
ECG, and eye tracking (including electrooculogram (EOG)). This allows us to simultaneously 
evaluate the effectiveness of multiple measures within the same task environment. Our goal is to 
identify physiological measures which are well suited for monitoring workload in RPA task 
environments.  
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The rest of this paper proceeds as follows. First, we review the relevant literature on workload, 
physiological measures, and RPA. Next, we describe an experiment designed to enhance the 
current body of literature as outlined above. We conclude with a discussion of our findings, 
limitations and suggestions for future research. 
 
2.1 Workload 
 
Cognitive workload is an easy concept to understand generally (how hard the brain is working), 
but because it is multidimensional and context dependant, it is difficult to define precisely (Hart 
& Staveland, 1988). According to resource based models of workload (e.g., Wickens, 1984), 
overload occurs when the demands of a task exceed an operator’s ability to meet them. 
Considering both the operator’s cognitive capacity and task demands is important, as workload 
can be viewed as an interaction between the two (Cain, 2007). An operator’s cognitive capacity 
may change due to training, fatigue or the environment, while task difficulty may vary due to 
situational changes or task reallocation.  
 
To reduce workload, it is necessary to accurately measure workload and identify the cause of the 
high workload. Researchers have recognized that subjective ratings, performance measures, and 
physiological measures can be valid indicators of workload (Hart & Staveland, 1988; O’Donnell 
& Eggemeier, 1986; Wilson et al., 2004). Subjective measures can be introduced at any time, but 
they may intrude into the operator’s task (Kramer, 1991; Wilson & Eggemeier, 1991). We doubt 
that pilots would appreciate being prompted for a workload assessment during critical mission 
phases. Furthermore, if the collection of subjective measures is postponed to avoid this 
interference, operator responses might suffer from memory lapses and bias (Moroney, Biers, & 
Eggemeier, 1995). 
 
Performance can be obtained continuously in some contexts, but, in jobs that are highly 
automated, operators are primarily in a monitoring role. This significantly reduces opportunities 
to observe performance (Wilson & Eggemeier, 1991). In addition, if the goal of monitoring 
workload is to prevent performance decrements, using performance to ascertain workload would 
clearly be insufficient in some situations. That is, performance decrements will have to occur 
before high workload can be recognized. It would not benefit commanders to recognize, for 
instance, that a pilot had experienced high workload after mission failure had already occurred.  
 
Physiological measures can be continuous, nonintrusive, and have been shown to be sensitive to 
changes in mental and physical workload (e.g., Caldwell, Caldwell, Brown, & Smith, 2004; 
Wilson et al., 2004). Furthermore, physiological measures can be combined to provide a superior 
estimation of workload in complex, multifaceted tasks, such as air traffic control (Brookings, 
Wilson, & Swain, 1996) and piloting aircraft (Hankins & Wilson, 1998). Thus, physiological 
measures appear to be ideally suited for continuous workload assessment in RPA operations.  
 
2.2 Cortical Measures 
 
There are numerous neuroimaging techniques available for studying the complex and dynamic 
behavior of the brain. However, due to prohibitive factors such as cost and portability, the 
current study uses electroencephalography (EEG). EEG is the recording of electrical activity 
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along the scalp, which measures voltage fluctuations resulting from ionic current flows within 
the neurons of the brain (Niedermeyer & da Silva, 2004). Advantages of EEG include high 
temporal resolution, ease of use, and relatively low cost compared to other neuroimaging 
techniques (Zander & Kothe, 2011). Typical methods to examine EEG data include: power 
spectral density or the averaged power, maximum/log power spectra, sub-band entropy, and 
autoregressive modeling (Zarjam et al., 2012). Researchers have demonstrated that EEG can be 
used in real-time to assess mental workload (e.g., Wilson & Russell, 2007), and that such 
methods are sufficiently stable to provide accurate assessment over the course of several days 
and weeks (Christensen et al., 2012).  
 
2.3 Cardiac Measures 
 
Researchers have investigated the relationship between cardiac measures and workload for many 
years. Such measures are relatively easy to obtain and can be assessed continuously in most task 
environments. Typical cardiac measures include heart rate (HR) and heart rate variability (HRV). 
These measures can be acquired with the application of a few electrodes over the heart. If HR is 
all that is required, it may suffice to simply place a monitoring device where artery pulsation is 
transmitted to the surface, such as the wrist. Measures of HR have the longest history and the 
widest use, while fewer researchers have used HRV (Wilson, 1992). In both laboratory and field 
settings, researchers typically observe HR increases and HRV decreases in high workload 
situations (e.g., Jorna, 1992; Mulder, 1992; Porges & Byrne, 1992; & Roscoe, 1992). However, 
there is some debate about which measure is superior. Roscoe (1992) suggested that HRV may 
indicate changes in mental workload in the absence of any change in overall HR. Yet, Grossman 
(1992) indicated that it is not clear that HRV provides any more information than simple HR.  
 
Despite the ease of collecting cardiac measures, there are potential obstacles associated with their 
use. Wilson (1992) observed that participants are often unfamiliar with the task and 
unaccustomed to being in a laboratory setting. Thus, learning effects may account for some of 
the variance in cardiac measures in laboratory tasks. However, applied settings present a lack of 
experimental control. Differences in HR are often substantially larger in applied settings than in 
laboratory settings (Wilson, 1992). Changes in cardiac activity might be smaller in laboratory 
setting than field settings because there are no dire consequences as a result of poor performance 
in laboratory tasks. Also, researchers need to be cautious not to confuse changes in cardiac 
measures that arise from cognitive activity with changes due to physical activity (Wilson, 1992). 
Finally, Roscoe (1992) noted that HR can be affected by environmental factors such as heat, 
vibration and noise, by stimulants (e.g., caffeine and tobacco), by pain and discomfort, and by 
diurnal variations. It is worth noting that, there are limitations with all physiological measures, 
and we would expect many of the obstacles discussed here to apply to other measures as well.   
 
2.4 Eye Tracking 
 
Eye tracking is a general term covering a variety of eye-based measures. Physiological workload 
features that can be derived from eye tracking are typically categorized into four groups: blinks, 
saccades, fixation, and pupillary response. We focused on blinks and pupillary measures in the 
current research. Regarding blinks, Wang and Zhou (2013) concluded that: 1. Blink rate 
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decreases with an increase in cognitive load, and 2. Blink duration tends to decrease during more 
intense processing load.  
 
