

MINIMIZING OVERHEAD FOR SECURE COMPUTATION AND
FULLY HOMOMORPHIC ENCRYPTION: OVERHEAD

UNIVERSITY OF VIRGINIA

NOVEMBER 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-253

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-253 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
CARL THOMAS MARK LINDERMAN
Work Unit Manager Technical Advisor, Computing
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOVEMBER 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2010 – JUN 2015
4. TITLE AND SUBTITLE

MINIMIZING OVERHEAD FOR SECURE COMPUTATION AND FULLY
HOMOMORPHIC ENCRYPTION: OVERHEAD

5a. CONTRACT NUMBER
FA8750-11-C-0080

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Abhi Shelat, Susan Hohenberger, Steven Myers, and Rafael Pass

5d. PROJECT NUMBER
BL12

5e. TASK NUMBER
0U

5f. WORK UNIT NUMBER
VA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia
1001E. Emmet St.
Charlottesville, VA 22903-4833

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-253
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Investigating the overhead associated with Fully Homomorphic Encryption, this project examined a wide range of topics,
including; Improving the efficiency of generating Yao's Garbled Circuits, Secure 2 Party Computation, Non-Maleable and
Zero-Proof Secure Computation, Digital Signatures, Fully Homomorphic Encryption and Somewhat Homomorphic
Encryption, Program Obfuscation and a secure Bitcoin implementation. Many papers were written (see appendices) and
much of this work has been presented in premier Security, Privacy and Cryptography Conferences.

15. SUBJECT TERMS
Fully Homomorphic Encryption, Yao's Garbled Circuits, Secure Computation, Secure Function Evaluation, Threshold
Fully Homomorphic Encryption, Zero-Knowledge Proof

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
CARL R. THOMAS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

939

CONTENTS

List of Figures iv

List of Tables iv

1 Summary 1

2 Introduction 2

3 Methods, Assumptions and Procedures 3
3.1 Yao’s Garbled Circuits . 3

3.1.1 Malicious Garbled Circuits on Compute Clusters 3
3.1.2 Semi-Honest Garbled Circuits on GPUs 3

3.2 General Theoretical Work . 4

4 Results and Discussion 5
4.1 Secure 2-party Computation . 5

4.1.1 Malicious Garbled Circuits on Compute Clusters 5
4.1.2 Parallelism . 5
4.1.3 Semi-Honest Garbled Circuits on GPUs 7
4.1.4 PCF Compiler . 10
4.1.5 Oblivious RAM Results . 11

4.2 Theory of Secure Computation . 12
4.2.1 Non-Malleable Commitments . 13
4.2.2 Zero-Knowledge . 13

4.3 Digital Signatures . 14
4.3.1 Computing on Authenticated Data 14
4.3.2 Full Domain Hash from Multilinear Maps 15
4.3.3 Universal Aggregate Signatures 16

4.4 Encryption . 16
4.4.1 New Approach for Chosen-Ciphertext Security 16
4.4.2 Results on Construction of Other Strong Forms of Encryption . . . 17
4.4.3 Chosen-Ciphertext Security does not imply Circular Security 17
4.4.4 Online/Offline Attribute-Based Encryption 18
4.4.5 Blackbox proofs of knowledge of plaintext 18
4.4.6 Efficient Prototyped Bootstrapping FHE with SAGE 21
4.4.7 Tamper-resilient Cryptography . 21

4.5 New Software Tools . 22
4.5.1 Charm: A Toolkit for Rapid Prototyping of Cryptographic Systems 22
4.5.2 The AutoTools Suite . 23

4.6 Protocols for Bitcoin . 24
4.7 Program Obfuscation . 25

i

4.7.1 Understanding Secure Computation in the Context of Complex Sys-
tems . 25

5 Conclusions 26

6 References 28

APPENDICES 34

A List of Papers Resulting from Project 34
A.1 In preparation or submission . 34
A.2 In print or to appear . 34
A.3 CLP15:Constant-round Concurrent Zero-knowledge from Indistinguishabil-

ity Obfuscation . 38
A.4 BCP15:Large-Scale MPC . 57
A.5 LP15:Succinct Garbling . 77
A.6 LP16:Constant-round Non-malleable Commitments From Any One-way Func-

tion . 127
A.7 HKW15: Adaptively Secure Puncturable Pseudorandom Functions in the

Standard Model . 154
A.8 APGR13: CloudSourcing Cryptography: Automating the Generation of Out-

sourced Cryptographic Algorithms . 183
A.9 ABCHSW15: Computing on Authenticated Data 195
A.10 HKW15: Universal Signature Aggregators 236
A.11 AGHP14: Machine-Generated Algorithms and Proofs and Software 298
A.12 BCGGMTV14: Zerocash: Practical Decentralized Anonymous E-Cash from

Bitcoin . 338
A.13 GGMR14: Rational Zero: Economic Security from Zerocoin with Everlast-

ing Security . 354
A.14 HSW14: Replacing a Random Oracle . 369
A.15 CP14:Parallel Repetition for Interactive Arguments 391
A.16 HW14: Online/Offline Attribute-Based Encryption 405
A.17 GGM14: Decentralized Anonymous Credentials 423
A.18 WHCSS14: SCORAM: Oblivious RAM for Secure Computation 435
A.19 AGH14: Using SMT Solvers to Automate Design Tasks for Encryption and

Signature Schemes . 448
A.20 HMSG13: GPU and CPU Parallelization of Honest-but-Curious Secure Two-

Party Computation . 460
A.21 MSS13: Blackbox Construction of A More Than Non-Malleable CCA1 En-

cryption Scheme from Plaintext Awareness 470
A.22 CLP13: Constant-Round Concurrent Zero Knowledge From P-Certificates . 504
A.23 P13:Unprovable Security of NIZM and Non-malleable Commitments . . . 543

ii

A.24 MSS13: Black-Box Proof of Knowledge of Plaintext and Multiparty Com-
putation with Low Communication Overhead 570

A.25 LP13:Black-box Constructions of Composable Protocols 591
A.26 CPT13: Interactive Coding Revisited . 639
A.27 CPS13: Non-Black-Box Simulation from One-Way Functions And Applica-

tions to Resettable Security . 673
A.28 SS13: Fast Two-Party Secure Computation with Minimal Assumptions . . . 684
A.29 HSW13: Full Domain Hash from (Leveled) Multilinear Maps and Identity-

Based Aggregate Signatures . 697
A.30 MGGR13: Zerocoin: Anonymous Distributed e-Cash from Bitcoin 730
A.31 KMBS13: PCF: A Portable Circuit Format For Scalable Two-Party Secure

Computation . 745
A.32 AGHP12: Machine-Generated Algorithms and Proofs and Software 761
A.33 HLW12: Detecting Dangerous Queries . 776
A.34 CGH12: New Definitions and Separations for Circular Security 800
A.35 KSS12: Billion-Gate Secure Computation with Malicious Adversaries . . . 821
A.36 CPT12: The Knowledge Tightness of Parallel Zero-Knowledge 837
A.37 ABCHSW12: Computing on Authenticated Data 855
A.38 CHP11: Batch Verification of Short Signatures 890
A.39 GHW11: Outsourcing the Decryption of ABE Ciphertexts 915

iii

Glossary of Terms 931

LIST OF FIGURES

1 1a) Circuit gate generation rates of [18] vs. our technique using fully paral-
lelizable circuit generation. 1b) Gates generation rate per multi-processor on
differing circuit sizes. 9

2 Gate Generation Times comparing to Kreuter et al.[37]. 10

LIST OF TABLES

1 The time (in seconds) of running AES circuit with security parameter k=80
and s=256. The number of nodes represents the degree of parallelism on
each side. “–” means that the time is smaller than 0.05 second and thus
omitted. 6

2 The performance of our main protocol with k = 80 and σ = 256. All numbers in
“time” column come from an average of 30 data points and have the 95% confidence
interval < 1%. 6

3 The 95% two-sided confidence intervals for computation and communica-
tion time for each stage in the 1024-AES128 experiment 7

4 Benchmark system descriptions. EC2 runs a Xen virtual machine. 8

iv

1 SUMMARY

The underlying theme of the PROCEED OVERHEAD project was to investigate the fun-
damental limits that govern the construction of secure multi-party protocols. The current
approach to secure protocol design involves three steps:

1. devise a bare protocol that completes the collaborate task with no security—e.g., de-
sign a circuit or Turing machine that computes a function,

2. transform the bare protocol into one that is secure in the presence of honest-but-curious
(HBC) adversaries, and

3. transform the HBC protocol into one that secure against arbitrarily malicious parties.

Over the 5 year project period, we have studied the choices and methods involved at
each stage and have made significant progress on understanding fundamental overheads in
each case. These overheads consist of (a) additional rounds or exchanges between the play-
ers, (b) additional communication (i.e., longer messages between players), (c) additional
computation by all parties, (d) additional requirements on the types of players involved in
the collaboration (e.g., an honest majority) needed to achieve security, and (e) additional
complexity in concretely implementing the protocol.

Our results from this project analyze each type of overhead through either formal analyt-
ical measurement, characterization, or direct experimental measurement. Furthermore, we
have developed several systems that put into practice state-of-the-art techniques for secure
computation that have emerged from our analysis. As an example, our system for two-party
secure computation against malicious adversaries that has been developed during PROCEED
has improved the state-of-the-art performance by a factor of 104 and has increased the size
of the functions that can be securely computed by a factor of 106.

The results of these efforts appeared in 44 published papers, including the top theoretical
venues such as STOC and FOCS, to cryptography flagship conferences including CRYPTO
and Eurocrypt, to top applied venues such as IEEE Security and Privacy, USENIX Secu-
rity and ACM Computer and Communications Security, and journals such as JACM. Six
papers were invited to special issue on best papers from STOC, TCC, CRYPTO, SCN, and
AsiaCrypt. The project also supported the development of open source code, including the
Charm library, which has been downloaded thousands of times.

Our results are organized into a few broad categories. We have major results on practical
secure two-party computation, as well as theoretical characterizations of the performance
overheads for multi-party secure computation. Our project has also studied basic crypto-
graphic primitives—encryption algorithms and signature schemes—that are used widely in
all types of secure computation. These results either clarify performance issues with these
primitives, develop new techniques for proving the security of efficient constructions, or
clarify the relationship between security notions for encryption. Finally, we study other far-
reaching topics related to secure computation, such as program obfuscation (an advanced
technique in cryptography that could result in much simpler and more secure implementa-
tions of secure computation), and secure computations protocols for bitcoin.

1Approved for Public Release; Distribution Unlimited.

2 INTRODUCTION

The US government and private industries are in great need of better ways to secure their
data. The focus of this four-university collaborative project (University of Virginia, Cornell,
Indiana University, Johns Hopkins University) was to investigate sophisticated methods of
cryptographically protecting data with a focus on “reducing the overhead”—that is making
the cryptography as efficient and practical as possible.

Over the course of this multi-year project, substantial progress was made on both applied
and theoretical fronts. The project was comprised of over a dozen sub-projects, which ranged
in topic from secure multi-party computation to Fully Homomorphic Encryption to digital
signatures to Bitcoin and more. The results of these efforts appeared in 44 published papers,
including the top theoretical venues such as STOC and FOCS, to cryptography flagship con-
ferences including CRYPTO and Eurocrypt, to top applied venues such as IEEE Security and
Privacy, USENIX Security and ACM Computer and Communications Security, and journals
such as JACM. Six papers were invited to special issue on best papers from STOC, TCC,
CRYPTO, SCN, and AsiaCrypt. The project also supported the development of open source
code, including the Charm library, which has been downloaded thousands of times.

Brief overview We have constructed some of the world’s fastest and most practical se-
cure two-party computation systems implementing Yao’s Garbled Circuit Protocol on varied
parallel architectures, and under differing security models. The parallel architectures varied
from compute-cluster based super computers in malicious security models, to reasonably
priced GPU based parallelism in the honest-but-curious model. In addition, key supportive
technologies to Yao’s Garbled Circuit Protocol implementations have been designed and im-
plemented, such as a new effective 2-party circuit compiler was developed that constructed
the largest circuits known at the time, and was the first to incorporate a number of circuit
optimization technologies.

Second, we resolved some central open problems in the theory of secure computations and
zero-knowledge protocols. Most notably, we demonstrated the first constant-round secure
computation protocols based on minimal hardness assumptions, the first black-box secure
computation protocols that remain secure under concurrent executions, the first constant-
round concurrent zero-knowledge constructions, and the first resettably-secure protocol based
on minimal hardness assumptions. We also provided the first construction of program obfus-
cation which can be proven secure based on a natural hardness assumptions on multilienar
maps.

Third, this project explored the authentication analog of fully homomorphic encryption.
We captured and strengthened in one definition several disjoint notions of computing on
authenticated data existing in the literature. We then provided generic constructions for
all univariate and closed predicates, and specific efficient constructions for a broad class of
natural predicates such as quoting, subsets, weighted sums, averages, and Fourier transforms.

2Approved for Public Release; Distribution Unlimited.

3 METHODS, ASSUMPTIONS AND PROCEDURES

We subdivide the projects that were worked on into several areas, shadowing the concepts
discussed in the summary and introduction. Within each area we discuss the basic methods
of each project.

3.1 Yao’s Garbled Circuits

3.1.1 Malicious Garbled Circuits on Compute Clusters. Yao’s garbled circuits tech-
nique enables the creation of a two-party secure computation protocol. Prior to the PRO-
CEED project, our work (Eurocrypt 2011) described a two-party protocol that is secure in
the malicious model based on this technique. As a result of PROCEED, over a five year pe-
riod, we have discovered several new techniques that have lead to a substantial improvement
in the area of two-party secure computation. At a very high level, our protocols can now
handle very large instances of secure computation problems (i.e. we can securely compute
functions that require billions of boolean gates to represent) at a speed that is measured in
millions of boolean gates per second.

To achieve these results, we have developed new protocol techniques for achieving se-
curity against malicious adversaries (specifically, new techniques for handling problems in-
volving input consistency between different instances of a problem, output authenticity, gar-
bling techniques, and methods for handling a general class of “selective failure” attacks).
Additionally, we have focused on improving the parallel complexity of secure computation
protocols, and thus benefited tremendously from the recent trend in computer architecture to
add more “cores” to each processor, and more processors to each computer.

We have also developed new systems to translate high-level C programs into boolean
circuits. Our PCF, or ”portable circuit format” compiler can now handle circuits with nearly
trillions of gates. In work prior to this project (and even in our first version of our com-
piler), methods to translate programs into boolean circuits could handle only very small toy
examples.

3.1.2 Semi-Honest Garbled Circuits on GPUs. Previous work demonstrated the feasi-
bility and practical use of secure two-party computation [5, 9, 15, 23]. In this work, we pre-
sented the first Graphical Processing Unit (GPU)-optimized implementation of an optimized
Yao’s garbled-circuit protocol for two-party secure computation in the honest-but-curious
and 1-bit-leaked malicious models. We implemented nearly all of the modern protocol ad-
vancements, such as Free-XOR, Pipelining, and OT extension. Our implementation was the
first allowing entire circuits to be generated concurrently, and makes use of a modification
of the XOR technique so that circuit generation is optimized for implementation on SIMD
architectures of GPUs. In our best cases we generated about 75 million gates per second and
we exceeded the state-of-the-art performance metrics on modern CPU systems by a factor of
about 200, and GPU systems by about a factor of 2.3. While many recent works on garbled
circuits exploit the embarrassingly parallel nature of many tasks that are part of a secure
computation protocol, we showed that there are still various forms and levels of paralleliza-

3Approved for Public Release; Distribution Unlimited.

tion that may yet improve the performance of these protocols. In particular, we highlight that
implementations on the SIMD architecture of modern GPUs require significantly different
approaches than the general purpose MIMD architecture of multi-core CPUs, which again
differ from the needs of parallelizing on compute clusters. Additionally, modifications to
the security models for many common protocols have large effects on reasonable parallel
architectures for implementation.

3.2 General Theoretical Work

Many of the results of this project explore theoretical questions concerning secure computa-
tion. For these questions, the method is to pose a question concerning the necessity of some
aspect of overhead for secure computation and mathematically explore whether that aspect
is essential or can be removed.

4Approved for Public Release; Distribution Unlimited.

4 RESULTS AND DISCUSSION

In this section, we highlight the results from the main aspects of our project.

4.1 Secure 2-party Computation

4.1.1 Malicious Garbled Circuits on Compute Clusters. Yao’s garbled circuits tech-
nique enables the creation of a two-party secure computation protocol. Prior to the PRO-
CEED project, PI Shelat and Shen (Eurocrypt 2011) described a two-party protocol that is
secure in the malicious model based on this technique. As a result of PROCEED, over a
five year period, we have discovered several new techniques that have lead to a substantial
improvement in the area of two-party secure computation. At a very high level, our pro-
tocols can now handle very large instances of secure computation problems (i.e. we can
securely compute functions that require billions of boolean gates to represent) at a speed that
is measured in millions of boolean gates per second.

To achieve these results, we have developed new protocol techniques for achieving se-
curity against malicious adversaries (specifically, new techniques for handling problems in-
volving input consistency between different instances of a problem, output authenticity, gar-
bling techniques, and methods for handling a general class of “selective failure” attacks).
Additionally, we have focused on improving the parallel complexity of secure computation
protocols, and thus benefited tremendously from the recent trend in computer architecture to
add more “cores” to each processor, and more processors to each computer.

The protocol was the most efficient i n t erms o f b oth a symptotics a nd r eal-world ex-
ecution times. In this project, we have optimized that protocol and implemented it on a
cluster of machines. We have demonstrated a 100x factor of improvement, and continue to
make adjustments to discover the true overhead rate for malicious security. The table below
summarizes some of the performance results. In order to run experiments on large garbled
circuits, we have built a compiler that produces optimized circuits from programs (the Fair-
Play circuit compiler cannot handle circuits with more than one million gates without
running into memory problems). In this case, the optimizations favor XOR gates over
NAND gates. Our compiler has produced the smallest known garbled Yao circuit for AES.

4.1.2 Parallelism. In 2012, in [KSS12] we illustrated how to design highly parallelizable
protocols for 2-party secure computation that are secure in the malicious model. As the fol-
lowing chart showed, the running time for evaluating the AES circuit (in which one party
holds a key k, the other party holds an input x, and the goal is to compute AESk(x)) de-
creases as expected as we run the protocol on up to 256 cores. In this same paper, we report
6B gate circuit evaluation at a rate of approximately 100-120k/gates per second. By Novem-
ber 2012, we had improved our protocol to run at> 300k gates per second in our system. We
are investigating ways to remove the algebraic operations from the protocol; this will result
in large performance improvements when the circuit has many inputs. We also improved our
compiler infrastructure to handle very large circuits in a more scalable way. In Jan’13, we
employed the AESNI and SSE2 instruction sets in our system. While the former improves

5Approved for Public Release; Distribution Unlimited.

Table 1: The time (in seconds) of running AES circuit with security parameter k=80 and
s=256. The number of nodes represents the degree of parallelism on each side. “–” means
that the time is smaller than 0.05 second and thus omitted.

core # 2 4 8 16 32 64 128 256
Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl

OT 79.1 16.8 39.5 8.4 19.8 4.2 9.9 2.1 4.9 1.1 2.5 0.6 1.3 0.3 0.6 0.2
Gen. 19.6 – 9.3 – 4.5 – 2.2 – 1.1 – 0.5 – 0.3 – 0.1 –

Inp. chk – 0.9 – 0.4 – 0.2 – 0.1 – – – – – – – –
Eval. 7.1 16.2 3.2 7.6 1.7 3.5 0.8 1.7 0.4 0.8 0.3 0.4 0.2 0.2 0.1 0.1

Inter-com 11.8 83.6 5.7 41.3 2.5 20.5 1.4 10.2 0.6 5.1 0.3 2.6 0.1 1.4 0.1 0.7
Intra-com 0.5 0.5 0.2 0.3 0.2 0.2 0.1 0.2 0.1 0.1 – 0.1 – 0.1 – 0.1

Total time 118.0 118.1 58.0 58.0 28.6 28.6 14.4 14.4 7.2 7.2 3.7 3.7 1.9 1.9 1.0 1.0

the generation of the doubly encrypted entries for garbled truth table, the latter speeds up
the bit-wise XOR in a 128-bit primitive operation manner. Moreover, we have designed a
new generator’s input consistency check that gets rid of the number theoretic assumption and
group operation entirely (except for OTs).

Reducing hardness assumptions By April 2013, we improved our protocol so that it no
longer relies on any specific hardness assumptions (our prior work required discrete log or
special types of proof systems) and yet has better performance. We do this by describing new
solutions to the three main problems for malicious Yao with cut-and-choose. We solve input
consistency using a hashing approach, we solve selective failure using a coding approach,
and we solve two-output authenticity using a commit/hash approach. We show in Figure 2
the overall execution time of our system securely evaluating circuits EDT-40951, RSA-2562,
and 1024-AES128. Overall, our system is able to handle 650, 000+ (or ∼ 200, 000 non-
XOR) gates per second. We also observe that for all three circuits that we evaluated, more
than 60% of the execution time is spent on communicating the huge amount of data, the
garbled circuits. If we consider only the circuit garbling, the rate that our system actually
achieves could be as high as 1,600,000+ (or 500,000+ non-XOR) gates per second, with the
help of various optimization techniques, including SSE2 and AESNI instruction sets, and the
free-XOR technique. These results are eventually published in our [SS13] paper.

Table 2: The performance of our main protocol with k = 80 and σ = 256. All numbers in “time”
column come from an average of 30 data points and have the 95% confidence interval < 1%.

circuit gates (non-XOR) time (sec) comm.

EDT-4095 5.9B (2.4B) 9,042 18 TB
RSA-256 0.93B (0.33B) 1,437 3 TB
1024-AES128 32M (9.3M) 49 74 GB

1This circuit computes the edit distance of two 4,095-bit inputs.
2This circuit computes a 256-bit modular exponentiation.

6Approved for Public Release; Distribution Unlimited.

Table 3: The 95% two-sided confidence intervals for computation and communication time
for each stage in the 1024-AES128 experiment

Gen Eval Comm
(sec) (sec) (MB)

OT
comp 0.4±0.09% –

6
comm 0.1± 1% 0.3±0.6%

cut-& comp – –
9

chk comm – –

Inp. comp 0.8± 1% 0.3±0.2%
2,008

Chk comm 0.3± 1% 0.9± 1%

Evl.
comp 11.4± 0.6% 28.0±0.4%

72,271
comm 9.2± 1% 30.3±0.8%

Total
comp 12.6± 0.3% 28.0±0.2%

74,294
comm 9.6± 1% 31.5±0.4%

In the fall of 2013, we developed demos for DARPA based on this work; the demos in-
volve a mail regex parser for checking security designations, and a graph intersection demo
to determine if two people have a path in a secret graph to one another. We have also
continued to develop the PCF 2.0 framework to address various bugs and gaps in the imple-
mentation to support the various groups (Sharemind, Georgia Tech) who also use the library.

4.1.3 Semi-Honest Garbled Circuits on GPUs. Previous work demonstrated the fea-
sibility and practical use of secure two-party computation [18, 29, 41, 64]. In this work
[31], we presented the first Graphical Processing Unit (GPU)-optimized implementation of
an optimized Yao’s garbled-circuit protocol for two-party secure computation in the honest-
but-curious and 1-bit-leaked malicious models. We implemented nearly all of the modern
protocol advancements, such as Free-XOR, Pipelining, and OT extension. Our implemen-
tation was the first allowing entire circuits to be generated concurrently, and makes use of
a modification of the XOR technique so that circuit generation is optimized for implemen-
tation on SIMD architectures of GPUs. In our best cases we generated about 75 million
gates per second and we exceeded the state-of-the-art performance metrics on modern CPU
systems by a factor of about 200, and GPU systems by about a factor of 2.3. While many
recent works on garbled circuits exploit the embarrassingly parallel nature of many tasks that
are part of a secure computation protocol, we showed that there are still various forms and
levels of parallelization that may yet improve the performance of these protocols. In partic-
ular, we highlight that implementations on the SIMD architecture of modern GPUs require
significantly different approaches than the general purpose MIMD architecture of multi-core
CPUs, which again differ from the needs of parallelizing on compute clusters. Addition-
ally, modifications to the security models for many common protocols have large effects on

7Approved for Public Release; Distribution Unlimited.

reasonable parallel architectures for implementation.
Our system [31] is currently the most efficient gate garbler, and definitely the case when

one considers the cost per gate. Our implementation did key work to ensure that garbeling
was very much optimized to the SIMD architecture of the GPU. Full details are given in the
paper. We benchmarked our system in comparison to the others to show the benefit of our
SIMD optimizations. A full analysis of the effectiveness is given in the full paper in the
Appendix. Here, for the benefit of the reader we provide the key results from that section.

Most prior work in the area benchmarks the time it takes to generate and evaluate vari-
ous circuits. This process indirectly benchmarks the number of gates generated or evaluated
per second. However, this is often run on systems with varying numbers of cores, and to a
lesser extent varying speeds. We report results on the average number of gates generated or
evaluated per second per core. We note this metric seems relatively stable, and thus we use it
for a near apples-to-apples comparison. Table 4 has details for the comparison systems. We
note that even though EC2 has multiple GPUs, only one is used in the results presented. EC2
is run on Amazon’s elastic compute infrastructure, and is running under a Xen hypervisor.
Since we do not have direct access to the bare metal, we cannot determine how much over-
head the Xen hypervisor entails, but Xen project benchmarks suggest, assuming appropriate
kernel patches have been applied, a 0-30% performance decrease [10].

Table 4: Benchmark system descriptions. EC2 runs a Xen virtual machine.

System CPU Core/ GHz Ram GPU
Thrd. (GB)

Kreuter et al. Xenon 4 2.13 8 N/A
[41] E5506

EC2 Xenon 8/16 2.93 24 Tesla
X5570 S2050

Tie Xenon 12/12 2 64 Tesla
E5-2620 K20

GPU Cores SMs GHz Memory Compute
(GB) Capability

S2050 (EC2) 448 14 1.15 2.7 2.0
K20 (Tie) 2496 13 0.71 4.8 3.5

We ran circuit generation on the EC2 and Tie systems (cf. Table 4). We first compared
our results to those of Frederiksen and Nielsen [18] in Fig. 1a. We remind the reader that we
compared their circuit generation times from experiments where they have similar, but not
identical circuits. This is due to the need to simulate the cut-and-choose malicious protocol in
the other systems, which we do not support. Further, while we did have access to their circuit
file, we could not execute it directly as we do not support their file description language in
our system, and their binary file format was not conducive to easy translation. Thus, we

8Approved for Public Release; Distribution Unlimited.

show in Fig. 1a that under similar workloads our scheme outperforms theirs on the same
hardware using the metric of gates generated per second. Observe that we generate gates at
about 2.3 times the rate on the Tie system compared to Frederiksen and Nielsen on the EC2
system. Observe that we generate gates at about 3 times the rate on the Tie system compared
to Frederiksen and Nielsen. This is the benchmark system, as Frederiksen’ and Nielsen’s
code is targeted at compute capability 3.X CUDA cards.

As the number of cores on systems can be highly variable, in Fig. 1b we calculate
the average rate of gate generation per core for the two systems, to help with understanding
performance on other GPU cards with varying numbers of cores. Note that in the benchmarks
reported in Figs. 1a and 1b we have commented out any code in our system necessary to split
large circuits into smaller sub-circuits so that they can fit onto the GPU, as Frederiksen and
Nielsen have no such corresponding code as they simply assume the circuit will fit. Thus we
are not penalized for computing overhead that the other system also does not compute.

●

●

●

●
●

●

20 40 60 80 100 120

0
10

00
00

00
30

00
00

00
50

00
00

00
70

00
00

00

AES Comparison (No Pipelining)

AES Circuit Count/Security Parameter

G
at

es
 P

er
 S

ec
on

d

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)

(a)

●

●
● ● ● ●

20 40 60 80 100 120

0
50

00
0

10
00

00
15

00
00

AES Comparison (No Pipelining)

AES Circuit Count/Security Parameter

G
at

es
 P

er
 S

ec
on

d
P

er
 C

or
e

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)

(b)

Figure 1: 1a) Circuit gate generation rates of [18] vs. our technique using fully parallelizable
circuit generation. 1b) Gates generation rate per multi-processor on differing circuit sizes.

Next, we considered a number of different circuit sizes from both Kreuter et al.[37],
and circuits that we have constructed. Given our support of PCF we can compare the same
circuits as are tested by Kreuter et al.[37]. We see in Fig. 2, the absolute performance of our
system versus that of Kreuter et al. in terms of Gates per sec, and then in Figs. 2a and 2b
the relative performance per core. Note that performance per core is relatively stable across
medium-to-large circuit sizes. Recall that our cores are substantially more abundant, and
have lower cost and energy usage that those of Kreuter et al. Using the metric of gates per
second we find our system, in the case of generation, provides significantly higher generation

9Approved for Public Release; Distribution Unlimited.

rates: approximately three orders of magnitude. Our system tops out at around 75 million
gates per second, while Kreuter et al tops out at 0.35 million gates per second. We note that
their system is built for cluster computing, and so they pay a significant overhead to support
it.

●

●●
●

●
●●

●

●
●

●

●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
00

00
40

00
00

00
60

00
00

00

Normalized Gate Generation

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(a) Gates Gen vs. Time

●

●●●

●●●
●

●● ●

●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Normalized Gate Generation

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
P

er
 C

or
e

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(b) Gate Gen Per Core Per Sec vs. Gate Count

Figure 2: Gate Generation Times comparing to Kreuter et al.[37].

4.1.4 PCF Compiler. We have also developed new systems to translate high-level C pro-
grams into boolean circuits. Our PCF, or ”portable circuit format” compiler can now handle
circuits with nearly trillions of gates. In work prior to this project (and even in our first ver-
sion of our compiler), methods to translate programs into boolean circuits could handle only
very small toy examples.

The results of our PCFv1 compiler were described in [KMBS13] (USENIX Security’13).
Previous approaches to compiling circuits have scaled poorly as the circuit size increases.
Our approach is based on online circuit compression and lazy gate generation. We imple-
mented an optimizing compiler for this new representation of circuits, and evaluated the use
of this representation in two secure computation environments. Our evaluation demonstrates
the utility of this approach, allowing us to scale secure computation beyond any previous
system while requiring substantially less CPU time and disk space. In our largest test, we
evaluate an RSA-1024 signature function with more than 42 billion gates, that was generated
and optimized using our compiler. With our techniques, the bottleneck in secure computation
lies with the cryptographic primitives, not the compilation or storage of circuits.

Since early 2014, we have been developing PCF2, which is an update to the original PCF
work presented at Usenix’13. Improvements include better language support, more efficient

10Approved for Public Release; Distribution Unlimited.

data structures, support for various methods to call special-purpose libraries, bindings to
dozens of languages, and bug fixes throughout the pipeline.

4.1.5 Oblivious RAM Results. All known efficient constructions of generic secure two-
party protocols require an oblivious representation of the function f to ensure that the control
flow of the algorithm does not depend on its input and therefore leak partial information. The
standard approach to creating an oblivious representation is to generate a boolean circuit
from the description of f . This strategy is employed by dozens of prior works including all
of our prior work in this project [50, 52, 4, 28, 40, 39, 47, 65] on secure computation.

When f is given as a RAM (Random Access Memory model) program, transforming
f into a binary circuit may be problematic. A naive transformation replaces each indexed
access to memory with a scan of the entire memory in order to keep the index hidden. To
overcome this issue, Gordon et al [25] used an Oblivious RAM (ORAM) data structure pro-
posed first by Goldreich [20] to compile RAM programs into secure computation protocols.

Intuitively, ORAM is a technique to transform a memory access (with secret index i)
into a sequence of memory accesses (whose indices are revealed to the adversary but appear
independent of the secret value i). ORAM techniques have been widely studied in other
contexts [24, 61, 42, 23, 16, 6, 76, 74, 22, 20, 60, 63, 75, 12, 70, 67]. However, the goals of
these prior works were (1) reducing the bandwidth overhead between the client and server;
(2) reducing the client storage; and (3) reducing the server’s overall memory overhead. Re-
markably, state of the art approaches to ORAM design limit the overhead in all three aspects
to various combinations of O(logc(n)) where c ∈ {0, 1, 2, 3}.

We embark on a comprehensive study of practical secure computation ORAM tech-
niques. We do so via both theoretical analysis of several metrics used to judge ORAMs and
experiments performed on optimized implementations of 4 state-of-the-art ORAM schemes.
We report a new heuristic ORAM design that outperforms all other ORAMs we considered.

Our first observation is that traditional measures of ORAM schemes do not properly
indicate the ORAM performance in secure computation setting. Previously, ORAM was
primarily considered in storage outsourcing [69, 22, 68], and secure processor execution [49]
settings. Thus, ORAM constructions were mainly evaluated by the bandwidth overhead (i.e.,
the number of data blocks retrieved per memory query).

Since the client-side computational logic needs to process secret values (e.g., the original
index), their cost cannot be ignored as in tradiational ORAMs designed merely for outsourc-
ing storage. On the contrary, the overhead due to securely computing the client-side ORAM
logic can easily dominate the overall cost in both bandwidth and CPU cycles. Therefore, the
circuit complexity of the ORAM algorithm plays a critical role in evaluating the efficiency of
ORAM schemes used in secure computation.

We find that, asymptotically speaking, the Binary Tree ORAM by Shi et al. [67] performs
the same as a naively implemented Path ORAM [70], although Path ORAM is asymptoti-
cally faster in the data outsourcing scenario. In fact, due to the circuit size, Path ORAM is
significantly slower for practical parameter settings. Next, we derive Path-SC ORAM, an
optimized construction of Path ORAM that is O(log n) faster than its naive implementation.

11Approved for Public Release; Distribution Unlimited.

However, because of the 3 oblivious sorts (resulting in a large constant factor in practice),
its performance in practical parameter settings is still inferior to those theoretically slower
schemes such as Binary Tree ORAM [67] and CLP ORAM [12].

We then present SCORAM, a heuristic compact ORAM design optimized for secure com-
putation protocols. Our new design is almost 10x smaller in circuit size and also faster than
all other designs we have tested for realistic settings (i.e., memory sizes between 4MB and
2GB, constratined by 2−80 failure probability). SCORAM makes it feasible to perform secure
computations on gigabyte-sized data sets.

4.2 Theory of Secure Computation

Minimal Hardness Assumptions for O(1)-round Secure Computation Joint with Lin
and Venkitasubramaniam, PI Pass investigated the minimal hardness assumptions needed for
constant-round secure computation protocols. It is known that the existence of an “honest-
but-curious” secure, so called, oblivious transfer (OT), protocol is both sufficient and neces-
sary for construction of secure computation protocols. For constant-round secure
computation, constant-round OT is necessary; the main open question is whether constant-
round OT also suffices. (Our earlier results show that constant-round secure
computation exists assuming the existence of enhanced trapdoor permutation; this
assumption does not include, e.g., lattice-based assumption, etc). By relying on the
above-mentioned non-malleable commitment scheme, we showed that indeed constant-
round OT alone suffices to establish secure multi-party computation protocols for any
function. This resolves a question left open since the inception of secure multi-party
computation in 1987.

The paper appeared in Asiacrypt’12 and was invited to the special-issue on the best pa-
pers from the conferences.

Blackbox Concurrent Secure Computation PI Pass joint with Huijia Lin presented the
first black-box construction of a secure multi-party computation protocol that satisfies a
meaningful notion of concurrent security in the plain model (without any set- up, and with-
out assuming an honest majority). Moreover, our protocol relies on the minimal assumption
of the existence of a semi-honest OT protocol, and our security notion “UC with super-
polynomial helpers” (Canetti et al, STOC’10) is closed under universal composition, and
implies “super-polynomial-time simulation”.

The question of providing a black-box construction of a concurrently secure protocol was
one of the key open problems in our original proposal. Our construction is currently still just
a “feasibility” result, but it indicates that the tools for obtaining practical implementations of
concurrently secure protocols are within reach. The paper appeared in CRYPTO’12.

Large Scale Secure Computation We are interested in secure computation protocols in
settings where the number of parties is huge, and their data even larger. In this regime, the
efficiency of existing solutions breaks down: either requiring resources linear in the circuit
representation size of the function, or requiring parties to store and communicate information
on the order of all parties’ combined inputs.

12Approved for Public Release; Distribution Unlimited.

Assuming the existence of a single-use broadcast channel (per player), we demonstrate
statistically secure n-party computation protocols for computing (multiple) arbitrary dy-
namic RAM programs over parties’ inputs, handling (1/3) fraction static corruptions, while
preserving up to polylogarithmic factors the computation and memory complexities of the
RAM program. Additionally, our protocol is load balanced across all parties, and achieves
polylogarithmic communication locality (i.e., each party only ever needs to speak to poly-
log(n) other parties).

The paper was just accepted to CRYPTO’15.

4.2.1 Non-Malleable Commitments. One approach for acheiving round-efficient secure
multi-party computation protocols is to run many of its sub components in parallel. The
problem with this approach is that the security of many standard cryptographic primitives
does not necessarily remain intact when they are executed in parallel. For instance, a
man-in-the-middle attacker participating in two simultaneous executions of a cryptographic
protocol might use messages from one of the executions in order to violate the security of
the second.

Non-malleable protocols block such attacks. The original paper by Dolev, Dwork and
Naor from 1990 presented the first non-malleable protocols. Since then, non-malleable prim-
itives have been extensively studied in the literature; the main focus of this study has been
to improve the round-complexity of such protocols (indeed, if we want to use non-
malleable protocols to improve the round-efficiency of secure computation p rotocols, i t is
essential that the non-malleable protocols themselves are round-efficient).

Constant-round Non-malleable Commitments Rafael Pass joint with his student Huijia
Lin managed to completely resolve the round-complexity of non-malleable protocols, show-
ing that constant-round protocols are possible using the minimal assumption of a one-way
function; this had remained an open question since 1990 (this question was also explicitly
mentioned in our DARPA proposal). A major application of this result is that constant-round
secure multi-party computation protocols for any function are possible based on the
existence of enhanced trapdoor permutations. This work resulted in a paper that is scheduled
to appear in Journal of the ACM (the leading CS journal).

Non-interactive Non-maleable Commitments PI Pass investigated the possibility that
non-interactive non-malleable commitment is possible. If such commitments were
possible, it would dramatically decrease the round-complexity of secure computations
protocols (our earlier results have established that a constant number of rounds suffice,
but the precise constant is still rather high). In a paper appearing in TCC’13, Pass
demonstrated that standard proof techniques cannot be used to prove security of such
commitment schemes. The paper was invited to the “10-year anniversary of TCC” special
issue in computational complexity, and also invited to the special-issue of best paper in
TCC’13 in Journal of Cryptology. (A full version of the paper was just accepted for
publication in the 10-year celebration issue.)

4.2.2 Zero-Knowledge.

13

Approved for Public Release; Distribution Unlimited.

Constant-round Concurrent Zero-knowledge from Falsifiable A ssumption One of the
main outstanding open problem in Concurrent Security is whether constant-round concurrent
zero-knowledge protocols exists. We present a new, but falsifiable, hardness
assumption under which a constant-round concurrent zero-knowledge protocol exists.
The paper was accepted and presented at FOCS’13.

New Technique for Non-Black-Box Simulations: Resettable Security from One-way
Functions The simulation paradigm, introduced by Goldwasser, Micali and Rackoff, is of
fundamental importance to modern cryptography. In a breakthrough work from 2001, Barak
(FOCS’01) introduced a novel non-black-box simulation technique. This technique enabled
the construction of new cryptographic primitives, such as resettably-sound zero-knowledge
arguments, that cannot be proven secure using just black-box simulation techniques. The
work of Barak and its follow-ups, however, all require stronger cryptographic hardness as-
sumptions than the minimal assumption of one-way functions: the work of Barak requires
the existence of collision-resistant hash functions, and a very recent result by Bitansky and
Paneth (FOCS’12) instead requires the existence of an Oblivious Transfer protocol.

We show how to perform non-black-box simulation assuming just the existence of one-
way functions. In particular, we demonstrate the existence of a constant-round resettably-
sound zero-knowledge argument based only on the existence of one-way functions. Using
this technique, we determine necessary and sufficient assumptions for several other notions
of resettable security of zero-knowledge proofs. An additional benefit of our approach is that
it seemingly makes practical implementations of non-black-box zero-knowledge viable.

The paper was accepted in STOC’13 and invited to the special-issue in Siam Joc on best
papers from STOC’13. We additionally wrote a follow-up paper on “simulatous resettability”
that appeared in FOCS’13.

4.3 Digital Signatures

We now discuss functional and foundational advances in realizing practical digital signa-
tures.

4.3.1 Computing on Authenticated Data. This project represents joint work involving
four PROCEED members: Dan Boneh, Susan Hohenberger, Abhi Shelat and Brent
Waters. It explores the authentication analog of fully homomorphic encryption. We
capture and strengthen in one definition several disjoint notions of computing on
authenticated data existing in the literature. We then provide generic constructions for all
univariate and closed predicates, and specific efficient constructions for a broad class of
natural predicates such as quoting, subsets, weighted sums, averages, and Fourier
transforms. The original work appeared in TCC 2012 and a full version appeared in the
Journal of Cryptology in 2015.

Brent Waters and Susan Hohenberger also explored expanding this notion to comput-
ing on authenticated graphs. We developed a candidate approach, which generalizes the
”untraceable linking” techniques used in the substring construction of the prior TCC paper,
but were unable to completely analyze it. That is, we were still exploring if the mechanisms

14

Approved for Public Release; Distribution Unlimited.

that connected two adjoining letters in a text document can be generalized to connect any two
nodes in a graph. This subproject was downgraded as a priority when the breakthrough result
of realizing multilinear maps appeared by Garg, Gentry and Halevi. Armed with this new
mathematical tool, our focus shifted to more foundational authentication problems, which
we now describe in Section 4.3.2.

4.3.2 Full Domain Hash from Multilinear Maps. Applying a full domain hash is a com-
mon technique in cryptography where a hash function, modeled as a random oracle, is used
to hash a string into a set. Originally, the concept referred to a signature scheme where one
hashed into the range of a trapdoor permutation (Bellare-Rogaway 1993). Subsequently,
full domain hash has been treated as a more general concept. Pairing-based applications of
Full Domain Hash include: the original Boneh-Franklin identity-based encryption schemes,
short and aggregate signatures, Hierarchical Identity-Based Encryption, and decentralized
Attribute-Based Encryption. Typically, proofs of such schemes will use the random oracle
heuristic to “program” the output of the hash function in a certain way for which there is no
known standard model equivalent.

Given that there are well-known issues with random oracle instantiability in general and
problems with Full Domain Hash in particular, there has been a push to find standard model
realizations of these applications.

In this project we explore building constructions with full domain hash structure, but with
standard model proofs that do not employ the random oracle heuristic. The launching point
for our results will be the utilization of a “leveled” multilinear map setting for which Garg,
Gentry, and Halevi (GGH) gave an approximate candidate. Our first step is the creation of a
standard model signature scheme that exhibits the structure of the Boneh, Lynn and Shacham
signatures. In particular, this gives us a signature that admits unrestricted aggregation.

We build on this result to offer an identity-based aggregate signature scheme that admits
unrestricted aggregation. In our construction, an arbitrary-sized set of signatures on iden-
tity/message pairs can be aggregated into a single group element, which authenticates the
entire set. The identity-based setting has important advantages over regular aggregate signa-
tures in that it eliminates the considerable burden of having to store, retrieve or verify a set
of verification keys, and minimizes the total cryptographic overhead that must be attached
to a set of signer/message pairs. While identity-based signatures are trivial to achieve, their
aggregate counterparts are not. To the best of our knowledge, no prior candidate for realiz-
ing unrestricted identity-based aggregate signatures exists in either the standard or random
oracle models.

A key technical idea underlying these results is the realization of a hash function with a
Naor-Reingold-type structure that is publicly computable using repeated application of the
multilinear map. We expect this to have wider applications. We present our results in a
generic “leveled” multilinear map setting and then show how they can be translated to the
GGH graded algebras analogue of multilinear maps.

This work was performed by Susan Hohenberger, Amit Sahai and Brent Waters and
accepted to CRYPTO 2013.

15Approved for Public Release; Distribution Unlimited.

Next, we improved our prior results for full domain hash to provide a method to instan-
tiate the random oracle with a concrete hash function in these applications. This has been an
open problem since random oracles were proposed by Bellare and Rogaway in 1993, and full
domain hash applications now encompass a broader range of notable cryptographic schemes
including the Boneh-Franklin IBE scheme and Boneh-Lynn-Shacham (BLS) signatures. All
of the above described schemes required a hash function that had to be modeled as a random
oracle to prove security. Our work utilizes recent advances in indistinguishability obfusca-
tion to construct specific hash functions for use in these schemes. We then prove security of
the original cryptosystems when instantiated with our specific hash function.

This work was performed by Susan Hohenberger, Amit Sahai and Brent Waters and
accepted to Eurocrypt 2014.

4.3.3 Universal Aggregate Signatures. We introduce the concept of universal signature
aggregators. In a universal signature aggregator system, a third party, using a set of common
reference parameters, can aggregate a collection of signatures produced from any set of sign-
ing algorithms (subject to a chosen length constraint) into one short signature whose length is
independent of the number of signatures aggregated. In prior aggregation works, signatures
can only be aggregated if all signers use the same signing algorithm (e.g., BLS) and shared
parameters. A universal aggregator can aggregate across schemes even in various algebraic
settings (e.g., BLS, RSA, ECDSA), thus creating novel opportunities for compressing au-
thentication overhead. It is especially compelling that existing public key infrastructures can
be used and that the signers do not have to alter their behavior to enable aggregation of their
signatures.

We provide multiple constructions and proofs of universal signature aggregators based
on indistinguishability obfuscation and other supporting primitives. We detail our techniques
as well as the tradeoffs in features and security of our solutions.

This work was performed by Susan Hohenberger, Venkata Koppula and Brent Waters
and appeared in Eurocrypt 2015.

4.4 Encryption

We now discuss advances in security and efficiency for encryption.

4.4.1 New Approach for Chosen-Ciphertext Security. Chosen-ciphertext security is the
deployable standard for encryption, but yet can sometimes be difficult to realize.

In this project, we presented a new approach for creating chosen-ciphertext secure en-
cryption. The focal point of our work is a new abstraction that we call Detectable Chosen-
Ciphertext Security (DCCA). Intuitively, this notion is meant to capture systems that are not
necessarily chosen ciphertext attack (CCA) secure, but where we can detect whether a certain
query CT can be useful for decrypting (or distinguishing) a challenge ciphertext CT ∗.

We show how to build chosen ciphertext secure systems from DCCA security. We mo-
tivate our techniques by describing multiple examples of DCCA systems including creating

16Approved for Public Release; Distribution Unlimited.

them from 1-bit CCA secure encryption — capturing the Myers-shelat result (FOCS 2009).
Our work identifies DCCA as a new target for building CCA secure systems.

This is joint work by Susan Hohenberger, Allison Lewko and Brent Waters that appeared
in Eurocrypt 2012.

4.4.2 Results on Construction of Other Strong Forms of Encryption. We construct
[56] a Non-Malleable Chosen Ciphertext Attack (NM-CCA1) encryption scheme from any
encryption scheme that is also plaintext aware and weakly simulatable. We believe this is
the first construction of a NM-CCA1 scheme that follows strictly from encryption schemes
with seemingly weaker or incomparable security definitions to NM-CCA1. Previously, the
statistical Plaintext Awareness #1 (PA1) notion of security for encryption was only known
to imply CCA1. Our result is therefore novel because unlike the case of Chosen Plaintext
Attack (CPA) and Chosen Chiphertext Attack (CCA2), it is unknown whether a CCA1
scheme can be transformed into an NM-CCA1 scheme. Additionally, we show both the
Damgård Elgamal Scheme (DEG) and the Cramer-Shoup Lite Scheme (CS-Lite) are weakly
simulatable under the DDH assumption. Since both are known to be statistical Plaintext
Aware 1 (PA1) under the Diffie-Hellman Knowledge (DHK) assumption, they instantiate
our scheme securely.

Furthermore, in response to a question posed by Matsuda and Matsuura, we define
cNM-CCA1-security in which an NM-CCA-adversary is permitted to ask a c ≥ 1 number
of parallel queries after receiving the challenge ciphertext. We extend our construction to
yield a cNM-CCA1 scheme for any constant c. All of our constructions are black-box. This
work was completed by Mona Sergi (a graduate student whose PhD was partially funded by
this project), abhi shelat, and Steven Myers.

4.4.3 Chosen-Ciphertext Security does not imply Circular Security. Traditional defi-
nitions of encryption security guarantee secrecy for any plaintext that can be computed by
an outside adversary. In some settings, such as anonymous credential or disk encryption
systems, this is not enough, because these applications encrypt messages that depend on
the secret key. A natural question to ask is do standard definitions capture these scenarios?
One area of interest is n-circular security where the ciphertexts E(pk1, sk2), E(pk2, sk3),
. . . , E(pkn−1, skn), E(pkn, sk1) must be indistinguishable from encryptions of zero. Acar et
al. (Eurocrypt 2010) provided a CPA-secure public key cryptosystem that is not 2-circular
secure due to a distinguishing attack.

In this work, we consider a natural relaxation of this definition. Informally, a cryptosys-
tem is n-weak circular secure if an adversary given the cycle E(pk1, sk2), E(pk2, sk3), . . . ,
E(pkn−1, skn), E(pkn, sk1) has no significant advantage in the regular security game, (e.g.,
CPA or CCA) where ciphertexts of chosen messages must be distinguished from ciphertexts
of zero. Since this definition is sufficient for some practical applications and the Acar et al.
counterexample no longer applies, the hope is that it would be easier to realize, or perhaps
even implied by standard definitions. We show that this is unfortunately not the case: even
this weaker notion is not implied by standard definitions. Specifically, we show:

17Approved for Public Release; Distribution Unlimited.

• For symmetric encryption, under the minimal assumption that one-way functions exist,
n-weak circular (CPA) security is not implied by CCA security, for any n. In fact, it
is not even implied by authenticated encryption security, where ciphertext integrity is
guaranteed.

• For public-key encryption, under a number-theoretic assumption, 2-weak circular se-
curity is not implied by CCA security.

In both of these results, which also apply to the stronger circular security definition, we ac-
tually show for the first time an attack in which the adversary can recover the secret key
of an otherwise-secure encryption scheme after an encrypted key cycle is published. These
negative results are an important step in answering deep questions about which attacks are
prevented by commonly-used definitions and systems of encryption. They say to practition-
ers: if key cycles may arise in your system, then even if you use CCA-secure encryption,
your system may break catastrophically; that is, a passive adversary might be able to recover
your secret keys.

This is joint work with David Cash, Matthew Green and Susan Hohenberger that ap-
peared in PKC 2012.

4.4.4 Online/Offline Attribute-Based Encryption. Attribute-based encryption (ABE) is
a type of public key encryption that allows users to encrypt and decrypt messages based on
user attributes. For instance, one can encrypt a message to any user satisfying the boolean
formula (“crypto conference attendee” AND “PhD student”) OR “IACR member”. One
drawback is that encryption and key generation computational costs scale with the complex-
ity of the access policy or number of attributes. In practice, this makes encryption and user
key generation a possible bottleneck for some applications.

To address this problem, we developed new techniques for ABE that split the compu-
tation for these algorithms into two phases: a preparation phase that does the vast majority
of the work to encrypt a message or create a secret key before it knows the message or the
attribute list/access control policy that will be used (or even the size of the list or policy). A
second phase can then rapidly assemble an ABE ciphertext or key when the specifics become
known. This concept is sometimes called “online/offline” encryption when only the message
is unknown during the preparation phase; we note that the addition of unknown attribute lists
and access policies makes ABE significantly more challenging.

One motivating application for this technology is mobile devices: the preparation work
can be performed while the phone is plugged into a power source, then it can later rapidly
perform ABE operations on the move without significantly draining the battery.

Our performance estimates showed that over 99% of the computational work could be
moved to the offline phase in many scenarios.

This is joint work with Susan Hohenberger and Brent Waters that appeared in PKC 2014.

4.4.5 Blackbox proofs of knowledge of plaintext. We develop [57, 56] a novel proof
of knowledge of a plaintext protocol and show how to use it in the construction of a fully

18Approved for Public Release; Distribution Unlimited.

black-box multi-party computation protocol with low communication overhead. We briefly
describe the motivation behind our work.

Secure computation with an honest majority can be accomplished without any crypto-
graphic assumptions, but the best such protocol requires the parties to communicate |f | log |f |+
d2 · poly(n, log |f |) bits [15] and at least d rounds. Here |f | is the size of the function be-
ing computed and d is the circuit depth of f , and thus the communication of the protocol
is super-linearly related to the number of gates in f . Until recently, even the use of crypto-
graphic assumptions for secure computation required polylog(λ) communication overhead
per gate [15] where λ is a security parameter.

Gentry [19] circumvents per-gate overhead as follows: the honest-but-curious parities
use secure multi-party computation to generate an FHE key, each party encrypts its input,
and sends the resulting ciphertext and proof to other parties. Once all parties have encryp-
tions of everyone’s inputs, they compute the function of interest locally using the evaluation
procedure of the FHE. Finally, to use the resulting ciphertexts as inputs to a secure multi-
party computation which computes the decryption of the majority input. In order to be secure
against malicious adversaries, the Naor and Nissim compiler [59], which makes use of the
PCP theorem, can be applied. The use of the PCP theorem in the SMC steps makes the
approach impractical, even when presented with a practical FHE scheme.

The motivation behind our work is to remove any use white-box techniques, such as the
PCP theorem or generic ZK or NIZK, from the above framework for constructing communication-
efficient secure protocols. These techniques have historically been inefficient. In other
words, we seek a black-box transformation from TFHE to secure computation.

First Contribution The main technical hurdle in devising a black-box transformation from
TFHE to secure computation is to implement the requirement for each player to prove that
they “know the plaintext” corresponding to the encrypted input that they have broadcast.
This step is essential because it prevents one player from copying (or mauling via the homo-
morphism) the input of a player who has acted earlier. To handle this step, we show how to
construct a two-round black-box proof of knowledge of an encrypted bit for any circuit pri-
vate FHE scheme using only the encryption scheme. Since our protocol is only two rounds,
it is not zero-knowledge (cf. [21]), but can provably keep the encrypted bit hidden. Our POK
requires that the public-key contain a labeled encryption of 0 and 1, which given all known
FHE schemes seems to be a natural modification. 3 For traditional FHE schemes, the POK
can be used completely black-box, without even the need for the modification.

The basic idea of our proof of knowledge protocol is to first modify the encryption
scheme so that the message is encoded using an error-correcting code (ECC) based veri-
fiable secret sharing (VSS) scheme. To encrypt a message we first generate its secret shares,
and encrypt them independently using fresh randomness. A verifier now requests the Prover
to reveal the randomness used to encrypt a sub-threshold number of the shares. The verifier

3Since all current schemes contain bit-wise encryptions of their own secret-keys which are random bit
strings, and a natural extension of any protocol that provides encryptions of one’s own secret-key can be used
to derive a labeled encryption of 0 and 1 which we describe.

19Approved for Public Release; Distribution Unlimited.

then does a consistency check, based on the ECC underlying the scheme, to ensure that the
shares were encoded properly. In particular, the error-correcting code we choose offers a
property that allows one to check whether local parts of the codeword are error-free. The
verifier accepts if everything appears to be properly coded. Since the number of shares re-
vealed is less than the threshold, it does not leak any information about the original message.
To show a proof of knowledge property, we argue that an extractor can rewind the Prover
and ask for another set of shares to be opened. With high probability, this second transcript
provides enough new shares to run the VSS recover algorithm, and recover the original mes-
sage. The one issue with this approach is that the Prover must reveal the randomness used to
encrypt some of the shares. The semantic security of an encryption scheme does not guaran-
tee any security when these random bits are revealed—in particular, the security of the rest
of the unopened encryptions are not guaranteed. Instead, we require the encryption scheme
to be secure against a selective opening attack (SOA). Fortunately, a result of Hemenway et
al. [27] can be generalized to show that any circuit private homomorphic encryption scheme
can be made into an SOA-secure one.

We point out that our proof of knowledge requires the encryption scheme to be homo-
morphic and circuit-private. Recently, Damgård et al. [17] demonstrates a three-round Σ-
protocol for knowledge of plaintext, but their protocol requires the underlying encryption
scheme to also be homomorphic on the random coins used to encrypt. Although many FHE
schemes support this property on their random coins, it is certainly not specified in the def-
inition of FHE. In contrast, circuit privacy has been independently defined and seems to be
a naturally weaker property.4 Moreover, their scheme requires the message space for the
FHE to be over ZN for N related to the security parameter. While in general, single-bit FHE
implies many-bit FHE, we are not aware of any such transformation that also preserves the
homomorphism over the random coins as required by their protocol. Thus, the requirement
for large message space and homomorphism over the random coins seem to be extra as-
sumption which our work can avoid (our protocol also works on single-bit FHE). Finally, the
Σ-protocol from [17] must be compiled into a full zero-knowledge protocol using standard
techniques which add round complexity and/or setup assumptions; we show that our two-
round protocol with its hidden-bit property suffices for our secure computation protocol.

Second Contribution By combining our result with almost any TFHE scheme, we con-
struct a secure multi-party protocol that avoids both per-gate communication complexity and
white-box techniques such as the PCP theorem or Zero-Knowledge. The communication
complexity of our protocol is O(λc ·n2) where λ is a security parameter and c is a small con-
stant for the TFHE scheme and is thus independent of |f |. Our black-box transformation is
particularly important because if practical FHE (and TFHE) can be constructed, our transfor-
mations will result in practical SFE. Our work is in the standard model and does not require
trust assumptions such as the common reference string, a random oracle or public-key setup.

4Even though current schemes achieve circuit privacy via randomness homomorphisms, it is certainly plau-
sible for future constructions to achieve circuit privacy in other ways. Moreover, there do not seem to be any
natural ways to transform a circuit private scheme to one with a randomness homomorphism, and thus we feel
it is a weaker notion.

20Approved for Public Release; Distribution Unlimited.

Final Contribution For completeness, we also construct a threshold fully homomorphic
public-key encryption scheme (TFHE) based on the Approximate GCD problem and the
fully homomorphic encryption scheme presented by van Dijk et al. [72], and our result was
the first to demonstrate the feasibility of directly achieving this threshold primitive for FHE.
Since our original eprint submission, [3] and [48] present more efficient TFHE constructions
based on LWE-style assumptions. The point of this construction is to demonstrate feasibility
of TFHE under different complexity assumptions.5

4.4.6 Efficient Prototyped Bootstrapping FHE with SAGE. We provided several im-
plementations of FHE that incorporate several different optimizations. All implementations
were done in SAGE[71], which is an open-source advanced mathematics package that has an
incorporated programming language based on Python. Our first implementation was one that
implemented bootstrapping working on the RLWE based scheme of Brakerski and Vaikun-
tanathan [9], with improvements as suggested in Lauter, Naehrig and Vaikuntanathan [58].
We benchmarked our implementation in Sage of the non-bootstrapping scheme against the
implementation in Magma of the Lauter, Naehrig and Vaikuntanathan system [58] and get
slightly faster results. (Note, Lauter et al. did not implement bootstrapping, so there is
no possibility of providing a comparison here). This suggests that there is no preference
in choosing the Magma implementation system which is costly and proprietary, over SAGE.
The second implementation was Bakerski’s new algorithm, We did not implement bootstrap-
ping, but did implement more advanced error handling mechanisms, specifically the modular
reduction technique.

The SAGE system, while excellent for prototyping code was too inefficient to handle
large realistic security parameters. Therefore, we looked into the possibility of augmenting
the SAGE system with a backend that could handle polynomial algebra on the GPU. We were
successfully in writing small programs that access GPGPU through SAGE, going through
pycuda. However, after some experimentation and implementation of basic mathematics
on the GPU, we realized that the architecture was not promising. The reason was that the
bus is too slow to have individual polynomial multiplication and addition operations pushed
across it, to have them performed on the GPU, but this is the only method that SAGE seems
to support the outsourcing of such operations. Therefore, while we believe there is much
promise in using the GPU to perform FHE operations, accessing it through SAGE is not a
promising approach.

4.4.7 Tamper-resilient Cryptography.

On the Impossibility of Tamper-resilient Cryptography We initiate a study of the secu-
rity of cryptographic primitives in the presence of efficient tampering attacks to the random-
ness of honest parties. More precisely, we consider p-tampering attackers that may tamper

5We note that historically, threshold encryption has been presented where the key-generation algorithm
and decryption algorithms are single algorithms, or they are multi-party protocols. We present multi-party
protocols.

21Approved for Public Release; Distribution Unlimited.

with each bit of the honest parties’ random tape with probability p, but have to do so in an
”online” fashion. We present both positive and negative results:

• Any secure encryption scheme, bit commitment scheme, or zero- knowledge protocol
can be broken with probability p by a p-tampering attacker. The core of this result is
a new Fourier analytic technique for biasing the output of bounded-value functions,
which may be of independent interest (and provides an alternative, and in our eyes
simpler, proof of the classic Santha-Vazirani theorem).

• Assuming the existence of one-way functions, cryptographic primitives such as sig-
natures, identification protocols can be made resilient to p-tampering attacks for any
p = 1/nα, where α > 0 and n is the security parameter.

The paper is appeared in CRYPTO’14 and was invited to the special issues of the best papers
in the conference.

4.5 New Software Tools

In this section, we describe open source software that was used by or partially developed with
the support of this DARPA funding. This work formed the basis for a 2013 PhD dissertation
for JHU graduate student Joseph Ayo Akinyele, although he was not funded on this grant.

4.5.1 Charm: A Toolkit for Rapid Prototyping of Cryptographic Systems. Matt Green
led the development of Charm, an extensible framework designed for rapid prototyping
of cryptographic systems that utilize the latest advances in cryptography, such as fully-
homomorphic encryption and SFE, as well as the traditional cryptographic functionalities.
Charm is designed to minimize code complexity, promote code re-use, and to automate inter-
operability, while not compromising on efficiency. It was first publicly presented in NDSS
2012. The work to build Charm was not part of PROCEED, but Charm was an available
foundation for some of the implementation tasks we proposed. The Charm team interacted
during the project with Galois and UVA on making this code available and easy to use by
the PROCEED team. It was also used for the development of further tools as noted in Sec-
tion 4.5.2. A dedicated website for Charm was launched at

http://www.charm-crypto.com/

According to Github records, the library has been downloaded thousands of times world-
wide.

The library continues to be actively maintained and a paper on it was published with
the following information: Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew
W. Pagano, Michael Rushanan, Matthew Green, Aviel D. Rubin: Charm: a framework for
rapidly prototyping cryptosystems. J. Cryptographic Engineering 3(2): 111-128 (2013).

22Approved for Public Release; Distribution Unlimited.

4.5.2 The AutoTools Suite. Cryptographic design tasks are primarily performed by hand
today. Shifting more of this burden to computers could make the design process faster, more
accurate and less expensive. In this subproject, we investigated tools for programmatically
altering existing cryptographic constructions to reflect particular design goals. Our tech-
niques enhance both security and efficiency with the assistance of advanced tools including
Satisfiability Modulo Theories (SMT) solvers. A dedicated website for these automation
tools was launched at

https://github.com/JHUISI/auto-tools

Specifically, we developed the following suite of tools:

AutoBatch AutoBatch is an automated tool for generating batch verification code in either
Python or C++ from a high level representation of a signature scheme. AutoBatch
outputs both software and, for transparency, a LaTeX file describing the batching al-
gorithm and arguing that it preserves the unforgeability of the original scheme.

We tested AutoBatch on over a dozen pairing-based schemes to demonstrate that a
computer could find competitive batching solutions in a reasonable amount of time. In
particular, it found an algorithm that is faster than a batching algorithm from Eurocrypt
2010. Another novel contribution is that it handles cross-scheme batching, where it
searches for a common algebraic structure between two distinct schemes and attempts
to batch them together.

We also published a journal version that expanded on the ACM CCS 2012 original
work in a number of ways. We added a new loop-unrolling technique and showed that
it helps cut the batch verification cost of one scheme by roughly half. We described our
pruning and search algorithms in greater detail, including pseudocode and diagrams.
All experiments were also re-run using the RELIC pairing library. We compared those
results to our earlier results using the MIRACL library, and discuss why RELIC out-
performs MIRACL in all but two cases. Automated proofs of several new batching
algorithms are also included.

AutoGroup AutoGroup converts a pairing-based encryption or signature scheme written
in (simple) symmetric group notation into a specific instantiation in the more effi-
cient, asymmetric setting. Some existing symmetric schemes have hundreds of possi-
ble asymmetric translations, and this tool allows the user to optimize the construction
according to a variety of metrics, such as ciphertext size, key size or computation time.

AutoStrong The AutoStrong tool focuses on the security of digital signature schemes by
automatically converting an existentially unforgeable signature scheme into a strongly
unforgeable one. The main technical challenge here is to automate the “partitioned”
check, which allows a highly-efficient transformation.

CloudSource CloudSource is an automated tool for developing “outsourcing-ready” de-
cryption of cryptographic schemes. CloudSource is designed to programmatically an-
alyze existing pairing-based encryption schemes, and to derive new algorithms that
allow users to outsource portions of the decryption routine to an untrusted server.

23Approved for Public Release; Distribution Unlimited.

The CloudSource tool addresses a growing need, as we increasingly deploy cryptog-
raphy in environments where users employ limited mobile devices and yet have ready
access to cloud-based computing resources. The techniques we propose form part of a
growing line of work aimed towards the automated analysis and engineering of cryp-
tographic protocols, and will help to reduce the need for manual optimization of these
constructions.

Our experiments demonstrate that these design tasks studied can be performed automat-
ically in (usually) a matter of seconds.

This work includes collaborations by Susan Hohenberger, Matthew Green, Joseph Ayo
Akinyele, Matthew Pagano, and Avi Rubin. Multiple papers appeared in ACM CCS and the
Journal of Computer Security.

4.6 Protocols for Bitcoin

Bitcoin is the first e-cash system to see widespread adoption. While Bitcoin offers the
potential for new types of financial interaction, it has significant limitations regarding pri-
vacy. Specifically, because the Bitcoin transaction log is completely public, users’ privacy
is protected only through the use of pseudonyms. In this project, we propose Zerocoin, a
cryptographic extension to Bitcoin that augments the protocol to allow for fully anonymous
currency transactions. Our system uses standard cryptographic assumptions and does not
introduce new trusted parties or otherwise change the security model of Bitcoin. We detail
Zerocoin’s cryptographic construction, its integration into Bitcoin, and examine its perfor-
mance both in terms of computation and impact on the Bitcoin protocol. This work involved
Ian Miers, Christina Garman, Matthew Green and Avi Rubin, and appeared in IEEE Security
and Privacy 2013.

Although payments are conducted between pseudonyms, Bitcoin cannot offer strong pri-
vacy guarantees: payment transactions are recorded in a public decentralized ledger, from
which much information can be deduced. Zerocoin (Miers et al., IEEE S&P 2013) tackles
some of these privacy issues by unlinking transactions from the payments origin. Yet it still
reveals payment destinations and amounts, and is limited in functionality. In this project, we
construct a full-fledged ledger-based digital currency with strong privacy guarantees. Our
results leverage recent advances in zero-knowledge Succinct Non-interactive ARguments of
Knowledge (zk-SNARKs). We formulate and construct decentralized anonymous payment
schemes (DAP schemes). A DAP scheme lets users pay each other directly and privately: the
corresponding transaction hides the payments origin, destination, and amount. We provide
formal definitions and proofs of the constructions security. We then build Zerocash, a prac-
tical instantiation of our DAP scheme construction. In Zerocash, transactions are less than 1
kB and take under 6 ms to verify orders of magnitude more efficient than the less-anonymous
Zerocoin and competitive with plain Bitcoin. This work involved an MIT-JHU collaboration,
including Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer and Madars Virza, and appeared in IEEE Security and Privacy 2014.

24Approved for Public Release; Distribution Unlimited.

4.7 Program Obfuscation

Program obfuscation serves to ”scramble” a computer program, hiding its implementation
details while preserving its functionality. Unfortunately, the ”dream” notion of security,
guaranteeing that obfuscated code does not reveal information beyond black-box access to
the original program, has historically run into strong impossibility results, and is known to
be impossible to achieve for general programs.

Recently, the first plausible candidate of general-purpose obfuscation was presented
(Garg et al FOCS 2013) for a relaxed notion of security, known as indistinguishability ob-
fuscation, which requires only that obfuscations of functionally equivalent programs are in-
distinguishable.

We initiated the study of the stronger notion of extractability or ”differing-inputs” obfus-
cation: An extractability obfuscator for a class of algorithms M guarantees that if an efficient
attacker A can distinguish between obfuscations of two algorithms M1,M2 ∈ M , then A
can efficiently recover (given M1 and M2) an input on which M1 and M2 provide different
outputs (Barak et al JACM 2012). We demonstrate that extractability obfuscation provides
several new applications, including obfuscation of Turing machines, indistinguishability-
secure functional encryption for an unbounded number of key queries and unbounded mes-
sage spaces, and a new notion of functional witness encryption. We also explore the relation
between extractability obfuscation and other cryptographic notions and show that in special
cases, extractability obfuscation is in fact implied by indistinguishability obfuscation. This
paper was accepted to TCC’14, and has since been quite influential.

In a different vein, we investigated constructions of obfuscations that can provably be
based on some cryptographic hardness assumptions. This was a wide-open problem. In our
work, we stipulated new hardness assumptions for multilinear maps and provided the first
provably-secure construction of obfuscation based on a succint hardness assumption. The
paper appeared in CRYPTO’14.

In an orthogonal approach we investigate whether obfuscation implies other
crypto-graphic hardness assumption. We show that indistinguishability obfuscation plus a
slight variant of the assumption that NP 6⊂ BP P implies the existence of one-way functions.
This result appeared in FOCS’14.

4.7.1 Understanding Secure Computation in the Context of Complex Systems. In
some secure computation schemes, such as bitcoin, there is the need for all parties to en-
gage in the system and trust it for it to be of use and produce value. Other large scale secure
computation schemes share this property. In [30], we consider how complex systems effect
security in a number of settings producing value (e.g., SMC) and harm. We consider ways
this can be taxonamized and studied.

25Approved for Public Release; Distribution Unlimited.

5 CONCLUSIONS

This project resulted in several high-quality publications that appeared at top venues, in
3 high-quality implementations of secure computation protocols and the tools needed to
construct such protocols, and in several software artifacts that were demonstrated to DARPA
officials during the demonstration days held annually throughout the performance period.

Two-party Secure Computation In the project area of secure two-party computation,
published papers include [73, 26, 31, 36, 66, 38]. These papers correspond to a number
of high-performance implementations of Yao’s Garbled Circuit protocols, and related ma-
chinery. In [31] there was a SIMD implementation of Yao’s circuits implemented on
GPGPU architectures that showed that even in the honest-but-curious model, the protocol
could be made so computationally efficient as to have the communication overhead
dominate the computation.

Zero-Knowledge Our progress on Interactive Proofs and Zero-knowledge can be found
in [44, 35, 54, 34, 32, 13, 62, 33, 14]. Most notable, we presented the first concurrent
zero-knowledge protocol, new parallel repetition theorems, an our journal paper on non-
malleability (which appeared in JACM) gives the first constant-round non-malleable com-
mitment and zero-knowledge protocols based on one-way functions.

Encryption and Authentication In the area of encryption and authentication research,
published papers include [2, 57, 1]. Understanding security requirements for encryption
schemes and their relative power is essential for understanding the effectiveness of crypto-
graphic primitives used in different settings. In [55, 56] we show the first construction to
achieve more than CCA1 security from a primitive that has only a weaker form of plaintext
awareness. We initiated the study of ”randomness-dependent” encryption schemes in [5]. We
present several new lower bounds on the efficiency of cryptographic primitives in [53, 51].

Multi-Party Computation In the project we developed a protocol that introduced the first
threshold decryption scheme for a leveled fully homomorphic encryption scheme [57] and
showed how to use it to achieve secure multi-party computation which asymptotically
met known lower bounds. The SMC scheme itself was black-box and only relied on
threshold FHE as a building block. More of our work on Secure Computation can be found
in [8, 11, 45, 43]; most notably, we gave the first black-box constructions of concurrently
secure protocols.

Obfuscation Our work on Obfuscation can be found in [46, 7]; most notably, we gave the
first applications of differing-input obfuscation, and provided new constructions of indistin-
guishability obfuscation.

26Approved for Public Release; Distribution Unlimited.

Complex Systems We did some work [30] in the direction of considering how to con-
struct a taxonomy of complex systems as they relate to secure computing and networking
systems. Understanding how large systems can become secure and trusted or insecure, due
to individual actors. Large SMC systems such as crypto-currencies rely on such properties.

27Approved for Public Release; Distribution Unlimited.

6 REFERENCES

REFERENCES

[1] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and
Brent Waters. Computing on authenticated data. In Theory of Cryptography - 9th
Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21,
2012. Proceedings, pages 1–20, 2012. 26

[2] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and
Brent Waters. Computing on authenticated data. J. Cryptology, 28(2):351–395, 2015.
26

[3] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. IACR Cryptology
ePrint Archive, 2011:613, 2011. 21

[4] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A System for Secure
Multi-party Computation. In ACM Conference on Computer and Communications Se-
curity, 2008. 11

[5] Eleanor Birrell, Kai min Chung, Rafael Pass, and Sidharth Telang. Randomness-
dependent message security. In TCC12, 2012. 26

[6] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote oblivious storage: Making
oblivious RAM practical. http://dspace.mit.edu/bitstream/handle/
1721.1/62006/MIT-CSAIL-TR-2011-018.pdf, 2011. 11

[7] Elette Boyle, Kai min Chung, and Rafael Pass. On extractability obfuscation. In TCC
2014, 2014. 26

[8] Elette Boyle, Kai min Chung, and Rafael Pass. Large-scale multi-party comptuation.
In Crypto 2015, 2015. 26

[9] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. In CRYPTO, pages 505–524, 2011. 21

[10] Ian Campbell. Baremetal vs. xen vs. kvm — redux. http://blog.xen.org/
index.php/2011/11/29/baremetal-vs-xen-vs-kvm-redux/, Nov
2011. 8

[11] Ran Canetti, Huijia Lin, and Rafael Pass. From unprovability to composable security.
In FOCS 2013, 2013. 26

[12] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure oram with
Õ(log 2n) overhead, 2013. 11, 12

28Approved for Public Release; Distribution Unlimited.

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://blog.xen.org/index.php/2011/11/29/baremetal-vs-xen-vs-kvm-redux/
http://blog.xen.org/index.php/2011/11/29/baremetal-vs-xen-vs-kvm-redux/

[13] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, and Ivan Visconti. Simultaneous reset-
tability from one-way functions. 2013. 26

[14] Kai-Min Chung and Rafael Pass. The randomness complexity of parallel repetition. In
FOCS, 2011. 26

[15] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In EUROCRYPT, pages
445–465, 2010. 19

[16] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious
RAM without random oracles. In TCC, 2011. 11

[17] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. IACR Cryptology ePrint Archive,
2011:535, 2011. 20

[18] Tore Kasper Frederiksen and Jesper Buus Nielsen. Fast and maliciously secure two-
party computation using the gpu. Technical report, Cryptology ePrint Archive, Report
2013/046, 2013. http://eprint. iacr. org, 2012. iv, 7, 8, 9

[19] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig. 19

[20] O. Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In STOC, 1987. 11

[21] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994. 19

[22] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In ICALP, 2011. 11

[23] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Oblivious RAM simulation with efficient worst-case access overhead. In CCSW, 2011.
11

[24] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamas-
sia. Privacy-preserving group data access via stateless oblivious RAM simulation. In
SODA, 2012. 11

[25] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mar-
iana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amor-
tized) time. In CCS, pages 513–524, 2012. 11

[26] Chih hao Shen and Abhi Shelat. Fast two-party secure computation with minimal
assumptions. In ACM CCS 2013, 2012. 26

29Approved for Public Release; Distribution Unlimited.

crypto.stanford.edu/craig

[27] Brett Hemenway, Benoit Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy en-
cryption: Constructions from general assumptions and efficient selective opening cho-
sen ciphertext security. Technical Report 2009/088, eprint.iacr.org, 2009. Cryptology
ePrint Archive. 20

[28] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster Secure Two-Party
Computation Using Garbled Circuits. In USENIX Security Symposium, 2011. 11

[29] Yan Huang, Jonathan Katz, and David Evans. Quid-pro-quo-tocols: Strengthening
semi-honest protocols with dual execution. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 272–284. IEEE, 2012. 7

[30] Nathaniel Husted and Steven Myers. Emergent properties & security: The complex-
ity ofsecurity as a science. In Konstantin Beznosov, Anil Somayaji, Tom Longstaff,
and Paul C. van Oorschot, editors, Proceedings of the 2014 workshop on New Secu-
rity Paradigms Workshop, Victoria, BC, Canada, September 15-18, 2014, pages 1–14.
ACM, 2014. 25, 27

[31] Nathaniel Husted, Steven Myers, Abhi Shelat, and Paul Grubbs. Gpu and cpu paral-
lelization of honest-but-curious secure two-party computation. In ACSAC’13, pages
169–178, 2013. 7, 8, 26

[32] R. Pass K. Chung and S. Telang. Knowledge-preserving interactive coding. In FOCS
2013, 2013. 26

[33] Dustin Tseng Kai-min Chung, Rafael Pass. The knowledge tightness of parallel zero-
knowledge. In TCC 2012, 2012. 26

[34] Rafael Pass Kai-min Chung, Huijia Lin. Constant-round concurrent zero-knowledge
from p-certificates. In FOCS 2013, 2013. 26

[35] Rafael Pass Kai-min Chung, Huijia Lin. Constant-round concurrent zero-knowledge
from indistinguishability obfuscation. In Crypto 2015, 2015. 26

[36] Ben Kreuter, Chih hao Shen, and Abhi Shelat. Billion-gate secure computation with
malicious adversaries. In USENIX Security 2012, 2012. 26

[37] Ben Kreuter, Ben Mood, abhi shelat, and Kevin Butler. Pcf: A portable circuit format
for scalable two-party secure computation. In To Appear in USENIX Security 2013,
2013. iv, 9, 10

[38] Benjamin Kreuter, Benjamin Mood, Kevin Butler, and abhi shelat. Two-output secure
computation with malicious adversaries. In Usenix Security 2013, 2013. 26

[39] Benjamin Kreuter, Benjamin Mood, Abhi Shelat, and Kevin Butler. PCF: A Portable
Circuit Format for Scalable Two-Party Secure Computation. In USENIX Security Sym-
posium, 2013. 11

30Approved for Public Release; Distribution Unlimited.

[40] Benjamin Kreuter, Abhi Shelat, and Chih hao Shen. Billion-Gate Secure Computation
with Malicious Adversaries. In USENIX Security Symposium, 2012. 11

[41] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation
with malicious adversaries. In Proceedings of the 21st USENIX conference on Security
symposium, Security, volume 12, pages 14–14, 2012. 7, 8

[42] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In SODA, 2012. 11

[43] Huija Lin, Rafael Pass, and Muthu Venkitasubramaniam. Uc from ot. In AsiaCrypt’12,
2012. 26

[44] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any
one-way function. In STOC, pages 705–714, 2011. 26

[45] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols. In
CRYPTO 2013, 2013. 26

[46] Huijia Lin and Rafael Pass. Succint garbling schemes and application. In To appear in
STOC 2015 in a merged version, 2015. 26

[47] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks. Automating
efficient ram-model secure computation. IEEE S & P, 2014. 11

[48] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. Cloud-assisted mul-
tiparty computation from fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2011:663, 2011. 21

[49] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic,
John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a
secure processor. In CCS, 2013. 11

[50] Philip MacKenzie, Alina Oprea, and Michael Reiter. Automatic Generation of Two-
party Computations. In ACM Conference on Computer and Communications Security,
2003. 11

[51] Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive commit-
ments. In CRYPTO’12, 2012. 26

[52] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay: A secure two-
party computation system. In USENIX Security, 2004. 11

[53] Kai min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On the power of
non-uniform proofs of security. In ITCS’13, 2013. 26

[54] Kai min Chung andi Rafaeli Pass. Parallel repetition for interactive arguments. In
SIGACT News 2014, 2014. 26

31Approved for Public Release; Distribution Unlimited.

[55] Steven Myers, Mona Sergi, and Abhi Shelat. Blackbox construction of a more than non-
malleable CCA1 encryption scheme from plaintext awareness. In Ivan Visconti and
Roberto De Prisco, editors, Security and Cryptography for Networks - 8th International
Conference, SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceedings, volume 7485
of Lecture Notes in Computer Science, pages 149–165. Springer, 2012. 26

[56] Steven Myers, Mona Sergi, and Abhi Shelat. Black-box construction of a more than
non-malleable CCA1 encryption scheme from plaintext awareness. Journal of Com-
puter Security, 21(5):721–748, 2013. 17, 18, 26

[57] Steven Myers, Mona Sergi, and Abhi Shelat. Black-box proof of knowledge of plaintext
and multiparty computation with low communication overhead. In TCC, pages 397–
417, 2013. 18, 26

[58] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic en-
cryption be practical? In CCSW, pages 113–124, 2011. 21

[59] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, STOC ’01, pages 590–599, New York, NY, USA, 2001. ACM. 19

[60] R. Ostrovsky. Efficient computation on oblivious RAMs. In STOC, 1990. 11

[61] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In
STOC, 1997. 11

[62] Rafael Pass Per Austrin, Johan Hastad. On the power of many 1-bit provers. In Inno-
vations in Theoretical Computer Science Conference13, 2013. 26

[63] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In CRYPTO, 2010. 11

[64] Shi Pu, Pu Duan, and Jyh-Charn Liu. Fastplay–a parallelization model and implemen-
tation of smc on cuda based gpu cluster architecture. Technical report, Cryptology
ePrint Archive, Report 2011/097, 2011. http://eprint. iacr. org, 2011. 7

[65] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A programming
language for generic, mixed-mode multiparty computations. IEEE S & P, 2014. 11

[66] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with malicious ad-
versaries. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 386–405. Springer, 2011. 26

[67] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In ASIACRYPT, 2011. 11, 12

[68] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage. In CCS, 2013. 11

32Approved for Public Release; Distribution Unlimited.

[69] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage.
In IEEE Symposium on Security and Privacy (S & P), 2013. 11

[70] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious ram protocol.
In In CCS, 2013. 11

[71] W. A. Stein et al. Sage Mathematics Software. The Sage Development Team, 2011.
http://www.sagemath.org. 21

[72] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Henri Gilbert, editor, Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Pro-
ceedings, volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer,
2010. 21

[73] Xiao Wang, Hubert Chen, Yan Huang, Abhi Shelat, and Elaine Shi. Oblivious ram for
secure computation. In ACM CCS 2014, 2014. 26

[74] Peter Williams and Radu Sion. Usable PIR. In NDSS, 2008. 11

[75] Peter Williams and Radu Sion. Round-optimal access privacy on outsourced storage.
In CCS, 2012. 11

[76] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud: Prac-
tical access pattern privacy and correctness on untrusted storage. In CCS, 2008. 11

33Approved for Public Release; Distribution Unlimited.

A LIST OF PAPERS RESULTING FROM PROJECT

All papers published under this project were Contracted Fundamental Research (CFR) and
did not require DISTAR public release approval.

A.1 In preparation or submission

1. Susan Hohenberger, Venkata Koppula, Brent Waters. Adaptively Secure Puncturable
Pseudorandom Functions in the Standard Model. In submission.

2. Joseph Ayo Akinyele, Matthew Green, Matthew Pagano and Avi Rubin. CloudSourc-
ing Cryptography: Automating the Outsourcing of Cryptographic Algorithms, In prepa-
ration for resubmission.

A.2 In print or to appear

1. Huijia Lin and Rafael Pass. Constant-round Non-malleable Commitments from Any
One-way Function. To appear in Journal of the ACM.

2. Kai-min Chung, Huijia Lin, Rafael Pass. Constant-round Concurrent Zero-knowledge
from Indistinguishability Obfuscation. Crypto 2015.

3. Elette Boyle, Kai-min Chung, and Rafael Pass. Large-Scale Multi-party Comptuation.
Crypto 2015.

4. Huijia Lin and Rafael Pass. Succint Garbling Schemes and Application. Manuscript
(To appear in STOC 2015 in a merged version.)

5. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat and Brent
Waters. Computing on Authenticated Data. Journal of Cryptology 28(2): 351-395,
2015.

6. Susan Hohenberger, Venkata Koppula, Brent Waters. Universal Signature Aggrega-
tors. Eurocrypt 2015.

7. Joseph Ayo Akinyele, Matthew Green, Susan Hohenberger and Matthew Pagano. Machine-
Generated Algorithms, Proofs and Software for Batch Verification. Journal of Com-
puter Security 22(6): 867-912, 2014.

8. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza. ”Ze-
rocash: Practical Decentralized Anonymous E-Cash from Bitcoin”, IEEE Security and
Privacy 2014.

9. Kai-min Chung and Rafael Pass. Parallel Repetition for Interactive Arguments. SIGACT
News 2014.

34

Approved for Public Release; Distribution Unlimited.

10. C. Garman, M. Green, I. Miers, A. Rubin. ”Rational Zero: Economic Security for
Zerocoin with Everlasting Anonymity”, First Workshop on Bitcoin Research 2014.

11. Susan Hohenberger, Amit Sahai, Brent Waters. ”Replacing a Random Oracle: Full
Domain Hash from Indistinguishability Obfuscation”, Eurocrypt 2014.

12. Elette Boyle, Kai-min Chung, Rafael Pass, “On Extractability Obfuscation”, TCC
2014.

13. Kai-min Chung, Huijia Lin, Rafael Pass, “Constant-round Concurrent Zero-knowledge
from P-certificates”, FOCS 2013.

14. Ran Canetti, Huijia Lin, Rafael Pass, “From Unprovability to Composable Security”,
FOCS 2013.

15. Huijia Lin and Rafael Pass, “Black-box Constructions of Composable Protocols”,
CRYPTO 2013.

16. K. Chung, R. Pass and S. Telang, “Knowledge-Preserving Interactive Coding”, FOCS
2013.

17. K. Chung, R. Ostrovsky, R. Pass and I. Visconti, “Simultaneous Resettability From
One-way Functions”, FOCS 2013.

18. Susan Hohenberger and Brent Waters. ”Online/Offline Attribute-Based Encryption”,
PKC 2014

19. Christina Garman, Matthew Green and Ian Miers. ”Decentralized Anonymous Cre-
dentials”, NDSS 2014

20. Steven Myers, Mone Sergi, abhi shelat, Blackbox Construction of A More than Non-
Malleable CCA1 Encryption Scheme from Plaintext Awareness, J. of Comp. Sec, Vol
21, No 5, pp 721–748.

21. Nathaniel Husted, Steven Myers, Emergent Properties & Security: The Complexity of
Security as a Science, New Security Paradigms Workshop 2014.

22. Nathaniel Husted, Steven Myers, Paul Grubbs, abhi Shelat, ”GPU and CPU Paral-
lelization of Secure Two-Party Computation?”, ACSAC’13

23. abhi shelat and Chih-hao Shen, “Faster two-party secure computation with minimal
assumptions.” ACM CCS’2013

24. Joseph Ayo Akinyele, Matthew Green, Susan Hohenberger. ”Using SMT Solvers to
Automate Design Tasks for Encryption and Signature Schemes”, ACM CCS 2013

25. Susan Hohenberger, Amit Sahai, Brent Waters. Full Domain Hash from (Leveled)
Multilinear Maps and Identity-Based Aggregate Signatures. CRYPTO’13.

35

Approved for Public Release; Distribution Unlimited.

26. Ian Miers, Christina Garman, Matthew Green, Aviel Rubin. Zerocoin: Anonymous
Distributed e-Cash from Bitcoin. IEEE Security and Privacy’13.

27. “PCF: A Portable Circuit Format For Scalable Two-Party Secure Computation.”, Kreuter,
shelat, Mood, Butler Accepted to USENIX SECURITY’13

28. “Black-Box Proof of Knowledge of Plaintext and Multiparty Computation with Low
Communication Overhead” Steven Myers, Mona Sergi, abhi shelat. TCC 2013.

29. Eleanor Birrell, Kai-min Chung, Rafael Pass, Sidharth Telang, “Randomness-Dependent
Message Security”, TCC’12

30. Rafael Pass, “Unprovable Security of Perfect NIZK and Non-interactive Non-malleable
Commitments”, TCC’13

31. Per Austrin, Johan Håstad, Rafael Pass, “On the Power of Many 1-Bit Provers”. Inno-
vations in Theoretical Computer Science Conference’13

32. Kai-min Chung, Huijia Lin,Mohammad Mahmoody, Rafael Pass, “On The Power of
Non-uniform Proofs of Security”. Innovations in Theoretical Computer Science Con-
ference’13

33. Joseph Ayo Akinyele, Matthew Green, Susan Hohenberger and Matthew Pagano. Machine-
Generated Algorithms, Proofs and Software for the Batch Verification of Digital Sig-
nature Schemes. In ACM CCS’12

34. Huija Lin, Rafael Pass and Muthu Venkitasubramaniam, “UC from OT”. To appear in
AsiaCrypt’12.

35. Huijia Lin and Rafael Pass, ”Blackbox Construction of Composable Protocols” In
CRYPTO’12

36. Mohammad Mahmoody and Rafael Pass , “The Curious Case of Non-interactive Com-
mitments.” In CRYPTO’12

37. Kai-min Chung, Rafael Pass, Dustin Tseng, “The Knowledge Tightness of Parallel
Zero-Knowledge”. TCC 2012.

38. Ben Kreuter, Chih-hao Shen, and abhi shelat. “Towards Billion-gate Secure Two-party
Computation.” USENIX Security’12

39. Susan Hohenberger, Allison Lewko and Brent Waters. Detecting Dangerous Queries:
A New Approach for Chosen Ciphertext Security. EUROCRYPT, 2012.

40. David Cash, Matthew Green and Susan Hohenberger. New Definitions and Separa-
tions for Circular Security. Public Key Cryptography, 2012.

36

Approved for Public Release; Distribution Unlimited.

41. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat and Brent
Waters. Computing on Authenticated Data. TCC, 2012.

42. Kai-Min Chung and Rafael Pass. The Randomness Complexity of Parallel Repetition.
FOCS, 2011.

43. Jan Camenisch, Susan Hohenberger and Michael Ostergaard Pedersen. Batch Verifi-
cation of Short Signatures. Journal of Cryptology, 25(4): 723-747, 2012.

44. Matthew Green, Susan Hohenberger and Brent Waters. Outsourcing the Decryption of
ABE Ciphertexts. USENIX Security, 2011.

37

Approved for Public Release; Distribution Unlimited.

Constant Round Concurrent Zero-knowledge from IO

Kai-Min Chung Huijia Lin∗ Rafael Pass†

December 8, 2014

Abstract

We present a constant-round concurrent zero-knowledge protocol for NP. Our protocol
relies on the existence of families of collision-resistant hash functions, one-way permutations,
and indistinguishability obfuscators for P/poly (with slightly super-polynomial security).

∗University of California, Santa Barbara, rachel.lin@cs.ucsb.edu.
†Cornell University, {rafael,sidtelang}@cs.cornell.edu. Work supported in part by a Alfred P. Sloan Fel-

lowship, Microsoft New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990, NSF
Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-
0211. The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency
or the US Government.

38

Approved for Public Release; Distribution Unlimited.

1 Introduction

Zero-knowledge (ZK) interactive proofs [?] are paradoxical constructs that allow one player (called
the Prover) to convince another player (called the Verifier) of the validity of a mathematical state-
ment x ∈ L, while providing zero additional knowledge to the Verifier. Beyond being fascinating
in their own right, ZK proofs have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks.

The notion of concurrent zero knowledge, first introduced and achieved in the paper by Dwork,
Naor and Sahai [?], considers the execution of zero-knowledge proofs in an asynchronous and
concurrent setting. More precisely, we consider a single adversary mounting a coordinated attack
by acting as a verifier in many concurrent executions (called sessions). Concurrent ZK proofs are
significantly harder to construct and analyze. Since the original protocol by Dwork, Naor and Sahai
(which relied on so called “timing assumptions”), various other concurrent ZK protocols have been
obtained based on different set-up assumptions (e.g., [?, ?, ?, ?, ?, ?]), or in alternative models
(e.g., super-polynomial-time simulation [?, ?]).

In the standard model, without set-up assumptions (the focus of our work,) Canetti, Kilian,
Petrank and Rosen [?] (building on earlier works by [?, ?]) show that concurrent ZK proofs for non-
trivial languages, with “black-box” simulators, require at least Ω̃(log n) number of communication
rounds. Richardson and Kilian [?] constructed the first concurrent ZK argument in the standard
model without any extra set-up assumptions. Their protocol, which uses a black-box simulator,
requires O(nε) number of rounds. The round-complexity was later improved in the work of Kilian
and Petrank (KP) [?] to Õ(log2 n) round. More recent work by Prabhakaran, Rosen and Sahai
[?] improves the analysis of the KP simulator, achieving an essentially optimal, w.r.t. black-box
simulation, round-complexity of Õ(log n); see also [?] for an (arguably) simplified and generalized
analysis.

The central open problem in the area is whether a constant-round concurrent ZK protocol (for
a non-trivial language) can be obtained. Note that it could very well be the case that all “clas-
sic” zero-knowledge protocols already are concurrent zero-knowledge; thus, simply assuming that
those protocols are concurrent zero-knowledge yields an assumption under which constant-round
concurrent zero-knowledge (trivially) exists—in essence, we are assuming that for every attacker
a simulator exists. Furthermore, as shown in [?] (and informally discussed in [?]) under various
“extractability” assumptions of the knowledge-of-exponent type [?, ?, ?], constant-round concur-
rent zero-knowledge is easy to construct. But such extractability assumptions also simply assume
that for every attacker, a simulator (in essence, “the extractor” guaranteed by the extractability
assumption) exists. In particular, an explicit construction of the concurrent zero-knowledge simula-
tor is not provided—it is simply assumed that one exists. For some applications of zero-knowledge
such as deniability (see e.g., [?, ?]), having an explicit simulator is crucial. Rather, we are here
concerned with the question of whether constant-round concurrent zero-knowledge, with an explicit
simulator exits.

1.1 Towards Constant-round Concurrent Zero-Knowledge

Recently, the authors [?] provided a first construction a constant-round concurrent zero-knowledge
protocol with an explicit simulator, based on a new cryptographic hardness assumption—the exis-
tence of so-called P-certificates, roughly speaking, succint non-interactive arguments for languages
in P. An issue with their protocol, however, is that soundness only holds for uniform polynomial-

1

39

Approved for Public Release; Distribution Unlimited.

time attackers (as opposed to non-uniform ones).1 Additionally, whereas the existence P-certificates
is a falsifiable assumption [?, ?] it is unclear whether the existence of P-certificates itself can be
based on some more natural hardness assumption.

A very recent elegant work by Pandey, Prabhakaran and Sahai [?] takes a different approach and
instead demonstrates the existence of constant-round concurrent zero-knowledge protocol with an
explicit simulator based on the existence of differing-input obfuscation (diO) for (restricted classes
of) P/poly [?, ?, ?]. Whereas the assumption that a particular scheme is a diO is an “extractability”
assumption (similar in flavor to knowledge-of-exponent type [?, ?, ?] assumptions), the intruiging
part of the scheme of Pandey et al [?] is that the extractability assumption is only used to prove
soundness of the protocol; concurrent zero-knowledgde is proved in the “standard” model, through
providing an explicit simulator. Nevertheless, diO is a strong and subtle assumption—indeed, as
shown by recent work, unless we restricting the class of programs for which diO should hold, we
may end up with a notion that is unsatisfiable [?, ?, ?]). Furthermore, there are currently no
known approaches for basing diO on more “natural” (or in fact any) hardness (as opposed to
extractability) assumption.

1.2 Our Results

In this paper, we combine the above-mentioned two approaches. Very roughly speaking, we will use
obfuscation to obtain a a variant of the notion of a P-certificate, and we next show that this variant
still suffices to obtain constant-round concurrent zero-knowledge (where the soundness conditions
holds also against non-uniform PPT attackers). More importantly, rather than using diO, we
are able to use indistinguishability obfuscation (iO) [?, ?]. Following the groundbreaking work of
Garg et al [?], there are now several candidate constructions of iO that can be based on hardness
assumptions on (approximate) multilinear maps [?, ?].

Theorem. Assume the existence of indistinguishability obfuscation for P/poly (with slightly super-
polynomial security), one-way permutations and collision-resistant hashfunction. Then there exists
a constant-round concurrent zero-knowledge argument for NP.

In more details, our approach proceeds in the following steps:

• We first observe that a warm-up case considered in [?]—which shows the existence of constant-
round concurrent zero-knowledge based on, so-called, unique P-certificates (that is, P-certificates
for which there exists at most one accepting certificate for each statement) directly generalizes
also to unique P-certificates in the Common Random String model (a.k.a. the Uniform Ran-
dom String model (URS)) satisfying an adaptive soundness property (where the statement
to be proved can be selected after the URS).

• We next show that by appropriately modifying the protocol, we can handle also unique P-
certificates in the URS model satisfying even just a “static” soundness condition (where the
statement needs to be selected before the URS is picked), and additionally also unique P-
certificates (with static soundness) in the Common Reference String (CRS) model, where
the reference string no longer is required to be uniform. Unique P-certificates in the CRS
model can be constructed based on the existence of diO for P/poly [?], and as such this
preliminary step already implies the result of [?] in a modular way (but with worse concrete
round complexity).

1Or holds against non-uniform attackers under significantly stronger, and no longer falsifiable, assumptions.

2

40

Approved for Public Release; Distribution Unlimited.

• We next consider a more relaxed variant of unique P-certificates in the CRS model—which
we refer to as delegetable unique P-certificates—where the CRS is allowed to be statement
dependent but only a “small” (in particular, independent of the statement length) part of the
CRS generation requires using secret coins. By relying on iO for P/poly, we next show that
the protocol can be generalized to work also with such delegetable unique P-certificates.

• We finally leverage recent results on delegation of computation based on iO from [?, ?, ?]
and show that the beautiful protocol of Koppula, Lewko and Waters [?] can be modified into
a delegetable uniqe P-certificate.

1.3 Outline of Our Techniques

We here provide a detailed outline of our techniques. As mentioned, our construction heavily relies
on a “warm-up” case of the construction of [?], which we start by recalling (closely following the
description in [?]). The starting point of the construction of [?] is the construction is Barak’s [?]
non-black-box zero-knowledge argument for NP. We start by very briefly recalling the ideas behind
his protocol (following a slight variant of this protocol due to [?]).

Barak’s protocol Roughly speaking, on common input 1n and x ∈ {0, 1}poly(n), the Prover P
and Verifier V , proceed in two stages. In Stage 1, P starts by sending a computationally-binding
commitment c ∈ {0, 1}n to 0n; V next sends a “challenge” r ∈ {0, 1}2n. In Stage 2, P shows (using
a witness indistinguishable argument of knowledge) that either x is true, or there exists a “short”
string σ ∈ {0, 1}n such that c is a commitment to a program M such that M(σ) = r.2

Soundness follows from the fact that even if a malicious prover P ∗ tries to commit to some
program M (instead of committing to 0n), with high probability, the string r sent by V will
be different from M(σ) for every string σ ∈ {0, 1}n. To prove ZK, consider the non-black-box
simulator S that commits to the code of the malicious verifier V ∗; note that by definition it
thus holds that M(c) = r, and the simulator can use σ = c as a “fake” witness in the final
proof. To formalize this approach, the witness indistinguishable argument in Stage 2 must actually
be a witness indistinguishable universal argument (WIUA) [?, ?] since the statement that c is a
commitment to a program M of arbitrary polynomial-size, and that M(c) = r within some arbitrary
polynomial time, is not in NP.

Now, let us consider concurrent composition. That is, we need to simulate the view of a verifier
that starts m = poly(n) concurrent executions of the protocol. The above simulator no longer
works in this setting: the problem is that the verifier’s code is now a function of all the prover
messages sent in different executions. (Note that if we increase the length of r we can handle a
bounded number of concurrent executions, by simply letting σ include all these messages).

So, if the simulator could commit not only to the code of V ∗, but also to a program M that
generates all other prover messages, then we would seemingly be done. And at first sight, this
doesn’t seem impossible: since the simulator S is actually the one generating all the prover messages,
why don’t we just let M be an appropriate combination of S and V ∗? This idea can indeed be
implemented [?, ?], but there is a serious issue: if the verifier “nests” its concurrent executions, the
running-time of the simulation quickly blows up exponentially—for instance, if we have three nested
sessions, to simulate session 3 the simulator needs to generate a WIUA regarding the computation
needed to generate a WIUA for session 2 which in turn is regarding the generation of the WIUA of

2We require that C is a commitment scheme allowing the committer to commit to an arbitrarily long string
m ∈ {0, 1}∗. Any commitment scheme for fixed-length messages can easily be modified to handle arbitrarily long
messages by asking the committer to first hash down m using a collision-resistant hash function h chosen by the
receiver, and next commit to h(m).

3

41

Approved for Public Release; Distribution Unlimited.

session 1 (so even if there is just a constant overhead in generating a WIUA, we can handle at most
log n nested sessions).

Unique P-certificates to The Rescue: The “Warm-Up” Case from [?] As shown in [?], the
blow-up in the running-time can be prevented using Unique P-certificates. Roughly speaking, we
say that (P, V) is a P-certificate system if (P, V) is a non-interactive proof system (i.e., the prover
send a single message to the verifier, who either accepts or rejects) allowing an efficient prover to
convince the verifier of the validity of any deterministic polynomial-time computation M(x) = y
using a “certificate” of some fixed polynomial length (independent of the size and the running-time
of M) whose validity the verifier can check in some fixed polynomial time (independent of the
running-time of M). The P-certificate system is unique if there exists at most one accepted proof
for any statement.

The protocol proceeds just as Barak’s protocol except that Stage 2 is modified as follows: instead
of having P prove (using a WIUA) that either x is true, or there exists a “short” string σ ∈ {0, 1}2n
such that c is a commitment to a program M such that M(σ) = r, we now ask P to use a WIUA
to prove that either x is true, or

• commitment consistency: c is a commitment to a program M1, and

– input certification: there exists a vector λ = ((1, π1), (2, π2), . . .) and a vector of
messages ~m such that πi certifies that M1(λ<j) outputs mj in its j’th communication
round, where λ<j = ((1, π1), . . . , (j − 1, πj−1)), and

– prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(λ) = r.

Soundness of the modified protocol, roughly speaking, follows since by the unique certificate prop-
erty, for every program M1 it inductively follows that for every j, mj is uniquely defined, and thus
also the unique (accepting) certificate πj certifying M1(λ<j) = mj ; it follows that M1 determines a
unique vector λ that passes the input certification conditions, and thus there exists a single r that
make M1 also pass the prediction correctness conditions. Note that we here inherently rely on the
fact that the P-certificate is unique to argue that the sequence λ is uniquely defined. (Technically,
we here need to rely on a P-certificate that is sound for slightly super-polynomial-time as there is
no a-priori polynomial bound on the running-time of M1, nor the length of λ.)

To prove zero-knowledge, roughly speaking, our simulator will attempt to commit to its own
code in a way that prevents a blow-up in the running-time. Recall that the main reason that we had
a blow-up in the running-time of the simulator was that the generation of the WIUA is expensive.
Observe that in the new protocol, the only expensive part of the generation of the WIUA is the
generation of the P-certificates π; the rest of the computation has a-priori bounded complexity
(depending only on the size and running-time of V ∗). To take advantage of this observation, we
thus have the simulator only commit to a program that generates prover messages (in identically
the same way as the actual simulator), but getting certificates ~π as input.

In more detail, to describe the actual simulator S, let us first describe two “helper” simulators
S1, S2. S1 is an interactive machine that simulates prover messages in a “right” interaction with
V ∗. Additionally, S1 is expecting some “external” messages on the “left”—looking forward, these
“left” messages will later be certificates provided by S2. See Figure 1 for an illustration of the
communication patterns between S1, S2 and V ∗.

S1 proceeds as follows in the right interaction. In Stage 1 of every session i, S1 first commits to
a machine S̃1(j′, τ) that emulates an interaction between S1 and V ∗, feeding S1 input τ as messages
on the left, and finally S̃1 outputs the verifier message in the j′’th communication round in the

4

42

Approved for Public Release; Distribution Unlimited.

S2 S1 V ∗

πj

πi

π1

mj

aj

mi

ai

m1

a1

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

Figure 1: Simulation using P-certificates.

right interaction with V ∗. (Formalizing what it means for S1 to commit to S̃1 is not entirely trivial
since the definition of S̃1 depends on S1; we refer the reader to the formal proof for a description of
how this circularity is broken.3 S1 next simulates Stage 2 by checking if it has received a message
(j, πj) in the left interaction, where j is the communication round (in the right interaction with
V ∗) where the verifier sends its random challenge and expects to receive the first message of Stage
2; if so, it uses M1 = S̃1 (and the randomness it used to commit to it), j and σ being the list of
messages received by S1 in the left interaction, as a ”fake” witness to complete Stage 2.

The job of S2 is to provide P-certificates πj for S1 allowing S1 to complete its simulation. S2

emulates the interaction between S1 and V ∗, and additionally, at each communication round j, S2

feeds S1 a message (j, πj) where πj is a P-certificate showing that S̃1(j, σ<j) = rj , where σ<j is the
list of messages already generated by S2, and rj is the verifier message in the j’th communication
round. Finally, S2 outputs its view of the full interaction.

The actual simulator S just runs S2 and recovers from the view of S2 the view of V ∗ and outputs
it. Note that since S1 has polynomial running-time, generating each certificate about S̃1 (which is
just about an interaction between S1 and V ∗) also takes polynomial time. As such S2 can also be
implemented in polynomial time and thus also S.

Finally, indistinguishability of this simulation, roughly speaking, follow from the hiding prop-
erty of the commitment in Stage 1, and the WI property of the WIUA in Stage 2. (There is
another circularity issue that arises in formalizing this—as S1 in essence needs to commit to its
own randomness—but it can be dealt with as shown in [?]; we here omit the details as they are not
important for our modifications to the protocol.)

Generalizing to Unique P-certificates in CRS model The key technical contribution in [?]
was to generalize the above approach to deal also with “non-unique” P-certificates. Here we instead
aim to generalize the above approach to work with P-certificates in the CRS model, but still relying
on the uniqueness property.

Let us first note that if we had access to unique P-certificate in the URS (i.e., the uniform
reference string) model satisfying an adaptive soundness property (where the statement to be
proved can be selected after the URS, then above-mentioned protocol directly generelized to work
with them (as opposed to using unique P-certificates in the “plain” model) by simply having the
Verifier send the URS along with its first message of the protocol.4

We next note that the protocol can be further generalized to handle also unique P-certificates
in the URS model satisfying even just a static soundness condition (where the statement needs to

3Roughly speaking, we let S1 take the description of a machine M as input, and we then run S1 on input M = S1.
4To make this work, we need to rely on P-certificates in the URS model with perfect completeness.

5

43

Approved for Public Release; Distribution Unlimited.

be selected before the URS is picked) by proceeding as follows:

• We add a Stage 1.5 to the protocol where the Prover is asked to provide a commitment c2

to 0n and then asked to provide a WIUARG that either x ∈ L or c2 is a commitment to a
“well-formed” statement (but not that the statement is true) for the P-certificate in use in
Stage 2.

• Stage 2 of the protocol is then modified to first have the Verifier send the URS for the P-
certificate, and then requiring that the prover uses a P-certificate for the statement committed
to in c2. In other words, we require the Prover to commit in advance, and prove knowledge
of, the statement to be used in the P-certificate and thus static soundness suffices.

Additionally, this approach generalizes also to deal with unique P-certificates in the Common
Reference String (CRS) model (where the reference string no longer needs to be uniform), by
having the Verifier provide a zero-knowledge proof that the CRS was well-formed.5

Generalizing to Delegetable P-certificates The notion of a P-certificate in the CRS model
requires that the same CRS can be used to prove any statement q of any (polynomially-related)
length. We will now consider a weaker notion of a P-certificate in the CRS model, where the
CRS is “statement-dependent”—that is, the CRS is generated as a function of the statement q
to be proved—in essence, such P-certificates can be viewed as specific instances of a two-round
delegation protocol. But whereas the CRS may depend on the statement, we still restrict it in
several important ways:

• As before, the length of the CRS is “short” (independent of the length of the statement q).

• Additionally, only a “small” part of the generation procedure relies on secret coins. More
precisely, the CRS generation procedure proceeds in three steps: 1) first, secret coins are used
to generate a public parameter PP and a secret parameter K (this is done independently
of the statement q), 2) next, only PP is used to deterministically process the statement q
into a “short” digest d (independent of the length of q), and 3) the digest d and the secret
parameter K is efficiently processed to finally generate the CRS (independent of the length
of q). To emphasize, only step 2 requires work that is proportional to the length of q, but
this work only requires public information.

We now generalize the above approach to also work with delegetable unique P-certificates.

• Instead of having the Verifier send the CRS in the clear (which it cannot compute as it does
not know the statement q on which it will be run), it simply runs part 1 of the CRS generation
procedure to generate PP and K and sends just the public-parameter PP to the Prover.

• The Prover is then asked to provide a third commitment c3 to 0n and provide a WIUARG that
either x ∈ L or c3 is a correctly computed digest d (w.r.t., PP) to the statement q committed
to in c2. (In essence, the Verifier is delegating the computation of d to the Prover.)

• Next, the Verifier sends an indistinguishability obfuscation Π̃ = iO(Π) of a program Π that
on input a decommitment (d′, r′) to c3 processes d′ and K into a CRS ρ and outputs it.
(The reason that the Verifier cannot generate ρ in the clear is that digest d cannot be sent
to the Verifier in the clear; recall that the honest prover will never compute any such digest,

5Again, we here rely on P-certificates in the CRS model with perfect completeness.

6

44

Approved for Public Release; Distribution Unlimited.

it is meant to commit to 0n and prove that x ∈ L.) Additionally, the verifier gives a zero-
knowledge proof that the obfuscation is correctly computed (and using the same random coins
that were used to generate PP).

• Then, the Prover provides a commitment c4 to 0n and provides a WI proof of knowledge that
x ∈ L or c4 is a commitment to a CRS ρ computed by applying the obfuscated code Π̃ to a
proper decommitment of c3.

• Finally, in Stage 2 of the protocol, we require the Prover to provide P-certificates w.r.t to the
CRS ρ commited to in c4.

Note that if c3 is perfectly binding, then by iO security of the obfuscation, we can replace Π with
a program that has the CRS ρ hardcoded and does not depend on K, and this suffices for arguing
that soundness of the protocol still holds. On the other hand, the simulation can proceed just as
before except that now it uses the obfuscated code Π̃ to generate the CRS ρ and commit to it in
c4.

Realizing Delegetable Unique P-Certificates We finally leverage recent results on delegation
of computation based on iO for circuits from [?, ?, ?] and show that the beautiful protocol of
Koppula, Lewko and Waters [?] can be massaged (and slightly modified) into a delegetable uniqe
P-certificate.

Let is point out that, just as [?], our protocol requires the use of P-certificates that satisfy a
slightly strong soundness condition—namely, we require soundness to hold against circuits of size
T (·) where T (·) is some “nice” (slightly) super-polynomial function (e.g., T (n) = nlog log logn). To
acheive such (delegetable) P-certificates, we thus need to rely on iO for P/poly secure against
T (·)-size circuits.

2 Introduction

3 Preliminaries

4 P-certificates

We consider the following canonical languages for P: for every constant c ∈ N , let Lc = {(M,x, y) :
M(x) = y within |x|c steps}. Let TM (x) denotes the running time of M on input x.

Definition 1 (Two-Message P-certificate). A tuple of probabilistic interactive Turing machines,
(Gen,Pcert,Vcert), is a (Two-Message) P-certificate system if there exist polynomials lCRS, lπ, and
the following holds:

Syntax and Efficiency: For every c ∈ N , every q = (M,x, y) ∈ Lc, and every k ∈ N , the
verification of the statement proceed as follows:

CRS Generation: CRS
$← Gen(1k, c, q), where Gen runs in time poly(k, |q|).

Proof Generation: π
$← Pcert(1

k, c, q,CRS), where Pcert runs in time poly(k, |x|,min(TM (x), |x|c))
with TM (x) ≤ |x|c the running time of M on input x. The length of the proof π is
bounded by lπ(k).

Proof Verification: b = Vcert(1
k,CRS, π), where Vcert runs in time poly(k, |CRS|).

7

45

Approved for Public Release; Distribution Unlimited.

(Perfect) Completeness: For every c, d ∈ N , there exists a negligible function µ such that for
every k ∈ N and every q = (M,x, y) ∈ Lc such that |q| ≤ kd, the probability that in the above
execution Vcert outputs 1 is 1.

Definition 2 (Selective Strong Soundness of P-certificate). We say that a P-certificate system
(Gen,Pcert,Vcert) is (selectively) strong sound if the following holds:

• Strong Soundness: There exists some “nice” super-polynomial function6 T (k) ∈ kω(1) and
some “nice” super-constant function7 C(·) ∈ ω(1) such that for every probabilistic algorithm
P ∗ with running-time bounded by T (·), there exists a negligible function µ, such that, for
every k ∈ N , c ≤ C(k),

Pr

(q, st)
$← P ∗(1k, c)

CRS
$← Gen(1k, c, q)

π
$← P ∗(st,CRS)

: Vcert(1
k,CRS, π) = 1 ∧ q 6∈ Lc

 ≤ µ(k)

Definition 3 (Uniqueness of P-certificate). We say that a P-certificate system (Gen,Pcert,Vcert) is
unique if for every k ∈ N , every string CRS ∈ {0, 1}∗, there exists at most one string π ∈ {0, 1}∗,
such that Vcert(1

k,CRS, π) = 1.
Rachel:

[This is a very strong uniqueness requirement, in particular, any CRS string (even ones that are not in

the support of Gen) has at most one matching proof.]

Delegatable CRS Generation

Definition 4 (Delegatable CRS Generation). We say that a (two-message) P-certificate (Gen,Pcert,Vcert)
has delegatable CRS generation if the CRS generation algorithm Gen consists of three subroutines
(Setup,PreGen,CRSGen), and there are polynomials ld and lκ, such that, the following holds:

Delegatable CRS Generation: Gen(1k, c, q) proceeds in the following three steps:

1. Generate parameters: (PP ,K)
$← Setup(1k, c), where Setup runs in time poly(k). We

call PP the public parameter and K the key.

2. (Public) statement processing: d
$← PreGen(PP , q), where PreGen runs in time poly(k, |q|),

and the length of d is bounded by ld(k). We call d the digest of the statemenet.

3. (Private) CRS generation: κ
$← CRSGen(PP ,K, d), where CRSGen runs in time poly(k),

and the length of κ is bounded by lκ(k).

Finally, Gen outputs CRS = (PP , κ).

The reason that we say such a CRS generation procedure is delegatable is because the only part
of computation that depends on the statemenet is the statemenet processing step; all other steps
runs in time a fixed polynomial in the security parameter. However, the statemenet processing
step depends only on the public parameter and the statemenet; hence to ensure soundness, one
only needs to ensure the correctness of this computation, without ensuring the “secrecy” of the
computation. Therefore, we also call this step “public” statement processing.

6For instance, T (n) = nlog log logn.
7For instance, C(k) = log log logn.

8

46

Approved for Public Release; Distribution Unlimited.

4.1 Instantation of P-certificates with Delegatable CRS Generation

Our instantiation relies on the “message hiding encoding” introduced in the recent work by Koppula,
Lewko and Waters [?], as a step towards constructing (succint) indistinguishability obfuscation for
Turing machines. Roughly speaking, a message hiding encoding scheme proceeds as follows: Given
any message msg (usually generated at random in applications), it transforms a Turing machine
computation, M on input x (with time bound T), into an encoding enc, which when decoded yields
msg if M(x) = 1 (in T steps) and ⊥ otherwise; on the other hand, the security of the message
hiding encoding guarantees that the encoding enc for a non-accepting computation (M,x) hides
the message msg. Below, we recall their definition: Let ΠT

M (x) denote the Turing machine that
runs M(x) for T steps and outputs 1 if the computation accepts and ⊥ otherwise.

Definition 1 (Message Hiding Encoding [?]). A message hiding encoding scheme MHE consists of
two PPT algorithms (MHE.enc,MHE.dec) satisfying the following properties

Syntax and Efficiency: For any Turing machine M , input inp ∈ {0, 1}∗, message msg ∈ {0, 1}∗,
time bound T ∈ N, and security parameter k ∈ N,

1. Encoding: The encoding algorithm MHE.enc(1k,M, T, inp,msg) outputs an encoding enc,
in time poly(k, |M |, |inp|, |msg|, log T) (independent of the running time of the comptua-
tion.)

2. Decoding: The decoding algorithm MHE.dec(1k,M, inp, T, enc) outputs a message msg or
⊥, in time poly(k, |M |, |inp|, log T,min(TM (x), T)), where TM (x) is the running time of
M on input x.

Correctness: For any Turing machine M , input inp ∈ {0, 1}∗, message msg ∈ {0, 1}∗, time bound
T ∈ N, and security parameter k ∈ N, if ΠT

M (x) = 1, then

MHE.dec(1k,M, inp, T,MHE.enc(1k,M, T, inp,msg)) = msg

Definition 2 (Message Hiding Property). A message hiding encoding scheme MHE is secure if for
every PPT adversary A∗, and polynomial Γ, there is a neligible function ε, such that, for every
security parameter k ∈ N, every messages msg0,msg1 ∈ {0, 1}k, M of description size at most k,
time bound T ≤ p(k), and input inp ∈ {0, 1}p(k), such that, ΠT

M (inp) = 0, it holds that,

Pr

b

$← {0, 1}
(st,msg0,msg1,M, T, inp)

$← A∗(1k)

enc
$← MHE.enc(1k,M, T, inp,msgb)

:
|msg0| = |msg1| = k
∧ T ≤ Γ(k)
∧ A∗(st, enc) = b

 ≤ 1/2 + ε(k)

Furthermore, MHE is super-polynomially secure if there exists a super-polynomial functions Γ′,
such that the above condition holds for every Γ′-time adversary and function Γ′.

The message hiding encoding is similar to and can be viewed as a weakening of randomized
encoding [?] in the following sense: The encoding enc for M,x with message msg, can also be viewed
as an encoding for the augmented Turing machine M̃(x,msg) that outputs msg if M(x) = 1 and
⊥ otherwise; while randomized encoding guarantees the privacy of the whole input (x,msg), the
message hiding encoding only guarantees privacy of a part of the input msg.

In [?], a construction of a message hiding encoding is provied assuming the existence of indis-
tinguishability obfuscation for circuits and one-way function.

9

47

Approved for Public Release; Distribution Unlimited.

Theorem 1. Assume the existence of an indistinguishability obfusction for circuits, an injective
PRG and an IND-CPA secure public-key encryption scheme (that are super-polynomially secure),
there is a message hiding encoding scheme (that is super-polynomially secure).

P-certificates from Message Hiding Encoding: In is known that randomized encoding (and
its slightly enhanced variant of garbling schemes) can be used to ensure the correctness of a com-
putation, as explored in many previous works, for example in [?, ?] and formalized in [?]. In fact,
for ensuring correctness, it suffices to use a “message hiding encoding” as observed in [?]. Here,
the message msg can be viewed as the correctness proof, and the message hiding property ensures
that a prover can only obtain msg if the underlying computation is accepting, which implies comp-
tuational soundness. This natually suggests a two message proof system for P : Let Ver(c, q) for
q = (M,x, y) be the universal verification algorithm that verifies if M(x) = y in |x|c steps; it
outputs 1 if so and 0 otherwise; it is easy to see that the run time of Ver is bounded by α|x|c with
a universal constant α.

CRS Generation Gen(1k, c, q): Sample π
$← {0, 1}k at random. Compute the message hiding

encoding enc
$← MHE.enc(1k,M = Ver, T = α|x|c, inp = q,msg = π), with π as the message.

Additionally compute y = f(π) using a injective one-way function f . Outputs CRS string
CRS = (enc, y).

Proof Generation Pcert(1
k, c, q,CRS): Parse CRS = (enc, y). Decode z = MHE.dec(1k,Ver, |q|c, q, enc).

If f(z) = y, output proof π = z; otherwise, output ⊥.

Proof Verification Vcert(1
k,CRS, π): Parse CRS = (enc, y). Accept if f(π) = y, and reject

otherwise.

Efficiency: The proof verification algorithm Vcert runs in strict polynomial time. The complexity
of the CRS and proof generation is determined by the complexity of the encoding and decoding algo-
rithm of the message hiding encoding scheme: It follows from the the efficiency of MHE.enc that Gen
runs in time poly(k, |Ver|, |q|, |π|, log(α|x|c)) = poly(k, |q|), and from the efficiency of MHE.dec that
Pcert runs in time poly(k, |Ver|, |q|, |π|, log(|q|c),min(t∗, α|x|c)) = poly(k, |q|,min(t∗, |x|c)), where t∗

is the running time of M on input x. Moreover, the length of the proof is exactly |π| = k. In
summary, the above system satisfies the efficiency requirment of P-certificates.

Strong Soundness: It follows directly from standard techniques that the message hiding property
of MHE implies that for any constant c, the above system is secure against any PPT cheating prover
trying to prove a statically choosen false statement q w.r.t. language Lc. This is because, for a
false statement, the computation Ver(c, q) is not accepting. Thus, it follows form the message
hiding property of MHE that, the honest encoding enc of Ver with input (c, q) and message π is
indistinguishable from an encoding enc′ of Ver, (c, q) and a different message, say, 0n. Therefore, if
a cheating prover can produce a valid proof for q when receiving an honest CRS = (enc, f(π)) with
polynomial probability, it can still produce a valid proof when receiving CRS′ = (enc′, f(π)). Since
a valid proof is π, the cheating prover violates the one-wayness of f . Thus soundness holds.

To obtain strong soundness, we rely on complexity leveling. Assume that MHE and the injective
one-way function is super-polynomially secure w.r.t. to a super-polynomial function Γ. There must
exist another super-polynomial function Γ′ and a super-constant function β′, such that, Γ′(k)β

′(k) ≤
Γ(k) (for example, let Γ′ be equal to 2β(k) log k for β(k) = ω(1); set β′(k) = β(k)1/2 and Γ′(k) =
2β
′(k) log k). It follows from the same argument that the above argument system is sound against all

10

48

Approved for Public Release; Distribution Unlimited.

Γ′-time cheating provers who chooses false statement q w.r.t. any langauge Lc for c < β′(k). This
implies that the system is strong sound.

Uniqueness: For any CRS string CRS(enc, y), it follows from the injectiveness of the one-way
function f , that there is at most one string π, such that, Ver(1k,CRS, π) = 1, that is, f(π) = y.

Summarizing, we have,

Theorem 2. Assume the existence of a message hiding encoding scheme and an injective one-way
function (that are both super-polynomially secure), there is a (two-message) P-cetificate system with
(strong) soundness and uniqueness.

Delegatable CRS Generation. The message hiding encoding scheme of [?] has certain special
structure, such that, the resulting construction of P-certificates directly have delegatable CRS
generation. The special property is that their encoding algorithm can be divided into three steps
matching exactly the three steps in delegatable CRS generation:

• (i) First, it generates certain public parameters and a key, depending only on the security
parameter k and the time bound T . (Namely, this step runs their Setup-Acc and Steup-Itr
algorithms; let PP denote the output of these two algorithms and K is a randomly sampled
puncturable PRF key).

• (ii) then, the input of the comptuation x is processed using the security parameter and public
parameters to produce a digest of the input. (Namely, this step runs their Write-Store, Prep-
Write, and Update algorithms iteratively with the input x and the public parameters PP ,
to compute a digest w of the input. Note that their input processing step also produces a
processed input denoted as store, which in an overly simplified view, is similar to a Merkle
Hash tree built with leaves x8; and store is also a part of the encoding. However, we notice
that the rest of the encoding does not depend on store, and since it can be re-computed by
the decoder given x and the public parameter, it can hence be omited from the encoding.)

• (iii) finally, the encoding is produced depending only on the security parameter, the digest of
the input, the public parameter, and the key. (Namely, this step runs the Setup-Spl, Sign-Spl
using the PRF key K and the digest w, and then obufscates using IO a program that depends
on the TM M , the time bound T , the public pararameter PP and K.)

These three steps for generating an encoding corresponds exactly to the Setup, PreGen and CRSGen
algorithms in a delegatable CRS generation, with the CRSGen additionally computes the image
y = f(π). Thus, combining Theorem 2 with the construction of message hiding encoding of [?],
and noticing the special structure of its encoding algorithm, we have,

Corollary 1. Assume the existence of an indistinguishability obfusction for circuits, an injective
PRG and an IND-CPA secure public-key encryption scheme (that are all super-polynomially secure),
there is a (two-message) P-cetificate system with (strong) soundness, uniqueness, and delegatable
CRS generation.

5 Our Protocol

We proceed to describe formally our protocol, (P, V). The protocol relies on the following primitives:

8The actual computation of store is much more complicated. In an over-simplified view, it is similar to a Merkle
hash tree computed using a specially crafted hash function implemented using IO.

11

49

Approved for Public Release; Distribution Unlimited.

• A non-interactive perfectly binding commitment scheme com. We assume without loss of
generality that com only needs n bits of randomness to commit to any n-bit string, (as it can
always expand these n bits into a longer sequence using a PRG).

• A strong (two-message) P-certificate system (Gen,Pcert,Vcert) with delegatable CRS gener-
ation Gen = (Setup,PreGen,CRSGen). The strong soundness property is associated with
parameter T (·) and C(·), where T (·) is a “nice” super-polynomial function and C(·) is a
“nice” super-constant function. The uniqueness property ensures that for every string CRS,
there exists at most one proof π that is accepted by Vcert(1

k,CRS, π) = 1. This allows us to
define the following deterministic oracle OnV cert, which will be used in the CZK protocol later.

OnV cert(CRS) =

{
π If there exists uniqueπ s.t. Vcert(1

n,CRS, π) = 1

⊥ otherwise

We call OnV cert the P-certificate oracle. Additionally, we consider a universal emulator
Emulatorn that on input (P, x,O) emulates the execution of a deterministic oracle machine
P on input x with oracle OnV cert as follows: It parses O as an array; to answer the ith query
CRSi from P , it checks whether Oi is the right answer from this CRS (i.e., Vcert(1

n,CRSi, Oi)
= 1); if so, it returns Oi to P ; otherwise, it aborts and outputs ⊥. Finally, the emulator
outputs the output of P .

For simplicty, we assume that the lengths of the CRS, the proof π, and the digest of statement
d are all bounded by n, the security parameter. This is without loss of generality, and can be
achieved by scaling down the security parameter.

• A family of hash functions {Hn}n: to simplify the exposition, we here assume that both com
and {Hn}n are collision resistant against circuits of size T ′(·), where T ′(·) is “nice” super-
polynomial function. As in [?], this assumption can be weakened to just collision resistance
against polynomial-size circuits by modifying the protocol to use a “good” error-correcting
code ECC (i.e., with constant distance and with polynomial-time encoding and decoding), and
replace commitments com(h(·)) with com(h(ECC(·))).

• An indistinguishability obfuscator iO for circuits.

• A constant-round WIUA argument system, a constant-round WISSP proof system, and a
constant-round ZK argument system.

Let us now turn to specifying the protocol (P, V). The protocol makes use of three parameters:
m(·) is a polynomial that upper bounds the number of concurrent sessions; Γ(·) is a “nice” super-
polynomial function such that T (n), T ′(n) ∈ Γ(n)ω(1), and D(·) is a “nice” super-constant function
such that D(n) ≤ C(n). Let m = m(n), Γ = Γ(n) and D = D(n). In the description below, when
discussing P-certificates, we always consider the language LD. For simplicity, below we do not
explicitly discuss about the length of the random strings used by various algorithms.

The prover P and the verifier V , on common input 1n and x and private input a witness w to
P , proceed as follow:

Phase 1–Program Slot: P and V exchanges the following three messages.

(a) V chooses a randomly sampled hash function h← Hn.

(b) P sends a commitment c to 0n using com, and random coins ρ1.

12

50

Approved for Public Release; Distribution Unlimited.

(c) V replies with a random “challenge” r of length 3mn.

We call (c, r) the program-slot.

Note: In the simulation, the simulator commits to a program S̃1.

Phase 2—Commit to Statement: P and V exchanges the following messages.

(a) P sends a commitment c2 to 0n using com, and random coins ρ2.

(b) P gives a WIUA argument of the statement that either x ∈ L OR there exists S̃1 ∈
{0, 1}Γ(n), j ∈ [m], s ∈ {0, 1}n, π ∈ {0, 1}n, σ ∈ {0, 1}Γ(n), ρ, ρ2 such that,

Knowledge of Statement: c2 = com(h(q); ρ2), where q ∈ {0, 1}3Γ.

Correctness of Statement: The statement q satisfy the following properties:

• Use of Emulator: q can be parsed into (Emulatorn, (S̃1, (1
n, j, s), σ), r).

• Program Consistency: c = com(h(S̃1); ρ).

If the argument is not accepting, V aborts.

Note: By definition of the emulator Emulatorn, on input (S̃1, (1
n, j, s), σ), it will emulate

the execution of the deterministic oracle machine S̃(1n, j, s) with oracle OnV cert using answers
stored in array σ.

The purpose of this Phase is twofold: First, it enforces a cheating prover to commit to the
“trapdoor” statement before the CRS of the P-certificate is generated, and hence the soundness
of the protocol only relies on the selective soundness of the P-certificate. Second, it checks
whether the “trapdoor” statement has the right structure, in particular, the statement is about
whether S̃OV cert1 (1n, j, s) = r with σ containing all the correct oracle answers (as enforeced
by Emulatorn). In the simulation, the simulator commits to the “trapdoor” statement, q =
(Emulatorn, (S̃1, (1

n, j, s), σ), r), here.

Phase 3—Delegate Public Statement Processing: V delegates the public statement process-
ing to P :

(a) V generates (PP ,K) = Setup(1n, D; ρSetup) using random coins rCRS, and sends PP .

(b) P sends a commitment c3 to 0n using com, and random coins ρ3.

(c) P gives a WIUA argument of the statement that either x ∈ L OR there exists, d ∈ {0, 1}n,
q ∈ {0, 1}3Γ, ρPreGen, ρ2, ρ3, such that,

Statement Consistency: c2 = com(h(q); ρ2).

Digest Consistency: c3 = com(d; ρ3).

Correctness of Digest: d = PreGen(PP , q; ρPreGen).

If the argument is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the computation of the
digest of the statement to P . In simulation, the simualtor will compute, commit to and prove
correctness of d = PreGen(PP , q; ρPreGen). V cannot compute d itself, since (1) it does not
know the “trapdoor” statement q and (2) the computation takes poly(n, |q|), which is too
expensive for the verifier.

Phase 4—Delegate Private CRS Generation: V delegates the private CRS generation to P :

13

51

Approved for Public Release; Distribution Unlimited.

(a) V sends the indistinguishability obfuscation Λ
$← iO(P) of program P = Pn,c3,PP ,K,ρCRSGen

with c4, K, and a random string ρCRSGen hardwired in. P on input (d′, ρ′) checks whether
c3 = com(d′, ρ′) and outputs κ = CRSGen(PP ,K, d; ρCRSGen) if it is the case, and ⊥ oth-
erwise. The functionality of P is described formally in Figure 2.

Circuit P = Pn,c3,PP ,K,ρCRSGen : On input (d′, ρ′) where d′ ∈ {0, 1}n and ρ′ ∈ {0, 1}n, does:

(a) Check if c3 = com(d′; ρ′); if not, output ⊥.

(b) Otherwise output κ = CRSGen(PP ,K, d′; ρCRSGen).

Circuit Q = Qn,c3,κ: On input (d′, ρ′) where d′ ∈ {0, 1}n and ρ′ ∈ {0, 1}n, does:

(a) Check if c3 = com(d′; ρ′); if not, output ⊥.

(b) Otherwise output κ.

The above circuits are padded to their maximum size.

Figure 2: Circuits used in the construction and proof of CZK protocol 〈P, V 〉

(b) V gives a ZK argument of the statement that there exists K ∈ {0, 1}n, ρSetup, ρCRSGen,
ρiO, such that,

Correctness of Public Parameter: (PP ,K) = Setup(1n, D; ρSetup).

Correctness of Obfuscation: Λ = iO(Pc3,PP ,K,ρCRSGen ; ρiO)

If the argument is not accepting, P aborts.

(c) P sends commitment c4 of 0n using com and random coins ρ4.

(d) P gives a WISSP proof of the statement that either x ∈ L OR there exists CRS ∈
{0, 1}n, d′ ∈ {0, 1}n, ρ′, ρ4, such that,

CRS Consistency: c4 = com(CRS; ρ4).

Correctness of CRS: CRS = (PP , κ) and κ = P(d′, ρ′).

If the proof is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the computation of
CRS to P . In simulation, the simualtor will compute, commit to, and prove correctness of
CRS = (PP , κ), with κ = P(d, ρ3). V cannot compute κ itself, even though the computation
takes only polynomial time in n, since d cannot be revealed to V in order to ensure the
indistinguishability of the simulation. On the other hand, to ensure the “privacy” of the CRS
computation, V delegates this computation via obfuscation.

Phase 5—Final Proof: P gives the final proof:

(a) P gives a WISSP proof of the statement that either x ∈ L OR there exists π ∈ {0, 1}n,
CRS ∈ {0, 1}n, ρ4, such that,

CRS Consistency: c4 = com(CRS; ρ4),

Proof Verification: π verifies w.r.t. CRS, Vcert(1
n,CRS, π) = 1.

V accepts if the proof is accepting.

14

52

Approved for Public Release; Distribution Unlimited.

Note: In the simulation, the simulator will compute the proof π
$← Pcert(1

k, D, q,CRS), and
succeed in the final proof by using π and CRS, ρ4 generated in the last phase as “trapdoor”
witness.

Theorem 3. The above protocol 〈P, V 〉 is a concurrent ZK argument system for NP.

The completeness of the protocol follows from the completeness of the WIUA argument of
knowledge, WISSP, and the ZK argument. Below, we prove first the concurrent zero knowlege
property and then the soundness of the protocol.

5.1 Proof of Concurrent Zero-Knowledge

The goal of our simulator is to try to “commit to its own code” and prove about its own execution
using P-certificates in a way that prevents a blow-up in the running-time. Note that the only
expensive part of this process is the generation of the P-certificates ~π; the rest of the computa-
tion has a-priori bounded complexity (depending only on the size and running-time of V ∗). To
take advantage of this observation, we thus have the simulator only commit to an oracle program
that generates prover messages (in identically the same way as the actual simulator), but getting
certificates ~π from the P-certificate oracle OV cert.

In more detail, to describe the actual simulator S, let us first describe two “helper” simulators
S1, S2. Roughly speaking, S1 is an interactive machine that simulates prover messages in a “right”
interaction with V ∗. Additionally, S1 excepts to have access to oracle OV cert on the “left”, in
particular, at any point, it can send a CRS string CRS and gets back the π = OV cert(CRS) the
unique accepting certificate w.r.t. this CRS (or ⊥, if such a certificate does not exist); the oracle
will be simulated by S2, who provides these “left” certificates.

Let us turn to a formal description of the S1 and S2. To simplifiy the exposition, we assume
w.l.o.g that V ∗ has its non-uniform advice z hard-coded, and is deterministic (as it can always get
its random tape as non-uniform advice).

On a high-level, S1(1n, x,M, s, `) acts as a prover in a “right” interaction, communicating with
a concurrent verifier V ∗, while accessing oracle on the “left”. (The input x is the statement to be
proved, the input M will later be instantiated with the code of S1, and the input (s, `) is used to
generate the randomness for S1; s is the seed for the forward secure pseudorandom generator g,
and ` is the number of n-bit long blocks to be generated using g.) A communication round in the
“right” interaction with V ∗ refers to a verifier message (sent by V ∗) followed by a prover message
(sent by S1).

Procedure of simulator S1: Let us now specify how S1 generates prover messages in its “right”

interaction with V ∗. SOV cert1 (1n, x,M, s, `) acts as follows:

Generate Randomness: Upon invocation, S1 generates its “random-tape” by expanding the seed
s; more specifically, let (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1) be the output of g(s, `). We assume
without loss of generality that S1 only needs n bits of randomness to generate any prover
message (it can always expand these n bits into a longer sequence using a PRG); in order to
generate its jth prover message, it uses qj as randomness.

Simulate Phase 1—“Commit to its own code”: Upon receiving a hash function hi in session
i during the jth communication round, S1 provides a commitment ci to (the hash of) the deter-
ministic oracle machine S̃1(1n, α, s′) = wrap(M(1n, x,M, s′, α), V ∗, α), where wrap(A,B, α)
is the program that lets A communicate with B for α rounds, while allowing A to access
oracle OV cert, and finally outputting B’s message in the jth communication round.

15

53

Approved for Public Release; Distribution Unlimited.

Note: That is, S̃1(1n, α, s′, τ) emulates α rounds of an execution between S1 and V ∗ where
S1 expands out the seed s′ into α blocks of randomness and additionally have access to OV cert.

Simulate Phase 2—“Commit to the trapdoor statement”: Upon receiving a challenge ri
in session i during the jth communication round, S1 needs to commit to the “trapdoor”
statement it will later prove in the final proof. To do so, it prepares statement qi =
(Emulatorn, (S̃1, (1

n, j, sj), τj−1), ri), where τj−1 is the list of oracle answers received by S1

in the first j − 1 communication rounds.

Note: That is, the “trapdoor” statement is that the execution of S̃1(1n, j, sj), emualted by
Emulatorn, outputs r, when its kth oracle queries is answered using τj−1,k; additionally, the
validity of each answer is checked by n (i.e., the answer must be an accepting proof w.r.t. the
query CRS string).

By constrution of S̃1, this means after j communication rounds between S1 and V ∗, where
S1 uses randomness expanded out from sj, and oracle answers τj−1, V ∗ outputs ri in the jth

communication round. Note that since we only require S̃1 to generate the jth verifier message,
giving him the seed (sj , j) as input suffices to generate all prover messages in rounds j′ < j.
It follows from the consistency requirement of the forward secure PRG that S̃1 using (sj , j)
as seed will generate the exact same random sequence for the j − 1 first blocks as if running
S̃1 using (s, `) as seed. Therefore, the “trapdoor” statement holds.

In later communication rounds, when S1 receives a message from V ∗ belonging to the WIUA
in Phase 2 of session i, S1 proves honestly that it knows the statement qi it is committing
to in session i, and the statement is correctly formated and consistent with the program S̃1

committed to in Phase 1 of session i.

Simulate Phase 3— “Process the trapdoor statement”: Upon receiving a public parame-
ter PP i in session i during the jth communication round, S1 needs to commit to the digest di of

the “trapdoor” statement qi of session i. To do so, it computes honestly di
$← PreGen(PP i, qi)

and commits to di using com, and randomness ρi.

In later communication rounds, when S1 receives a message from V ∗ belonging to the WIUA
in Phase 3 of session i, S1 proves honestly that it knows di committed to in Phase 3 of session
i and it is computed correctly w.r.t. PP i and a statement qi committed to in Phase 2 of
session i.

Simulate Phase 4— “Compute the CRS”: Upon receiving an obfuscated program Λi, S1 acts
as an honest verifier of the ZK argument to verify that PP i and Λi in session i are correctly
generated. Upon recieving the last message of the ZK argument, in the jth communication
round, S1 needs to commit to the CRSi of session i. To do so, it computes κi = Λi(di, ρi). If
the output is ⊥, S1 aborts. Otherwise, it commits to CRSi = (PP i, κi) using com.

In later communication rounds, when S1 receives a message from V ∗ belonging to theWISSP
in Phase 4 of session i, S1 proves honestly that it knows κi committed to in Phase 4 of session
i and it is computed correctly w.r.t. Λi and a digest di committed to in Phase 3 of session i.

Simulate Phase 5— “Prove the trapdoor statement using P-certificate”: Upon receiving
the last message from V ∗ in Phase 4 of session i, during the jth communication round, S1

needs to prove in the WISSP proof that there is a P-certificate that verifies the validity of
the “trapdoor” statement qi w.r.t. the CRS string CRSi committed to in Phase 4 of session i.
To do so, it sends query CRSi to its oracle OV cert, and obtains answer πi. It aborts if πi = ⊥.

16

54

Approved for Public Release; Distribution Unlimited.

Otherwise, S1 provides an honest WISSP that Vcert(1
n,CRSi, πi) = 1 w.r.t. CRSi which is

the committed value in Phase 4 of session i.

Procedure of simulator S2: S2(1n, x,M, s, `) internally emulates ` messages of an execution
between S1(1n, x,M, s, `) and V ∗, and simulates the oracle OV cert for S1. In a communication round
j when S1 sends an oracle query CRSi for a session i, S2 generates a certificate πi of the statement

qi = (Emulatorn, (S̃1, (1
n, j′, sj′), τj′−1), rj′) w.r.t. CRSi, that is, πi

$← Pcert(1
n, D, qi,CRSi) (where

j′ is the round in which the challenge ri is sent by V ∗, qi and CRSi are generated by S1 (emulated
internally by S2) in Phase 2 and 4 of session i). S2 checks if indeed Vcert(1

n,CRSi, πi) = 1, it
outputs fail if this is not the case, and otherwise, feeds πi to S1. Finally, S2 outputs its view (which
in particular, contains the view of V ∗) at the end of the execution.

Procedure of the final simulator S: The final simulator S(1n, x) simply runs S2(1n, x, S1, s, T (n+
|x|)), where s is a uniformly random string of length n and T (n+ |x|) is a polynomial upper-bound
on the number of messages sent by V ∗ given the common input 1n, x, and extracts out and outputs,
the view of V ∗ from the output of S2. (In case that S2 outputs fail, S outputs fail as well.)

Running-time of S. Let us first argue that S1 runs in polynomial time.

1. In Phase 1, it only takes S1 polynomial-time to generate the commitments (since V ∗ has a
polynomial-length description, and thus also the code of S̃1).

2. In Phase 2, it also only takes S1 polynomial time to commit to the statements qi (since
Emulatorn, (1n, j, sj), and r have fixed polynomial lengths, and S̃1 and τj−1 have polynomial
length description, depending on the size of V ∗). Furthermore, the witnesses of the WIUA in
Phase 2 has polynomial length; by the relative prover efficiency condition of the WIUA, each
such proof only requires some fixed polynomial-time.

3. In Phase 3, processing the statements qi takes time polynomial in the length of the statement
and n, which is polynomial. Furthermore, committing to the outputs di and proving about
their correctness using WIUA also takes only polynomial time (by the relative prover efficiency
of WIUA).

4. In Phase 4, since the CRS generation is very efficient, taking time polynomial in only the
security parameter, S1 completes all Phase 4 in polynomial time.

5. In Phase 5, the simulator proves about the verification of a P-certificate w.r.t. to a CRS string
committed to in Phase 4. Since both steps takes time poly(n), S1 completes all Phase 5 in
polynomial time.

Overall, the whole execution of S1 takes some fixed polynomial time (in the length of V ∗ and thus
also in the length of x.) It directly follows that also S̃1’s running-time is polynomially bounded.

Finally, since S2 is simply providing certificates about the execution of S̃1, it follows by the
relative prover efficiency condition of P-certificates, that S2 runs in polynomial time, and thus also
S.

Indistinguishability of the simulation Fix any cheating verifier V ∗, we first argue that during
the execution of S for simulating the view of V ∗, the probability that S2 (and hence S) outputs fail
is negligible. By construction, S2 outputs fail when for some session i, the proof πi that it constructs
honestly using Pcert does not verify w.r.t. the CRSi that S1 comptues. It follows from the soundness
of the ZK argument in Phase 4 of session i that, with overwhelming probability, V ∗ in session

17

55

Approved for Public Release; Distribution Unlimited.

i computes (PP ,K)
$← Setup(1n, D) and the obfuscation Λ

$← iO(P) of P = Pn,c3,PP ,K,ρCRSGen

correctly w.r.t. some random strings ρSetup and ρiO. In this case, since S1 evalutes PreGen, commits
to the produced digest di, and evalutes Λi honestly, it follows from the perfect correctness of the
indistinguishability obfuscator, the perfect completeness of the P-certificate system, and the perfect
binding property of com that as long as qi is a true statement, S2 would generate an accepting
proof for it w.r.t. CRSi. By construction, qi is a true statement. Therefore, the probability that S2

outputs fail is neligible.
Below we argue about the indistinguishability of the simulation conditioning on that S2 does

not output fail. Assume that there exists a cheating verifier V ∗, a distinguisher D and a polynomial
p such that the real view and the simulated view of V ∗ can be distinguished by D with probability

1
p(n) for infinitely many n. More formally, for infinitely many n ∈ N , x ∈ L∩{0, 1}poly(n), w ∈ RL(x)

and z ∈ {0, 1}poly(n), it holds that

|Pr[D(ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)) = 1]− Pr[D(S(1n, x, z)) = 1]| ≥ 1

p(n)
(1)

Consider such n, x, z (and assume that z is hard-coded into the description of V ∗), and consider
T = T (n+|x|) hybrid experiments (recall that T (n+|x|) is the maximum number of communication
rounds given common input 1n, x).

• In hybrid Hj , the first j communication rounds are simulated exactly as by S (using pseudo-
randomness), but all later communication round j′ > j are generated honestly using true
randomness q′j being uniformly distributed in {0, 1}n. More precisely, every prover commit-
ment sent after round j is a commitment to 0n (i.e., Step 1-(b), 2-(a), 3-(b) and 4-(c)); every
WIUA argument (i.e., Step 2-(b), 3-(c)) and every WISSP proof (i.e., Step 4-(d), 5-(a)) that
start after round j uses the true witness w instead of “fake” witnesses that S uses; however,
every WIUA argument and WISSP proof that start at or before round j are still proven
using (appropriate) “fake” witnesses as S does; importantly, all prover messages generated
after round j uses truely random coins.

It follows by Equation 1 and a hybrid argument that there exist some j and a polynomial p′′ such
that D distinguishes Hj and Hj+1 with probability 1

p′′(n) . Now, consider another hybrid experiment

H̃j that proceeds just at Hj+1, but where true randomness is used in communication round j + 1
(but still committing to the the same values as S does and using “fake” witness as S does). It follows
by the forward security of the PRG g that the outputs of Hj+1 and H̃j are indistinguishable—the
reason we need forward security is that to emulate communication rounds j′ ≤ j, the seeds sj′ may
need to be known (as they are part of the “trapdoor” statements). Indistinguishability of H̃j and
Hj follows directly by either the hiding property of the commitment scheme (if in the j + 1 round,
the prover message is a commitment), or the witness indistinguishability property of the WIUA or
WISSP (if in this round, the prover message is a message of WIUA or WISSP). It thus leads to
a contradiction and completes the proof of the indistinguishability of the simulation.

5.2 Proof of Soundness

18

56

Approved for Public Release; Distribution Unlimited.

Large-Scale Secure Computation:
Multi-party Computation for (Parallel) RAM

Programs

Elette Boyle1?, Kai-Min Chung2, and Rafael Pass3??

1 Technion Israel, eboyle@alum.mit.edu
2 Academica Sinica, kmchung@iis.sinica.edu.tw

3 Cornell University, rafael@cs.cornell.edu

Abstract. We present the first efficient (i.e., polylogarithmic overhead)
method for securely and privately processing large data sets over mul-
tiple parties with parallel, distributed algorithms. More specifically, we
demonstrate load-balanced, statistically secure computation protocols
for computing Parallel RAM (PRAM) programs, handling (1/3−ε) frac-
tion malicious players, while preserving up to polylogarithmic factors the
computation, parallel time, and memory complexities of the PRAM pro-
gram, aside from a one-time execution of a broadcast protocol per party.
Additionally, our protocol has polylog communication locality—that is,
each of the n parties speaks only with polylog(n) other parties.

1 Introduction

Large data sets, such as medical data, genetic data, transaction data, the
web and web access logs, and network traffic data, are now in abundance.
Much of the data is stored or made accessible in a distributed fashion,
having necessitated the development of efficient distributed protocols
that compute over such data. In particular, novel programming models
for processing large data sets with parallel, distributed algorithms, such
as MapReduce (and its implementation Hadoop) are emerging as crucial
tools for leveraging this data in important ways.
But these methods require that the data itself is revealed to the partic-
ipating servers performing the computation—and thus blatantly violate
the privacy of potentially sensitive data. As a consequence, such methods

? The research of the first author has received funding from the European Union’s
Tenth Framework Programme (FP10/ 2010-2016) under grant agreement no. 259426
ERC-CaC, and ISF grant 1709/14.

?? Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Fac-
ulty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990,
NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and
AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the US Government.

1

57

Approved for Public Release; Distribution Unlimited.

2 Elette Boyle, Kai-Min Chung, Rafael Pass

cannot be used in many critical applications (e.g., discovery of causes or
treatments of diseases using genetic or medical data).
In contrast, methods such as secure multi-party computation (MPC),
introduced in the seminal works of Yao [Yao86] and Goldreich, Micali
and Wigderson [GMW87], enable securely and privately performing any
computation on individuals private inputs (assuming some fraction of the
parties are honest). However, despite great progress in developing these
techniques, there are no MPC protocols whose efficiency and communi-
cation requirements scale to the modern regime of large-scale distributed,
parallel data processing.
We are concerned with merging these two approaches. In particular,

We seek MPC protocols that efficiently (technically, with
polylogarithmic overhead) enable secure and private processing of large

data sets with parallel, distributed algorithms.

Explicitly, in this large-scale regime, the following properties are paramount:
1. Exploiting Random Access. Computations on large data sets are fre-

quently “lightweight”: accessing a small number of dynamically cho-
sen data items, relying on conditional branching, and/or maintaining
small memory. This means that converting a program first into a cir-
cuit to enable its secure computation, which immediately obliterates
these gains, will not be a feasible option.

2. Exploiting Parallelism. In fact, as mentioned, to effectively solve
large-scale problems, modern programming models heavily leverage
parallelism. The notion of a Parallel RAM (PRAM) better captures
such computing models. In the PRAM model of computation, several
(polynomially many) CPUs run simultaneously, potentially commu-
nicating with one another, while accessing the same shared external
memory. We consider a PRAM model with a variable number of
CPUs but with a fixed activation structure (i.e., what processors are
activated at which time steps is fixed). Note that such a model simul-
taneously captures RAMs (a single CPU) and circuits (the circuit
topology dictates the CPU activation structure).

3. Exploiting Plurality of Users. In the setting of MPC we would like
to leverage not only parallelism within a single party (i.e., if a party
has multiple CPUs that may run in parallel), but also that we have
a large number of parties that can run in parallel. So, if we we have
n parties, each with k processors, we ideally would like to securely
compute PRAMs that use nk CPUs (as opposed to just k CPUs).

Additionally, the following desiderata are often of importance:
3. Load balancing. When the data set contains tens or hundreds of

thousands of users’ data, it is often unreasonable to assume that
any single user can provide memory, computation, or communication
resources on the order of the data of all users. Rather, we would like
to balance the load across nodes.

4. Communication Locality. In many cases, establishing a secure com-
munication channel with a large number of distinct parties may be
costly, and thus we would like to minimize the locality of communi-
cation [BGT13]: that is, the number of total parties that each party
must send and receive message to during the course of the protocol.

58

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 3

To date, no existing work addresses secure computation of Parallel RAM
programs. Indeed, nearly all results in MPC require a circuit model for
the function being evaluated (including the line of work on scalable
MPC [DI06,DIK+08,DKMS12,ZMS14]), and thus inherit resource re-
quirements that are linear in the circuit size. Even for (sequential) RAM,
the only known protocols either only handle two parties [OS97,GKK+11,LO13,GGH+13],
or in the context of multi-party computation require all parties to store
all inputs [DMN11], rendering the protocol useless in a large-scale setting
(even forgetting about computation load balancing and locality).

1.1 Our Results

We present a statistically secure MPC for (any sequence of) PRAMs
handling (1/3−ε) fraction static corruptions in a synchronous communi-
cation network, with secure point-to-point channels. In addition, our pro-
tocol is strongly load balanced and communication local (i.e., polylog(n)
locality). We state our theorem assuming each party itself is a k-processor
PRAM, for parameter k.

Theorem 1 (Informal – Main Theorem). For any constant ε > 0
and polynomial parallelism parameter k = k(n), there exists an n-party
statistically secure (with error negligible in n) protocol for computing
any adaptively chosen sequence of PRAM programs Πj with fixed CPU
activation structures (and that may have bounded shared state), han-
dling (1/3 − ε) fraction static corruptions with the following complexi-
ties, where each party is a k-processor PRAM (and where |x|, |y| denote
per-party input and output size,4 space(Π), comp(Π), and time(Π) de-
note the worst-case space, computation, and (parallel) runtime of Π, and
CPUs(Π) denotes the number of CPUs of Π):

– Computation per party, per Πj: Õ
(
comp(Πj)/n+ |y|

)
.

– Time steps, per Πj: Õ
(
time(Πj) ·max

{
1, CPUs(Π)

nk

})
.

– Memory per party: Õ
(
|x|+ |y|+ maxNj=1 space(Πj)/n

)
.

– Communication Locality: Õ(1).
given a one-time preprocessing phase with complexity:

– Computation per party: Õ(|x|), plus single broadcast of Õ(1) bits.

– Time steps: Õ
(

max
{

1, |x|
k

})
.

Additionally, our protocol achieves a strong “online” load-balancing guar-
antee: at all times during the protocol, all parties’ communication and
computation loads vary by at most a constant multiplicative factor (up
to a polylog(n) additive term).

Remark 1 (Round complexity). As is the case with all general MPC pro-
tocols in the information-theoretic setting to date, the round complexity
of our protocol corresponds directly with the time complexity (as when
restricted to circuits, parallel complexity corresponds to circuit depth).
That is, for each evaluated PRAM program Πj , the protocol runs in
Õ(time(Πj)) sequential communication rounds to securely evaluate Πj .

4 For simplicity of exposition, we assume all parties have the same input size and
receive the same output.

59

Approved for Public Release; Distribution Unlimited.

4 Elette Boyle, Kai-Min Chung, Rafael Pass

Remark 2 (On the achieved parameters). Note that in terms of mem-
ory, each party only stores her input, output, and her “fair” share of
the required space complexity, up to polylogarithmic factors. In terms of
computation (up to polylogarithmic factors), each party does her “fair”
share of the computation, receives her outputs, and in addition is re-
quired to read her entire input at an initial preprocessing stage (even
though the computations may only involve a subset of the input bits;
this additional overhead of “touching” the whole input once is neces-
sary to achieve security).5 Finally, the time complexity corresponds to
the parallel complexity of the PRAM being computed, as long as the
combined number of available processors nk from all parties matches or
exceeds the number of required parallel processes of the program (and
degrades with the corresponding deficit).

Remark 3 (Instantiating the single-use broadcast). The broadcast chan-
nel can be instantiated either by the O(

√
n)-locality broadcast proto-

col of King et al. [KSSV06], or the polylog(n)-average locality protocol
of [BSGH13] at the expense of a cost of a one-time per-party compu-
tational cost of O(

√
n), or average cost of polylog(n), respectively. We

separate the broadcast cost from our protocol complexity measures to
emphasize that any (existing or future) broadcast protocol can be di-
rectly plugged in, yielding associated desirable properties.6

1.2 Construction Overview

Our starting point is an Oblivious PRAM (OPRAM) compiler [BCP14b,GO96],
a tool that compiles any PRAM program into one whose memory access
patterns are independent of the data (i.e., “oblivious”). Such a compiler
(with polylogarithmic overhead) was recently attained by [BCP14b].
Indeed, it is no surprise that such a tool will be useful toward our goal.
It has been demonstrated in the sequential setting that Oblivious (se-
quential) RAM (ORAM) compilers can be used to builds secure 2-party
protocols for RAM programs [OS97,GKK+11,LO13,GGH+13]. Taking
a similar approach, building upon the OPRAM compiler of [BCP14b]
directly yields 2-party protocols for PRAMs.
However, OPRAM on its own does not directly provide a solution for
multi-party computation (when there are many parties). While this ap-
proach gives protocols whose complexities scale well with the RAM (or

5 For general secure computation, and even if we restrict to functionalities that only
access a few parties’ inputs, and only a few bits of their data, essentially all parties
must perform computation at least Ω(|x|). To see this, consider secure computation
of a “multi-party Private Information Retrieval (PIR)” functionality: each party
i > 1 has as input some “big data” xi, and party 1 has as input a party index i
and an index j into their data xi. The functionality returns xi[j] (i.e., the j’th bit
of party i’s data) to party 1 and nothing to everyone else. We claim that each party
i > 1 must access every bit of xi; if not, it learns that that particular bit of its data
was not requested, which it cannot learn in an ideal execution of the functionality.

6 For instance, it remains open to achieve statistically secure broadcast with worst-case
polylog(n) locality.

60

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 5

PRAM) complexity of the programs, the complexities grow poorly with
the number of parties. Indeed, the only current technique for securely
evaluating a RAM program on multiple parties’ inputs [DMN11] is for
all parties to hold secret shares of all parties’ inputs, and then jointly
execute (using standard MPC for circuits) the trusted CPU instructions
of the ORAM-compiled version of the program. This means each party
must communicate and maintain information of size equivalent to all
parties’ inputs, and everyone must talk to everyone else for every time
step of the RAM program evaluation.

One may attempt to improve the situation by first electing a small
polylog(n)-size representative committee of parties, and then only per-
forming the above steps within this committee. This approach drops the
total communication and computation of the protocol to reasonable lev-
els. However, this approach does not save the subset of elected parties
from carrying the burden of the entire computation. In particular, each
elected party must memory storage equal to the size of all parties’ inputs
combined, making the protocol unusable for “large-scale” computation.

