
Comparative Medicine
Copyright 2007
by the American Association for Laboratory Animal Science

Vol 57, No 3
June 2007

292

Received: 17 Apr 2006. Revision requested: 21 Aug 2006. Accepted: 24 Oct 2006.
US Army Institute of Surgical Research, Ft Sam Houston, TX.

*Corresponding author. Email: Harold.klemcke@amedd.army.mil

A Novel Swine Model for Evaluation of Potential 
Intravascular Hemostatic Agents

Harold G Klemcke,* Douglas S Cortez, Ashley B Cox, and Kathy L Ryan

Because uncontrolled hemorrhage is a leading cause of battlefield mortality, finding an intravenous treatment that could assist 
endogenous clotting mechanisms is a major mission for military researchers. Evaluation of potential intravenous hemostatic agents 
requires both in vitro and in vivo tests. For in vivo evaluation, we have developed a novel swine model in which 1) bleeding times 
(BT) and coagulation function could be ascertained after multiple doses of hemostatic drug administration and 2) a subsequent 
exsanguinating injury could be performed in the same animal, yielding screening information regarding the effects of drug pre-
treatment on blood loss and survival. Transection of small mesenteric arteries and veins allowed for multiple and reproducible BT 
measures that correlated with coagulation function. Subsequent excision of defined areas of the liver produced bleeding predomi-
nantly from small vessels (diameter, less than 2 mm) and parenchyma while resulting in 62% mortality without the use of either 
heparinization or aggressive fluid infusion. This swine model allows for multiple, repeatable BT measures in the same animal 
in experiments already involving laparotomy. Such a model is well suited for terminal studies to test effects of multiple doses of 
the same drug or multiple drugs on BT and allows for multiple, easily visualized measures that permit enhanced repeatability. 
The liver injury provides for numerous small vessel lesions that could be amenable to closure by coagulation. Therefore, drugs or 
mechanisms that enhance coagulation and concomitantly decrease blood loss and increase survival time may be accurately evalu-
ated in this new model.

Abbreviations: BT, bleeding time; MAP, mean arterial pressure

Hemorrhage is the leading cause of death from wounds on 
the battlefield, accounting for over 50% of those deaths.2,17 Hem-
orrhage is also the second leading cause of death in civilian 
trauma.47 Approximately 80% of hemorrhagic combat deaths 
are from wounds that are not compressible (not accessible for 
manual pressure). Although the concept of pharmacologic hemo-
stasis is not new,13 currently there is no method available other 
than hospital-associated surgery that can effectively provide 
control for noncompressible hemorrhage. An intravenous drug 
that augments the body’s innate clotting mechanisms, therefore, 
could provide an additional tool for hemorrhage control when 
surgical intervention is not possible. To evaluate the efficacy of 
such drugs, investigators traditionally have used in vivo models 
of bleeding time (BT) as well as more severe models of traumatic 
uncontrolled hemorrhage.

Although questions remain regarding its usefulness,44 BT has 
been used as a test for diagnosis and prediction of potential bleed-
ing abnormalities (especially of platelet disorders) and verifica-
tion of therapeutic efficacy. Various procedures have been used 
for evaluation of BT in humans43,44,51 and animals. Animal studies 
have used multiple species (mice, rats, rabbits, guinea pigs, dogs, 
and pigs) as well as multiple sites and methods of BT assessment 
(for example, tail, ear, buccal mucosa, spleen, skeletal muscle, 
skin, and mesentery).1,6-12,20,21,31,35,36,39,40,42,45,56,58 