Pupil diameter fluctuates based on both lighting and autonomic nervous system responses (e.g., 
the fight or flight response of the sympathetic nervous system in a threatening situation causes 
pupil dilation). An increase in pupil diameter can be associated with an increase in mental 
demand (Beatty, 1982; Wang & Zhou, 2013). However, pupil dilation changes from the 
illumination condition of the visual field can be strong. Pomplun and Sunkara (2003) observed 
that background brightness resulted in greater variation of pupil diameter than task difficulty.  
 
In sum, cortical, cardiac, and eye based physiological measures are all potentially well suited for 
monitoring workload. Thus, data will be collected from each of these sources in the current 
research. We now turn the discussion to RPA operations. 
 
2.5 Remotely Piloted Aircraft (RPA) 
 
RPA are in high military demand because of their standoff capability in areas that are difficult to 
access or otherwise considered too hazardous for manned aircraft or personnel on the ground 
(U.S. Department of Defense, 2011). It has been documented that the military intends to increase 
the number of RPA in service while simultaneously reducing the number of operators (Dixon et 
al., 2004). It is envisioned that the next generation RPA will have single human operators 
monitoring multiple semi-autonomous RPA. The benefits of such automated systems include: 
reducing manpower requirements, lower life-cycle costs, and decreased human exposure to 
hazardous environments (Prabhala, Gallimore, & Narayanan, 2003; Ruff, Narayanan, & Draper, 
2002). Such systems would require operators to perform high-level cognitive tasks such as: 
coordinating multiple RPA, overseeing multiple target areas, detecting targets, identifying 
targets, route planning, and monitoring system status (Liu, Wasson, & Vincenzi, 2009). Thus, 
there is a need to minimize the mental workload demands that will be imposed on the operators 
of such systems. A reduction in workload should enable better overall system performance 
(Tsang & Wilson, 1997) and contribute to the reduction of the operator-to-vehicle ratio. In 
addition, we expect a reduction in mistakes such as equipment loss and ground casualties may 
eventually be possible. The following experiment investigates the utility of several physiological 
measures for monitoring workload in a futuristic RPA system.   
 
 
3.0 METHODS 
 
3.1 Participants 
 
Participants in this study consisted of six people who were either students at a Midwestern 
university, or recent graduates. They were paid $15 per hour for their participation. The 
participants were screened for motor, perceptual, cognitive, heart, and neurological conditions, as 
well as hearing impairments. They did not take any neurological medications or medications that 
caused drowsiness. Participants were comfortable operating a computer, reading small characters 
on a computer monitor, hearing and comprehending verbal commands presented through 
headphones, and learning complex, computer based tasks. Three participants were female and 
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three were male. Age ranged from 19-28, with a mean of 22. They were fluent in English, right-
handed, had normal or corrected-to-normal eyesight with no color blindness, and provided 
written informed consent in accordance with human research ethics guidelines prior to the start 
of the experiment. All study procedures were reviewed and approved by the Air Force Research 
Laboratory Institutional Review Board.  
 
3.2 Apparatus and Measures 
 
Primary Task. The experiment consisted of a primary and secondary task. The primary task was 
developed using an RPA software platform known as the Vigilant Spirit Control Station (VSCS; 
Rowe, Liggett, Davis, 2009). We utilized version 3.14, which was not updated or altered at any 
point during data collection. An important aspect of VSCS is that it allows one operator to 
control multiple RPA simultaneously. Our configuration allowed operators to control two RPA. 
Each RPA had one sensor, and we simulated the video feeds from these sensors using Virtual 
Reality Scene Generator (VRSG) software. The task was configured for a triple monitor control 
station such that the tactical situation display, which shows the map and aircraft information, was 
displayed on the left monitor, and the middle screen displayed the video feeds from the sensors. 
The right monitor displayed the communication windows. The primary task environment was 
centered on a simulated replica of a small town in Afghanistan, although the architecture of the 
town was randomly generated.   
 
The goal of the primary task was to track one or two high value targets (HVTs). A timeline of the 
key events can be found in Figure 1.The first 30 seconds were designated as time for the 
participants to set up the RPA. This consisted of taking control of both RPA, adjusting the 
sensors, turning on the heads up display (HUD), and enabling sensor slaved tracking (an 
automation feature in which the aircraft flies auto-piloted loiter circles around the center of the 
sensor feed).  
 

 
Figure 1. Timeline of key events. The number in parenthesis indicates the trial time in seconds, and the 

darker blocks are events associated with a second HVT, which were present in half of the trials 
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At 30 seconds into the trial, the first HVT walks out from underneath a tent and begins walking 
to a different tent. In half of the trials, at 60 seconds, a second HVT was initiated from the same 
tent as the first HVT. At 90 seconds, the first HVT would arrive at a second tent, and then leave 
on a motorcycle. If the trial had a second HVT, he would follow the same pattern, leaving the 
market via motorcycle 120 seconds into the trial. Subsequently, the HVT(s) would ride to a 
predetermined tent, either taking a route through the city or the country, depending on the 
condition. The routes took 300 seconds to complete, and thus trials with one HVT ran for 390 
seconds, while trials with two HVTs lasted for 420 seconds.  
 
Participants were instructed to keep the RPA sensor positioned over the HVTs, which they 
accomplished by clicking in the video feed with the mouse, causing the video feed to center on 
where they had clicked. The sensor slaved tracking feature would then automatically update the 
aircraft position to fly a loiter circle around this center point. This eliminated the need for the 
operator to manually navigate the aircraft. Participants were free to develop their own strategy 
regarding the location and frequency of where they clicked and to adjust the level of zoom of the 
sensor feed.  
 
Secondary Task. The secondary task consisted of answering cognitively challenging questions. 
Questions were presented verbally over a headset, and were then made available visually. 
Participants were required to respond verbally by speaking into a headset. The secondary task 
was presented concurrently with the primary task. 
 