In this paper, we provide a new approach for dealing with this issue.
We show how to use an OPRAM in a way that achieves balancing of
memory, computation, and communication across all parties.

Our MPC construction proceeds in the following steps:

1. From OPRAM to MPC. Given an OPRAM, we begin by consid-
ering MPC in a “benign” adversarial setting, which we refer to as
oblivious multi-party computation, where all parties are assumed to
be honest, and we only require that an external attacker that views
communication and activation (including memory and computation
usages) patterns does not learn anything about the inputs. We show:

(a) OPRAM yields efficient memory-balanced oblivious MPC for PRAM.
(b) Using committee election techniques (à la [KLST11,DKMS12,BGT13]),

any oblivious multi-party computation can be compiled into a
standard secure MPC with only polylog overhead (and a one-
time use of a broadcast channel per party).

2. Load Balancing & Communication Locality. We next show
semi-generic compilers for “nice” (formally defined) oblivious multi-
party protocols, each introducing only polylog(n) overhead:

(a) From any “nice” protocol to one whose computation and com-
munication are load-balanced.

(b) From any “nice” protocol to one that is both load-balanced and
communication local (i.e., polylog(n) locality).

Our final result is obtained by combining the above steps and observ-
ing that Step 1(b) preserves load-balancing and communication locality
(and thus can be applied after Step 2). Let us mention that just Step 1
(together with existing construction of ORAMs) already yields the first
MPC protocol for (sequential) RAM programs in which no party must
store all parties’ inputs. Additionally, just Step 1 (together with the
OPRAM construction of [BCP14b]) yields the first MPC for PRAMs.

We now expand upon each of these steps.

61

Approved for Public Release; Distribution Unlimited.

6 Elette Boyle, Kai-Min Chung, Rafael Pass

MPC from OPRAM Recall that our construction proceeds via an
intermediate notion of oblivious security, in which we do not require secu-
rity against corrupted parties, but rather against an external adversary
who sees the activation patterns (i.e., accessed memory addresses and
computation times) and communication patterns (i.e., sender/receiver
ids and message lengths) of parties throughout the protocol.

Oblivious MPC from OPRAM. At a high level, our protocol will emu-
late a distributed OPRAM7 structure, where the CPUs and memory cells
in the OPRAM are each associated with parties. (Recall that we need
only achieve “oblivious” security, and thus can trust individual parties
with these tasks). The “CPU” parties will control the evaluation flow of
the (OPRAM-compiled) program, communicating with the parties em-
ulating the role of the appropriate memory cells for each address to be
accessed in the (OPRAM-compiled) database.
The distributed OPRAM structure will enable us to evenly spread the
memory burden across parties, incurring only polylog(n) overhead in to-
tal memory and computation, and while guaranteeing that the com-
munication patterns between committees (corresponding to data access
patterns) do not reveal information on the underlying secret values.
This framework shares a similar flavor to the protocols of [DKMS12,BGJK12],
which assign committees to each of the gates of a circuit being evaluated,
and to [BGT13], which uses CPU and input committees to direct pro-
gram execution and distributedly store parties’ inputs. The distributed
OPRAM idea improves and conceptually simplifies the input storage
handling of Boyle et al. [BGT13], in which n committees holding the
n parties’ inputs execute a distributed “oblivious input shuffling” pro-
cedure to break the link between which committees are communicating
and which inputs are being accessed in the computation.

Compiling from “Oblivious” Security to Malicious Security. We
next present a general compiler taking an oblivious protocol to one
that is secure against (1/3 − ε)n statically corrupted malicious parties.
(This step can be viewed as a refinement and formalization of ideas
from [KLST11,DKMS12,BGT13].) We ensure the compiler tightly pre-
serves the computation, memory, load-balancing, and communication lo-
cality of the original protocol, up to polylog(n) factors (modulo a one-
time broadcast per party). This enables us to apply the transformation
to any of the oblivious protocols resulting from the intermediate steps in
our progression.
At a high level, the compiler takes the following form: (1) First, the
parties collectively elect a large number of “good” committees, each of
size polylog(n), where “good” means each committee is composed of at
least 2/3 honest parties, and that parties are spread roughly evenly across
committees. (2) Each party will verifiably secret share his input among
the corresponding committee Ci. (3) From this point on, the role of each
party Pi in the original protocol will be emulated by the corresponding

7 We remark that the term “distributed ORAM” was used with a different meaning
in [LO13], in regard to an ORAM that was split across two users.

62

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 7

committee Ci. That is, each local Pi computation will be executed via a
small-scale MPC among Ci, and each communication from Pi to Pj will
be performed via an MPC among committees Ci and Cj .

The primary challenge in this step is how to elect such committees while
incurring only polylog(n) locality and computation per party. To do so,
we build atop the “almost-everywhere” scalable committee election pro-
tocol of King et al. [KSSV06] to elect a single good committee, and
then show that one may use a polylog(n)-wise independent function fam-
ily {Fs}s∈S to elect the remaining committees with small description
size (in the fashion of [KLST11,BGT13], for the case of combinatorial
samplers and computational pseudorandom functions), with committee
i defined as Ci := Fs(i) for fixed random seed s.

We remark that, aside from the one-time broadcast, this compiler pre-
serves load balancing and polylog(n) locality. Indeed, load balancing is
maintained since the committee setup procedure is computationally inex-
pensive, and each party appears in roughly the same number of “worker”
committees. The locality of the resulting protocol increases by an addi-
tive polylog(n) for the committee setup, and a multiplicative polylog(n)
term since all communications are now performed among polylog(n)-size
committees instead of individual parties.

Load Balancing Distributed Protocols

Load-balancing (Without Locality). We now show how to modify our
protocol such that the total computational complexity and memory bal-
ancing are preserved, while additionally achieving a strong computation
load balancing property—with high probability, at all times throughout
the protocol execution, every party performs close to 1/n fraction of cur-
rent total work, up to an additive polylog(n) amount of work. This will
hold simultaneously for both computation and communication.8

We present and analyze our load-balancing solution in the intermedi-
ate oblivious MPC security setting (recall that one can then apply the
compiler from Step 2(b) above to obtain malicious MPC with analogous
load-balancing). Let us mention that there is a huge literature on “load-
balanced distributed computation” (e.g., [ACMR95,MPS02,MR98,AAK08]):
As far as we can tell, our setting differs from the typical studied scenarios
in that we must load balance an underlying distributed protocol, as op-
posed to a collection of independent “non-communicating jobs”. Indeed,
the main challenge in our setting is to deal with the fact that “jobs”
talk to one another, and this communication must remain efficient also
be made load balanced. Furthermore, we seek a load-balanced solution
with communication locality.

We consider a large class of arbitrary (potentially load-unbalanced and
large-locality) distributed protocols Π, where we view each party in this
underlying protocol as a “job”. Our goal is to load-balance Π by passing

8 Note that while our current protocol is memory balanced, it is currently rather
imbalanced in computation: e.g., the parties emulating OPRAM CPUs are required
to perform computation that is proportional to the whole PRAM computation.

63

Approved for Public Release; Distribution Unlimited.

8 Elette Boyle, Kai-Min Chung, Rafael Pass

“jobs” between “workers” (which will be the actual parties in the new
protocols). More precisely, we start off with any protocol Π that satisfies
the following (natural) “nice” properties:

– Each “job” has polylog(n) size state;
– In each round, each “job” performs at most polylog(n) computation

and communication;
– In each round, each “job” communicates (either sending or receiving

a message) to at most one other “job”.

It can be verified that these properties hold for our oblivious MPC for
PRAM protocol.
Our load-balanced version of such a protocol first randomly9 efficiently
assigns “workers” (i.e., parties) to “jobs”. Next, whenever a worker W
has performed “enough” work for a particular job J , it randomly selects
a replacement worker W ′ and passes the job over to it (that is, it passes
over the state of the job J—which is “small” by assumption). The key
obstacle in our setting is that the job J may later communicate with
many other jobs, and all the workers responsible for those jobs need
to be informed of the switch (and in particular, who the new worker
responsible for the job J is). Since the number of jobs is Ω(n), workers
cannot afford to store a complete directory of which worker is currently
responsible for each job.
We overcome this obstacle by first modifying Π to ensure that it has
small locality—this enables each job to only maintain a short list of the
workers currently responsible for the “neighboring” jobs. We achieve this
locality by requiring that parties (i.e., jobs) in the original protocol Π
route their messages along the hypercube. Now, whenever a worker W
for a job J is being replaced by some worker W ′, W informs all J ’s
neighboring jobs (i.e., the workers responsible for them) of this change.
We use the Valiant-Brebner [VB81] routing procedure to implement the
hypercube routing because it ensures a desirable “low-congestion prop-
erty,” which in our setting translates to ensuring that the overhead of
routing is not too high for any individual worker.
The above description has not yet mentioned what it means for a worker
to have done “enough” work for a job J . Each round a job is active (i.e.,
performing some computation), its “cost” increases by 1—we refer to
this as an emulation cost. Additionally, each time a worker W is switched
out from a job J , then J ’s and each of J ’s neighboring jobs’ costs are
increased by 1—we refer to this as a switch cost. Finally, once a job’s
(total) cost has reached a particular threshold τ , its cost is reset to 1
and the worker responsible for the job is switched out. The threshold τ
is set to 2 logM + 1 where M is the number of jobs.
We show: (1) This switching does not introduce too much overhead. We,
in fact, show that the total induced switching cost is bounded above
by the emulation cost. (2) The resulting total work is load balanced
across workers—we show this by first demonstrating that the protocol is
load-balanced in expectation, and then using concentration to argue our
stronger online load-balancing property.

9 In the actual analysis, we show that it also suffices to use polylog(n)-wise independent
randomness to pick this and subsequent assignments.

64

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 9

Finally, note that although communication between jobs is being routed
through the hypercube, and thus the job communication protocol has
small locality, the final load-balanced protocol, being run by workers,
does not have small locality. This is because workers are assigned the
role of many different jobs over time, and may possibly speak to a new
set of neighbors for each position. (Indeed, over time, each worker will
eventually need to speak to every other worker). We next show how to
modify this protocol to achieve locality, while preserving load-balancing.

Achieving Both Load-Balancing and Locality. In our final step, we
show how to modify the above-mentioned protocol to also achieve local-
ity. We modify the protocol to also let workers route messages through
a low-degree network (on top of the routing in the previous step). This
immediately ensures locality. But, we must be careful to ensure that the
additional message passing does not break load-balancing.

A natural idea is to again simply pass messages between workers along a
low-degree hypercube network via Valiant-Brebner (VB) routing [VB81].
Indeed, the low-congestion property will ensure (as before) that routing
does not incur too large an overhead for each worker.

However, when analyzing the overall load balance (for workers), we see
an inherent distinction between this case and the previous. Previously,
the nodes of the hypercube corresponded to jobs, each emulated by work-
ers who swap in and out over time. When the underlying jobs protocol
required job s to send a message to job t, the resulting message routing
induced a cost along a path of neighboring jobs (that is, the workers
emulating them), independent of which workers are currently emulating
them. This independence, together with the fact that a worker passes his
job after performing “enough” work for it, enabled us to obtain concen-
tration bounds on overall load balancing over the random assignment of
workers to jobs.

Now, the nodes correspond directly to workers. When the underlying
jobs protocol requires a message transferred from job s to job t, routing
along the workers’ graph must traverse a path from the worker currently
emulating job s to the worker currently emulating job t, removing the
crucial independence property from above. Even worse, workers along
the routing path can now incur costs even if they are not assigned to any
job. In this case, it is not even clear that job passing in of itself will be
sufficient to ensure balancing.

To get around these issues, we add an extra step in the VB routing
procedure (itself inspired by [VB81]) to break potential bad correlations.
The idea is as follows: To route from the worker Ws emulating job s to
the worker Wt emulating job t, we first route (as usual) from Ws to a
random worker Wu, and then from Wu to Wt; i.e., travel from Ws to
Wt by “walking into the woods” and back. We may now partition the
cost of routing into these two sub-parts, each associated with a single
active job (s or t). Now, although workers along the worker-routing path
will still incur costs from this routing (even though their jobs may be
completely unrelated), the distribution of these costs on workers depends
only on the identity of the initiating worker (Ws or Wt). We may thus

65

Approved for Public Release; Distribution Unlimited.

10 Elette Boyle, Kai-Min Chung, Rafael Pass

generalize the previous analysis to argue that if the expectation of work
is load-balanced, then it still has concentration in this case.
For a modular analysis, we formalize the required properties of the un-
derlying communication network and routing algorithm (to be used for
the s-to-u and u-to-t routing) as a local load-balanced routing network,
and show that the hypercube network together with VB routing satisfies
these conditions.

1.3 Discussion and Future Work

With the explosive growth of data made available in a distributed fash-
ion, and the growth of efficient parallel, distributed algorithms (such as
those enabled by MapReduce) to compute on this data, ensuring privacy
and security in such large-scale parallel settings is of fundamental im-
portance. We have taken the first steps in addressing this problem by
presenting the first protocols for secure multi-party computation, that
with only polylogarithmic overhead, enable evaluating PRAM programs
on a (large) number of parties’ inputs. Our work leaves open several
interesting open problems:
Honest Majority. We have assumed that 2/3 of the players are honest.

In the absence of a broadcast channel,10 it is known that this is
optimal. But if we assume the existence of a broadcast channel, it
may suffice to assume 1/2 fraction honest players.

Asynchrony. Our protocol assumes a synchronous communication net-
work. We leave open the handling of asynchronous communication.

Trading efficiency for security. An interesting avenue to pursue are
various tradeoffs between boosted efficiency and partial sacrifices in
security. For example, in some settings, it is not detrimental to leak
which parties’ inputs were used within the computation; in such
scenarios, one could then hope to remove the one-time Θ(n|x|) in-
put preprocessing cost. Similarly, it may be acceptable to reveal the
input-specific resources (runtime, space) required by the program
on parties inputs; in such cases, we may modify the protocol to take
only input-specific runtime and use input-specific memory.
In this work we focus only on achieving standard “full” security.
However, we remark that our protocol can serve as a solid basis
for achieving such tradeoffs (e.g., a straightforward tweak to our
protocol results in input-specific resource use).

Communication complexity. As with all existing generic multi-party
computation protocols in the information-theoretic setting, the com-
munication complexity of our protocol is equal to its computation
complexity. In contrast, in the computational setting (based on cryp-
tographic assumptions), protocols with communication complexity
below the complexity of the evaluated function have been constructed
by relying on fully homomorphic encryption (FHE) [Gen09] (e.g., [Gen09,AJLA+12,MSS13]).
We leave as an interesting open question whether FHE-style tech-
niques can be applied also to our protocol to improve the communi-
cation complexity, based on computational assumptions.

10 While the statement of our result makes use of a broadcast channel, as we mention,
this channel can also be instantiated with known protocols.

66

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 11

1.4 Overview of the Paper

Section 2 contains preliminaries. In Section 3 we provide our ultimate
theorem, and the sequence of intermediate notions and theorems which
combine to yield this final result. We refer the reader to the full version
of this work [BCP14a] for a complete descriptions and proofs.

2 Preliminaries

2.1 Multi-party Computation (MPC)

Protocol Syntax. We model parties as (parallel) RAM machines. An
n-party protocol Φ is described as a collection of n (parallel) RAM pro-
grams (Pi)i∈[n], to be executed by the respective parties, containing ad-
ditional special communication instructions Comm(i,msg), indicating for
the executing party to send message msg to party i.
The per-party space, computation, and time complexities of the proto-
col Φ = (Pi)i∈[n] are defined directly with respect to the corresponding
party’s PRAM program Pi, where each Comm is charged as a single
computation time step. (See Section 2.2 for a definition of CPUs(P),
space(P), comp(P), time(P) for PRAM P). The analogous total proto-
col complexities are defined as expected: Namely, space(Φ) and comp(Φ)
are the sums, space(Φ) =

∑
i∈[n] space(Pi), comp(Φ) =

∑
i∈[n] comp(Pi),

and time(Φ) is the maximum, time(Φ) = maxi∈[n] time(Pi).

MPC Security. We consider the standard notion of (statistical) MPC
security. We refer the reader to e.g. [BGW88] for more a more complete
description of MPC security within this setting.

2.2 Parallel RAM (PRAM) Programs

A Concurrent Read Concurrent Write (CRCW) m-processor parallel
random-access machine (PRAM) with memory size n consists of num-
bered processors CPU1, . . . , CPUm, each with local memory registers of
size logn, which operate synchronously in parallel and can make access
to shared “external” memory of size n.
A PRAM program Π (given m,n, and some input x stored in shared
memory) provides CPU-specific execution instructions, which can access
the shared data via commands Access(r, v), where r ∈ [n] is an index to
a memory location, and v is a word (of size log n) or ⊥. Each Access(r, v)
instruction is executed as:

1. Read from shared memory cell address r; denote value by vold.
2. Write value v 6= ⊥ to address r (if v = ⊥, then take no action).
3. Return vold.

In the case that two or more processors simultaneously initiate Access(r, vi)
with the same address r, then all requesting processors receive the previ-
ously existing memory value vold, and the memory is rewritten with the
value vi corresponding to the lowest-numbered CPU i for which vi 6= ⊥.

67

Approved for Public Release; Distribution Unlimited.

12 Elette Boyle, Kai-Min Chung, Rafael Pass

We more generally support PRAM programs with a dynamic number
of processors (i.e., mi processors required for each time step i of the
computation), as long as this sequence of processor numbers m1,m2, . . .
is fixed, public information. The complexity of our OPRAM solution will
scale with the number of required processors in each round, instead of
the maximum number of required processors.

We consider the following worst-case metrics of a PRAM (over all inputs):

– CPUs(Π): number of parallel processors required by Π.

– space(Π): largest database address accessed by Π.

– time(Π): maximum number of time steps taken by any processor to
evaluate Π (where each Access is charged as a single step).11

– comp(Π): the total sum of all computation steps of active CPUs
evaluating Π (which, for programs with fixed activation schedules
as we consider, is a fixed value).

3 Local, Load-Balanced MPC for PRAM

Ultimately, we construct a protocol that securely realizes the ideal func-
tionality FPRAMs (Figure 1) for evaluating a sequence of PRAM programs
(with bounded state maintained between program) on parties’ fixed in-
puts. For simplicity of exposition, we assume each party has equal input
size and receives the same output. We further assume the total remnant
state from one program execution to the next is bounded in size by the
combined input size of all parties.12

Theorem 2 (Main Theorem). For any constant ε > 0 and polyno-
mial parallelism parameter k = k(n), there exists an n-party statisti-
cally secure (with error negligible in n) protocol realizing the functionality
FPRAMs, handling (1/3− ε) fraction static corruptions with the following
complexities, where each party is a k-processor PRAM (and where |x|, |y|
denote per-party input and output size, space(Π), comp(Π), and time(Π)
denote the worst-case space, computation, and (parallel) runtime of Π,
and CPUs(Π) denotes the number of CPUs of Π):

– Computation per party, per Πj: Õ
(
comp(Πj)/n+ |y|

)
.

– Time steps, per Πj: Õ
(
time(Πj) ·max

{
1, CPUs(Π)

nk

})
.

– Memory per party: Õ
(
|x|+ |y|+ maxNj=1 space(Πj)/n

)
.

– Communication Locality: Õ(1).

given a one-time preprocessing phase with complexity:

– Computation per party: Õ(|x|), plus single broadcast of Õ(1) bits.

– Time steps: Õ
(

max
{

1, |x|
k

})
.

11 We remark that the PRAM time complexity of any function f is bounded above
by its circuit depth complexity (where the PRAM complexity of f is defined as the
minimal value of time(Π) of any PRAM Π which evaluates f).

12 To support larger shared state size spaceRemnant, the memory requirements of the
protocol must grow with an extra additive Õ(spaceRemnant).

68

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 13

Ideal Functionality FPRAMs:
FPRAMs running with parties P1, . . . , Pn and an adversary proceeds as follows. The
functionality maintains longterm storage of parties’ inputs {xi}i∈[n] (each of equal size
|x|), per-CPU state information statei, and remnant memory dataRemnant of total size
spaceRemnant ∈ O(n · |x|) transferred from computation to computation.

– Initialize dataRemnant ← ∅ and statei ← ∅ for each processor i ∈ [m].
– Input Submission: Upon receiving an input (commit, sid, input, xi) from party Pi,

record the value xi as the input of Pi.
– Computation: Upon receiving a tuple (compute, sid,Π, space, time) consist-

ing of an m-processor PRAM program Π, a space bound space, and
a time bound time, execute Π as (output, state1, . . . , statem, data

Remnant) ←
Π(x1, . . . , xn, state1, . . . , statem, data

Remnant) with the current value of statei for
each CPU i ∈ [m]. Send output to all parties.

Fig. 1: The ideal functionality FPRAMs, corresponding to secure computation of
a sequence of adaptively chosen PRAMs on parties’ inputs.

Additionally, the protocol achieves polylog(n) communication locality,
and a strong “online” load-balancing guarantee:
Online Load Balancing: For every constant δ > 0, with all but negligi-
ble probability in n, the following holds at all times during the protocol:
Let cc and cc(Wj) denote the total communication complexity and com-
munication complexity of party Pj, comp and comp(Pj) denote the total
computation complexity and computation complexity of party Pj, we have

(1− δ)
n

cc− polylog(n) ≤ cc(Pj) ≤ (1 + δ)

n
cc + polylog(n)

(1− δ)
n

comp− polylog(n) ≤ comp(Pj) ≤ (1 + δ)

n
comp + polylog(n).

3.1 Proof of Main Theorem

At a very high level, the proof takes three steps: We first obtain MPC
realizing FPRAMs with a weaker notion of oblivious security. We then show
how to attain communication locality and load balancing, while preserv-
ing oblivious security. (This combines two steps described within the
introduction). Finally, we convert the obliviously secure protocol to one
secure in the malicious setting. We now proceed to describe these steps
in greater technical detail.

Step 1: Oblivious-Secure MPC for PRAM. Intuitively, an adversary
in the oblivious model is not allowed to corrupt any parties, and instead
is restricted to seeing the “externally measurable” properties of the pro-
tocol (e.g., party response times, communication patterns, etc).

Definition 1 (Oblivious secure MPC). Secure realization of a func-
tionality F by a protocol in the oblivious model is defined by the following
real-ideal world scenario:

69

Approved for Public Release; Distribution Unlimited.

14 Elette Boyle, Kai-Min Chung, Rafael Pass

Ideal World: Same as standard MPC without corrupted parties. That
is, the adversary learns only public outputs of the functionality F
evaluated on honest-party inputs.

Real World: Instead of corrupting parties, viewing their states, and con-
trolling their actions (as in the standard malicious adversarial set-
ting), the adversary is now limited as an external observer, and is
given access only to the following information:

– Activation Patterns: Complete list of tuples of the form
• (timestep, party-id, compute-time): Specifying all local com-

putation times of parties.
• (timestep, party-id, local-mem-addr): Specifying all memory ac-

cess patterns of parties.
– Communication Patterns: Complete list of tuples of the form
• (timestep, sndr-id, rcvr-id,msg-len): Specifying all sender-receiver

pairs, in addition to the corresponding communicated mes-
sage bit-length.

The output of the real-world experiment consists of the outputs of
the (honest) parties, in addition to an arbitrary PPT function of the
adversary’s view at the conclusion of the protocol.

(Statistical) Security: For every PPT adversary A in the real-world ex-
ecution, there exists a PPT ideal-world adversary S for which for ev-

ery environment Z, we have outputReal(1
k,A,Z)

s∼= outputIdeal(1
k,S,Z).

Toward our result, it will be advantageous to think of computations as
composed of several sub-parts, or “jobs,” that each maintain and com-
pute on small polylogarithmic-size state (Note that this is natural in the
PRAM setting, where each CPU has polylogarithmic-size local memory).
Later, to achieve load balancing, jobs will be assigned to and passed
around between “workers,” so that each worker roughly performs the
same amount of work. (The small state requirement per job will guaran-
tee that “job passing” is not too expensive). Then, to obtain malicious
security, each worker will ultimately be emulated by a committee of par-
ties via small-scale MPCs; because of the polynomial overhead in the
underlying MPC protocol, it will be important that this is only done for
computations of polylog(n) size on polylog(n)-size memory.
We now define the notion of a protocol in the jobs model.

Definition 2 (Jobs Model). Let n be a security parameter. A jobs
protocol consists of a poly(n)-size set Jobs of agents (called jobs), and
a distributed protocol description ΠJ , instructing each job to perform
local computations and to communicate over a synchronized network (via
point-to-point communication), with the following properties:

– Bounded memory: each job’s space complexity is w ∈ polylog(n).
– Bounded per-round computation and communication: the computa-

tion and communication complexity of each job at each round is upper
bounded by w ∈ polylog(n).

A job is active in a round if it performs computation within this round.
A jobs protocol is further said to have injective communication if the
following property is satisfied:

– Injective communication: each round, a set of jobs are activated, and
each sends a single polylog(n)-sized message to a distinct job.

70

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 15

By convention, we assume the first min jobs of a jobs protocol are input
jobs, the last mout are output jobs, and the remaining jobs are helper
jobs. Each input job Ji holds a single-word input xi ∈ {0, 1}w (for
w ∈ polylog(n)); output and helper jobs have no input. We then have a
canonical correspondence between functionalities in the standard n-party
setting and the equivalent functionalities in the Worker-Jobs Model:

– Functionality F : In the n-party setting. Accepts inputs xi from each
party Pi, evaluates y ← F (x1|| · · · ||xn), outputs the resulting value
y to all parties Pi.

– Functionality FJobs: In the Jobs Model. Accepts (short) inputs xiu
from each Input Job, evaluates y ← F (x1|| · · · ||x`), and distributes
the resulting value y (in short pieces) to the Output Jobs.

We may analogously define oblivious security of a jobs protocol (where
jobs are honest and the adversary sees only “externally measurable”
properties of the protocol, as in Definition 1). Within the jobs model,
we thus wish to securely realize the functionality FJobs

PRAMs, equivalent to
FPRAMs with the above syntactic change. Note that in the regime of obliv-
ious security, a jobs protocol yields a memory-balanced protocol in the
standard n-party model, by simply assigning jobs to the n parties evenly.

Theorem 3. There exists an oblivious-secure protocol in the Jobs Model
realizing the functionality FJobs

PRAMs for securely computing a sequence of N
adaptively chosen PRAM programs Πj, with the following complexities
(where n · |x|, |y| denote the total input and output size, and space(Π),
comp, and time(Π) denote the worst-case space, computation, and (par-
allel) runtime of Π over all inputs):

– Number of jobs: Õ
(
n · |x|+ |y|+ maxj∈[N] space(Πj)

)
.

– Computation complexity, per Πj: Õ
(
comp(Πj)

)
.

– Time steps, per Πj: Õ (time(Πj)).
– The number of active jobs in each round is O(maxj∈[N] CPUs(Πj)).

given a one-time preprocessing phase with complexity

– Computation complexity: Õ(n · |x|).
– Time steps: Õ(1).

Further, the protocol has injective communication: in each round, each
activated job sends a single polylog(n)-size message to a distinct job.

Recall within the Jobs Model each job is limited to maintaining state of
size polylog(n); thus the memory requirement of the above protocol is

Õ
(
n · |x|+ |y|+ max

j∈[N]
space(Πj)

)
,

based on the number of required jobs.

Idea of proof. The result builds upon the existence of an Oblivious PRAM
compiler with polylog(n) time and space overhead that is collision-free
(i.e., where no two CPUs must access the same memory address in
the same timestep), which is guaranteed to exist unconditionally based
on [BCP14b]. In addition to the standard Input and Output jobs, our
protocol will have one Helper job for each of the CPUs and each memory
cell in the database of the OPRAM-compiled program. The CPU jobs

71

Approved for Public Release; Distribution Unlimited.

16 Elette Boyle, Kai-Min Chung, Rafael Pass

store the local state and perform the computations of their corresponding
CPU. In each round that the ith CPU’s instructions dictate a memory
access at location addr(i), the CPU job i will communicate with the
Memory job addr(i) to perform the access. (Thus, in each round, at most
2 · CPUs(OPRAM(Π)) jobs are active, where OPRAM(Π) denotes the
OPRAM-compilation of Π). Activation and communication patterns in
the resulting protocol are simulatable directly by the OPRAM security.
The preprocessing phase of the protocol corresponds to inserting all in-
puts into the OPRAM-protected database in parallel (i.e., emulating the
OPRAM-compiled input insertion program that simply inserts each in-
put xi into address i of the database).

Step 2: Locality and Load Balancing. This step attains polylog(n)
communication locality,13 and computation load balancing from any jobs
protocol ΠJ with injective communication. We do so by emulating ΠJ by
a fixed set of parties (which we sometimes refer to as “workers”), where
each worker is assigned several jobs, and will pass jobs to other workers
once he has performed a certain amount of work. This yields a standard
N -party protocol with a special decomposable state structure: i.e., parties’
memory can be decomposed into separate polylog(n)-size memory blocks,
which are only ever computed on independently or in pairs, in steps of
polylog(n) computation per round. This is because parties’ computation
is limited to individual jobs to which it was assigned.14

Definition 3 (Decomposable State). An N-party protocol Π is said
to have decomposable state if for every party P , the local memory mem of
P can be decomposed into polylog(n)-size blocks mem = (mem1,mem2, . . . ,memm)
such that: In each round of Π, the (parallel) local computation performed
by party P is described as a list {(i, j, fi,j)}(i,j)∈I for some I ⊆ [m]× [m],
such that each fi,j has complexity polylog(n). For each (i, j) ∈ I, party
P executes (memi,memj)← fi,j(memi,memj).15 By convention, received
communication messages are stored in local memory.

We achieve the following “fully load-balanced” properties. Note that the
first two properties correspond directly to our final load-balancing goal.
The final property will be used to ensure that no individual worker is
ever assigned drastically more than the expected number of simultaneous
parallel computation tasks; this is important since workers will eventually
be emulated by (technically, committees of) parties, who themselves may
have bounded parallelism capability (i.e., small number of CPUs).

Definition 4 (Fully Load Balanced). An N-party protocol Π is said
to be fully load balanced with respect to security parameter n if the fol-
lowing properties hold:

13 Recall a protocol has (communication) locality `(n) if during the course of the pro-
tocol every party communicates with at most `(n) other parties.

14 Looking ahead, pairwise computation will be used when emulating job-to-job com-
munication, and will be sufficient when the original jobs protocol has injective com-
munication, so that each job communicates with at most one other job per round.

15 With some canonical resolution for write conflicts. (In our constructions, the sets
(i, j) will be disjoint).

72

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 17

– Memory load balancing: Let space(Π) denote the total space complex-
ity of protocol Π. For every constant δ > 0, with all but negligible
probability in n, every party Pj has space complexity

space(Pj) ≤ (1 + δ)

N
space(Π) + polylog(n).

– Online computation/communication load balancing: For every con-
stant δ > 0, with all but negligible probability in n, the following holds
at all times during the protocol: Let cc and cc(Pj) denote the total
communication complexity and communication complexity of party
Pj, comp and comp(Pj) denote the total computation complexity and
computation complexity of party Pj, we have

(1− δ)
N

cc− polylog(n) ≤ cc(Pj) ≤ (1 + δ)

N
cc + polylog(n)

(1− δ)
N

comp− polylog(n) ≤ comp(Pj) ≤ (1 + δ)

N
comp + polylog(n).

– Per-round per-party efficiency:16 Let A be an upper bound on the
number of active jobs at each round in ΠJ . With all but negligible
probability in n, the per-round per-party computation complexity is
upper bounded by Õ(1 + (A/N)).

Theorem 4. Let ΠJ be an M-job protocol with computation complex-
ity comp and injective communication, realizing functionality FJobs. Then
there exists a fully load-balanced (Definition 4) Õ(n)-party protocol ΠW
with decomposable states (Definition 3) that realizes F with total compu-
tation Õ(comp), space complexity Õ(M), and polylog(n) locality. If ΠJ
satisfies oblivious security, so does ΠW .

Idea of proof. Recall that in our construction of ΠW (in the introduc-
tion), at any point of the protocol execution, each job is assigned to
a random worker17 and is stored in at most 2 workers. This is suffi-
cient to imply memory load balancing by standard concentration and
union bounds. Online computation/communication load balancing fol-
lows by observing that (i) the job-passing pattern is independent of the
worker-job assignment, and (ii) jobs are passed frequently enough before
accumulating large cost. This allows us to think of the execution as par-
titioned into “job chunks” each of which is assigned to a random worker,
thus amenable to concentration bounds. The last load-balanced property
follows again by the fact that each job is independently assigned to a ran-
dom worker and that each job only performs polylog(n) amount of work
per round. To obtain locality, we consider a fixed low-degree communica-
tion network between workers, and pass messages using a load-balanced

16 We note that the last two properties are related but incomparable. The online load
balancing property focuses on accumulated work, whereas the per-round per-party
efficiency concerns upper bounds on per-round work, which is used to bound the
required amount of parallelism to execute the protocol with efficient parallel time.

17 Technically, the initial job-worker assignment is only K-wise independent for K =
log3 n. Nevertheless, this is sufficient for concentration bounds to go through.

73

Approved for Public Release; Distribution Unlimited.

18 Elette Boyle, Kai-Min Chung, Rafael Pass

routing algorithm. Load balancing of this modified scheme follows by
similar, but more delicate analysis.
The resulting protocol has decomposable state, since parties’ memory and
computation are completely local to individual jobs, or pairs of jobs in
the case of emulating job-to-job communication (since the starting jobs
protocol has injective communication).

Step 3: From Oblivious to Malicious Security. Finally, we present a
general transformation that produces an n-party MPC protocol securely
realizing a functionality F against (1/3−ε)n static corruptions, given any
Θ̃(n)-party protocol with decomposable states (see Definition 3) realizing
the corresponding jobs-model functionality F jobs with only oblivious se-
curity. This step can be viewed as a refinement and formalization of ideas
from [KLST11,DKMS12,BGT13].

Theorem 5 (From Oblivious Security to Malicious Security).
Suppose there exists an N ∈ Θ(n·polylog(n))-party oblivious protocol with
decomposable state, realizing functionality F jobs in space, computation,
and (parallel) time complexity space, comp, time. Then for any constant
ε > 0 there exists an n-party MPC protocol (with error negligible in n)
securely realizing the corresponding functionality F against (1/3 − ε)n
static corruptions, with the following complexities (where each party is
a PRAM with possibly many processors), given a one-time preprocessing
phase with a single broadcast of Õ(1) bits per party:

– Per-party memory: Õ(space/n).
– Total computation: Õ(comp).
– Time complexity: Õ(time).

In addition, if the original protocol has Õ(1) locality and is fully load-
balanced (i.e., satisfying all properties of Definition 4), then the resulting
protocol additionally possesses the following properties:

– Communication locality Õ(1).
– Online computation load balancing, as in Definition 4(c).
– Time complexity Õ

(
time ·max

{
1, A

nk

})
when each party is limited

to being a k-processor PRAM, where A denotes the maximum per-
round per-party computation complexity of any party in the original
oblivious-secure protocol.18

Idea of Proof. The compiler takes the following form: (1) First, par-
ties collectively elect a large number of “good” committees, each of size
polylog(n), where “good” means each committee is composed of at least
2/3 honest parties, and that parties are spread roughly evenly across
committees. The one-time broadcast is used to reach full agreement on
the first committee. (2) Each party verifiably secret shares his input
among the corresponding committee Ci. (3) From this point on, the role
of each party Pi in the original protocol will be emulated by the corre-
sponding committee Ci via small-scale MPCs. Since committees are only

18 In particular, for our MPC for PRAMs protocol formed by combining Steps 1 and 2,
the parameter A will correspond to the number of CPUs required in the evaluated
PRAM Π, with polylog overhead.

74

Approved for Public Release; Distribution Unlimited.

Multi-party Computation for (Parallel) RAM Programs 19

size polylog(n), the memory, computation, and time complexity over-
head is small. Since parties are spread across committees, the protocol
remains load balanced. Finally, by using a perfectly secure underlying
MPC protocol (such as [BGW88]), the only information revealed corre-
sponds directly to the “observable” properties (communication patterns,
etc.), thus reducing directly to oblivious security (as per Definition 1).

References

[AAK08] Baruch Awerbuch, Yossi Azar, and Rohit Khandekar. Fast
load balancing via bounded best response. In SODA 2008,
pages 314–322, 2008.

[ACMR95] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher,
and Lars Eilstrup Rasmussen. Parallel randomized load bal-
ancing (preliminary version). In STOC 1995, pages 238–247,
1995.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran
Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Mul-
tiparty computation with low communication, computation
and interaction via threshold fhe. In EUROCRYPT, pages
483–501, 2012.

[BCP14a] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale
secure computation. Cryptology ePrint Archive, Report
2014/404, 2014.

[BCP14b] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious
parallel ram. Cryptology ePrint Archive, Report 2014/594,
2014.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tau-
man Kalai. Multiparty computation secure against continual
memory leakage. In STOC, pages 1235–1254, 2012.

[BGT13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Com-
munication locality in secure multi-party computation - how
to run sublinear algorithms in a distributed setting. In TCC,
pages 356–376, 2013.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

[BSGH13] Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc.
Fast byzantine agreement. In PODC, pages 57–64, 2013.

[Can01] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages 136–
145, 2001.

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty
computation. In CRYPTO, pages 501–520, 2006.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus
Nielsen, and Adam Smith. Scalable multiparty computation
with nearly optimal work and resilience. In CRYPTO, pages
241–261, 2008.

75

Approved for Public Release; Distribution Unlimited.

20 Elette Boyle, Kai-Min Chung, Rafael Pass

[DKMS12] Varsha Dani, Valerie King, Mahnush Movahedi, and Jared
Saia. Breaking the o(nm) bit barrier: Secure multiparty
computation with a static adversary. CoRR, abs/1203.0289,
2012.

[DMN11] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen.
Perfectly secure oblivious ram without random oracles. In
TCC, pages 144–163, 2011.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lat-
tices. In STOC, pages 169–178, 2009.

[GGH+13] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S.
Jutla, Mariana Raykova, and Daniel Wichs. Optimizing oram
and using it efficiently for secure computation. In Privacy
Enhancing Technologies, pages 1–18, 2013.

[GKK+11] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Tal
Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure com-
putation with sublinear amortized work. IACR Cryptology
ePrint Archive, 2011:482, 2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game or a completeness theorem for proto-
cols with honest majority. In STOC, pages 218–229, 1987.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM, 43(3):431–473,
1996.

[KLST11] Valerie King, Steven Lonargan, Jared Saia, and Amitabh
Trehan. Load balanced scalable byzantine agreement
through quorum building, with full information. In ICDCN,
pages 203–214, 2011.

[KSSV06] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee.
Scalable leader election. In SODA, pages 990–999, 2006.

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious ram
for secure two-party computation. In TCC, pages 377–396,
2013.

[MPS02] Michael Mitzenmacher, Balaji Prabhakar, and Devavrat
Shah. Load balancing with memory. In (FOCS), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, pages
799–808, 2002.

[MR98] S. Muthukrishnan and Rajmohan Rajaraman. An adversarial
model for distributed dynamic load balancing. SPAA ’98,
pages 47–54, 1998.

[MSS13] Steven Myers, Mona Sergi, and Abhi Shelat. Black-box proof
of knowledge of plaintext and multiparty computation with
low communication overhead. In TCC, pages 397–417, 2013.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information stor-
age (extended abstract). In STOC, pages 294–303, 1997.

[VB81] Leslie G. Valiant and Gordon J. Brebner. Universal schemes
for parallel communication. In STOC, pages 263–277, 1981.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract). In FOCS, pages 162–167, 1986.

[ZMS14] Mahdi Zamani, Mahnush Movahedi, and Jared Saia. Millions
of millionaires: Multiparty computation in large networks.
Cryptology ePrint Archive, Report 2014/149, 2014.

76

Approved for Public Release; Distribution Unlimited.

Succinct Garbling Schemes and Applications

Huijia Lin∗ Rafael Pass†

October 20, 2014

Abstract

Assuming the existence of iO for P/poly and one-way functions, we show how to succinctly
garble bounded-space computations (BSC) M : the size of the garbled program (as well as the
time needed to generate the garbling) only depends on the size and space (including the input
and output) complexity of M , but not its running time. The key conceptual insight behind
this construction is a method for using iO to “compress” a computation that can be performed
piecemeal, without revealing anything about it.

As corollaries of our succinct garbling scheme, we demonstrate the following:

• functional encryption for BSC from iO for P/poly and one-way functions;

• reusable succinct garbling schemes for BSC from iO for P/poly and one-way functions;

• succinct iO for BSC from sub-exponentially-secure iO for P/poly and sub-exponentially
secure one-way functions;

• (Perfect NIZK) SNARGS for bounded space and witness NP from sub-exponentially-secure
iO for P/poly and sub-exponentially-secure one-way functions.

Previously such primitives were only know to exists based on “knowledge-based” assumptions
(such as SNARKs and/or differing-input obfuscation).

We finally demonstrate the first (non-succinct) iO for RAM programs (with bounded in-
put and output lengths) with only poly-logarithmic overhead based on the existence of sub-
exponentially-secure iO for P/poly and sub-exponentially-secure one-way functions.

∗University of California at Santa Barbara, Email: huijia@cs.ucsb.edu.
†Cornell University, Email: rafael@cs.cornell.edu. Work supported in part by a Alfred P. Sloan Fellowship,

Microsoft New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990, NSF Award
CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-0211.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the US Government.

77

Approved for Public Release; Distribution Unlimited.

1 Introduction

Since the seminal work of Yao [Yao86] in the 1980s, garbled circuits and more generally garbled
programs (such as e.g., garbled RAMs [LO13]) have been extensively studied. A garbling scheme
consists of three procedures: a) program garbling method, b) an input encoding method, and c) an
evaluation procedure. Given a program Π, the garbling method produces a “garbled” version Π̃ of
Π as well as some key key. Next, given the key key and some input x, the input encoding method
produces an encoding x̃ of x; this encoding method is “efficient”—the time needed to encode x
(and as a consequence also the length of x̃) does does not depend on the complexity of Π. Finally,
given a garbled program Π and an encoded input x̃, the evaluation procedure evaluates Π(x);
additionally, given only the encoded program and inputs, Π̃, x̃, an attacker cannot learn more than
just Π(x). As a direct application, a garbling scheme enables a client to, in an “off-line” stage,
garble a program Π, and next provide the garbled program Π̃ to a server. Later, in an on-line stage,
when the input x on which the client wants to evaluate Π becomes known, it can efficiently and
without revealing neither Π nor x ask the server to evaluate Π simply by sending it the encoding x̃
of x—in essence, garbling schemes provide a method for privately delegating computation (with an
expensive off-line stage). Furthermore, on top of this direct application of garbling schemes, they
have found numerous other applications (e.g., secure two-party computation [Yao86], multi-party
computations [BMR90], reusable delegation of computation [GGP10], and so on and so forth.)

But a major deficiency of the all known garbling schemes (both of circuit and RAM garbling
schemes) is that the size of the garbled program Π̃ (and thus also the time needed to generate it)
grows linearly with (and in particular is lower-bounded by) the circuit-size/time-complexity of the
underlying program Π. Thus, even if get a succinct description of Π (e.g., as a Turing-machine or
RAM program), the size of Π̃ will be proportional to the running-time of Π.

1.1 Succinct Garbling Schemes

In this work we study succinct garbling schemes where the size, as well as the time required to
generate, the garbled program Π̃ only grows logarithmically with the running-time of the under-
lying program Π (but polynomially in the size of it). We provide constructions of such succinct
garbling schemes for general classes of computation (assuming the existence of indistinguishability
obfuscators [BGI+01, GGH+13b] for appropriate classes of computation), and next demonstrate
several new applications of succinct garbling schemes.

As an initial observation, we show that assuming the existence of “succinct” iO for some “nice”
class C of computations [BGI+01, BCP14, ABG+13], there exists succinct garbling the same class,
with the same complexity.

Theorem 1 (Initial observations—Informally stated). Assume the existence of succinct indistin-
guishability obfuscators for a “nice” class of computations C and one-way function. Then, there
exists a succinct garbling scheme for C. (In particular, the size of the garbled program depends
polynomially on the size of the program, the length of the input and outputs of the program, but
only poly-logarithmically on its running-time and space.)

Roughly speaking, the garbling of a program Π is an obfuscation a slightly modified program
Π′key that takes as input an authenticated encrypted input, decrypts and verifies the authenticity of
the input (w.r.t the key key) and if it the input is valid simply runs Π on this input; the encoding
of an input is simply an authenticated encryption of the input.1

1The overview oversimplies. To prove this construction secure assuming only that the underlying obfuscation
satisfies iO we need to rely on a particular method for authenticated encryption.

1

78

Approved for Public Release; Distribution Unlimited.

Let us remark here that the reason the above-mentioned construction is succinct is that we
rely on the succinctness of the underlying iO (as e.g., in the definition of iO for Turing machine
[BGI+01, BCP14, ABG+13].) As such it provides little into into how to achieve succinctness “from-
scratch”. Additionally, to date, the only constructions of succinct iO for Turing machines rely
on “knowledge-based” assumptions—more specifically, the existence of differing-input obfuscation
[BGI+01, BCP14, ABG+13]. Rather, we are here interested in basing succinct garbling schemes
on some hardness assumption. (As we shall see shortly, doing this will also provide insight into
constructions of succinct iO for Turing machines based on some hardness assumption.)

Our main result shows how to obtain succinct garbling schemes relying only on (non-succinct)
iO for circuits—by now there are several constructions of iO [GGH+13b, PST14, GLSW14] for
P/poly based on specific hardness assumptions regarding graded encodings [GGH13a], and some
of them are even falsifiable [PST14, GLSW14]. Our succinct garbling construction from iO for
P/poly, however, only works for any a-priori bounded-space computation—in other words, the size
of the garbled circuit depends polynomially on the space complexity of the computation, but is
independent of its running-time.

Theorem 2 (Main Theorem—Informally stated). Assume the existence of indistinguishability ob-
fuscators for P/poly and one-way functions. Then, for every polynomial p, there exists a succinct
garbling scheme for all polynomial-time programs Π with space-complexity p(·). (In particular, the
size of the garbled program depends polynomially on the size of Π, the length of the input and output
of Π and the , and the space complexity s(·), but only logarithmically on Π’s running-time.)

The key conceptual insight behind our construction is a method for using iO to “compress” a
computation that can be performed piecemeal, without revealing anything about it. More precisely,
in a first step, we show how to obtain a “non-succinct” garbling of bounded-space Turing machines,
and next, in a second step, we show how to use iO to compress this non-succinct garbling into a
succinct one. (We believe that this compression technique may be of independent interest.)

Next, we use this main theorem to enable, among other things, bounded space (polynomial-
time) computations in the context of a) functional encryption (FE), b) resusable succinct garbling
schemes, c) iO, and d) succinct non-interactive arguments (SNARGs), assuming iO for P/poly
and one-way function (for some of these results with sub exponential security); prior to this paper,
these primitives could only be constructed based on “knowledge-based” assumptions [GKP+13a,
BCP14, ABG+13] or in the Random Oracle model [Mic00].

1.2 Succinct Garbling Schemes for Bounded-Space Computations

We turn to providing an overview of our construction of succinct garbling schemes for bounded
space Turing machines. Our construction proceeds in two steps: we first construct a non-succinct
garbling scheme, with the property that the garbled program consists of many “small pieces” that
can be independently generated. Next, in a second step, we use indistinguishability obfuscation
to “compress” the size of the garbled program, by releasing an obfuscated program that takes an
index as input and generates the “piece” corresponding to that index. As a result, the final garbled
program (namely the obfuscated program) is small and can be efficiently computed, and it is only
at the evaluation time that the underlying non-succinct garbled program gets “decompressed” (by
running the obfuscated program on all possible indexes to recover it).

2

79

Approved for Public Release; Distribution Unlimited.

A Non-succinct Garbling Scheme: Construction Overview Let us first outline a non
succinct garbling scheme for Turing machines2 based on any one-way function. Note that a “trivial”
approach for achieving this is to simply transform any polynomial-time Turing machine into a
polynomial-size circuits and then garble the circuit. While our construction in essence relies on this
principle, we provide a construction that uses as a black-box a garbling scheme for “small” fixed-
sized circuits (and thus this construction may be of independent interest). More precisely, we will
rely on the existence of a garbling scheme for circuits (as in [Yao86]) satisfying an additional useful
property: the key key can be generated independently of the circuit to be garbled (more precisely,
we now have a key generation algorithm Gen that outputs the key key; next, both the encoding
and garbling methods receive this key as input); furthermore, we additionally require that encoded
inputs can be simulated without knowledge of the circuit to be garbled. We refer to such schemes
as garbling schemes with independent key generation and note that Yao’s original scheme (which
can be based on one-way functions) satisfies this property. Our non-succinct garbling scheme now
proceeds as follows for a Turing machine Π with bounded space complexity s(·) and running-time
T (·) and inputs of length n. We construct a “chain” of T (n) garbled circuits that evaluate Π
step by step. More precisely, we first generate keys key1, . . . , keyT (n) for the T (n) garbled circuits.

The ith garbled circuit (which is computed using key keyi) takes as input some state of Π and
computes the next state (ie., the state after one computation step); if the next state is a final state,
it outputs the outputs generated by Π, otherwise its outputs an encoding of this new state using
key keyi+1. (Note that after T (n) steps we are guaranteed to get to a final state and thus this
process is well-defined.)

The input encoding method simply encodes the initial state of Π with input x using the key1,
and to evaluate the garbled program we simply sequentially evaluate each garbled circuit, using
the encodings generated in the previous one as inputs to the next one, and finally outputting the
output generated.

A Non-succinct Garbling Scheme: Proof Overview To show that this construction is a
secure (non-succinct) garbling scheme we need to exhibit a simulator that given just the output
y = Π(x) of the program Π on input x and the number of steps t∗ taken by Π(x) can simulate the
encoded input and program. (The reason we provide the simulation with the number of steps t∗ is
that we desire a garbling scheme with a “per-instance efficiency”—that is, the evaluation time is
polynomial in the actual running-time t∗ and not just the worst-case running-time. To achieve such
“per-instance efficiency” requires leaking the running-time, which is why the simulator gets access
to it.) Towards this, we start by simulating the t∗th garbled circuit with the output being set to y;

this simulation generates an encoded input c̃onft∗−1 and a garbled program Π̃t∗ (if the simulation

is valid, c̃onft∗−1 is supposed to be an encoding of the configuration conft of the TM after t steps
of computation). We then iteratively in descending order simulate the ith (i < t∗) garbled circuits

Π̃i with the output being set to c̃onfi+1 generated in the previously simulated garbled circuit. We
finally simulate the remaining i > t∗ garbled circuits Π̃i with the output being set to some arbitrary
output in the range of the circuit (e.g., simply y), and release c̃onf1 and (Π̃1, . . . Π̃T (n)). (Note that

the fact that we simulate the ith (i > t∗) garbled circuit with the output being set to some arbitrary
value is fine since encoded inputs to those circuits are not released.)

To prove indistinguishability of this simulation, we consider a sequence of hybrid experiments

2The choice of a Turing machine as the model of computation is arbitrary and the solution work no matter what
the model of bounded-space computation (e.g., Turing machine, RAM, PRAM etc) as long as a computation can be
decomposed into a sequence of sequential computation steps operating on the memory.

3

80

Approved for Public Release; Distribution Unlimited.

H0, . . . ,HT (n), where in Hj the first j garbled circuits are simulated, and the remaining T (n) − j
garbled circuits are honestly generated. To “stitch together” the simulated circuits with the honestly
generated ones, the jth garbled circuit is simulated using as output, an honest encoding ĉonfj of
the actual configuration confj of the TM after t steps. It follows from the security of the garbling
scheme (and the fact that a only single encoded input is released for circuit j + 1) that hybrids
Hj and Hj+1 are indistinguishable and thus also H0 (i.e., the real experiment) and HT (n) (i.e., the
simulation).

Let us finally remark a useful property of the above-mentioned simulation. Due to the fact
that we rely on a garbling scheme with independent key generation, each garbled circuit can in fact
be independently simulated—recall that the independent key generation property guarantees that
encoded inputs can be simulated without knowledge of the circuit to be computed and thus all
simulated encoded inputs c̃onf1, . . . c̃onfT (n) can be generated in an initial step. Next, the garbled
circuits can simulated in any order.

The Succinct Garbling Scheme: Construction Overview Let us now turn to making this
garbling scheme succinct. The key idea is to, instead of releasing the actual garbled circuits, release
an obfuscation of the randomized program that generates the garbled circuits. More precisely, we
release an indistinguishability obfuscation of a program Πx,s,s′(t) where x ∈ {0, 1}n is an input to
Π, t ∈ [T (n)] is a “time-step” of Π and s is the seed for a PRF F: Πx,s,s′(t) generates and outputs
the tth garbled circuit in the non-succinct garbling of Π using pseudo-random coins generated by
the PRF with seed s and s′. More specifically, it uses F(s, t) and F(s, t + 1) as randomness to
generate keyt and keyt+1 (recall that the functionality of the tth garbled circuit may depend on
keyt+1), and uses F(s′, t) as randomness for generating the tth garbled circuit.

Now, the new succinct garbled program is the obfuscated program Λ
$← iO(Πx,s,s′), and the

encoding x̂ of x remains the same as before, except that now generated using pseudo-random coins
F(s, 1). Given such a garbled pair Λ and x̂, one can compute the output by first generating the
entire non-succinct garbled program by computing Λ on every time step t, and evaluating the
non-succinct garbling with x̂.

The Succinct Garbling Scheme: Proof Overview Given that the new succinct garbled
program Λ produces “pieces” of the non-succinct garbled program, the natural idea for simulating
the succinct garbled program is to obfuscate a program that produces “pieces” of the simulated
non-succinct garbled program. The above-mentioned “independent simulation” property of the
non-succinct garbled program enable exactly this.

More precisely, given an output y and the running-time t∗ of Π(x), the simulator outputs the
obfuscation Λ̃ of a program Π̃y,t∗,s,s′ that on input t:

• outputs the simulation of the tth garbled circuit (as described in the simulation of the non-
sucking garbling scheme, and using y as the output of the whole program) using F(s, t) and

F(s, t+1) as randomness to generate c̃onft and c̃onft+1, and F(s′, t) as randomness to generate
the simulated garbled circuit;

The encoding of input x̃ is simulated as the non-succinct garbling scheme does, but using pseudo-
random coins F(s, 1). (Note that we here strongly rely on the independent simulation property of
the non-succinct garbled program constructed above, which in turn relies on the independent key
generation property of the underlying garbled circuit.)

It is not hard to see that this simulation works if the obfuscation is virtually black-box secure,
as the entire truth tables of the two programs Πx,s,s′ and Π̃y,t∗,s,s′ are indistinguishable when the

4

81

Approved for Public Release; Distribution Unlimited.

hardwired PRF keys s, s′ are chosen at random. Our goal, however, is to show that assuming
indistinguishability obfuscation suffices. Towards doing this, as above, we consider a sequence of
hybrid experiments H ′0, . . . ,H

′
T (n) that obfuscates a sequence of programs that “morph” gradually

from Π to Π̃. In particular, the program Π̃x,s,s′
j obfuscated in H ′j produces a non-succinct hybrid

garbled program as in hybrid Hj in the proof of the non-succinct garbling scheme, except that
pseudo-random coins generated using seeds s, s′ are used instead of truly random coins. (More
specifically, for the first j inputs, Π̃j produces simulated garbled circuits (as in Hj), and for the
rest inputs, it produces honestly generated garbled circuits.)

To prove indistinguishability of any two consecutive hybrids H ′j and H ′j+1, we finally rely on
the punctured program technique of Sahai and Waters [SW14], to replace pseudo-random coins
F(s, j+ 1), F(s′, j+ 1) for generating the j+ 1th simulated garbled circuit with truly random coins,
and can then rely on the indistinguishability of the simulation of the j + 1th garbled circuit to
conclude the indistinguishability of neighboring hybrids.

A note on the efficiency of the Garbling Scheme Note that the time (and size) of the garbled
program depends polynomially on the space bound and the length of the inputs and outputs and
only poly-logarithmically in the upper bound on the running-time of the program. The evaluation
time, on the other hand, is linear in the time complexity of the program Π—no matter what model
of computation we rely on (e.g., TM, RAM, or PRAM), and again polynomial in the space and
input/output lengths.

1.3 Applications of (Succinct) Garbling Schemes

We now turn to presenting applications of garbling schemes. While our focus here is applications of
succinct garbling schemes, as we shall explain shortly, our results are general and lead to interesting
corollaries also when relying on non succinct schemes.

Application 1: Succinct Randomized Encoding Recall that a randomized encoding [IK02,
AIK04] is a method to, given an input x and a function f , (randomly) encode f(x) in a way that
leaks nothing beyond just f(x). As is well known, garbling schemes imply randomized encoding:
the randomized encoding of f ,x is simply the garbling of f and the encoding of x. Whereas previous
works on randomized encoding have focused on encoding methods that can be performed by low-
depth computations [AIK04], when relying on succinct garbling schemes, we obtain a new type of a
succinct randomized encoding where the encoding can be produced much more efficiently than com-
puting f—in particular, the time needed to produce the encoding only grows poly-logarithmically
with the time-complexity of f . We next show how such succinct randomized encodings are useful
for applications. For notational convenience, we describe these applications using garbling scheme,
but it should be appreciated that for these application succinct randomized encodings actually
suffice.

Applications 2: FE, reusable garbling schemes, secure computations We observe that in
contexts such as secure computation [GMW87] and functional encryption [SW05, O’N10, BSW12],
to evaluate a function f on an input x, it suffices to evaluate the randomized function that com-
putes a garbled program of f and an encoding of the input (recall that by the security of the
garbling scheme this reveal no more than the output of the function).3 Thus, by plugging-in

3That is, we are computing a randomized encoding of f(x).

5

82

Approved for Public Release; Distribution Unlimited.

our construction of succinct garbling schemes for bounded-space computations (BSC) into ear-
lier constructions of secure computation or randomized functional encryption [GJKS]4, we directly
obtain, assuming iO for P/poly and one-way functions, a randomized functional encryption for
BSC, and secure computation protocols for bounded-space programs, where the communication
complexity is grows logarithmically with the the running-time of the program to be evaluated.
We additionally observe that by combing our construction of functional encryption for BSC with
previous results [CIJ+13, GKP+13b]—[CIJ+13] showed that function encryption schemes with
indistinguishability-based security implies ones with simulation-based security, which further im-
plies reusable garbling schemes by [GKP+13b]—directly yields a construction of reusable succinct
garbling schemes for BSC from iO for P/poly and one-way functions. Summarizing,

Theorem 3 (Informally stated). Assume the existence of indistinguishability obfuscators for P/poly
and one-way function. Then, for every polynomial p, the exists secure constructions of the following
primitives which handle computations all polynomial-time computations with space-complexity s(·):

• reusable succinct garbling;

• functional encryption where the size of the secret key for a function is independent of its
running time;

• secure computation where the communication complexity of the protocol is independent of the
running-time of the program.

Let us mentioned that prior to this paper, the second of these primitives could only be con-
structed based on “knowledge-based” assumptions (such as SNARKs and extractable witness en-
cryption [GKP+13a] or differing-input obfuscation [BCP14, ABG+13]), and the third one based on
incomparable assumptions (namely, FHE—it is unknown whether iO and one-way functions imply
FHE).

Applications 3: Succinct iO and SNARGs Recall that in Theorem 1 we demonstrated how
to use succinct iO to get succinct garbling schemes—in fact, the construction works for any “nice”.
We now show a converse of this result: assuming sub-exponentially-secure iO for P/poly, the
existence of a sub-exponentially-secure succinct garbling scheme for a “nice”’5 class of algorithms
yields an iO for the same class of algorithms with the same complexity. We first observe that if
we had an appropriate notion of iO for randomized functionalities, then we could rely on the same
argument as in the context of secure computation and functional encryption—instead of evaluating
a function f , simply compute the randomized functionality that computes the garbled version of
f and the encoded input. We observe that a notion recently considered by Canetti, Lin, Tessaro
and Vaikuntanathan [CLTV14] (which can be achieved based on sub-exponentially-secure iO and
one-way functions) suffices for our purposes as long as the garbling scheme is sub-exponentially
secure.

Combined with Theorem 2, this yields succinct iO for BSC from sub-exponentially-secure iO
for P/poly and sub-exponentially secure one-way functions. Plugging in this result into the Per-
fect NIZK construction of Sahai-Waters [SW14] directly yields a construction of (Perfect NIZK)

4The reason we need randomized functional encryption is to be able to compute the randomized garbling function.
5Here by “nice”, we mean that C (1) contains algorithms with a-priori polynomially-bounded input and output

lengths, (2) is closed under composition with polynomial-sized circuits, and (3) algorithms contained in Cλ is also
contained in Cλ′ , with λ′ ≥ λ. The last requirement is a technicality in order to enable applying a cryptographic
algorithm on an algorithm from Cλ with a bigger security parameter λ′.

6

83

Approved for Public Release; Distribution Unlimited.

SNARGS for bounded-space NP from sub-exponentially-secure iO for P/poly and sub-exponentially-
secure one-way functions. Summarizing,

Theorem 4 (Informally state). Assume the existence of sub-exponentially-secure indistinguisha-
bility obfuscators for P/poly and sub-exponentially-secure one-way function. Then, for every poly-
nomial p, there exists

• iO for all polynomial-time computations with space-complexity s·);

• (Perfect NIZK) SNARGS (with adaptive soundness)6 for all languages in NP that can be
decided by a non-deterministic polynomial-time Turing machines with space-complexity s(·).

These primitives were only know to exists based on “knowledge-based” assumptions [BCP14,
ABG+13, BP13] or in the Random Oracle Model [Mic00].

Application 4: iO for RAM with poly-logarithmic overhead We finally observe that the
above observation that in the context of iO it suffices to evaluate the garbling of the function instead
of directly evaluating the functions is useful also if relying on non-succinct garbling schemes. In
particular, by relying on the garbled RAM constructions of [LO13, GHL+14] we directly obtain as
a corollary,

• iO for RAM programs with bounded input and output lengths, where the size of the obfus-
cated program only grows quasi-linearly with the RAM complexity of the program, assuming
iO for P/poly and one-way functions, both with sub-exponential security.

There is one subtle detail that needs to be dealt with to obtain the above corollary. If simply
relying on any iO in the above construction, then the use of this underlying primitive could blow-
up the running-time. (If we rely on an iO for circuits with quasi-linear overhead then we are fine,
but this seems to require stronger assumptions.) Rather, we rely on an observation from Gentry,
Halevi, Raykova and Wichs [GHRW14]: the garbled RAM constructions of [LO13, GHL+14] satisfy
a nice “bit-wise compactness” property, where each bit of the garbled circuit can be independently
generated by a “small” circuit of size depending quasi-linearly in the input and output lengths
and only poly-logarithmically in the running time.7 Thus, (inspired by [GHRW14],) instead of
obfuscating the program that generates the whole garbled circuit in one shot, we simply obfuscate
many “small” programs, each of which generates one bit of the garbled circuit. (Note that the
resulting iO is not succinct: the size of the obfucated program depends on the size of the garbled
RAM).

Let us remark that a similar construction was recently provided in [GHRW14]; the difference
between our construction and theirs is that they propose to obfuscate only a single “small” program
that will generate all bits in the garbled RAM, whereas our iO consists of the obfuscation of many
“small” programs, each of which generates only a single bit in the garbled RAM. But, the authors
of [GHRW14] simply conjecture the security of their construction; in contrast, we prove it secure
assuming that the underlying obfuscator satisfies sub-exponentially secure iO.

6The Perfect NIZK construction of [SW14] only satisfies non-adaptive soundness. But by a standard complexity
leveraging trick, it can be made to satisfy adaptive soundness. Since we anyway assume sub-exponential security of
the iO this comes at no cost for us.

7More precisely, the size of the small circuit is Õ(|R| + n + m) × poly(λ, log T), where R is the RAM machine
under consideration, n and m are its input and output lengths, and T is its running time.

7

84

Approved for Public Release; Distribution Unlimited.

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We denote by PPT
probabilistic polynomial time Turing machines. The term negligible is used for denoting functions
that are (asymptotically) smaller than one over any polynomial. More precisely, a function ν(·)
from non-negative integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.1 Models of Computation

In this work we will consider different models of computation. Below we define formally different
classes of algorithms; we will start by defining classes of deterministic algorithms of fixed polynomial
size, and then move to define classes of randomized algorithms and classes of algorithms of arbitrary
polynomial size.

Classes of deterministic algorithms of fixed polynomial size.

Polynomial-time Circuits. For every polynomial D, the class CIR[D] = {Cλ} of include all
deterministic circuits of size at most D(λ).

NC1 Circuits. For every constant c and polynomial D, the class NCc[D] = {Cλ} of polynomial-
sized circuits of depth c log λ include all deterministic circuits of size D(λ) and depth at most
c log λ.

Exponential-time Turing Machines. We consider a canonical representation of Turing ma-
chines M = (M ′, n,m, S, T) with |n| = |m| = |S| = |T | = λ and n,m ≤ S ≤ T ; M takes
input x of length n, and runs M ′(x) using S space for at most T steps, and finally out-
puts the first m bits of the output of M ′. (If M ′(x) does not halt in time T or requires
more than S space, M outputs ⊥.) In other words, given the description M of a Turing
machine in this representation, one can efficiently read off its bound parameters denoted as
(M.n,M.m,M.S,M.T).

Now we define the class of exponential time Turing machines. For every polynomial D, the
class TM[D] = {Mλ} includes all deterministic Turing machines ΠM containing the canonical
representation of a Turing machine M of size D(λ); ΠM (x, t) takes input x and t of length
M.n and λ respectively, and runs M(x) for t steps, and finally outputs what M returns.

Remark: Note that machine ΠM (x, t) on any input terminates in t < 2λ, and hence its
output is well-defined. Furthermore, for any two Turing machines M1 and M2, they have
the same functionality if and only if they produce identical outputs and run for the same
number of steps for every input x. This property is utilized when defining and constructing
indistinguishability obfuscation for Turing machines, as in previous work [BCP14].

Exponential-time RAM Machines. We consider a canonical representation of RAM machines
R = (R′, n,m, S, T) identical to the canonical representation of Turing machines above.

For every polynomial D, the class RAM[D] = {Rλ} of polynomial-sized RAM machines
include all deterministic RAM machines ΠR, defined as ΠM above for Turning machines,
except that the Turing machine M is replace with a RAM machine R.

8

85

Approved for Public Release; Distribution Unlimited.

Classes of randomized algorithms: The above defined classes contain only deterministic al-
gorithms. We define analogously these classes for their corresponding randomized algorithms. Let
X [D] be any class defined above, we denote by rX [D] the corresponding class of randomized algo-
rithms. For example rCIR[D] denote all randomized circuits of size D(λ), and rTM[D] denote all
randomized turning machine of size D(λ).

Classes of (arbitrary) polynomial-sized algorithms: The above defined classes consist of
algorithms of a fixed polynomial D description size. We define corresponding classes of arbitrary
polynomial size. Let X [D] be any class defined above, we simply denote by X = ∪polyDX [D] the
corresponding class of algorithms of arbitrary polynomial size. For instance, CIR and rCIR denotes
all deterministic and randomized polynomial-sized circuits, and TM denotes all polynomial-sized
Turing machines.

In the rest of the paper, when we write a family of algorithms {ALλ} ∈ X , we mean {ALλ} ∈
X [D] for some polynomial D. This means, the size of the family of algorithms is bounded by
some polynomial. Below, for convenience of notation, when X is a class of algorithms of arbitrary
polynomial size, we write AL ∈ Xλ as a short hand for {ALλ} ∈ {Xλ}.

Classes of well-formed algorithms: In the rest of the preliminary, we define various crypto-
graphic primitives. In order to avoid repeating the definitions for different classes of machines, we
provide definitions for general classes of algorithms {ALλ} that can be instantiated with specific
classes defined above. In particular, we will work with classes of algorithms that are well-formed,
satisfying the following properties:

1. For every AL ∈ ALλ, and input x, AL on input x terminates in 2λ steps. Note that this also
implies that AL has bounded input and output lengths.

2. the size of every ensemble of algorithms {ALλ} ∈ {ALλ} is bounded by some polynomial D
in λ, and

3. given the description of an algorithm AL ∈ ALλ, one can efficiently read off the bound
parameters AL.n,AL.m,AL.S,AL.T .

All above defined algorithm classes are well-formed. Below, we denote by TAL(x) the running time
of AL on input x, and TAL the worst case running time of AL. Note that well-formed algorithm
classes are not necessarily efficient; for instance the class of polynomial-sized Turing machines TM
contain Turing machines that run for exponential time. In order to define cryptographic primitives
for only polynomial-time algorithms, we will use the notation ALGT =

{
ALTλ

}
to denote the class

of algorithms in ALG = {ALλ} that run in time T (λ) (in particular, these with ALλ.T < T (λ)).
In the rest of the paper, all algorithm classes are well-formed.

2.2 Garbling Scheme

Definition 1 (Garbling Scheme). A Garbling scheme GS for a class of (well-formed) determinis-
tic algorithms {ALλ}λ∈N consists of algorithms GS = (Garb,Encode,Eval) satisfying the following
properties:

Syntax: For every λ ∈ N, AL ∈ ALλ and input x,

• Garb is probabilistic and on input (1λ, AL) outputs a pair (ÂL,key).8

8(Note that as the algorithm class is well-formed, Garb implicitly has all bound parameters of AL.

9

86

Approved for Public Release; Distribution Unlimited.

• Encode is deterministic and on input (key, x) outputs x̂.

• Eval is deterministic and on input (ÂL, x̂) produced by Garb,Encode outputs y.

Correctness: For every polynomial T and every family of algorithms {ALλ} ∈
{
ALTλ

}
and se-

quence of inputs {xλ}, There exists a negligible function µ, such that, for every λ ∈ N,
AL = ALλ, x = xλ,

Pr[(ÂL,key)
$← Garb(1λ, AL), x̂

$← Encode(key, x) : Eval(ÂL, x̂) 6= AL(x)] ≤ µ(λ)

Definition 2 (Security of a Garrbling Scheme). We say that a Garbling scheme GS for a class of
deterministic algorithms {ALλ}λ∈N is secure if the following holds.

Security: There exists a uniform machine Sim, such that, for every non-uniform PPT distinguisher
D, every polynomial T ′, every sequence of algorithms {ALλ} ∈ {ALT

′
λ }, and sequence of inputs

{xλ} where xλ ∈ {0, 1}ALλ.n, there exists a negligible function µ, such that, for every λ ∈ N,
AL = ALλ, x = xλ the following holds:

∣∣∣Pr[(ÂL,key)
$← Garb(1λ, AL), x̂

$← Encode(key, x) : D(ÂL, x̂) = 1]

− Pr[(ÃL, x̃)
$← Sim(1λ, 1|x|, 1|AL|, (n,m, S, T), TAL(x), AL(x)) : D(ÃL, x̃) = 1]

∣∣∣ ≤ µ(λ)

where (n,m, S, T) = (AL.n,AL.m,AL.S,AL.T) and Sim runs in time poly(λ, T ′(λ)). More-
over, µ is called the distinguishing gap

Furthermore, we say that GS is δ-indistinguishable if the above security condition holds with a
distinguishing gap µ bounded by δ. Especially, GS is sub-exponentially indistinguishable if µ(λ)
is bounded by 2−λ

ε
for a constant ε.

We note that the sub-exponentially indistinguishability defined above is weaker than usual sub-
exponential hardness assumptions in that the distinguishing gap only need to be small for PPT
distinguisher, rather than sub-exponential time distinguishes.

We remark that in the above definition, simulator Sim receives many inputs, meaning that, a
garbled pair ÂL, x̂ reveals nothing but the following: The output AL(x), instance running time
TAL(x), input length |x| and machine size |AL|, together with various parameters (n,m, S, T) of
AL. We note that the leakage of the instance running time is necessary in order to achieve instance-
based efficiency (see efficiency guarantees below). The leakage of |AL| can be avoided by padding
machines if an upper bound on their size is known. The leakage of parameters (n,m, S, T) can be
avoided by setting them to 2λ; see Remark 1 for more details. In particular, when the algorithms
are circuits, inputs to the simulation algorithm can be simplified to (1λ, 1|x|, 1|C|, AL(x)), since all
bound parameters n,m, S, T can be set to 2λ.

Efficiency Guarantees. we proceed to describe the efficiency requirements for garbling schemes.
When considering only circuit classes, all algorithms Garb,Encode,Eval should be polynomial time
machines, that is, the complexity of Garb,Eval scales with the size of the circuit |C|, and that of
Encode with the input length |x|. However, when considering general algorithm classes, since the
description size |AL| could be much smaller than the running time AL.T , or even other parameters
AL.S,AL.n,AL.m, there could be different variants of efficiency guarantees, depending on what
parameters the complexity of the algorithms depends on. Below we define different variants.

10

87

Approved for Public Release; Distribution Unlimited.

Definition 3 (Different Levels of Efficiency of Garbling Schemes). We say that a garbling scheme
GS for a class of deterministic algorithms {ALλ}λ∈N has succinctness or I/O / space / time-
dependent complexity if the following holds.

Optimal efficiency: There exists universal polynomials pGarb, pEncode, pEval, such that, for every
λ ∈ N, AL ∈ ALλ and input x ∈ {0, 1}AL.n,

• (Â,key)
$← Garb(1λ, AL) runs in time pGarb(λ, |AL|, AL.m),9

• x̂ = Encode(key, x) runs in time pEncode(λ, |x|, AL.m), and

• y = Eval(ÂL, x̂) runs in time pEval(λ, |AL|, |x|, AL.m)×TAL(x), with overwhelming prob-
ability over the random coins of Garb. We note that Eval has instance-based efficiency.

I/O-dependent complexity: The above efficiency conditions hold with pGarb, pEncode, pEval taking
AL.n as additional parameters.

Space-dependent complexity: The above efficiency conditions hold with pGarb, pEncode, pEval tak-
ing AL.S as an additional parameter.

Linear-time-dependent complexity: The above efficiency conditions hold with pGarb, pEncode
taking AL.T as an additional parameter and depending (quasi-)linearly in AL.T , and the
running time of Eval is bounded by pEval(λ, |AL|, |x|)AL.T .

Furthermore, we say that the garbling scheme GS has succinct input encodings if the encoding
algorithm Encode(key, x) runs in time pEncode(1

λ, |x|).

We say that a garbling scheme is “succinct” if its complexity depends only poly-logarithmically
on the time bound. Thus a scheme with space-dependent complexity is succinct for a class of
algorithms whose space usage is bounded by a fixed polynomial.

On the dependency on the length of the output. Note that in the optimal efficiency defined above,
the complexity of the algorithms depends on the length of their respective inputs and the bound on
their output lengths AL.m. We argue that this is necessary. This is because that the garbling of
an algorithm ÂL together with an encoding of an input x̂ encodes the output AL(x), while leaking
nothing beyond AL(x). (ÂL, x̂ is a randomized encoding of AL, x.) Then, assuming the existence
of pseudorandom generators G, the total size of the garbled function Ĝ and encoded input x̂ must
be at least the length of the output of the function. Otherwise, the simulator can “compress”
random strings with overwhelming probability, which is a contradiction. Therefore, we allow the
complexity of the algorithms to depend on the length of the output in optimal efficiency.

Garbling Schemes for Specific Algorithm Classes. Next we instantiate the above definition
of garbling scheme for general algorithm classed with concrete classes.

Definition 4 (Garbling Scheme for Polynomial-sized Circuits). A triplet of algorithms GSCIR =
(GarbCIR,EncodeCIR,EvalCIR) is a garbling scheme (with linear-time-dependent complexity) for poly-
nomial sized circuits if it is a garbling scheme for class CIR (with linear-time-dependent complexity).

We note that in the case of circuits, succinctness means the complexity scales polynomially in
|C|, whereas linear-time-dependency means the complexity scales linearly with |C|.

9Note that the running time of Garb and similarly other algorithms that takes AL as an input, implicitly depends
logarithmically on the time bound of AL, as its description contains the time bound AL.T .

11

88

Approved for Public Release; Distribution Unlimited.

Definition 5 (Garbling Schemes for Polynomial Time Turing Machines). A triplet GSTM =
(GarbTM,EncodeTM,EvalTM) of algorithms is a garbling scheme with optimal efficiency or I/O-
/ space- / linear-time-dependent complexity (and succinct input encodings) for Turing machines, if
it is a garbling scheme for class TM, with the same level of efficiency.

Different efficiency requirements impose qualitatively different restrictions. In this work, we
will construct a garbling scheme for Turing machines with space-dependent complexity assuming
indistinguishability obfuscation for circuits. The construction of garbling scheme from iO for Turing
machines, sketched in the introduction, has I/O-dependent complexity. On the other hand, we show
that a scheme with is impossible; in particular, the complexity of the scheme must scale with the
bound on the output length.

Definition 6 (Garbling Schemes for Polynomial Time RAM Machines). A triplet GSRAM =
(GarbRAM,EncodeRAM,EvalRAM) of algorithms is a garbling scheme for polynomial-time RAM ma-
chines with optimal efficiency or I/O- / space- / linear-time- dependent-complexity, (and succinct
input encodings), if it is a garbling scheme for class RAM, with the same level of efficiency.

Recently, the works by [LO13, GHL+14] give construction of a garbling scheme for RAM ma-
chines with linear-time-dependent complexity and succinct input encodings, assuming only one-way
functions.

Garbled Circuits with Independent Key Generation. In this work, we will make use of
a garbling scheme for circuits with a special structural property. In Definition 4, the key key
for garbling inputs is generated depending on the circuit (by Garb(1λ, C)); the special property of
a circuit garbling scheme is that the key can be generated depending only on the length of the
input 1|x| and the security parameter, which implies that the garbled inputs x̂ can also be generated
depending only on the plain input x and the security parameter λ, independently of the circuit—we
call this independent key generation.

Definition 7 (Garbling Scheme for Circuits with Independent Key Generation). A Garbling
scheme GS = (Garb,Encode,Eval) for a deterministic circuit class {Cλ}λ∈N has independent key

generation if the following holds: For every λ ∈ N, and every C ∈ Cλ,

• The algorithm Garb on input (1λ, C) invokes first key
$← Gen(1λ, 1|x|) and then Ĉ

$← Gb(key, C),
where Gen and Gb are all PPT algorithms.

• The security condition holds w.r.t. a simulator Sim that on input (1λ, 1|x|, 1|C|, TC(x), C(x))

invokes first (x̃, st)
$← Sim·Gen(1λ, 1|x|) and then C̃

$← Sim·Gb((1λ, 1|x|, 1|C|, C(x), st), where
Sim·Gen and Sim·Gb are all uniform PPT algorithms.

It is easy to check that many known circuit garbling schemes, in particular the construction by
Yao [Yao86], has independent key generation.

Proposition 1. Assume the existence of one-way functions that are hard to invert in Γ time. Then,
there exists a garbling scheme GSCIR for polynomial-sized circuits with independent key generation
that is Γ−ε-indistinguishable for some constant ε ∈ (0, 1).

12

89

Approved for Public Release; Distribution Unlimited.

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation, adapting to arbitrary classes of algo-
rithms. As before, we first define the syntax, correctness and security of iO, and then discuss about
different efficiency guarantees.

Definition 8 (Indistinguishability Obfuscator (iO)). A uniform machine iO is a indistinguisha-
bility obfuscator for a class of deterministic algorithms {ALλ}λ∈N, if the following conditions are
satisfied:

Correctness: For all security parameters λ ∈ N, for all AL ∈ ALλ, for all input x, we have that

Pr[AL′ ← iO(1λ, AL) : AL′(x) = AL(x)] = 1

Security: For every polynomial T , every non-uniform PPT samplable distribution D over the sup-
port

{
ALTλ ×ALTλ × {0, 1}poly(λ)

}
, and adversary A, there is a negligible function µ, such

that, for sufficiently large λ ∈ N, if

Pr[(AL1, AL2, z)← D(1λ) : ∀x, AL1(x) = AL2(x), TAL′(x) = TAL(x),

(|AL|, AL.n,AL.m,AL.S,AL.T) = (|AL′|, AL′.n, AL′.m,AL′.S, AL′.T)] > 1− µ(λ)

Then,
∣∣∣Pr[(AL1, AL2, z)

$← D(1λ) : A(iO(1λ, AL1), z)]

−Pr[(AL1, AL2, z)
$← D(1λ) : A(iO(1λ, AL2), z)]

∣∣∣ ≤ µ(λ)

where µ is called the distinguishing gap for D and A.

Furthermore, we say that iO is δ-indistinguishable if the above security condition holds with a
distinguishing gap µ bounded by δ. Especially, iO is sub-exponentially indistinguishable if µ(λ)
is bounded by 2−λ

ε
for a constant ε.

Note that in the security guarantee above, the distribution D samples algorithms AL1, AL2 that
has the same functionality, and matching bound parameters. This means, an obfuscated machine
“reveals” the functionality (as desired) and these bound parameters. We remark that the leakage
of the latter is without loss of generality: In the case of circuits, all bound parameters are set to 2λ.
In the case of other algorithm classes, say Turing and RAM machines. If an iO scheme ensures that
one parameter, say AL.S, is not revealed, one can simply consider a representation that always
sets that parameter to 2λ; then security definition automatically ensures privacy of that parameter.
See Remark 1 for more details.

Definition 9 (Different Levels of Efficiency of IO). We say that an indistinguishability obfuscator
iO of a class of algorithms {ALλ} has optimal efficiency, if there is a universal polynomial p such
that for every λ ∈ N, and every AL ∈ ALλ, iO(1λ, AL) runs in time p(λ, |AL|).

Additionally, we say that iO has input- / space- / linear-time- dependent complexity, if
iO(1λ, AL) runs in time poly(λ, |AL|, AL.n) / poly(λ, |AL|, AL.S) / poly(λ, |AL|)AL.T .

We note that unlike the case of garbling schemes, the optimal efficiency of an iO scheme does
not need to depend on the length of the output. Loosely speaking, the stems from the fact that
indistinguishability-based security does not require “programing” outputs, which is the case in
simulation-based security for garbling.

13

90

Approved for Public Release; Distribution Unlimited.

iO for Specific Algorithm Classes. We recall the definition of iO for polynomial-sized circuits,
NC1 [BGI+01]; and give definitions of iO for polynomial time Turing machines [BCP14] and RAM
machines with different efficiency guarantees.

Definition 10 (Indistinguishability Obfuscator for Poly-sized Circuits and NC1). A uniform PPT
machine iOCIR(·, ·) is an indistinguishability obfuscator for polynomial-sized circuits if it is an in-
distinguishability obfuscator for CIR with optimal efficiency.

A uniform PPT machine iONC1(·, ·, ·) is an indistinguishability obfuscator for NC1 circuits if
for all constants c ∈ N , iONC1(c, ·, ·) is an indistinguishability obfuscator for NCc with optimal
efficiency.

Definition 11 (IO for Turing Machines). A uniform machine iOTM(·, ·) is a indistinguishability
obfuscator for polynomial-time Turing machines, with optimal efficiency or input- / space-dependent
complexity, if it is an indistinguishability obfuscator for the class TM with the same efficiency.

Recently, the works by [BCP14, ABG+13] give constructions of iO for Turing machines10

with input-dependent complexity assuming FHE, differing-input obfuscation for circuits, and P-
certificates [CLP13]; furthermore, the dependency on input lengths can be removed—leading to a
scheme with optimal efficiency—if assuming SNARK instead of P-certificates.

Definition 12 (iO for RAM Machines). A uniform machine iOTM(·, ·) is a indistinguishability
obfuscator for polynomial-time Turing machines, with optimal efficiency or linear-time-dependent
complexity, if it is an indistinguishability obfuscator for the class RAM with the same efficiency.

Remark 1 (Explicit v.s. Implicit Bound Parameters). In the above definitions of Garbling Scheme
and iO for general algorithms, we considered a canonical representation of algorithms AL that
gives information of various bound parameters of the algorithm, specifically, the size |AL|, bound
on input and output lengths AL.n,AL.m, space complexity AL.S, and time complexity AL.T . This
representation allows us to define, in a unified way, different garbling and iO schemes that depend
on different subsets of parameters. For instance,

• The Garbling and iO schemes for TM that we construct in Section 3 and 6 (from iO and sub-
exp iO for circuits respectively) has complexity poly(|AL|, AL.S, log(AL.T)). (In particular,
the size of the garbled TM and obfuscated TM is of this order.)

• The garbling scheme for TM constructed (from iO for TM) sketched in the introduction has
complexity poly(|AL|, AL.n,AL.m, log(AL.T)).

• The garbling scheme for RAM from one-way functions by [LO13, GHL+14] has complexity
scales polynomially in (|AL|, AL.n,AL.m) and quasi-linearly in AL.T . This construction
leads to an iO for RAM (from sub-exp iO for circuits) of the same complexity in 6.

By using the canonical representation, our general definition allows the garbling or iO scheme
to depend on any subset of parameters flexibly. Naturally, if a scheme depends on a subset of param-
eters, the resulting garbled or obfuscated machines may “leak” these parameters (in the above three
examples above, the size of the garbled or obfuscated machines leaks the parameters they depend on);
thus, the security definitions must reflect this “leakage” correspondingly. The general security defi-
nitions 2 and 8 captures this by allowing leakage of all parameters |AL|, AL.n,AL.m,AL.S,AL.T .

10Their works actually realize the stronger notion of differing-input, or extractability, obfuscation for Turing ma-
chines

14

91

Approved for Public Release; Distribution Unlimited.

However, this seems to “overshoot”, as if a specific scheme does not depend on a particular param-
eter (e.g. AL.S), then this parameter should be kept private. This can be easily achieved, by simply
considering an algorithm representation that always set that parameter to 2λ (e.g. AL.S = 2λ).

2.4 Puncturable Pseudo-Random Functions

We recall the definition of puncturable pseudo-random functions (PRF) from [SW14]. Since in this
work, we only uses puncturing at one point, the definition below is restricted to puncturing only
at one point instead of at a polynomially many points.

Definition (Puncturable PRFs). A puncturable family of PRFs is given by a triple of uniform PPT
machines (PRF·Gen,PRF·Punc,F), and a pair of computable functions n(·) and m(·), satisfying the
following conditions:

Correctness. For all outputs K of PRF·Gen(1λ), all points i ∈ {0, 1}n(λ), and K(−i) = PRF·Punc(K, i),
we have that F(K(−i), x) = F(K,x) for all x 6= i.

Pseudorandom at punctured point. For every PPT adversary (A1,A2), there is a negligible
function µ, such that in an experiment where A1(1λ) outputs a point i ∈ {0, 1}n(λ) and a state

σ, K
$← PRF·Gen(1λ) and K(i) = PRF·Punc(K, i), the following holds

∣∣Pr[A2(σ,K(i), i,F(K, i)) = 1]− Pr[A2(σ,K(i), i, Um(λ)) = 1]
∣∣ ≤ µ(λ)

where µ is called the distinguishing gap for (A1,A2).

Furthermore, we say that the puncturable PRF is δ-indistinguishable if the above pseudorandom
property holds with a distinguishing gap µ bounded by δ. Especially, the puncturable PRF is sub-

exponentially indistinguishable if µ(λ) is bounded by 2−λ
ε

for a constant ε.

As observed by [BW13, BGI14, KPTZ13], the GGM tree-based construction of PRFs [GGM86]
from pseudorandom generators (PRGs) yields puncturable PRFs. Furthermore, it is easy to see
that if the PRG underlying the GGM construction is sub-exponentially hard (and this can in turn be
built from sub-exponentially hard OWFs), then the resulting puncturable PRF is sub-exponentially
pseudo-random.

3 A Succinct Garbling Scheme for BSTM

In this section, we construct a garbling scheme for the class of Turing machines TM with space-
dependent complexity. Thus when the space complexity of the TM is bounded, it yields a succinct
scheme. We will see in the next section that our construction for Turing machines directly applies
to general bounded space computation.

Theorem 5. Assuming the existence of IO for circuits and one-way functions. There exists a
garbling scheme for TM with space-dependent complexity.

Towards this, we proceed in two steps: In the first step, we construct a non-succinct garbling
scheme for TM, which satisfies the correctness and security requirements of Definition 1 and 2,
except that the garbling and evaluation algorithms can run in time polynomial in both the time
and space complexity, M.T and M.S, of the garbled Turing machine M (as well as the simulation
algorithm); the produced garbled Turing machine is of size in the same order. In the second step,

15

92

Approved for Public Release; Distribution Unlimited.

we show how to reduce the complexity to depend only on the space complexity M.S, leading to a
garbling scheme with space-dependent complexity. Since in this section, only the space and time
bound parameters matter, we will simply write S and T as M.S and M.T , and we use the notion
D to represent the description size of M .

3.1 A Non-Succinct Garbling Scheme

Overview. The execution of a Turing machine M consists of a sequence of steps, where each step
t depends on the description of the machine M and its current configuration conft, and produces
the next configuration conft+1. In the Turing machine model, each step takes constant time,
independent of the size of the Turing machine and its configuration. However, each step can be
implemented using a circuit NextD,S that on input (M, conft) with |M | ≤ D, | conft | ≤ S, outputs
the next configuration conft+1—we call this circuit the “universal next-step circuit”. The size of
the circuit is a fixed polynomial pNext in the size of the machine and the configuration, that is,
pNext(D,S). The whole execution of M(x) can be carried out by performing at most T evaluations
of NextD,S(M, ·), producing a chain of configurations denoted by,

CONFIG(M,x) = (T ∗, conf1, · · · , confT , confT+1), where T ∗ = TM (x), conf1 is the ini-
tial configuration with input x {conf1, · · · , confT ∗−1, confT ∗} are the sequence of con-
figurations until M(x) halts (conft is the configuration before the tth step starts), and
{confT ∗ , · · · , confT+1} are simply set to the output y = M(x).

We note that the initial configuration conf1 can be derived efficiently from x, confT ∗

is called the final configuration, which can be efficiently recognized and from which an
output y can be extracted efficiently.

When succinctness is not required, the natural idea to garble a T -step Turing machine compu-
tation of M(x) is to produce a chain of T garbled circuits (Ĉ1, · · · , ĈT), for evaluating the next
step circuit NextD,S(M, ·) for M . The tth circuit Ct is designated to compute from the tth configu-
ration conft (as input) to the next conft+1; if the produced conft+1 is a final configuration, then it
simply outputs the output y; otherwise, to enable the evaluation of the next garbled circuit Ĉt+1,
it translates conft+1 into the corresponding garbled inputs ĉonft+1 for Ĉt+1—we call Ct the tth

step-circuit. Then evaluation propagates and the intermediate configurations of the execution of
M on x is implicitly computed one by one, until it reaches the final configuration, in which case,
an output is produced explicitly (without translating into the garbled inputs of the next garbled
circuit). Since each computation step is garbled, and all intermediate configurations, except from
the final output y, are “encrypted” as garbled inputs, the entire chain of garbled circuits can be
simulated given only the output y.

Finally, we note that each step-circuit Ct evaluates NextD,S(M, ·) and has the capability of
garbling an input for the next garbled circuit Ĉt; this can only be achieved if the circuit garbling
scheme has independent key generation, which ensures that the input garbling can be done inde-
pendently of the circuit garbling, and only takes time polynomial in the length of the input (rather
than, in the size of the circuit).

Our Non-Succinct Garbling Scheme. We now describe formally our non-succinct garbling
scheme GSns = (Garbns,Encodens,Evalns). We rely on a garbling scheme for polynomial-sized
circuits with independent key generation.

16

93

Approved for Public Release; Distribution Unlimited.

• Let GSCIR = (GarbCIR,EncodeCIR,EvalCIR) be a garbling scheme for polynomial-sized circuits,
and SimCIR the simulation algorithm. We require GSCIR to have independent key generation,
that is, GarbCIR = (GenCIR,GbCIR), and SimCIR = (Sim·GenCIR,Sim·GbCIR) as described in
Definition 7.

Let NextD,S be the universal next step circuit for machine of size at most D and space complexity
at most S; it has a fixed polynomial size pNext(D,S) and can be generated efficiently given D and
S. For every λ and M ∈ TMλ, our scheme proceeds as follows:

The garbling algorithm Garbns(1
λ,M):

Let S = M.S, T = M.T and D = |M |.
Sample 2T sufficiently long random strings α1, · · · , αt and β1, · · ·βt; produce a chain of T
garbled circuits using GarbCIR by running the following program for every t ∈ [T].

Program Pλ,S,M (t ; (αt, αt+1, βt)) :

1. Generate the key keyt+1 for the next garbled circuit:

If t < T , compute the key for the t + 1th garbled circuit keyt+1 = GenCIR(1λ, 1S ;αt+1)
using randomness αt+1. (Note that keyt is generated for inputs of length S.)

2. Prepare the step-circuit Ct:

Stept on a S-bit input conft (i) compute conft+1 = NextD,S(M, conft); (ii) if conft+1

is a final configuration, simply outputs the output y contained in it11; (iii) otherwise,
translate conft+1 to the garbled inputs of the t + 1th garbled circuit, by computing
ĉonft+1 = EncodeCIR(keyt+1, conft+1).

3. Garble the step-circuit Ct:

Compute the key using randomness αt, keyt = GenCIR(1λ, 1S ;αt), and garble Ct using
randomness βt, Ĉt = GbCIR(keyt,Ct;βt),

4. Output Ĉt.

Generate key as follows: Compute the key for the first garbled circuit using randomness α1,
key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1S .

Finally, output M̂ = (Ĉ1, · · · , ĈT),key.

The encoding algorithm Encodens(key, x): Let conf1 ∈ {0, 1}S be the initial configuration of

M with input x; compute x̂ = ĉonf1 = EncodeCIR(key1, conf1).

The evaluation algorithm Evalns(M̂, x̂): Evaluate the chain of garbled circuits M̂ = (Ĉ1, · · · , ĈT)

in sequence in T iterations: In iteration t, compute z = EvalCIR(Ĉt, ĉonft); if z is the garbled

inputs ĉonft+1 for the next garbled circuit Ĉt+1, proceed to the next iteration; otherwise,
terminate and output y = z.

Next, we proceed to show that GSns is a non-succinct garbling scheme for TM.

Efficiency. We summarize the complexity of different algorithms of the non-succinct scheme.
It is easy to see that for any Turing machine M with D = |M |, S = M.S and T = M.T , the
garbling algorithm Garbns runs in time poly(λ,D, S)× T , and produces a garbling machine of size
in the same order. Thus the garbling scheme is non-succinct. On the other hand, the encoding
and evaluation algorithms Encodens and Evalns are all deterministic polynomial time algorithms.
Finally, the simulation run in time poly(λ,D, S)× T as the garbling algorithm.

11Pad y with 0 if it is not long enough

17

94

Approved for Public Release; Distribution Unlimited.

Correctness. We show that for every polynomial T ′, every sequence of algorithms {M = Mλ} ∈
{TMT ′

λ }, and sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n, there exists a negligible function
µ, such that,

Pr[(key, M̂)
$← Garbns(1

λ,M), x̂ = Encodens(key, x) : Evalns(M̂, x̂) 6= M(x)] ≤ µ(λ)

Let CONFIG(M,x) = (T ∗, conf1, · · · , confT , confT+1) be the sequence of configurations gener-
ated in the computation of M(x), where T ≤ T ′(λ). It follows from the correctness of the circuit
garbling scheme GarbCIR that with overwhelming probability (over the randomness of Garbns), the

following is true: (1) for every t < T ∗, the garbled circuit Ĉt, if given the garbled input ĉonft cor-

responding to conft, computes the correct garbled inputs ĉonft+1 corresponding to conft+1, and (2)

for t = T ∗, the garbled circuit ĈT ∗ , if given the garbled input ĉonfT ∗−1 corresponding to confT ∗−1,
produces the correct output y. (Note that the evaluation procedure terminates after T ∗ iterations
and circuits Ĉt for t > T ∗ are never evaluated). Then since the garbled input x̂ equals to the

garbled initial configuration ĉonf1, by conditions (1) and (2), the evaluation procedure produces
the correct output with overwhelming probability.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ }, and any

sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the security of GSns, we
construct a simulation algorithm Simns, and show that the following two ensembles are indistin-
guishable: For convenience of notation, we suppress the appearance of M.n and M.m as input to
Sim.

{
realns(1

λ,M, x)
}

=
{

(M̂,key)
$← Garbns(1

λ,M), x̂ = Encodens(key, x) : (M̂, x̂)
}
λ

(1)
{
simuns(1

λ,M, x)
}

=
{

(M̃, x̃)
$← Simns(1

λ, 1|x|, 1|M |, S, T, TM (x),M(x)) : (M̃, x̃)
}
λ

(2)

Below we describe the simulation algorithm. Observe that the garbled machine M̂ consists of T
garbled circuits (Ĉ1, · · · , ĈT) and the garbled input x̂ is simply the garbled input of the initial con-
figuration conf0 (corresponding to x) for the first garbled circuit Ĉ1. Naturally, to simulate them,
the algorithm Simns needs to utilize the simulation algorithm SimCIR = (Sim·GenCIR,Sim·GbCIR) of
the circuit garbling scheme, which requires knowing the output of each garbled circuit. In a real
evaluation with M̂, x̂, the output of the (T ∗)th garbled circuit is y = M(x), the output of the

garbled circuits t < T ∗ is the garbled input ĉonft+1 for next garbled circuit t+ 1, and the garbled
circuits t > T ∗ are not evaluated, but for which y is a valid output. Thus, in the simulation, garbled
circuits t = T ∗, · · · , T can be simulated using output y; whereas garbled circuits t = 1, · · · , T ∗ − 1
will be simulated using the simulated garbled inputs for circuit t+ 1. More precisely,

The simulation algorithm Simns(1
λ, 1|x|, 1|M |, S, T, T ∗ = TM (x), y = M(x)):

Sample 2T sufficiently long random strings α1, · · · , αT , β1, · · · , βT . Simulate the chain of
garbled circuits by running the following program for every t ∈ [T].

Program Qλ,S,|M |,T ∗,y(t ; (αt, αt+1, βt)) :

1. Prepare the output outt for the tth simulated circuit C̃t:

If t ≥ T ∗, outt = y. Otherwise, if t < T ∗, set the output as the garbled input for
the next garbled circuits, that is, outt = c̃onft+1 computed from (c̃onft+1, stt+1) =
Sim·GenCIR(1λ, 1S ; αt+1) using randomness αt+1.

18

95

Approved for Public Release; Distribution Unlimited.

2. Simulate the tth step-circuit C̃t:

Given the output outt, simulate the tth garbled circuit C̃t by computing first (c̃onft, stt) =
Sim·GenCIR(1λ, 1S ; αt) and then C̃t = Sim·GbCIR(1λ, 1S , 1q, outt, stt ; βt), using random-
ness αt, βt where q = q(λ, S) is the size of the circuit Ct.

3. Output C̃t.

Simulate the garbled input x̃ by computing again (c̃onf1, st1) = Sim·GenCIR(1λ, 1S ; α1) using

randomness α1, and setting x̃ = c̃onf1.

Finally, output (M̃ = (C̃1, · · · , C̃T), x̃).

Towards showing the indistinguishability between honestly generated garbling (M̂, x̂) and the
simulation (M̃, x̃), we will consider a sequence of hybrids hyb0

ns, · · · , hybTns, where hyb0
ns samples

(M̂, x̂) honestly, while hybTns generates the simulated garbling (M̃, x̃). In every intermediate hybrid
hybγns, a hybrid simulator HSimγ

ns is invoked, producing a pair (M̃γ , x̃γ) . At a high-level, the γth

hybrid simulator on input (1λ,M, x) simulate the first γ − 1 garbled circuits using the program
Q, generates the last T − γ garbled circuits honestly using the program P, and simulates the γth

garbled circuits using the program R described below, which “stitches” together the first γ − 1
simulated circuits with the last T − γ honest circuits into a chain that evaluates to the correct
output. More precisely, we will denote by

COMBINE[(P1, S1), ·, (P`, S`)] a merged circuit that on input x in the domain X, com-
putes Pj(x) if x ∈ Sj , where S1, · · · , S` is a partition of the domain X.

The hybrid simulation algorithm HSimγ
ns(1

λ,M, x) for γ = 0, · · · , T :

Compute T ∗ = TM (x) and y = M(x), and the intermediate configuration confγ+1 as defined
by CONFIG(M,x).

Sample 2T sufficiently long random strings {αt, βt}t∈[T]. Simulate the chain of garbled circuits
by running the following program for every t ∈ [T], which combines programs P, Q and R
as below.

Program Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] (t ; (αt, αt+1, βt)) :

• If t ≤ γ − 1, compute C̃t = Qλ,S,|M |,T ∗,y(t ; (αt, αt+1, βt)); output C̃t.

• If t ≥ γ + 1, compute Ĉt = Pλ,S,M (t ; (αt, αt+1, βt)); output Ĉt.

• If t = γ, compute C̃t = Rλ,S,confγ+1(γ ; (αγ , αγ+1, βγ)) define as follow:

1. Prepare the output outγ of the simulated γth circuit C̃t:
Set the output outγ to y if confγ+1 is a final configuration. Otherwise, the output
should be the garbled input corresponding to confγ+1 for the next garbled circuit;

since the γ + 1th circuit is generated honestly, we compute outγ = ĉonfγ+1 by

first computing keyγ+1 = GenCIR(1λ, 1S ; αγ+1), and then encoding ĉonfγ+1 =
EncodeCIR(keyγ+1, confγ+1).
(Note that the difference between program Q and R is that the former prepares the

output outγ using simulated garbled input c̃onft+1, whereas the latter using honestly

generated garbled input ĉonfγ+1.)

2. Simulate the γth circuit C̃t:
Given the output outγ , simulate the γth garbled circuit C̃γ by computing (c̃onfγ , stγ) =

Sim·GenCIR(1λ, 1S ; αγ) and C̃t = Sim·GbCIR(1λ, 1S , 1q, outγ , stγ ; βγ), where q =
q(λ, S) is the size of the circuit Ct.

19

96

Approved for Public Release; Distribution Unlimited.

If γ > 0, simulate the garbled input x̃γ as Simns does. Otherwise, if γ = 0, generate the
garbled input x̃0 honestly as in Garbns and Encodens.

Finally, output (M̃γ = (C̃1, · · · , C̃γ , Ĉγ+1ĈT), x̃γ).

We overload notation hybγns(1
λ,M, x) as the output distribution of the hybrid simulator HSimγ

ns.
By construction, in HSimγ

ns, when γ = 0, M0 = P and the garbled input x̃0 is generated honestly;
thus, {hyb0

ns(1
λ,M, x)} = {realns(1λ,M, x)} (where realns is the distribution of honestly generated

garbling; see equation (1)); furthermore, when γ = T , M0 = Q and the garbled input x̃γ is simu-
lated; thus

{
hybγns(1

λ,M, x)
}

=
{
simuns(1

λ,M, x)
}

(where simuns is the distribution of simulated
garbling; see equation (2)). Thus to show the indistinguishability between {realns(1λ,M, x)} and
{simuns(1

λ,M, x)}, it suffices to show the following claim:

Claim 1. For every γ ∈ N, the following holds

{
hybγ−1

ns (1λ,M, x)
}
λ
≈
{
hybγns(1

λ,M, x)
}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. The only difference
between the garbling (M̃γ−1, x̃γ−1) sampled by hybγ−1

ns (1λ,M, x) and the garbling (M̃γ , x̃γ) sampled
by hybγns(1

λ,M, x) is the following: Let confγ be the intermediate configuration at the beginning
of step γ.

• In hybγ−1
ns , the γth garbled circuit Ĉγ is generated honestly using program P. The circuit

Cγ (as described in algorithm Garbns) is the composition of the circuit Nextλ,S(M, ·) and the
encoding algorithm EncodeCIR(keyγ+1, ·), where keyγ+1 = GenCIR(1λ, 1S ;αγ+1) is generated
honestly.

Furthermore, the first γ− 1 garbled circuits are simulated using R and Q. The simulation of
the first γ−1 circuits as well as the generation of the garbled input x̃γ depends potentially on

the garbled input ĉonfγ corresponding to confγ for Ĉγ (when confγ is not a final configuration;
see Step 1 in R).

In other words, the output of hybγ−1
ns can be generated by the following alternative sampling

algorithm:

– Generate garbled circuits γ+1, · · · , T honestly using program P; prepare the γth circuit
Cγ using keyγ+1.

– Receive externally honest garbling (Ĉγ , ĉonfγ) of (Cγ , confγ).

– Simulate the first γ − 1 circuits using R and Q, with ĉonfγ hardwired in R.

• In hybγns, the γth garbled circuit C̃γ is simulated using program R; the output outγ used for
simulation is set to either y (if confγ+1 is a final configuration) or the honestly generated

gabled input ĉonfγ+1. In other words, outγ = Cγ(confγ), where Cγ is prepared in the same
way as above.

Furthermore, the previous γ − 1 garbled circuits are also simulated using program Q. Their
simulation as well as the generation of the garbled input x̃γ+1 depends potentially on the

corresponding simulated garbled input c̃onfγ of C̃γ .

In other words, the output of hybγns can be generated by the same alternative sampling
algorithm above, except that the second step is modified to:

20

97

Approved for Public Release; Distribution Unlimited.

– Receive externally simulated garbling (C̃γ , c̃onfγ) generated using output Cγ(confγ).

Then it follows from the security of the circuit garbling scheme GSCIR that the distributions of
(Ĉγ , ĉonfγ) and (C̃γ , c̃onfγ) received externally by the alternative sampling algorithm above are
computationally indistinguishable, and thus the distributions of outputs of hybγ−1

ns and hybγns, which
can be efficiently constructed from them, are also indistinguishable

Finally, by the above claim, it follows from a hybrid argument over γ, that {realns(1λ,M, x)}
and {simuns(1

λ,M, x)} are indistinguishable; Hence, GSns is a secure garbling scheme for TM.

3.2 A Garbling Scheme for TM with Space-dependent Complexity

In this section, we construct a garbling scheme GS = (Garb,Encode,Eval) for TM with space-
dependent complexity. This scheme will rely on the non-succinct garbling scheme GSns = (Garbns,
Encodens,Evalns) in a non-black-box, but largely modular, way.

Overview. The garbling scheme GSns described in the previous section is non-succinct because
its garbling algorithm Garbns runs in time proportional to the time-bound T (and generates a
garbling of size proportional to T .) Our first observation is that the “bulk” of the computation of
Garbns is evaluating the same randomized program P(·) for T times with coordinated random coins,
to create a chain of garbled circuits:

M̂ = (Ĉ1, · · · , ĈT), Ĉt = P(t;αt, αt+1, βt)

The complexity of each garbled circuit depends only on the size of M and its space complexity
S, that is, poly(D,S) (independent of T). Our main idea towards constructing a garbling scheme
GS with space-dependent complexity is to defer the T executions of P, from garbling time (that
is, in Garb), to evaluation time (that is, in Eval), by using an indistinguishability obfuscator iO
for circuits. More specifically, instead of computing the chain of garbled circuits M̂ directly, the
new garbling algorithm Garb generates an obfuscation of the program P, that is P = iO(P), and
use that as the new garbled machine; (since P has size poly(D,S), the obfuscation is “succinct”
and so is the new garbling algorithm). The procedure for creating garbled inputs x̂ remains the
same as in the non-succinct scheme GSns. Then, on input (P, x̂), the new evaluation algorithm
Eval first generates the chain of garbled circuits M̂ = (Ĉ1, · · · , ĈT) by evaluating P on inputs from
1, · · ·T ; once the chain M̂ of garbled circuits is generated, the output can be computed by evaluating
Evalns(M̂, x̂) as in the non-succinct scheme GSns. (Note that to make sure that evaluation algorithm
has instance-based efficiency, the algorithm Eval actually generates and evaluates Ĉt’s one by one,
and terminates as soon as an output is produced.)

To make the above high-level idea go through, a few details need to be taken care of. First,
the program P is randomized, whereas indistinguishability obfuscators only handles deterministic
circuits. This issue is resolved by obfuscating, instead, a wrapper program P(t) that runs P(t) with
pseudo-random coins generated using a PRF on input t. In fact, the use of pseudo-random coins
also allows coordinating the random coins used in different invocations of P on different inputs,
so that they will produce coherent garbled circuits that can be run together. The second question

is how to simulate the new garbled machine P $← iO(P). In the non-succinct scheme the chain
M̂ of garbled circuits is simulated by running the program Q for T times (again with coordinated
random coins),

M̃ = (C̃1, · · · , C̃T) Ĉt = Q(t;αt, αt+1, βt)

21

98

Approved for Public Release; Distribution Unlimited.

Naturally, in the succinct scheme, the simulation creates Q $← iO(Q) (where Q is the de-randomized
version for Q, as P is for P). By the pseudo-randomness of PRF and the security of garbled
circuits, we have that the truth tables M̂ and M̃ of P and Q are indistinguishable; but this does
not directly imply that their obfuscations are indistinguishable. We bridge the gap by considering
the obfuscation of a sequence of hybrid programs (as in the security proof of the non-succinct
garbling scheme).

∀γ ∈ [0, T + 1], Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] , Mγ $← iO(Mγ)

The sequence of hybrid programs “morphs” gradually from program P = M0 to program Q =
MT+1; since every pair of subsequent programs Mγ−1,Mγ differs only at two inputs (γ − 1 and γ)
with indistinguishable outputs, we can use standard techniques such as puncturing and programing
to show that their obfuscations are indistinguishable, and hence so are P and Q.

Our Succinct Garbling Scheme. We now describe the formal construction, which relies on the
following building blocks.

• A garbling scheme for polynomial-sized circuits, with independent key generation: GSCIR =
(GarbCIR,EncodeCIR,EvalCIR), where GarbCIR = (GenCIR,GbCIR) and its the simulation algo-
rithm is SimCIR = (Sim·GenCIR,Sim·GbCIR).

• An indistinguishability obfuscator iOCIR(·, ·) for polynomial-sized circuits.

• A puncturable PRF (PRF·Gen,PRF·Punc,F) with input length n(λ) and output length m(λ),
where n(λ) can be set to any super-logarithmic function n(λ) = ω(log λ), and m is a suffi-
ciently large polynomial in λ.

For every λ and M ∈ TMλ, the garbling scheme GS proceeds as follows:

Circuit P = Pλ,S,M,Kα,Kβ : On input t ∈ [T], does:

Generates pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute Ĉt = Pλ,S,M (t ; (αt, αt+1, βt)) and output Ĉt.

Circuit Q = Qλ,S,|M |,T∗,y,Kα,Kβ : On input t ∈ [T], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute C̃t = Qλ,S,|M |,T∗,y(t ; (αt, αt+1, βt)) and output C̃t.

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 1: Circuits used in the construction and simulation of GS

The garbling algorithm Garb(1λ,M):

1. Sample PRF keys: Kα
$← PRF·Gen(1λ) and Kβ

$← PRF·Gen(1λ).

2. Obfuscate the circuit P:

Obfuscate the circuit P(t) = Pλ,S,M,Kα,Kβ (t) as described in Figure 1, which is essentially
a wrapper program that evaluates P on t using pseudo-random coins generated using

Kα and Kβ as described above. Obtain P $← iO(1λ,P).

22

99

Approved for Public Release; Distribution Unlimited.

3. Generate the key for garbling input:

Compute key in the same way as the garbling scheme Garbns does, but using pseudo-
random coins generated using Kα. That is, Compute the key for the first garbled circuit
using randomness α1 = F(Kα, 1), key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1S .

4. Finally, output (P,key).

The encoding algorithm Encode(key, x): Compute x̂ = Encodens(key, x).

The evaluation algorithm Eval(P, x̂): Generate and evaluate the garbled circuits in the non-
succinct garbling M̂ one by one; terminate as soon as an output is produced. More precisely,
evaluation proceeds in T iterations as follows:

At the beginning of iteration t ∈ [T], previous t− 1 garbled circuits has been generated and

evaluated, producing garbled input ĉonft (ĉonf1 = x̂). Then, compute Ĉt = P(t); evaluate

z = EvalCIR(Ĉt, ĉonft); if z is a valid output, terminate and output y = z; otherwise, proceed

to the next iteration t+ 1 with ĉonft+1 = z.

Next, we proceed to show that GS is a garbling scheme for TM with space-dependent complexity.

Correctness. Fix any machine M ∈ TM and input x. Recall that the garbling algorithm Garb
generates a pair (P,key); the latter is later used by the encoding algorithm Encode to obtain
garbled input x̂, while the former is later used by the evaluation algorithm Eval to create the non-
succinct garbling M̂ = {Ĉt = P(t)}t∈[T]; the non-succinct garbling M̂ is then evaluated with x̂ using
algorithm Evalns. The distribution of the garbled input and the non-succinct garbling recovered by
Eval is as follows:

D1 =
{

(P,key)
$← Garb(1λ,M) :

(
x̂ = Encode(key, x), M̂ =

{
Ĉt = P(t)

}
t∈[T]

)}

It follows from the construction of Garb,Encode and the correctness of the indistinguishability
obfuscator that the above distribution D1 is identical to the distribution D2 of a garbled pair
(M̂ ′, x̂′) generated by the algorithms Garbns,Encodens of the non-succinct scheme, using pseudo-
random coins, formalized below.

D2 =
{
Kα,Kβ

$← PRF·Gen(1λ), ∀t ∈ [T], αt = F(Kα, t), βt = F(Kβ, t) :
(
x̂′ = Encodens(key′ = GenCIR(1λ, 1S ;α1), x), M̂ ′ =

{
Ĉt = P(t;αt, αt+1, βt)

}
t∈[T]

)}

By the pseudo-randomness of PRF, distribution D2 is computationally indistinguishable from the
garbled pair generated by Garbns,Encodens, using truly random coins.

D3 =
{

(M̂ ′′,key′′) $← Garbns(1
λ,M) :

(
x̂′′ = Encodens(key′′, x), M̂ ′′

)}

The correctness of the non-succinct garbling scheme GSns guarantees that with overwhelming
probability, evaluating M̂ ′′ with x̂′′ produces the correct output y = M(x); furthermore, the correct
output y is produced after evaluating only the first T ∗ = TM (x) garbled circuits. Thus, it follows
from the indistinguishability between D1 and D3 that, when evaluating a garbled pair (M̂, x̂)
sampled from D1, the correct output y is also produced after evaluating the first T ∗ garbled circuits.
Given that D1 is exactly the distribution of the non-succinct garbled pairs generated in Eval, we
have that correctness holds.

23

100

Approved for Public Release; Distribution Unlimited.

Efficiency. We show that the garbling scheme GS has space-dependent complexity.

• The garbling algorithm Garb(1λ,M) runs in time poly(λ, |M |, S). This is because Garb pro-
duces an obfuscation of the program P (a de-randomized version of P) which garbles cir-
cuits Ct using pseudo-random coins for every input t ∈ [T]. Since the program Ct has size
q = poly(λ, |M |, S) as analyzed in the non-succinct garbling scheme, so does P and P (note
that the input range T of these two programs are contained as part of the description of
M , and hence |M | > log T). Therefore, Garb takes time poly(λ, |M |, S) to produced the
obfuscation of P. Additionally, notice that Garb generates the key as the algorithm Garbns
does, which in turn runs GarbCIR(1λ, 1S) and takes time poly(λ, S). Overall, Garb runs in time
poly(λ, |M |, S) as claimed.

• Encode run in time the same as the Encodens algorithm which is poly(λ, |M |, S).

• The evaluation algorithm Eval on input (P, x̂) produced by (P,key)
$← Garb(1λ, 1S) and

x̂ = Encode(key, x) runs in time poly(λ, |M |, S) × T ∗, T ∗ = TM (x), with overwhelming
probability.

It follows from the analysis of correctness of GS that with overwhelming probability over the
coins of Garb, the non-succinct garbling M̂ defined by P satisfies that when evaluated with
x̂, the correct output is produced after T ∗ iterations. Since Eval does not compute the entire
non-succinct garbling M̂ in one shot, but rather, generates and evaluates the garbled circuits
in M̂ one by one. Thus it terminates after producing and evaluating T ∗ garbled circuits.
Since the generation and evaluation of each garbled circuit takes poly(λ, |M |, S) time, overall
Eval runs in time TM (x)× poly(λ, |M |, S) as claimed.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ }, and any

sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the security of GS, we
construct a simulator Sim, satisfying that the following two ensembles are indistinguishable in λ:

{
real(1λ,M, x)

}
=

{
(P,key)

$← Garb(1λ,M), x̂ = Encode(key, x) : (P, x̂)
}
λ

(3)
{
simu(1λ,M, x)

}
=

{
(Q, x̃)

$← Sim(1λ, 1|x|1|M |, S, T, TM (x),M(x)) : (Q, x̃)
}
λ

(4)

As discussed in the overview, the simulation will obfuscate the program Q used for simulating
the non-succinct garbled machine M̃ = (C̃1, · · · , C̃T). More precisely,

The simulation algorithm Sim(1λ, 1|x|, 1|M |, S, T, T ∗ = TM (x), y = M(x)):

1. Sample PRF keys: Kα
$← PRF·Gen(1λ) and Kβ

$← PRF·Gen(1λ).

2. Obfuscate the circuit Q:

Obfuscate the circuit Q(t) = Qλ,S,|M |,T ∗,y,Kα,Kβ (t) as described in Figure 1, which is
essentially a wrapper program that evaluates Q on t, using pseudo-random coins {αt, βt}
generated by evaluating F on keys Kα and Kβ and inputs t ∈ [T]. Obtain Q $← iO(1λ,Q).

3. Simulate the garbled input:

Simulate the garbled input x̃ in the same way as simulator Simns does, but using pseudo-
random coins. That is, compute (c̃onf1, st1) = Sim·GenCIR(1λ, 1S ; α1), where α1 =

F(Kα, 1); set x̃ = c̃onf1.

24

101

Approved for Public Release; Distribution Unlimited.

4. Finally, output (Q, x̃).

The simulator Sim(1λ, 1|x|, 1|M |, S, T, T ∗, y = M(x)) runs in time poly(λ, |M |, S). This follows
because the simulator simulates the garbled Turing machine by obfuscating the program Q. As the
program Q simply runs Q using pseudo-random coins, its size is poly(λ, |M |, S); thus obfuscation
takes time in the same order. On the other hand, Sim simulates the garbled input x̃ as the simulator
Simns does, which simply invokes SimCIR(1λ, 1S) of the circuit garbling scheme, which takes time
poly(λ, S). Therefore, overall the simulation takes time poly(λ, |M |, S) as claimed.

Towards showing the indistinguishability between honestly generated garbling (P, x̂)
$← real(1λ,M, x)

and the simulation (Q, x̃)
$← simu(1λ,M, x) (see equation (3) and (4) for formal definition of real

and simu), we will consider a sequence of hybrids hyb0, · · · , hybT , where the output distribution of
hyb0 is identical to real, while that of hybT is identical to simu. In every intermediate hybrid hybγ , a
hybrid simulator HSimγ is invoked, producing a pair (Mγ

, x̃γ), where Mγ
is the obfuscation of (the

de-randomized wrapper of) a merged program Mγ that produces a hybrid chain of garbled circuit
as in the security proof of the non-succinct garbling scheme, where the first γ garbled circuits are
simulated and the rest are generated honestly. More precisely,

The hybrid simulation algorithm HSimγ(1λ,M, x) for γ = 0, · · · , T :

Compute T ∗ = TM (x) and y = M(x), and the intermediate configuration confγ+1 as defined
by CONFIG(M,x).

1. Sample PRF keys: Kα
$← PRF·Gen(1λ) and Kβ

$← PRF·Gen(1λ).

2. Obfuscate the circuit Mγ:

Obfuscate the circuit Mγ(t) = (Mγ)λ,S,M,T ∗,y,confγ+1,Kα,Kβ (t) as described in Figure 1,
which is essentially a wrapper program that evaluates the combined program

Mγ = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] (t ; (αt, αt+1, βt)),

using pseudo-random coins {αt, βt} generated usingKα andKβ. Obtain Mγ $← iO(1λ,Mγ).

3. Simulate the garbled input:

If γ > 0, simulate the garbled input x̃γ in the same way as in Sim. Otherwise, if γ = 0,
generate x̃0 honestly, using Garb and Encode.

4. Finally, output (Mγ
, x̃γ).

Circuit Mγ = (Mγ)λ,S,M,T∗,y,confγ+1,Kα,Kβ : On input t ∈ [T], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t+ 1) and βt = F(Kβ , t);

Compute C̃t = Mγ(t ; (αt, αt+1, βt)) and output C̃t, where Mγ is:

(Mγ)λ,S,M,T∗,y,confγ+1 = COMBINE [(Q, [γ − 1]), (R, {γ}), (P, [γ + 1, T])] (t ; (αt, αt+1, βt))

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 2: Circuits used in the security analysis of GS

25

102

Approved for Public Release; Distribution Unlimited.

We describe circuits Mγ
1 to Mγ

6 . They all have parameters λ, S,M, T ∗, y, confγ+1 hardwired in;
for simplicity, we suppress these parameters in the superscript.

Circuit Mγ
1 = (Mγ

1)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 : On input t ∈ [T], does:

If t 6= γ, generate pseudo-random string αt+1 = F(Kα(γ + 1), t+ 1).

If t 6= γ + 1, generate pseudo-random strings αt+1 = F(Kα(γ + 1), t) and βt =
F(Kβ(γ + 1), t).

Proceed as Mγ does using random coins αt, αt+1, βt.

Circuit Mγ
2 = (Mγ

2)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 :

Identical to (Mγ
1)Kα(γ+1),Kβ(γ+1),α′γ+1,β

′
γ+1 , with α′γ+1, β

′
γ+1 sampled at random.

Circuit Mγ
3 = (Mγ

3)Kα(γ+1),Kβ(γ+1),Ĉγ+1,ĉonfγ+1 : On input t ∈ [T], does:

If t = γ + 1, output Ĉγ+1.

If t = γ, set outγ using ĉonfγ+1 as in Step 1 of program R; simulate and output C̃γ as in
Step 2 of R.

Otherwise, compute as Mγ
2 does using the punctured keys Kα(γ + 1),Kβ(γ + 1).

Circuit Mγ
4 = (Mγ

4)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 :

Identical to (Mγ
3)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 , with simulated garbling pair C̃γ+1, c̃onfγ+1.

Circuit Mγ
5 = (Mγ

5)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 : On input t ∈ [T], does:

If t = γ + 1, compute C̃γ+1 using program R with randomness α′γ+1, αγ+2, β
′
γ+1.

If t = γ, compute C̃γ using program Q, which internally computes c̃onfγ+1 for setting the
output outγ using randomness α′γ+1.

Otherwise, compute as Mγ
4 does using the punctured keys Kα(γ + 1),Kβ(γ + 1).

Circuit Mγ
6 = (Mγ

6)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 :

Identical to (Mγ
5)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 , with αγ+1 = F(Kα, γ+ 1), βγ+1 = F(Kβ , γ+ 1)

The circuits in Figure 1, 2 and 3 are padded to their maximum size.

Figure 3: Circuits used in the security analysis of GS, continued

We overload the notation hybγ(1λ,M, x) as the output distribution of the γth hybrid. By
construction, when γ = 0, M0 = P and the garbled input x̃0 is generated honestly; thus,
{hyb0(1λ,M, x)} = {real(1λ,M, x)}; furthermore, when γ = T , MT = Q and the garbled in-
put x̃T is simulated; thus

{
hybT (1λ,M, x)

}
=
{
simu(1λ,M, x)

}
. Therefore, to show the security of

GS, it boils down to proving the following claim:

Claim 2. For every γ ≥ 0, the following holds
{
hybγ(1λ,M, x)

}
λ
≈
{
hybγ+1(1λ,M, x)

}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. Note that the only

difference between (Mγ
, x̃γ)

$← hybγ and (Mγ+1
, x̃γ+1)

$← hybγ+1 is the following:

• For every γ, the underlying obfuscated programs Mγ ,Mγ+1 differ on their implementation for
at most two inputs, namely γ, γ + 1, and,

26

103

Approved for Public Release; Distribution Unlimited.

• when γ = 0, the garbled input x̃0 is generated honestly in hyb0, whereas x̃1 is simulated in
hyb1.

To show the indistinguishability of the two hybrids, we consider a sequence of sub-hybrids from
Hγ0 = hybγ to Hγ7 = hybγ+1. Below we describe these hybrids Hγ0 , · · ·Hγ7 , and argue that the
output distributions of any two subsequent hybrids are indistinguishable. We denote by (Mγ

i , x̃
γ
i)

the garbled pair produced in hybrid Hγi for i = 0, · · · , 7. For convenience, below we suppress the
superscript γ, and simply use notations Hi = Hγi , Mi = Mγ

i , Mi = Mγ
i and x̃i = x̃γi .

Hybrid H1: Generate a garbled pair (M1, x̃1) by running a simulation procedure that proceeds
identically to HSimγ , except from the following modifications:

• In the first step, puncture the two PRF keysKα,Kβ at input γ + 1, and obtainKα(γ + 1) =
PRF·Punc(Kα, γ + 1) and Kβ(γ + 1) = PRF·Punc(Kβ, γ + 1). Furthermore, compute
αγ+1 = F(Kα, γ + 1) and βγ+1 = F(Kβ, γ + 1).

• In the second step, obfuscate a circuit M1 slightly modified from Mγ : Instead of having
the full PRF keys Kα,Kβ hardwired in, M1 has the punctured keys Kα(γ + 1),Kβ(γ + 1)
and the PRF values αγ+1, βγ+1 hardwired in; M1 proceeds identically to M1, except that
it uses the punctured PRF keys to generate pseudo-random coins corresponding to input
t 6= γ + 1 and directly use αγ+1, βγ+1 as the coins for input t = γ + 1. See Figure 1 for
a description of M1 = Mγ

1 .

By construction, H1 only differs from hybγ at which underlying program is obfuscated, and
program M1 has the same functionality as Mγ . Thus it follows from the security of indistin-
guishability obfuscator iO that, the obfuscated programs Mγ

and M1 are indistinguishable.
(Furthermore, the garbled inputs x̃γ and x̃1 in these two hybrids are generated in the same
way.) Thus, we have that the output (M1, x̃1) of H1 is indistinguishable from the output
(Mγ

, x̃γ) of hybγ . That is,

{
hybγ(1λ,M, x)

}
λ
≈
{
H0(1λ,M, x)

}
λ

Hybrid H2: Generate a garbled pair (M2, x̃2) by running the same simulation procedure as in
H1 except from the following modifications: Instead of using pseudo-random coins αγ+1 and

βγ+1, hybrid H2 samples two sufficiently long truly random string α′γ+1, β
′
γ+1

$← {0, 1}poly(λ)

and replace αγ+1, βγ+1 with these truly random strings. More specifically, H2 obfuscates a
program M2 that is identical to M1, but with (Kα(γ + 1),Kβ(γ + 1), α′γ+1, β

′
γ+1) hardwired

in; furthermore, if γ = 0, α′1 (as opposed to α1) is used to generate the garbled input x̃2. Since
only the punctured keys Kα(γ + 1),Kβ(γ + 1) are used in the whole simulation procedure, it
follows from the pseudo-randomness of the punctured PRF that the output (M2, x̃2) of H2 is
indistinguishable from that (M1x̃1) of hyb1. That is,

{
H1(1λ,M, x)

}
λ
≈
{
H2(1λ,M, x)

}
λ

Hybrid H3: Generate a garbled pair (M3, x̃3) by running the same simulation procedure as in H2

with the following modifications:

• Observe that in program M2, α′γ+1, β
′
γ+1 are used in the evaluation of at most two inputs,

γ and γ + 1:

27

104

Approved for Public Release; Distribution Unlimited.

For input γ + 1, program P is invoked with input γ+1 and randomness α′γ+1, αγ+2, β
′
γ+1,

in which a circuit Cγ+1 is prepared depending on αγ+2, and then obfuscated by com-
puting

keyγ+1 = GenCIR(1λ, 1S ;α′γ+1) Ĉγ+1 = GbCIR(keyγ+1,Cγ+1;β′γ+1)

If γ > 0, for input γ , program R is invoked with input γ and randomness αγ , α
′
γ+1, βγ , in

which a garbled circuit C̃γ is simulated; the output outγ used for the simulation depends
potentially on an honest garbling of confγ+1, that is,

ĉonfγ+1 = EncodeCIR

(
GenCIR(1λ, 1S ;α′γ+1), confγ+1

)

Using outγ , C̃γ is simulating using randomness αγ , βγ .

First modification: Hybrid H3 receives externally the above pair Ĉγ+1, ĉonfγ+1. In-

stead of obfuscating M2 (which computes Ĉγ+1, ĉonfγ+1 internally), H3 obfuscates M3

that has Ĉγ+1, ĉonfγ+1 directly hardwired in (as well as Kα(γ + 1),Kβ(γ + 1)). M3 on

input γ + 1, directly outputs ĉonfγ+1; on input γ, it uses ĉonfγ+1 to compute C̃γ ; on all
other inputs, it proceeds identically as M2. (See Figure 1 for a description of M3.) It is

easy to see that when the correct values Ĉγ+1, ĉonfγ+1 are hardwired, the program M3

has the same functionality as M2.

• In H2, if γ = 0, α′1 is used for garbling the input,

key1 = GenCIR(1λ, 1S ;α′1) ĉonf1 = EncodeCIR(key1, conf1)

where conf1 is the initial state corresponding to x.

Second modification: Instead, if γ = 0, hybrid H3 receives ĉonf1 externally, and
directly outputs it as the garbled inputs x̂3 = ĉonf1.

When H3 receives the correct values of (ĉonfγ+1, Ĉγ+1) externally, it follows from the security
of iO that the output distribution of H3 is indistinguishable from that of H2. That is,

{
H2(1λ,M, x)

}
λ
≈
{
H3(1λ,M, x)

}
λ

Hybrid H4: Generate a garbled pair (M4, x̃4) by running the same procedure as in H3, except that

H4 receives externally a simulated pair (c̃onfγ+1, C̃γ+1) produced as follows:

(c̃onfγ+1, stγ+1) = Sim·GenCIR(1λ, 1S ;α′γ+1) (5)

C̃γ+1 = Sim·GbCIR
(

1λ, 1S , 1q, outγ+1, stγ+1;β′γ+1

)
(6)

where outγ+1 is set to be the output of circuit Cγ+1 on input confγ+1. Thus, it follows from

the security of the circuit garbling scheme GSCIR that the simulated pair (c̃onfγ+1, C̃γ+1) that

hybrid H4 receives externally is indistinguishable to the honest pair (ĉonfγ+1, Ĉγ+1) that H3

receives externally. Since these two hybrids only differ in which pair they receive externally,
it follows that:

{
H3(1λ,M, x)

}
λ
≈
{
H4(1λ,M, x)

}
λ

28

105

Approved for Public Release; Distribution Unlimited.

Hybrid H5: Generate a garbled pair (M5, x̃5) by running the same procedure as in H4, except

that instead of receiving (c̃onfγ+1, C̃γ+1) externally, it computes them internally using truly
random coins α′γ+1, β

′
γ+1. More precisely,

• It obfuscate a program M5 that have Kα(γ + 1),Kβ(γ + 1), α′γ+1, β
′
γ+1 hardwired in:

On input γ+1, it computes C̃γ+1 using the program R with randomness α′γ+1, αγ+2, β
′
γ+1

(which computes C̃γ+1 as described in equations (5) and (6)).

On input γ, it computes C̃γ using the program Q with randomness αγ , α
′
γ+2, βγ (which

computes internally c̃onfγ+1 as described in equation (5)).

On other inputs t 6= γ, γ + 1, it computes as M4 does.

• If γ = 0, α′1 is used for computing c̃onf1 as described in equation (5), and then output

x̃4 = c̃onf1.

It follows from the fact that M5 computes (c̃onfγ+1, C̃γ+1) correctly internally, it has the
same functionality as M4; thus, the obfuscation of these two programs are indistinguishable.
Combined with the fact that the distribution of the garbled inputs x̃4 is identical to x̃3, we
have that

{
H4(1λ,M, x)

}
λ
≈
{
H5(1λ,M, x)

}
λ

Hybrid H6: Generate a garbled pair (M6, x̃6) by running the same procedure as in H5, except that
instead of using truly random coins α′γ+1, β

′
γ+1, use pseudo-random coins αγ+1 = F(Kα, γ + 1)

and βγ+1 = F(Kβ, γ + 1). In particular, H6 obfuscates a program M6 that is identical to M5

except that Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1 are hardwired in, and if γ = 0, α1 is used to
generate the garbled input x̃6. It follows from the pseudo-randomness of the punctured PRF
that:

{
H6(1λ,M, x)

}
λ
≈
{
H5(1λ,M, x)

}
λ

Hybrid H7: Generate a garbled pair (M7, x̃7) by running the hybrid simulator HSimγ+1. Note
that the only difference between HSimγ+1 and the simulation procedure in H6 is that instead
of obfuscating M6 that has tuple (Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1) hardwired in, HSimγ+1

obfuscates Mγ+1 that has the full PRF keys Kα,Kβ hardwired in and evaluates αγ+1, βγ+1

internally.

Since Mγ+1 and Mγ
6 has the same functionality, it follows from the security of iO that

{
H6(1λ,M, x)

}
λ
≈
{
H5(1λ,M, x)

}
λ

Finally, by a hybrid argument, we conclude the claim.

Given the above claim, by a hybrid argument over γ, we have that {real(1λ,M, x)} and {simu(1λ,M, x)}
are indistinguishable; Hence, GS is a secure garbling scheme for TM.

29

106

Approved for Public Release; Distribution Unlimited.

4 Succinct Garbling of Bounded Space Computation

In the section, we observe that our approach for constructing a succinct garbling scheme for bounded
space TM in the previous two sections applies generally to any bounded space computation (e.g.,
bounded-space RAM). This immediately yields a garbling scheme for any model of computation
with space-dependent complexity.

Theorem 6. Assuming the existence of IO for circuits and one-way functions. There exists a
garbling scheme for any abstract model of sequential computation, such as TM and RAM, with
space-dependent complexity.

A Garbing Scheme for Any Bounded Space Computation: Given an underlying circuit
garbling scheme GS = (Garb,Encode,Eval) with independent key generation, to construct a garbling
scheme GSA for {ALλ}, proceed in the following two steps:

Step 1: Construct a non-succinct garbling scheme: Observe that the computation of a ma-
chine AL of AL.T steps can be divided into AL.T 1-step “blocks” that transforms the current
configuration to the next; therefore, to garble AL, it suffices to produce a sequence of “gar-
bled blocks”, one for each 1-step block. The actual programs being garbled is an “augmented
block”, whose execution consists of a 1-step block followed by the encoding algorithm of GS
that encodes the output configuration for the next garbled block (when an output is produced,
it is output directly without encoding). The final garbling then consists of a sequence of T
garbled blocks.

Step 2: Compress the size using IO: As before, we then use iO to “compress” the size of the
non-succinct garbling constructed in the first step, by giving the obfuscation of the algorithm
that on input t, runs Garb to garble the tth augmented block, producing the tth garbled block.
The obfuscated program is the succinct garbled program.

The efficiency and security analysis remains the same as before. This concludes Theorem 6.

4.1 Improved Construction and Analysis

Notice that our construction of GSA uses the underlying circuit garbling scheme GS in a black-box
way. In fact, the scheme does not even require the underlying garbling scheme to be for circuits—
any garbling scheme for any class of algorithms that is “complete”, in particular can be used to
implement the augmented blocks suffices. Below we show that by plugging in the one-time garbled
RAM of [LO13, GHL+14], and modifying the construction of Theorem 6 slightly, we can improve
the efficiency of GSA when the algorithm class is RAM. More precisely, we show the following
theorem.

Theorem 7. Assuming the existence of IO for circuits and one-way functions. There exists a
garbling scheme GSRAM for RAM with linear-space-dependent complexity. Furthermore, for any
RAM machine R and input x, such that T ∗ = TR(x), evaluation of a garbled pair (R̂, x̂) produced
by the scheme takes time T ∗ × poly(λ, |R|).

Towards this, we will rely on a RAM garbling scheme that has independent key generation and
linear-time dependent complexity, and moreover, is parallel computable as defined below.

30

107

Approved for Public Release; Distribution Unlimited.

Parallel Computability: We say that a randomized algorithm y = P (x; r) with K-bit outputs
is t-time parallel computable, if there is a set of t-size circuits {Pi}i∈K , such that, for every λ, x,
and r,

yi = P ri (x[Pi]) and y = y1‖y2‖ · · · ‖yK
where each P ri (x[Pi]) accesses (a few bits of) the shared random tape r and depends on a fixed
subset Pi of bits of x, producing an output bit yi. The running time of the algorithm is bounded
by K · t. The following fact will be instrumental later.
Fact 1: The composition of two parallel computable algorithms P andQ is also parallel computable.
More precisely, given two randomized algorithms y = P (x; r) and z = Q(y; r′) that are respectively
t-time and t′-time parallel computable by {P ri (x[Pi])}i∈[K] and {Qr′i (y[Qi])}i∈[K′], their composition

R(x; r, r′) = Q(P (x; r); r′) is (t · t′)-time parallel computable, by {Rr,r′i (x[Ri])}i∈[K′] defined as,

yi = Rr,r
′

i (x[Ri]) = Qr
′
i (P ri1(x[Pi1]), · · · , P ril(x[Pil])), where Qi = {i1, · · · , il} and Ri = ∪ij∈QiPij

A Parallel Computable Garbling Scheme pGS: Towards obtaining Theorem 7, we rely on a
parallel computable garbling scheme pGS = (pGarb, pEncode, pEval) with the following properties.
We remark all these properties are satisfied by the construction of [LO13, GHL+14]. Let R be a
RAM machine with parameters n,m, S, T .

Independent key generation. pGS has independent key generation as defined in Definition 7
with a slight strengthening. We repeat the definition and highlight the strengthening.

• The garbling algorithm pGarb consists of:

(key, R̂)
$← pGarb(1λ, R) : key

$← pGen(1λ), R̂
$← pGb(key, R)

Strengthening: Different from Definition 7, the PPT key generation algorithm pGen
depends only on the security parameter 1λ and not on the length of the input 1|x|. As
a result, the length of key produced is bounded by poly(λ).

• The simulation procedure pSim consists of12:

(R̃, x̃)
$← pSim(1λ, (|R|, |x|, n,m, S, T), R(x)) :

(x̃, st)
$← pSim·Gen(1λ, |x|), R̃

$← pSim·Gb(1λ, (|R|, |x|, n,m, S, T), R(x), st)
Rachel:

[change the definition of independent key generation to not depend on input length, and change the

interfact of simulation Sim(1λ, (|R|, |x|, n,m, S, T), TR(x), R(x)). Change the running time of Sim to

depend on T .]

Linear complexity. The complexity of algorithms in the the garbling scheme is:

• The garbling algorithm pGarb(1λ, R) and evaluation algorithm pEval(R̂, x̂) run in time
poly(λ)× |R| × T 13, which also bounds the size ΦR of the the garbled program R̂.

12Note that the simulation procedure described below does not receive the instance running time TR(x). This is
because, as seen shortly, the complexity of this RAM garbling scheme is linear in the time complexity of the RAM
machine being garbled, and thus does not have instance based efficiency.

13In [LO13, GHL+14], the overhead of garbling is poly(λ)× |R| × poly log(n), where n is the size of the persisitent
memory data. Since in this work we do not consider RAM machine with persistent memory data, we ignore this
term.

31

108

Approved for Public Release; Distribution Unlimited.

• The input encoding algorithm x̂
$← pEncode(key, x) runs in time linear in the length of

the input poly(λ)|x|, which also bounds the size Φx of the garbled input x̂.

Parallel Computability. The following algorithms are parallel computable:

• The garbling algorithms pGb and the simulation procedure pSim·Gb are poly(λ)|R|-time
parallel computable, and

• the encoding algorithm pEncode and the input simulation procedure pSim·Gen are poly(λ)-
time parallel computable.

More Efficient Garbling Scheme for Boundes Space RAM: We now use a parallel com-
putable garbling scheme pGS = (pGarb, pEncode, pEval) with the above properties to construct a
more efficient garbling scheme GS for bounded space RAM that has (1) linear-space dependent
complexity and (2) produces garbled RAM with poly(λ, |R|) overhead (that is, evaluation of R̂, x̂
takes poly(λ, |R|)TR(x) steps). In comparison, the previous general construction has polynomial
space dependent complexity and poly(λ, |R|, S) overhead.

Towards this, we plug in the parallel computable garbling scheme pGS with simulation pSim
into our general construction with the following modifications.

Modification to Step 1: As before, the first step is constructing a non-succinct garbling scheme,
by dividing a RAM computation into small blocks and garbling all of them using pGS.

The only, and key, difference is, instead of dividing a T step RAM computation into T 1-step
“blocks”, dividing it into dT/Se S-step “blocks”. As before, each block is then augmented
with the encoding algorithms pEncode(key, ·) for garbling the output configuration; and each
augmented block is garbled using pGarb, producing garbled blocks.

Efficiency. We now analyze various efficiency parameters.

• Each augmented block, say the tth, is a RAM consisting of S steps of computation of R
followed by Encode(keyt+1, ·)14—denote this program as B(t, R,keyt+1, ·). Since keyt+1

has size poly(λ), we have,

size of B = Ψ = |R|+ poly(λ), run-time of B = poly(λ)S

• By the efficiency of pGarb, each garbled block has size

Φ = poly(λ)(size of B)(run-time of B) = poly(λ)|R|S

• Overall, there are dT/Se blocks, resulting in a non-succinct garbled RAM R̂ of size

|R̂| = dT/Se × Φ = poly(λ)|R|T

• We note that for any input x of instance complexity T ∗, the output R(x) is produced
after evaluating dT ∗/Se garbled blocks, taking poly(λ)|R|T ∗ steps.

14It also has the additional logic for deciding whether the output configuration is a final configuration, and returns
the output if so.

32

109

Approved for Public Release; Distribution Unlimited.

Modification to Step 2: As before, the second step is using obfuscation to “compress” the size
of the non-succinct garbling scheme constructed in Step 1. However, if directly obfuscate the
program that generates each of dT/Se garbled blocks completely, it leads to an obfuscated
program of size at least poly(λ,Φ) = poly(λ, |R|, S). In this case, the complexity of the new
garbling scheme is not linear in S, and the overhead of the produced garbled RAM is at least
poly(λ, |R|, S).

Better efficiency: Instead of obfuscating the program that generates a whole garbled block,
we rely on the parallel computability of pGS to obfuscate the decomposed small circuits that
generates individual bits of each garbled block. More precisely, the program that produces
the garbled blocks is

B̂t = Pλ,S,R,Kα,Kβ (t) : B̂t = pGb(keyt, B(t, R,keyt+1, ·);βt) with keyj = Gen(1λ;αj)

where all random coins αt, αt+1, βt are generated using a PRF with keys Kα,Kβ. It follows
directly from that pGb is poly(λ)Ψ-parallel computable, where Ψ is the size of the program
obfuscated (the augmented block in this case) that P is poly(λ)|R|-parallel computable by

circuits {Pλ,S,R,Kα,Kβi (t)}i∈Φ (recall that Φ is the size of each garbled block). Thus to obtain

better efficiency, obufscate each Pi independently. The new garbled program R̂ is the array
of obfuscated programs:

R̂ = (P1, · · · ,PΦ), where Pi
$← iO(1λ,Pi) .

Evaluation of the garbled RAM proceeds the same as before, except that the tth garbled block
is generated by evaluating the array of obfuscated programs on input t.

The security proof: Security follows the same blue-print as before—the simulated program R̃
is the obfuscation of a program Q that produces simulated garbled-blocks using the simula-
tion procedure pSim·Gen and pSim·Gb of pGS. The indistinguishability of R̃ and R̂ is then
established through a sequence of hybrids where the obfuscated program simulates the first
j garbled-blocks, and generates the rest honestly; to stitch these two parts together, the jth

garbled block is produced using a program R that invokes pSim·Gen, pSim·Gb and pEncode of
pGS. The only difference now is that Q and R are not obfuscated directly, but rather their
decomposition {Qi}i∈[Φ] and {Ri}i∈[Φ] is obfuscated: It follows from the fact that pSim·Gen,
and pEncode are poly(λ)-parallel computable and pSim·Gb is poly(λ)Ψ-prallel computable
that both Q and R are poly(λ)|R|-parallel computable. Then in simulation and hybrids, Qi

and Ri are obfuscated independently.

Efficiency. Since each Pi, Qi and Ri have size poly(λ)|R|, each obfuscated program has size
poly(λ, |R|). Therefore, the size of the new garbled RAM (and the complexity for generating
it) is,

size of garbled RAM = Φ× poly(λ, |R|) = poly(λ, |R|)× S ,

which is linear in the space complexity of R.

Moreover, evaluation of an input x of instance complexity T ∗ requires generating and evalu-
ating dT ∗/Se garbled blocks, which takes time

run-time of garbled RAM = dT ∗/Se × poly(λ, |R|)× S = poly(λ, |R|)× T ∗ .

This concludes Theorem 7.

33

110

Approved for Public Release; Distribution Unlimited.

5 From Garbling to FE to Reusable Garbling

We observe that in contexts such as secure computation [GMW87] and functional encryption
[SW05, O’N10, BSW12], to evaluate a function f on an input x, it suffices to evaluate the random-
ized function that computes a garbled program of f and an encoding of the input (recall that by
the security of the garbling scheme this reveal no more than the output of the function). Thus,
by plugging-in our construction of garbling schemes with space-dependent complexity into earlier
constructions of secure computation or randomized functional encryption [GJKS], we directly ob-
tain, assuming iO for P/poly and one-way functions, a randomized functional encryption with
space-dependent complexity, and secure computation protocols whose the communication com-
plexity grows polynomially with the space complexity of the program to be evaluated, but only
logarithmically with the the running-time.

We additionally observe that by combing our construction of functional encryption with pre-
vious results [CIJ+13, GKP+13b]—[CIJ+13] showed that function encryption schemes with indis-
tinguishability based security implies ones with simulation-based security, which further implies
reusable garbling schemes by [GKP+13b]—directly yields a construction of reusable succinct gar-
bling schemes with space-dependent complexity from iO for P/poly and one-way functions.

We emphasize that the above applications work generally for any “nice” class of algorithms;
(conditions on the algorithm classes are specified in the theorem statements below). Therefore,
below we show the connections between Garbling, randomized functional encryption and reusable
garbling w.r.t. general classes of algorithms.15 Applications to specific models of computation can
then be derived as special cases.

Below, we start with the definitions of function encryption and reusable garbling scheme, and
then move to showing the connections.

5.1 Functional Encryption

We first recall definitions of public key functional encryption schemes, both the indistinguishability-
based definitions and simulation-based definitions, adapting to general algorithm classes. For
indistinguishability-based security, we recall the definition for randomized algorithms in [GJKS],
whereas for simulation-based security, we recall the definition of [BSW12, O’N10] for deterministic
Boolean algorithms. Below we first introduce the syntax, then various security notions and finally
the efficiency guarantees.

Syntax. We introduce the syntax and correctness of functional encryption scheme w.r.t. classes
of potentially randomized algorithms, which immediately imply the syntax and correctness for
deterministic algorithms.

Definition (Functional Encryption.). A functional encryptions scheme FE for a class of (well-
formed) (potentially randomized) algorithms {ALλ}λ∈N consists of algorithms (FE.Setup,FE.Enc,
FE.KeyGen,FE.Dec) where the first three are probabilistic algorithms while the last is deterministic;
furthermore, they satisfy the following syntax and correctness:

• FE.Setup(1λ) outputs a public key MPK and a master secret key MSK.

• FE.Enc(x,MPK) outputs a ciphertext CT.

• FE.KeyGen(AL,MSK) on input an algorithm AL ∈ ALλ, outputs a secret key skAL.

15Since the application to MPC is straightforward, we omit the details of the proof below.

34

111

Approved for Public Release; Distribution Unlimited.

• FE.Dec(CT, skAL) outputs a string y.

Correctness: For every polynomial T and polynomial n = n(λ), every sequence of algorithm tuples
{ ~AL = ~ALλ} ∈ {ALnλ} and every sequence of input tuples {~x = ~xλ} where xi ∈ {0, 1}poly(λ),
the following two distributions are computationally indistinguishable:

• Real:
{
FE.Dec(CTi, SKALj)

}
i∈[n],j∈[n]

where,

(MPK,MSK)
$← FE.Setup(1λ)

CTi
$← FE.Enc(MPK, xi) for i ∈ [n]

skALj
$← FE.KeyGen(ALj ,MSK) for j ∈ [n]

• Ideal: {ALj(xi; rij)}i∈[n],j∈[n] where,

for every j ∈ [n], {rij}i∈[n] are sufficiently long random strings if ALj is a randomized

algorithm and are empty if ALj is a deterministic algorithm. (In the case that xi exceeds
the input length bound of the algorithm ALj, |xi| > ALj .n, the output is set to ⊥).

Indistinguishability based security. We provide the definition of indistinguishability based
security for classes of (potentially randomized) algorithms. Our definition is a generalization of
that in [GJKS] to the case of full security.

Definition 13 ((Full) q1-`-q2-IND-security). A functional encryption scheme FE is (ful-)q1-`-q2-IND
secure if for every polynomial T , the advantage of any PPT adversary A in the following game is
negligible.

Experiment (ful-)q1-`-q2-IND
FE
A (1λ, T = T (λ)):

1. Setup: (MPK,MSK)
$← FE.Setup(1λ)

2. Non-Adaptive Key Queries: (~m0, ~m1, st1)
$← AFE.KeyGen(MSK,·),O1(·)(MPK).

3. Generate Challenge Ciphertext: ∀i, CTi $← FE.Enc(MPK,mb,i), where b
$← {0, 1}.

4. Adaptive Key Queries: α
$← AFE.KeyGen(MSK,·),O2(·)(st1, ~CT).

O1 is a stateful oracle that on input (AL, null), generates a secret key skAL
$← FE.KeyGen(MSK, AL)

and records it internally, and on input (AL,C) checks if a secret key has been generated for AL,
and returns FE.Dec(skAL, C) if it is the case (⊥ otherwise). O2 is identical to O1 except that it
only decrypts ciphertext C 6= CTi for all i. The advantage of A is Pr[α = b]− 1/2.

Restriction on A: Let S1 and S2 represent the sets of non-adaptive and adaptive key queries
made by A in Step 2 and 4 respectively; let Q1, Q2 be the sets of key queries A submits to O1 and
O2 respectively. A must follow the restriction that 0) S1, S2, Q1, Q2 ⊆ ALTλ , 1) |S1| ≤ q1(λ), 2)
|S2| ≤ q2(λ), 3) |~m0| = |~m1| ≤ ` and for every i ∈ [|~m0|] |m0,i| = |m1,i|, and 4) for every i, j, let
ALj be the jth query in S1 ∪ S2, the following distributions are indistinguishable:

{r $← {0, 1}poly(λ) : (ALj(m0,i; r), TAL(m0,i; r))}λ
{r $← {0, 1}poly(λ) : (ALj(m1,i; r), TAL(m1,i; r))}λ

35

112

Approved for Public Release; Distribution Unlimited.

Additionally, we consider the following weaker notions.

Definition 14 (Selective q1-`-q2-IND-security). A functional encryption scheme FE is selective

q1-`-q2-IND secure if for every polynomial T , the advantage of any PPT adversary A is negligible
in the sel-q1-`-q2-IND(1λ, T) game, which is the same as the above q1-`-q2-IND game, except that A
is required to select the challenge messages ~m0, ~m1 at the beginning of experiment before MPK,MSK
are chosen.

Note that in the selective game sel-q1-`-q2-IND, it is without loss of generality to remove Step 2
in the experiment; thus, we can assume w.l.o.g. that q1 = 0. Furthermore, it follows from standard
hybrid argument that for any polynomials q1, `, q2, q1-1-q2-IND security implies q1-`-q2-IND security,
both in the selective and full game. Thus in the rest of the paper we use interchangeably q1-1-q2-IND
security and q1-`-q2-IND security.

Definition 15 (Honest-Sender (full or selective) q1-`-q2-IND-Security). We say that a functional
encryption scheme is honest-sender (full or selective) q1-`-q2-IND secure, if it satisfies the same
security condition as in Definition 13, except that, in the experiments the oracles O1 and O2 are
empty.

When the class of algorithms are deterministic, the standard definition in the literature considers
only honest-sender security. We follow this convention; when an algorithm class is deterministic
only security against malicious receiver is considered.

Definition ((Honest-sender) Full or Selective IND-security). A functional encryption scheme FE is
(honest-sender) ful-IND-secure or sel-IND-secure, if it is (honest-sender) ful-poly-1-poly-IND-secure
or sel-0-1-poly-IND-secure.

Simulation based security. Next we proceed to define simulation based security notions. In
this case, we consider only classes of algorithms {ALλ} that are deterministic. Furthermore, we
note that it is without loss of generality to consider only Boolean algorithms. This is because
a functional encryption scheme for Boolean algorithms can be easily turned into a scheme for
algorithms with m-bit outputs, by running the Boolean scheme for m times in parallel. Such
parallel repetition leads to a scheme where the ciphertext length is linear in n ×m (as well as in
λ), where n is the input length. On the other hand, it was shown that simulation-based secure
functional encryption must have the size of ciphertexts growing linearly with the output length (if
there is any non-adaptive queries made before the challenge ciphertexts are generated). Thus, the
parallel repetition is essentially optimal.

Definition. A functional encryption scheme FE for a class {ALλ} of deterministic Boolean al-
gorithms with is (ful-)q1-`-q2-SIM secure if for every PPT adversary A, there exists a simulator
Sim = (Sim1,Sim2) such that the output of the following two experiments are indistinguishable for
every polynomial T .

36

113

Approved for Public Release; Distribution Unlimited.

Experiment (ful-)q1-`-q2-RealExp
FE
A (1λ, T = T (λ)):

1. Setup: (MPK,MSK)
$← FE.Setup(1λ)

2. Non-Adaptive Key Queries: (~m, st1)
$← AFE.KeyGen(MSK,·)(MPK).

3. Generate Challenge Ciphertext: ∀i, CTi $← FE.Enc(MPK,mi), where b
$← {0, 1}.

4. Adaptive Key Queries: α
$← AFE.KeyGen(MSK,·)(st1, ~CT).

5. Output (MPK, ~m, S1, S2, α), where S1 and S2 are the sets of non-adaptive and adaptive key
queries made by A in Step 2 and 4 respectively.

Experiment (ful-)q1-`-q2-IdealExp
FE
A (1λ, T = T (λ)):

1. Setup: (MPK,MSK)
$← FE.Setup(1λ)

2. Non-Adaptive Key Queries: (~m, st1)
$← AFE.KeyGen(MSK,·)(MPK); let `′ = |~m|

3. Generate Challenge Ciphertext: (~CT, st′) $← Sim1(MPK, `′, {|mi|},V)

4. Adaptive Key Queries: α
$← AO(·)(st1, ~CT)

5. Output (MPK, ~m, S1, S2, α).

In the above experiment V in Step 3 contains the outputs of the algorithms in S1 applied to ~m, that
is, V = ∪Q∈S1VQ with VQ = {Q, skQ, TQ(mi), Q(mi)}i∈[`′]. Additionally, the oracle O(·) in Step

4 is the second stage simulator, namely Sim2(st′,MSK, ·, ·), where the third argument is a query
circuit Q and the fourth argument is VQ.

Restriction on A in the above two experiments: 0) S1, S2 ⊆ ALTλ 1) |S1| ≤ q1(λ), 2)
|S2| ≤ q2(λ), 3) |~m| ≤ `.

Additionally, a functional encryption scheme FE is (honest-sender) selective q1-`-q2-SIM secure if
for every PPT adversary A, the outputs of the experiments sel-q1-`-q2-RealExp and sel-q1-`-q2-IdealExp
are indistinguishable for every polynomial T , where the two games are the same as the above, ex-
cept that A is required to select the challenge messages ~m0, ~m1 at the beginning of experiment before
MPK,MSK are chosen (and without access to the FE.KeyGen oracle).

We note that in the above definition, the second state simulator Sim2 receive as input the
instance running time TQ(mi) for every Q and mi. This is necessary since the efficiency guarantees
below require the decryption algorithm to have instance-based efficiency.

Efficiency. Finally, We now move to define different efficiency requirement for functional encryp-
tion.

Definition (Different Levels of Efficiency of Functional Encryption Scheme). We say that a func-
tional encryption scheme FE has optimal efficiency, or I/O- / space- / linear-time dependent
complexity if the following conditions hold.

37

114

Approved for Public Release; Distribution Unlimited.

Optimal efficiency: Algorithms FE.Setup,FE.Enc,FE.KeyGen run in time polynomial in their in-
put lengths, that is pSetup(λ), pEnc(λ, |x|), pKeyGen(λ, |AL|), and FE.Dec runs in time
pDec(λ, |AL|, |x|)TAL(x) for a polynomial pDec.

I/O-dependent complexity: The above condition holds, except that the running time of FE.KeyGen
and FE.Dec additionally depends on AL.n,AL.m.

Space-dependent complexity: The above condition holds, except that the running time of FE.KeyGen
and FE.Dec additionally depends on AL.S.

linear-time-dependent complexity: The above condition holds, except that the running time of
FE.KeyGen and FE.Dec depends quasi-linearly on AL.T .

We note that the FE.Setup and FE.Enc always runs polynomially in their input length, indepen-
dent of the parameters of the algorithms that are potentially to be evaluated. Furthermore, in the
case of SIM-secure functional encryptions, we only consider Boolean algorithms; thus, it is possible
to have schemes with optimal efficiency, where the encryption and key generation algorithms runs
in time independent of the output length.

5.2 Reusable Garbling Scheme

We recall the definition of reusable garbled circuits in [GKP+13b], adapted for general algorithm
classes. In [GKP+13b], their definition considers adaptive input selection, and their construction
achieves so. An alternative definition with static input selection is considered in [GHRW14] for
reusable garbled RAM. The two variants corresponds tightly with fully or selectively SIM-secure
functional encryption schemes. Below we define both variants.