BT procedures used previously with pigs have heretofore con-
sisted primarily of ear,6,20,35,36,42,45 skin,10,11,39 and splenic bleeds.32 
For each site, both shared and unique technical problems exist 

that limit the reproducibility, accuracy, and utility of BT measures. 
First, for all sites, length, depth, location and orientation of inci-
sion, and presence of occult blood vessels influence BT. Second, 
pigs’ ears are often punctured, cut, and scarred as a result of swine 
husbandry practices, and interactions with pen-mates. This situ-
ation limits the usable ear surface area and hence the number of 
BT replicates that can be obtained. Third, maintaining a constant 
ear temperature is often problematic. To achieve this goal, some 
investigators place the ear into warm saline, but doing so results 
in greatly exaggerated bleeding times6,35,36 and concomitantly pro-
longs the duration of studies. Fourth, good reproducibility and ac-
curacy also depend upon skin temperature and thickness for skin 
bleeding. Finally, conduct of splenic BT32 is exacerbated by the 
paucity of observations that can be made on the limited surface 
area. Further, the contractile nature of the pig spleen leads to al-
tered splenic size and blood flow after manipulation.14 Therefore, 
in an attempt to improve BT procedures previously used in swine, 
we developed an alternative approach using mesenteric vessels 
for experiments that already involve laparotomy. 

Various animal models (rat, rabbit, dog, pig) also have been 
used for inducing a potentially treatable uncontrolled hemor-
rhage (hepatic, splenic, renal, and aortic injuries) within a body 
cavity.17,22,24,26-28,34,38,50,55,57,59 Multiple models involving pigs have 
been used and include various liver injuries with19,24,33,48,49 and 
without25,29 various degrees of resuscitation. Hemodilution and 
hypothermia prior to liver injury also have been included in some 
models.24,33,49 Finally, aortotomy with4,52 and without3 resusci-
tation and renal injury with41 and without16 hypothermia have 
been used in swine.

Each pig hemorrhage model has its assets. However, an in-
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herent deficit is that none appear to produce consistent results 
(that is, blood loss and mortality), a characteristic that could be 
detrimental for evaluation of potential intravascular hemostatic 
drugs. This deficiency may reflect the size of the injuries,24 lack 
of repeatability in the number and size of blood vessels cut, or 
dilution of coagulation factors due to aggressive resuscitation.52 
Because of these issues, we sought to develop a new model using 
normothermic pigs with minimal preinjury hemodilution and 
no resuscitation that would be useful in screening intravascu-
lar agents for their ability to enhance coagulation function and 
reduce bleeding. We report herein an animal model in which 1) 
BT and in vitro hemostatic parameters can be measured multiple 
times and 2) a subsequent exsanguinating liver injury featuring 
primarily parenchymal and small-vessel bleeding can be created 
in the same animal. 

Materials and Methods
Animals and instrumentation. Crossbred commercial swine 

weighing 38.4  0.5 kg (mean  standard error) were used in this 
study. A total of 27 pigs were used (3 for the heparin protamine 
test, 18 for the mesenteric BT evaluation, and 10 for the liver in-
jury evaluation; 4 pigs were used in both the mesenteric bleed 
and liver injury evaluations). Animals were maintained in a fa-
cility accredited by the Association for the Assessment and Ac-
creditation of Laboratory Animal Care, International. This study 
was approved by the Institutional Animal Care and Use Com-
mittee of the US Army Institute of Surgical Research (Fort Sam 
Houston, TX). Animals received humane care in accordance with 
the Guide for the Care and Use of Laboratory Animals.37 Swine were 
fasted for 24 to 36 h before the procedure, with water continu-
ously available. Animals were sedated using glycopyrrolate and 
tiletamine–zolazepam (Telazol, Fort Dodge, Overland Park, KS). 
Buprenorphine (0.9 mg intramuscularly) was administered for 
analgesia. They then were anesthetized (1% to 4% isoflurane in 
room air) and intubated, with use of a closed circuit system and 
mechanical ventilation. Infusion catheters were placed occlusive-
ly in a femoral vein and a jugular vein. Maintenance fluid (lac-
tated Ringer solution; 5 ml/kg hourly) was infused continuously 
during the experiment until the liver injury phase (see following 
description). 