There were three math questions and one mental rotation question per trial. Questions of the 
same type were presented at the same time in each trial, but were selected quasi-randomly 
(balanced for difficulty) from a bank of questions so participants could not anticipate specific 
questions. In each trial, a division question was presented at 150 seconds (e.g., “How long would 
it take you to reach a location 240 nautical miles away based on your current speed?”).  A 
compound arithmetic question was presented at 210 seconds (e.g., “How long would it take you 
to reach a destination 100 nautical miles away with a headwind of 15 knots?). An addition or 
subtraction question was presented at 270 seconds (e.g., “What would your altitude be if you 
moved 1200 feet higher?”) Finally, a mental rotation question was presented at 330 seconds, 
which was always the same (“What is the current heading of the HVT?”). For this question, 
participants had to look at the compass on the HUD and make a determination of which direction 
the first HVT was heading. This task was challenging because the viewing angle and compass 
were constantly rotating as the RPA flew loiter circles around the HVT. Furthermore, the 
heading question was unique in that it required participants to examine the video feed, whereas 
the first three questions could be calculated mentally because RPA speed and altitude were held 
constant and therefore easily memorized by the participant. 
 
The secondary task was created using the Multi-Modal Communication (MMC) tool (Finomore, 
Popik, Dallman, Stewart, Satterfield, Castle, 2011). This software allowed scripted voice 
communications and transcriptions to play along a predetermined timeline. The MMC tool was 
set up on the right monitor, and was configured to contain two windows, one entitled “Mission”, 
and one entitled “Response”. Transcriptions of voiced questions were displayed in the mission 
window, and participants were required to respond by clicking and holding a push-to-talk button 
in the response window while they responded verbally. 
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Physiological Data Acquisition. The physiological data collected in this study included the EEG, 
ECG, vertical EOG (VEOG), and pupil diameter. The EEG data were acquired using electrodes 
placed directly on the scalp and secured in place with an Electro-Cap manufactured by Electro-
Cap International, Inc. EEG was measured at seven sites on the scalp in accordance with the 
International 10/20 system (Jasper, 1958). The seven sites were the F7, F8, T3, T4, Fz, Pz, and 
O2 (see Appendix B). The right and left mastoids were used as the reference and ground for the 
EEG signals. All initial electrode impedances were measured to be at or below 5 kΩ. 
 
The VEOG data were acquired using two electrodes placed above and below the left eye. The 
ECG data were acquired using two electrodes placed on the sternum and xiphoid process. The 
initial electrode impedances for the VEOG and ECG were measured to be at or below 20 kΩ. 
The left mastoid was used as the ground for the VEOG and ECG signal. The EEG and VEOG 
signals were sampled using two Cleveland Medical Devices BioRadio 150s at a sampling rate of 
480 Hz. The ECG signal was sampled at 960 Hz. All signals connected to the BioRadio 150s 
were subjected to a hardware high pass filter with a break frequency of 0.5 Hz. The sampled data 
were transmitted wirelessly to a computer for processing and recording. The pupil diameter data 
were collected using the Smart Eye Pro 5.9 system, which included four cameras sampling data 
at 60Hz.   
 
Physiological Data Processing. The raw VEOG signal was processed in real-time by a blink 
detection algorithm. The main features computed by the algorithm are blink duration and blink 
rate. The major components of the blink detection algorithm are threshold generation, a feature 
extraction state machine, and blink classification. The threshold generation component produced 
a threshold based on a sliding five second window of raw VEOG data. The feature extraction 
state machine finds the slope up, slope down, amplitude, and duration each time the VEOG 
signal goes above and below the threshold. The blink classification component compares these 
extracted features to criteria values to determine if the signal excursion above and below 
threshold is a blink.  
 
The frequency bands (i.e., pass bands) used in the EEG signal processing are consistent with the 
traditional EEG bands. These bands are delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-
30 Hz), gamma 1 (31-40 Hz), gamma 2 (41-57 Hz) and gamma 3 (63-100 Hz). A two second 
time domain window was used to process the raw EEG data. The raw data in the two second 
window was filtered using a 4th order Butterworth band pass filter. A Hanning window was 
applied to the filtered data and power spectral analysis was performed. The resulting power in 
the pass band was then averaged. These steps were repeated for each frequency band and 
electrode site. The two second time domain windows had a 50% overlap, thus yielding one 
measure of average power every second. This signal processing approach yielded 49 EEG 
measures per second (7 sites with 7 bands per site). 
 
The two second window of raw EEG data was also processed to detect saccades. A unique 
feature of this EEG-based saccade detection is that the saccades are detected on a per-site basis. 
A linear fit with an initial length of 25 milliseconds is performed at the leading edge of the 
window. If the linear fit passes a slope and r2 criteria, then the length of the fit is allowed to grow 
until the fit fails the criteria. The length, amplitude, and slope of the final fit is saved. The fit 
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length is then reset to 25 milliseconds and slid by one point towards the trailing edge of the 
window. The detection process is then repeated until the trailing edge of the window is reached. 
If one or more saccades are found in the window, the one with the largest amplitude is recorded 
and a flag is set to indicate that an artifact was found in the EEG window. 
 
To account for EOG artifacts, the EEG data is examined in three ways. First, the results are 
reported with all of the EEG windows included. That is, no data is removed because of eye 
movement. Second, the EEG results are examined without windows that contain blinks. Third, 
results are examined without windows containing blinks or saccades.  
The ECG data were processed by a peak detection algorithm. The inverse of the period between 
consecutive peaks was used to compute instantaneous HR frequency in hertz. The difference 
between consecutive HR frequencies was used to compute HRV in real-time. 
 
The pupil diameter data from the Smart Eye Pro system was processed using logic to determine 
if the data was reliable. The system produces a reliability value for each pupil diameter measure, 
ranging from zero to one. The pupil diameter measures with a corresponding reliability value 
greater than 0.65 were used to compute an average pupil diameter measure for each trial 
Lastly, all physiological data were inspected for outliers, which can be caused by sensor failure, 
participant movement, data transmission dropouts, and algorithm errors. Additionally, each of 
the EEG measures had an associated flag that would indicate the presence of an artifact (blinks 
and saccades). The blink indication came directly from the VEOG blink detection algorithm. The 
saccade indication came from a separate algorithm that was developed to directly detect saccades 
in the raw EEG data. 
 