Definition 16 (Reusable Security [GKP+13b].). We say that a garbling scheme GS for a class of
deterministic Boolean algorithms {ALλ}λ∈N has reusable security with adaptive input selection, if
for all PPT adversary A there is a simulator Sim = (Sim·Gb, Sim·Inp) the following two games are
indistinguishable for all polynomial T .

38

115

Approved for Public Release; Distribution Unlimited.

Experiment RealExpGSA (1λ, T = T (λ)):

1. (AL, st1)
$← A(1λ)

2. (ÂL,key)
$← Garb(1λ, AL)

3. α
$← AEncode(key,·)(st1, ÂL)

Experiment IdealExpGSA (1λ, T = T (λ)):

1. (AL, st1)
$← A(1λ)

2. (ÃL, st)
$← Sim·Gb(1λ, |AL|, (AL.n,AL.m,AL.S,AL.T))

3. α
$← AO(·)(st1, ÃL)

where the oracle in the third step is the second stage simulator Sim·Inp(st, ·, ·, ·) that receives as
the second parameter the length of the input 1|x|, as the third parameter the instance running time
TAL(x) and the fourth parameter the output AL(x).
Restriction on A in the above two experiments: the algorithm AL chosen by A is in ALTλ .

Furthermore, we say that GS has reusable security with selective input selection, if the above
indistinguishability is true for all PPT adversary A that selects its oracle queries in the third step
at the beginning of the games.

5.3 IND-secure FE for General Classes of Randomized Algorithm

We show a general method for constructing (full or selective) IND-secure functional encryption
for a general class {ALλ} of (potentially randomized) algorithms, from a garbling scheme GS =
(Garb,Encode,Eval) for the corresponding class of “de-randomized” algorithms, and a (full or se-
lective respectively) IND-secure functional encryption for circuits.

Towards this, consider a randomized algorithm AL, let deRand[AL, k] be the following de-

randomized algorithm corresponding to AL, where k
$← PRF·Gen(1λ) is a PRF key.

deRandF[AL, k](x) : Run AL(x) with pseudo-random coins rt = F(k, t) for step t

Then the high-level idea for constructing a IND-secure FE FEA for {ALλ} is the following:
The secret key corresponding to algorithm AL will a the secret key generated using the IND-secure
circuit-FE FEC for the (randomized) algorithm that garbles the de-randomized CAL as described
above. More specifically, the circuit CAL is constructed as follows:

(Γ̂, x̂)
$← CAL(x) : k

$← PRF·Gen(1λ), (Γ̂,key)
$← Garb(1λ, deRandF[AL, k]), x̂

$← Encode(key, x)

Below we state our result formally. Note that since the garbling algorithm must work with algo-
rithms of the form deRandF[AL, k]), we require that it is for an algorithms class that is closed under
composition with polynomial-sized circuits, which implies that for every AL ∈ ALλ, deRandF[AL, k])
is in ALλ.

Proposition 2 (IND-secure FE for General Classes of Randomized Algorithms). Let {ALλ} be any
class of (potentially randomized) algorithms that is closed under composition with polynomial-sized
circuits. It holds that if there are

39

116

Approved for Public Release; Distribution Unlimited.

• i) a garbling scheme GS = (Garb,Encode,Eval) for deterministic algorithms in {ALλ}.
ii) a (ful-)IND-secure (or sel-IND-secure) functional encryption scheme IND-FEC for the class
rCIR of polynomial-sized randomized circuits.

• then, there is a (ful-)IND-secure (or sel-IND-secure respectively) functional encryption scheme
IND-FEA for {ALλ}.

Furthermore, if GS has optimal efficiency or I/O-dependent complexity, IND-FEA has I/O-dependent
complexity. If GS has space- / linear-time- dependent complexity, so does IND-FEA.

Proof. Below we give the construction and proof. Given an IND-secure circuit FE FEC = (FE.Setup,
FE.KeyGen,FE.Enc,FE.Dec), our IND-secure FE is constructed as follows: It has the same setup
and encryption algorithm. The key generation and decryption algorithms invokes the algorithms
FE.KeyGen and FE.Dec as sub-routines. To generate a key for algorithm AL, FEA generates a key
skCAL using FEC for the circuit CAL as described above and returns skAL = skCAL . To decrypt a
ciphertext c of value x, it invokes the decryption algorithm FE.Dec(skCAL , c) to obtain a pair (Γ̂, x̂),
and then evaluates the garbled pair to obtain an output y.

The IND-security of FEA reduces to the IND-security of FEC . This follows as an adversary A
attacking the former can be transformed into an adversaryA′ attacking the latter. More specifically,

in an INDFE
C

A′ game, the adversary A′ can internally emulate a game INDFE
A

A for A: For every key
query AL from A, A′ translates AL to a key query CAL to its own key generation oracle, and
for every decryption query c from A, A′ simply relays c to its own decryption oracles, and upon
receiving an output (Γ̂, x̂), it evaluates the garbled pair to obtain y and feeds A with y.

It is easy to see that A emulates the view of A′ perfectly. The only thing we need to establish
is that whenever A sends a legitimate key query AL—that is, for the two challenge messages x1

and x2, the outputs and running time of AL on x1 and x2 are indistinguishable—the translated
key queries CAL is also legitimate—that is, its outputs on x1 and x2 are indistinguishable. Below
we argue this.

It follows from the pseudo-randomness of PRF and the security of the garbling scheme that
for any polynomial T , any T -time randomized algorithm AL and any two inputs x1, x2 such that
AL(x1; r), TAL(x1, r) for random r is indistinguishable from AL(x2; r), TAL(x2, r) for random r, we
have that the outputs of CAL on input x1 and x2 are also indistinguishable. More precisely, for
every polynomial T ,

∀ {AL}λ ∈
{
ALTλ

}
, {x1}λ , {x2}λ ,

if
{
r

$← {0, 1}AL.T : AL(x1; r), TAL(x1, r)
}
λ
≈
{
r

$← {0, 1}AL.T : AL(x2; r), TAL(x2, r)
}
λ
,

then, {CAL(x1)}λ ≈ {CAL(x2)}λ
This follows since for each i ∈ {1, 2}, it follows from the pseudo-randomness of the PRF that the
output and running time of deRandF[AL, k] on x1 and x2 are indistinguishable, when the PRF key
is chosen at random, that is,

{
k

$← PRF·Gen(1λ) : deRandF[AL, k](x1), TdeRand[AL,k](x1)
}
λ

≈
{
k

$← PRF·Gen(1λ) : deRandF[AL, k](x2), TdeRand[AL,k](x2)
}
λ
,

Then it follows from the security of the garbling scheme that the output of CAL(x1), which is a
freshly generated garbled pair {Γ̂, x̂1}, can be simulated by random variables in the first ensemble

40

117

Approved for Public Release; Distribution Unlimited.

above, and that of CAL(x2) can be simulated by variables in the second ensembles. Therefore, the
indistinguishability of CAL(x1) and CAL(x2) holds.

This concludes the security of FEA.

Combining with known garbling schemes for circuits [Yao86], and TM and RAM with space-
dependent complexity (our construction), the above lemma immediately implies the following the-
orem:

Theorem 8. The following statements hold:

• Assume the existence of randomized functional encryption for NC1, there is a randomized
functional encryption for P/poly.

• Assume the existence of randomized functional encryption for P/poly, there is a randomized
functional encryption scheme for TM and RAM with space-dependent complexity.

5.4 From IND security to SIM security.

The work by De Caro et. al. [CIJ+13] showed a tight connection between functional encryption
with indistinguishability-based security and that with simulation-based security. More precisely,
they provide a generic transformation that turns any (full or selective) q-`-poly-IND secure func-
tional encryption scheme IND-FE for polynomial-sized circuits to a (full or selective) q-`-poly-SIM
functional encryption scheme SIM-FE for polynomial-sized circuits, assuming one-way functions.

With a closer examination of their transformation, it is easy to see that their transformation
works for general classes of algorithms (beyond circuits). Below we state the generic transformation
theorem implicit in their security proof.

Proposition 3 (Generic Transformation from FE with IND-Security to SIM-Security (Implicit
in [CIJ+13])). For every class {ALλ} of deterministic Boolean algorithms that are closed under
composition with polynomial-sized circuits, the following holds: Assuming the existence of one-way
functions, for every polynomial q and `,

• if there is a (ful-)q-`-poly-IND-secure (or sel-q-`-poly-IND-secure) functional encryption scheme
IND-FE for the class of algorithms {ALλ}.

• then there is a (ful-)q-`-poly-SIM-secure (or sel-q-`-poly-SIM-secure respectively) functional
encryption scheme SIM-FE for {ALλ},

Furthermore, the following efficiency preservation holds.

• if IND-FE has optimal efficiency, or space- / linear-time-dependent complexity, so does
SIM-FE, and

• if IND-FE has succinct ciphertexts, so does SIM-FE.

Note that the fact that the resulting SIM-secure functional encryption scheme can have optimal
efficiency (if the underlying IND-secure functional encryption has) does not contradict with the lower
bound that the ciphertext and key sizes must scale with the output length, because we consider
only Boolean algorithms. SIM-secure functional encryption scheme for multi-bit algorithms can be
constructed via parallel repetition of a scheme for Boolean algorithms; in this case, the ciphertext
and key sizes do scale with the output length.

41

118

Approved for Public Release; Distribution Unlimited.

5.5 From SIM-secure FE to Reusable Garbling Scheme

The work by Goldwasser et. al. [GKP+13b] give a transformation from a (ful-)1-1-0-SIM-secure func-
tional encryption scheme for circuits to a fully secure reusable garbling scheme. It is straightforward
to see that their construction works for general classes of algorithms and when considering reusable
garbling schemes with only static input selection, only sel-1-1-0-SIM-secure functional encryption
is needed.

Proposition 4 (Generic Transformation from 1-1-0-SIM-Secure FE to Reusable Garbling Scheme
(Implicit in [GKP+13b])). For every class {ALλ} of well-formed deterministic Boolean algorithms
that are closed under composition with polynomial-sized circuits, the following holds: Assuming
the existence of one-way functions,

• if there is a (ful-)1-1-0-SIM-secure (or sel-1-1-0-SIM-secure) functional encryption scheme
SIM-FE for the class of algorithms {ALλ},

• then there is a reusable garbling scheme GS for {ALλ} with adaptive (or static) input selec-
tion.

Furthermore, the following efficiency preservation holds.

• if SIM-FE has optimal efficiency or I/O- /space- / linear-time-dependent complexity, so does
GS, and

• if SIM-FE has succinct ciphertexts, GS has succinct input encodings.

Combining Proposition 2, 3 and 4, with our construction of garbling schemes with space-
dependent complexity, we obtain the following.

Theorem 9. Assume the existence of iO for P/poly and one-way function, there is re-usable
garbling scheme for TM and RAM with space dependent complexity.

6 Garbling v.s. iO

In this section we show a connection between (succinct) iO for classes of algorithms C and (succinct)
garbling schemes for the same classes C. Roughly speaking,

• assuming the existence of (succinct) iO for any “nice” class C of algorithms and one-way
functions, there exists a (succinct) garbling scheme for C;

• assuming the existence of iO for P/poly and a (succinct) garbling scheme for any “nice” class
C of algorithms, both with sub-exponential security, there exists a (succinct) iO for C.

6.1 From Garbling to iO

We present a generic transformation from a garbling scheme for an algorithm class {ALλ} to an
indistinguishability obfuscator for {ALλ}, assuming sub-exponentially indistinguishability obfusca-
tors for circuits. We require that the algorithm class to have the property that for any λ < λ′ ∈ N,
it holds that every algorithm AL ∈ ALλ is also contained in ALλ′—we say that such a class is
“monotonically increasing”. For instance, the class of Turing machines TM and RAM machines
RAM are all monotonically increasing.

42

119

Approved for Public Release; Distribution Unlimited.

Proposition 5. Let {ALλ} be any monotonically increasing class of deterministic algorithms. It
holds that if there are

• i) a sub-exponentially indistinguishable iO, iOC , for circuits, and

ii) a sub-exponentially indistinguishable garbling scheme GS for {ALλ}.

• then, there is an indistinguishability obfuscator iOA for {ALλ}.

Furthermore, the following efficiency preservation holds.

• if GS has optimal efficiency or I/O-dependent complexity, iOA has I/O-dependent complexity.

• If GS has space-dependent complexity, so does iOA.

• If GS and iOC have linear-time-dependent complexity, so does iOA.

Proof of Proposition 5. This result relies on a notion from the recent work by Canetti, Lin,
Tessaro and Vaikuntanathan [CLTV14] which they refer to as probabilistic iO. In [CLTV14], they
show that assuming sub-exponentially indistinguishable IO for circuits and sub-exponentially secure
puncturable PRF, the following natural way for obfuscating probabilistic circuits does achieve a
limited notion of indistinguishability-based security. Below, we first recall their result and show
how to apply it to obtain iO from garbling.

Probabilistic iO. Consider the following natural way of obfuscating a probabilistic circuit C.

Ĉ
$← piO(1λ, C) : k

$← PRF·Gen(1λ
′
); C ′(x) = C(x;F(k, x)); Ĉ

$← iO(1λ
′
, C ′), with λ′ = poly(λ,C.n)

The work of [CLTV14] showed that when the underlying iO and PRF are all sub-exponentially
indistinguishable, the above algorithm piO ensures the indistinguishability of the obfuscation of
two strongly indistinguishable circuits. More precisely, two circuits (C1, C2) with n = C1.n = C2.n
are strongly indistinguishable w.r.t. auxiliary input z if for every input x ∈ {0, 1}n, outputs of
C1(x) and C2(x) are negl(λ)2−n indistinguishable given z.

Lemma 1 (pIO for Circuits [CLTV14]). Consider any sequence of probabilistic circuit pairs and
auxiliary input

{
C1
λ, C

2
λ, zλ

}
, such that, for every non-uniform PPT R, and every λ ∈ N, C1 = C1

λ,
C2 = C2

λ, z = zλ,

∀x ∈ {0, 1}n, where n = C1.n = C2.n
∣∣Pr[y

$← C1(x) : R(C1, C2, x, y, z) = 1]− Pr[y
$← C2(x) : R(C1, C2, x, y, z) = 1]

∣∣ ≤ negl(λ)2−n

Assuming sub-exponentially indistinguishable iO for circuits iOC , and sub-exponentially indis-
tinguishable OWF. The algorithm piO described above ensures that,

{
C1, C2, piO(1λ, C1), z

}
λ
≈
{
C1, C2, piO(1λ, C2), z

}
λ

For completeness, we include a proof sketch of the lemma.
Proof Sketch: The proof of the lemma essentially relies on complexity leveling. To see the proof,
first consider a simpler case, where the two circuits C1 and C2 have identical implementation on
all but one input x∗, and the outputs on x∗, C1(x∗) and C2(x∗), are indistinguishable. In this case,

we show that piO(1λ, C1) ≈ piO(1λ, C2). Recall that Ĉb
$← piO(1λ, Cb) is the iO obfuscation of

43

120

Approved for Public Release; Distribution Unlimited.

program C ′b that evaluates Cb with pseudo-random coins generated using a hardwired PRF key

k. Thus, it follows from the security of iO that Ĉb is indistinguishable to iO(C ′′b) where C ′′b has a
punctured key k(x∗) and Cb(x

∗;F(k, x∗)) hardwired in. Then it follows from the pseudo-randomness
of puncturable PRF and the indistinguishability of C1(x∗) and C2(x∗) that iO(C ′′0) and iO(C ′′1) are
indistinguishable. Therefore, by a hybrid argument, we have that piO(1λ, C1) ≈ piO(1λ, C2).

Now consider the case where C1 and C2 are completely different, but their output distributions
are negl(λ)2−n-indistinguishable. To show that their pIO obfuscation are indistinguishable, we just
need to consider an exponential, 2n, number of hybrids, where in each hybrid, the implementation
for one input x∗ is changed from using C1 to C2. By the same argument as before, neighboring
hybrids have a distinguishing gap O(negl(λ)2−n); thus by an exponential hybrid argument, the
overall distinguishing gap is bounded by negl(λ). This concludes the lemma.

Construction of iO for General Algorithms. Using the lemma from [CLTV14], we now prove Propo-
sition 5.

Given 2−λ
ε
-indistinguishable iO iOC and garbling scheme GS, let piO be the obfuscator for

probabilistic circuits from iOC as described above. Let RE be the following “randomized encoding”
algorithm:

(ÂL, x̂)
$← RE(1λ, AL, x), where (ÂL,key)

$← Garb(1λ
′
, AL, x), x̂ = Encode(key, x), λ′ = (λ+AL.n)1/ε

Note that it is due to the monotonically increasing property of the algorithm class that we can
invoke Garb with a bigger security parameter λ′ for AL ∈ ALλ. Then our iO for the general
algorithm class proceeds as,

ÂL
$← iOA(1λ, AL) where ÂL

$← piO(λ,RE(1λ, AL, ·))

It follows from the correctness of GS and iOC underlying piO that iOA has correctness.

Security. Next, we argue about the security of iOA by contra-position. Fix a polynomial T , a non-

uniform PPT samplable distribution D over the support
{
ALTλ ×ALTλ × {0, 1}poly(λ)

}
, such that,

with overwhelming probability, (AL1, AL2, z)← D(1λ) satisfies that AL1 and AL2 are functionally
equivalent and has matching parameters. Suppose that iOA is insecure, that is, there is a non-
uniform PPT A that distinguishes the following ensembles with inverse polynomial probability
1/p(λ).

{
(AL1, AL2, z)

$← D(1λ) : (iOA(1λ, AL1), z)
}
λ{

(AL1, AL2, z)
$← D(1λ) : (iOA(1λ, AL2), z)

}
λ

Since D satisfies that with overwhelming probability, AL1, AL2 sampled from it have the same
functionality and matching parameters, there exists one such sequence {(AL1,λ, AL2,λ, zλ)} w.r.t.
which A distinguishes obfuscation of AL1,λ and AL2,λ given zλ with probability 1/2p(λ). By
construction of iOA, this implies that A distinguishes the following ensembles with probability
1/2p(λ).

{
(piO(1λ,RE(1λ, AL1,λ, ·)), zλ)

}
λ

(7)
{

(piO(1λ,RE(1λ, AL2,λ, ·)), zλ)
}
λ

(8)

44

121

Approved for Public Release; Distribution Unlimited.

We show this A contradicts with Lemma 1. It follows from 2−λ
ε
-indistinguishability of GS and the

fact that algorithm RE invokes the garbling algorithm with security parameter λ′ = (λ+ n)1/ε, for
every λ ∈ N, and xλ ∈ {0, 1}AL1.n, the following ensembles are negl(λ)2−n-indistinguishable.

{
C1, C2, xλ,RE(1λ, AL1,λ, xλ)), zλ)

}
λ{

C1, C2, xλ,RE(1λ, AL2,λ, xλ)), zλ)
}
λ

where Cb = RE(1λ, ALb,λ, ·). Thus it follows from Lemma 1 that ensembles (7) and (8) are indis-
tinguishable. This gives a contradiction with the fact that A distinguishes them and hence, the
security of iOA holds.

Efficiency. Finally, we analyze the efficiency of iOA. It is easy to see that piO(1λ, C) runs in
polynomial time ppIO(λ′, |C|) where the polynomial ppIO depends on the running time of the un-
derlying iO and PRF; moreover, if the underlying iO has linear-time-dependent complexity, ppIO
also depends quasi-linearly in |C|. Let pRE(λ′, |AL|, n,m, S, T) be the running time of RE(1λ, AL, x)
(depending on the efficiency of GS, the polynomial pRE depends on a subset of the parameters).
Overall, the running time of iOA(1λ, AL) is

ppIO(λ′, pRE(λ′, |AL|, n,m, S, T)) where λ′ = poly(λ, n)

Therefore,

• If GS has optimal efficiency (that is, pRE depends only on m) or I/O-dependent complexity
(that is, pRE does not depend on S, T), iOA has I/O-dependent complexity.

• If GS has space-dependent complexity (that is, pRE depend on T), so does iOA.

• If GS and the underlying iO has linear-time-dependent complexity (that is, pRE depends
quasi-linearly on T and so does ppIO on |C|), so does iOA.

Finally, we note that combining the proposition with constructions of garbling schemes for
TM and RAM in Section 3 and 4, we directly obtain iO for TM and RAM with space-dependent
complexity.

Theorem 10. Assume a sub-exponentially indistinguishable iO for circuits and sub-exponentially
secure OWF. There is an indistinguishability obfuscator for TM and RAM with space-dependent
complexity.

Regarding Evaluation Efficiency. Evaluating the iO for TM and RAM obtained in Theorem 10
on input x, involves evaluating the obfuscated program on x once to obtain a garbled pair (ÂL, x̂),
and then evaluate them. Therefore, overall, evaluation takes time TAL(x) × poly(λ, |AL|, AL.S).
When the space is large, the overhead on computation time is large. We can then improve the
evaluation efficiency (at the price of losing succinctness of the garbled RAM) by combining propo-
sition with the construction of garbling RAM by [LO13, GHL+14]. Since their garbled RAM has
size and evaluation time quasi-linear in the time complexity (i.e., poly(λ, |AL|, AL.m)T), we can
obtain the following:

Theorem 11. Assume a sub-exponentially indistinguishable iO for circuits and sub-exponentially
secure OWF. There is an indistinguishability obfuscator for RAM with input and output lengths
bounded by a-priori fixed polynomials, and the indistinguishability obfuscator has linear-time de-
pendent complexity.

45

122

Approved for Public Release; Distribution Unlimited.

We note that when combining the theorem with the garbling scheme for RAM of [LO13,
GHL+14] in a straightforward way, it actually yields only an iO for RAM with complexity (in
terms of both size and evaluation time) polynomial in the time complexity T of the RAM machine
being obfuscated. However, we can apply the same trick as described in [GHRW14] to improve
the efficiency of the iO for RAM to depend only quasi-linearly on T . In the work of [GHRW14],
they noticed that in the construction of [LO13, GHL+14], each bit in a garbled RAM and an
input encoding can be generated using a small circuit of size Õ(|R| + n + m) × poly(λ, log T),
where R is the RAM machine under consideration, n = R.n, m = R.m and T = R.T . Thus,
to achieve linear-time-dependent complexity, we can simply modify our construction above as fol-
lows. Instead of directly obfuscating the whole randomized encryption algorithm RE, which has
size S = Õ(|R| + n + m) × poly(λ, log T) × T and leads to a poly(S) size obfuscated circuit, do
the following: Decompose RE into a set of S small circuits {REi} each of which computes the
ith bit in the randomized encoding, and then obfuscate each REi separately. Since each REi is
small, the final obfuscation only depends on T quasi-linearly; more precisely, the complexity is
poly(λ, |R|, n,m, log T)× T .

6.2 From iO to Garbling

We here show how to transform iO for a class C into garbling scheme for the same class with the
same efficiency.

Proposition 6. Let {ALλ} be any class of deterministic algorithms. It holds that if there is an
iO iO for {ALλ}, then there is a garbling scheme GS for this class. Furthermore, the following
efficiency preservation holds.

• if iO has optimal efficiency or input- / I/O- dependent complexity, GS has I/O-dependent
complexity.

• If iO has space- / linear-time- dependent complexity, so does GS.

We observe that combining the construction of iO for Turing machines with input-dependent
complexity by [BCP14, ABG+13] with the theorem, we obtain a Garbling scheme for Turing ma-
chine with only I/O dependent complexity.

Corollary 1. Assume the existence of iO for Turing machines with input-dependent complexity.
There is a garbling scheme for Turing machines with I/O-dependent complexity.

Proof of Proposition 6. The construction is quite straight-forward and illustrates the difference be-
tween obfuscation and garbling schemes. The key generation is simply the key generation algorithm
for Lamport’s one-time signature scheme [Lam79] with the tweak that instead of using a one-way
function (as in Lamport’s construction), we use a length doubling PRG—the public key for signing
messages of length n consist of 2n images {cbi = f(rbi)}i∈[n],b∈{0,1} of a PRG f , and the secret key

is the set of pre-images {rbi}i∈[n],b∈{0,1}; both the public and secret keys are output as part of the
garbling key. The encoding of an input x is a signature of x (i.e., (rx11 , . . . , rxnn), and the encoding
of an algorithm AL is the obfuscation of a program Π[AL] that on input n (presumed) pre-images ~r
determines whether there exist an input x such that f(ri) = cxii and if so runs AL(x); otherwise it
simply outputs ⊥; it is important that the computation performed to determine the input x takes
a number of steps t0 that is independent of the input.

To show that this construction is a secure garbling we need to exhibit a simulator that given just
the output y = AL(x) of the program AL on input x and the number of steps T ∗ taken by AL(x)
(as well as other parameters (n,m, S, T) of AL) can simulate the encoded input and program.

46

123

Approved for Public Release; Distribution Unlimited.

To simulate the encoded input, we simply output n random pre-images ~r, and to simulate the
the encoded program, we simply obfuscate the program Π̃ that on input ~r outputs y while taking
T ∗ steps, and on any other input outputs ⊥ while taking t0 steps. (The bound parameters of Π̃
are set to (n,m, S, T).)

To show indistinguishability of the simulation, we consider a hybrid experiment which proceeds
just as the real one expect that the key generation algorithm is modified so that (with overwhelm-
ing probability) there only exists a signature for the message x—we simply let c1−xi

i be chosen
as a uniform random string (instead of picking it in the image of f . By the security of the PRG
this experiment is indistinguishable from the real one; furthermore (with overwhelming probabil-
ity) the program being obfuscated in this experiment is functionally equivalent and has the same
running-time as Π̃ for all inputs, and thus by security of the TM indistinguishability obfuscator
this experiment is indistinguishable from the simulated one.

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. 2013.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In FOCS,
pages 166–175, 2004.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
TCC, pages 52–73, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances
in Cryptology CRYPTO 2001, pages 1–18. Springer, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In PKC, pages 501–519, 2014.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In EuroCrypt’14, 2013.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. 2013.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for
public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In ASIACRYPT (2), pages 280–300, 2013.

47

124

Approved for Public Release; Distribution Unlimited.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages
519–535, 2013.

[CLP13] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowl-
edge from p-certificates. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 50–59, 2013.

[CLTV14] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic functionalities and applications. Manuscript, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. Proc. of FOCS 2013, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482,
2010.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Advances in Cryptology - EUROCRYPT 2014
- 33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
405–422, 2014.

[GHRW14] Gentry, Halevi, Raykova, and Wichs. Outsourcing private ram computation. Proc. of
FOCS 2014, 2014.

[GJKS] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption
for randomized functionalities.

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In CRYPTO (2),
pages 536–553, 2013.

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 555–564, 2013.

[GLSW14] Craig Gentry, Allison Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. Cryptology ePrint
Archive, Report 2014/309, 2014.

48

125

Approved for Public Release; Distribution Unlimited.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In CCS, pages 669–684, 2013.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. SRI Tech-
nical Report, 1979.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Advances in Cryp-
tology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, pages 719–734, 2013.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In CRYPTO’14, 2014.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Proc. of STOC 2014, 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

49

126

Approved for Public Release; Distribution Unlimited.

Constant-Round Non-Malleable Commitments
from Any One-Way Function

Huijia Lin∗ Rafael Pass†

September 1, 2011‡

Abstract

We show unconditionally that the existence of commitment schemes implies the existence of
constant-round non-malleable commitments; earlier protocols required additional assumptions
such as collision resistant hash functions or subexponential one-way functions.

Our protocol also satisfies the stronger notions of concurrent non-malleability and robustness.
As a corollary, we establish that constant-round non-malleable zero-knowledge arguments for
NP can be based on one-way functions and constant-round secure multi-party computation can
be based on enhanced trapdoor permutations; also here, earlier protocols additionally required
either collision-resistant hash functions or subexponential one-way functions.

∗Cornell University, E-Mail: huijia@cs.cornell.edu.
†Cornell University, E-Mail: rafael@cs.cornell.edu. Pass is supported in part by a Alfred P. Sloan Fellowship,

Microsoft New Faculty Fellowship, NSF CAREER Award CCF-0746990, AFOSR YIP Award FA9550-10-1-0093, and
DARPA and AFRL under contract GG11413-137380. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US government.

‡A preliminary version of this paper appeared in STOC 2011.

1
127

Approved for Public Release; Distribution Unlimited.

1 Introduction

Commitment schemes are one of the most fundamental cryptographic building blocks. Often de-
scribed as the “digital” analogue of sealed envelopes, commitment schemes enable a sender to
commit itself to a value while keeping it secret from the receiver. This property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing
stage. Their applications range from coin flipping [?] to the secure computation of any efficiently
computable function [?, ?]. In light of their importance, commitment schemes have received a
considerable amount of attention. This has resulted in a fairly comprehensive understanding of
the hardness assumptions under which they can be realized; in particular, by the results of Naor
[?] and H̊astad et al [?], the existence of one-way functions implies the existence of two-round
commitments.

For many applications, however, the most basic security guarantees of commitments are not
sufficient. For instance, the basic definition of commitments does not rule out an attack where
an adversary, upon seeing a commitment to a specific value v, is able to commit to a related
value (say, v − 1), even though it does not know the actual value of v. This kind of attack
might have devastating consequences if the underlying application relies on the independence of
committed values (e.g., consider a case in which the commitment scheme is used for securely
implementing a contract bidding mechanism). Indeed, for the general task of secure multi-party
computation [?], such independence is cruicial. The state of affairs is even worsened by the fact
that many of the known commitment schemes are actually susceptible to this kind of attack. In
order to address the above concerns, Dolev, Dwork and Naor (DDN) introduced the concept of non-
malleable commitments [?]. Loosely speaking, a commitment scheme is said to be non-malleable
if it is infeasible for an adversary to “maul” a commitment to a value v into a commitment to a
related value ṽ.

More precisely, we consider a man-in-the-middle (MIM) attacker that participates in two con-
current execution of a commitment scheme 〈C,R〉; in the “left” execution it interacts with an honest
committer (running C); in the “right” execution it interacts with an honest receiver (running R).
Additionally, we assume that the players have n-bit identities (where n is polynomially related to
the security parameter), and that the commitment protocol depends only on the identity of the
committer; we sometimes refer to this as the identity of the interaction. Intuitively, 〈C,R〉 being
non-malleable means that if the identity of the right interaction is different than the identity of
the left interaction (i.e., A does not use the same identity as the left committer), the value A
commits to on the right does not depend on the value it receives a commitment to on the left; this
is formalized by requiring that for any two values v1, v2, the values A commits to after receiving
left commitments to v1 or v2 are indistinguishable.

The first non-malleable commitment protocol was constructed by Dolev, Dwork and Naor [?]
in 1991. The security of their protocol relies on the minimal assumption of one-way functions and
requires Ω(log n) rounds of interaction, where n ∈ N is the length of party identities. Non-malleable
commitments have since been extensively studied in the literature; the main question has been to
determine the number of communication rounds needed for non-malleable commitments. Let us
briefly survey some of this literature.

1.1 The State of the Art of Non-malleable Commitments

As mentioned, the original work by DDN assumes only one-way functions, and considers the “plain”
model of execution; that is, there is no trusted infrastructure. DiCrenenzo, Ishai and Ostrovsky
[?] and follow-up works in e.g., [?, ?, ?, ?, ?] showed how to improve the round-complexity of the

1
128

Approved for Public Release; Distribution Unlimited.

DDN construction when assuming the existence of some trusted infrastructure (e.g. a common
random string); in such models non-interactive (i.e., single message) non-malleable commitments
based on only one-way function are known [?]. The first improvement to the round-complexity of
the DDN construction without any trusted infrastructure came more than a decade later. Following
the ground-breaking work by Barak on non-black-box simulation [?], in 2002, Barak [?] presented a
constant-round protocol for non-malleable commitments; the security of this protocol however relies
on the existence of trapdoor permutations and hash functions that are collision-resistant against
circuits of sub-exponential size. A few years later, Pass and Rosen [?] (relying on a technique from
[?]), showed that collision resistant hash functions secure against polynomially-sized circuits are
sufficient to obtain a constant-round protocol. Next, Pandey, Pass and Vaikuntanathan [?] provided
a construction of a non-interactive non-malleable commitment based on a new hardness assumption
with a strong non-malleability flavour; in contrast to the earlier constant-round constructions, their
protocol has a black-box proof of security.

But, despite two decades of research, there have been no improvements over the original DDN
construction, when only assuming the existence of one-way functions, leaving open the following
question.

Does there exist a sub-logarithmic non-malleable commitment scheme, assuming only
one-way functions?

1.2 Settling the Round-complexity of Non-Malleable Commitments

In this work, we settle the round-complexity of non-malleable commitments: we present a constant-
round protocol in the “plain” model that is based on the assumption of one-way functions, and
has a black-box proof of security. Since the existence of commitment schemes already implies the
existence of one-way functions (cl. [?]), we have:

Theorem 1. Assume the existence of a commitment scheme. Then, there exists a constant-round
non-malleable commitment scheme with a black-box proof of security.

Concurrent Non-malleability: As mentioned, the original notion of non-malleability considers
an MIM attacker participating in a single execution on the left and a single execution on the right.
Already the original DDN paper suggested that a stronger notion of non-malleability—concurrent
non-malleability—where the MIM may participate in an unbounded number of executions on both
the left and the right, is desirable. Pass and Rosen [?] provided the first construction of a concur-
rently non-malleable commitment scheme; their scheme only has a constant number of rounds but
relies on the existence of claw-free permutations (and non-black-box techniques). Subsequently,
Lin, Pass and Venkitasubramaniam [?] provided an O(n)-round construction based on one-way
functions. As we show, our protocol is also concurrently non-malleable.

Robust Non-malleability: In this work we also introduce a new notion of non-malleability:
robust non-malleability. Roughly speaking, whereas traditional non-malleability considers a scenario
where a MIM participates in the same commitment protocol on the left and the right, r-robustness
considers a notion of non-malleability for commitments where the MIM attacker participates in an
arbitrary r-round protocol on the left, and the commitment protocol on the right. Robustness is
useful when using non-malleable commitments as subprotocols within larger protocols (see Section
1.3). As we show, for any constant r, our protocol can be made r-robust while still remaining
constant-round.

Thus summarizing the above discussion, we have:

2
129

Approved for Public Release; Distribution Unlimited.

Theorem 2. Assume the existence of a commitment scheme. Then, for any constant r, there exists
a constant-round commitment scheme that is r-robust concurrently non-malleable with a black-box
proof of security.

1.3 Applications to Secure Computation

As mentioned, “independence” of inputs is crucial for secure multi-party computation protocols.
Indeed, there has been a tight interplay between work on the round-complexity of multi-party
computation (MPC) and work on non-malleable commitments.

Goldreich, Micali and Wigderson’s [?] original work on secure multi-party computation showed
a Ω(m)-round multi-party computation protocol based on the existence of enhanced trapdoor per-
mutations (TDPs), where m is the number of players in the execution; implicit in their work is a
O(n)-round non-malleable commitment for the special case of so-called “synchronizing” adversaries
that have identities of length log n. Subsequent works improved the round-complexity by making
stronger assumptions. Katz, Ostrovsky, and Smith [?], following the work by Chor and Rabin [?],
obtained a O(logm)-round MPC protocol assuming TDPs and dense-crypto systems by relying on
the non-malleable commitments from [?]. By additionally assuming the existence of hash-function
collision-resistant against circuits of sub-exponential size (and non-black-box techniques), they also
obtained a O(1)-round MPC protocol by instead relying on the non-malleable commitment from
[?]. More recently, Pass [?], showed the existence of a O(1)-rounds MPC protocol assuming only
TDPs and (standard) collision resistant hash functions (but still using non-black box techniques);
this technique in turned was used in the non-malleable commitment of [?].

The implicit connection between the round-complexity of non-malleable commitments and se-
cure multi-party was formalized by Lin, Pass and Venkitasubramaniam in [?]: they show that the
existence of k-round 4-robust non-malleable commitments and the existence of TDPs implies the
existence of O(k)-round secure multi-party computation.

Combining the result of [?] with Theorem 2, we get that secure multi-party computations can
be performed in a constant number of round based on only TDPs.

Theorem 3. Assume the existence of enhanced trapdoor permutations. Then there exists a constant-
round protocol for secure multi-party computation.

1.4 Applications to Non-malleable ZK

Non-malleable zero-knowledge [?] consider the execution of zero-knowledge protocols in the presence
of a MIM attacker. Roughly speaking, a zero-knowledge protocol is non-malleable if the MIM
attacker can only provide convincing right-interaction proofs of statements that it could have proved
without participating in the left interaction. The recent result of [?] shows that the existence of
k-round 4-robust non-malleable commitments implies the existence of O(k)-round non-malleable
zero-knowledge arguments for NP. By combining their results with Theorem 2 we directly have
that the existence of one-way functions implies the existence a constant-round zero-knowledge
argument for NP.

Theorem 4. Assume the existence of one-way functions. Then there exists a constant-round non-
malleable zero-knowledge argument for NP with a black-box proof of security.

1.5 A New Technique: “Message-scheduling in the head”

The main idea underlying all non-malleable commitment schemes is to “encode” the identity of
the committer into the protocol. At the very least, this ensure that unless the attacker copies the

3
130

Approved for Public Release; Distribution Unlimited.

identity of the left committer, the attacker cannot simply forward messages between the left and
the right executions. But we also need to ensure that the attacker cannot in a clever way maul the
messages it receives on the left so they become useful on the right. For instance, in the original
DDN construction, the identity is encoded into the scheduling of messages in the protocol; on a
very high-level (and oversimplifying), the idea is to ensure that at some point in the execution, the
MIM must “speak” while only receiving “useless” messages. The problem with this approach is
that it requires a high round-complexity.

We will revisit the DDN approach. The main idea behind our scheme is to perform the message
scheduling “in the head”. A bit more precisely, our protocol follows the “simulation-soundness”
paradigm of Sahai [?], first used in the context of CCA-secure encryption, and next used by Pass
and Rosen [?] in the context of non-malleable commitments; that is, the main component of our
construction is a method for enabling us to “simulate” the left interaction, while ensure that the
right interaction remains “sounds”. Towards this, we embedd a “trapdoor” into the protocol which
depends on the identity of the interaction; proving simulation-soundness then essentially amounts
to showing that there exists a way to recover the trapdoor for the left intraction, while ensuring
that the adversary does not recover the trapdoor for the right interaction (as long as the right
interaction has a different identity than the left interaction).

The idea is to have a protocol where the trapdoor can be recovered by “rewinding” some specific
messages in the protocol—called “slots”—in a specific order which depends on the identity of the
interaction. Furthemore, the protocol should have the property that if this specific rewinding order
is not the rewinding order actually used, then a trapdoor cannot be recovered. So, if we rewind the
left interaction according to the rewinding order corresponding to the identity of the left interaction,
this will still not enable the adversary to recover the trapdoor corresponding to the right interaction
(unless the identity of the right interaction is the same as the identity of the left interaction). In
our particular instantiation of this idea, the trapdoor will be a “signature-chain” (i.e., a signature
on a signature on a signature, etc.) of length n (i.e., the identity length) using different keys; the
choice of the keys in the signature chain are determined by the identity of the interaction. Next, the
protocol will have a “slot” for each of the keys where the receiver is willing to sign a single message
for the committer using the key corresponding to the slot. The key point is that the simulator is
able to rewind the slots in an appropriate order to recover a signature-chain corresponing to the
identity of the left interaction; but the rewindings will still not enable the adversary to recover a
signature-chain corresponding to any other identity.

1.6 Historical Notes

This paper is a combined version of [?] and [?]. In [?], we first showed the existence of a O(1)log
∗ n-

round protocol that is based on the existence of one-way functions and uses a black-box proof of
security. On a high-level, the main technique of [?] was a method for amplifying non-malleability :
that is, we presented a method for transforming a non-malleable commitment scheme that handles
identities of length t into one that handles identities of length O(2t). The O(1)log

∗ n-round protocol
was finally obtained starting off with the protocol of DDN for constant length identities and next
iteratively amplifying it. The notion of robust non-malleability was also first defined in [?] and was
an intergral part of the amplification procedure: in fact, our amplification procedure could only be
applied to robust non-malleable commitments.

In [?], we additionally pointed out that amplification procedure also yield a natural route
towards constant-round non-malleable commitments: it suffices to come with a constant-round
protocol that handles identities of length log(k)n = log log . . . log n, where k is a constant; any such
protocol can be amplified to a full-fledged non-malleable commitment while still remaining constant
round. Subsequent work by Pass and Wee [?] obtained a constant-round protocol based on sub-

4
131

Approved for Public Release; Distribution Unlimited.

exponetially hard one-way functions (again using a black-box proof of security), by following this
paradigm: subexponential one-way functions were used to construct a constant-round non-malleable
commitment for “small” identities, and the protocol can then be amplified into a full-fledged one.
An elegant work by Wee [?] later simplified an imporved the amplification procedure of [?], leading
to a protocol using O(log∗ n)-rounds, based on one-way functions.Finally, independently of [?], a
beatiful work by Goyal also obtains a constant-round non-malleable commitment based on one-way
functions; the construction of [?] also follows the above amplification paradigm by Goyal instead
constant-round robust non-malleable commitment protocol for small identities based on one-way
functions.

The construction from [?] is direct: we no longer require amplification; instead we directly
construct a full-fledged robust non-malleable protocol. Nevertheless, some of the ideas used in the
amplification procedure are helpful when analyzing our protocol.

1.7 Outline

In Section 2, we provide some preliminaries. In Section 3, we provide an overview of our protocol
construction and its security proof. In Section 4 we provide some formalizations and results abouts
“signature-chains”. Our protocol (which relies on the notion of a signature chain) is presented in
Section 5. We provide the proof of (stand-alone) non-malleabilty in Section 6; in Section 7 and 8,
we demonstrate that our protocol is also concurrent non-malleable, and can be made r-robust for
any constant r.

2 Preliminaries

Let N denote the set of all positive integers. For any integer n ∈ N , let [n] denote the set
{1, 2, . . . , n}, We denote by {0, 1}n the set of binary strings of length n, and {0, 1, 2}n the set of
trinary strings of length n. Given a binary (or trinary) string ψ of length n, we denote by [ψ]i1
the prefix of ψ of length i. We denote by PPT probabilistic polynomial time Turing machines.
We assume familiarity with interactive Turing machines, denoted ITM, interactive protocols, and
computational indistinguishability; the formal definitions of interactive protocols and comutational
indistinguishability are provided in Appendix A. Given a pair of ITMs, A and B, we denote by
〈A(x), B(y)〉(z) the random variable representing the (local) output of B, on common input z and
private input y, when interacting with A with private input x, when the random tape of each
machine is uniformly and independently chosen.

2.1 Signature Schemes

We focus on fixed-length signature schemes Π = (Gen, Sign, V er), that is, the signing algorithm
Sign on input 1n, a public key pk and a messagem ∈ {0, 1}∗, always outputs a signature of length n.
We refer the reader to [?] for a formal definition. Such signature schemes can be constructed relying
on universal one-way hash functions [?], which in turn can be based on any one-way function [?].
Below, a signature scheme always refers to a fixed-length signature scheme.

2.2 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a
value while keeping it secret from the receiver (this property is called hiding). Furthermore, the
commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed
that the “opening” can yield only a single value determined in the committing phase. In this work,

5
132

Approved for Public Release; Distribution Unlimited.

we consider commitment schemes that are statistically-binding, namely while the hiding property
only holds against computationally bounded (non-uniform) adversaries, the binding property is
required to hold against unbounded adversaries. We refer the reader to [?] for a formal definition.

Two-round (i.e., a single message from the receiver followed by a single message from the
committer) commitment schemes are known to exist based on the minimal assumption of one-way
functions [?, ?]. In the sequel of the paper, a commitment scheme always refers to a statistically-
binding commitment.

Tag-based Commitment Scheme. Following [?, ?], we consider tag-based commitment schemes
where, in addition to the security parameter, the committer and the receiver also receive a “tag”—
a.k.a. the identity—id as common input.

2.3 Concurrent Non-Malleable Commitments

We recall the definition of concurrent non-malleability from [?]. For convenience, we use a slightly
different presentation (based on indistinguishability rather than simulation); equivalence follows
using a standard argument (c.f. [?, ?]). Let 〈C,R〉 be a tag-based commitment scheme, and let
n ∈ N be a security parameter. Consider a man-in-the-middle adversary A (as shown in figure 1)
that, on inputs n and z (where z is received as an auxiliary input), participates in m left and right
interactions simultaneously. In the left interactions the man-in-the-middle adversary A interacts
with C, receiving commitments to values v1, . . . , vm, using identities of length n, id1, . . . , idm ∈
{0, 1}n, of its choice. In the right interactions A interacts with R attempting to commit to a
sequence of related values ṽ1, . . . , ṽm, again using identities of length n ĩd1, . . . , ĩdm of its choice. If
any of the right commitments are invalid, or undefined, its value is set to ⊥. For any i such that
ĩdi = idj for some j, set ṽi = ⊥—i.e., any commitment where the adversary uses the same identity
as one of the left interactions is considered invalid. Let mimA

〈C,R〉(v1, . . . , vm, z) denote a random
variable that describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

Definition 1. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable (with respect
to itself) if for every polynomial p(·), and every PPT man-in-the-middle adversary A that par-
ticipates in at most m = p(n) concurrent executions, the following ensembles are computationally
indistinguishable.

{
mimA

〈C,R〉(v1, . . . , vm, z)
}
n∈N,v1,...,vm∈{0,1}n,v′1,...,v′m∈{0,1}n,z∈{0,1}∗{

mimA
〈C,R〉(v

′
1, . . . , v

′
m, z)

}
n∈N,v1,...,vm∈{0,1}n,v′1,...,v′m∈{0,1}n,z∈{0,1}∗

We also consider relaxed notions of concurrent non-malleability: one-one, one-many, and many-
one secure non-malleable commitments (See Figure 2 below.) In a one-one (a.k.a., a stand-alone
secure) non-malleable commitment, we consider only adversaries A that participate in one left and
one right interaction; in one-many, A participates in one left and many right, and in many-one, A
participates in many left and one right.

As shown in [?], any protocol that is one-many non-malleable is also concurrent non-malleable.

Proposition 1 ([?]). Let 〈C,R〉 be a one-many concurrent non-malleable commitment. Then,
〈C,R〉 is also a concurrent non-malleable commitment.

2.4 Robustness: Non-Malleability w.r.t. k-round Protocols

The concept of non-malleability is traditionally only considered in a setting where a man-in-the
middle adversary is participating in two (or more) executions of the same protocol. We here
consider a new notion of non-malleability with respect to arbitrary k-round protocols.

6
133

Approved for Public Release; Distribution Unlimited.

A

C R

Com(vm)

Com(vi)

Com(v1)

Com(ṽm)

Com(ṽi)

Com(ṽ1)

·· ·

·· ·

·· ·

·· ·

Figure 1: A concurrent man-in-the-middle adversary.

ACom(v) Com(ṽ) ACom(v)

Com(ṽm)

Com(ṽi)

Com(ṽ1)

·· ·

·· ·
A

Com(vm)

Com(vi)

Com(v1)

Com(ṽ)
·· ·

·· ·

(i) one-one (ii) one-many (iii) many-one

Figure 2: Restricted man-in-the-middle adversaries.

Consider a one-many man-in-the-middle adversary A (as shown in figure 3) that participates in
one left interaction—communicating with a machine B—and many right interactions—acting as a
committer using the commitment scheme 〈C,R〉. As in the standard definition of non-malleability,

A can adaptively choose the identities in the right interactions. We denote by mimB,A
〈C,R〉(y, z) the

random variable consisting of the view of A(z) in a man-in-the-middle execution when communicat-
ing with B(y) on the left and honest receivers on the right, combined with the values A(z) commits

to on the right. Intuitively, we say that 〈C,R〉 is one-many non-malleable w.r.t B if mimB,A
〈C,R〉(y1, z)

and mimB,A
〈C,R〉(y2, z) are indistinguishable, whenever interactions with B(y1) and B(y2) cannot be

distinguished.

Definition 2. Let 〈C,R〉 be a commitment scheme, and B a PPT ITM. We say the commitment
scheme 〈C,R〉 is one-many non-malleable w.r.t. B, if for every two sequences {y1n}n∈N and {y2n}n∈N ,
y1n, y

2
n ∈ {0, 1}n, such that, for all PPT ITM Ã, it holds that

{
〈B(y1n), Ã(z)〉(1n)

}
n∈N,z∈{0,1}∗

≈
{
〈B(y2n), Ã(z)〉(1n)

}
n∈N,z∈{0,1}∗

then it also holds that, for every PPT one-many man-in-the-middle adversary A,
{
mimB,A

〈C,R〉(y
1
n, z)

}
n∈N,z∈{0,1}∗

≈
{
mimB,A

〈C,R〉(y
2
n, z)

}
n∈N,z∈{0,1}∗

We say that 〈C,R〉 is one-many k-robust if 〈C,R〉 is one-many non-malleable w.r.t. any machine
B that interacts with the man-in-the-middle adversary in k rounds.

3 Proof Overview

To explain the main ideas behind our construction, we here focus on outlining the construction
of a constant-round non-malleable commitment scheme that is secure for synchronizing and non-
aborting adversaries; we next comment on how to deal with general adversaries. An adversary is

7
134

Approved for Public Release; Distribution Unlimited.

AB(y)

Com(ṽm)

Com(ṽi)

Com(ṽ1)

·· · ·· ·

·· ·

Figure 3: A concurrent man-in-the-middle adversary with respect to protocol B on input y.

said to be synchronizing if it “aligns” the left and the right executions; that is, whenever it receives
message i on the left, it directly sends message i on the right, and vice versa. An adversary is said
to be non-aborting if it never sends any invalid messages in the left interaction (where it is acting
as a receiver); it might still send invalid messages on the right.

As mentioned in the introduction, the idea is to have a protocol with an “identity-based trap-
door” embedded into it. The trapdoor will be a “signature-chain” using a sequence of keys that
are determined by the identity of the protocol. More precisely, we say that (σ0, σ1, . . . , σn) is a
plain signature chain1 with respect to the signature scheme Π, the verification keys vk0, vk1 and
the pattern ψ ∈ {0, 1}n if σ0 = 0 and for all 0 ≤ i < n, σi+1 is a signature on the message (i, σi)
with respect to the key vkψi+1

. For convenience of notation, for the remainder of this section we
fix a particular signature scheme Π; all signatures we use are with respect to this this particular
scheme.

The following simple claim regarding signature chains will be useful. Consider a “signature
game” where an adversary A gets access to two randomly chosen verification keys vk0, vk1 and
additionally has access to signature oracles with respect to vk0 and vk1; let ϕ denote the “access
pattern” of the adversary to the signature oracle (that is, if the i’th oracle call is to the signature
oracle w.r.t. vkb, then ϕi = b). The claim now is that, with overwhelming probability, if in the
signature game, A manages to output a plain signature chain with respect to vk0, vk1 and pattern
ψ, then ψ is a substring of ϕ.

The protocol for committing to a string v with identity id proceeds as follows:

• Slot 1: The receiver R generates a key-pair (sk0, vk0) for the signature scheme Π, and sends
vk0 to the committer C. C next send a random message r0 to R who signs r0 and then
returns the signature to C.

• Slot 2: R generates another key-pair (sk1, vk1) and sends vk0 to the committer C. As in
Slot 1, C next send a random message r1 to R who signs r1 and then returns the signature
to C.

• Commit phase: C commits to v using a standard statistically binding commitment.

• Proof phase: C gives R a “special-purpose”2 witness indistinguishable argument of knowl-
edge of the fact that it either knows the value committed to in the commit phase, or that it
knows a plain signature chain with respect to vk0, vk1 and id.

We now turn to argue that this protocol is non malleable with respect to non-aborting and
synchronizing adversaries. For simplicity, we here focus only on one-one (i.e., stand-alone) non-
malleability (but the same proof actually also works for concurrent non-malleability). Consider a

1We use the name “plain signature chain” (instead of just “signature chain”), since the actual signature chains
we will use in the final construction will be a bit more complicated.

2We will shortly explain what makes this proof special.

8
135

Approved for Public Release; Distribution Unlimited.

man-in-the-middle adversary A that uses identity id on the left and identity ĩd 6= id on the right,
and receives a commitment to the value v on the left. We will argue that no matter what the value
of v is, the value it commits to on the right will be indistinguishable. Towards this goal, consider a
hybrid experiment where the left interaction is simulated by acting honestly in Slot 1 and 2, next
committing to 0, and finally using a “fake-witness”—namely a signature chain—in the proof phase;
the simulator obtains this fake witness by simply rewinding Slot 1 and 2 (that is, to rewinding slot
b, we restore the state of A after vkb has been sent, and send a new message to be signed) in the
appropriate order to obtain a signature chain with respect to id (note that since A is non-aborting,
each time the simulator asks it to sign a message, it does). To show the above claim, we now argue
that no matter what the value of v is, the value A commits to on the right in the real execution
(when receiving a commitment to v), is indistinguishable from the value it commits to on the right
when the left interaction instead is simulated.

The key-point of the proof is the claim that even in the simulation, A cannot use a fake-witness
in the right interaction. This follows from the fact that since A is synchronizing, when we rewind
Slot 1 and 2 on the left, the same slots are rewound on the right in exactly the same order. Thus, by
the signature-game claim, if A manages to get a signature chain it must be a subset of the pattern
01id (the reason we need to append 01 is that A gets two signatures in the honest emulation of
Slot 1 and 2, already before we start the rewindings). So, if we appropriately restrict the identity
set (for instance, by requiring that all identities start with 10) then the only valid identity that is
a substring of 01id is id, and thus ĩd = id, which is a contradiction.

To argue that the value committed to on the right does not change when we move from the real
interaction to the simulation, consider an intermediary hybrid where we only change the witness
used in the proof phase (but keep the value committed to in the commit phase to v). Note that
since the adversary is synchronizing, the proof phase of the left interaction appears completely after
the commitment (in Stage 2) in the right interaction. Therefore, the right value does not change
at all when switching the the witness used in the proof phase on the left.

Finally, we simply have to argue that the value on the right does not change once we change the
value committed to in the commit phase on the left. By the hiding property of the left commitment,
the view of the adversary does not change when the left committed value switches. But since the
value committed to on the right cannot be efficiently recovered, this does not directly imply that
the committed value also is indistinguishable. To resolve this problem, we rely on the argument
of knowledge property of the proof phase: A witness on the right can be extracted efficiently from
the proof phase. Since the witness used in the right interaction cannot be a fake witness (by the
key-claim above), it must be the value committed to in the commit phase, so indistinguishability
of the committed value follows from the hiding property of the the left commitment.

Dealing with aborting adversaries: When considering aborting adversaries, we run into two
obstacles:

• The adversary might notice that the simulator is feeding it signature chains to sign (instead of
random messages) and thus decide to abort the left execution. We handle this by adapting the
definition of a signature chain: instead of requiring the chain to be “a signature on a signature
on a signature... etc”, we require a signature-chain to be a signature on “a commitment of
a signature on a commitment of a signature... etc”. And next, in the protocol, we let C
send commitments to 0 instead of random strings. To be able to establish an analog of the
above signature-game claim, we additionally require C to give a zero-knowledge argument of
knowledge of the value it committed to before R agrees to sign it.

• Another problem is that Amight abort the left execution with some probability p. This means
that we might have to rewind the left execution many times (roughly 1/p times) before getting

9
136

Approved for Public Release; Distribution Unlimited.

the signature we are looking for. As a consequence, the ”access pattern” on the right will be
a substring of 01id∗1id

∗
2 . . . id

∗
n. To get around this problem, we add an additional slot (and a

corresponding signature key). Next, we require that the signature-chain corresponding to the
identity id to be with respect to the pattern 2id12id22id3 . . . 2idn.

Dealing with non-synchronizing adversaries: As is usually the case, synchronizing adversaries
are the “hardest” to deal with. To prove security against non-synchronizing adversaries, we follow
basically the same argument: First, if A is not synchronizing there exists some slot that is never
rewound and so if the identity of the right interaction contains at least two 0’s and two 1’s, we
can still establish the above key-claim. Next, to argue that the committed value on the right does
not change, we consider again the intermediary hybrid above. However, when the adverary is not
synchronizing, it may choose to interleave messages in the proof phase of the left interaction and
the commitment of the right interaction, and thus the right committed value may change when
the witness on the left changes. To overcome this problem, we again rely on the argument of
knowledge property of the proof phase to extract a witness from the right intearction. Since the
witness cannot be a signature-chain (by the key-claim), it must be the committed value; then the
indistinguishablity of the committed vallue follows from the witness-indistinguishability of the left
proof phase. However, one problem is that extraction on the right may rewind the left proof phase
and thus break the witness indistinguishability property. One way of resolving this problem would
be to (in analogy with [?]) have the proof phase be statistically witness indistinguishable; but this
requires additional assumptions (to keep it constant-round). Instead, we here introduce a different
technique to to overcome this problem: we let the proof phase consist of multiple sequentially
ordered witness indistinguishable special-sound proofs.3 This allows us to change the witness in
each of the proofs, one by one, while ensuring that the witness on the right can be extracted from
some other proof, without rewinding the left proof where the witness currently is being changed.

4 Signature Chains and Games

Let Π = (Gen, Sign, V er) be a fixed-length signature scheme, and com a statistically-binding
commitment scheme. For simplicity of notation, we keep these schemes fixed, and provide our
definitions and protocols with respect to those particular schemes. Furthermore, for simplicity of
exposition, we assume that com that is non-interactive; however, all of our definitions and protocols
can be easily modified to work with any two-round statistically-binding commitment schemes; see
Remark 5 for further details.

We now turn to formally defining the notion of a signature-chain and then proceed to defining
signature-games.

Definition 3 (Signature-Chain). Let ℓ ∈ N , ψ ∈ {0, 1, 2}ℓ and vk0, vk1, vk2 ∈ {0, 1}∗ be three
verification keys for the signature scheme Π. We say that a triplet δ = (σ̄, c̄, r̄) is a signature-chain
w.r.t. keys vk0, vk1, vk2 and pattern ψ, if σ̄, c̄, and r̄ are vectors of length ℓ satisfying the following
properties.

• For all i ∈ [ℓ], σ̄i is valid signature of the message c̄i under key vkψi , i.e., V er(vkψi , σ̄i, c̄i) = 1.

• For all 1 < i ≤ ℓ, c̄i is a commitment to the tuple (i− 1, σ̄i−1) using com and randomness r̄i;
and c̄1 is a commitment to 0m using com and randomness r̄1, where m = log ℓ+ n.

3This method was originally used by us in the amplification procedure of [?]; this “trick” is also a central component
enabling the works of [?, ?].

10
137

Approved for Public Release; Distribution Unlimited.

We say that a signature-chain δ = (σ̄, c̄, r̄) has length ℓ if |σ̄| = l.
We proceed to define a signature-game SGA,ℓ(n, z), where A on input 1n, z interacts with a

Challenger in the following three stages:

Stage 1: the Challenger samples three pairs of signing and verification keys at random, (skb, vkb)←
Gen(1n), where b ∈ {0, 1, 2}, and sends A the verification keys, vk0, vk1, and vk2.

Stage 2: A interacts with the Challenger in a sequence of iterations for as long as it wishes.
Iteration i proceeds as follows:

• A sends the Challenger a tuple (ϕi, c), where ϕi ∈ {0, 1, 2}, followed by a 5-round
ZKAOK proof of the statement that c is a valid commitment of com.

• if the proof is convncing, the Challenger signs the commitment c using the signing key
sϕi and returns the signature to A; otherwise, it aborts the iteration (without giving
back a signature).

Stage 3: Finally, A outputs the tuple (δ, ψ).

We call the sequence ϕ = ϕ1, ϕ2, . . . of signing request, the “access pattern” of A. We say that the
output of A is well-formed if δ is a length l(n) signature-chain with respect to vk0, vk1, vk2 and ψ.
Finally, we say that A wins if its output is well-formed at ψ is not a substring of its access pattern
ϕ (and looses otherwise).

Lemma 1. For every PPT adversary A and every polynomial ℓ, there exists a negligible function
µ, such that for every n ∈ N, z ∈ {0, 1}∗, the probability that A wins in SGA,ℓ(n, z) is at most µ(n).

Proof. Consider any adversary A, polynomial ℓ, n ∈ N , and z ∈ {0, 1}∗. Without loss of generality,
we can assume that A always outputs tuples (δ = (σ̄, c̄, r̄), ψ) such that |σ̄| = |c̄| = |r̄| = ψ| = l(n)
(since whenever it doesn’t it loses). For each i ∈ [l(n)], define the random variable Ii to be the
index of the first iteration (in Stage 2 of the game SGA,ℓ(n, z)) in which A queries the Challenger
for a signature of the commitment c̄i under key vψi ; if A never queries the Challenger for a signature
of c̄i, Ii is set to ⊥.

Note that if the output of A is well-formed, it contains a signature-chain δ = (σ̄, c̄, r̄) w.r.t.
pattern ψ, such that for every i, σ̄i is a valid signature of c̄i under key vψi . It thus follows from the
unforgibility of the signature scheme that, except with negligible probability, for each i, A must
have queried c̄i for a signature of vψi in some iteration. We thus have the following claim.

Claim 1. For every PPT adversary A and polynomial ℓ, there exists a negligible function µ1,
such that for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of A in SGA,ℓ(n, z) is of A is
well-formed and there exists an i ∈ [ℓ(n)] such that Ii = ⊥, is smaller than µ1(n).

We also have the following claim.

Claim 2. For every PPT adversary A and polynomial ℓ, there exists a negligible function µ2, such
that, for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of A in SGA,ℓ(n, z) is well-formed
and there exists an i ∈ [ℓ(n)−1] such that , Ii 6= ⊥, Ii+1 6= ⊥ and Ii ≥ Ii+1, is smaller than µ2(n).

Before proceeding to the proof of Claim 2, we let us first prove Lemma 1 using Claim 1 and 2.
It follows from the two claims that, except with negligible probability, either the output of A is
not well-formed, or the output is well-formed and for all i, Ii 6= ⊥ and Ii < Ii+1. In the former
case, the adversary loses the game. In the latter case, as Ii 6= ⊥ for all i, A must have asked for
a signature using key vψi in the Iith iteration, which means ϕIi = ψi. Furthermore, as Ii < Ii+1

for all i, it follows that ψ is a substring of ϕ. Therefore, A loses in this case as well. Thus, except
with negligible probability, A looses.

11
138

Approved for Public Release; Distribution Unlimited.

Proof of Claim 2. First notice that it follows from the (statistical) binding property of com, that
except with negligible probability4, if the output (δ = (σ̄, c̄, r̄), ψ) of A is well-formed, then for all
i, c̄i 6= c̄i+1, since c̄i, c̄i+1 are respectively commitments to tuples of the form (i, ·) and (i + 1, ·).
It follows that, except with negligible probability, if the output of A is well-formed, there doesn’t
exists some i such that Ii,Ii+1 6= ⊥ but Ii = Ii+1. Thus, it suffices to bound the probability that
the output of A is well formed and there exists some i such that Ii,Ii+1 6= ⊥ and Ii > Ii+1.

Towards this, assume for contradiction that there exists an adversary A and a polynomial ℓ,
such that there exists a function i : N → N and a polynomial p, such that for infinitely many
n ∈ N, z ∈ {0, 1}∗, the probability that the output of A in the game SGA,ℓ(n, z) is well-formed,
Ii,Ii+1 6= ⊥, and Ii > Ii+1 for i = i(n), is at least 1/p(n). We can construct a machine B that
violate the unforgibility of the signature scheme Π.

B, on input 1n, z and a randomly generated verification key vk, has access to the signing oracle
corresponding to vk, and tries to forge a signature (of vk) as follows: it internally emulates an
execution of the signature game SGA,ℓ(n, z) with A honestly, with the following exceptions:

• In Stage 1, it picks an index t ∈ {0, 1, 2} at random and forwards the verification key vk to
the adversary as the tth verification key.

• In Stage 2, whenever A requests a signature of a message m under key vk, it obtains such a
signature from the signing oracle and forwards it to A.

Furthermore, it guesses that Ii = u and Ii+1 = k, for random u > k. Then, in the kth

iteration (in Stage 2 of SGA,ℓ(n, z)), after receiving a request from A to sign the commitment
c, it extracts out the value (j, σ∗) committed to in c from the ZKAOK that A provides
following the signing request. Later, in the uth iteration, when A submits a query c∗ to the
Challenger, it checks whether σ∗ is a valid signature of c∗ under key vk. If so, it halts and
outputs the message-signature pair (c∗, σ∗); otherwise, it halts and outputs fail.

By construction, B emulates the view of A in the signature game SGA,ℓ(n, z) perfectly before it
halts. Therefore, by our hypothesis, with probability at least 1/p(n), in emulation by B, A would
query for the first time the commitments c̄i and c̄i+1 in iterations Ii and Ii+1 respectively, such
that Ii+1 < Ii and c̄i+1 is a commitment to a tuple (i + 1, σ̄i+1), where σ̄i+1 is a signature of c̄i
under the verification key vψi . Let M(n) be the maximum number of iterations in the game; M is
polynomially bounded since the running-time of A is. With probability at least 1

q(n) =
1

3M(n)2p(n)
,

it holds that (1) the above event occurs in the emulation by B and (2) B correctly guesses the
values of Ii, Ii+1 and vψi . In this case, except with negligible probability, the committed value σ∗

that B extracts out from the ZKAOK following c = c̄i+1 contains a valid signature of c̄i, which is
queried for the first time in the uth iteration for a signature using key vk. Hence B will output a
valid message-signature pair (c̄i, σ

∗) for vk, without querying the signing oracle c̄i (since once the
query c̄i is submitted for the first time in iteration u, B halts immediately and outputs the pair);
this violates the unforgibility of the signature scheme Π.

5 The Protocol

Let Π = (Gen, Sign, V er) be the fixed-length signature scheme, and com the non-interactive
statistically-binding commitment scheme considered in the last section. To simplify the presen-
tation of the proof, we assume that both Π and com can be “broken”—i.e., signatures can be

4Since we assume that com is non-interactive, we actually have perfect binding, but given that we want an analysis
that works also for two-round commitments, we here directly consider the more general case of statistical binding.

12
139

Approved for Public Release; Distribution Unlimited.

generated for any message, and the value committed to can be recovered for any commitment—in
time 2n/2 where n is the security parameter; this is without loss of generality since we can always
appropriately “scale-down” the security parameter in Π and com (and make sure that com com-
mits to values “bit-by-bit”). To further simplify the presentation, we provide the construction of
a non-malleable commitment 〈C,R〉 that works assuming player identities are ℓ-bit binary strings
that contains at least two 0-bits and two 1-bits; any such scheme can trivially be turned into one
that works for arbitrary identities (by simply appending two 0’s and two 1’s to the identity).

To commit to a value v, the Committer and the Receiver of 〈C,R〉, on common input a security
parameter 1n (in unary) and an identity id ∈ Dℓ, proceed in the following three stages:

Stage 1: The receiver interacts with the Committer in three iterations, where iteration i ∈ {0, 1, 2}
proceeds in the following steps:

1. The Receiver generates a pair of signing and verification keys, (si, vi)← Gen(1n), of the
signature scheme Π, and sends the verification key vi.

2. The Committer commits to 0m, where m = log ℓ+ n, using com. Let ci be the commit-
ment sent to the Receiver.

3. The Committer proves that ci is a valid com commitment using a 5-round ZKAOK
protocol.

4. The Receiver signs the commitment ci using the signing key si, and sends the generated
signature θi to the Committer.

Stage 2: The Committer commits to the value v using com. Let c′ be the commitment generated.

Stage 3: The Committer proves that

• either c′ is a valid com commitment,

• or there exists a signature-chain δ w.r.t. v0, v1, v2 and pattern pattern(id), where the
function pattern : {0, 1}∗ → {0, 1, 2}∗ maps a (binary) identity id of length ℓ to a trinary
string of length 2ℓ as follows:

pattern(id) = 2, id1, 2, . . . , idi, 2, . . . , idℓ

This statement is proved using k + 5 sequential invocations of a 4-round WI special sound
proof system, where k is the number of messages in Stage 1 of the protocol; we additionally
require that the length of the “challenge” in each special-sound proof is n.

We refer to the last three steps of an iteration in Stage 1 as a slot, which opens when the Com-
mitter send the com commitment to 0m, and closes when the Receiver returns a signature to the
commitment. We call the slot in iteration i, the i’th slot.

It is easy to see that the protocol 〈C,R〉 consists of a constant number of messages. Furthermore,
it follows using standard techniques that 〈C,R〉 is a valid commitment scheme.

Proposition 2. 〈C,R〉 is a commitment scheme.

Proof. We show that the 〈C,R〉 scheme satisfies the binding and hiding properties.

Binding: The binding property follows directly from the statistically binding property of com used
in Stage 2.

13
140

Approved for Public Release; Distribution Unlimited.

Hiding: The hiding property essentially follows from the hiding property of com and the fact that
Stage 3 of the protocol is WI (sinceWI proofs are closed under concurrent composition [?]).
For completeness, we provide the proof. We show that any adversary R∗ that violates the
hiding property of 〈C,R〉 can be used to violate the hiding property of com. More precisely,
given any adversary R∗, such that, for infinitely many n ∈ N , and v1, v2 ∈ {0, 1}n, R∗

distinguishes commitments to v1 and v2 made using 〈C,R〉, we construct a machine R′ that
distinguishes commitments to v1 and v2 made using com. Note that the execution of a
commitment of 〈C,R〉 to v1 proceeds identically as that of a commitment to v2 before the
Stage 2 commitment of com is sent. Then by our hypothesis, there must exist a partial joint
view ρ of the committer and R∗ that determines the execution of the commitment before
Stage 2, such that, conditioned on ρ occurring, R∗ distinguishes commitments to v1 and
v2. Let δ be a valid signature-chain corresponding to the transcript of Stage 1 in ρ. R′ on
auxiliary input ρ and δ proceeds as follows: it internally incorporates R∗, and feed R∗ its
part of view in ρ; it then forwards the external commitment made using com to R∗ in Stage
2; in Stage 3, it gives WI proofs using δ as a “fake witness”. Finally, it outputs whatever R∗

outputs. From the WI property of Stage 3, it follows that R′ distinguishes the commitment
made using com, if R∗ distinguishes the commitment made using 〈C,R〉 conditioned on ρ
occurring.

Both the definition of of signature-games and our non-malleable commitment protocols makes
use of a non-interactive statistically-binding commitment scheme com. Both can be easily modified
to work also with any two-round statistically binding commitment schemes com. In both cases,
we the first message r of a commitment of com is sent at the beginning of the execution, and then
the rest of the execution proceeds just as if com had been non-interactive. (Additionally, in the
last stage of the protocol 〈C,R〉, the sender proves that either the Stage 2 message is the second
message of a valid com commitment with first message r, or it knows a signature-chain δ = (σ̄, c̄, r̄),
such that, δ is well-formed, except that, for all i, c̄i is the second message of a com commitment to
σ̄i−1, generated in responding to the first message r using randomness r̄i). Exactly the same proof
as in Section 4 and Section 6 still go through using these modified construction, since commitments
of com are hiding, no matter what the first message is, and even if the first message is reused.

6 Proof of Non-malleability

In this section, we show that 〈C,R〉 is stand-alone non-malleable. In Sections 8 and 7, we extend
the proof to show that 〈C,R〉 is also robust and concurrent non-malleable.

Theorem 5. 〈C,R〉 is (one-one) non-malleable.

Proof. The goal is to show that for every one-one man-in-the-middle adversary A that participates
in one left and one right execution, the following ensembles are indistinguishable:

{
mimA

〈C,R〉(v1, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

{
mimA

〈C,R〉(v2, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

Towards this, we define a series of hybrid experiments H0, . . . ,Hk+6. In each of these experiments,
we show that the view of A, combined with the value that A commits to on the right, are indistin-
guishable. Let hybi(v, z) denote the random variable describing the view of A(z), combined with

14
141

Approved for Public Release; Distribution Unlimited.

the value it commits to in the right interaction in hybrid Hi (as usual, the committed value is
replaced with ⊥ if the right interaction fails or if A has copied the identity of the left interaction).

Hybrid H0: In H0 we first perfectly emulate a real execution of mimA
〈C,R〉(v, z)—we call this the

Main Execution—and next, if A successfully completed Stage 1 in the Main Execution, we
try extract a “fake-witnesses” (i.e., a signature-chain) for the left interaction. More precisely,
let idl, v0, v1, v2, respectively be the identity and the verification keys of the left interaction
in the Main Execution, and let ψ = pattern(idl); the Extraction Procedure now proceeds in
|ψ| = 2ℓ iterations described below.

Iteration 1: If A successfully completes Stage 1 of the left interaction in the Main Execution,
it must have provided three valid signatures θ0, θ1, θ2 of commitments to 0m, where
m = log ℓ+ n, under keys v0, v1, v2 respectively. Since a signature-chain with pattern ψ
starts off with a signature σ̄1 of a commitment to 0m under key vψ1 = v2, the procedure
simply sets σ̄1 = θ2, c̄1 to be the transcript of the commitment to 0m generated in
iteration 2 (in Stage 1) of the left interaction, and r̄1 to be the randomness used in the
commitment.

Iteration i+ 1: Assume that at the end of the ith iteration, for i ∈ [2ℓ − 1], the procedure
has obtained a signature-chain δi of length i w.r.t. (keys v0, v1, v2 and) pattern [ψ]i1,
containing signatures σ̄1, . . . , σ̄i. Then, in iteration i + 1, we obtain a signature-chain
δi+1 of length i + 1, w.r.t. pattern [ψ]i+1

1 by rewinding the appropriate slot in Stage 1
of the left interaction. More precisely, the procedure repeatedly rewinds A from where
the slot ψi+1 opens on the left in the Main Execution, and commits to the tuple (i, σ̄i)
(instead of 0m) in the rewindings, until this left-slot closes successfully (i.e., A returns
a valid signature on the commitment under key vψi+1

). In each of these rewindings, the
right executions are emulated using fresh randomness; in particular, this means that
whenever a rewinding goes beyond the point when a verification key is sent in the right
interaction, in each such rewinding a fresh verification key is picked. Then the extraction
procedure simply sets σ̄i+1 to be this signature, and again sets c̄i+1 and r̄i+1 to be the
commitment and randomness used.

If the extraction procedure takes more than 2n/2 steps, it is “cut-off”; in this case, a signature
chain can be recovered in time poly(2n/2) by our assumption on the signature scheme Π. The
extraction procedure thus always terminates and always recovers a valid signature chain for
the left interaction.

Since the view of A in the Main Execution in H0 is perfectly emulated as in mimA
〈C,R〉(v, z),

we trivially have that the view and value A commits to in H0 is identically distributed to
that in the real execution.

Claim 3. For every PPT adversary A, it holds that:

{
mimA

〈C,R〉(v, z)
}
n∈N,v∈{0,1}n,z∈{0,1}∗

=
{
hyb0(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Hybrid H1 to Hk+5: In hybrids H1 to Hk+5, we change the witness used in the k + 5 WISSP
proofs in Stage 3 of the left interaction. More specifically, experiment Hi proceeds identically
to Hi−1, except that in the first i proofs in Stage 3 of the left interaction, we prove that
there exists a signature-chain w.r.t. v0, v1, v2 and pattern pattern(idl), by using the extracted
signature-chain δ as a “fake-witness”. We show that the view and value committed to on the
right interaction in Hi−1 and Hi are indistinguishable.

15
142

Approved for Public Release; Distribution Unlimited.

Proposition 3. For every PPT adversary A, and every function i : N → N , it holds that:

{
hybi(n)−1(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

≈
{
hybi(n)(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Towards this, we reduce the indistinguishability of {hybi(n)−1(v, z)} and {hybi(n)(v, z)} to the
witness indistinguishabilty of the Stage 3. More specifically, consider some adversary A, a
function i, and a polynomial p, such that (for infinitely many n ∈ N , inputs v ∈ {0, 1}n and
z ∈ {0, 1}∗,) hybi(n)−1(v, z) and hybi(n)(v, z) are distinguishable with probability 1/p(n). We
show that there exists a PPT machine B that can violate the WI property of the WISSP
protocol 〈P, V 〉 used in Stage 3 of the protocol.

Description of B
Input: B receives a security parameter 1n and v and z as auxiliary input.
Procedure: B externally interacts with a prover P of the WISSP protocol 〈P, V 〉, receiving a
proof of a statment x using witness w0 or w1, where x, w0 and w1 are chosen by B. Internally, it
proceeds in the following three phases:

Simulation Phase: B internally emulates an execution of the experiment hybi(v, z) with A,
with the exception that messages in the ith left-proof of the Main Execution are forwarded
externally to P . More precisely, at the beginning of the ith left-proof, B sends the external
prover P the statement x of the ith proof, together with the “real witness” w0 = (v, r) (the
decommitment of the Stage 2 commitment of the left interaction) and the “fake witness”
w1 = δ (the signature-chain of the left interaction extracted from A); B next forwards the
proof of x generated by P (using either w0 or w1) to A as the ith left-proof. Let ∆ be the
simulated view of A in the Main Execution.

Rewinding Phase: If the right interaction is successful and has a different identity from the left
interaction in ∆, B extracts the value committed to in this interaction as follow:

• Find the first WISSP proof (α1, α2, β, γ) in ∆, such that, during its the execution,
no messages belonging to Stage 1 or the ith proof of the left interaction are exchanged.
(Such a WISSP proof must exist since there are k + 5 WISSP proofs, whereas only
k + 4 messages in Stage 1 and the ith proof of the left interaction.)

• Rewinds the proof by sending new random challenges β′ until a second transcript
(α1, α2, β

′, γ′) is obtained.
In the rewindings, emulate the left and right interaction for A in identically the same
way as in the Main Execution, except that, whenever A expects a new message in Stage
1 or the ith proof of the left interaction, cancel the execution and start a new rewinding
again.

• If βρ 6= β′ρ, extract witness w from (α1, α2, β, γ) and (α1, α2, β
′, γ′). Otherwise halt and

output fail1.

• If w = (v, r) is valid decommitment for the right interaction, then set v̂ = v. Otherwise
halt and output fail2.

Output Phase: If the right interaction that is not convincing or the identity of the right inter-
action is the same as the left interaction, set v̂ =⊥. Output v̂ and ∆.

Figure 4: The construction of B

16
143

Approved for Public Release; Distribution Unlimited.

On a high-level, the machine B, on common input 1n and auxiliary input v, z, externally
interacts with an honest prover P and receives a left-interaction Stage 3 proof, generated
using either the real witness w0—the decommitment of the Stage 2 commiment in the left
interaction—or the fake witness w1—a signature chain for the left intearction. Internally,
B emulates an execution of either hybi−1 or hybi with A (depending on the witness used in
the external proof), except that, messages in the ith proof in Stage 3 of the left interactions
are fowarded externally. Furthermore, if the right interaction is successful and has a different
identity from the left, B attempts to extract the value committed to on the right by repeatedly
rewinding the WISSP proofs in Stage 3 of the right inteaction by sending new challenge
messages in this proof. Since the ith left-proof is forwarded externally, the rewinding has
to be done in a manner that does not “affect” the ith left-proof. Roughly speaking, this is
possible since there are more WISSP proofs in Stage 3 of the right interaction, than the
number of messages in the ith left-proof. Therefore, in the right interaction, there exist some
WISSP proofs that does not interleave with any messages in the ith left-proof, and B can
use rewindings to extract a witness without rewinding the left-proof. Our actual rewinding
strategy also avoids rewinding Stage 1 of the left interaction, so that the fake-witness δ of
the left interaction remains a valid signature chain also in the rewindings, and thus can be
reused to simulate the left interaction also in the rewindings. This is again possible since
there are more right-proofs than the number of messages in Stage 1 and the ith proof in the
left interaction. To slightly simplify the analysis, we additionally “cut-off” the rewindings if
B takes more than 2n/2 steps and simply recover the value committed to in time poly(2n/2);
recall that this is possible due to our assumption on com.

If during the rewindings, B sends the same challenge message twice, it aborts outputting fail1.
Additionally, if the witness extracted from the right interaction is not a valid decommitment
(it could also be a fake-witness), B aborts outputting fail2. Otherwise, B outputs the emulated
view of A, together with the value committed to in the right interaction.,

See Figure 4 for a formal description of B. Below, in Lemma 2, we show that the running-time
of machine B is “bounded”, in the sense that the probability that B runs for super-polynomial
time is negligible.

Lemma 2. There exists a polynomial function T , such that for every polynomial function
q, every b ∈ {0, 1}, every sufficiently large n ∈ N , and inputs v ∈ {0, 1}n and z ∈ {0, 1}∗,
the probability that machine B runs for more than q(n)T (n) steps in an execution of the
experiment STAb(〈P, V 〉, B, v, z) is smaller than 1/q(n).

Roughly speaking, the Lemma is proven by first bounding the running-time of a “hypothetical
procedure” which perform all the same rewindings, but otherwise acts honestly (i.e., always
commits to 0m in Stage 1, and always uses the honest witness in Stage 3); it follows using
a simple “p× 1/p” argument (similar to those in [?]) that the expected running-time of this
procedure is polynomial. Next we show that, with high probability, the running-time of the
actual procedure is not too far off. We note that due to reasons similar to those in [?] we
are not able to bound the expected running-time of B. Additionally, it seems unclear if
the methods of [?] could be applicable to obtains a simulation with an expected polynomial
running-time. Fortunately, in our application, since we do not actually per se care about the
running time of the simulation (but only care about breaking some specific security property,
namely witness indistinguishability) our weaker bound suffices.

A formal proof of Lemma 2 can be found in Section 6.1.

The following lemma is the core of our analysis.

17
144

Approved for Public Release; Distribution Unlimited.

Lemma 3. The following holds.

{STA0(〈P, V 〉, B, v, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ ≈
{
hybi−1(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

{STA1(〈P, V 〉, B, v, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ ≈
{
hybi(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Before proceeding to the proof of 3, let us see how Lemma 3 and 2 together violate the
WI property of the Stage 3 proofs. Recall that by our assumption, hybi(v, z) and hybi −
1(v, z) can be distinguished with probability 1/p(n); by Lemma 3, STA0(〈P, V 〉, B, v, z) and
STA0(〈P, V 〉, B, v, z) can thus be distinguished with probability at least, say, 3/4p(n). By
Lemma 2, the probability that B runs for more than, say, 4p(n)T (n) steps in either experiment
is at most 1/4p(n). Therefore, by the union bound, the outputs of B (in STA0 and STA1) are
still distinguishable with probability at least 1/4p(n), even if we cut-off the execution of B
after 4p(n)T (n) steps (and output ⊥ if B fails to complete), which is a contradiction.

Let us now turn to proving Lemma 3.

Proof. (of Lemma 3) By construction, B perfectly emulates the view of A in hybi−1(v, z) when
receiving an external proof generated using the real witness w0, and that in hybi(v, z) when
receiving a proof generated using the fake witness w1. Therefore, to show Lemma 3, it suffices
to show that B (almost) always extracts a valid decommitment for the right interaction if it
is successful and has a different identity from the left interaction (recall that by statistical
binding of 〈C,R〉, the committed value is unique with overwhelming probability). In other
words, showing Lemma 3 amounts to showing that the probability that B outputs fail1 or
fail2 is negligible.

Claim 4. There exists a negligible function µ, such that for every b ∈ {0, 1}, every sufficiently
large n ∈ N , and inputs v ∈ {0, 1}n and z ∈ {0, 1}∗, the probability that B outputs fail1 in
STAb(〈P, V 〉, B, v, z) is smaller than µ(n).

Proof. Recall that B outputs fail1 only if in some rewinding it picks the same challenge β′

as the challenge β used in the same proof in the Main Execution. Since the number of
rewindings by B is bounded by 2n/2 and the length of each challenge is n, by the union
bound, the probability that this happens is negligble.

Claim 5. There exists a negligible function µ, such that, for every b ∈ {0, 1}, every sufficiently
large n ∈ N , and inputs v ∈ {0, 1}n and z ∈ {0, 1}∗, the probability that B outputs fail2 in
STAb(〈P, V 〉, B, v, z) is smaller than µ(n).

Proof. Assume for contradiction that there exists a polynomial g(n), such that, with prob-
ability 1/g(n), B extracts an invalid decommitment from the right interaction. Towards
reaching a contradiction, we consider another machine B′, which proceeds identically to B
except that it cuts-off the execution after g(n)T (n) steps (and outputs ⊥ in this case). It
follows from Lemma 2 that the probabilty that B runs for more than g(n)T (n) steps is at
most 1/2g(n). Therefore, the probability that B′ extracts out an invalid decommitment from
the right interaction k is at least 1/2g(n). Furthermore, by the special-soundness property
of the right-proofs, if the witness is not a valid decommitment, it must be a signature-chain
δ w.r.t. the right-interaction keys v′0, v

′
1, v

′
2 and pattern pattern(idr). Consider the following

two possible adversarial schedulings w.r.t. the left and the kth right interactions in the Main
Execution:

18
145

Approved for Public Release; Distribution Unlimited.

Scheduling 1: A “aligns” the slots in the left and right interactions one by one: a right-slot
is said to be aligned with a left-slot if (1) its corresponding verification key is sent before
the left-slot opens, and (2) its opening message (i.e., the commitment from A) is sent
after the left-slot opens; see Figure 5 (i).

Scheduling 2: A does not align the slots in the left and right interactions; see Figure 5 (ii).
This means that there exists some right-interaction slot that is not aligned with any
left-interaction slot.

v0
com

ZKAOK

θ0

v1
com

ZKAOK

θ1

v2
com

ZKAOK

θ2

v0
com

ZKAOK

θ0

v1
com

ZKAOK

θ1

v2
com

ZKAOK

θ2

v0
com

ZKAOK

θ0

v1
com

ZKAOK

θ1

v2
com

ZKAOK

θ2

v0
com

ZKAOK

θ0
v1
com

ZKAOK

θ1

v2
com

ZKAOK

θ2

(i) Scheduling 1 (ii) Scheduling 2

Figure 5: The two schedulings of the messages in Stage 1 of the left and right interactions.

Since Scheduling 1 and 2 are the only two possible schedulings, by our hypothesis, at least
one of the following two conditions holds.

Condition 1: The probabilty that Scheduling 1 occurs in the Main Execution and that B′

extracts an invalid decommitment from the right interaction is non-negligible.

Condition 2: The probabilty that Scheduling 2 occurs in the Main Execution and that B′

extracts an invalid decommitment from the right interaction is non-negligible.

We show that neither condition can hold.

Assume Condition 1 holds. We reach a contradiction by constructing a machine C that
externally participates in the signature game, while internally emulating an execution of
STAb(〈P, V 〉, B′, v, z) except that messages in Stage 1 of the right interaction are emulated
by fowarding the appropriate messages from the signature games to A. More precisely, C
forwards the three verification keys vk0, vk1, vk2 in the signature game to A as the verification
keys in Stage 1 of the right interaction in the Main Execution. If Schedule 1 does not occur
in the Main Execution, C simply aborts. Otherwise, whenever during some rewinding, A
requests another signature in one of the slots on the Main Execution (and thus using one
of vk0, vk1, vk2), C obtains such a signature by accessing the appropriate signature oracle in
the game and forwards it to A. Recall that whenever we rewind beyond the point where a

19
146

Approved for Public Release; Distribution Unlimited.

verification key is sent, a new verification key is generated by B and thus B can obtain the
appropriate signatures without querying the oracle. Since the left and right slots in the Main
Execution are aligned one by one, we have that whenever the tth left-slot is rewound, the
adversary A may only request new signatures using key v′t on the right. It follows that the
“access-pattern” of the signatures requested is a substring of

ϕ = 012‖(idl)∗1, 2∗, . . . , (idl)∗i , 2∗, . . . , (idl)∗ℓ

So, wheneverB′ extracts out a signature-chain δ w.r.t. (keys v′0, v
′
1, v

′
2 and pattern pattern(idr)),

C wins in the signature game since pattern(idr) is not a substring of ϕ (as idr 6= idl). Since
the running-time of C is polynomial this contradicts Lemma 1.

Assume Condition 2 holds. We construct a machine C ′ just as in the previous case, except
that C ′ abort whenever Schedule 2 does not happen in the Main Execution. When Scheduling
2 does occurs in the Main Execution, there exists a right-slot t that is not aligned with any
left-slots; in other words, in all the rewindings where A gets to request a new signature in
Slot t on the right, the rewinding goes beyond the point where the verification key for slot t
is sent (and so new keys gets generated in each rewinding) and thus the t’th oracle is never
used during the extraction phase. It follows that the access pattern in the signature game has
a single character t, but the signature extracted is with respect to a pattern with two of each
character. So, as in Condition 1, whenever B′ extracts out a signature-chain δ, C ′ wins in the
signature game. There is just one slight complication with the implementation of C ′: in the
rewindings, B might rewind A in the middle of one of the ZKAOK in Stage 1, and since the
ZKAOKs are not public-coin, we might not be able to emulate the continuation of the verifier
strategy for this protocol. Note, however, that Lemma 1 still holds even if consider a slight
variant of the signature game where after each ZKAOK the verifier reveals all of its random
coins; this follows since this adjusted protocol would still be an ZKAOK and Lemma 1 no
mayyer what ZKAOK we use in the signature game. C ′ can now easily be implemented as
an adversary for this modified signature game.

Hybrid Hk+6 : Hybrid Hk+6 proceeds identically to Hk+5 except that the Stage 2 commitment of
the left execution is emulated by committing to 0n. It follows using the same argument as in
hybrids Hi, for i ∈ [k+5], that the value committed in the right interaction can be extracted
without rewinding Stage 2 of the left interaction. It then follows from the hiding property of
the Stage 2 commitment that the combined view and values committed to by A in Hk+5 are
indistinguishable from that in Hk+6.

It follows by a hybrid argument that,
{
mimA

〈C,R〉(v, z)
}
n∈N,v∈{0,1}n,z∈{0,1}∗

≈
{
hybk+6(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Since the above holds for every value v, we have
{
mimA

〈C,R〉(v1, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
hybk+6(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

, and

{
mimA

〈C,R〉(v2, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
hybk+6(v2, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

20
147

Approved for Public Release; Distribution Unlimited.

Finally, since by the definition of hybk+6, it holds that for every v1, v2 and z, hybk+6(v1, z) =
hybk+6(v2, z), we conclude that,

{
mimA

〈C,R〉(v1, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
mimA

〈C,R〉(v2, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

6.1 Proof of Lemma 2

Proof of Lemma 2. The running-time of B consists of three parts:

Part 1—Time spent simulating the Main Execution: SinceA runs in strict polynomial time,
the time T1(n) that B spends in the Main Execution polynomially bounded.

Part 2—Time spent extracting the left “fake-witness”: We show that there exists a poly-
nomial T2(n) such that for every polynomial q2, (every b ∈ {0, 1}, every sufficiently large
n ∈ N , and inputs v ∈ {0, 1}n, z ∈ {0, 1}∗,) the probability that B spends more than
q2(n)T2(n) steps extracting the left “fake-witness” in STAb(〈P, V 〉, B, v, z) is smaller than
1/q2(n).

Part 3—Time spent extracting the committed value on the right: We show that there ex-
ists a polynomial T3(n) such that for every polynomial q3, the probability that B spends more
than q3(n)T3(n) steps extracting the right committed value in STAb(〈P, V 〉, B, v, z) is smaller
than 1/q3(n).

So given an arbitrary polynomial q, we get by the union bound that, the probability B spends more
than 2q(n)T2(n) step in part 2, or more than 2q(n)T3(n) steps in part 3, is smaller than 1/q(n).
We conclude that there exists some sufficiently big polynomial T (n) ≥ T1(n) + 2T2(n) + 2T3(n)
such that for every polynomial q, the probability that B takes more than q(n)T (n) steps is smaller
than 1/q(n).

Analysis of Part 2: Recall that in an execution of STAb(〈P, V 〉, B, v, z), the extraction of the
left “fake-witness” proceeds in 2ℓ iterations. The running-time of the first iteration is clearly
polynomial; we proceed to analyze the time spent in the remainder of the iterations. Recall that
in an iteration i > 1, B takes the signature-chain δi−1 = ([σ̄]i−1

1 , [c̄]i−1
1 , [r̄]i−1

1) of length i− 1, w.r.t.
(keys v0, v1, v2 and) pattern [ψ]i−1

1 , (where ψ = pattern(idl),) obtained in the previous iteration,
and extends it to a signature-chain σ̄i of length i w.r.t. pattern [ψ]i1. This is done by repeatedly
rewinding A from the start of the left-slot ψi and committing to (i−1, σ̄i−1) in the rewindings, until
A closes this left-slot successfully. (Below we assume for simplicity that the extraction procedure
is never cut-off and may run for more than 2n/2 steps, since this only increases the running time).
Towards bounding the running-time of this extraction procedure, we first consider a hypothetical
procedure, which proceeds almost the same as the actual extraction procedure, except that in the
rewindings in iteration i > 1, instead of committing to (i−1, σ̄i−1), it commits to 0m. In other words,
the hypothetical procedure simulates the view of A in the rewindings using identically the same
distribution as in the Main Execution. We show that the expected running-time of this hypothetical
procedure is poly(n); we next bound the running-time of the actual extraction procedure.

Running-time Analysis of the Hypothetical Procedure: Let ψ = pattern(idl) be the pattern of the
“fake-witness” of the left intearction. In iteration i > 1, the hypothetical extraction procedure
repeatedly rewinds the left-slot ψi; let T i be the random variable that describes the time spent in

21
148

Approved for Public Release; Distribution Unlimited.

rewinding the left-slot ψi in iteration i > 1. We show that E[T i] ≤ poly(n) and then by linearity
of expectation, we conclude that the expected running-time of the hypothetical procedure is

2ℓ∑

i=2

E[T i] ≤
2ℓ∑

i=2

poly(n) ≤ poly(n),

since the number of iterations is poly(n).
Let us turn to bounding E[T i]. Let Γψi denote the set of prefixes ρ—i.e., partial transcripts of

the Main Execution—from where the left-slot ψi opens. Given a prefix ρ ∈ Γψi , we introduce the
following notations:

• let Pr [ρ] denote the probability that ρ occurs as a prefix in the Main Execution;

• let pρ denote the probability that, conditioned on the prefix ρ occurring (in the Main Execu-
tion), the left-slot ψi closes successfully in the Main Execution.

Take any ρ from Γψi . We claim that conditioned on ρ occurring, the expected value of T i—denoted
E[T i|ρ]—is poly(n). This follows since, first, the hypothetical procedure starts rewinding the left-
slot ψi in iteration i only if this slot closes successfully in the Main Execution; hence, (conditioned
on ρ occurring,) the probability the left-slot ψi is rewound is at most pρ. Secondly, once it starts
rewinding the left-slot ψi, it continues until the slot closes successfully again; since the hypothetical
procedure proceeds identically in the rewindings as in the Main Execution, the probability that the
left-slot ψi closes successfully in any rewinding is also pρ, and thus, (conditioned on ρ occurring,)
the expected number of rewindings performed before this happens is 1/pρ. Therefore, the overall
expected number of rewindings from ρ is pρ × 1

pρ
= 1. As each rewinding takes at most poly(n)

steps, we conclude that E[T i|ρ] ≤ poly(n). Thus,

E[T i] =
∑

ρ∈Γψi

E[T i|ρ] Pr [ρ] ≤ poly(n)×
∑

ρ∈Γψi

Pr [ρ] ≤ poly(n)

Running-time Analysis of the Actual Extraction Procedure: Given that the expected running time
of the hypothetical procedure is bounded by a polynomial T̃ (n), it follows using the Markov in-
equality that, for every polynomial q2, (every b, every n ∈ N , and inputs v, z,) the probability that
the hypothetical procedure takes more than q2(n)T̃ (n)/2 steps is smaller than 2/q2(n). Then we
claim that the probability that actual extraction procedure takes more than q2(n)T̃ (n)/2 steps is
smaller than 1/q2(n). This follows since the only difference between the hypothetical and the ac-
tual extraction procedures is that, in the former the rewindings are simulated by committing to 0m

using com, whereas in the latter rewindings are simulated by committing to a tuple that contains a
signature. Since the ZKAOK proof following the commitment is never rewound, it follows directly
from the hiding property of com and the zero knowledge property of the ZKAOK proof that, the
probability that the actual extraction procedure runs for more than q2(n)T̃ (n)/2 steps differs from
that of the hypothetical procedure by at most a negligible amount. Thus, for sufficiently large n, we
have that the probablity B spends more than T2(n) = q2(n)T̃ (n)/2 steps is smaller than 1/q2(n).

Analysis of Part 3: We show that the time that B spends in the Rewinding Phase is bounded
by a polynomial T3(n) in expectation. It then follows by the Markov inequality that, for every
polynomial q3, the probability that B takes more than q3(n)T3(n) steps is smaller than 1/q3(n).

It follows from the same argument as in the above “running-time analysis of the hypothetical
procedure” that to bound the expected time spent extracting the right committed value (also here,
we consider the running-time without cut-offs), it suffices to bound the expected time spent in

22
149

Approved for Public Release; Distribution Unlimited.

rewinding each right WISSP proof, since the total number of right-proofs is poly(n). Then recall
that a right-proof is rewound only if the proof completes successfully in the Main Execution, without
interleaving with any message in Stage 1 or the ith proof of the left interaction. On the other hand,
once the rewinding starts, it continues until this right-proof completes successfully again, while
cancelling every rewinding in which the proof interleaves with any message in Stage 1 or the ith

proof of the left interaction. Furthermore, as every rewinding is simulated exactly the same as in
the Main Execution, it follows using the same “p times 1/p argument” as in the analysis of part
2 that the expected number of rewindings for every right-proof is 1, and hence the expected time
spent in extracting the right committed value is bounded by a polynomial T3(n).

7 Proof of Concurrent Non-Malleability

Let us turn to proving that 〈C,R〉 is also concurrently non-malleable. Recall that ny Proposition 1,
to show concurrent non-malleability, it suffices to prove that 〈C,R〉 is one-many non-malleable;
that is, for every one-many man-in-the-middle adversary A, that participates in one left and many
right interactions, the view of A and the values it commits to on the right are indistinguishable,
no matter what value it is receiving a commitment to on the left. Towards this, we consider the
same hybrid experiments H0 to Hk+6 as in the proof of stand-alone non-malleability. It follows
from almost the same proof as before that the view of A and the values it commits to on the
right are indisitnguishable in sequential hybrids, except that, in hybrids H1 to Hk+6, we (or more
precisely, the simulator B) now need to extract out the values that A commits to in all the right
interactions (recall that the proof relies on the fact that the value that A commits to in the right
interaction can be extracted “efficiently”, to show the indistinguishability of hybrid Hi and Hi+1

for 1 ≤ i ≤ k + 6). This is easy to achieve, since we can simply extract the values that A commits
to in each right interaction one by one, after the Main Execution completes. More precisely, in
the Rewinding Phase, for every successful right interaction that has a different identity from the
left interaction in the Main Execution, B finds a WISSP proof in Stage 3 of this right interaction
that does not interleave with any message in Stage 1 and the ith proof (or Stage 2 for hybrid
Hk+6) of that left interaction, and repeatedly rewinds the proof until a second transcript is obtain;
it then computes a witness, if the two transcripts are different. Since there are only polynomial
number of right interactions, it follows using almost the same proof of Lemma 2 that the running
time of B is “bounded”, and further using exactly the same proof of Lemma 3 that, except with
negligible probability, the witnesses that B extracts out are indeed the values committed to in the
right interactions. Thus by the WI property of the Stage 3 proofs (or the hiding property of Stage
2 resp.), the view and the values committed to by A are indistinguishable in hybrids Hi and Hi+1

for 1 ≤ i ≤ k + 4 (or in Hk+5 and Hk+6 resp.). We thus have:

Theorem 6. 〈C,R〉 is concurrent non-malleable.

8 Proof of Robust Non-Malleability

In this section, we show that, for any r ∈ N , 〈C,R〉 can be easily modified into a O(r)-round
(concurrent) non-malleable commitment scheme 〈C̃, R̃〉 that is additionally one-many r-robust.

It is shown in [?] that one-many r-robust commitment schemes are easy to construct: any com-
mitment scheme that is “extractable” and has more than r “rewinding slots” is directly one-many
non-malleable w.r.t. r-round protocols. Therefore, to make our constant-round non-malleable com-
mitment scheme 〈C,R〉 one-many r-robust, we simply add more WISSP proofs in Stage 3 of the

23
150

Approved for Public Release; Distribution Unlimited.

protocol. More precisely, the commitment scheme 〈Cr, Rr〉 proceeds identitcally to 〈C,R〉, except
that in Stage 3 of the protocol, the Committer C̃ needs to provide max(r+1, l)WISSP proofs (of
the statement that either the Stage 2 message is a valid commitment or that it knows a “trapdoor”),
where l is the number of WISSP proofs in Stage 3 of the original protocol 〈C,R〉. It follows using
the same proof as in [?] that 〈Cr, Rr〉 is one-many r-robust. Roughly speaking, the main idea
of the proof is to reduce the one-many r-robustness to the indistinguishability of the interaction
with machine B(y1n) or B(y2n), by extracting the value committed to in the right interactions from
the WISSP proofs in Stage 3 of the protocol, without rewinding the left interactions. This is
achievable, (similar to the proof of the indistinguishability of Hybrid Hi and Hi+1 in Section 6,)
as there are more WISSP proofs in Stage 3 than the nubmer of messages in the left interaction,
and one can always find a WISSP proof that does not interleave with the left interaction and
extract a witness from this proof, without rewinding the left interactions. The witness extracted
must be a valid decommitment, as otherwise, by the special-soundness of the proof, it must be a
valid signature-chain, which violates the soundness of the signature-game (since the adversary here
is never rewound and obtains only three signatures during the straight-line execution of the right
interaction). Therefore, we conclude that 〈Cr, Rr〉 is one-many r-robust. It follows using the same
proof in Section 6 that 〈Cr, Rr〉 is stand-alone non-malleable; and it further follows using the same
proof as in Section 7 that it is, in fact, also concurrent non-malleable.

Lemma 4. For every r ∈ N , the protocol 〈Cr, Rr〉 has O(r)-round, and is concurrently non-
malleable and one-many r-robust.

Theorem 2 follows directly from Lemma 4. Furthermore, for r < l, the protocol 〈Cr, Rr〉 is the
same as 〈C,R〉; thus,
Corollary 1. For any r < l, 〈C,R〉 is concurrently non-malleable and one-many r-robust.

9 Acknowledgements

We are very grateful to Boaz Barak, Ran Canetti, Danny Dolev, Cynthia Dwork, Johan H̊astad,
Oded Goldreich, Shafi Goldwasser, Silvio Micali, Moni Naor, Tal Rabin, Alon Rosen, Amit Sahai,
Wei-lung Tseng, Muthuramakrishnan Venkitasubramaniam and Hoeteck Wee for many enligthening
discussions about non malleability over the years. We are particularly grateful to Oded Goldreich for
encouraging us to include a self-contained description of a non-malleable commitment for constant
length identities into the journal version of [?]; the ideas in this paper came out of thinking about
how to simplify the presentation of this (weak) primitive. The second author is also indebted to
Alon Rosen for introducing him to the area of non malleability, and for many fruitful discussions
about it.

A General Definitions

A.1 Witness Relations

We recall the definition of a witness relation for a NP language [?].

Definition 4 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {y : (x, y) ∈ L}. In the
following, we assume a fixed witness relation RL for each language L ∈ NP .

24
151

Approved for Public Release; Distribution Unlimited.

A.2 Indistinguishability

Definition 5 (Computational Indistinguishability). Let Y be a countable set. Two ensembles
{An,y}n∈N,y∈Y and {Bn,y}n∈N,y∈Y are said to be computationally indistinguishable (denoted by {An,y}n∈N,y∈Y ≈
{Bn,y}n∈N,y∈Y), if for every PPT “distinguishing” machine D, there exists a negligible function
ν(·) so that for every n ∈ N, y ∈ Y :

|Pr [a← An,y : D(1n, y, a) = 1]− Pr [b← Bn,y : D(1n, y, b) = 1]| < ν(n)

A.3 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [?] and
arguments (a.k.a. computationally-sound proofs) [?]. Given a pair of interactive Turing machines,
P and V , we denote by 〈P (w), V 〉(x) the random variable representing the (local) output of V , on
common input x, when interacting with machine P with private input w, when the random input
to each machine is uniformly and independently chosen.

Definition 6 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called an inter-
active proof system for a language L if there is a negligible function ν(·) such that the following two
conditions hold :

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr [〈P (w), V 〉(x) = 1] = 1

• Soundness: For every x ∈ {0, 1}n−L, and every interactive machine B, Pr [〈B,V 〉(x) = 1] ≤
ν(n)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.

A.4 Zero-Knowledge

We recall the standard definition of ZK proofs. Loosely speaking, an interactive proof is said to be
zero-knowledge (ZK) if a verifier V learns nothing beyond the validity of the assertion being proved,
it could not have generated on its own. As “feasible” computation in general is defined though
the notion of probabilistic polynomial-time, this notion is formalized by requiring that the output
of every (possibly malicious) verifier interacting with the honest prover P can be “simulated” by
a probabilistic expected polynomial-time machine S (a.k.a. the simulator). The idea behind this
definition is that whatever V ∗ might have learned from interacting with P , he could have learned
by himself by running the simulator S.

The notion of ZK was introduced and formalized by Goldwasser, Micali and Rackoff in [?].
We present their definition below.

Definition 7 (ZK). Let L be a language in NP, RL a witness relation for L, (P, V) an interactive
proof (argument) system for L. We say that (P, V) is statistical/computational ZK, if for every
probabilistic polynomial-time interactive machine V there exists a probabilistic algorithm S whose
expected running-time is polynomial in the length of its first input, such that the following ensembles
are statistically close/computationally indistinguishable over L.

•
{
〈P (y), V (z)〉(x)

}
n∈N,x∈{0,1}n∩L,y∈RL(x),z∈{0,1}∗

•
{
S(x, z)

}
n∈N,x∈{0,1}n∩L,y∈RL(x),z∈{0,1}∗

where 〈P (y), V (z)〉(x) denotes the view of V in interaction with P on common input x and private
inputs y and z respectively.

25
152

Approved for Public Release; Distribution Unlimited.

A.5 Witness Indistinguishability

An interactive proof (or argument) is said to be witness indistinguishable (WI) if the verifier’s
output is “computationally independent” of the witness used by the prover for proving the state-
ment. In this context, we focus on languages L ∈ NP with a corresponding witness relation RL.
Namely, we consider interactions in which, on common input x, the prover is given a witness in
RL(x). By saying that the output is computationally independent of the witness, we mean that
for any two possible NP-witnesses that could be used by the prover to prove the statement x ∈ L,
the corresponding outputs are computationally indistinguishable.

Definition 8 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive proof (or argument) sys-
tem for a language L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable for RL, if for every
probabilistic polynomial-time interactive machine V ∗ and for every two sequences {w1

n,x}n∈N,x∈L
and {w2

n,x}n∈N,x∈L, such that w1
n,x, w

2
n,x ∈ RL(x) for every x ∈ L∩{0, 1}n, the following probability

ensembles are computationally indistinguishable over n ∈ N .

• {〈P (w1
n,x), V

∗(z)〉(x)}n∈N,x∈L∩{0,1}n ,z∈{0,1}∗

• {〈P (w2
n,x), V

∗(z)〉(x)}n∈N,x∈L∩{0,1}n ,z∈{0,1}∗

A.6 Proofs (Arguments) of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover convinces the verifier
that it possesses, or can feasibly compute, a witness for the statement proved. The notion of a
proof of knowledge is essentially formalized as follows: an interactive proof of x ∈ L is a proof of
knowledge if there exists a probabilistic expected polynomial-time extractor machine E, such that
for any prover P , E on input the description of P and any statement x ∈ L readily outputs a valid
witness for x ∈ L if P succeeds in convincing the Verifier that x ∈ L. Formally,

[Proof of knowledge [?]] Let (P, V) be an interactive proof system for the language L. We say
that (P, V) is a proof of knowledge for the witness relation RL for the language L it there exists an
probabilistic expected polynomial-time machine E, called the extractor, and a negligible function
ν(n) such that for every machine P ∗, every statement x ∈ {0, 1}n, every random tape r ∈ {0, 1}∗
and every auxiliary input z ∈ {0, 1}∗,

Pr
[
〈P ′

r(z), V 〉(x) = 1
]
≤ Pr[EP ′

r(x,z)(x) ∈ RL(x)] + ν(n)

consider PPT provers. An interactive argument system 〈P, V 〉 is an argument of knowledge if the
above condition holds w.r.t. probabilistic polynomial-time provers.

Special-sound WI proofs A 4-round public-coin interactive proof for the language L ∈ NP with
witness relation RL is special-sound with respect to RL, if for any two transcripts (δ, α, β, γ) and
(δ′, α′, β′, γ′) such that the initial two messages, δ, δ′ and α,α′, are the same but the challenges β, β′

are different, there is a deterministic procedure to extract the witness from the two transcripts
and runs in polynomial time. Special-sound WI proofs for languages in NP can be based on
the existence of 2-round commitment schemes, which in turn can be based on one-way functions
[?, ?, ?, ?].

26
153

Approved for Public Release; Distribution Unlimited.

Adaptively Secure Puncturable Pseudorandom Functions

in the Standard Model

Susan Hohenberger∗

Johns Hopkins University
susan@cs.jhu.edu

Venkata Koppula
University of Texas at Austin

kvenkata@cs.utexas.edu

Brent Waters†

University of Texas at Austin
bwaters@cs.utexas.edu

June 13, 2015

Abstract

We study the adaptive security of constrained PRFs in the standard model. We initiate our explo-
ration with puncturable PRFs. A puncturable PRF family is a special class of constrained PRFs, where
the constrained key is associated with an element x′ in the input domain. The key allows evaluation at
all points x 6= x′.

We show how to build puncturable PRFs with adaptive security proofs in the standard model that
involve only polynomial loss to the underlying assumptions. Prior work had either super-polynomial
loss or applied the random oracle heuristic. Our construction uses indistinguishability obfuscation and
DDH-hard algebraic groups of composite order.

More generally, one can consider a t-puncturable PRF: PRFs that can be punctured at any set of
inputs S, provided the size of S is less than a fixed polynomial. We additionally show how to transform any
(single) puncturable PRF family to a t-puncturable PRF family, using indistinguishability obfuscation.

∗Supported by the National Science Foundation (NSF) CNS-1154035 and CNS-1228443; the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under contract FA8750-11-C-0080, the Office of
Naval Research under contract N00014-14-1-0333, and a Microsoft Faculty Fellowship.
†Supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through the U.S. Office of Naval Research under

Contract N00014-11-1-0382, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and
Packard Foundation Fellowship.

154

Approved for Public Release; Distribution Unlimited.

1 Introduction

Pseudorandom functions (PRFs) are one of the fundamental building blocks in modern cryptography. A
PRF system consists of a keyed function F and a set of keys K such that for a randomly chosen key k ∈ K,
the output of the function F (k, x) for any input x in the input space “looks” random to a computationally
bounded adversary, even when given polynomially many evaluations of F (k, ·). Recently, the concept of
constrained pseudorandom functions1 was proposed in the concurrent works of Boneh and Waters [BW13],
Boyle, Goldwasser and Ivan [BGI13] and Kiayias, Papadopoulos, Triandopoulos and Zacharias [KPTZ13].
A constrained PRF system is associated with a family of boolean functions F = {f}. As in standard PRFs,
there exists a set of master keys K that can be used to evaluate the PRF F . However, given a master key k,
it is also possible to derive a constrained key kf associated with a function f ∈ F . This constrained key kf
can be used to evaluate the function F (k, ·) at all inputs x such that f(x) = 1. Intuitively, we would want
that even if an adversary has kf , the PRF evaluation at an input x not accepted by f looks random. Security
is captured by an adaptive game between a PRF challenger and an adversary. The adversary is allowed to
make multiple constrained key or point evaluation queries before committing to a challenge x∗ not equal to
any of the evaluation queries or accepted by any of the functions for which he obtained a constrained key. 2

The challenger either sends the PRF evaluation at x∗ or an output chosen uniformly at random from the
PRF range space, and the adversary wins if he can distinguish between these two cases.

Since their inception, constrained PRFs have found multiple applications. For example, Boneh and
Waters [BW13] gave applications of broadcast encryption with optimal ciphertext length, identity-based key
exchange, and policy-based key distribution. Sahai and Waters [SW14] used constrained PRFs as a central
ingredient in their punctured programming methodology for building cryptosystems using indistinguishable
obfuscation. Boneh and Zhandry [BZ14] likewise applied constrained PRFs for realizing multi-party key
exchange and broadcast systems.

Adaptive Security in Constrained PRFs In their initial work, Boneh and Waters [BW13] showed
constructions of constrained PRFs for different function families, including one for the class of all polynomial
circuits (based on multilinear maps). However, all their constructions offer selective security - a weaker notion
where the adversary must commit to the challenge input x∗ before making any evaluation/constrained key
queries.3 Using complexity leveraging, one can obtain adaptive security by guessing the challenge input
x∗ before any queries are made. However, this results in exponential security loss. The works of [BGI13,
KPTZ13] similarly dealt with selective security.

Recently, Fuchsbauer, Konstantinov, Pietrzak and Rao [FKPR14] showed adaptive security for prefix-
fixing constrained PRFs, but with quasi-polynomial security loss. Also recently, Hofheinz [Hof14] presented
a novel construction that achieves adaptive security for bit-fixing constrained PRFs, but in the random oracle
model.

While selective security has been sufficient for some applications of constrained PRFs, including many
recent proofs leveraging the punctured programming [SW14] methodology (e.g., [SW14, HSW14, BZ14,
BCPR13]), there are applications that demand adaptive security, where the security game allows the ad-
versary to query the PRF on many inputs before deciding on the point to puncture. For instance, [BZ14]
give a construction for multiparty key exchange that is semi-statically secure, and this construction requires
adaptively secure constrained PRFs for circuits. We anticipate that the further realization of adaptively
secure PRFs will introduce further applications of them.

Our Objective and Results Our goal is to study adaptive security of constrained PRFs in the standard
model. We initiate this exploration with puncturable PRFs, first explicitly introduced in [SW14] as a spe-
cialization of constrained PRFs. A puncturable PRF family is a special class of constrained PRFs, where the
constrained key is associated with an element x′ in the input domain. The key allows evaluation at all points

1These were alternatively called functional PRFs [BGI13] and delegatable PRFs [KPTZ13].
2This definition can be extended to handle multiple challenge points. See Section 3 for details.
3The prefix construction of [BGI13] and [KPTZ13] were also selective.

1

155

Approved for Public Release; Distribution Unlimited.

x 6= x′. As noted by [BW13, BGI13, KPTZ13], the GGM tree-based construction of PRFs from one-way
functions (OWFs) [GGM84] can be modified to construct a puncturable PRF. 4 A selective proof of security
follows via a hybrid argument, where the reduction algorithm uses the pre-determined challenge query x∗ to
“plant” its OWF challenge. However, such a technique does not seem powerful enough to obtain adaptive
security with only a polynomial-factor security loss. The difficulty in proving adaptive security arises due to
the fact that the reduction algorithm must respond to the evaluation queries, and then output a punctured
key that is consistent with the evaluations. This means that the reduction algorithm must be able to evaluate
the PRF at a large set S (so that all evaluation queries lie in S with non-negligible probability). However, S
cannot be very large, otherwise the challenge x∗ will lie in S, in which case the reduction algorithm cannot
use the adversary’s output.

In this work, we show new techniques for constructing adaptively-secure puncturable PRFs in the stan-
dard model. A central contribution is to overcome the conflict above, by allowing the reduction algorithm
to commit to the evaluation queries, and at the same time, ensuring that the PRF output at the challenge
point is unencumbered by the commitment.

Our main idea is to execute a delayed commitment to part of the PRF by partitioning. Initially, in our
construction all points are tied to a single (Naor-Reingold [NR04] style) PRF. To prove security we begin by
using the admissible hash function of Boneh and Boyen [BB04]. We partition the inputs into two distinct
sets. The evaluable set which contains about (1− 1/q) fraction of inputs, and a challenge set which contains
about 1/q fraction of inputs, where q is the number of point evaluation queries made by the attacker. Via
a set of hybrid steps using the computational assumptions of indistinguishability obfuscation and subgroup
hiding we modify the construction such that we use one Naor-Reingold PRF function to evaluate points in
the evaluable set and a completely independent Naor-Reingold PRF to evaluate points in the challenge set.

After this separation has been achieved, there is a clearer path for our proof of security. At this point the
reduction algorithm will create one PRF itself and use it to answer any attacker point query in the evaluable
set. If it is asked for a point x in the challenge set, it will simply abort. (The admissible hash function
ensures that we get through without abort with some non-negligible probability.) Eventually, the attacker
will ask for a punctured key on x∗, which defines x∗ as the challenge input. Up until this point the reduction
algorithm has made no commitments on what the second challenge PRF is. It then constructs the punctured
key using the a freshly chosen PRF for the challenge inputs. However, when constructing this second PRF
it now knows what the challenge x∗ actually is and can fall back on selective techniques for completing the
proof.

At a lower level our core PRF will be the Naor-Reingold PRF [NR04], but based in composite-order
groups. Let G be a group of order N = pq, where p and q are primes. The master key consists of a group
element v ∈ G and 2n exponents di,b ∈ ZN (for i = 1 to n and b ∈ [0, 1}). The PRF F takes as input a
key k = (v, {di,b}), an `-bit input x, uses a public admissible hash function h : {0, 1}` → {0, 1}n to compute

h(x) = b1 . . . bn and outputs v
∏n

j=1 dj,bj . A punctured key corresponding to x′ derived from master key k
is the obfuscation of a program P which has k, x′ hardwired and outputs F (k, x) on input x 6= x′, else it
outputs ⊥.

We will use a parameterized problem (in composite groups) to perform some of the separation step. Our

assumption is that given g, ga, . . . , ga
n−1

for randomly chosen g ∈ G and a ∈ Z∗N it is hard to distinguish
ga

n

from a random group element. While it is somewhat undesirable to base security on a parameterized
assumption, we are able to use the recent results of Chase and Meiklejohn [CM14] to reduce this to the
subgroup decision problem in DDH hard composite order groups.

t-puncturable PRFs We also show how to construct t-puncturable PRFs: PRFs that can be punctured
at any set of inputs S, provided |S| ≤ t (where t(·) is a fixed polynomial). We show how to transform any
(single) puncturable PRF family to a t-puncturable PRF family, using indistinguishability obfuscation. In
the security game for t-puncturable PRFs, the adversary is allowed to query for multiple t-punctured keys,
each corresponding to a set S of size at most t. Finally, the adversary sends a challenge input x∗ that lies

4In fact, the GGM PRF construction can be used to construct prefix-fixing constrained PRFs.

2

156

Approved for Public Release; Distribution Unlimited.

in all the sets queried, and receives either the PRF evaluation at x∗ or a uniformly random element of the
range space.

In the construction, the setup and evaluation algorithm for the t-puncturable PRF are the same as those
for the puncturable PRF. In order to puncture a key k at set S, the puncturing algorithm outputs the
obfuscation of a program P that takes as input x, checks that x /∈ S, and outputs F (k, x).

For the proof of security, we observe that when the first t-punctured key query S1 is made by the adversary,
the challenger can guess the challenge x̃ ∈ S1. If this guess is incorrect, then the challenger simply aborts
(which results in a 1/t factor security loss). However, if the guess is correct, then the challenger can now use
the punctured key Kx̃ for all future evaluation/t-punctured key queries. From the security of puncturable
PRFs, it follows that even after receiving evaluation/t-punctured key queries, the challenger will not be able
to distinguish between F (k, x̃) and a random element in the range space.

We detail this transformation and its proof in Section 5. We also believe that we can use a similar
approach to directly modify our main construction to handle multiple punctured points, however, we choose
to focus on the generic transformation.

Related Works Two recent works have explored the problem of adaptive security of constrained PRFs.
Fuchsbauer, Konstantinov, Pietrzak and Rao [FKPR14] study the adaptive security of the GGM construction
for prefix-free constrained PRFs. They show an interesting reduction to OWFs that suffers only a quasi-
polynomial factor qO(logn) loss, where q is the number of queries made by the adversary, and n is the length
of the input. This beats the straightforward conversion from selective to adaptive security, which results in
O(2n) security loss.

Hofheinz [Hof14] shows a construction for bit-fixing constrained PRFs that is adaptively secure, assuming
indistinguishability obfuscation and multilinear maps in the random oracle model. It also makes novel use
of the random oracle for dynamically defining the challenge space based on the output of h. It is currently
unclear whether such ideas could be adapted to the standard model.

Fuchsbauer et al. also show a negative result for the Boneh-Waters [BW13] construction of bit-fixing
constrained PRFs. They show that any simple reduction from a static assumption to the adaptive security of
the Boneh-Waters [BW13] bit-fixing constrained PRF construction must have an exponential factor security
loss. More abstractly, using their techniques, one can show that any bit-fixing scheme that has the following
properties will face this obstacle: (a) fingerprinting queries - By querying for a set of constrained keys, the
adversary can obtain a fingerprint of the master key. (b) checkability - It is possible to efficiently check that
any future evaluation/constrained key queries are consistent with the fingerprint. While these properties
capture certain constructions, small perturbations to them could potentially circumvent checkability.

Partitioning type proofs have been used in several applications including identity-based encryption [BB04,
Wat05, ABB10, HK12], verifiable random functions [HW10], and proofs of certain signature signature
schemes [FHPS13, HSW13, HSW14]. We believe ours is the first to use partitioning for a delayed com-
mitment to parameters. We note that our delayed technique is someway reminiscent to that of Lewko and
Waters [LW12].

Recently, there has been a push to prove security for indistinguishability obfuscation from basic mul-
tilinear map assumptions. The recent work of Gentry, Lewko, Sahai and Waters [GLSW14] is a step in
this direction, but itself requires the use of complexity leveraging. In the future work, we might hope for
such reductions with just polynomial loss — perhaps for special cases of functionality. And thus give an
end-to-end polynomial loss proof of puncturable PRFs from multilinear maps assumptions.

Two works have explored the notion of constrained verifiable random functions (VRFs). Fuchsbauer [?]
and Chandran, Raghuraman and Vinayagamurthy [?] show constructions of selectively secure constrained
VRFs for the class of all polynomial sized circuits. The construction in [?] is also delegatable.

Future Directions A natural question is to construct adaptively-secure constrained PRFs for larger classes
of functions in the standard model. Given the existing results of [FKPR14] and [Hof14], both directions seem
possible. While the techniques of [Hof14] are intricately tied to the random oracle model, it is plausible there
could be constructions in the standard model that evade the negative result of [FKPR14]. On the other

3

157

Approved for Public Release; Distribution Unlimited.

hand, maybe the negative result of [FKPR14] (which is specific to the [BW13] construction) can be extended
to show a similar lower bound for all constructions of constrained PRFs with respect to function family F .

2 Preliminaries

First, we recall the notion of admissible hash functions due to Boneh and Boyen [BB04]. Here we state a
simplified definition from [HSW14].

Definition 2.1. Let l, n and θ be efficiently computable univariate polynomials. Let h : {0, 1}l(λ) →
{0, 1}n(λ) be an efficiently computable function and AdmSample a PPT algorithm that takes as input 1λ

and an integer q, and outputs u ∈ {0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define Pu : {0, 1}l(λ) → {0, 1} as
follows: Pu(x) = 0 if for all 1 ≤ j ≤ n(λ), h(x)j 6= uj , else Pu(x) = 1.

We say that (h,AdmSample) is θ-admissible if the following condition holds:
For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x

∗ ∈ {0, 1}l(λ), where x∗ /∈ {xi}i,

Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥ 1

θ(Q(λ))

where the probability is taken over u← AdmSample(1λ, Q(λ)).

Theorem 2.1 (Admissible Hash Function Family [BB04], simplified proof in [FHPS13]). For any effi-
ciently computable polynomial l, there exist efficiently computable polynomials n, θ such that there exist
θ-admissible function families mapping l bits to n bits.

Next, we recall the definition of indistinguishability obfuscation from [GGH+13, SW14]. Let PPT denote
probabilistic polynomial time.

Definition 2.2. (Indistinguishability Obfuscation) A uniform PPT machine iO is called an indistinguisha-
bility obfuscator for a circuit class {Cλ} if it satisfies the following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(λ,C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher B = (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(λ,C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(λ,C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).

In a recent work, [GGH+13] showed how indistinguishability obfuscators can be constructed for the
circuit class P/poly. We remark that (Samp,D) are two algorithms that pass state, which can be viewed
equivalently as a single stateful algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

2.1 Assumptions

Let G be a PPT group generator algorithm that takes as input the security parameter 1λ and outputs
(N, p, q,G,Gp, Gq, g1, g2) where p, q ∈ Θ(2λ) are primes, N = pq, G is a group of order N , Gp and Gq are
subgroups of G of order p and q respectively, and g1 and g2 are generators of Gp and Gq respectively.

Assumption 1 (Subgroup Hiding for Composite Order DDH-Hard Groups). Let (N, p, q,G,Gp,Gq, g1, g2)←
G(1λ) and b← {0, 1}. Let T ← G if b = 0, else T ← Gp. The advantage of algorithmA in solving Assumption
1 is defined as

AdvSGH
A =

∣∣∣∣Pr[b← A(N,G,Gp,Gq, g1, g2, T)]− 1

2

∣∣∣∣

4

158

Approved for Public Release; Distribution Unlimited.

We say that Assumption 1 holds if for all PPT A, AdvSGH
A is negligible in λ.

Note that the adversary A gets generators for both subgroups Gp and Gq. This is in contrast to bilinear
groups, where, if given generators for both subgroups, the adversary can use the pairing to distinguish a
random group element from a random subgroup element.

Analogously, we assume that no PPT adversary can distinguish between a random element of G and a
random element of Gq with non-negligible advantage. This is essentially Assumption 1, where prime q is
chosen instead of p, and Gq is chosen instead of Gp.

Assumption 2. This assumption is parameterized with an integer n ∈ Z. Let (N, p, q,G,Gp,Gq, g1, g2)←
G(1λ), g ← G, a← Z∗N and b← {0, 1}. Let D = (N,G,Gp,Gq, g1, g2, g, ga, . . . , ga

n−1

). Let T = ga
n

if b = 0,
else T ← G. The advantage of algorithm A in solving Assumption 2 is defined as

AdvA =

∣∣∣∣Pr[b← A(D,T)]− 1

2

∣∣∣∣

We say that Assumption 2 holds if for all PPT A, AdvA is negligible in λ.

We will use Assumption 2 for clarity in certain parts of our proof, but we do not give it a name because
it is implied by other named assumptions. First, Assumption 2 is implied by the n-Power Decisional Diffie-
Hellman Assumption [GJM02]. Second, it is also implied by the non-parameterized Assumption 1. The recent
results of Chase and Meiklejohn [CM14] essentially show this latter implication, but that work focuses on the
target groups of bilinear maps, whereas our algebraic focus does not involve bilinear maps. For completeness,
we give a proof of this implication in Appendix B.

3 Constrained Pseudorandom Functions

In this section, we define the syntax and security properties of a constrained pseudorandom function family.
This definition is similar to the one in Boneh-Waters [BW13], except that the keys are constrained with
respect to a circuit family instead of a set system.

Let K denote the key space, X the input domain and Y the range space. The PRF is a function
F : K ×X → Y that can be computed by a deterministic polynomial time algorithm. We will assume there
is a Setup algorithm F.setup that takes the security parameter λ as input and outputs a random secret key
k ∈ K.

A PRF F : K×X → Y is said to be constrained with respect to a circuit family C if there is an additional
key space Kc, and three algorithms F.setup, F.constrain and F.eval as follows:

• F.setup(1λ) is a PPT algorithm that takes the security parameter λ as input and outputs a description
of the key space K, the constrained key space Kc and the PRF F .

• F.constrain(k,C) is a PPT algorithm that takes as input a PRF key k ∈ K and a circuit C ∈ C and
outputs a constrained key kC ∈ Kc.

• F.eval(kC , x) is a deterministic polynomial time algorithm that takes as input a constrained key kC ∈ Kc
and x ∈ X and outputs an element y ∈ Y. Let kC be the output of F.constrain(k,C). For correctness,
we require the following:

F.eval(kC , x) =

{
F (k, x) if C(x) = 1

⊥ otherwise

3.1 Security of Constrained Pseudorandom Functions

Intuitively, we require that even after obtaining several constrained keys, no polynomial time adversary can
distinguish a truly random string from the PRF evaluation at a point not accepted by the queried circuits.
This intuition can be formalized by the following security game between a challenger and an adversary A.

5

159

Approved for Public Release; Distribution Unlimited.

Let F : K×X → Y be a constrained PRF with respect to a circuit family C. The security game consists
of three phases.

Setup Phase The challenger chooses a random key k ← K and a random bit b← {0, 1}.

Query Phase In this phase, A is allowed to ask for the following queries:

• Evaluation Query A sends x ∈ X , and receives F (k, x).
• Key Query A sends a circuit C ∈ C, and receives F.constrain(k,C).
• Challenge Query A sends x ∈ X as a challenge query. If b = 0, the challenger outputs F (k, x). Else,

the challenger outputs a random element y ← Y.

Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries, L ⊂ C be the set of constrained key queries and Z ⊂ X the
set of challenge queries. A wins if b = b′ and E ∩ Z = φ and for all C ∈ L, z ∈ Z,C(z) = 0. The advantage
of A is defined to be AdvFA(λ) = Pr[A wins].

Definition 3.1. The PRF F is a secure constrained PRF with respect to C if for all PPT adversaries A
AdvFA(λ) is negligible in λ.

In the above definition the challenge query oracle may be queried multiple times on different points, and
either all the challenge responses are correct PRF evaluations or they are all random points. We remark that
Boneh-Waters [BW13] argued that such a definition was equivalent (via a hybrid argument) to a definition
where the adversary may only submit one challenge query. In the next section, the adversary may submit
only one challenge.

3.2 Puncturable Pseudorandom Functions

In this work, we will focus on puncturable pseudorandom functions, a subset of constrained PRFs where the
“circuits” output 1 on every input except one “punctured” point. A PRF F : K × X → Y is a puncturable
pseudorandom function if there is an additional key space Kp and three polynomial time algorithms F.setup,
F.eval and F.puncture as follows:

• F.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(k, x) is a randomized algorithm that takes as input a PRF key k ∈ K and x ∈ X , and
outputs a key kx ∈ Kp.

• F.eval(kx, x′) is a deterministic algorithm that takes as input a punctured key kx ∈ Kp and x′ ∈ X .
Let k ∈ K, x ∈ X and kx ← F.puncture(k, x). For correctness, we need the following property:

F.eval(kx, x
′) =

{
F (k, x′) if x 6= x′

⊥ otherwise

The security game between the challenger and the adversary A consists of the following four phases.

Setup Phase The challenger chooses uniformly at random a PRF key k ← K and a bit b← {0, 1}.

Evaluation Query Phase A queries for polynomially many evaluations. For each evaluation query x,
the challenger sends F (k, x) to A.

6

160

Approved for Public Release; Distribution Unlimited.

Challenge Phase A chooses a challenge x∗ ∈ X . The challenger computes kx∗ ← F.puncture(k, x∗). If
b = 0, the challenger outputs kx∗ and F (k, x∗). Else, the challenger outputs kx∗ and y ← Y chosen uniformly
at random.

Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries. A wins if b = b′ and x∗ /∈ E. The advantage of A is defined
to be AdvFA(λ) = Pr[A wins].

Definition 3.2. The PRF F is a secure puncturable PRF if for all probabilistic polynomial time adversaries
A AdvFA(λ) is negligible in λ.

Recall that since the adversary can compute any evaluation of F except the punctured point using the key
given during the Challenge Phase, access to the Evaluation Query oracle is redundant and can be removed
after the Challenge Phase.

3.2.1 t-Puncturable Pseudorandom Functions

The notion of puncturable PRFs can be naturally extended to that of t-puncturable PRFs, where it is
possible to derive a key punctured at any set S of size at most t.

Let t(·) be a polynomial. A PRF Ft : K × X → Y is a t-puncturable pseudorandom function if there is
an additional key space Kp and three polynomial time algorithms Ft.setup, Ft.eval and Ft.puncture defined
as follows.

• Ft.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the punctured key space Kp and the PRF Ft.

• Ft.puncture(k, S) is a randomized algorithm that takes as input a PRF key k ∈ K and S ⊂ X , |S| ≤ t(λ),
and outputs a t-punctured key KS ∈ Kp.

• Ft.eval(kS , x′) is a deterministic algorithm that takes as input a t-punctured key kS ∈ Kp and x′ ∈ X .
Let k ∈ K, S ⊂ X and kS ← Ft.puncture(k, S). For correctness, we need the following property:

Ft.eval(kS , x
′) =

{
Ft(k, x

′) if x′ /∈ S
⊥ otherwise

The security game between the challenger and adversary is similar to the security game for puncturable
PRFs. However, in this case, the adversary is allowed to make multiple challenge queries (as in the security
game for constrained PRFs). The game consists of the following three phases.

Setup Phase The challenger chooses a random key k ← K and a random bit b← {0, 1}.

Query Phase In this phase, A is allowed to ask for the following queries:

• Evaluation Query A sends x ∈ X , and receives Ft(k, x).
• Key Query A sends a set S ⊂ X , and receives Ft.puncture(k, S).
• Challenge Query A sends x ∈ X as a challenge query. If b = 0, the challenger outputs Ft(k, x). Else,

the challenger outputs a random element y ← Y.

Guess A outputs a guess b′ of b.

7

161

Approved for Public Release; Distribution Unlimited.

Let x1, . . . , xq1 ∈ X be the evaluation queries, S1, . . . , Sq2 ⊂ X be the t-punctured key queries and
x∗1, . . . , x

∗
s be the challenge queries. A wins if ∀i ≤ q1, j ≤ s, xi 6= x∗j , ∀i ≤ q2, j ≤ s, x∗j ∈ Si and b′ = b.

The advantage of A is defined to be AdvFt

A (λ) = Pr[A wins].

Definition 3.3. The PRF Ft is a secure t-puncturable PRF if for all PPT adversariesA AdvFt

A (λ) is negligible
in λ.

4 Construction

We now describe our puncturable PRF family. It consists of the PRF F : K × X → Y and the three
algorithms F.setup, F.puncture and F.eval. The input domain is X = {0, 1}`, where ` = `(λ). We define the
key space K and range space Y as part of the setup algorithm described next.

F.setup(1λ) F.setup, on input 1λ, first runs G to compute (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Let n, θ
be polynomials such that there exists a θ-admissible hash function h mapping `(λ) bits to n(λ) bits. For
simplicity of notation, we will drop the dependence of ` and n on λ.

The key space is K = G×
(
Z2
N

)n
and the range is Y = G. The setup algorithm chooses v ∈ G, di,b ∈ ZN ,

for i = 1 to n and b ∈ {0, 1}, and sets k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
The PRF F for key k on input x is then computed as follows. Let k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))) ∈

G×
(
Z2
N

)n
and h(x) = (b1, . . . , bn), where bi ∈ {0, 1}. Then,

F (k, x) = v
∏n

j=1 dj,bj .

F.puncture(k,x′) F.puncture computes an obfuscation of the program PuncturedKeyk,x′ defined in Figure
??; that is, Kx′ ← iO(λ,PuncturedKeyk,x′). The program PuncturedKeyk,x′ is padded to be of appropriate
size. 5

PuncturedKeyk,x′

Input: x ∈ {0, 1}`

Constants : The group G

k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n

x′ ∈ {0, 1}`

Compute h(x) = b1 . . . bn ∈ {0, 1}n.
if x = x′ then

Output ⊥.
else

Output v
∏n

j=1 dj,bj .
end if

Figure 1: Program PuncturedKey

F.eval(Kx′ ,x) The punctured key Kx′ is a program that takes an `-bit input. We define

F.eval(Kx′ , x) = Kx′(x).

5Looking ahead, in the proof of security, the program PuncturedKeyk,x′ will be replaced by PuncturedKey′V,w,D,u,x′ ,
PuncturedKeyAltu,k,k′,x′ and PuncturedKeyAlt′u,W,E,k,x′ in subsequent hybrids. Since this transformation relies on iO be-

ing secure, we need that all programs have same size. Hence, all programs are padded appropriately to ensure that they have
the same size.

8

162

Approved for Public Release; Distribution Unlimited.

4.1 Proof of Security

We will now prove that our construction is a secure puncturable PRF as defined in Definition 3.2. Specifically,
the claim we show is:

Theorem 4.1 (Main Theorem). Assuming iO is a a secure indistinguishability obfuscator and the Subgroup
Hiding Assumption holds for groups output by G, the PRF F defined above, together with algorithms F.setup,
F.puncture and F.eval, is a secure punctured pseudorandom function as defined in Definition 3.2.

Proof. In order to prove this, we define the following sequence of games. Assume the adversary A makes
q = q(λ) evaluation queries (where q(·) is a polynomial) before sending the challenge input.

4.1.1 Sequence of Games

We underline the primary changes from one game to the next.

Game 0 This game is the original security game from Definition 3.2 between the challenger and A in-
stantiated by the construction under analysis. Here the challenger first chooses a random PRF key, then A
makes evaluation queries and finally sends the challenge input. The challenger responds by sending a key
punctured at the challenge input, and either a PRF evaluation at the challenged point or a random value.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and set
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Compute Kx∗ ← iO(λ,PuncturedKeyk,x∗)

and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏n
j=1 dj,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1 This game is the same as the previous one, except that we simulate a partitioning game while
the adversary operates and if an undesirable partition arises, we abort the game and decide whether or
not the adversary “wins” by a coin flip. This partitioning game works as follows: the challenger samples
u ∈ {0, 1,⊥}n using AdmSample and aborts if either there exists an evaluation query x such that Pu(x) = 0
or the challenge query x∗ satisfies Pu(x∗) = 1.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and set
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, q) and let Su = {x : Pu(x) = 1} (recall Pu(x) = 0 if h(x)j 6= uj ∀1 ≤ j ≤
n).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏n
j=1 dj,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 2 In this game, the challenger modifies the punctured key and outputs an obfuscation of PuncturedKeyAlt
defined in Figure ??. On inputs x such that Pu(x) = 1, the altered punctured key uses the same master key
k as before. However, if Pu(x) = 0, the altered punctured key uses a different master key k′ that is randomly
chosen from the key space.

9

163

Approved for Public Release; Distribution Unlimited.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and set
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ∈ G, ei,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and set k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))).

Compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏n
j=1 ej,b∗j and

y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

PuncturedKeyAltu,k,k′,x′

Input: x ∈ {0, 1}`

Constants : The group G

k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n

k′ = (w, ((e1,0, e1,1) . . . (en,0, en,1))) ∈ G×
(
Z2
N

)n

x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn.
if x = x′ then

Output ⊥.
else if Pu(x) = 0 then

output w
∏n

j=1 ej,bj .
else

Output v
∏n

j=1 dj,bj .
end if

Figure 2: Program PuncturedKeyAlt

Game 3 In this game, the challenger changes how the master key k′ is chosen so that some elements
contain an a-factor, for use on inputs x where Pu(x) = 0.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and set
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a← Z∗N and e′i,b ← ZN . Let ei,b = e′i,b · a if h(x∗)i = b, else ei,b = e′i,b.

Let k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))) and Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗).

Let h(x∗) = b∗1 . . . b
∗
n and y0 = w

∏
j ej,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

10

164

Approved for Public Release; Distribution Unlimited.

Game 4 This game is the same as the previous one, except that the altered punctured program contains

the constants {wai

}ni=0 hardwired. These terms are used to compute the output of the punctured program.
The punctured key is an obfuscation of PuncturedKeyAlt′ defined in Figure ??.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and set
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a← Z∗N and e′i,b ← ZN .

Let W = (w,wa, . . . , wa
n−1

), E = ((e′1,0, e
′
1,1), . . . , (e′n,0, e

′
n,1)) and K ′′x∗ ← iO(λ,PuncturedKeyAlt′u,W,E,k,x∗).

Let h(x∗) = b∗1 . . . b
∗
n, y0 =

(
wa

n)∏j e
′
j,b∗

j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (K ′′x∗ , yβ).
5. A outputs β′ and wins if β = β′.

PuncturedKeyAlt′u,W,E,k,x′

Input: x ∈ {0, 1}`

Constants : The group G

k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n

W = (w0, . . . , wn−1) ∈ Gn, E = ((e′1,0, e
′
1,1), . . . , (e′n,0, e

′
n,1)) ∈

(
Z2
N

)n

x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn and h(x′) = b′1 . . . b
′
n. Let tx′(x) = |{i : bi = b′i}|.

if x = x′ then
Output ⊥.

else if Pu(x) = 0 then

output
(
wtx′ (x)

)∏n
j=1 e

′
j,bj .

else
Output v

∏n
j=1 dj,bj .

end if

Figure 3: Program PuncturedKeyAlt’

Game 5 In this game, we replace the term wa
n

with a random element from G. Hence, both y0 and y1
are random elements of G, thereby ensuring that any adversary has zero advantage in this game.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and set
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

11

165

Approved for Public Release; Distribution Unlimited.

Else choose w ← G, a← Z∗N , and e′i,b ← ZN . LetW = (w,wa, . . . , wa
n−1

), E = ((e′1,0, e
′
1,1), . . . , (e′n,0, e

′
n,1))

and Kx∗ ← iO(λ,PuncturedKeyAlt′u,W,E,k,x∗).

Let h(x∗) = b∗1 . . . b
∗
n. Choose T ← G and let y0 = (T)

∏n
j=1 e

′
j,b∗

j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

4.1.2 Adversary’s Advantage in these Games

Let AdviA denote the advantage of adversary A in Game i. We will now show that if an adversary A has
non-negligible advantage in Game i, then A has non-negligible advantage in Game i + 1. Finally, we show
that A has advantage 0 in Game 5.

Claim 4.1. For any adversary A, Adv1A ≥ Adv0A/θ(q).

Proof. This claim follows from the θ-admissibility of the hash function h. Recall h is θ-admissible if for all
x1, . . . , xq, x

∗, Pr[∀i, Pu(xi) = 1 ∧ Pu(x∗) = 0] ≥ 1/θ(q), where the probability is only over the choice of
u ← AdmSample(1λ, q). Therefore, if A wins with advantage ε in Game 0, then A wins with advantage at
least ε/θ(q) in Game 1.

Claim 4.2. Assuming iO is a secure indistinguishability obfuscator and the Subgroup Hiding Assumption
holds, for any PPT adversary A,

Adv1A − Adv2A ≤ negl(λ).

The proof of this claim involves multiple intermediate experiments and can be found in Appendix A.

Claim 4.3. For any PPT adversary A, Adv3A = Adv2A.

Proof. Game 2 and Game 3 are identical, except for the manner in which the constants ei,b are chosen. In
Game 2, ei,b ← ZN , while in Game 3, the challenger first chooses e′i,b ← ZN , a← Z∗N , and sets ei,b = e′i,b · a
if h(x)i = b, else sets ei,b = e′i,b. Since a ∈ Z∗N (and therefore is invertible), e′i,b ·a is also a uniformly random

element in ZN if e′i,b is. Hence the two experiments are identical.

Claim 4.4. If there exists a PPT adversary A such that Adv3A − Adv4A is non-negligible in λ, then there
exists a PPT distinguisher B that breaks the security of iO with advantage non-negligible in λ.

Proof. Suppose there exists a PPT adversary A such that Adv3A − Adv4A = ε. We will construct a PPT
algorithm B that breaks the security of iO with advantage ε by interacting with A. B first sets up the
parameters, including u and k, and answers the evaluation queries of A exactly as in steps 1 and 2 of Game
3, which are identical to steps 1 and 2 of Game 4. When A sends B a challenge input x∗, B checks that
Pu(x∗) = 0 and if not aborts (identical in both games).

Next B chooses further values to construct the circuits: w ← G, a← Z∗N and e′i,b ← ZN . Let ei,b = e′i,b ·a
if h(x∗)i = b, else ei,b = e′i,b. Let k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))), W = (w,wa, . . . , wa

n−1

) and
E = ((e′1,0, e

′
1,1), . . . , (e′n,0, e

′
n,1)).

B constructs circuit C0 = PuncturedKeyAltu,k,k′,x∗ and circuit C1 = PuncturedKeyAlt′u,W,E,k,x∗ , and sends
C0, C1 to the iO challenger. B receives Kx∗ ← iO(Cb) from the challenger. It computes h(x∗) = b∗1 . . . b

∗
n,

y0 = w
∏

j ej,b∗j , y ← G, β ← {0, 1}, sends (Kx∗ , yβ) to A and receives β′ in response. If β = β′, B outputs 0,
else it outputs 1.

We will now prove that the circuits C0 and C1 have identical functionality. Consider any ` bit string x,
and let h(x) = b1 . . . bn. Recall tx∗(x) = |{i : bi = b∗i }|.

For any x ∈ {0, 1}` such that x = x∗, both circuits output ⊥.

For any x ∈ {0, 1}` such that x 6= x∗ and Pu(x) = 1, both circuits output v
∏n

j=1 dj,bj .
For any x ∈ {0, 1}` such that x 6= x∗ and Pu(x) = 0, we have

12

166

Approved for Public Release; Distribution Unlimited.

C0(x) = PuncturedKeyAltu,k,k′,x∗(x) = w
∏n

j=1 ej,bj = w
a
tx∗(x)

∏n
j=1 e

′
j,bj =

(
wtx∗ (x)

)∏n
j=1 e

′
j,bj = PuncturedKeyAlt′u,W,E,k,x∗(x) = C1(x).

Since C0 and C1 have identical functionality, Pr[B wins] = Pr[A wins in Game 3] - Pr[A wins in Game 4].
If Adv3A − Adv4A = ε, then B wins the iO security game with advantage ε.

Claim 4.5. If there exists a PPT adversary A such that Adv4A − Adv5A is non-negligible in λ, then there
exists a PPT adversary B that breaks Assumption 2 with advantage non-negligible in λ.

Proof. Suppose there exists an adversary A such that Adv4A − Adv5A = ε, then we can build an adversary
that breaks Assumption 2 with advantage ε. The games are identical except that Game 5 replaces the term
wa

n

with a random element of G. On input an Assumption 2 instance (N,G,Gp,Gq, g1, g2, w, wa, . . ., wa
n−1

)
together with challenge value T (which is either wa

n

or a random element in G), use these parameters as in
Game 5 with A. If A guesses it was in Game 4, guess that T = wa

n

, else guess that T was random.

Observation 4.1. For any adversary A, Adv5A = 0.

Proof. If the challenger aborts either during the evaluation or challenge phase, then A has 0 advantage, since
A wins with probability 1/2. If the challenger does not abort during both these phases, then A receives
(Kx∗ , yβ), and A must guess β. However, both y0 and y1 are uniformly random elements in G, and therefore,
Adv5A = 0.

4.1.3 Conclusion of the Main Proof

Given Claims 4.1-4.5 and Observation 4.1, we can conclude that if iO is a secure indistinguishability obfus-
cator and Assumption 1 holds (recall Appendix A shows that Assumption 1 implies Assumption 2), then
any PPT adversary A has negligible advantage in the puncturable PRF security game (i.e., Game 0).

5 Construction of t-Puncturable PRFs from Puncturable PRFs

In this section, we present our construction of t-puncturable PRFs from puncturable PRFs and indistin-
guishability obfuscation. Let F : K × X → Y be a puncturable PRF, and F.setup, F.puncture, F.eval the
corresponding setup, puncturing and evaluation algorithms. We now describe our t-puncturable PRF Ft,
and the corresponding algorithms Ft.setup, Ft.puncture and Ft.eval.

5.1 Construction

Ft.setup(1λ) Ft.setup is the same as F.setup.

Ft.puncture(k,S) Ft.puncture(k, S) computes an obfuscation of the program PuncturedKeytk,S defined in
Figure ??; that is, KS ← iO(λ,PuncturedKeytk,S). As before, the program PuncturedKeytk,S is padded to
be of appropriate size.

Ft.eval(KS,x) The punctured key KS is a program that takes an input in X . We define

Ft.eval(KS , x) = KS(x).

13

167

Approved for Public Release; Distribution Unlimited.

PuncturedKeytk,S

Input: x ∈ X

Constants : The function description F

k ∈ K
S ⊂ X such that |S| ≤ t

if x ∈ S then
Output ⊥.

else
Output F (k, x).

end if

Figure 4: Program PuncturedKeyt

5.2 Proof of Security

We will now prove that the above construction is a secure t-puncturable PRF as defined in Definition 3.3.

Theorem 5.1. Assuming iO is a secure indistinguishability obfuscator and F , together with F.setup,
F.puncture and F.eval is a secure puncturable PRF, the PRF Ft defined above, together with Ft.setup,
Ft.puncture and Ft.eval, is a secure t-puncturable PRF.

For simplicity, we will assume that the adversary makes q1 evaluation queries, q2 punctured key queries
and 1 challenge query. As shown by [BW13], this can easily be extended to the general case of multiple
challenge queries via a hybrid argument. We will first define the intermediate hybrid experiments.

Game 0 This game is the original security game between the challenger and adversary A, where the
challenger first chooses a PRF key, then A makes evaluation/t-punctured key queries and finally sends the
challenge input. The challenger responds with either the PRF evaluation at challenge input, or sends a
random element of the range space.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

(a) If A sends an evaluation query xi, then output F (k, xi).
(b) If A sends a t-punctured key query for set Sj , output KSj

← iO(λ,PuncturedKeytk,Sj
).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2. Choose β ← {0, 1}. If
β = 0, output y = F (k, x∗), else output y ← Y.

4. A sends β′ and wins if β = β′.

Game 1 This game is the same as the previous one, except that the challenger introduces an abort
condition. When the first t-punctured key query S1 is made, the challenger guesses the challenge query
x̃ ← S1. The challenger aborts if any of the evaluation queries are x̃, if any of the future t-punctured key
queries does not contain x̃ or if the challenge query x∗ 6= x̃.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃← S1 and output KS1
← iO(λ,PuncturedKeytk,S1

).

For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.

(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1i ← {0, 1}. A wins if γ1i = 1.

Else if xi 6= x̃, output F (k, xi).

14

168

Approved for Public Release; Distribution Unlimited.

(b) IfA sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose γ2i ← {0, 1}. A wins if γ2i = 1.

Else if x̃ ∈ Sj , output KSj
← iO(λ,PuncturedKeytk,Sj

).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output y ← Y.

4. A sends β′ and wins if β = β′.

Next, we define q2 games, Game 1l, 1 ≤ l ≤ q2. Let Game 10 = Game 1.

Game 1l In this game, the first l punctured key queries use Kx̃, while the remaining use k.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃← S1 and compute Kx̃ ← F.puncture(k, x̃).

Output KS1
← iO(λ,PuncturedKeyAlttKx̃,S1

), where PuncturedKeyAltt is defined in Figure ??.

For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.

(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1i ← {0, 1}. A wins if γ1i = 1.
Else if xi 6= x̃, output F.eval(Kx̃, xi) = F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose γ2i ← {0, 1}. A wins if
γ2i = 1.
Else if x̃ ∈ Sj and j ≤ l, output KSj ← iO(λ,PuncturedKeyAlttKx̃,Sj

).

Else output KSj
← iO(λ,PuncturedKeytk,Sj

).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output y ← Y.

4. A sends β′ and wins if β = β′.

PuncturedKeyAlttKx̃,S

Input: x ∈ X

Constants : The function description F

Kx̃

S ⊂ X such that |S| ≤ t

if x ∈ S then
Output ⊥.

else
Output F.eval(Kx̃, x).

end if

Figure 5: Program PuncturedKeyAltt

Game 2 In this game, the challenger outputs a random element as the response to the challenge query.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃← S1 and compute Kx̃ ← F.puncture(k, x̃).
Output KS1

← iO(λ,PuncturedKeyAlttKx̃,S1
).

15

169

Approved for Public Release; Distribution Unlimited.

For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.

(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1i ← {0, 1}. A wins if γ1i = 1.
Else if xi 6= x̃, output F.eval(Kx̃, xi) = F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose γ2i ← {0, 1}. A wins if
γ2i = 1.
Else if x̃ ∈ Sj , output KSj ← iO(λ,PuncturedKeyAlttKx̃,Sj

).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1} and output y ← Y.

4. A sends β′ and wins if β = β′.

5.2.1 Adversary’s Advantage in these Games

Let AdviA denote the advantage of adversary A in Game i.

Observation 5.1. For any adversary A, Adv1A ≥ Adv0A/t.

Proof. Since one of the elements of S1 will be the challenge input, and |S1| ≤ t, the challenger’s guess is
correct with probability 1/|S1| ≥ 1/t. Hence, Adv1A ≥ Adv0A/t.

We will now show that Game 1l and Game 1l+1 are computationally indistinguishable, assuming iO is
secure.

Claim 5.1. If there exists a PPT adversary A such that Adv1lA − Adv
1l+1

A is non-negligible in λ, then there
exists a PPT distinguisher B that breaks the security of iO with advantage non-negligible in λ.

Proof. Note that the only difference between Game 1l and Game 1l+1 is in the response to the (l + 1)th
t-punctured key query. In Game 1l, PuncturedKeytk,Sl+1

is used to compute KSl+1
, while in Game 1l+1,

PuncturedKeyAlttKs̃,Sl+1
is used. Suppose there exists a PPT adversary A such that Adv1lA − Adv

1l+1

A = ε.
We will construct a PPT algorithm B that interacts with A and breaks the security of iO with advantage ε.
B chooses k ← K and for all evaluation queries xi before the first t-punctured key query, outputs F (k, xi).

On receiving the first t-punctured key query S1, B chooses x̃ ← S1 and computes Kx̃ ← F.puncture(k, x̃).
The evaluation queries are computed as in Game 1l and 1l+1. The first l t-punctured key queries are
constructed using k, while the last q2 − l − 1 t-punctured keys are constructed using Kx̃ (as in Game 1l
and Game 1l+1). For the (l + 1)th query, B does the following. B sets C0 = PuncturedKeytk,Sl+1

and
C1 = PuncturedKeyAlttKx̃,Sl+1

, and sends C0, C1 to the iO challenger, and receives KSl+1
in response, which

it sends to A.
Finally, after all queries, the challenger sends the challenge query x∗. B checks that x̃ = x∗, sets

y0 = F (k, x∗) and chooses y1 ← Y, β ← {0, 1}. It outputs yβ and receives β′ in response. If β = β′, B
outputs 0, else it outputs 1.

From the correctness property of puncturable PRFs, it follows that F.eval(Kx̃, x) = F (k, x) for all
x /∈ Sl+1. Hence, the circuits C0 and C1 are functionally identical. This completes our proof.

Next, we show that Game 1q2 and Game 2 are computationally indistinguishable.

Claim 5.2. If there exists a PPT adversary A such that Adv
1q2
A − Adv2A is non-negligible in λ, then there

exists a PPT distinguisher B that breaks the security of puncturable PRF F with advantage non-negligible
in λ.

16

170

Approved for Public Release; Distribution Unlimited.

Proof. We will use A to construct a PPT algorithm B that breaks the security of puncturable PRF F with

advantage Adv
1q2
A − Adv2A. Observe that in Game 1q2 , the challenger requires the master key k only for

the evaluation queries before the first t-punctured key query. After the first t-punctured key query S1, the
challenger chooses x̃ ← S1, computes a punctured key Kx̃, and uses this to compute all future evaluation
queries and t-punctured keys.
B begins interacting with A. For each evaluation query xi before the first t-punctured key query, B

sends xi to the puncturable PRF challenger, and receives yi, which it forwards to A. On receiving the
first t-punctured key query S1, B chooses x̃ ← S1 and sends x̃ as challenge input to the puncturable PRF
challenger. B receives Kx̃ and y. It uses Kx̃ for all remaining queries. On receiving challenge x∗ from A, B
checks x∗ = x̃ and sends y. B sends A’s response to the PRF challenger.

Note that until the challenge query is made, both games are identical and B simulates them perfectly. If
y is truly random, then A receives a response as per Game 2, else it receives a response as per Game 1q2 .

Finally, we have the following simple observation.

Observation 5.2. For any adversary, Adv3A = 0.

From the above claims and observations, we can conclude that if iO is a secure indistinguishability
obfuscator as per Definition 2.2, and F , together with F.setup, F.puncture, F.eval is a secure puncturable
PRF as per Definition 3.2, then any PPT adversary A has negligible advantage in Game 0.

Acknowledgements

We thank Allison Bishop Lewko for helpful comments and discussions.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard model. In
Proceedings of the 29th Annual international conference on Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT’10, pages 553–572, Berlin, Heidelberg, 2010. Springer-Verlag.

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443–459, 2004.

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. Indistinguishability obfuscation
vs. auxiliary-input extractable functions: One must fall. Cryptology ePrint Archive, Report
2013/641, 2013. http://eprint.iacr.org/.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, pages 280–300, 2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In CRYPTO, 2014.

[CM14] Melissa Chase and Sarah Meiklejohn. Déjà q: Using dual systems to revisit q-type assumptions.
In EUROCRYPT, pages 622–639, 2014.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. In CRYPTO, pages 513–530, 2013.

17

171

Approved for Public Release; Distribution Unlimited.

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive
security of constrained prfs. IACR Cryptology ePrint Archive, 2014:416, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (ex-
tended abstract). In FOCS, pages 464–479, 1984.

[GJM02] Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic primitives enforcing com-
munication and storage complexity. In Financial Cryptography, pages 120–135, 2002.

[GLSW14] Craig Gentry, Allison Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfusca-
tion from the multilinear subgroup elimination assumption. Cryptology ePrint Archive, Report
2014/309, 2014. http://eprint.iacr.org/.

[HK12] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. J. Cryp-
tology, 25(3):484–527, 2012.

[Hof14] Dennis Hofheinz. Fully secure constrained pseudorandom functions using random oracles. IACR
Cryptology ePrint Archive, 2014:372, 2014.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In CRYPTO, 2013.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In EUROCRYPT, pages 201–220, 2014.