An 8.5-French catheter introducer was shortened to 3 cm and 
placed occlusively in a femoral artery for blood sampling. A spe-
cialized catheter (Paratrend 7  Multiparameter Sensor-catheter, 
Diametrics Medical, Roseville, MN) was placed occlusively into a 
carotid artery and was attached to an automatic blood gas mon-
itoring system (Trendcare TCM 7000, Diametrics Medical) for 
continuous monitoring of body temperature and blood pH. A 
port in the catheter was coupled to a continuous data collection 
system (MicroMed, Louisville, KY) for monitoring blood pressure 
and heart rate. Laparotomy, splenectomy, and cystotomy were 
performed in each pig. To compensate for removal of the spleen, 
immediately after splenectomy each animal was infused with lac-
tated Ringer solution at a volume equivalent to 3 times the spleen 
weight. Animals were stabilized for 10 min at a body temperature 
of 38.5 to 39.5 C, a blood pH of 7.35 to 7.45, and a mean arterial 
pressure (MAP) that was at least 60 mm Hg.

Mesenteric BTs. After stabilization of the pig’s condition, a dis-
tance of 30 cm was measured from the ileocecal junction along 
the ileum, and a second mark was made 15 cm further from this 
point. A U-shaped hollow plastic tube (diameter, 4 cm; length, 
24 cm; filled with 39 C saline) was laid under this 15-cm sec-

tion of mesentery, and 3 small arteries with accompanying veins 
were identified within this area (Figure 1). These vessels were ap-
proximately 1 mm in diameter. Therefore, each group of 3 paired 
vessels (artery and vein) could be used to measure BT after a spe-
cific dose of a potential hemostatic agent. Each vessel pair was 
transected sharply with iris scissors, and the time to cessation of 
bleeding was measured, with 10 min (600 s) chosen (in light of 
preliminary observations) as the maximal BT possible; this obser-
vation period could, of course, be lengthened if treatments greatly 
prolonged BT. After transection, blood was collected with a 5-cm2 
gauze pad (The Kendall Company, Mansfield, MA) and cellulose 
sponge spears (Weck-Cel, Medtronic, Jacksonville, FL), which we 
touched very gently to the blood near the transected edges of the 
blood vessels; great care was taken to avoid touching the bleeding 
site directly. BT was then taken as an average of these triplicates 
at a given site on the mesentery, with elimination of a single value 
when the coefficient of variability (CV) exceeded 10%. BT was 
repeated along the mesentery twice more at 20-cm and 20-min 
intervals. Between BT measures, the pig’s abdomen was covered 
with a towel soaked in 39 C sterile saline, and the U-shaped tube 
was stored in an incubator maintained at 39 C. Data from each 
set of replicate blood vessels at each of 3 sites along the mesentery 
(corresponding to 3 repeatable time intervals) from 18 different 
pigs subsequently were analyzed to determine the reproducibility 
of this procedure with respect to time after laparotomy and loca-
tion within the mesentery relative to the ileocecal junction. 

 To determine the ability of BT measurements obtained with 
the described technique to reflect coagulation status, BT was mea-
sured in 3 additional pigs after infusion of heparin at 3 sequen-
tially increasing doses (50, 75, and 100 IU/kg in 2 pigs, and 100, 
200, and 300 IU/kg in 1 pig) and again after 3 administrations of 
1 dose of protamine sulfate (0.5 mg/kg) to reverse the effects of 
heparin in the same 3 pigs. As described earlier, measures were 
made at different sites along the mesentery and at intervals of 
approximately 20 min.

Injury phase. After completion of BT determinations, a large 
uncontrolled hemorrhage was induced in 10 pigs. The peritoneal 
cavity was suctioned, and laparotomy sponges were positioned 
under the left medial and lateral liver lobes and within the gutters 
of the abdominal cavity. These sponges were clamped together 
for easy and immediate egress. Subsequently, the distances be-
tween the entry of the inferior vena cava into the liver and the 
caudal edges of both the left medial and left lateral liver lobes 

Figure 1. Photograph of pig small intestine with ongoing estimate of 
bleeding time that illustrates the paired mesenteric blood vessels. The 
outline of the U-shape tube underlying the mesentery is indicated with 
asterisks.