Composite Scoring Algorithm. Performance was measured using a composite scoring algorithm, 
which was based on components from both the primary and secondary task. For each trial, the 
maximum possible score was 1,000 points, (800 primary and 200 secondary). To obtain points 
on the primary task, participants were required to keep the HVT(s) in their video feed(s). Points 
would accrue at two different rates depending on the level of zoom. The maximum number of 
points (about 3 per second) was allotted when using the highest two levels of zoom (6.9x and 
23.9x), whereas using the other levels (1.0x-4.4x) resulted in accruing half as many points per 
second (see Appendix A – Condition 4 for a screenshot of 6.9x and 4.4x). The rationale for this 
differential point structure was to better control workload. That is, using higher zoom levels 
resulted in higher levels of workload. Thus, the point structure rewarded participants for using 
higher levels of zoom (thereby experiencing greater workload) when it was possible for them to 
do so. In addition, we did not want participants to be able to simply zoom out so far that the 
HVTs were always in their video feed, thereby obtaining full points without any effort (i.e., 
cheating).  
 
In the secondary task, participants had to answer questions correctly, and within a certain 
timeframe to acquire points. There were four questions per trial, each worth a maximum of 50 
points. To obtain all 50 points, participants had to respond correctly within 10 seconds. After 10 
seconds, the participants would lose 1 point per second for the next 10 seconds, and then 2 points 
per second for the next 10 seconds. After 30 seconds, no points were given. Answering 
incorrectly resulted in a 5 point penalty. However, an exception was made for the mental rotation 
question. We could not require an exact response because the HVTs frequently changed 
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direction, which meant that the HVT heading varied depending on when the participant answered 
the question. Thus, responses were considered correct for this question as long as a response was 
provided.  
 
Competition. Individuals have a natural tendency to search for information in order to make 
comparisons of their behavior and attitudes with others (Festinger, 1954). This information often 
serves as a cue for competition (Seta, 1982). Competition has been defined as a use of social 
comparison information to make evaluative performance rankings (Martens, 1975). Furthermore, 
individuals have a tendency to challenge themselves in an effort to develop competence and 
prove self-determination (Deci & Ryan, 1991). So, when presented with performance feedback, 
people are motivated to continuously improve their own performance, and beat the performance 
of others. Thus, we implemented a “social” or “informal” competition to increase motivation and 
task engagement. The main difference between formal and informal is the focus of participant 
attention (Sommer, 1995). Informal contests direct attention towards behaviors and performance, 
and their comparisons. Conversely, formal competition directs the focus onto outcome issues 
such as prizes, allocation of scarce resources, and the justice of the allocation procedure. We 
offered no prizes for high scores, as the goal was for the competition to remain social. This is 
because social competitions have been associated with enhanced performance, whereas formal 
competition can lead to negative outcomes, such as higher intergroup hostility (Sherif, Harvey, 
White, Wood, & Sherif, 1961).  
 
Another important aspect of competition is that it is associated with increased physiological 
reactivity. Cooke, Kavussanu, McIntyre, and Ring (2011), for instance, found that competition 
increased effort and heart rate while decreasing heart rate variability. Similarly, other researchers 
have observed an increase in heart rate and blood pressure with competition (Harrison et al., 
2001; Veldhuijzen van Zanten et al., 2002). This could be seen as an advantage in the current 
research because we are looking for physiological changes associated with high workload. That 
is, we believe the inclusion of the competition will increase effort and physiological reactivity.  
 
To implement the competition, top scores were posted on a whiteboard. This whiteboard was 
placed to the right of the participant control station so that it was out of view during the task, but 
easily visible during setup and between trials. The posted scores were averages based on all trials 
from each day. This encouraged the participants to remain engaged for all of the trials in the 
session. Participant identification numbers were used to maintain anonymity. The participants 
were debriefed following their final day of data collection. All twelve participants in the study 
indicated that the performance feedback positively affected their motivation, and the competition 
prevented task disengagement. 
 
Subjective Workload. Subjective workload was assessed using the National Aeronautics and 
Space Administration Task Load Index (TLX), a multidimensional measure that assesses 
perceived workload (Hart & Staveland, 1988). Workload was determined by averaging across 
the six sub-scales (mental demand, physical demand, temporal demand, performance, effort, and 
frustration). Each scale was rated from 1-100 with the left anchors indicating “low” and the right 
anchors indicating “high” for all scales except the performance scale, which is reversed. Even 
though the TLX authors suggested a weighting procedure, we opted to use the simple average 
based on several findings in the existing literature. That is, the un-weighted average of the six 
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sub-scales has been found to be psychometrically (Nygren, 1991), and empirically equivalent to 
the weighted sub-scale averaging (Christ et al., 1993; Hendy, Hamilton, & Landry, 1993). In 
addition, there is some concern that the six sub-scales are often perceived as measuring only one 
or two constructs, and interpretation of the individual sub-scales should only be made with 
caution (Bailey & Thompson, 2001). Thus, the un-weighted average was used in the current 
research.  
 
3.3 Procedure 
 
Participants were brought into the laboratory for one day of training and four days of data 
collection. For training, participants first viewed a PowerPoint presentation containing a 
description of the primary and secondary tasks accompanied by screenshots. The presentation 
also contained information pertaining to subjective workload assessment and instructions for 
completing the TLX. Further, participants were read a script that encouraged them to accurately 
complete the TLX. The researchers then provided part-task training on the primary task and 
administered eight practice trials. Following each trial, participants completed a paper and pencil 
version of the TLX and were provided performance feedback. 
 
On data collection days, researchers equipped the participants with the physiological devices, 
which took approximately 40 minutes to complete. The researchers then verified that the 
participants were comfortable, adjusted the volume of the headset, and provided several 
reminders regarding important components of the task. Participants completed eight 
experimental trials, separated by a break after the fourth trial. Baseline data was collected at the 
beginning and end of each session. Both baseline conditions consisted of five minutes of the 
participants passively viewing RPA video feeds. The four data collection days were structured 
the same except that a debriefing was conducted at the end of the fourth day.  
 
Experimental Manipulations. The current investigation utilized a 2 x 2 x 2 full factorial design. 
There were three manipulations (summarized in Table 1) intended to impact workload, each 
containing two levels. The first manipulation was weather (i.e., visibility), which included clear 
and hazy conditions. The weather effects were created using the virtual reality scene generator. 
The clear condition was free of clouds and visibility was unobstructed. A layer of fog was 
present in the hazy condition, which reduced visibility. Workload was expected to be higher 
under hazy condition.  
 