[HW10] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large input
spaces. In EUROCRYPT, pages 656–672, 2010.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. In ACM Conference on Computer and Commu-
nications Security, pages 669–684, 2013.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In CRYPTO, pages 180–198, 2012.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. J. ACM, 51(2):231–262, 2004.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475–484, 2014.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114–127, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assump-
tions. In CRYPTO, pages 619–636, 2009.

A Proof of Claim 4.2 (Adv1
A − Adv2

A is negligible)

Recall that Claim 4.2 states that ssuming iO is a secure indistinguishability obfuscator and the Subgroup
Hiding Assumption holds, for any PPT adversary A,

Adv1A − Adv2A ≤ negl(λ).

In order to prove this, we establish a sequence of intermediate experiments Game 1A to Game 1G and
show that any two consecutive experiments are computationally indistinguishable. First, we recall Game 1.

18

172

Approved for Public Release; Distribution Unlimited.

Game 1 This is Game 1 from Section 4.1.1.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q).
Choose v ← G, di,b ← ZN . Set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏
j dj,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1A We change the sampling procedure for the di,b values so that some include a factor of a.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q).
Choose v ← G, d′i,b ← ZN , a← Z∗N and set di,b = d′i,b if ui = b, else di,b = d′i,b · a. 6.

Set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏
j dj,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1B We substitute an alternative method of computing the punctured key program output using a
differently formatted input.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q). Let ru(x) = |{j : uj 6= h(x)j}|.
Choose v ← G, d′i,b ← ZN , a← Z∗N and set di,b = d′i,b if ui = b, else di,b = d′i,b · a.

Let D = ((d′1,0, d
′
1,1), . . . , (d′n,0, d

′
n,1)), V = (v, va, . . . , va

n−1

) and w = va
n

.

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1. 7

If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j =
(
va

ru(xi)
)∏

j d
′
i,bi

j .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏
j dj,b∗j =

w
∏

j d
′
j,b∗

j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

6If ui =⊥, then di,b = d′i,b · a for b = 0, 1.
7Note that ru(x) < n if Pu(x) = 1, else ru(x) = n.

19

173

Approved for Public Release; Distribution Unlimited.

PuncturedKey′V,w,D,u,x′

Input: x ∈ {0, 1}`

Constants : The group G
V = (v0, v1, . . . , vn−1) ∈ Gn, w ∈ G

D =
((
d′1,0, d

′
1,1

)
. . .

(
d′n,0, d

′
n,1

))
∈
(
Z2
N

)n

x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn.
if x = x′ then

Output ⊥.
else if Pu(x) = 0 then

Output w
∏

j d
′
j,bj .

else
Compute ru(x). Output

(
vru(x)

)∏
i d
′
j,bj .

end if

Figure 6: Program PuncturedKey′

Game 1C In this game, the term va
n

is replaced by a random element of G.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q). Let ru(x) = |{j : uj 6= h(x)j}|.
Choose v ← G, d′i,b ← ZN , a← Z∗N and set di,b = d′i,b if ui = b, else di,b = d′i,b · a.

Let D = ((d′1,0, d
′
1,1) . . . , (d′n,0, d

′
n,1)), V = (v, va, . . . , va

n−1

) and w ← G.

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j =
(
va

ru(xi)
)∏

j d
′
i,bi

j .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j d
′
j,b∗

j and
y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1D This game is same as the previous one, except that v and w are chosen from subgroups Gp and
Gq respectively, instead of G.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q). Let ru(x) = |{j : uj 6= h(x)j}|.
Choose v ← Gp, w ← Gq, d′i,b ← ZN , a← Z∗N and set di,b = d′i,b if ui = b, else di,b = d′i,b · a.

Let D = ((d′1,0, d
′
1,1), . . . , (d′n,0, d

′
n,1)), V = (v, va, . . . , va

n−1

).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j =
(
va

ru(xi)
)∏

j d
′
i,bi

j .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j d
′
j,b∗

j and
y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

20

174

Approved for Public Release; Distribution Unlimited.

Game 1E

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Choose v ← Gp, w ← Gq,
di,b ← ZN . Let di,b,p = di,b mod p and di,b,q = di,b mod q.

Set k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and k′ = (w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j = v

∏
j dj,bi

j
,p .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else computeKx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j dj,b∗j = w

∏
j dj,b∗j ,q

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1F

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Choose v ← Gp, w ← Gq,
di,b,p ← Zp, ei,b,q ← Zq.
Set k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and k′ = (w, ((e1,0,q, e1,1,q), . . . , (en,0,q, dn,1,q))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output = v

∏
j dj,bi

j
,p .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j ej,b∗j ,q and

y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1G This game is same as the previous one, except that the di,b and ei,b values are uniformly chosen
from ZN instead of Zp and Zq, respectively.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Choose v ← Gp, w ← Gq,
di,b ← ZN , ei,b ← ZN .

Set k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))) and k′ = (w, ((e1,0, e1,1), . . . , (en,0, dn,1))).
2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.

If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output = v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j ej,b∗j and

y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 2 This is Game 2 from Section 4.1.1. This game is same as the previous one, except that v and w
are chosen from G instead of the subgroups Gp and Gq respectively.

21

175

Approved for Public Release; Distribution Unlimited.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q). Choose v ← G, w ← G, di,b ←
ZN , ei,b ← ZN .
Set k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))) and k′ = (w, ((e1,0, e1,1), . . . , (en,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output = v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j ej,b∗j and

y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

We will now prove that the difference in advantage of any PPT adversary in two consecutive game is
negligible in λ. Let Adv1αA denote the advantage of adversary A in Game 1α.

Observation A.1. For any adversary A, Adv1A = Adv1AA .

Proof. The only difference between Game 1 and Game 1A is the manner in which the constants di,b are
chosen. In Game 1, the challenger chooses di,b ← ZN . In Game 1A, the challenger first chooses d′i,b ← ZN ,
a ← Z∗N and then sets di,b as either d′i,b or d′i,b · a, depending on ui. However, note that in either case, di,b
is a uniformly random element in ZN since a ∈ Z∗N .

Claim A.1. If there exists a PPT adversary A such that Adv1AA − Adv1BA is non-negligible in λ, then there
exists a PPT adversary B that breaks the security of iO with advantage non-negligible in λ.

Proof. Suppose there exists a PPT adversary A such that Adv1AA − Adv1BA = ε. We will construct a PPT
algorithm B that breaks the security of iO with advantage ε by interacting with A. B establishes some
parameters that will be needed to interact with A and which will be used as part of the circuits designed
by B: first it chooses v ← G, a ← Z∗N , d′i,b ← ZN , u ← AdmSample(1λ, q) and sets di,b = d′i,b if ui = b,
else di,b = d′i,b · a. On receiving evaluation query xi, B first checks that Pu(xi) = 1. If so, it computes

h(x) = bi1 . . . b
i
n and sends v

∏
j dj,bi

j to A.
On receiving challenge query x∗ fromA, B checks Pu(x∗) = 0. Now, B is ready to construct the circuits. It

sets k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))), V = (v, va, . . . , va
n−1

), w = va
n

andD = ((d′1,0, d
′
1,1), . . . , (d′n,0, d

′
n,1)).

It uses k to construct circuit C0 = PuncturedKeyk,x∗ , uses V,w,D to construct C1 = PuncturedKey′V,w,D,u,x∗
and sends C0, C1 to the iO challenger. B receives Kx∗ ← iO(Cb) from the challenger. It computes

h(x∗) = b∗1 . . . b
∗
n, y0 = v

∏
j dj,b∗j , y ← G, β ← {0, 1}, sends (Kx∗ , yβ) to A and receives β′ in response.

If β = β′, B outputs 0, else it outputs 1.
We will now prove that the circuits C0 and C1 have identical functionality. Consider any ` bit string x,

and let h(x) = b1 . . . bn. Recall ru(x) = |{j : uj 6= bj}|.

∏

j

dj,bj =

 ∏

uj=bj

d′j,bj

 ·

 ∏

uj 6=bj
(d′j,bj · a)

 =

 ∏

uj=bj

d′j,bj

 · aru(x) ·

 ∏

uj 6=bj
d′j,bj

Hence, v
∏

j dj,bj =
(
va

ru(x)
)∏

j d
′
j,bj

. Also, recall ru(x) = n iff Pu(x) = 0. Therefore, to compute v
∏

j dj,bj

for some x such that Pu(x) = 1, we only need the constant {d′i,b} and {v, va, va2 , . . . , van−1}. Similarly, if

Pu(x) = 0, we only need the constants {d′i,b} and va
n

to compute v
∏

j dj,bj . Using this observation, we can

prove that the programs PuncturedKeyk,x∗ and PuncturedKey′V,w,D,u,x∗ have identical functionality.

22

176

Approved for Public Release; Distribution Unlimited.

For any x ∈ {0, 1}` such that Pu(x) = 1,

PuncturedKey′V,w,D,u,x∗(x) =
(
va

ru(x)
)∏

j d
′
j,bj

= v
∏

j dj,bj = PuncturedKeyk,x∗(x)

For any x ∈ {0, 1}` such that Pu(x) = 0,

PuncturedKey′V,w,D,u,x∗(x) = w
∏

j d
′
j,bj =

(
va

n
)∏

j d
′
j,bj

= v
∏

j dj,bj = PuncturedKeyk,x∗(x)

Since C0 and C1 have identical functionality, Pr[B wins] = Pr[A wins in Game 1A] - Pr[A wins in Game 1B].
If Adv1AA − Adv1BA = ε, then B wins the iO security game with advantage ε.

Claim A.2. If there exists a PPT adversary A such that Adv1BA − Adv1CA is non-negligible in λ, then there
exists a PPT adversary B that breaks Assumption 2 with advantage non-negligible in λ.

Proof. Suppose there exists a PPT adversary A such that Adv1BA −Adv1CA = ε. We will construct a PPT algo-
rithm B that uses A and breaks Assumption 2 with advantage at least ε. B receives the group description G,
(v, va, . . . , va

n−1

) ∈ Gn and T ∈ G, where T = va
n

or T ← G. B chooses d′i,b ← ZN , u← AdmSample(1λ, q).

B sets V = (v, . . . , va
n−1

), w = T , D = ((d′1,0, d
′
1,1), . . . , (d′n,0, d

′
n,1)).

On evaluation query xi, B first checks that Pu(xi) = 1. Next, it computes h(x) = bi1 . . . b
i
n, and finally

outputs
(
va

ru(xi)
)∏

j d
′
i,bi

j . Note that ru(x) < n if Pu(x) = 0. Therefore, B can simulate the evaluation query

phase perfectly.
On challenge query x∗, B first checks that Pu(x∗) = 0. Next, it computes h(x) = b∗1 . . . b

∗
n, Kx∗ ←

iO(λ,PuncturedKey′V,w,D,u,x∗). It sets y0 = w
∏

j d
′
j,bj and y1 ← G.

Finally, B chooses β ← {0, 1}, sends (Kx∗ , yβ) from A, and receives β′. If β = β′, B outputs 0 (i.e. it
guesses T = va

n

), else it outputs 1.
Clearly, if Adv1BA − Adv1CA = ε, then B also wins with advantage ε.

Claim A.3. If there exists a PPT adversary A such that Adv1CA − Adv1DA is non-negligible in λ, then there
exists a PPT adversary B that breaks Assumption 1 with advantage non-negligible in λ.

Proof. We will prove this claim using an intermediate experiment Hyb. Hyb is the same as Game 1C, except
that v ← Gp. We will prove that Game 1C and Hyb are computationally indistinguishable, and similarly,
Hyb and Game 1D are computationally indistinguishable.

Suppose there exists a PPT adversary A such that Adv1CA − AdvHyb
A = ε. Using A, we will construct

a PPT algorithm B that breaks Assumption 1. B receives G, Gp, Gq, g1 ← Gp, g2 ← Gq and T , where
T ← Gp or T ← G. B sets v = T , chooses a ← Z∗N , d′i,b ← ZN , u ← AdmSample, w ← G and computes

V = (v, va, . . . , va
n−1

) and di,b as in Game 1C.
On receiving evaluation query xi from A, B computes h(xi) = bi1 . . . b

i
n, checks if Pu(xi) = 1 and responds

with
(
va

ru(xi)
)∏

j d
′
j,bi

j .

On receiving challenge query x∗, B checks Pu(x∗) = 0, and computesKx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗),

y0 = (w)
∏

j d
′
j,b∗

j , y1 ← G, β ← {0, 1} and outputs (Kx∗ , yβ). If A outputs β, B guesses v ∈ G, else guesses

v ∈ Gp. Notice that if AdvHybA − Adv1CA = ε, then B breaks Assumption 1 with advantage ε.

In order to prove our claim, we now need to show that the experiments Hyb and Game 1D are com-
putationally indistinguishable. Note that the only difference between these two experiments is the manner
in which w is chosen. In Hyb, w ← G, while in Game 1D, w ← Gq. We can show that if Assumption 1
holds, then Hyb and Game 1D are computationally indistinguishable. This argument is exactly similar to
the step from Game 1C to Hyb, the only difference being that the assumption used will be that w ← G is
computationally indistinguishable from w ← Gq.

23

177

Approved for Public Release; Distribution Unlimited.

Claim A.4. If there exists a PPT adversary A such that Adv1DA − Adv1EA is non-negligible in λ, then there
exists a PPT adversary B that breaks the security of iO with advantage non-negligible in λ.

Proof. We will use two intermediate experiments Hyb1 and Hyb2, and use the security of iO to prove that
(a) Game 1D and Hyb1 are computationally indistinguishable, (b) Hyb1 and Hyb2 are identical experiments,
and (c) Hyb2 and Game 1E are computationally indistinguishable.

First we define the experiments Hyb1 and Hyb2. In Hyb1, the challenger first samples u, v, w, d′i,b, a as in
Game 1D, and sets di,b = d′i,b if ui = b, else di,b = a (same as before). The evaluation query responses are
also same as in Game 1D. For the challenge query x∗, the challenger first checks that Pu(x∗) = 0. Next,

it sets w′ = w1/an , computes y0 = w
′∏j dj,b∗j = w

∏
j dj,b∗j , y1 ← G as in Game 1D. However, the punctured

key Kx∗ is computed using PuncturedKeyAlt. The challenger sets k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))),
k′ = (w′, ((d1,0, d1,1), . . . , (dn,0, dn,1))) and computes Kx∗ ← iO(λ,PuncturedKeyAltk,k′,u,x∗).

Hyb2 is the same as Hyb1, except that it chooses di,b ← ZN and uses w instead of w′ in the key k′ and
for computing y0.

Proof of (a): Suppose there exists a PPT adversary A such that Adv1DA − Adv
Hyb1
A = ε. As in the

proof of Claim A.1, we will first construct a PPT algorithm B that uses A to break the security of iO.
B samples u, v, w, d′i,b and computes di,b as in Game 1D/Hyb. On receiving evaluation query xi, it checks

Pu(xi) = 0 and outputs v

∏
j dj,bi

j . On receiving challenge query x∗, B sets V = (v, va, . . . , va
n−1

), D =
((d1,0, d1,1), . . . , (d′n,0, d

′
n,1)), k, k′ as in Hyb, and constructs circuits C0 = PuncturedKey′V,w,D,u,x∗ and C1 =

PuncturedKeyAltk,k′,u,x∗ . It sends C0, C1 to the iO challenger, and receives Kx∗ ← iO(λ,Cb). B computes
y0, chooses y1, β, sends (Kx∗ , yβ) to A and receives β′ in response. If β = β′, B outputs 0, else outputs 1.

In order to complete this proof, we show that circuits PuncturedKey′V,w,D,u,x∗ and PuncturedKeyAltk,k′,u,x∗
have identical functionality.

For any x ∈ {0, 1}` such that Pu(x) = 1, h(x) = b1 . . . bn,

PuncturedKeyAltk,k′,u,x∗(x) = v
∏

j dj,bj =
(
va

ru(x)
)∏

j d
′
j,bj

= PuncturedKey′V,w,D,u,x∗(x).

For any x ∈ {0, 1}` such that Pu(x) = 0, x 6= x∗, h(x) = b1 . . . bn,

PuncturedKeyk,k′,u,x∗(x) = w′
∏

j dj,bj =
(
w′a

n
)∏

j d
′
j,bj

= w
∏

j d
′
j,bj = PuncturedKey′V,w,D,u,x∗(x).

For x = x∗, both programs outputs ⊥. Therefore, the two programs are functionally equivalent. Hence,
B breaks the security of iO with advantage ε.

Proof of (b): Note that in both Hyb1 and Hyb2, di,b is a uniformly random element in ZN (since a ∈ Z∗N).
Also, if w ← Gq, then w1/an is a uniformly random element in Gq. From these two observations, it follows
that the two experiments Hyb1 and Hyb2 are the same.

Proof of (c): Game 1E is similar to Hyb2, except that the challenger chooses k, k′ differently. In
Game 1E, the challenger chooses v ← Gp, w ← Gq, di,b ← ZN . It sets di,b,p = di,b mod p, di,b,q = di,b
mod q, k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and k′ = (w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))). Suppose

there exists a PPT adversary A such that Adv
Hyb2
A − Adv1EA = ε. Consider the following PPT algorithm

B that uses A to break the security of iO. B chooses v, w, {di,b} and sets k = (v, ((d1,0, d1,1), . . .,

(dn,0, dn,1))), k′ = (w, ((d1,0, d1,1), . . . , (dn,0, dn,1))), k̃ =(v, ((d1,0,p, d1,1,p), . . ., (dn,0,p, dn,1,p))) and

k̃′ = (w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))). B uses the constants v and {di,b}i,b to respond to A’s eval-
uation queries. On receiving challenge query x∗, B constructs circuits C0 = PuncturedKeyAltk,k′,u,x∗ and
C1 = PuncturedKeyAltk̃,k̃′,u,x∗ and sends C0, C1 to the iO challenger. It receives Kx∗ in response. B com-
putes y0, y1, chooses β ← {0, 1} and sends (Kx∗ , yβ) to A, and receives β′ in response. If β = β′, then B
outputs 0, else it outputs 1.

24

178

Approved for Public Release; Distribution Unlimited.

Since v ∈ Gp, v
∏

j dj,bj = v
∏

j dj,bj ,p for any sequence b1 . . . bn. Similarly, since w ∈ Gq, w
∏

j dj,bj =

w
∏

j dj,bj ,q . Therefore the circuits C0, C1 have identical functionality. Hence, B breaks the security of iO
with advantage ε.

Claim A.5. For any adversary A, Adv1FA = Adv1EA .

Proof. We will show that Game 1E and Game 1F are identical, and therefore, any adversary has the same
advantage in both games. Note that the only difference between Game 1E and Game 1F is the manner
in which the keys k, k′ are chosen. In Game 1E, the challenger chooses v ∈ Gp, w ∈ Gq, di,b ∈ ZN and
sets k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and k′ = (w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))). In Game
1F, the challenger chooses di,b,p ← Zp, ei,b,q ← Zq and sets k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and
k′ = (w, ((e1,0,q, e1,1,q), . . . , (en,0,q, en,1,q))). Using Chinese Remainder Theorem, it follows that {(x mod p, x
mod q) : x← ZN} ≡ {(x, y) : x← Zp, y ← Zq}, and hence, Game 1E and Game 1F are identical.

Claim A.6. If there exists a PPT adversary A such that Adv1FA − Adv1GA is non-negligible in λ, then there
exists a PPT adversary B that breaks the security of iO with advantage non-negligible in λ.

Proof. The proof of this claim is similar to the proof of Claim A.4, part (c).

Claim A.7. If there exists a PPT adversary A such that Adv1GA − Adv2A is non-negligible in λ, then there
exists a PPT adversary B that breaks Assumption 1 with advantage non-negligible in λ.

Proof. The proof of this claim is similar to the one for Claim A.3.

B Reducing Assumption 2 to Subgroup Hiding Assumption in
Composite Order DDH-Hard Groups

Chase and Meiklejohn [CM14] showed that in bilinear groups of composite order, many q-type reductions are
implied by subgroup hiding. The paper also states that a similar result holds in composite order DDH-hard
groups. For completeness, we include a proof of this implication.

Theorem B.1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Then, Assumption 1 implies Assumption 2.

As in [CM14], the proof of this theorem uses the dual system technique introduced by Waters [Wat09].
First, we define 4n + 1 hybrid experiments Game 1, Game 11, Game 12, Game 13, . . ., Game n − 1, Game
n−11, Game n−12, Game n−13, Game n and then show that (a) no PPT adversary can distinguish between
consecutive hybrid experiments (b) any adversary has negligible advantage in Game n.

B.1 Sequence of Games

We underline the changes from one game to the next.

Game 0 : Choose v G, a ZN , β ∈ {0, 1} and set T0 = va
n

, T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v, va, . . ., va
n−1

, Tβ).

Game i : Choose v1 ← Gp, a1, . . . ai, r1, . . . , ri ← ZN , β ∈ {0, 1} and set T0 = v
∑i

j=1 rja
n
j

1 , T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i

j=1 rj
1 , v

∑i
j=1 rjaj

1 , . . . , v
∑i

j=1 rja
n−1
j

1 , Tβ).

25

179

Approved for Public Release; Distribution Unlimited.

Game i1 : Choose v1 ← Gp, v2 ← Gq, a1, . . . ai, r1, . . . , ri ← ZN , β ∈ {0, 1} and set T0 = v
∑i

j=1 rja
n
j

1 v
ani
2 ,

T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i

j=1 rj
1 v2, v

∑n
j=1 rjaj

1 vai2 , . . . , v
∑i

j=1 rja
n−1
j

1 v
an−1
i

2 , Tβ)

Game i2 : Choose v1 ← Gp, v2 ← Gq, a1, . . . ai, ai+1, r1, . . . , ri ← ZN , β ∈ {0, 1} and set T0 = v
∑i

j=1 rja
n
j

1 v
ani+1

2 ,
T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i

j=1 rj
1 v2, v

∑i
j=1 rjaj

1 v
ai+1

2 , . . . , v
∑i

j=1 rja
n−1
j

1 v
an−1
i+1

2 , Tβ)).

Game i3 : Choose v1 ← Gp, v2 ← Gq, a1, . . . ai, ai+1, r1, . . . , ri, ri+1 ← ZN , β ∈ {0, 1} and set

T0 = v
∑i+1

j=1 rja
n
j

1 v
ani+1

2 , T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i+1

j=1 rj
1 v2, v

∑i+1
j=1 rjaj

1 v
ai+1

2 , . . . , v
∑i+1

j=1 rja
n−1
j

1 v
an−1
i+1

2 , Tβ)).

B.2 Adversary’s Advantage in these Games

Let Adv1αA denote the advantage of adversary A in Game α. Note that in Game 0, a ← ZN , while in
Assumption 2, a← Z∗N . This results in security loss that is negligible in λ.

Claim B.1. If there exists a PPT adversaryA such that Adv10A−Adv11A = ε, then there exists a PPT algorithm
B that can distinguish between a random element of G and a random element of Gp with advantage ε.

Proof. The only difference between the two games is that in Game 0, the challenger chooses v ← G, while
in Game 1, the challenger chooses v1 ← Gp. B receives N,G,Gp,Gq, g1, g2 and w from the challenger,
where w ← G or w ← Gp. B sets v = w, chooses a ∈ ZN , β ∈ {0, 1} and sets T0 = va

n

, T1 ← G. It

sends (N,G,Gp,Gq, g1, g2, v, va, . . . , va
n−1

, Tβ) ot A and receives β′ in response. If β′ = β, B sends 1 to the
challenger (indicating that w ∈ G), else it sends 0. Clearly, if w ∈ G, then this corresponds to Game 0, else
it corresponds to Game 1. If A wins Game 0 with probability p0, and wins Game 1 with probability p1, then
the advantage of B in breaking Assumption 1 is p0 − p1 = ε.

Claim B.2. If there exists a PPT adversary A such that Adv1iA − Adv1i1A = ε, then there exists a PPT
algorithm B that can distinguish between a random element of G and a random element of Gp with advantage
ε.

Proof. The PPT algorithm B is defined as follows. First, B receives N,G,Gp,Gq, g1, g2 and w from the
challenger, where w ← G or w ← Gp. B chooses v′ ← Gp, a1, . . . , ai−1, r1, . . . , ri−1 ← ZN , β ← {0, 1}
and sets T0 = v′

∑i−1
j=1 rja

n
j wa

n
i and T1 ← G. It sends (N,G,Gp,Gq, g1, g2, v′

∑i−1
j=1 rjw, v′

∑i−1
j=1 rjajwai , . . .,

v′
∑i−1

j=1 rja
n−1
j wa

n−1
i , Tβ) to A and receives β′ in response. If β′ = β, it sends 0 to the challenger, else it sends

1.
If w ∈ G, then w = v′rv2 for some r ∈ ZN , v2 ∈ Gq. If w ∈ Gp, then w = v′r for some r ∈ ZN . Therefore,

B implicitly sets ri = r, and hence, if w ∈ Gp, A receives the challenge as per Game i, otherwise it receives
the challenge as per Game i1.

Claim B.3. For any adversary A, Adv1i1A = Adv1i2A .

Proof. This step is information-theoretic. First, let us recall the Chinese Remainder Theorem. For distinct
primes p, q and N = pq, we have

{(x mod p, x mod q) : x← ZN} ≡ {(x mod p, y mod q) : x← ZN , y ← ZN} .

26

180

Approved for Public Release; Distribution Unlimited.

Hence, it follows that distributions D1 and D2 are identical, where

D1 =

i∑

j=1

rjaj mod p, . . . ,
i∑

j=1

rja
n
j mod p, ai mod q : r1, . . . , ri, a1, . . . , ai ← ZN

D2 =

i∑

j=1

rjaj mod p, . . . ,
i∑

j=1

rja
n
j mod p, ai+1 mod q : r1, . . . , ri, a1, . . . , ai, ai+1 ← ZN

 .

Note that since v ∈ Gp, vx = vx mod p. Similarly, wy = wy mod q. Hence it follows that any adversary has
identical advantage in Game i1 and Game i2.

Claim B.4. If there exists a PPT adversary A such that Adv1i2A − Adv1i3A = ε, then there exists a PPT
algorithm B that can distinguish between a random element of G and a random element of Gq with advantage
ε.

Proof. The PPT algorithm B is defined as follows. First, B receives N,G,Gp,Gq, g1, g2 and w from the
challenger, where w ← G or w ← Gq. B chooses v′ ← Gp, a1, . . . , ai, r1, . . . , ri ← ZN , β ← {0, 1} and

sets T0 = v′
∑i

j=1 rja
n
j wa

n
i+1 and T1 ← G. It sends (N,G,Gp, Gq, g1, g2, v′

∑i
j=1 rjw, v′

∑i
j=1 rjajwai+1 , . . .,

v′
∑i

j=1 rja
n−1
j wa

n−1
i+1 , Tβ) to A and receives β′ in response. If β′ = β, it sends 0 to the challenger (i.e. B

guesses that w ← Gq), else it sends 1.
As in the proof of B.2, if w ∈ G, then w = v′rv2, else w = v2 for some r, v2. B therefore implicitly sets

ri+1 = r. If w ∈ Gq, then A gets a Game i2 challenge, else a Game i3 challenge.

Claim B.5. If there exists a PPT adversary A such that Adv1i3A − Adv1i+1
A = ε, then there exists a PPT

algorithm B that can distinguish between a random element of G and a random element of Gq with advantage
ε.

Proof. The proof for this step is similar to the proof of Claim B.4.

Claim B.6. For any adversary A, Adv1nA ≤ negl(λ).

Proof. Let us consider the following distributions (all operations are modulo p):

D1 =

n+1∑

j=1

rj ,
n+1∑

j=1

rjaj , . . . ,
n+1∑

j=1

rja
n−1
j ,

n+1∑

j=1

rja
n
j

 : r1, . . . , rn+1, a1, . . . , an+1 ← Zp

D2 =

n+1∑

j=1

rj ,
n+1∑

j=1

rjaj , . . . ,
n∑

j=1

rja
n−1
j , r

 : r1, . . . , rn+1, a1, . . . , an+1, r ← Zp

In order to show that Adv1n+1
A ≤ negl(λ), it suffices to show that D1 and D2 are statistically indistinguishable.

In fact, one can prove the following stronger statement.

Observation B.1. D1 ≈s {(c1, . . . , cn+1) : c1, . . . , cn+1 ← Zp}
Note that D1 can also be expressed as

{
(r1 . . . rn+1) · Va1...an+1

: ri, aj ∈ Zp
}

27

181

Approved for Public Release; Distribution Unlimited.

where Va1...an+1 is a Vandermonde matrix of dimension (n+ 1)× (n+ 1).

Va1...an+1 =

1 a1 · · · an1
1 a2 · · · an2
...

...
. . .

...
1 an+1 · · · ann+1

If all ais are distinct and non-zero, then Va1...an+1
is invertible. Hence, if the entries ai are chosen uniformly

at random from Zp, then with overwhelming probability, Va1...an is invertible. Thus, there is a bijection
between {(r1, . . . , rn+1) · V : ri ∈ Zp} and Zn+1

p . This proves our observation.

28

182

Approved for Public Release; Distribution Unlimited.

CloudSourcing Cryptography: Automating the Generation of
Outsourced Cryptographic Algorithms∗

J Ayo Akinyele Matthew Pagano Matthew Green Avi Rubin

ABSTRACT
We present CloudSource, an automated tool for developing
“outsourcing-ready” cryptographic schemes. CloudSource is
designed to programmatically analyze existing pairing-based
encryption schemes, and to derive new algorithms that allow
users to outsource portions of the cryptographic work to an
untrusted server.

The CloudSource tool addresses a growing need, as we in-
creasingly deploy cryptography in environments where users
employ limited mobile devices and yet have ready access to
cloud-based computing resources. The techniques we pro-
pose form part of a growing line of work aimed towards the
automated analysis and engineering of cryptographic proto-
cols, and will help to reduce the need for manual optimiza-
tion of these constructions.

1. INTRODUCTION
Over the past several years, a number of new crypto-

graphic technologies have entered the literature. These tech-
nologies include improvements in existing schemes as well
as entirely new paradigms such as Identity-Based Encryp-
tion [11,42], Functional Encryption [40] and Fully Homomor-
phic Encryption [26]. As a result, we now have entirely new
capabilities that were not possible using earlier techniques.

While these technologies offer us new tools to solve long-
standing security problems, they have serious limitations
that have prevented their use in practice. One notable limi-
tation is the fact that constructions often need to be tailored
to a specific application before they can be used. The appli-
cation may have specific requirements, e.g., related to the
efficiency and bandwidth overhead of the scheme. A sur-
prising fraction of the cryptographic literature is devoted to
detailing precisely these sorts of optimizations, from basic
scheme optimizations (e.g., re-writing cryptographic oper-

∗This work was partially supported by DARPA and the Air
Force Research Laboratory (AFRL) under contract FA8750-
11-2-0211. This document is a pre-print for DARPA and not
for public distribution.

ations to use different operations) [17, 38, 39] to advanced
techniques such as secure outsourcing of cryptographic op-
erations [28,33,51] and batch processing [2, 13,24,50].

Unfortunately, it is not possible for human beings to cus-
tomize all constructions to every possible application. More-
over, safely applying these techniques is typically a non-
trivial process; even domain experts have been known to
make important mistakes that can completely undermine
the security of a construction, e.g., [15,43]. For most imple-
menters it is simply not practical to obtain the resources to
make these changes, and as a consequence, many schemes
in the literature remain undeployed.

In this paper we continue a line of research that inves-
tigates whether automated techniques can be developed for
the purpose of re-designing and implementing cryptographic
schemes [2,3,5,37]. The general approach in this work is to
take an existing, provably-secure cryptographic scheme as
input, and to apply a series of techniques in order to arrive
at a new, secure cryptographic scheme. The challenge in
this work is to identify useful transformations that preserve
security properties, and to develop tools that can safely im-
plement these techniques.

Outsourcing cryptography. In this work we focus on
the specific problem of outsourcing cryptographic operations
to untrusted parties. This is an area that has received a
great deal of attention due to the increasing availability of
cloud computing resources. The benefits of outsourcing are
many: first, it can greatly reduce the computational burden
of cryptographic operations, something that is particularly
relevant to mobile devices (where complex decryption op-
erations on e.g., attribute-based encryption ciphertexts can
take many seconds [28]). Second, it can dramatically reduce
bandwidth overhead for a decryptor by reducing the size of
complex ciphertexts into a shorter “partially decrypted” ci-
phertext. Moreover, implementers may be able to reduce the
size of a Trusted Codebase (or the complexity of a hardware
device like a smartcard) by outsourcing complex operations
to untrusted hardware [28].

While general techniques exist for the purpose of securely
outsourcing arbitrary computations, e.g., [26], these schemes
are not yet practical enough for the applications we envi-
sion – i.e., offloading meaningful cryptographic work to a
third party. However, a separate line of work has consid-
ered more practical outsourcing schemes for specific crypto-
graphic constructions [16,28,33,34,36,51]. However, each of
these proposals addresses only one individual scheme. This
is unfortunate, since developing outsourcing-ready encryp-
tion schemes from scratch is a challenging and error-prone

1

183

Approved for Public Release; Distribution Unlimited.

task. Fortunately, the previous work of [28, 34] indicates
that it is possible to modify certain classes of pairing-based
encryption scheme into outsourcing-ready schemes without
damaging the underlying construction. While these tech-
niques are applied on a per-scheme basis, we believe that
they are also amenable to automated techniques.

Our contribution. In this work we develop a new tech-
nique for automatically generating outsourcing-ready encryp-
tion schemes for a large class of pairing-based cryptographic
constructions. Our technique, which we call CloudSource,
allows us to begin with the description of a secure encryp-
tion scheme in the domain-specific Scheme Description Lan-
guage (SDL) [2], then to apply a series of programmatic
transformations in order to arrive at a new scheme with
outsourcing capability. Once processed, we can readily eval-
uate the efficiency of the scheme and even translate it into
a working C++ or Python implementation. To the best of
our knowledge, this is the first such generalization of out-
sourcing techniques. We tested CloudSource on 9 different
pairing-based encryption algorithms from the academic lit-
erature to demonstrate the ability of our tool to produce an
outsourced scheme and executable code suitable for mobile
devices with limited processing power.

The most important aspect of our work is that we are able
to retain the security guarantees of the original construction,
even in the face of a possible adversarial outsourcing service.
To ensure this, we apply a series of blinding rules according
to a formula that preserves certain security properties of the
underlying scheme.

Overview of our techniques. We now provide an overview of
our approach. Without loss of generality we will use the ex-
ample of public-key encryption, but note that our approach
can be used with Identity-Based encryption [10,11,14,31,44],
Attribute-Based Encryption [32, 40, 45] Broadcast Encryp-
tion [12, 23], and Functional Encryption [30, 49], along with
many other scheme types.

Let Π = (KeyGen,Enc,Dec) be a semantically-secure se-
cure encryption scheme. Our goal is to construct three
new algorithms: KeygenOut, Transform and Decout. The
new KeygenOut algorithm takes the same inputs as KeyGen,
but produces a pair of decryption keys: the Transform Key
(TK), which can be delivered to an untrusted outsourcing
party, and Secret Key (SK) which is held secret. Intuitively,
it must be possible to deliver TK to an untrusted party who
uses it to execute the Transform algorithm on a ciphertext.
When this process has completed, we use the Decout algo-
rithm with SK in order to reveal the plaintext.

The challenge is to develop an approach that guarantees
three things. First, the resulting combination of KeygenOut,
Transform, Decout is correct. Second, that the resulting
scheme retains its security, even when the (possibly adver-
sarial) outsourcing party learns TK (but not SK). Finally,
we must ensure this without requiring difficult manual secu-
rity analysis of the resulting scheme.

We draw the intuition for our approach from [28], which
explored a known observation that in some pairing-based
schemes it is possible to modify the original scheme by adding
blinding factors to a standard decryption key such that this
blinding can be removed following decryption. These modi-
fied decryption keys serve admirably in the role of Transform
Key, while the blinding factors themselves can be retained
as SK.

While the key blinding technique provides significant per-
formance benefits to pairing-heavy algorithms, applying the
technique generally is non-trivial. For one, it can be te-
dious. There are multiple factors that determine how to
choose blinding values for a given scheme and searching this
space by hand is quite daunting. Second, it can be error-
prone. Mistakes are easily made when applying blinding
exponents in a way that becomes impossible to unblind in
the final decryption. Aside from correctness, there is a sep-
arate issue of the security of the resulting Transform key. In
some cases, choosing too few blinding factors for a scheme
may result in an insecure Transform key that might offer
little to no protection in practice, while choosing too many
can lead to an inefficient outsourcing scheme. Generalizing
the process requires us to carefully balance efficiency of key
blinding while preserving the security of the blinded keys.

1.1 Our Approach
Figure 1 provides a brief overview of the techniques used

in CloudSource. At a high level, CloudSource is designed to
analyze a scheme, extract the key generation and decryption
equations, and derive working code for the modified Key-
gen, Transform and final decryption (KeygenOut, Transform,
Decout) algorithms. This involves two main components:

1. The CloudSource tool, which takes as input an SDL
file describing an encryption scheme. It applies a se-
ries of programmatic transformations and derives the
outsourced encryption scheme. The output of this is
a second SDL file containing the modified KeygenOut,
Transform and Decout algorithms.

2. A Code Generator, which takes the output of the Cloud-
Source tool and generates working source code to im-
plement the outsourced encryption scheme. The user
can choose either Python or C++ as the output lan-
guage.

The CloudSource tool outputs a human-readable file written
in LaTeX describing the new algorithms, and containing a
security proof of the construction that these maintain the
semantic security of the original scheme. The following sec-
tions describe the architecture in detail.

2. PRELIMINARIES
Before we give details of our approach, we first provide

some background on bilinear maps and discuss the tools
and techniques utilized in developing the CloudSource tool.
We also provide definitions for the type of cryptographic
schemes we address in this work.

A bilinear map (or pairing) is an efficiently computable
mapping e : G1 × G2 → GT over three multiplicative cyclic
groups G1,G2 and GT of prime order, p. Pairings have
two central properties. The first is bilinearity: let 〈g1〉 =
G1, 〈g2〉 = G2 and a, b ∈ Zp, it holds that e(g1

a, g2
b) =

e(g1, g2)ab. The second property is non-degeneracy, which
guarantees that e(g1, g2) 6= 1. Pairing-friendly groups come
in two forms: symmetric groups, where G1 = G2 (or can be
effectively due to an efficiently-computable isomorphism),
and asymmetric groups where G1 6= G2.

As a starting point for our automation, we rely on a
high-level description of the encryption scheme in a domain-
specific SDL. SDL was first introduced as part of the Auto-
Batch framework [2] to abstractly represent various types of

2

184

Approved for Public Release; Distribution Unlimited.

SDL

BFSolver

Keygen
Synth

SDL
Parser

Transform
Synth CodeGen

CloudSource

Z3 SMT
Solver

Python OR C++

Outsourced SchemeInput

Figure 1: The flow of CloudSource. CloudSource takes as input a high-level description of an encryption
algorithm in SDL. It processes the SDL for certain metadata. In particular, KeygenSynth analyzes the inputs
and observes how the secret key is constructed in the Keygen algorithm. This information is passed to the
BFSolver which utilizes an SMT solver to determine how the user’s decryption key should be protected.
BFSolver returns a mapping of secret key variables to blinding factors needed to construct a Transform key
securely. KeygenSynth uses the mapping to construct the outsourced keygen algorithm in SDL. Similarly,
the TransformSynth components use the mapping to construct the computation of the cloud in Transform
and the client in Decout. CloudSource produces a new SDL file of the outsourced algorithm and utilizes the
code generator to produce executable code in Python or C++.

pairing-based signature schemes. We extend it to support
encryption.

Boolean Satisfiability (or SAT) is the problem of deter-
mining whether boolean assignments exist for variables in a
logical formula such that the formula is evaluated to true.
Satisfiability Modulo Theories (SMT) problem is a decision
problem for first-order logical formulas. SMT is a generaliza-
tion of SAT to support richer logic such as with arithmetic,
bit-vectors, quantifiers, arrays, and several other useful first-
order theories [22]. High-performing state-of-the-art SMT
Solvers (e.g., Yices, Z3, CVC, MathSAT) have been devel-
oped over the years to address these problems. In practice,
these tools form the building block for a variety of verifi-
cation tools to perform bounded model checking, symbolic
execution, static program analysis, and various constraint-
satisfication problems in computer science. Similarly, we
utilize SMT solvers as a core building block of the Cloud-
Source framework.

3. THE CLOUDSOURCE TOOLCHAIN

Overview of the approach.
At a high-level, CloudSource works by altering the struc-

ture of a scheme decryption key, adding blinding factors to
the key such that an untrusted party can partially decrypt a
ciphertext using the blinded key. This procedure forms the
backbone of our new Transform algorithm, and the blinded
key itself is the Transform key. We require that the structure
of the key remain sufficiently intact that the original plain-
text can be recovered from the output of Transform, given
knowledge of the blinding factors.

We will now give an example of how the process works.
For consistency with previous work, we will use the exam-
ple of the Waters Ciphertext-Policy ABE scheme, which
was manually outsourced by Green, Hohenberger and Wa-
ters [28]. For a given set of attributes S, the Waters scheme
produces a master secret gα and uses this to generate de-
cryption keys of the following form. Note that t ∈R Zq and
g, ga, S and the function F are public:

K = gα · gat, L = gt, {Kx = F (x)t}x∈S
The intuition behind the blinding process stems from the

observation that of all the elements referenced above, only

the value gα is actually a secret. In principle, any party can,
without access to the master secret value, select a random
α′ and generate a random pseudo-key (K′, L′, {K′x}) with
this value. Since the resulting key can be generated by any
party it clearly offers no benefit to the attacker.

This observation alone would be of limited use, except for
the observation that one can blind a valid key (K,L, {Kx})
such that it has the same distribution as the above pseudo-
key. This is accomplished by selecting a random z ∈ Zq and
computing:

(K′, L′, {K′x}) = (Kz, Lz, {Kz
x})

If one expresses α′ = (α · z) and t′ = (t · z) then clearly
the distribution of the new key is identical to the pseudo-
key described above. However, the important aspect of this
scheme is that the blinding factor z can actually be removed
following the decryption procedure, giving the identical re-
sult as if the original decryption key had been used on a
ciphertext.

Of course, the above scheme (from the work of Green et
al.) proves to be a relatively simple example. This is be-
cause the master secret contains only a single secret ele-
ment, whereas many modern encryption schemes can con-
tain larger secrets. Moreover, when multiple secrets are used
together within a given term, it can be difficult to repeat
the process above. Of course, one solution is to simply ap-
ply a separate blinding factor to each element of the key
– however, this can prove tricky to invert, unless each ele-
ment is treated separately as part of the resulting partially-
decrypted ciphertext.

The challenge in our approach is therefore threefold: (1)
to identify which elements of a valid decryption key contain
secret values that can be simulated (i.e., replaced with non-
secret values via blinding), (2) to determine whether this
blinding can survive the decryption process and be inverted,
and (3) to minimize the number of blinding factors and val-
ues that must be returned by the Transform algorithm. We
accomplish these tasks using the following components.

1. SDL Parser. This component parses the SDL into an
intermediate representation, then uses this represen-
tation to identify the key generation and decryption
algorithms.

3

185

Approved for Public Release; Distribution Unlimited.

2. KeyGen Synthesizer. Once the scheme has been
parsed, this module analyzes the scheme to identify
the Key Generation and Decryption algorithms, de-
composes the secret keys, then traces the components
of these keys to determine which are secret, which are
public, and which are generated randomly.

3. BFSolver. Once the key has been successfully decom-
posed, this portion of the toolchain employs an SMT
solver to determines how to blind the individual com-
ponents of the key to ensure that (a) all secret key
elements are correctly blinded, and (b) the minimal
number of blinding factors is used (in order to ensure
the most efficient algorithm).

4. Transform Synthesizer. Given an assignment of
blinding factors, this module generates the new KeygenOut,
Transform and Decout algorithms to produce the final
outsourcing equations in an SDL representation.

5. Code Generator. Users can output the resulting
scheme as an SDL file, or they can optionally convert
the scheme into a working implementation in Python
or C++ using the Code Generator component.

We now expand on each of the above components.

SDL Parser.
The input to our toolchain is a cryptosystem written in

SDL, which was initially developed by Akinyele et al. [2]
and we extend the SDL parser for CloudSource. The parser
component processes a given SDL file, converting each line
(a string) into a binary-tree node with all of the relevant
information. In addition, the parser collects the following
metadata:

1. Types of all variables. SDL is a typed language
but we relieve the SDL designer by automatically inferring
some types based on the computation. This information
is used for type checking and for automatically generating
C++ code (a statically-typed language).

2. Variable dependency list. This is a list of all vari-
ables upon which a given variable depends for its value. For
example, if we have the two statements x = a + b and
y = x + c, the variable dependency list for y would be x,
c, a, and b.

3. Variable influence list. This is a list of variables
whose values are influenced by a given variable. If we con-
sider the example above, the variable influence list of a is x
and y. Both the variable dependency list and variable influ-
ence list are useful in helping us map relationships between
variables.

Additionally, this first phase of the process collects a list of
all variables referenced in a given function and distinguishes
between public and secret variables in the KeyGen function.
In addition, the SDL parser performs type checking as it
reads in each line of SDL to ensure that all mathematical
rules are followed. For example, the type checker ensures
that the input to pairings has the right group type (based on
whether the setting is symmetric or asymmetric); arguments
to addition, subtraction, multiplication, and division are of
the same group type; etc.

KeyGen Synthesizer.
The KeygenSynth component is responsible for producing

SDL code to blind each secret-key element with the proper
blinding factor. KeygenSynth first extracts all master secrets
and secret-key elements from the user’s SDL file by examin-
ing the output of the Setup and KeyGen routines. Next, for
each secret-key element, KeygenSynth extracts all exponents
used in the calculation of the element, as well as the rela-
tionship between exponents. To ensure that all exponents in
the element’s calculation are extracted (even across multi-
ple layers of assignments), KeygenSynth performs a recursive
traversal on the base-element representation of the element,
extracting all exponents found during the traversal.

In addition to extracting all exponents, KeygenSynth must
record the relationship between exponents. This relation-
ship determines how blinding factors are applied to the ex-
ponents of a given secret-key element. For example, suppose
a secret-key element x is calculated as follows:
x = ab · cd
As in several previous works, our current blinding method-

ology is to exponentiate the secret-key element to a random
element in Zp. Blinding x by y gives us the following ex-
pression:
x = aby · cdy
Note that it is required that both exponents in the calcu-

lation of x (i.e., b and d) be blinded with the blinding factor
y. In our input to the SMT solver, we label this as addition
between the exponents. Addition requires that both expo-
nents in the calculation be blinded by the blinding factor.

In contrast, suppose x is calculated as follows:
x = efg

When we blind x by exponentiating it to y, we can re-
arrange the blinding factor in either of the following two
ways:

x = efy · g or x = ef · gy

In other words, the blinding factor y can blind either the
exponent f or the exponent g. In our input to the SMT
solver, we label this as multiplication between the expo-
nents. Multiplication allows either one of the exponents
to be blinded by the blinding factor (but not both). We
note that while these example expressions are simple, many
expressions of secret-key elements in the schemes we have
considered are very complex. This calls for an automated
approach that is fast and less likely to produce errors, in
addition to providing programmatic access to the exponents
and relationships produced.

Next, KeygenSynth classifies each exponent extracted as
either a master-secret element, or a random element gener-
ated during the Keygen routine. KeygenSynth then prepares
all of this information for input to BFSolver and waits for a
response. The response received will be the blinding factor
to be associated with each secret-key element. As discussed
in Section 3.1, BFSolver attempts to reduce the number of
blinding factors as much as possible without reducing the
security of the outsourced scheme.

Furthermore, our toolchain offers a limited form of term
rewriting for easily understanding how a given variable was
calculated, regardless of the number of expressions used in
the final calculation. It is often necessary to determine all
of the expressions used to calculate a variable, going all the
way back to the base elements. For example, in determin-
ing how best to blind the elements of the secret key, we
must first extract all exponents used in the calculations of

4

186

Approved for Public Release; Distribution Unlimited.

the secret-key elements, as well as the relationships between
these exponents. A naive approach is to simply find the
assignment node of that variable and extract the exponents
from the expression. This can lead to an incomplete result in
the case where there are multiple expressions that determine
a variable’s value.

Suppose that we need to extract the exponents and expo-
nent relationships of a variable a, and that the assignment
node of a is the following:
a = bx

x is the only exponent in this expression, but there may
be other exponents that we need to consider. Suppose the
variable b is calculated as follows:
b = cy

Consequently, we also need to extract the exponent y in
identifying the exponents that contribute to the value of a.
Furthermore, we need to understand the relationship be-
tween the exponents x and y (specifically, the fact that y is
exponentiated to x).

To address situations such as this, our toolchain offers a
term rewriting engine that rewrites expressions using their
base values only. In our current instantiation, we define the
base values to be random elements and hashed elements.
Our term rewriting engine unfolds all expressions until the
base elements are reached. This is performed during the
initial parsing of the SDL file. As each assignment node is
read in, each variable on the right side of the assignment
node is replaced with its base-element form. In the exam-
ple above, the expression of a would be rewritten as follows:
a := cyx where c, y, and x are all randomly generated or
hashed elements. Note that while this example is (purpose-
fully) simple, expressions for elements in modern cryptosys-
tems can become highly complex and dependent on several
other elements. Performing this term rewriting manually
can become tedious, time-consuming, and error-prone. Fur-
thermore, programmatic access to these base expressions is
often required, as in the case of exponent and exponent-
relationship extraction. Our term rewriting engine provides
base expressions in binary trees that are convenient to nav-
igate programmatically.

BFSolver.
At a high-level, BFSolver takes as input a configuration file

that consists of the master secret key (MSK) exponents and
random exponents selected in Keygen. In addition, the file
includes the relationship between variables in each secret-
key element of the decryption key. As mentioned before,
these are extracted by the term writing engine as part of
the KeygenSynth routine. The BFSolver processes these in-
puts and determines the possible space of blinding factors
that can be assigned to the given key according to our blind-
ing rules (see section 3.1 for more details). For instance,
one rule states that all master secret variables must have
unique blinding factors. We encodes these rules for the given
decryption key as a series of constraints over the variables
to the SMT solver. These constraints guide the solver in
searching for a satisfiable solution that also meets our de-
sired level of security. Once we apply these rules and derive
the appropriate constraints, we execute the solver to check
for a solution. If a solution is found, BFSolver immediately
returns a mapping of blinding factors to secret-key elements
to KeygenSynth.

A machine-generated proof of security for DSE09

1 KeygenOut Proof

Let ↵, a1 be the MSK variable(s) and r1, r2, z2, z1, id, tagk be randomness selected in the Keygen
algorithm. The Keygen algorithm runs to obtain the secret key,
SK = {D1, D2, D3, D4, D5, D6, D7, K, tagk} and is computed as follows:

SK:

D1 = g↵·a1 · v(r1+r2), D2 = g�↵ · v(r1+r2)
1 · gz1 , D3 = gb·�z1 , D4 = v

(r1+r2)
2 · gz2 , D5 = gb·�z2 ,

D6 = gb·r2 , D7 = gr1 , K = (uid · wtagk · h)r1 , tagk = tagk

The KeygenOut algorithm selects blinding factors, uf0, bf0, uf1 2 Z⇤
p. Let the new TK be computed

as follows:

TK:

D0
1 = D1

uf0 , D0
2 = D2

bf0, D0
3 = D3

bf0, D0
4 = D4

bf0, D0
5 = D5

bf0, D0
6 = D6

bf0,

D0
7 = D7

bf0, K 0 = Kuf1 , tag0k = tagk
bf0

Note that a simulator given only public parameters (PK) can formulate a simulated TKsim by
randomly selecting R1, R2, R3, R4, R5, R6, R7, RK, Rtagk and computing:

TKsim:

D̄1 = R1
uf0 , D̄2 = R2

bf0, D̄3 = R3
bf0, D̄4 = R4

bf0, D̄5 = R5
bf0, D̄6 = R6

bf0,

D̄7 = R7
bf0, K̄ = RKuf1 , ¯tagk = Rtagk

bf0

Observe that this simulated TKsim has an identical distribution to TK. Let D0
1 = (D1)

uf0 ,↵0 =
↵ · bf0, z

0
1 = z1 · bf0, r

0
2 = r2 · bf0, r

0
1 = r1 · bf0, z

0
2 = z2 · bf0, K

0 = (K)uf1 , tag0k = tagk · bf0 be the new
MSK variables and random values selected in KeygenOut, and TK is computed as follows:

TK:

D0
1 = (g↵·a1 ·v(r1+r2))uf0 , D0

2 = g�↵0 ·v(r01+r02)
1 ·gz01 , D0

3 = gb·�z01 , D0
4 = v

(r01+r02)
2 ·gz02 , D0

5 = gb·�z02 ,

D0
6 = gb·r02 , D0

7 = gr01 , K 0 = (uid · wtagk · hr1)uf1 , tag0k = tag0k

1

Figure 2: A fragment of the proof of security which
argues that the KeygenOut algorithm preserves the
security of the secret key. The proof shows that the
constructed transform key is identically distributed
to a randomly generated pseudo-key.

Transform Synthesizer.
TransformSynth is responsible for producing a Transform

and a Decout routine in the new outsourced scheme. To en-
sure correctness and efficiency, TransformSynth determines
how to divide the computation of the original decryption
routine into which components can be performed by the
powerful, untrusted Transform routine, and which compo-
nents can be performed by the lightweight, trusted Decout
routine. There are three stages to TransformSynth: pre-
processing, the main loop, and post-processing.

TransformSynth is given as input the secret-key element
to blinding factor mapping produced by BFSolver. Dur-
ing the pre-processing phase, TransformSynth sets up the
input parameters for the Transform and Decout routines.
The Transform routine receives as input the same param-
eters that the original decryption routine received, which
usually consists of the ciphertext and secret key (in the case
of the Transform routine, the secret key is blinded). During
the Transform routine, certain values that Decout needs are
cached and stored in two data structures that are passed
to Decout as input. One data structure is for cached val-
ues outside for loops, and the other is for cached values
inside for loops, but the latter is not always sent (indeed,
performance is improved when it is not sent). These data
structures represent the partially decrypted ciphertext that
is fully decrypted in Decout. Decout also receives as input
the blinding factors produced by KeygenSynth. Note that
Decout does not receive the full ciphertext or blinded se-

5

187

Approved for Public Release; Distribution Unlimited.

cret key as input parameters, as these are unnecessary for
Decout.

In the main loop, TransformSynth loops over the lines
of code in the original decryption routine. For each line,
TransformSynth determines how the computation should be
divided between the Transform routine and the Decout rou-
tine. First, the SDL node representing the current line of
code is simplified using algorithms developed in previous
research by Akinyele et al. [2]. This includes splitting all
pairings as much as possible, unrolling dot products if the
range values are known, converting all division into multi-
plication by inverses, and moving exponents inside the pair-
ings. This improves efficiency and our ability to efficiently
unblind pairings whose input is blinded. As we discuss later,
we wish to organize the pairings into groups of pairings that
are blinded by the same blinding factor. Doing so reduces
processing time and the size of the data structures passed
from Transform to Decout.

Any line of code that has at least one pairing goes through
the following process. We recall from earlier sections on
KeygenSynth that BFSolver returns a mapping between all
secret-key elements and the blinding factors associated with
each. KeygenSynth then blinds each element of the secret
key by the appropriate blinding factor by exponentiating the
former to the inverse of the latter. The blinded elements of
the secret key form the blinded secret key that is passed to
the Transform routine.

Suppose a line of code from the original decryption rou-
tine has at least one pairing in it. The first step is to use the
automated techniques developed in AutoBatch [2] to com-
bine pairings wherever possible. By combining pairings, we
reduce the number of pairings that the Transform routine
has to perform. This can lead to substantial cost savings
due to the resource-intensive nature of pairings. Next, we
group together all pairings that have input elements that are
blinded by the same blinding factors. These pairings can be
safely computed and then multiplied together in Transform,
and then successfully unblinded in Decout by exponentiating
the entire pairing product to the common blinding factor.
While this does not reduce the processing time required in
Transform, it does reduce the processing time required in
Decout (which is more important), as well as reduce the size
of the partially decrypted ciphertext that must be passed
from Transform to Decout for Decout to fully decrypt (as
fewer entries need to be stored there). Rather than naively
computing all pairings and storing each individual result to
the partially decrypted ciphertext structure, we determine
in TransformSynth which pairings can be safely multiplied to-
gether in the Transform routine to save network bandwidth
and processing time in Decout. It is for this reason that
we endeavor to group together as many pairings based on
common blinding factors as possible.

If the line of code does not have any pairings, but the
line of computation can be performed by Transform (i.e.,
Transform has access to the variables used), we have the
Transform routine perform the calculation and store the re-
sult in the patially decrypted ciphertext structure. Decout
can later retrieve the result from this structure and use it
in future calculations. We note that an optimization is to
determine which variables Decout needs at any line of code
to complete its subsequent calculations, and only store com-
puted values from Transform if Decout actually requires them
at some later point. This reduces both the partially de-

crypted ciphertext size and processing time in Decout.
In the post-processing step, we finalize the output of Transform

and the input of Decout. If there are any variables that
Decout needs for its calculations that are not stored in the
partially decrypted ciphertext structure, these variables are
passed from Transform to Decout as separate parameters.

In certain cases, we may apply optimizations to improve
the running time of Decout and decrease the partially de-
crypted ciphertext size. For example, certain for loops may
not need to be written to Decout. This is the case if 1) the
for loop is used to calculate a dot product; 2) the pairings
in the for loop all share the same blinding factor; and 3) all
pairings in the for loop have at least one blinded variable in
them. If this is the case, we only need to take the result of
the for loop calculation from Transform and unblind it with
the single blinding factor in Decout. This is the equivalent of
computing the blinded dot product in Transform, then sim-
ply performing one exponentiation in Decout to unblind the
result. Similarly, if the for loop is used to calculate a dot
product, and none of the pairings in the for loop has blinded
variables, we do not need to write the for loop to Decout. In
this case, we can simply save the result of the dot-product
for loop to our cached data structures that are passed from
Transform to Decout (i.e., the partially decrypted cipher-
text).

If the criteria discussed above do not hold for a given for
loop, we need to store the results of each run through the
for loop to our data structures in Transform so they can be
unblinded properly in Decout. In this case, we must pass the
data structure that stores cached values from the for loops
from Transform to Decout (which increases the size of the
partially decrypted ciphertext); otherwise, we do not need
to do so.

Code Generator.
The last step of the CloudSource toolchain is executable

code generation. Up unti this point, the internal components
of our toolchain have been manipulating the input pairing-
based encryption scheme in SDL. SDL is the intermediate
representation (IR) upon which our tools are designed to op-
erate. This enables a higher level of interoperability among
disparate frontend input types, as is the case in many com-
piler designs. Rather than having to rewrite our tools for
each frontend type of input we wish to support, we would
only need to write a small translation engine that converts
that type of input to SDL. Our tools would then be able
to operate on the input scheme from there. In addition, by
using an abstract, cryptography-centric high-level language
such as SDL for our IR, our fundamental understanding
of the cryptographic scheme is simpler and more accurate,
rather than having to navigate through tedious and unnec-
essary details of a lower-level, non-cryptographic language.
This cryptographic compiler approach often shows up in the
literature [6, 7].

However, SDL itself is not executable. We clearly need
the ability to execute the SDL that we generate (e.g., ac-
curacy checks, benchmarking, proof-of-concept demonstra-
tions, etc.) As a result, we extend the automated code-
generation modules developed by Akinyele et al. [2] to trans-
late SDL into Python and C++ executable code on the
backend. We make use of these modules in CloudSource to
produce Python and C++ code of the outsourced schemes
we create, as well as the original non-outsourced schemes.

6

188

Approved for Public Release; Distribution Unlimited.

While we currenly support Python and C++ only, we feel
that our methods are sufficiently general to be able to sup-
port additional programming lanugages in the future with-
out extreme burden or without having to redesign any part
of our system.

3.1 Details of BFSolver
Given a secret key (SK), the goal of BFSolver is to deter-

mine which blinding factors to choose for each element in
the key. There are a few approaches to blinding the secret
key. One approach would be to choose a separate blinding
factor for each element in the secret key. This approach is
always secure but could result in inefficient decryption, espe-
cially when there are lists of group elements in the SK (e.g.,
in ABE). Alternatively, we could choose a separate blind-
ing factor for each master secret key (MSK) value. While
this approach is also secure, it can be hard to accomplish
in practice and depends on how the decryption key is con-
structed. One major issue is that in some instances blinding
a SK with only this approach might make it impossible to
unblind in decryption. However, there are rules that govern
when we can securely share blinding factors among SK el-
ements. Furthermore, as shown in previous work [28], the
more blinding factors that are shared among secret-key el-
ements, the more efficient decryption becomes, thereby re-
ducing ciphertext size.

Our approach is to first convert the aforementioned ap-
proaches to blinding into a series of general rules that can
be systematically applied to a given secret key. At a high-
level, they consist the following:

1. all MSK values must be assigned unique blinding ex-
ponents.

2. all elements of SK must be blinded.

3. random values can share blinding factors with MSK val-
ues provided that they always share that value with the
MSK value in SK.

The above rules form the bulk of what is involved when
selecting blinding factors for a secret key. Once the blinding
factor mapping satisfies these rules, a separate challenge is
determining a lower bound for the mappings that does not
violate the rules. Our central goal is to find such a lower
bound for blinding factors to secret-key elements such that
we preserve the security of the Transform key, TK. BFSolver
utilizes the high-performance Z3 SMT Solver [21] as a core
component to automate the selection of blinding factors for
a given secret key and simultaneously obtain a lower bound.

3.2 Assigning Blinding Factors
At a high-level, BFSolver takes as input a configuration file

that consists of the master secret key (MSK) exponents and
random exponents selected in keygen. In addition, the file
includes details of how each secret-key (SK) element is com-
puted in SK. This is extracted by the term writing engine in
KeygenSynth. BFSolver processes these inputs, instantiates
the SMT solver and applies the above rules to the SK ele-
ments and expresses them as constraints over the variables
in each SK element. We execute the solver with these inputs
and check for a satisfiable solution.

While our implementation is tied to Z3, our architecture
can support any compatible SMT Solver. In fact, our solu-
tion relies on a few basic features supported by many solvers

in practice. In particular, we require the ability to define al-
gebraic datatypes, define possible values for those datatypes,
specify constraints around variables of that type and allow
the solver to search for a satisfiable solution under specified
constraints. We also require the ability to isolate unsatisfi-
able constraints inside the solver via an unsatisfiable core,
which is a common feature of many solvers. We will explain
how we utilize these features in the sections to follow.

BFSolver is implemented in three phases. As we describe
BFSolver, we will show how it applies to the Waters11 [48]
CP-ABE keygen algorithm. In addition, we show how we
automatically reproduce the solution described in previous
work [28]. To recap, the Waters11 [48] SK is computed as
follows:

K = gα · gat, L = gt, {Kx = F (x)t}x∈S
where S is the user’s attributes; α is the MSK; g, ga are
public parameters; F is a collision resistant hash function
that maps {0, 1}∗ → G; and t is a random exponent selected
in keygen. We proceed to the first phase.

3.2.1 Phase 1: Setup Solver Input
The first phase is processing the secret key provided by

KeygenSynth and setting up the search domain for the SMT
Solver. This involves defining the algebraic datatype for
blinding factors, declaring all exponents in SK element as
blinding factor types, and declaring the nil value to indi-
cate no blinding factor assigned. Next, we determine the
upper bound on blinding factors for SK. Doing this appro-
priately for each SK is imperative for narrowing the solver’s
search space. By default, we compute the upper bound as
the SK size. This indicates the least efficient solution of a
unique blinding factor for each element in SK. In the Wa-
ters11 [48] example, we have three possible blinding factors
in the worst case. All of this information is provided as in-
put to the solver. The goal is to find the lower bound on
blinding factors, as that leads to the most savings in terms
of decryption time and ciphertext size.

3.2.2 Phase 2: Specify Constraints
The next phase is to first encode our general rules for

blinding as constraints into the solver. The first rule spec-
ifies that each MSK variable must be assigned a unique
blinding factor. We derive a constraint represented as a
logical formula using ∧ and ∨ connectors. For instance,
given MSK variables a, b, c, we express this constraint as
a 6= b ∧ b 6= c ∧ a 6= nil ∧ b 6= nil ∧ c 6= nil. 1 For the
Waters11 scheme, this translates to just α 6= nil because we
have one MSK variable.

As mentioned before, the term rewriting engine in KeygenSynth
outputs the relationships between exponents (or expressions)
for each SK element. For example, for ga·gb, the term rewrit-
ing engine outputs a+ b as the expression in the exponent.
The second and third rules are applied by encoding the ex-
pressions associated with each SK element as constraints.

As described in section 3, we describe all expressions as
either multiplication or addition2. Our rules for these op-
erations are fundamentally simple, but when combined can

1In our implementation, we utilize the Distinct macro in Z3
to specify that each MSK variable should be given a unique
blinding factor.
2Note that division and subtraction can always be rewritten
in terms of multiplication and addition, respectively.

7

189

Approved for Public Release; Distribution Unlimited.

Process Waters BSW LW DFA-FE DSE HIBE CKRS SW BGW

KeygenSynth 12.17s 12.78s 10.71s 36.76s 40.46s 12.12s 30.64s 13.32s 6.33s
TransformSynth 8.27s 8.69s 9.28s 10.43s 17.76s 7.99s 7.76s 10.77s 6.67s
Codegen-Python 2.89s 2.92s 0.65s 0.97s 0.91s 0.62s 0.83s 0.73s 0.48s
Codegen-C++ 2.93s 3.07s 0.67s 1.03s 0.95s 0.64s 0.85s 0.74s 0.51s

Figure 3: Time in seconds required by the KeygenSynth, TransformSynth, Python Code Generator, and C++
Code Generator routines to process a variety of encryption schemes (averaged over 10 test runs). The running
time for KeygenSynth includes the running time for BFSolver. In all cases, the standard deviation in the
results were within ±1% of the average. We note that in each case, running times were directly proportional
to the number of elements in the secret key. In addition, the Python Code Generator was slightly faster than
the C++ Code Generator due to the additional type checking that is required for statically-typed languages
such as C++.

produce complex constraints leading to many cases. The
rules are as follows:

a+ b→ a = b

An addition operator represents the constraint that what-
ever blinding factor the solver assigns to a must also be
assigned to b.

a · b→ (a 6= nil ∧ b = nil) ∨ (a = nil ∧ b 6= nil)

A multiplication operator represents the constraint that the
solver can assign either variable a or b a blinding factor (but
not both). Finally, when a single exponent appears in a SK
expression (e.g., SK0 ← a), it indicates that it should be
blinded due to the second rule (i.e., all SK elements must
be blinded). The constraint for this type of expression is
simply, a 6= nil.

For our Waters11 example, the term rewriter extracts
three expressions: K ← α + t, L ← t, Kx ← t. The cor-
responding constraints in the solver are α = t ∧ t 6= nil in
addition to the previous constraint that α 6= nil for the MSK
value. Upon constructing and specifying the constraints in
the solver for SK, the next step is to execute the solver to
check for a satisfiable solution.

3.2.3 Phase 3: Run Solver
The previous sections have shown how we describe the

problem of choosing blinding factors to the solver as a series
of constraints over a large space of possible variable map-
pings. Ultimately, the real challenge is finding the minimum
number of blinding factors that meets our desired level of
security. Once the constraints have been specified, the next
phase is to check the solver for such a solution.

If a solution exists that satisfies all of the constraints,
the solver returns a variable mapping of SK variables to
blinding factors. In the Waters11 example, for instance,
the solver determined that our constraints described earlier
were satisfiable with respect to the blinding factor space of
three. The variable mappings are as follows: α ← bf0, and
t← bf0. This essentially means that α and t can share one
single blinding factor.

If the solver does not find a satisfiable solution for the
given constraints, we utilize the ability of Z3 to track and
isolate the unsatisfiable constraints in the solver. In gen-
eral, identifying unsatisfiable constraints are a fundamental
feature of SMT solvers and we leverage this in BFSolver to
determine the lower bound.

As described previously, constraints are linked to SK el-
ements. When a solution cannot be obtained with the cur-
rently specified constraints, we determine which SK expres-
sion is associated with the unsatisfiable constraint using Z3’s

Scheme Num. BFs Num. SK elements

WATERS11 1 a+ 2
BGW05 1 n
DFA12 1 3 · t+ 2 · s+ 2
HIBE04 2 `+ 1
BSW07 2 2 · a+ 1
DSE09 3 9

CKRS09 5 5
LW10 a a
SW05 a+ 1 2 · a

Figure 4: The number of blinding factors and secret-
key elements for each of the nine schemes we tested.
a is the number of attributes in the secret key, n is
the number of users in the system, t is the number
of transitions, s is the number of accept states, and
` is the length of the hashed identities.

tracking mechanism. We remove the constraint associated
with this expression in the solver and assign the correspond-
ing SK element a unique blinding factor that is not shared
thereafter. We then exclude the unsatisfiable constraint
from the set of constraints and rerun the solver. If a solution
is obtained, we return the mappings for the remaining SK
elements in addition to the SK elements we have previously
assigned unique blinding factors. Otherwise, we repeat the
process of isolating the unsatisfiable constraint, assign the
SK element another unique blinding factor, exclude it from
the set of remaining constraints, and rerun the solver. This
continues until we are without constraints, and at this point,
we have reached the worst case solution of a unique blinding
factor for each SK element. For instance, this was indeed
the case for the CKRS09 scheme [14] (Blind and Anonymous
IBE scheme). Figure 4 shows the number of secret-key el-
ements and the number of blinding factors required for the
nine schemes we tested.

4. GROUP SHARING OPTIMIZATIONS
Our techniques build on the exponent blinding approach

employed in previous works. This approach has some limi-
tations from the point of view of efficiency: in some cases it
may be necessary to separately blind different components
of the secret key, which increases the number of pairings
required to compute the outsourced encryption scheme. It
also leads to a similar increase in bandwidth.

In these circumstances it would be ideal if we could col-
lapse several distinct blinding factors into a single blinding
factor. Our observation is that in certain types of group

8

190

Approved for Public Release; Distribution Unlimited.

where the XDH or SXDH assumptions holds (i.e., the DDH
problem is hard in G1 or both G1,G2), it may be possi-
ble to reduce the number of blinding factors. We base this
observation on the fact that for specific elements of the se-
cret key (where the element appears only in one group, and
has a random distribution), we can re-use the same blinding
factor, based on the fact that an adversarial server should
be unable to distinguish (g, h, ga, ha) from (g, h, ga, gb) for
random g, h ∈ G1, a, b ∈ Zq. This optimization requires us
to identify certain features of the key. We explore this op-
timization more fully and offer a proof of the statement in
the full version of this work.

5. PERFORMANCE EVALUATION
In order to prove the soundness and efficiency of our out-

sourcing transformations, we conducted a series of bench-
marks against all of the nine schemes that we cover in this
paper. As previously discussed, CloudSource outputs exe-
cutable code in both Python and C++ for the outsourced
and non-outsourced versions of the scheme. In all cases, the
automatically-generated Python and C++ code was imple-
mented within Charm [1]. All of our tests were conducted on
the C++ code due to its performance benefits over Python
code of the same functionality.

System and Software Configuration. We conducted
our benchmarks on two identical systems to ensure consis-
tency. These systems were 2 x 2.66GHz 6-core Intel Xeon
Macintosh Pro with 10GB of RAM and running Mac OS X
Version 10.8.3. All of our tests were conducted in a single-
threaded environment. We used Z3 v4.3 in our implemen-
tation of BFSolver. We utilized Charm v0.43 in C++ for
our benchmarks against the MIRACL (v5.5.4) and RELIC
(v0.3.4) libraries. We implement our schemes against Barreto-
Naehrig (BN) curves due to their efficiency and measure our
schemes on both Intel and limited ARM processors. In par-
ticular, we executed our schemes on a Motorola Droid 1 with
a ARM Cortex A8 600 MHz processor, 256 SDRAM, 512MB
flash memory, and runs Android v2.3.3 Our approach and
results are discussed in the following sections.

5.1 Measurement Approach
For each test case, we perform three detailed experiments.

First, we measure the cost of key generation and decryp-
tion in the original scheme compared to the outsourced key
generation and decryption. Second, we compare the perfor-
mance of a subset of the schemes on a limited mobile device
to measure the effectiveness of outsourcing. Third, we com-
pare the size of the full ciphertext produced by the original
encryption to the size of the partially decrypted ciphertext
returned by Transform. In both experiments, we observe
that some schemes obtain a significant reduction in cipher-
text size and decryption time while others benefit in one and
not the other. We show the results of these experiments in
Figures 5, 6 and 7.

Efficiency and Bandwidth of Schemes. 4 For the ABE
and Fuzzy-IBE schemes, we measure running time for all al-
gorithms and ciphertext sizes at 100 attributes in the policy
tree. Similarly, for the functional encryption (FE) schemes,

3We ran benchmarks on a rooted Droid device.
4Unless otherwise noted, our results were averaged over 100
iterations in all cases.

we construct a Deterministic Finite Automata (DFA) for ac-
cepting a string that contains hexadecimal characters. We
also measure the running time and ciphertext size for a 1000-
byte string, w, and a random message, m ∈ GT . We refer
to the DFA functional encryption paper for more details of
the scheme [49]. In all the IBE schemes, we measure run-
ning time and ciphertext size at 100-bytes for the public
key string. Finally, for Broadcast Encryption (BE) [12], we
measure the running times and ciphertext sizes at 100 users
in a broadcast. In terms of bandwidth, in the cases where
there were multiple binding factors needed to secure the se-
cret key, there was a corresponding loss in the outsourced
ciphertext size.

Efficiency of CloudSource. In Figure 3, we show the
running time for the CloudSource toolchain. Our results
indicate our ability to generate outsourced versions of cryp-
tosystems in a reasonable amount of time. Furthermore,
our utilization of the Z3 SMT solver enables us to avoid an
inefficient approach for determining the number of blinding
factors necessary to secure a transformation key.

Outsourcing for Mobile. Our results on the Droid 1
indicate that outsourcing is a useful tool for optimizing en-
cryption schemes. The round trip time for Transform with a
powerful server and Decout on a slow client still outperform
decryption on a mobile device. These results are promising
and show that having a tool like CloudSource that can auto-
matically produce an outsource-ready cryptographic scheme
is useful for everyday applications.

Scheme Scheme Model Full CT Out CT
Type Size (KB) Size (KB)

Waters11 [48] CP-ABE RO 30.73 1.72
BSW [8] CP-ABE RO 30.80 1.72
LW [32] MA-ABE RO 96.05 62.48
DSE09 [47] IBE RO 1.49 3.42
HIBE04 [10] HIBE SM 1.14 1.72
CKRS09 [14] Blind-IBE SM 1.05 3.37
SW05 [40] Fuzzy-IBE RO 20.25 53.27
BGW05 [12] BE SM 0.75 1.70
DFA-FE12 [49] FE SM 20.61 8.53

Figure 6: A summary of our outsourcing results.
We show the differences between full ciphertext and
outsourced ciphertext sizes for all of our test cases.

6. RELATED WORK
Our research involves the intersection of secure and effi-

cient outsourcing in pairing-based encryption schemes and
automated cryptographic optimizations. We therefore sur-
vey both of these topics in this section.

With respect to the former, Green et al. [28] established a
new technique for outsourcing decryption of attribute-based
encryption (ABE). The authors showed how this technique
could be manually developed for both CP-ABE [48] and KP-
ABE [27]. In our work, we show how this manual approach
can be automated in a generalized fashion.

There have been further research efforts in outsourcing
ABE. Zhou et al. [51] presented a framework whereby resource-
constrained mobile devices can securely outsource ABE en-
cryption and decryption to cloud service providers (CSPs).
Li et al. [33] designed a secure outsourced ABE system in
which both key generation and decryption are outsourced to
an untrusted provider.

9

191

Approved for Public Release; Distribution Unlimited.

BN256 on Intel
Schemes Keygen KeygenOut Decrypt Transform Decout

Attribute-Based Encryption (ABE)
BSW07 [8] Ciphertext-Policy ABE 0.25 s 0.48 s 3.30 s 3.06 s 0.01 s
Waters11 [48] Ciphertext-Policy ABE 0.09 s 0.16 s 3.36 s 2.86 s 0.01 s
LW10 [32] Decentralized ABE 0.14 s 0.21 s 4.30 s 3.85 s 0.67 s

ID-Based Encryption
DSE09 [47] Dual-System 0.02 s 0.03 s 0.13 s 0.12 s 0.04 s
HIBE04 [10] Hierarchical-ID 0.02 s 0.03 s 0.09 s 0.08 s 0.01 s
CKRS09 [14] Blind and Anonymous-ID 0.02 s 0.03 s 0.07 s 0.06 s 0.02 s
SW05 [40] Fuzzy-ID 30.54ms 20.65 s 3.47 s 3.06 s 1.18 s

Broadcast and Functional Encryption
BGW05 [12] Broadcast Encryption 0.16 s 0.31 s 0.03 s 0.05 s 0.007 s
DFA-FE12 [49] Regular Language Functional Encryption 2.58 s 5.10 s 21.45 s 20.67 s 2.95 s

Figure 5: Average running times over 100 iterations. We compare Keygen vs. KeygenOut, Decrypt vs.
Transform and Decout for each of the nine pairing-based cryptosystems we cover in this paper. These
benchmarks were executed against the MIRACL library on a server platform. In all test runs the standard
deviation of the timing results were within ±1% of the average.

BN256 on Intel and ARM
ARM Intel ARM

Schemes Decrypt Transform Decout Combined Speedup Factor

Attribute-Based Encryption (ABE)
BSW07 [8] Ciphertext-Policy ABE 73.6s 9.90s 0.20s 10.10s 7.3x
Waters11 [48] Ciphertext-Policy ABE 74.8s 5.93s 0.19s 6.12s 12.2x
LW10 [32] Decentralized ABE 85.8s 5.7s 10.5s 16.2s 5.3x

ID-Based Encryption
HIBE04 [10] Hierarchical-ID 1.9s 0.10s 0.19s 0.29s 6.6x
CKRS09 [14] Blind and Anonymous-ID 1,6s 0.08s 0.45s 0.53s 3.0x
SW05 [40] Fuzzy-ID 7.1s 0.88s 1.90s 2.78s 2.6x

Broadcast and Functional Encryption
BGW05 [12] Broadcast Encryption 0.94s 0.07s 0.11s 0.18s 5.2x

Figure 7: We compare the running times of Decrypt on a mobile phone (ARM processor) with that of
Transform on our MacPro server (Intel processor) plus Decout on the mobile phone. Note that only the SW
scheme was measured with 10 attributes over 10 iterations.

Outsourcing of encryption schemes has taken other forms
in the literature. Hohenberger et al. [29] formally mod-
eled the security of a resource-constrained client outsourcing
computation to an untrusted helper with quantifications for
efficiency and checkability.

Gennaro et al. [25] focused on verifiable computation us-
ing fully homomorphic encryption, in which a trusted but
resource-constrained client can outsource the evaluation of
a function with dynamic inputs to a set of workers. Chung
et al. [19] extend the research by Gennaro et al. by reducing
either the computational burden or the communication costs
of the client in the offline processing phase of the protocol by
Gennaro et al. Pirretti et al. [?] designed secure attribute-
based systems using new constructions of ABE. Pirretti et
al. also show how decryption in the scheme by Sahai and
Waters [40] can be optimized to reduce the number of pair-
ings, at the cost of increasing the number of exponentiations.

In this paper, we focus on pairing-based cryptosystems.
Chevallier-Mames et al. [18] introduced a method whereby a
resource-constrained client can securely outsource a pairing
to a more computationally powerful entity.

There has been a large body of research on automating
various cryptographic optimizations. MacKenzie et al. [35]
designed a compiler that automatically generates protocols
and source code for two-party function-sharing computa-
tion. Almeida et al. [3] created a zero-knowledge, certify-
ing compiler that automatically translates an abstract proof
goal written in the authors’ Protocol Specification Language

(PSL) to a C implementation. Barbosa et al. [7] explored
the use of CAO, a cryptographic domain-specific language
and compiler, to improve the ability of cryptographic soft-
ware engineers to write code for elliptic curve cryptography
(ECC).

In addition, our research is close in nature to server-aided
computation. Liu et al. [34] introduced Identity-Based Server-
Aided Decryption (IBSAD). IBSAD is an identity-based en-
cryption (IBE) scheme in which decryption is performed on a
trusted client with the help of an external, untrusted server.

7. CONCLUSION
This paper investigated the problem of automating the

process of designing outsourcing-ready cryptographic schemes.
We believe that our results demonstrate that the problem
is tractable and useful, and that these techniques could be
useful amongst the growing collection of automated scheme
design and analysis tools.

Our work leaves several open problems: first, our pro-
posal uses a secure transformation that we have manually
analyzed. However, to improve confidence in our results,
we would like to output full reduction proofs that can be
machine-verified using a proof checking tool, e.g., Cryp-
toVerif [9]. Secondly, we believe that there may be addi-
tional optimizations that we have not yet discovered, per-
haps by re-writing schemes from one setting (symmetric
pairings) to another.

10

192

Approved for Public Release; Distribution Unlimited.

Acknowledgments
Avi Rubin, J. Ayo Akinyele and Matthew Pagano are sup-
ported in part by NSF CNS-1010928 and HHS 90TR0003/01.

Matthew Green is supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under contract FA8750-
11-2-0211, the Office of Naval Research contract N00014-11-
1-0470, NSF grant CNS-1010928 and HHS 90TR0003/01.

Applying to all authors, the contents and views expressed
are solely those of the authors and do not reflect the official
policy, position or views of the Department of Defense, the
HHS or the U.S. Government.

8. REFERENCES
[1] Akinyele, J. A., Garman, C., Miers, I., Pagano,

M. W., Rushanan, M., Green, M., and Rubin,
A. D. Charm: A framework for rapidly prototyping
cryptosystems. To appear, Journal of Cryptographic
Engineering (2013).

[2] Akinyele, J. A., Green, M., Hohenberger, S.,
and Pagano, M. W. Machine-generated algorithms,
proofs and software for the batch verification of digital
signature schemes. In Proceedings of the 2012 ACM
conference on Computer and communications security
(New York, NY, USA, 2012), CCS ’12, ACM,
pp. 474–487.

[3] Almeida, J. B., Bangerter, E., Barbosa, M.,
Krenn, S., Sadeghi, A.-R., and Schneider, T. A
certifying compiler for zero-knowledge proofs of
knowledge based on Σ-protocols. In Proceedings of the
15th European conference on Research in computer
security (Berlin, Heidelberg, 2010), ESORICS,
Springer-Verlag, pp. 151–167.

[4] Almeida, J. B., Bangerter, E., Barbosa, M.,
Krenn, S., Sadeghi, A.-R., and Schneider, T. A
certifying compiler for zero-knowledge proofs of
knowledge based on σ-protocols. In Proceedings of the
15th European conference on Research in computer
security (Berlin, Heidelberg, 2010), ESORICS’10,
Springer-Verlag, pp. 151–167.

[5] Almeida, J. B., Barbosa, M., Bangerter, E.,
Barthe, G., Krenn, S., and Béguelin, S. Z. Full
proof cryptography: verifiable compilation of efficient
zero-knowledge protocols. In CCS ’12 (2012),
pp. 488–500.

[6] Bangerter, E., Krenn, S., Seifriz, M., and
Ultes-Nitsche, U. cplc - a cryptographic
programming language and compiler. In Information
Security South Africa (ISSA), 2011 (aug. 2011), pp. 1
–8.

[7] Barbosa, M., Moss, A., and Page, D. Compiler
assisted elliptic curve cryptography. In Proceedings of
the 2007 OTM confederated international conference
on On the move to meaningful internet systems:
CoopIS, DOA, ODBASE, GADA, and IS - Volume
Part II (Berlin, Heidelberg, 2007), OTM’07,
Springer-Verlag, pp. 1785–1802.

[8] Bethencourt, J., Sahai, A., and Waters, B.
Ciphertext-policy Attribute-Based Encryption. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy (2007), IEEE Computer Society,
pp. 321–334.

[9] Blanchet, B. CryptoVerif: A computationally sound
mechanized prover for cryptographic protocols. In
Dagstuhl seminar ”Formal Protocol Verification
Applied” (Oct. 2007).

[10] Boneh, D., and Boyen, X. Short signatures without
random oracles. In EUROCRYPT ’04 (2004),
C. Cachin and J. Camenisch, Eds., vol. 3027 of LNCS,
Springer, pp. 382–400.

[11] Boneh, D., and Franklin, M. K. Identity-based
encryption from the Weil pairing. In CRYPTO (2001),
pp. 213–229.

[12] Boneh, D., Gentry, C., and Waters, B. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. Springer-Verlag, pp. 258–275.

[13] Camenisch, J., Hohenberger, S., and Pedersen,
M. Ø. Batch verification of short signatures. In
EUROCRYPT ’07 (2007), vol. 4515 of LNCS,
Springer, pp. 246–263. Full version at
http://eprint.iacr.org/2007/172.

[14] Camenisch, J., Kohlweiss, M., Rial, A., and
Sheedy, C. Blind and anonymous identity-based
encryption and authorised private searches on public
key encrypted data. In PKC (Berlin, Heidelberg,
2009), Irvine, Springer-Verlag, pp. 196–214.

[15] Cao, T., Lin, D., and Xue, R. Security analysis of
some batch verifying signatures from pairings.
International Journal of Network Security 3, 2 (2006),
138–143.

[16] Cao, T., and Mao, X. Collusion attack on a
server-aided unbalanced rsa key generation protocol.
In Communication Technology, 2006. ICCT ’06.
International Conference on (nov. 2006), pp. 1 –3.

[17] Chatterjee, S., and Sarkar, P. Trading time for
space: Towards an efficient IBE scheme with short(er)
public parameters in the standard model. In ICISC
(2005), vol. 3935 of LNCS, pp. 424–440.

[18] Chevallier-Mames, B., Coron, J.-S.,
McCullagh, N., Naccache, D., and Scott, M.
Secure delegation of elliptic-curve pairing. In Smart
Card Research and Advanced Application,
D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny,
Eds., vol. 6035 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 24–35.

[19] Chung, K.-M., Kalai, Y., and Vadhan, S.
Improved delegation of computation using fully
homomorphic encryption. In Proceedings of the 30th
annual conference on Advances in cryptology (Berlin,
Heidelberg, 2010), CRYPTO’10, Springer-Verlag,
pp. 483–501.

[20] Cramer, R., and Shoup, V. Design and analysis of
practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput.
33, 1 (Jan. 2004), 167–226.

[21] De Moura, L., and Bjørner, N. Z3: an efficient
smt solver. In Proceedings of the Theory and practice
of software, 14th international conference on Tools
and algorithms for the construction and analysis of
systems (Berlin, Heidelberg, 2008),
TACAS’08/ETAPS’08, Springer-Verlag, pp. 337–340.

[22] De Moura, L., and Bjørner, N. Satisfiability
modulo theories: introduction and applications.
Commun. ACM 54, 9 (Sept. 2011), 69–77.

[23] Dodis, Y., and Fazio, N. Public key broadcast
encryption for stateless receivers. In Digital Rights
Management (2003), J. Feigenbaum, Ed., vol. 2696 of
Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 61–80.

[24] Ferrara, A. L., Green, M., Hohenberger, S.,
and Pedersen, M. Ø. Practical short signature
batch verification. In CT-RSA (2009), vol. 5473 of
LNCS, pp. 309–324.

[25] Gennaro, R., Gentry, C., and Parno, B.
Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In Proceedings of
the 30th annual conference on Advances in cryptology
(Berlin, Heidelberg, 2010), CRYPTO’10,
Springer-Verlag, pp. 465–482.

[26] Gentry, C. Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing (New York, NY,

11

193

Approved for Public Release; Distribution Unlimited.

USA, 2009), STOC, ACM, pp. 169–178.
[27] Goyal, V., Pandey, O., Sahai, A., and Waters,

B. Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and communications
security (New York, NY, USA, 2006), CCS ’06, ACM,
pp. 89–98.

[28] Green, M., Hohenberger, S., and Waters, B.
Outsourcing the decryption of abe ciphertexts. In
Proceedings of the 20th USENIX conference on
Security (Berkeley, CA, USA, 2011), SEC’11, USENIX
Association, pp. 34–34.

[29] Hohenberger, S., and Lysyanskaya, A. How to
securely outsource cryptographic computations. In
Proceedings of the Second international conference on
Theory of Cryptography (Berlin, Heidelberg, 2005),
TCC’05, Springer-Verlag, pp. 264–282.

[30] Iovino, V., and Persiano, G. Hidden-vector
encryption with groups of prime order. In Proceedings
of the 2nd international conference on Pairing-Based
Cryptography (Berlin, Heidelberg, 2008), Pairing ’08,
Springer-Verlag, pp. 75–88.

[31] Lewko, A., Sahai, A., and Waters, B. Revocation
systems with very small private keys. In Proceedings of
the IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2010), SP, IEEE Computer
Society, pp. 273–285.

[32] Lewko, A., and Waters, B. Decentralizing
attribute-based encryption. In EUROCRYPT (2011),
K. G. Patterson, Ed., vol. 6632 of LNCS, Springer,
pp. 568–588. http://eprint.iacr.org/.

[33] Li, J., Li, J., Chen, X., Jia, C., and Wong, D. S.
Secure outsourced attribute-based encryption.
Cryptology ePrint Archive, Report 2012/635, 2012.
http://eprint.iacr.org/.

[34] Liu, J. K., Chu, C. K., and Zhou, J. Identity-based
server-aided decryption. In Proceedings of the 16th
Australasian conference on Information security and
privacy (Berlin, Heidelberg, 2011), ACISP’11,
Springer-Verlag, pp. 337–352.

[35] MacKenzie, P., Oprea, A., and Reiter, M. K.
Automatic generation of two-party computations. In
Proceedings of the 10th ACM conference on Computer
and communications security (New York, NY, USA,
2003), CCS ’03, ACM, pp. 210–219.

[36] Matsumoto, T., Kato, K., and Imai, H. Speeding
up secret computations with insecure auxiliary
devices. In Proceedings on Advances in cryptology
(New York, NY, USA, 1990), CRYPTO ’88,
Springer-Verlag New York, Inc., pp. 497–506.

[37] Meiklejohn, S., Erway, C. C., Küpçü, A., Hinkle,
T., and Lysyanskaya, A. ZKPDL: a language-based
system for efficient zero-knowledge proofs and
electronic cash. In Proceedings of the 19th USENIX
conference on Security (Berkeley, CA, USA, 2010),
USENIX Security, USENIX Association, pp. 13–13.

[38] Naccache, D. Secure and practical identity-based
encryption. Cryptology ePrint Archive, Report
2005/369, 2005. http://eprint.iacr.org/.

[39] Ramanna, S. C., Chatterjee, S., and Sarkar, P.
Variants of waters’ dual system primitives using
asymmetric pairings - (extended abstract). In PKC
’12 (2012), pp. 298–315.

[40] Sahai, A., and Waters, B. Fuzzy identity-based
encryption. In EUROCRYPT (2005), pp. 457–473.

[41] Schnorr, C. Efficient signature generation by smart
cards. Journal of Cryptology 4 (1991), 161–174.

[42] Shamir, A. Identity-based cryptosystems and
signature schemes. In CRYPTO (1984), vol. 196 of
LNCS, pp. 47–53.

[43] Stanek, M. Attacking LCCC batch verification of
RSA signatures, 2006. Cryptology ePrint Archive:

Report 2006/111.
[44] Waters, B. Efficient identity-based encryption

without random oracles. In EUROCRYPT ’05 (2005),
vol. 3494 of LNCS, Springer, pp. 320–329.

[45] Waters, B. Ciphertext-policy attribute-based
encryption: An expressive, efficient, and provably
secure realization. Cryptology ePrint Archive, Report
2008/290, 2008. http://eprint.iacr.org/.

[46] Waters, B. Dual System Encryption: Realizing Fully
Secure IBE and HIBE under Simple Assumptions. In
CRYPTO (2009), pp. 619–636.

[47] Waters, B. Dual system encryption: Realizing fully
secure ibe and hibe under simple assumptions. In
Proceedings of the 29th Annual International
Cryptology Conference on Advances in Cryptology
(Berlin, Heidelberg, 2009), CRYPTO ’09,
Springer-Verlag, pp. 619–636.

[48] Waters, B. Ciphertext-policy attribute-based
encryption: an expressive, efficient, and provably
secure realization. In Proceedings of the 14th
international conference on Practice and theory in
public key cryptography conference on Public key
cryptography (Berlin, Heidelberg, 2011), PKC’11,
Springer-Verlag, pp. 53–70.

[49] Waters, B. Functional encryption for regular

languages. In Advances in Cryptology âĂŞ CRYPTO
2012 (2012), R. Safavi-Naini and R. Canetti, Eds.,
vol. 7417 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 218–235.

[50] Zaverucha, G. M., and Stinson, D. R. Group
testing and batch verification. In Proceedings of the
4th international conference on Information theoretic
security (Berlin, Heidelberg, 2010), ICITS’09,
Springer-Verlag, pp. 140–157.

[51] Zhou, Z., and Huang, D. Efficient and secure data
storage operations for mobile cloud computing. In
Network and Service Management (CNSM), 2012 8th
International Conference on (oct. 2012), pp. 37 –45.

12

194

Approved for Public Release; Distribution Unlimited.

Computing on Authenticated Data

Jae Hyun Ahn
Johns Hopkins University

arjuna@cs.jhu.edu

Dan Boneh ∗

Stanford University
dabo@cs.stanford.edu

Jan Camenisch †

IBM Research – Zurich
jca@zurich.ibm.com

Susan Hohenberger ‡

Johns Hopkins University
susan@cs.jhu.edu

abhi shelat §

University of Virginia
abhi@cs.virginia.edu

Brent Waters ¶

University of Texas at Austin
bwaters@cs.utexas.edu

July 3, 2012

Abstract

In tandem with recent progress on computing on encrypted data via fully homomorphic
encryption, we present a framework for computing on authenticated data via the notion of
slightly homomorphic signatures, or P -homomorphic signatures. With such signatures, it is
possible for a third party to derive a signature on the object m′ from a signature of m as long as
P (m,m′) = 1 for some predicate P which captures the “authenticatable relationship” between
m′ and m. Moreover, a derived signature on m′ reveals no extra information about the parent
m.

Our definition is carefully formulated to provide one unified framework for a variety of dis-
tinct concepts in this area, including arithmetic, homomorphic, quotable, redactable, transitive
signatures and more. It includes being unable to distinguish a derived signature from a fresh
one even when given the original signature. The inability to link derived signatures to their
original sources prevents some practical privacy and linking attacks, which is a challenge not
satisfied by most prior works.

Under this strong definition, we then provide generic constructions for all univariate and
closed predicates, and specific efficient constructions for a broad class of natural predicates such
as quoting, subsets, weighted sums, averages, and Fourier transforms. To our knowledge, these
are the first efficient constructions for these predicates (excluding subsets) that provably satisfy
this strong security notion.

∗Supported by NSF, DARPA, and AFOSR. Applying to all authors, the views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the US government.
†This work has been funded by the European Community’s Seventh Framework Programme (FP7/2007-2013)

under grant agreement no. 216483 (PrimeLife).
‡Supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory

(AFRL) under contract FA8750-11-2-0211, the Office of Naval Research under contract N00014-11-1-0470, a Microsoft
Faculty Fellowship and a Google Faculty Research Award.
§Supported by NSF CNS-0845811 and TC-1018543, Defense Advanced Research Projects Agency (DARPA) and

the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, and a Microsoft New Faculty Fellow-
ship.
¶Supported by NSF CNS-0915361 and CNS-0952692, AFOSR Grant No: FA9550-08-1-0352, DARPA PROCEED,

DARPA N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship,
and Packard Foundation Fellowship.

1
195

Approved for Public Release; Distribution Unlimited.

1 Introduction

In tandem with recent progress on computing any function on encrypted data, e.g., [29, 55, 52], this
work explores computing on unencrypted signed data. In the past few years, several independent
lines of research touched on this area:

• Quoting/redacting: [54, 35, 1, 42, 32, 19, 18, 20] Given Alice’s signature on some message
m anyone should be able to derive Alice’s signature on a subset of m. Quoting typically
applies to signed text messages where one wants to derive Alice’s signature on a substring
of m. Quoting can also apply to signed images where one wants to derive a signature on a
subregion of the image (say, a face or an object) and to data structures where one wants to
derive a signature of a subset of the data structure such as a sub-tree of a tree.

• Arithmetic: [36, 61, 24, 15, 28, 14, 13, 59] Given Alice’s signature on vectors v1, . . . ,vk ∈ Fnp
anyone should be able to derive Alice’s signature on a vector v in the linear span of v1, . . . ,vk.
Arithmetic on signed data is motivated by applications to secure network coding [27]. We show
that these schemes can be used to compute authenticated linear operations such as computing
an authenticated weighted sum of signed data and an authenticated Fourier transform. As a
practical consequence of this, we show that an untrusted database storing signed data (e.g.,
employee salaries) can publish an authenticated average of the data without leaking any
other information about the stored data. Recent constructions go beyond linear operations
and support low degree polynomial computations [13].

• Transitivity: [47, 41, 6, 33, 7, 50, 60, 46] Given Alice’s signature on edges in a graph G anyone
should be able to derive Alice’s signature on a pair of vertices (u, v) if and only if there is a
path in G from u to v. The derived signature on the pair (u, v) must be indistinguishable
from a fresh signature on (u, v) had Alice generated one herself [41]. This requirement ensures
that the derived signature on (u, v) reveals no information about the path from u to v used
to derive the signature.

In this paper, we put forth a general framework for computing on authenticated data that
encompasses these lines of research and much more. While prior definitions mostly contained
artifacts specific to the type of malleability they supported and, thus, were hard to compare to one
another, we generalize and strengthen these disparate notions into a single definition. This definition
can be instantiated with any predicate, and we allow repeated computation on the signatures
(e.g., it is possible to quote from a quoted signature.) During our study, we realized that the
“privacy” notions offered by many existing definitions are, in our view, insufficient for some practical
applications. We therefore require a stronger (and seemingly a significantly more challenging to
achieve) property called context hiding. Under this definition, we provide two generic solutions
for computing signatures on any univariate, closed predicate; however, these generic constructions
are not efficient. We also present efficient constructions for three problems: quoting substrings in
Section 4, a subset predicate in Section 5, and a weighted average over data in Section 6 (which
captures weighted sums and Fourier transforms). Our quoting substring construction is novel and
significantly more efficient than the generic solutions. For the problems of subsets and weighted
averages, we show somewhat surprising connections to respective existing solutions in attribute-
based encryption and network coding signatures.

2
196

Approved for Public Release; Distribution Unlimited.

1.1 Overview

A general framework. Let M be some message space and let 2M be its powerset. Consider
a predicate P : 2M ×M → {0, 1} mapping a set of messages and a message to a bit. Loosely
speaking we say that a signature scheme supports computations with respect to P if the following
holds:

Let M ⊂M be a set of messages and let m′ be a derived message, namely m′ satisfies
P (M,m′) = 1. Then there exists an efficient procedure that can derive Alice’s signature
on m′ from Alice’s independent signatures on all of the messages in M .

For the quoting application, the predicate P is defined as P (M,m′) = 1 iff m′ is a quote from the
set of messages M . Here we focus on quoting from a single message m so that P is false whenever
M contains more than one component1, and thus use the notation P (m,m′) as shorthand for
P ({m},m′). The predicate P for arithmetic computations is defined in Appendix A and essentially
says that P

(
(v1, . . . ,vk), v) is true whenever v is in the span of v1, . . . ,vk.

We emphasize that signature derivation can be iterative. For example, given a message-signature
pair (m,σ) from Alice, Bob can publish a derived message-signature pair (m′, σ′) for an m′ where
P (m,m′) holds. Charlie, using (m′, σ′), may further derive a signature σ′′ on m′′. In the quoting
application, Charlie is quoting from a quote which is perfectly fine.

Security. We give a clean security definition that captures two properties: unforgeability and
context hiding. We briefly discuss each in turn and give precise definitions in the next section.

• Unforgeability captures the idea that an attacker may be given various derived signatures
(perhaps iteratively derived) on messages of his choice. The attacker should be unable to
produce a signature on a message that is not derivable from the set of signed messages at
his possession. E.g., suppose Alice generates (m,σ) and gives it to Bob who then publishes
a derived signature (m′, σ′). Then an attacker given (m′, σ′) should be unable to produce a
signature on m or on any other message m′′ such that P (m′,m′′) = 0.

• Context hiding captures an important privacy property: a signature should reveal nothing
more than the message being signed. In particular, if a signature on m′ was derived from
a signature on m, an attacker should not learn anything about m other than what can be
inferred from m′. This should be true even if the original signature on m is revealed. For
example, a signed quote should not reveal anything about the message from which it was
quoted, including its length, the position of the quote, whether its parent document is the
same as another quote, whether it was derived from a given signed message or generated
freshly, etc.

Defining context hiding is an interesting and subtle task. In the next section, we give a definition
that captures a very strong privacy requirement. We discuss earlier attempts at defining privacy
following our definition in Section 2.3; while many prior works use a similar sounding intuition as
we give above, most contain a fundamental difference to ours in their formalization.

We note that notions such as group or ring signatures [25, 5, 21, 11, 49] have considered the
problem of hiding the identity of a signer among a set of users. Context hiding ensures privacy for
the data rather than the signer. Our goal is to hide the legacy of how a signature was created.

1We leave it for future work to construct systems for securely quoting from two messages (or possibly more) as
defined next.

3
197

Approved for Public Release; Distribution Unlimited.

Efficiency. We require that the size of a signature, whether fresh or derived, depend only on
the size of the object being signed. This rules out solutions where the signature grows with each
derivation.

Generic Approaches. We begin with two generic constructions that can be inefficient. They
apply to closed, univariate predicates, namely predicates P (M,m′) where M contains a single
message (P is false when |M | > 1) and where if P (a, b) = P (b, c) = 1 then P (a, c) = 1. The first
construction uses any standard signature scheme S where the signing algorithm is deterministic.
(One can enforce determinism using PRFs [30].) To sign a message m ∈ M, one uses S to sign
each message m′ such that P (m,m′) = 1. The signature consists of all these signature components.
To verify a signature for m, one checks the signature component corresponding to the message
m. To derive a signature m′ from m, one copies the signature components for all m′′ such that
P (m′,m′′) = 1. Soundness of the construction follows from the security of the underlying standard
scheme S and context hiding from the fact that signing in S is deterministic.

Unfortunately, these signatures may become large consisting up to |M| signature components
— effecting both the signing time and signature size. Our second generic construction alleviates
the space burden by using an RSA accumulator. The construction works in a similar brute force
fashion where a signature on m is an accumulator value on all m′ such that P (m,m′) = 1. While
this produces short signatures, the time component of both verification and derivation are even
worse than the first generic approach. Thus, these generic approaches are too expensive for most
interesting predicates. We detail these generic approaches and proofs in Section 3, where we also
discuss a generic construction using NIZK.

Our Quoting Construction. We turn to more efficient constructions. First, we set out to
construct a signature for quoting substrings2, which although conceptually simple is non-trivial to
realize securely. As an efficiency baseline, we note that the brute force generic construction of the
quoting predicate would result in n2 components for a signature on n characters. So any interesting
construction must perform more efficiently than this. We prove our construction selectively secure.3

In addition, we give some potential future directions for achieving adaptive security and removing
the use of random oracles.

Our construction uses bilinear groups to link different signature components together securely,
but in such a way that the context can be hidden by a re-randomizing step in the derivation
algorithm. A signature in our system on a message of length n consists of n lg n group elements;
intuitively organized as lg n group elements assigned to each character. To derive a new signature
on a substring of ` characters, one roughly removes the group elements not associated with the
new substring and then re-randomizes the remaining part of the signature. This results in a new
signature of ` lg ` group elements. The technical challenge consists in simultaneously allowing re-
randomization and preserving the “linking” between successive characters. In addition, there is a
second option in our derive algorithm that allows for the derivation of a short signature of lg ` group
elements; however the derive procedure cannot be applied again to this short signature. Thus, we
support quoting from quotes, and also provide a compression option which produces a very short
quote, but the price for this is that it cannot be quoted from further.

2A substring of x1 . . . xn is some xi . . . xj where i, j ∈ [1, n] and i ≤ j. We emphasize that we are not considering
subsequences. Thus, it is not possible, in this setting, to extract a signature on “I like fish” from one on “I do not
like fish”.

3Following an analog of [22], selective security for signatures requires the attacker to give the forgery message
before seeing the verification key.

4
198

Approved for Public Release; Distribution Unlimited.

Computing Signatures on Subsets and Weighted Averages. Our final two contributions
are schemes for deriving signatures on subsets and weighted averages on signatures. Rather than
create entirely new systems, we show connections to existing Attribute-Based Encryption schemes
and Network Coding Signatures. Briefly, our subset construction extends the concept of Naor [12]
who observed that every IBE scheme can be transformed into a standard signature scheme by
applying the IBE KeyGen algorithm as a signing algorithm. Here we show an analog for known
Ciphertext-Policy (CP) ABE schemes. The KeyGen algorithm which generates a key for a set S of
attributes can be used as a signing algorithm for the set S. For known CP-ABE systems [8, 37, 58]
it is straightforward to derive a key for a subset S′ of S and to re-randomize the signature/key. To
verify a signature on S we can apply Naor’s signature-from-IBE idea and encrypt a random message
X to a policy that is an AND of all the attributes in S and see if the signature can be used as an
ABE key to decrypt to X. Signatures for subsets have been previously considered in [33, §6.4], but
without context hiding requirements. We provide further details in Section 5. Our construction for
weighted sums is presented in Section 6, where we discuss how this applies to Fourier transforms.

2 Definitions

Definition 2.1 (Derived messages) Let M be a message space and let P : 2M×M→ {0, 1} be
a predicate from sets overM and a message inM to a bit. We say that a message m′ is derivable
from the set M ⊆M if P (M,m′) = 1. We denote by P ∗(M) the set of messages derivable from M
by repeated derivation. That is, let P 0(M) be the set of messages derivable from M and for i > 0
let P i(M) be the set of messages derivable from P i−1(M). Then P ∗(M) := ∪∞i=0P

i(M).
We define the closure of P , denoted P ∗, as the predicate defined by P ∗(M,m) = 1 iff m ∈

P ∗(M).

A P -homomorphic signature scheme Π for message space M and predicate P is a triple of PPT
algorithms:

KeyGen(1λ): the key generation algorithm outputs a key pair (pk , sk). We treat the secret key
sk as a signature on the empty tuple ε ∈M∗. We also assume that pk is embedded in sk .

SignDerive(pk , ({σm}m∈M ,M),m′, w): the algorithm takes as input the public key, a set of mes-
sages M ⊆ M and corresponding signatures {σm}m∈M , a derived message m′ ∈ M, and possibly
some auxiliary information w. It produces a new signature σ′ or a special symbol ⊥ to repre-
sent failure. For complicated predicates P , the auxiliary information w serves as a witness that
P (M,m′) = 1. To simplify the notation we often drop w as an explicit argument.

As shorthand we write Sign(sk ,m) := SignDerive(pk , (sk , ε),m, ·) to denote that any mes-
sage can be derived when the original signature is the signing key. For a set of messages M =
{m1, . . . ,mk} ⊂ M∗ it is convenient to let Sign(sk ,M) denote independently signing each of the
k messages, namely:

Sign(sk ,M) :=
(

Sign(sk ,m1), . . . ,Sign(sk ,mk)
)
.

Verify(pk ,m, σ): given a public key, message, and purported signature σ, the algorithm returns 1
if the signature is valid and 0 otherwise.
We assume that testing m ∈M can be done efficiently, and that Verify returns 0 if m 6∈ M.

5
199

Approved for Public Release; Distribution Unlimited.

Correctness. We require that for all key pairs (sk , pk) generated by KeyGen(1n) and for all
M ∈M∗ and m′ ∈M we have:

• if P (M,m′) = 1 then SignDerive(pk , (Sign(sk ,M),M),m′) 6= ⊥, and

• for all signature tuples {σm}m∈M such that σ′ ← SignDerive(pk , ({σm}m∈M ,M),m′) 6= ⊥,
we have Verify(pk ,m′, σ′) = 1.

In particular, correctness implies that a signature generated by SignDerive can be used as an
input to SignDerive so that signatures can be further derived from derived signatures, if allowed
by P .

Derivation efficiency. In many cases it is desirable that the size of a derived signature depend
only on the size of the derived message. This rules out signatures that expand as one iteratively
calls SignDerive. All the constructions in this paper are derivation efficient in this sense.

Definition 2.2 (Derivation-Efficient) A signature scheme is derivation-efficient if there exists
a polynomial p such that for all (pk , sk) ← KeyGen(1λ), set M ⊆ M∗, signatures {σm}m∈M ←
Sign(sk ,M) and derived messages m′ where P (M,m′) = 1, we have

|SignDerive(pk , {σm}m∈M ,M,m′)| = p(λ, |m′|).

2.1 Security: Unforgeability

To define unforgeability, we extend the basic notion of existential unforgeability with respect to
adaptive chosen-message attacks [31]. The definition captures the idea that if the attacker is given a
set of signed messages (either primary or derived) then the only messages he can sign are derivations
of the signed messages he was given. This is defined using a game between a challenger and an
adversary A with respect to scheme Π over message space M.

— Game Unforg(Π,A, λ, P):

Setup: The challenger runs KeyGen(1λ) to obtain (pk , sk) and sends pk to A. The challenger
maintains two sets T and Q that are initially empty.

Queries: Proceeding adaptively, the adversary issues the following queries to the challenger:

• Sign(m ∈M): the challenger generates a unique handle h, runs Sign(sk ,m)→ σ and places
(h,m, σ) into a table T . It returns the handle h to the adversary.

• SignDerive(~h = (h1, . . . , hk), m
′): the oracle retrieves the tuples (hi, σi,mi) in T for i =

1, . . . , k, returning ⊥ if any of them do not exist. Let M := (m1, . . . ,mk) and {σm}m∈M :=
{σ1, . . . , σk}. If P (M,m′) holds, then the oracle generates a new unique handle h′, runs
SignDerive(pk , ({σm}m∈M , M),m′) → σ′ and places (h′,m′, σ′) into T , and returns h′ to
the adversary.

• Reveal(h): Returns the signature σ corresponding to handle h, and adds (σ′,m′) to the set
Q.

Output: Eventually, the adversary outputs a pair (σ′,m′). The output of the game is 1 (i.e., the
adversary wins the game) if:

• Verify(pk ,m′, σ′) = 1 and,

6
200

Approved for Public Release; Distribution Unlimited.

• let M ⊆M be the set of messages in Q then P ∗(M,m′) = 0 where P ∗ is the closure of
P from Definition 2.1.

Else, the output of the game is 0. Define ForgA as the probability that Pr[Unforg(Π,A, λ, P) =
1].

Interestingly, for some predicates it may be difficult to test if the adversary won the game. For all
the predicates we consider in this paper, this will be quite easy.

Definition 2.3 (Unforgeability) A P -homomorphic signature scheme Π is unforgeable with
respect to adaptive chosen-message attacks if for all PPT adversaries A, the function ForgA is
negligible in λ.

A P -homomorphic signature scheme Π is selective unforgeable with respect to adaptive
chosen-message attacks if for all PPT adversaries A who begin the above game by announcing
the message m′ on which they will forge, ForgA is negligible in λ.

Properties of the definition. By taking P to be the equality oracle, namely P (x, y) = 1 iff
x = y, we obtain the standard unforgeability requirement for signatures.

Notice that Sign and SignDerive queries return handles, but do not return the actual signatures.
A system proven secure under this definition adequately rules out the following attack: suppose
(m,σ) is a message signature pair and (m′, σ′) is a message-signature pair derived from it, namely
σ′ = SignDerive(pk , σ, m,m′). For example, suppose m′ is a quote from m. Then given (m′, σ′)
it should be difficult to produce a signature on m and indeed our definition treats a signature on
m as a valid forgery.

The unforgeability game imposes some constraints on P : (1) P must be reflexive, i.e. P (m,m) =
1 for all m ∈M, (2) P must be monotone, i.e. P (M,m′)⇒ P (M ′,m′) where M ⊆M ′. It is easy to
see that predicates that do not satisfy these requirements cannot be realized under Definition 2.3.

2.2 Security: Context Hiding (a.k.a., Privacy)

Let M be some set and let m′ be a derived message from M (i.e., P (M,m′) = 1). Context hiding
captures the idea that a signature on m′ derived from signatures on M should reveal no information
about M beyond what is revealed by m′. For example, in the case of quoting, a signature on a
quote from m should reveal nothing more about m: not the length of m, not the position of the
quote in m, etc. The same should hold even if the attacker is given signatures on multiple quotes
from m.

We put forth the following powerful statistical definition of context hiding and discuss its im-
plications following the definition. We were most easily able to leverage a statistical definition for
our proofs, although we also give an alternative computational definition in Appendix A.

Definition 2.4 (Strong Context Hiding) Let M ⊆ M∗ and m′ ∈ M be messages such that
P (M,m′) = 1. Let (pk , sk)← KeyGen(1λ) be a key pair. A signature scheme (KeyGen,SignDerive,,
Verify) is strongly context hiding (for predicate P) if for all such triples ((pk , sk),M,m′), the fol-
lowing two distributions are statistically close:

{(
sk , {σm}m∈M ← Sign(sk ,M), Sign(sk ,m′)

)}
sk ,M,m′{(

sk , {σm}m∈M ← Sign(sk ,M), SignDerive(pk , ({σm}m∈M ,M),m′)
)}

sk ,M,m′

The distributions are taken over the coins of Sign and SignDerive. Without loss of generality,
we assume that pk can be computed from sk.

7
201

Approved for Public Release; Distribution Unlimited.

The definition states that a derived signature on m′, from an honestly-generated original sig-
nature, is statistically indistinguishable from a fresh signature on m′. This implies that a derived
signature on m′ is indistinguishable from a signature generated independently of M . Therefore,
the derived signature cannot (provably) reveal any information about M beyond what is revealed
by m′. By a simple hybrid argument the same holds even if the adversary is given multiple derived
signatures from M .

Moreover, Definition 2.4 requires that a derived signature look like a fresh signature even if the
original signature on M is known. Hence, if for example someone quotes from a signed recommen-
dation letter and somehow the original signed recommendation letter becomes public, it would be
impossible to link the signed quote to the original signed letter. The same holds even if the signing
key sk is leaked.

Thus, Definition 2.4 captures a broad range of privacy requirements for derived signatures.
Earlier work in this area [35, 18, 20, 17] only considered weaker privacy requirements using more
complex definitions. The simplicity and breadth of Definition 2.4 is one of our key contributions.

Definition 2.4 uses statistical indistinguishability meaning that even an unbounded adversary
cannot distinguish derived signatures from newly created ones. In Appendix A, we give a definition
using computational indistinguishability which is considerably more complex since the adversary
needs to be given signing oracles. In the unbounded case of Definition 2.4 the adversary can simply
recover a secret key sk from the public key and answer its own signature queries which greatly
simplifies the definition of context hiding. All the signature schemes in this paper satisfy the
statistical Definition 2.4.

As mentioned above, the context-hiding guarantee applies to all derivations that begin with
an honestly-generated signature. One might imagine a scenario where a malicious signer creates a
signature that passes the verification algorithm, but contains a “watermark” that allows the signer
to detect if other signatures are derived from it. To prevent such attacks from malicious signers,
we could alter the definition so that indistinguishability holds for any derivative that results from
a signature that passed the verification algorithm.

A simpler approach to proving unforgeability. For systems that are strongly context hiding,
unforgeability follows from a simpler game than that of Section 2.1. In particular, it suffices to
just give the adversary the ability to obtain top level signatures signed by sk . In Appendix A, we
define this simpler unforgeability game and prove equivalence to Definition 2.3 using strong context
hiding.

2.3 Related Work

Early work on quotable signatures [54, 35, 44, 43, 32, 19, 23, 17] supports quoting from a single
document, but does not achieve the privacy or unforgeability properties we are aiming for. For
example, if simple quoting of messages is all that is desired, then the following folklore solution
would suffice: simply sign the Merkle hash of a document. A quote represents some sub-tree of
the Merkle hash; so a quoter could include enough intermediate hash nodes along with the original
signature in any quote. A verifier could simply hash the quote, and then build the Merkle hash tree
using the computed hash and the intermediate hashes, and compare with the original signature.
Notice, however, that every quote in this scheme reveals information about the original source
document. In particular, each quote reveals information about where in the document it appears.
Thus, this simple quoting scheme is not context hiding in our sense.

The work whose definition is closest to what we envision is the recent work on redacted signatures
of Chang et al. [23] and Brzuska et al. [17] (see also Naccache [45, p. 63] and Boneh-Freeman [14,

8
202

Approved for Public Release; Distribution Unlimited.

13] 4). However, there is a subtle, but fundamental difference between their definition and the
privacy notion we are aiming for. In our formulation, a quoted signature should be indistinguishable
from a fresh signature, even when the distinguisher is given the original signature. (We capture
this by an even stronger game where a derived signature is distributed statistically close to a fresh
signature.) In contrast, the definitions of [23, 17, 14, 13] do not provide the distinguisher with the
original signature. Thus, it may be possible to link a quoted document to its original source (and
indeed it is in the constructions of [23, 17, 14, 13]), which can have negative privacy implications.
Overcoming such document linkage while maintaining unforgeability is a real technical challenge.
This requires moving beyond techniques that use nonces to link parts of messages.

Indeed, in most prior constructions, such as [23, 17], nonces are used to prevent “mix-and-
match” attacks (e.g., forming a “quote” using pieces of two different messages.) Unfortunately,
these nonces reveal the history of derivation, since they cannot change during each derivation
operation. Arguably, much of the technical difficulty in our current work comes precisely from the
effort to meet our definition and hide the lineage. We introduce new techniques in this work which
link pieces together using randomness that can be re-randomized in controlled ways.

Another line of work studies computing on authenticated data by holders of secret information.
Examples include sanitizable signatures [44, 1, 42, 20, 18] that allow a proxy to compute signatures
on related messages, but requires the proxy to have a secret key, and incremental signatures [4],
where the signer can efficiently make small edits to his signed data. In contrast, our proposal is more
along the lines of homomorphic encryption and Rivest’s vision [47], where anyone can compute on
the authenticated data.

3 Generic Constructions for Simple Predicates

Let M be a finite message space. We say that a predicate P : M∗ ×M → {0, 1} is a simple
predicate if the following properties hold:

1. P is false whenever its left input is a tuple of length greater than 1,

2. P is a closed predicate (i.e., P is equal to its closure P ∗; see Section 2.1.)

3. For all m ∈M, P (m,m) = 1.

In this section, we present and discuss generic approaches to computing on authenticated data
with respect to any simple predicate P . Note that the quoting of substrings or subsequences (i.e.,
redacting) are examples of simple predicates.

We begin with two inefficient constructions. The first takes a brute force approach that con-
structs long signatures that are easy to verify. The second takes an accumulator approach that
constructs shorter signatures at the cost of less efficient verification. We conclude by discussing the
limitations of a generic NIZK proof of knowledge approach.

4As acknowledged in Section 2.2 of Boneh-Freeman [13], our definitional notion is stronger than and predates the
“weak context hiding” notion of [13]. Indeed, the fact that [13] uses our framework lends support to its generality, and
the fact that they could not achieve our context hiding notion highlights its difficulty. Their “weak” definition, which
is equivalent to [17], only ensures privacy when the original signatures remain hidden. In their system, signature
derivation is deterministic and therefore once the original signatures become public it is easy to tell where the derived
signature came from. Our signatures achieve full context hiding so that derived signatures remain private no matter
what information is revealed. This is considerably harder and is not known how to do for the lattice-based signatures
in Boneh-Freeman.

9
203

Approved for Public Release; Distribution Unlimited.

3.1 A Brute Force Construction From Any Signature Scheme

Let (G,S, V) be a signature scheme with a deterministic signing algorithm.5 One can construct a
P -homomorphic signature scheme for any simple predicate P as follows:

KeyGen(1λ) : The setup algorithm runs G(1λ)→ (pk , sk) and outputs this key pair.

Sign(sk ,m ∈M) : While Sign is simply a special case of the SignDerive algorithm, we will
explicitly provide both algorithms here for clarity purposes.

The signature σ is the tuple (S(sk ,m), U = {S(sk ,m′) | m′ ∈ P 0({m})}).

SignDerive(pk , σ,m,m′) : The derived signature is computed as follows. First check that P (m,m′) =
1. If not, then output ⊥. Otherwise, parse σ = (σ1, . . . , σk) where σi corresponds to message
mi. If for any i, V (pk ,mi, σi) = 0, then output ⊥. Otherwise, the signature is comprised
as the set containing σi for all mi such that P (m′,mi) = 1. Again, by default, let the first
sub-signature of the output be the signature on m′.

Verify(pk ,m, σ) : Parse σ = (σ1, . . . , σk). Output V (pk ,m, σ1).

Efficiency Discussion The efficiency of the above approach depends on the message space and
the predicate P . For instance, the brute force approach for signing a message of n characters, where
P (m,m′) outputs 1 if and only if m′ is a substring of m, will result in O(n2) sub-signatures (one
for each of the O(n2) substrings). If one wanted to “quote” subgraphs from a graph, this approach
is intractable, as a graph of n nodes will generate an exponential in n number of subgraphs.

Theorem 3.1 (Security from Any Signature) If (G,S, V) is a secure deterministic signature
scheme, then the above signature scheme is unforgeable and context-hiding.

Proof of the above theorem is rather straightforward. The context-hiding property follows from
the uniqueness of the signatures generated by the honest signing algorithms. The unforgeability
property follows from the fact that an adversary cannot obtain a signature on any message not
derivable from those she queried or one could use this signature to directly break the regular
unforgeability of the underlying signature scheme. The correctness property is actually the most
complex to verify: it requires the two restrictions on the predicate P made above.

3.2 An Accumulator-based Construction

Assumption 3.2 (RSA [48]) Let k be the security parameter. Let a positive integer N be the
product of two random k-bit primes p, q. Let e be a randomly chosen positive integer less than and
relatively prime to φ(N) = (p − 1)(q − 1). Then no PPT algorithm given (N, e) and a random
y ∈ Z∗N as input can compute x such that xe ≡ y mod N with non-negligible probability.

Lemma 3.3 (Shamir [51]) Given x, y ∈ Zn together with a, b ∈ Z such that xa = yb and
gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ Zn such that za = y.

5Given a signature scheme with a probabilistic signing algorithm, one can convert it to a scheme with a determin-
istic signing algorithm by: (1) including a pseudorandom function (PRF) seed as part of the secret key and (2) during
the signing algorithm, applying this PRF to the message and using the output as the randomness in the signature.
Given any signature scheme, one can also construct a PRF.

10
204

Approved for Public Release; Distribution Unlimited.

Theorem 3.4 (Prime Number Theorem) Define π(x) as the number of primes no larger than
x. For x > 1,

π(x) >
x

lg x
.

Consider the following RSA accumulator solution which supports short signatures, but the
computation required to derive a new signature is expensive. Let P be any univariate predicate
with the above restrictions.

We now describe the algorithms. While Sign is simply a special case of the SignDerive
algorithm, we will explicitly provide both algorithms here for clarity purposes.

KeyGen(1λ) : The setup algorithm chooses N as a 20λ-bit RSA modulus and a random value
a ∈ ZN . It also chooses a hash function Hp that maps arbitrary strings to 2λ-bit prime
numbers, e.g., [34], which we treat as a random oracle.6 Output the public key pk = (Hp, N, a)
and keep as the secret key sk , the factorization of N .

Sign(sk ,m ∈M) : Let U = P 0({m}) = {m′ | m′ ∈ M and P (m,m′) = 1}. Compute and output
the signature as

σ := a
1/(

Q
ui∈U Hp(ui)) mod N.

SignDerive(pk , σ,m,m′) : The derivation is computed as follows. First check that P (m,m′) = 1.
If not, then output ⊥. Otherwise, let U ′ = P 0({m′}). Compute and output the signature as

σ′ := σ
Q
ui∈U−U′ Hp(ui) mod N.

Thus, the signature is of the form a
1/

Q
ui∈U′ Hp(ui) mod N .

Verify(pk ,m, σ) : Accept if and only if a = σ
Q
ui∈U Hp(ui) mod N where U = P 0(m).

Efficiency Discussion In the above scheme, signatures require only one element in Z∗N . However,
the cost of signing depends on P and the size of the message space. For example, computing an
`-symbol quote from an n-symbol message requires O(n(n−`)) evaluations of Hp() and O(n(n−`))
modular exponentiations. The prime search component of Hp will likely be the dominating factor.
Verification requires O(`2) evaluations of Hp() and O(`2) modular exponentiations, for an `-symbol
quote. Thus, this scheme optimizes on space, but may require significant computation.

Theorem 3.5 (Security under RSA) If the RSA assumption holds, then the above signature
scheme is unforgeable and context-hiding in the random oracle model.

We provide a proof of above theorem by showing the following lemmas.

Lemma 3.6 (Context-Hiding) The homomorphic signature scheme from §3.2 is strongly context-
hiding.

Proof. This property is derived from the fact that a signature on any given message is deterministic.
Let the public key PK be (Hp, N, a) and challenge be any m,m′ where P (m,m′) = 1. Let U =

6We choose our modulus and hash output lengths to obtain λ-bit security based on the recent estimates of [53].

11
205

Approved for Public Release; Distribution Unlimited.

P 0(m) and U ′ = P 0(m′). Observe that

Sign(sk ,m) = σ = a1/
Q
u∈U Hp(u) mod N

Sign(sk ,m′) = σ0 = a1/
Q
u′∈U′ Hp(u′) mod N

SignDerive(pk , (σ,m),m′) = σ
Q
u∈U−U′ Hp(u) mod N

=
[
a1/

Q
u∈U Hp(u)

]Q
u∈U−U′ Hp(u)

mod N

= a1/
Q
u′∈U′ Hp(u′) mod N

= σ0

Because Sign(sk ,m′) and SignDerive(pk , (σ,m),m′) are identical, for any adversary A, the prob-
ability that A distinguishes the two is exactly 1/2, and so the advantage in the strong context
hiding game is 0. �

Lemma 3.7 (Unforgeability) If the RSA assumption holds, then the Section 3.2 homomorphic
signature scheme is unforgeable in the Unforg game in the random oracle model.

Proof. Our reduction only works on certain types of RSA challenges, as in [34]. In particular, this
reduction only attempts to solve RSA challenges (N, e∗, y) where e∗ is an odd prime. Fortunately,
good challenges will occur with non-negligible probability. We know that e∗ is less than and
relatively prime to φ(N) < N , which implies it cannot be 2. We also know, by Theorem 3.4, that
the number of primes that are less than N is at least N

lgN . Thus, a loose bound on the probability

of e∗ being a prime is ≥ (N
lgN)/N = 1

lgN = 1
20λ .

Now, we describe the reduction. Our proof first applies Lemma A.4, which allows us to only
consider adversaries A that ask queries to Sign oracle in the NHU game. Moreover, suppose
adversary A queries the random oracle Hp on at most s unique inputs. Without loss of generality,
we will assume that all queries to this deterministic oracle are unique and that whenever Sign is
called on message M , then Hp is automatically called with all unique substrings of M . Suppose an
adversary A can produce a forgery with probability ε in the NHU game; then we can construct
an adversary B that breaks the RSA assumption (with odd prime e∗) with probability ε/s minus a
negligible amount as follows.

On input an RSA challenge (N, e∗, y), B proceeds as follows:

Setup B chooses 2λ-bit distinct prime numbers e1, e2, . . . , es−1 at random, where all ei 6= e∗.
Denote this set of primes as E. Next, B makes a random guess of i∗ ∈ [1, s] and saves this value
for later. Then it sets

a := y
Q
ei∈E ei .

Finally, B give the public key PK = (N, a) to A and will answer its queries to random oracle
Hp interactively as described below.

Queries Proceeding adaptively, B answers the oracle and sign queries made by A as follows:

1. Hp(x) : When A queries the random oracle for the jth time, B responds with e∗ if j = i∗, with
ej if j < i∗ and ej−1 otherwise. Recall that we stipulated that each call to Hp was unique.
Denote x∗ as the input where Hp(x

∗) = e∗.

12
206

Approved for Public Release; Distribution Unlimited.

2. Sign(M): Let U = P 0(M). If x∗ ∈ U , then B aborts the simulation. Otherwise, B calls
Hp on all elements of U not previously queried to Hp. Let primes(U) denote the set of
primes derived by calling Hp on the strings of U . Then, it computes the signature as σ :=

y
Q
ei∈(E−primes(U)) ei mod N and returns (M,σ).

Response Eventually, A outputs a valid message-signature pair (M,σ), where M is not a deriva-
tive of an element returned by Sign. If M was not queried to Hp or if M 6= x∗, then B aborts the
simulation. Otherwise, let U = P 0(x∗)− {x∗} and primes(U) denote the set of primes derived by

calling Hp on the strings of U . It holds that a
1/

Q
ei∈primes(U) ei = y

Q
ei∈E−primes(U) ei = σe

∗
mod N .

Since y, σ ∈ ZN and gcd(e∗,
∏
ei∈E−primes(U) ei) = 1 (recall, they are all distinct primes), then

B can apply the efficient algorithm from Lemma 3.3 to obtain a value z ∈ ZN such that ze
∗

= y
mod N . B outputs z as the solution to the RSA challenge.

Analysis We now argue that any successful adversary A against our scheme will have success
in the game presented by B. To do this, we first define a sequence of games, where the first
game models the real security game and the final game is exactly the view of the adversary when
interacting with B. We then show via a series of claims that if A is successful against Game j, then
it will also be successful against Game j + 1.

Game 1: The same as Game NHU, with the exception that at the beginning of the game B
guesses an index 1 ≤ i∗ ≤ s and e∗ is the response of the i∗th query to Hp.

Game 2: The same as Game 1, with the exception that A fails if any output of Hp is repeated.

Game 3: The same as Game 2, with the exception that A fails if it outputs a valid forgery (M,σ)
where M was not queried to Hp.

Game 4: The same as Game 3, with the exception that A fails if it outputs a valid forgery (M,σ)
where M 6= x∗.

Notice that Game 4 is exactly the view of the adversary when interacting with B. We complete
this argument by linking the probability of A’s success in these games via a series of claims. The
only non-negligible probability gap comes between Games 3 and 4, where there is a factor 1/s loss.

Define AdvA[Game x] as the advantage of adversary A in Game x.

Claim 3.8 If Hp is a truly random function, then

AdvA[Game 1] = AdvA[Game NHU].

Proof. The value e∗ was chosen independently at random by the RSA challenger, just as Hp would
have done. �

Claim 3.9 If Hp is a truly random function, then

AdvA[Game 2] = AdvA[Game 1]− 2s2λ

22λ
.

Proof. Consider the probability of a repeat occurring when s 2λ-bit primes are chosen at random.
By Theorem 3.4, we know that there are at least 22λ/(2λ) 2λ-bit primes. Thus, a repeat will occur
with probability <

∑s s/(22λ/2λ) = 2s2λ/22λ, which is negligible since s must be polynomial in λ.
�

13
207

Approved for Public Release; Distribution Unlimited.

Claim 3.10 If Hp is a truly random function, then

AdvA[Game 3] = AdvA[Game 2]− 2λ

22λ
.

Proof. If M was never queried to Hp, then σ can only be a valid forgery if A guessed the 2λ-bit
prime that Hp would respond with on input M . By Theorem 3.4, there are at least 22λ/2λ such
primes and thus the probability of A’s correct guess is at most 2λ/22λ, which is negligible. �

Claim 3.11

AdvA[Game 4] =
AdvA[Game 3]

s
.

Proof. At this point in our series of games, we conclude that A forges on one of the s queries to Hp

and that 1 ≤ i∗ ≤ s was chosen at random. Thus, the probability that A forges on the i∗th query
is 1/s. �

This completes our proof. �

3.3 On the Limitations of Using a Generic NIZK Proof of Knowledge Approach

Another general approach that one might be tempted to try is to use an NIZK [9] proof of knowledge
system to generate a signature on m′ by proving that one knows a signature on some m such that
P (m,m′) holds. Unfortunately, this approach has the standard drawback of generality in that it
requires circuit-based (non black-box) reductions. In particular, the statements to prove in non-
interactive zero-knowledge require transforming the circuits of the signature scheme and the quoting
predicate into an instance of Hamiltonian circuit or 3-SAT. Even if one were to tailor an NIZK proof
of knowledge for these specific statements and therefore avoid costly reductions, another problem
emerges with re-quoting. When a quote is re-quoted, then the same process happens for both the
original signature scheme circuit, the predicate, and the proof system. Aside from the inefficiency,
using standard NIZKPoK systems would leak information about the size of the original message
and quotes, and therefore would not satisfy our context hiding property7.

4 A Powers-of-2 Construction for Quoting Substrings

We begin by describing our algebraic setting.

4.1 Bilinear Groups and the CDH Assumption

Bilinear Groups and the CDH Assumption. Let G and GT be groups of prime order p. A
bilinear map is an efficient mapping e : G × G → GT which is both: (bilinear) for all g ∈ G and
a, b ← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1. We will
focus on the Computational Diffie-Hellman assumption in these groups.

Assumption 4.1 (CDH [26]) Let g generate a group G of prime order p ∈ Θ(2λ). For all PPT
adversaries A, the following probability is negligible in λ: Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

7Using non-interactive CS-proofs [40] in the random oracle model may reduce the size of the proof, but we do not
know how to avoid leaking the size of the theorem statement which also violates the context hiding property.

14
208

Approved for Public Release; Distribution Unlimited.

4.2 The Quoting Construction

We now provide our main construction for quoting substrings in a text document. It achieves the
best time/space efficiency trade-off to our knowledge for this problem. We will have two different
types of signatures called Type I and Type II, where a Type I signature can be quoted down to
another Type I or Type II signature. A Type II signature cannot be quoted any further, but will
be a shorter signature. The quoting algorithm will allow us to quote anything that is a substring
of the original message. We point out that the Type I, II signatures of this system conform to
the general framework given in Section 2. In particular, we can view a message M as a pair
(t,m) ∈ {0, 1}, {0, 1}∗. The bit t will identify the message as being Type I or Type II (assume t = 1
signifies Type I signatures) and m will be the quoted substring. The predicate

P (M = (t,m),M ′ = (t′,m′)) =

{
1 if t = 1 and m′ is a substring of m;

0 otherwise.

The bit t′ will indicate whether the new message is Type I or II (i.e., whether the system can
quote further.) We note that this description allows an attacker to distinguish between any Type
I signature from any Type II signature since the “type bit” of the messages will be different and
thus they will technically be two different messages even if the substring components are equal.
For this reason we will only need to prove context hiding between messages of Type I or Type II,
but not across types. In general, flipping the bit t will not result in a valid signature of a different
type on the same core message, because the format will be wrong; however, moving from a Type I
to a Type II on the same core message is not considered a forgery since Type II signatures can be
legally derived from Type I.

For presentational clarity, we will split the description of our quoting algorithm into two quoting
algorithms for quoting to Type I and to Type II signatures; likewise we will split the description of
our verification algorithm into two separate verification algorithms, one for each type of signature.
The type of signature used or created (i.e., bit t) will be implicit in the description.

Notation: We use notation mi,j to denote the substring of m of length j starting at position i.

Intuition: We begin by giving some intuition. We design Type I signatures that allow re-quoting
and Type II signatures that cannot be further quoted, but are ultra-short. For an original message of
length n, our signature structure should be able to accommodate starting at any position 1 ≤ i ≤ n
and quoting any length 1 ≤ ` ≤ (n− i+ 1) substring.8

To (roughly) see how this works for a message of length n, visualize (n + 1) columns with
(blg nc+ 2) rows as in Figure 1. The columns correspond to the characters of the message, so if the
14-character message is “abcdefghijklmn” then there are 15 columns, with a character in between
each column. The rows correspond to the numbers lg n down to 0, plus an extra row at the bottom.9

Each location in the matrix (except along the bottom-most row) contains one or more out-going
arrows. We’ll establish rules for when these arrows exist and where each arrow ends shortly.

A Type II quote will trace a (lg n+1)-length path on these arrows through this matrix starting
in a row (with outgoing arrows) of the column that begins the quote and ending in the lowest row
of the first column after the quote ends. The starting row corresponds to the largest power of
two less than or equal to the length of the desired quote. E.g., to quote “bcdef”, start in row 2
immediately to the left of ‘b’ (because 22 = 4 is the largest power of two less than 5) and end in

8Technically, our predicate P (m,m′) will take the quote from the first occurrence of substring m′ in m, but for
the moment imagine that we allowed quoting from anywhere in m.

9The lowest row is intentionally not assigned a number. The second lowest row is row 0. We do this so that row
i can correspond to a jump of length 2i.

15
209

Approved for Public Release; Distribution Unlimited.

a b c d e f g h i j k l m n

`+1

N+1

0

1

2

3

blg `c+2

blgNc+2

S4,2

D8,1

A8,0

Type I Signature

c d e f g h i

`+1

0

1

2

blg `c+2

S′2,2

D′6,1

A′6,0

“start” arrow

“start” arrow and
“one” arrow (overlapped)

“zero” arrow

a path which represents
the substring “defgh”

Figure 1: The top diagram represents a signature on “abcdefghijklmn” with length N = 14. Each
arrow corresponds to some group elements in the construction. Logically, whenever the elements
corresponding to an arrow are included in a quoted signature, the characters underneath this arrow
are included in the quoted message. The bold path through the top diagram shows how to construct
a Type II signature on “defgh”; it is very short, but cannot be re-quoted. The gray box in this
figure shows how to construct a Type I signature on “cdefghi” of length ` = 7; it includes all the
arrows in the lower figure and can be re-quoted. A technical challenge is to enforce that following
the arrows is the only way to form a valid signature. Details are below.

row 0 immediately to the right of ’f’. Intuitively, taking an arrow over a character includes it in
the quote. A Type II quote on “defgh” is illustrated in Figure 1.

A technical challenge is to make this a O(lg n)-length path rather than a O(n)-length path. To
do this, the key insight is to view the length of any possible quote as the sum of powers of two
and to allow arrows that correspond to covering the quote in pieces of size corresponding to one
operand of the sum at a time. Each location (ic, ir) in the matrix (except the bottom-most row)
contains:

• a “start” arrow: an arrow that goes down one row and over 2ir columns ending in (ic+2ir , ir−
1), if this end point is in the matrix. This adds all characters from position ic to ic + 2ir − 1
to the quoted substring; effectively adding the largest power-of-two-length prefix of the quote
characters. This arrow indicates that the quote starts here. These are represented as Si,j , S̃i,j
pairs in our construction.
• a “one” arrow: operate similarly to start arrows and used to include characters after a start

arrow includes the quote prefix. These are represented as Ai,j , Ãi,j pairs in our construction.

16
210

Approved for Public Release; Distribution Unlimited.

• a “zero” arrow: an arrow that goes straight down one row ending in (ic, ir − 1). This does

not add any characters to the quoted substring. These are represented as Di,j , D̃i,j pairs in
our construction.

A Type II quote always starts with a start arrow and then contains one and zero arrows
according to the binary representation of the length of the quote. In our example of original
message “abcdefghijklmn”, we have 15 columns and 5 rows. We will logically divide our desired
substring of “bcdef” (length 5 = 22 + 20 = 4 + 1) into its powers-of-two components “bcde”(length
4 = 22) and “f” (length 1 = 20). To form the Type II quote, we start in row 2 (since 4 = 22) of
column 2 (to the left of ’b’) and take the start arrow (S2,2) to row 1 of column 7, take the zero
arrow (D7,1) to row 0 of column 7, and then take the one arrow (A7,0) to the lowest row of column
8. The arrows “pass over” the characters “bcdef”. Figure 1 illustrates this for quote “defgh”.

For a quote of length `, the elements on this O(lg `)-length path of arrows form a very short Type
II signature. For Type I signatures, we include all the elements corresponding to all arrows that
make connections within the columns corresponding to the quote. We illustrate this in Figure 1.
This allows quoting of quotes with a signature size of O(` lg `).

It is essential for security that the signature structure and data algorithm enforce that the
quoting algorithm be used and not allow an attacker to “splice” together a quote from different
parts of the signature. We realize this by adding in random “chaining” variables. In order to
cancel these out and get a well formed Type II quote a user must intuitively follow the prescribed
procedure (i.e., following the arrows is the only way to form a valid quote.)

The Construction: We now describe our algorithms. While Sign is simply a special case of the
SignDerive algorithm, we will explicitly provide both algorithms here for clarity purposes.

KeyGen(1λ) : The algorithm selects a bilinear group G of prime order p > 2λ with generator g.
Let L be the maximum message length supported and denote n = blg(L)c. Let H : {0, 1}∗ →
G and Hs : {0, 1}∗ → G be the description of two hash functions that we model as random
oracles. Choose random z0, . . . , zn−1, α ∈ Zp. The secret key is (z0, . . . , zn−1, α) and the
public key is:

PK = (H,Hs, g, g
z0 , . . . , gzn−1 , e(g, g)α).

Sign(sk ,M = (t,m) ∈ {0, 1} × Σ`≤L) : If t = 1, signatures produced by this algorithm are Type I
as described below. If t = 0, the Type II signature can be obtained by running this algorithm
and then running the Quote-Type II algorithm below to obtain a quote on the entire message.
The message space is treated as ` ≤ L symbols from alphabet Σ.

Recall: we use notation mi,j to denote the substring of m of length j starting at position i.

For i = 3 to ` + 1 and j = 0 to blg(i − 1) − 1c, choose random values xi,j ∈ Zp. These will
serve as our random “chaining” variables, and they should all “cancel” each other out in our
short Type II signatures. By definition, set xi,−1 := 0 for all i = 1 to `+ 1.

A signature is comprised of the following values for i = 1 to ` and j = 0 to blg(`− i+ 1)c, for
randomly chosen values ri,j ∈ Zp:

[start arrow: start and include power j]

Si,j = gαg−xi+2j ,j−1Hs(mi,2j)
ri,j , S̃i,j = gri,j

17
211

Approved for Public Release; Distribution Unlimited.

Together with the following values for i = 3 to ` and j = 0 to min(blg(i−1)−1c, blg(`−i+1)c),
for randomly chosen values r′i,j ∈ Zp:

[one arrow: include power j and decrease j]

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j , Ãi,j = gr

′
i,j

Together with the following values for i = 3 to `+ 1 and j = 0 to blg(i−1)−1c, for randomly
chosen values r′′i,j ∈ Zp:

[zero arrow: decrease j]

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j

We provide an example of how to form Type II signatures from this construction shortly. To
see why our Ai,j and Di,j values start at i = 3, note that Type II quotes at position i of
length 20 = 1 symbol include only the Si,0 value, where the x·,0−1 term is 0 by definition.
Type II quotes at position i of length 21 = 2 symbols include the Si,1 value plus an additional
Di+2,0 term to cancel out the xi+2,0 value (leaving only xi+2,−1 = 0.) Quotes at position i of
length 21 + 1 = 3 symbols include the Si,1 value plus an additional Ai+2,0 term to cancel out
the xi+2,0 value (leaving only xi+3,−1 = 0.) Since we index strings from position 1, the first
position to include an Ai,j or Di,j value is i+ 2 = 3.

SignDerive(pk , σ,M = (t,m),M ′ = (t′,m′)) : If P (M,M ′) = 0, output ⊥. Otherwise, if t′ = 1,
output Quote-Type I(PK, σ,m,m′); if t′ = 0, output Quote-Type II(PK, σ,m,m′), where
these algorithms are defined below.

Quote-Type I(pk , σ,m,m′) : The quote algorithm takes a Type I signature and produces another
Type I signature that maintains the ability to be quoted again. Intuitively, this operation
will simply find a substring m′ in m, keep only the components associated with this substring
and re-randomize them all (both the xi,j and ri,j terms in every component.)

Ifm′ is not a substring ofm, then output⊥. Otherwise, let `′ = |m′|. Determine the first index

k at which substring m′ occurs in m. Parse σ as a collection of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j

values, exactly as would come from Sign with ` = |m|.

First, we choose re-randomization values (to re-randomize the xi,j terms of σ.) For i = 2 to
`′+ 1 and j = 0 to blg(i− 1)− 1c, choose random values yi,j ∈ Zp. Set yi,−1 := 0 for all i = 1
to `′ + 1. Later, we will choose ti,j values to re-randomize the ri,j terms of σ.

The quote signature σ′ is comprised of the following values:

For i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c, for randomly chosen ti,j ∈ Zp:

S′i,j = Si+k−1,j · g−yi+2j ,j−1Hs(mi+k−1,2j)
ti,j , S̃′i,j = ˜Si+k−1,j · gti,j

Together with the following values for i = 3 to `′ and j = 0 to min(blg(i−1)−1c, blg(`′−i+1)c),
for randomly chosen t′i,j ∈ Zp:

A′i,j = Ai+k−1,j · gyi,jg−yi+2j ,j−1H(mi+k−1,2j)
t′i,j , Ã′i,j = ˜Ai+k−1,j · gt

′
i,j

18
212

Approved for Public Release; Distribution Unlimited.

Together with the following values for i = 3 to `′+1 and j = 0 to blg(i−1)−1c, for randomly
chosen t′′i,j ∈ Zp:

D′i,j = Di+k−1,j · gyi,jg−yi,j−1gzjt
′′
i,j , D̃′i,j = D̃i+k−1,j · gt

′′
i,j

Quote-Type II(pk , σ,m,m′) : The quote algorithm takes a Type I signature and produces a
Type II signature. If P (m,m′) 6= 1, then output ⊥.

A quote is computed from one start value and logarithmically many subsequent pieces depend-
ing on the bits of |m′|. All signature pieces must be re-randomized to prevent content-hiding
attacks.

Consider the length `′ written as a binary string. Let β′ be the largest index of `′ = |m′|
that is set to 1, where we start counting with zero as the least significant bit. That is, set
β′ = blg(`′)c. Select random values v, vβ′−1, . . . , v0 ∈ Zp. Set the start position as B := Sk,β′

and
k′ := k + 2β

′
. Then, from j = β′ − 1 down to 0, proceed as follows:

• If the jth bit of `′ is 1, set B := B ·Ak′,j ·H(mk′,2j)
vj , set k′ := k′+2j , and Zj := Ãk′,j ·gvj ;

• If the jth bit of `′ is 0, set B := B ·Dk′,j · gzjvj and Zj := D̃k′,j · gvj .

To end, re-randomize as B := B ·Hs(mk,2β)v and S̃ := S̃k,β · gv; output the quote as

σ′ = (B, S̃, Zβ−1, . . . , Z0)

Verify(pk ,M = (t,m), σ) : If t = 1, output Verify-Type I(pk ,m, σ). Otherwise, output Verify-
Type II(pk ,m, σ), where these algorithms are defined immediately below.

Verify–Type I(pk ,m, σ) : Parse σ as the set of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j . Let ` = |m|.
Let Xi,j denote e(g, g)xi,j . We can compute these values as follows. The value Xi,−1 = 1,
since for all i = 1 to ` + 1, xi,−1 = 0. For i = 3 to ` + 1 and j = 0 to blg(i − 1) − 1c,
we compute Xi,j in the following manner: Let I = i − 2j+1 and J = j + 1. Next, compute

Xi,j =
(
e(g, g)α · e(Hs(mI,2J), S̃I,J)

)
/ e(SI,J , g). The verification accepts if and only if all of

the following hold:

• for i = 3 to ` and j = 0 to min(blg(i− 1)− 1c, blg(`− i+ 1)c),

e(Ai,j , g) = Xi,j/Xi+2j ,j−1 · e(H(mi,2j), Ãi,j)

• and for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c, e(Di,j , g) = Xi,j/Xi,j−1 · e(gzj , D̃i,j).

Verify-Type II(pk ,m, σ) : We give the verification algorithm for Type II signatures. Parse σ as
(B, S̃, Zβ−1, . . . , Z0). Let ` = |m| and β be the index of the highest bit of ` that is set to 1.
If σ does not include exactly β Zi values, reject. Set C := 1 and k = 1. From j = β− 1 down
to 0, proceed as follows:

• If the jth bit of ` is 1, set C := C · e(H(mk,2j), Zj) and k := k + 2j ;
• If the jth bit of ` is 0, set C := C · e(gzj , Zj).

Accept if and only if e(B, g) = e(g, g)α · e(Hs(m1,2β), S̃) · C.

Theorem 4.2 (Security under CDH) If the CDH assumption holds in G, then the above quotable
signature scheme is selectively quote unforgeable and context-hiding in the random oracle model.

19
213

Approved for Public Release; Distribution Unlimited.

Efficiency Discussion This construction presents the best known balance between time and
space complexity. The quotable (Type I) signatures require O(` lg `) elements in G for a message
of length `. The group elements in both types of signatures are elements of G, and not the target
group GT . Typically, elements of the base group are significantly smaller than elements of the
target group. Computing quotes requires O(` lg `) modular exponentations for a quote of length `
for re-randomization. Similarly, verification also requires O(` lg `) pairings.

The non-quotable (Type II) signatures require only O(lg `) elements in G. Computing quotes
is very efficient as it requires only O(lg `) modular exponentiations for a quote of length ` for
re-randomization. Similarly, verification requires only O(lg `) pairings.

On Removing the Random Oracle and Obtaining Full Security The quoting construction
above is provably selectively secure in the random oracle model. We now suggest a few potential
avenues for adapting the above construction to full security in the standard model. First, with
an eye to remove the random oracle, we observe that our signatures share many properties with
the private keys of hierarchical identity-based encryption (HIBE) schemes. To remove the random
oracle, while remaining under a selective definition, one might use the Boneh-Boyen techniques [10]
to instantiate H(m) = gmh, where h ∈ G is added to the public key and there is a method for
mapping the message space to Zp. Similarly, one might remove the random oracle by instantiating
H with the Waters hash [56] and applying his proof techniques. This can be viewed as a full
security construction with a reduction to the concrete security parameter by roughly a factor of
(1/O(q))lg `, where q is the number of signing queries and ` is the length of the quote. A direction
for achieving full security could be the recent “Dual System” techniques introduced by Waters [57].
One obstacle in adapting the Waters system is that it contains “tags” in the private key structure,
which would likely make our re-randomization step difficult for our context hiding property. Lewko
and Waters [38] recently removed the tags, which may make their techniques and construction more
suitable for our application. One drawback in using their HIBE techniques to construct signatures is
that even the signatures resulting from their construction require (slightly non-standard) decisional
complexity assumptions. Thus, it is unknown how to balance time/space efficiently while achieving
full security in the standard model from a simple computational assumption such as CDH.

4.3 Security Analysis

We now provide a proof of Theorem 4.2 by showing the following lemmas.

Lemma 4.3 (Strong Context-Hiding) The Section 4 quotable signature scheme is strongly context-
hiding.

Proof. Given any two challenge messages M = (t,m),M ′ = (t′,m′) such that P (M,M ′) = 1, we
claim that whether t′ = 1 or 0, SignDerive(pk , σ,M ′,M) has an identical distribution to that of
Sign(sk ,M), which implies that the two distributions are statistically close.

{(SK, σ ← Sign(SK,M),Sign(SK,M ′)}SK,M,M ′

{(SK, σ ← Sign(SK,M),SignDerive(PK, σ,M,M ′)}SK,M,M ′

Let `, `′ denote |m| and |m′| respectively. Let Γ = min(blg(i−1)−1c, blg(`− i+1)c). Sign(SK,M)
is composed of the following values:

Si,j = gαg−xi+2j ,j−1Hs(mi,2j)
ri,j , S̃i,j = gri,j , for i = 1 to ` and j = 0 to blg(`− i+ 1)c

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j , Ãi,j = gr

′
i,j , for i = 3 to ` and j = 0 to Γ

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j , for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c

20
214

Approved for Public Release; Distribution Unlimited.

for randomly chosen ri,j , r
′
i,j , r

′′
i,j , xi,j ∈ Zp.

Case where t′ = 1 (Type I Signatures). Let Γ′ = min(blg(i − 1) − 1c, blg(`′ − i + 1)c). When
t′ = 1, Sign(SK,M ′) is composed of the following values:

S′′i,j = gαg
−x′

i+2j ,j−1Hs(m
′
i,2j)

vi,j , S̃′′i,j = gvi,j , for i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c

A′′i,j = gx
′
i,jg
−x′

i+2j ,j−1H(m′i,2j)
v′i,j , Ã′′i,j = gv

′
i,j , for i = 3 to `′ and j = 0 to Γ′

D′′i,j = gx
′
i,jg−x

′
i,j−1gzjv

′′
i,j , D̃′′i,j = gv

′′
i,j , for i = 3 to `′ + 1 and j = 0 to blg(i− 1)− 1c

for randomly chosen vi,j , v
′
i,j , v

′′
i,j , x

′
i,j ∈ Zp.

And SignDerive(PK, σ,M,M ′) is Quote-Type I(PK, σ,m,m′), which is comprised of the fol-
lowing:

S′i,j = gαg−wi+2j ,j−1Hs(m
′
i,2j)

rI,j+ti,j , S̃′i,j = grI,j+ti,j , for i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c
A′i,j = gwi,jg−wi+2j ,j−1H(m′i,2j)

r′I,j+t
′
i,j , Ã′i,j = gr

′
I,j+t

′
i,j , for i = 3 to `′ and j = 0 to Γ′

D′i,j = gwi,jg−wi,j−1gzj(r
′′
I,j+t

′′
i,j), D̃′i,j = gr

′′
I,j+t

′′
i,j , for i = 3 to `′ + 1 and j = 0 to blg(i− 1)− 1c

for randomly chosen ti,j , t
′
i,j , t

′′
i,j , yi,j ∈ Zp, where m′ occurs at position k as a substring of m,

I = i+ k − 1 and wi,j = xI,j + yi,j .
Since all exponents have been independently re-randomized, one can see by inspection that

SignDerive(pk , σ,M ′,M) has identical distribution as that of Sign(sk ,M ′).

Case where t′ = 0 (Type II Signatures). Parse m′ = m′βm
′
β−1 . . .m

′
0 where m′j is of length 2j

or a null string where β = blg(`′)c. `′i denotes i-th bit of `′ when we start counting with zero as

the least significant bit. m′ occurs at position k of m. Sign(SK,M ′) = (B, S̃, Zβ−1, . . . , Z0) is the
following, for random u, ui ∈ Zp:

B = gα ·Hs(m
′
β)u

∏

j<β, `′j=1

H(m′j)
uj

∏

j′<β, `′
j′=0

gzj′uj′

S̃ = gu, Zj = guj

Let each m′j start at position sj in m′. SignDerive(PK, σ,M,M ′) = Quote-Type II(PK, σ,m,m′)

is (B′, S̃′, Z ′β−1, . . . , Z
′
0) such that

B′ = gα ·Hs(m
′
β)rk,β+v

∏

j<β, `′j=1

H(m′j)
r′k+sj−1,j+vj

∏

j′<β, `′
j′=0

g
zj′ (r

′′
k+sj′−1,j′+vj′)

S̃′ = grk,β+v, Z ′j = g
r′′k+sj−1,j+vj

for randomly chosen v, vj ∈ Zp. Since all exponents have been independently re-randomized,
one can see by inspection that SignDerive(PK, σ,M,M ′) has identical distribution as that of
Sign(sk ,M ′).

Thus, the our powers-of-2 construction is strongly context-hiding. �

Lemma 4.4 (Unforgeability) If the CDH assumption holds in G, then the Section 4 quotable
signature scheme is selectively unforgeable in the Unforg game in the random oracle model.

21
215

Approved for Public Release; Distribution Unlimited.

Proof. We first apply Lemma A.4, which allows us to only consider adversaries A that asks queries
to Sign oracle in the simpler NHU game.

Suppose an adversary A can produce a forgery with probability ε in the selective NHU un-
forgeability game; then we can construct an adversary B that breaks the CDH assumption with
probability ε plus a negligible amount.

We are now ready to describe B which solves the CDH problem. On input the CDH challenge
(g, ga, gb), B begins to run A and proceeds as follows:

Selective Disclosure A first announces the message M∗ on which he will forge.

Setup Let L be the maximum size of any message and let n = blg(L)c. Let M∗ = (t∗,m∗) and
`∗ = |m∗| and let β be the highest bit of `∗ set to 1 (numbering the least significant bit as zero).
Set e(g, g)α := e(ga, gb), which implicitly sets the secret key α = ab.

For i = 0 to n− 1, choose a random vi ∈ Zp and set

gzi =

{
gbvi if the ith bit of `∗ is 1;

gvi otherwise.

Finally, B give the public key PK = (g, gz0 , . . . , gzn−1 , e(g, g)α) to A and will answer its queries
to random oracles H and Hs interactively as described below.

Random Oracle Queries Proceeding adaptively, Amay make any of the following queries which
B will answer as follows:

1. H(x): The random oracle is answered as follows. If the query has been made before, return
the same response as before. Otherwise, imagine dividing up m∗ into a sequence of segments
whose lengths are decreasing powers of two; that is, the first segments would be of length 2β

where β is the largest power of two less than `∗, the second segment would contain the next
largest power of two, etc. Let m∗(j) denote the segment of m∗ corresponding to power j. If no
such segment exists, let m∗(j) =⊥. Select a random γ ∈ Zp and return the response as:

H(x) =

gγ
if |x| = 2j and j < β and m∗(j) = x

(x is on the selective path);

gbγ
otherwise

(x is not on the selective path).

Note that H(m∗(j)) is set according to the first method for all segments of m∗ except the first
segment m∗(β).

2. Hs(x): The random oracle is answered as follows. If the query has been made before, return
the same response as before. Select a random δ ∈ Zp and return the response as:

Hs(x) =

{
gδ if |x| = 2β and m∗(β) = x;

gbδ otherwise.

Note that Hs(m
∗
(j)) is set according to the first method only for the first segment of m∗.