Swine model of traumatic bleeding
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were measured. Each lobe then was clamped loosely at approxi-
mately 45% of the distance from the caudal liver edge to the an-
terior liver edge adjacent to the entry of the inferior vena cava. A 
scalpel was used to cut these sections sharply to remove the distal 
aspects of each lobe. Therefore the percentage of the lobe cut was 
calculated as the length of the respective lobe removed divided 
by the overall length of that lobe and this result multiplied by 
100%. The clamps then were removed, and the liver was allowed 
to bleed freely. All sponges were removed rapidly 30 s after exci-
sion, and the abdomen was closed temporarily. Infusion of main-
tenance fluid was discontinued, and no resuscitation fluids were 
provided. Animals were continuously monitored until death or 
for 2 h, at which point surviving animals were euthanized. After 
death, intraperitoneal blood was weighed via use of suction into 
preweighed canisters and gauze sponges; therefore, all blood loss 
measures are in grams. In addition, the number and size of tran-
sected vessels on the excised portions of the liver were measured 
and these data confirmed postmortem on the remaining liver sec-
tions. Vessels were classified as small (diameter, less than or equal 
to 2 mm), intermediate (diameter, 2 to 4 mm), or large (diameter, 
larger than 4 mm).

Blood sampling. Blood samples for activated clotting time 
(ACT) measures were collected concomitantly with BT measures 
at 20-min intervals by inserting a 20-cm single-use catheter made 
from vinyl tubing (inner diameter, 0.9 mm; Tygon, Saint Govaine 
Performance, Akron, OH) into the self-sealing port of the catheter 
introducer and gently withdrawing the femoral arterial blood to 
minimize shear-induced platelet activation. The first 3 ml of fluid 
removed was discarded to remove saline contained within the 
catheter and ensure that 100% blood was present in subsequent 
samples. ACT15,30 was performed automatically (Hemochron Re-
sponse, International Technidyne, Edison, NJ) according to the 
manufacturer’s instructions. 

Statistical analysis. Data were analyzed by use of the Statistical 
Analysis System software (SAS/STAT).46 Bleeding times and ACT 
values were evaluated by analysis of variance (PROC GLM), in 
which pig was included as a random variable and means com-
parisons were made using either an a posteriori t test with the 
Hochberg adjustment for multiple comparisons, or where ap-
propriate, the a priori procedure of orthogonal contrasts.46 MAP 
values during BT procedures were analyzed by use of the PROC 
MIXED module with repeated measures. Correlation analyses 
were conducted by use of the PROC CORR module. Differences 
among numbers of cut blood vessels of various sizes were exam-
ined by use of PROC FREQ with the chi-square test and Hoch-
berg adjustment for multiple comparisons. Where appropriate, 
data were tested for homogeneity of variance (PROC ANOVA 
with associated Levene test) and normality of distribution (PROC 
Univariate Normal with associated Kolmogorov–Smirnov test). 
Data were transformed where necessary to meet assumptions 
of analysis of variance. Data are presented as arithmetic mean  
standard error.

Results 
BT determinations were made in 18 pigs. BT did not differ with 

section of mesentery (P  0.05) nor with time during the bleeding 
procedure (P  0.05; Figure 2). There was no relationship between 
MAP and BT when MAP was included in the statistical model 
as a covariate (P  0.49). Indeed, when averaged across all pigs, 
MAP did not change during the 3 time intervals in which BT was 
measured (72  3 versus 72  3 versus 71  3 mm Hg; P  0.52).

To determine whether mesenteric BT reflected coagulation sta-
tus, we measured BT in 3 pigs after heparin and subsequently 
after protamine administration. In vivo BT increased 106% (P 
≤ 0.05) with increasing doses of heparin (Figure 3; 0-H and 0-P 
versus D3-H and 0-P) and then decreased 56% after multiple ad-
ministrations of protamine (P ≤ 0.05; Figure 3). ACT varied in a 
similar manner (Figure 3), with 5.62-fold increases (P  0.05) ob-
served (0-H and 0-P versus D3-H and 0-P) and a 74% decrease (P 

 0.05) subsequent to the last administration of protamine, com-
pared with values for D3-H and 0-P. In vivo BT and ACT showed 
highly significant correlation (r  0.64; P  0.003). 