Table 1. 2 x 2 x 2 Factorial Design 
    

 Clear  Hazy 
    
      

 Country City  Country City 
      
      

One HVT Condition 1 Condition 2  Condition 5 Condition 6 
      

Two HVTs Condition 3 Condition 4  Condition 7 Condition 8 
      

 
 
The second manipulation was the number of HVTs, which was either one or two. In single HVT 
conditions, participants were required to track only one HVT, which meant it was only necessary 
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to use one RPA. In the two HVT condition, participants had to use both RPA to track the two 
targets. Workload was expected to be higher in two HVT condition.   
 
The third manipulation was route difficulty, which refers to the roads the HVTs would travel on 
their motorcycles. The two route types were country and city. For the country routes, HVTs 
simply traveled back and forth along a long straight road, the view of which was generally not 
obstructed by any buildings. Conversely, for the city routes, the HVTs took many turns and 
sometimes became occluded by buildings. It was expected that city routes were more difficult 
than the country routes because of the turns and occlusion. Screenshots of each condition, as well 
as the task environment in general, are available in Appendix A.  
 
Condition Balancing. When counterbalancing the order of the conditions, we were constrained 
by a lengthy virtual reality scene generator restart process required to load new weather settings. 
It was necessary to balance the order of the conditions within blocks of four trials, holding 
weather constant within each block. By doing so, we were only required to restart the software 
once during data collection, which also allowed for a consistent break time for participants half 
way through the session. Furthermore, each block of four trials was counterbalanced using 
balanced 4 x 4 Latin squares, which ensured that each treatment condition preceded every other 
treatment an equal number of times, thereby accounting for order effects (e.g., learning, fatigue, 
contrast).  
 
To ensure that participants did not become overly familiar with the HVT routes and questions, 
we structured the experiment such that participants only experienced each HVT route and each 
question once per session. For the primary task, twelve HVT routes were created (four trials with 
one HVT and four trials with two HVTs. The number of turns and the amount of building 
obstruction was kept as consistent as possible within route type. Six routes were country, and six 
routes were city. Furthermore, three city routes were localized in one region of the town, whereas 
the other three stayed in a separate region. The country routes were similarly divided along a 
country road. Thus, we specifically structured the task such that multiple HVTs would never be 
in the same video feed at the same time. This was necessary to balance the difficulty of the 
conditions and avoid any unanticipated changes in workload associated with HVT confusion. In 
addition, we ensured that routes were counterbalanced such that each route appeared in clear and 
hazy conditions an equal number of times. To the extent possible, we also balanced the number 
of times that routes were used in single HVT conditions and dual HVT conditions.  For the 
secondary task, there were four types of questions. We created a bank of eight questions for each 
question type, with the except for the heading question. The heading question was always asked 
the same way, but this was acceptable because the expected response was different depending on 
the position of the RPA. Thus, as was the case with the routes, participants were exposed to each 
question once per session.  
 
 
4.0 RESULTS 
 
The performance, subjective workload, and physiological data were statistically evaluated using 
a three-way (weather, HVT, route) repeated-measures ANOVA. The means, standard errors 
(SE), and ANOVA results (excluding EEG) are presented in Table 2. EEG results are presented 
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separately (see Appendix B) because it is easier to view the large number of EEG measures via a 
visual depiction of the results over the scalp.  
 

Table 2. Means, SEs (in parenthesis), and ANOVA results (F values and probabilities for the comparison 
between easy and difficult task levels) for dependent variables (excluding EEG) 

    

 Weather HVTs Route 
    
 

Performance 
 
    

Easy 776.2 (23.4) 873.6 (24.1) 814.5 (19.2) 
    

Difficult 785.0 (25.6) 687.6 (25.4) 746.7 (31.6) 
    

ANOVA ns F(1,5) = 220.30, p < .001 F(1, 5) = 10.18, p < .05 
    
 

Subjective Workload (TLX) 
 
    

Easy 43.3 (5.0) 32.1 (4.2) 39.1 (4.1) 
    

Difficult 43.5 (4.3) 54.6 (6.1) 47.6 (5.3) 
    

ANOVA ns F(1, 5) = 18.97, p < .01 F(1, 5) = 18.52, p < .01 
    
 

HR (beats per minute) 
 
    

Easy 70.51 (2.40) 69.99 (2.44) 70.76 (2.67) 
    

Difficult 70.91 (2.55) 71.43 (2.61) 70.66 (2.29) 
    

ANOVA ns ns ns 
    
 

HRV 
 
    

Easy 0.0533 (0.0046) 0.0555 (0.0050) 0.0542 (0.0047) 
    

Difficult 0.0539 (0.0050) 0.0517 (0.0046) 0.0530 (0.0049) 
    

ANOVA ns F(1,5) = 19.46, p <.01 F(1,5) = 7.44, p <.05 
    
 

Blink Duration (s) 
 
    

Easy 0.1053 (0.0041) 0.1099 (0.0041) 0.1064 (0.0043) 
    

Difficult 0.1051 (0.0044) 0.1005 (0.0047) 0.1041(0.0042) 
    

ANOVA ns F(1,5) = 13.81, p < .05 F(1,5) = 16.77, p < .01 
    
 

Blink Rate (blink per minute) 
 
    

Easy 19.16 (5.08) 21.65 (5.87) 19.59 (5.23) 
    

Difficult 18.77 (5.05) 16.28 (4.50) 18.34 (4.88) 
    

ANOVA ns *F(1,5) = 3.98, p = .10 F(1,5) = 8.23, p < .05 
    
 

Pupil Diameter (mm) 
 
    

Easy 4.06 (0.68) 3.84 (0.65) 3.92 (0.66) 
    

Difficult 3.87 (0.59) 4.09 (0.62) 4.00 (0.63) 
    

ANOVA ●F(1,5) = 14.85, p < .05 F(1,5) = 44.33, p < .01 ns 
    

Note. ns = not significant; * = near significant (p = .10); ● = means not in direction expected.  
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4.1 Performance 
 
Performance in hazy conditions (784.97) was not significantly different than the performance in 
clear conditions (776.20). Performance was higher in conditions involving one HVT (873.56) 
compared to conditions involving two HVTs (687.60), F(1,5) = 220.30, p < .001, and higher in 
conditions with country routes (814.51) than in conditions with city routes (746.66), F(1, 5) = 
10.18, p < .05.  
 