22
216

Approved for Public Release; Distribution Unlimited.

Signature and Quote Queries

Sign (M): Let M = (t,m) and ` = |m|. Recall that β∗ is highest bit of `∗ set to 1 and that we
are counting up from zero as the least significant bit.

We describe how to create signatures.

1. When t = 1 and m∗ is not a substring of m (Type I Signature Generation):
Here mi,j denotes the substring m of length j starting at position i. It will help us to first
establish the variables Xi,j , which will be set to 1 if on the selective forgery path and 0
otherwise. We give a set of “rules” defining terms and make a few observations. Then we
describe how the reduction algorithm creates the signatures.
Rules.
For i = 1 up to `+ 1,
For j = blg(`− i+ 1)c down to −1,

(a) If j + 1 = β∗ and mi−2j+1,2j+1 = m∗(j+1), then set Xi,j = 1.

(b) Else, if j + 1 < β∗ and (j + 1)th bit of `∗ is 1 and mi−2j+1,2j+1 = m∗(j+1) and
Xi−2j+1,j+1 = 1, then set Xi,j = 1.

(c) Else if j + 1 < β∗ and (j + 1)th bit of `∗ is 0 and Xi,j+1 = 1, then set Xi,j = 1.

(d) Else set Xi,j = 0.

Observations. Before we show how B will simulate the signatures, we make a set of useful
observations.

(a) For all i and j ≥ β∗, Xi,j = 0.

(b) For all i, Xi,−1 = 0. Otherwise, mi−`∗,`∗ = m∗.

(c) For all i, j, if Xi,j = 1 and Xi,j−1 = 0, then the jth bit of `∗ is 1. If the jth bit were 0,
then Xi,j−1 would have been set to 1 by Rule 1c.

(d) For all i, j, if Xi,j = 0 and Xi,j−1 = 1, then the jth bit of `∗ is 1. If the jth bit were 0,
then the only way to set Xi,j−1 to 1 would be by Rule 1c, however, Xi,j = 0 so Rule 1c
does not apply.

(e) For all i, j, if Xi,j = 1 and Xi+2j ,j−1 = 0, then H(mi,2j) = gbγ for some known γ ∈ Zp.
Otherwise, Xi+2j ,j−1 would have been set by Rule 1b to be 1.

(f) For all i, j, if Xi,j = 0 and Xi+2j ,j−1 = 1, then H(mi,2j) = gbγ for some known γ ∈ Zp. If
Xi+2j ,j−1 = 1 and Xi,j = 0, then Xi+2j ,j−1 was set to be 1 either by Rule 1a or Rule 1c.
If it were Rule 1a, then j = β∗ and it follows from the programming of the random
oracle that H(mi,2j) = gbγ . If it were Rule 1c, then the jth bit of `∗ is 0, meaning m(j)

cannot be on the selective path and therefore again H(mi,2j) = gbγ .

(g) For all i, j, if Xi+2j ,j−1 = 0, then Hs(mi,2j) = gbδ for some known δ ∈ Zp. If j 6= β∗, this
follows immediately from the programming of the random oracle. Otherwise, if j = β∗,
then the only way for Xi+2j ,j−1 = 0 would be if m(β) 6= m∗(β) by Rule 1a. Thus, it also

follows that Hs(mi,2j) = gbδ.

Signature Components. Next, for i = 1 to ` + 1 and j = 0 to blg(` − i + 1)c, choose a
random x′i,j ∈ Zp and logically set xi,j := x′i,j + Xi,j · (ab). For i = 1 to ` + 1, set xi,−1 := 0
(as consistent with Observation 1b.)
A signature is comprised of the following values:
Start. For i = 1 to ` and j = 0 to blg(`− i+ 1)c:

23
217

Approved for Public Release; Distribution Unlimited.

(a) If Xi+2j ,j−1 = 0, then it follows by Observation 1g that Hs(mi,2j) = gbδ for some known
δ ∈ Zp, so choose random si,j ∈ Zp, implicitly set ri,j := −a/δ + si,j and set

Si,j = g−xi+2j ,j−1gbδsi,j

= gαg−xi+2j ,j−1Hs(mi,2j)
ri,j

S̃i,j = g−a/δ+si,j = gri,j

(b) Else Xi+2j ,j−1 = 1, so choose random ri,j ∈ Zp and with xi+2j ,j−1 := x′
i+2j ,j−1

+ ab set

Si,j = g
−x′

i+2j ,j−1Hs(mi,2j)
ri,j

= gαg−xi+2j ,j−1Hs(mi,2j)
ri,j

S̃i,j = gri,j

Across. Together with the following values for i = 3 to ` and j = 0 to min(blg(i − 1) −
1c, blg(`− i+ 1)c):
(a) If Xi,j = 1 and Xi+2j ,j−1 = 1, choose random r′i,j ∈ Zp with implicitly set xi,j = x′i,j +ab

and xi+2j ,j−1 = x′
i+2j ,j−1

+ ab and set

Ai,j = gx
′
i,jg
−x′

i+2j ,j−1H(mi,2j)
r′i,j

= gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j

Ãi,j = gr
′
i,j

(b) Else, if Xi,j = 1 and Xi+2j ,j−1 = 0, then H(mi,2j) = gbγ for some known γ ∈ Zp by
Observation 1e. Choose random s′i,j ∈ Zp with implicitly set xi,j = x′i,j +ab, xi+2j ,j−1 =
x′
i+2j ,j−1

and r′i,j := −a/γ + s′i,j and set

Ai,j = gx
′
i,jg−xi+2j ,j−1gbγs

′
i,j

= gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j

Ãi,j = gr
′
i,j

(c) Else, if Xi,j = 0 and Xi+2j ,j−1 = 1, then H(mi,2j) = gbγ for some known γ ∈ Zp by
Observation 1f. Choose random s′i,j ∈ Zp with implicitly set xi,j = x′i,j , xi+2j ,j−1 =
x′
i+2j ,j−1

+ ab and r′i,j := a/γ + s′i,j and set

Ai,j = gxi,jg
−x′

i+2j ,j−1gbγs
′
i,j

= gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j

Ãi,j = gr
′
i,j

(d) Else, Xi,j = 0 and Xi+2j ,j−1 = 0, so choose random r′i,j ∈ Zp and set

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j , Ãi,j = gr

′
i,j

Down. Together with the following values for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c:

24
218

Approved for Public Release; Distribution Unlimited.

(a) If Xi,j = 1 and Xi,j−1 = 1, choose random r′′i,j ∈ Zp with implicitly set xi,j = x′i,j + ab
and xi,j−1 = x′i,j−1 + ab and set

Di,j = gx
′
i,jg−x

′
i,j−1gzjr

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = gr
′′
i,j

(b) Else, if Xi,j = 1 and Xi,j−1 = 0, then the jth bit of `∗ is 1 by Observation 1c. Thus
zj = bvj , so choose random s′′i,j ∈ Zp with implicitly set xi,j = x′i,j + ab, xi,j−1 = x′i,j−1

and r′′i,j := −a/vj + s′′i,j and set

Di,j = gx
′
i,jg−xi,j−1gbvjs

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = g−a/vj+s
′′
i,j = gr

′′
i,j

(c) Else, if Xi,j = 0 and Xi,j−1 = 1, then the jth bit of `∗ is 1 by Observation 1d. Thus
zj = bvj , so choose random s′′i,j ∈ Zp with implicitly set xi,j = x′i,j , xi,j−1 = x′i,j−1 + ab
and r′′i,j := a/vj + s′′i,j and set

Di,j = gx
′
i,jg−xi,j−1gbvjs

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = ga/vj+s
′′
i,j = gr

′′
i,j

(d) Else, Xi,j = 0 and Xi,j−1 = 0, so choose random r′′i,j ∈ Zp and set

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j

2. When t = 0 and m 6= m∗ (Type II Signature Generation):
Let ` = |m|, and β = blg(`)c. `∗i denotes i-th bit of `∗ when we start counting with zero as
the least significant bit, and `i denotes i-th bit of `.
Parse m∗ as m∗β∗m

∗
β∗−1 . . .m

∗
0 where m∗i is a string of length 2i or a null string. mi is of length

2i if `i = 0, and is null otherwise. Similarly, parse m as mβmβ−1 . . .m0.
B constructs (B, S̃, Zβ−1, . . . , Z0) in the following way:

• If mβ 6= m∗β∗ , then Hs(mβ) = gbδ for a δ which is known to B.

(a) B sets S̃ := g−a/δ+r for a randomly chosen r and B := gbδr.
(b) For j = β − 1 down to 0, Zj := grj for a randomly chosen rj , and

– If `j = 1, then B := B ·H(mj)
rj .

– If `j = 0, then B := B · gzjrj .
• Otherwise, if β = β∗ and mβ = m∗β∗ , there exists js < β such that

– `js 6= `∗js , or
– `js = `∗js = 1 and H(mjs) 6= H(m∗js).

so B can construct a signature (B, S̃, Zβ−1, . . . , Z0) in the following way.

(a) B sets S̃ := grc for a randomly chosen rc and B := gδrc .
(b) For j = β − 1 down to js + 1 and j = js − 1 to 0, Zj := grj for randomly chosen rj ,

and

– If `j = 1, then B := B ·H(mj)
rj .

– If `j = 0, then B := B · gzjrj .
(c) For j = js,

25
219

Approved for Public Release; Distribution Unlimited.

– If `j = 1, whether `∗j = 0 or not, B knows γ such that H(mj) = gbγ . B sets

Zj = g−a/γ+rj for a randomly chosen rj , and B := B · gbγrj .
– If `j = 0 and `∗j = 1, then B knows v such that gzj = gbv. B sets Zj = g−a/v+rj

for a randomly chosen rj , and B := B · gbvrj .
B returns (B, S̃, Zβ−1, . . . , Z0).

Response Eventually, A outputs a valid signature σ∗ on M∗ = (t∗,m∗). Recall that `∗ = |m∗|
and β = blg(`∗)c. Here `∗i denotes i-th bit of `∗ when we start counting with zero as the least
significant bit. Parse m∗ as m∗βm

∗
β−1 . . .m

∗
0 where m∗i is a string of length 2i (when `∗i = 1) or a

null string (when `∗i = 0).
Because of the selective disclosure and setup, B knows the following exponents:

– γ such that Hs(m
∗
β) = gγ .

– δj such that H(m∗
sj ,2j

) = gδj when `∗j = 1 and j 6= β.

– zj when `∗j = 0.

t∗ is either 1 or 0.

• If t∗ = 1,
si denotes the position where m∗i starts. B can compute the information of some xi,j with
the following components of σ∗.

– S1,β = gαg
−x

1+2β,β−1Hs(m
∗
β)rc , S̃1,β = gr1,β

B knows γ such that Hs(m
∗
β) = gγ , so B can compute gαg

−x
1+2β,β−1 = S1,β/S̃1,β

γ
.

– For j = β − 1 down to 0,

∗ when `j = 1, Asj ,j = gxsj ,jg−xsj−1,j−1H(m∗j)
r′sj ,j , Ãsj ,j = g

r′sj ,j

B knows δ such that H(m∗j) = gδ, so B can compute gxsj ,jg−xsj−1,j−1 = Asj ,j/Ãsj ,j
δ
.

∗ when `j = 0, Dsj ,j = gxsj ,jg−xsj−1,j−1g
zjr
′′
sj ,j , D̃sj ,j = g

r′′sj ,j

B knows zj , so B can compute gxsj ,jg−xsj−1,j−1 = Dsj ,j/D̃sj ,j
zj

.

so B can compute gxsj ,jg−xsj−1,j−1 .

B has the values of gxsj ,jg−xsj−1,j−1 for j = β−1 down to 0 and gαg
−x

1+2β,β−1 , so can compute

gαg
−x

1+2β,β−1

β−1∏

j=0

gxsj ,jg−xsj−1,j−1 = gαg−xs−1,−1 = gα

• If t∗ = 0,
B parses σ∗ as (B, S̃, Zβ−1, . . . , Z0), with

S̃ = gc, Zβ−1 = gcβ−1 , . . . , Z0 = gc0

for some c, cβ−1, . . . , c0 ∈ Zp.

B = gα ·Hs(m
∗
β)c

∏

j<β, `∗j=1

H(m∗j)
cj

∏

j′<β, `∗
j′=0

(gzj′)cj′

because the signature is valid.

– B knows γ such that Hs(m
∗
β) = gγ . B sets C := S̃γ .

26
220

Approved for Public Release; Distribution Unlimited.

– From j = β − 1 down to 0, B proceeds as:

∗ If `j = 1, B knows δj such that H(m∗j) = gδj . B sets C := C · Zδjj ;

∗ If `j = 0, B knows zj . B sets C := C · Zzjj .

Then
C = Hs(m

∗
β)c

∏

j<β, `∗j=1

H(m∗j)
cj

∏

j′<β, `∗
j′=0

(gzj′)cj′

so B can compute B/C = gα.

Thus, whether t∗ is 1 or 0, B can solve for gα = gab and correctly answer to the CDH challenge.

Analysis The distribution of the above game and the security game are identical. Thus, whenever
A is successful in a forgery against our scheme, B will solve the CDH challenge.

�

5 A Construction for Subset Predicates based on ABE

The Subset Predicate. We now point out a surprising connection to Attribute Based Encryp-
tion (ABE). We show that existing constructions for Ciphertext-Policy ABE [8, 37, 58] naturally
lead to context hiding quotable signatures for arbitrary message subsets (as opposed to the sub-
string predicate considered in the previous section). In particular, let U be a set of strings over
an arbitrary alphabet. These strings can be used to encode elements for different types of sets. A
message will be a set of strings from U . A general way to define the subset predicate would be
P (M,m′) = 1 iff m′ ⊆ mi for some mi ∈ M . Recall from Section 2 that M is a set of messages,
which might have been independently authenticated. Here, we want to disallow “collusions” be-
tween two different signatures where m′ is a subset of the union of multiple messages in M , but not
any single one. (Otherwise, this would be trivially realizable from standard signatures schemes.)
In other words, our focus here is extracting a subset from a single signed set. Thus, we will restrict
our attention in this section to the simple predicate P (m,m′) = 1 iff m′ ⊆ m.

The Construction at a High-Level. Our main tool is an observation of Naor that shows that
secret keys in Identity Based Encryption [12] can function as signatures. Recall that in (ciphertext-
policy) attribute based encryption an authority provides secret keys to a user based on the user’s
list of attributes. The main challenge in building such systems is preventing collusion attacks:
two (or more) users with distinct sets of attributes should be unable to create a secret key for a
combination of their attributes.

If we treat elements in a message m ⊆ U as attributes, that is, we treat a message m =
{a1, . . . , a`} ∈ U ` as a set of attributes a1, . . . , a`, then we can define the signature on m as a
set of ` secret keys corresponding to the ` attributes in the message. Verifying the signature can
be done by trying to decrypt some test ciphertext using the secret keys in the signature. Now,
given a signature on m we derive a signature on a subset of the elements in m by simply removing
the secret keys corresponding to elements not in the subset. For context hiding, we need to re-
randomize the resulting set of secret keys. (Not all CP-ABE schemes may support the removal and
re-randomization of secret keys in this manner, but the schemes of [8, 37, 58] do.)

Since ABE security prevents collusion attacks, it is straight forward to show that these signatures
are unforgeable in the sense of Definition 2.3. Moreover, due to the re-randomization of secret keys,

27
221

Approved for Public Release; Distribution Unlimited.

a derived signature is sampled from the same distribution as a fresh signature and is independent
from the given signature. This implies strong context hiding in sense of Definition 2.4.

This unexpected connection between quoting and ABE leads to the following theorem, stated
first informally.

Theorem 5.1 (informal) The Ciphertext-Policy ABE systems in [8, 37, 58] translate using Naor’s
transformation into a signature scheme supporting quoting for arbitrary subsets of a message. (Se-
lective) security of the CP-ABE systems imply (selective) unforgeability and context hiding.

In other words, when the ABE scheme provides adaptive (resp, selective) security, then the
resulting signature scheme achieves adaptive (resp., selective) unforgeability. The (third) ABE
scheme of Waters [58] provides selective security from the Decisional Bilinear Diffie Hellman as-
sumption. Adaptive security is proven for the Bethencourt et al. construction [8], but only in the
generic group model. The construction of Lewko et al. [37] proves adaptive security under certain
static assumptions using composite order groups.

5.1 The Subset Construction from Existing CP-ABE Schemes

We now formalize the intuition and claims of the previous section.

5.1.1 Background: Ciphertext-Policy ABE

Definition 1 (Access Structure [3]) Let {P1, P2, . . ., Pn} be a set of parties. A collection
Γ ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ Γ and B ⊆ C then C ∈ Γ. An access structure
(respectively, monotone access structure) is a collection (resp., monotone collection) Γ of non-empty
subsets of {P1, P2, . . . , Pn}, i.e., Γ ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in Γ are called the authorized sets,
and the sets not in Γ are called the unauthorized sets.

In the context of CP-ABE, the role of the parties is taken by the attributes. Thus, the access
structure Γ will contain the authorized sets of attributes. We restrict our attention to monotone
access structures.

Definition 5.2 (CP-ABE Algorithm Specification) A ciphertext-policy attribute-based encryp-
tion system for message spaceM and access structure space G is a tuple of the following algorithms:

Setup(λ, U)→ (PK,MK). The setup algorithm takes as input a security parameter λ and a uni-
verse description U , which defines the set of allowed attributes in the system. It outputs the
public parameters PK and the master secret key MK.

Encrypt(PK,m,Γ)→ CT. The encryption algorithm takes as input the public parameters PK, a
message m and an access structure Γ and outputs a ciphertext CT associated with the access
structure.

KeyGen(MK, S)→ sk . The key generation algorithm takes as input the master secret key MK
and a set of attributes S and outputs a private key sk associated with the attributes.

Decrypt(sk ,CT)→ m. The decryption algorithm takes as input a secret key sk associated with
attributes S and a ciphertext CT associated with access structure Γ and outputs a message m
if S satisfies Γ or the error message ⊥ otherwise.

The correctness property requires that for all sufficiently large λ ∈ N, all universe descriptions
U , all (PK,MK) ∈ Setup(λ, U), all S ⊆ U , all sk ∈ KeyGen(MK, S), all m ∈ M, all Γ ∈ G and
all CT ∈ Encrypt(PK,m,Γ), if S satisfies Γ, then Decrypt(sk ,CT) outputs m.

28
222

Approved for Public Release; Distribution Unlimited.

Security Model for CP-ABE Let Π = (Setup,Encrypt,KeyGen,Decrypt) be a CP-ABE
scheme for message space M and access structure space G, and consider the following experiment
for an adversary Adv, parameter λ and attribute universe U :

The CP-ABE experiment CP-ABE-ExpAdv,Π(λ,U):

Start. Setup(λ,U) is run to obtain the public parameters PK and master secret key MK.

Phase 1. Adversary Adv is given PK and access to the oracle KeyGen(MK, ·), which generates
a private key corresponding to an attribute set of the adversary’s choosing.

Challenge. The adversary outputs two messages m0,m1 ∈M and a challenge access structure Γ∗

such that none of the sets of attributes queried during Phase 1 satisfy it. A random bit b is
chosen and Encrypt(PK,mb,Γ

∗) is run to produce CT∗, which is then given to the adversary.

Phase 2. The adversary is given access to the oracle KeyGen(MK, ·), with the restriction that it
cannot query the oracle on any set of attributes that satisfy Γ∗.

Guess. The adversary outputs a guess b′ of b. The output of the experiment is defined to be 1 if
and only if b′ = b.

Definition 5.3 (CP-ABE Security) A CP-ABE scheme Π is secure for attribute universe U if
for all probabilistic polynomial-time adversaries Adv, there exists a negligible function negl such
that:

Pr[CP-ABE-ExpAdv,Π(λ,U) = 1] ≤ negl(λ).

We say that a system is selectively secure if we add an Init stage before Start where the adversary
outputs the challenge access structure Γ∗ (instead of waiting until Challenge to do so).

5.1.2 CP-ABE with Key Reduction

Our construction requires that the holder of a private key can efficiently “remove” attributes from
his private key and then re-randomize the remaining private key. We formalize this as follows.

Definition 5.4 (CP-ABE with key reduction) We say that a CP-ABE system for attribute
universe U supports key reduction if there exists an efficient algorithm

KeyReduce(PK, sk , S, S′)→ sk ′. The key reduction algorithm takes as input the public parame-
ters PK with a private key sk associated with attribute set S and outputs a private key sk ′

associated with attribute set S′, if S′ ⊆ S, and ⊥ otherwise.

such that if (PK,MK) ∈ Setup(λ, U) and S′ ⊆ S ⊆ U , then for all such tuples (MK, S, S′), the
following two distributions are statistically close:

{(
MK, sk ← KeyGen(MK, S), KeyGen(MK, S′)

)}
MK,S,S′{(

MK, sk ← KeyGen(MK, S), KeyReduce(PK, sk , S, S′)
)}

MK,S,S′

The distributions are taken over the coins of KeyGen and KeyReduce.

It is not a coincidence that this definition strongly resembles the context hiding definition
presented earlier. Fortunately, we observed that several existing CP-ABE schemes support key
reduction.

29
223

Approved for Public Release; Distribution Unlimited.

Claim 5.5 The Ciphertext-Policy ABE systems in [8, Section 4.2],[37, Section 2.3.1],[58, Section
6] support key reduction.

Proof. We argue this claim by providing a key reduction algorithm for each scheme. In all cases,
the output is perfectly indistinguishable from the normal key generation algorithm.

The BSW Construction [8, Section 4.2]

• Setup(λ, U) → (PK,MK): The algebraic setting is a bilinear group G of prime order p
with generator g. The public parameters PK are G, g, p, h = gβ, f = ga/β, e(g, g)α, where
β, α ∈ Zp, and the description of a hash function H : {0, 1}∗ → G. The master secret key
MK is (PK, β, gα).

• KeyGen(MK, S) → sk : The key generation algorithm chooses random r, ri ∈ Zp for each
attribute i ∈ S. The private key sk is:

S, D = g(α+r)/β, Dj = grH(j)rj , D′j = grj ∀j ∈ S.

• KeyReduce(PK, sk , S, S′) → sk ′: The key reduction algorithm chooses random r′, r′i for
each attribute i ∈ S′ and outputs the private key sk ′ as:

S′, D′ = Dgr
′/β = g(α+r+r′)/β,

D′j = Djg
r′H(j)rj = gr+r

′
H(j)rj+r

′
j , D′j = Djg

r′j = grj+r
′
j ∀j ∈ S′.

The LOSTW Construction [37, Section 2.3.1]

• Setup(λ, U) → (PK,MK): The algebraic setting is a bilinear group G of order N = p1p2p3

(3 distinct primes). We let Gpi denote the subgroup of order pi in G. The public parameters
PK are N, g, ga, e(g, g)α, Ti = gsi for all attributes i ∈ U , where g ∈ Gp1 and a, α, si ∈ ZN .
The master secret key MK is PK, α and a generator X3 ∈ Gp3 .

• KeyGen(MK, S)→ sk : The key generation algorithm chooses a random t ∈ ZN and random
elements R0, R

′
0, Ri ∈ Gp3 . The private key sk is:

S, K = gαgatR0, L = gtR′0, Ki = T tiRi ∀i ∈ S.

• KeyReduce(PK, sk , S, S′) → sk ′: The key reduction algorithm chooses a random t′ ∈ ZN
and random elements Z0, Z

′
0, Zi ∈ Gp3 and outputs the new private key sk ′ as:

S′, K ′ = Kgat
′
Z0 = gαga(t+t′)R0Z0, L

′ = Lgt
′
Z ′0 = gt+t

′
R′0Z

′
0,

K ′i = KiT
t′
i Z
′
i = T t+t

′
i RiZi ∀i ∈ S′.

The Waters Construction [58, Section 6]

• Setup(λ, U)→ (PK,MK): The algebraic setting is a bilinear group G of prime order p with
generator g. Let nmax be the maximum number of nodes in an access formula and let |U | be
the number of attributes in U . The public parameters PK are G, g, p, ga, e(g, g)α, (h1,1, . . . , h1,U),
. . . , (hnmax,1, . . . , hnmax,U), where all hi,j values are elements in G. The master secret key MK
is (PK, gα).

30
224

Approved for Public Release; Distribution Unlimited.

• KeyGen(MK, S) → sk : The key generation algorithm chooses random t1, . . . , tnmax ∈ Zp.
The private key sk is:

S, K = gαgat1 , L1 = gt1 , . . . , Lnmax = gtnmax ,

∀x ∈ S, Kx =
∏nmax
j=1 h

tj
j,x.

• KeyReduce(PK, sk , S, S′)→ sk ′: The key reduction algorithm chooses random t′1, . . . , t
′
nmax ∈

Zp. The private key sk ′ is:

S′, K ′ = Kgat
′
1 = gαga(t1+t′1), L′1 = L1g

t′1 = gt1+t′1 , . . . , L′nmax = Lnmaxg
t′nmax = gtnmax+t′nmax ,

∀x ∈ S′, K ′x = Kx
∏nmax
j=1 h

t′j
j,x =

∏nmax
j=1 h

tj+t
′
j

j,x ..

�

5.1.3 The Subset Signature Construction

Let Π = (SetupABE ,EncryptABE ,KeyGenABE ,DecryptABE) be a CP-ABE scheme that sup-
ports key reduction with the algorithm KeyReduceABE . Let Π have an arbitrary, finite and
efficiently-samplable10 message space M and access structure space G that supports AND gates.
Let U be a set of strings over an arbitrary alphabet. We construct a signature scheme that supports
computing on authenticated subsets of U as follows.

KeyGen(1λ) : Run SetupABE(1λ, U) to obtain the key pair (pk , sk), which will serve as the
public and secret keys of the signature scheme.

Sign(sk ,m ⊆ U) : Run KeyGenABE(sk ,m) to obtain an ABE private key which will be treated
as the signature σ.

SignDerive(pk , σ,m,m′) : First, check if P (m,m′) = 1. If not, output ⊥. Otherwise, run
KeyReduceABE(pk , σ,m,m′) to obtain the new signature σ′ and output it.

Verify(pk ,m, σ) : Choose a random value x ∈ M and a random access structure Γ ∈ G. Run
EncryptABE(pk , x,Γ) to obtain CT. Output 1 if and only if DecryptABE(σ,CT) = x.

5.1.4 Security Analysis

Theorem 5.6 If Π is (resp., selectively) secure for attribute universe U with respect to Defini-
tion 5.3, then the above subset signature scheme is (resp., selectively) unforgeable with respect to
Definition 2.3 and strongly context hiding with respect to Definition 2.4.

Proof. We argue this theorem in two parts.

Lemma 5.7 (Strong Context Hiding) If Π is a CP-ABE scheme that supports key reduction,
then the above subset signature scheme is strongly context hiding under Definition 2.4.

10We mean that it is possible to efficiently sample elements from the set uniformly at random.

31
225

Approved for Public Release; Distribution Unlimited.

Proof. This follows directly from the key reduction property of the CP-ABE scheme. Let (pk , sk)←
KeyGen(1λ) be a key pair. A signature scheme (KeyGen,SignDerive, Verify) is strongly
context hiding for the simple subset predicate P if for all such triples ((pk , sk),m,m′) where
P (m,m′) = 1, the following two distributions are statistically close:

{(
sk , σ ← Sign(sk ,m), Sign(sk ,m′)

)}
sk ,m,m′{(

sk , σ ← Sign(sk ,m), SignDerive(pk , σ,m,m′)
)}

sk ,m,m′

where the distributions are taken over the random coins of Sign and SignDerive. If we substi-
tute the signature algorithms for their underlying CP-ABE algorithms, we have the following two
distributions:

{(
sk , σ ← KeyGenABE(sk ,m), KeyGenABE(sk ,m′)

)}
sk ,m,m′{(

sk , σ ← KeyGenABE(sk ,m), KeyReduceABE(pk , σ,m,m′)
)}

sk ,m,m′

where the distributions are taken over the random coins of KeyGenABE and KeyReduceABE .
The statistical closeness of these distributions is directly guaranteed by the key reduction specifi-
cation when the predicate is satisfied, i.e., m′ ⊆ m. �

Lemma 5.8 (Unforgeability) If Π is a (resp., selectively) secure CP-ABE scheme that sup-
ports key reduction, then the above subset signature scheme is (resp., selectively) unforgeable in the
Unforg game.

Proof. We first apply Lemma A.4, which allows us to only consider adversaries A that asks queries
to Sign oracle in the simpler NHU game.

We deal with the non-selective case first. Suppose an adversary A can produce a forgery with
probability ε in the NHU selective unforgeability game; then we can construct an adversary B that
breaks the selective security of the CP-ABE scheme with key reduction with probability 1/2 + ε/2.
B begins to run A and proceeds as follows:

Setup When B receives the public parameters pk from its challenger, it passes these on as the
signature public key to A.

Sign When A queries Sign(m), B queries its key generation oracle on m and returns the response
to A.

Response If A does not output a valid forgery, then B simply chooses and outputs a random
bit. If A outputs a valid message-signature pair (m∗, σ∗) where m∗ is not a subset of any message
queried to Sign, then B then picks two arbitrary messages m0,m1 in the message space of the CP-
ABE scheme. It outputs these to its challenger together with a challenge access structure, which is
the AND of all attributes in m∗. (Recall that in this signature scheme messages are sets of strings.)
This challenge access structure is allowed, under the CP-ABE security experiment, because none
of the other private keys created by the oracle can satisfy it. Once the challenge ciphertext CT∗

is returned, B simply uses the private key σ∗ to decrypt CT∗ and to then state which of the two
challenge messages was encrypted.

32
226

Approved for Public Release; Distribution Unlimited.

The Selective Case Suppose an adversary A can produce a forgery with probability ε in the
NHU selective unforgeability game; then we can construct an adversary B that breaks the selective
security of the CP-ABE scheme with key reduction with probability ε plus a negligible amount. B
behaves as above, except that prior to Setup there is a selective disclosure phase where A first
announces the message m∗ on which he will forge. B then announces to its challenger that its
challenge access structure will be the AND of all attributes in m∗. This information is latter used,
as before, in B’s Response phase, where now A will only output σ∗.

Analysis The following analysis applies to both the selective and non-selective cases. The view
of A when interacting with B is identical to its view when interacting with a real NHU game chal-
lenger. Whenever A correctly produces a forgery, then B correctly identified the challenge message.
Whenever A fails to produce a forgery, then B guesses the challenge message with probability 1/2.
Thus, if A succeeds with probability ε, then B succeeds with probability ε+ (1− ε)/2 = 1/2 + ε/2.
� �

6 Computing Weighted Averages and Fourier Transforms

So far we only constructed schemes for univariate predicates P . We now give an example where
one computes on multiple signed messages. Let p be a prime, n a positive integer, and T a set of
tags. The message space M consists of pairs:

M := T × Fnp

Now, define the predicate P as follows: P (ε,m) = 1 for all m ∈M and11

P

((
(t1,v1), . . . , (tk,vk)

)
, (t,v)

)
= 1 ⇐⇒

{
t = t1 = · · · = tk, and
v ∈ span(v1, . . . ,vk)

Thus, given signatures on vectors v1, . . . ,vk grouped together by the tag t, anyone can create a
signature on a linear combination of these vectors. This can be done iteratively so that given signed
linear combinations, new signed linear combinations can be created. Unforgeability means that if
the adversary obtains signatures on vectors v1, . . . ,vk for particular tag t ∈ T then he cannot
create a signature on a vector outside the linear span of v1, . . . ,vk.

Signature schemes for this predicate P are presented in [15, 14, 13, 16, 2] while schemes over Z
(rather than Fp) are presented in [28]. These schemes were originally designed to secure network
coding where context hiding is not needed since there are no privacy requirements for the sender (in
fact, the sender is explicitly transmitting all his data to the recipient). The question then is how to
construct a system for predicate P above that is both unforgeable and context hiding. Fortunately,
we do not need to look very far. The linearly homomorphic signature schemes in [15] can be shown
to be context hiding. We state this in the following theorem.

Theorem 6.1 If the CDH assumption holds in group G, then the signature scheme NCS1 from [15]
is unforgeable and context-hiding in the random oracle model, assuming tags are generated inde-
pendently at random by the unforgeability challenger when responding to Sign queries.

11Recall, the signature on ε is the output the KeyGen algorithm.

33
227

Approved for Public Release; Distribution Unlimited.

Unforgeability is Theorem 6 in [15], which holds only when tags ti ∈ T are generated inde-
pendently at random by the signer. While context hiding has not been considered before for this
scheme, it is not difficult to show that the scheme is context hiding. The scheme is unique in the
sense that every vector v has a unique valid signature.12 It is easy to show that any homomorphic
unique signature must be context hiding and hence NCS1 is context hiding.

Viewed in this way, the scheme NCS1 gives the ability to carry out authenticated addition on
signed data. Consider a server that stores signed data samples s1, . . . , sn in Fp. The signature on
sample si is actually a signature on the vector (si|ei) ∈ Fn+1

p , where ei is the ith unit vector in
Fnp . The server stores (i, si) and a signature on (si|ei). (The vector ei need not be stored with the
data and can be reconstructed from i when needed.) Using SignDerive, the server can compute
a signature σ on the sum (

∑n
i=1 si, 1, . . . , 1). Since the schemes are context hiding, the server can

publish the sum
∑n

i=1 si mod p and the signature σ on the sum and (provably) reveal no other
information on the original data. The “augmentation” (1, . . . , 1) proves that the published message
really is the claimed sum of the original samples (the tag t prevents mix-and-match attacks between
different data sets). We can similarly publish a sum of any required subset.

More generally, the server can publish an authenticated inner product of the samples s :=
(s1, . . . , sn) with any public vector c ∈ Fnp without leaking additional information about the samples.
This is needed, for example, to publish a weighted average of the original data set. Similarly, recall
that the Fourier transform of the data (s1, . . . , sn) is a specific linear operator (represented by a
specific n× n matrix) applied to this vector. Therefore, we can publish signed Fourier coefficients
of the data. If we only publish a subset of the Fourier coefficients then, by context hiding, we are
guaranteed that no other information about (s1, . . . , sn) is revealed.

7 Conclusion and Open Problems

In summary, the goal of this work is the study of computing on authenticated data. We pre-
sented one unified framework for a variety of distinct concepts in this area, including arithmetic,
homomorphic, quotable, redactable and transitive signatures. The definition we provide tackles
unforgeability as well as a strong notion of privacy, where an adversary is unable to distinguish
a derived signature from a fresh one even when given the original signature. In this setting, we
provide generic constructions for all univariate and closed predicates, as well as specific efficient
constructions for predicates such as quoting, subsets, weighted sums, averges and Fourier trans-
forms.

This work leaves open a host of interesting problems. First, one can imagine predicates that
support more complex operations on signed messages. One natural set of examples are spreadsheet
operations such as median, standard deviation, and rounding on signed data (satisfying unforgeabil-
ity and context hiding). Other examples include graph algorithms such as computing a signature
on a perfect matching in a signed bipartite graph. Still other examples involve efficiently expanding
quoting/redacting to more complex data types, such as (potentially compressed) graphical images.

A first step in this direction may be to improve upon some of the constructions for basic pred-
icates presented herein. For example, as discussed at the end of Section 4.2, for quoting/redacting
on simple text, it is still unknown how to balance time and space efficiently while achieving full
security in the standard model from a simple computational assumption.

12Recall that in unique signatures [39] in addition to the regular unforgeability requirement there is an additional
uniqueness property: for any honestly-generated public key pk and any message m in the message space, there do
not exist values σ1, σ2 such that σ1 6= σ2 and yet Verify(pk ,m, σ1) = Verify(pk ,m, σ2) = 1.

34
228

Approved for Public Release; Distribution Unlimited.

References

[1] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable signa-
tures. In ESORICS ’05, volume 3679 of LNCS, pages 159–177, 2005.

[2] Nuttapong Attrapadung and Benoit Libert. Homomorphic network coding signatures in the
standard model. In Public Key Cryptography - PKC 2011, volume 6571, page 17, 2011.

[3] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel
Institute of Technology, Technion, Haifa, Israel, 1996.

[4] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case of
hashing and signing. In CRYPTO ’94, volume 839 of LNCS, pages 216–233, 1994.

[5] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In EUROCRYPT, pages 614–629, 2003.

[6] Mihir Bellare and Gregory Neven. Transitive signatures based on factoring and RSA. In
ASIACRYPT ’02, volume 2501 of LNCS, pages 397–414, 2002.

[7] Mihir Bellare and Gregory Neven. Transitive signatures: New schemes and proofs. IEEE
Transactions on Information Theory, 51:2133–2151, 2005.

[8] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[9] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

[10] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without
random oracles. In Advances in Cryptology – EUROCRYPT ’04, volume 3027, pages 223–238,
2004.

[11] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO ’04,
volume 3152 of LNCS, pages 45–55, 2004.

[12] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM
J. Comput., 32(3), 2003.

[13] Dan Boneh and David Freeman. Homomorphic signatures for polynomial functions. In Proc.
of Eurocrypt, 2011. Cryptology ePrint Archive, Report 2011/018.

[14] Dan Boneh and David Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In Proc. of PKC, volume 6571 of LNCS, pages 1–16, 2011.
Cryptology ePrint Archive, Report 2010/453.

[15] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace:
Signature schemes for network coding. In Public-Key Cryptography — PKC ’09, volume 5443
of Springer LNCS, pages 68–87, 2009.

[16] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast encryption
schemes. In ASIACRYPT, pages 455–470, 2008.

35
229

Approved for Public Release; Distribution Unlimited.

[17] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan Katzen-
beisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and Dominique
Schröder. Redactable signatures for tree-structured data: definitions and constructions. In
Applied Cryptography and Network Security (ACNS) ’08, volume 6123 of LNCS, pages 87–104,
2010.

[18] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob
Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signatures revisited.
In Public Key Cryptography, volume 5443 of LNCS, pages 317–336, 2009.

[19] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Santizable sig-
natures: How to partially delegate control for authenticated data. In BIOSIG 2009, pages
117–128, 2009.

[20] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Unlinkability of
sanitizable signatures. In Public Key Cryptography (PKC) ’10, volume 6056 of LNCS, pages
444–461, 2010.

[21] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Advances in Cryptology – CRYPTO ’04, volume 3152, pages 56–72, 2004.

[22] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, pages 255–271, 2003.

[23] Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short redactable signatures using random
trees. In CT-RSA ’09: Proceedings of the The Cryptographers’ Track at the RSA Conference
2009 on Topics in Cryptology, pages 133–147, 2009.

[24] Denis Charles, K Jain, and K Lauter. Signatures for network coding. International Journal
of Information and Coding Theory, 1(1):3–14, 2009.

[25] David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, volume 547 of
LNCS, pages 257–265, 1991.

[26] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

[27] Christina Fragouli and Emina Soljanin. Network Coding Fundamentals. Now Publishers Inc.,
Hanover, MA, USA, 2007.

[28] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding
over the integers. In Public Key Cryptography — PKC ’10, volume 6056 of Springer LNCS,
pages 142–160, 2010.

[29] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[30] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In FOCS, pages 464–479, 1984.

[31] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281–308, 1988.

36
230

Approved for Public Release; Distribution Unlimited.

[32] Stuart Haber, Yasuo Hatano, Yoshinori Honda, William Horne, Kunihiko Miyazaki, Tomas
Sander, Satoru Tezoku, and Danfeng Yao. Efficient signature schemes supporting redaction,
pseudonymization, and data deidentification. In ASIACCS ’08, pages 353–362, 2008.

[33] Alejandro Hevia and Daniele Micciancio. The provable security of graph-based one-time sig-
natures and extensions to algebraic signature schemes. In ASIACRYPT ’02, volume 2501 of
LNCS, pages 379–396, 2002.

[34] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard
assumptions. In EUROCRYPT ’09, volume 5479 of LNCS, pages 333–350, 2009.

[35] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic signature
schemes. In CT-RSA, pages 244–262. Springer-Verlag, 2002.

[36] M. Krohn, M. Freedman, and D. Mazieres. On-the-fly verification of rateless erasure codes for
efficient content distribution. In Proc. of IEEE Symposium on Security and Privacy, pages
226–240, 2004.

[37] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In EUROCRYPT, 2010.

[38] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In TCC ’10, volume 5978 of LNCS, pages 455–479, 2010.

[39] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In CRYPTO, pages 597–612, 2002.

[40] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[41] Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In CT-RSA ’02, volume
2271 of LNCS, pages 236–243, 2002.

[42] Kunihiko Miyazaki, Goichiro Hanaoka, and Hideki Imai. Digitally signed document sanitizing
scheme based on bilinear maps. In ASIACCS ’06: Proceedings of the 2006 ACM Symposium
on Information, computer and communications security, pages 343–354, 2006.

[43] Kunihiko Miyazaki, Mitsuru Iwamura, Tsutomu Matsumoto, Ryoichi Sasaki, Hiroshi Yoshiura,
Satoru Tezuka, and Hideki Imai. Digitally signed document sanitizing scheme with disclosure
condition control. IEICE Transactions on Fundamentals, E88-A(1):239–246, 2005.

[44] Kunihiko Miyazaki, Seiichi Susaki, Mitsuru Iwamura, Tsutomu Matsumoto, Ryoichi Sasaki,
and Hiroshi Yoshiura. Digital document sanitizing problem. IEICE Technical Report,
103(195(ISEC2003 12-29)):61–67, 2003.

[45] David Naccache. Is theoretical cryptography any good in practice? CHES 2010 invited talk,
2010. available at www.iacr.org/workshops/ches/ches2010.

[46] Gregory Neven. A simple transitive signature scheme for directed trees. Theoretical Computer
Science, 396(1-3):277–282, 2008.

[47] Ronald Rivest. Two signature schemes. Slides from talk given at Cambridge University, 2000.
http://people.csail.mit.edu/rivest/Rivest-CambridgeTalk.pdf.

37
231

Approved for Public Release; Distribution Unlimited.

[48] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Comm. of the ACM, 21(2):120–126, February 1978.

[49] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret: Theory and applications
of ring signatures. In Essays in Memory of Shimon Even, pages 164–186, 2006.

[50] Siamak Fayyaz Shahandashti, Mahmoud Salmasizadeh, and Javad Mohajeri. A provably secure
short transitive signature scheme from bilinear group pairs. In Security and Communication
Networks, volume 3352 of LNCS, page 6076, 2005.

[51] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM
Transaction on Computer Systems, 1:38–44, 1983.

[52] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography — PKC ’10, volume 6056 of Springer LNCS,
pages 420–443, 2010.

[53] Nigel Smart. ECRYPT2 Yearly Report on Algorithms and Keysizes (2008-2009), Revision
1.0, July 27, 2009. Edited by Smart. Available at http://www.ecrypt.eu.org/documents/

D.SPA.7.pdf.

[54] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Context extraction signatures. In Informa-
tion Security and Cryptology (ICISC), volume 2288 of LNCS, pages 285–304, 2001.

[55] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology — EUROCRYPT ’10, volume 6110
of Springer LNCS, pages 24–43, 2010.

[56] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in
Cryptology – EUROCRYPT ’05, volume 3494, pages 320–329, 2005.

[57] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Advances in Cryptology – CRYPTO ’09, volume 5677, pages 619–636, 2009.

[58] Brent Waters. Ciphertext-policy attribute-based encryption: an expressive, efficient, and prov-
ably secure realization. In Public Key Cryptography — PKC ’11, pages 53–70, 2011.

[59] Lei Wei, Scott E. Coull, and Michael K. Reiter. Bounded vector signatures and their applica-
tions. In ASIACCS ’11, pages 277–285, 2011.

[60] Xun Yi. Directed transitive signature scheme. In CT-RSA ’07, volume 4377 of LNCS, page
129144, 2007.

[61] Fang Zhao, Ton Kalker, Muriel Médard, and Keesook Han. Signatures for content distribution
with network coding. In Proc. Intl. Symp. Info. Theory (ISIT), 2007.

A A Computational Definition of Context Hiding

Let (KeyGen,SignDerive,Verify) be a P -homomorphic signature scheme for predicate P and
message M. Consider the following game to model context hiding:

Setup: The challenger runs the algorithm (pk , sk) ← KeyGen(1λ) to obtain the public key pk
and the secret key sk , and gives pk to the adversary.

38
232

Approved for Public Release; Distribution Unlimited.

Query Phase 1: Proceeding adaptively, the adversary may query any of the three oracles from
the unforgeability game:

• Sign(m ∈M): (same as in the unforgeability game)

• SignDerive(i ∈ Z,m′): (same as in the unforgeability game)

• Reveal(i ∈ Z): (same as in the unforgeability game)

Challenge: At some point, the adversary issues a challenge (m,m′) where P (m,m′) = 1 for
any m,m′ ∈ M. The challenger computes the following three values: σ ← Sign(sk ,m),
σ0 ← Sign(sk ,m′) and σ1 ← SignDerive(pk , σ,m,m′). The challenger then picks a random
b ∈ {0, 1} and returns (σ, σb) to the adversary. Note: there are no restrictions on m,m′ other
than that they be in the message space; in particular, they could be equal and one or both
could have been previously signed.

Query Phase 2: Proceeding adaptively, the adversary may query the oracles from Phase 1.

Output: Eventually, the adversary will output a bit b′ and is said to win if b = b′.

We define AdvCH
A to be the probability that adversary A wins in the above game minus 1

2 .

Definition A.1 (Context Hiding) For a predicate P and message space M, a P -homomorphic
signature scheme (KeyGen,Sign,SignDerive, Verify) is context hiding if for all probabilistic
polynomial time adversaries A, AdvCH

A is negligible in λ.

A.1 Relation to Strong Context Hiding

Lemma A.2 A homomorphic signature scheme that is strongly context hiding is context hiding.

Proof. (Sketch) Let Π = (KeyGen,SignDerive,Verify) be a homomorphic signature scheme
and let A be an adversary that has advantage AdvCHA (Π) = p(λ) in the context-hiding game. The
advantage probability forA is taken over the random coins of the key generation, random coins of the
Sign and SignDerive operations used in the first query phase, the random coins used by algorithm
A, and the random coins used by the rest of the experiment. Therefore by an averaging argument,
there must exist some particular key pair (PK,SK) ← KeyGen(1λ; z1), some particular random
tape zq for the Sign and SignDerive operations used in the first query phase, some particular
random coins zA for A, and some particular message pair (m,m′) output by A over which the
probability of A winning the context-hiding game in this case is at least p(λ). Let the values of the
random tapes be given as non-uniform advice.

We show how this information can be used to construct a (non-uniform) adversary A′ that
distinguishes {(SK, σ,Sign(SK,m′)} from {(SK, σ,SignDerive(PK, σ,m,m′)} with probability
p(λ) for the triple ((PK,SK),m,m′). Thus, if Π is strongly context hiding, then p(λ) must be
exponentially small, and so Π must also be context-hiding.

The adversary A′ works as follows: On input the challenge tuple (SK, σ, σ′), A′ begins to run
the context-hiding experiment for A(PK; zA). A′ answers the queries that A asks by using SK
and the random tape zq to run Sign and SignDerive. When A outputs a challenge message pair
(m,m′) (which must occur by construction), then A′ answers with (σ, σ′). A′ answers the second-
phase queries of A using SK and fresh random coins. Finally, when A outputs b′, A′ echoes this
answer as output and halts.

First observe that A′ performs a perfect simulation of the context-hiding game. When the input
pair (σ, σ′) corresponds to (Sign(SK,m),Sign(SK,m′)), then A′ simulates the context-hiding

39
233

Approved for Public Release; Distribution Unlimited.

game for b = 0. In the other case, A′ simulates the context-hiding game for b = 1. Therefore, A′

distinguishes
{(SK,Sign(SK,m),Sign(SK,m′))}SK,m,m′
{(SK,Sign(SK,m),SignDerive(PK, σ,m,m′))}SK,m,m′

with probability p(λ). �

A.2 Simplified Unforgeability Under Strong Context Hiding

We now show how the strong context hiding property can help simplify the security argument for
unforgeability. In particular, we introduce a weaker notion of unforgeability in which the adversary
only makes calls to the Sign oracle and immediately receives a signature.

— Game NHU(Π,A, λ, P): This game is the same as the Unforg(Π,A, λ, P) game with the
exception that only the following query is allowed:

— Sign(m ∈M): the oracle computes σ ← Sign(SK,m), adds m to Q and returns σ.

Note, the only difference between game NHU and the standard unforgeability game for a signature
scheme is that in this game, the adversary only wins if it produces a forgery on a signature m∗

such that for all m ∈ Q, P (m,m∗) = 0, whereas in the standard unforgeability game, the adversary
wins if it produces a signature on any message that is not in Q.

Definition A.3 A quoteable signature scheme Π is NHU-unforgeable if for all efficient adversaries
A, it holds that Pr[NHU(Π,A, λ, P) = 1] < negl(λ) for some negligible function λ.

Lemma A.4 A signature scheme that is NHU-unforgeable and strongly context hiding is Unforg-
unforgeable.

Proof. Our plan is to present a series of hybrid experiments that are meant to simplify the quotable
unforgeability game.

Hybrid H1(Π,A, λ, P) Consider the first hybrid experiment H1 which is the same as the un-
forgeability game Unforg(Π,A, λ, P), with the exception that all Sign and SignDerive queries are
lazily evaluated. That is, when A makes a query, the experiment responds in the following way:

— Sign(m): generate a handle i and record information (i, ?,m, ε) in T and return i

— SignDerive(i,m′): retrieve (i, z,m, ·) from T , return ⊥ if it does not exist or if P (m,m′) 6= 1,
generate a new handle i′, record (i′, ?,m′, i) in T , and return i′

— Reveal(i): retrieve (i, z,m, i1) from T (returning ⊥ if it does not exist). If z 6=?, then return
z. Otherwise, if i1 = ε, then compute σ ← Sign(SK,m), replace the entry (i, z,m, ε) with
(i, σ,m, ε), and return σ. Finally, if i1 6= ε, then recursively call z1 ← Reveal(i1), obtain
(i1, ·,m1, ·) from T and compute σ ← SignDerive(PK, z1,m1,m). Replace the entry with
(i, σ,m, i1), and return σ.

Claim A.5 Pr[H1(Π,A, λ, P) = 1] = Pr[Unforg(Π,A, λ, P) = 1].

This claim follows by inspection. For any query that is eventually revealed, the same operations
are performed in both H1 and the original game. For any query that is never revealed, no operation
in H1 is performed; but this does not affect the view of the adversary, and therefore does not affect
the output of the adversary.

40
234

Approved for Public Release; Distribution Unlimited.

Hybrid H2,i(Π,A, λ, P) The second hybrid is the same as H1 except that the first i queries to
Reveal are answered using Reveal2 described below, and the remaining queries are answered as per
H1: (The only difference is that Sign(SK,m1) is used in place of SignDerive(PK, z1,m1,m) in
the second to last sentence.)

— Reveal2(i): retrieve (i, z,m, i1) from T (returning ⊥ if it does not exist). If z 6=?, then return
z. Otherwise, if i1 = ε, then compute σ ← Sign(SK,m), replace the entry (i, z,m, ε) with
(i, σ,m, ε), and return σ. Finally, if i1 6= ε, then recursively call z1 ← Reveal(i1), obtain
(i1, ·,m1, ·) from T and compute σ ← Sign(SK,m1). Replace the entry with (i, σ,m, i1), and
return σ.

Claim A.6 H2,0(Π,A, λ, P) is identically distributed to H1(Π,A, λ, P).

By inspection.

Claim A.7 H2,i(Π,A, λ, P) is identically distributed to H2,i−1(Π,A, λ, P) for i ≥ 1.

This claim follows via the strong context-hiding property of the signature scheme because this
property guarantees Sign(SK,m′) and SignDerive(PK, σ,m,m′) are statistically close.

Suppose that A makes ` = poly(λ) queries. Observe that H2,`(Π,A, λ, P) only evaluates Sign,
and only does so on messages that are immediately returned to the adversary. Thus, H2,` is
syntactically equivalent to the NHU game. Since the H2,` game enablesA to produce a forgery with
the same probability as Unforg(Π,A, λ, P), we have that Unforg(Π,A, λ, P) = NHU(Π,A, λ, P)
which completes the lemma. �

41
235

Approved for Public Release; Distribution Unlimited.

Universal Signature Aggregators

Susan Hohenberger∗

Johns Hopkins University
susan@cs.jhu.edu

Venkata Koppula
University of Texas at Austin

kvenkata@cs.utexas.edu

Brent Waters†

University of Texas at Austin
bwaters@cs.utexas.edu

Abstract

We introduce the concept of universal signature aggregators. In a universal signature aggregator
system, a third party, using a set of common reference parameters, can aggregate a collection of signatures
produced from any set of signing algorithms (subject to a chosen length constraint) into one short
signature whose length is independent of the number of signatures aggregated. In prior aggregation
works, signatures can only be aggregated if all signers use the same signing algorithm (e.g., BLS) and
shared parameters. A universal aggregator can aggregate across schemes even in various algebraic settings
(e.g., BLS, RSA, ECDSA), thus creating novel opportunities for compressing authentication overhead.
It is especially compelling that existing public key infrastructures can be used and that the signers do
not have to alter their behavior to enable aggregation of their signatures.

We provide multiple constructions and proofs of universal signature aggregators based on indistin-
guishability obfuscation and other supporting primitives. We detail our techniques as well as the tradeoffs
in features and security of our solutions.

1 Introduction

An aggregate signature system, as introduced by Boneh, Gentry, Lynn and Shacham [BGLS03], allows a party
to bundle a set of signatures together into a single short cryptographic signature. Aggregate signatures are
motivated by applications where one needs to simultaneously verify several signatures from different users on
different messages in environments with communication or storage resource constraints. For example, Boneh
et al. [BGLS03] proposed applying aggregate signatures to Secure BGP [KLMS00] path authentication; later
this idea was empirically evaluated by Zhao et al. [ZSN05].

Over the past several years many solutions to aggregate signatures [LOS+06, GR06, BGOY07, BNN07,
AGH10] have been proposed that have explored tradeoffs regarding computational cost, security models,
features (e.g. identity-based), limitations (e.g. sequential signing), and cryptographic assumptions. However,
all of these constructions have one thing in common in that they require all signers to adopt a common
signature system and shared parameters.

In practice, the common scheme and parameter requirements can be a large barrier to adoption. Existing
users will already have established signing keys and algorithms which are entrenched in an existing public
key infrastructure. The overhead of changing and re-certifying one’s public keys may very well overwhelm

∗Supported by the National Science Foundation (NSF) CNS-1154035 and CNS-1228443; the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, the Office of
Naval Research under contract N00014-14-1-0333, and a Microsoft Faculty Fellowship.
†Supported by NSF CNS-0952692, CNS-1228599 and CNS-1414082. DARPA through the U.S. Office of Naval Research under

Contract N00014-11-1-0382, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and
Packard Foundation Fellowship.

236

Approved for Public Release; Distribution Unlimited.

the perceived benefit of creating signatures that can be aggregated by a third party. Indeed the original
signer might not even be incentivized to allow aggregation in the first place when the benefits fall to the
aggregating party or verifier of the signatures. Furthermore, even if a user moved from one signature system
to an aggregate signature system, all previously created signatures would be unaggregatable.1

Universal Signature Aggregators We introduce the concept of universal signature aggregators. In
a universal signature aggregator system, a third party, using a set of common reference parameters, can
aggregate a collection of signatures produced from any set of signing algorithms (subject to a chosen length
constraint) into one short signature whose length is independent of the number of signatures aggregated. A
verifier can use the common parameters to verify the aggregate signature. The system will be secure in the
sense that it is hard to produce an aggregate signature on a verification algorithm, verification key, message
tuple, (Verify,VK,m) unless the holder of the corresponding secret key produced a signature on m. We
emphasize that signers in the system need not do anything special to allow aggregation; indeed they could
be unaware of the existence of such a system.

Our central challenge is to create a way to compress many signatures of varying types into one short
object. Prior solutions required all signatures to reside in a common (often bilinear) group, where it was
possible to leverage homomorphic properties of the group structure. Here we are afforded no such luxury as
signatures will reside in different groups or even be based on a scheme with no algebraic structure.

Our approach will be to overcome these limitations by applying the tool of program obfuscation. At the
highest level, a trusted setup routine will produce a pair of a global signature verification key for a universal
signature aggregator and a shared obfuscated program. The job of the obfuscated program will be to take
as input tuples of the form (Verify,VK,m, σ) that respectively represent verification algorithm, verification
key, message and signature 4-tuples. The program will first verify using algorithm Verify and key VK that σ
is a signature on m. If this check passes, it will produce a signature using a master secret key on the message
Msg = (Verify,VK,m) — essentially transforming the arbitrary signature into one of an aggregateable form.

At first glance it might appear that obfuscation provides an open and close solution to our problem.
Indeed, if we heuristically model the obfuscated program as an oracle to the program, the analysis is relatively
straightforward. However, as noted by Hada [Had00] such a definition is impossible to achieve for any
functionality. Our goal is to create probably secure constructions under a realizable definition of obfuscation
— ideally indistingusihability obfuscation.

Achieving provable security under indistingusihability obfuscation (and without knowledge assumptions
2) presents significant challenges. The primary technical challenge is how to design a construction and
corresponding reduction that can extract a forgery on an arbitrary input signature scheme from an attacker
that forges on the aggregate. We emphasize that without an oracle interface or knowledge assumption a
reduction is not afforded the opportunity to simply “look at” the input signatures.

Universally Aggregating Unique Signatures We begin by exploring how to universally aggregate
unique signatures — a unique signature system [GO93] is one where there is at most one signature that will
verify per message. Notably, RSA based full domain hash [BR93, BR96] are unique signatures that form the
basis of the widely deployed PKCS#1 standard [KS98]. As evidence of the wide scale deployment, Heninger
et al. [HDWH12] performed an Internet-wide scan of machines responding on the TLS and SSH ports for
IPv4 space and reported 3.9 million distinct RSA keys compared to only 1.9 thousand DSA keys.

Our construction will be parameterized by four polynomial functions over the security parameter: `ver(λ),
`vk(λ),`msg(λ), `sig(λ). These respectively represent a bound on the size of verification circuits, verification
keys, length of messages signed and size of signatures that are aggregated. While we are interested in
signatures of arbitrary length messages, in practice almost all signature schemes will apply the “hash and

1We note that the concept of integrating “special property” cryptography into existing keys is relatively unexplored, but has
been considered in ring signatures [BKM08] and deniable encryption [SW14].

2A different direction is to attempt to build universal aggregation from succinct arguments of knowledge
(SNARKs)[BCCT13]. We aim to achieve our goals without applying knowledge assumptions.

2

237

Approved for Public Release; Distribution Unlimited.

sign” paradigm where a longer message is first hashed down to a fixed size hash value (dependent on the
security parameter). The core signature scheme then signs this value.

In our first construction (see Section 4), the UniversalSetup first chooses an RSA modulus N and exponent
e ← Z∗φ(N). Next, it chooses a puncturable PRF [BW13, BGI13, KPTZ13, SW14] key K for a function F

that takes inputs of the form (Verify,VK,m) ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg (i.e., 3-tuples representing a
verification circuit, verification key and message). The puncturable PRF will output into ZN .

Finally, the setup will publish (indistinguishability) obfuscations of two programs. The first is TransformN,K .
This program takes as input a 4-tuple Verify,VK,m, σ. It then computes Verify(VK,m, σ), which verifies
the signature under the algorithm. If the signature verifies, the program outputs F (K,Verify,VK,m) ∈ ZN .
This can be thought of as a “transformed signature” where the obfuscated program maps the original sig-
nature into one over ZN . The second program is called Transform-ImageN,K,e. On input (Verify,VK,m), it
computes F (K,Verify,VK,m)e (mod N).

One can now aggregate a sequence of signatures (Verifyi,VKi,mi, σi) by transforming each one by comput-
ing3 si = TransformN,K(Verifyi,VKi,mi, σi) and then aggregating into one element of ZN as σagg =

∏
i si. To

verify an aggregate signature, σagg, on (Verifyi,VKi,mi) simply compute ti = TransformN,K(Verifyi,VKi,mi, σi)

and test whether σeagg
?
=
∏
i ti.

4 Essentially the Transform program maps an arbitrary signature to an RSA
FullDomain hash type signature on the “message” (Verifyi,VKi,mi).

We prove selective security where the attacker declares before seeing the public parameters a message m∗

that they will forge on.5 Our security argument is centered around an alternative program Transform-Reject
which is programmed to behave the same as Transform except on input y = (Verify∗,VK∗,m∗) on which it
always outputs ⊥ even if it is given a valid signature on m∗. It also uses a PRF key that is punctured at y.

Security follows from two primary arguments about the program. We first establish that if an attack algo-
rithm, Att, is successful when given Transform, it must be almost as successful when given Transform-Reject;
otherwise, the underlying unique signature scheme is broken. Suppose that there is an attacker, Att, with a
non-negligible difference in advantage between these two games, then we can build an reduction algorithm
that extracts the unique signature on m∗ in a bit by bit fashion. The reduction algorithm runs as the chal-
lenger in the aggregate signature game and receives a challenge verification key from the challenger in the
standard signature security game. It runs to the point in the security game where the input public key and
parameters are established and saves the state of the game (including the state of Att). Then for each bit
of the signature it performs the following process multiple times. It runs a third program TransformAlty,j .
This program runs as Transform, but rejects if the j-th bit of the input signature is 1. For each j, it runs the
experiment multiple times with fresh randomness. If the measured advantage of the attacker drops when
using TransformAlty,j then it guesses that the j-th bit of the signature is 1; otherwise it guesses that it is 0.
It complies all of these guesses together to output a forgery. (The amount of rewinding needed depends on
the difference in advantage. In addition, our actual analysis addresses other technical details.)

Since signatures are unique, the program TransformAlty,j is functionally equivalent to Transform if the
j-th bit of the unique signature on m∗ is 0 and thus by indistinguishability obfuscation the attacker’s
advantage should be negligibly close in these two cases. Similarly, TransformAlty,j is functionally equivalent
to Transform-Reject if the j-th signature bit is 1 and again by indistinguishability obfuscation the advantage
should be close to that of Transform-Reject.

After we have established that the advantage when given Transform-Reject is close to that of Transform,we
show that an attacker that can win when given Transform-Reject will either break iO, the punctured PRF or
the RSA assumption and roughly follows [HSW14] using punctured programming [SW14] techniques. The
main proof innovation is combining a rewinding argument with indistinguishability obfuscation to extract a
unique signature.

We also show a variation of this idea in Appendix A that is a universal aggregator of unique signatures,

3We slightly abuse notation in the introduction for ease of exposition by using the names Transform and Transform-Image to
refer both to the obfuscated and unobfuscated forms of the program. In the main body, we are careful about these distinctions.

4We require in verification that no 3-tuples are repeated. I.e., for all i 6= j, (Verifyi,VKi,mi,) 6= (Verifyj ,VKj ,mj).
5The usual complexity leveraging arguments for adaptive security can be applied here if we are willing to make sub-

exponential hardness assumptions.

3

238

Approved for Public Release; Distribution Unlimited.

but where we avoid using the RSA assumption. (Indistinguishability obfuscation and punctured PRFs
are still used.) The tradeoff is that there is an a priori bound n on the number of signatures that can be
aggregated. In the construction, the parameters will grow polynomially with n, but the size of the signatures
is independent of n. We also conjecture that in our main construction the RSA-type transformed signature
can be replaced by a BLS [BLS01] type signature (in an analogous way to [HSW14]), but do not formally
show this.

Universal Aggregation of arbitrary signatures using VBB Obfuscation While covering unique
signatures achieves progress, we want to push toward our central goal of aggregating arbitrary signatures.
Our next step is to show that a slight tweak to the previous construction gives us a universal aggregator of
arbitrary signatures under a specific virtual black box (VBB) assumption. This appears in Section 5.

It might first seem that a solution proven under a VBB assumption is not better than the oracle heuristic
outlined earlier. However, achieving a VBB proof provides both a sounder justification and is more technically
challenging than the oracle heuristic. First, modeling an obfuscated program as an oracle is a heuristic — a
piece of code is clearly a different object than an oracle. In contrast, a VBB assumption could be true for
many functionalities even though there exists certain functionalities for which it cannot hold [BGI+01].

Proving our construction secure under a VBB definition presents an interesting technical barrier. A
natural proof methodology is to first say that an obfuscator for a given circuit cannot be more successful
than a simulator with oracle access to the same circuit using VBB. And then making further hybrid security
arguments leveraging the fact that the simulator has oracle access. The primary problem with this strategy
is that while the universal aggregator security game gives the attacker access to a signing oracle, there is no
place to “put” this signing oracle when applying the VBB security game.

We overcome this obstacle by introducing a new technique that we call “oracle assimilation” which we
believe might be of independent interest. In our construction, the Transform-VBB program behaves in almost
the same way as Transform before except an extra mode bit is added to the input. If this mode bit b is set
to 0, it indicates normal input and the Transform-VBB program operates roughly as described above. If the
mode bit is set to 1, it indicates query input and the program outputs a rejecting ⊥ on all inputs of this
type. The query type input is only used in the proof and not in the construction.

Our proof of security proceeds by a sequence of games. In the initial security game, all query inputs
output a rejecting ⊥. The proof (in a couple of steps) then moves to a game where the query inputs
will take a form of (a,m) and output a signature on m under the challenge input secret signing key if
PRG(a) = PRG(α) for some value α chosen by the game, but hidden from the attacker. We can argue
this change is indiscernable to the attacker by iO and pseudorandom generator security. At this point the
security game will use the query interface of the obfuscated program to answer signing queries and we can
say that the signing oracle was “assimilated” into the obfuscated program. Next, we can use VBB security
to argue that there must exist a simulator with oracle access to the program that outputs 1 with close to the
same probability that the attacker wins. Now that the input signing algorithm is accessed by an oracle we
can use its security to argue that the game is indistinguishable from when the circuit refuses to transform
on m∗, the challenge message.6 Finally, we use VBB again to reason about the attack algorithm’s advantage
when given this second circuit that will not transform on m∗. From here, the proof follows as in the unique
signature case.

Stepping back, the main innovation for this proof is to use punctured programming techniques to sublim-
inally assimilate the signing oracle for one scheme into the obfuscated program, then use the VBB interface
to execute the proof. We expect that this technique will be useful in other contexts. One interesting view
is that we could apply either this VBB argument for arbitrary signatures or the previous iO argument for
unique signatures to this single construction. So a user with any signature scheme would get VBB based
security and if a user had a unique signature scheme, she would get the added benefit of iO based security.

6For ease of exposition, the proof in the main body proves selective security; however, we show how a minor transformation
of the construction using admissible hash functions [BB04] gives adaptive security in Appendix B.

4

239

Approved for Public Release; Distribution Unlimited.

Aggregating arbitrary signatures using indistinguishability obfuscation For our final contribu-
tion, we return to our goal of aggregating arbitrary signatures using indistinguishability obfuscation. Our
primary challenge again is how to extract an input forgery from the attacker in a proof. The previous two
methods used the structure of a unique signature and an oracle interface, neither of which is available to us
now.

We overview the main solution ideas and our proof approach. At a high level, we devise a means for being
able to extract and check the validity of a single signature (from the aggregate) of our choice in the proof
without the adversary being able to know which one we are “looking at”. Thus, we build our confidence in
the validity of all the signatures by being able to check any given one of them. We call this an “enforce all
by one” technique.

To do this, we first use additively (or singly) homomorphic encryption to combine the encryptions of
several signatures together into one object t. Then we will have an obfuscated program generate a PRF-type
signature component s on a message representing ciphertext tag t along with tuples {Verifyi,VKi,mi} if the
input contains valid signatures on each message. The output aggregate signature is σagg = (t, s). Although
the homomorphic ciphertext t will not be large enough to contain all of the input signatures, in the proof
it can be used to remember one of the input signatures and thus provide us with an opportunity to extract
a forgery on the input signature. The difficulty is in using iO to ensure that an attacker can only output a
verifying σagg = (t, s) on a ciphertext “tag” t that contains a proper forgery in the proof.

Diving in a little further in our solution, the setup algorithm will be parameterized by a polynominal n(·)
that gives an a-priori bound on the number of signatures that can be verified. The size of the parameters
will grow polynomially with n, but the signature size will be independent of it. The setup algorithm will
output n ciphertexts {counti ← HE.enc(pk, 0)}i=1,...n each of which is an encryption of 0.

The universal aggregation algorithm takes input {Verifyi,VKi,mi, σi}. It then computes t = Σicounti ·σi.
Next it will input t and the tuples {Verifyi,VKi,mi, σi} to an obfuscated program AggSign which will evaluate
and output a punctured PRF on t and {Verifyi,VKi,mi} if the input signatures verify. (We will return shortly
to where the obfuscated program comes from.)

In proving security we perform a sequence of hybrids, where the first step of the hybrid is to guess an
index j (incurring a 1/n loss) where the forgery occurs. Next, we change countj to be an encryption of 1.
This causes an honestly computed value t to be an encryption of the j-th signature that we will eventually
use for extraction.

The challenge at this point is to come up with a formulation of the program AggSign for which we
can prove security using indistinguishability arguments. We provide two approaches. In the first one (see
Section 6), we allow AggSign to be created by a Universal Sampler (also called a Universal Parameters
Scheme) as defined by Hofheinz et al. [HJK+14]. A Universal Sampler is allowed to adaptively sample
from an arbitrary (efficiently computable) distribution. In this case we sample from an obfuscation of the
AggSignt program that is parameterized to only work with a given tag value t. As noted in [HJK+14],
Universal Samplers are realizable in the random oracle model from indistinguishability obfuscation. So this
solution will exist in the random oracle model as well. An advantage of Universal Samplers is that they can
define the AggSignt program adaptively.

We also propose a second variation of this solution in Section 7 that does not need the random oracle
heuristic. Instead it applies complexity leveraging that requires assuming sub-exponential hardness of some
of the underlying computational assumptions.

1.1 Summary of our results

Our results are summarized in the following table. The first column labels the construction. The remain-
ing columns indicate: type of signatures that can be aggregated, selective or adaptive security, standard
or random oracle model proofs, whether the aggregator is bounded or not, and finally, the cryptographic
assumptions used in the security proof. In our assumptions, we prefix them with “subexp” to indicate if
sub-exponential hardness is required for complexity leveraging. Since PRFs, PRGs, and (selectively-secure)
puncturable PRFs are constructible from one-way functions, we list OWF as the assumption. UPS stands
for a universal parameters scheme [HJK+14] (implied by iO in the random oracle model), HE stands for

5

240

Approved for Public Release; Distribution Unlimited.

singly homomorphic encryption, iO stands for indistinguishability obfuscation, and VBB stands for virtual
black-box obfuscation, where we assume that VBB holds only for a certain limited family of circuits.

Construction Type Selective/
Adaptive

RO Bounded
Aggregator

Assumptions

Section 4 Unique Selective No No iO, RSA, OWF
Section 5 Arbitrary Selective7 No No iO, VBB, OWF
Section 6 Arbitrary Adaptive Yes Yes iO, UPS, HE, OWF
Section 7 Arbitrary Selective No Yes subexp-iO, HE, subexp-OWF

2 Preliminaries

2.1 Notations

For any set X , x← X denotes a uniformly random element drawn from X . Given integers `ckt, `inp, `out, let
C[`ckt, `inp, `out] denote the set of circuits that can be represented using `ckt bits, take `inp bits as input, and
output `out bits.

2.2 Admissible Hash Functions

We recall the notion of admissible hash functions due to Boneh and Boyen [BB04]. Here we state a simplified
definition from [HSW14].

Definition 2.1. Let l, n and θ be efficiently computable univariate polynomials. Let h : {0, 1}l(λ) →
{0, 1}n(λ) be an efficiently computable function and AdmSample a PPT algorithm that takes as input 1λ

and an integer q, and outputs u ∈ {0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define Pu : {0, 1}l(λ) → {0, 1} as
follows: Pu(x) = 0 if for all 1 ≤ j ≤ n(λ), h(x)j 6= uj , else Pu(x) = 1 (where uj denotes the jth bit of u).

We say that (h,AdmSample) is θ-admissible if the following condition holds:
For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x∗ ∈ {0, 1}l(λ), where x∗ /∈ {xi}i,

Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥ 1

θ(Q(λ))

where the probability is taken over u← AdmSample(1λ, Q(λ)).

Theorem 2.1 (Admissible Hash Function Family [BB04], simplified proof in [FHPS13]). For any effi-
ciently computable polynomial l, there exist efficiently computable polynomials n, θ such that there exist
θ-admissible function families mapping l bits to n bits.

2.3 Signature Schemes

A signature scheme S with message spaceM(λ), signature key space SK(λ) and verification key space VK(λ)
consists of the following algorithms.

• Gen(1λ) The setup algorithm is a randomized algorithm that takes as input security parameter λ and
outputs signing key SK ∈ SK and verification key VK ∈ VK.

• Sign(SK,m) The signing algorithm takes as input the signing key SK ∈ SK and a message m ∈ M
and outputs a signature σ.

• Verify(VK,m, σ) The verification algorithm takes as input a verification key VK ∈ VK, message m ∈M
and signature σ and outputs either 0 or 1.

7In Appendix B, we modify this construction to achieve adaptive security without any additional assumptions.

6

241

Approved for Public Release; Distribution Unlimited.

Correctness For all λ ∈ N, (SK,VK)← Gen(1λ), messagesm ∈M(λ), we require that Verify(VK,m,Sign(SK,m)) =
1.

Security The security notion for signature schemes, formalized by Goldwasser, Micali and Rivest [GMR88],
is based on the following game between an adversary A and a challenger.

1. Setup Phase Challenger chooses (SK,VK)← Gen(1λ).

2. Signing Phase A sends signature query mi ∈M and receives σi ← Sign(SK,mi).

3. Forgery Phase A finally outputs a message m and signature σ.

A wins if m was not queried during the Signing Phase and Verify(VK,m, σ) = 1. Let AdvA(λ) = Pr[A wins].

Definition 2.2. A signature scheme S=(Gen,Sign,Verify) is existentially unforgeable under a chosen message
attack if for all PPT adversaries A, AdvA(λ) is negligible in λ.

Goldwasser and Ostrovsky [GO93] introduced the notion of unique signature schemes 8. In a unique
signature scheme, there is a unique valid signature corresponding to any message, verification key pair.

Definition 2.3 (Unique Signatures). A signature scheme S = (Gen, Sign,Verify) is said to be unique if for
all tuples (VK,m, σ1, σ2), either σ1 = σ2 or Verify(VK,m, σ1) = 0 or Verify(VK,m, σ2) = 0.

In this work, we will be considering signature schemes where the messages, signatures and verification keys
have bounded length, and the verification algorithm is deterministic. In practice, most signature schemes
use a collision resistant hash function to compress an arbitrary length message to bounded length. We will
be dealing with these ‘post-hash’ messages.

Definition 2.4 ((`vk, `msg, `sig)-bounded length signature scheme). Let `vk, `msg and `sig be fixed polynomi-
als. A signature scheme S = (Gen, Sign,Verify) is said to be (`vk, `msg, `sig)-bounded length if all verification
keys output by Gen(1λ) have length at most `vk(λ), Sign takes as input messages of length at most `msg(λ)
and outputs signatures of length bounded by `sig(λ).

Since the verification keys, messages and signatures have bounded length, we can view Verify as a cir-
cuit with three inputs- verification key VK, message m and signature σ. We assume every circuit can be
represented as a binary string.

Definition 2.5 ((`ver, `vk, `msg, `sig)-length qualified signature scheme). Let `ver, `vk, `msg, `sig be fixed poly-
nomials. A (`vk, `msg, `sig)-bounded length signature scheme S = (Gen,Sign,Verify) is said to be (`ver, `vk,
`msg, `sig)-length qualified if the verification circuit Verify and signing circuit Sign can be represented as a
binary string of length at most `ver(λ) bits.

Abusing notation, we will say that a tuple (Verify,VK,m, σ) is a (`ver, `vk, `msg, `sig)-length qualified tuple
if Verify is a circuit that can be represented using `ver(λ) bits, and VK,m, σ are of length at most `vk(λ),
`msg(λ) and `sig(λ) respectively. Similarly, a tuple (Verify, VK, m) is (`ver, `vk, `msg)-length qualified if
Verify, VK and m have length at most `ver(λ), `vk(λ) and `vk(λ) respectively.

2.4 Additively Homomorphic Encryption

In this work, we will be using encryption schemes which allow us to perform additive operations on ci-
phertexts. Many encryptions schemes [GM84, Ben87, NS98, OU98, Pai99, DJ03] have the ‘additive homo-
morphism’ property. We will now define the syntax and security definition for an additively homomorphic
encryption scheme.

Let p be a prime9. An additively homomorphic encryption scheme HE with message space Fp and
ciphertext space CHE consists of the following algorithms.

8Also known as invariant signature schemes.
9The prime p is a property of the encryption scheme.

7

242

Approved for Public Release; Distribution Unlimited.

• HE.setup(1λ) The setup algorithm takes the security parameter as input and outputs public key pk,
secret key sk.

• HE.enc(pk,m) The encryption algorithm takes as input a public key pk and message m ∈ Fp and
outputs a ciphertext ct ∈ CHE.

• HE.dec(sk, ct) The decryption algorithm takes as input a secret key sk, a ciphertext ct ∈ CHE and either
outputs an element in Fp or ⊥.

• HE.add(pk, ct1, ct2) The addition algorithm takes as input a public key pk and two ciphertexts ct1, ct2 ∈
CHE and outputs a ciphertext ct.

For simplicity of notation, we will represent HE.add(pk, ct1, ct2) as ct1 + ct2.

Correctness We require the following correctness property:

• Let p be any prime and q any polynomial in λ. For any λ ∈ N, (pk, sk) ← HE.setup(1λ), q messages
m1, . . . ,mq ∈ Fp, the following must hold.

HE.dec(sk,HE.enc(m1) + . . .+ HE.enc(mq)) = m1 + . . .+mq.

Note that given an encryption ct of message m ∈ Fp, and a plaintext a ∈ Fp, one can use HE.add to
compute an encryption of m · a efficiently. Let a · ct represent this operation.

Security The security game is the usual IND-CPA security game between a challenger and a PPT adversary
Att.

1. The challenger chooses (pk, sk)← HE.setup(1λ) and sends pk to Att.
2. Att sends messages m0,m1 ∈ Fp to the challenger.
3. The challenger chooses b← {0, 1}, computes ctb ← HE.enc(pk,mb) and sends ctb to Att.
4. Att finally outputs a guess b′.

Att wins if b = b′. Let AdvHEAtt = Pr[Att wins]− 1/2.

Definition 2.6. An additively homomorphic encryption scheme HE is secure if for all PPT adversaries Att,
AdvHEAtt is negligible in λ.

2.5 Obfuscation

We recall the definition of indistinguishability obfuscation from [GGH+13, SW14].

Definition 2.7. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family of polynomial-size circuits.
Let iO be a uniform PPT algorithm that takes as input the security parameter λ, a circuit C ∈ Cλ and
outputs a circuit C ′. iO is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(1λ, C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher B = (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).

8

243

Approved for Public Release; Distribution Unlimited.

In a recent work, [GGH+13] showed how indistinguishability obfuscators can be constructed for the cir-
cuit class P/poly. We remark that (Samp,D) are two algorithms that pass state, which can be viewed
equivalently as a single stateful algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

A stronger notion of obfuscation, virtual black box obfuscation was proposed by Barak et al. [BGI+12].

Definition 2.8 (Virtual Black-Box Obfuscator). Let C = {Cλ}λ∈N be a family of polynomial-size circuits.
Let O be a PPT algorithm that takes as input the security parameter λ, a circuit C ∈ Cλ and outputs a
circuit C ′. O is called a virtual black-box obfuscator for a circuit class {Cλ}λ∈N if it satisfies the following
conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← O(1λ, C).

• (Virtual Black-Box) For every (non-uniform) PPT algorithm A, there exists a PPT simulator S such
that, for all C ∈ Cλ,

Pr[A(O(1λ, C)) = 1]− Pr[SC(1λ, 1|C|) = 1] ≤ negl(λ)

For simplicity of notation, we will drop the dependence of iO and O on 1λ.

2.6 Puncturable Pseudorandom Functions

The notion of constrained PRFs was introduced in the concurrent works of [BW13, BGI13, KPTZ13].
Punctured PRFs, first termed by [SW14] are a special class of constrained PRFs.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is an additional key space Kp
and three polynomial time algorithms F.setup, F.eval and F.puncture as follows:

• F.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K ∈ K and x ∈ X , and
outputs a key Kx ∈ Kp.

• F.eval(Kx, x
′) is a deterministic algorithm that takes as input a punctured key Kx ∈ Kp and x′ ∈ X .

Let K ∈ K, x ∈ X and Kx ← F.puncture(K,x). For correctness, we need the following property:

F.eval(Kx, x
′) =

{
F (K,x′) if x 6= x′

⊥ otherwise

In this work, we will only need selectively secure puncturable PRFs. The selective security game between
the challenger and the adversary A consists of the following phases.

Challenge Phase A sends a challenge x∗ ∈ X . The challenger chooses uniformly at random a PRF key
K ← K and a bit b ← {0, 1}. It computes K{x∗} ← F.puncture(K,x∗). If b = 0, the challenger sets
y = F (K,x∗), else y ← Y. It sends K{x∗}, y to A.

Guess A outputs a guess b′ of b.

A wins if b = b′. The advantage of A is defined to be AdvFA(λ) = Pr[A wins].

Definition 2.9. The PRF F is a selectively secure puncturable PRF if for all probabilistic polynomial time
adversaries A, AdvFA(λ) is negligible in λ.

9

244

Approved for Public Release; Distribution Unlimited.

2.7 Universal Parameters

In a recent work, Hofheinz et al. [HJK+14] introduced the notion of universal parameters. A universal
parameters scheme U , parameterized by polynomials `ckt, `inp and `out, consists of algorithms UniversalGen
and InduceGen defined below.

• UniversalGen(1λ) takes as input the security parameter λ and outputs the universal parameters U .

• InduceGen(U, d) takes as input the universal parameters U and a circuit d of size at most `ckt bits. The
circuit d takes as input `inp bits and outputs `out bits.

In this work, we will be using a universal parameter scheme that is adaptively secure in the random
oracle model. In order to define adaptive security for universal parameters, let us first define the notion of
an admissible adversary A.

An admissible adversary A is defined to be an efficient interactive Turing Machine that outputs one bit,
with the following input/output behavior:

• A takes as input security parameter λ and a universal parameter U .
• A can send a random oracle query (RO, x), and receives the output of the random oracle on input x.
• A can send a message of the form (params, d) where d ∈ C[`ckt, `inp, `out]. Upon sending this message,
A is required to honestly compute pd = InduceGen(U, d), making use of any additional random oracle
queries, and A appends (d, pd) to an auxiliary tape.

Let SimUGen and SimRO be PPT algorithms. Consider the following two experiments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each unique query made to RO.
2. U ← UniversalGenRO(1λ).
3. A(1λ, U) is executed, where every message of the form (RO, x) receives the response RO(x).
4. Upon termination of A, the output of the experiment is the final output of the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps `ckt bits to `out bits is implemented by assigning random `out-bit
outputs to each unique query made to F . Throughout this experiment, a Parameters Oracle O is
implemented as follows: On input d, where d ∈ C[`ckt, `inp, `out], O outputs d(F (d)).

2. (U, τ)← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the Parameters Oracle O.
3. A(1λ, U) and SimRO(τ) begin simultaneous execution.

- Whenever A sends a message of the form (RO, x), this is forwarded to SimRO, which produces a
response to be sent back to A.

- SimRO can make any number of queries to the Parameter Oracle O.
- Finally, after A sends any message of the form (params, d), the auxiliary tape of A is examined

until an entry of the form (d, pd) is added to it. At this point, if pd is not equal to d(F (d)), then
experiment aborts, resulting in an Honest Parameter Violation.

4. Upon termination of A, the output of the experiment is the final output of the execution of A.

Definition 2.10. A universal parameters scheme U = (UniversalGen, InduceGen), parameterized by poly-
nomials `ckt, `inp and `out, is said to be adaptively secure in the random oracle model if there exist PPT
algorithms SimUGen and SimRO such that for all PPT adversaries A, the following hold:

Pr[IdealASimUGen,SimRO(1λ) aborts] = 010

and
|Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1]| ≤ negl(λ)

10The definition in [HJK+14] only requires this probability to be negligible in λ. However, the construction actually achieves
zero probability of Honest Parameter Violation. Hence, for the simplicity of our proof, we will use this definition.

10

245

Approved for Public Release; Distribution Unlimited.

Hofheinz et al. [HJK+14] construct a universal parameters scheme that is adaptively secure in the random
oracle model, assuming a secure indistinguishability obfuscator, a selectively secure puncturable PRF and
an injective one way function.

2.8 RSA Assumption

Assumption 1 (RSA [RSA78]). Let λ be the security parameter. Let N = pq be the RSA modulus, where
p, q are randomly chosen, distinct, λ-bit primes. Let e be a randomly chosen positive integer less than and
relatively prime to φ(N) = (p−1)(q−1) and y ← ZN . For any PPT algorithmA, Pr[x← A(N, e, y)and xe =
y] ≤ negl(λ).

3 Universal Signature Aggregators

In this section, we define the notion of universal signature aggregators. Let `ver, `vk, `msg, `sig be polyno-
mials. Given any security parameter λ, `ver(λ) represents a bound on the size of verification circuits, `vk(λ)
represents a bound on the size of verification key, `msg(λ) is a bound on the length of messages signed and
`sig(λ) is a bound on the size of signatures. For simplicity of notation, we will drop the dependence on λ
when the context is clear.

A universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg consists of three algorithms UniversalSetup,
UniversalAgg and UniversalVerify defined as follows.

• UniversalSetup(1λ) is a randomized algorithm that takes as input security parameter λ and outputs
public parameters PP.

• UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ti=1) is a deterministic algorithm that takes as input security
parameter λ, public parameters PP and t tuples (Verifyi,VKi,mi, σi) (for some arbitrary t) where each
tuple is (`ver, `vk, `msg, `sig)-length qualified. It outputs an aggregate signature σagg whose length is
polynomial in λ, but independent of t.

• UniversalVerify(PP, {(Verifyi,VKi,mi)}ti=1, σagg) is a deterministic algorithm that takes as input secu-
rity parameter λ, public parameters PP, t tuples (Verifyi,VKi,mi) that are (`ver, `vk, `msg)-length
qualified, and an aggregated signature σagg. It outputs either 0 or 1.

For our constructions, we will assume that all verification circuits have `ver bit representation, all ver-
ification keys have length `vk, all messages signed have length `msg and the corresponding signatures have
length `sig.

Correctness Let {(Verifyi,VKi,mi, σi)}ti=1 be any t distinct tuples that are (`ver, `vk, `msg, `sig)-length
qualified and for all i ≤ t, Verifyi(VKi,mi, σi) = 1. For all λ ∈ N, PP ← UniversalSetup(1λ) and σagg ←
UniversalAgg(1λ, PP, {(Verifyi,VKi,mi, σi)}i), we require that UniversalVerify(PP, {(Verifyi,VKi,mi)}i, σagg) =
1.

3.1 Security of Universal Signature Aggregators

We now proceed to the formal security definition for universal signature aggregators.
Let S = (S.Gen,S.Sign,S.Verify) be a secure (`ver, `vk, `msg, `sig)-length qualified signature scheme.

Consider the following security game between an adversary A and the challenger.

ExpA,S(λ):

• Setup Phase Challenger chooses (SK,VK) ← S.Gen(1λ), computes PP ← UniversalSetup(1λ) and
sends PP,VK to A.

11

246

Approved for Public Release; Distribution Unlimited.

• Signing Phase A sends signing query xi, and receives σi ← S.Sign(SK, xi).

• Forgery A finally outputs t tuples (Verifyi,VKi,mi) and an aggregated forgery σagg.

A wins if there exists i∗ ∈ [t] such that Verifyi∗ = S.Verify, VKi∗ = VK, message mi∗ was not
queried during the signing phase and UniversalVerify(PP, {(Verifyi,VKi,mi)}, σagg) = 1. Let AdvA,S(λ) =
Pr[A wins ExpA,S(λ)].

Definition 3.1. Let S be a (`ver, `vk, `msg, `sig)- length qualified secure signature scheme. A universal
signature aggregator scheme (`ver, `vk, `msg, `sig)-UniversalSigAgg is secure with respect to scheme S if for all
PPT adversaries A, AdvA,S(λ) is negligible in λ.

We can also define a weaker selective notion where the adversary A chooses the message m correspond-
ing to (S.Verify,VK) before receiving the public parameters PP. More formally, the selective experiment
ExpselA,S(λ) is defined as follows.

ExpselA,S(λ):

• A sends a message m to the challenger.

• Setup Phase Challenger computes (SK,VK) ← S.Gen(1λ), PP ← UniversalSetup(1λ) and sends
PP,VK to A.

• Signing Phase A sends signing query xi 6= m, and receives σi ← S.Sign(SK, xi).

• Forgery A finally outputs t tuples (Verifyi,VKi,mi) and an aggregated forgery σagg.

A wins if there exists an i∗ ∈ [t] such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m and UniversalVerify(PP,
{(Verifyi,VKi,mi)}, σagg) = 1. Let AdvselA,S(λ) = Pr[A wins ExpselA,S(λ)].

Definition 3.2. Let S be a (`ver, `vk, `msg, `sig)- length qualified secure signature scheme. A universal
signature aggregator scheme (`ver, `vk, `msg, `sig)-UniversalSigAgg is selectively secure with respect to scheme

S if for all PPT adversaries A, AdvselA,S(λ) is negligible in λ.

In certain situations, it may be possible that the number of signatures to be aggregated is known in
advance. In such a scenario, we can use bounded universal signature aggregators (defined below).

Definition 3.3. An n-bounded universal signature aggregator scheme (`ver, `vk, `msg, `sig)-UniversalSigAgg
= (UniversalSetup, UniversalAgg, UniversalVerify) is a universal signature aggregator in which UniversalSetup
takes an additional input 1n. The public parameters output by UniversalSetup have size bounded by some
polynomial in λ and n. However, the aggregated signature has size bounded by a polynomial in λ, but is
independent of n.

4 Universally Aggregating Unique Signatures

We will now describe our universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg. Let iO be a
secure indistinguishability obfuscation scheme, F a puncturable PRF with key space K, punctured key space
Kp, domain X = {0, 1}`ver×{0, 1}`vk×{0, 1}`msg and range Y = Z∗N for some randomly chosen RSA modulus
N , and algorithms F.setup, F.puncture, F.eval. Our scheme consists of the three algorithms UniversalSetup,
UniversalAgg and UniversalVerify.

12

247

Approved for Public Release; Distribution Unlimited.

UniversalSetup(1λ) UniversalSetup first chooses an RSA modulus N and e← Z∗φ(N). Next, it chooses a PRF

keyK ← F.setup(1λ) and computes obfuscations of the programs TransformN,K
11 and Transform-ImageN,K,e

12

defined below. It sets the public parameters to be PP = (iO(TransformN,K), iO(Transform-ImageN,K,e), N, e).

TransformN,K :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : RSA modulus N ∈ N, K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Transform-ImageN,K,e :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, K ∈ K, e ∈ Zφ(N).

Let w = F (K,Verify′||VK′||m′). Output we (mod N).

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2, N, e). UniversalAgg first checks if the n
tuples are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If
ti =⊥ for some i, then UniversalAgg outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2, N, e). UniversalVerify first checks if all
n tuples are distinct. If not, it outputs 0. Else, it computes, for all i ≤ n, si = Transform-Image(Verifyi,VKi,mi).
If (
∏
i si) = σeagg (mod N), it outputs 1, else it outputs 0.

Correctness: Let {(Verifyi,VKi,mi, σi)}ni=1 be n tuples such that they are all distinct and Verifyi(VKi,mi, σi) =
1 for all i ≤ n. Fix any λ ∈ N, PP← UniversalSetup(1λ), (σagg)← UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}).
Then,

σeagg = (
∏

Transform(Verifyi,VKi,mi, σi))
e (mod N)

= (
∏

F (K,Verifyi||VKi||mi))
e (mod N)

= (
∏

F (K,Verifyi||VKi||mi)
e) (mod N)

= (
∏

Transform-ImageN,K,e(Verifyi,VKi,mi)) (mod N)

Also, note that the size of the aggregated signature (σagg ∈ Z∗N) depends only on the security parameter λ,
but not on the number of signatures aggregated.

4.1 Proof of Security

In this subsection, we will show that our construction from Section 4 is selectively secure with respect to
secure unique signature schemes.

11Padded to be of the same size as TransformAlt and Transform-Reject.
12Padded to be of the same size as Transform-Image-1.

13

248

Approved for Public Release; Distribution Unlimited.

Theorem 4.1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF and RSA is secure, for all (`ver, `vk, `msg, `sig)-length qualified secure unique signature schemes S, the
universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg is selectively secure with respect to S.

Let S = (S.Gen,S.Sign,S.Verify) be a secure (`ver, `vk, `msg, `sig)-length qualified unique signature
scheme, and Att a PPT adversary. In order to prove this theorem, we will define a sequence of experiments
Game 0, . . ., Game 3, where Game 0 = ExpselAtt,S .

4.1.1 Sequence of Games

Game 0: This game corresponds to ExpselAtt,S . The adversary Att first selectively sends message m, and then
receives the verification key and public parameters for the aggregator. Next, the adversary makes signing
queries, and finally submits the forgery.

1. Att sends message m.
2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z∗φ(N), K ← F.setup(1λ) and set

PP = (iO(TransformN,K), iO(Transform-ImageN,K,e), N, e). Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: This game is exactly similar to the previous one, except that the program Transform is replaced by
Transform-Reject13 which outputs ⊥ if the input tuples is (S.Verify,VK,m, σ) even if S.Verify(VK,m, σ) = 1.
Also, it uses a PRF key punctured at y = S.Verify||VK||m.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Set y = S.Verify||VK||m, compute K{y} ← F.puncture(K, y) and PP = (iO(Transform-Rejecty,N,K{y}),

iO(Transform-ImageN,K,e), N, e). Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform-Rejecty,N,K{y} :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , RSA modulus N ∈ N,
K{y} ∈ Kp.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F.eval(K{y},Verify′||VK′||m′).

end if

Game 2: This game is similar to the previous one, except that the program Transform-Image is replaced
by Transform-Image-114. It uses a PRF key punctured at y = S.Verify||VK||m. For input y, it outputs a
hardwired constant z. In this game, z is set to be F (K, y)e.

13Padded appropriately to be of the same size as Transform and TransformAlt.
14Padded appropriately to be of the same size as Transform-Image.

14

249

Approved for Public Release; Distribution Unlimited.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N) and K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y), w = F (K, y) and z = we (mod N).
Set PP = (iO(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e), N , e) and send PP, VK

to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform-Image-1y,N,K{y},z,e :

Inputs: Verify′ ∈ {0, 1}`ver ,VK′ ∈ {0, 1}`vk ,m′ ∈ {0, 1}`msg .
Constants: y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , RSA modulus N ∈ N,
K{y} ∈ Kp, z ∈ Z∗N , e ∈ Z∗φ(N).

if Verifyi||VKi||mi = y then
Output z.

else
Let w = F.eval(K{y},Verify′||VK′||m′).
Output we.

end if

Game 3: In this game, the challenger chooses z at random.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N) and K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z ← Z∗N .

Set PP = (iO(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e), N, e) and send PP, VK to
Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if all the n tuples are distinct and
∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi,
VKi, mi) }, σagg) = 1.

4.1.2 Analysis

Let AdvjAtt denote the advantage of adversary Att in Game j.

Lemma 4.1. Assuming iO is a secure indistinguishability obfuscator and S is a secure (`ver, `vk, `msg, `sig)-
length qualified unique signature scheme, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. Suppose, on the contrary, there exists a PPT adversary Att such that Adv0Att − Adv1Att = ε, where ε
is non-negligible in λ. Assuming O is a secure indistinguishability obfuscator, we will use Att to construct
a PPT algorithm B that breaks the security of S. Here, we will crucially use the fact that S is a unique
signature scheme; that is, there is a unique accepting signature σ ∈ {0, 1}`sig corresponding to verification
key VK and message m.

First, let us consider the following altered circuit TransformAltj,b,y,N,K
15 which takes as input a tuple

(Verify′,VK′,m′, σ′) and outputs ⊥ if Verify′ = S.Verify, VK′ = VK and the jth bit of σ′ is b.

15Padded appropriately to be of the same size as Transform and Transform-Reject.

15

250

Approved for Public Release; Distribution Unlimited.

TransformAltj,b,y,N,K :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : j ∈ [`sig], b ∈ {0, 1}, y ∈ {0, 1}`ver×{0, 1}`vk×{0, 1}`msg , RSA modulus
N ∈ N,K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y and σ′[j] = b then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

We will now state two observations which will be useful for proving our claim. Fix a message m ∈
{0, 1}`msg . Let (SK,VK) ← S.Setup(1λ), σ ← S.Sign(SK,m) and y = S.Verify||VK||m. Let σ[j] denote the
jth bit of σ.

Observation 4.1. For all j ∈ [`sig], the circuits TransformN,K and TransformAltj,1−σ[j],y,N,K are functionally
identical.

Observation 4.2. For all j ∈ [`sig], the circuits Transform-Rejecty,N,K{y} and TransformAltj,σ[j],y,N,K are
functionally identical.

Both these observations follow from the fact that S is a unique signature scheme and the correctness of
punctured key on non-punctured inputs.

Next, we define Game-Alt j, b, which is exactly similar to Game 0 and Game 1, except that the challenger
outputs O(1λ,TransformAltj,b,y,N,K) (instead of O(1λ,TransformN,K) or O(1λ,Transform-Rejecty,N,K{y})) as
part of the public parameters PP. Let Eσj be the event that σ[j] = 1, where σ is the unique signature
corresponding to challenge message m output by Att.

From these observations, it follows that O(1λ,TransformN,K) and O(1λ,TransformAltj,1−σ[j],y,N,K) are

computationally indistinguishable (by the security of O) and similarly, O(1λ,TransformAltj,σ[j],y,N,K) and

O(1λ,Transform-Rejecty,N,K{y}) are computationally indistinguishable. Hence, for all j ≤ `sig, we get the
following equations:

∣∣Pr[(Att wins in Game 0) |Eσj]− Pr[(Att wins in Game-Alt j, 0) |Eσj]
∣∣ ≤ negl(λ), (1)

∣∣Pr[(Att wins in Game 0) |¬Eσj]− Pr[(Att wins in Game-Alt j, 1) |¬Eσj]
∣∣ ≤ negl(λ), (2)

∣∣Pr[(Att wins in Game 1) |Eσj]− Pr[(Att wins in Game-Alt j, 1) |Eσj]
∣∣ ≤ negl(λ) (3)

∣∣Pr[(Att wins in Game 1) |¬Eσj]− Pr[(Att wins in Game-Alt j, 0) |¬Eσj]
∣∣ ≤ negl(λ) (4)

Continuing with our proof, let us assume Att = (Att1,Att2). Att1 is a randomized algorithm that on
input 1λ, outputs message m ∈ {0, 1}`msg which it sends to the challenger, and state st which is sent to Att2.
Att2 is a randomized algorithm that receives state m, st from Att1 and inputs PP,VK from challenger. It
makes signature queries before outputting the forgery. We will now describe algorithm B that interacts with
a unique signature S challenger. Let τ = 32λ

ε2 .

1. B first runs Att1(1λ) and receives message m and state st. It sends m to S challenger, and receives
VK.

2. For j = 1 to `sig, do

16

251

Approved for Public Release; Distribution Unlimited.

(a) Set countj,0 = 0. For i = 1 to τ ,

i. Choose RSA modulus N , e ← Z∗φ(N) and K ← F.setup(1λ). Set y = S.Verify||VK||m,

PP =(O(1λ,TransformAltj,0,y,N,K), O(1λ,Transform-ImageN,K,e), N, e) and send PP,VK,m, st
to Att2 as input. Att2 uses fresh randomness for each run.

ii. For each signing query xr, B forwards xr to the challenger, receives σr, which it sends to Att2.

iii. Finally, Att2 outputs σagg and n tuples. If Att wins, B increments countj,0.

(b) Set countj,1 = 0. For i = 1 to τ

i. Choose RSA modulus N , e ← Z∗φ(N) and K ← F.setup(1λ). Set y = S.Verify||VK||m,

PP =(O(1λ,TransformAltj,1,y,N,K), O(1λ,Transform-ImageN,K,e), N, e) and send PP,VK,m, st
to Att2 as input. Att2 uses fresh randomness for each run.

ii. For each signing query xr, B forwards xr to the challenger, receives σr, which it sends to Att2.

iii. Finally, Att2 outputs σagg and n tuples. If Att wins, B increments countj,1.

(c) If countj,0 > countj,1, B sets αj = 1, else it sets αj = 0.

3. Finally, B outputs σ′ = α1 . . . α`sig as forgery to challenger.

We will now analyze the winning probability of B. In order to do this, we will first define a subset of
verification keys which are ‘good’ (i.e. verification keys for which the difference between the advantages of
Att in Game 0 and Game 1 is ‘large’) and then show that a non-negligible fraction of the verification keys are
‘good’. This technique is similar to the heavy row lemma used in [OO98].

For any (m, st)← Att1(1λ), let Goodm,st ⊂ VK be the set of verification keys VK such that the following
holds:

Pr[Att2(PP,VK,m, st) wins in Game 0]− Pr[Att2(PP,VK,m, st) wins in Game 1] ≥ ε/2,

where the probability is taken over the random coins used by Att2 and the random coins used by the challenger
to compute PP and the signatures.

Let E denote the event (m, st) ← Att1(1λ) and (SK,VK) ← S.Gen(1λ) and VK ∈ Goodm,st. We can
also view E as the set of all tuples (m, st,VK) such that (m, st)← Att1(1λ) and (SK,VK)← S.Gen(1λ) and
VK ∈ Goodm,st.

Claim 4.1. Pr[E] ≥ ε/2, where the probability is over the random coins of Att1 and S.Gen.

Proof.

ε = Pr[Att wins in Game 0]− Pr[Att wins in Game 1]

= Pr[Att wins in Game 0|E] Pr[E] + Pr[Att wins in Game 0|¬E] Pr[¬E]

− Pr[Att wins in Game 1|E] Pr[E]− Pr[Att wins in Game 1|¬E] Pr[¬E]

= Pr[E](Pr[Att wins in Game 0|E]− Pr[Att wins in Game 1|E])

+ Pr[¬E](Pr[Att wins in Game 0|¬E]− Pr[Att wins in Game 1|¬E])

≤Pr[E] + ε/2

This implies Pr[E] ≥ ε/2.

Let us assume event E . We will now compute the probability that B fails to recover forgery, given E . Let
pj denote the probability that the jth bit of forgery σ′ is incorrect, given E .

Let v = (m, st,VK) ∈ E . Define θvj,b = Pr[Att2(PP,VK,m, st) wins in Game-Alt j, b|v]. Then, the expected
value of countj,b given v, E[countj,b|v] = θvj,b · τ . Note that in each of the runs, the random coins used by
Att2 and the random coins used by the challenger to compute PP and the signatures are chosen afresh. By
Chernoff-Hoeffding bounds,

17

252

Approved for Public Release; Distribution Unlimited.

Pr
[∣∣countj,0 − θvj,0 · τ

∣∣ >
(ε

4

)
· τ
∣∣∣v
]
≤ exp

(
−
(
ε2

32

)
· τ
)

(5)

Pr
[∣∣countj,1 − θvj,1 · τ

∣∣ >
(ε

4

)
· τ
∣∣∣v
]
≤ exp

(
−
(
ε2

32

)
· τ
)

(6)

Setting τ = 32λ
ε2 , we get that the above probabilities are bounded by a negligible function in λ.

We will now compute pj .
pj = Pr

[
αj 6= σ[j]

∣∣E
]

=
∑
v∈E Pr

[
αj 6= σ[j]

∣∣v
]
·Pr

[
v
∣∣E
]
. Let us focus on one such term Pr

[
αj 6= σ[j]

∣∣v
]

for some v ∈ E . Pr
[
αj 6= σ[j]

∣∣v
]

= Pr
[
αj = 0 and σ[j] = 1

∣∣v
]

+ Pr
[
αj = 1 and σ[j] = 0

∣∣v
]
.

Since S is a unique signature scheme, given v, σ[j] is fixed. If σ[j] = 1, then,

Pr
[
αj 6= σ[j]

∣∣v
]

= Pr
[
αj = 0 and σ[j] = 1

∣∣v
]

= Pr
[
αj = 0

∣∣v
]

= Pr
[
countj,0 ≤ countj,1

∣∣v
]

≤ Pr
[
countj,0 ≤ (θvj,0 + θvj,1)τ/2

∣∣v
]

+ Pr
[
countj,1 ≥ (θvj,0 + θvj,1)τ/2

∣∣v
]

= Pr
[
countj,0 ≤ θvj,0τ/2− (θvj,0 − θvj,1)τ/2

∣∣v
]

+ Pr
[
countj,1 ≥ θvj,1 + (θvj,0 − θvj,1)τ/2

∣∣v
]

(7)

Now, note that if v ∈ E and σ[j] = 1, then

θvj,0 = Pr[Att2(PP,VK,m, st) wins in Game-Alt j, 0
∣∣v] (8)

≥ Pr[Att2(PP,VK,m, st) wins in Game 0
∣∣v]− negl(λ) (9)

≥ Pr[Att2(PP,VK,m, st) wins in Game 1
∣∣v] + ε/2− negl(λ) (10)

≥ Pr[Att2(PP,VK,m, st) wins in Game-Alt j, 1
∣∣v] + ε/2− negl(λ) (11)

= θvj,1 + ε/2− negl(λ) (12)

The transitions from Equation 8 and 9, and from Equation 10 to 11 follow from Equations 1 and 3 respectively,
while the transition from Equation 9 to 10 uses the fact that v ∈ E . Hence, getting back to Equation 7,

Pr
[
countj,0 ≤ θvj,0τ − (θvj,0 − θvj,1)τ/2

∣∣v
]

+ Pr
[
countj,1 ≥ θvj,1τ + (θvj,0 − θvj,1)τ/2

∣∣v
]

≤ Pr
[
countj,0 ≤ θvj,0τ − ε · τ/4

∣∣v
]

+ Pr
[
countj,1 ≥ θvj,1τ + ε · τ/4

∣∣v
]

Now, we can use Equations 5 and 6 to conclude that Pr
[
αj 6= σ[j]

∣∣v
]
≤ negl(λ). A similar argument

follows if v is such that σ[j] = 0. Therefore, Pr
[
αj 6= σ[j]

∣∣E
]
≤ negl(λ). Hence, Pr[B fails |E] ≤ negl(λ).

This implies Pr[B wins] ≥ Pr[B wins |E] Pr[E] ≥ ε/2 − negl(λ). Since this violates the unforgeability of the
signature scheme, we have our contradiction.

Claim 4.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv1Att − Adv2Att = ε. We will construct a PPT
algorithm B that constructs two circuits C0 and C1 with identical functionality, and uses Att to distinguish
between iO(C0) and iO(C1), thereby breaking the security of iO.
B receives m from Att, chooses (SK,VK) ← S.Gen(1λ), RSA modulus N , e ← Z∗φ(N) and K ←

F.setup(1λ). It sets y = S.Verify||VK||m and computesK{y} ← F.puncture(K, y). It sets C0 = Transform-ImageN,K,e

18

253

Approved for Public Release; Distribution Unlimited.

and C1 = Transform-Image-1y,N,K{y},z,e, and sends C0, C1 to the iO challenger. It receives C = iO(Cb). B
sets PP = (iO(Transform-Rejecty,N,K{y}), C,N, e) and sends PP,VK to Att.

Note that B can respond to the signing queries perfectly, since it has SK. Finally, if Att wins, then B
outputs 0, else it outputs 1. Clearly, if C = iO(C0), then it corresponds to Game 1, else it corresponds to
Game 2.

To conclude, we need to argue that C0 and C1 have identical functionality. This follows from the
correctness property of puncturable PRFs.

Claim 4.3. Assuming F is a selectively secure puncturable PRF, for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att − Adv3Att = ε. We will construct a PPT
algorithm B that uses Att to break the security of puncturable PRF F with advantage ε.

First, B receives the message m from Att. As in Game 2 and Game 3, it computes (SK,VK)← S.Gen(1λ),
chooses an RSA modulus N and e← Z∗φ(N). Next, it sends y = S.Verify||VK||m as the challenge to the PRF

challenger. B receives a punctured key K{y} and z ∈ Z∗N , where z = F (K, y) or z ← Z∗N . B sets the public
parameters PP=(iO(Transform-Rejecty,N,K{y}),iO(Transform-Image-1y,N,K{y},z,e), N , e). It sends PP,VK
to Att.

The signing phase and forgery phase are exactly similar in Game 2 and Game 3. For each signing query
xi, B sends S.Sign(SK, xi) to Att. Finally, Att outputs the forgery σagg and n tuples {(Verifyi, VKi, mi)}.

Note that if z = F (K, y), then B simulates Game 2 perfectly. If z ← Z∗N , B simulates Game 3 perfectly.
This concludes our proof.

Claim 4.4. Assuming RSA is secure, for any PPT adversary Att, Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv3Att = ε. We will construct a PPT algorithm
B that breaks the RSA assumption with advantage ε.
B receives message m from Att. It receives the RSA tuple (N, e, z) from the RSA challenger. B

chooses (SK,VK) ← S.Gen(1λ), K ← F.setup(1λ). Next, it sets y = Verify||VK||m and computes K{y} ←
F.puncture(K, y). It sets PP = (iO(1λ(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e), N , e)
and sends PP, VK to Att.

Att sends signature queries, which B can compute by itself, since it has the signing key SK. Fi-
nally, Att outputs forgery σagg along with n tuples {Verifyi,VKi,mi}. If Att wins, then all n tuples are
distinct, and there exists i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m and σeagg =(∏

i6=i∗ Transform-Image-1y,N,K{y},z,e(Verifyi,VKi,mi)
)
z (mod N). For all i 6= i∗, Transform-Image-1y,N,K{y},z,e

outputs F (K, Verifyi||VKi||mi)
e on input (Verifyi, VKi, mi). Therefore,

(
σagg∏

i6=i∗ F (K,Verifyi||VKi||mi)

)e
= z

(mod N).

Using the above claims, it follows that any PPT adversary has negligible advantage in Game 0, assuming
iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable PRF and the RSA
assumption holds. Therefore, the construction in Section 4 is selectively secure with respect to all secure
unique signature schemes.

5 Universal Aggregation of Arbitrary Signatures Using VBB Ob-
fuscation

In this section, we will describe our construction based on virtual black box obfuscation. The construction
is similar to the one in Section 4, the only difference being in program Transform-VBB, which now takes

19

254

Approved for Public Release; Distribution Unlimited.

some additional inputs and has additional constants hardwired. The additional inputs/constants are used
for “oracle assimilation” (see Section 1 for a discussion on this technical issue).

We will assume that all signing algorithms (corresponding to schemes whose signatures need to be aggre-
gated) use at most `rnd random bits to compute signatures, for some polynomial `rnd. We use a pseudorandom
generator PRG : {0, 1}` ← {0, 1}2` (where ` is some polynomial in λ), a (standard) PRF F̃ with key space
K̃, domain X̃ and range Ỹ = {0, 1}`rnd and a puncturable PRF F as in Section 4.

Our universal signature aggregator consists of the three algorithms UniversalSetup, UniversalAgg and
UniversalVerify described below.

UniversalSetup(1λ) UniversalSetup first chooses random primes p, q ∈ Θ(2λ), sets the RSA modulus N =
pq. It chooses e ← Z∗φ(N), PRF key K ← F.setup(1λ) as in Section 4. It computes obfuscations of

the programs Transform-VBBN,K
16 and Transform-ImageN,K,e

17, where Transform-VBBN,K is defined be-
low, while Transform-ImageN,K,e is the same as in Section 4. It sets the public parameters to be PP =
(O(Transform-VBBN,K), O(Transform-ImageN,K,e), N , e).

Transform-VBBN,K :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, K ∈ K.

if b = 0 then
Output ⊥.

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2, N, e). UniversalAgg first checks that all the
n tuples are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If
ti =⊥ for some i, then UniversalAgg outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2, N, e). UniversalVerify checks that the n
tuples are distinct. If not, it outputs 0. Else, it computes, for all i ≤ n, si = Transform-Image(Verifyi,VKi,mi).
If (
∏
i si) = σeagg (mod N), it outputs 1, else it outputs 0.

5.1 Proof of Security

We will now prove that the construction in Section 5 is selectively secure with respect to all secure signature
schemes.

Theorem 5.1. Assuming O is a secure virtual black-box obfuscator for a class of circuits C (as defined in
Section 5.1.3), F is a selectively secure puncturable PRF, F̃ is a secure PRF, PRG is a secure pseudorandom
generator and RSA is secure, for all (`ver, `vk, `msg, `sig)-length qualified signature schemes S, the universal
signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg is selectively secure with respect to S.

We will now describe the intermediate hybrid experiments.

16Padded appropriately to be of the same size as Transform-VBB-1, Transform-VBB-2, Transform-VBB-3 defined later in this
section.

17Padded appropriately to be of the same size as Transform-Image-1 as in Section 4.

20

255

Approved for Public Release; Distribution Unlimited.

5.1.1 Sequence of Games

Game 0: This game corresponds to ExpselAtt,S .

1. Att sends message m.
2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z∗φ(N), K ← F.setup(1λ) and set

PP = (O(Transform-VBBN,K),O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: In this game, the challenger uses pseudorandomly generated strings as randomness for the signature
queries.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose standard PRF key K̃ ← F̃ .setup(1λ).
Set PP = (O(Transform-VBBN,K),O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi), σi ← S.Sign(SK, xi; ri)
and send σi to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 2: In this game, the challenger uses the program Transform-VBB-1 instead of Transform-VBB. Unlike
Transform-VBB, Transform-VBB-1 uses the input a to check if PRG(a) is equal to the hardwired α. If the
‘mode’ bit is 0 and PRG(a) = α, then the program outputs the verification key VK and a signature on the
desired message.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose PRF key K̃ ← F̃ .setup(1λ), α← {0, 1}2`.
Let Transform-VBB-118 be the circuit defined below.
Set PP =(O(Transform-VBB-1N,K,α,SK,K̃), O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi), σi ← S.Sign(SK, xi; ri)
and send σi to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

18Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-2 and Transform-VBB-3.

21

256

Approved for Public Release; Distribution Unlimited.

Transform-VBB-1N,K,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, K ∈ K, α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Game 3: In this experiment, α is a pseudorandom string; i.e. α = PRG(a), where a← {0, 1}`.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose PRF key K̃ ← F̃ .setup(1λ).
Set PP =(O(Transform-VBB-1N,K,α,SK,K̃), O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi), σi ← S.Sign(SK, xi; ri)
and send σi to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 4: This experiment is similar to the previous one, except that the challenger uses Transform-VBB-2
instead of Transform-VBB-1.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose K̃ ← F̃ .setup(1λ).
Let Transform-VBB-219 be the circuit defined below.
Set y = S.Verify||VK||m, PP =(O(Transform-VBB-2y,N,K,α,SK,K̃), O(Transform-ImageN,K,e), N, e). Send

PP, VK to Att.
3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi) and send σi =
S.Sign(SK, xi; ri) to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

19Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-1 and Transform-VBB-3.

22

257

Approved for Public Release; Distribution Unlimited.

Transform-VBB-2y,N,K,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg ,RSA modulus N ∈ N, K ∈ K,

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Game 5: In this experiment, the challenger uses a key punctured at y instead of the master PRF key.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose K̃ ← F̃ .setup(1λ).
Set y = S.Verify||VK||m, compute K{y} ← F.puncture(K, y) and z = F (K, y)e.

Let Transform-VBB-320 be the circuit defined below, while Transform-Image-121,e) is the same as in
Section 4.1 Set PP =(O(Transform-VBB-3y,N,K{y},α,SK,K̃), O(Transform-Image-1y,N,K{y},z,e).

Send PP, VK to Att.
3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi) and send σi =
S.Sign(SK, xi; ri) to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

20Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-1 and Transform-VBB-2.
21Padded appropriately to be of the same size as Transform-Image-1.

23

258

Approved for Public Release; Distribution Unlimited.

Transform-VBB-3y,N,K{y},α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : y ∈ {0, 1}`ver×{0, 1}`vk×{0, 1}`msg , RSA modulus N ∈ N, K{y} ∈ Kp,
α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F.eval(K{y},Verify′||VK′||m′).

end if

Game 6: Here the challenger chooses a uniformly random z ← Z∗N .

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose K̃ ← F̃ .setup(1λ).
Set y = S.Verify||VK||m, compute K{y} ← F.puncture(K, y) and z ← Z∗N .

Set PP =(O(Transform-VBB-3y,N,K{y},α,SK,K̃), O(Transform-Image-1y,N,K{y},z,e),e). Send PP, VK to
Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

5.1.2 Analysis

We will now show that if a PPT adversary has non negligible advantage in Game i, then it has non-negligible
advantage in the next game. Some of the proofs are exactly similar to the corresponding ones in Section 4.1,
and hence we skip them in this section. Except the part involving oracle assimilation, the remaining proofs
are relatively easier. The step involving oracle assimilation is discussed in a separate subsection (Section
5.1.3).

Let AdvjAtt denote the advantage of adversary Att in Game j.

Claim 5.1. Assuming F̃ is a secure PRF, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. Suppose there exists an adversary Att such that Adv0Att − Adv1Att = ε. We will construct a PPT
algorithm B that uses Att and breaks the security of F̃ with advantage ε.
B receives message m from Att. It chooses (SK,VK) ← S.Gen(1λ), RSA modulus N , e ← Z∗φ(N) and

K ← F.setup(1λ). It sets PP =(O(Transform-VBBN,K), O(Transform-ImageN,K,e), e) and sends PP,VK to
Att.

24

259

Approved for Public Release; Distribution Unlimited.

For each signing query xi, B first chooses ρi ← {0, 1}`sig and sends ρi to the PRF challenger. In response,
it receives ri. B sends σi = S.Sign(SK, xi; ri) to Att.

Finally, Att outputs a forgery. If Att wins, then B outputs 1, indicating that the PRF challenger’s
responses were truly random. Else it outputs 0.

If the PRF challenger’s responses were truly random, then for each query ρi, ri is a truly random string.
Therefore, this corresponds to Game 0. If the PRF challenger’s responses were pseudorandom, then there
exists a PRF key K̃ such that for each query ρi, ri = F̃ (K̃, ρi). This corresponds to Game 1. Therefore,

AdvF̃B = ε.

Claim 5.2. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv1Att − Adv1Att = ε. We will construct a PPT
algorithm B that breaks the security of O with advantage ε.
B receives message m from Att. It chooses (SK,VK) ← S.Gen(1λ), RSA modulus N , e ← Z∗φ(N), K ←

F.setup(1λ), K̃ ← F̃ .setup(1λ) and α← {0, 1}2`. It sets C0 = Transform-VBBN,K , C1 = Transform-VBB-1N,K,α,SK,K̃
and sends C0, C1 to the O challenger. It receives an obfuscated circuit C ′ = O(Cb) in response, and sets
PP = (C ′, O(Transform-ImageN,K,e), e) and sends PP,VK to Att.

For each signing query xi, B first chooses ρi ← {0, 1}`sig and computes ri = F̃ (K̃, ρi). B sends σi =
S.Sign(SK, xi; ri) to Att.

Finally, Att outputs a forgery. If Att wins, then B outputs 0, else it outputs 1. Clearly, if b = 0, then this
corresponds to Game 1, else it corresponds to Game 2. Therefore, in order to show that AdvOB = ε, we need
to show that C0 and C1 have identical functionality.

This follows from the observation that with overwhelming probability, there exists no a ∈ {0, 1}` such
that α = PRG(a), since α is chosen uniformly at random. As a result, on input (0, a,Verify′,VK′,m′, σ′),
both circuits output ⊥ for all a,Verify′,VK′,m′, σ′. This concludes our proof.

Claim 5.3. Assuming PRG is a secure pseudorandom generator, for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att − Adv3Att = ε. We will construct a PPT
algorithm B that breaks the security of PRG with advantage ε.
B receives α from the PRG challenger, where α ← {0, 1}` or α = PRG(a) for some a ← {0, 1}`. Note

that B can simulate either Game 1 or Game 2 perfectly using α. It chooses (SK,VK) ← S.Gen(1λ), RSA
modulus N , e← Z∗φ(N), K ← F.setup(1λ), K̃ ← F̃ .setup(1λ). B sets PP =(O(Transform-VBB-1N,K,α,SK,K̃),

O(Transform-ImageN,K,e), e) and sends PP,VK to Att.

For the signature queries, B uses SK. Finally, if Att wins, B outputs 1 (indicating that α ← {0, 1}2`).
Else it outputs 0. Clearly, AdvB = ε. This concludes our proof.

Lemma 5.1. Assuming O is a secure virtual black box obfuscator for a class of circuits C (defined in Section
5.1.3), F̃ is a secure pseudorandom function, PRG is a secure pseudorandom generator and S is a (`ver, `vk,
`msg, `sig)-length qualified secure signature scheme,

Adv3Att − Adv4Att ≤ negl(λ).

The proof of this lemma consists of multiple intermediate hybrids, and is contained in Section 5.1.3.

Claim 5.4. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv4Att − Adv5Att ≤ negl(λ).

25

260

Approved for Public Release; Distribution Unlimited.

Proof. Similar to proof of Claim 4.2.

Claim 5.5. Assuming F is a selectively secure puncturable PRF, for any PPT adversary Att,

Adv5Att − Adv6Att ≤ negl(λ).

Proof. Similar to proof of Claim 4.3.

Claim 5.6. Assuming RSA is secure, for any PPT adversary Att,

Adv6Att ≤ negl(λ).

Proof. Similar to proof of Claim 4.4.

Using the above claims, we can conclude that any PPT adversary has at most negligible advantage in
Game 0, assuming O is a secure virtual black-box obfuscator for circuit family C, F is a selectively secure
puncturable PRF, F̃ is a secure (standard) PRF, PRG is a secure pseudorandom generator, and RSA is
secure. Therefore, the construction described in Section 5 is selectively secure with respect to all secure
length-qualified signature schemes.

5.1.3 Proof of Lemma 5.1

Proof. Let Att be a PPT adversary such that Adv3Att − Adv4Att = ε. As in proof of Lemma 4.1, we will
assume that Att = (Att1,Att2) where Att1 takes as input the security parameter λ and outputs (m, st), where
st denotes some state information. Att2 takes as input m, st,PP,VK, issues signature queries and finally
outputs a forgery.

Let us assume rndRSA = rndRSA(λ) bits are used to choose the RSA modulus N , rndF = rndF(λ) bits are
used by F.setup(1λ) to choose a PRF key K ∈ K and rndAtt = rndAtt(λ) bits are used by Att1 to compute
(m, st). Let Vλ = {(a, rN , rK , rAtt) |a ∈ {0, 1}`, rN ∈ {0, 1}rndRSA , rK ∈ {0, 1}rndF , rAtt ∈ {0, 1}rndAtt}. For
any v = (a, rN , rK , rAtt) ∈ Vλ, let Nv denote the RSA modulus generated by rN , Kv = F.setup(1λ; rK) and
(mv, stv) = Att1(1λ; rAtt). Let C0λ,v denote the family of circuits corresponding to Transform-VBB-1; that is

C0λ,v = {Transform-VBB-1Nv,Kv,α,SK,K̃
: α = PRG(a),SK ∈ SK,VK ∈ VK, K̃ ∈ K̃}.

Similarly, C1λ,v denotes the circuits corresponding to Transform-VBB-2; that is

C1λ,v = {Transform-VBB-2y,Nv,Kv,α,SK,K̃
: y = S.Verify||VK||mv, α = PRG(a),SK ∈ SK,VK ∈ VK, K̃ ∈ K̃}.

When the context is clear, we will drop the dependence of Nv, Kv, mv and stv on v. We will now define
a PPT algorithm Algv that takes as input a circuit C ′ ∈ C0λ,v ∪ C1λ,v, has v hardwired, interacts with Att2
and outputs a bit b′.

26

261

Approved for Public Release; Distribution Unlimited.

Algv:

Inputs: Circuit C ′ ∈ C0λ,v ∪ C1λ,v
Constants: v = (a, rN , rK , rAtt) ∈ {0, 1}` × {0, 1}rndRSA × {0, 1}rndF × {0, 1}rndAtt

1. Compute p, q using rN , set N = pq and choose e ← Z∗φ(N). Compute K ←
F.setup(1λ; rK).

2. Choose Verify′ ← {0, 1}`ver , VK′ ← {0, 1}`vk , m′ ← {0, 1}`msg , σ′ ← {0, 1}`sig
and compute (VK, ρ) = C ′(0, a,Verify′,VK′,m′, σ′).

3. Compute P2 ← O(Transform-ImageN,K,e). Set PP = (C ′, P2, e) and send
PP,VK,m, st to Att2.

4. For each signing query xi, Av chooses σ′ ← {0, 1}`sig computes
C ′(0, a,S.Verify,VK, xi, σ

′) = σi and sends σi to Att.
5. Att2 sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. If ∃i∗ ∈ [n] such

that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP,
{(Verifyi, VKi, mi) }, σagg) = 1, then Av outputs 1. Else it outputs 0.

Consider the following experiment Expbv: Compute RSA modulus N using rN , K = F.setup(1λ; rK),
α = PRG(a) and (m, st) = Att1(1λ; rAtt). Choose (SK,VK) ← S.Gen(1λ) and K̃ ← F̃ .setup(1λ). If
b = 0, set C ′ ← O(Transform-VBB-1N,K,α,SK,K̃), else set C ′ ← O(Transform-VBB-2y,N,K,α,SK,K̃), where
y = S.Verify||VK||m. Output Algv(C

′).
From the definition of Exp0v and Algv, it follows that Pr

[
1← Exp0v

]
= Pr [Att wins in Game 3|v]. Simi-

larly, Pr
[
1← Exp1v

]
= Pr [Att wins in Game 4]. Hence, E

[
Pr
[
1← Exp0v

]
− Pr

[
1← Exp1v

]]
= ε, where the

expectation is over the choice of v ← Vλ. Let v∗ = v∗(λ) = arg maxv∈V{Pr[1 ← Exp0v] − Pr[1 ← Exp1v]}.
Then, it follows that

Pr[1← Exp0v∗]− Pr[1← Exp1v∗] ≥ ε. (13)

Using Alg, we can now define our non-uniform algorithm A. For each security parameter λ, A(1λ) =
Algv∗(λ).

Now, consider the class of circuits Cλ = C0λ,v∗ ∪ C1λ,v∗ . We will require our obfuscator O to be a virtual
black box obfuscator for circuit class C = {Cλ}λ∈N.

From the security property of VBB obfuscator, it follows that there exists a PPT simulator S corre-
sponding to A such that

Pr [A (O(C)) = 1]− Pr
[
SC
(

1|C|
)

= 1
]
≤ negl(λ) (14)

for all circuits C ∈ Cλ and the probabilities are over the random coins of A and S respectively.
Therefore, from Equations 13 and 14, we get the following observation.

Observation 5.1. Let (SK,VK) ← S.Gen(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α =
PRG(a). Nv∗ , Kv∗ and (mv∗ , stv∗) computed using rN , rK and rAtt respectively, and y = S.Verify||VK||mv∗ .
Let C0 = Transform-VBB-1Nv∗ ,Kv∗ ,α,SK,K̃

and C1 = Transform-VBB-2y,Nv∗ ,Kv∗ ,α,SK,K̃
. Then

∣∣∣Pr
[
SC0

(
1|C0|

)
= 1
]
− Pr

[
SC1

(
1|C1|

)
= 1
]∣∣∣ ≥ ε− negl(λ)

where the probabilities are over the choice of (SK,VK), K̃ and the random coins of S.

We will show that this leads to a contradiction. Consider the algorithm Transform-VBB′-1 which is exactly
similar to the circuit Transform-VBB-1, except that the signature is computed using true randomness instead
of using F̃ .

27

262

Approved for Public Release; Distribution Unlimited.

Transform-VBB′-1N,K,α,SK :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, K ∈ K, α ∈ {0, 1}2`, SK ∈ SK.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Choose r ∈ {0, 1}`rnd and output (VK,S.Sign(SK,m′; r)).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

From the security of F̃ , we get the following claim:

Claim 5.7. Let (SK,VK) ← S.Sign(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α = PRG(a).
Nv∗ , Kv∗ , (mv∗ , stv∗) are computed using rN , rK , rAtt respectively. Let C0 = Transform-VBB-1N,K,α,SK,K̃
and C ′0 = Transform-VBB′-1N,K,α,SK. Assuming F̃ is a secure PRF, for any PPT algorithm S,

Pr
[
SC0

(
1|C0|

)
= 1
]
− Pr

[
SC
′
0

(
1|C
′
0|
)

= 1
]
≤ negl(λ).

Similarly, we define an algorithm Transform-VBB′-2 which is exactly similar to Transform-VBB-2, except
that the signature is computed using true randomness.

Claim 5.8. Let (SK,VK) ← S.Sign(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α = PRG(a).
Nv∗ , Kv∗ , (mv∗ , stv∗) are computed using rN , rK , rAtt respectively and y = S.Verify||VK||mv∗ . Let C1 =
Transform-VBB-2y,N,K,α,SK,K̃ and C ′1 = Transform-VBB′-2y,N,K,α,SK. Assuming F̃ is a secure PRF, for any
PPT algorithm S, ∣∣∣Pr

[
SC1

(
1|C1|

)
= 1
]
− Pr

[
SC
′
1

(
1|C
′
1|
)

= 1
]∣∣∣ ≤ negl(λ).

Therefore, if we can show that no PPT algorithm can distinguish between C ′0 and C ′1 given only oracle
access, then together with Equation 14 and Claims 5.7, 5.8, this leads to a contradiction. Note that if any
algorithm S has only oracle access to C ′0 and C ′1, then in order to distinguish between the two, S must send
a query (1, a′,S.Verify,VK,m, σ) such that S.Verify(VK,m, σ) = 1. This breaks the security of signature
scheme S.

Claim 5.9. Let (SK,VK) ← S.Sign(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α = PRG(a).
Nv∗ , Kv∗ , (mv∗ , stv∗) are computed using rN , rK , rAtt respectively and y = S.Verify||VK||mv∗ . Let C ′0 =
Transform-VBB′-1N,K,α,SK and C ′1 = Transform-VBB′-2y,N,K,α,SK. Assuming S is a secure signature scheme,
for any PPT algorithm S,

∣∣∣Pr
[
SC
′
0

(
1|C
′
1|
)

= 1
]
− Pr

[
SC
′
1

(
1|C
′
1|
)

= 1
]∣∣∣ ≤ negl(λ).

28

263

Approved for Public Release; Distribution Unlimited.

6 Universal Aggregation of Arbitrary Signatures from iO in the
Random Oracle Model

In this section, we describe our n-bounded universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg.
By n-bounded, we mean that at most n signatures can be aggregated.

We will use a secure (`ckt, `inp, `out) universal parameters scheme U = (UniversalGen, InduceGen) (where
the parameters `ckt, `inp and `out will be specified later), an additively homomorphic encryption scheme
(HE.setup,HE.enc,HE.dec,HE.add) with message space Fp for some prime p > 2`sig and ciphertext space CHE.
We will assume each ct ∈ CHE can be represented using `ct bits. Finally, we will also use a one-way function
f : {0, 1}` → {0, 1}2` and a secure indistinguishability obfuscator iO.

Our construction consists of three algorithms UniversalSetup, UniversalAgg and UniversalVerify described
as follows.

UniversalSetup(1λ, 1n) Let (pk, sk) ← HE.setup(1λ). It computes n ciphertexts cti ← HE.enc(pk, 0) and
U ← UniversalGen(1λ). It sets the public parameters to be PP = (pk, ct1, . . . , ctn, U). Let us assume PP can
be represented using `pp bits.

UniversalAgg(PP = (pk, ct1, . . . , ctn, U), {Verifyi,VKi,mi, σi}ni=1) We will view each signature σi as an in-
teger in [0, 2`sig − 1].

The universal aggregator first checks if all n tuples are distinct. If not, it outputs ⊥. Else, it computes
t = σ1 · ct1 + . . .+ σn · ctn.

Let AggSetup be the (randomized) algorithm (defined below) that takes as input security parameter λ,
and outputs a program Cagg and s̃ ∈ {0, 1}2`. It uses `inp bits of randomness, and its output has length
`out. Let C-AggSetupt,PP,{Verifyi,VKi,mi}i ∈ {0, 1}`ckt be a string corresponding to canonical description of
AggSetupt,PP,{Verifyi,VKi,mi}i . We will assume that given C-AggSetupt,PP,{Verifyi,VKi,mi}i , one can efficiently
extract the hardwired constants t, PP and the n tuples {Verifyi,VKi,mi}i.

The aggregator algorithm first computes (Cagg, s̃) = InduceGen(C-AggSetupt,PP,{Verifyi,VKi,mi}i). Next, it
computes s = Cagg(σ1, . . . , σn) and outputs σagg = (t, s).

29

264

Approved for Public Release; Distribution Unlimited.

AggSetupt,PP,{Verifyi,VKi,mi}i :

Inputs: Security parameter 1λ, r ∈ {0, 1}`inp .

Constants: t ∈ CHE, PP = (pk, ct1, . . . , ctn, U) ∈ {0, 1}`pp , {Verifyi,VKi,mi}i ∈
({0, 1}`ver × {0, 1}`vk × {0, 1}`msg)n.

1. Choose s← {0, 1}` using r.
2. Compute Cagg ← iO(AggSigns,t,PP,{Verifyi,VKi,mi}i), where AggSign is the

circuit described below.

AggSigns,t,PP,{Verifyi,VKi,mi}i :

Inputs: σ1, . . . , σn, where σi ∈ {0, 1}`sig .

Constants: s ∈ {0, 1}`, t ∈ CHE, PP = (pk, ct1, . . . , ctn, U),
{Verifyi,VKi,mi}i.

if ∃i such that Verifyi(VKi,mi, σi) = 0 then
Output ⊥.

end if
if t 6= σ1 · ct1 + . . .+ σn · ctn then

Output ⊥.
end if
Output s.

3. Compute s̃ = f(s).
4. Output (Cagg, s̃).

UniversalVerify(PP = (pk, ct1, . . . , ctn, U), {Verifyi,VKi,mi}ni=1, σagg = (t, s′)) The verification algorithm
first checks if all n tuples are distinct. If not, it outputs 0. Else, let C-AggSetup be the canonical descrip-
tion of AggSetup as defined above. It computes (Cagg, s̃) = InduceGen(U, C-AggSetupt,PP,{Verifyi,VKi,mi}i). If
s̃ = f(s′), output 1, else output 0.

Correctness follows directly from the observation that InduceGen is a deterministic algorithm.

6.1 Proof of Security

Theorem 6.1. Assuming iO is a secure indistinguishability obfuscator, (UniversalGen, InduceGen) is a secure
universal parameters scheme in the random oracle model, HE is a secure additively homomorphic encryption
scheme and f is a secure one-way function, for all (`ver, `vk, `msg, `sig)-length qualified secure signature
schemes S, the bounded universal signature aggregator described in Section 6 is adaptively secure in the
random oracle model with respect to S.

We will first describe a sequence of intermediate experiments Game 0, . . . ,Game 5, where Game 0 is the
adaptive security game in random oracle model. From Game 3 onwards, the challenger starts simulating
the universal parameters and the responses to random oracle queries. In order to do so, the challenger
implements a parameter oracle O, and the simulation algorithms are allowed to make random oracle queries
to O. Let us assume the simulator algorithms SimUGen and SimRO makes at most qpar calls to the Parameters
Oracle.

30

265

Approved for Public Release; Distribution Unlimited.

6.1.1 Sequence of Games

Game 0: In this game, the challenger first sends PP,VK to the adversary Att. Att then makes polynomially
many signature and random oracle queries. Finally, Att outputs forgery σagg and n tuples {Verifyi,VKi,mi}i.

1. Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and U ← UniversalGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n] and set PP = (pk, ct1, . . . , ctn, U).
Send PP,VK to Att.

2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) ∃i∗ such that Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 1: This game is exactly similar to the previous one, except that the challenger guesses a position
i∗ ∈ [n], and the attacker wins only if the forgery verifies, and the i∗th tuple corresponds to S.Verify,VK.

1. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and U ← UniversalGen(1λ).
Compute cti ← HE.enc(pk, 0) and set PP = (pk, ct1, . . . , ctn, U).
Send PP,VK to Att.

2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 2: In this game, the challenger modifies the public parameters PP. Instead of outputting n encryp-
tions of 0, the challenger outputs an encryption of 1 at position i∗.

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and U ← UniversalGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Send PP,VK to Att.

2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

31

266

Approved for Public Release; Distribution Unlimited.

Game 3 In this game, the challenger ‘simulates’ both the universal parameters U and the responses to
random oracle queries. Let SimUGen and SimRO be the simulation algorithms corresponding to the universal
parameters scheme (UniversalGen, InduceGen). The challenger also implements the Parameters Oracle O. O
takes as input a circuit d ∈ C[`ckt, `inp, `out]. If d has already been queried, O returns the same response.
Else, it chooses r ← {0, 1}`inp , outputs d(r), and adds (d, d(r)) to its table T . Though the parameters oracle
O is described in the Setup Phase, it is used in all the later phases as well.

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.

- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.

- If T contains an entry of the form (d, δ), output δ.

- Else choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, output SimRO(yi)

22.
4. Finally, Att sends a forgery σagg and n tuples {Verifyi,VKi,mi}i.

Let O-Queriesi denote the set of first i queries to O. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Recall from Section 6 that C-AggSetupt,PP,{Verifyi,VKi,mi} ∈ {0, 1}`ckt allows efficient extraction of t, PP
and (Verifyi,VKi,mi) for all i ≤ n. Without loss of generality, we can assume that if Att outputs σagg =
(t∗, s∗) as forgery, along with n tuples {Verifyi,VKi,mi}i, then the circuit C-AggSetupt∗,PP,{Verifyi,VKi,mi}i
was sent as query to the Parameters Oracle O. We will now define games Game 4-j-a and Game 4-j-b for
j ≤ qpar. Let us first define some notations. Given a canonical circuit C-AggSetupt,PP,{Verifyi,VKi,mi}i , call it
(i∗, sk)-rejecting if Verifyi∗(VKi∗ ,mi∗ ,HE.dec(sk, t)) = 0. Let Reject-ckt be a circuit of size same as AggSign
that outputs ⊥ for all inputs.

Game 4-j-a

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.
- If T contains an entry of the form (d, δ), output δ.
- Else if i ≤ j and d = C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,

output iO(Reject-ckt) and f(s) for s← {0, 1}`.
- Else, choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

22Note that SimRO can make polynomially many queries to O.

32

267

Approved for Public Release; Distribution Unlimited.

Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, output SimRO(yi).
4. Finally, Att sends a forgery σagg and n tuples {Verifyi,VKi,mi}i. Let O-Queriesi denote the set of first
i queries to O. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) (C-AggSetupt∗,PP,{Verifyi,VKi,mi} is not (i∗, sk)-rejecting) or (C-AggSetupt∗,PP,{Verifyi,VKi,mi} /∈ O-Queriesj−1),
(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 4-j-b

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.
- If T contains an entry of the form (d, δ), output δ.
- Else if i ≤ j and d = C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,

output iO(Reject-ckt) and f(s) for s← {0, 1}`.
- Else, choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, output SimRO(yi).
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) (C-AggSetupt∗,PP,{Verifyi,VKi,mi} is not (i∗, sk)-rejecting) or (C-AggSetupt∗,PP,{Verifyi,VKi,mi} /∈ O-Queriesj),

(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 5 This game is exactly similar to Game 4-qpar-b.

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.
- If T contains an entry of the form (d, δ), output δ.
- Else if d = C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,

output iO(Reject-ckt) and f(s) for s← {0, 1}`.
- Else, choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.

33

268

Approved for Public Release; Distribution Unlimited.

3. For each random oracle query yi, output SimRO(yi).
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) S.Verify(VK,mi∗ ,HE.dec(sk, t

∗)) = 1,
(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

6.1.2 Analysis

Let AdvjAtt denote the advantage of Att in Game j.

Claim 6.1. For any adversary Att,
Adv1Att = Adv0Att/n.

Proof. This follows from the definitions of Game 0 and Game 1. The only difference between the two
experiments is the change in winning condition, which now includes the guess i∗. This guess is correct with
probability 1/n.

Claim 6.2. Assuming (HE.setup,HE.enc,HE.dec) is a secure additively homomorphic encryption scheme,
for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Suppose there exists an adversary Att such that Adv1Att − Adv2Att = ε. We will construct a PPT
algorithm B that breaks the semantic security of HE scheme using Att.
B receives the public key pk. It sends 0, 1 as challenge messages to the HE challenger, and receives ct in

response. It chooses i∗ ← [n], (SK,VK), computes n − 1 encryptions of 0, that is, cti ← HE.enc(pk, 0) for
i 6= i∗. It sets cti∗ = ct. It computes U ← UniversalGen(1λ) and sends PP = (pk, ct1, . . . , ctn, U) and VK to
Att.

Att then asks for signature/random oracle queries, which B can simulate perfectly. Finally, Att outputs a
forgery σagg and n tuples {Verifyi,VKi,mi}. If Att wins as per the winning conditions (which are the same
in both Game 1 and Game 2), output 0, else output 1.

Clearly, if ct is an encryption of 0, then this corresponds to Game 1, else it corresponds to Game 2. This
completes our proof.

Claim 6.3. Assuming U = (UniversalGen, InduceGen) is a secure (`ckt, `inp, `out) universal parameters scheme,
for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att − Adv3Att = ε. We will construct a PPT
algorithm A such that Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1] = ε.
A interacts with Att and participates in either the Real or Ideal game. It receives the universal parameters

U . It chooses (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ), computes ciphertexts ct1, . . . , ctn and sets
PP = (pk, ct1, . . . , ctn, U). It sends PP,VK to Att.

For the signature queries, A computes the signatures using SK. For any random oracle query x, it forwards
x to the challenger in the Real/Ideal game, and receives either RO(x) or SimRO(x). Finally, it receives a
forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Note that since there is no Honest Parameter
Violation, InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i). Therefore,

Game 2 corresponds to RealA(1λ) experiment, while Game 3 corresponds to IdealASimUGen,SimRO(1λ). Hence,

Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1] = Adv2Att − Adv3Att.

34

269

Approved for Public Release; Distribution Unlimited.

Claim 6.4. Assuming iO is a secure indistinguishability obfuscator, for any j ≤ qpar, for any PPT adversary
Att,

Adv
4-(j−1)-b
Att − Adv4-j-aAtt ≤ negl(λ).

Proof. The only difference between Game 4-(j − 1)-b and Game 4-j-a is with respect to the jth query to
the parameters oracle O. If the jth query is not of the form C-AggSetupt,PP,{Verifyi,VKi,mi}, or if it is not

(i∗, sk)-rejecting, then both games are identical. Therefore, let us consider the case where the jth query to O is
C-AggSetupt,PP,{Verifyi,VKi,mi} for some t, {Verifyi,VKi,mi}, and it is (i∗, sk)-rejecting. In Game 4-(j−1)-b, O
outputs (iO(AggSignt,s,PP,{Verifyi,VKi,mi}), f(s)) while in Game 4-j-a, it outputs (iO(Reject-ckt), f(s)). Hence,
if we can show that C-AggSetupt,PP,{Verifyi,VKi,mi} and Reject-ckt are functionally identical for (i∗, sk)-rejecting
circuit, then we can use the security of iO to prove our claim.

Consider any input σ1, . . . , σn to C-AggSetupt,PP,{Verifyi,VKi,mi}. If ∃i such that Verifyi(VKi,mi, σi) = 0,
then it outputs ⊥. If t 6= σ1 · ct1 + . . . + σn · ctn, then it output ⊥. However, note that if t = σ1 ·
ct1 + . . . + σn · ctn, then t is an encryption of σi∗ . Since C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,
Verifyi∗(VKi∗ ,mi∗ ,HE.dec(sk, t)) = 0. Therefore, this circuit outputs ⊥ on all inputs, and is functionally
identical to Reject-ckt.

Claim 6.5. Assuming f is a secure one way function, for any j ≤ qpar, for any PPT adversary Att,

Adv4-j-aAtt − Adv4-j-bAtt ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv4-j-aAtt −Adv4-j-bAtt = ε. We will construct a PPT
algorithm B that inverts the one way function f using Att.

Note that the only way an adversary can distinguish between Game 4-j-a and Game 4-j-b is by sub-
mitting a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi} such that C-AggSetupt,PP,{Verifyi,VKi,mi} is

(i∗, sk)-rejecting and C-AggSetupt∗,PP,{Verifyi,VKi,mi} was sent as jth query to O.

B receives as input s̃. It chooses i∗ ← [n], chooses (SK,VK)← S.Gen(1λ) and sets PP as in Game 4-j-a
and Game 4-j-b. It sends PP,VK to Att. For each signature query xi, it sends σi ← S.Sign(SK, xi) to
Att. For each random oracle query yi, B uses SimRO. SimRO, in turn, makes a number of queries to the
Parameters Oracle O. If the jth query to O is C-AggSetupt,PP,{Verifyi,VKi,mi} and is (i∗, sk)-rejecting, send
(iO(Reject-ckt), s̃) as response. All other oracle queries are computed as before. Finally, if Att wins, then B
can use the forgery σagg = (t∗, s∗) and send s∗ as inverse of s̃.

Claim 6.6. Assuming S is a (`ver, `vk, `msg, `sig)-length qualified secure signature scheme, for any adversary
Att,

Adv5Att ≤ negl(λ).

Proof. Suppose Adv5Att = ε. We will construct a PPT algorithm B that breaks the security of S with
advantage ε.
B receives VK from the challenger. It chooses i∗ ← [n], PP as in Game 5 and sends PP.VK to Att. For

each signature query xi sent by Att, B sends it to the challenger, receives σi, which it forwards to Att. It
simulates the oracle queries using SimRO, as in Game 5. Finally, Att outputs a forgery σagg = (t∗, s∗) and
n tuples {Verifyi,VKi,mi}i. Att wins if Verifyi∗ = S.Verifyi∗ , VKi∗ = VK, mi∗ was not queried during the
signature phase and S.Verify(VK,mi∗ ,HE.dec(sk, t

∗)) = 1. It sends (mi∗ ,HE.dec(sk, t
∗)) as forgery. Note

that B wins the signature game if Att wins Game 5. This concludes our proof.

Using the above claims, it follows that any PPT adversary has negligible advantage in Game 0, assuming
the universal parameters scheme is secure (in the random oracle model), HE is a secure additively homomor-
phic encryption scheme and f is a secure one-way function. Therefore, the universal signature aggregator
described in Section 6 is adaptively secure with respect to all secure signature schemes in the random oracle
model.

35

270

Approved for Public Release; Distribution Unlimited.

7 Universal Aggregation of Arbitrary Signatures from iO in the
Standard Model

In this section, we will describe a construction for an n-bounded universal signature aggregator that can
be proven selective secure with respect to all secure length-qualified signature schemes using complexity
leveraging. We will use an additively HE scheme HE with message space Fp for some prime p > 2`sig and
ciphertext space CHE, where each ciphertext in CHE can be represented using `ct bits. We will also use an
indistinguishability obfuscator iO, a puncturable pseudorandom function F with key space K, input space
{0, 1}`ver+`vk+`msg+logn+log p and range {0, 1}` for ` > 2`ct and an injective one-way function f : {0, 1}` →
{0, 1}2`. The universal signature aggregator consists of three algorithms UniversalSetup, UniversalAgg and
UniversalVerify described below.

UniversalSetup(1λ, 1n) The setup algorithm takes λ, n as input, and chooses (pk, sk) ← HE.setup(1λ). It
then computes n encryptions of 0, that is, cti ← HE.enc(pk, 0) for i ∈ [n].

Let σi ∈ Fp for i ∈ [n]. Let Cσ1,...,σn be a circuit that takes as input n bits x1, . . . , xn and outputs
∑
σixi

mod p. The setup algorithm computes P1 = iO(AggSignK,pk,ct1,...,ctn) and P2 = iO(AggVerifyK), where the
programs AggSign23 and AggVerify24 are defined below. It outputs PP = (P1, P2).

AggSignK,pk,ct1,...,ctn

Inputs: {Verifyi,VKi,mi, σi}i.

Constants: PRF Key K ∈ K, pk, (ct1, . . . , ctn) ∈ CnHE.

if ∃i such that Verifyi(VKi,mi, σi) = 0 then
Output ⊥.

end if
Compute t = σ1 · ct1 + . . .+ σn · ctn.
Let si = F (K,Verifyi||VKi||mi||i||t).
Output σagg = (t,⊕isi).

AggVerifyK

Inputs: {Verifyi,VKi,mi}i, (t∗, s∗) ∈ CHE × {0, 1}`

Constants: PRF key K

Compute s = ⊕iF (K,Verifyi||VKi||mi||i||t∗).
Output 1 if s = s∗, else output 0.

UniversalAgg(PP = (P1, P2), {Verifyi,VKi,mi, σi}i) The aggregator algorithm receives as input the public
parameters PP and n tuples {Verifyi,VKi,mi, σi}i. Without loss of generality, we will assume the n tuples
are lexicographically ordered. If the n tuples are not distinct, the algorithm outputs ⊥. Else, it outputs
P1({Verifyi,VKi,mi, σi}i).

UniversalVerify(PP = (P1, P2), {Verifyi,VKi,mi}ni=1, σagg = (t∗, s∗)) Assume the n tuples are sorted in
lexicographic order. The verification algorithm checks that the n tuples are distinct. If not, it outputs 0.
Else, it outputs P2({Verifyi,VKi,mi}, (t∗, s∗)).

23Padded to be of same size as AggSign-1.
24Padded to be of same size as AggVerify-1 and AggVerify-2.

36

271

Approved for Public Release; Distribution Unlimited.

7.1 Proof of Security

Let S be a secure signature scheme. In order to prove the construction in Section 7 selectively secure with
respect to S, we will describe a sequence of intermediate hybrid experiments. Looking ahead, there will be
an exponential number of intermediate hybrid experiments, and hence we will be using stronger security for
the indistinguishability obfuscator iO, the puncturable PRF F and the one way function f .

Theorem 7.1. Let Att be any PPT adversary, and S a (`ver, `vk, `msg, `sig)-length qualified secure signature

scheme. Let AdvselAtt,S denote the advantage of Att in the universal signature aggregator selective security

game with respect to S. Let AdvS ,AdvHE ,AdviO, AdvF and Advf denote the maximum advantage of a PPT
adversary against signature scheme S, HE scheme HE , indistinguishability obfuscator iO, selectively secure
puncturable PRF F and one way function f respectively. Then,

AdvselAtt,S ≤ n(AdvHE + 2`ct(6AdviO + 2AdvF + Advf) + AdvS)

where `ct is the length of ciphertexts in CHE.

7.1.1 Sequence of Games

Game 0: This corresponds to the selective security game. The challenger receives m∗ from Att, chooses
(SK,VK)← S.Gen(1λ), the public parameters PP and sends PP,VK to the adversary Att. Att then queries
for signatures, which the challenger can compute using SK. Finally, Att outputs forgery σagg and n tuples
{Verifyi,VKi,mi}.

1. Att sends message m∗.
2. Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).

Compute cti ← HE.enc(pk, 0) for all i ∈ [n] and P1 ← iO(AggSignK,pk,ct1,...,ctn), P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) ∃i∗ such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) AggVerifyK(PP, {Verifyi,VKi,mi}, σagg) = 1.

Game 1: In this experiment, the challenger chooses i∗ ← [n], and the adversary wins if Verifyi∗ = S.Verify,
VKi∗ = VK and mi∗ = m∗.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], P1 ← iO(AggSignK,pk,ct1,...,ctn), P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) AggVerifyK(PP, {Verifyi,VKi,mi}, σagg) = 1.

Game 2: This game is similar to the previous one, except that cti∗ is an encryption of 1, instead of 0.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn), P2 ←
iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

37

272

Approved for Public Release; Distribution Unlimited.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) AggVerifyK(PP, {Verifyi,VKi,mi}, σagg) = 1.

We will now describe an exponential number of hybrid experiments Game 3, j for j ≤ 2`ct . Before describ-
ing these intermediate hybrids, we will define some notations. Recall AggVerifyK takes as input tuples of the
form ({Verifyi,VKi,mi}, (t∗, s∗)). Call such a tuple (i∗, sk)-rejecting if Verifyi∗(VKi∗ ,mi∗ ,HE.dec(sk, t

∗)) =
0.

Game 3, j: In this game, the adversary does not win if the forgery input ({Verifyi,VKi,mi}, (t∗, s∗)) is
(i∗, sk)-rejecting and t∗ ≤ j.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerifyK({Verifyi,VKi,mi}, σagg) = 1.

Game 4: This game is identical to Game 3, 2`ct .

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting,
(c) AggVerifyK({Verifyi,VKi,mi}, σagg) = 1.

7.1.2 Analysis

Let AdvjAtt denote the advantage of Att in Game j.

Claim 7.1. For any adversary Att,
Adv1Att = Adv0Att/n.

Proof. This follows from the definitions of Game 0 and Game 1. The only difference between the two
experiments is the change in winning condition, which now includes the guess i∗. This guess is correct with
probability 1/n.

38

273

Approved for Public Release; Distribution Unlimited.

Claim 7.2. For any PPT adversary Att,

Adv1Att − Adv2Att ≤ AdvHE(λ).

Proof. Suppose there exists an adversary Att such that Adv1Att − Adv2Att = ε. We will construct a PPT
algorithm B that breaks the semantic security of HE scheme using Att.
B receives the public key pk. It sends 0, 1 as challenge messages to the HE challenger, and receives ct

in response. It chooses i∗ ← [n], (SK,VK), computes n − 1 encryptions of 0, that is, cti ← HE.enc(pk, 0)
for i 6= i∗. It sets cti∗ = ct. It chooses K ← F.setup(1λ), computes P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerifyK) and sends PP = (P1, P2) and VK to Att.

Att then asks for signature/random oracle queries, which B can simulate perfectly. Finally, Att outputs a
forgery σagg and n tuples {Verifyi,VKi,mi}. If Att wins as per the winning conditions (which are the same
in both Game 1 and Game 2), output 0, else output 1.

Clearly, if ct is an encryption of 0, then this corresponds to Game 1, else it corresponds to Game 2. This
completes our proof.

Observation 7.1. For any PPT adversary Att,

Adv2Att = Adv3,0Att.

Claim 7.3. For any j < 2`ct ,

Adv3,jAtt − Adv3,j+1
Att ≤ 6AdviO + 2AdvF + Advf .

Proof. The proof of this claim involves a sequence of intermediate hybrids described below. Note that the
only difference between the two hybrids is Step 4b. Both games are identical if j + 1 is not (i∗, sk)-rejecting.
Hence, we will consider the case where S.Verify(VK,m∗,HE.dec(sk, j + 1)) = 0.

Game 3, j, a In this game, the challenger uses obfuscations of circuit AggVerify-1 instead of AggVerify.
Instead of checking whether s∗ = ⊕isi, AggVerify-1 uses an injective one way function f to check if f(s ⊕
(⊕i6=i∗si)) = f(si∗).

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerify-1K).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerify-1K({Verifyi,VKi,mi}, σagg) = 1.

AggVerify-1K

Inputs: {Verifyi,VKi,mi}i, (t∗, s∗) ∈ CHE × {0, 1}`

Constants: PRF key K

Compute s̃ = (⊕i6=i∗F (K,Verifyi||VKi||mi||i||t))⊕ s∗.
Output 1 if f(F (K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗) = f(s̃), else output 0.

39

274

Approved for Public Release; Distribution Unlimited.

Game 3, j, b: In this game, AggSign and AggVerify-1 are replaced by AggSign-1 and AggVerify-2. Both the
replaced programs use a PRF key punctured at y = S.Verify||VK||mi∗ ||i∗||j + 1.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y) and z = f(F (K, y)).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),

P2 ← iO(AggVerify-2y,K{y},z).

Set PP = (P1, P2). Send PP,VK to Att.
3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

AggSign-1K{y},pk,ct1,...,ctn

Inputs: {Verifyi,VKi,mi, σi}i.

Constants: PRF Key K{y}, pk, (ct1, . . . , ctn) ∈ CnHE.

if ∃i such that Verifyi(VKi,mi, σi) = 0 then
Output ⊥.

end if
Compute t = σ1 · ct1 + . . .+ σnctn.
Let si = F.eval(K{y},Verifyi||VKi||mi||i||t).
Output σagg = (t,⊕isi).

AggVerify-2y,K{y},z

Inputs: {Verifyi,VKi,mi}i, (t∗, s∗) ∈ CHE × {0, 1}`

Constants: y, PRF key K{y}, z ∈ {0, 1}2`.

Compute s̃ = (⊕i6=i∗F (K,Verifyi||VKi||mi||i||t))⊕ s∗.
if Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗ = y then

Output 1 if z = f(s̃), else output 0.
else

Output 1 if f(F.eval(K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗) = f(s̃), else output 0.
end if

Game 3, j, c: This game is similar to the previous one, except that z is a uniformly random string.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y) and z′ ← {0, 1}`, z = f(z′).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),
P2 ← iO(AggVerify-2y,K{y},z).
Set PP = (P1, P2). Send PP,VK to Att.

40

275

Approved for Public Release; Distribution Unlimited.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

Game 3, j, d : In this game, the challenger modifies the winning condition in Step 4b.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y), z′ ← {0, 1}` and z = f(z′).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),
P2 ← iO(AggVerify-2y,K{y},z).
Set PP = (P1, P2, pk, ct1, . . . , ctn). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j + 1,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

Game 3, j, e : In this game, the challenger sets z = f(F (K, y)) as in Game 3, j, c.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y), and z = f(F (K, y)).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),
P2 ← iO(AggVerify-2y,K{y},z).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j + 1,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

Game 3, j, f : In this game, the challenger uses PRF key K in both AggSign and AggVerify-1 instead of using
K{y} in AggSign-1 and AggVerify-2.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),

P2 ← iO(AggVerify-1K).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j + 1,
(c) AggVerify-1K({Verifyi,VKi,mi}, σagg) = 1.