After determination of BT, we performed a severe liver injury 
that resulted in death of 67% of the pigs during 2 h (Table 1). Ap-
proximately 41% and 48% of the left medial and left lateral lobes, 
respectively, were removed. Examination of these lobes demon-
strated that 61% of the blood vessels cut were small vessels, and 
this percentage differed (P  0.01) from those in the intermediate 
(23%) and large (16%) categories, which did not differ from each 
other (P  0.26). There was no relationship between blood loss 
and survival time in these 10 pigs (r  –0.1; P  0.8). Animal prepa-
ration, surgery, and mesenteric BT measures took approximately 
2.5 h, as reflected in the duration of administration of mainte-
nance fluid (Table 1). The volume of maintenance fluid provided 
represents approximately 17% of the pig’s total blood volume, 
assuming 6.72 ml of blood per 100 g of body weight.14

Discussion 
In this series of experiments, we were successful in develop-

ing a pig model in which intravascular hemostatic agents could 
be screened to determine their suitability for further testing for 
possible treatment of traumatic injury. This model allows the de-
termination of hemostatic responses to escalating doses of drug, 

Figure 2. Bleeding time (BT) determination along the mesentery in 18 
pigs. Each position corresponded to the indicated times after initiation of 
BT measures. Distances are measured along the small intestine from the 
ileocecal junction. Therefore, the first BT occurred at time 0 to 10 min at 
a distance of 30 cm from the ileocecal junction and in blood vessels that 
were present in the next 15 cm. After 10 min of observation and 10 min of 
rest, the second BT was performed 20 to 30 min after initiation of the first 
BT and at 65 cm from the ileocecal junction (20 cm from the previous BT 
zone). This process was repeated for a total of 3 BT, with BT performed 
in triplicate at each position. The average of these replicates became the 
BT measure for a given mesenteric position and time interval for each 
pig. Bars represent mean  standard error of BT measured in 18 different 
pigs at each mesenteric location and time interval. Analysis of variance 
indicated an absence of differences (P  0.39) in BT among mesenteric 
positions and time intervals.
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an approach that has been used previously at our institution.42 In 
earlier studies, BT was determined by injury to either the ear42 
or spleen32 of swine. Both methods are associated with technical 
problems, including the requirement to maintain a constant ear 
temperature, the inability to perform multiple BT measurements 
because of the limited surface area available for injury sites, the 
inability to perform more than 2 replicates at each BT measure-
ment, and the contractile nature of the pig spleen. The use of mes-
enteric BT in an animal model that already involves laparotomy 
seems to obviate many of these problems and appears to be more 
reproducible than previous methods. Because of evident repro-
ducibility between anatomical locations in the gut and with time, 
it is apparent that one can make BT determinations with multiple 
doses of hemostatic drug. In further support of this contention, 
blood flow is comparable among porcine duodenum, jejunum, 
and ileum.60 

The primary blood supply to the porcine intestine is via the 
cranial mesenteric artery.53 Within the mesenteries of the small 
intestine, the arteries and veins lie adjacent to each other, with 
a small amount of connective tissue between them.53 Therefore, 
BT determination according to the current technique differs from 
other methods inasmuch as the mesenteric BT relies on bleed-
ing from small arteries and veins rather than capillary bleeding. 
Despite this caveat, mesenteric BT clearly was sensitive to altera-
tions in coagulation function because BT was correlated with al-
terations in ACT produced by infusion of heparin and protamine. 
Our model also enhances reproducibility; previous procedures 
involving supposed capillary bleeding routinely are confounded 
by cutting of a small unseen artery or vein.

Another feature of the pig model we developed is that it al-
lows, within the same animal, preliminary determination of how 
pretreatment with a drug of interest might affect traumatic uncon-