In addition to the main effects on performance, there was an interaction between the number of 
HVTs and route type, F(1, 5) = 13.73, p < .05. The performance for conditions containing 
country routes declined from 882.88 in those with one HVT, to 746.31 in those with two, a 
difference of 136.57. By comparison, performance of conditions featuring city routes declined 
from 864.25 in conditions with one HVT, to 629.06 in those with two, a difference of 235.19 
(see figure 2). This finding is not surprising given that when a second HVT was present in a trial, 
it always matched the route type of the first HVT. Adding a city HVT simply resulted in lower 
performance than adding a country HVT. 

 

 
Figure 2. Interaction between number of HVTs and route on performance (+SE) 

 
4.2 Subjective Workload 
 
The workload of hazy conditions (43.48) was not significantly different than the workload of 
clear conditions (43.29). The workload of conditions involving two HVTs (54.64) was higher 
than the workload of conditions involving one HVT (32.13), F(1, 5) = 18.97, p < .01.The 
workload of conditions featuring city routes (47.63) was higher than conditions featuring country 
routes (39.14), F(1, 5) = 18.52, p < .01.  
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4.3 Cortical Measures   
 
The EEG measures (power at each site and frequency band) were examined for each of the 
experimental manipulations. For conciseness in the text, we only report the results of the 
ANOVAs using all of the EEG data (no windows removed due to saccades or blinks), and using 
the EEG data with EOG artifacts removed (windows removed that contains blinks or saccades). 
A visual depiction of these results, as well as the EEG results based on the removal of blinks 
only, is available in Appendix B. 
 
When all data was analyzed for the weather manipulation (clear vs. hazy), there was less power 
in the alpha band for the O2 site in the hazy condition than the clear condition F(1, 5) = 9.24, p < 
0.05. When the artifact free data was analyzed for the weather manipulation, there was less 
power in the alpha band for O2 F(1, 5) = 16.87, p < 0.05 and PZ F(1, 5) = 16.49, p < 0.05 in the 
hazy condition than the clear condition. It is interesting that significance was found at an 
additional site when looking at the artifact free data. A decrease in alpha power is often 
associated with high workload (e.g., Dussault, Jouanin, & Guezennec, 2004; Prinzel el al. 2003; 
Wilson, 2002).  
 
When all data was analyzed for the route (county vs. city) manipulation, there was less power in 
the hard (city) condition than in the easy (country) condition in the delta band at F7 F(1, 5) = 
14.41, p<0.05, F8 F(1, 5) = 8.49, p<0.05, T3 F(1, 5) = 18.96, p<0.05, T4 F(1, 5) = 9.83, p<0.05, 
Fz F(1, 5) = 17.33, p<0.05, and Pz F(1, 5) = 7.58, p<0.05, and in the theta band at F7 F(1, 5) = 
6.81, p<0.05. When the artifact free data was analyzed for the route (county vs. city) 
manipulation, there was more power in the theta band for the hard (city) condition than the easy 
(country) condition, the theta band at Fz F(1, 5) = 27.51, p<0.05 and Pz F(1, 5) = 25.09, p<0.05, 
and the gamma 1 band at T3 F(1, 5) = 12.24, p<0.05. We believe that the significance in the 
delta and theta bands based on all of the EEG data is due to eye artifacts. EOG artifacts are a 
major source of concern in the interpretation of EEG data (Fatourechi, Bashashati, Ward & 
Birch, 2007). Furthermore, EOG activity has a wide frequency range, being maximal at 
frequencies below 4 Hz, and is most prominent over the anterior head regions (McFarland, 
McCane, David, & Wolpaw, 1997). This means that blinks and saccades can lead to an increase 
in power in the lower frequency EEG bands, especially delta. In the current investigation, 
participants blinked less during the hard (city) conditions (see EOG results), and saccade 
amplitude was greater in country conditions (see Figure 3). Thus, it appears that eye artifacts 
may explain why there was significantly less power at many sites in the delta band and one site 
in the theta band in hard (city) conditions. However, it is interesting to note that when the artifact 
free data was analyzed, more power was found at two sites in the theta band during hard (city) 
conditions. Theta power is often observed with an increase in workload (e.g., Hankins & Wilson, 
1998; Wilson, Caldwell, & Russell, 2007), and thus this finding is not surprising.  
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Figure 3. Saccade amplitude (+SE) for country and city conditions for each participant. Amplitude values are 

absolute values and in arbitrary units 
 

When all EEG data was analyzed for the number of HVTs (one vs. two) manipulation, there was 
significantly more power (p < .05) for hard (2 HVT) conditions at several sites for the delta, 
theta, and alpha bands, and the T4 site for the beta, gamma 1, gamma 2, and gamma 3 bands. 
Interestingly, analyzing the artifact free data produced a similar pattern of results. In fact, an 
increase in power was found for an additional 7 measures across various sites and bands in the 
artifact free data vs. all of the data. This ‘across the board’ increase in power warranted further 
investigation. It appears that there is a task-related effect of eye movement that may explain this 
finding. When tracking two HVTs, the participant must constantly shift their gaze between two 
sensor feeds, thus introducing substantially more saccades. The large number of saccades would 
explain the increase in power when all of the EEG data were analyzed.  However, one would 
expect that when the artifact free data was analyzed this effect would disappear. Unfortunately, 
the saccade detection algorithm used in this study is still a work in progress and is imperfect. 
Specifically, it appears that the low frequency power that trails the saccade (appearing in the next 
window) did not get flagged. We believe this effect was due to the band pass filter. Thus, we 
were unable to remove all of the low frequency power due to saccades. The nature of this 
manipulation (in that saccades occurred at a very high frequency in the hard (2 HVTs) 
conditions) makes interpretation of these EEG results difficult. 
 

4.4 Cardiac Measures 
 
None of the experimental manipulations significantly impacted HR. However, HRV was 
lower in city conditions (0.0530) than country conditions (0.0542), F(1,5) = 7.44, p <.05, and 
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lower in conditions with two HVTs (0.0517) than conditions with one HVT (0.0555), F(1,5) = 
19.46,       p <.01. The decrease in HRV during high workload conditions was expected based on 
previous research (e.g., Roscoe, 1992; Wilson, 1992). 
 
4.5 Eye Measures 
 
Blink duration. Blink duration was shorter in two HVT conditions (0.1005s) than one HVT 
conditions (0.1099s), F(1,5) = 13.81, p < .05, and shorter in city conditions (0.1041s) than 
country conditions (0.1064s), F(1,5) = 16.77, p < .01. 
 