41

276

Approved for Public Release; Distribution Unlimited.

We will now relate the difference in Att’s advantages in these games to either AdviO, AdvF or Advf .

Claim 7.4. For any PPT adversary Att,

Adv3,jAtt − Adv3,j,aAtt ≤ AdviO.

Proof. To prove this claim, we need to show that the programs AggVerifyK and AggVerify-1K are functionally
identical. This follows from the observation that f is an injective function, and hence, for any t∗, s∗,

s∗ = ⊕iF (K,Verifyi||VKi||mi||i||t∗)
⇐⇒ (⊕i6=i∗F (K,Verifyi||VKi||mi||i||t∗))⊕ s∗ = F (K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗)
⇐⇒ f((⊕i6=i∗F (K,Verifyi||VKi||mi||i||t∗))⊕ s∗) = f(F (K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗))

Claim 7.5. For any PPT adversary Att,

Adv3,j,aAtt − Adv3,j,bAtt ≤ 2AdviO.

Proof. Let K ← F.setup(1λ), y = S.Verify||VK||m∗||i∗||j+ 1, K{y} ← F.puncture(K, y) and z = f(F (K, y)).
As in the previous proof, it suffices to show that AggSignK,pk,ct1,...,ctn and AggSign-1K{y},pk,ct1,...,ctn have
identical functionality, and AggVerify-1K and AggVerify-2y,K{y},z have identical functionality.

Let us first consider AggSignK,pk,ct1,...,ctn and AggSign-1K{y},pk,ct1,...,ctn . Consider input {Verifyi,VKi,mi, σi}i.
Let t = σ1 ·ct1+. . .+σnctn. From the correctness property of puncturable PRFs, it follows that the only case
in which AggSignK,pk,ct1,...,ctn and AggSigny,K{y},pk,ct1,...,ctn can possibly differ is when Verifyi(VKi,mi, σi) =
1 for all i ≤ n, Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗ and t = j + 1. But this case is not possible, since
S.Verify(VK,m∗,HE.dec(sk, t)) = S.Verify(VK,m∗, σi∗) = 1, while S.Verify(VK,m∗,HE.dec(sk, j + 1)) = 0.

Next, let us consider the programs AggVerify-1K and AggVerifyy,K{y},z. Both programs have identical
functionality, because z = f(F (K, y)) and for all y′ 6= y, F (K, y′) = F.eval(K{y}, y′).

This concludes our proof.

Claim 7.6. For any PPT adversary Att,

Adv3,j,bAtt − Adv3,j,cAtt ≤ AdvF .

Proof. We will construct a PPT algorithm B such that AdvFB = Adv3,j,bAtt − Adv3,j,cAtt . B interacts with Att,
and receives m∗. It chooses i∗ ← [n], chooses (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ). Next, it
computes cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1). It sends y = S.Verify||VK||m∗||i∗||j + 1
to the PRF challenger, and receives K{y}, z′, where either z′ = F (K, y) or z′ ← {0, 1}2`. It computes
z = f(z′), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn), P2 ← iO(AggVerify-2y,K{y},z) and sets PP = (P1, P2). It
sends PP,VK to Att.

Next, it receives signature queries, and it computes the signature using SK. Finally, it receives σagg =
(t∗, s∗) and n tuples {Verifyi,VKi,mi}i. If Att wins, it outputs 0, indicating z′ = F (K, y). Else, it outputs

1. Since both games have the same winning condition, it follows AdvFB = Adv3,j,bAtt − Adv3,j,cAtt .

Claim 7.7. For any PPT adversary Att,

Adv3,j,cAtt − Adv3,j,dAtt ≤ Advf .

Proof. Suppose Adv3,j,cAtt −Adv
3,j,d
Att = ε. Then, with probability ε, Att receives PP,VK, sends signature queries,

and outputs forgery σagg = (j+1, s∗) and n tuples {Verifyi,VKi,mi}i such that S.Verifyi∗ = Verifyi∗ , VKi∗ =
VK, mi∗ = m∗, the output forgery is (i∗, sk)-rejecting and AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.
From the definition of AggVerify-2, it follows that f((⊕i6=i∗F.eval(K{y},Verifyi||VKi||mi||i||j+1))⊕s∗) = z.
Therefore, using Att, we can construct a PPT algorithm B that breaks the security of one way function f
with advantage ε. B receives z from the OWF challenger, and uses it to compute PP as in Game 3, j, c and
Game 3, j, d. It sends PP,VK to Att, responds to signature queries, and finally receives forgery (j + 1, s∗)25.

25If B receives any other forgery, then it simply quits.

42

277

Approved for Public Release; Distribution Unlimited.

and n tuples. It sends z′ = (⊕i6=i∗F.eval(K{y},Verifyi||VKi||mi||i||j + 1))⊕ s∗ to the OWF challenger, and
clearly, B wins if Att wins. This completes our proof.

Claim 7.8. For any PPT adversary Att,

Adv3,j,dAtt − Adv3,j,eAtt ≤ AdvF .

Proof. Similar to the proof of Claim 7.6.

Claim 7.9. For any PPT adversary Att,

Adv3,j,eAtt − Adv3,j,fAtt ≤ 2AdviO.

Proof. Similar to the proof of Claim 7.5.

Claim 7.10. For any PPT adversary Att,

Adv3,j,fAtt − Adv3,j+1
Att ≤ AdviO.

Proof. Similar to the proof of Claim 7.4.

Summing it up, from the above claims, it follows that for any PPT adversary Att, Adv3,jAtt − Adv3,j+1
Att ≤

6AdviO + 2AdvF + Advf .

Claim 7.11. For any PPT adversary Att,

Adv4Att ≤ AdvS .

Proof. Suppose there exists a PPT adversary Att such that Adv4Att = ε. We will construct a PPT algorithm
B that breaks the security of S with advantage ε.
B interacts with Att and the challenger for S. First, it receives m∗ from S and VK from the challenger. It

chooses i∗ ← [n], (pk, sk)← HE.setup(1λ), K ← F.setup(1λ). It computes cti ← HE.enc(pk, 0) for all i 6= i∗,
cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn) and P2 ← iO(AggVerifyK). It sends PP = (P1, P2),VK
to Att.

For each signature query xi 6= m∗ sent by Att, it forwards xi to the challenger, and receives σi, which it
sends to Att.

Finally, Att outputs a forgery σagg = (t∗, s∗) along with n tuples {Verifyi,VKi,mi}. If Att wins in Game 4,
then Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗ and (σagg, {Verifyi,VKi,mi}) must not be (i∗, sk)-rejecting.
In other words, S.Verify(VK,m∗,HE.dec(sk, t∗)) = 1. B sendsm∗,HE.dec(sk, t∗) as a forgery to the challenger.
This completes our proof.

Summing up, it follows that any adversary Att has advantage at most n(AdvHEAtt +2`ct(6AdviOAtt +2AdvFAtt +

AdvfAtt) +AdvSAtt) in Game 0, where AdvHEAtt , AdviOAtt, Adv
F
Att, Adv

f
Att and AdvSAtt denote the advantages of Att in

the security games for HE scheme HE , indistinguishability obfuscator iO, (selectively secure) puncturable

PRF F , one-way function f and signature scheme S respectively. Therefore, if 2`ct(AdviOAtt +AdvFAtt +AdvfAtt)
is negligible in λ, then the aggregator scheme described in Section 7 is adaptively secure with respect to all
signature schemes S. Note that we require sub-exponential hardness assumption for the indistinguishability
obfuscator iO, puncturable PRF F and one-way function f .

43

278

Approved for Public Release; Distribution Unlimited.

References

[AGH10] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate signatures:
new definitions, constructions and applications. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010,
pages 473–484, 2010.

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443–459, 2004.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120, 2013.

[Ben87] Josh Daniel Cohen Benaloh. Verifiable Secret-ballot Elections. PhD thesis, Yale University, 1987.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

[BGOY07] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications to secure routing.
In Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS
2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 276–285, 2007.

[BKM08] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. J. Cryptol., 22(1):114–138, December 2008.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASI-
ACRYPT, pages 514–532, 2001.

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In ICALP, pages 411–422, 2007.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages 62–
73, 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how to sign with
rsa and rabin. In EUROCRYPT, pages 399–416, 1996.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, pages 280–300, 2013.

[DJ03] Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with applications.
In Information Security and Privacy, 8th Australasian Conference, ACISP 2003, Wollongong,
Australia, July 9-11, 2003, Proceedings, pages 350–364, 2003.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. In CRYPTO, pages 513–530, 2013.

44

279

Approved for Public Release; Distribution Unlimited.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Jour. of Computer and System Science,
28(2):270–299, 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GO93] Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-knowledge
proofs are equivalent (extended abstract). In Proceedings of the 12th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’92, pages 228–245, London, UK,
UK, 1993. Springer-Verlag.

[GR06] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Public Key Cryp-
tography - PKC 2006, 9th International Conference on Theory and Practice of Public-Key Cryp-
tography, New York, NY, USA, April 24-26, 2006, Proceedings, pages 257–273, 2006.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Proceedings of the 6th International
Conference on the Theory and Application of Cryptology and Information Security: Advances
in Cryptology, ASIACRYPT ’00, pages 443–457, 2000.

[HDWH12] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining your ps and
qs: Detection of widespread weak keys in network devices. In Proceedings of the 21th USENIX
Security Symposium, Bellevue, WA, USA, August 8-10, 2012, pages 205–220, 2012.

[HJK+14] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark Zhandry.
How to generate and use universal parameters. Cryptology ePrint Archive, Report 2014/507,
2014. http://eprint.iacr.org/.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In EUROCRYPT, pages 201–220, 2014.

[KLMS00] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure border gateway protocol
(s-bgp. IEEE Journal on Selected Areas in Communications, 18:103–116, 2000.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. In ACM Conference on Computer and Commu-
nications Security, pages 669–684, 2013.

[KS98] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography Specifications Version 2.0. In RFC
Editor, United States, 1998.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential ag-
gregate signatures and multisignatures without random oracles. In Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, pages
465–485, 2006.

[NS98] David Naccache and Jacques Stern. A new public key cryptosystem based on higher residues.
In Proceedings of the 5th ACM Conference on Computer and Communications Security, CCS
’98, pages 59–66, 1998.

[OO98] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from
identification. In Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings, pages 354–369,
1998.

45

280

Approved for Public Release; Distribution Unlimited.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure as factor-
ing. In Advances in Cryptology - EUROCRYPT ’98, International Conference on the Theory and
Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding,
pages 308–318, 1998.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Proceedings of the 17th International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’99, pages 223–238, 1999.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475–484, 2014.

[ZSN05] Meiyuan Zhao, Sean W. Smith, and David M. Nicol. Aggregated path authentication for efficient
bgp security. In ACM Conference on Computer and Communications Security, pages 128–138,
2005.

A Universally Aggregating Unique Signatures without the RSA
Assumption

In this section we show a modification of our universal aggregation of unique signatures construction and
proof from Section 4 The primary diffence is that the transformed siganture output will be a bit string as
opposed to an RSA-type group element in ZN . Thus, we are able to prove security without using the RSA
assumption (but keeping indistinguishability obfuscation and punctured PRF security assumptions.) The
primary tradeoff is that the setup must commit to an a-priori bound, n on the number of signatures that
can be aggregated. The signature length is independent of n.

We will now describe our n-bounded universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg.
Let ` and `owf be polynomials such that `(λ) ≥ λ. We will use a puncturable PRF F with key space K,
punctured key space Kp, domain X = {0, 1}`ver × {0, 1}`vk × {0, 1}`msg and range Y = {0, 1}`, a one-way
function f : {0, 1}` → {0, 1}`owf and an indistinguishability obfuscator iO. Our scheme consists of the three
algorithms UniversalSetup, UniversalAgg and UniversalVerify.

UniversalSetup(1λ, 1n): UniversalSetup takes as input the security parameter λ and a bound n on the num-
ber of signatures to be aggregated. It chooses a puncturable PRF key K ← F.setup(1λ) and computes
obfuscations of the circuits TransformK and AggVerifyK defined below. It sets the public parameters to be
PP = (iO(TransformK), iO(AggVerifyK)).

TransformK :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

46

281

Approved for Public Release; Distribution Unlimited.

AggVerifyK :

Inputs: {(Verifyi,VKi,mi)}ni=1 where (Verifyi,VKi,mi) ∈ {0, 1}`ver × {0, 1}`vk ×
{0, 1}`msg for all i ≤ n, σagg ∈ {0, 1}`.
Constants : K ∈ K.

for all i ≤ n do
Compute si = F (K,Verifyi||VKi||mi).

end for
Output 1 if ⊕ni=1si = σagg, 0 otherwise.

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2). UniversalAgg first checks that the n tuples
are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If ti =⊥ for
some i, then UniversalAgg outputs ⊥, else it outputs σagg = ⊕iti.

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2). UniversalVerify first checks if the n
tuples are distinct. If not, it outputs 0. Else, it outputs P2({(Verifyi, VKi, mi) }ni=1, σagg).

A.1 Proof of security

In this section, we will show that our construction is selectively secure with respect to unique signature
schemes.

Theorem A.1. Assuming iO is a secure indistinguishability obfuscator, (F, F.setup, F.puncture, F.eval)
is a puncturable PRF and f is an injective one way function, for all (`ver, `vk, `msg, `sig)-length qual-
ified secure unique signature schemes S, the n-bounded universal signature aggregator (`ver, `vk, `msg,
`sig)-UniversalSigAgg is selectively secure with respect to S.

Let S = (S.Gen,S.Sign,S.Verify) be a secure (`ver, `vk, `msg, `sig)-length qualified unique signature
scheme, and Att a PPT adversary. Assume Att sends q signing queries during the signing phase. In order to
prove this theorem, we will define a sequence of experiments Game 0, . . ., Game 4, where Game 0 = ExpselAtt,S .

A.1.1 Sequence of Games

Game 0: This game corresponds to ExpselAtt,S . The adversary Att first sends message m, and then receives
the verification key and public parameters for the aggregator. Next, the adversary makes signing queries,
and finally submits the forgery.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). ChooseK ← F.setup(1λ) and set PP = (iO(TransformK), iO(AggVerifyK)).

Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: This game is exactly similar to the previous one, except that the program TransformK is replaced
by Transform′K which outputs ⊥ if the input tuples is (S.Verify,VK,m, σ) where S.Verify(VK,m, σ) = 1.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).

Set y = S.Verify||VK||m and PP = (iO(Transform′y,K), iO(AggVerifyK)). Send PP, VK to Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.

47

282

Approved for Public Release; Distribution Unlimited.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform′y,K :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Game 2: This game is similar to the previous one, except that the programs Transform′ and AggVerify are
replaced by Transform-1 and AggVerify-1 respectively. Each of these programs uses a PRF key punctured at
y = S.Verify||VK||m.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z = F (K, y).
Set PP = (iO(Transform-1y,K{y}), iO(AggVerify-1y,K{y},z)) and send PP, VK to Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform-1y,K{y} :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ ∈ {0, 1}`sig .
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , K{y} ∈ Kp.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F.eval(K{y},Verify′||VK′||m′).

end if

48

283

Approved for Public Release; Distribution Unlimited.

AggVerify-1y,K{y},z :

Inputs: {(Verifyi,VKi,mi)}ni=1 where (Verifyi,VKi,mi) ∈ {0, 1}`ver × {0, 1}`vk ×
{0, 1}`msg for all i ≤ n, σagg ∈ {0, 1}`.
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}lmsg, K{y} ∈ Kp, z ∈ {0, 1}`.

for all i ≤ n do
if Verifyi||VKi||mi = y then

si = z
else

Compute si = F.eval(K{y},Verifyi||VKi||mi).
end if

end for
Output 1 if ⊕ni=1si = σagg, 0 otherwise.

Game 3: In this game, the program AggVerify-1 is replaced by AggVerify-2. As before, a punctured key is
used in the program. However, instead of directly checking whether σagg = ⊕si, AggVerify-2 uses a injective
one way function f .

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z = F (K, y).
Compute w = f(z), set PP = (iO(Transform-1y,K{y}), iO(AggVerify-2y,K{y},w)) and send PP, VK to

Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and AggVerify-2y,K{y},w({(Verifyi, VKi, mi) }, σagg) = 1.

AggVerify-2y,K{y},w :

Inputs: {(Verifyi,VKi,mi)}ni=1 where (Verifyi,VKi,mi) ∈ {0, 1}`ver × {0, 1}`vk ×
{0, 1}`msg for all i ≤ n, σagg ∈ {0, 1}`.
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , K{y} ∈ Kp, w ∈ {0, 1}`owf .

Set present = False, pos = 0.
for all i ≤ n do

if Verifyi||VKi||mi = y then
Set present = True, pos = i.

else
Compute si = F.eval(K{y},Verifyi||VKi||mi).

end if
end for
if present = False then

Output 1 if ⊕ni=1si = σagg, 0 otherwise.
else

Output 1 if f(σagg ⊕i6=pos si) = w, 0 otherwise.
end if

Game 4: This game is exactly similar to the previous one, except that z is chosen at random.

1. Att sends message m.

49

284

Approved for Public Release; Distribution Unlimited.

2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).
Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z ← {0, 1}`.
Compute w = f(z), set PP = (iO(Transform-1y,K{y}), iO(AggVerify-2y,K{y},w)) and send PP, VK to
Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and AggVerify-2y,K{y},w({(Verifyi, VKi, mi)}i, σagg) = 1.

A.1.2 Analysis

Let AdvjAtt denote the advantage of adversary Att in Game j.

Claim A.1. Assuming iO is a secure indistinguishability obfuscator and S is a secure (`ver, `vk, `msg, `sig)-
length qualified unique signature scheme, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. The proof of this claim is similar to the one for Lemma 4.1.

Claim A.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. In order to prove this claim, we will define an intermediate hybrid Game 1.5 which is exactly same
as Game 1 and Game 2, except that the challenger sets PP = (iO(Transform-1y,K{y}), iO(AggVerifyK)). We
will show (a) Game 1 and Game 1.5 are computationally indistinguishable, (b) Game 1.5 and Game 2 are
computationally indistinguishable.

Proof of (a). Suppose there exists a PPT adversary Att such that Adv1Att−Adv1.5Att = ε. We will construct
a PPT algorithm B that constructs two circuits C0 and C1 with identical functionality, and uses Att to
distinguish between iO(C0) and iO(C1), thereby breaking the security of iO.
B receives m from Att, chooses (SK,VK)← S.Gen(1λ) and K ← F.setup(1λ). It sets y = S.Verify||VK||m

and computes K{y} ← F.puncture(K, y). It sets C0 = Transform′y,K and C1 = Transform-1y,K{y}, and sends
C0, C1 to the iO challenger. It receives C = iO(Cb). B sets PP = (C, iO(AggVerifyK)) and sends PP,VK to
Att.

Note that B can respond to the signing queries perfectly, since it has SK. Finally, if Att wins, then B
outputs 0, else it outputs 1. Clearly, if C = iO(C0), then it corresponds to Game 1, else it corresponds to
Game 1.5.

To conclude, we need to argue that C0 and C1 have identical functionality. This follows from the cor-
rectness property of puncturable PRFs. Note that both programs output ⊥ if one of the input tuples is
(S.Verify,VK,m, σ). For all other tuples (Verify′,VK′,m′, σ′), F (K,Verify′||VK′||m′) = F.eval(K{y},Verify′||VK′||m′).
This completes the first step of our proof.

Proof of (b). The second step (showing that Game 1.5 and Game 2 are computationally indistinguishable)
follows along similar lines.

Claim A.3. Assuming iO is a secure indistinguishability obfuscator and f is an injective function, for any
PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att−Adv3Att = ε. As in the previous proof, we
will construct a PPT algorithm B that constructs two circuits C0 and C1 with identical functionality, and
uses Att to distinguish between iO(C0) and iO(C1), thereby breaking the security of iO.

The only difference between Game 2 and Game 3 is that in Game 2, circuit AggVerify-1y,K{y}.z is used,
while in Game 3, circuit AggVerify-2y,K{y},w is used. B interacts with Att and receives m. It chooses

50

285

Approved for Public Release; Distribution Unlimited.

(SK,VK) ← S.Gen(1λ) and K ← F.setup(1λ). Next, it computes a key punctured at y = S.Verify||VK||m,
i.e. K{y} ← F.puncture(K, y) and sets z = F (K, y) and w = f(z). Given y,K{y}, z, w, B can now construct
circuits C0 = AggVerify-1y,K{y},z and C1 = AggVerify-2y,K{y},w. B sends C0 and C1 to the iO challenger,
and receives C = iO(Cb). B sets PP =(iO(Transform-1y,K{y}), C) and sends PP,VK to Att.
B now responds to signing queries using SK. Finally Att sends forgery σagg, along with n tuples {(Verifyi,

VKi, mi)}. If C({Verifyi,VKi,mi}, σagg)= 1, output 0, else output 1. Clearly, if C = iO(C0), then this
corresponds to Game 2, else it corresponds to Game 3. Therefore, all that remains is to prove that C0 and
C1 have identical functionality.

Consider any input ({(Verifyi, VKi, mi)},σagg). If there is no i∗ such that Verifyi∗ ||VKi∗ ||mi∗ =
y, then both circuits check if σagg=⊕iF (K{y},Verifyi||VKi||mi). If there exists an i∗ ∈ [n] such that
Verifyi∗ ||VKi∗ ||mi∗ = y, then C0 accepts iff

(⊕i6=i∗F (K{y},Verifyi||VKi||mi))⊕ F (K, y) = σagg

⇐⇒ (⊕i6=i∗F (K{y},Verifyi||VKi||mi))⊕ σagg = F (K, y) = z

⇐⇒ f((⊕i6=i∗F (K{y},Verifyi||VKi||mi))⊕ σagg) = f(z) = w.

The last equivalence follows from the fact that f is an injective function. However, note that the last
statement is the condition for C1 accepting. This proves that both C0 and C1 have identical functionality,
which proves our claim.

Claim A.4. Assuming F is a puncturable PRF, for any PPT adversary Att,

Adv3Att − Adv4Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv3Att − Adv4Att = ε. We will construct a PPT
algorithm B that uses Att to break the security of puncturable PRF (F , F.setup, F.puncture, F.eval) with
advantage ε.

First, B receives the message m from Att. As in Game 3 and Game 4, it computes (SK,VK)← S.Gen(1λ).
Next, it sends y = S.Verify||VK||m as the challenge to the PRF challenger. B receives a punctured key K{y}
and z ∈ {0, 1}`, where z = F (K, y) or z ← {0, 1}`. B computes w = f(z) and sets the public parameters
PP=(iO(Transform-1y,K{y}),iO(AggVerify-2y,K{y},w)). It sends PP,VK to Att.

The signing phase and forgery phase are exactly similar in Game 3 and Game 4. For each signing query
xi, B sends S.Sign(SK, xi) to Att. Finally, Att outputs the forgery σagg and n tuples {(Verifyi, VKi, mi)}.

Note that if z = F (K, y), then B simulates Game 3 perfectly. If z ← {0, 1}`, B simulates Game 4 perfectly.
This concludes our proof.

Claim A.5. Assuming f is a one way function, for any PPT adversary Att,

Adv4Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv4Att = ε. We will construct a PPT algorithm
B that, using Att, inverts the one way function f with probability ε.
B receives w from the one way function challenger and m from Att. It chooses (SK,VK) ← S.Gen(1λ),

K ← F.setup(1λ) and computes K{y} ← F.puncture(K, y) (where y = S.Verify||VK||m). It sets the public
parameters PP=(iO(Transform-1y,K{y}), iO(AggVerify-2y,K{y},w)) and sends PP,VK to Att.

For each signing query xi, it computes S.Sign(SK, xi).
Finally, B receives σagg ∈ {0, 1}` and n tuples {(Verifyi,VKi,mi)}. If AggVerify-2y,K{y},w({Verifyi, VKi,

mi},σagg)=1 and ∃i∗ such that Verifyi∗ ||VKi∗ ||mi∗ = y, then B can successfully find an inverse for w. B
computes si = F (K,Verifyi||VKi||mi) for i 6= i∗ and sends σagg ⊕i6=i∗ si to the one way function challenger.
Clearly, if Att wins in Game 4, then B inverts the one way function.

To conclude, it follows from the above claims that any PPT adversary has at most negligible advantage
in Game 0 (assuming iO, F and f are secure), and therefore the n-bounded aggregator described in A is
selectively secure with respect to secure unique signature schemes.

51

286

Approved for Public Release; Distribution Unlimited.

B Making our VBB proof Adaptively Secure

We now show how a minor adaptiation of our selectively secure universal aggregator from VBB of Section 5
can be proven adaptively secure. The primary change is to first hash every message with an “admissible hash
function” introduced by Boneh and Boyen [BB04]. From there the additonal RSA-type techniques needed
fall in line with those used by Hohenberger, Sahai and Waters [HSW14].

We now describe our construction and proof. Let O be a virtual black-box obfuscator, F̃ a secure PRF
with key space K̃, domain {0, 1}`sig and range {0, 1}`rnd , PRG a secure pseudorandom generator and h a
θ-admissible hash function mapping `msg bits to d1 bits. Let d2 = d1 + `ver + `vk. Our universal signature
aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg consists of three algorithms UniversalSetup, UniversalAgg and
UniversalVerify described below.

UniversalSetup(1λ): The setup algorithm first chooses an RSA modulus N , v ∈ Z∗N and e ∈ Z∗φ(N).

Next, it chooses 2d2 constants ci,b ← Zφ(N). Let c = {ci,b}i∈[d2],b∈{0,1}. It sets PP =(O(TransformN,v,c),
O(Transform-ImageN,v,c,e), N , e), where Transform26 and Transform-Image27 are as follows.

TransformN,v,c :

Inputs: b ∈ {0, 1}, a′ ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2
φ(N).

if b = 0 then
Output ⊥.

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = x||Verify′||VK′.
Output v

∏
i ci,zi (mod N).

end if

Transform-ImageN,v,c,e :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2

φ(N), e ∈ Z∗φ(N).

Compute h(m′) = x and let z = x||Verify′||VK′.
Output (v

∏
ci,zi)e (mod N).

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2, N, e). UniversalAgg first checks if the n
tuples are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If
ti =⊥ for some i, then UniversalAgg outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2, N, e). UniversalVerify first checks if all
n tuples are distinct. If not, it outputs 0. Else, it computes, for all i ≤ n, si = Transform-Image(Verifyi,VKi,mi).
If (
∏
i si) = σeagg (mod N), it outputs 1, else it outputs 0.

26Padded appropriately to be of the same size as Transform-1, Transform-2, Transform-3 and Transform-4.
27Padded appropriately to be of the same size as Transform-Image-1 and Transform-Image-2.

52

287

Approved for Public Release; Distribution Unlimited.

B.1 Proof of Security

We will now prove that the scheme described in Section B is an adaptively secure universal signature
aggregator with respect to all secure length-qualified signature schemes.

Theorem B.1. Assuming O is a secure virtual black-box obfuscator, F is a secure puncturable PRF, F̃ is a
secure PRF, PRG is a secure pseudorandom generator and RSA is secure, for all (`ver, `vk, `msg, `sig)-length
qualified secure signature schemes S, the universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg
is adaptively secure with respect to S.

To prove the above theorem, we will first describe a sequence of hybrid experiments.

B.1.1 Sequence of Games

Game 0 This corresponds to the adaptive security game ExpAtt,S(λ) in which the challenger interacts with
adversary Att.

1. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈
Zφ(N) for all i ≤ d2, b ∈ {0, 1}. Choose (SK,VK) ← S.Gen(1λ) and set PP = (O(TransformN,v,c),
O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi, choose ri ← {0, 1}`rnd and compute σi ← S.Sign(SK, xi). Send σi to Att.
3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 1 In this game, the challenger computes the signatures using the PRF F̃ .

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ).
Set PP = (O(TransformN,v,c), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri).
Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 2 In this game, the challenger uses program Transform-1 to compute the public parameters PP. This
program is similar to the program Transform. However, it has the additional functionality that it allows user
to receive signatures using secret key SK, provided the user has a ‘trapdoor’ for Transform-1. In this game,
since α← {0, 1}2`, it is unlikely that there exists a ‘trapdoor’.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ) and α← {0, 1}2`.
Let Transform-128 be the circuit defined below.
Set PP = (O(Transform-1N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

28Padded appropriately to be of the same size as Transform, Transform-2, Transform-3 and Transform-4.

53

288

Approved for Public Release; Distribution Unlimited.

2. For each signature query xi, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri).
Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Transform-1N,v,c,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a′ ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2
φ(N),

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a′) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = x||Verify′||VK′.
Output v

∏
ci,zi (mod N)

end if

Game 3 This game is exactly similar to the previous experiment, except that the challenger chooses α such
that there exists a trapdoor for program Transform-1. For this, the challenger chooses a ← {0, 1}` and sets
α = PRG(a).

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a).
Set PP = (O(Transform-1N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri).
Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 4 In this experiment, the challenger defines a random challenge subspace of the message space. The
adversary wins if all signature queries lie outside the challenge space and the message mi∗ corresponding to
S.Verify,VK lies in the challenge space.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Set PP = (O(Transform-1N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

54

289

Approved for Public Release; Distribution Unlimited.

2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.

(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 5 In this experiment, the challenger uses program Transform-2 instead of Transform-1. The only differ-
ence between Transform-1 and Transform-2 is that Transform-2 rejects inputs of the form (1, a,S.Verify,VK,m′, σ′)
such that S.Verify(VK,m′, σ′) = 1 and m′ lies in the challenge space.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Let Transform-229 be the circuit defined below.
Set PP = (O(Transform-2u,N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

29Padded appropriately to be of the same size as Transform, Transform-1, Transform-3 and Transform-4.

55

290

Approved for Public Release; Distribution Unlimited.

Transform-2u,N,v,c,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a′ ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : u ∈ {0, 1,⊥}d2 , RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2
φ(N),

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a′) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = Verify′||VK′||x.
if Verify′ = S.Verify, VK′ = VK and Pu(m′) = 0 then

Output ⊥.
end if
Output v

∏
ci,zi (mod N).

end if

Game 6 This game is similar to the previous one, except for the manner in which the constants c1,b are
chosen.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose c′i,b ∈ Zφ(N) for all i ≤ d2, b ∈ {0, 1}. Set c1,b = c′1,b · e−1 and ci,b = c′i,b for all i > 1.

Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Set PP = (O(Transform-2u,N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 7 In this game, the challenger uses programs Transform-3 and Transform-Image-1.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose ci,b ∈ Zφ(N) for all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Let Transform-330 and Transform-Image-131 be the circuits defined below.

30Padded appropriately to be of the same size as Transform, Transform-1, Transform-2 and Transform-4.
31Padded appropriately to be of the same size as Transform-Image and Transform-Image-2.

56

291

Approved for Public Release; Distribution Unlimited.

Set PP = (O(Transform-3u,N,v,c,α,SK,K̃,e−1), O(Transform-Image-1N,v,c), N , e) where the circuits Transform-3

and Transform-Image-1 are defined below. Send (PP,VK) to Att.
2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Transform-3u,N,v,a,α,SK,K̃,e−1 :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : u ∈ {0, 1,⊥}d2 , RSA modulus N ∈ N, v ∈ Z∗N , c = {ai,b} ∈ Z2d2
N ,

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃, e−1 ∈ Z∗φ(N).

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = x||Verify′||VK′.
if Verify′ = S.Verify and VK′ = VK and Pu(m′) = 0 then

Output ⊥.
end if
Output v(

∏
i ci,zi)·e

−1

(mod N).
end if

Transform-Image-1N,v,c :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2

N .

Compute h(m′) = x and let z = x||Verify′||VK′.
Output v

∏
i ci,zi (mod N).

Game 8 In this game, the challenger modifies the manner in which constants ci,b are chosen. Instead of
choosing them uniformly at random from Zφ(N), the challenger now chooses ai,b ← Zφ(N) and sets ci,b
appropriately, depending on u and y = S.Verify||VK.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Choose ai,b ∈ ZN for all i ≤ d2, b ∈ {0, 1}. Let y = S.Verify||VK.

57

292

Approved for Public Release; Distribution Unlimited.

For i ≤ d1, set ci,b = e · ai,b mod φ(N) if ui = b, else ci,b = e · ai,b + 1 mod φ(N).

For i > d1, set ci,b = e · ai,b mod φ(N) if yi−d1 6= b, else ci,b = e · ai,b + 1 mod φ(N).

Set PP = (O(Transform-3u,N,v,c,α,SK,K̃,e−1), O(Transform-Image-1N,v,c), N , e). Send (PP,VK) to Att.
2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 9 This game is similar to the previous one, except that the constants ci,b are computed within the
program Transform-4 (which is used instead of Transform-3). Similarly, program Transform-Image-2 is used
instead of Transform-Image-1.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Choose ai,b ∈ ZN for all i ≤ d2, b ∈ {0, 1}. Let a = {ai,b} and y = S.Verify||VK.
Let Transform-432 and Transform-Image-233 be the circuits defined below.
Set PP = (O(Transform-4u,N,v,a,α,SK,K̃,e,y), O(Transform-Image-2N,v,a,e,y), N , e) where Transform-4

and Transform-Image-2 are defined below. Send (PP,VK) to Att.
2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

32Padded appropriately to be of the same size as Transform, Transform-1, Transform-2 and Transform-3.
33Padded appropriately to be of the same size as Transform-Image and Transform-Image-1.

58

293

Approved for Public Release; Distribution Unlimited.

Transform-4u,N,v,a,α,SK,K̃,e :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : u ∈ {0, 1,⊥}d2 , RSA modulus N ∈ N, v ∈ Z∗N , a = {ai,b} ∈ Z2d2
N ,

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃, e ∈ Z∗φ(N), y ∈ {0, 1}`ver × {0, 1}`vk .

Let y′ = Verify′||VK′.
if b = 0 then

if PRG(a) 6= α then
Output ⊥.

else
Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).

end if
else if Verify′(VK′,m′, σ′) = 0 then

Output ⊥.
else

Compute h(m′) = x and let z = x||Verify′||VK′.
if Verify′ = S.Verify and VK′ = VK and Pu(m′) = 0 then

Output ⊥.
end if
if y = y′ then

Let i′ be the first index such that ui′ = xi′ . Set ci′,xi′ = ai′,xi′ .

∀i ≤ d1, i 6= i′, set ci,b = e · ai,b if ui = b, else ci,b = e · ai,b + 1.
∀i > d1, set ci,b = e · ai,b if yi−d1 6= b, else ci,b = e · ai,b + 1.

else
Let i′ be the first index such that yi′ 6= y′i′ . Set cd1+i′,y′i′ = ad1+i′,y′i′ .

∀i ≤ d1, set ci,b = e · ai,b if ui = b, else ci,b = e · ai,b + 1.

∀i > d1, i− d1 6= i′, set ci,b = e · ai,b if yi−d1 6= b, else ci,b = e · ai,b + 1.
end if
Output v

∏
ci,zi (mod N).

end if

Transform-Image-2N,v,a,e :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, v ∈ Z∗N , a = {ai,b} ∈ Z2d2

N , e ∈ Z∗φ(N),

y ∈ {0, 1}`ver × {0, 1}`vk .

Compute h(m′) = x and set z = x||Verify′||VK′.
∀i ≤ d1, set ci,b = e · ai,b if ui = b, else ci,b = e · ai,b + 1.
∀i > d1, set ci,b = e · ai,b if yi−d1 6= b, else ci,b = e · ai,b + 1.

Output v
∏
ci,xi (mod N).

B.1.2 Adversary’s Advantage in the Games

Let AdvjAtt denote the advantage of adversary Att in Game j.

59

294

Approved for Public Release; Distribution Unlimited.

Claim B.1. Assuming F̃ is a secure PRF, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. Similar to proof of Claim 5.1.

Claim B.2. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Similar to the proof of Claim 5.2.

Claim B.3. Assuming PRG is a secure pseudorandom generator, for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Similar to proof of Claim 5.3.

Claim B.4. For any adversary Att,

Adv4Att ≥ Adv3Att/θ(q1 + n).

Proof. This follows from the θ-admissibility of h. Let I = {i′ : Verifyi′ = S.Verify,VKi′ = VK}. Let
yi = h(xi) for all i ≤ q1, and yq1+j = h(mj) for all j ∈ I. Note that mi∗ 6= xi for all i ≤ q1, and mi∗ 6= mj

for all j ∈ I, j 6= i∗. Therefore,

Pr[∀i ≤ q1, Pu(xi) = 1 and ∀j ∈ I, j 6= i∗Pu(mj) = 1 and Pu(mi∗) = 0] ≥ 1/θ(q1 + n)

where the probability is only over the choice of u← AdmSample(1λ, q1 + n).

Claim B.5. Assuming O is a secure virtual black box obfuscator, F̃ is a secure pseudorandom function,
PRG is a secure pseudorandom generator and S is a (`ver, `vk, `msg, `sig)-length qualified secure signature
scheme,

Adv4Att − Adv5Att ≤ negl(λ).

Proof. The proof of this claim is along the lines of the proof of Claim 5.1. Given only oracle access to either
Transform-1N,v,c,α,SK,K̃ or Transform-2u,N,v,c,α,SK,K̃ , the only way in which an adversary S can distinguish

between the two is by sending a query of the form (1, a′,Verify′,VK′,m′, σ′) such that Verify′ = S.Verify,
VK′ = VK, Verify′(VK′,m′, σ′) = 1 and Pu(m′) = 0. Note that m′ was not queried during the signature
phase, since Pu(m′) = 0. This implies (m′, σ′) is a valid forgery, thereby breaking the signature scheme S.

Claim B.6. For any adversary Att,
Adv5Att = Adv6Att.

Proof. The only difference between Game 5 and Game 6 is the choice of c1,b. In Game 5, c1,b ← Zφ(N), while in
Game 6, c′1,b ← Zφ(N) and c1,b = c′1,b · e−1 mod φ(N). However, the distributions D1 = {(c, e)|c ← Zφ(N)}
and D2 = {(c · e−1 mod φ(N), e)|c ← Zφ(N)} are identical, which implies that Game 5 and Game 6 are
identical.

Claim B.7. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv6Att − Adv7Att ≤ negl(λ).

60

295

Approved for Public Release; Distribution Unlimited.

Proof. Let (SK,VK)← S.Gen(1λ), K̃ ← F̃ .setup(1λ), a← {0, 1}`, α = PRG(a) and u← AdmSample(1λ, q1+
n). Choose an RSA modulus N , let e ← Z∗φ(N), v ← Z∗N and c′i,b ← Zφ(N). Let c = {ci,b} where

c1,b = c′1,b · e−1 and ci,b = c′i,b for all i > 1. Let c̃ = {c̃i,b} where c̃i,b = c′i,b for all i.
To prove this claim, it suffices to show that Transform-2u,N,v,c,α,SK,K̃ and Transform-3u,N,v,c̃,α,SK,K̃,e−1 are

functionally identical. Let us consider the behavior of the two programs on input (b, a′,Verify′,VK′,m′, σ′).
Let x′ = h(m′). The only case where Transform-2 and Transform-3 can possibly differ is when b = 1,

Verify′(VK′,m′, σ′) = 1, Verify′ = S.Verify, VK′ = VK and Pu(m′) = 1. Transform-2 outputs v
∏
ci,z′

i

(mod N) while Transform-3 outputs v
(
∏
c̃i,z′

i
)·e−1

(mod N). However, note that
∏
i ci,z′i = (

∏
i c̃i,z′i) · e−1

since c1,b = c′1,b · e−1 = c̃1,b. This concludes our proof.

Claim B.8. For any adversary Att,
Adv7Att − Adv8Att ≤ negl(λ).

Proof. Let us consider the two distributions D1 = {a|a← Zφ(N)} and D2 = {a mod φ(N)|a← ZN}. The
statistical distance between D1 and D2 is (p + q − 1)/N , where N = pq. Since p, q ∈ Θ(2λ), the statistical
distance between D1 and D2 is negligible in λ.

Next, note that the distributions D′1 = {(a, e)|a ← Zφ(N)}, D′2 = {(a · e mod φ(N), e)|a ← Zφ(N)} and
D′3 = {(a · e + 1 mod φ(N), e)|a ← Zφ(N)} are identical. As a result, Game 6 and Game 7 are statistically
indistinguishable.

Claim B.9. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv8Att − Adv9Att ≤ negl(λ).

Proof. Let N be an RSA modulus, e ← Z∗φ(N), ai,b ← ZN and u ← AdmSample(1λ, q1 + n), a ← {0, 1}`,
α = PRG(a), (SK,VK) ← S.Gen(1λ) and K̃ ← F̃ .setup(1λ). Let ci,b = e · ai,b (mod φ)(N) if ui = b,
else ci,b = e · ai,b + 1 (mod φ)(N). In order to prove this claim, it suffices to prove that the programs
Transform-3u,N,v,c,α,SK,K̃,e−1 and Transform-4u,N,v,a,α,SK,K̃,e are functionally identical, and similarly, the
programs Transform-Image-1N,v,c and Transform-Image-1N,v,a,e are functionally identical. We will use the
following observation.

Observation B.1. Let v ∈ Z∗N , wi ∈ Z for i ≤ n. Let w′ = w mod φ(N) Then v
∏

i wi = v
∏

i w
′
i .

This follows from the fact that vφ(N) = 1.

Let us first consider the circuits Transform-3u,N,v,c,α,SK,K̃,e−1 and Transform-4u,N,v,c,α,SK,K̃,e. On input

(b, a′,Verify′,VK′,m′, σ′), the only case Transform-3 and Transform-4 can possibly differ is when b = 1,
Verify′(VK′,m′, σ′) = 1, and either Verify′||VK′ 6= S.Verify||VK or Pu(m′) = 1. Let y = S.Verify||VK,
y′ = Verify′||VK′ and z′ = h(m′)||Verify′||VK′. Either there exists an index i′ such that ui′ = h(m′)i′ , in
which case set j′ to be the first such index, or there exists an index i′ such that yi′ 6= y′i′ , in which case set
j′ = d1 + i′. Note that cj′,zj′ = e · aj′,z′

j′
.

Transform-3u,N,v,c,α,SK,K̃,e−1(Verify′,VK′,m′, σ′)

=v
(
∏
cj,z′

j
)·e−1

=v
(
∏

j 6=j′ cj,z′j
)·cj′,z′

j′
·e−1

=v
(
∏

j 6=j′ cj,z′j
)·aj′,z′

j′
mod φ(N)

=Transform-4u,N,v,a,α,SK,K̃,e(Verify
′,VK′,m′, σ′)

where the last step follows from Observation B.1.

61

296

Approved for Public Release; Distribution Unlimited.

Let us now consider Transform-Image-1 and Transform-Image-2. This case follows directly from Observa-
tion B.1, since the only difference between the two programs is that Transform-Image-1N,v,c has c hardwired,
while in Transform-Image-2N,v,a,e, a is hardwired.

Claim B.10. Assuming RSA is secure, for any PPT adversary Att,

Adv9Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv9Att = ε. We will construct a PPT algorithm
B that breaks the RSA assumption with advantage ε.
B receives as input N, e, v. It chooses (SK,VK)← S.Gen(1λ). It chooses K̃ ← F̃ .setup(1λ), a← {0, 1}`,

sets α = PRG(a). It chooses u← AdmSample(1λ, q1+n), ai,b ← ZN . It sends PP = (O(Transform-4N,v,a,α,SK,K̃,e),
O(Transform-Image-2N,v,a,e), e) and VK to Att.

For each signing query xi, B checks that Pu(xi) = 1 and sends σi = S.Sign(SK, xi) to Att.
Finally, Att outputs a forgery σagg along with n tuples {Verifyi,VKi,mi}. Let zi = h(mi)||S.Verify||VK,

y = S.Verify||VK, yi = Verify′||VK′ and I = {i|Verifyi = S.Verify,VKi = VK}.
If Att wins, then ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ was not queried during the signa-

ture phase, Pu(mi∗) = 0 , for all i ∈ I, i 6= i∗ Pu(mi) = 1, and σeagg =
∏
i Transform-Image-2N,v,a,e(Verifyi,VKi,mi).

Let us consider Transform-Image-2N,v,a,e(Verifyi,VKi,mi) for some i 6= i∗. For j ≤ d1, let cj,b = e · aj,b if
uj = b, else cj,b = e · aj,b + 1. For j > d1, let cj,b = e · aj,b if yj−d1 6= b, else cj,b = e · aj,b + 1. If y = y′, let
j′ ∈ [d1] be the first index such that uj′ = zi,j′ . Else, let j′′ be the first index such that yj′′ 6= yi,j′′ and set
j′ = d1 + j′′. Then,

Transform-Image-2N,v,a,e(Verifyi,VKi,mi)

=v
∏
cj,zi,j (mod N)

=v
(
∏

j 6=j′ cj,zi,j)·e·aj′,zi,j′ (mod N)

=ve·τi (mod N) where τi = aj′,zi,j′ · (
∏

j 6=j′
cj,zi,j).

On the other hand, if we consider the term corresponding to i∗, then

Transform-Image-2N,v,c,e

= v
∏

j cj,zi∗,j (mod N)

= v
∏

j(e·aj,zi∗,j+1)
(mod N)

= v · ve·τi∗ (mod N) for some ti∗ that can be efficiently computed using e, ai,b.

Hence, σeagg = v · (v
∑
τi)e (mod N). B finally outputs x = σagg/(v

∑
τi) (mod N), and wins with advantage

ε.

Therefore, assuming O is a secure VBB obfuscator for class C, F is a selectively secure puncturable
PRF, F̃ is a secure PRF, PRG is a secure pseudorandom generator and the RSA assumption holds, the
construction described in Section B is adaptive secure with respect to all length-qualified signature schemes.

62

297

Approved for Public Release; Distribution Unlimited.

Machine-Generated Algorithms, Proofs and Software for the
Batch Verification of Digital Signature Schemes

Joseph A. Akinyele∗§ Matthew Green∗† Susan Hohenberger∗‡

Matthew W. Pagano∗§

February 26, 2014

Abstract

As devices everywhere increasingly communicate with each other, many security applications will
require low-bandwidth signatures that can be processed quickly. Pairing-based signatures can be very
short, but are often costly to verify. Fortunately, they also tend to have efficient batch verification
algorithms. Finding these batching algorithms by hand, however, can be tedious and error prone.

We address this by presenting AutoBatch, an automated tool for generating batch verification code
in either Python or C++ from a high level representation of a signature scheme. AutoBatch outputs
both software and, for transparency, a LaTeX file describing the batching algorithm and arguing that it
preserves the unforgeability of the original scheme.

We tested AutoBatch on over a dozen pairing-based schemes to demonstrate that a computer could
find competitive batching solutions in a reasonable amount of time. In particular, it found an algorithm
that is faster than a batching algorithm from Eurocrypt 2010. Another novel contribution is that it
handles cross-scheme batching, where it searches for a common algebraic structure between two distinct
schemes and attempts to batch them together.

In this work, we expand upon our paper on AutoBatch appearing in ACM CCS 2012 [2] in a number
of ways. We add a new loop-unrolling technique and show that it helps cut the batch verification
cost of one scheme by roughly half. We describe our pruning and search algorithms in greater detail,
including pseudocode and diagrams. All experiments were also re-run using the RELIC pairing library.
We compare those results to our earlier results using the MIRACL library, and discuss why RELIC
outperforms MIRACL in all but two cases. Automated proofs of several new batching algorithms are
also included.

AutoBatch is a useful tool for cryptographic designers and implementors, and to our knowledge, it
is the first attempt to outsource to machines the design, proof writing and implementation of signature
batch verification schemes.

1 Introduction

We anticipate a future where computers are everywhere as an integrated part of our surroundings, continu-
ously exchanging messages, e.g., sensor networks, smartphones, vehicular communications. For these systems

∗Johns Hopkins University, {akinyelj, mgreen, susan, mpagano}@cs.jhu.edu
†Supported in part by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory

(AFRL) under contract FA8750-11-2-0211, the Office of Naval Research under contract N00014-11-1-0470, NSF grant CNS
1010928 and HHS 90TR0003/01. Its contents are solely the responsibility of the authors and do not necessarily represent the
official views of the HHS.
‡Supported in part by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory

(AFRL) under contract FA8750-11-2-0211, the Office of Naval Research under contract N00014-11-1-0470, NSF CNS 1154035,
and a Microsoft Faculty Fellowship. Applying to all authors, the views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.
§Supported in part by NSF grant CNS 1010928 and HHS 90TR0003/01.

1

298

Approved for Public Release; Distribution Unlimited.

to work properly, messages must carry some form of authentication, and yet the system requirements on this
authentication are particularly demanding. Applications such as vehicular communications [23, 60], where
cars communicate with each other and the highway infrastructure to report on road conditions, traffic con-
gestion, etc., require both that signatures be short (due to the limited spectrum available) and that many
messages from different sources can be processed quickly.

Pairing-based signatures are attractive due to their small size, but they often carry a costly verification
procedure. Fortunately, these schemes also lend themselves well to batch verification, where valuable time
is saved by processing many messages at once. E.g., Boneh, Lynn and Shacham [15] presented a 160-bit
signature together with a batching algorithm over signatures by the same signer, where verification time
could be reduced from 47.6ms to 2.28ms per signature in a batch of 200 [28] — a 95% saving!

To prepare for a future of ubiquitous messaging, we would like batching algorithms for as many pairing-
based schemes as possible. Designing batch verification algorithms by hand, however, is challenging. First,
it can be tedious. It requires knowledge of many batching rules and exploration of a potentially huge space
of algebraic manipulations in the hunt for a good candidate algorithm. Second, it can be error prone. In
Section 1.3, we discuss both the success and failure of the past fifteen years in batching digital signatures.
The clear lesson is that mistakes are common and that even when generic methods for batching have been
suggested, they have often been misapplied (e.g., a critical step is forgotten). This paper demonstrates that
it is feasible for humans to turn over some of the design, proof writing and implementation work in batch
verification to machines.

1.1 Our Contributions

We present AutoBatch,1 an automated tool that transforms a high-level description of a signature scheme2

into an optimized batch verification program in either Python or C++. This high-level specification is written
in a language called Scheme Description Language (SDL), which is designed specifically for automation.
AutoBatch takes as input an SDL specification of a signature scheme and searches for a batching algorithm
by repeatedly applying a combination of novel and existing batching techniques. Because some loops or other
infinite paths could occur, AutoBatch prunes its search using a set of carefully designed heuristics. Despite
these heuristics, AutoBatch is not guaranteed to terminate but we conjecture that it does in practice. Our
tool produces a modified SDL file and executable code, which includes logic for altering the behavior of the
batching algorithm based on its input size or past input.

To our knowledge, this is the first attempt to automatically identify when certain batching techniques
are applicable and to apply them in a secure manner. Importantly, the way in which we combine these
techniques and optimizations preserves the unforgeability of the original scheme. Specifically, with all but a
negligible probability, the batch verifier will accept a batch S of signatures if and only if every s ∈ S would
have been accepted by the individual verification algorithm. AutoBatch also produces a machine-generated
LaTeX file that specifies each technique applied and an argument for why security is preserved.

AutoBatch was tested on several pairing-based schemes. It produced the first batching algorithms, to our
knowledge, for the Camenisch-Lysyanskaya [20] and Hohenberger-Waters [36] signatures.3 It also discovered
a faster algorithm for batching the proofs of the verifiable random functions (VRF) of Hohenberger and
Waters [37]. Moreover, AutoBatch is able to handle batches with more than one type of signature. Indeed,
we found that the Hess [35] and Cha-Cheon [24] identity-based signatures can be processed twice as fast when
batched together compared to sorting by type and batching within the type. The capability to do cross-
scheme batching is a novel contribution of this paper, and we feel could be of great value for applications,
such as mail servers, which may encounter many signature types at once.

AutoBatch is a tool with many applications for both existing and future signature schemes. It helps to
enable the secure, but rapid processing of authenticated messages, which we believe will be of increasing
importance in a wide-variety of future security applications.

1The AutoBatch source and test cases described herein are publicly available at https://github.com/JHUISI/auto-tools.
2Optionally, one can start with an existing implementation, from which AutoBatch will extract a representation.
3It also produced a candidate batching scheme for the Waters dual-system [66] signatures, although this signature scheme

does not have perfect correctness and therefore our techniques do not immediately apply to it. See Section 2.1.1 for more.

2

299

Approved for Public Release; Distribution Unlimited.

1.2 Overview of Our Approach

We present a detailed explanation of AutoBatch in §3. In this section and in Figure 1 we provide a brief
overview of the techniques. At a high level, AutoBatch is designed to analyze a scheme, extract the signature
verification equation, and derive working code for a batch verifier. This involves three distinct components:

1. (Optional) A Code Parser, which retrieves the verification equation and variable types from some
existing scheme implementation. Our parser assumes that the scheme has been implemented in Python
following a specific structure (see Section 3.5 for more details). Given such an implementation, the
Parser obtains the signature verification equation and encodes it into an intermediate representation
in SDL.

2. A Batcher, which takes as input an SDL file describing a signature verification equation. In addition to
the signature verification equation, the Batcher requires details in SDL such as types, variable names
of public parameters and signatures, and estimated batch size. It first consolidates the set of individual
verification equations into a single equation, then derives a batch verification equation. The Batcher
then searches through a series of rules, which may be applied repeatedly, to optimize the equation
and thus derive a new equation of a batch verifier. The output of the Batcher is a second SDL file,
which includes the individual and batch verifiers, along with an analysis of the batcher’s estimated
running time. For transparency, the Batcher optionally outputs a LaTeX file that can be compiled
into a human-readable document describing the batching algorithm and arguing that it maintains the
unforgeability of the original scheme.

3. A Code Generator, which takes the output of the Batcher and generates working source code to
implement the batch verifier. The batch verifier implementation includes group membership checks, a
recursive divide-and-conquer process to handle batches that contain invalid signatures, and additional
logic to identify cases where individual verification is likely to outperform batching. The user can choose
either Python or C++ as the output language, either building on the MIRACL [59] or RELIC [4] library.

There are two usage scenarios for AutoBatch. The most common may be that a user begins with a hand-
coded SDL file and feeds this directly into the Batcher. Since SDL files are human-readable ASCII-based
files containing a mathematical representation of the scheme, some developers may prefer to implement new
schemes directly in this language, which is agnostic to the programming language of the final implementation.

As a second scenario, if the user has a working implementation of the scheme in Charm [1], then she
can save time. This program can be given to the Code Parser, which will extract the necessary information
from the code to generate an SDL file. Charm is a Python and C++ based prototyping framework created
by Akinyele et al. [1] that provides infrastructure for developing advanced cryptographic schemes. There is
already a library of pairing-based signatures publicly available in Charm/Python, so we provide this as a
second interface option to our tool.

1.3 Related Work

Computer-aided security is a goal of high importance. Recently, the best paper award at CRYPTO 2011 was
given to Barthe, Grégoire, Heraud and Zanella Béguelin [10] for their invention of EasyCrypt, an automated
tool for generating security proofs of cryptographic systems from proof sketches. The reader is referred there
for a summary of efforts to automate the verification of cryptographic security proofs.

In 1989, batch cryptography was introduced by Fiat [29] for a variant of RSA. In 1994, an interactive
batch verifier for DSA presented in an early version of [55] was broken by Lim and Lee [44]. In 1995, Laih
and Yen proposed a new method for batch verification of DSA and RSA signatures [41], but the RSA batch
verifier was broken five years later by Boyd and Pavlovski [17]. In 1998, two batch verification techniques were
presented for DSA and RSA [32, 33] but both were later broken [17, 38, 39]. The same year, Bellare, Garay
and Rabin took the first systematic look at batch verification [11] and presented three generic methods for
batching modular exponentiations, one of which is called the small exponents test. Unfortunately, in 2000,
Boyd and Pavlovski [17] published attacks against various batching schemes which were using the small
exponents test incorrectly. In 2003-2004, several batch verification schemes based on bilinear maps (a.k.a.,

3

300

Approved for Public Release; Distribution Unlimited.

Parsing
Engine

Signature
Scheme in

Python

SDL file for
Signature
Scheme

Batcher

SDL file for
Batch Verifier

Code
Generator

Individual Loop
Python/C++ Code

Batching
Python/C++ Code

Proof of
Correctness

Figure 1: The flow of AutoBatch. The input is a signature scheme comprised of key generation, signing
and verification algorithms, represented in the domain-specific SDL language. The scheme is processed by a
Batcher, which applies the techniques and optimizations from Section 3 to produce a new SDL file containing
a batch verification algorithm. Optionally, the Batcher outputs a proof of correctness (as a PDF typeset
using LaTeX) that explains, line by line, each technique applied and its security justification. Finally, the
Code Generator produces executable C++ or Python code implementing both the resulting batch verifier,
and the original (unbatched) verification algorithm. An optional component, the Parsing Engine, allows for
the automatic derivation of SDL inputs based on existing scheme implementations.

pairings) were proposed [24,68,70,71] but all were later broken by Cao, Lin and Xue [22]. In 2006, a method
was given for identifying invalid signatures in RSA-type batches [43], but it was also flawed [64].

It is natural to ask what the source of the errors were in these papers. In several cases, the mathematics
of the scheme were simply unsound and the proof of correctness was either missing or lacking in rigor.
However, there were two other common problems. One was that the paper claimed in English to be doing
batch verification, but the security definition provided in the paper was insufficient to establish this guarantee.
Most commonly this matched the strictly weaker screening guarantee; see [19] for more. A second problem
was more insidious: the security definition and proof were “correct”, but the scheme was still subject to a
practical attack because the authors started the proof by explicitly assuming that elements of the signature
were members of certain algebraic groups and this was not a reasonable assumption to make in practice.
Boyd and Pavlovski [17] provide numerous examples of this case.

AutoBatch addresses these common pitfalls. It uses one security definition (in Section 2.1) and provides
a proof of correctness for every algorithm it outputs relative to this definition (in Section 3.3), where no
assumptions about the algebraic structure of the input are made and therefore any necessary tests are
explicitly performed by the algorithm.

In addition to the works on batch verification mentioned above, we mention a few more. Shacham
and Boneh presented a modified version of Fiat’s batch verifier for RSA to improve the efficiency of SSL
handshakes on a busy server [61]. Boneh, Lynn and Shacham provided a single-signer batch verifier for BLS
signatures [15]. Camenisch, Hohenberger and Pedersen [19] gave multiple-signer batch verifiers for Waters
identity-based signatures [65] and a novel construction. Ferrara, Green, Hohenberger and Pedersen outlined
techniques for batching pairing-based signatures and showed how to batch group and ring signatures [28].
Blazy, Fuchsbauer, Izabachéne, Jambert, Sibert and Vergnaud [12] applied batch verification techniques to
the Groth-Sahai zero-knowledge proof system as well as group signatures and anonymous credential systems
relying on them, obtaining significant savings.

Law and Matt describe methods for identifying invalid signatures in a batch [42,50,51].
Lastly, there have been several research efforts toward automatically generating cryptographic protocols

and executable code. This compiler-like approach has been applied to cryptographic applications such as

4

301

Approved for Public Release; Distribution Unlimited.

security protocols [40,45,46,57,63], optimizations to software implementations involving elliptic-curve cryp-
tography [9] and bilinear-map functions [56], secure two-party computation [34, 48, 49], and zero-knowledge
proofs [3, 5–7,21,30,52].

2 Background

Definition 2.1 (A Digital Signature) A digital signature scheme is a tuple of probabilistic polynomial-
time (p.p.t.) algorithms (Gen,Sign,Verify):

1. Gen(1λ)→ (pk , sk): the key generation algorithm takes as input the security parameter 1λ and outputs
a pair of keys (pk , sk).

2. Sign(sk ,m) → σ: the signing algorithm takes as input a secret key sk and a message m from the
message space and outputs a signature σ.

3. Verify(pk ,m, σ) → {0, 1}: the verification algorithm takes as input a public key pk, a message m and
a purported signature σ, and outputs a bit indicating the validity of the signature.

A scheme is typically said to be correct (or perfectly correct) if for all Gen(1`)→ (pk , sk),

Verify(pk ,m,Sign(sk ,m)) = 1 for all m.

That is, a scheme is correct if all honestly generated signatures pass the verification test. Our focus will be
on perfectly correct schemes, however, we discuss in Section 2.1.1 the implications for batch verification if
some correctness error is allowed.

A scheme is defined to be unforgeable as follows [31]: Let Gen(1`) → (pk , sk). Suppose (m,σ) is output
by a p.p.t. adversary with access to a signing oracle Osk (·) and input pk . Then the probability that m was
not queried to Osk (·) and yet Verify(pk ,m, σ) = 1 must be negligible in `.

In this work, we explore three variants:

1. Identity-Based Signatures [62]: Gen is executed by a master authority who publishes pk and uses
sk to generate signing keys for users according to their public identity string, e.g., email address. To
verify a signature on a given message, one only needs the public key of the master authority and the
public identity string of the purported signer.

2. Privacy Signatures: Group [26] and ring [58] signatures are associated with a group of users, where
verification shows that at least one member of the group signed the message, but it is difficult to tell
who.

3. Verifiable Random Functions [53]: A VRF is a pseudo-random function, where the computing
party publishes a public key pk and then can offer a short non-interactive proof that the function was
correctly evaluated for a given input. This proof can be viewed as a signature by the computing party
on the input to the pseudo-random function.

2.1 The Basics of Batch Verification for Signatures

Our security focus here is not directly on unforgeability [31]. Rather we are interested in designing batch
verification algorithms that accept a set of signatures if and only if each signature would have been accepted
by its verification algorithm individually (except perhaps with a negligible probability).4 If an input scheme
is unforgeable, then our batching algorithm will preserve this property in the output scheme. If an insecure
scheme is provided as input, then all bets are off on the output.

4We assume perfectly correct schemes here.

5

302

Approved for Public Release; Distribution Unlimited.

Specifically, we consider the case where we want to quickly verify a set of signatures on possibly different
messages by possibly different signers. The input is {(t1,m1, σ1), . . . , (tn,mn, σn)}, where ti specifies the
verification key against which σi is purported to be a signature on message mi. It is important to understand
that here one or more signers may be maliciously colluding against the batch verifier.

We recall the definition of batch verification from Bellare, Garay and Rabin [11] as extended in [19] to
deal with multiple signers. We note that this definition is well specified for perfectly correct schemes, but
not for schemes that allow some correctness error. We discuss this further shortly.

Definition 2.2 (Batch Verification of Signatures) Let ` be the security parameter. Suppose (Gen,Sign,
Verify) is a signature scheme with perfect correctness, k, n ∈ poly(`), and (pk1, sk1), . . . , (pkk, skk) are
generated independently according to Gen(1`). Let PK = {pk1, . . . , pkk}. We call a probabilistic algorithm
Batch a batch verification algorithm when the following conditions hold:

• If pk ti ∈ PK and Verify(pk ti ,mi, σi) = 1 for all i ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn))
= 1.
• If pk ti ∈ PK for all i ∈ [1, n] and Verify(pk tj ,mj , σj) = 0 for some j ∈ [1, n], then Batch((pk t1 ,m1, σ1),
. . . , (pk tn ,mn, σn)) = 0 except with probability negligible in `, taken over the randomness of Batch.

The above definition can be generalized beyond signatures to apply to any keyed scheme with a perfectly-
correct verification algorithm. This includes zero-knowledge proofs, verifiable random functions, and variants
of regular signatures, such as identity-based, attribute-based, ring, group, aggregate, etc. The above defini-
tion requires that signing keys be generated honestly. In practice, users could register their keys and prove
some necessary properties of the keys at registration time [8].

2.1.1 On Schemes with a Correctness Error

The standard definition for signature batch verification (as presented in Definition 2.2)5 assumes that the
basic signature scheme has perfect correctness. That is, the first part of the definition inherently assumes
that all valid signatures will pass the individual verification test. This is the case for the majority of signature
schemes as well as all signature schemes that we are aware of being actively used in practice.

However, one could imagine a signature scheme with a negligible or small constant correctness error.
One example of a scheme with a negligible correctness error is the Waters09 scheme as derived from the
Waters Dual-System IBE [66] using the technique described by Naor [14]. In this scheme, a signature on
message m corresponds to the IBE private key on identity m. The verification test operates by choosing a
random message m′, encrypting it for identity m, running the decryption algorithm using the signature as
the private key, and testing to see that decryption successfully recovers m′. Since the Dual-System IBE [66]
has a negligible correctness error in the decryption algorithm, this signature scheme also has a negligible
correctness error in verification. This leaves the question: what is the right batching definition for such a
scheme?

For a scheme that allows an arbitrary amount of correctness error, the first requirement of Definition 2.2
no longer makes sense. Rather in this setting it seems to us that one could no longer base the batching
security on the base signature security, but rather would have to create a new game-based definition that
simulated the batching scenario and directly prove that the algorithm matches the definition. Direct proofs
of this sort are currently beyond our ability to automate.

One might instead narrow the focus to schemes that allow at most a negligible correctness error. In
this case, we suggest relaxing both of the batching requirements by a negligible probability taken over the
randomness of the individual and batch verification algorithms. We leave as an open problem a formal
treatment of batching for schemes in this class.

We tested AutoBatch on one scheme with a correctness error, Waters09 [66], because its complication
made it a challenging test case. We report on the candidate batching algorithm we found in Section 4,

5We added the restriction to perfect correctness in Definition 2.2. It was assumed in prior works but not always made
explicit.

6

303

Approved for Public Release; Distribution Unlimited.

although we note there and in Appendix D that our automated proofs were only written to handle schemes
with perfect correctness. This is a correction over the conference version of this work [2] which did not make
this distinction.

2.2 Algebraic Setting

Bilinear Groups. Let G1, G2 and GT be groups of prime order q. A map e : G1 × G2 → GT is an
admissible bilinear map (or pairing) if it satisfies the following three properties:

1. Bilinearity: for all g ∈ G1, h ∈ G2, and a, b ∈ Zq, it holds that e(ga, hb) = e(g, h)ab.

2. Non-degeneracy: if g and h are generators of G1 and G2, respectively, then e(g, h) is a generator of
GT .

3. Efficiency: there exists an efficiently computable function that given any g ∈ G1 and h ∈ G2, computes
e(g, h).

An admissible bilinear map generator BSetup is an algorithm that on input a security parameter 1`,
outputs the parameters for a bilinear group (q, g, h,G1,G2,GT , e) such that groups of prime order q ∈ Θ(2`),
G1, G2 and GT are groups of order q where g generates G1, h generates G2 and e : G1 × G2 → GT is an
admissible bilinear map.

The above bilinear map is called asymmetric and our implementations use this highly efficient setting.
We also consider symmetric maps where there is an efficient isomorphism ψ : G1 → G2 (and vice versa) such
that a symmetric map ê is defined as ê : G1 × ψ(G1)→ GT . We abstractly treat symmetric groups equally
(G1 = G2) for simplicity.

Testing Membership in Bilinear Groups. When batching, it is critical to test that the elements of each
signature are members of the appropriate algebraic group. Boyd and Pavlovski [17] demonstrated efficient
attacks on batching algorithms for DSA signature verification which omitted a subgroup membership test.

In this paper, we must test membership in bilinear groups. We require that elements of purported
signatures are members of G1 and not, say, members of E(Fp) \ G1. Determining whether some data
represents a point on a curve is easy. The question is whether it is in the correct subgroup. If the order
of G1 is a prime q, one option is to verify that an element y is in G1 by checking that yq mod q = 1 [19].
Although this costs an extra modular exponentiation per group element, this will largely be dwarfed by the
savings from reducing the total pairings, as experimentally verified first by Ferrara et al. [28] and confirmed
by our tests.

2.3 Batch Verification in Bilinear Groups

Let us recall from [28] the formal definition of a bilinear-based (or pairing-based) batch verifier. A pairing-
based verification equation is represented by a generic pairing-based claim X corresponding to a boolean

relation of the following form:
∏k
i=1 e(fi, hi)

ci ?
= A, for k ∈ poly(τ) and fi ∈ G1, hi ∈ G2 and ci ∈ Z∗q , for

each i = 1, . . . , k. A pairing-based verifier Verify for a generic pairing-based claim is a probabilistic poly(τ)-
time algorithm which on input the representation 〈A, f1, . . . , fk, h1, . . . , hk, c1, . . . , ck〉 of a claim X, outputs
accept if X holds and reject otherwise. We define a batch verifier for pairing-based claims.

Definition 2.3 (Bilinear-based Batch Verifier)
Let BSetup(1τ) → (q, g1, g2,Ga,Gb,GT , e). For each j ∈ [1, η], where η ∈ poly(τ), let X(j) be a generic
pairing-based claim and let Verify be a pairing-based verifier. We define a pairing-based batch verifier for
Verify as a probabilistic poly(τ)-time algorithm which outputs:

• accept if X(j) holds for all j ∈ [1, η];
• reject if X(j) does not hold for any j ∈ [1, η] except with negligible probability.

7

304

Approved for Public Release; Distribution Unlimited.

2.4 Small Exponents Test Applied to Bilinear Groups

Bellare, Garay and Rabin [11] proposed methods for verifying multiple equations of the form yi = gxi for
i = 1 to n, where g is a generator for a group of prime order. One might be tempted to just multiply these
equations together and check if

∏n
i=1 yi = g

∑n
i=1 xi . However, it would be easy to produce two pairs (x1, y1)

and (x2, y2) such that the product of them verifies correctly, but each individual verification does not, e.g.
by submitting the pairs (x1−α, y1) and (x2 +α, y2) for any α. Instead, Bellare et al. proposed the following
method for batching the verification of these equations, which we will shortly apply to bilinear groups.

The Small Exponents Test of Bellare, Garay and Rabin: Choose exponents δi of (a small number
of) `b bits and compute

∏n
i=1 y

δi
i = g

∑n
i=1 xiδi . Then the probability of accepting a bad pair is 2−`b . The

size of `b is a tradeoff between efficiency and security. (By default in AutoBatch, we set `b = 80 bits and
select random exponents from the range [1, 2λ− 1]. Even though 0 is allowed for the test, we forbid it in our
implementation.)

Subsequently, Ferrara, Green, Hohenberger and Pedersen [28] proved that the Small Exponents Test could
be securely applied to bilinear groups as well. We recall the following theorem from their work which
encapsulates the test as well.

Theorem 2.4 (Small Exponents Test Applied to Bilinear Groups [28]) Let BSetup(1τ)→ (q, g1, g2,
G1,G2,GT , e) where q is prime. For each j ∈ [1, η], where η ∈ poly(τ), let X(j) be a generic claim as in

Definition 2.3. For simplicity, assume that X(j) is of the form A
?
= Y (j) where A is fixed for all j and all

the input values to the claim X(j) are in the correct groups. For any random vector ∆ = (δ1, . . . , δη) of `b

bit elements from Zq, an algorithm Batch which tests the following equation
∏η
j=1A

δj ?
=
∏η
j=1 Y

(j)δj is a

pairing-based batch verifier that accepts an invalid batch with probability at most 2−`b .

In later sections, we will frequently make use of the small exponents tests and rely on the security
guarantees of Theorem 2.4 as proven by Ferrara et al. [28].

3 The AutoBatch Toolchain

In this section we summarize the techniques used by AutoBatch to programmatically generate batch verifiers
from standard signature schemes. A high level abstraction is provided in Figure 1. The main stages are as
follows.

1. Derive the scheme’s SDL representation. The AutoBatch toolchain begins with an SDL represen-
tation of a signature scheme. While SDL is not a full programming language, it provides sufficient flexibility
to represent most pairing-based signature schemes. We provide a description of the SDL grammar in Ap-
pendix E, as well as a description of the SDL semantics and several examples in Appendix F. For developers
who already have an existing Charm/Python implementation, we also provide a Parsing Engine that can
optionally derive an SDL representation directly from this Python code.6

2. Apply techniques and optimize the batch verification equation. We first apply a set of techniques
designed to convert the SDL signature verification equation into a batch verifier. These techniques optimize
the verification equation by combining pairing equations and re-arranging the components to minimize the
number of expensive operations. To prevent known attacks, we apply the small exponents test of Bellare,
Garay and Rabin [11], and optimize the resulting equation to ensure that all signature elements are in
the group with the smallest representation (typically, G1). Additionally, the Batcher embeds a recursive
divide-and-conquer strategy to handle cases where batch verification fails due to invalid signatures. This
binary search strategy is borrowed from Law and Matt [42] and could be extended to support other methods

6We developed this capability for two reasons. First, there is already a library of pairing-based signature schemes available in
Charm/Python (in fact, the number of Charm implementations is greater than all other settings combined). Secondly, we believe
that there is value in providing multiple interfaces to our tools, particularly interfaces that work with real implementations.

8

305

Approved for Public Release; Distribution Unlimited.

class BLS:
def __init__(self):

global group
group = Pairing(MNT160)

def keygen(self):
g = group.random(G2)
x = group.random(ZR)
pk = g ** x
sk = x
return (pk, sk, g)

def sign(self, sk, M):
h = group.hash(M, G1)
sig = h ** sk
return sig

def verify(self, pk, g, sig, M):
h = group.hash(M, G1)
if pair(h, pk) == pair(sig, g):

return True
return False

SDL

…
1 Choose deltas for small exponents test

for z in range(0, N):
delta[z] = SmallExp(secparam)

2 Initialize dot products
dotA = 1; dotACache = {}
dotB = 1; dotBCache = {}

3 Precompute dot products that can be
cached between runs of divide / conquer
 for z in range(0, N):

4 group membership tests
… variables calculated over sigs…

5 Compute dotA & dotB using cache
6 Batch Verification check
if pair(dotA, pk) == pair(dotB, g):

return True
else:
7 divide and conquer
 dividenconquer(delta, 0, N, incIndices,

dotACache, dotBCache, pk, g)
...

Python
...
1 Choose deltas for small exponents test

for (int z = 0; z < N; z++)
delta[z] = SmallExp(secparam);

2 Initialize dot products
3 Group membership tests
4 Precompute cacheable dot products

for (int z = 0; z < N; z++) {
h = group.hashListToG1(Mlist[z]);
dotACache[z] = group.exp(h, delta[z]);
dotBCache[z] = group.exp(sig[z], delta[z]);

}
5 Compute dotA & dotB using cache
6 Batch Verification check
if (group.pair(dotA , pk) ==

group.pair(dotB, g)) { … }
else {
7 divide and conquer
 dividenconquer(delta, 0, N, incIndices,

dotACache, dotBCache, pk, g);
}

ORname := bls
N := 100
secparam := 80

BEGIN :: types
M := str; h := G1; sig := G1
g := G2; pk := G2

END :: types
...
BEGIN :: func:sign
input := list{sk, M}
sig := h ^ sk
output := sig

END :: func:sign
...
constant := g; public := pk
signature := sig; message := h
...
BEGIN :: precompute
h := H(M, G1)

END :: precompute

verify := {e(h, pk) == e(sig, g)}

Charm/Python Batch Verifier
C++

Figure 2: The Boneh-Lynn-Shacham (BLS) signature scheme [15] at various stages in the AutoBatch
toolchain. At the left, an initial Charm-Python implementation of the scheme. In the center, an SDL
representation of the same scheme, programmatically extracted by the Parsing Engine. At right, a fragment
of the resulting batch verifier generated after applying the Batcher and Code Generator.

that outperform this approach. Finally, the output of this phase is a modified SDL file, and (optionally) a
human-readable proof that the resulting equation is a secure batch verifier.

3. Evaluate the capabilities of the batch verifier. Given the optimized batching equation produced
in the previous step, we estimate the performance of the verifier under various conditions. This is done by
counting the operations in the verifier, and deriving an estimate of the runtime based on the expected cost
of each mathematical operation (e.g., pairing, exponentiation, multiplication). The cost of each operation is
determined via a set of diagnostic tests conducted when the library is initialized.7

4. Generate code for the resulting batch verifier. Finally, we translate the resulting SDL file into
a working batch verifier. This verifier can be implemented in either Python or C++ using the Charm
framework. It implements the SDL-specified batch verification equation as well as the individual verification
equation. Based on the calculations of the previous step, the generated code embeds logic to automatically
determine which verifier is most appropriate for a given dataset (individual or batch). Two fragments of
generated code (Python and C++) are shown in Figure 2.

We will now describe each of the above steps in detail.

3.1 Batching and Optimization

Given an SDL file containing the verification equation and variable types, the Batcher first securely con-
solidates the individual verification equations into a single equation using the small exponents test. Then,
the Batcher applies a series of optimizations to the batch verification equation in order to derive an efficient
batch verifier. Many of these techniques were first explored in previous works [19,28]. However, the intended
audience of those works is humans performing manual batching of signatures. Hence, they are in many cases
somewhat less “general” than the techniques we describe here.8 Furthermore, unlike previous works we are

7Obviously these experiments are very specific to the machine and curve parameters on which they are run. Our implemen-
tation re-runs these experiments whenever the library is initialized with a given set of parameters.

8For example: techniques 2 and 3 of [19] each combine a series of logical operations that are more widely applicable and
easily managed by splitting them into finer-grained sub-techniques.

9

306

Approved for Public Release; Distribution Unlimited.

e() e()

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) ·
⌘Y

z=1

e(��z
z,2, z

iz) ·
⌘Y

z=1

e(��z
z,2, h) (6)

Step 6: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h) (7)

Steps 1 and 2 form the Combination Step in [28], which was proven to result in a secure batch verifier in [28,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (7) is also batch verifier for HW. 2

B A machine-generated proof for CL

The following proof was automatically generated by the Batcher while processing the CL signature scheme [20].
This execution was restricted to signatures on a single signing key.

B.1 Definitions

This document contains a proof that CL.BatchVerify is a valid batch verifier for the signature scheme CL.
Let X,Y, g be values drawn from the key and/or parameters, and m, a, b, c represent a message (or message
hash) and signature. The individual verification equation CL.Verify is:

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
where i = 2 be a set of random

exponents chosen by the verifier. The batch verification equation for CL is:

CL.BatchVerify:

e(g,

⌘Y

z=1

bz
�z,1 · cz�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bzmz·�z,2)

We will now formally define a batch verifier and demonstrate that CL.BatchVerify is a secure batch verifier
for the CL signature scheme.

Theorem B.1 CL.BatchVerify is a batch verifier for the CL signature scheme.

B.2 Proof

Proof. Via a series of steps, we will show that if CL is a secure signature scheme, then BatchVerify is a secure
batch verifier. Recall our batch verification software will perform a group membership test to ensure that
each group element of the signature is a member of the proper subgroup, so here will we assume this fact.
We begin with the original verification equation.

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c) (8)

Step 1: Consolidate the verification equations (technique 0), merge pairings with common first or second
element (technique 6), and apply the small exponents test as follows: For each of the z = 1 to ⌘ signatures,
choose random �z,1, �z,2 2 [1, 2�] and compute the equation:

e(g, b�1 · c�2) · e(Y, a)��1 ?
= e(X, a)�2 · e(X, b)m·�2 (9)

25

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

e()

on

A.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,�1,�2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h)

Let ⌘ be the number of signatures in a batch, and �1, . . . �⌘ 2
⇥
1, 2�

⇤
be a set of random exponents chosen

by the verifier. The batch verification equation HW.BatchVerify is:

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Theorem A.1 HW.BatchVerify is a batch verifier for the HW signature scheme.

A.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h) (1)

Step 1: Combine ⌘ signatures (technique 1):

⌘Y

z=1

e(�z,1, g)
?
=

⌘Y

z=1

Uz
Mz · Vz

rz ·Dz · e(�z,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2
⇥
1, 2�

⇤
:

⌘Y

z=1

e(�z,1, g)
�z ?

=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(�z,2, w
dlg(iz)e · ziz · h)�z (3)

Step 3: Move exponent(s) inside the pairing (technique 2):

⌘Y

z=1

e(��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e · ziz · h) (4)

Step 4: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) · e(��z
z,2, z

iz) · e(��z
z,2, h) (5)

Step 5: Distribute products (technique 5):

24

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

^

e()

on

A.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,�1,�2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h)

Let ⌘ be the number of signatures in a batch, and �1, . . . �⌘ 2
⇥
1, 2�

⇤
be a set of random exponents chosen

by the verifier. The batch verification equation HW.BatchVerify is:

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Theorem A.1 HW.BatchVerify is a batch verifier for the HW signature scheme.

A.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h) (1)

Step 1: Combine ⌘ signatures (technique 1):

⌘Y

z=1

e(�z,1, g)
?
=

⌘Y

z=1

Uz
Mz · Vz

rz ·Dz · e(�z,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2
⇥
1, 2�

⇤
:

⌘Y

z=1

e(�z,1, g)
�z ?

=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(�z,2, w
dlg(iz)e · ziz · h)�z (3)

Step 3: Move exponent(s) inside the pairing (technique 2):

⌘Y

z=1

e(��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e · ziz · h) (4)

Step 4: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) · e(��z
z,2, z

iz) · e(��z
z,2, h) (5)

Step 5: Distribute products (technique 5):

24

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

^

Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

Verification Equation Initial Batch Equation after Technique 1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g) (1)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (2)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g) (3)

1

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

e(hz, pk)
�z ?

=

⌘Y

z=1

e(sigz, g)
�z (5)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (6)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (7)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch verifier
in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within
the same equation. Hence, the final verification equation (7) is also batch verifier for BLS.

2

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) ·
⌘Y

z=1

e(��z
z,2, z

iz) ·
⌘Y

z=1

e(��z
z,2, h) (6)

Step 6: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h) (7)

Steps 1 and 2 form the Combination Step in [28], which was proven to result in a secure batch verifier in [28,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (7) is also batch verifier for HW. 2

B A machine-generated proof for CL

The following proof was automatically generated by the Batcher while processing the CL signature scheme [20].
This execution was restricted to signatures on a single signing key.

B.1 Definitions

This document contains a proof that CL.BatchVerify is a valid batch verifier for the signature scheme CL.
Let X,Y, g be values drawn from the key and/or parameters, and m, a, b, c represent a message (or message
hash) and signature. The individual verification equation CL.Verify is:

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
where i = 2 be a set of random

exponents chosen by the verifier. The batch verification equation for CL is:

CL.BatchVerify:

e(g,

⌘Y

z=1

bz
�z,1 · cz�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bzmz·�z,2)

We will now formally define a batch verifier and demonstrate that CL.BatchVerify is a secure batch verifier
for the CL signature scheme.

Theorem B.1 CL.BatchVerify is a batch verifier for the CL signature scheme.

B.2 Proof

Proof. Via a series of steps, we will show that if CL is a secure signature scheme, then BatchVerify is a secure
batch verifier. Recall our batch verification software will perform a group membership test to ensure that
each group element of the signature is a member of the proper subgroup, so here will we assume this fact.
We begin with the original verification equation.

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c) (8)

Step 1: Consolidate the verification equations (technique 0), merge pairings with common first or second
element (technique 6), and apply the small exponents test as follows: For each of the z = 1 to ⌘ signatures,
choose random �z,1, �z,2 2 [1, 2�] and compute the equation:

e(g, b�1 · c�2) · e(Y, a)��1 ?
= e(X, a)�2 · e(X, b)m·�2 (9)

25

Figure 3: The Boneh-Lynn-Shacham (BLS) signature scheme [15] with same signer and η signatures in a
batch. We show the abstract syntax tree (AST) of the unoptimized batch equation after Batcher has applied
technique 1 by combining all instances of the verification equations (denoted by

∏
node) and applying the

small exponents test (denoted by δz node).

able to programmatically identify when these techniques are applicable, and apply them to the verification
equation in a consistent way.

The Batcher assumes that the input will be a collection of η signatures, possibly on different messages and
public keys (or identities). To construct a batch verifier, the Batcher first parses and performs type checking
on the SDL input file to extract an abstract syntax tree (AST) representing the verification equation. During
the type checking, it informs users if there are type mismatches or if the typing information is incomplete
in SDL. Next, the Batcher traverses the AST of the verification equation, applying various techniques at
various nodes in the tree.

We now list those techniques and provide details on how some of these techniques are implemented on
the AST.

Technique 0a: Consolidate the verification equation. Many pairing-based signature schemes actually require
the verifier to check more than one pairing equation. During the first phase of the batching process, the
batcher applies the small exponents test from [11] to combine these equations into a single verification
equation.9 A variation of this is Technique 0b which is applicable for schemes that utilize for loops in the
verification equation (e.g., VRF [37]). If the bounds over the loop are known it might be useful to unroll the
loop to allow application of other techniques.

Replace for i = 1 to t : e(g, hi)
?
= e(c, di) with e(g, h1)δ1 · ... · e(g, ht)−δt ?

= e(c, d1)δ1 · ... · e(c, dt)−δt

Technique 1: Combine equations. Assume we are given η signature instances that can be verified using the
consolidated equation from the previous step. We now combine all instances into one equation by applying
the Combination Step of [28], which employs as a subroutine the small exponents test. This results in a
single verification equation. The correctness of the resulting equation requires that all elements be in the
correct subgroup, i.e., that group membership has already been checked. AutoBatch ensures that this check
will be explicitly conducted in the final batch verifier program. See Figure 3 for an example.

Technique 2: Move exponents inside the pairing. When a term of the form e(gi, hi)
δi appears, move the

exponent δi into e(). Since elements of G1 and G2 are usually smaller than elements of GT , this gives a
noticeable speedup when computing the exponentiation.

Replace e(gi, hi)
δi with e(gδii , hi)

9For example, consider two verification conditions e(a, b) = e(c, d) and e(a, c) = e(g, h). These can be verified simultaneously
by selecting random δ1, δ2 and evaluating the single equation e(a, b)δ1e(c, d)−δ1e(a, c)δ2e(g, h)−δ2 = 1.

10

307

Approved for Public Release; Distribution Unlimited.

Batch Equation after Technique 2 Batch Equation after Technique 3

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1 e()

on

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

e()

on

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

A.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,�1,�2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h)

Let ⌘ be the number of signatures in a batch, and �1, . . . �⌘ 2
⇥
1, 2�

⇤
be a set of random exponents chosen

by the verifier. The batch verification equation HW.BatchVerify is:

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Theorem A.1 HW.BatchVerify is a batch verifier for the HW signature scheme.

A.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h) (1)

Step 1: Combine ⌘ signatures (technique 1):

⌘Y

z=1

e(�z,1, g)
?
=

⌘Y

z=1

Uz
Mz · Vz

rz ·Dz · e(�z,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2
⇥
1, 2�

⇤
:

⌘Y

z=1

e(�z,1, g)
�z ?

=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(�z,2, w
dlg(iz)e · ziz · h)�z (3)

Step 3: Move exponent(s) inside the pairing (technique 2):

⌘Y

z=1

e(��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e · ziz · h) (4)

Step 4: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) · e(��z
z,2, z

iz) · e(��z
z,2, h) (5)

Step 5: Distribute products (technique 5):

24

^
Step 1: Combined Equation:

⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

A.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,�1,�2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h)

Let ⌘ be the number of signatures in a batch, and �1, . . . �⌘ 2
⇥
1, 2�

⇤
be a set of random exponents chosen

by the verifier. The batch verification equation HW.BatchVerify is:

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Theorem A.1 HW.BatchVerify is a batch verifier for the HW signature scheme.

A.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h) (1)

Step 1: Combine ⌘ signatures (technique 1):

⌘Y

z=1

e(�z,1, g)
?
=

⌘Y

z=1

Uz
Mz · Vz

rz ·Dz · e(�z,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2
⇥
1, 2�

⇤
:

⌘Y

z=1

e(�z,1, g)
�z ?

=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(�z,2, w
dlg(iz)e · ziz · h)�z (3)

Step 3: Move exponent(s) inside the pairing (technique 2):

⌘Y

z=1

e(��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e · ziz · h) (4)

Step 4: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) · e(��z
z,2, z

iz) · e(��z
z,2, h) (5)

Step 5: Distribute products (technique 5):

24

^Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

e()

on

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,�1,�2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h)

Let ⌘ be the number of signatures in a batch, and �1, . . . �⌘ 2
⇥
1, 2�

⇤
be a set of random exponents chosen

by the verifier. The batch verification equation HW.BatchVerify is:

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Theorem A.1 HW.BatchVerify is a batch verifier for the HW signature scheme.

A.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h) (1)

Step 1: Combine ⌘ signatures (technique 1):

⌘Y

z=1

e(�z,1, g)
?
=

⌘Y

z=1

Uz
Mz · Vz

rz ·Dz · e(�z,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2
⇥
1, 2�

⇤
:

⌘Y

z=1

e(�z,1, g)
�z ?

=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(�z,2, w
dlg(iz)e · ziz · h)�z (3)

Step 3: Move exponent(s) inside the pairing (technique 2):

⌘Y

z=1

e(��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e · ziz · h) (4)

Step 4: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) · e(��z
z,2, z

iz) · e(��z
z,2, h) (5)

Step 5: Distribute products (technique 5):

24

^
Step 1: Combined Equation:

⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

e()
Step 1: Combined Equation:

⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

on

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A machine-generated proof of security for BLS

1 Definitions

This document contains a proof that BLS.BatchVerify is a valid batch verifier for the signature
scheme BLS. Let g, pk be values drawn from the key and/or parameters, and h, sig represent a
message (or message hash) and signature. The ` parameter represents the `-bit input size of BLS
and varies in practice. We have shown an example of ` = 8 to simplify the proof. The individual
verification equation BLS.Verify is:

e(h, pk)
?
= e(sig, g)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation
for BLS is:

BLS.BatchVerify:

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g)

We will now formally define a batch verifier and demonstrate that BLS.BatchVerify is a secure batch
verifier for the BLS signature scheme.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1⌧)! (q, g,G,GT , e). For each j 2 [1, ⌘],
where ⌘ 2 poly(⌧), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a probabilistic poly(⌧)-time algorithm which outputs
accept if X(j) holds for all j 2 [1, ⌘] whereas it outputs reject if X(j) does not hold for any j 2 [1, ⌘]
except with negligible probability.

Theorem 1. BLS.BatchVerify is a batch verifier for the BLS signature scheme.

2 Proof

Proof. Via a series of steps, we will show that if BLS is a secure signature scheme, then BatchVerify
is a secure batch verifier. We begin with the original verification equation.

e(h, pk)
?
= e(sig, g)

1

A.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,�1,�2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h)

Let ⌘ be the number of signatures in a batch, and �1, . . . �⌘ 2
⇥
1, 2�

⇤
be a set of random exponents chosen

by the verifier. The batch verification equation HW.BatchVerify is:

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Theorem A.1 HW.BatchVerify is a batch verifier for the HW signature scheme.

A.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(�1, g)
?
= UM · V r ·D · e(�2, wdlg(i)e · zi · h) (1)

Step 1: Combine ⌘ signatures (technique 1):

⌘Y

z=1

e(�z,1, g)
?
=

⌘Y

z=1

Uz
Mz · Vz

rz ·Dz · e(�z,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2
⇥
1, 2�

⇤
:

⌘Y

z=1

e(�z,1, g)
�z ?

=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(�z,2, w
dlg(iz)e · ziz · h)�z (3)

Step 3: Move exponent(s) inside the pairing (technique 2):

⌘Y

z=1

e(��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e · ziz · h) (4)

Step 4: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) · e(��z
z,2, z

iz) · e(��z
z,2, h) (5)

Step 5: Distribute products (technique 5):

24

^Step 1: Combined Equation:
⌘Y

z=1

e(hz, pk)
?
=

⌘Y

z=1

e(sigz, g) (1)

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

(e(hz, pk))
�z ?

=

⌘Y

z=1

(e(sigz, g))
�z (2)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (3)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (4)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch
verifier in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms
within the same equation. Hence, the final verification equation (??) is also batch verifier for
BLS.

2

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

e(hz, pk)
�z ?

=

⌘Y

z=1

e(sigz, g)
�z (5)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (6)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (7)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch verifier
in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within
the same equation. Hence, the final verification equation (7) is also batch verifier for BLS.

2

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) ·
⌘Y

z=1

e(��z
z,2, z

iz) ·
⌘Y

z=1

e(��z
z,2, h) (6)

Step 6: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h) (7)

Steps 1 and 2 form the Combination Step in [28], which was proven to result in a secure batch verifier in [28,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (7) is also batch verifier for HW. 2

B A machine-generated proof for CL

The following proof was automatically generated by the Batcher while processing the CL signature scheme [20].
This execution was restricted to signatures on a single signing key.

B.1 Definitions

This document contains a proof that CL.BatchVerify is a valid batch verifier for the signature scheme CL.
Let X,Y, g be values drawn from the key and/or parameters, and m, a, b, c represent a message (or message
hash) and signature. The individual verification equation CL.Verify is:

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
where i = 2 be a set of random

exponents chosen by the verifier. The batch verification equation for CL is:

CL.BatchVerify:

e(g,

⌘Y

z=1

bz
�z,1 · cz�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bzmz·�z,2)

We will now formally define a batch verifier and demonstrate that CL.BatchVerify is a secure batch verifier
for the CL signature scheme.

Theorem B.1 CL.BatchVerify is a batch verifier for the CL signature scheme.

B.2 Proof

Proof. Via a series of steps, we will show that if CL is a secure signature scheme, then BatchVerify is a secure
batch verifier. Recall our batch verification software will perform a group membership test to ensure that
each group element of the signature is a member of the proper subgroup, so here will we assume this fact.
We begin with the original verification equation.

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c) (8)

Step 1: Consolidate the verification equations (technique 0), merge pairings with common first or second
element (technique 6), and apply the small exponents test as follows: For each of the z = 1 to ⌘ signatures,
choose random �z,1, �z,2 2 [1, 2�] and compute the equation:

e(g, b�1 · c�2) · e(Y, a)��1 ?
= e(X, a)�2 · e(X, b)m·�2 (9)

25

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z ·

⌘Y

z=1

e(��z
z,2, w

dlg(iz)e) ·
⌘Y

z=1

e(��z
z,2, z

iz) ·
⌘Y

z=1

e(��z
z,2, h) (6)

Step 6: Move products inside pairings to reduce ⌘ pairings to 1 (technique 3):

e(

⌘Y

z=1

��z
z,1, g)

?
=

⌘Y

z=1

Uz
Mz·�z ·

⌘Y

z=1

Vz
rz·�z ·

⌘Y

z=1

Dz
�z · e(

⌘Y

z=1

�
�z·dlg(iz)e
z,2 , w) · e(

⌘Y

z=1

��z·iz
z,2 , z) · e(

⌘Y

z=1

��z
z,2, h) (7)

Steps 1 and 2 form the Combination Step in [28], which was proven to result in a secure batch verifier in [28,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (7) is also batch verifier for HW. 2

B A machine-generated proof for CL

The following proof was automatically generated by the Batcher while processing the CL signature scheme [20].
This execution was restricted to signatures on a single signing key.

B.1 Definitions

This document contains a proof that CL.BatchVerify is a valid batch verifier for the signature scheme CL.
Let X,Y, g be values drawn from the key and/or parameters, and m, a, b, c represent a message (or message
hash) and signature. The individual verification equation CL.Verify is:

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c)

Let ⌘ be the number of signatures in a batch, and �1,i, . . . �⌘,i 2
⇥
1, 2�

⇤
where i = 2 be a set of random

exponents chosen by the verifier. The batch verification equation for CL is:

CL.BatchVerify:

e(g,

⌘Y

z=1

bz
�z,1 · cz�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bzmz·�z,2)

We will now formally define a batch verifier and demonstrate that CL.BatchVerify is a secure batch verifier
for the CL signature scheme.

Theorem B.1 CL.BatchVerify is a batch verifier for the CL signature scheme.

B.2 Proof

Proof. Via a series of steps, we will show that if CL is a secure signature scheme, then BatchVerify is a secure
batch verifier. Recall our batch verification software will perform a group membership test to ensure that
each group element of the signature is a member of the proper subgroup, so here will we assume this fact.
We begin with the original verification equation.

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c) (8)

Step 1: Consolidate the verification equations (technique 0), merge pairings with common first or second
element (technique 6), and apply the small exponents test as follows: For each of the z = 1 to ⌘ signatures,
choose random �z,1, �z,2 2 [1, 2�] and compute the equation:

e(g, b�1 · c�2) · e(Y, a)��1 ?
= e(X, a)�2 · e(X, b)m·�2 (9)

25

Step 2: Apply the small exponents test, using exponents �1, . . . �⌘ 2 {1, 2�}:

⌘Y

z=1

e(hz, pk)
�z ?

=

⌘Y

z=1

e(sigz, g)
�z (5)

Step 3: Move the exponent(s) into the pairing (technique 2):

⌘Y

z=1

e(h�zz , pk)
?
=

⌘Y

z=1

e(sig�zz , g) (6)

Step 4: Combine pairings with common 1st or 2nd element. Reduce N pairings to 1 (technique

3):

e(

⌘Y

z=1

h�zz , pk)
?
= e(

⌘Y

z=1

sig�zz , g) (7)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch verifier
in [21, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within
the same equation. Hence, the final verification equation (7) is also batch verifier for BLS.

2

Figure 4: The Boneh-Lynn-Shacham (BLS) signature scheme [15] with same signer and η signatures in a
batch. Upon applying technique 1 from Figure 3 to obtain the initial secure batch verifier, the goal is to
optimize the equation. We first show the AST of the equation after the Batcher has applied technique 2
(move exponents inside the pairing). Then, we show the result of applying technique 3a (move products
inside the pairing) to arrive at an optimized batch equation.

Wherever possible, we move the exponent into the group with the lowest exponentiation cost. We identify
this group based on a series of operation microbenchmarks that run automatically at code initialization.10

Technique 3a: Move products inside the pairing. When a term of the form
∏η
i=1 e(ai, g) with a constant first

or second argument appears, move the product inside to reduce the number of pairings from η to 1.

Replace

η∏

i=1

e(ai, g) with e(

η∏

i=1

ai, g)

A special case of this technique is Technique 3b where η = 2. In this case, when two terms share a
common first or second argument, they can also be combined. For example:

Replace e(a, g) · e(b, g) with e(a · b, g) where a 6= 1 ∧ b 6= 1.

For a concrete example, we show how techniques 2 and 3a are programmatically applied to the BLS
scheme [15] in Figure 4.

Technique 4: Optimize the Waters Hash. A variety of identity-based signature schemes employ a hash
function by Waters [65], which can be generalized [25, 54]. Verifying signatures generated by these schemes
requires hashing identity strings of the form V = v1v2 . . . vz where each vi is a short string. The hash function
is evaluated as u′

∏z
i=1 u

vi
i where u′ and u1u2 . . . uz are public generators in G1 or G2.

When batching η equations containing the Waters hash, one often encounters terms of the form
∏η
j=1 e(gj ,∏z

i=1 u
vij
i). This can be rewritten to make the number of pairings independent of the number of equations

one wants to batch. This is most useful when η > z.

Replace

η∏

j=1

e(gj ,
z∏

i=1

u
vij
i) with

z∏

i=1

e(

η∏

j=1

gj
vij , ui)

In future versions, AutoBatch will output code to switch between the most efficient verifier when η > z
and η ≤ z.

10For many common elliptic curves, this is the G1 base group. However, in some curves the groups G1 and G2 have similar
operation costs; this may give us some flexibility in modifying the equation.

11

308

Approved for Public Release; Distribution Unlimited.

Technique 5: Distribute products. When a product is applied to two or more terms, distribute the product
to each term to allow application of other techniques such as techniques 3 or 4. For example:

Replace

η∏

i=1

(e(ai, gi) · e(bi, hi)) with

η∏

i=1

e(ai, gi) ·
η∏

i=1

e(bi, hi)

Technique 6: Move known exponents outside pairing and precompute pairings. In some cases it may be
necessary to move exponents outside of a pairing. For example, when

∏η
i=1 e(g

ai , hbi) appears, move the
exponents outside of pairing. When multiple such exponents appear, we can pre-compute the sum of ai · bi
for all η and exponentiate once in GT .

Replace

η∏

i=1

e(gai , hbi) with e(g, h)
∑
i(ai·bi)

Technique 7: Precompute constant pairings. When pairings have a constant first and second argument, we
can simply remove these from the equation and pre-compute them once at the beginning of verification
(equivalent to making them a public parameter).

Technique 8: Split pairings. In some rare cases it can be useful to apply technique 3b in reverse: splitting a
single pairing into two or more pairings. This temporarily increases the number of pairings in the verification
equation, but may be necessary in order to apply subsequent techniques. For example, this optimization is
necessary so that we can apply the Waters hash optimization (technique 4) to the ring signature of Boyen [18].

Discussion: Several of the above techniques are quite simple, in that they perform optimizations that would
seem “obvious” to an experienced cryptographer. However, many optimizations (e.g., technique 7) could
have been applied in published algorithm descriptions [20,37], and yet were not. Moreover, it is a computer
and not a human that is performing the search for us, so an important contribution of this work is providing
a detailed list of which optimizations we tell the computer to try out and in which order, and verifying that
such an approach can find competitive solutions in a reasonable amount of time. This is nontrivial: we
discovered that many orderings lead to “dead ends”, where the optimal solution is not discovered. We now
describe our approach to finding the order of techniques.

3.2 Technique Search Approach

The challenge in automating the batching process is to identify the order in which techniques should be
applied to a given verifier. This is surprisingly difficult, as there are many possible orderings, many of which
require several (possibly repeated) invocations of specific techniques. Moreover, some techniques might
actually worsen the performance of the verifier in the hope of applying other techniques to obtain a better
solution. An automated search algorithm must balance all of these issues and must also identify the orderings
in an efficient manner.

The naive approach to this problem is simply to try all possible combinations up to a certain limit, then
identify the best resulting verifier based on an estimate of total running time. This limit can be vastly
different as the complexity of the scheme increases. While this approach is feasible for simple schemes, it
is quite inefficient for schemes that require the application of several techniques. Moreover, there is the
separate difficulty of determining when the algorithm should halt, as the application of one technique will
sometimes produce a new equation that is amenable to further optimization, and this process can continue
for several operations.

Our Search Approach: Our approach is a “pruned” breadth-first search (PBFS) which utilizes a finite
state transition function to constrain the transitions between techniques. This transition function determines
which techniques can be applied to the current state and was constructed with our experience of how the
optimization techniques work together logically. For instance, if technique 5 is applied to the current state
(i.e., distribute products to pairings), then techniques 2-4 most likely will apply given that these techniques

12

309

Approved for Public Release; Distribution Unlimited.

move exponents or products inside pairings. From the current state, only the subset of techniques in which
the conditions for the transformation are met are pursued further in the search.

Our search algorithm is broken down into three stages. The first stage of the search is to try technique 0a
if there are multiple verification equations. After consolidating the verification equations, we try technique
3b since there may have been pairings with common elements from separate equations. Our intuition for
attempting technique 3b in this stage is to combine as many pairings as possible before embarking on the
search. The side effect is that it reduces the number of paths explored by the PBFS, thereby making the
search more efficient. Moreover, it is useful to attempt technique 7 at this stage and precompute pairings
that utilize generators. We then apply technique 1 to combine η instances of the equations to form an initial
batch verifier. However, if the scheme specifies a single verification equation, then only technique 1 is applied
in the first stage.

The second stage of the search employs the PBFS (starting with technique 2) and terminates when none
of the techniques can be applied to the current state of a batch verifier. Each path from the set of ordering
paths uncovered during the PBFS is evaluated in terms of total running time. The algorithm selects the
path from the candidate paths that provides the highest cost savings. From the selected path, the final (or
post-processing) stage of the search attempts to apply technique 0b (unroll loops) if the equation utilizes
for loops. We delay testing for technique 0b until the post-processing stage to limit the search space for an
efficient batch verifier. If technique 0b is applied, then we always attempt technique 3b given that there may
now be pairings that can be further combined.

To prevent infinite loops during our PBFS, the state function disallows the application of certain tech-
niques that might potentially undo optimizations. For example, technique 8 performs a reverse split on
pairings to allow further optimizations; this might affect technique 3b, which combines pairings that have
common elements. Certain combinations of techniques 8 and 3b lead to an infinite cycle that combines and
splits the same pairings. Thus, the state function only allows a transition from Technique 8 to 3b to occur
once on a given path. We provide the pseudocode of our search in Algorithm 1 & 2 and our state transition
function in Table 1.

Our approach is effective and enables efficiently deriving batch verification algorithms. While our ap-
proach does not guarantee the optimal batch equation, in practice we rediscover all existing lower bounds
on batch verification performance, and in some cases we improve on results developed by humans.

Current State Next States

(2,) {3a, 3b, 4, 5, 6, 7, 8}
(3a,) {2, 3b, 4, 5, 6}
(3b,) {2, 3a, 3b, 5, 8}
(4,) {2, 3a, 3b, 5}
(5,) {2, 3a, 4}
(6,) {2, 3b, 5}
(7,) {2, 3a, 6}

(8, true) {2, 4, 5, 6}
(8, false) {2, 4, 5, 3b, 6}

Table 1: This represents the transitionFun of Algorithm 2 developed for pruning our breath-first search
(PBFS) algorithm. The function accepts as input the current state which represents the technique that
was previously applied to the batch equation and whether there exists a transition from technique 8 to 3b
along the path. In an effort to ensure that all paths terminate, the function restricts the transition from
technique 8 to 3b to occur once on a given path. Although we do not prove that our algorithm is guaranteed
to terminate, we conjecture that it does in practice. In fact, it terminated promptly for all of our test cases.

13

310

Approved for Public Release; Distribution Unlimited.

Algorithm 1 Global search: Our overall search procedure takes as input an AST representation of the
initial verification equation, then attempts technique 0a, 3b, 7 and 1 in the pre-processing step. The rest of
the algorithm executes the PBFSearch algorithm (shown in Algorithm 2) to determine ordering. Then, it
applies the post-processing step by attempting technique 0b and 3b if there are loops involved. The search
returns the best batch verification algorithm and the order of techniques applied.

1: procedure GlobalSearch(eq)
2: path1← {}
3: pre techniques← {3b, 7} → Pre-processing stage
4: applied, eq1← applyTechnique(technique = 0a, eq) → Try to consolidate equations
5: if applied = True then → Technique 0a condition is satisfied
6: for all x ∈ pre techniques do
7: applied, new eq ← applyTechnique(technique = x, eq1)
8: if applied = True then
9: path1← path1 + [x]

10: eq1← new eq
11: end if
12: end for
13: end if
14: applied, eq1← applyTechnique(technique = 1, eq1) → Combine η instances of equations
15: assert(applied = True)
16: path1← path1 + [1]
17:

18: AllThePaths← PBFSearch(eq1, path1, allPaths = ∅, start technique = 2)
19: (bestEq, path2)← findMin(AllThePaths)
20: → Finds path with lowest runtime estimate recorded during PBFS
21:

22: post techniques← {0b, 3b} → Post-processing stage
23: for all x ∈ post techniques do
24: applied, new eq ← applyTechnique(technique = x, bestEq)
25: if applied = True then
26: path2← path2 + [x]
27: bestEq ← new eq
28: end if
29: end for
30:

31: return bestEq, path2
32: end procedure

14

311

Approved for Public Release; Distribution Unlimited.

Algorithm 2 Pruned Breadth-First Search: the PBFS algorithm takes as input an AST of the equation,
sequence of applied techniques (called path), an empty set for storing all uncovered paths (called allPaths),
and a start technique for the search. The path argument records the techniques being explored in the search
execution. The algorithm returns a set of paths dictated by transitionFunc which is illustrated in Table 1
and an estimate of the batch verifier runtime that is associated with each path. Our algorithm selects
whichever path yields the lowest runtime.

1: procedure PBFSearch(eq, path, allPaths, technique)
2: applied, new eq ← applyTechnique(technique, eq)
3:

4: if applied = True then → Technique condition is satisfied
5: path← path+ [technique] → Append technique to path
6: checkRes← checkForEdge(8, 3b, path) → check if transition from 8 to 3b exists in path
7: tech set← transitionFunc(technique, checkRes) → return pruned set
8: for all x ∈ tech set do
9: newAllPaths← PBFSearch(new eq, path, allPaths, x)

10: allPaths← allPaths ∪ newAllPaths
11: end for
12: else → Reached dead end with this path
13: if path 6∈ allPaths then
14: allPaths← allPaths ∪ path → Add path to set of all paths
15: time← estimateRuntime(eq, N, T) → N for batch size & T for group op. costs
16: recordTime(time, path) → record in a global database
17: end if
18: end if
19: return allPaths
20: end procedure

15

312

Approved for Public Release; Distribution Unlimited.

2 Proof

Proof. Via a series of steps, we will show that if CL is a secure signature scheme, then BatchVerify is a secure
batch verifier.

We begin with the original verification equation.

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m

?
= e(g, c)

Step 1: Consolidate the verification equations (tech. 0a), and apply the small exponents
test as follows: For each of the z = 1 to ⌘ signatures, choose random �1, �2 2 [1, 2� � 1]
and compute for each equation:

e(g, b)�1 · e(Y, a)��1
?
= e(X, a)�2 · e(X, b)m·�2 · e(g, c)��2 (3)

Step 2: Combine ⌘ signatures (tech. 1), move the exponent(s) inside pairing (tech. 2):

⌘Y

z=1

e(g, bz
�z,1) · e(Y, az

��z,1)
?
=

⌘Y

z=1

e(X, az
�z,2) · e(X, bz

mz ·�z,2) · e(g, cz
��z,2) (4)

Step 3: Merge pairings with common first or second argument (tech. 3b):

⌘Y

z=1

e(g, bz
�z,1 · cz

�z,2) · e(Y, az
��z,1)

?
=

⌘Y

z=1

e(X, az
�z,2) · e(X, bz

mz ·�z,2) (5)

Step 4: Merge pairings with common first or second argument (tech. 3b):

⌘Y

z=1

e(g, bz
�z,1 · cz

�z,2) · e(Y, az
��z,1)

?
=

⌘Y

z=1

e(X, az
�z,2 · bz

mz ·�z,2) (6)

Step 5: Move products inside pairings to reduce ⌘ pairings to 1 (tech. 3a):

⌘Y

z=1

e(g, bz
�z,1 · cz

�z,2) · e(Y, az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bz

mz ·�z,2) (7)

Step 6: Distribute products (tech. 5):

⌘Y

z=1

e(g, bz
�z,1 · cz

�z,2) ·
⌘Y

z=1

e(Y, az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bz

mz ·�z,2) (8)

Step 7: Move products inside pairings to reduce ⌘ pairings to 1 (tech. 3a):

e(g,

⌘Y

z=1

bz
�z,1 · cz

�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bz

mz ·�z,2) (9)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch verifier in [21,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (9) is also batch verifier for CL.

2

Figure 5: A fragment of the machine-generated security proof of a single-signer batch verifier for the bilinear
CL signature scheme [20]. An earlier portion of the proof asserted that a group membership test would be
done prior to checking the final equation. Here the value g is a generator of a bilinear group, the values X,Y
are part of the public key, a signature is a tuple (a, b, c) and the message signed is m.

3.3 Security and Machine-Aided Analysis

Efficiency Analysis. Efficiency of the batch verifiers is computed in two separate ways. During the
PBFS algorithm, the Batcher uses the batch size specified by the user to compute an estimate of the
runtime for all batch verifiers. The resulting estimates enable selection of an efficient batch verifier from
many candidate verifiers. As indicated in Algorithm 2, the estimates are calculated using a database of

16

313

Approved for Public Release; Distribution Unlimited.

average operation times measured at library initialization. Once the Batcher has selected the most efficient
batch equation, it performs another analysis to determine a “crossover point”, i.e., the batch size where
batch verification becomes more efficient than individual verification. This analysis is done by counting
the number of operations required as a function of the batch size. These operations also include group
operations, pairings, hashes, as well as random element generation. It then combines this operation count
with the database of average operation times to compute the crossover point.

Security Analysis. We have two points to make regarding the security of AutoBatch. First, we argue
that the algorithm used by AutoBatch to produce a batch verification equation unconditionally satisfies
Definition 2.2. That is, the batch verification equation will hold if and only if each of the individual signatures
would have passed the individual verification test (up to a negligible error probability).11

Theorem 3.1 (Security of AutoBatch) Let an AutoBatch algorithm be generalized as any algorithm that
transforms an individual pairing-based signature verification test with perfect correctness into a pairing-based
batch verification equation as follows:

1. Check the group membership of all input elements, and if no errors, apply Techniques 0a and 1 to the
individual verification equation(s) using security parameter λ to obtain a single equation X.

2. Apply any of Techniques 2-8 to X to obtain equation X ′ and set X := X ′.

3. Repeat previous step any number of times to X.

4. Check if there are loops in X and the bounds are known, then apply Technique 0b with security parameter
λ to X and further attempt Technique 3b if applicable. Then, return X.

Then all AutoBatch algorithms unconditionally satisfy Definition 2.2, where the probability of accepting
an invalid batch is at most 2−λ

′
, where λ′ ≤ λ+ 2.

Proof. We analyze this proof in three parts. First, after Step 1 (the application of Techniques 0a and 1),
there will be one batch equation X (possibly with a loop over it) and it will satisfy the security requirements
of Definition 2.2 with error probability 2−λ. These two techniques combine a set of equations (possibly with
loops over them) into a single equation (possibly with loops over them) using the small exponents test with
security parameter λ. Ferrara et al. [28, Theorem 3.2] prove that this equation will verify if and only if all
individual equations from the set verify, except with probability at most 2−λ. By default in AutoBatch, we
set λ = 80.

Second, given a single arbitrary, pairing-based equation X (possibly with a loop over it), we apply one
of Techniques 2-8 (in Steps 2 and 3). For each Technique 2-8, we argue that the output equation X ′ holds
if and only if the input equation X holds; that is, the equations are identical up to algebraic manipulations.
If this is true, the final batch equation output by AutoBatch satisfies Definition 2.2 with the same error
probability as the equation output after Techniques 0a and 1 were applied, completing the theorem.

It remains to argue that for each Technique 2-8, it is indeed the case that the input and output equations
are identical, up to algebraic manipulations. Techniques 2, 3, 4, 6 and 8 follow relatively straightforwardly
from the bilinearity of the groups. As an example, consider Technique 3b which claims that e(a, g) · e(b, g) =
e(a · b, g), for all a, b ∈ G1 and g ∈ G2 where a 6= 1 ∧ b 6= 1. Let b = ak for some k ∈ Zp. Then we have
e(a, g) · e(ak, g) as the LHS, which is e(a, g) · e(a, g)k by the bilinearity, which is e(a, g)k+1 by multiplication
in GT . The RHS is similarly e(a · ak, g) = e(ak+1, g) = e(a, g)k+1. Technique 5 requires only associativity in
GT . Technique 7 pre-computes and caches values instead of re-computing them on the fly.

Finally, we come to Step 4 with a single equation X, possibly having a loop over it. If bounds for the
loop are known, then this step unrolls the loop using Technique 0b, whereby a loop representing i = 1 to t
iterations over an equation Xi is replaced logically by the set of those equations {X1, X2, . . . , Xt}. This set of

11The security of the underlying signature scheme depends on a computational assumption, but the batcher unconditionally
maintains whatever security is offered by the scheme.

17

314

Approved for Public Release; Distribution Unlimited.

equations is then combined into a single equation using the small exponents test, as described above. Finally,
Technique 3b is applied if applicable; as discussed above, this technique is a simple algebraic manipulation
of the equation and does not change it.

An error of 2λ is introduced with each small exponents test in Technique 0a, 1 and then 0b, thus the
total batch verification error is at most 3(2−λ). This completes the theorem. 2

To offer transparency on how AutoBatch derived any given batch verifier, the Batcher produces both an
SDL file and, optionally, a human-readable proof that the resulting batch verifier is as secure as verifying
the signatures individually. This proof is a LaTeX file that includes the individual and batch verification
equations, with an enumeration of the various steps used to convert the former into the latter. Thus, while
Theorem 3.1 already argues that this proof is valid, this provides a means for independently verifying the
security of any given batching equation. Interestingly, the first proof for the batch verification of the HW
signatures [36] was produced automatically by AutoBatch.

We show a fragment of this human-readable proof for the Camenisch-Lysyanskaya (CL) scheme [20] in
Figure 5. Full proofs for the Hohenberger-Waters (HW) scheme [36], the Camenisch-Lysyanskaya (CL)
scheme [20], and the Verifiable Random Functions (VRF) scheme [37] are given in Appendices B, ??, and C,
respectively. In Appendix D, we detail the results of AutoBatch on the Waters09 scheme (derived from
the Waters Dual-System IBE of [66]); because this scheme has a negligible correctness error our automated
proof techniques do not directly apply, although we conjecture that the resulting scheme is secure up to an
additional negligible error rate. In particular, there will be a negligible chance that the batcher will output
reject on a set of valid signatures.

The security analysis provided in this section applies to the mathematics only. AutoBatch goes on to
convert this mathematical batching equation into code, which could potentially introduce software errors.
However, our hope is that the deliberate process by which AutoBatch generates code would actually help
reduce software errors by systematically including steps, such as the group membership test, which could
easily be accidentally omitted by a human implementor.

3.4 Code Generation

The output of the Batcher is a batch verification equation encoded in SDL. This file defines all of the
datatypes for the signature, message and public key (or identity and public parameters in the case of an
identity-based signature). The Code Generator converts this SDL representation into usable Python or C++
source code that can operate on real batch inputs. The SDL representation consists of the individual and
batch verification equations including logic for the following components:

1. Group membership tests. For each element in the signature (and optionally the public key, if the
user requests)12 the membership to the group is tested using an exponentiation. Section 2.2 discusses
the importance and details of this test.

2. Pre-computation. Several values often will be re-used within a verification equation. When this
happens, the batch verifier can pre-compute certain results once, rather than needlessly compute them
several times.

3. Verification method. For relatively small batch sizes, it may be more efficient to bypass the batch
verifier and simply verify the signatures using the individual verification function. For this reason, our
Code Generator generates this function as well (the output of the Batcher contains both functions),
and adds logic to programmatically choose between batch and individual verification when the batch
size is below a crossover point automatically determined in the Analysis phase.

4. Invalid signature detection. To handle the presence of invalid signatures in a batch, our batch
verifier code includes a recursive divide-and-conquer strategy to recover from a batching failure (see

12In many applications we can assume that the public keys are trusted, thus we can omit group membership testing on these
values.

18

315

Approved for Public Release; Distribution Unlimited.

e.g,. [28] for a discussion of this). On failure, this verifier divides the signature collection into two
halves and recurses by repeating verification on each half until all of the invalid signatures have been
identified.

The Code Generator consists of two “back-end” modules, which produce Charm/Python and Charm/C++
representations of the batch verifiers. It would be relatively easy to extend this module to add support for
additional languages and settings.

3.5 Code Parsing

While SDL is the primary input language for our batcher, we also support batching from a pre-existing
implementation of a signature scheme. To facilitate this, we provide a Code Parsing engine that inter-
prets signature schemes written in a high level language, derives their verification equation and data types,
and produces a resulting SDL file. While our techniques should work with various languages (provided
that the signature implementation is somewhat constrained), our prototype implementation is based on
Charm/Python. This means we can take advantage of a relatively large library of pre-existing Charm imple-
mentations. Additionally, in this setting we are assisted by the Python interpreter, which grants programatic
access to the Python Abstract Syntax Tree via the compiler.ast module.

While Charm implementations are relatively constrained in terms of their structure, a challenging aspect
of code parsing is identifying the type of each variable. We stress that this problem is not unique to Python:
indeed, many standard libraries (such as the the C-based Stanford Pairing-Based Crypto library [47]) employ
abstract data types to represent group elements. Interpreting code written using these languages will also
require techniques similar to the ones we use.

Code parsing consists of the following stages. First, we parse the entire signature scheme file to identify
the AST node of the signature verify() method, and then identify the equality comparisons in this function
that are fundamentally responsible for the signature verification process. We next build a map of variable
names, types, structure, and operations. For each assignment, we check the properties of that assignment
using a further set of heuristics. If we determine that a given assignment is relevant, we extract certain
information about it, such as the type of the variables. We obtain this information by applying known rules
to infer types. For example, we know that certain hash calls indicate an element of G1, a pairing indicates
an element in GT , random element generation calls typically indicate the type of element being generated,
and so on.13

To simplify the parsing, we restrict the subset of Python converted to SDL. In particular, we do not
support the use of functional constructs in Python such as lambda functions. Our database currently
includes signatures for the following types:

1. All pairings and their parameters and types.
2. All hashes and their parameters and types.
3. All Python dictionaries, their key names, their value names, and their types. Charm makes extensive

use of this data structure, so this is important.
4. All constant numbers and strings.

4 Implementation & Performance

Subsequent to our initial publication of the conference version of this work [2], we identified a software bug
in the group membership function of Charm v0.42 that affected our results. The results in this paper include
the corrections to the affected group membership test which reduces the efficiency gains of batch verification
in all our test cases. In particular, there are noticeable reductions in performance for CL [20], Waters09 [66]
and HW (with different signers) [36]. Although an optional feature, our membership tests include public

13We believe that this approach may also be useful in the future for static checking and formal verification of dynamically-
typed cryptographic implementations.

19

316

Approved for Public Release; Distribution Unlimited.

Scheme Type Model Ind-Verify By Hand By AutoBatch
Batch-Verify Reference Batch-Verify Techniques

1. Boyen-Lynn-Shacham (BLS) (ss) S RO 2η 2 [16] 2 1,2,3a
2. Camenisch et al. (CHP) (same period) S RO 3η 3 [19] 3 1,2,3a,5,3a
3. Camenisch-Lysyanskaya (CL) (ss) S P 5η 5η none 3 0a,1,2,3b,3b,3a,5,3a
4. Hohenberger-Waters (HW) (ss) S P 2η 2η none 4 1,2,3a,8,6,5,3a
5. Hohenberger-Waters (HW) S P 2η 2η none 4 1,2,3a,5,3a
6. Waters09 (ss) S P 9η 9η none 13 1,2,8,5,3a,6,3b
7. Hess I RO 2η 2 [28] 2 1,2,3a
8. Cha-Cheon (ChCh) I RO 2η 2 [42] 2 1,2,3a
9. Waters05 I P 3η z + 3 [19] z + 3 1,2,3a,8,6,5,3a,4,3b
10. Chow-Yiu-Hui (CYH) IR RO 2η 2 [28] 2 1,2,3a,2
11. Boyen (same ring) R P `η + ` 3`+ 1 [28] 3`+ 1 1,2,8,4,3b,8,5,3a
12. Boneh-Boyen-Shacham (BBS) G RO 5η 2 [28] 2 1,2,3b,3b,5,3a
13. VRF equations 1,3,4 & 2 (ss) V P 3η + 2` 3`+ 1 [37] `+ 3 0a,3b,1,2,3a,1,2,3a,5,3a,3b,0b,3b
14. ChCh and Hess together M RO 2η 4 none 2 0a,1,2,3a,5,3a,3b

Table 2: Digital Signature Schemes used as test cases in AutoBatch. We show a comparison between naive
batch verifiers designed by hand or discovered in the literature and ones found by AutoBatch. Scheme names
followed by an “ss” were only batched for the same signers; otherwise, different signers were allowed. For
types, S stands for regular signature, I stands for identity-based, M stands for a batch that contains a mix
of two different types of signatures, R stands for ring, G stands for group and V stands for verifiable random
function. For models, RO stands for random oracle and P stands for plain. Let ` be either the size of
the ring or the number of bits in the VRF input. Let z be a security parameter for the Waters hash [65]
and can be set to 5 in practice. To approximate verification performance, we count the total number of
pairings needed to process η valid signatures. Unless otherwise noted, the inputs are from different signers.
The final column indicates the order of the techniques from Section 3 that AutoBatch applied to obtain the
resulting batch verifier. The rows in bold are the schemes where AutoBatch discovered new or improved
algorithms. Finally, the italicized row represents the ability of AutoBatch to construct batch verifiers for
different signature types. This is an instance of cross-scheme batching and we compare it to batching naively
per signature type.

keys to reflect the worst case performance of batch verification without invalid signatures in the batch. See
Figure 6 for the new graphs.

4.1 Experimental Setup

To evaluate the performance of our techniques we implemented them as part of the Charm prototyping
framework [1]. Charm is a Python-based cryptographic prototyping framework, and provides native support
for bilinear-map based cryptography and other useful primitives, e.g., hashing and serialization. We used a
version of Charm that implements all bilinear group operations using the C-based MIRACL library [59].14

The necessary MIRACL calls are accessed from within our Python code via the C module interface.
To determine the performance of our system in isolation, we first conducted a number of experiments

on various components of our code. First, we used the code parsing component to convert several Python
signature implementations into our intermediate SDL representation. Next, we applied our batcher to the
SDL result in order to obtain an optimized equation for a batch verifier. We then applied our code generator
to convert this representation into a functioning batch verifier program, which we applied to various test
data sets.

Hardware configuration. For consistent results we ran all of our experiments on a single hardware platform:
a 2 x 2.66 GHz 6-Core Intel Xeon Macintosh Pro running MacOS version 10.7.3 with 12GB of RAM. We ran
all of our tests within a single thread, and thus used resources from only a single core of the Intel processor.

14The version of Charm we used (0.42) can be found in the Charm github repository at www.charm-crypto.com. It uses
MIRACL 5.5.4 for bilinear group operations.

20

317

Approved for Public Release; Distribution Unlimited.

Approx. Signature Size MIRACL w/ BN256 RELIC w/ BN256
MNT160 BN256 Individual Batched∗ Individual Batched∗

Signatures

BLS [16] (same signer) 160 bits 256 bits 26.6 ms 2.2 ms 11.9 ms 1.5 ms
CHP [19] (same time period) 160 bits 256 bits 46.1 ms 7.2 ms 24.0 ms 7.8 ms
HW [36] (same signer) 320 bits 512 bits 40.5 ms 4.7 ms 22.4 ms 3.0 ms
HW [36] (diff signer) 320 bits 512 bits 40.5 ms 61.1 ms 22.4 ms 29.2 ms
Waters09 [66, §6.1] (same signer) 6240 bits 6912 bits 153.2 ms 33.1 ms 93.7 ms 44.2 ms
CL [20] (same signer) 480 bits 768 bits 72.0 ms 15.9 ms 34.6 ms 18.0 ms

ID-Based Signatures

Hess [35] 1120 bits 3328 bits 32.7 ms 22.0 ms 17.1 ms 8.4 ms
ChCh [24] 320 bits 512 bits 27.5 ms 4.6 ms 12.6 ms 2.4 ms
Waters05 [65] 480 bits 768 bits 45.3 ms 11.8 ms 21.5 ms 11.0 ms

Group, Ring and ID-based Ring Signatures

BBS [13] Group signature 2400 bits 5376 bits 99.9 ms 31.2 ms 63.9 ms 18.7 ms
Boyen [18] Ring signature, 3-member ring 960 bits 1536 bits 64.2 ms 15.0 ms 41.5 ms 9.8 ms
CYH [27] Ring signature, 10-member ring 1760 bits 2816 bits 34.2 ms 22.3 ms 20.7 ms 16.2 ms

VRFs

HW VRF [Hohenberger-Waters 2010] (same signer, ` = 8) 2240 bits 5120 bits 251.4 ms 36.1 ms 112.5 ms 18.3 ms

Combinations

ChCh + Hess 1440 bits 3840 bits 55.6 ms 26.2 ms 25.7 ms 10.4 ms
∗Verification time per signature when batching 100 signatures.

Table 3: Cryptographic overhead and verification time for all of the pairing-based signatures in an alternative
implementation of AutoBatch. RELIC is faster on 12 of 14 schemes, but MIRACL is better on CL and
Waters09. We speculate that this is because modular exponentiation in G1 and G2 is slightly slower in
RELIC compared to MIRACL. Since RELIC is an actively developed library, we believe this issue can be
addressed in future versions. In the case of HW (with different signers), individual verification outperforms
batch verification in both libraries because batch time is dominated by group membership tests.

We instantiated all of our cryptographic implementations using a 160-bit MNT elliptic curve and a 256-bit
Barreto-Naehrig (BN) curve provided with MIRACL. Results are shown in Table 3 and Figure 6.

A note on the library. We chose MIRACL because it is mature and well supported. However, some research
libraries like RELIC [4] provide alternative pairing implementations that may outperform MIRACL in specific
settings. We note that our results will apply to any implementation where there is a substantial difference
between group operation and pairing times. In our experiments with RELIC using a provided BN256 curve,
we observed a 6-to-1 differential between pairings and operations in G1. Our main results do hold in this
setting, and in fact improve the overall performance in that we can process a higher number of signatures
with batch verification. We provide the details of this alternative version of AutoBatch and a complete
comparison against the BN256 curve MIRACL implementation in Table 3.

4.2 Signature Schemes Used as Test Cases and Summary of the Results

We ran our experiments using two sets of test cases. The first set was comprised of a variety of existing
schemes, including regular, identity-based, ring and group signatures, as well as verifiable random functions.
To make AutoBatch as robust as possible, we also tested it on a second set of fabricated pairing-product
equations that we designed by hand to trigger many different orderings on the techniques. We summarize
AutoBatch’s performance on existing schemes in Table 2.

In eight cases, the batching algorithm output by AutoBatch matched the prior best known result. In the
remaining cases, AutoBatch provided a faster algorithm. We now describe these cases in more detail.

We briefly recall the verification equations in VRF [37]. The public key is represented by Û , U, g1, g2, h,
the signature is represented by y, π = π0π1, . . . , π`, and the message is x = x1, . . . , x`, where ` denotes the
number of bits in the VRF input. The equations are as follows:

21

318

Approved for Public Release; Distribution Unlimited.

1. e(π1, g2)
?
= e(g

(1−x1)
1 · Ux1

1 , Û)

2. for t = 2 to ` it holds: e(πt, g2)
?
= e(π

(1−xt)
t−1 , g2) · e(πxtt−1, Ut)

3. e(π0, g2)
?
= e(πl, U0)

4. e(π0, h)
?
= y

AutoBatch first realized a batching algorithm for the VRF [37] that takes only two-thirds the time of the
one provided in [37] (or 2`+2 total pairings). Then, after we double-checked this result by hand, we realized
that the verification of equation 2 could be further optimized to only ` − 1 pairings by unrolling the loop
and combining the individual verification equations checked at each iteration. Moreover, a portion of the
unrolled loop with the g2 term could be combined with the corresponding term in the combined equations
1,3,4 for a total pairing count of only ` + 3 pairings to batch an arbitrary number of VRF proofs for `-bit
inputs. We implemented this loop unrolling technique, incorporated it into AutoBatch and automatically
applied it to VRF to obtain `+ 3 pairings. The VRF batching algorithm and proof appear in Appendix C.

In test case 14 shown in Table 2 (ChCh [24] and Hess [35] together), we simulated a scenario where
a batch contains a mix of two different types of signatures. In this case, the batch consisted of both
ChCh [24] signatures and Hess [35] signatures in a randomized order. Instead of sorting the signatures
into two groups and batching them individually, AutoBatch automatically looked for the common algebraic
structure between the two distinct schemes and applied the batching techniques described in Section 3.1.
As a generalized example, if two signature schemes both use the same generator g, where the first signature
scheme uses e(A, g) in its verification equation and the second signature scheme uses e(B, g) in its verification
equation, then AutoBatch will apply Technique 6 to obtain e(A ·B, g) in the combined verification equation
(as well as apply the small exponents test). In the case of the ChCh [24] and Hess [35] batch, this cuts
the total number of pairings in half. To the best of our knowledge, this is the first documented result for
cross-scheme signature batch verification.

For the Hohenberger-Waters signatures [36], we assume that each public key includes the precomputed
values as suggested in [36, Section 4.2]. For the case of different signers, we assume that the base group
elements g, u, v, d, w, z, h are chosen by a trusted third party and shared by all users. The Waters09 scheme
is derived from the Waters Dual-System IBE of [66] using the technique described by Naor [14]. Because
the decryption algorithm of this IBE scheme has a negligibly small correctness error, the resulting signature
scheme also has a negligible correctness error. That is, there is a small chance that a valid signature will
be rejected by the verification test. Although this means that our automated proof techniques do not
immediately apply, we still wanted to run the program on this complicated test case to see how efficient
of a candidate batching scheme it could produce. The details of these batching algorithms appear in
Appendices B and D respectively.

4.3 Microbenchmarks

To evaluate the efficiency of AutoBatch, we implemented several pairing-based signature schemes in Charm.
We ran AutoBatch to extract an SDL-based intermediate representation of the scheme’s verification equation,
an optimized batch verifier for the scheme, and Python and C++ code for implementing the batch verifier.
We measured the processing time for each of the above steps. Our timings, averaged over 100 runs, are
presented in Table 4.

To obtain our microbenchmarks, we ran AutoBatch on several exemplary pairing-based schemes as listed
in Table 2. We then experimented with these schemes at different batch sizes, in order to evaluate their raw
performance. The results are presented in Figure 6.

Each graph shows the average per-signature verification time for a batch of η signatures, for η ranging
from 1 to 100. We conducted these tests by first generating a collection of η keypairs and random messages,15

15We used 100-byte random strings for each message. In the case of the stateful HW signature, we batched only signatures
with the same counter value.

22

319

Approved for Public Release; Distribution Unlimited.

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

WATERS09 (batched)
WATERS09 (individual)

 0

 5

 10

 15

 20

 25

 20 40 60 80 100

m
s

pe
r s

ig
na

tu
re

Number of signatures

HW-Single (batched)
HW (individual)

HW-Multiple (batched)

 0

 10

 20

 30

 40

 50

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

CL (batched)
CL (individual)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

VRF (batched)
VRF (individual)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

CHCHHESS (batched)
CHCHHESS (individual)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

BOYEN (batched, ring=3)
BOYEN (individual, ring=3)

Figure 6: Signature scheme microbenchmarks for Waters09 [66], HW [36] and CL [20] public-key signatures
(same signer), the VRF [37] (with block size of 8), combined verification of ChCh+Hess IBS [24, 35], and
Boyen ring signature (3 signer ring) [18]. Per-signature times were computed by dividing total batch ver-
ification time by the number of signatures verified. All trials were conducted with 10 iterations and were
instantiated using a 160-bit MNT elliptic curve. Variation in running time between trials of the same signa-
ture size were minimal for each scheme. Note that in one HW case, all signatures are formulated by the same
signer (as for certificate generation). All other schemes are without such restrictions. Individual verification
times are included for comparison.

then computing a valid signature over each message. We fed each collection to the batch verifier. ID-based
signatures were handled in a similar manner, although we substitute random identities in place of keys. For
the Boyen ring signature, we generated a group of three signing keys to construct our ring. In each case, we
averaged our results over 100 experimental runs and computed verification time per signature by dividing
the total batching time by the number of signatures batched.

4.4 Batch Verification in Practice

Prior works considered the implication of invalid signatures in a batch, e.g., [28, 42, 50, 51, 69]. Mainly,
these works estimated raw signature verification times under various conditions. To evaluate how signature
batching might work in real life, we constructed a simulation to determine the resilience of our techniques
to various denial of service attacks launched by an adversary.

Basic Model. For this experiment, we simulated a server that verifies incoming signed messages read from
a network connection. This might be a reasonable model for a busy server-side TLS endpoint using client
authentication or for a car-to-car communications base station.

Our server is designed to process as many signatures as possible, and is limited only by its computa-
tional resources.16 Signatures are drawn off of the “wire” and grouped into batches, with each batch size
representing the expected number of signatures that can be verified in one second. Initially this number is
simply a guess, which is adjusted upwards or downwards based on the time required to verify each batch.17

This approach can lead to some transient errors (batches that require significantly more or less than one

16This models a server that delays, drops or redirects the signatures that it cannot handle (e.g., via load balancing).
17The adjustment is handled in a relatively naive way: the server simply computes the next batch size by extrapolating based

on its time to compute the previous batch.

23

320

Approved for Public Release; Distribution Unlimited.

Process BLS CHP CL HW-diff Waters09 Waters05 ChCh/Hess CYH Boyen BBS VRF

Batcher 103.1 90.1 295.2 126.1 578.9 1859.2 160.1 101.2 545.1 443.5 419.5
Partial-Codegen 124.3 171.7 152.2 242.3 361.6 291.2 162.0 242.8 321.2 315.1 251.2
Full-Codegen 491.7 757.8 785.9 1481.6 3405.8 1507.1 798.6 876.3 1233.5 1998.3 2748.3

Table 4: Time in milliseconds required by the Batcher and Code Generator to process a variety of signa-
ture schemes (averaged over 100 test runs). Batcher time includes search time for the technique ordering,
generating the proof and estimating the crossover point between individual and batch verification. The
Partial-Codegen time represents the generation of the batch verifier code from a partial SDL description and
Charm implementation of the scheme in Python. The Full-Codegen time represents the generation of code
from a full SDL description only. The running times are a product of the complexity of each scheme as well
as the number of unique paths uncovered by our search algorithm. In all cases, the standard deviation in
the results were within ±3% of the average.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10000 20000 30000 40000 50000 60000 70000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

S
ig

n
a

tu
re

s
 /

 s
e

c

In
v
a

lid
 S

ig
n

a
tu

re
s
 a

s
 F

ra
c
ti
o

n
 o

f
T

o
ta

l

Elapsed Time (ms)

AutoBatch Performance During DoS Attack

Batch + Individual Verifier
Batch-Only Verifier

Invalid Signatures as Fraction of Total

Figure 7: Simulated service denial attacks against a batch verifier (BLS signatures, single signer). The
“Invalid Signatures as Fraction of Total” line (right scale) shows the fraction of invalid signatures in the
stream. Batcher throughput is measured in signatures per second (left scale). The “Batch-Only Verifier”
line depicts a standard batch verifier. The solid line is a batch verifier that automatically switches to
individual verification when batching becomes suboptimal.

second to evaluate) when the initial guess is wrong, or when conditions change. In normal usage, however,
this approach converges on an appropriate batch size within 1-2 seconds.

4.4.1 Basic DoS Attacks

A major concern when using a batch verifier is the possibility of service denial or degradation, resulting
from the presence of some invalid signatures in the batch. As described in Section 3, each of our batch
verifiers incorporates a recursive divide-and-conquer strategy for identifying these invalid signatures, which
is borrowed from Law and Matt [42]. This recursion comes at a price; the presence of even a small number
of invalid signatures can seriously degrade the performance of a batch verifier.

To measure this, we simulated an adversary who injects invalid signatures into the input stream. Under
the assumption that these signatures are well-mixed with the remaining valid signatures,18 we measured
the verifier’s throughput. Our adversary injects no invalid signatures for the first several seconds of the
experiment, then gradually ramps up its output until the number of invalid signatures received by the
verifier approaches 50%.

18In practice, this is not a strong assumption, as a server can simply randomize the order of the signatures it receives.

24

321

Approved for Public Release; Distribution Unlimited.

A switch to individual verification. Our experiments indicate that batch verification performance exceeds that
of individual verification even in the presence of a relatively large fraction of invalid signatures. However, at
a certain point the batch verifier inevitably begins to underperform individual verification.19 To address this,
we implemented a “countermeasure” in our batch verifier to automatically switch to individual verification
whenever it detects the presence of a significant fraction of invalid signatures.

Analysis of results. We tested the batch verifier on the single-signer BLS scheme with and without the
individual-verification countermeasure. See Figure 7. Throughput is quite sensitive to even small numbers
of invalid signatures in the input stream. Yet, when comparing batch verification to individual verification
throughput, even under a significant attack batch verification dramatically outperforms individual verifica-
tion (up to approximately 15% ratio of invalid signatures). Similarly, the switch to individual verification is a
useful countermeasure for attacks that exceed approximately 20% invalid signatures. While these threshold
switches do not thwart DoS attacks, they do provide some mitigation of the potential damage.

5 AutoBatch Toolkit

The AutoBatch source code and test cases described in this paper are publicly available in the github
repository at https://github.com/JHUISI/auto-tools.

6 Conclusion

The batch verification of pairing-based signatures is a great fit for applications where short signatures are a
design requirement and yet high verification throughput is required, such as car-to-car communications [23,
60]. This work demonstrates for the first time that the design of these batching algorithms can be efficiently
and securely automated.

The next step is to tackle the automated design of more complex functionalities, where it may be infeasible
to replicate a theorem like Theorem 3.1 arguing that automated design process unconditionally preserves
security. In this case, one might instead focus on having the design tool also output a proof sketch that could
be fed into and verified by EasyCrypt [10] or a similar proof checking tool. Indeed, what are the natural
settings where the creativity of the design process can be feasibly replaced by an extensive computerized
search (perhaps with smart pruning)? Can the “proof sketches” needed for verification by EasyCrypt be
generated automatically for these designs? These are exciting questions which could fundamentally change
cryptography.

On the implementation of AutoBatch, future work could be more resilient to DoS and related attacks
by implementing alternative techniques for recognizing invalid signatures in a batch, e.g., [42,50,51,69]. We
are continuously on the lookout for more efficient means of computing in bilinear groups. Future versions of
AutoBatch will support MIRACL’s API for computing “multipairings” (efficient products of multiple bilinear
pairings). It would be interesting to understand how this and future inclusions may impact performance.

References
[1] Akinyele, J. A., Garman, C., Miers, I., Pagano, M. W., Rushanan, M., Green, M., and Rubin, A. D. Charm: a

framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3, 2 (2013), 111–128.

[2] Akinyele, J. A., Green, M., Hohenberger, S., and Pagano, M. W. Machine-generated algorithms, proofs and software
for the batch verification of digital signature schemes. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 474–487.

[3] Almeida, J. B., Bangerter, E., Barbosa, M., Krenn, S., Sadeghi, A.-R., and Schneider, T. A certifying compiler
for zero-knowledge proofs of knowledge based on Σ-protocols. In Proceedings of the 15th European conference on Research
in computer security (2010), ESORICS’10, Springer-Verlag, pp. 151–167.

19The reason for this is easy to explain: since our batch verifier handles invalid signatures via a divide-and-conquer approach
(cutting the signature batch into halves, and recursing on each half), at a certain point the number of “extra” operations
exceeds those required for individual verification.

25

322

Approved for Public Release; Distribution Unlimited.

[4] Aranha, D. F., and Gouvêa, C. P. L. RELIC is an Efficient Library for Cryptography. http://code.google.com/p/

relic-toolkit/.

[5] Bacelar Almeida, J., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., and Zanella Béguelin, S. Full proof
cryptography: verifiable compilation of efficient zero-knowledge protocols. In Proceedings of the 2012 ACM conference on
Computer and communications security (2012), CCS ’12, ACM, pp. 488–500.

[6] Backes, M., Maffei, M., and Unruh, D. Zero-knowledge in the applied pi-calculus and automated verification of the
direct anonymous attestation protocol. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (2008), SP
’08, IEEE Computer Society, pp. 202–215.

[7] Bangerter, E., Briner, T., Henecka, W., Krenn, S., Sadeghi, A.-R., and Schneider, T. Automatic generation of
sigma-protocols. In Proceedings of the 6th European conference on Public key infrastructures, services and applications
(2010), EuroPKI’09, Springer-Verlag, pp. 67–82.

[8] Barak, B., Canetti, R., Nielsen, J. B., and Pass, R. Universally composable protocols with relaxed set-up assumptions.
In FOCS (2004), IEEE Computer Society, pp. 186–195.

[9] Barbosa, M., Moss, A., and Page, D. Compiler assisted elliptic curve cryptography. In Proceedings of the 2007 OTM
confederated international conference on On the move to meaningful internet systems: CoopIS, DOA, ODBASE, GADA,
and IS - Volume Part II (2007), OTM’07, Springer-Verlag, pp. 1785–1802.

[10] Barthe, G., Grégoire, B., Heraud, S., and Béguelin, S. Z. Computer-aided security proofs for the working cryptog-
rapher. In CRYPTO (2011), pp. 71–90.

[11] Bellare, M., Garay, J. A., and Rabin, T. Fast batch verification for modular exponentiation and digital signatures. In
EUROCRYPT ’98 (1998), vol. 1403 of LNCS, Springer, pp. 236–250.

[12] Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., and Vergnaud, D. Batch groth-sahai. In
ACNS ’10 (2010), Springer, pp. 218–235.

[13] Boneh, D., Boyen, X., and Shacham, H. Short group signatures. In CRYPTO ’04 (2004), vol. 3152 of LNCS, pp. 45–55.

[14] Boneh, D., and Franklin, M. K. Identity-based encryption from the Weil pairing. In CRYPTO (2001), pp. 213–229.

[15] Boneh, D., Lynn, B., and Shacham, H. Short signatures from the Weil pairing. In ASIACRYPT ’01 (2001), vol. 2248
of LNCS, pp. 514–532.

[16] Boneh, D., Lynn, B., and Shacham, H. Short signatures from the Weil pairing. Journal of Cryptology 17(4) (2004),
297–319.

[17] Boyd, C., and Pavlovski, C. Attacking and repairing batch verification schemes. In Advances in Cryptology – ASI-
ACRYPT ’00 (2000), vol. 1976, pp. 58–71.

[18] Boyen, X. Mesh signatures: How to leak a secret with unwitting and unwilling participants. In EUROCRYPT (2007),
vol. 4515, pp. 210–227.

[19] Camenisch, J., Hohenberger, S., and Pedersen, M. Ø. Batch verification of short signatures. In EUROCRYPT ’07
(2007), vol. 4515 of LNCS, Springer, pp. 246–263. Full version at http://eprint.iacr.org/2007/172.

[20] Camenisch, J., and Lysyanskaya, A. Signature schemes and anonymous credentials from bilinear maps. In CRYPTO
’04 (2004), vol. 3152 of LNCS, Springer, pp. 56–72.

[21] Camenisch, J., Rohe, M., and Sadeghi, A. Sokrates - a compiler framework for zero- knowledge protocols. In Proceedings
of the Western European Workshop on Research in Cryptology (2005), WEWoRC 2005.

[22] Cao, T., Lin, D., and Xue, R. Security analysis of some batch verifying signatures from pairings. International Journal
of Network Security 3, 2 (2006), 138–143.

[23] Car 2 Car. Communication consortium. http://car-to-car.org.

[24] Cha, J. C., and Cheon, J. H. An identity-based signature from gap Diffie-Hellman groups. In PKC ’03 (2003), vol. 2567
of LNCS, Springer, pp. 18–30.

[25] Chatterjee, S., and Sarkar, P. HIBE with short public parameters without random oracle. In ASIACRYPT ’06 (2006),
vol. 4284 of LNCS, pp. 145–160.

[26] Chaum, D., and van Heyst, E. Group signatures. In EUROCRYPT (1991), pp. 257–265.

[27] Chow, S. S. M., Yiu, S.-M., and Hui, L. C. Efficient identity based ring signature. In ACNS (2005), vol. 3531 of LNCS,
pp. 499–512.

[28] Ferrara, A. L., Green, M., Hohenberger, S., and Pedersen, M. Ø. Practical short signature batch verification. In
CT-RSA (2009), vol. 5473 of LNCS, pp. 309–324.

[29] Fiat, A. Batch RSA. In Advances in Cryptology – CRYPTO ’89 (1989), vol. 435, pp. 175–185.

[30] Fournet, C., Kohlweiss, M., Danezis, G., and Luo, Z. ZQL: A compiler for privacy-preserving data processing. In
Proceedings of the 13th conference on USENIX Security Symposium - Volume 13 (2004), SSYM’04, USENIX Association,
pp. 20–20.

26

323

Approved for Public Release; Distribution Unlimited.

[31] Goldwasser, S., Micali, S., and Rivest, R. L. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Computing 17(2) (1988).

[32] Harn, L. Batch verifying multiple DSA digital signatures. Electronics Letters 34(9) (1998), 870–871.

[33] Harn, L. Batch verifying multiple RSA digital signatures. Electronics Letters 34(12) (1998), 1219–1220.

[34] Henecka, W., K ögl, S., Sadeghi, A.-R., Schneider, T., and Wehrenberg, I. TASTY: tool for automating secure
two-party computations. In Proceedings of the 17th ACM conference on Computer and communications security (2010),
CCS ’10, ACM, pp. 451–462.

[35] Hess, F. Efficient identity based signature schemes based on pairings. In Selected Areas in Cryptography (2002), vol. 2595
of LNCS, Springer, pp. 310–324.

[36] Hohenberger, S., and Waters, B. Realizing hash-and-sign signatures under standard assumptions. In EUROCRYPT
(2009), pp. 333–350.

[37] Hohenberger, S., and Waters, B. Constructing verifiable random functions with large input spaces. In EUROCRYPT
(2010), pp. 656–672.

[38] Hwang, M.-S., Lee, C.-C., and Tang, Y.-L. Two simple batch verifying multiple digital signatures. In 3rd Information
and Communications Security (ICICS) (2001), pp. 233–237.

[39] Hwang, M.-S., Lin, I.-C., and Hwang, K.-F. Cryptanalysis of the batch verifying multiple RSA digital signatures.
Informatica, Lithuanian Academy of Sciences 11, 1 (2000), 15–19.

[40] Kiyomoto, S., Ota, H., and Tanaka, T. A security protocol compiler generating C source codes. In Proceedings of
the 2008 International Conference on Information Security and Assurance (isa 2008) (2008), ISA ’08, IEEE Computer
Society, pp. 20–25.

[41] Laih, C.-S., and Yen, S.-M. Improved digital signature suitable for batch verification. IEEE Transactions on Computers
44, 7 (1995), 957–959.

[42] Law, L., and Matt, B. J. Finding invalid signatures in pairing-based batches. In Cryptography and Coding (2007),
vol. 4887 of LNCS, pp. 34–53.

[43] Lee, S., Cho, S., Choi, J., and Cho, Y. Efficient identification of bad signatures in RSA-type batch signature. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, 1 (2006), 74–80.

[44] Lim, C., and Lee, P. Security of interactive DSA batch verification. In Electronics Letters (1994), vol. 30(19), pp. 1592–
1593.

[45] Lowe, G. Casper: a compiler for the analysis of security protocols. J. Comput. Secur. 6, 1-2 (Jan. 1998), 53–84.

[46] Lucks, S., Schmoigl, N., and Tatli, E. I. Issues on designing a cryptographic compiler. In WEWoRC (2005), pp. 109–
122.

[47] Lynn, B. The Stanford Pairing Based Crypto Library. Available from http://crypto.stanford.edu/pbc.

[48] MacKenzie, P., Oprea, A., and Reiter, M. K. Automatic generation of two-party computations. In Proceedings of the
10th ACM conference on Computer and communications security (2003), CCS ’03, ACM, pp. 210–219.

[49] Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y. Fairplay – a secure two-party computation system. In Proceedings of
the 13th conference on USENIX Security Symposium - Volume 13 (2004), SSYM’04, USENIX Association, pp. 20–20.

[50] Matt, B. J. Identification of multiple invalid signatures in pairing-based batched signatures. In Public Key Cryptography
(2009), pp. 337–356.

[51] Matt, B. J. Identification of multiple invalid pairing-based signatures in constrained batches. In Pairing (2010), pp. 78–95.

[52] Meiklejohn, S., Erway, C. C., Küpçü, A., Hinkle, T., and Lysyanskaya, A. ZKPDL: a language-based system for
efficient zero-knowledge proofs and electronic cash. In Proceedings of the 19th USENIX conference on Security (2010),
USENIX Security’10, USENIX Association, pp. 13–13.

[53] Micali, S., Rabin, M. O., and Vadhan, S. P. Verifiable random functions. In FOCS (1999), pp. 120–130.

[54] Naccache, D. Secure and practical identity-based encryption, 2005. Cryptology ePrint Archive: Report 2005/369.

[55] Naccache, D., M’Räıhi, D., Vaudenay, S., and Raphaeli, D. Can DSA be improved? complexity trade-offs with the
digital signature standard. In Advances in Cryptology – EUROCRYPT ’94 (1994), vol. 950, pp. 77–85.

[56] Perez, L. J. D., and Scott, M. Designing a code generator for pairing based cryptographic functions. In Proceedings of
the 4th international conference on Pairing-based cryptography (2010), Pairing’10, Springer-Verlag, pp. 207–224.

[57] Pozza, D., Sisto, R., and Durante, L. Spi2Java: Automatic cryptographic protocol java code generation from spi
calculus. In Proceedings of the 18th International Conference on Advanced Information Networking and Applications -
Volume 2 (2004), AINA ’04, IEEE Computer Society, pp. 400–.

[58] Rivest, R. L., Shamir, A., and Tauman, Y. How to leak a secret. In ASIACRYPT (2001), pp. 552–565.

[59] Scott, M. Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL), Oct. 2007. Published by Shamus
Software Ltd., http://www.shamus.ie/.

27

324

Approved for Public Release; Distribution Unlimited.

[60] SeVeCom. Security on the road. http://www.sevecom.org.

[61] Shacham, H., and Boneh, D. Improving SSL handshake performance via batching. In Cryptographer’s Track at RSA
Conference ’01 (2001), vol. 2020, pp. 28–43.

[62] Shamir, A. Identity-based cryptosystems and signature schemes. In CRYPTO (1984), pp. 47–53.

[63] Song, D. X., Perrig, A., and Phan, D. AGVI - automatic generation, verification, and implementation of security
protocols. In Proceedings of the 13th International Conference on Computer Aided Verification (2001), CAV ’01, Springer-
Verlag, pp. 241–245.

[64] Stanek, M. Attacking LCCC batch verification of RSA signatures, 2006. Cryptology ePrint Archive: Report 2006/111.

[65] Waters, B. Efficient identity-based encryption without random oracles. In EUROCRYPT ’05 (2005), vol. 3494 of LNCS,
Springer, pp. 320–329.

[66] Waters, B. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In CRYPTO
(2009), pp. 619–636.

[67] Waters, B. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. Cryptology ePrint
Archive, Report 2009/385, 2009. http://eprint.iacr.org/.

[68] Yoon, H., Cheon, J. H., and Kim, Y. Batch verifications with ID-based signatures. In ICISC (2004), Lecture Notes in
Computer Science, pp. 233–248.

[69] Zaverucha, G. M., and Stinson, D. R. Group testing and batch verification. In Proceedings of the 4th international
conference on Information theoretic security (2010), ICITS’09, Springer-Verlag, pp. 140–157.

[70] Zhang, F., and Kim, K. Efficient ID-based blind signature and proxy signature from bilinear pairings. In 8th Information
Security and Privacy, Australasian Conference (ACISP) (2003), vol. 2727, pp. 312–323.

[71] Zhang, F., Safavi-Naini, R., and Susilo, W. Efficient verifiably encrypted signature and partially blind signature from
bilinear pairings. In Progress in Cryptology – INDOCRYPT ’03 (2003), vol. 2904, pp. 191–204.

A Machine-Generated Batch Verification Equations
In Figure 8, we provide the final batch verification equations output by AutoBatch for each of the signature schemes tested.

B A machine-generated proof for HW

The following proof was automatically generated by the Batcher while processing the HW signature scheme [36].
This execution allows signatures on different signing keys.

B.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,σ1, σ2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(σ1, g)
?
= UM · V r ·D · e(σ2, wdlg(i)e · zi · h)

Let η be the number of signatures in a batch, and δ1, . . . δη ∈
[
1, 2λ − 1

]
be a set of random exponents chosen

by the verifier. The batch verification equation HW.BatchVerify is:

e(

η∏

z=1

σδzz,1, g)
?
=

η∏

z=1

Uz
Mz·δz ·

η∏

z=1

Vz
rz·δz ·

η∏

z=1

Dz
δz · e(

η∏

z=1

σ
δz·dlg(iz)e
z,2 , w) · e(

η∏

z=1

σδz·izz,2 , z) · e(
η∏

z=1

σδzz,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Definition B.1 (Pairing-based Batch Verifier) Let BSetup(1τ) → (q, g,G,GT , e). For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier. We
define pairing-based batch verifier for Verify a probabilistic poly(τ)-time algorithm which outputs accept if
X(j) holds for all j ∈ [1, η] whereas it outputs reject if X(j) does not hold for any j ∈ [1, η] except with
negligible probability.

Theorem B.2 HW.BatchVerify is a batch verifier for the HW signature scheme.

28

325

Approved for Public Release; Distribution Unlimited.