trolled hemorrhage. In previous work, intravenous agents have 
been tested in a swine model (originally developed for testing 
the efficacy of hemostatic dressings) that included transection of 
major veins (diameter greater than 10 mm) of the liver.24,33,42,48,49 
Although entirely appropriate for testing hemostatic dressings, 
whether such a model is appropriate for testing intravenous he-
mostatic drugs is questionable, because such drugs likely would 
not be highly effective in such a situation (that is, big holes in big 
vessels). In addition, this previous model involved aggressive 
resuscitation that may not be entirely appropriate for testing in-
travascular agents because it leads to dilution of the intravascular 
agent under study as well as potential disruption of formed clots. 
Because of these considerations, we sought to develop a severe 
liver injury model that 1) was exsanguinating without either 
heparinization or aggressive resuscitation and 2) did not involve 
transection of the major veins of the liver but instead produced 
more diffuse bleeding from multiple small vessels. We also de-
sired an injury that produced a mortality rate of approximately 
50% in order to discern whether a drug under study had either 
beneficial or detrimental effects on survival. The selective excision 
of approximately 45% of both the left medial and lateral lobes 
described herein achieved these goals because it produced 62% 
mortality within 2 h through transection of predominantly small 
to intermediate (diameter, less than or equal to 4 mm) hepatic 
veins. Furthermore, this mortality rate was achieved without us-
ing either aggressive resuscitation or heparinization. In this study, 
we set fluid infusion at a low level that would defend against 
fluid loss from respiration, urination, and evaporation from ex-
posed intestines that occurred during procedures. This infusion 
was stopped just prior to injury; no postinjury resuscitation was 
used. We therefore believe that this model is a reasonable one for 
testing of intravenous hemostatic agents. 

Of interest, blood loss and survival time after liver injury 
lacked correlation. Ideally, models of uncontrolled hemorrhage 
would demonstrate positive correlation between these 2 vari-
ables. However, our results were not unexpected, because we 

Figure 3. In vivo bleeding time (BT) and activated clotting time (ACT) 
after administration of heparin (doses 0-H, D1-H, D2-H, D3-H) and 
protamine (0-P, D1-P) in 3 pigs. Sequential administration of increasing 
doses of heparin occurred at approximately 20-min and approximately 
20-cm intervals along the mesentery of the small intestine. Subsequently 
a single dose of protamine was administered at the same time and mesen-
teric intervals. Results of analysis of variance are given below the labels. 
Bars represent the means  standard error. Means for BT and for ACT 
with common superscripts are not different (P  0.05) as determined by 
a priori orthogonal contrasts or by t-tests with probability levels adjusted 
for multiple comparisons. For ACT, statistical analyses were conducted 
on log10-transformed data.

Table 1. Characteristics (mean  standard error) of the pig liver injury 
model

Measure

N 10
% Survivala 33
Survival time (min)a 81.1  16.1
Blood loss (g) 860  72
Blood loss (g/kg body weight) 21.3  1.6
% Left medial lobe cut 41.4  1.6
% Left lateral lobe cut 48.0  3.5
No. (%) of small (≤2 mm) veins cutb 62 (61.4)
No. (%) of intermediate ( 2 but 4 mm) veins cutb 23 (22.8)
No. (%) of large (  4 mm) veins cutb 16 (15.8)
Maintenance volume (ml) 447  35
Duration of maintenance fluid administration (min) 151  15
Mean arterial pressure (mm Hg)c 65.9  4.7
Heart rate (beats per min)c 166  17
Blood pHc 7.41  .01
an  9; 1 pig euthanized at 1 h for nonexperimental reasons.
bTotal number of veins cut was 101. 
cObtained just prior to liver injury.

Swine model of traumatic bleeding
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have demonstrated in a rodent model of controlled hemorrhage 
that survival times differed widely among outbred rats with the 
same blood loss.23 Such data suggest that differential survival 
time to hemorrhage is not entirely dependent on either volume 
or rate of blood loss but may also reflect contributions from the 
genetic and environmental background on which hemorrhage is 
overlaid. Because of this genetic and environmental contribution, 
uncontrolled hemorrhage models may be unable to achieve the 
desired correlation between blood loss and survival time.

In conclusion, we have developed a swine model for prelimi-
nary screening of intravenous hemostatic agents with potential 
efficacy in controlling traumatic bleeding. In this model, sequen-
tial blood sampling and determination of BT allows for collection 
of dose-response data for the test drug. Subsequent creation of 
liver injury within the same animal allows for preliminary screen-
ing of the test drug’s applicability to exsanguinating hemorrhage. 
Importantly, the hepatic injury comprises injury predominantly 
to small vessels and the parenchyma, making our model more ap-
propriate for testing of intravenous agents than previously used 
models.
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