Blink rate. Participants blinked less in two HVT conditions (16.28) than one HVT conditions 
(21.65), but this difference was not statistically significant F(1,5) = 3.98, p = .10. Blink rate was 
slower in city conditions (18.34) than country conditions (19.59), F(1,5) = 8.23, p < .05.  
 
Pupil diameter. Pupil diameter was larger during two HVT conditions (4.086mm) than during 
one HVT conditions (3.837mm), F(1,5) = 44.33, p < .01. Similarly, pupil diameter was also 
larger during city routes (4.008mm) than during country routes (3.918mm), although this 
difference was not significant, F(1,5) = 3.38, p = .125.  
 
Unexpectedly, pupil diameter was larger during clear conditions (4.057mm) than hazy conditions 
(3.868mm), F(1,5) = 14.85, p < .05. It is possible that the pupil light reflex was responsible for 
this difference. Specifically, we speculated that the haze conditions were actually brighter than 
the clear conditions because the light reflecting off the haze was brighter than the background 
(grass, pavement, buildings, etc.). To test this idea we used a Minolta Chroma-Meter CS-100 to 
assess the luminance of the two conditions. We measured four locations in the simulator four 
times each and calculated the average. Indeed the average luminance under hazy settings was 
59.16 foot-lamberts (fL), whereas the average luminance under clear conditions was 32.61 fL, a 
difference of 26.55 fL. Thus, the intensity of light was greater in hazy conditions, thereby 
explaining the constriction in pupil diameter.  
 
Generally, the eye tracking measures followed patterns consistent with previous research. That 
is, blink duration and blink rate both decreased, and pupil diameter increased in high workload 
conditions (Wang & Zhou, 2013). 
 
 
5.0 DISCUSSION 
 
There were two goals of the current research. The first goal was to identify realistic drivers of 
workload for RPA operators. The second goal was to evaluate the utility of several physiological 
measures for workload assessment. In future systems we hope to be able to use physiological 
measures to detect the onset of mental overload, and have tools available to mitigate workload 
before performance deteriorates. The current research has made an important contribution to this 
challenge.  
In regards to the first goal, the military is continually trying to accomplish more RPA missions 
using less manpower (Dixon et al., 2004). Advanced RPA systems, such as the one used in this 
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study, are under development to help meet this goal. We need to examine these systems to 
understand the potential effects of increased workload on human performance.  
 
According to self-reported workload, two of the experimental manipulations (route type and 
number of HVTs) were significant drivers of workload. The notion that it is more difficult to 
track HVTs in congested city areas than open areas was suggested by one of our RPA SMEs. 
The route manipulation that we implemented confirmed this suggestion, and we were able to 
identify physiological correlates of increased workload.  
 
In addition, by manipulating the number of RPA the participant controlled, we were able to 
compare the workload of controlling one vs. two RPA. Not surprisingly, the self-reported 
workload was significantly higher when controlling two RPA. The control of multiple semi-
autonomous air vehicles is not a current capability, and so the present research is valuable in that 
it provides a preview of what may be expected if/when the capability is implemented. The HVT 
manipulation also had a strong impact on performance and physiological measures.  
 
The weather manipulation was not a significant driver of workload. This may be due to the 
nature of the task. Namely, the task was not a visual search task because participants knew where 
the HVTs were at the beginning of the trial. Also, the HVTs were the only motorcycles in the 
simulation (other traffic consisted of cars, trucks, vans etc.), so it could be that the haze did not 
sufficiently obscure the visual cues necessary to track them. We suspect that workload would 
have been impacted if we had used a denser level of haze, but we were reluctant to do this 
because we felt that it may have led to total loss of the HVT(s) in too many trials. That is, we 
could have increased the haze to the point in which the target was no longer visible, or barely 
visible, but it would have made the task impossible.  
 
The second goal, to evaluate the utility of several physiological measures for workload 
assessment, was also achieved. That is, the results of this study are promising in that several 
physiological measures corroborate the story being told by the subjective workload and 
performance measures. For instance, haze did not impact perceived workload or performance, 
and it also did not impact HRV, blink duration, or blink rate. Importantly, these physiological 
measures did detect significant differences when manipulations were effective. Route type and 
the number of HVTs both significantly impacted perceived workload and performance, and this 
difference was mirrored by HRV, blink duration, and blink rate. Furthermore, these findings are 
consistent with previous research (e.g., Wang & Zhou 2013), which provides more confidence 
that our findings did not occur by chance. This is important because it indicates that these 
measures are robust and would most likely work in actual RPA field operations. 
 
Despite these promising results, not all physiological measures were sensitive to the workload 
manipulations. For instance, the HVT and route manipulations did not impact HR (although they 
did impact HRV).  This is consistent with Roscoe (1992), who suggested that HRV may be the 
superior cardiac measure for assessing cognitive workload.  
 
Additionally, the EEG data is difficult to interpret. Even after accounting for eye artifacts, results 
were not always in the direction expected. For example, alpha power increased at several sites in 
two HVT (high workload) conditions. This is in contrast to the classic concept that alpha activity 
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is an idling rhythm of humans at rest, which becomes desynchronized during cognitive processes 
(Pfurtscheller & Lopes da Silva, 1999). According to this view, synchronized activity in the 
alpha band can be interpreted as a neurophysiological correlate of decreased cortical excitability 
or inhibition of neuronal populations. Thus, we searched for an explanation of our findings, 
which are not consistent with this perspective. As discussed in the cortical results section, one 
possible explanation is that EOG artifacts were present in the EEG data due to the additional 
saccades associated with two target tracking conditions. Importantly, even when examining only 
EEG windows not co-occurring with saccades, EEG power still appears inflated in the EEG 
windows trailing saccades because of ringing in the band pass filter. Additionally, the saccade 
detection algorithm is proficient at finding big saccades, but can miss small saccades. Therefore, 
all of the saccades associated with the two target tracking condition were not removed. 
 
It is worth noting that other researchers have observed increases in alpha power with high 
workload as well. Dahlstrom, Nahlinder, Wilson, and Svensson (2011), for instance, observed an 
increase in alpha power during aerobatic flight maneuvers. They suggested that their findings 
were inconsistent with several studies in which alpha power decreased under high workload (i.e., 
Dussault et al., 2004; Prinzel el al. 2003; Wilson, 2002), and subsequently advised that their 
findings could have been a result of muscle artifacts. Thus, interpretation of EEG results can be 
challenging. Furthermore, meta-analytic results indicate that in general, researchers need to do a 
better job of conducting and describing their methods of artifact removal (Fatourechi et al., 
2007).  
 