Scheme Batch Verification Equation output by AutoBatch

Signatures

BLS [16] (same signer) e(
∏η
z=1 h

δz
z , pk)

?
= e(

∏η
z=1 sig

δz
z , g)

CHP [19] (same time period) e(
∏η
z=1 sig

δz
z , g)

?
= e(a,

∏η
z=1 pk

δz
z) · e(h,∏η

z=1 pk
bz·δz
z)

HW [36] (same signer) e(
∏η
z=1 σ1

δz
z , g)

?
= U

∑η
z=1Mz·δz · V

∑η
z=1 rz·δz ·D

∑η
z=1 δz

·e(∏η
z=1 σ2

lg(iz)·δz
z , w) · e(∏η

z=1 σ2
iz·δz
z , z) · e(∏η

z=1 σ2
δz
z , h)

HW [36] (different signers) e(
∏η
z=1 σ

δz
z,1, g)

?
=
∏η
z=1 Uz

Mz·δz ·∏η
z=1 Vz

rz·δz

·∏η
z=1Dz

δz · e(∏η
z=1 σ

δz·dlg(i)ez
z,2 , w) · e(∏η

z=1 σ
δz·iz
z,2 , z) · e(∏η

z=1 σ
δz
z,2, h)

Waters09 [66] (same signer) e(g1
b,
∏η
z=1 σ

sz·δz
z,1) · e(g1b·a1 ,

∏η
z=1 σ

sz,1·δz
z,2)

·e(g1a1 ,
∏η
z=1 σ

sz,1·δz
z,3) · e(g1b·a2 ,

∏η
z=1 σ

sz,2·δz
z,4)

·e(g1a2 ,
∏η
z=1 σ

sz,2·δz
z,5)

?
= e(

∏η
z=1 σ

δz·sz,1
z,6 , τ1)

·e(∏η
z=1 σ

δz·sz,2
z,6 , τ2) · e(∏η

z=1 σ
δz·sz,1
z,7 , τ1

b)

·e(∏η
z=1 σ

δz·sz,2
z,7 , τ2

b) · e(∏η
z=1 σ

(δz·−tz+θz·δz·tagz,c·tz)
z,7 , w)

·e(∏η
z=1 σ

θz·δz·Mz·tz
z,7 , u) · e(∏η

z=1 σ
θz·δz·tz
z,7 , h)

·e(g1,
∏η
z=1 σ

−tz·θz·δz
z,K) ·A

∑η
z=1 sz,2·δz

CL [20] (same signer) e(g,
∏η
z=1 bz

δz,1 · czδz,2) · e(Y,∏η
z=1 az

−δz,1)
?
= e(X,

∏η
z=1 az

δz,2 · bzmz·δz,2)

ID-based Signatures

Hess [35] e(
∏η
z=1 S2

δz
z , g2)

?
= e(

∏η
z=1 pk

az·δz
z , Ppub) ·

∏η
z=1 S1

δz
z

ChCh [24] e(
∏η
z=1 S2

δz
z , g2)

?
= e(

∏η
z=1(S1z · pkaz)δz , Ppub)

Waters05 [65] e(
∏η
z=1 S1

δz
z , g2) · e(∏η

z=1 S2
δz
z , û1′) ·

∏l
i=1 e(

∏η
z=1 S2

δz·ki,z
z · S3

δz·mi,z
z , ûi)

·e(∏η
z=1 S3

δz
z , û2′)

?
= e(g1, g2)

∑η
z=1 δz

Group, Ring, and ID-based Ring Signatures

BBS [13] e(
∏η
z=1 T

sz,x·δz
z,3 · h(−sz,γ1−sz,γ2)·δz · g−cz·δz1 , g2)

·e(h
∑η
z=1(−sz,α−sz,β)·δz ·∏η

z=1 T
cz·δz
z,3 , w)

?
=
∏η
z=1R

δz
z,3

Boyen [18] (same ring)
∏l
y=1 e(

∏η
z=1 Sy,z

δz , Ây) · e(∏η
z=1 Sy,z

my,z·δz , B̂y) · e(∏η
z=1 Sy,z

ty,z·δz , Ĉy)
?
=
∏η
z=1D

δz

CYH [27] e(
∏η
z=1

∏l
y=1 uy,z · pk

hy,z
y,z

δz
, P)

?
= e(

∏η
z=1 S

δz
z , g)

VRFs

HW VRF [37] (same signer) e(
∏η
z=1 g

(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û) · e(∏η
z=1 π

−δz,2
z,1 · πδz,3z,2 · π

(1−xz,2)·−δz,3
z,1

·π−δz,4z,3 · π(1−xz,3)·−δz,4·−1
z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1

z,3

·π−δz,6z,5 · π(1−xz,5)·−δz,6·−1
z,4 · π−δz,7z,6 · π(1−xz,6)·−δz,7·−1

z,5 · π−δz,8z,7 · π(1−xz,7)·−δz,8·−1
z,6

·π−δz,9z,8 · π(1−xz,8)·−δz,9·−1
z,7 , g2)

?
=

e(
∏η
z=1 π

δz,1
z,l , U0) ·∏η

z=1 yz
δz,1 · e(∏η

z=1 π
−δz,1
z,0 , g2 · h)

·e(∏η
z=1 π

xz,2·δz,3
z,1 , U2) · e(∏η

z=1 π
xz,3·δz,4·−1
z,2 , U3) · e(∏η

z=1 π
xz,4·δz,5·−1
z,3 , U4)

·e(∏η
z=1 π

xz,5·δz,6·−1
z,4 , U5) · e(∏η

z=1 π
xz,6·δz,7·−1
z,5 , U6) · e(∏η

z=1 π
xz,7·δz,8·−1
z,6 , U7)

·e(∏η
z=1 π

xz,8·δz,9·−1
z,7 , U8) for block size of 8

Combinations

ChCh + Hess e(
∏η
z=1 pkz

ahz·δz,1 · Sc−δz,2z,1 · pkzacz·−δz,2 , Ppub) ·
∏η
z=1 Sh

δz,1
z,1 ·

e(
∏η
z=1 Sh

−δz,1
z,2 · Scδz,2z,2 , g2)

?
= 1

Figure 8: These are the final batch verification equations output by AutoBatch. Due to space, we do not
include the full schemes or further describe the elements of the signature or our shorthand for them, such as
setting h = H(M) in BLS. However, a reader could retrace our steps by applying the techniques in Section 3
to the original verification equation in the order specified in Figure 2. “Combined signatures” refers to the
combined batching of multiple signature verification equations that share algebraic structure.

29

326

Approved for Public Release; Distribution Unlimited.

B.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(σ1, g)
?
= UM · V r ·D · e(σ2, wdlg(i)e · zi · h) (1)

Step 1: Combine η signatures (technique 1):

η∏

z=1

e(σz,1, g)
?
=

η∏

z=1

Uz
Mz · Vzrz ·Dz · e(σz,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents δ1, . . . δη ∈
[
1, 2λ − 1

]
:

η∏

z=1

e(σz,1, g)δz
?
=

η∏

z=1

Uz
Mz·δz ·

η∏

z=1

Vz
rz·δz ·

η∏

z=1

Dz
δz ·

η∏

z=1

e(σz,2, w
dlg(iz)e · ziz · h)δz (3)

Step 3: Move exponent(s) inside the pairing (technique 2):

η∏

z=1

e(σδzz,1, g)
?
=

η∏

z=1

Uz
Mz·δz ·

η∏

z=1

Vz
rz·δz ·

η∏

z=1

Dz
δz ·

η∏

z=1

e(σδzz,2, w
dlg(iz)e · ziz · h) (4)

Step 4: Move products inside pairings to reduce η pairings to 1 (technique 3a):

e(

η∏

z=1

σδzz,1, g)
?
=

η∏

z=1

Uz
Mz·δz ·

η∏

z=1

Vz
rz·δz ·

η∏

z=1

Dz
δz ·

η∏

z=1

e(σδzz,2, w
dlg(iz)e) · e(σδzz,2, ziz) · e(σδzz,2, h) (5)

Step 5: Distribute products (technique 5):

e(

η∏

z=1

σδzz,1, g)
?
=

η∏

z=1

Uz
Mz·δz ·

η∏

z=1

Vz
rz·δz ·

η∏

z=1

Dz
δz ·

η∏

z=1

e(σδzz,2, w
dlg(iz)e) ·

η∏

z=1

e(σδzz,2, z
iz) ·

η∏

z=1

e(σδzz,2, h) (6)

Step 6: Move products inside pairings to reduce η pairings to 1 (technique 3a):

e(

η∏

z=1

σδzz,1, g)
?
=

η∏

z=1

Uz
Mz·δz ·

η∏

z=1

Vz
rz·δz ·

η∏

z=1

Dz
δz · e(

η∏

z=1

σ
δz·dlg(iz)e
z,2 , w) · e(

η∏

z=1

σδz·izz,2 , z) · e(
η∏

z=1

σδzz,2, h) (7)

Steps 1 and 2 form the Combination Step in [28], which was proven to result in a secure batch verifier
in [28, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same
equation. Hence, the final verification equation (7) is also batch verifier for HW. 2

C A Machine-Generated Proof for VRF

The following proof was automatically generated by the Batcher while processing the VRF signature scheme [37].
This execution was restricted to signatures on a single signing key.

30

327

Approved for Public Release; Distribution Unlimited.

C.1 Definitions

This document contains a proof that VRF.BatchVerify is a valid batch verifier for the signature scheme VRF.
Let Û , U, g1, g2, h be values drawn from the key and/or parameters, and x, π, y represent a message (or
message hash) and signature. The ` parameter represents the `-bit input size of VRF and varies in practice.
We have shown an example of ` = 8 to simplify the proof. The individual verification equation VRF.Verify
is:

e(π1, g2)
?
= e(g

(1−x1)
1 · Ux1

1 , Û) and e(π0, g2)
?
= e(πl, U0) and e(π0, h)

?
= y and

for t = 2 to ` it holds: e(πt, g2)
?
= e(π

(1−xt)
t−1 , g2) · e(πxtt−1, Ut)

Let η be the number of signatures in a batch, and δ1,i, . . . δη,i ∈
[
1, 2λ − 1

]
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation for VRF is:

VRFBatchVerify:

e(

η∏

z=1

g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û)·e(
η∏

z=1

π
−δz,2
z,1 · πδz,3z,2 · π

(1−xz,2)·−δz,3
z,1 · π−δz,4z,3 · π(1−xz,3)·−δz,4·−1

z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1
z,3

·π−δz,6z,5 ·π(1−xz,5)·−δz,6·−1
z,4 ·π−δz,7z,6 ·π(1−xz,6)·−δz,7·−1

z,5 ·π−δz,8z,7 ·π(1−xz,7)·−δz,8·−1
z,6 ·π−δz,9z,8 ·π(1−xz,8)·−δz,9·−1

z,7 , g2)
?
=

e(

η∏

z=1

π
δz,1
z,l , U0)·

η∏

z=1

yz
δz,1 ·e(

η∏

z=1

π
−δz,1
z,0 , g2·h)·e(

η∏

z=1

π
xz,2·δz,3
z,1 , U2)·e(

η∏

z=1

π
xz,3·δz,4·−1
z,2 , U3)·e(

η∏

z=1

π
xz,4·δz,5·−1
z,3 , U4)

· e(
η∏

z=1

π
xz,5·δz,6·−1
z,4 , U5) · e(

η∏

z=1

π
xz,6·δz,7·−1
z,5 , U6) · e(

η∏

z=1

π
xz,7·δz,8·−1
z,6 , U7) · e(

η∏

z=1

π
xz,8·δz,9·−1
z,7 , U8)

We will now formally define a batch verifier and demonstrate that VRF.BatchVerify is a secure batch verifier
for the VRF signature scheme.

Definition C.1 (Pairing-based Batch Verifier) Let BSetup(1τ) → (q, g,G,GT , e). For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier. We
define pairing-based batch verifier for Verify a probabilistic poly(τ)-time algorithm which outputs accept if
X(j) holds for all j ∈ [1, η] whereas it outputs reject if X(j) does not hold for any j ∈ [1, η] except with
negligible probability.

Theorem C.2 VRF BatchVerify is a batch verifier for the VRF signature scheme.

C.2 Proof

Proof. Via a series of steps, we will show that if VRF is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(π1, g2)
?
= e(g

(1−x1)
1 · Ux1

1 , Û) and e(π0, g2)
?
= e(πl, U0) and e(π0, h)

?
= y and

for t = 2 to ` it holds: e(πt, g2)
?
= e(π

(1−xt)
t−1 , g2) · e(πxtt−1, Ut)

EQ1 Step 1: Consolidate the verification equations (technique 0a), merge pairings with common first or
second argument (technique 3b), and apply the small exponents test as follows: For each of the z = 1 to η
signatures, choose random δ1, δ2 ∈ [1, 2λ − 1] and compute for each equation:

e(g
(1−x1)
1 · Ux1

1 , Û)δ2 · e(π1, g2)−δ2
?
= e(πl, U0)δ1 · yδ1 · e(π0, g2 · h)−δ1 (8)

31

328

Approved for Public Release; Distribution Unlimited.

EQ1 Step 2: Combine η signatures (technique 1), move exponent(s) inside pairing (technique 2):

η∏

z=1

e(g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û) ·
η∏

z=1

e(π
−δz,2
z,1 , g2)

?
=

η∏

z=1

e(π
δz,1
z,l , U0) ·

η∏

z=1

yz
δz,1 ·

η∏

z=1

e(π
−δz,1
z,0 , g2 · h) (9)

EQ1 Step 3: Move products inside pairings to reduce η pairings to 1 (technique 3a):

e(

η∏

z=1

g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û) · e(
η∏

z=1

π
−δz,2
z,1 , g2)

?
= e(

η∏

z=1

π
δz,1
z,l , U0) ·

η∏

z=1

yz
δz,1 · e(

η∏

z=1

π
−δz,1
z,0 , g2 · h) (10)

EQ2 Step 4: Combine η signatures (technique 1):

for t = 2 to ` it holds:

η∏

z=1

e(πz,t, g2)
?
=

η∏

z=1

e(π
(1−xz,t)
z,t−1 , g2) · e(πxz,tz,t−1, Ut) (11)

EQ2 Step 5: Apply the small exponents test, using exponents δ1, . . . δη ∈
[
1, 2λ

]
:

for t = 2 to ` it holds:

η∏

z=1

e(πz,t, g2)δz
?
=

η∏

z=1

(e(π
(1−xz,t)
z,t−1 , g2) · e(πxz,tz,t−1, Ut))

δz (12)

EQ2 Step 6: Move exponent(s) inside the pairing (technique 2):

for t = 2 to ` it holds:

η∏

z=1

e(πδzz,t, g2)
?
=

η∏

z=1

e(π
(1−xz,t)·δz
z,t−1 , g2) · e(πxz,t·δzz,t−1 , Ut) (13)

EQ2 Step 7: Move products inside pairings to reduce η pairings to 1 (technique 3a):

for t = 2 to ` it holds: e(

η∏

z=1

πδzz,t, g2)
?
=

η∏

z=1

e(π
(1−xz,t)·δz
z,t−1 , g2) · e(πxz,t·δzz,t−1 , Ut) (14)

EQ2 Step 8: Distribute products (technique 5):

for t = 2 to ` it holds: e(

η∏

z=1

πδzz,t, g2)
?
=

η∏

z=1

e(π
(1−xz,t)·δz
z,t−1 , g2) ·

η∏

z=1

e(π
xz,t·δz
z,t−1 , Ut) (15)

EQ2 Step 9: Move products inside pairings to reduce η pairings to 1 (technique 3a):

for t = 2 to ` it holds: e(

η∏

z=1

πδzz,t, g2)
?
= e(

η∏

z=1

π
(1−xz,t)·δz
z,t−1 , g2) · e(

η∏

z=1

π
xz,t·δz
z,t−1 , Ut) (16)

EQ2 Step 10: Merge pairings with common first or second argument (technique 3b):

for t = 2 to ` it holds: e(

η∏

z=1

πδzz,t · π
(1−xz,t)·−δz
z,t−1 , g2)

?
= e(

η∏

z=1

π
xz,t·δz
z,t−1 , Ut) (17)

EQ2 Step 11: Unroll for loop (technique 0b) and choose random δ3, . . . , δ9 ∈ [1, 2λ − 1] for each z = 1 to

32

329

Approved for Public Release; Distribution Unlimited.

η equations:

e(

η∏

z=1

π
δz,3
z,2 · π

(1−xz,2)·−δz,3
z,1 · π−δz,4z,3 · π(1−xz,3)·−δz,4·−1

z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1
z,3 · π−δz,6z,5 · π(1−xz,5)·−δz,6·−1

z,4

· π−δz,7z,6 · π(1−xz,6)·−δz,7·−1
z,5 · π−δz,8z,7 · π(1−xz,7)·−δz,8·−1

z,6 · π−δz,9z,8 · π(1−xz,8)·−δz,9·−1
z,7 , g2)

?
=

e(

η∏

z=1

π
xz,2·δz,3
z,1 , U2) · e(

η∏

z=1

π
xz,3·δz,4·−1
z,2 , U3) · e(

η∏

z=1

π
xz,4·δz,5·−1
z,3 , U4) · e(

η∏

z=1

π
xz,5·δz,6·−1
z,4 , U5)

· e(
η∏

z=1

π
xz,6·δz,7·−1
z,5 , U6) · e(

η∏

z=1

π
xz,7·δz,8·−1
z,6 , U7) · e(

η∏

z=1

π
xz,8·δz,9·−1
z,7 , U8) (18)

Step 12: Combine equations 1 and 2, then pairings within final equation (technique 3b):

e(

η∏

z=1

g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û)·e(
η∏

z=1

π
−δz,2
z,1 · πδz,3z,2 · π

(1−xz,2)·−δz,3
z,1 · π−δz,4z,3 · π(1−xz,3)·−δz,4·−1

z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1
z,3

·π−δz,6z,5 ·π(1−xz,5)·−δz,6·−1
z,4 ·π−δz,7z,6 ·π(1−xz,6)·−δz,7·−1

z,5 ·π−δz,8z,7 ·π(1−xz,7)·−δz,8·−1
z,6 ·π−δz,9z,8 ·π(1−xz,8)·−δz,9·−1

z,7 , g2)
?
=

e(

η∏

z=1

π
δz,1
z,l , U0)·

η∏

z=1

yz
δz,1 ·e(

η∏

z=1

π
−δz,1
z,0 , g2 ·h)·e(

η∏

z=1

π
xz,2·δz,3
z,1 , U2)·e(

η∏

z=1

π
xz,3·δz,4·−1
z,2 , U3)·e(

η∏

z=1

π
xz,4·δz,5·−1
z,3 , U4)

· e(
η∏

z=1

π
xz,5·δz,6·−1
z,4 , U5) · e(

η∏

z=1

π
xz,6·δz,7·−1
z,5 , U6) · e(

η∏

z=1

π
xz,7·δz,8·−1
z,6 , U7) · e(

η∏

z=1

π
xz,8·δz,9·−1
z,7 , U8) (19)

Steps 1 and 2 form the Combination Step in [28], which was proven to result in a secure batch verifier
in [28, Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same
equation except for the application of technique 0b, which applies the small exponents test again while
unrolling the loop. Hence, the final verification equation (19) is also batch verifier for VRF. 2

D A machine-generated candidate batch algorithm for WATERS09

The following candidate batching algorithm was automatically generated by the Batcher while processing the
WATERS09 signature scheme [66, 67]. This execution was restricted to signatures on a single signing key.

D.1 Definitions

Let g1, g2 be values drawn from the key and/or parameters, and M,σ1, σ2, σ3, σ4, σ5, σ6, σ7, σK , tagk represent
a message (or message hash) and signature. Select s1, s2, t, tagc variables at random in Zq and the variables
θ,A are computed as follows: θ = 1/(tagc − tagk), A = e(g, g)α·a1·b. The individual verification equation
WATERS09.Verify [§6.1]20 is:

e(g1
bs, σ1) · e(g1b·a1s1 , σ2) · e(g1a1s1 , σ3) · e(g1b·a2s2 , σ4) · e(g1a2s2 , σ5)

?
=

e(σ6, τ
s1
1 · τs22) · e(σ7, τ1bs1 · τ2bs2 · w−t) · (e(σ7, uM ·t · wtagc·t · ht) · e(g−t1 , σK))θ ·As2

20For simplicity, Waters [67] presents this verification equation as a series of calculations. We have merely combined these
calculations, reorganized a few terms in the verification equation and turned division operations into multiplication.

33

330

Approved for Public Release; Distribution Unlimited.

Let η be the number of signatures in a batch, and δ1, . . . δη ∈ {1, 2λ−1} be a set of random exponents chosen
by the verifier. The batch verification equation WATERS09.BatchVerify is:

e(g1
b,

η∏

z=1

σsz·δzz,1) · e(g1b·a1 ,
η∏

z=1

σ
sz,1·δz
z,2) · e(g1a1 ,

η∏

z=1

σ
sz,1·δz
z,3) · e(g1b·a2 ,

η∏

z=1

σ
sz,2·δz
z,4) · e(g1a2 ,

η∏

z=1

σ
sz,2·δz
z,5)

?
=

e(

η∏

z=1

σ
δz·sz,1
z,6 , τ1) · e(

η∏

z=1

σ
δz·sz,2
z,6 , τ2) · e(

η∏

z=1

σ
δz·sz,1
z,7 , τ1

b) · e(
η∏

z=1

σ
δz·sz,2
z,7 , τ2

b) · e(
η∏

z=1

σ
(δz·−tz+θz·δz·tagz,c·tz)
z,7 , w)

· e(
η∏

z=1

σθz·δz·Mz·tz
z,7 , u) · e(

η∏

z=1

σθz·δz·tzz,7 , h) · e(g1,
η∏

z=1

σ−tz·θz·δzz,K) ·A
∑η
z=0 sz,2·δz

We conjecture that this scheme satisfies a relaxation of Definition 2.2 to allow for two-sided negligible error;
that is, where there is also a chance that a set of valid signatures will be rejected by the Batcher.

D.2 Details on How Candidate Construction was Derived

Via a series of steps, we show how the above batching algorithm was derived. We begin with the original
verification equation.

e(g1
bs, σ1) · e(g1b·a1s1 , σ2) · e(g1a1s1 , σ3) · e(g1b·a2s2 , σ4) · e(g1a2s2 , σ5)

?
=

e(σ6, τ
s1
1 · τs22) · e(σ7, τ1bs1 · τ2bs2 · w−t) · (e(σ7, uM ·t · wtagc·t · ht) · e(g−t1 , σK))θ ·As2 (20)

Step 1: Combine η signatures (technique 1):

η∏

z=1

e(g1
bsz , σz,1) · e(g1b·a1sz,1 , σz,2) · e(g1a1sz,1 , σz,3) · e(g1b·a2sz,2 , σz,4) · e(g1a2sz,2 , σz,5)

?
=

η∏

z=1

e(σz,6, τ
sz,1
1 · τsz,22) · e(σz,7, τ1bsz,1 · τ2bsz,2 · w−tz)

· (e(σz,7, uMz·tz · wtagz,c·tz · htz) · e(g−tz1 , σz,K))θz ·Asz,2 (21)

Step 2: Apply the small exponents test, using exponents δ1, . . . δη ∈
[
1, 2λ − 1

]
:

η∏

z=1

(e(g1
bsz , σz,1) · e(g1b·a1sz,1 , σz,2) · e(g1a1sz,1 , σz,3) · e(g1b·a2sz,2 , σz,4) · e(g1a2sz,2 , σz,5))δz

?
=

η∏

z=1

(e(σz,6, τ
sz,1
1 · τsz,22) · e(σz,7, τ1bsz,1 · τ2bsz,2 · w−tz)

· (e(σz,7, uMz·tz · wtagz,c·tz · htz) · e(g−tz1 , σz,K))θz ·Asz,2)δz (22)

Step 3: Move exponent(s) inside the pairing (technique 2):

η∏

z=1

e(g1
bsz·δz , σz,1) · e(g1b·a1sz,1·δz , σz,2) · e(g1a1sz,1·δz , σz,3) · e(g1b·a2sz,2·δz , σz,4) · e(g1a2sz,2·δz , σz,5)

?
=

η∏

z=1

e(σδzz,6, τ
sz,1
1 · τsz,22) · e(σδzz,7, τ1bsz,1 · τ2bsz,2 · w−tz)

· e(σθz·δzz,7 , uMz·tz · wtagz,c·tz · htz) · e(g−tz·θz·δz1 , σz,K) ·Asz,2·δz (23)

34

331

Approved for Public Release; Distribution Unlimited.

Step 4: Split pairings (technique 8):

η∏

z=1

e(g1
bsz·δz , σz,1) · e(g1b·a1sz,1·δz , σz,2) · e(g1a1sz,1·δz , σz,3) · e(g1b·a2sz,2·δz , σz,4) · e(g1a2sz,2·δz , σz,5)

?
=

η∏

z=1

e(σδzz,6, τ
sz,1
1) · e(σδzz,6, τ

sz,2
2) · e(σδzz,7, τ1bsz,1) · e(σδzz,7, τ2bsz,2) · e(σδzz,7, w−tz) · e(σθz·δzz,7 , uMz·tz)

· e(σθz·δzz,7 , wtagz,c·tz) · e(σθz·δzz,7 , htz) · e(g−tz·θz·δz1 , σz,K) ·Asz,2·δz (24)

Step 5: Distribute products (technique 5):

η∏

z=1

e(g1
bsz·δz , σz,1)·

η∏

z=1

e(g1
b·a1sz,1·δz , σz,2)·

η∏

z=1

e(g1
a1sz,1·δz , σz,3)·

η∏

z=1

e(g1
b·a2sz,2·δz , σz,4)·

η∏

z=1

e(g1
a2sz,2·δz , σz,5)

?
=

η∏

z=1

e(σδzz,6, τ
sz,1
1) ·

η∏

z=1

e(σδzz,6, τ
sz,2
2) ·

η∏

z=1

e(σδzz,7, τ1
bsz,1) ·

η∏

z=1

e(σδzz,7, τ2
bsz,2) ·

η∏

z=1

e(σδzz,7, w
−tz) ·

η∏

z=1

e(σθz·δzz,7 , uMz·tz)

·
η∏

z=1

e(σθz·δzz,7 , wtagz,c·tz) ·
η∏

z=1

e(σθz·δzz,7 , htz) ·
η∏

z=1

e(g−tz·θz·δz1 , σz,K) ·
η∏

z=1

Asz,2·δz (25)

Step 6: Move products inside pairings to reduce η pairings to 1 (technique 3a) and move product to

summation on precomputed pairing (technique 6):

e(g1
b,

η∏

z=1

σsz·δzz,1) · e(g1b·a1 ,
η∏

z=1

σ
sz,1·δz
z,2) · e(g1a1 ,

η∏

z=1

σ
sz,1·δz
z,3) · e(g1b·a2 ,

η∏

z=1

σ
sz,2·δz
z,4) · e(g1a2 ,

η∏

z=1

σ
sz,2·δz
z,5)

?
=

e(

η∏

z=1

σ
δz·sz,1
z,6 , τ1)·e(

η∏

z=1

σ
δz·sz,2
z,6 , τ2)·e(

η∏

z=1

σ
δz·sz,1
z,7 , τ1

b)·e(
η∏

z=1

σ
δz·sz,2
z,7 , τ2

b)·e(
η∏

z=1

σδz·−tzz,7 , w)·e(
η∏

z=1

σθz·δz·Mz·tz
z,7 , u)

· e(
η∏

z=1

σ
θz·δz·tagz,c·tz
z,7 , w) · e(

η∏

z=1

σθz·δz·tzz,7 , h) · e(g1,
η∏

z=1

σ−tz·θz·δzz,K) ·A
∑η
z=0 sz,2·δz (26)

Step 7: Merge pairings with common first or second argument (technique 3b):

e(g1
b,

η∏

z=1

σsz·δzz,1) · e(g1b·a1 ,
η∏

z=1

σ
sz,1·δz
z,2) · e(g1a1 ,

η∏

z=1

σ
sz,1·δz
z,3) · e(g1b·a2 ,

η∏

z=1

σ
sz,2·δz
z,4) · e(g1a2 ,

η∏

z=1

σ
sz,2·δz
z,5)

?
=

e(

η∏

z=1

σ
δz·sz,1
z,6 , τ1) · e(

η∏

z=1

σ
δz·sz,2
z,6 , τ2) · e(

η∏

z=1

σ
δz·sz,1
z,7 , τ1

b) · e(
η∏

z=1

σ
δz·sz,2
z,7 , τ2

b) · e(
η∏

z=1

σ
(δz·−tz+θz·δz·tagz,c·tz)
z,7 , w)

· e(
η∏

z=1

σθz·δz·Mz·tz
z,7 , u) · e(

η∏

z=1

σθz·δz·tzz,7 , h) · e(g1,
η∏

z=1

σ−tz·θz·δzz,K) ·A
∑η
z=0 sz,2·δz (27)

E SDL Grammar

We provide a full description of our SDL grammar below:

〈assign-statement〉 ::= 〈single-assignment〉 | 〈func-call-statement〉
| 〈group-assign-statement〉 | 〈dict-statement〉 | 〈random-statement〉 | 〈hash-statement〉 | 〈pair-statement〉.

35

332

Approved for Public Release; Distribution Unlimited.

〈single-assignment〉 ::= 〈variable-target〉 〈assign-op〉 〈expr-statement〉 | 〈variable-target〉.

〈variable-target〉 ::= 〈keywords〉 | 〈variable-name〉.

〈group-assign-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈type〉.

〈func-call-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈variable-name〉 ‘(’ 〈arg-list〉 ‘)’.

〈arg-list〉 ::= 〈arg-name〉 | 〈arg-name〉 ‘,’ 〈arg-list〉.

〈arg-name〉 ::= 〈variable-name〉.

〈random-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈random-func-name〉 ‘(’ 〈group-type〉 ‘)’.

〈hash-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈hash-func-name〉 ‘(’ 〈arg-list〉 ‘,’ 〈group-type〉 ‘)’.

〈dict-statement〉 ::= 〈variable-name〉 〈assign-op〉 ‘list{’ 〈arg-list〉 ‘}’ | ‘expand{’ 〈arg-list〉 ‘}’.

〈dot-prod-statement〉 ::= ‘prod{’ 〈single-assignment〉 ‘,’ 〈single-assignment〉 ‘} on’ 〈expr-statement〉.

〈sum-of-statement〉 ::= ‘sum{’ 〈single-assignment〉 ‘,’ 〈single-assignment〉 ‘} of’ 〈expr-statement〉

〈for-statement〉 ::= 〈proc-token〉 〈block-sep〉 ‘for’
| ‘for{’ 〈assign-statement〉 , 〈assign-statement〉 ‘}’ [〈new-line〉 〈expr-statement〉]*
| forall{ 〈assign-statement〉 , 〈assign-statement〉 ‘}’ [〈new-line〉 〈expr-statement〉]*.

〈conditional-statement〉 ::= 〈proc-token〉 〈block-sep〉 ‘if’
| ‘if{’ 〈cond-statement〉 ‘}’ [〈new-line〉 〈expr-statement〉]+
| ‘else’ [〈new-line〉〈expr-statement〉]+.

〈expr-statement〉 ::= 〈pair-statement〉 | 〈expr0-statement〉.

〈expr0-statement〉 ::= 〈expr0-statement〉 〈group-op〉 〈expr0-statement〉
| 〈exp1-statement〉
| 〈variable-name〉.

〈cond-statement〉 ::= 〈cond-statement〉 [〈bool-op〉 〈cond-statement〉]* | 〈expr-statement〉.

〈pair-statement〉 ::= ‘e(’ 〈expr-statement〉 ‘,’ 〈expr-statement〉 ‘)’
| 〈pair-statement〉 〈group-op〉 〈pair-statement〉
| 〈pair-statement〉 〈exp〉 〈exp1-statement〉.

〈exp1-statement〉 ::= 〈exp1-statement〉 〈exp〉 〈exp2-statement〉 | 〈expr2-statement〉

〈exp2-statement〉 ::= 〈expr-statement〉 〈exp-ops〉 〈expr-statement〉
| 〈expr-statement〉 〈group-op〉 〈expr-statement〉
| 〈negate-op〉 [〈exp2-statement〉 | 〈integer〉].

〈element-type〉 ::= None | int | str | ZR | G1 | G2 | GT

〈type〉 ::= 〈element-type〉 | ‘list{’ 〈element-type〉, [〈element-type〉]* ‘}’
| ‘expand{’ 〈element-type〉, [〈element-type〉]* ‘}’
| 〈type-list〉.

36

333

Approved for Public Release; Distribution Unlimited.

〈type-list〉 ::= 〈type〉 ‘;’ 〈type-list〉 | 〈type〉.

〈procedure〉 ::= 〈proc-token〉 〈block-sep〉 〈procedure-name〉.

〈procedure-name〉 ::= 〈variable-name〉 | ‘func:’ 〈procedure-name〉.

〈variable-name〉 ::= [0-9, a-z, A-Z,〈symbols〉]*

〈symbols〉 ::= ‘_’ | ‘#’ | ‘?’ | ‘$’

〈proc-token〉 ::= ‘BEGIN’ | ‘END’

〈block-sep〉 ::= ‘::’

〈random-func-name〉 ::= ‘random’

〈hash-func-name〉 ::= ‘H’

〈keywords〉 ::= ‘N’ | ‘verify’ | ‘constant’ | ‘public’ | ‘signature’ | ‘message’ | ‘public_count’ | ‘signature_count’
| ‘message_count’ | ‘latex’ | ‘precompute’ | ‘types’ | ‘name’ | ‘setting’ | ‘symmetric’ | ‘asymmetric’

〈assign-op〉 ::= ‘:=’

〈exp〉 ::= ‘^’

〈exp-ops〉 ::= ‘+’ | ‘-’ | 〈group-op〉

〈group-op〉 ::= ‘*’ | ‘/’

〈bool-op〉 ::= ‘|’ | ‘and’ | ‘or’ | ‘==’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’

〈negate-op〉 ::= ‘-’

F Semantics of SDL

We provide a brief overview of our domain specific language and examples of how schemes are written in it.
SDL can accommodate a full description of pairing schemes in situations where an existing implementation
of a signature scheme does not exist or a developer prefers to code their scheme directly in SDL. This
information is used to inform AutoBatch on details needed to generate the scheme implementation and the
batch algorithm. The SDL file consists of two parts.

The first part is a full representation of the signature scheme which consists of the descriptions of each
algorithm such as keygen, sign, verify and a types section. This information is used to generate executable
code for the scheme either in Python or C++.

The second part is a broken down version of the verification algorithm in a form for AutoBatch to derive
the desired batch verification algorithm. To this end, there are several keywords used to provide context for
AutoBatch. Public, signature and message keywords are used to identify the public key variables and the
signature and message variables. Additionally, the public count keyword is used to determine whether
public keys belong to the same or different signers. The signature count and message count keywords
describe the number of signatures and messages expected per batch. The constants keyword describes
variables in the scheme shared by signers such as the generators of a group. Precompute section represents
computation steps necessary before each verification check. The verify keyword is used to describe the
verification equation as a mathematical expression. Finally, we include a block for LaTeX to assist the proof
generator map variables in SDL to equivalent LaTeX representation.

37

334

Approved for Public Release; Distribution Unlimited.

Our abstract language is capable of representing a variety of programming constructs such as dot products,
for loops, summation, and boolean operators. Thus, very complex schemes can be described using our SDL
and to reflect this we provide full SDL descriptions below for BLS [16] and CL04 [20]. See our github
repository for other full SDL examples.

##

BLS signature scheme

##

name := bls

expected batch size per some time period

N := 100

setting := asymmetric

types for variables used in verification.

all other variable types are inferred by SDL parser

BEGIN :: types

M := Str

END :: types

description of key generation, signing, and verification algorithms

BEGIN :: func:keygen

input := list{None}

choose random generator in a prime order group G2

g := random(G2)

choose random integer modulo prime r

x := random(ZR)

pk := g^x

sk := x

keygen returns a tuple consisting of three elements

output := list{pk, sk, g}

END :: func:keygen

BEGIN :: func:sign

input := list{sk, M}

H is a general purpose hash function that maps its inputs

(consisting of strings, group elements, etc)

to a particular target group (either ZR, G1 or G2)

sig := (H(M, G1)^sk)

output := sig

END :: func:sign

BEGIN :: func:verify

input := list{pk, M, sig, g}

h := H(M, G1)

BEGIN :: if

if {e(h, pk) == e(sig, g)}

output := True

else

output := False

END :: if

END :: func:verify

38

335

Approved for Public Release; Distribution Unlimited.

Batcher SDL input

constant := g

public := pk

signature := sig

message := h

same signer

BEGIN :: count

message_count := N

public_count := one

signature_count := N

END :: count

variables computed before each signature verification

BEGIN :: precompute

h := H(M, G1)

END :: precompute

verification equation

verify := {e(h, pk) == e(sig, g)}

##

CL signature scheme

##

name := cl04

N := 100

setting := asymmetric

BEGIN :: types

M := Str

represents a list of elements in group G2

sig := list{G2}

END :: types

BEGIN :: func:setup

input := list{None}

g := random(G1)

output := g

END :: func:setup

BEGIN :: func:keygen

input := list{g}

x := random(ZR)

y := random(ZR)

X := g^x

Y := g^y

sk := list{x, y}

pk := list{X, Y}

output := list{pk, sk}

END :: func:keygen

39

336

Approved for Public Release; Distribution Unlimited.

BEGIN :: func:sign

input := list{sk, M}

expand macro is shorthand for extracting the variables contained

in the list or tuple to make them accessible within the function

sk := expand{x, y}

a := random(G2)

m := H(M, ZR)

b := a^y

c := a^(x + (m * x * y))

sig := list{a, b, c}

output := sig

END :: func:sign

BEGIN :: func:verify

input := list{pk, g, M, sig}

pk := expand{X, Y}

sig := expand{a, b, c}

m := H(M, ZR)

BEGIN :: if

if {{ e(Y, a) == e(g, b) } and { (e(X, a) * (e(X, b)^m)) == e(g, c) }}

output := True

else

output := False

END :: if

END :: func:verify

Batcher input

BEGIN :: precompute

m := H(M, ZR)

END :: precompute

constant := g

public := pk

signature := sig

message := m

same signer

BEGIN :: count

message_count := N

public_count := one

signature_count := N

END :: count

verify := { e(Y, a) == e(g, b) } and { (e(X, a) * (e(X, b)^m)) == e(g, c) }

40

337

Approved for Public Release; Distribution Unlimited.

Zerocash: Decentralized Anonymous Payments from Bitcoin

Eli Ben-Sasson∗, Alessandro Chiesa†, Christina Garman‡, Matthew Green‡, Ian Miers‡, Eran Tromer§, Madars Virza†
∗Technion, eli@cs.technion.ac.il
†MIT, {alexch, madars}@mit.edu

‡Johns Hopkins University, {cgarman, imiers, mgreen}@cs.jhu.edu
§Tel Aviv University, tromer@cs.tau.ac.il

Abstract—Bitcoin is the first digital currency to see widespread
adoption. While payments are conducted between pseudonyms,
Bitcoin cannot offer strong privacy guarantees: payment trans-
actions are recorded in a public decentralized ledger, from
which much information can be deduced. Zerocoin (Miers et
al., IEEE S&P 2013) tackles some of these privacy issues by
unlinking transactions from the payment’s origin. Yet, it still
reveals payments’ destinations and amounts, and is limited in
functionality.

In this paper, we construct a full-fledged ledger-based digital
currency with strong privacy guarantees. Our results leverage
recent advances in zero-knowledge Succinct Non-interactive AR-
guments of Knowledge (zk-SNARKs).

First, we formulate and construct decentralized anonymous
payment schemes (DAP schemes). A DAP scheme enables users to
directly pay each other privately: the corresponding transaction
hides the payment’s origin, destination, and transferred amount.
We provide formal definitions and proofs of the construction’s
security.

Second, we build Zerocash, a practical instantiation of our
DAP scheme construction. In Zerocash, transactions are less than
1 kB and take under 6 ms to verify — orders of magnitude more
efficient than the less-anonymous Zerocoin and competitive with
plain Bitcoin.

Keywords: Bitcoin, decentralized electronic cash, zero knowledge

I. INTRODUCTION

Bitcoin is the first digital currency to achieve widespread
adoption. The currency owes its rise in part to the fact that,
unlike traditional e-cash schemes [1, 2, 3], it requires no trusted
parties. Instead of appointing a central bank, Bitcoin leverages a
distributed ledger known as the block chain to store transactions
made between users. Because the block chain is massively
replicated by mutually-distrustful peers, the information it
contains is public.

While users may employ many identities (or pseudonyms)
to enhance their privacy, an increasing body of research shows
that anyone can de-anonymize Bitcoin by using information in
the block chain [4, 5, 6], such as the structure of the transaction
graph as well as the value and dates of transactions. As a result,
Bitcoin fails to offer even a modicum of the privacy provided
by traditional payment systems, let alone the robust privacy of
anonymous e-cash schemes.

While Bitcoin is not anonymous itself, those with sufficient
motivation can obfuscate their transaction history with the help
of mixes (also known as laundries or tumblers). A mix allows
users to entrust a set of coins to a pool operated by a central

party and then, after some interval, retrieve different coins
(with the same total value) from the pool. Yet, mixes suffer
from three limitations: (i) the delay to reclaim coins must be
large to allow enough coins to be mixed in; (ii) the mix can
trace coins; and (iii) the mix may steal coins.1 For users with
“something to hide,” these risks may be acceptable. But typical
legitimate users (1) wish to keep their spending habits private
from their peers, (2) are risk-averse and do not wish to expend
continual effort in protecting their privacy, and (3) are often
not sufficiently aware of their compromised privacy.

To protect their privacy, users thus need an instant, risk-free,
and, most importantly, automatic guarantee that data revealing
their spending habits and account balances is not publicly
accessible by their neighbors, co-workers, and merchants.
Anonymous transactions also guarantee that the market value
of a coin is independent of its history, thus ensuring legitimate
users’ coins remain fungible.2

Zerocoin: a decentralized mix. Miers et al. [8] proposed
Zerocoin, which extends Bitcoin to provide strong anonymity
guarantees. Like many e-cash protocols (e.g., [2]), Zerocoin
employs zero-knowledge proofs to prevent transaction graph
analyses. Unlike earlier practical e-cash protocols, however,
Zerocoin does not rely on digital signatures to validate coins,
nor does it require a central bank to prevent double spending.
Instead, Zerocoin authenticates coins by proving, in zero-
knowledge, that they belong to a public list of valid coins
(which can be maintained on the block chain). Yet, rather than
a full-fledged anonymous currency, Zerocoin is a decentralized
mix, where users may periodically “wash” their bitcoins via
the Zerocoin protocol. Routine day-to-day transactions must
be conducted via Bitcoin, due to reasons that we now review.

The first reason is performance. Redeeming zerocoins
requires double-discrete-logarithm proofs of knowledge, which
have size that exceeds 45 kB and require 450 ms to verify (at
the 128-bit security level).3 These proofs must be broadcast

1CoinJoin [7], an alternative proposal, replaces the central party of a mix
with multi-signature transactions that involve many collaborating Bitcoin users.
CoinJoin can thus only mix small volumes of coins amongst users who are
currently online, is prone to denial-of-service attacks by third parties, and
requires effort to find mixing partners.

2While the methods we detail in this paper accomplish this, the same
techniques open the door for privacy preserving accountability and oversight
(see Section X).

3These published numbers [8] actually use a mix of parameters at both
128-bit and 80-bit security for different components of the construction. The
cost is higher if all parameters are instantiated at the 128-bit security level.

2014 IEEE Symposium on Security and Privacy

© 2014, Eli Ben-Sasson. Under license to IEEE.

DOI 10.1109/SP.2014.36

459

338

Approved for Public Release; Distribution Unlimited.

through the network, verified by every node, and permanently
stored in the ledger. The entailed costs are higher, by orders
of magnitude, than those in Bitcoin and can seriously tax a
Bitcoin network operating at normal scale.

The second reason is functionality. While Zerocoin consti-
tutes a basic e-cash scheme, it lacks critical features required
of full-fledged anonymous payments. First, Zerocoin uses
coins of fixed denomination: it does not support payments
of exact values, nor does it provide a means to make change
following a transaction (i.e., divide coins). Second, Zerocoin
has no mechanism for one user to pay another one directly
in “zerocoins.” And third, while Zerocoin provides anonymity
by unlinking a payment transaction from its origin address, it
does not hide the amount or other metadata about transactions
occurring on the network.
Our contribution. In this work we address the aforemen-
tioned issues via two main contributions.

(1) We introduce the notion of a decentralized anonymous
payment scheme, which formally captures the functionality and
security guarantees of a full-fledged decentralized electronic
currency with strong anonymity guarantees. We provide a con-
struction of this primitive and prove its security under specific
cryptographic assumptions. The construction leverages recent
advances in the area of zero-knowledge proofs. Specifically, it
uses zero-knowledge Succinct Non-interactive ARguments of
Knowledge (zk-SNARKs) [9, 10, 11, 12, 13, 14, 15, 16].

(2) We achieve an implementation of the above primitive, via
a system that we call Zerocash. Compared to Zerocoin, our
system (at 128 bits of security):
• Reduces the size of transactions spending a coin by 97.7%.
• Reduces the spend-transaction verification time by 98.6%.
• Allows for anonymous transactions of variable amounts.
• Hides transaction amounts and the values of coins held by

users.
• Allows for payments to be made directly to a user’s fixed

address (without user interaction).
To validate our system, we measured its performance and
established feasibility by conducting experiments in a test
network of 1000 nodes (approximately 1

16 of the unique IPs
in the Bitcoin network and 1

3 of the nodes reachable at any
given time [17]). This inspires confidence that Zerocash can
be deployed as a fork of Bitcoin and operate at the same
scale. Thus, due to its significantly improved functionality and
performance, Zerocash makes it possible to entirely replace
traditional Bitcoin payments with anonymous alternatives.
Concurrent work. The idea of using zk-SNARKs in the
setting of Bitcoin was first presented by one of the authors
at Bitcoin 2013 [18]. In concurrent work, Danezis et al. [19]
suggest using zk-SNARKs to reduce proof size and verification
time in Zerocoin; see Section IX for a comparison.

A. zk-SNARKs

We now sketch in more technical terms the definition of
a zk-SNARK; see Section II for more details. A zk-SNARK
is a non-interactive zero-knowledge proof of knowledge that

is succinct, i.e., for which proofs are very short and easy to
verify. More precisely, let L be an NP language, and let C be a
nondeterministic decision circuit for L on a given instance size
n. A zk-SNARK can be used to prove and verify membership
in L, for instances of size n, as follows. After taking C as
input, a trusted party conducts a one-time setup phase that
results in two public keys: a proving key pk and a verification
key vk. The proving key pk enables any (untrusted) prover
to produce a proof π attesting to the fact that x ∈ L, for an
instance x (of size n) of his choice. The non-interactive proof
π is zero knowledge and a proof of knowledge. Anyone can
use the verification key vk to verify the proof π; in particular
zk-SNARK proofs are publicly verifiable: anyone can verify π,
without ever having to interact with the prover that generated
π. Succinctness requires that (for a given security level) π has
constant size and can be verified in time that is linear in |x|
(rather than linear in |C|).
B. Decentralized anonymous payment schemes

We construct a decentralized anonymous payment (DAP)
scheme, which is a decentralized e-cash scheme that allows
direct anonymous payments of any amount. See Section III for
a formal definition. Here, we outline our construction in six
incremental steps; the construction details are in Section IV.

Our construction functions on top of any ledger-based base
currency, such as Bitcoin. At any given time, a unique valid
snapshot of the currency’s ledger is available to all users.
The ledger is a sequence of transactions and is append-
only. Transactions include both the underlying currency’s
transactions, as well as new transactions introduced by our
construction. For concreteness, we focus the discussion below
on Bitcoin (though later definitions and constructions are
stated abstractly). We assume familiarity with Bitcoin [20]
and Zerocoin [8].
Step 1: user anonymity with fixed-value coins. We first
describe a simplified construction, in which all coins have
the same value of, e.g., 1 BTC. This construction, similar
to the Zerocoin protocol, shows how to hide a payment’s
origin. In terms of tools, we make use of zk-SNARKs (recalled
above) and a commitment scheme. Let COMM denote a
statistically-hiding non-interactive commitment scheme (i.e.,
given randomness r and message m, the commitment is
c := COMMr(m); subsequently, c is opened by revealing
r and m, and one can verify that COMMr(m) equals c).

In the simplified construction, a new coin c is minted as
follows: a user u samples a random serial number sn and a
trapdoor r, computes a coin commitment cm := COMMr(sn),
and sets c := (r, sn, cm). A corresponding mint transaction
txMint, containing cm (but not sn or r), is sent to the ledger;
txMint is appended to the ledger only if u has paid 1 BTC
to a backing escrow pool (e.g., the 1 BTC may be paid via
plaintext information encoded in txMint). Mint transactions
are thus certificates of deposit, deriving their value from the
backing pool.

Subsequently, letting CMList denote the list of all coin
commitments on the ledger, u may spend c by posting a spend

460

339

Approved for Public Release; Distribution Unlimited.

transaction txSpend that contains (i) the coin’s serial number
sn; and (ii) a zk-SNARK proof π of the NP statement “I know
r such that COMMr(sn) appears in the list CMList of coin
commitments”. Assuming that sn does not already appear on
the ledger (as part of a past spend transaction), u can redeem
the deposited amount of 1 BTC, which u can either keep for
himself, transfer to someone else, or immediately deposit into
a new coin. (If sn does already appear on the ledger, this is
considered double spending, and the transaction is discarded.)

User anonymity is achieved because the proof π is zero-
knowledge: while sn is revealed, no information about r
is, and finding which of the numerous commitments in
CMList corresponds to a particular spend transaction txSpend is
equivalent to inverting f(x) := COMMx(sn), which is assumed
to be infeasible. Thus, the origin of the payment is anonymous.

Step 2: compressing the list of coin commitments. In the
above NP statement, CMList is specified explicitly as a list of
coin commitments. This naive representation severely limits
scalability because the time and space complexity of most
protocol algorithms (e.g., the proof verification algorithm)
grows linearly with CMList. Moreover, coin commitments
corresponding to already spent coins cannot be dropped from
CMList to reduce costs, since they cannot be identified (due to
the same zero-knowledge property that provides anonymity).

As in [3], we rely on a collision-resistant hash function CRH
to avoid an explicit representation of CMList. We maintain
an efficiently updatable append-only CRH-based Merkle tree
Tree(CMList) over the (growing) list CMList. Letting rt denote
the root of Tree(CMList), it is well-known that updating rt to
account for insertion of new leaves can be done with time and
space proportional to the tree depth. Hence, the time and space
complexity is reduced from linear in the size of CMList to
logarithmic. With this in mind, we modify the NP statement to
the following one: “I know r such that COMMr(sn) appears as
a leaf in a CRH-based Merkle tree whose root is rt”. Compared
with the naive data structure for CMList, this modification
increases exponentially the size of CMList which a given
zk-SNARK implementation can support (concretely, using trees
of depth 64, Zerocash supports 264 coins).

Step 3: extending coins for direct anonymous payments.
So far, the coin commitment cm of a coin c is a commitment
to the coin’s serial number sn. However, this creates a problem
when transferring c to another user. Indeed, suppose that a user
uA created c, and uA sends c to another user uB . First, since
uA knows sn, the spending of c by uB is both not anonymous
(since uA sees when c is spent, by recognizing sn) and risky
(since uA could still spend c first). Thus, uB must immediately
spend c and mint a new coin c′ to protect himself. Second, if
uA in fact wants to transfer to uB , e.g., 100 BTC, then doing
so is both unwieldy (since it requires 100 transfers) and not
anonymous (since the amount of the transfer is leaked). And
third, transfers in amounts that are not multiples of 1 BTC (the
fixed value of a coin) are not supported. Thus, the simplified
construction described is inadequate as a payment scheme.

We address this by modifying the derivation of a coin

commitment, and using pseudorandom functions to target
payments and to derive serial numbers, as follows. We use three
pseudorandom functions (derived from a single one). For a
seed x these are denoted PRFaddr

x (·), PRFsn
x (·), and PRFpk

x (·).
We assume that PRFsn is moreover collision-resistant.

To provide targets for payments, we use addresses: each
user u generates an address key pair (apk, ask). The coins of
u contain the value apk and can be spent only with knowledge
of ask. A key pair (apk, ask) is sampled by selecting a random
seed ask and setting apk := PRFaddr

ask
(0). A user can generate

and use any number of address key pairs.
Next, we re-design minting to allow for greater functionality.

To mint a coin c of a desired value v, the user u first samples ρ,
which is a secret value that determines the coin’s serial number
as sn := PRFsn

ask
(ρ). Then, u commits to the tuple (apk, v, ρ) in

two phases: (a) u computes k := COMMr(apk‖ρ) for a random
r; and then (b) u computes cm := COMMs(v‖k) for a random
s. The minting results in a coin c := (apk, v, ρ, r, s, cm) and a
mint transaction txMint := (v, k, s, cm). Crucially, due to the
nested commitment, anyone can verify that cm in txMint is
a coin commitment of a coin of value v (by checking that
COMMs(v‖k) equals cm) but cannot discern the owner (by
learning the address key apk) or serial number (derived from
ρ) because these are hidden in k. As before, txMint is accepted
by the ledger only if u deposits the correct amount, in this
case v BTC.

Coins are spent using the pour operation, which takes a set
of input coins, to be consumed, and “pours” their value into a
set of fresh output coins — such that the total value of output
coins equals the total value of the input coins. Suppose that
u, with address key pair (aoldpk , a

old
sk), wishes to consume his

coin cold = (aoldpk , v
old, ρold, rold, sold, cmold) and produce two

new coins cnew1 and cnew2 , with total value vnew1 + vnew2 = vold,
respectively targeted at address public keys anewpk,1 and anewpk,2.
(The addresses anewpk,1 and anewpk,2 may belong to u or to some
other user.) The user u, for each i ∈ {1, 2}, proceeds as follows:
(i) u samples serial number randomness ρnewi ; (ii) u computes
knewi := COMMrnewi

(anewpk,i‖ρnewi) for a random rnewi ; and (iii) u
computes cmnew

i := COMMsnewi
(vnewi ‖knewi) for a random snewi .

This yields the coins cnew1 := (anewpk,1, v
new
1 , ρnew1 , rnew1 , snew1 ,

cmnew
1) and cnew2 := (anewpk,2, v

new
2 , ρnew2 , rnew2 , snew2 , cmnew

2).
Next, u produces a zk-SNARK proof πPOUR for the following
NP statement, which we call POUR:

“Given the Merkle-tree root rt, serial number snold,
and coin commitments cmnew

1 , cmnew
2 , I know coins

cold, cnew1 , cnew2 , and address secret key aoldsk such that:
• The coins are well-formed: for cold it holds that kold =
COMMrold(a

old
pk ‖ρold) and cmold = COMMsold(v

old‖kold);
and similarly for cnew1 and cnew2 .

• The address secret key matches the public key: aoldpk =

PRFaddr
aoldsk

(0).
• The serial number is computed correctly: snold :=
PRFsn

aoldsk
(ρold).

• The coin commitment cmold appears as a leaf of a Merkle-

461

340

Approved for Public Release; Distribution Unlimited.

tree with root rt.
• The values add up: vnew1 + vnew2 = vold.”

A resulting pour transaction txPour := (rt, snold, cmnew
1 ,

cmnew
2 , πPOUR) is appended to the ledger. (As before, the

transaction is rejected if the serial number sn appears in a
previous transaction.)

Now suppose that u does not know, say, the address secret
key anewsk,1 that is associated with the public key anewpk,1. Then, u
cannot spend cnew1 because he cannot provide anewsk,1 as part of
the witness of a subsequent pour operation. Furthermore, when
a user that knows anewsk,1 does spend cnew1 , the user u cannot
track it, because he knows no information about its revealed
serial number, which is snnew1 := PRFsn

anewsk,1
(ρnew1).

Also observe that txPour reveals no information about how
the value of the consumed coin was divided among the two
new fresh coins, nor which coin commitment corresponds to
the consumed coin, nor the address public keys to which the
two new fresh coins are targeted. The payment was conducted
in full anonymity.

More generally, a user may pour Nold ≥ 0 coins into Nnew ≥
0 coins. For simplicity we consider the case Nold = Nnew = 2,
without loss of generality. Indeed, for Nold < 2, the user can
mint a coin with value 0 and then provide it as a “null” input,
and for Nnew < 2, the user can create (and discard) a new
coin with value 0. For Nold > 2 or Nnew > 2, the user can
compose logNold + logNnew of the 2-input/2-output pours.
Step 4: sending coins. Suppose that anewpk,1 is the address public
key of u1. In order to allow u1 to actually spend the new coin
cnew1 produced above, u must somehow send the secret values
in cnew1 to u1. One way is for u to send u1 a private message,
but the requisite private communication channel necessitates
additional infrastructure or assumptions. We avoid this “out-
of-band” channel and instead build this capability directly into
our construction by leveraging the ledger as follows.

We modify the structure of an address key pair. Each
user now has a key pair (addrpk, addrsk), where addrpk =
(apk, pkenc) and addrsk = (ask, skenc). The values (apk, ask)
are generated as before. In addition, (pkenc, skenc) is a key pair
for a key-private encryption scheme [21].

Then, u computes the ciphertext C1 that is the encryption
of the plaintext (vnew1 , ρnew1 , rnew1 , snew1), under pknewenc,1 (which
is part of u1’s address public key addrnewsk,1), and includes C1

in the pour transaction txPour. The user u1 can then find and
decrypt this message (using his sknewenc,1) by scanning the pour
transactions on the public ledger. Again, note that adding C1

to txPour leaks neither paid amounts, nor target addresses due
to the key-private property of the encryption scheme. (The
user u does the same with cnew2 and includes a corresponding
ciphertext C2 in txPour.)
Step 5: public outputs. The construction so far allows users
to mint, merge, and split coins. But how can a user redeem
one of his coins, i.e., convert it back to the base currency
(Bitcoin)? For this, we modify the pour operation to include a
public output. When spending a coin, the user u also specifies
a nonnegative vpub and an arbitrary string info. The balance

equation in the NP statement POUR is changed accordingly:
“vnew1 + vnew2 + vpub = vold”. Thus, of the input value vold,
a part vpub is publicly declared, and its target is specified,
somehow, by the string info. The string info can be used to
specify the destination of these redeemed funds (e.g., a Bitcoin
wallet public key).4 Both vpub and info are now included in the
resulting pour transaction txPour. (The public output is optional,
as the user u can set vpub = 0.)

Step 6: non-malleability. To prevent malleability attacks on
a pour transaction txPour (e.g., embezzlement by re-targeting
the public output of the pour by modifying info), we further
modify the NP statement POUR and use digital signatures.
Specifically, during the pour operation, the user u (i) samples
a key pair (pksig, sksig) for a one-time signature scheme;
(ii) computes hSig := CRH(pksig); (iii) computes the two values
h1 := PRFpk

aoldsk,1

(hSig) and h2 := PRFpk

aoldsk,2

(hSig), which act as
MACs to “tie” hSig to both address secret keys; (iv) modifies
POUR to include the three values hSig, h1, h2 and prove that
the latter two are computed correctly; and (v) uses sksig to sign
every value associated with the pour operation, thus obtaining
a signature σ, which is included, along with pksig, in txPour.
Since the aoldsk,i are secret, and with high probability hSig changes
for each pour transaction, the values h1, h2 are unpredictable.
Moreover, the signature on the NP statement (and other values)
binds all of these together.

This ends the outline of the construction, which is summarized
in part in Figure 1. We conclude by noting that, due to
the zk-SNARK, our construction requires a one-time trusted
setup of public parameters. The trust affects soundness of the
proofs, though anonymity continues to hold even if the setup
is corrupted by a malicious party.

C. Zerocash

We outline Zerocash, a concrete implementation, at 128
bits of security, of our DAP scheme construction; see Sec-
tion V for details. Zerocash entails carefully instantiating
the cryptographic ingredients of the construction to ensure
that the zk-SNARK, the “heaviest” component, is efficient
enough in practice. In the construction, the zk-SNARK is
used to prove/verify a specific NP statement: POUR. While
zk-SNARKs are asymptotically efficient, their concrete effi-
ciency depends on the arithmetic circuit C that is used to
decide the NP statement. Thus, we seek instantiations for which
we can design a relatively-small arithmetic circuit CPOUR for
verifying the NP statement POUR.

Our approach is to instantiate all of the necessary cryp-
tographic ingredients (commitment schemes, pseudorandom
functions, and collision-resistant hashing) based on SHA256.
We first design a hand-optimized circuit for verifying SHA256
computations (or, more precisely, its compression function,

4These public outputs can be considered as an “input” to a Bitcoin-style
transaction, where the info string contains the Bitcoin output scripts. This
mechanism also allows us to support Bitcoin’s public transaction fees.

462

341

Approved for Public Release; Distribution Unlimited.

…

(c) coin commitment

rt
(a) Merke tree over (cm1,cm2,…)

cm

CRH CRH

CRH

CRH CRH

CRH

CRH

cm1 cm2cm3 cm4cm5cm6cm7 cm8

CRH CRH

CRH

COMM

v

ρ
���

PRFsn

PRFaddr

s ���

COMM
r

���

sn

�

(d) serial number

rt = Merkle-tree root
cm = coin commitment
sn = serial number
v = coin value
r, s = commitment rand.
ρ = serial number rand.
(apk,pkenc) = address public key

(ask,skenc) = address secret key

c = ((apk,pkenc), v, ρ, r, s, cm)
(b) coin

Fig. 1: (a) Illustration of the CRH-based Merkle tree over the list CMList of coin commitments. (b) A coin c. (c) Illustration of the structure
of a coin commitment cm. (d) Illustration of the structure of a coin serial number sn.

which suffices for our purposes).5 Then, we use this circuit in
constructing CPOUR, which verifies all the necessary checks for
satisfying the NP statement CPOUR.

This, along with judicious parameter choices, and a state-of-
the-art implementation of a zk-SNARK for arithmetic circuits
[16] (see Section II-C), results in a zk-SNARK prover running
time of few minutes and zk-SNARK verifier running time of
few milliseconds. This allows the DAP scheme implementation
to be practical for deployment, as our experiments show.

Zerocash can be integrated into Bitcoin or forks of it
(commonly referred to as “altcoins”); we later describe how
this is done.

D. Paper organization

The remainder of this paper is organized as follows.
Section II provides background on zk-SNARKs. We define
DAP schemes in Section III, and our construction thereof in
Section IV. Section V discusses the concrete instantiation in
Zerocash. Section VI describes the integration of Zerocash
into existing ledger-based currencies. Section VII provides
microbenchmarks for our prototype implementation, as well
as results based on full-network simulations. Section VIII
describes optimizations. We discuss concurrent work in Sec-
tion IX and summarize our contributions and future directions
in Section X.

II. BACKGROUND ON ZK-SNARKS

The main cryptographic primitive used in this paper is
a special kind of Succinct Non-interactive ARgument of
Knowledge (SNARK). Concretely, we use a publicly-verifiable
preprocessing zero-knowledge SNARK, or zk-SNARK for short.
In this section we provide basic background on zk-SNARKs,
provide an informal definition, and recall known constructions
and implementations.

5Alternatively, we could have opted to rely on the circuit generators [13, 14,
16], which support various classes of C programs, by writing C code expressing
the POUR checks. However, as discussed later, these generic approaches are
more expensive than our hand-optimized construction.

A. Informal definition

We informally define zk-SNARKs for arithmetic circuit
satisfiability. We refer the reader to, e.g., [11] for a formal
definition.

For a field F, an F-arithmetic circuit takes inputs that are
elements in F, and its gates output elements in F. We naturally
associate a circuit with the function it computes. To model
nondeterminism we consider circuits that have an input x ∈
Fn and an auxiliary input a ∈ Fh, called a witness. The
circuits we consider only have bilinear gates.6 Arithmetic
circuit satisfiability is defined analogously to the boolean case,
as follows.

Definition II.1. The arithmetic circuit satisfiability problem
of an F-arithmetic circuit C : Fn×Fh → Fl is captured by the
relation RC = {(x, a) ∈ Fn×Fh : C(x, a) = 0l}; its language
is LC = {x ∈ Fn : ∃ a ∈ Fh s.t. C(x, a) = 0l}.

Given a field F, a (publicly-verifiable preprocessing)
zk-SNARK for F-arithmetic circuit satisfiability is a triple
of polynomial-time algorithms (KeyGen,Prove,Verify):
• KeyGen(1λ, C) → (pk, vk). On input a security parameter
λ (presented in unary) and an F-arithmetic circuit C, the
key generator KeyGen probabilistically samples a proving
key pk and a verification key vk. Both keys are published as
public parameters and can be used, any number of times, to
prove/verify membership in LC .

• Prove(pk, x, a) → π. On input a proving key pk and any
(x, a) ∈ RC , the prover Prove outputs a non-interactive
proof π for the statement x ∈ LC .

• Verify(vk, x, π)→ b. On input a verification key vk, an input
x, and a proof π, the verifier Verify outputs b = 1 if he is
convinced that x ∈ LC .

A zk-SNARK satisfies the following properties.
Completeness. For every security parameter λ, any F-
arithmetic circuit C, and any (x, a) ∈ RC , the honest prover

6A gate with inputs y1, . . . , ym ∈ F is bilinear if the output is
〈~a, (1, y1, . . . , ym)〉 · 〈~b, (1, y1, . . . , ym)〉 for some ~a,~b ∈ Fm+1. These
include addition, multiplication, negation, and constant gates.

463

342

Approved for Public Release; Distribution Unlimited.

can convince the verifier. Namely, b = 1 with probabil-
ity 1 − negl(λ) in the following experiment: (pk, vk) ←
KeyGen(1λ, C); π ← Prove(pk, x, a); b← Verify(vk, x, π).

Succinctness. An honestly-generated proof π has Oλ(1) bits
and Verify(vk, x, π) runs in time Oλ(|x|). (Here, Oλ hides a
fixed polynomial factor in λ.)

Proof of knowledge (and soundness). If the verifier accepts
a proof output by a bounded prover, then the prover “knows”
a witness for the given instance. (In particular, soundness
holds against bounded provers.) Namely, for every poly(λ)-
size adversary A, there is a poly(λ)-size extractor E such that
Verify(vk, x, π) = 1 and (x, a) 6∈ RC with probability negl(λ)
in the following experiment: (pk, vk) ← KeyGen(1λ, C);
(x, π)← A(pk, vk); a← E(pk, vk).

Perfect zero knowledge. An honestly-generated proof is per-
fect zero knowledge.7 Namely, there is a poly(λ)-size simulator
Sim such that for all stateful poly(λ)-size distinguishers D the
following two probabilities are equal:
• The probability that D(π) = 1 on an honest proof.

Pr

 (x, a) ∈ RC
D(π) = 1

∣∣∣∣∣∣

(pk, vk)← KeyGen(C)
(x, a)← D(pk, vk)
π ← Prove(pk, x, a)

• The probability that D(π) = 1 on a simulated proof.

Pr

 (x, a) ∈ RC
D(π) = 1

∣∣∣∣∣∣

(pk, vk, trap)← Sim(C)
(x, a)← D(pk, vk)

π ← Sim(pk, x, trap)

B. Known constructions and security

There are many zk-SNARK constructions in the literature
[9, 10, 11, 12, 13, 14, 15, 16]. We are interested in zk-SNARKs
for arithmetic circuit satisfiability, and the most efficient ones
for this language are based on quadratic arithmetic programs
[12, 11, 13, 14, 16]; such constructions provide a linear-time
KeyGen, quasilinear-time Prove, and linear-time Verify.

Security of zk-SNARKs is based on knowledge-of-exponent
assumptions and variants of Diffie–Hellman assumptions in
bilinear groups [9, 22, 23]. While knowledge-of-exponent
assumptions are fairly strong, there is evidence that such
assumptions may be inherent for constructing zk-SNARKs
[24, 25].

C. zk-SNARK implementations

There are three published implementations of zk-SNARKs:
(i) Parno et al. [13] present an implementation of zk-SNARKs
for programs having no data dependencies;8 (ii) Ben-Sasson
et al. [14] present an implementation of zk-SNARKs for
arbitrary programs (with data dependencies); and (iii) Ben-
Sasson et al. [16] present an implementation of zk-SNARKs

7While most zk-SNARK descriptions in the literature only mention statistical
zero knowledge, all zk-SNARK constructions can be made perfect zero
knowledge by allowing for a negligible error probability in completeness.

8They only support programs where array indices are restricted to be known
compile-time constants; similarly, loop iteration counts (or at least upper
bounds to these) must be known at compile time.

that supports programs that modify their own code (e.g., for
runtime code generation); their implementation also reduces
costs for programs of larger size and allows for universal key
pairs.

Each of the works above also achieves zk-SNARKs for
arithmetic circuit satisfiability as a stepping stone towards
their respective higher-level efforts. In this paper we are only
interested in a zk-SNARK for arithmetic circuit satisfiability,
and we rely on the implementation of [16] for such a
zk-SNARK.9 The implementation in [16] is itself based on the
protocol of Parno et al. [13]. We thus refer the interested reader
to [13] for details of the protocol, its intuition, and its proof of
security; and to [16] for the implementation and its performance.
In terms of concrete parameters, the implementation of [16]
provides 128 bits of security, and the field F is of a 256-bit
prime order p.

III. DEFINITION OF A DECENTRALIZED ANONYMOUS
PAYMENT SCHEME

We introduce the notion of a decentralized anonymous
payment scheme (DAP scheme), extending the notion of
decentralized e-cash [8]. Later, in Section IV, we provide
a construction.

A. Data structures

We begin by describing, and giving intuition about, the data
structures used by a DAP scheme. The algorithms that use and
produce these data structures are introduced in Section III-B.

Basecoin ledger. Our protocol is applied on top of a ledger-
based base currency such as Bitcoin; for generality we refer
to this base currency as Basecoin. At any given time T , all
users have access to LT , the ledger at time T , which is a
sequence of transactions. The ledger is append-only (i.e., T <
T ′ implies that LT is a prefix of LT ′).10 The transactions in
the ledger include both Basecoin transactions as well as two
new transaction types described below.

Public parameters. A list of public parameters pp is available
to all users in the system. These are generated by a trusted party
at the “start of time” and are used by the system’s algorithms.

Addresses. Each user generates at least one address key
pair (addrpk, addrsk). The public key addrpk is published and
enables others to direct payments to the user. The secret key
addrsk is used to receive payments sent to addrpk. A user may
generate any number of address key pairs.

Coins. A coin is a data object c, to which we associate the
following:
• A coin commitment, denoted cm(c): a string that appears

on the ledger once c is minted.

9In [16], one optimization to the verifier’s runtime requires preprocessing
the verification key vk; for simplicity, we do not use this optimization.

10In reality, the Basecoin ledger (such as the one of Bitcoin) is not perfect
and may incur temporary inconsistencies. In this respect our construction is
as good as the underlying ledger. We discuss the effects of this on anonymity
and mitigations in Section VI-C.

464

343

Approved for Public Release; Distribution Unlimited.

• A coin value, denoted v(c): the denomination of c, as
measured in basecoins, as an integer between 0 and a
maximum value vmax (which is a system parameter).

• A coin serial number, denoted sn(c): a unique string
associated with the c, used to prevent double spending.

• A coin address, denoted addrpk(c): an address public key,
representing who owns c.

Any other quantities associated with a coin c (e.g., various
trapdoors) are implementation details.
New transactions. Besides Basecoin transactions, there are
two new types of transactions.
• Mint transactions. A mint transaction txMint is a tuple

(cm, v, ∗), where cm is a coin commitment, v is a coin value,
and ∗ denotes other (implementation-dependent) information.
The transaction txMint records that a coin c with coin
commitment cm and value v has been minted.

• Pour transactions. A pour transaction txPour is a tuple
(rt, snold1 , snold2 , cmnew

1 , cmnew
2 , vpub, info, ∗), where rt is a root

of a Merkle tree, snold1 , snold2 are two coin serial numbers,
cmnew

1 , cmnew
2 are two coin commitments, vpub is a coin

value, info is an arbitrary string, and ∗ denotes other
(implementation-dependent) information. The transaction
txPour records the pouring of two input (and now consumed)
coins cold1 , cold2 , with respective serial numbers snold1 , snold2 ,
into two new output coins cnew1 , cnew2 , with respective coin
commitments cmnew

1 , cmnew
2 , as well as a public output vpub

(which may be zero). Furthermore, txPour also records an
information string info (perhaps containing information on
who is the recipient of vpub basecoins) and that, when this
transaction was made, the root of the Merkle tree over coin
commitments was rt (see below).

Commitments of minted coins and serial numbers of spent
coins. For any given time T ,
• CMListT denotes the list of all coin commitments appearing

in mint and pour transactions in LT ;
• SNListT denotes the list of all serial numbers appearing in

pour transactions in LT .
While both of these lists can be deduced from LT , it will be
convenient to think about them as separate (as, in practice,
these may be separately maintained due to efficiency reasons).
Merkle tree over commitments. For any given time T ,
TreeT denotes a Merkle tree over CMListT and rtT its root.
Moreover, the function PathT (cm) gives the authentication
path from a coin commitment cm appearing in CMListT to
the root of TreeT .11 For convenience, we assume that LT also
stores rtT ′ for all T ′ ≤ T (i.e., it stores all past Merkle tree
roots).

B. Algorithms

A DAP scheme Π is a tuple of polynomial-time algorithms

(Setup,CreateAddress,Mint,Pour,VerifyTransaction,
Receive)

11While we refer to Mekle trees for simplicity, it is straightforward to extend
the definition to allow other data structures representing sets with fast insertion
and short proofs of membership.

with the following syntax and semantics.
System setup. The algorithm Setup generates a list of public
parameters:

Setup
• INPUTS: security parameter λ
• OUTPUTS: public parameters pp

The algorithm Setup is executed by a trusted party. The
resulting public parameters pp are published and made available
to all parties (e.g., by embedding them into the protocol’s
implementation). The setup is done only once; afterwards, no
trusted party is needed, and no global secrets or trapdoors are
kept.
Creating payment addresses. The algorithm CreateAddress
generates a new address key pair:

CreateAddress
• INPUTS: public parameters pp
• OUTPUTS: address key pair (addrpk, addrsk)

Each user generates at least one address key pair
(addrpk, addrsk) in order to receive coins. The public key addrpk
is published, while the secret key addrsk is used to redeem
coins sent to addrpk. A user may generate any number of
address key pairs; doing so does not require any interaction.
Minting coins. The algorithm Mint generates a coin (of a
given value) and a mint transaction:

Mint
• INPUTS:

– public parameters pp
– coin value v ∈ {0, 1, . . . , vmax}
– destination address public key addrpk

• OUTPUTS: coin c and mint transaction txMint

A system parameter, vmax, caps the value of any single coin.
The output coin c has value v and coin address addrpk; the
output mint transaction txMint equals (cm, v, ∗), where cm is
the coin commitment of c.
Pouring coins. The Pour algorithm transfers value from
input coins into new output coins, marking the input coins
as consumed. Moreover, a fraction of the input value may be
publicly revealed. Pouring allows users to subdivide coins into
smaller denominations, merge coins, and transfer ownership
of anonymous coins, or make public payments.12

Pour
• INPUTS:

– public parameters pp
– the Merkle root rt
– old coins cold1 , cold2

– old addresses secret keys addroldsk,1, addr
old
sk,2

– authentication path path1 from commitment cm(cold1) to
root rt,

12We consider pours with 2 inputs and 2 outputs, for simplicity and (as
discussed in Section I-B) without loss of generality.

465

344

Approved for Public Release; Distribution Unlimited.

authentication path path2 from commitment cm(cold2) to
root rt

– new values vnew1 , vnew2

– new addresses public keys addrnewpk,1, addr
new
pk,2

– public value vpub
– transaction string info

• OUTPUTS: new coins cnew1 , cnew2 and pour transaction txPour

Thus, the Pour algorithm takes as input two distinct input
coins cold1 , cold2 , along with corresponding address secret keys
addroldsk,1, addr

old
sk,2 (required to redeem the two input coins). To

ensure that cold1 , cold2 have been previously minted, the Pour
algorithm also takes as input the Merkle root rt (allegedly,
equal to the root of Merkle tree over all coin commitments so
far), along with two authentication paths path1, path2 for the
two coin commitments cm(cold1), cm(cold2). Two input values
vnew1 , vnew2 specify the values of two new anonymous coins
cnew1 , cnew2 to be generated, and two input address public keys
addrnewpk,1, addr

new
pk,2 specify the recipients of cnew1 , cnew2 . A third

value, vpub, specifies the amount to be publicly spent (e.g.,
to redeem coins or pay transaction fees). The sum of output
values v1 + v2 + vpub must be equal to the sum of the values
of the input coins (and cannot exceed vmax). Finally, the Pour
algorithm also receives an arbitrary string info, which is bound
into the output pour transaction txPour.

The Pour algorithm outputs two new coins cnew1 , cnew2

and a pour transaction txPour. The transaction txPour equals
(rt, snold1 , snold2 , cmnew

1 , cmnew
2 , vpub, info, ∗), where cmnew

1 ,
cmnew

2 are the two coin commitments of the two output coins,
and ∗ denotes other (implementation-dependent) information.
Crucially, txPour reveals only one currency value, the public
value vpub (which may be zero); it does not reveal the payment
addresses or values of the old or new coins.

Verifying transactions. The algorithm VerifyTransaction
checks the validity of a transaction:

VerifyTransaction
• INPUTS:

– public parameters pp
– a (mint or pour) transaction tx
– the current ledger L

• OUTPUTS: bit b, equals 1 iff the transaction is valid

Both mint and pour transactions must be verified before being
considered well-formed. In practice, transactions can be verified
by the nodes in the distributed system maintaining the ledger,
as well as by users who rely on these transactions.

Receiving coins. The algorithm Receive scans the ledger and
retrieves unspent coins paid to a particular user address:

Receive
• INPUTS:

– recipient address key pair (addrpk, addrsk)
– the current ledger L

• OUTPUTS: set of (unspent) received coins

When a user with address key pair (addrpk, addrsk) wishes to
receive payments sent to addrpk, he uses the Receive algorithm
to scan the ledger. For each payment to addrpk appearing in the
ledger, Receive outputs the corresponding coins whose serial
numbers do not appear on the ledger L. Coins received in
this way may be spent, just like minted coins, using the Pour
algorithm. (We only require Receive to detect coins paid to
addrpk via the Pour algorithm and not also detect coins minted
by the user himself.)

Next, we describe completeness (Section III-C) and security
(Section III-D).

C. Completeness

Completeness of a DAP scheme requires that unspent coins
can be spent. More precisely, consider a ledger sampler S
outputting a ledger L. If c1 and c2 are two coins whose coin
commitments appear in (valid) transactions on L, but their
serial numbers do not appear in L, then c1 and c2 can be
spent using Pour. Namely, running Pour results in a pour
transaction txPour that VerifyTransaction accepts, and the new
coins can be received by the intended recipients (by using
Receive); moreover, txPour correctly records the intended vpub
and transaction string info. This property is formalized via an
incompleteness experiment INCOMP.

Definition III.1. A DAP scheme Π = (Setup,CreateAddress,
Mint,Pour,VerifyTransaction,Receive) is complete if no
polynomial-size ledger sampler S wins INCOMP with more
than negligible probability.

D. Security

Security of a DAP scheme is characterized by three prop-
erties, which we call ledger indistinguishability, transaction
non-malleability, and balance.

Definition III.2. A DAP scheme Π = (Setup,CreateAddress,
Mint,Pour,VerifyTransaction,Receive) is secure if it satisfies
ledger indistinguishability, transaction non-malleability, and
balance.

Below, we provide an informal overview of each property,
and defer formal definitions to the extended version of this
paper [26].

Each property is formalized as a game between an adversary
A and a challenger C. In each game, the behavior of honest
parties is realized via a DAP scheme oracle ODAP, which
maintains a ledger L and provides an interface for executing
CreateAddress, Mint, Pour and Receive algorithms for honest
parties. To elicit behavior from honest parties, A passes a query
to C, which (after sanity checks) proxies the query to ODAP.
For each query that requests an honest party to perform an
action, A specifies identities of previous transactions and the
input values, and learns the resulting transaction, but not any of
the secrets or trapdoors involved in producing that transaction.
The oracle ODAP also provides an Insert query that allows A
to directly add aribtrary transactions to the ledger L.

466

345

Approved for Public Release; Distribution Unlimited.

Ledger indistinguishability. This property captures the
requirement that the ledger reveals no new information to
the adversary beyond the publicly-revealed information (values
of minted coins, public values, information strings, total number
of transactions, etc.), even when the adversary can adaptively
induce honest parties to perform DAP operations of his choice.
That is, no bounded adversary A can distinguish between two
ledgers L0 and L1, constructed by A using queries to two
DAP scheme oracles, when the queries to the two oracles are
publicly consistent: they have matching type and are identical
in terms of publicly-revealed information and the information
related to addresses controlled by A.

Ledger indistinguishability is formalized by an experiment
L-IND that proceeds as follows. First, a challenger samples a
random bit b and initializes two DAP scheme oracles ODAP

0

and ODAP
1 , maintaining ledgers L0 and L1. Throughout, the

challenger allows A to issue queries to ODAP
0 and ODAP

1 , thus
controlling the behavior of honest parties on L0 and L1. The
challenger provides the adversary with the view of both ledgers,
but in randomized order: LLeft := Lb and LRight := L1−b. The
adversary’s goal is to distinguish whether the view he sees
corresponds to (LLeft, LRight) = (L0, L1), i.e. b = 0, or to
(LLeft, LRight) = (L1, L0), i.e. b = 1.

At each round of the experiment, the adversary issues queries
in pairs Q,Q′ of matching query type. If the query type is
CreateAddress, then the same address is generated at both
oracles. If it is to Mint, Pour or Receive, then Q is forwarded
to L0 and Q′ to L1; for Insert queries, query Q is forwarded
to LLeft and Q′ is forwarded to LRight. The adversary’s queries
are restricted in the sense that they must maintain the public
consistency of the two ledgers. For example, the public values
for Pour queries must be the same, as well as minted amounts
for Mint queries.

At the conclusion of the experiment, A outputs a guess b′,
and wins when b = b′. Ledger indistinguishability requires that
A wins L-IND with probability at most negligibly greater than
1/2.
Transaction non-malleability. This property requires that
no bounded adversary A can alter any of the data stored
within a (valid) pour transaction txPour. This transaction non-
malleability prevents malicious attackers from modifying others’
transactions before they are added to the ledger (e.g., by re-
targeting the Basecoin public output of a pour transaction).

Transaction non-malleability is formalized by an experiment
TR-NM, in which A adaptively interacts with a DAP scheme
oracle ODAP and then outputs a pour transaction tx∗. Letting
T denote the set of pour transactions returned by ODAP, and
L denote the final ledger, A wins the game if there exists
tx ∈ T , such that (i) tx∗ 6= tx; (ii) tx∗ reveals a serial number
contained in tx; and (iii) both tx and tx∗ are valid with respect
to the ledger L′ containing all transactions preceding tx on L.
In other words, A wins the game if tx∗ manages to modify
some previous pour transaction to spend the same coin in a
different way.

Transaction non-malleability requires that A wins TR-NM
with only negligible probability. (Note that A can of course

produce valid pour transactions that are unrelated to those in T ;
the condition that tx∗ reveals a serial number of a previously-
spent coin captures non-malleability.)

Balance. This property requires that no bounded adversary
A can own more money than what he minted or received via
payments from others.

Balance is formalized by an experiment BAL, in which A
adaptively interacts with a DAP scheme oracle ODAP and then
outputs a set of coins Scoin. Letting Saddr be set of addresses
returned by CreateAddress queries (i.e., addresses of “honest”
users), A wins the game if the total value he can spend or
has spent (either as coins or Basecoin public outputs) is
greater than the value he has received or mined. That is, A
wins if vUnspent + vBasecoin + vA→ADDR > vMint + vADDR→A
where: (i) vUnspent is the total value of unspent coins in Scoin;
(ii) vBasecoin is the total value of public outputs placed by A on
the ledger; (iii) vMint is the total value of A’s mint transactions;
(iv) vADDR→A is the total value of payments received by A
from addresses in Saddr; (v) vA→ADDR is the total value of
payments sent by A to addresses in Saddr.

Balance requires that A wins BAL with only negligible
probability.

IV. CONSTRUCTION OF A DECENTRALIZED ANONYMOUS
PAYMENT SCHEME

We show how to construct a DAP scheme (introduced
in Section III) using zk-SNARKs and other building blocks.
Later, in Section V, we give a concrete instantiation of this
construction.

A. Cryptographic building blocks

We first introduce notation for the standard cryptographic
building blocks that we use. We assume familiarity with the
definitions of these building blocks; for more details, see, e.g.,
[27]. Throughout, λ denotes the security parameter.

Collision-resistant hashing. We use a collision-resistant hash
function CRH : {0, 1}∗ → {0, 1}O(λ).

Pseudorandom functions. We use a pseudorandom function
family PRF = {PRFx : {0, 1}∗ → {0, 1}O(λ)}x where x de-
notes the seed. From PRFx, we derive three “non-overlapping”
pseudorandom functions, chosen arbitrarily as PRFaddr

x (z) :=
PRFx(00‖z) , PRFsn

x (z) := PRFx(01‖z) , PRFpk
x (z) :=

PRFx(10‖z). Furthermore, we assume that PRFsn is also
collision resistant, in the sense that it is infeasible to find
(x, z) 6= (x′, z′) such that PRFsn

x (z) = PRFsn
x′ (z′).

Statistically-hiding commitments. We use a commitment
scheme COMM where the binding property holds computa-
tionally, while the hiding property holds statistically. It is
denoted {COMMx : {0, 1}∗ → {0, 1}O(λ)}x where x denotes
the commitment trapdoor. Namely, to reveal a commitment cm
to a value z, it suffices to provide z and the trapdoor x; then
one can check that cm = COMMx(z).

One-time strongly-unforgeable digital signatures. We use a
digital signature scheme Sig = (Gsig,Ksig,Ssig,Vsig) that works
as follows.

467

346

Approved for Public Release; Distribution Unlimited.

• Gsig(1λ)→ ppsig. Given a security parameter λ (presented
in unary), Gsig samples public parameters ppenc for the
encryption scheme.

• Ksig(ppsig) → (pksig, sksig). Given public parameters ppsig,
Ksig samples a public key and a secret key for a single user.

• Ssig(sksig,m)→ σ. Given a secret key sksig and a message
m, Ssig signs m to obtain a signature σ.

• Vsig(pksig,m, σ)→ b. Given a public key pksig, message m,
and signature σ, Vsig outputs b = 1 if the signature σ is valid
for message m; else it outputs b = 0.

The signature scheme Sig satisfies the security property of
one-time strong unforgeability against chosen-message attacks
(SUF-1CMA security).
Key-private public-key encryption. We use a public-key
encryption scheme Enc = (Genc,Kenc, Eenc,Denc) that works
as follows.
• Genc(1λ)→ ppenc. Given a security parameter λ (presented

in unary), Genc samples public parameters ppenc for the
encryption scheme.

• Kenc(ppenc)→ (pkenc, skenc). Given public parameters ppenc,
Kenc samples a public key and a secret key for a single user.

• Eenc(pkenc,m)→ c. Given a public key pkenc and a message
m, Eenc encrypts m to obtain a ciphertext c.

• Denc(skenc, c)→ m. Given a secret key skenc and a ciphertext
c, Denc decrypts c to produce a message m (or ⊥ if
decryption fails).

The encryption scheme Enc satisfies two security properties:
(i) ciphertext indistinguishability under chosen-ciphertext attack
(IND-CCA security); and (ii) key indistinguishability under
chosen-ciphertext attack (IK-CCA security). While the first
property is standard, the second is less known; informally,
IK-CCA requires that ciphertexts cannot be linked to the public
key used to encrypt them, or to other ciphertexts encrypted
with the same public key. For definitions, we refer the reader
to [21].

B. zk-SNARKs for pouring coins

As outlined in Section I-B, our construction invokes a
zk-SNARK for a specific NP statement, POUR, which we now
define. We first recall the context motivating POUR. When a
user u pours “old” coins cold1 , cold2 into new coins cnew1 , cnew2 ,
a corresponding pour transaction

txPour = (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗)
is generated. In our construction, we need to provide evidence in
“∗” that various conditions were respected by the pour operation.
Concretely, txPour should demonstrate that (i) u owns cold1 , cold2 ;
(ii) coin commitments for cold1 , cold2 appear somewhere on the
ledger; (iii) the revealed serial numbers snold1 , snold2 are of
cold1 , cold2 ; (iv) the revealed coin commitments cmnew

1 , cmnew
2

are of cnew1 , cnew2 ; (v) balance is preserved. Our construction
achieves this by including a zk-SNARK proof πPOUR for the
statement POUR which checks the above invariants (as well as
others needed for non-malleability).
The statement POUR. Concretely, the NP statement POUR
is defined as follows.

• Instances are of the form ~x = (rt, snold1 , snold2 , cmnew
1 , cmnew

2 ,
vpub, hSig, h1, h2). Thus, an instance ~x specifies a root rt for
a CRH-based Merkle tree (over the list of commitments so
far), the two serial numbers of the consumed coins, two coin
commitments for the two new coins, a public value, and
fields hSig, h1, h2 used for non-malleability.

• Witnesses are of the form ~a = (path1, path2, c
old
1 , cold2 ,

addroldsk,1, addr
old
sk,2, c

new
1 , cnew2) where, for each i ∈ {1, 2}:

coldi = (addroldpk,i, v
old
i , ρoldi , roldi , soldi , cmold

i) ,

cnewi = (addrnewpk,i, v
new
i , ρnewi , rnewi , snewi , cmnew

i)

for the same cmnew
i as in ~x,

addroldpk,i = (aoldpk,i, pk
old
enc,i) ,

addrnewpk,i = (anewpk,i, pk
new
enc,i) ,

addroldsk,i = (aoldsk,i, sk
old
enc,i) .

Thus, a witness ~a specifies authentication paths for the two
new coin commitments, the entirety of coin information
about both the old and new coins, and address secret keys
for the old coins.

Given a POUR instance ~x, a witness ~a is valid for ~x if the
following holds:
1) For each i ∈ {1, 2}:

a) The coin commitment cmold
i of coldi appears on the

ledger, i.e., pathi is a valid authentication path for
leaf cmold

i with respect to root rt, in a CRH-based
Merkle tree.

b) The address secret key aoldsk,i matches the address public
key of coldi , i.e., aoldpk,i = PRFaddr

aoldsk,i
(0).

c) The serial number snoldi of coldi is computed correctly,
i.e., snoldi = PRFsn

aoldsk,i
(ρoldi).

d) The coin coldi is well-formed, i.e., cmold
i =

COMMsoldi
(COMMroldi

(aoldpk,i‖ρoldi)‖voldi).
e) The coin cnewi is well-formed, i.e., cmnew

i =
COMMsnewi

(COMMrnewi
(anewpk,i‖ρnewi)‖vnewi).

f) The address secret key aoldsk,i ties hSig to hi, i.e., hi =

PRFpk

aoldsk,i

(hSig).

2) Balance is preserved: vnew1 +vnew2 +vpub = vold1 +vold2 (with
vold1 , vold2 ≥ 0 and vold1 + vold2 ≤ vmax).

Recall that in this paper zk-SNARKs are relative to the
language of arithmetic circuit satisfiability (see Section II);
thus, we express the checks in POUR via an arithmetic circuit,
denoted CPOUR. In particular, the depth dtree of the Merkle
tree needs to be hardcoded in CPOUR, and we thus make it
a parameter of our construction (see below); the maximum
number of supported coins is then 2dtree .

C. Algorithm constructions

We proceed to describe the construction of the DAP scheme
Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,
Receive) whose intuition was given in Section I-B. Figure 2
gives the pseudocode for each one of the six algorithms in Π,
in terms of the building blocks introduced in Section IV-A and
Section IV-B. In the construction, we hardcode two quantities:

468

347

Approved for Public Release; Distribution Unlimited.

Setup
• INPUTS: security parameter λ
• OUTPUTS: public parameters pp
1) Construct CPOUR for POUR at security λ.
2) Compute (pkPOUR, vkPOUR) := KeyGen(1λ, CPOUR).
3) Compute ppenc := Genc(1λ).
4) Compute ppsig := Gsig(1λ).
5) Set pp := (pkPOUR, vkPOUR, ppenc, ppsig).
6) Output pp.

CreateAddress
• INPUTS: public parameters pp
• OUTPUTS: address key pair (addrpk, addrsk)
1) Compute (pkenc, skenc) := Kenc(ppenc).
2) Randomly sample a PRFaddr seed ask.
3) Compute apk = PRFaddr

ask
(0).

4) Set addrpk := (apk, pkenc).
5) Set addrsk := (ask, skenc).
6) Output (addrpk, addrsk).

Mint
• INPUTS:

– public parameters pp
– coin value v ∈ {0, 1, . . . , vmax}
– destination address public key addrpk

• OUTPUTS: coin c and mint transaction txMint
1) Parse addrpk as (apk, pkenc).
2) Randomly sample a PRFsn seed ρ.
3) Randomly sample two COMM trapdoors r, s.
4) Compute k := COMMr(apk‖ρ).
5) Compute cm := COMMs(v‖k).
6) Set c := (addrpk, v, ρ, r, s, cm).
7) Set txMint := (cm, v, ∗), where ∗ := (k, s).
8) Output c and txMint.

VerifyTransaction
• INPUTS:

– public parameters pp
– a (mint or pour) transaction tx
– the current ledger L

• OUTPUTS: bit b, equals 1 iff the transaction is valid
1) If given a mint transaction tx = txMint:

a) Parse txMint as (cm, v, ∗), and ∗ as (k, s).
b) Set cm′ := COMMs(v‖k).
c) Output b := 1 if cm = cm′, else output b := 0.

2) If given a pour transaction tx = txPour:
a) Parse txPour as (rt, snold1 , snold2 , cmnew

1 , cmnew
2 , vpub, info, ∗), and ∗ as

(pksig, h1, h2, πPOUR,C1,C2, σ).
b) If snold1 or snold2 appears on L (or snold1 = snold2), output b := 0.
c) If the Merkle root rt does not appear on L, output b := 0.
d) Compute hSig := CRH(pksig).
e) Set ~x := (rt, snold1 , snold2 , cmnew

1 , cmnew
2 , vpub, hSig, h1, h2).

f) Set m := (~x, πPOUR, info,C1,C2)
g) Compute b := Vsig(pksig,m, σ).
h) Compute b′ := Verify(vkPOUR, ~x, πPOUR), and output b ∧ b′.

Pour
• INPUTS:

– public parameters pp
– the Merkle root rt
– old coins cold1 , cold2
– old addresses secret keys addroldsk,1, addr

old
sk,2

– path path1 from commitment cm(cold1) to root rt,
path path2 from commitment cm(cold2) to root rt

– new values vnew1 , vnew2
– new addresses public keys addrnewpk,1, addr

new
pk,2

– public value vpub
– transaction string info

• OUTPUTS: new coins cnew1 , cnew2 and pour transaction txPour
1) For each i ∈ {1, 2}:

a) Parse coldi as (addroldpk,i, v
old
i , ρoldi , roldi , soldi , cmold

i).
b) Parse addroldsk,i as (aoldsk,i, sk

old
enc,i).

c) Compute snoldi := PRFsn
aold
sk,i

(ρoldi).

d) Parse addrnewpk,i as (anewpk,i, pk
new
enc,i).

e) Randomly sample a PRFsn seed ρnewi .
f) Randomly sample two COMM trapdoors rnewi , snewi .
g) Compute knewi := COMMrnewi

(anewpk,i‖ρnewi).
h) Compute cmnew

i := COMMsnewi
(vnewi ‖knewi).

i) Set cnewi := (addrnewpk,i, v
new
i , ρnewi , rnewi , snewi , cmnew

i).
j) Set Ci := Eenc(pknewenc,i, (v

new
i , ρnewi , rnewi , snewi)).

2) Generate (pksig, sksig) := Ksig(ppsig).
3) Compute hSig := CRH(pksig).
4) Compute h1 := PRFpk

aold
sk,1

(hSig) and h2 := PRFpk

aold
sk,2

(hSig).

5) Set ~x := (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, hSig, h1, h2).
6) Set ~a := (path1, path2, c

old
1 , cold2 , addroldsk,1, addr

old
sk,2, c

new
1 , cnew2).

7) Compute πPOUR := Prove(pkPOUR, ~x,~a).
8) Set m := (~x, πPOUR, info,C1,C2).
9) Compute σ := Ssig(sksig,m).

10) Set txPour := (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where
∗ := (pksig, h1, h2, πPOUR,C1,C2, σ).

11) Output cnew1 , cnew2 and txPour.

Receive
• INPUTS:

– public parameters pp
– recipient address key pair (addrpk, addrsk)
– the current ledger L

• OUTPUTS: set of received coins
1) Parse addrpk as (apk, pkenc).
2) Parse addrsk as (ask, skenc).
3) For each Pour transaction txPour on the ledger:

a) Parse txPour as (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗),
and ∗ as (pksig, h1, h2, πPOUR,C1,C2, σ).

b) For each i ∈ {1, 2}:
i) Compute (vi, ρi, ri, si) := Denc(skenc,Ci).

ii) If Denc’s output is not ⊥, verify that:
• cmnew

i equals COMMsi (vi‖COMMri (apk‖ρi));
• sni := PRFsn

ask
(ρi) does not appear on L.

iii) If both checks succeed, output
ci := (addrpk, vi, ρi, ri, si, cm

new
i).

Fig. 2: Construction of a DAP scheme using zk-SNARKs and other ingredients.

the maximum value of a coin, vmax, and the depth of the
Merkle tree, dtree.

D. Completeness and security

Our main theorem states that the above construction is indeed
a DAP scheme.

Theorem IV.1. The tuple Π = (Setup,CreateAddress,Mint,
Pour,VerifyTransaction,Receive), as defined in Section IV-C,

is a complete (cf. Definition III.1) and secure (cf. Defini-
tion III.2) DAP scheme.

We provide a proof of Theorem IV.1 in the extended version of
this paper [26]. We note that our construction can be modified to
yield statistical (i.e., everlasting) anonymity; see the discussion
in the extension section of the full version of this paper.

Remark (trusted setup). Security of Π relies on a trusted party

469

348

Approved for Public Release; Distribution Unlimited.

running Setup to generate the public parameters (once and for
all). This trust is needed for the transaction non-malleability
and balance properties but not for ledger indistinguishability.
Thus, even if a powerful espionage agency were to corrupt
the setup, anonymity will still be maintained. Moreover, if
one wishes to mitigate the trust requirements of this step, one
can conduct the computation of Setup using secure multiparty
computation techniques; we leave this to future work.

V. ZEROCASH

We describe a concrete instantiation of a DAP scheme; this
instantiation forms the basis of Zerocash. Later, in Section VI,
we discuss how Zerocash can be integrated with existing ledger-
based currencies.

A. Instantiation of building blocks

We instantiate the DAP scheme construction from Section IV
(see Figure 2), aiming at a level of security of 128 bits. Doing
so requires concrete choices, described next.

CRH,PRF,COMM from SHA256. LetH be the SHA256
compression function, which maps a 512-bit input to a 256-
bit output. We mostly rely on H, rather than the “full”
hash, since this suffices for our fixed-size single-block inputs,
and it simplifies the construction of CPOUR. We instantiate
CRH,PRF,COMM via H (under suitable assumptions on H).

First, we instantiate the collision-resistant hash function CRH
as H(z) for z ∈ {0, 1}512; this function compresses “two-to-
one”, so it can be used to construct binary Merkle trees.13

Next, we instantiate the pseudorandom function PRFx(z) as
H(x‖z), with x ∈ {0, 1}256 as the seed, and z ∈ {0, 1}256 as
the input.14 Thus, the derived functions are PRFaddr

x (z) :=
H(x‖00‖z), PRFsn

x (z) := H(x‖01‖z) and PRFpk
x (z) :=

H(x‖10‖z), with x ∈ {0, 1}256 and z ∈ {0, 1}254.
As for the commitment scheme COMM, we only use it in

the following pattern:

k := COMMr(apk‖ρ)

cm := COMMs(v‖k)

Due to our instantiation of PRF, apk is 256 bits. So we can
set ρ also to 256 bits and r to 256 + 128 = 384 bits; then we
can compute k := COMMr(apk‖ρ) as H(r‖[H(apk‖ρ)]128).
Above, [·]128 denotes that we are truncating the 256-bit string
to 128 bits (say, by dropping least-significant bits, as in our
implementation). Heuristically, for any string x ∈ {0, 1}128,
the distribution induced by H(r‖x) is 2−128-close to uniform,
and this forms the basis of the statistically-hiding property. For
computing cm, we set coin values to be 64-bit integers (so that,
in particular, vmax = 264 − 1 in our implementation), and then
compute cm := COMMs(v‖k) as H(k‖0192‖v). Noticeably,

13A single exception: we still compute hSig according to the full hash
SHA256, rather than its compression function, because there is no need for
this computation to be verified by CPOUR.

14This assumption is reminiscent of previous works analyzing the security
of hash-based constructions (e.g., [28]). However in this work we assume
that a portion of the compression function is the seed for the pseudorandom
function, rather than using the chaining variable as in [28].

above we are ignoring the commitment randomness s. The
reason is that we already know that k, being the output of a
statistically-hiding commitment, can serve as randomness for
the next commitment scheme.
Instantiating the NP statement POUR. The above choices
imply a concrete instantiation of the NP statement POUR
(see Section IV-B). Specifically, in our implementation, POUR
checks that the following holds, for each i ∈ {1, 2}:
• pathi is an authentication path for leaf cmold

i with respect
to root rt, in a CRH-based Merkle tree;

• aoldpk,i = H(aoldsk,i‖0256);
• snoldi = H(aoldsk,i‖01‖[ρoldi]254);
• cmold

i = H(H(roldi ‖[H(aoldpk,i‖ρoldi)]128)‖0192‖voldi);
• cmnew

i = H(H(rnewi ‖[H(anewpk,i‖ρnewi)]128)‖0192‖vnewi); and
• hi = H(aoldsk,i‖10‖[hSig]254).
Moreover, POUR checks that vnew1 + vnew2 + vpub = vold1 + vold2 ,
with vold1 , vold2 ≥ 0 and vold1 + vold2 < 264.

Finally, as mentioned, in order for CPOUR to be well-defined,
we need to fix a Merkle tree depth dtree. In our implementation,
we fix dtree = 64, and thus support up to 264 coins.
Instantiating Sig. For the signature scheme Sig, we use
ECDSA to retain consistency and compatibility with the
existing bitcoind source code. However, standard ECDSA is
malleable: both (r, s) and (r,−s) verify as valid signatures. We
use a non-malleable variant, where s is restricted to the “lower
half” of field elements. While we are not aware of a formal
SUF-CMA proof for this variant, its use is consistent with
proposals to resolve Bitcoin transaction malleability [29].15

Instantiating Enc. For the encryption scheme Enc, we use
the key-private Elliptic-Curve Integrated Encryption Scheme
(ECIES) [30, 31]; it is one of the few standardized key-private
encryption schemes with available implementations.

For further details about efficiently realizing these in the
arithmetic circuit for POUR, see the full version of this paper.

VI. INTEGRATION WITH EXISTING LEDGER-BASED
CURRENCIES

Zerocash can be deployed atop any ledger (even one main-
tained by a central bank.) Here, we briefly detail integration
with the Bitcoin protocol. Unless explicitly stated otherwise,
in the following section when referring to Bitcoin, and its unit
of account bitcoin (plural bitcoins), we mean the underlying
protocol and software, not the currency system. (The discussion
holds, with little or no modification, for many forks of Bitcoin,
a.k.a. “altcoins”, such as Litecoin.)

By introducing new transaction types and payment semantics,
Zerocash breaks compatibility with the Bitcoin network. While
Zerocash could be integrated into Bitcoin (the actual currency
and its supporting software) via a “flag day” where a super-
majority of Bitcoin miners simultaneously adopt the new
software, we neither expect nor advise such integration in the
near future and suggest using Zerocash in a separate altcoin.

15In practice, one might replace this ECDSA variant with an EC-Schnorr
signature satisfying SUF-CMA security with proper encoding of EC group
elements; the performance would be similar.

470

349

Approved for Public Release; Distribution Unlimited.

Integrating Zerocash into Bitcoin consists of adding a new
transaction type, Zerocash transactions, and modifying the
protocol and software to invoke Zerocash’s DAP interface to
create and verify these transactions. Two approaches to doing
so are described next, followed by a discussion of anonymizing
the network layer.

A. Integration by replacing the base currency

One approach is to alter the underlying system so that
all monetary transactions are done using Zerocash, i.e., by
invoking the DAP interface and writing/reading the associated
transactions in the distributed ledger.

As seen in Section III, this suffices to offer the core
functionality of payments, minting, merging, splitting, etc.,
while assuring users that all transactions using this currency
are anonymous. However, this has several drawbacks: all
transactions incur the cost of generating a zk-SNARK proof;
the scripting feature of Bitcoin is lost; and Bitcoin’s ability to
spend unconfirmed transactions is lost.

B. Integration by hybrid currency

A different approach is to extend Bitcoin with a parallel,
anonymized currency of “zerocoins,” existing alongside bit-
coins, using the same ledger, and with the ability to convert
freely between the two. The behavior and functionality of
regular bitcoins is unaltered; in particular, they may support
functionality such as scripting.

In this approach, the Bitcoin ledger consists of Bitcoin-style
transactions, containing inputs and outputs [20]. Each input is
either a pointer to an output of a previous transaction (as in plain
Bitcoin), or a Zerocash pour transaction (which contributes its
public value, vpub, of bitcoins to this transaction). Outputs
are either an amount and destination public address/script
(as in plain Bitcoin), or a Zerocash mint transaction (which
consumes the input bitcoins to produce zerocoins). The usual
invariant over bitcoins is maintained and checked in plain
view: the sum of bitcoin inputs (including pours’ vpub) must
be at least the sum of bitcoin outputs (including mints’ v),
and any difference is offered as a transaction fee. However,
the accounting for zerocoins consumed and produced is done
separately and implicitly by the DAP scheme.

C. Additional anonymity considerations

Zerocash only anonymizes the transaction ledger. Network
traffic used to announce transactions, retrieve blocks, and
contact merchants will still leak identifying information (e.g.,
IP addresses). Thus users need some anonymity network to
safely use Zerocash. The most obvious way to do this is via
Tor [32]. Given that Zerocash transactions are not low latency
themselves, Mixnets (e.g., Mixminion [33]) are also a viable
way to add anonymity (and one that is not as vulnerable to
traffic analysis as Tor). Using mixnets that provide email-like
functionality has the added benefit of providing an out-of-band
notification mechanism as a replacement to Receive.

Additionally, although in theory all users have a single
view of the block chain, a powerful attacker could potentially

fabricate an additional block solely for a targeted user. Spending
any coins with respect to the updated Merkle tree in this
“poison-pill” block will uniquely identify the targeted user. To
mitigate such attacks, users should check with trusted peers
their view of the block chain and, for sensitive transactions,
only spend coins relative to blocks further back in the ledger
(since creating the illusion for multiple blocks is far harder).

VII. EXPERIMENTS

To measure the performance of Zerocash, we ran several
experiments. First, we benchmarked the performance of the
zk-SNARK for the NP statement POUR (Section VII-A) and
of the six DAP scheme algorithms (Section VII-B). Second,
we studied the impact of a higher block verification time via a
simulation of a Bitcoin network (Section VII-C).

A. Performance of zk-SNARKs for pouring coins

Our zk-SNARK for the NP statement POUR is obtained by
constructing an arithmetic circuit CPOUR for verifying POUR,
and then invoking the generic implementation of zk-SNARK
for arithmetic circuit satisfiability of [16] (see Section II-C).
The arithmetic circuit CPOUR is built from scratch and hand-
optimized to exploit nondeterministic verification and the large
field characteristic.

Figure 3 reports performance characteristics of the resulting
zk-SNARK for POUR. This includes three settings: single-
thread performance on a laptop machine; and single-thread
and multi-thread performance on a desktop machine. (The
time measurements are the average of 10 runs, with standard
deviation under 2.5%.)

B. Performance of Zerocash algorithms

In Figure 4 we report performance characteristics for each
of the six DAP scheme algorithms in our implementation. Note
that these numbers do not include the costs of maintaining the
Merkle tree because doing so is not the responsibility of these
algorithms. Moreover, for VerifyTransaction, we separately
report the cost of verifying mint and pour transactions and, in
the latter case, we exclude the cost of scanning L (as this cost
depends on L). Finally, for the case of Receive, we report the
cost to process a given pour transaction in L.

C. Large-scale network simulation

Because Bitcoin mining typically takes place on dedicated
GPUs or ASICs, the CPU resources to execute the DAP scheme
algorithms are often of minimal consequence to network
performance. There is one potential exception to this rule: the
VerifyTransaction algorithm must be run by all of the network
nodes in the course of routine transaction validation. The time
it takes to perform this verification can have significant impact
on network performance.

In the Zerocash implementation (as in Bitcoin), every Zero-
cash transaction is verified at each hop as it is forwarded though
the network and, potentially, again when blocks containing the
transaction are verified. Verifying a block consists of checking
the proof of work and validating the contained transactions.

471

350

Approved for Public Release; Distribution Unlimited.

Intel Intel
Core i7-2620M Core i7-4770

@ 2.70GHz @ 3.40GHz
12GB of RAM 16GB of RAM

1 thread 1 thread 8 threads
KeyGen Time 7min 48 s 5min 17 s 4min 11 s

Proving key 896MiB
Verification key 749B

Prove Time 2min 55 s 2min 2 s 1min 3 s
Proof 288B

Verify Time 8.5ms 5.4ms

Fig. 3: Performance of our zk-SNARK for the NP statement POUR.
(N = 10, σ ≤ 2.5%)

Intel Core i7-4770 @ 3.40GHz with 16GB of RAM (1 thread)
Setup Time 5min 17 s

pp 896MiB
CreateAddress Time 326.0ms

addrpk 343B
addrsk 319B

Mint Time 23 µs
Coin c 463B
txMint 72B

Pour Time 2min 2.01 s
txPour 996B16

VerifyTransaction mint 8.3 µs
pour (excludes L scan) 5.7ms

Receive Time (per pour tx) 1.6ms

Fig. 4: Performance of Zerocash algorithms.
(N = 10, σ ≤ 2.5%17)

Thus Zerocash transactions may take longer to spread though
the network and blocks containing Zerocash transactions may
take longer to verify. While we are concerned with the first
issue, the potential impact of the second issue is cause for
greater concern. This is because Zerocash transactions cannot
be spent until they make it onto the ledger.

Because blocks are also verified at each hop before they are
forwarded through the network, delays in block verification
slow down the propagation of new blocks through the network.
This causes nodes to waste CPU-cycles mining on out-of-date
blocks, reducing the computational power of the network and
making it easier to mount a “51% attack” (dishonest majority
of miners) on the distributed ledger.

It is a priori unclear whether this potential issue is a
real concern. Bitcoin caches transaction verifications, so a
transaction that was already verified when it propagated through
the network need not be verified again when it is seen in a
block. The unknown is what percentage of transactions in a
block are actually in any given node’s cache. We thus conduct
a simulation of the Bitcoin network to investigate both the
time it takes Zerocash transactions to make it onto the ledger
and establish the effects of Zerocash transactions on block
verification and propagation. We find that Zerocash transactions
can be spent reasonably quickly and that the effects of increased
block validation time are minimal.

Simulation design. Because Zerocash requires breaking
changes to the Bitcoin protocol, we cannot test our protocol in
the live Bitcoin network or even in the dedicated testnet. We
must run our own private testnet. For efficiency and cost reasons,
we would like to run as many Bitcoin nodes as possible on the
least amount of hardware. This raises two issues. First, reducing
the proof of work to practical levels while still preserving a
realistic rate of new blocks is difficult (especially on virtualized
hardware with variable performance). Second, the overhead of
zk-SNARK verification prevents us from running many Bitcoin

16346B of this are due to the ciphertexts C1,C2. Future implementations
may significantly reduce this overhead or discard these (cf. Section VI-C).

17We note that σ for both Mint and VerifyTransaction (mint) is higher
than 2.5% due to the variability at such short timescales. Respectively, it is
3.3 µs and 1.9 µs.

nodes on one virtualized server.
The frequency of new blocks can be modeled as a Poisson

process with a mean of Λblock seconds. To generate blocks
stochastically, we modify bitcoind to fix its block difficulty
at a trivial level and run a Poisson process, on the simulation
control server, which trivially mines a block on a randomly
selected node. This preserves the distribution of blocks, without
the computational overhead of a real proof of work. Another
Poisson process triggering mechanism, with a different mean
Λtx, introduces new transactions at random network nodes.

To differentiate which transactions represent normal Bitcoin
expenditures vs. which contain Zerocash pour transactions,
simulated Zerocash transactions pay a unique amount of
bitcoins (we set this value arbitrarily at 7 BTC). If a trans-
action’s output matches this preset value, and it is not in
verification cache, then our modified Bitcoin client inserts
a 10 ms delay simulating the runtime of VerifyTransaction.18

Otherwise transactions are processed as specified by the Bitcoin
protocol. We vary the amount of simulated Zerocash traffic by
varying the number of transactions with this particular output
amount. This minimizes code changes and estimates only the
generic impact of verification delays and not of any specific
implementation choice.

Methodology. Recent research [17] suggests that the Bitcoin
network contains 16,000 distinct nodes though most are likely
no longer participating: approximately 3,500 are reachable
at any given time. Each node has an average of 32 open
connections to randomly selected peers. As of November 2013,
the peak observed transaction rate for Bitcoin is slightly under
one transaction per second [34].

In our simulation, we use a 1000-node network in which
each node has an average of 32 peers, transactions are generated
with a mean of Λtx = 1 s, a duration of 1 hour, and a variable
percentage ε of Zerocash traffic. To allow for faster experiments,
instead of generating a block every 10 minutes as in Bitcoin,
we create blocks at an average of every Λblock = 150 s (as in
Litecoin, a popular altcoin).

18Subsequent optimizations lowered the cost of VerifyTransaction below
this, after our experiments.

472

351

Approved for Public Release; Distribution Unlimited.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0% 20% 40% 60% 80% 100%

ti
m

e
in

 s
ec

on
d

s

ε

Zerocash

(a) Transaction latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0% 20% 40% 60% 80% 100%

ti
m

e
in

 s
ec

on
d

s

ε

last node
every node

(b) Block propagation time

 0

 10

 20

 30

 40

 50

 60

 70

 80

0% 20% 40% 60% 80% 100%

ti
m

e
in

 m
il

li
se

co
nd

s

ε

Zerocash

(c) Block verification time

Fig. 5: The average values of the three metrics we study, as a function of ε, the percentage of transactions that are Zerocash transactions. Note
that, in (a), latency is undefined when ε = 0 and hence omitted.

We run our simulation for different traffic mixes, where
ε indicates the percentage of Zerocash transactions and ε ∈
{0%, 25%, 50%, 75%, 100%}. Each simulation is run on 200
Amazon EC2 general-purpose m1.medium instances, in one
region on a 10.10./16 private network. On each instance,
we deploy 5 instances of bitcoind.

Results. Transactions are triggered by a blocking function call
on the simulation control node that must connect to a random
node and wait for it to complete sending a transaction. Because
the Poisson process modeling transactions generates delays
between such calls and not between the exact points when the
node actuals sends the transactions, the actual transaction rate
is skewed. In our experiments the real transaction rate shifts
away from our target of one per second to an average of one
every 1.4 seconds.

In Figure 5 we plot three metrics for ε ∈ {0%, 25%, 50%,
75%, 100%}. Each is the average defined over the data from
the entire run of the simulation for a given ε (i.e., they include
multiple transactions and blocks).19 Transaction latency is the
interval between a transaction’s creation and its inclusion in
a block. Block propagation time comes in two flavors: 1) the
average time for a new block to reach a node computed over
the times for all nodes, and 2) the same average computed
over only the last node to see the block.

Block verification time is the average time, over all nodes,
required to verify a block. If verification caching was not
effective, we would expect to see a marked increase in both
block verification time and propagation time. Since blocks
occur on average every 150 s, and we expect approximately
one transaction each second, we should see 150 × 10 ms =
1500 ms of delay if all transactions were non-cached Zerocash
transactions. Instead, we see worst case 80 ms and conclude
caching is effective. This results in a negligible effect on block
propagation (likely because network operations dominate).

The time needed for a transaction to be confirmed, and hence

19Because our simulated Bitcoin nodes ran on shared EC2 instances, they
were subject to variable external load, limiting the benchmark precision. Still, it
clearly demonstrates that the mild additional delay does not cause catastrophic
network effects.

spendable, is roughly 190 s. For slower block generation rates
(e.g., Bitcoin’s block every 10 minutes) this should mean users
must wait only one block before spending received transactions.

VIII. OPTIMIZATIONS AND EXTENSIONS

See the extended version of this paper [26] for extensions
on everlasting anonymity, batched Merkle tree updates, faster
block propagation, and scaling to 264 serial numbers.

IX. CONCURRENT WORK

Danezis et al. [19] suggest using zk-SNARKs to reduce
proof size and verification time in Zerocoin. Our work differs
from [19] in both supported functionality and scalability.

First, [19]’s protocol, like Zerocoin, only supports fixed-value
coins, and is best viewed as a decentralized mix. Instead, we
define, construct, and implement a full-fledged decentralized
electronic currency, which provides anonymous payments of
any amount.

Second, in [19], the complexity of the zk-SNARK generator,
prover, and verifier all scale superlinearly in the number of
coins, because their arithmetic circuit computes, explicitly,
a product over all coins. In particular, the number of coins
“mixed together” for anonymity cannot be large. Instead, in our
construction, the respective complexities are polylogarithmic,
polylogarithmic, and constant in the number of coins; our
approach supports a practically-unbounded number of coins.

X. CONCLUSION

Decentralized currencies should ensure a user’s privacy from
his peers when conducting legitimate financial transactions.
Zerocash provides such privacy protection, by hiding user
identities, transaction amounts, and account balances from
public view. This, however, may be criticized for hampering
accountability, regulation, and oversight. Yet, Zerocash need
not be limited to enforcing the basic monetary invariants of
a currency system. The underlying zk-SNARK cryptographic
proof machinery is flexible enough to support a wide range of
policies. It can, for example, let a user prove that he paid his due
taxes on all transactions without revealing those transactions,
their amounts, or even the amount of taxes paid. As long

473

352

Approved for Public Release; Distribution Unlimited.

as the policy can be specified by efficient nondeterministic
computation using NP statements, it can (in principle) be
enforced using zk-SNARKs, and added to Zerocash. This
can enable privacy-preserving verification and enforcement
of a wide range of compliance and regulatory policies that
would otherwise be invasive to check directly or might be
bypassed by corrupt authorities. This raises research, policy,
and engineering questions over what policies are desirable and
practically realizable.

Another research question is what new functionality can
be realized by augmenting the capabilities already present in
Bitcoin’s scripting language with zk-SNARKs that allow fast
verification of expressive statements.

ACKNOWLEDGMENTS

We thank Amazon for their assistance and kind donation of
EC2 resources, and Gregory Maxwell for his advice regarding
the Bitcoin codebase. We thank Iddo Ben-Tov and the SCIPR
Lab members — Daniel Genkin, Lior Greenblat, Shaul Kfir,
Gil Timnat and Michael Riabzev — for inspiring discussions.

This work was supported by: Amazon.com through an AWS
in Education research grant; the Broadcom Foundation and
Tel Aviv University Authentication Initiative; the Center for
Science of Information (CSoI), an NSF Science and Technology
Center, under grant agreement CCF-0939370; the Check
Point Institute for Information Security; the U.S. Defense
Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under contract FA8750-
11-2-0211; the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number
240258; the Israeli Centers of Research Excellence I-CORE
program (center 4/11); the Israeli Ministry of Science and
Technology; the Office of Naval Research under contract
N00014-11-1-0470; the Simons Foundation, with a Simons
Award for Graduate Students in Theoretical Computer Science;
and the Skolkovo Foundation under grant agreement 6926059.

The views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense or
the U.S. Government.

REFERENCES

[1] D. Chaum, “Blind signatures for untraceable payments,” in CRYPTO
’82.

[2] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,”
in EUROCRYPT ’05.

[3] T. Sander and A. Ta-Shma, “Auditable, anonymous electronic cash,” in
CRYPTO ’99.

[4] F. Reid and H. Martin, “An analysis of anonymity in the Bitcoin system,”
in SocialCom/PASSAT ’11.

[5] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better - how to
make Bitcoin a better currency,” in FC ’12.

[6] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin
transaction graph,” ePrint 2012/584, 2012.

[7] G. Maxwell, “CoinJoin: Bitcoin privacy for the real world,” August
2013, bitcoin Forum. [Online]. Available: https://bitcointalk.org/index.
php?topic=279249.0

[8] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in SP ’13.

[9] J. Groth, “Short pairing-based non-interactive zero-knowledge arguments,”
in ASIACRYPT ’10.

[10] H. Lipmaa, “Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments,” in TCC ’12.

[11] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth, “Succinct
non-interactive arguments via linear interactive proofs,” in TCC ’13.

[12] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct NIZKs without PCPs,” in EUROCRYPT ’13.

[13] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio: nearly
practical verifiable computation,” in Oakland ’13.

[14] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “SNARKs
for C: verifying program executions succinctly and in zero knowledge,”
in CRYPTO ’13.

[15] H. Lipmaa, “Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes,” in ASIACRYPT ’13.

[16] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive arguments for a von Neumann architecture,” ePrint 2013/879.

[17] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin
network,” in P2P ’13.

[18] E. Ben-Sasson, “Universal and affordable computational integrity,” May
2013, bitcoin 2013: The Future of Payments. [Online]. Available:
http://www.youtube.com/watch?v=YRcPReUpkcU

[19] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
Coin: building Zerocoin from a succinct pairing-based proof system,”
in PETShop ’13. [Online]. Available: http://www0.cs.ucl.ac.uk/staff/G.
Danezis/papers/DanezisFournetKohlweissParno13.pdf

[20] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[21] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, “Key-privacy
in public-key encryption,” in ASIACRYPT ’01.

[22] D. Boneh and X. Boyen, “Secure identity based encryption without
random oracles,” in CRYPTO ’04.

[23] R. Gennaro, “Multi-trapdoor commitments and their applications to
proofs of knowledge secure under concurrent man-in-the-middle attacks,”
in CRYPTO ’04.

[24] C. Gentry and D. Wichs, “Separating succinct non-interactive arguments
from all falsifiable assumptions,” in STOC ’11.

[25] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in ITCS ’12.

[26] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from Bitcoin
(extended version),” Cryptology ePrint Archive, 2014.

[27] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
& Hall/CRC, 2007.

[28] M. Bellare, “New proofs for NMAC and HMAC: security without
collision-resistance,” in CRYPTO ’06.

[29] P. Wuille, “Proposed BIP for dealing with malleability,” Available at
https://gist.github.com/sipa/8907691, 2014.

[30] V. Shoup, “A proposal for an ISO standard for public key encryption
(version 2.1),” IACR E-Print Archive, 2001.

[31] Certicom Research, “SEC 1: Elliptic curve cryptography,” 2000. [Online].
Available: http://www.secg.org/collateral/sec1 final.pdf

[32] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in Security ’04.

[33] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: design of
a type III anonymous remailer protocol,” in SP ’03.

[34] T. B. Lee, “Bitcoin needs to scale by a factor of 1000 to compete
with Visa. here’s how to do it.” The Washington Post (http://www.
washingtonpost.com), November 2013.

474

353

Approved for Public Release; Distribution Unlimited.

Rational Zero: Economic Security for Zerocoin
with Everlasting Anonymity

Christina Garman, Matthew Green, Ian Miers, and Aviel D. Rubin

The Johns Hopkins University Department of Computer Science, Baltimore, USA
{cgarman, imiers, mgreen, rubin}@cs.jhu.edu

Abstract. Zerocoin proposed adding decentralized cryptographically
anonymous e-cash to Bitcoin. Given the increasing popularity of Bitcoin
and its reliance on a distributed pseudononymous public ledger, this
anonymity is important if only to provide the same minimal privacy
protections from nosy neighbors offered by conventional banking. Unfor-
tunately, at 25KB, the non-interactive zero-knowledge proofs for spending
a zerocoin are nearly prohibitively large. In this paper, we consider several
improvements. First, we strengthen Zerocoin’s anonymity guarantees,
making them independent of the size of these proofs. Given this freedom,
we explore several techniques for drastically reducing proof size while
ensuring that forging a single zerocoin is more difficult than the block
mining process used to maintain Bitcoin’s distributed ledger. Provided
a zerocoin is worth less than the reward for a Bitcoin block, forging a
coin is not an economically rational action. Hence we preserve Zerocoin’s
absolute anonymity guarantees while achieving drastic reductions in proof
size by limiting ourselves to security against rational attackers.

Keywords: Privacy, e-cash

1 Introduction

Bitcoin is an electronic currency built atop a distributed transaction ledger.
While Bitcoin has achieved widespread success, it has significant weaknesses
related to transaction privacy [16,21]. Zerocoin [17] attempts to address these
issues by extending Bitcoin with a new form of anonymous electronic cash. To
add privacy while retaining Bitcoin’s decentralized nature, Zerocoin uses a novel
construction based on digital commitments and efficient zero-knowledge proofs
that a commitment is in a list of commitments. While this construction achieves
strong anonymity and prevents double spending, it can incur significant costs. In
particular, to achieve cryptographically strong protection against double spending,
Zerocoin uses large “spend proofs” that grow rapidly as λ, the resistance of the
proofs to forgery, increases. Even for the modest λ = 80 security level (ensuring
forgery effort of 280 operations), Zerocoin spend proofs exceed 25KB. Since these
proofs must be stored in the block chain, the large size of these proofs makes it
challenging to deploy Zerocoin in practice.

In this work we explore extensions to Zerocoin that may substantially decrease
the size of these proofs. Our key observation is a need for revised assumptions.

354

Approved for Public Release; Distribution Unlimited.

2

Zerocoin was designed on the assumption that all proofs must by computationally
infeasible to forge. We observe that this requirement is, in a certain sense, an
anachronism of cryptographic formalism. For example, in the real world we
do not require that physical money be impossible to forge, merely that it be
impossible to forge while making a profit. Indeed this is already true of Zerocoin:
the Bitcoin block chain, upon which Zerocoin’s integrity depends, does not itself
provide strong cryptographic guarantees against powerful attackers. Instead, the
Bitcoin protocol depends on the weaker assumption that an attacker cannot
amass more than 50% of the Bitcoin network’s computational power.1 Thus in
some sense, cryptographically unforgeable zerocoins are simply impossible: even
if the Zerocoin primitives resist forgery, Bitcoin’s block chain can be manipulated
to provide the same effect. However, the standard game-based approaches of
the type used in the original security analysis of Zerocoin do not provide us any
insight into safely reducing the Zerocoin security parameter. Given that this
would offer a substantial performance improvements, it is interesting to consider
new methods of analysis.

A primary contribution of this paper is a new methodology for examining
the computational cost of forging non-interactive zero-knowledge proofs relative
to the computational costs of Bitcoin mining. Our main result is as follows: by
using the payout from mining a new block as a baseline, we can actually quantify
the cost of forging a non-interactive zero-knowledge proof. As a result, we are
able to construct game theoretic arguments for Zerocoin’s resistance to forgery
assuming a rational actor who wishes to profit from forging such a coin.

In and of itself, unfortunately, this new perspective does not allow us to lower
the security parameter λ as far as we would like nor, consequently, realize the
full reduction in proof size and increase in proof performance. To fully realize
these savings, we examine two different techniques for increasing the cost of coin
forgery without raising Zerocoin’s proof sizes. In our new model, the security
parameters are chosen based on economic considerations — such as the value of
a zerocoin.

An immediate concern with our new approach is that there exist other factors
that cannot be priced as easily as coin forgery. One such factor is the user’s
anonymity. There are no known techniques for pricing the value of a user’s long-
term transaction privacy, since this price is subjective and may vary from user
to user. Moreover, we cannot easily predict the future cost of de-anonymization
attacks. Indeed, since Zerocoin transcripts may be retained for long periods
of time, the cost of executing an offline attack on a user’s anonymity may
decrease enormously over time as new computational techniques (e.g., quantum
computers) become available. We must be careful in our protocol changes, since
even a minor weakening of the zero-knowledge characteristics of Zerocoin’s proofs
could have significant long-term impact on the anonymity of users. Thus a
necessary prerequisite of our above analysis is an explicit separation of Zerocoin’s
security as a real-world currency from its anonymity as a “pure” cryptographic
protocol.

1 Some recent results raise questions about this 50% number [9].

355

Approved for Public Release; Distribution Unlimited.

3

Fortunately we are able to address this concern in our work. In fact, through
some simple enhancements to the Zerocoin protocol, we are able to provide an
even stronger guarantee than what is provided by the original Zerocoin paper.
Specifically, our new construction ensures that proofs will provide long-term
statistical zero-knowledge even when the hash function they are instantiated with
proves to be non-ideal, i.e., it behaves very differently from a random oracle.2

Our analysis is somewhat unusual in that it applies only to the zero-knowledge
property of the proofs; we continue to analyze the soundness of the proofs under
the assumption of an ideal hash. The key benefit of our approach is that we are
able to retain the efficiency of the original Fiat-Shamir proofs while ensuring that
user anonymity is protected over long periods of time. This gives us everlasting
anonymity in the common reference string model.

Finally, as an independent contribution, we outline a construction for divisible
Zerocoin. The original Zerocoin protocol proposes a new form of electronic cash
in which individual coins all have the same value. While the Bitcoin-equivalent
value of each zerocoin can be adjusted by protocol convention (and multiple
denominations of Zerocoin can be instantiated simultaneously), this property
can still be quite restrictive. In this work we show how to modify the Zerocoin
protocol to create divisible coins, such that every zerocoin can contain an arbitrary
individual denomination which may subsequently be “subdivided” into new coins
of arbitrary value.

2 Background

2.1 Bitcoin

Bitcoin is a distributed e-cash system that operates without trusted parties or
signing authorities. Indeed, the only cryptographic keys necessary for the system
to operate are held by individual users and used to authenticate fund transfers.

At a high level, Bitcoin is a set of transaction semantics built on top of a
distributed ledger which is known as the block chain. The exact semantics of
the transactions are irrelevant here, so for a more detailed discussion of them
and the modifications necessary for Zerocoin, we direct the reader to the original
Zerocoin paper by Miers et al. [17] or the original Bitcoin paper [19]. Of extreme
importance to our proposed modifications to Zerocoin, however, is the mechanism
by which Bitcoin’s ledger is maintained. We detail it here.

Consider a version of Bitcoin where there were a fixed number of network
nodes. In this case, we could simply have the nodes vote on the correct version of
the ledger. Under the assumption that the majority of the nodes are honest, this
results in a correct ledger and hence a valid currency system. Effectively, this is
the consensus technique used in Byzantine systems. However, Bitcoin is not such

2 Specifically, we are concerned with future vulnerabilities in hash functions such as
SHA256 that might allow for practical attacks on the zero-knowledge property of
Fiat-Shamir proofs. While this concern seems rarified, existing analyses do not allow
us to rule out such attacks.

356

Approved for Public Release; Distribution Unlimited.

4

a closed network: anyone can download the software, fire up an instance, and
join the network. In particular, one individual can fire up numerous instances
and mount a Sybil attack, effectively stuffing the ballot box.

Bitcoin’s approach to solving this issue is perhaps most intuitively described as
the one-CPU-cyle-one-vote approach. Instead of having each node vote, consider
a version of Bitcoin that places a computational requirement on voting and
updating consensus. Mounting a Sybil attack would be costly. Bitcoin takes
this one step further and instead of voting, actually requires a computationally
intensive process to propose an update and has updates accepted only if they
add on to the maximally difficult set of updates. Under the assumption that the
majority of the computational power of the network is held by honest nodes and
the requirements that honest nodes only build updates on valid updates, the
longest chain of updates will be the correct consensus value of the ledger. Bitcoin
calls this process mining, and we describe it below.

In Bitcoin, each node competes to produce an update to the block chain,
known as a block, containing new transactions. The block contains a partial hash
collision over 1) the previous block hash (hence block chain), 2) the hash of the
transactions, and 3) a nonce. This proof of work is Hb(data||nonce) < t where t
is the difficulty target. The target is picked by the network every two weeks in
order to cause the rate at which blocks are created to average 10 minutes given
the network’s current computational power. As of November 2013, the current
difficulty is 609, 482, 679.89 ≈ 229. The number of expected hash calculations
required to generate a block is given as difficulty ∗ 232. As a result, it takes 261

expected hash calls to generate a single Bitcoin block. Bitcoin uses the double
application of SHA256 as its hash function Hb.

Bitcoin, however, goes yet one step further to ensure block chain integrity: a
block is not fully trusted until it has a certain number of confirmations (typically
six), meaning that there are six blocks on top of it. As a result, the effort required
to manipulate a block and completely ensure it stays on the block chain is at
least 261 ∗ 6 ≈ 263 hash calls.

2.2 Zero-Knowledge Proofs

In a zero-knowledge protocol [11] a user (the prover) proves a statement to
another party (the verifier) without revealing anything about the statement other
than that it is true.

A three-round example of a zero-knowledge protocol is often referred to
as a Sigma protocol because Σ represents the flow of the protocol. The three
steps can be described in the following manner: 1) commitment, 2) challenge,
and 3) response. A popular and well-known example of this is the technique of
Schnorr [22], used to prove knowledge of a discrete logarithm. The protocol works
as follows (Figure 1):

Given a cyclic group G of order q with generator g and y = gx, prove
knowledge of x.

357

Approved for Public Release; Distribution Unlimited.

5

Prover Verifier

Choose r ∈R Zq
Calculate t = gr

Send t−−−−→
Choose c ∈R Zq

Send c←−−−−
Calculate s = xc + r (mod q)

Send s−−−−→
Accept if gs = tyc

Figure 1: Schnorr protocol for proving knowledge of a discrete logarithm.

While zero-knowledge protocols are normally viewed in the “general cheating
verifier” setting, where no matter the strategy of the verifier he learns no additional
information, we can also consider the “honest verifier” (or semi-honest verifier)
setting. An honest verifier must follow the protocol specifications exactly but
maintains the ability to keep a record of the entire interaction [12]. This is of use
to us because the Fiat-Shamir heuristic [10] allows us to transform any three-
round (Sigma) honest-verifier zero-knowledge protocol into a non-interactive
(one-round) zero-knowledge proof of knowledge with the use of a hash function
modeled as a random oracle. We demonstrate an example of the application of
the Fiat-Shamir heuristic using the Schnorr protocol in Figure 2 below:

Prover Verifier

Choose r ∈R Zq
Calculate t = gr

Compute c = H(t)
Calculate s = xc + r (mod q)

Send (t,s)−−−−−−→
Compute c = H(t)
Accept if gs = tyc

Figure 2: The Fiat-Shamir heuristic as applied to the Schnorr protocol.

When referring to the aforementioned proofs we will use the notation of
Camenisch and Stadler [7]. For instance, NIZKPoK{(x, y) : h = gx ∧ c = gy}
denotes a non-interactive zero-knowledge proof of knowledge of the elements x
and y that satisfy both h = gx and c = gy. All values not enclosed in ()’s are
assumed to be known to the verifier.

2.3 Zerocoin

The original Zerocoin protocol added anonymous currency to Bitcoin that was
backed by bitcoins. A zerocoin was a commitment to a serial number S. Zerocoins
were minted when a user submitted a transaction spending a fixed amount of

358

Approved for Public Release; Distribution Unlimited.

6

bitcoins (e.g., 1 bitcoin) and outputting a new zerocoin. The bitcoins were placed
in an escrow pool and the new zerocoin added to a list of all zerocoins. Zerocoins
could be spent to withdraw the same fixed bitcoins from the escrow pool by
revealing the serial number of the coin and proving it came from the list of coins.
This proof was examined by the distributed network running Bitcoin and, if valid
and the serial number unused, the correct amount of bitcoins were transferred.
Specifically, the proof was a zero-knowledge proof that 1) some coin had that
serial number and 2) that that coin was on the list of minted coins. Because the
proof is zero-knowledge, any given coin spend cannot be traced to its withdrawal
and hence is anonymous.

The naive version of this proof, instantiated as “either this coin, or this coin,
or this coin, or . . . ”, is of size O(n). The principal cryptographic contribution
of the original paper was finding a compact representation of the list of coins
that still admitted a commitment scheme containing a serial number. Miers et al.
accomplished this by using a cryptographic accumulator [3] to represent the list
of coins as one group element, a proof due to Camenisch and Lysyanskaya [6] to
prove that a committed value is accumulated, and finally a double discrete log
proof [8] to prove that the committed value is actually a commitment to a serial
number. This results in a proof that is constant size regardless of the number of
coins on the list.

Unfortunately, the double discrete log proof is constructed using cut-and-
choose methods which effectively repeat a single proof multiple times to decrease
the probability of forgery. As a result, the proof is of size λ · 2k where k is the
size of a single field element and λ is the soundness parameter of the proof. For
1024 bit commitments and an 80 bit security level, this results in a 20KB double
discrete log proof and a total proof size (including the accumulator proof) of
25KB. Moreover, single threaded runtime for both verification and generation of
the proof runs in O(λ · k).

Finally, as the proofs for spending a zerocoin need to be publicly verifi-
able to allow the withdrawal of bitcoins form the escrow pool, they must be
non-interactive. To accomplish this, Zerocoin uses the Fiat-Shamir heuristic to
transform the above interactive proofs into non-interactive ones. Moreover, the
proof is actually used as a signature of knowledge, not just spending a coin,
but also signing the Bitcoin address where the withdrawn bitcoins should be
deposited.

3 Everlasting Anonymity

The original zero-knowledge proofs in Zerocoin were non-interactive Fiat-Shamir
proofs where both the soundness and zero-knowledge property held only in the
random oracle model. This is a rather large concern since, at some point in the
future, it seems likely SHA256 will be broken in a way that makes it utterly
unsuitable for instantiating a random oracle, just as MD5 and MD2 have been
broken. Old Zerocoin proofs using that function will still be around, and their
anonymity should be preserved if possible. Intuitively, this should not be an issue,
however, absent further analysis, one cannot be sure anonymity is maintained.

359

Approved for Public Release; Distribution Unlimited.

7

Rather than attempting such an analysis, we take the expedient of detailing a
simple modification to the proofs that, while still only achieving soundness in the
random oracle model, achieves at least statistical zero-knowledge in the common
reference string model. In the original (non-interactive) proofs, the challenge (i.e.,
the second move in a standard three-way “sigma” interactive zero-knowledge
proof) was obtained by hashing what would have been the first move in the
interactive version. In the random oracle model, a simulator can program a hash
function to output arbitrary results. Accordingly, such a simulator could induce
a verifier to accept a “proof” even though the simulator knew no witness to the
statement being proved. Thus the original proof was zero-knowledge. Obviously
when instantiated with an actual hash function, this property no longer strictly
holds.

Prover Verifier

Choose r ∈R Zq
Calculate t = gr

Compute c′ = H(t)
Choose r′ ∈R Zq
Calculate com = gc

′
hr

′
(mod p)

Compute c = H(com)
Calculate s = xc + r (mod q)

Send (t,com,r′,s)−−−−−−−−−−−→
Compute c′ = H(t)
Compute c = H(com)
Accept if gs = tyc and

com = gc
′
hr

′
(mod p)

Figure 3: Dishonest verifier Schnorr Protocol with Fiat-Shamir.

To fix this we propose applying a standard modification for converting from
(interactive) honest verifier zero-knowledge proofs to (interactive) non-honest
verifier proofs before applying the Fiat-Shamir heuristic: instead of making the
first move in the protocol public, first commit to it and then reveal the move only
after the challenge is output. Specifically, instead of hashing the first move of the
transcript to create a challenge value, we hash a commitment to (the hash of) the
first move of the transcript. See Figure 3 for an example using the Schnorr protocol.
As a result, any simulator who can control the common reference string can
construct the commitment scheme such that they can equivocate and decommit to
a first move that satisfies the generated challenge. This is not a typical approach
as Fiat-Shamir proofs rely on the random oracle model themselves. However, by
using this approach we get proofs that are at least statistical zero-knowledge in
the common reference string model, even if soundness still requires the random
oracle model, i.e, from the point of view of a privacy critical system, the proofs
fail safe.

360

Approved for Public Release; Distribution Unlimited.

8

4 Cost Effective Security Against Forgery and Double
Spending

Conceptually, payment systems are subject to three types of attacks: theft of funds,
forgery of funds, and double (or more) spending of legitimate attacker controlled
funds. These are major issues for both theoretical and extent currency and
payment systems, and there are a broad range of solutions which vary considerably
in terms of both cost and effectiveness. On one end of the spectrum, e-cash
schemes typically avoid all three attacks through the use of secure cryptographic
primitives which require a staggeringly prohibitive amount of computational
power to break. In contrast, on the decidedly low end of the spectrum, debit cards
in the US provide little-to-no security against theft/cloning. Instead they leverage
fraud detection and minimization procedures to get the costs of such attacks to
acceptable levels without imposing too high an overhead on transactions (e.g.,
verifying multiple forms of ID for every single transaction).

Certainly, the cryptographic approach is superior provided it is achievable with
little overhead. Unfortunately for Zerocoin, it is neither completely achievable
nor cheap: as mentioned previously, spends for even modest security parameters
reach 25KB and take 0.5 seconds to verify. Moreover, even if Zerocoin was
cryptographically secure against such attacks, Bitcoin, upon which it depends,
is not. Both double spends and forgery of zerocoins can be accomplished by
breaking Bitcoin and without ever touching Zerocoin’s underlying cryptographic
primitives.

However, the approaches used by centralized credit card companies are anti-
thetical to the decentralized nature of Bitcoin. Moreover, we prefer not to incur
the administrative overhead, merchant fees, and chargebacks inherent in the
fraud-management approach used by debit cards. Instead we opt for a middle
ground: we create cryptographic primitives that are not cost effective to break.

4.1 The Homo-Economicus Security Model

Homo-economicus is a species of rational and narrowly self-interested actors
typically found in economic papers. Since our construction provides everlasting
anonymity in the common reference string model, we can safely ignore the thorny
question of placing a monetary value on privacy and hence safely consider theft,
forgery, and double spending attacks under the assumption that our attacker
is a member of the species homo-economicus. This leads to a simple security
requirement: the expected return from stealing, forging, or double (or more)
spending a zerocoin should be less than the expected cost of mounting the
required attack. In general, while potentially promising, this model has some
large drawbacks. Estimating the real cost of a cryptographic attack is prohibitively
difficult, requiring both considerable work in the concrete security model and an
accurate cost function for generic computation. The theoretically elegant and
simple solution to our problem is not to alter the Zerocoin construction at all.
Instead, we would construct a game that, given an attacker who can forge a
zerocoin, extracts the computational effort required. One would then assign a

361

Approved for Public Release; Distribution Unlimited.

9

monetary value to this work and ensure it is worth more than the resulting forged
coin.

We make no such attempt here. Instead, we model our construction only in
the expected number of calls an attacker must make to a hash oracle and use the
reward for mining a Bitcoin block to establish the market value of computation.
While this approach is inherently linked to Bitcoin, it serves our limited purposes
well.

Of course, such a model discounts the possibility of someone who is not
financially motivated (e.g., a government) wanting to destroy the currency. While
this may be a legitimate concern, we note that an attacker who merely wants to
disrupt Zerocoin could also easily attack/block the underlying Bitcoin network
and likely at far lower cost.

4.2 Zerocoin Attack Surface

We examine how the choice of various security parameters interacts with attacks
on Zerocoin and how to minimize these parameters in light of that. Again, due
to everlasting anonymity, we neglect attacks on Zerocoin’s anonymity properties.

Theft Actually stealing a user’s zerocoin entails spending a coin with the same
serial number. Since the Pedersen commitment containing a serial number (i.e.,
the coin) is information theoretically hiding, an attacker who cannot compromise
a user’s computer and wallet can only guess blindly. This is a very low probability
event and can be made arbitrarily small by increasing the serial number length.
If as an absolute minimal bound we assume 512 bit commitments, then we can
have 512 bit serial numbers or, in the case of divisible coins, 512− 64 = 448 bit
serial numbers. A theft probability of 1 in 2448 is too small to consider practically
and hence we discount theft as a worry.

A second technical consideration for Zerocoin is that proof forgeries can
deplete the escrow pool of bitcoins that zerocoins are exchanged for. This would
effectively steal someone’s coins. A simple solution to this is to operate with no
explicit escrow pool, opting instead to destroy bitcoins when minting a zerocoin
and create fresh bitcoins when spending one. As a result, forgery of a zerocoin
results only in inflation. If forgery is very rare, this is a manageable problem.

Forgery Factoring the accumulator’s RSA modulus allows an attacker to forge
the coin membership proof and hence forge an unlimited number of coins. This
is perhaps the single biggest target in Zerocoin. As a result, we have little choice
but to recommend a large modulus, say 3072 bits.

A second avenue for forging a coin is to forge the zero-knowledge proof in a
spend. Each such forgery results in one and only one forged coin (since even a
forged proof has a unique serial number). As such, we want to make the cost of
conducting n forgeries more than the value of n coins. The bulk of the remaining
portion of this section will focus on techniques to accomplish this.

Double spending To double spend a coin, one must assign the coin two different
serial numbers. This is equivalent to causing the commitment to open to two

362

Approved for Public Release; Distribution Unlimited.

10

separate values. Unfortunately, for simple Pedersen commitments, computing
a single discrete log value — logg(h) or logh(g) — allows this to be done an
infinite number of times, again giving us a single point of failure. We will discuss
a modification to Pedersen commitments that makes this attack more expensive
per instance, though does not eliminate entirely the aggregate effect.

4.3 Raising the Cost of Proof Forgeries

Forging a zero-knowledge proof implies guessing the challenge value prior to
starting the protocol. For Fiat-Shamir based non-interaction zero-knowledge
proofs, where the challenge is provided by the hash of the first move of the
protocol, the only way to do this — assuming the hash function is a random oracle

— is to repeatedly query the hash function until you get lucky. If the challenge
value has length λ then the probability of forging the proof is P (f) = 2−λ.
Normally for zero-knowledge proofs we choose λ such that P (f) is negligible, and
hence, even with a concerted offline attack, a forgery is not feasible.

Suppose it takes b expected evaluations of HB to mine a Bitcoin block. If v
is the value of a coin and p is the payout from mining a block in terms of reward
and collected transaction fees, then we need it to take q expected queries of HB
to forge the proof such that:

p

b
>
v

q

I.e., it pays more per hash calculation to try and mine a block than “mine” a
proof forgery. Unfortunately, this analysis yields only a small reduction in the
security parameter. The payout for mining a block in terms of transactions fees
and the reward is roughly 24.3 Mining such a block at current difficulty levels
takes 261 calls to HB. Assuming a zerocoin is worth one bitcoin, solving the
above equation gives us q = 257 and hence λ = 57.

Proof of work Instead of a simple query to HB , we can make a single instance
of the zero-knowledge proof hash function make a tunable number of calls w
to HB in much the same manner as PBKDF2. Thus it takes q = 2λw expected
queries to HB to forge a proof.

As a result, we end up with a different boundary condition for forgery
unprofitability:

(2λw)p

b
> v

Again assuming the current reward of 25 bitcoins per block plus transaction
fees, 261 invocations of HB to find a block, and λ = 40 bit proofs, we end up

with approximately (240w)24

261 > v. If zerocoins are each worth one bitcoin, this
necessitates a value of w of roughly 217 or about 130 thousand hash calls. Since
HB is the double SHA256 computation used by Bitcoin, we can use the extensive
comparisons of Bitcoin mining power across hardware to estimate the cost of
this approach. A low end Intel core i3 can compute 1.8 million hashes a second,
a now more than a decade old Pentium IV can compute between 0.85 and 1.29

3 This is discounted to allow for lower payouts from, e.g., a mining cartel’s cut.

363

Approved for Public Release; Distribution Unlimited.

11

depending on the model, and an AMR Cortex A-9 such as found in the Samsung
Galaxy SII can do 1.3 million hashes a second [1]. As such, this approach is
surprisingly viable even for very modest hardware.

This approach has one major limitation: it gets worse as mining difficulty
increases, and mining difficulty has been increasing very rapidly as application
specific integrated circuits (ASIC) mining hardware comes online. Although one
could easily (and should) exclude ASICs from forging proofs via trivial changes
to the hash function (e.g., changing the padding or using triple SHA256) that
invalidate the ASICs but do not affect hash throughput on a general purpose
computer, this does not solve the problem. We can do nothing to address the drop
in payout per hash that ASICs introduce by upping the number of hashes needed
to mine a block but not changing the reward.4 Thus we would still eventually
have to increase w beyond levels feasible on non specialized hardware.

Since the first move in the proof reveals nothing and our proofs allow for
dishonest verifiers, this computation can be outsourced. However, paying for
that outsourcing represents a catch-22: how do you anonymously pay to spend
anonymous currency? While there are potential solutions to this involving small
anonymous face-to-face Bitcoin transactions as a bootstrapping mechanism, they
are less than ideal.

Rate-limiting forgeries A second option that does not place a computational
or financial burden on individuals is to rate limit the proof’s hash function. To do
this, we split the proof over n+ 1 blocks. The first block encodes the first moves
of the protocol. The nth block encodes responses to the challenge value. The λ
bit challenge value is generated by taking the first λ

n bits from each block of the
1, . . . , n blocks and hashing them to produce a challenge. For an honest prover,
this entails no additional work (unlike the proof of work system) as they can
satisfy the proof for any challenge and thus must merely wait for the block chain
to advance before computing the proof. A dishonest prover, on the other hand,
must get a specific challenge. As such, they must either mount many parallel
attempts each with a different guess at the challenge value or control the block
hashes and hence the challenge. The former can be prevented by merely limiting
the number of transactions in a block (Bitcoin already effectively does this by
limiting the size of a block).

The likelihood that a challenge value is the one guessed is still 2−λ. However,
assuming a maximum of 1000 Zerocoin transactions per block, attempts can only
be made every half second. If we assume 40 bit security levels for the proofs, we
need an expected 240 hash calls and thus making a single forged zerocoin would
take 239 seconds or roughly seventeen thousand years. Even at Bitcoin’s current
unrealized theoretical maximum transaction throughput of seven transactions a
second [14] this would still take over 2400 years. This seems both a prohibitive
amount of time for mounting an attack and, as a practical matter, an acceptable
rate of coin forgery.

4 Recall that the difficulty of mining a block adjusts to keep blocks spaced at 10 minute
intervals. Hence greater hashing power necessitates more hashes needed per block.

364

Approved for Public Release; Distribution Unlimited.

12

Manipulating the block chain to produce the correct challenge is even more
difficult. An attacker must generate far more than n blocks in order to get the
correct challenge. They must first generate all n blocks, complete with proof of
work for each, and extract the challenge. The overwhelmingly likely case is that
the challenge is wrong, and they must repeat the process. If this was done for
n = 2 blocks and all bits were extracted only from the last block, this would
require the attacker to compute 2λ expected blocks to get the right challenge
and hence make 2λ+61 calls to HB at Bitcoin’s current difficulty. The situation,
however, is actually worse than that since the last block only contributes λ

n bits
as input to the hash function the attacker is trying to get to output the guessed
challenge value. Thus the attacker cannot merely generate 2λ fresh nth blocks
knowing that by the pigeonhole principle one of those will result in the right
challenge. Instead, they must actually start with a fresh first block and generate
the entire sequence before checking if it works.5 Not just does this increase
the difficulty of mounting such an attack substantially, but because each block
depends on the previous one, it adds in a sequential bottleneck that prevents fully
parallelizing the attack process. Recall that six blocks is the threshold for normal
Bitcoin transactions to be considered confirmed and as such the mere ability to
compute six blocks efficiently, let alone 2λ · 6 blocks, constitutes a massive attack
on Bitcoin.

4.4 Raising the Cost of Double Spends

In the original Zerocoin construction of Miers et al., computing a single discrete
log of logg(h) or logh(g) broke the binding property of Pedersen commitments
completely and allowed arbitrary double spends. This is undesirable since a
single 1024 bit discrete log instance may be in the range of things solvable by
a well-funded organization in six months to a year. We wish to avoid such an
attack without using larger moduli.

Instead of using a fixed g, h ∈ G for our commitment group, we hash the
serial number into G to select g, h at random using two different hash functions,
H,H′. When spending a coin, we provide these bases in the proof and then the
verifier both checks the proof and that the bases result from the hash of the serial
number. As a result, assuming H,H′ are collision resistant, double spends occur
exactly once for any given discrete log computation.

We accomplish this by using the hash of the coin serial number S to select
g and h at random. This is enforced at verification time by the verifier simply
checking that g = H(S) and h = H′(S) for the provided public proof inputs. We
briefly outline why this modification preserves both the blinding and binding
properties of a Pedersen commitment.

Pedersen commitments are information theoretically blinding because for a
fixed commitment c and any given value x, there is randomness r that opens

5 It is possible to prune some of this work by checking if given, e.g., the first two of n
blocks, any assignment of the remaining bits would hash to the correct challenge. We
leave to future work the analysis of this strategy along with the best way to skew
the sampling of bits from the n blocks to minimize it.

365

Approved for Public Release; Distribution Unlimited.

13

the commitment to that value and all such r values are equally likely, i.e., for
a given gx, there exists an r such that c = gxhr mod p. If we replace h with
h′ = H′(x||pad), then we merely shift the randomness r by logh′(h) and do not
change the distribution on r. Hence this still holds.

Pedersen commitments are computationally binding if the discrete log problem
is hard. Given a commitment c that opens to two different values x, x′ with
randomness r, r′, one can compute the discrete log of h with respect to g by
substituting in gl = h and solving x + lr = x′ + lr′ since gxglr = gx

′
glr

′
=

gx+lr = gx
′+lr′ . Since g and h are no longer fixed public parameters in our case,

we cannot use a single violation of the blinding property to break an instance
of the discrete log problem in G. It is probably possible to construct a security
proof based on the assumption that the hash function is collision resistant and
the discrete log problem is hard. As the rest of our constructions depend on the
random oracle model for soundness, we take the expedient of programing the
hash function to output the appropriate generators. This is sufficient for our
purposes.

Of course, solving l discrete logs in a fixed G is not as hard as solving l
discrete logs in distinct G1, . . . ,Gl. The exact security of this appears not to
have been well studied. Some preliminary results indicate that for Pollard’s Rho
algorithm, the difficulty of computing l < ε 3

√
N discrete logs is approximately√

2NL where N is the order of the group and 0 < ε < 1 [2]. The far faster class
of index calculus methods are still sub-exponential when run on a fixed group.
Specifically, they run in Lp(

1
2 ,

1
2) instead of Lp(1,

1
2) with a sub-exponential space

requirement Lp(
1
2 ,

1
2) [18]. What this means in practice is an interesting question.

We note that both SSH and the Internet Key Exchange protocol used in IPv6
use groups for Diffie-Hellman that are fixed for far longer timespans than we are
contemplating.

5 Divisible Cash

The original Zerocoin construction did not make particularly efficient use of the
fact that coins are an information theoretically blinding and computationally
binding commitment that can contain arbitrary data. These commitments were
merely used as a container for a serial number. Yet there are a whole number
of techniques for proving far more interesting statements about commitments.
These techniques allow us to construct divisible coins. We are aware of an
unpublished result that makes this observation in the context of a different
Zerocoin construction entirely. Our purpose in this document is not to introduce
divisibility but to point out how it can be achieved using the existing cryptographic
construction.

Intuition. Instead of a coin being a commitment to a serial number, we propose
committing to a serial number S and a balance B. The coin owner can divide
the balance B0 in an existing coin c0 into two new coins c1 and c2 with balances
B1 and B2 respectively. She does so by creating two new coins, proving that
B0 = B1 +B2, and revealing the serial number S0 of the divided coin c0. Note

366

Approved for Public Release; Distribution Unlimited.

14

that because we do not reveal the balance of any coin in this construction and
by the original Zerocoin construction the spends for the resulting c1 and c2 are
unlinkable to their minting, we lose nothing by explicitly identifying the original
coin c0. As such, we do not need to provide the expensive proof used for a spend,
we can just identify the coin outright. This results in a highly efficient proof.

The technical question left to answer is how do we encode both the balance
and the serial number in the coin? There are two possible constructions:

– We use multi-message commitments where one message is the serial number
and one is the balance.

– We encode both the balance and serial number in one value in the commit-
ment.

While conceptually elegant, multi-message commitments are problematic. In the
case of Pedersen commitments [20], a commitment to a vector m of messages n
is (
∏n
i=1 g

mi
i)hr. Since the coin is then gm1

1 gm2
2 hr, the double discrete log proof

used for a coin spend must prove knowledge of three exponents instead of two.
This adds approximately 10KB to the proof. With the encoding case, we can
encode the balance as the l low order bits of the original serial number and use
the high 2l−ε as the actual serial number. We merely open the coin using the
existing spend proof, reveal the encoded value, and then anyone can extract out
the serial number and balance.

Dividing a coin c0 is not as straightforward. We must prove that B0 = B1+B2

and reveal the existing coin’s serial number S0 without revealing anything about
the serial numbers for the new coins. We do this as follows:

π = NIZKPoK{(S1, S2, r0, r1, r2, B0, B1, B2) :

(B0 = B1 +B2) ∧2i=0 (ci = gBi+2l+εSihri ∧ 0 ≤ Bi < 2l ∧ 0 ≤ Si < 2l)}
This proof can be accomplished with a variety of standard techniques for effi-
ciently proving range restrictions [4,5,13,15]. The granularity of the ranges these
techniques admit vary and will define both the size l of the serial number and
balance and space ε between the two values.

6 Conclusion

We demonstrate several useful extensions to Zerocoin. First, by removing the
random oracle assumption for the zero-knowledge property of the proofs, we get
everlasting security in the common reference string model. Second, and most
importantly, we provide a means to model the cost of forging a coin and hence
allow for cryptographic parameters to be picked to make such forgery uneconomic.
As a result, we argue that one can safely reduce the soundness of the proofs
from 80 bits to 40, reducing proof size from 25KB to 10KB and nearly halving
proof generation and verification time on a single threaded implementation (or
increasing throughput on a multithreaded one). The techniques used to accomplish
this are specific both to Bitcoin and certain instantiations of hash functions for
Fiat-Shamir proofs. We are hopeful future work will provide a general model for
game-theoretic security for e-cash.

367

Approved for Public Release; Distribution Unlimited.

15

References

1. Mining hardware comparison. https://en.bitcoin.it/wiki/Mining_hardware_
comparison, accessed: 2013-11-23

2. In: Vaudenay, S., Youssef, A. (eds.) Selected Areas in Cryptography, Lecture Notes
in Computer Science, vol. 2259, pp. 212–229. Springer Berlin Heidelberg (2001),
http://dx.doi.org/10.1007/3-540-45537-X_17

3. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: EUROCRYPT ’93. vol. 765 of LNCS, pp. 274–285 (1994)

4. Boudot, F.: Efficient proofs that a committed number lies in an interval. In:
EUROCRYPT 2000. pp. 431–444. Springer (2000)

5. Camenisch, J., Chaabouni, R., et al.: Efficient protocols for set membership and
range proofs. In: Advances in Cryptology-ASIACRYPT 2008, pp. 234–252. Springer
(2008)

6. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In: EUROCRYPT ’01. vol. 2045 of
LCNS, pp. 93–118 (2001)

7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
CRYPTO ’97. vol. 1296 of LNCS, pp. 410–424 (1997)

8. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. Ph.D. thesis, ETH Zürich (1998)

9. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable (2013)
10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification

and signature problems. In: CRYPTO ’86 (1986)
11. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity

and a methodology of cryptographic protocol design. In: FOCS (1986)
12. Goldreich, O.: A short tutorial of zero-knowledge (2010)
13. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Applied Cryp-

tography and Network Security. pp. 467–482. Springer (2005)
14. Lee, T.B.: Bitcoin needs to scale by a factor of 1000 to compete with Visa. Here’s

how to do it. Available at http://www.washingtonpost.com (November 2013)
15. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.