5.1 Limitations 
 
There are limitations in the current study that need to be addressed. First, the sample size is 
small. At times, measures (e.g., blink rate, pupil diameter) failed to yield significant differences, 
despite trending in the expected direction. A larger sample size would help to either confirm or 
deny the utility of these measures.  
 
Another concern in this study is that participants were required to click and hold a button on the 
right monitor when answering communications. This was highly disruptive to the primary task 
because it was not possible to actively track HVTs while responding to communications. Based 
on our debriefing questions, the stress associated with this disruption far exceeded the cognitive 
component of the questions. In subsequent research, a push-to-talk key on the keyboard will be 
implemented to eliminate this conflict.  
 
The EEG-based saccade detection algorithm needs improvement. When a saccade occurs, the 
length of time the band pass filter rings needs to be determined so that the associated EEG data 
can be flagged as containing an artifact. Secondly, the EEG-based saccades need to be 
corroborated using EOG-based saccades that report the magnitude and direction of the saccade. 
 
 
5.2 Implications and Future Research 
 
One important long-term goal of this line of research is to make real-time assessments of 
operator workload for the purpose of augmenting performance. In the future, researchers should 
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explore physiologically-based adaptive automation, which is a method of providing assistance to 
operators by introducing automation only when it is beneficial (Parasuraman, Mouloua, & 
Molloy, 1996; Scerbo, 1996). For example, Wilson and Russell (2007) used physiological 
features to train an artificial neural network to classify workload, which in turn was used to 
determine when the operator needed assistance. By monitoring workload and modifying the task 
demands to match the cognitive capacity of the operator in real-time, the researchers were able to 
bring about an improvement in performance of approximately 50%. Researchers should continue 
to evaluate the utility of physiological measures in monitoring workload in a variety of 
ecologically valid task environments, and explore different means of exploiting this data in real-
time to augment operator performance.  
 
 
6.0 CONCLUSIONS 
  
The current study implemented a novel ecologically valid RPA tracking task, which was used to 
investigate mental workload, performance, and physiological responses. Two of the three 
experimental manipulations had a significant effect on the dependent variables. One of the 
manipulations caused a substantial increase in workload associated with the simultaneous control 
of multiple RPA. Based on the results of this study, designers of future control stations that allow 
the control of multiple unmanned vehicles must be cognizant of the substantial increase in 
workload that can occur as situations dynamically and perhaps unexpectedly become more 
complex. (e.g., two HVTs emerge from a building instead of one). 
 
Fortunately, results also revealed that multiple physiological measures, which can be obtained 
continuously and unobtrusively in real time, can provide cues that an operator is facing increased 
workload. Such cues could be utilized by commanders and/or automated systems to provide 
augmentation before performance decrements occur. Moreover, it is especially promising that 
significant physiological differences were observed, even though this was a controlled laboratory 
task. In actual combat theater where differences in performance can have life or death 
consequences, these differences will likely be even more distinguishable. For instance, it seems 
probable that HR would increase more in response to challenges in the field than in the 
laboratory (Wilson, 1992). In conclusion, physiological measures have potential for real-time 
workload assessments in RPA task environments, and future research should build on this 
knowledge for performance augmentation. 
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APPENDIX A-Screenshots 

  
 
Figure A-1. Condition 1 (One Target, Country, Sunny). 
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Figure A-2. Condition 2 (One Target, City, Sunny). 
 
 
 

 
 
Figure A-3. Condition 3 (Two Targets, Country, Sunny). 
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Figure A-4. Condition 4 (Two Targets, City, Sunny). The video feed on the left is from the 
second highest (6.9x) level of zoom, and the video feed on the right is from the third highest 
(4.4x) level of zoom. 
 
 
 

  
 
Figure A-5. Condition 5 (One Target, Country, Hazy). 
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Figure A-6. Condition 6 (One Target, City, Hazy). 
 
 
 

  
 
Figure A-7. Condition 7 (Two Targets, Country, Hazy). 
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Figure A-8. Condition 8 (Two Targets, City, Hazy). 
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Figure A-9. Overall Display (includes VSCS on left and middle monitors and MMC on the right 
monitor). 
 
 
 

 
 
Figure A-10. Tactical Situation Display. 
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Figure A-11. Sensor feeds. RPA 1 sensor feed is on the left, and RPA 2 sensor feed is on the 
right.  
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Figure A-12. Multi-Modal Communication. 
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APPENDIX B-EEG Reference 

 
 

Figure B-1. All EEG site locations from the International 10/20 system (shown on left) vs. site 
locations used in the current study (shown on right).  
 
 
 

 
 

Figure B-2. EEG power for the route manipulation. The sign is direction of the difference in log 
power (for example, a plus sign means more power for city than country). The size of the sign is 
relative absolute value of the t statistic (i.e., larger sign means smaller p-value). If sign is circled 
then p ≤ 0.05.  
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Figure B-3. EEG power for the target manipulation. The sign is direction of the difference in log 
power (for example, a plus sign means more power for 2 targets than 1 target). The size of the 
sign is relative absolute value of the t statistic (i.e., larger sign means smaller p-value). If sign is 
circled then p ≤ 0.05.  

 

 

Figure B-4. EEG power for the weather manipulation. The sign is direction of the difference in 
log power (for example, a plus sign means more power for hazy than sunny). The size of the sign 
is relative absolute value of the t statistic (i.e., larger sign means smaller p-value). If sign is 
circled then p ≤ 0.05.  
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LIST OF ABBREVIATIONS AND ACRONYMS 

ANOVA  analysis of variance 

ECG   electrocardiography  

EEG   electroencephalography 

EOG   electrooculography 

fMRI   functional magnetic resonance imaging 

HR   heart rate 

HRV   heart rate variability 

HUD   heads-up display 

HUMAN  human universal measurement and assessment network 

HVT   high value target 

Hz   Hertz 

MMC   Multi-Modal Communication 

MRT   multiple resource theory 

RPA   remotely piloted aircraft 

SE   standard error 

SME   subject matter expert  

TLX   Task Load Index 

VEOG   vertical electrooculography 

VRSG   Virtual Reality Scene Generator 
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