In: Advances in Cryptology-ASIACRYPT 2003, pp. 398–415. Springer (2003)
16. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M.,

Savage, S.: A fistful of bitcoins: characterizing payments among men with no names.
In: Internet measurement conference (2013)

17. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: IEEE Symposium on Security and Privacy (2013)

18. Mihalcik, J.: An analysis of algorithms for solving discrete logarithms in fixed
groups. Master’s thesis, Navel Post Graduate School (March 2010)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, 2009 (2012), http:
//www.bitcoin.org/bitcoin.pdf

20. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO ’92. vol. 576 of LNCS, pp. 129–140 (1992)

21. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Security
and Privacy in Social Networks (SOCIALCOM) (2011)

22. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology
4(3), 239–252 (1991)

368

Approved for Public Release; Distribution Unlimited.

Replacing a Random Oracle:

Full Domain Hash From Indistinguishability Obfuscation

Susan Hohenberger
Johns Hopkins University

susan@cs.jhu.edu

Amit Sahai
UCLA

sahai@cs.ucla.edu

Brent Waters
University of Texas at Austin

bwaters@cs.utexas.edu

January 25, 2014

Abstract

Our main result gives a way to instantiate the random oracle with a concrete hash function in “full
domain hash” applications.

The term full domain hash was first proposed by Bellare and Rogaway [BR93, BR96] and referred
to a signature scheme from any trapdoor permutation that was part of their seminal work introducing
the random oracle heuristic. Over time the term full domain hash has (informally) encompassed a
broader range of notable cryptographic schemes including the Boneh-Franklin [BF01] IBE scheme and
Boneh-Lynn-Shacham (BLS) [BLS01] signatures.

All of the above described schemes required a hash function that had to be modeled as a random
oracle to prove security. Our work utilizes recent advances in indistinguishability obfuscation to construct
specific hash functions for use in these schemes. We then prove security of the original cryptosystems
when instantiated with our specific hash function.

Of particular interest, our work evades the impossibility result of Dodis, Oliveira, and Pietrzak [DOP05],
who showed that there can be no black-box construction of hash functions that allow Full-Domain Hash
Signatures to be based on trapdoor permutations. This indicates that our techniques applying indistin-
guishability obfuscation may be useful in the future for circumventing other such black-box impossibility
proofs.

Susan Hohenberger is supported for this research effort in part by the National Science Foundation (NSF) CNS-1154035 and
CNS-1228443; the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL)
under contract FA8750-11-2-0211, DARPA N11AP20006, the Office of Naval Research under contract N00014-11-1-0470, and a
Microsoft Faculty Fellowship. The views expressed are those of the author and do not reflect the official policy or position of
DARPA, the National Science Foundation, or the U.S. Government.

Amit Sahai is supported for this research effort in part from a DARPA/ONR PROCEED award, NSF grants 1228984,
1136174, 1118096, 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389. The views expressed
are those of the author and do not reflect the official policy or position of the Department of Defense, the National Science
Foundation, or the U.S. Government.

Brent Waters is upported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through the U.S. Office of
Naval Research under Contract N00014-11-1-0382, DARPA N11AP20006, Google Faculty Research award, the Alfred P. Sloan
Fellowship, Microsoft Faculty Fellowship, and Packard Foundation Fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department
of Defense or the U.S. Government.

369

Approved for Public Release; Distribution Unlimited.

1 Introduction

Since the introduction of the Random Oracle Model by Bellare and Rogaway [BR93], a major effort in
cryptography has been to understand when and if random oracles can be instantiated with families of
actual hash functions while maintaining security. Over the years, we have seen real progress in this effort:
Firstly we have seen the discovery of alternative schemes that do not require random oracles but achieve
the same security properties as earlier schemes that do require random oracles. For example, Cramer and
Shoup [CS98] achieved efficient chosen ciphertext security from DDH hard groups. As another example
Canetti, Halevi, and Katz [CHK07] achieved secure IBE without random oracles, following the seminal
work of [BF01] giving IBE in the Random Oracle Model. More recently, we have seen the discovery of
schemes that not only work in the standard model without random oracles, but work in a manner very
similar to the original schemes that used random oracles (e.g. [HSW13, FHPS13] following schemes in the
random oracle model [BF01, BLS01]). However, all of these schemes proven secure without random oracles
required changing the underlying cryptographic scheme in addition to instantiating the random oracle with
a concrete hash function. Thus, despite these advances, the following basic question has remained open:

Can we instantiate the random oracle with an actual family of hash functions for existing cryptographic
schemes in the random oracle model, such as Full Domain Hash signatures?

In other words, can we achieve security without changing the underlying cryptographic scheme at all, but
only by replacing the random oracle with a specific family of hash functions? In this work, we give the
first positive answer to this question. We do this by leveraging the notion of indistinguishability obfusca-
tion [BGI+01, BGI+12] that was recently achieved in the work of [GGH+13].

Our result is particularly interesting in light of negative results on the Random Oracle Model [CGH98,
GK03, BBP04] which have called into question the secure applicability of the Random Oracle Model. Our
work is the first to show natural examples of schemes that were originally invented with the Random Oracle
Model in mind, that nevertheless remain secure when the random oracle is specifically instantiated.

In particular, our work evades the impossibility result of Dodis, Oliveira, and Pietrzak [DOP05], who
showed that there can be no black-box construction of hash functions that allow Full-Domain Hash Signatures
to be based on trapdoor permutations. Because we make use of obfuscation, our constructions are inherently
non-black-box, and thus are not ruled out by this type of black-box impossibility result. This indicates that
our techniques applying indistinguishability obfuscation may be useful in the future for circumventing other
such black-box impossibility proofs.

Our Result. Our main result gives a way to instantiate the random oracle with a concrete hash function
in “full domain hash” signatures. The full domain hash signature scheme was first proposed1 in the original
Bellare-Rogaway [BR93] paper as a way to build a signature scheme from any trapdoor permutation using
the introduced random oracle heuristic. This work was very influential and formed the foundation for part of
the PKCS#1 standard [KS98]. While the terminology of “full-domain hash” (FDH) originally applied to the
trapdoor permutation signature scheme of Bellare and Rogaway, over time it has (informally) encompassed
a broader range of notable cryptographic schemes including the Boneh-Franklin [BF01] IBE scheme, the
Cock’s IBE scheme [Coc01], and Boneh-Lynn-Shacham (BLS) [BLS01] signatures. Although these schemes
exist in different algebraic domains and have different aims, they share common construction and proof
structures that uses random oracle programming in very similar ways.

Our work develops a methodology for replacing the programming of a random oracle in these construction
using indistinguishable obfuscation in a novel manner. We begin by describing a scheme that replaces the RO
hash function in the original Bellare-Rogaway trapdoor permutation (TDP) signature scheme. Our newly
instantiated scheme is then proven to be selectively secure.

Let’s begin by informally recalling the Bellare-Rogaway TDP-based full domain hash scheme. The sig-
nature setup algorithm generates a trapdoor permutation pair of functions gPK, g

−1
SK. In addition, it chooses

1The terminology “full-domain hash” was actually introduced by Bellare-Rogaway in 1996 [BR96]. They applied this label
to the noted signature scheme of their earlier work.

1

370

Approved for Public Release; Distribution Unlimited.

a hash function H(·) that maps from the message space to the domain (and co-domain) of the permutation.
The permutation gPK and hash function are published as the verification key and the inverse g−1SK is kept
secret. To sign a message m, the signer computes g−1SK(H(m)). To verify a signature σ on message m, the

verifier simply checks whether gPK(σ)
?
= H(m).

The proof of the Bellare-Rogaway FDH system utilizes the random oracle heuristic to model H(·) as a
programmable random oracle. Suppose a poly-time attacker makes at most QH oracle queries. One can
create a reduction algorithm to the security of the trapdoor permutation as follows. For all but one of the
(unique) queries of a message m to the oracle, the reduction algorithm chooses a random value t from the
domain and outputs gPK(t) as the result of the query. For any of these messages it is easy for the reduction
algorithm to generate a signature on. It simply outputs t. However, at one query point m∗ it programs
the output of the random oracle to be z∗ = gPK(t∗) where z∗ was given from the trapdoor permutation
challenger. If the attacker forges at this message, then the forgery will be t∗ which is immediately the
solution for the trapdoor permutation inversion.

Our first result is creating a replacement hash function for the oracle H(·) and developing a security proof
without relying on the random oracle heuristic. To keep with our original goals, our only modifications will be
to H(·) and we will use the signature system construction as is, with no changes to the underlying trapdoor
permutation family. The two main tools we use to build H(·) are an indistinguishability obfuscator [BGI+01,
GGH+13] and a recently introduced [BW13, BGI13, KPTZ13] primitive certain called constrained PRFs. In
short, a constrained PRF key is a secret key K that allows the evaluator to evaluate the a PRF at a limited
set of points, while the rest will appear pseudorandom to him. For our results, we only need a simple form
of constrained PRFs called “punctured PRFs” [SW13]. In this setting a private key will be associated with
a polynomial set S, where a key K(S) can evaluate the PRF F (K,x) at all x except when x ∈ S. For our
proofs we only ever need S to be a singleton set.

We now overview the hash function construction and how we prove it to be selectively secure. (One
could use the usual complexity leveraging arguments to claim adaptive security, but we will address adap-
tive security in a direct way shortly.) To create the hash function the reduction algorithm first chooses
a puncturable PRF key K (note this “master key” can evaluate the PRF at all points). Next, the hash
function itself will be an obfuscation of the program which on input m computes gPK(F (K,m)). That is
the program simply computes the PRF at point m and then applies the trapdoor permutation. We call this
program Full Domain Hash. To prove security we will apply the “punctured programs” method of Sahai and
Waters [SW13], where we surgically remove a key element of a program, but in a way that does not alter
input/output functionality.

Our security proof is formed from a sequence of hybrids. In the first hybrid, we replace the obfuscation
of the program Full Domain Hash with an obfuscation of an equivalent program called Full Domain Hash*.
This program operates the same as the original except on input m∗, where m∗ is the message the attacker
selectively chose to attack (before seeing the verification key). At this point instead of computing F (K,m∗)
the program is simply hardwired to output a constant z∗ to output where z∗ is set to be F (K,m∗). Since
z∗ = F (K,m∗), the input/output behavior is identical. In addition, the program is not given the full PRF
key K, but instead is given a punctured PRF key K({m∗}). By the security of indistinguishable obfuscation
the advantage of any poly-time attacker must be negligibly close between these hybrids. In the next hybrid
experiment we replace z∗ with a random value chosen from the domain/range of the permutation. The
advantage between of this hybrid must also be close due to the constrained PRF security. Now we are finally
in a position where we can reduce to the security of the trapdoor permutation. The reduction algorithm
receives a TDP challenge z∗ and hardcodes that in as the output of H(m∗). It can use a signature on this to
invert the challenge. At all other points it knows the punctured PRF key and can therefore compute valid
signatures without knowing the inverse of the trapdoor permutation.

We remark that our reduction actually shares some of the spirit of the original random oracle reduction,
where a challenge is programmed in at one point and signatures are made by knowing the pre images at all
others. A key aspect is that the obfuscation hides the fact that at a certain hybrid m∗ is treated differently.
If an attacker were able to see inside the obfuscation it could actually see the preimages and break the
scheme. Another interesting aspect is that our proof does not leverage the fact that the function gPK(·) is a

2

371

Approved for Public Release; Distribution Unlimited.

permutation. It would go through equally well if we only assumed that it was an injective trapdoor function.

Overcoming the black-box impossibility We can now see more precisely why our work evades the
impossibility result of Dodis, Oliveira, and Pietrzak [DOP05]. Our hash function is obfuscation of code
that runs the underlying permutation. The obfuscation will intuitively hide the evaluation of this code. In
particular, no attacker can tell if the trapdoor permutation was actually computed on an input or whether
it was a special point where the output was hardcoded in. In the DOP negative result, they build an attack
oracle that specifically leverages the black box access to the TDP to watch whenever it is called. It is
interesting to see this very strong correlation between the negative result and how non-black box access to
a primitive and indistinguishability obfuscation can combine to circumvent it.

Getting Adaptive Security. For our next result we show how to get adaptive (or standard) signature
security without complexity leveraging for the case where the trapdoor permutation is the RSA function.
The use of RSA as a trapdoor permutation candidate was suggested in Bellare-Rogaway’93 [BR93] and
explicitly given in Bellare-Rogaway’96 [BR96]. The public parameters in their scheme are an RSA modulus
N = pq for hidden primes p, q and an RSA exponent e chosen such that gcd(φ(N), e) = 1. The secret key is
the integer d where d · e = 1 mod φ(N). A signature on message m is of the form H(m)d mod N and one

verifies a signature σ by checking if H(m)
?
= σe mod N .

We develop a different set of techniques that can leverage the particular structure of the RSA function.
The first new ingredient is use of admissible hash functions first introduced in the context of Identity-Based
Encryption by Boneh-Boyen [BB04a]. We use a simplification due to Freire et. al. [FHPS13]. At a high level
the system is a pair of a hash function h : {0, 1}`(λ) → {0, 1}n(λ) that hashes from the message space to n
bit strings and an efficient randomized algorithm AdmSample. The sampling algorithm takes in the security
parameter as well as second parameter Q which intuitively corresponds to the number of signature queries
an attacker makes. It outputs a string u ∈ {0, 1,⊥}n. Informally, we say that the system is admissible if
the following conditions hold. Consider any sequence of Q values x1, . . . , xQ and x∗ 6= xi. The event we
consider is where the string h(xi) has a bit in common with u in at least one position, but h(x∗) is different
from u at all positions. (Note, if uj = ⊥ then it is different at position j from all bit strings.) If this event
occurs with non-negligible probability, we say it is an admissible system. Intuitively, when used in a proof
of a signature scheme, the admissible hash function is utilized to partition the message space into messages
that can be signed in the query phase and those that can be used in the challenge phase. A sampled string u
corresponds to a particular partition. When running a reduction, one hopes that the actual signature oracle
queries and forgery message align with a partition, and the reduction aborts otherwise.

To build the hash function candidate, the setup first chooses a random v ∈ Z∗N as well as exponents ai,b
chosen randomly in [0, φ(N)], for all i ∈ [1, n], b ∈ {0, 1}. Next, it builds the hash function as an obfuscation
of the program RSA Hash. The program will first compute m′ = h(m). Then, it computes and outputs

v
∏
i∈[n] ai,m′i .
Our proof proceeds in a few hybrid steps. In the first hybrid experiment the challenger creates a partition

internally by calling AdmSample(1λ, Q) → u for an attacker that makes at most Q = Q(λ) queries. The
game aborts and declares the attacker unsuccessful if any of the query messages or forgery message violates
the partition. The property of admissible hashes states any attacker with non-negligible advantage in the
real game will also have non-negligible advantage here. In the next hybrid, we change the way we sample
the exponents ai,b. One first chooses random yi,b ∈ [1, N]. Then for when ui = b we set ci,b = e · yi,b. If
ui 6= b we set ci,b = e · yi,b + 1. Note in the first case ci,b is a multiple of e and in the second case e - ci,b.
The values ai,b = ci,b mod φ(N). We show that this way of choosing a values is statistically close to the
previous uniform way, because gcd(φ(N), e) = 1.

Next, we use an alternative program where we directly use the ci,b values in place of the ai,b values. Since

the group Z∗N is of order φ(N) we have that v
∏
i∈[n] ai,m′i = v

∏
i∈[n] ci,m′i for all m′. Therefore the input/output

behavior is the same between the two programs and we can argue the advantage in the hybrids for poly-
time attackers must be close by indistinguishability obfuscation. This is the critical hybrid experiment

3

372

Approved for Public Release; Distribution Unlimited.

in that it most radically departs from previous such proofs, by leveraging indistinguishability obfuscation.
Observe that this hybrid experiment eliminates the need for the reduction to know φ(N), which is crucial
to the reduction, since it uses ci,b values instead of ai,b values. However, if the values ci,b were completely
visible to an attacker, they would be trivially distinguishable from the “true” uniform ai,b values. However,
indistinguishability obfuscation guarantees that these values are hidden from the attacker, and that indeed
the attacker cannot distinguish this hybrid from the previous one.

Finally, we show that any attacker that is successful in the last hybrid can be used to break the RSA
assumption. For any signature query message m that respects the partition, the reduction will view H(m)
as v raised to some integer that is a multiple of e and taking the e-th root is then easy. Any forgery on m∗

that respects the partition, the reduction will view H(m∗) as vz for some z where gcd(e, z) = 1 and from
this can derive v1/e.

BLS Signatures and More We extend our techniques to replacing the random oracle in the BLS [BLS01]
signature scheme. In Section 5 we give a candidate that has a selective proof of security based on the
computational Diffie-Hellman problem (along with indistinguishability obfuscation). In Section 6, we give
an adaptive proof of security based on an assumption equivalent to the n-Diifie-Hellman inversion assumption.
The high level structures of these are similar to the respective selective and adaptive construction and proof
methods above. The lower level mechanisms are adapted to the context of bilinear groups. Finally, in
Section 7 we sketch how the BLS ideas extend to the Boneh-Franklin IBE scheme.

1.1 Other Related Work

Recently, the work of [BHK13] looked at a complementary question of identifying a definitional abstraction
to replace the random oracle heuristic in many random oracle-based constructions. The abstraction is a
notion of security called UCE (Universal Computational Extractor). The authors emphasize that a random
oracle is known not to exist and “behaves like a random oracle” is not a rigorously defined property, whereas
UCE is a well defined property of a hash function. They then show how several previous constructions proven
secure in the random schemes can be proven secure if we assume the hash functions are UCE secure. One
can then conjecture that standard cryptographic hash functions like SHA-256 may satisfy the UCE security
notion. In contrast, our work is focused on providing new candidate constructions for hash functions, that
allow for a security proof to work with the original constructions in the random oracle model. Interestingly,
the work of [BHK13] does not encompass the case of Full Domain Hash signatures, arguably one of the most
natural and well-studied constructions in the Random Oracle Model, that we address here.

2 Preliminaries

In this section, we define indistinguishability obfuscation, and variants of pseudo-random functions (PRFs)
that we will make use of. All the variants of PRFs that we consider will be constructed from one-way
functions.

2.1 Indistinguishability Obfuscation

The definition below is from [GGH+13]; there it is called a “family-indistinguishable obfuscator”, however
they show that this notion follows immediately from their standard definition of indistinguishability obfus-
cator using a non-uniform argument.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an indistinguisha-
bility obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

4

373

Approved for Public Release; Distribution Unlimited.

• For any (not necessarily uniform) PPT adversaries Samp, D, there exists a negligible function α such
that the following holds: if Pr[∀x,C0(x) = C1(x) : (C0, C1, τ)← Samp(1λ)] > 1− α(λ), then we have:

∣∣∣Pr
[
D(τ, iO(λ,C0)) = 1 : (C0, C1, τ)← Samp(1λ)

]

−Pr
[
D(τ, iO(λ,C1)) = 1 : (C0, C1, τ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

In this paper, we will make use of such indistinguishability obfuscators for all polynomial-size circuits:

Definition 2 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is called an indis-
tinguishability obfuscator for P/poly if the following holds: Let Cλ be the class of circuits of size at most λ.
Then iO is an indistinguishability obfuscator for the class {Cλ}.

Such indistinguishability obfuscators for all polynomial-size circuits were constructed under novel alge-
braic hardness assumptions in [GGH+13].

2.2 Constrained PRFs

We first consider some simple types of constrained PRFs [BW13, BGI13, KPTZ13], where a PRF is only
defined on a subset of the usual input space. We focus on puncturable PRFs, which are PRFs that can be
defined on all bit strings of a certain length, except for any polynomial-size set of inputs:

Definition 3. A puncturable family of PRFs F mapping is given by a triple of Turing Machines KeyF ,
PunctureF , and EvalF , and a pair of computable functions n(·) and m(·), satisfying the following conditions:

• [Functionality preserved under puncturing] For every PPT adversary A such that A(1λ) outputs
a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr
[
EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1λ),KS = PunctureF (K,S)

]
= 1

• [Pseudorandom at punctured points] For every PPT adversary (A1, A2) such that A1(1λ) out-
puts a set S ⊆ {0, 1}n(λ) and state τ , consider an experiment where K ← KeyF (1λ) and KS =
PunctureF (K,S). Then we have

∣∣∣Pr
[
A2(τ,KS , S,EvalF (K,S)) = 1

]
− Pr

[
A2(τ,KS , S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,EvalF (K,xk)) where S = {x1, . . . , xk}
is the enumeration of the elements of S in lexicographic order, negl(·) is a negligible function, and U`
denotes the uniform distribution over ` bits.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also represent the punctured key
PunctureF (K,S) by K(S).

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen to yield
puncturable PRFs, as recently observed by [BW13, BGI13, KPTZ13]. Thus we have:

Theorem 1. [GGM84, BW13, BGI13, KPTZ13] If one-way functions exist, then for all efficiently computable
functions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

Next we consider families of PRFs that are with high probability injective:

5

374

Approved for Public Release; Distribution Unlimited.

2.3 RSA Assumption and Shamir’s Lemma

We begin by recalling (one of the) standard versions of the RSA assumption [RSA78].

Assumption 1 (RSA). Let λ be the security parameter. Let positive integer N be the product of two
λ-bit, distinct odd primes p, q. Let e be a randomly chosen positive integer less than and relatively prime
to φ(N) = (p − 1)(q − 1). Given (N, e) and a random y ∈ Z∗N , it is hard to compute x such that xe ≡ y
mod N .

We also make use of the following lemma due to Shamir.

Lemma 1 (Shamir [Sha83]). Given x, y ∈ ZN together with a, b ∈ Z such that xa = yb (mod N) and
gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ ZN such that za = y (mod N).

2.4 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping e : G × G → GT which
is both: (bilinear) for all g ∈ G and a, b ← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates G,
then e(g, g) 6= 1.

Assumption 2 (Computational Diffie-Hellman). Let g generate a group G of prime order p ∈ Θ(2λ). For
all p.p.t. adversaries A, the following probability is negligible in λ:

Pr[a, b← Zp; z ← A(g, ga, gb) : z = gab].

2.5 The n-Diffie-Hellman Inversion Assumption and Equivalent Formulation

Our Section 6 construction of adaptively secure BLS signatures makes use of the n-Diffie-Hellman Inversion
assumption [BB04b]. This is a parameterized family of assumptions, where the number of group elements
involved increases with n. (In our application of Section 6 n will be dependent only on the security param-
eter.)

Assumption 3 (n-Diffie-Hellman Inversion). Let h generate a group G of prime order p ∈ Θ(2λ). For all
p.p.t. adversaries A, the following probability is negligible in λ:

Pr[b← Zp; z ← A(h, hb, hb
2

, . . . , hb
n

) : z = g1/b].

We will actually use an equivalent assumption, which is easier to work with in our proof. We call the
assumption the n-DHI Equivalent assumption for the purposes of this paper. The assumption is stated as
follows.

Assumption 4 (n-DHI Equivalent). Let g generate a group G of prime order p ∈ Θ(2λ). For all p.p.t.
adversaries A, the following probability is negligible in λ:

Pr[a← Zp; z ← A(g, ga, ga
2

, . . . , ga
n

) : z = ga
n+1

].

We briefly sketch why an attacker A on the new assumption implies an attacker on the n-DHI assumption.
Suppose, that an algorithm B is given a DHI instance h, hb, hb

2

, . . . , hb
n

. Then, it creates an instance for A
by setting g = hb

n

, ga = gb
n−1

, . . . , ga
n

= h. Essentially, this sets g = hb
n

and implicitly a = b−1. Therefore,
ga

n+1

= h1/b. Thus an efficient attacker to the n-DHI Equivalent problem implies one to the n-DHI problem.
The other direction of equivalence follows in an analogous manner.

6

375

Approved for Public Release; Distribution Unlimited.

3 Full-Domain Hash Signatures (Selectively Secure)

In this section, we revisit the Bellare-Rogaway Full-Domain Hash (FDH) signature scheme [BR93, BR96],
and show how to make it selectively secure in the standard model by instantiating the random oracle in a
specific way. We stress that we do not modify the Bellare-Rogaway FDH signature scheme in any way; the
only new aspect of our construction is our instantiation of the random oracle with a specific function whose
description becomes part of the public key.

Recall that the Bellare-Rogaway FDH signature scheme required a trapdoor permutation family. Our
method, in fact, not only applies to trapdoor permutation families, but indeed to any injective trapdoor
function family. We prove the selective security of the FDH signature scheme based on the security of the
indistinguishability obfusctor, the security of a puncturable PRF family, and the security of an injective
trapdoor function family.

For simplicity of exposition, we assume that there is a polynomial `(λ) which denotes the length of
messages to be signed; we denote this message space byM = {0, 1}`(λ). More generally, a collision-resistant
hash function may be used to hash messages to this size.

- Setup(1λ) : The setup algorithm first runs TDFSetup(1λ) and that produces a public index PK along
with a trapdoor SK, yielding the map gPK : {0, 1}n → {0, 1}w together with its inverse. Next, the
setup algorithm chooses a puncturable PRF key K for F where F (K, ·) : {0, 1}`(λ) → {0, 1}n. Then,
it creates an obfuscation of the of the program Full Domain Hash Figure 1. The size of the program
is padded to be the maximum of itself and the program Full Domain Hash* of Figure 2. We refer to
the obfuscated program as the function H : {0, 1}`(λ) → {0, 1}w, which acts as the random oracle type
hash function in the Bellare-Rogaway scheme.

The verification key VK consists of the trapdoor index PK as well as the hash function H(·). The
secret key is the trapdoor SK as well as H(·).

- Sign(SK,m ∈M) : The signature algorithm outputs σ = g−1SK(H(m)) ∈ {0, 1}n.

- Verify(VK,m, σ) The verification algorithm tests if gPK(σ)
?
= H(m) and outputs accept if and only if

this holds.

Full Domain Hash

Constants: PRF key K, trapdoor function index PK.
Input: Message m.

1. Output gPK(F (K,m)).

Figure 1: Full Domain Hash

Full Domain Hash*

Constants: Punctured PRF key K({m∗}), m∗ ∈M, z∗ ∈ {0, 1}w, trapdoor function index PK.
Input: Message m.

1. If m = m∗ output z∗ and exit.

2. Else output gPK(F (K,m)).

Figure 2: Full Domain Hash*

Theorem 2. If our obfuscation scheme is indistingishuably secure, F is a secure punctured PRF, and the
injective trapdoor function is secure, then the above signature scheme is selectively secure.

We describe a proof as a sequence of hybrid experiments where the first hybrid corresponds to the original
signature security game. We prove that a poly-time attacker’s advantage must be negligibly close between

7

376

Approved for Public Release; Distribution Unlimited.

each successive one. Then, we show that any poly-time attacker in the final experiment that succeeds in
forging with non-negligible probability can be used to invert the injective trapdoor function.

• Hyb0 : In the first hybrid the following game is played:

1. The attacker selectively gives the challenger the message m∗.

2. The TDF index is chosen by the challenger running TDFSetup(1λ).

3. K is chosen as a key for the puncturable PRF.

4. The hash function H(·) is created as an obfuscation of the program Full Domain Hash.

5. The attacker queries the sign oracle a polynomial number of times on messagesm 6= m∗. It receives
back g−1SK(H(m)) = F (K,m). (Note the equality holds since the function gPK is injective.)

6. The attacker sends a forgery σ∗ and wins if Verify(VK,m∗, σ∗) = 1.

• Hyb1 : Is the same as Hyb0 except we let z∗ = gPK(F (K,m∗)) and let VK be the obfuscation of the
program Verify Signature* of Figure 2.

• Hyb2 : Is the same as Hyb1 except z∗ = gPK(t) for t chosen uniformly at random in {0, 1}n.

Lemma 2. If our obfuscation scheme is indistinguishability secure, then the advantage of a poly-time
attacker in Hyb0 is negligibly close to the advantage in Hyb1.

Proof. We prove this lemma by giving a reduction to the indistinguishability security of the obfuscator. To
do so, we must build the two algorithms Samp and D.

Samp(1λ) behaves as follows: It invokes the adversary to obtain m∗ and the adversary’s state τ ′. It
runs TDFSetup(1λ) to obtain PK and SK. It then chooses K as a key for the puncturable PRF. It sets
z∗ = gPK(F (K,m∗)). It sets τ = (m∗,PK,SK,K, τ ′) and builds C1 as the program for Full Domain Hash,
and C2 as the program for Full Domain Hash*.

Before describing D, we observe that by construction and the functionality preservation property of
puncturable PRFs, the circuits C1 and C2 always behave identically on every input. Because of padding, both
C1 and C2 have the same size. Thus, Samp satisfies the conditions needed for invoking the indistinguishability
property of the obfuscator.

Now, we can describe the algorithm D, which takes as input τ as given above, and either the obfuscation of
C1, which is the program Full Domain Hash, or C2, which is the program Full Domain Hash*. D creates the
verification key for the signature scheme by combining PK with the obfuscated program as the hash function
description. It then invokes the adversary on this verification key, and the adversary then makes requests for
signatures on messages m 6= m∗. For each such message, D constructs the signatures g−1SK(H(m)) = F (K,m),
through its knowledge of K within τ . Finally, the attacker sends a forgery σ∗ and wins if Verify(m∗, σ∗) = 1.
If the attacker wins, D outputs 1.

By construction, if D receives an obfuscation of C1, then the probability that D outputs 1 is exactly the
probability of the adversary winning in hybrid Hyb0. On the other hand, if D receives an obfuscation of C2,
then the probability that D outputs 1 is the probability of the adversary winning in hybrid Hyb1.

The lemma follows.

Lemma 3. If our confined PRF is secure, then the advantage of a poly-time attacker in Hyb1 is negligibly
close to the advantage in Hyb2.

Proof. We prove this lemma by giving a reduction to the pseudorandomness property at punctured points
for punctured PRFs. To do so, we must build the algorithms A1 and A2.

A1(1λ) simply invokes the adversary to obtain the challenge message m∗ and state τ ′, and outputs the
singleton set S = {m∗} and τ = (1λ, τ ′).

A2 obtains as input τ , the punctured key KS , the singleton set S = {m∗}, and either a value t∗ =
F (K,m∗) or a uniformly random value t∗. Then, A2 invokes TDFSetup(1λ) to obtain PK and SK. Now

8

377

Approved for Public Release; Distribution Unlimited.

given t∗, it can compute z∗ = gPK(t∗). Note that this yields either the z∗ value computed in hybrid Hyb1
or in hybrid Hyb2. Since it knows KS , now A2 can obfuscate the program Full Domain Hash*, and then
execute the adversary and answer its signature queries using the punctured key KS . Finally, A2 outputs 1
if the adversary succeeds.

By construction, the pseudorandomness property for punctured PRFs implies the lemma.

Lemma 4. If our injective trapdoor function is hard to invert, then the advantage of a poly-time attacker
in Hyb2 is negligible.

Proof. We prove this lemma by giving a reduction to the one-wayness of the injective trapdoor function. To
do so, we build an inverting algorithm Inv.

Inv takes as input a public index PK for an injective trapdoor function, and a target z∗ = gPK(t∗) for
some (as yet unknown) random value t∗. The algorithm Inv then invokes the adversary to obtain m∗, and
chooses a PRF key K and builds the punctured key K(S) where S = {m∗}. It uses this key, together
with PK and z∗, to obfuscate the program Full Domain Hash*. It can then execute the adversary, and
use its knowledge of K(S) to answer all adversary signing queries. The adversary then terminates with an
attempted forgery σ∗ on message m∗. By the definition of the program Full Domain Hash*, this forgery can
only be valid if gPK(σ∗) = z∗, and because gPK is injective, this can only happen if σ∗ = t∗. Thus if the
adversary is successful, Inv can output σ∗ as a valid pre-image of z∗.

We observe that by construction of Inv, the probability of success of Inv is exactly the probability that
the attacker succeeds in hybrid Hyb2. The lemma follows.

These three lemmas together yield our main theorem that the above full domain hash signature scheme
is selectively secure.

4 Adaptively Secure RSA Full Domain Hash Signatures

We first describe at a high level what advantage indistinguishability obfuscation gives us in this situation: In
several previous constructions of adaptively secure schemes in the plain model starting with the adaptively
secure IBE scheme of [BB04a], a special hash function was chosen that allowed for a “partitioning” proof of
security. In essence, for this to work, the hash function should have two “modes”:

• In the “normal” mode, the hash function’s parameters are typically just chosen at random, and it
behaves like an ordinary hash function.

• In the “partitioning” mode, the hash function parameters are chosen according to a special distribution.
This special distribution allows for the efficient computation of the inverse of the hash value for a large
fraction of points, but it has the property that computing the inverse of the hash value at any other
point is computationally hard.

It is crucial that the input/output functionality of the hash function should be identical in the two modes,
and we will also use this property. However, in previous proofs (like [BB04a]), it was also critical that the
hash function parameters in “partitioning” mode be information theoretically indistinguishable from the
parameters in “normal” mode, and thus the partition should be hidden from the adversary even when given
the hash function parameters. This restriction significantly limited the applicability of this technique, as
it could only be applied with algebraic structures that allowed for such “pseudorandom” hash parameters.
Thanks to indistinguishability obfuscation, however, we can avoid this restriction by obfuscating the hash
function description. Thus, even if the natural hash function parameters in “partitioning” mode clearly reveal
the partition and thus are distinguishable from normal parameters, because the resulting hash function is
functionally identical to a hash function in “normal” mode, the obfuscated hash function must hide the
partition, and this allows the proof of adaptive security to go through.

In describing our signature scheme, For simplicity of exposition, we assume that there is a polynomial
`(λ) which denotes the length of messages to be signed; we denote this message space by M = {0, 1}`(λ).

9

378

Approved for Public Release; Distribution Unlimited.

More generally, a collision-resistant hash function may be used to hash messages to this size. Below, for any
polynomial in λ, after the first mention of this polynomial, we will often suppress the dependence on λ for
ease of notation. Thus, below often we will simply refer to the size of messages to be signed by `.

Before describing our construction, we first recall a (simplified) description of the notion of admissible
hash functions due to [BB04a]. Our definition is a slight variation of the simplified definition due to [FHPS13].

Definition 4. Let `, n and θ be efficiently computable univariate polynomials. We say that an efficiently
computable function h : {0, 1}`(λ) → {0, 1}n(λ), and an efficient randomized algorithm AdmSample, is θ-
admissible if the following condition holds:

For any u ∈ ({0, 1} ∪ {⊥})n, define Pu : {0, 1}` → {0, 1} as follows: Pu(x) = 0 iff ∀i : h(x)i 6= ui, and
otherwise (if ∃i : h(x)i = ui) we have Pu(x) = 1.

Then we require that for any efficiently computable polynomial Q(λ), for all x1, . . . , xQ, z ∈ {0, 1}`, where
z /∈ {xi}, we have that

Pr
[
Pu(x1) = Pu(x2) = · · · = Pu(xQ) = 1 ∧ Pu(z) = 0

]
≥ 1/θ(Q)

where the probability is taken only over u← AdmSample(1λ, Q).

Theorem 3 (Admissible Function Families [BB04a], see also [FHPS13] for a simple proof). For any effi-
ciently computable polynomials `, n, there exists an efficiently computable polynomial θ such that there exist
θ−admissible function families mapping ` bits to n bits.

We now show that we can leverage the structure of the RSA trapdoor permutation to prove adaptive
security. The use of RSA as a candidate for a trapdoor permutation was first discussed in the original Bellare-
Rogaway [BR93] paper, however, it was in [BR96] that Bellare and Rogaway gave an explicit full domain
hash RSA construction. This construction formed the basis for part of the standard PKCS#1 [KS98].

- Setup(1λ) : The setup algorithm first runs an RSA type setup. It chooses random primes p, q of λ bits
each. We define N = p · q and φ(N) = (p− 1)(q − 1). We let e be a random chosen integer between 1
and φ(N) such that gcd(φ(N), e) = 1.

Next, it chooses integers (a1,0, a1,1), . . . , (an,0, an,1) each uniformly at random from the range [1, φ(N)−
1]. In addition, it chooses a group element v ∈ Z∗N . It then creates an obfuscation of the of the program
RSA Hash of Figure 3. The size of the program is padded to be the maximum of itself and the program
RSA Hash* of Figure 4. We refer to the obfuscated program as the function H(·). This function H(·)
will replace the random oracle in the RSA full domain hash scheme, but no other part of the scheme
is modified.

The verification key VK consists of the integers N, e as well as the hash function H : {0, 1}`(λ) → Z∗N .
The secret key is the integer d where e · d ≡ 1 mod φ(N).

- Sign(SK,m ∈M) : The signature algorithm outputs σ = H(M)d mod N .

- Verify(VK,m, σ) The verification algorithm tests if σe ≡ H(m) mod N and outputs accept if and only
if this holds.

Remark 1. For simplicity of exposition we describe computing the programs output by first computing a
integer π(m′) as a product of n integers and then raising v to this mod N . In practice, it might be more
efficient to incrementally raise an accumulated value to each ai,m′i .

Theorem 4. If our obfuscation scheme is indistingishuably secure and the RSA assumption holds, the above
signature scheme is existentially unforgeable against chosen message attacks.

We describe a proof as a sequence of hybrid experiments where the first hybrid corresponds to the original
signature security game. In the first hybrid step we do a “partitioning” of the message space. Consider a
poly-time attacker that makes Q = Q(λ) signature queries m1, . . . ,mQ and attempts to forge on message

10

379

Approved for Public Release; Distribution Unlimited.

RSA Hash

Constants: RSA modulus N , integers (a1,0, a1,1), . . . , (an,0, an,1) each in [1, φ(N)− 1], and v ∈ Z∗N .
Input: Message m.

1. Compute m′ = h(m).

2. Compute the integer π(m′) =
∏
i∈[n] ai,m′i .

3. Output vπ(m
′) (mod N).

Figure 3: RSA Hash

RSA Hash*

Constants: RSA modulus N , integers (c1,0, c1,1), . . . , (cn,0, cn,1) each chosen as in Hyb2, and v ∈ Z∗N .
Input: Message m.

1. Compute m′ = h(m).

2. Compute the integer π(m′) =
∏
i∈[n] ci,m′i .

3. Output vπ(m
′) (mod N).

Figure 4: RSA Hash*

m∗ 6= mi for all i. Roughly, at the beginning of Hyb1 the challenger will now (behind the scenes) partition
the message space such that a large fraction of messages will fall into a “query” space and a much smaller,
but still non-negligible fraction of messages will fall into the “challenge” space. Furthermore, in this new
game the attacker is only considered to have won if he both forged a signature and all his signature queries
m1, . . . ,mn fall into the query space and m∗ falls into the challenge space. We can show that if an attacker
succeeds in the original security game (that does not have these additional restrictions on winning) with
non-negligible advantage, then if will succeed in Hyb1 with non-negligible advantage. Our system uses the
Boneh-Boyen [BB04a] admissible hash function defined above, where if an attacker has advantage ε in Hyb0,
he will have advantage ε/θ(Q) in Hyb1.

After the first proof step we prove that a poly-time attacker’s advantage must be negligibly close between
each successive hybrid experiment. We finally show that any poly-time attacker in the final experiment that
succeeds with non-negligible probability can be used to break the RSA assumption.

• Hyb0 : In the first hybrid the following game is played.

1. The challenger sets N = p · q and φ(N) = (p− 1)(q− 1). It chooses e as a random chosen integer
between 1 and φ(N) such that gcd(φ(N), e) = 1.

2. The challenger chooses integers (a1,0, a1,1), . . . , (an,0, an,1) each uniformly at random from the
range [1, φ(N)− 1].

3. The variable v is chosen uniformly at random in Z∗N .

4. The hash function H(·) is created as an obfuscation of the program RSA Hash.

5. The attacker queries the signing oracle at most Q times on messages m1, . . . ,mQ. In its ith query,
it receives back H(mi)

d (mod N).

6. The attacker finally chooses a message m∗, sends a forgery σ∗, and wins if Verify(VK,m∗, σ∗) = 1.

• Hyb1 : Is the same as Hyb0 except the challenger begins by sampling a string u ∈ ({0, 1,⊥})n by calling
AdmSample(1λ, Q)→ u, where Q is an upper bound on the number of queries made by the adversary
(this could, for example, be the running time of the adversary). At the end of the experiment, the
attacker is only considered to be successful if both Verify(VK,m∗, σ∗) = 1 and Pu(m∗) = 0 and for all
messages m queried, Pu(m) = 1. If the attacker is successful but this condition is not satisfied, we say
that the hybrid “aborts.”

11

380

Approved for Public Release; Distribution Unlimited.

• Hyb2 : Is the same as Hyb1 except the for the following modification. After sampling u, the challenger
chooses integers (c1,0, c1,1), . . . , (cn,0, cn,1) in the following way. For i ∈ [n] and b ∈ {0, 1}, yi,b is chosen
uniformly at random from all integers in [1, N]. The challenger then sets

ci,b =

{
e · yi,b if b = ui

e · yi,b + 1 if b 6= ui

Observe that gcd(e, e ·yi,b+ 1) = 1, for all i, b. We note that if b 6= ui, then either ui = 1− b or ui = ⊥.

Then for i ∈ [n] and b ∈ {0, 1}, it sets ai,b = (ci,b mod φ(N)).

• Hyb3 : Is the same as Hyb2 except the challenger creates the hash function H(·) as an obfuscation
of the program RSA Hash* using the values (c1,0, c1,1), . . . , (cn,0, cn,1). The “a” values are no longer
computed or used.

Lemma 5. Consider a attacker that makes at most a polynomial of queries Q = Q(λ) in Hyb0. If the
advantage of an attacker in Hyb0 is ε(λ), then the advantage of the attacker in Hyb1 will be at least ε(λ)/θ(Q).
In particular, any poly-time attacker with non negligible advantage in Hyb0 will also have non-negligible
advantage in Hyb1.

Proof. The lemma follows immediately from the function h satisfying the definition of a θ-admissibility, since
the only the independent choice of u ← AdmSample(1λ, Q) determines whether or not the hybrid aborts.

Lemma 6. The advantage of any attacker in Hyb1 is negligibly close to the advantage in Hyb2.

Proof. Fix i, b, and consider the ai,b value that results from the choice of ci,b in hybrid Hyb2. First, observe
that the random choice of yi,b from the range [1, N] is negligibly statistically close to a random choice of
yi,b in the range [1, φ(N) − 1], since N − φ(N) = p + q − 1. Thus, for the remainder of the argument, we
can assume that each yi,b is chosen uniformly from the range [1, φ(N) − 1]. Next, since gcd(e, φ(N)) = 1,
we have that both (e · yi,b mod φ(N)) and (e · yi,b + 1 mod φ(N)) are distributed uniformly in the range
[1, φ(N)− 1], and the lemma follows.

Lemma 7. If our obfuscation scheme is indistinguishability secure, then the advantage of any poly-time
algorithm in Hyb2 is negligibly close to the advantage in Hyb3.

Proof. We prove this lemma by giving a reduction to the indistinguishability security of the obfuscator. To
do so, we must build the two algorithms Samp and D.

Samp(1λ) behaves as follows: It invokes the adversary to obtain the adversary’s state τ ′. It runs the
RSA type setup as in the real scheme to generate primes p, q and sets N = p · q and φ(N) = (p− 1)(q − 1).
It chooses e as a random integer between 1 and φ(N) such that gcd(φ(N), e) = 1. It sets integer d where
e · d ≡ 1 mod φ(N). It chooses v ∈ Z∗N as a random element. It chooses (c1,0, c1,1), . . . , (cn,0, cn,1)
and (a1,0, a1,1), . . . , (an,1, an,0) derived from them, as in Hyb2. It sets τ = (N, p, q, e, d, (c1,0, c1,1), . . . ,
(cn,0, cn,1), (a1,0, a1,1), . . . , (an,1, an,0), v, τ ′) and builds C1 as the program for RSA Hash, and C2 as the
program for RSA Hash*.

Before describing D, we observe that by construction, the circuits C1 and C2 always behave identically
on every input. To show program equivalence, note that since Z∗N is of order φ(N) for all m′, we have that

v
∏
i ci,m′i (mod N) = v

(
∏
i ci,m′i

) (mod φ(N))
(mod N) =

v
∏
i(ci,m′i

(mod φ(N)))
(mod N) = v

∏
i ai,m′i (mod N).

With suitable padding, both C1 and C2 have the same size. Thus, Samp satisfies the conditions needed for
invoking the indistinguishability property of the obfuscator.

12

381

Approved for Public Release; Distribution Unlimited.

Now, we can describe the algorithm D, which takes as input τ as given above, and either the obfuscation of
C1, which is the program RSA Hash, or C2, which is the program RSA Hash*. D then invokes the adversary,
which makes requests for signatures on messages. D constructs the signatures H(m)d, through its knowledge
of d within τ . Finally, the attacker sends a forgery-message pair (σ∗,m∗) and wins if Verify(VK,m∗, σ∗) = 1.
If the attacker wins, D outputs 1.

By construction, if D receives an obfuscation of C1, then the probability that D outputs 1 is exactly the
probability of the adversary winning in hybrid Hyb0. On the other hand, if D receives an obfuscation of C2,
then the probability that D outputs 1 is the probability of the adversary winning in hybrid Hyb1.

The lemma follows.

Lemma 8. If the RSA assumption holds, then the advantage of an poly-time algorithm in Hyb3 is negligible.

Proof. We prove this lemma by giving a reduction to the RSA problem. To do so, we build algorithm B.
B takes as input an RSA challenge (N, e, v) where N is the product of two (unknown) primes p, q, e is

randomly chosen from [1, φ(N)] such that gcd(φ(N), e) = 1 and v ∈ Z∗N . Next, B calls AdmSample(1λ, Q)→
u, where Q is an upper bound on the number of queries made by the adversary. Then B chooses integers
(c1,0, c1,1), . . . , (cn,0, cn,1) in the following way. For i ∈ [n] and b ∈ {0, 1} if b = ui then first yi,b is chosen
uniformly at random from all integers in [1, N], and ci,b = e · yi,b. Otherwise yi,b is chosen uniformly at
random from all integers in [1, N], and ci,b = e · yi,b + 1. Finally, B creates the hash function H(·) as an
obfuscation of the program RSA Hash* using the N and values (c1,0, c1,1), . . . , (cn,0, cn,1) above, and the
value v in the RSA Hash* program will be the value v in the RSA challenge. All these steps together simulate
the setup phase of Hyb3. Now, it runs the attacker using the initial parameters generated above.

The attacker will then make at most Q signing queries each for a message m. We denote m′ = h(m) and
the integer π(m′) =

∏
i∈[n] ci,m′i . If Pu(m) 6= 1 B aborts and quits. Otherwise, Pu(m) = 1 and there exists

an i where e | ci,m′i and therefore e | π(m′). B can then compute the integer t = π(m′)/e and compute the
(unique) signature on m as vt.

Finally, the attacker will output an attempted forgery σ∗ on some message m∗ that is distinct from all the
messages in the query phase. B first checks if the signature verifies and aborts if it does not. Next, it checks
if Pu(m∗) 6= 0 and aborts if that is the case. Otherwise, Pu(m∗) = 0 and for all i we have gcd(e, ci,m′∗i) = 1
and therefore gcd(e, π(m′∗)) = 1. Following Shamir’s theorem [Sha83], the attacker applies the Euclidean
Algorithm to obtain integers α and β such that α · e + β · π(m′∗) = 1. Therefore, since (σ∗)e = vπ(m

′∗), it
sets z = vα · (σ∗)β , and we have that ze = vαe+βπ(m

′∗) = v. If σ∗ was a successful forgery, then this value z
is a solution to the RSA challenge.

We observe that by construction of B, the probability of success of B is exactly the probability that the
attacker succeeds in hybrid Hyb3. Importantly, whenever B aborted, the attacker by the rules of Hyb3 was
not considered to be successful since his queries or forgery violated the partition. The lemma follows.

Pulling together these four lemmas immediately gives our the main theorem that the above RSA full
domain hash signature scheme is (adaptively) secure.

5 Selectively Secure BLS Signatures

We now give a concrete construction for the hash function modeled as a random oracle in the Boneh-Lynn-
Shacham (BLS) signature scheme. BLS signatures fall into a broad interpretation (see e.g., [Boy08]) of the
full domain hash paradigm of Bellare and Rogaway.

Below we give the BLS signature scheme with a concrete hash function built from an indistinguishability
obfuscator. We prove the signature scheme selectively secure based on the computational Diffie-Hellman
problem in bilinear groups and a indistinguishability obfuscator.

On a technical level this selective proof of security follows a very similar structure to that of our selectively
secure scheme from trapdoor functions from Section 3. The main difference is that here we deal with

13

382

Approved for Public Release; Distribution Unlimited.

the mechanics of an algebraic bilinear group instead of a trapdoor function. We present the scheme for
simplicity in terms of a symmetric bilinear group, however, we remark that moving to asymmetric groups is
straightforward.

As in Section 3, we assume that there is a polynomial `(λ) which denotes the length of messages to be
signed; we denote this message space by M = {0, 1}`(λ). More generally, a collision-resistant hash function
may be used to hash messages to this size.

- Setup(1λ) : The setup algorithm first runs the group generator on input 1λ to produce a description
of groups G,GT of prime order p along with generator g ∈ G. These groups are related by a bilinear
map e : G×G→ GT . Next, it chooses a random exponent a ∈ Zp. Then, the setup algorithm chooses
a puncturable PRF key K for F where F (K, ·) : {0, 1}`(λ) → Zp. Finally, it creates an obfuscation of
the program BLS Selective Hash of Figure 5. The size of the program is padded to be the maximum
of itself and the program BLS Selective Hash* of Figure 6. We refer to the obfuscated program as the
function H : {0, 1}` → G, which acts as the random oracle type hash function in the BLS scheme.

The verification key VK consists of the group descriptions G,GT , the order p, the generator g and
A = ga as well as the hash function H(·). The secret key is a ∈ Zp as well as H(·).

- Sign(SK,m ∈M) : The signature algorithm outputs σ = H(M)a ∈ G.

- Verify(VK,m, σ) The verification algorithm tests if e(σ, g)
?
= e(A,H(m)) and outputs accept if and

only if this holds.

Remark 2. The confined PRFs from [BW13] use the GGM tree and get PRFs in range {0, 1}n for
some n, whereas our PRFs need to hash to Zp. One can achieve a punctured PRF for the proper range
by simply setting n > 2 lg(p) and taking interpreting the GGM output as an integer that is then mod
by p. This is sufficient since sampling an integer in [0, 2n−1] and then reducing it mod p is statistically
close to choosing an integer in [0, p− 1].

BLS Selective Hash

Constants: PRF key K, group generator g ∈ G.
Input: Message m.

1. Output gF (K,m).

Figure 5: BLS Selective Hash

BLS Selective Hash*

Constants: Punctured PRF key K({m∗}), m∗ ∈M, z∗ ∈ G and group generator g ∈ G.
Input: Message m.

1. If m = m∗ output z∗ and exit.

2. Output gF (K,m).

Figure 6: BLS Selective Hash*

Theorem 5. If our obfuscation scheme is indistingishability secure, F is a secure punctured PRF, and the
computational Diffie-Hellman problem holds in bilinear groups, then the above signature scheme is selectively
secure.

We describe a proof as a sequence of hybrid experiments where the first hybrid corresponds to the original
signature security game. We prove that a poly-time attacker’s advantage must be negligibly close between
each successive one. Then, we show that any poly-time attacker in the final experiment that succeeds in
forging with non-negligible probability can be used to break the computational Diffie-Hellman assumption
in bilinear groups.

14

383

Approved for Public Release; Distribution Unlimited.

• Hyb0 : In the first hybrid the following game is played:

1. The attacker selectively gives the challenger the message m∗.

2. The challenger runs the group generator to produce bilinear groups G,GT of order p with generator
g ∈ G. It then chooses a random exponent a ∈ Zp for the secret key and sets A = ga as part of
the verification key.

3. K is chosen as a key for the puncturable PRF.

4. The hash function H(·) is created as an obfuscation of the program BLS Selective Hash.

5. The attacker queries the sign oracle a polynomial number of times on messages m 6= m∗. It
receives back H(m)a = AF (K,m).

6. The attacker sends a forgery σ∗ and wins if Verify(m∗, σ∗) = 1.

• Hyb1 : Is the same as Hyb0 except we let z∗ = gF (K,m∗) and let VK be the obfuscation of the program
BLS Selective Hash* of Figure 6.

• Hyb2 : Is the same as Hyb1 except z∗ = gt for t chosen uniformly at random in Zp.

Lemma 9. If our obfuscation scheme is indistinguishability secure, then the advantage of an poly-time
algorithm in Hyb0 is negligibly close to the advantage in Hyb1.

Proof. We prove this lemma by giving a reduction to the indistinguishability security of the obfuscator. To
do so, we must build the two algorithms Samp and D.

Samp(1λ) behaves as follows: It invokes the adversary to obtain m∗ and the adversary’s state τ ′. It runs
the bilinear group setup on 1λ to obtain the group descriptions G,GT , order p and generator g. It then
chooses a random a ∈ Zp and sets A = ga. It then chooses K as a key for the puncturable PRF. It sets
z∗ = gF (K,m∗). It sets τ = (m∗, z∗, g, p, A,K, τ ′) and builds C1 as the program for BLS Selective Hash, and
C2 as the program for BLS Selective Hash*.

Before describing D, we observe that by construction and the functionality preservation property of
puncturable PRFs, the circuits C1 and C2 always behave identically on every input. Because of padding, both
C1 and C2 have the same size. Thus, Samp satisfies the conditions needed for invoking the indistinguishability
property of the obfuscator.

Now, we can describe the algorithm D, which takes as input τ as given above, and either the obfuscation
of C1, which is the program BLS Selective Hash, or C2, which is the program BLS Selective Hash*. D creates
the verification key for the signature scheme with the obfuscated program as the hash function description.
It then invokes the adversary on this verification key, and the adversary makes requests for signatures on
messages m 6= m∗. For each such message, D constructs the signatures H(m)a = AF (K,m), through its
knowledge of K and A within τ . Finally, the attacker sends a forgery σ∗ and wins if Verify(m∗, σ∗) = 1. If
the attacker wins, D outputs 1.

By construction, if D receives an obfuscation of C1, then the probability that D outputs 1 is exactly the
probability of the adversary winning in hybrid Hyb0. On the other hand, if D receives an obfuscation of C2,
then the probability that D outputs 1 is the probability of the adversary winning in hybrid Hyb1.

The lemma follows.

Lemma 10. If our confined PRF is secure, then the advantage of an poly-time algorithm in Hyb1 is negligibly
close to the advantage in Hyb2.

Proof. We prove this lemma by giving a reduction to the pseudorandomness property at punctured points
for punctured PRFs. To do so, we must build the algorithms A1 and A2.

A1(1λ) simply invokes the adversary to obtain the challenge message m∗ and state τ ′, and outputs the
singleton set S = {m∗} and τ = (1λ, τ ′).

A2 obtains as input τ , the punctured key KS , the singleton set S = {m∗}, and either a value t∗ =
F (K,m∗) or a uniformly random value t∗ ∈ Zp. Then, A2 runs the group generator on 1λ to obtain

15

384

Approved for Public Release; Distribution Unlimited.

(G,GT , p, g), chooses a random a ∈ Zp, and sets A = ga to establish portions of VK and SK. Now given t∗,
it can compute z∗ = gt

∗
. Note that this yields either the z∗ value computed in hybrid Hyb1 or in hybrid Hyb2.

Since it knows KS , now A2 can obfuscate the program BLS Selective Hash*, and then execute the adversary
and answer its signature queries using the punctured key KS . Finally, A2 outputs 1 if the adversary succeeds.

By construction, the pseudorandomness property for punctured PRFs implies the lemma.

Lemma 11. If the computational Diffie-Hellman assumption holds in bilinear groups, then the advantage
of an poly-time algorithm in Hyb2 is negligible.

Proof. We prove this lemma by giving a reduction to the hardness of the Computational Diffie-Hellman
problem in the bilinear group G. To do so, we build a CDH attacker B.
B takes as input the tuple (g, ga, gb) for a group G of prime order p with a bilinear map e : G×G→ GT .

It sets A = ga as part of the verification key VK. The algorithm B then invokes the adversary to obtain m∗,
and chooses a PRF key K and builds the punctured key K(S) where S = {m∗}. It uses this key, together
with VK and z∗ = gb, to obfuscate the program BLS Selective Hash*. It can then execute the adversary,
and use its knowledge of K(S) to answer all adversary signing queries. The adversary then terminates with
an attempted forgery σ∗ on message m∗. By the definition of the program BLS Selective Hash*, this forgery
can only be valid if σ∗ = (z∗)a = gab. Thus if the adversary is successful, B can output σ∗ as the solution
to the CDH problem.

We observe that by construction of B, the probability of success of B is exactly the probability that the
attacker succeeds in hybrid Hyb2. The lemma follows.

Pulling together these three lemmas immediately gives our the main theorem that the above full domain
hash signature scheme is selectively secure.

6 Adaptively Secure BLS Signatures

We now give a hash function for BLS signatures that can be used to prove adaptive (or standard) security.
Our proof structure will follow in a similar path to that of our adaptively secure RSA full domain hash
signatures in Section 4. In particular, we will again apply an admissible hash function to partition the
message space in our proof. At the same time, there are important distinctions and corresponding challenges
that arise in this setting.

Again, for simplicity of exposition, we assume that there is a polynomial `(λ) which denotes the length
of messages to be signed; we denote this message space by M = {0, 1}`(λ) and we will often simply refer to
the size of messages to be signed by `. As in Section 4, we use a function h : {0, 1}`(λ) → {0, 1}n(λ), and an
efficient randomized algorithm AdmSample that is θ-admissible.

Our construction is identical to that given in Section 6 with the exception of how the setup creates the
hash function. The setup first chooses uniformly at random (c1,0, c1,1), . . . , (cn,0, cn,1) each in Zp. Then it
obfuscates the program BLS Adaptive Hash of Figure 7 where the size of the program is padded to be the
maximum of itself and the program BLS Adaptive Hash* of Figure 8. The obfuscated program is used as
the function H : {0, 1}`(λ) → G, which acts as the random oracle type hash function in the BLS scheme.

Our proof of security relies on indistinguishability obfuscation and our Diffie-Hellman Inversion equivalent
assumption. Namely, that given g, ga, ga

2

, . . . , ga
n ∈ G, it is hard to compute ga

n+1

.

Theorem 6. If our obfuscation scheme is indistinguishability secure and the Diffie-Hellman Inversion as-
sumption holds in bilinear group G, the above signature scheme is existentially unforgeable against chosen
message attacks.

We describe a proof as a sequence of hybrid experiments where the first hybrid corresponds to the original
signature security game. As in Section 4, in the first hybrid step we do a “partitioning” of the message space.
After the first proof step, we prove that any poly-time attacker’s advantage must be negligibly close between
each successive hybrid experiment. We finally show that any poly-time attacker in the final experiment

16

385

Approved for Public Release; Distribution Unlimited.

BLS Adaptive Hash

Constants: Bilinear group G with generator g and exponents (c1,0, c1,1), . . . , (cn,0, cn,1) each in Zp.
Input: Message m ∈ {0, 1}`.

1. Compute m′ = h(m).

2. Output g
∏
i=1,...,n ci,m′

i .

Figure 7: BLS Adaptive Hash

BLS Adaptive Hash*

Constants: Bilinear group G, elements g, ga, ga
2

, . . . , ga
n ∈ G, for i ∈ [n], b ∈ {0, 1} exponents yi,b ∈ Zp

and u ∈ {0, 1}n.
Input: Message m ∈ {0, 1}`.

1. Compute m′ = h(m).

2. Let µ(m) be the set i such that m′i 6= ui. The algorithm computes the set size |µ(m)|.

3. Output (ga
|µ(m)|

)
∏
i=1,...,n yi,m′

i .

Figure 8: BLS Adaptive Hash*

that succeeds with non-negligible probability can be used to break our assumption that is equivalent to the
Diffie-Hellman Inversion assumption. See Section 2.5 for more on these assumptions.

• Hyb0 : In the first hybrid, the following game is played:

1. The challenger runs the group generator to produce bilinear groups G,GT of order p with generator
g ∈ G. It then chooses a random exponent a ∈ Zp for the secret key and sets A = ga as part of
the verification key.

2. It chooses uniformly at random (c1,0, c1,1), . . . , (cn,0, cn,1) each in Zp.
3. The hash function H(·) is created as an obfuscation of the program BLS Adaptive Hash.

4. The attacker queries the signing oracle at most Q times on messages m1, . . . ,mQ. In its ith query,
it receives back H(mi)

a.

5. The attacker finally chooses a message m∗, sends a forgery σ∗, and wins if Verify(VK,m∗, σ∗) = 1.

• Hyb1 : Is the same as Hyb0 except the challenger begins by sampling a string u ∈ ({0, 1,⊥})n by calling
AdmSample(1λ, Q)→ u, where Q is an upper bound on the number of queries made by the adversary
(this could, for example, be the running time of the adversary). At the end of the experiment, the
attacker is only considered to be successful if both Verify(VK,m∗, σ∗) = 1 and Pu(m∗) = 0 and for all
messages mi queried Pu(mi) = 1. If the attacker is successful but this condition is not satisfied, we
say that the hybrid “aborts.”

• Hyb2 : Is the same as Hyb1 except the for the following modification. The challenger first chooses
exponents (c1,0, c1,1), . . . , (cn,0, cn,1) in the following way. For i ∈ [n], b ∈ {0, 1} it chooses random
yi,b ∈ Zp and then sets

ci,b =

{
yi,b if b = ui

a · yi,b if b 6= ui

• Hyb3 : Is the same as Hyb2 except the challenger creates the hash function H(·) as an obfuscation of
the program BLS Adaptive Hash*.

17

386

Approved for Public Release; Distribution Unlimited.

Lemma 12. Consider a attacker that makes at most a polynomial of queries Q = Q(λ) in Hyb0. If the
advantage of an attacker in Hyb0 is ε(λ), then the advantage of the attacker in Hyb1 will be at least ε(λ)/θ(Q).
In particular, any poly-time attacker with non negligible advantage in Hyb0 will also have non-negligible
advantage in Hyb1.

Proof. The lemma follows immediately from the function h satisfying the definition of a θ-admissibility, since
the only independent choice of u← AdmSample(1λ, Q) determines whether or not the hybrid aborts. (This
argument is identical to the corresponding one in the proof of Lemma 5 of Section 4.)

Lemma 13. The advantage of any poly-time algorithm in Hyb1 is the same as its advantage in Hyb2.

Proof. The two hybrid experiment are equivalent as all ci,b ∈ Zp values are still chosen uniformly at random
in both hybrids. (The step from Hyb1 to Hyb2 is a notational reorganization to set up the next proof step.)

Lemma 14. If our obfuscation scheme is indistinguishability secure, then the advantage of any poly-time
algorithm in Hyb2 is negligibly close to the advantage in Hyb3.

Proof. We prove this lemma by giving a reduction to the indistinguishability security of the obfuscator. To
do so, we must build the two algorithms Samp and D.

Samp(1λ) behaves as follows: It invokes the adversary to obtain the adversary’s state τ ′. It runs the
bilinear group setup to obtain G,GT , p, g and then chooses a random a ∈ Zp. For i ∈ [n], b ∈ {0, 1} it chooses
random yi,b ∈ Zp and then sets

ci,b =

{
yi,b if b = ui

a · yi,b if b 6= ui

It samples a string u ∈ ({0, 1,⊥})n by calling AdmSample(1λ, Q) → u, where Q is an upper bound on
the number of queries made by the adversary. It sets τ = (G, g, a, (c1,0, c1,1), . . . , (cn,0, cn,1), (y1,0, y1,1), . . . ,
(yn,0, yn,1), u, τ ′) and builds C1 as the program for BLS Adaptive Hash, and C2 as the program for BLS
Adaptive Hash*.

Before describing D, we observe that by construction, the circuits C1 and C2 always behave identically
on every input. To show program equivalence, note that for all m′, we have that

g
∏
i ci,m′i = g

a|µ(m
′)|·∏i yi,m′i = (ga

|µ(m′)|
)
∏
i yi,m′i .

With suitable padding, both C1 and C2 have the same size. Thus, Samp satisfies the conditions needed for
invoking the indistinguishability property of the obfuscator.

Now, we can describe the algorithm D, which takes as input τ as given above, and either the obfuscation
of C1, which is the program BLS Adaptive Hash, or C2, which is the program BLS Adaptive Hash*. D then
invokes the adversary, which makes requests for signatures on messages. D constructs the signatures H(m)a,
through its knowledge of a within τ . Finally, the attacker sends a forgery-message pair (σ∗,m∗) and wins if
Verify(VK,m∗, σ∗) = 1. If the attacker wins, D outputs 1.

By construction, if D receives an obfuscation of C1, then the probability that D outputs 1 is exactly the
probability of the adversary winning in hybrid Hyb2. On the other hand, if D receives an obfuscation of C2,
then the probability that D outputs 1 is the probability of the adversary winning in hybrid Hyb3.

The lemma follows.

Lemma 15. If the Diffie-Hellman Inversion Assumption holds in bilinear group G, then the advantage of
any poly-time algorithm in Hyb3 is negligible.

Proof. We prove this lemma by giving a reduction to the Diffie-Hellman Inversion problem. To do so, we
build algorithm B.

18

387

Approved for Public Release; Distribution Unlimited.

B takes as input a n-DHI challenge (g, ga, ga
2

, . . . , ga
n

) from a bilinear group G of prime order p, where n
is the same as the output length of the admissible hash function h(·). Next, B calls AdmSample(1λ, Q)→ u,
where Q is an upper bound on the number of queries made by the adversary. For i ∈ [n], b ∈ {0, 1}, it
chooses random yi,b ∈ Zp.

Finally, B creates the hash function H(·) as an obfuscation of the program BLS Adaptive Hash* using the
DHI challenge values, the values (y1,0, y1,1), . . . , (yn,0, yn,1) above and u. All these steps together simulate
the setup phase of Hyb3. Now, it runs the attacker using the initial parameters above, including A = ga.

The attacker will then make at most Q signing queries each for a message m. We denote m′ = h(m). If
Pu(m) 6= 1, B aborts and quits. Otherwise, Pu(m) = 1 and there exists an i where m′i = ui, meaning that
the hash of m′ will contain a power of a that is strictly less than n. Thus, the signature can be formed using
only knowledge of the DHI input and the yi,b values.

Finally, the attacker will output an attempted forgery σ∗ on some message m∗ that is distinct from all the
messages in the query phase. B first checks if the signature verifies and aborts if it does not. Next, it checks
if Pu(m∗) 6= 0 and aborts if that is the case. Otherwise, Pu(m∗) = 0 and for all i we have h(m∗)i 6= ui. This
means that the hash of m∗ will be ga

n

raised to some known product of yi,b values. The signature therefore

contains ga
n+1

raised to some known product of yi,b values, since signatures contain one more factor of a in
the exponent than their corresponding hash values. This value can be recovered by taking the proper root
of the signature, i.e., (σ∗)1/

∏
i yi,h(m∗)i = ga

n+1

, and thus if σ∗ was a successful forgery, then this root of the
signature is a solution to the DHI challenge.

We observe that by construction of B, the probability of success of B is exactly the probability that the
attacker succeeds in hybrid Hyb3. Importantly, whenever B aborted, the attacker by the rules of Hyb3 was
not considered to be successful since his queries or forgery violated the partition. The lemma follows.

Pulling together these four lemmas immediately gives our the main theorem that the above BLS signature
scheme is (adaptively) secure.

7 Extensions to Boneh-Franklin IBE and Aggregate Signatures

Boneh-Franklin IBE We can adapt our techniques for proving security of BLS signatures to the Boneh-
Franklin [BF01] Identity-Based Encryption system. BLS signatures directly correspond to IBE private keys
in the BF scheme. The proof for the BF adapts with a few minor changes:

• For proving BF selectively secure we can use the decision Bilinear Diffie-Hellman assumption.

• The second random oracle in the BF scheme can be replaced with an extractor.

• For proving adaptive security we use the following assumption. Namely that given g, gs, ga, ga
2

, . . . , ga
n

it is hard to distinguish e(g, g)a
n+1s from a random group element in GT . We note this assumption is

weaker than the decision Bilinear Diffie-Hellman Exponent assumption [BGW05].

BLGS Aggregate Signatures Boneh, Gentry, Lynn and Shacham [BGLS03] showed that the BLS signa-
tures are aggregateable by reduction to the BDH assumption. Later Bellare, Namprempre and Neven [BNN07]
showed how an aggregate signature scheme could built directly from and reduced to the security of BLS sig-
natures. Using their results we immediately get an aggregate signature scheme.

Acknowledgments

We thank Mihir Bellare for discussions relating to the origins and terminology of full domain hash signatures
and other helpful discussions. We thank Dan Boneh for many helpful discussions and also for pointing out
the equivalence of our assumption used in Section 6 to the Diffie-Hellman Inversion Assumption. We thank

19

388

Approved for Public Release; Distribution Unlimited.

Dennis Hofheinz for clarifications on admissible hash functions and pointing us to the simplified version we
used. Finally, we are grateful to the anonymous reviewers of Eurocrypt 2014 for their helpful comments.

References

[BB04a] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443–459, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Short signatures without random oracles. IACR Cryptology ePrint
Archive, 2004:171, 2004.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-oracle-
model scheme for a hybrid-encryption problem. In EUROCRYPT, pages 171–188, 2004.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In
Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’01, 2001.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In CRYPTO, pages 258–275, 2005.

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via uces.
IACR Cryptology ePrint Archive, 2013:424, 2013.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASI-
ACRYPT, pages 514–532, 2001.

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In ICALP, pages 411–422, 2007.

[Boy08] Xavier Boyen. A tapestry of identity-based encryption: practical frameworks compared. IJACT,
1(1):3–21, 2008.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages 62–
73, 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how to sign with
rsa and rabin. In EUROCRYPT, pages 399–416, 1996.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
IACR Cryptology ePrint Archive, 2013:352, 2013.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (pre-
liminary version). In STOC, pages 209–218, 1998.

20

389

Approved for Public Release; Distribution Unlimited.

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
J. Cryptology, 20(3):265–294, 2007.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int.
Conf., pages 360–363, 2001.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998.

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecurity of the full
domain hash. In CRYPTO, pages 449–466, 2005.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. IACR Cryptology ePrint Archive, 2013:354,
2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (ex-
tended abstract). In FOCS, pages 464–479, 1984.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In
FOCS, pages 102–113, 2003.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In CRYPTO, 2013.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. IACR Cryptology ePrint Archive, 2013:379,
2013.

[KS98] B. Kaliski and J. Staddon. Pkcs #1: Rsa cryptography specifications version 2.0, 1998.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM
Trans. Comput. Syst., 1(1):38–44, 1983.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. Cryptology ePrint Archive, Report 2013/454, 2013. http://eprint.iacr.org/.

21

390

Approved for Public Release; Distribution Unlimited.

Parallel Repetition Theorems for Interactive Arguments∗

Kai-Min Chung†and Rafael Pass‡

Department of Computer Science, Cornell University
Ithaca, NY 14850, USA

April 18, 2013

Abstract

We present a simple proof of an optimal parallel repetition theorem for public-coin argu-
ments. Our new proof additionally yields the first “Chernoff-type” parallel repetition theorems
for public-coin arguments that match the parameters of the standard Chernoff bound.

1 Introduction

Interactive proof systems, introduced by Goldwasser, Micali and Rackoff [GMR89] and Babai and
Moran [BM88] are one of the central tools in both modern cryptography and complexity theory.
Roughly speaking, an interactive proof system allows a prover P to convince a verifier V that some
instance x is a member of a language L.

Roughly speaking, the completeness property of an interactive proof states that if x ∈ L and
both players follow their prescribed strategies, the verifier accepts with some “high probability”
1− c(|x|); the soundness property, on the other hand, requires that if x /∈ L, then no matter what
strategy an adversarial prover P ∗ uses, the honest verifier strategy V will reject with some high
probability 1− s(|x|). We refer to c(·) as the completeness error of the interactive proof systems,
and s(·) as the soundness error. While the original notion of an interactive proof required that the
soundness property holds against all, even computationally unbounded, cheating provers, a relaxed
notion—called interactive arguments—was introduced by Brassard, Chaum and Crepeau [BCC88]:
In an interactive argument, we only require the soundness property to hold against computationally
bounded (technically, probabilistic polynomial-time, or non-uniform polynomial-time) algorithms.

Ideally, we would like the soundness error of an interactive proof or argument systems to be
negligible. But, in many settings, our starting point is a protocol with somewhat large soundness
error. For example, to design an interactive argument for a language L, it may be easier to first

∗ c© Kai-Min Chung and Rafael Pass, 2013.
†chung@cs.cornell.edu. Supported in part by NSF Award CNS-1217821 and Pass’ Sloan fellowship..
‡rafael@cs.cornell.edu. Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty

Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844, AFOSR
YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-0211. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.

391

Approved for Public Release; Distribution Unlimited.

design a protocol with soundness error 1/2. A natural approach to decrease the soundness error is
through parallel repetition: we run k instances of the original protocol in parallel and the verifier
finally accepts if all instances are accepting. It is known that parallel repetition decrease soundness
error at an optimal rate for the case of interactive proofs. For arguments (i.e., computational sound-
ness), however, surprising things start happening: The works of Bellare, Impagliazzo, and Naor
[BIN97] and Petrzak and Wikstrom [PW07] demonstrate protocols for which parallel repetition
fails to amplify soundness beyond a constant.

On the other hand, the seminal work of Bellare, Impagliazzo and Naor [BIN97] demonstrates
that parallel repetition reduces the soundness error for all three-message protocols. The results of
[BIN97] demonstrated that parallel repetition reduces the soundness error of such protocols at an
exponential rate, but did not establish an optimal rate (i.e., reducing the soundness error from ǫ to
ǫk). Nevertheless, the more recent work by Canetti, Halevi and Steiner [CHS05] shows that parallel
repetition indeed reduces the soundness error at an optimal rate for this class of protocols.

More recently, Pass and Venkitasubramaniam [PV12] consider public-coin protocols, and
demonstrates that parallel repetition decreases the soundness error for constant-round public-coin
protocols at an optimal rate. H̊astad, Pass, Wikström and Pierzak [HPWP08] show that parallel
repetition, in fact, works for all (not necessarily constant-round) public-coin protocols, and de-
creases the soundness error at an exponential rate; finally, Chung and Liu [CL10] demonstrate that
it in fact decreases at an optimal rate. The non-tight analysis of [HPWP08] is quite natural and
modular; on the other hand, the tight analysis from [CL10] relies on a rather complicated analysis
involving directly upper-bounding the success probability of the complete reduction (which carries
little intuition for why the reduction works).

In this note we revisit the works of [HPWP08] and [CL10]: we present a new and modular
tight analysis of parallel repetition for public-coin protocols. On a high-level, our proof follows the
simpler framework of [HPWP08] (and thus enjoys the same modularity and simplicity), yet at the
same time providing a clear intuition for why a tight analysis can be obtained.

As an additional application of this new analysis, we obtain the first general “Chernoff-type”
parallel repetition theorems for public-coin argument that matches the parameters of the standard
Chernoff bound: Ideally, we would like to have a way to simultaneously decrease both the com-
pleteness and the soundness error: just as for error reduction of the class BPP, the idea is to
consider a threshold verifier, who accept whenever the fraction of accepting sessions is greater than
a certain threshold (that is greater than the soundness error, or else there is no hope to reduce the
soundness error). For error reduction of BPP, it follows by a standard Chernoff bound that such
an approach works. For interactive arguments, such “Chernoff-type” parallel repetition theorems
where first studied by Impagliazzo, Jaiswal, and Kabanets [IJK09] for the case of three-message
protocols, tighter bounds were later established by Jutla [Jut10], and finally optimal bounds were
established independently Chung et al. [CLLY10], and Holenstein and Schoenebeck [HS11]. H̊astad
et al. [HPWP10] provide Chernoff-type parallel repetition theorems for public-coin protocols and
Chung and Liu [CL10] show Chernoff-type parallel repetition theorems with parameters matching
the standard Chernoff bound, but only in the regime where the threshold is a additive constant
larger than the soundness error of the original protocol (and as such do not apply to protocols
where the soundness and completeness error are inverse polynomials). Our new analysis yields the
same parameters as the standard Chernoff bound for any threshold.

392

Approved for Public Release; Distribution Unlimited.

2 Preliminaries

2.1 Interactive Proofs and Arguments

We recall the definition of interactive proofs and arguments.

Definition 1 (Interactive Proofs/Arguments) A pair of interactive algorithms (P, V) is an
interactive proof for a NP language L with completeness error c and soundness error s if
it satisfies the following properties:

• Completeness: For all x ∈ L with NP witness w,

Pr[〈P (w), V 〉(x) = 1] = 1− c(|x|).

• Soundness: For all adversarial provers P ∗, and for every all x /∈ L,

Pr[〈P ∗, V 〉(x) = 1] ≤ s(|x|).

where 〈P, V 〉(x) denotes the output of V after communicating with P if both players get x as a
common input. (P, V) is an interactive argument for L if the soundness property holds only
against all non-uniform polynomial-time adversarial provers P ∗.

2.2 KullbackLeibler divergence

Lemma 2 (chain rule) Let (X1,X2) and (Y1, Y2) be random variables. We have

KL((X1,X2)||(Y1, Y2)) = KL(X1||Y1) + E
x←X1

[KL(X2|X1=x||Y2|Y1=x)].

Lemma 3 Let X be a random variable and W a (probabilistic) event.

KL(X|W ||X) ≤ log
1

Pr[W]
.

Lemma 4 Let ~X = (X1, . . . ,Xk) be independent random variables, and W a (probabilistic) event.

k∑

i=1

KL(Xi|W ||Xi) ≤ KL(~X |W || ~X)

Lemma 5 For every p, q, δ ∈ (0, 1) such that δ ≤ p/2, we have

KL(p||q)−KL(p− δ||q) ≤ δ ·
(
log

1

q
+ log

1

δ
+ 2

)
.

Proof. By definition,

KL(p||q) = p log
p

q
+ (1− p) log

1− p

1− q

= p log p+ p log
1

q
+ (1− p) log(1− p) + (1− p) log

1

1− q

KL(p− δ||q) = (p − δ) log
p− δ

q
+ (1− p+ δ) log

1− p+ δ

1− q

= (p − δ) log(p − δ) + (p− δ) log
1

q
+ (1− p+ δ) log(1− p+ δ) + (1− p+ δ) log

1

1− q

393

Approved for Public Release; Distribution Unlimited.

By further expanding, we have

(p − δ) log(p − δ) = p log(p− δ)− δ log(p− δ)

= p log p+ p log(1− δ

p
)− δ log(p− δ)

(p − δ) log
1

q
= p log

1

q
− δ log

1

q

(1− p+ δ) log(1− p+ δ) = (1− p) log(1− p+ δ) + δ log(1− p+ δ)

= (1− p) log(1− p) + (1− p) log(1 +
δ

1− p
) + δ log(1− p+ δ)

(1− p+ δ) log
1

1− q
= (1− p) log

1

1− q
+ δ log

1

1− q

Therefore,

KL(p||q)−KL(p− δ||q)

= −p log(1− δ

p
) + δ log(p − δ) + δ log

1

q
− (1− p) log(1 +

δ

1− p
)− δ log(1− p+ δ) − δ log

1

1− q

≤ −p log(1− δ

p
) + δ log

1

q
− δ log(1− p+ δ)

≤ 2δ + δ log
1

q
− δ log δ = δ · (log 1

q
+ log

1

δ
+ 2),

where the first inequality follows by dropping negative terms, the second inequality follows by the
monotonicity of logarithm and using Taylor expansion.

2.3 A Lemma on Sampling

Lemma 6 Let (X,Y) be a joint distribution over some finite domain. Let W be a deterministic
event on (X,Y). Consider the following experiment:

• Sample x← X|W .

• Sample y ← Y |W∧X=x using rejection sampling; i.e., sample i.i.d. y1, y2, . . . ← Y |X=x and
outputs the first yt such that (x, yt) ∈W .

Let T be the number of sample used in the rejection sampling. We have E[T] = 1
Pr[W] .

Proof. The lemma follows by the following calculation.

E[T] =
∑

x

Pr[X = x|W] · E[T |X = x]

=
∑

x

Pr[X = x|W] · 1

Pr[W |X = x]

=
∑

x

Pr[X = x ∧W]

Pr[W]
· Pr[X = x]

Pr[W ∧X = x]

=
∑

x

Pr[X = x]

Pr[W]
=

1

Pr[W]
.

394

Approved for Public Release; Distribution Unlimited.

P ∗ V
xi

P k∗ V k

yi

x = xi

y = yi

internal internal

Figure 1: Interaction between P ∗ and V : P ∗ embeds the external verifier V in session i of V k and
internally emulates P k∗ and the remaining k− 1 sessions −i of V k while forwarding P k∗’s message
y for session i to V .

3 Parallel Repetition of Two-message Public-coin Protocols

As a starting point, we provide the key elements needed to prove an optimal parallel repetition
theorem for two-message public-coin protocols. To set-up some notation, let us consider two-
message public-coin protocols (P, V), where the verifier V sends a uniformly random first-message
x to P , receives back a second-message y, and finally deterministically decides to accept or reject
based on the transcript (x, y). We denote by (P k, V k) the k-fold parallel repetition of (P,K);
here V k sends a message ~x = (x1, . . . , xk), receives back ~y = (y1, . . . , yk), and accepts iff (xi, yi) is
accepting for every coordinate i ∈ [k]. We refer to the different parallel executions of the protocol
(P, V) inside (P k, V k) as the parallel sessions.

To prove that parallel repetition reduces the soundness error, we show how to transform any
parallel prover P k∗ that convinces V k with probability ǫ to a single-instance prover P ∗ that con-
vinces V with probability close to ǫ1/k. This implies that parallel repetition reduces the soundness
error at an essentially optimal rate (from δ to δk). We may without loss of generality assume that
P k∗ is deterministic—its optimal random coins can always be fixed non-uniformly.1

More precisely, P ∗ will internally emulate an execution of P k∗ and use this execution in order
to convince an external verifier V . On a high-level, the idea is quite straight forward. P ∗ picks
one of the k sessions, i; this session will be externally forwarded (between P k∗ and V), and all the
other sessions, −i, will be appropriately emulated internally. In other words, the external verifier
V is “embedded” in some session i of V k, and P ∗ internally emulates P k∗ and the remaining k− 1
sessions −i of V k while forwarding P k∗’s message y for session i to V ; see Figure 1.

Recall that since we have assumed that P k∗ is deterministic, the interaction between P k∗ and
V k is determined solely by V k’s message ~x. Now, given an external message x, P ∗ needs to decide
the session, i, into which to embed V ’s message x (letting xi = x), and to choose the remaining
k − 1 messages ~x−i. Consider the following simple strategy for doing this: Upon receiving x, P ∗

picks i ∈ [k] uniformly at random, and lets xi = x. P ∗ then repeatedly samples ~x−i at random and
queries P k∗ with the sampled message ~x = (xi, ~x−i)2, until P k∗ convinces V k on the query ~x; if
this happens, P ∗ externally forwards P k∗’s answer yi to V . Additionally, if the number of samples
exceeds a certain polynomial bound M (to be determined shortly), P ∗ gives up.

1Alternatively, “close to optimal” coins can be uniformly fixed by sampling.
2This notation means that xi is put into coordinate i of ~x and ~x−i are put at coordinates −i.

395

Approved for Public Release; Distribution Unlimited.

To analyze the success probability of P ∗, let us first allow P ∗ to make an unbounded number
of samples (i.e., set M = ∞). As we shall see, if P k∗ convinces V k with probability ǫ, then P ∗

convinces V with probability ≥ ǫ1/k. We then deal with the bounded-sample case at the end of the
section (looking forward, as long as we make poly(1/ǫ) queries, having such a cut-off only slightly
affects the success probability of P ∗).

The main idea for analyzing (the unbounded sample version of) P ∗ is to consider an Ideal
experiment, where P ∗ succeeds with probability 1 and next show that the actual execution of
(P ∗, V), referred to as the Real experiment, and the Ideal experiment are close (using an appropriate
choice of a distance measure), from which we can conclude that P ∗ succeeds with high probability
in the Real experiment.

Let us start by formalizing the Real experiment.

The Real Experiment Consider an execution of (P ∗, V). V starts by selecting a uniformly
random string x ∈ {0, 1}n, where n is the length of V ’s first message. Next, P ∗, given x, selects a
random coordinate i, lets xi = x and samples remaining k−1 coordinates ~x−i conditioned on P k∗(~x)
convincing V k. If such a string ~x−i exists, then P ∗ succeeds (since P ∗ can make an unbounded
number of queries), and P ∗ fails otherwise (formally, if no such string exists, we let ~x−i = ⊥). The
output of the experiment is defined to be (i, ~x).

First note that to prove that parallel repetition works (at an optimal rate) we need to show
that P ∗ convinces V in the Real experiment with probability at least ǫ1/k. Secondly, observe that
an equivalent way of defining the output (i, ~x) of the experiment is as follows: uniformly sample
i ∈ [k], uniformly sample xi ∈ {0, 1}n, and finally uniformly sample ~x−i ∈ {0, 1}(k−1)n conditioned
on P k∗(~x) convincing V k.

The Ideal Experiment Let us turn to defining the Ideal experiment. The experiment is defined
identically to the Real experiment, except that now we additionally select xi conditioned on P k∗(~x)
convincing V k; that is, uniformly sample i ∈ [k], uniformly sample xi ∈ {0, 1}n conditioned on
P k∗(~x) convincing V k, and finally uniformly sample ~x−i ∈ {0, 1}(k−1)n conditioned on P k∗(~x)
convincing V k; again, the output of the experiment is defined to be (i, ~x). Note that an equivalent
way of defining the Ideal experiment is to uniformly sampling i ∈ [k], and then directly uniformly
sample ~x ∈ {0, 1}kn conditioned on P k∗(~x) convincing V k. Since P k∗ convinces V k with positive
probability, it thus follows that in the Ideal experiment P ∗ convinces V with probability 1.

Going from Ideal to Real Observe that the only difference between the Real and the Ideal ex-
periments is that in Real xi is sampled uniformly at random, and in Ideal it is sampled at random
conditioned on P k∗ convincing V k. Let W denote the event that P k∗ convinces V k. The statisti-
cal distance between the two experiments is thus the average (over i) statistical distance between
xi and xi|W . The following lemma due to Ran Raz [Raz98], developed in the context of parallel
repetition of two-prover games (with statistical soundness), and first used by Impagliazzo, Jaiswal
and Kabanets [IJK07] in the context of parallel repetition of three-round arguments, allows us to
upper bound this distance.

Lemma 7 (Raz’s Lemma [Raz98]) Let ~X = (X1, . . . ,Xk) be independent random variables and

396

Approved for Public Release; Distribution Unlimited.

W be an event. Then,

1

k

k∑

i=1

SD(Xi|W ,Xi) ≤
√

log(1/Pr[W])

k
.

Raz’s Lemma states that conditioning on a not “too small” event W cannot change the marginal
distribution of Xi by too much (on average). In particular, the average statistical distance scales
logarithmically with the probability of the event W . Raz’s Lemma together with the fact that P ∗

convinces V with probability 1 in the Ideal experiment implies that P ∗ convinces V in the Real
experiment with probability at least 1−

√
(log(1/Pr[W]))/k, where by definition Pr[W] = ǫ. This

already suffices to prove that parallel repetition reduces the soundness error at an exponential rate,
but it does not give the “tight” bound (i.e., ǫ1/k). The reason that Raz’s Lemma does not provide
a tight bound is that in our context, statistical distance is not the right distance measure between
the Real and the Ideal experiments. In fact, the proof of Raz’s Lemma first provides a bound
on the Kullback-Leibler divergence (KL divergence, for short) between the random variables, and
then arrives a bound on their statistical distance by relying on a general bound between statistical
distance and KL divergence.3 The “translation” between KL divergence and statistical distance,
however, incurs a quadratic loss. By directly working with KL divergence, we can avoid it.4 Let us
thus state Raz’s Lemma in its “KL form”.

Lemma 8 (Raz’s Lemma – KL version) Let ~X = (X1, . . . ,Xk) be independent random vari-
ables and W be an event. Then,

1

k

k∑

i=1

KL(Xi|W ||Xi) ≤
log(1/Pr[W])

k
.

We omit the proof of Raz’s Lemma, but let us simply remark that the proof follows by a few lines of
elementary (but clever) manipulations of KL divergence. By the chain rule for KL divergence, it fol-
lows that the KL divergence between the Ideal and Real experiments is at most (log(1/Pr[W]))/k.5

Let us now show how to get a lower bound on the success probability of P ∗ in the Real experiment.
Let SucReal and SucIdeal be indicator variables that indicate, respectively, whether P ∗ convinces V
in the Real and the Ideal experiments.

log(1/Pr[W])

k
≥ KL(Ideal||Real) ≥ KL(SucIdeal||SucReal) = 1 · log 1

Pr[SucReal = 1]
, (1)

which implies that Pr[SucReal = 1] ≥ ǫ1/k since Pr[W] = ǫ. The second inequality follows since
applying the same function to two distributions can only decrease their KL divergence, whereas
the last equality follows by the definition of KL divergence and the fact that Pr[SucIdeal = 1] = 1.
This concludes that P ∗ convinces V with probability at least ǫ1/k in the Real experiment.

3Recall that KL(X||Y) =
∑

x∈supp(X) Pr[X = x] · log Pr[X=x]
Pr[Y =x]

.
4A similar phenomena occurred already in the context of parallel repetition for “free” two-prover games; see

[BRR+09].
5We note that the KL divergence is not symmetric, so it does not imply that the KL divergence between the Real

and Ideal experiments is small (in fact, it’s infinite).

397

Approved for Public Release; Distribution Unlimited.

Handling The Bounded-Sample Case. In our analysis so far we have assumed that P ∗ can
make an unbounded number of samples. Let us now show that its success probability is still high
even if we impose a polynomial bound M on the number of samples it can make (and thus P ∗

becomes efficient). Let us first consider the Ideal experiment. The main observation is that, in
the Ideal experiment, in expectation, P ∗ only needs to make 1/ǫ samples to pick ~x−i conditioned
on P k∗(~x) convincing V k (since xi is also picked conditioned on P k∗(~x) convincing V k, and P k∗

convinces V k with probability ǫ). Thus, if the allowed number of samples M is sufficiently larger
than 1/ǫ, then by the Markov inequality, P ∗ can successfully convince V k with probability “almost”
1, even if we restrict P ∗ to use at most M samples.6 Since the Ideal and the Real experiments are
statistically close, this directly yields a lower bound on the success probability of P ∗ in the Real
experiment. But as we saw, working with statistical distance does not give the tight bound.
To obtain a tight bound, we again work with KL divergence. Here, the only difference is that
Pr[SucIdeal = 1] is no longer 1, but can be made arbitrarily (inverse polynomially) close to 1 by
increasing M . This is sufficient to conclude that Pr[SucReal = 1] can be made arbitrarily (inverse
polynomially) close to ǫ1/k as well (since the KL divergence of two binary random variables is a
“smooth” function of the probabilities of both random variables).

4 Parallel Repetition for General Public-coin Protocols

Let us turn to demonstrate a parallel repetition theorem for general public-coin protocols with an
arbitrary number of rounds. The first question to address is: What should the strategy of P ∗ be?
As before, we let P ∗ externally interact with V by internally emulating an interaction of (P k∗, V k)
and embedding its external interaction with V into a random session i. Recall that for the case of
two-message public-coin protocols, P ∗ just needs to select verifier messages ~x−i for sessions −i, and
does so in a way that guarantees that it will convince V (if such messages ~x−i exist). For m-round
protocols, P ∗ needs to select verifier messages ~x1,−i, . . . , ~xm,−i for each round j, but must do so in
a round-by-round fashion. That is, after receiving a message xj from the external verifier V , it sets
xj,i = xj and must pick ~xj,−i before knowing what xj′,i is for j′ > m; as a consequence, we can
no longer pick messages xj,−i that guarantees “success” (even if we have an unbounded number of
samples).

A first approach for picking xj,−i, explored by [PV12], consists of letting P ∗ greedily select
messages ~xj,−i for sessions −i that maximize (or rather “approximately” maximize) P ∗’s probability
of convincing V ; this can be done using a recursive sampling strategy—roughly speaking, in each
round j, P ∗ needs to evaluate how well P ∗ would do in the remaining rounds, and picks the
best messages based on this evaluation (we briefly return to this approach in Section ??). [PV12]
shows that by employing such a recursive sampling strategy, a tight parallel repetition theorem
can be established. But, due to the recursive sampling, the running-time of the reduction becomes
exponential in the number of rounds m, and this approach can thus only be used to get a parallel
repetition theorem for constant-round public-coin protocols.

As it turns out, an even simpler rejection sampling strategy, first explored by [HPWP10], works:
We consider a prover, P ∗rej, that selects the session i ∈ [k] uniformly at random (just as before), and
then at each round j, upon receiving the external verifier V ’s message xj,i, P

∗
rej selects ~xj,−i using

6Since M > 1/ǫ, we only get an efficient reduction as long as ǫ is an inverse polynomial. As a consequence, parallel
repetition of arguments cannot decrease the soundness error beyond being “negligible”. As shown by [DJMW12],
under some cryptographic assumptions, this is inherent.

398

Approved for Public Release; Distribution Unlimited.

P ∗
rej Vx1,i

P k∗ V k

y1,i

x1 = x1,i

y1 = y1,i

xj−1,i

yj−1,i

xj−1 = xj−1,i

yj−1 = yj−1,i

xj,i xj = xj,i

internal internal

Figure 2: Interaction between P ∗rej and V .

rejection sampling as follows: P ∗rej repeatedly samples a random continuation of (P k∗, V k) until it

finds an accepting continuation, i.e., V k accepts at the end of interaction (or a certain a-prior bound
M on the number of samples is reached, in which case P ∗ aborts and fails). Then, P ∗ selects the
corresponding messages in the accepting continuation as the messages of V−i at round j. As for
the two-message case, let us first consider the unbounded sample case (when M = ∞). That is,
at each round j, P ∗rej simply selects ~xj,−i conditioned on P k∗ convincing V k. See Figure 2 for an
illustration.

As we shall see now, the analysis for the two-message case can be generalized to provide a tight
lower bound on the success probability of P ∗rej. (The original analysis of [HPWP10] relied on Ideal
v.s. Real paradigm considered in Section 3, but only showed that parallel repetition reduces the
soundness error at an exponential rate; it did not provide a tight parallel repetition theorem. A tight
analysis was first provided by [CL10] by directly (inductively) analyzing the success probability of
P ∗rej. [CP13] provided an alternative tight analysis relying on Ideal v.s. Real paradigm.) As before,
let’s consider a Real experiment where P ∗rej interacts with V (that is, at each round j, xj,i is uniformly

sampled and ~xj,−i is uniformly sampled conditioned on P k∗ convincing V k). We will argue that
if P k∗ convinces V k with probability ǫ, then P ∗rej convinces V with probability ≥ ǫ1/k in the Real
experiment.

Again, let us compare it to an Ideal experiment where the external verifier also, at each round
j, uniformly picks xi,j conditioned on P k∗ convincing V k. It follows (as before) that in the Ideal
experiment, P ∗rej convinces V with probability 1. As before, let us now bound the distance between
the Real and the Ideal experiments. Can we just use Raz’s Lemma as before?

Consider a set of m “hybrid” experiments, where in Hj, the messages in the first j rounds
are selected just as in Ideal (i.e., both xj′,i and ~xj′,−i for j′ ≤ j are sampled conditioned on P k∗

convincing V k), and the remaining m− j rounds are selected just as in Real (i.e., for j′ > j, only
~xj′,−i is sampled conditioned on P k∗ convincing V k, but xj′,i is uniformly sampled without any
conditioning). Clearly H0 = Real and Hm = Ideal. Furthermore, the only difference between two
consecutive hybrids j − 1 and j is whether xj,i is sampled conditioned on P k∗ convincing V k or
not, where i is uniformly chosen. Thus, it would seem we can just use Raz’s Lemma exactly as

399

Approved for Public Release; Distribution Unlimited.

in the two-message case to bound the statistical distance between two such hybrids. This almost
works. The only difference from the two-message case is that there now is a “prefix”—the earlier
messages—that the event we condition on—i.e., P k∗ convincing V k—may depend on. The following
slight generalization of Raz’s Lemma shows exactly this.

Lemma 9 (Raz’s Lemma—“Prefix-version” [Raz98]) Let (H, ~X) = (H,X1, . . . ,Xk) be in-
dependent random variables and W be an event. Then,

1

k

k∑

i=1

SD((H,Xi)|W , (H|W ,Xi)) ≤
√

log(1/Pr[W])

k
.

Let again W be the event that P k∗ convinces V k. The lemma directly implies that the statistical
distance between any two consecutive hybrids Hj−1 and Hj is at most

√
(log(1/Pr[W]))/k. Thus,

by the triangle-inequality, the statistical distance between the Real and the Ideal experiments is at
most m ·

√
(log(1/Pr[W]))/k, which yields a lower bound on the success probability of P ∗rej in the

Real experiment that suffices to demonstrate that parallel repetition reduces the soundness error
at an exponential rate.

Again, however, the bound is not tight due to the use of statistical distance. Additionally, due to
the “hybrid argument” we have furthermore incurred a linear loss in the number of rounds m (thus,
to make the soundness error small we need the number of parallel repetitions to grow polynomially
with the number of rounds in the protocol). Perhaps surprisingly, we can still obtain a tight bound
by working with KL divergence. In particular, by a few lines of elementary manipulations of KL
divergence one can show that the KL divergence between the Ideal and the Real experiments is
upper bounded by the same quantity as in the KL version of Raz lemma (Lemma 8).

Lemma 10 KL(Ideal||Real) ≤ log(1/Pr[W])
k .

A tight lower bound ǫ1/k on the success probability of P ∗rej in the Real experiment can now be
derived by identically the same calculation as in Eq. (1). Finally, the bounded-sample case can be
handled in essentially the same way as in the two-message case.

4.1 Formal Proof

In this section, we present a formal proof of tight parallel repetition theorem for public-coin proto-
cols.

Theorem 11 Let (P, V) be a public-coin interactive argument for a language L. There exists an
oracle adversarial prover P (·)∗ such that for every k ∈ N, input z ∈ {0, 1}∗, every ǫ, ξ ∈ (0, 1), and
every deterministic parallel adversarial prover P k∗, if

Pr[〈P k∗, V k〉(z) = 1] ≥ ǫ,

then
Pr[〈P (P k∗)∗(k, ǫ, ξ), V 〉(z) = 1] ≥ ǫ1/k · (1− ξ).

Furthermore, P (·)∗ runs in time poly(|z|, k, ǫ−1, ξ−1) given oracle access to P k∗.

400

Approved for Public Release; Distribution Unlimited.

Proof. Let m denote the round complexity of (P, V). Let us consider a P
(·)∗
rej that interacts with

V by the aforementioned rejection sampling with M = Θ(mǫξ log
1
ξ). Specifically, P ∗rej, selects the

session i ∈ [k] uniformly at random, and then at each round j, upon receiving the external verifier
V ’s message xj,i, P

∗
rej selects ~xj,−i using rejection sampling as follows: P ∗rej repeatedly samples a

random continuation of (P k∗, V k) until it finds an accepting continuation, i.e., V k accepts at the
end of interaction (or M = Θ(mǫξ log

1
ξ) samples is reached, in which case P ∗rej aborts and fails).

Then, P ∗rej selects the corresponding messages in the accepting continuation as the messages of V−i
at round j.

By inspection, P (·)∗ runs in time poly(|z|, k, ǫ−1, ξ−1) on input z, k, ǫ, and ξ. It remains to show
that if P k∗ convinces V k with probability at least ǫ, then P (·)∗ convinces V with probability at least
ǫ1/k · (1− ξ). Let W denote the event that P k∗ convinces V k in the execution of 〈P k∗, V k〉(z). We

consider the following Real experiment, which is the same as the execution of 〈P (P k∗)∗
rej (k, ǫ, ξ), V 〉(z)

except that P ∗rej takes an unbounded number of samples (i.e., set M =∞).

The Real Experiment Consider an execution of (P ∗rej, V) as follows. At beginning, P ∗rej selects a
random coordinate i ∈ [k]. Then at each round j ∈ [m], V selects a uniformly random xj,i, and P ∗rej
selects a random ~xj,−i conditioned on W using rejection sampling (namely, repeatedly samples a
random continuation of (P k∗, V k) until it finds an accepting continuation, i.e., V k accepts at the end
of interaction, and selects the corresponding ~xj,−i). Let Tj denotes the number of samples P ∗rej takes.
If no such ~xj,−i exists, then P ∗rej fails, and we set Tj =∞ and all remaining ~xj,−i, ~xj+1, . . . , ~xm = ⊥.
P ∗rej succeeds if it does not fail. The output of the experiment is defined to be (i, ~x1, . . . , ~xm).

Note that the event that P (·)∗ convinces V in 〈P (P k∗)∗(k, ǫ, ξ), V 〉(z) corresponds to the event
that in the Real experiment, P ∗ succeeds and Tj ≤M for every j ∈ [m]. Let SucReal be the indicator
random variable of this event. Our goal is to lower bound

Pr[〈P (P k∗)∗(k, ǫ, ξ), V 〉(z) = 1] = Pr[SucReal = 1].

We next compare it with an Ideal experiment, which is identical to the Real experiment, execpet
that the messages x1,i, . . . , xm,i are also selected conditioned on W .

The Ideal Experiment At beginning, P ∗rej selects a random coordinate i ∈ [k]. Then at each
round j ∈ [m], V selects a random xj,i conditioned onW , and P ∗rej selects a random ~xj,−i conditioned
on W using rejection sampling. Let Tj denotes the number of samples P ∗rej takes. The output of
the experiment is defined to be (i, ~x1, . . . , ~xm).

Note that sampling random x1,i, ~x1,−i, . . . , xm,i, ~xm,−i conditioned on W step by step is equiv-
alent to sampling the whole ~x1, . . . , ~xm conditioned on W . Thus, the output distribution of the
Ideal experiment is simply a uniformly random coordinate i ∈ [k] and a uniformly random accepting
transcript (~x1, . . . , ~xm), and P ∗rej never fails in the Ideal experiment. Let SucIdeal be the correspond-
ing indicator random variable of SucReal in the Ideal experiment; that is, SucIdeal is the indicator
random variable of the event that Tj ≤M for every j ∈ [m].

In what follows, we will show that (i) Pr[SucIdeal = 1] ≥ m/Mǫ and (ii) KL(Ideal||Real) ≤
(log(1/Pr[W]))/k, and derive the desired lower bound on Pr[SucReal = 1] from them.

Claim 12 Pr[SucIdeal = 1] ≥ 1−m/Mǫ.

401

Approved for Public Release; Distribution Unlimited.

Proof. Note that in the Ideal experiment, for every i ∈ [k] and j ∈ [m], the prefix
(~x1, . . . , ~xj−1, xj,i) is chosen randomly conditioned on W and then P ∗rej selects a random ~xj,−i
conditioned on W using rejection sampling. Applying Lemma 6 with X = (~X1, . . . , ~Xj−1,Xj,i),
Y = Xj,−i and event W implies that E[Tj] = 1/Pr[W] ≤ 1/ǫ for every j ∈ [m]. By the Markov
inequality, we have Pr[Tj ≤ M] ≥ 1 − 1/Mǫ for every j ∈ [m], and thus it follows by an union
bound that Pr[SucIdeal = 1] ≥ 1− (m/Mǫ).

Claim 13 KL(Ideal||Real) ≤ (log(1/Pr[W]))/k.

Proof. It is instructive to first prove the one-round case (i.e., m = 1), which is equivalent
to the KL-version of Raz’s Lemma. In this case by definition, Ideal = (I, ~X1|W) and Real =
(I,X1,I , ~X1,−I |W,X1,I

). By applying chain rule, we have

KL(Ideal||Real) = KL(I||I) + E
I

[
KL

(
~X1|W ||(X1,I , ~X1,−I |W,X1,I

)]

=
1

k

k∑

i=1

KL
(
~X1|W ||(X1,i, ~X1,−i|W,X1,i)

)
.

For each term KL(~X1|W ||(X1,i, ~X1,−i|W,X1,i)), by applying chain rule again, we have

KL
(
~X1|W ||(X1,i, ~X1,−i|W,X1,i)

)

= KL(X1,i|W ||X1,i) + E
X1,i|W

[KL(~X1,−i|W,X1,i || ~X1,−i|W,X1,i)]

= KL(X1,i|W ||X1,i).

Applying Lemma 4,

1

k

k∑

i=1

KL
(
~X1|W ||(X1,i, ~X1,−i|W,X1,i)

)
=

1

k

k∑

i=1

KL(X1,i|W ||X1,i) ≤
1

k
KL(~X1|W || ~X1).

Therefore, by Lemma 3,

KL(Ideal||Real) ≤ 1

k
KL(~X1|W || ~X1) ≤

log(1/Pr[W])

k
.

We proceed to consider the general case, which is proved by the same calculation, except that
we furst apply an additional chain rule to break up terms corresponding to each round.

KL(Ideal||Real) =
m∑

j=1

E
I, ~X<j |W

[
KL(~Xj |W, ~X<j

||(Xj,I |W, ~X<j
, ~Xj,−I |W, ~X<j ,Xj,I

))
]
.

Now, for each term, the same calculation as before using Lemma 4 shows that

E
I, ~X<j |W

[
KL(~Xj |W, ~X<j

||(Xj,I |W, ~X<j
, ~Xj,−I |W, ~X<j ,Xj,I

))
]
≤ 1

k
E

~X<j |W

[
KL(Xj |W, ~X<j

||Xj | ~X<j
)
]
.

402

Approved for Public Release; Distribution Unlimited.

Applying another chain rule and Lemma 3 gives,

KL(Ideal||Real) ≤ 1

k
E

~X<j |W

[
KL(Xj |W, ~X<j

||Xj | ~X<j
)
]
=

1

k
KL(~X≤m|W || ~X≤m) ≤ log(1/Pr[W])

k

We now derive the desired lower bound on the probability Pr[SucReal = 1] using Claim 12 and
13. Let q = Pr[SucReal = 1] and δ = m/Mǫ. Claim 13 implies that

KL(1− δ||q) ≤ KL(SucIdeal||SucReal) ≤ KL(Ideal||Real) ≤ (log(1/Pr[W]))/k ≤ log
(
ǫ−1/k

)
,

where the first inequality follows by Claim 12, the second inequality follows since applying the same
function to two distributions can only decrease their KL divergence, and the last inequality follows
by the fact that Pr[W] ≥ ǫ. By Lemma 5, we have

KL(1||q) ≤ KL(1− δ||q) + δ

4
+ δ log

1

δ
≤ log

(
ǫ−1/k

)
+

δ

4
+ δ log

1

δ
.

By definition, KL(1||q) = log(1/q), and thus

q ≥ e−(log ǫ
−1/k+ δ

4
+δ log 1

δ) ≥ ǫ1/k ·
(
1− δ

4
− δ log

1

δ

)
≥ ǫ1/k · (1− ξ),

where the second inequality uses e−x ≥ 1− x. This completes the proof.
Chernoff-type theorem here?

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In FOCS, pages 374–383, 1997.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[BRR+09] Boaz Barak, Anup Rao, Ran Raz, Ricky Rosen, and Ronen Shaltiel. Strong parallel
repetition theorem for free projection games. In APPROX-RANDOM, pages 352–365,
2009.

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly veri-
fiable puzzles. In TCC, pages 17–33, 2005.

[CL10] Kai-Min Chung and Feng-Hao Liu. Parallel repetition theorems for interactive argu-
ments. In TCC, pages 19–36, 2010.

[CLLY10] Kai-Min Chung, Feng-Hao Liu, Chi-Jen Lu, and Bo-Yin Yang. Efficient string-
commitment from weak bit-commitment. In Masayuki Abe, editor, ASIACRYPT.
Springer-Verlag, December 2010.

403

Approved for Public Release; Distribution Unlimited.

[CP13] Kai-Min Chung and Rafael Pass. Parallel repetition theorem for public-coin protocols.
Manuscript in preparation, 2013.

[DJMW12] Yevgeniy Dodis, Abhishek Jain, Tal Moran, and Daniel Wichs. Counterexamples to
hardness amplification beyond negligible. In TCC, pages 476–493, 2012.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[HPWP08] Johan H̊astad, Rafael Pass, Douglas Wikström, and Krzysztof Pietrzak. An efficient
parallel repetition theorem. Unpublished manuscript, 2008.

[HPWP10] Johan H̊astad, Rafael Pass, Douglas Wikström, and Krzysztof Pietrzak. An efficient
parallel repetition theorem. In TCC, pages 1–18, 2010.

[HS11] Thomas Holenstein and Grant Schoenebeck. General hardness amplification of predi-
cates and puzzles - (extended abstract). In TCC, pages 19–36, 2011.

[IJK07] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Chernoff-type direct
product theorems. In CRYPTO, pages 500–516, 2007.

[IJK09] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Chernoff-type direct
product theorems. J. Cryptology, 22(1):75–92, 2009.

[Jut10] Charanjit S. Jutla. Almost optimal bounds for direct product threshold theorem. In
TCC, pages 37–51, 2010.

[PV12] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. A parallel repetition the-
orem for constant-round arthur-merlin proofs. Transactions on Computation Theory,
4(4):10, 2012.

[PW07] Krzysztof Pietrzak and Douglas Wikström. Parallel repetition of computationally sound
protocols revisited. In TCC, pages 86–102, 2007.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

404

Approved for Public Release; Distribution Unlimited.

Online/Offline Attribute-Based Encryption

Susan Hohenberger1 and Brent Waters2

Johns Hopkins University and University of Texas at Austin

Abstract. Attribute-based encryption (ABE) is a type of public key
encryption that allows users to encrypt and decrypt messages based on
user attributes. For instance, one can encrypt a message to any user
satisfying the boolean formula (“crypto conference attendee” AND “PhD
student”) OR “IACR member”. One drawback is that encryption and key
generation computational costs scale with the complexity of the access
policy or number of attributes. In practice, this makes encryption and
user key generation a possible bottleneck for some applications.
To address this problem, we develop new techniques for ABE that split
the computation for these algorithms into two phases: a preparation
phase that does the vast majority of the work to encrypt a message or
create a secret key before it knows the message or the attribute list/access
control policy that will be used (or even the size of the list or policy).
A second phase can then rapidly assemble an ABE ciphertext or key
when the specifics become known. This concept is sometimes called “on-
line/offline” encryption when only the message is unknown during the
preparation phase; we note that the addition of unknown attribute lists
and access policies makes ABE significantly more challenging.
One motivating application for this technology is mobile devices: the
preparation work can be performed while the phone is plugged into a
power source, then it can later rapidly perform ABE operations on the
move without significantly draining the battery.

1 Introduction

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [20] as
a more expressive form of encryption where one can encrypt according to some
policy. For example, in a large corporate setting one might encrypt data to the
policy of (“Procurement” AND “Manager”) OR “Accounting”. There
are two main flavors of ABE. In Key-Policy ABE [10], a key is associated with a
boolean formula φ and a ciphertext with a set S of attributes. One can decrypt
iff the set S satisfies the formula φ. Alternatively, in Ciphertext-Policy ABE the
roles are flipped; a key is associated with a set of attributes and the ciphertext
with an access formula.

One challenge in building systems that use Attribute-Based Encryption is
that the added functionality may come with a significant cost compared to stan-
dard public key cryptography. Consider a Key-Policy ABE system. Here the
encryption time will scale with the number of attributes assigned to the cipher-
text and key generation time will scale with the size of the boolean formula

405

Approved for Public Release; Distribution Unlimited.

ascribed to a user’s private key. These costs could impact several applications. If
the encryption algorithm is run on a mobile device, encryption time and battery
power are of large importance. In other applications, authority servers that gen-
erate users’ private keys may become a bottleneck. In both of these scenarios, an
exacerbating factor is that the cost for operations may vary widely between each
ciphertext and key; thus forcing a system to provision for a load that matches a
worst case scenario. See [4, 18, 23] for further ABE performance cost details.

In this work, we aim to mitigate this problem by introducing methods for
online/offline encryption and key generation in Attribute-Based Encryption. By
moving the majority of the cost of an encryption and key generation into an
offline phase, a system will be able to smooth the computational (and power)
demand over a longer range of time, and thus only need the resources to handle
the average case load.

Applications for this Technology One motivating application for splitting the
work this way is that a mobile device could be programmed to automatically
do ABE preparation work whenever it is plugged into a power source, and then
when it is unplugged, ABE ciphertexts could be rapidly formed with a significant
reduction in battery consumption.

Another potential advantage of splitting work this way is that in some ap-
plications the online and offline work can be performed in different devices. One
might perform the offline work for several encryptions on a high-end server and
store these intermediate ciphertexts on a sensor device such that the small de-
vice never needs to perform a full encryption. In other applications, for security
reasons a designer might wish to limit the number of outward facing servers that
have access to the master secret key (or equivalent). Using online/offline tech-
niques he could have several servers performing offline operations, but relatively
fewer required for the final online step to generate a user’s private key. While a
corrupted offline server (without the master secret) could not break the system,
in collusion it could produce outputs that would allow an eventual key holder
to do so. Therefore, application of this idea would require further analysis and
techniques to mitigate this scenario.

Background on Online/Offline Cryptography Even, Goldreich and Micali [9] ini-
tiated online/offline techniques for signatures and Shamir and Tauman [22] in-
troduced a general method using chameleon hash functions. In the context of
signatures, one would like to perform most of the work for signing a message in
the offline phase, but without knowing what the message to be signed is. Later
in the online phase the signer will learn the message and given the offline work
should be able to sign it relatively quickly.

The focus of our investigation is on moving encryption computation offline.
In the basic encryption setting, the job is to perform most of the work for
encryption offline, before the message is known. This is one of the reasons that
stream ciphers, such as RC4, are sometimes preferred over certain block ciphers,
because they operate by generating a pseudorandom string (which can be done
offline) and then XORing it with the plaintext (in the online phase).

406

Approved for Public Release; Distribution Unlimited.

Let’s next consider the task of moving encryption computation offline for
Identity-Based Encryption (IBE), where neither the message nor the recipient’s
identity is known during the offline phase. Guo et al. [12] give an offline en-
cryption system for Identity-Based Encryption (and other works [17, 16, 8, 21]
proposed different variants). We illustrate the main idea as a KEM1 variant of
the Boneh-Boyen [5] IBE system. In the offline phase, one will create a cipher-
text by encrypting to a random identity x ∈ Zp with randomness s ∈ Zp. The
resulting BB-type ciphertext will have the form C1 = gs, C2 = (uxh)s and the
encapsulated key will be e(g, g)αs, where the bilinear group description G of or-
der p and g, u, h, e(g, g)α are in the public parameters. The offline algorithm will
store these ciphertext components as well as remember x and s; these together
will consist of what we call an intermediate ciphertext. In the online phase, the
encryptor will learn that she wishes to encrypt to a certain identity I ∈ Zp. To
do this, she simply adds a small “correction factor” r · (I − x) ∈ Zp to the ci-
phertext components C1, C2. The computation only takes one multiplication and
subtraction in Zp. A modified decryption algorithm with the correct private key
can then extract the required symmetric key. We note that treating the system
as a Key Encapsulation Mechanism allows us to separate the issues of learning
the identity in the online phase versus learning the message in the online phase.

The Challenge for ABE From the above description, one can see that the correc-
tion techniques critically rely on there being well-known algebraic relationships
between the Boneh-Boyen hashes of different identities. Unfortunately, these do
not exist in most initial ABE systems [10, 6, 24] as an attribute for string x would
typically be represented as either a random group element hx in the parame-
ters or as the result of a (random oracle modeled) hash function H(x). A second
challenge is that the size and structure of ciphertext descriptors is more complex
in ABE systems. For instance, in a KP-ABE system the number of attributes
associated with a ciphertext may vary widely between each encryption. If one
encrypts to a small number in each offline stage, the intermediate ciphertext may
be not useable. If one encrypts to a large or maximum number in each offline
phase, it can result in much wasted work. Using offline computation efficiently
becomes a challenge in this setting. For ciphertext-policy ABE, finding a good
solution is more challenging as the “unknown” is an complex access structure.

Our Contributions We develop new techniques for online/offline ABE encryp-
tion and key generation that tackle these challenges. The first non-trivial task
is to identity ABE constructions that have the required algebraic structure to
enable online/offline computation. Unfortunately, most existing schemes do not.
However, a few do. We first identified the recent “large universe” construction of
Lewko and Waters [14] as a candidate base scheme due to its algebraic structure

1 A key encapsulation mechanism, where the public key ciphertext encapsulates a
symmetric key which could later be used to symmetrically encrypt the plaintext.

407

Approved for Public Release; Distribution Unlimited.

that appears amenable to adding correction factors.2 We finally decided to use a
recent more efficient prime-order variant due to Rouselakis and Waters [19]. (We
are not aware of any other ABE schemes that can support a similarly efficient
online/offline tradeoff.)

We begin by designing online/offline encryption algorithms for Key-Policy
ABE. For our first construction we assume a set number of attributes that will be
associated with each ciphertext. In this setting we develop a correction technique
for the KP-ABE [19] system. We prove security by directly reducing to the
security of [19]. This has the advantage of simplicity in that we do not need to
revisit the guts of the prior proof. In addition, we will automatically inherenit
any future improvements in the proof for the underlying scheme.

For reasons, discussed above assuming a fixed number of attributes per ci-
phertext is undesirable. To this end we come up with a method of “pooling” work
done offline. In this system an encryptor will continuously create offline cipher-
text pieces and add these to a pool. When the encryption algorithm later needs
to encrypt to a set S of attributes, it grabs |S| pieces from the pool connecting
each one to a single attribute from S. The work per attribute is dominated by
one multiplication in Zp. We describe this as a “connect and correct” approach.

We extend our offline encryption approach to the more complex case of
Ciphertext-Policy ABE. The challenge here is that a CP-ABE ciphertext is as-
sociated with a Linear Secret Sharing Scheme (LSSS) matrix. Again, we develop
a pooling technique. However, in this application for each row of the matrix
M given online, we will need to correct each ciphertext component to an LSSS
share in the exponent and to the corresponding attribute. Finally, we show how
online/offline key generation can be derived from our encryption techniques. We
observe a symmetry between CP-ABE encryption and KP-ABE key generation
that allows us to develop an online/offline pair of algorithms for the latter.

Combining with Outsourcing for ABE We make a brief detour here to discuss
how the results of this work might be combined with prior ABE results to make
a practical overall system.

In 2011, Green, Hohenberger and Waters [11] presented a solution for out-
sourcing the decryption of ABE ciphertexts. That is, they assumed that ABE
ciphertexts might be stored in the cloud. They then showed how a user can
provide the cloud with a single translation key that allows the cloud to trans-
late any ABE ciphertext satisfied by that user’s attributes into a very short El
Gamal-style ciphertext, without the cloud being able to read any part of the
user’s messages. These transmitted ciphertexts are short (saving on bandwidth
and receiving time), but also quick to decrypt (with roughly one or two exponen-
tiations). Thus, the ability to outsource decryption to the cloud allows a mobile
device to quickly decrypt an ABE-encrypted message.

2 Interestingly, [14] aimed for a large universe construction in the standard model and
thus our use of the schemes’s additional structure is a byproduct of removing the
random oracles.

408

Approved for Public Release; Distribution Unlimited.

Conversely, the results of this work allow a mobile device to quickly encrypt an
ABE-encrypted message. These two results could be combined into one system,
where a mobile device would be fully ABE operational while drastically reducing
the computational costs for both decryption (with the help of the cloud) and
encryption (with the help of a preparation phase while the phone charges). We
believe that creative solutions of this sort can be implemented transparently, but
will provide noticeably better performance for users.

2 Definitions for Online/Offline ABE

We work in the key encapsulation mechanism (KEM) setting, where the attribute-
based ciphertext hides a symmetric session key that can then be used to symmet-
rically encrypt data of arbitrary length. The goal in the online/offline setting is
to allow as much precomputation of attribute-based ciphertext as possible with-
out knowing the intended access policy (ciphertext-policy) or set of attributes
(key-policy). We refer the reader to [13] for a review of access structures, linear
secret sharing schemes (LSSS) and related conventions.

Definition 1 (Online/Offline Attribute-Based KEM Specification). Let
S represent a set of attributes and A an access structure. For generality, we will
define (Ikey, Ienc) as the inputs to the extract and online encryption functions
respectively. In a KP-ABE scheme (Ikey, Ienc) := (A, S), while in a CP-ABE
scheme, we have (Ikey, Ienc) := (S,A). We define the function f as follows:

f(Ikey, Ienc) :=

1 if Ienc ∈ Ikey in KP-AB setting

1 if Ikey ∈ Ienc in CP-AB setting

0 otherwise.

An online/offline KP-AB (resp., CP-AB) key-encapsulation mechanism for ac-
cess structure space G is a tuple of the following algorithms:

Setup(λ,U)→ (PK,MK). The setup algorithm takes as input a security pa-
rameter λ and a universe description U , which defines the set of allowed
attributes in the system. It outputs the public parameters PK and the master
secret key MK.

Extract(MK, Ikey)→ SK. The extract algorithm takes as input the master se-
cret key MK and an access structure (resp., set of attributes) Ikey and outputs
a private key SK associated with the attributes.

Offline.Encrypt(PK)→ IT. The offline encryption algorithm takes as input
the public parameters PK and outputs an intermediate ciphertext IT.

Online.Encrypt(PK, IT, Ienc)→ (key,CT) The online encryption algorithm takes
as input the public parameters PK, an intermediate ciphertext IT and a set
of attributes (resp., access structure) Ienc and outputs a session key key and
a ciphertext CT.

409

Approved for Public Release; Distribution Unlimited.

Decrypt(SK,CT)→ key. The decryption algorithm takes as input a private key
SK for Ikey and a ciphertext CT associated with Ienc and decapsulates ci-
phertext CT to recover a session key key if S satisfies A or the error message
⊥ otherwise.

For a fixed universe description U and λ ∈ N, the KP-AB correctness prop-
erty requires that for all (PK,MK) ∈ Setup(λ,U), all S ⊆ U , all A ∈ G, all
SK ∈ Extract(MK,A), if (key,CT) ∈ Online.Encrypt(PK,Offline.Encrypt(PK), S)
and if S satisfies A, then Decrypt(SK,CT) outputs key. CP-AB correctness is
defined analogously, with the last inputs to Extract and Online.Encrypt reversed.

Security Model for Online/Offline AB-KEM Let Π = (Setup,Extract,
Offline.Encrypt,Online.Encrypt,Decrypt) be an AB-KEM for access structure space
G, and consider the following experiment for an adversary A, parameter λ and
attribute universe U :

The Online/Offline AB-KEM experiment OO-ABKEM-ExpA,Π(λ,U):

Setup. The challenger runs the Setup algorithm and gives the public parame-
ters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an
integer counter j = 0. Proceeding adaptively, the adversary can repeatedly
make any of the following queries:
– Create(Ikey): The challenger sets j := j + 1. It runs the key generation

algorithm on Ikey to obtain the private key SK and stores in table T the
entry (j, Ikey,SK).
Note: Create can be repeatedly queried with the same input.

– Corrupt(i): If there exists an ith entry in table T , then the challenger
obtains the entry (i, Ikey,SK) and sets D := D ∪ {Ikey}. It then returns
to the adversary the private key SK. If no such entry exists, then it
returns ⊥.

– Decrypt(i,CT): If there exists an ith entry in table T , then the challenger
obtains the entry (i, Ikey,SK) and returns to the adversary the output
of the decryption algorithm on input (SK,CT). If no such entry exists,
then it returns ⊥.

Challenge. The adversary gives a challenge value I∗enc such that for all Ikey ∈
D, f(Ikey, I

∗
enc) 6= 1. The challenger runs the algorithm Online.Encrypt(PK,

Offline.Encrypt(PK), I∗enc) to obtain (key∗,CT∗). It then randomly selects a
bit b. If b = 0, it returns (key∗,CT∗) to the adversary. If b = 1, it selects a
random session key R in the session key space and returns (R,CT∗).

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot
– trivially obtain a private key for the challenge ciphertext. That is, it

cannot issue a Corrupt query that would result in a value Ikey which
satisfies f(Ikey, I

∗
enc) = 1 being added to D.

– issue a decryption query on the challenge ciphertext CT∗.
Guess. The adversary outputs a guess b′ of b. The output of the experiment is

1 if and only if b = b′.

410

Approved for Public Release; Distribution Unlimited.

Definition 2 (Online/Offline AB-KEM Security). An online/offline AB-
KEM Π is CCA-secure (or secure against chosen-ciphertext attacks) for at-
tribute universe U if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl such that:

Pr[OO-ABKEM-ExpA,Π(λ,U) = 1] ≤ 1

2
+ negl(λ).

CPA Security. We say that a system is CPA-secure (or secure against chosen-
plaintext attacks) if we remove the Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a system is selectively secure if we add an Init
stage before Start where the adversary outputs the challenge I∗enc (instead of
waiting until Challenge).

3 A KP-ABE Scheme with Online/Offline Encryption

We now show how to extend the unbounded KP-ABE scheme of Rouselakis
and Waters [19, Appendix C] to be an online/offline system. We will work in a
key encapsulation mechanism (KEM) model as specified in Defintion 2, so that
we can focus on preparing for an unknown attribute set. Any plaintext can be
encrypted in a hybrid manner during the online phase by a symmetric cipher
keyed with the encapsulated key. We first show a simple system that assumes a
bound P on the maximum number of attributes that can be used to encrypt a
ciphertext. We show how to remove this bound in Section 3.2.

Setup(λ,U) The setup algorithm takes in a security parameter λ and a universe
U of attributes. chooses a bilinear group G of prime order p ∈ Θ(2λ). It also
chooses random generators g, h, u, w ∈ G and picks a random exponent α ∈ Zp.
It then sets the keys as:

PK = (G, p, g, h, u, w, e(g, g)α), MSK = (PK, α).

We assume that the universe of attributes can be encoded as elements in Zp.

Extract(MSK, (M,ρ)) The extract algorithm takes as input the master secret
key MSK and an LSSS access structure (M,ρ). Let M be an `× n matrix. The
function ρ associates rows of M to attributes. The algorithm initially chooses
random values y2, . . . , yn ∈ Zp. It then computes ` shares of the master secret
key as (λ1, λ2, . . . , λ`) := M · (α, y2, . . . , yn)T (where T denotes the transpose).
It then picks ` random exponents t1, t2, . . . , t` ∈ Zp. For i = 1 to `, it computes

Ki,0 := gλiwti Ki,1 :=
(
uρ(i)h

)−ti
Ki,2 := gti .

The private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,`]).

411

Approved for Public Release; Distribution Unlimited.

Offline.Encrypt(PK) The offline encryption algorithm takes in the public pa-
rameters only. Here we describe the basic system which assumes a maximum
bound of P attributes will be associated with any ciphertext. We describe more
advanced variations in Section 3.2. The algorithm first picks a random s ∈ Zp
and computes

key := e(g, g)αs C0 := gs.

Next, for j = 1 to P , it chooses random rj , xj ∈ Zp and computes

Cj,1 := grj Cj,2 := (uxjh)rjw−s.

One can view this as encrypting for a random attribute xj , where this will be
corrected in the online phase. The work done in the offline phase is roughly
equivalent to the work of the regular encryption algorithm in [19, Appendix C].

The intermediate ciphertext is IT := (key, C0, {rj , xj , Cj,1, Cj,2}j∈[1,P]).

Online.Encrypt(PK, IT, S) The online encryption KEM algorithm takes as input
the public parameters, an intermediate ciphertext IT, and a set of attributes S =
(A1, A2, . . . , Ak≤P). For j = 1 to k, it computes Cj,3 := (rj · (Aj − xj)) mod p.
Intuitively, this will correct to the proper attributes. It sets the ciphertext:

CT := (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per
attribute in S.

Decrypt(SK,CT) The decryption algorithm in the KEM setting recovers the en-
capsulated key. It takes as input a ciphertext CT = (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k])
for attribute set S and a private key SK = ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,`]) for
access structure (M,ρ). If S does not satisfy this access structure, then the al-
gorithm issues an error message. Otherwise, it sets I := {i : ρ(i) ∈ S} and
computes constants wi ∈ Zp such that

∑
i∈I wi ·Mi = (1, 0, . . . , 0), where Mi

is the i-th row of the matrix M . Then it then recovers the encapsulated key by
calculating key :=

∏

i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi
= e(g, g)αs (1)

where j is the index of the attribute ρ(i) in S (it depends on i). This does not
increase the number of pairing operations over [19, Appendix C], although it
adds |I| exponentiations.

412

Approved for Public Release; Distribution Unlimited.

Correctness If the attribute set S of the ciphertext is authorized, we have that∑
i∈I wiλi = α. Therefore, key:

:=
∏

i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi

=
∏

i∈I
(e(gs, gλiwti) · e(grj , (uρ(i)h)−ti) · e((uxjh)rjw−s · urj(ρ(i)−xj), gti))wi

=
∏

i∈I
(e(g, g)sλi · e(g, w)sti · e(g, u)−rjtiρ(i) ·

e(g, h)−rjti · e(g, u)ρ(i)rjti · e(g, h)rjti · e(g, w)−sti)wi

=
∏

i∈I
e(g, g)swiλi = e(g, g)sα.

Recall that in the symmetric setting e(g, u) = e(u, g), for all g, u ∈ G, although
this scheme can operate in an asymmetric setting with small alterations.

3.1 Proof of Selective Security

Discussion on Security. We shortly show that the security of our online/offline
system can be directly based on the security of the underlying Rouselakis-
Waters [19, Appendix C] system. The Rouselakis-Waters system that we reduce
security to is selectively secure based on a “q-type” assumption in prime or-
der groups. We remark that our techniques appear to be equally ammenable
to transforming the Lewko-Waters [15] system to an online/offiline system. The
Lewko-Waters system is proven selectively secure from a static assumption in
composite order groups. If such a transformation were done (as well as a reduc-
tion to their scheme), the new scheme would inherit those assumptions.

In [10, Section 9], Goyal et al. discuss how to combine delegation in their ABE
systems with the techniques of Canneti-Halevi-Katz [7] to build a CCA secure
ABE scheme from a CPA one. We believe that a similar delegation structure
exists in our schemes, so that similar techniques would likely work out (although
we do not work out the details here).

Theorem 1. The above online/offline KP-AB-KEM scheme is selectively CPA-
secure with respect to Definition 2 assuming that the scheme of Rouselakis and
Waters [19, Appendix C] is a selectively CPA-secure KP-ABE system.

Proof. To prove the theorem, we will show that any PPT attacker A with a
non-negligible advantage in the OO-ABKEM-Exp experiment against the above
scheme, which we will denoteΠOO = (Setup,Extract,Offline.Encrypt,Online.Encrypt,
Decrypt), can be used to break the selective CPA-security of the Rouselakis-
Waters scheme, which we will denote ΠRW = (SetupRW ,ExtractRW , EncryptRW ,
DecryptRW), with a PPT simulator B.

The simulator plays the challenger and interacts with A in OO-ABKEM-Exp
with security parameter λ and the universe of attributes set to U = Zp.

413

Approved for Public Release; Distribution Unlimited.

Initialization Initially, B receives an attribute set S∗ = {A∗1, A∗2, . . . , A∗k} ⊆ U
from A and gives it to the RW challenger.

Setup Next, B receives the public parameters PK = (G, p, g, h, u, w, e(g, g)α)
from the RW challenger and passes them to A unchanged.

Phase 1 The secret keys are the same in both schemes, so any key generation
request from A is passed to the RW challenger to obtain the key.

Challenge B chooses two distinct, random messages m0,m1 in the RW message
space and sends them to its RW challenger, and receives back a challenge cipher-
text CT∗RW = (S∗, C, C0, {Cj,1, Cj,2}j∈[1,|S∗|]). Here C is the encrypted message
times e(g, g)αs, C0 = gs and for each attribute Aj ∈ S∗, we have Cj,1 = grj and
Cj,2 = (uAjh)rjw−s.

It then selects random values z1, . . . , z|S| ∈ Zp and computes the ciphertext
CT∗OO as (S∗, C0) followed by

C∗j,1 := Cj,1 = grj C∗j,2 := Cj,2 · u−zj = (uAjh)rjw−su−zj C∗j,3 := zj .

To see why this is a correctly formed ciphertext, one needs to recall the third
pairing of equation 1, where one must compute e(C∗j,2 · uC

∗
j,3 ,Ki,2), as well as

observe that the ciphertext is randomized to have the proper distribution. The zj
blinding will cancel out in this step. Next, B guess which message was encrypted
τB ∈ {0, 1} and computes keyguess := C/mτB . Finally, B then sends to A the
tuple (keyguess,CT∗OO).

Phase 2 B proceeds as in Phase 1.

Guess Eventually, A outputs a bit τA. If τA = 0 (meaning that A guesses
that keyguess is the key encapsulated by CT∗OO), then B outputs τB. If τA =
1 (meaning that A guesses that keyguess is a random key), then B outputs
1 − τB. The distribution for A is perfect. Thus, if A has advantage ε in the
OO-ABKEM-Exp experiment, then B breaks the RW KP-ABE system with the
same probability.

3.2 A More Advanced System: Pooling Attributes for an
Unbounded System

Previously, we presented a system that imposed a bound of P attributes asso-
ciated with any ciphertext. We presented P as if it was a system-wide bound
for all ciphertexts, for simplicity. A slightly less naive solution would involve
creating a set of intermediate ciphertexts prepared for different sizes of attribute
sets, and then pulling the “right-sized IT” off-the-shelf during the online phase
(e.g., create one IT for a set of size 1, another for a set of size 2, etc.). However,
these approaches could prove wasteful, as certain ITs may be created and stored
without being used.

414

Approved for Public Release; Distribution Unlimited.

Pooling Construction. Instead, we introduce the idea of “pooling” to eliminate
waste during the offline phase. The intermediate ciphertext is now comprised of
two logical types of objects: a main module and an attribute module. During
the offline phase(s), an arbitrary number of main and attribute modules are
independently created. During the online phase for attribute set S, one main
module and |S| attribute modules will be consumed. The critical feature of this
approach is that any attribute module can be attached to any main module. The
online phase uses exactly what it needs, and any modules left in the pool can be
used on subsequent ciphertexts.

Specifically, during Offline.Encrypt, a main module is computed as follows. It
picks a random s ∈ Zp and sets ITmain := (key, C0, Cw), where these values are
computed as

key := e(g, g)αs C0 := gs Cw := w−s.

During Offline.Encrypt, an attribute module is computed as follows. It picks
a random r, x ∈ Zp and sets ITatt := (r, x, C ′1, C

′
2), where these values are

computed as

C ′1 := gr C ′2 := (uxh)r.

During Online.Encrypt for an attribute set S, the algorithm selects any one
main module ITmain := (key, C0, Cw) and any |S| attribute modules ITatt,j :=
(rj , xj , C

′
j,1, C

′
j,2) available in the pool. Finally, it computes CT as (S,C0, {Cj,1,

Cj,2, Cj,3}j∈[1,|S|]), where

Cj,1 := C ′j,1 = grj Cj,2 := C ′j,2 · Cw = (uxjh)rj · w−s Cj,3 := rj · (Aj − xj).

The encapsulated key is key.

Security Discussion. The dominant cost in the online encryption algorithm is
2 modular multiplications per attribute in S. To formally capture the pooling
model, the specification and security definition in Section 2 would need to be ex-
panded to have the Offline.Encrypt algorithm keep state (e.g., the pool) between
iterations and to pass this state into Online.Encrypt as well. Since pooling does
not impact the structure or distribution of the final ciphertexts over Section 3
and the adversary in the security experiment only views final ciphertexts, it is
relatively straightforward to prove the selective security of the pooling scheme.

4 A CP-ABE Scheme with Online/Offline Encryption

We now turn our attention to developing online/offline CP-ABE systems. This
is intuitively harder than KP-ABE, because the structure of ciphertext is more
complex. We must now be able to create an intermediate ciphertext in the offline
phase that can be quickly be translated to a ciphertext for a hitherto unknown
access structure. To do this, we will use and extend the basic “correction” and

415

Approved for Public Release; Distribution Unlimited.

pooling concepts introduced for KP-ABE. Our online/offline system is based
on the unbounded CP-ABE scheme of Rouselakis and Waters [19, Section 4],
where again it takes a special algebraic structure to make this work, which most
other CP-ABE systems do not appear to have. As before, we are working in
the KEM model. We’ll first show a simple system that assumes a bound P on
the maximum number of rows in an LSSS access structure that will be used to
encrypt. We will subsequently discuss how to remove this bound.

Setup(λ,U) The setup algorithm chooses a bilinear group G of prime order
p ∈ Θ(2λ). It also chooses random generators g, h, u, v, w ∈ G and picks a random
exponent α ∈ Zp. It then sets the keys as:

PK = (G, p, g, h, u, v, w, e(g, g)α), MSK = (PK, α).

Again, we will view the attribute universe as consisting of elements in Zp.

Extract(MSK, S) The extract algorithm takes as input the master secret key
MSK and an attribute set S = {A1, A2, . . . , Ak} ⊆ Zp. The algorithm chooses
random values r, r1, r2, . . . , rk ∈ Zp. It then computes K0 := gαwr,K1 := gr,
and for i = 1 to k, it computes

Ki,2 := gri Ki,3 :=
(
uAih

)ri
v−r.

The private key is SK := (S,K0,K1, {Ki,2,Ki,3}i∈[1,k]).

Offline.Encrypt(PK) The offline encryption algorithm takes in the public pa-
rameters only. Here we describe the basic system which assumes a maximum
bound of P rows in any LSSS access structure used in a ciphertext. We describe
more advanced variations in Section 4.1. The algorithm first picks a random
s ∈ Zp and computes

key := e(g, g)αs C0 := gs.

Next, for j = 1 to P , it chooses random λ′j , xj , tj ∈ Zp and computes

Cj,1 := wλ
′
jvtj Cj,2 := (uxjh)−tj Cj,3 := gtj .

One can view this as encrypting for a random attribute xj with a random “share”
λ′j of s, where this will be corrected in the online phase. We remark that the
work done in the offline phase is roughly equivalent to the work of the regular
encryption algorithm in [19, Section 4].

Intermediate ciphertext is IT := (key, s, C0, {λ′j , tj , xj , Cj,1, Cj,2, Cj,3}j∈[1,P]).

Online.Encrypt(PK, IT, (M,ρ)) The online encryption KEM algorithm takes as
input the public parameters, an intermediate ciphertext IT, and an LSSS ac-
cess structure (M,ρ), where M is an ` × n matrix and ` ≤ P . It picks random
y2, . . . , yn ∈ Zp, sets the vector y = (s, y2, . . . , yn)T (where T denotes the trans-
pose of the matrix) and computes a vector of shares of s as (λ1, . . . , λ`)

T = My.

416

Approved for Public Release; Distribution Unlimited.

For j = 1 to `, it computes

Cj,4 := λj − λ′j Cj,5 := tj · (ρ(j)− xj).

Intuitively, this will correct to the proper attributes and shares of s. It sets the
ciphertext as:

CT := ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per
row of M .

Decrypt(SK,CT) The decryption algorithm in the KEM setting recovers the
encapsulated key. It takes as input a ciphertext CT = ((M,ρ), C0, {Cj,1, Cj,2,
Cj,3, Cj,4, Cj,5}j∈[1,k]) for access structure (M,ρ) and a private key SK = (S, {Ki,0,
Ki,1,Ki,2}i∈[1,`]) for access structure (M,ρ). If S does not satisfy this access
structure, then the algorithm issues an error message. Otherwise, it sets I := {i :
ρ(i) ∈ S} and computes constants wi ∈ Zp such that

∑
i∈I wi ·Mi = (1, 0, . . . , 0),

where Mi is the i-th row of the matrix M . Then it then recovers the encapsulated
key by calculating key := e(g, g)αs =

e(C0,K0)

e(w
∑

i∈I Ci,4wi ,K1) ·∏i∈I(e(Ci,1,K1)
· 1

e(Ci,2 · uCi,5 ,Kj,2) · e(Ci,3,Kj,3))wi
(2)

where j is the index of the attribute ρ(i) in S (it depends on i). We note that
this decryption algorithm adds one pairing operation and |I|+1 exponentiations
over [19, Appendix C]. Alternatively, one could re-arrange the equation for no
additional pairings at the cost of 2|I| exponentiations.

In the full version [13], we show correctness and prove the below theorem.

Theorem 2. The above online/offline CP-AB-KEM scheme is selectively CPA-
secure with respect to Definition 2 assuming that the scheme of Rouselakis and
Waters [19, Section 4] is a selectively CPA-secure CP-ABE system.

4.1 Pooling Attributes for an Unbounded Ciphertext-Policy System

In the previous section, we presented an online/offline system that imposed a
bound of P rows on any LSSS access matrix associated with any ciphertext. As
introduced in Section 3.2, we now show how to remove this bound by creating a
“pool” from which to draw ready-made ciphertext components. As before, the
intermediate ciphertext is comprised of two logical types of objects: a main mod-
ule and an attribute module. During the offline phase(s), an arbitrary number of
main and attribute modules are independently created. During the online phase
for LSSS access structure (M,ρ), one main module and ` attribute modules will
be consumed, where M is an `×n matrix. Any attribute module can be attached
to any main module.

417

Approved for Public Release; Distribution Unlimited.

Specifically, during Offline.Encrypt, a main module is computed as follows.
It picks a random s ∈ Zp and sets ITmain := (key, C0), where these values are
computed as

key := e(g, g)αs C0 := gs.

During Offline.Encrypt, an attribute module is computed as follows. It picks
a random λ, x, t ∈ Zp and sets ITatt := (λ, x, t, C1, C2, C3), where these values
are computed as

C1 := wλvt C2 := (uxh)t C3 := gt.

During Online.Encrypt for an LSSS access structure (M,ρ), where M is an
` × n matrix, the algorithm selects any one main module ITmain := (key, C0)
and any ` attribute modules ITatt,j := (λj , xj , tj , Cj,1, Cj,2, Cj,3) available in the
pool. It picks random y2, . . . , yn ∈ Zp, sets the vector y = (s, y2, . . . , yn)T (where
T denotes the transpose of the matrix) and computes a vector of shares of s as
(λ1, . . . , λ`)

T = My.
Finally, it computes CT as ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,`]), where

Cj,4 := λj − λ′j Cj,5 := tj · (ρ(j)− xj).
The encapsulated key is key. The dominant cost in the online encryption algo-
rithm is one modular multiplication per row in M . The security discussion at
the end of Section 3.2 applies here as well.

5 Online/Offline ABE Key Generation

Private key generation in ABE systems requires the master secret key MSK.
This key is so valuable that any organization granting keys might do well to
store it on only a small number of well-guarded servers. At the same time, this
could create a bottleneck in systems with many users, especially when private
keys are reissued each time period for revocation purposes. In this section, we
discuss how the key generation operation in the KP-ABE system of Section 3
and the CP-ABE system of Section 4 can operate in an online/offline fashion
as well. Thus, the bulk of the key generation work can be performed by servers
that are truly offline (or otherwise well secured). These pre-computations can be
passed to the online servers, where incoming requests can be processed quickly.

In the KP-ABE setting, a private key embeds an LSSS access structure,
whereas in the CP-ABE setting, the private key embeds a set of attributes. We
will borrow ideas from the prior two sections to deal with these objects, where
again we can employ both the “correct and connect” and “pooling” concepts.

To capture online/offline key generation, one needs to replace the Extract
algorithm with an offline algorithm that takes in the MK and produces a inter-
mediate private key (or pool of private key parts) and an online algorithm that
takes in this intermediate key (or pool) together with an access structure and
then produces the private key. The security experiment is essentially unchanged
except that the Create oracle (called in Phases 1 and 2) now calls Offline.Extract
and Online.Extract in sequence to create a private key.

418

Approved for Public Release; Distribution Unlimited.

5.1 Online/Offline Key Generation for KP-ABE Keys

The Setup and encryption algorithms remain the same as Section 3. We present
a pooling solution, and because the structure of the private keys change, so must
the decryption algorithm.

Offline.Extract(MSK) There are no “main” key modules. A “row” module is
computed by selecting random λ′, x, t ∈ Zp and outputting Irow := (λ′, x, t,K0,

K1,K2) where K0 := gλ
′
wt, K1 := (uxh)

−t
and K2 := gt.

Online.Extract(pool, (M,ρ)) Let M be an ` × n matrix. The algorithm initially
chooses random values y2, . . . , yn ∈ Zp. It then computes ` shares of the master
secret key as (λ1, λ2, . . . , λ`) := M ·(α, y2, . . . , yn). Next select any ` row modules
from the pool. For i = 1 to `, set Ki,3 := λi− λ′i and Ki,4 := ti · (ρ(i)− xi). The
private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2,Ki,3,Ki,4}i∈[1,`]). The dominant
cost is one multiplication per row of M .

Decrypt(SK,CT) Using the prior steps and notation, it recovers the encapsulated
key :=

∏
i∈I
(
e(C0,Ki,0 · gKi,3) · e(Cj,1,Ki,1 · uKi,4) · e(Cj,2 · uCj,3 ,Ki,2)

)wi
=

e(g, g)αs. This adds 2|I| exponentiations over the construction in Section 3.

5.2 Online/Offline Key Generation for CP-ABE Keys

The CP-ABE system in Section 4 can be extended in a similar manner. In
that system, there will be a “main” key module which contains K0,K1 and
Kv := v−r. The attribute modules are identical to those of Section 3.2 and the
keys are assembled as in the online phase of 3.2. The decryption equation is then
key := e(C0,K0)/D, where D = e(w

∑
i∈I Ci,4wi ,K1) ·∏i∈I(e(Ci,1,K1) · e(Ci,2 ·

uCi,5 ,Kj,2 · uKj,4) · e(Ci,3,Kj,3))wi , resulting in e(g, g)αs.

6 Performance Analysis

We provide estimates on the performance of the proposed schemes in Figures 1
and 2. These numbers are extrapolated from operation times on a 256-bit Bareto-
Naehrig curve using version 0.3.1 of the RELIC library [3]. Times are measured
in milliseconds (averaged over 10,000 iterations) and were computed on an Intel
Core i7 processor with 16GB RAM [2]. We ignore small numbers of operations
which will be negligible by comparison, such as arithmetic in Zp.

A natural question to ask is: how much pre-processing can I do for an ABE
encryption (similarly, key generation) before I know the message I want to en-
crypt or the access structure that I want to encrypt under? It may come as
a surprise that the results are so drastic. Indeed, our estimates show that the
answer to this question is: you can do almost all of the encryption work, before
you know any of the specifics of what/to whom you are encrypting.

Indeed, our worst-case for encryption was key-policy ABE in pooling mode,
and even then over 99% of the work could be done offline. Similarly, the worst-
case for key generation was ciphertext-policy ABE in pooling mode, and even

419

Approved for Public Release; Distribution Unlimited.

Encryption Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Offline Sec. 3 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Online Sec. 3 0 < .001 < .001

KP-Pool-Offline Sec. 3.2 1ET + (3P + 2)E1 + PM1 .133 1.132

KP-Pool-Online Sec. 3.2 PM1 < .001 .001

CP-ABE from [19] 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Offline Sec. 4 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Online Sec. 4 0 < .001 < .001

CP-Pool-Offline Sec. 4.1 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Pool-Online Sec. 4.1 0 < .001 .001

Fig. 1. Performance estimates for regular and online/offline encryption algorithms. We
mapped these algorithms into the asymmetric bilinear setting, placing the ciphertexts
in G1 and keys in G2. Let Ei (resp., Mi) denote an exponentiation (reps., multiplication)
in the group Gi. The bilinear operations are the dominate cost, so we ignore minor
factors such as arithmetic in Zp. The variable P represents the size of the attribute list
(in KP-ABE) or the complexity of the access policy (in CP-ABE). The times are in
seconds. It is helpful to compare the cost of the original scheme (with a citation) to the
cost of the online phase of the given algorithms. In three of the four schemes presented,
all bilinear group operations for encryption can be shifted to the offline phase.

then over 99% of the work could be done offline. It is also worth noting that
the total computation required between the offline and online phases is nearly
identical to the work required by the original scheme. Thus, the total work
remains the same, but the vast majority of it can be shifted in time to a moment
when the device is least busy or has access to a power source.

We remark that the operation counts given here for the schemes in [19]
differ slightly from the summary given in that work. The counts from [19] were
obtained from the Charm [1] benchmarking utility, which may have performed
various optimizations, whereas ours are a strict count of operations from the
algorithms as presented in the paper [19]. We do not expect these differences to
have any significant impact on the estimates in Figures 1 and 2.

7 Conclusions

We are exploring methods to make attribute-based encryption (ABE) more ef-
ficient for deployment. To this end, we investigated how devices might quickly
encrypt ABE messages or generate user keys, even for complex policies.

We developed new “connect and correct” techniques for ABE that split the
computation for encryption and key generation into two phases: a preparation
phase that does the vast majority of the work to encrypt a message or create a
secret key before it knows the message or the attribute list/access control policy
that will be used (or even the size of the list or policy). A second phase can then
rapidly assemble an ABE ciphertext or key when the specifics become known.

420

Approved for Public Release; Distribution Unlimited.

Key Generation Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 5PE2 + 2PM2 .370 3.703

KP-Pool-Offline Sec. 5.1 5PE2 + 2PM2 .370 3.703

KP-Pool-Online Sec. 5.1 0 < .001 < .001

CP-ABE from [19] (3P + 4)E2 + (2P + 1)M2 .252 2.253

CP-Pool-Offline Sec. 5.2 (3P + 4)E2 + (P + 1)M2 .251 2.251

CP-Pool-Online Sec. 5.2 PM2 < .001 .003

Fig. 2. Performance estimates for regular and online/offline key generation algorithms.
We mapped these algorithms into the asymmetric bilinear setting, placing the cipher-
texts in G1 and keys in G2. Let Ei (resp., Mi) denote an exponentiation (reps., multi-
plication) in the group Gi. The bilinear operations are the dominate cost, so we ignore
minor factors such as arithmetic in Zp. The variable P represents the size of the at-
tribute list (in CP-ABE) or the complexity of the access policy (in KP-ABE). The
times are in seconds. It is helpful to compare the cost of the original scheme (with a
citation) to the cost of the online phase. In both schemes, our estimates show that over
99% of the work to generate a key can be shifted to the offline phase.

This concept is sometimes called “online/offline” encryption. We provided effi-
cient constructions for both key-policy and ciphertext-policy ABE systems.

We provided performance estimates that showed over 99% of the computa-
tional work could be moved to offline phase in many scenarios. We expect that
this technology could reduce battery consumption on mobile devices and help
reduce the bottleneck on a master authority server tasked with generating user
keys. Overall, it helps reduce the cost of bringing ABE into practice.

Acknowledgments

The authors thank Joseph Ayo Akinyele and Matthew Green for advice on per-
formance numbers and other helpful comments. Susan Hohenberger was sup-
ported in part by NSF CNS-1154035 and CNS-1228443; the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory
under contract FA8750-11-2-0211, DARPA N11AP20006, the Office of Naval
Research under contract N00014-11-1-0470, and a Microsoft Faculty Fellowship.
The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

References

1. Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael
Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a framework for rapidly
prototyping cryptosystems. Journal of Cryptographic Engineering, 3(2):111–128,
2013.

2. Joseph Ayo Akinyele and Matthew Green. Personal communication., 2013.

421

Approved for Public Release; Distribution Unlimited.

3. D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptogra-
phy. http://code.google.com/p/relic-toolkit/.

4. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In IEEE Symposium on Security and Privacy, pages 321–334,
2007.

5. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryp-
tion without random oracles. In EUROCRYPT, pages 223–238, 2004.

6. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535–554, 2007.

7. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In EUROCRYPT, pages 207–222, 2004.

8. Sherman S. M. Chow, Joseph K. Liu, and Jianying Zhou. Identity-based on-
line/offline key encapsulation and encryption. In ASIACCS, pages 52–60, 2011.

9. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signa-
tures. J. Cryptology, 9(1):35–67, 1996.

10. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security, pages 89–98, 2006.

11. Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryp-
tion of ABE ciphertexts. In USENIX Security Symposium, 2011.

12. Fuchun Guo, Yi Mu, and Zhide Chen. Identity-based online/offline encryption. In
Financial Cryptography, pages 247–261, 2008.

13. Susan Hohenberger and Brent Waters. Online/offline attribute-based encryption,
2014. The full version is available from the IACR ePrint Archive, Report 2014/021.

14. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based en-
cryption. In EUROCRYPT, pages 547–567, 2011.

15. Allison B. Lewko and Brent Waters. New proof methods for attribute-based en-
cryption: Achieving full security through selective techniques. In CRYPTO, pages
180–198, 2012.

16. Joseph K. Liu and Jianying Zhou. An efficient identity-based online/offline en-
cryption scheme. In ACNS, pages 156–167, 2009.

17. Zhongren Liu, Li Xu, Zhide Chen, Yi Mu, and Fuchun Guo. Hierarchical identity-
based online/offline encryption. In ICYCS, pages 2115–2119, 2008.

18. Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Secure
attribute-based systems. In ACM Conference on Computer and Communications
Security, pages 99–112, 2006.

19. Yannis Rouselakis and Brent Waters. Practical constructions and new proof meth-
ods for large universe attribute-based encryption. In ACM Conference on Com-
puter and Communications Security, pages 463–474, 2013.

20. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

21. S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan. Identity based
online/offline encryption and signcryption schemes revisited. In InfoSecHiComNet,
pages 111–127, 2011.

22. Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In
CRYPTO, pages 355–367, 2001.

23. Patrick Traynor, Kevin R. B. Butler, William Enck, and Patrick McDaniel. Real-
izing massive-scale conditional access systems through attribute-based cryptosys-
tems. In NDSS, 2008.

24. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization. In PKC, pages 53–70, 2011.

422

Approved for Public Release; Distribution Unlimited.

Decentralized Anonymous Credentials:
Identity and Reputation Management without Trusted

Parties∗

Christina Garman
cgarman@cs.jhu.edu

Matthew Green
mgreen@cs.jhu.edu

Ian Miers
imiers@cs.jhu.edu

The Johns Hopkins University Department of Computer Science
Baltimore, MD, USA

ABSTRACT
Anonymous credentials provide a powerful tool for making
assertions about identity while maintaining privacy. However,
a limitation of today’s anonymous credential systems is the
need for a trusted credential issuer — which is both a single
point of failure and a target for compromise. Furthermore,
the need for such a trusted issuer can make it challenging to
deploy credential systems in practice, particularly in the ad
hoc network setting (e.g., anonymous peer-to-peer networks)
where no single party can be trusted with this responsibility.

In this work we propose a novel anonymous credential
scheme that eliminates the need for a trusted credential
issuer. Our approach builds on recent results in the area of
electronic cash, and uses techniques — such as the calculation
of a distributed transaction ledger — that are currently
in widespread deployment in the Bitcoin payment system.
Using this decentralized ledger and standard cryptographic
primitives, we propose and provide a proof of security for
a powerful anonymous credential system, one that allows
users to make flexible identity assertions with strong privacy
guarantees. We further show how our basic system can be
extended to provide a variety of powerful features including
k-show credentials and “updatable” credentials that admit a
fully anonymous reputation system. From this we construct
a distributed anonymous reputation system that assigns
users a single global reputation score. Finally, we discuss a
number of practical applications for our techniques, including
resource management in ad hoc networks and prevention of
Sybil attacks.

1. INTRODUCTION
Traditionally, making statements about identity on the

Internet, whether actual assertions of identity (“I am Spar-

∗This work was partially supported by DARPA and the Air
Force Research Laboratory (AFRL) under contract FA8750-
11-2-0211. This document is a pre-print for DARPA and not
for public distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

tacus”) or about one’s identity (“I am a gladiator”) involves
centralized providers who verify the identity claim and issue a
credential attesting to that verification. These organizations,
which include Certificate Authorities, DNS maintainers, or
login providers like Google and Facebook, play a large role
in securing internet infrastructure, email, and financial trans-
actions. Our increasing reliance on these providers elicits
two concerns: first, the use of global identifiers raises issues
about privacy and user tracking. Second — and more fun-
damentally — in many settings such as ad hoc networks, it
may be challenging to identify parties who can be trusted to
play this critical role.

Anonymous credentials, introduced by Chaum [19] and
developed in a line of subsequent works [8, 11, 14, 12, 4], repre-
sent a powerful solution to the privacy concern: they deprive
even colluding credential issuers and verifiers of the ability
to identify and track their users. Unfortunately, anonymous
credentials exacerbate the second issue. Most existing cre-
dential systems assume a trusted, centralized “issuer,” which
is typically responsible both for certifying users’ identity
statements and for issuing the corresponding anonymous
credentials. Indeed, the trust requirement for an anonymous
credential issuer is arguably higher than the corresponding
requirement for a standard identity management system,
since the anonymity properties make it difficult to detect
provider malfeasance (e.g., the creation of false credentials).
Ideally we could distribute both the certification of identities
and the issuing of credentials.

Until recently, it seemed difficult to contemplate certifying
identities without assuming a trusted party. However, several
recent developments have offered an alternative and decen-
tralized vision for addressing this problem. In these systems,
exemplified by Namecoin [37], peers collaborate to main-
tain a distributed append-only transaction ledger for identity
assertions. These systems employ the ledger to record map-
pings from names to public keys and can enforce complex
semantics over the identity assertions. The Namecoin sys-
tem has already been deployed to implement a decentralized
version of the DNS system [25], and it is easy to imagine
further extensions such as a decentralized SSL Public Key
Infrastructure, time stamping, and reputation networks. The
ability to establish and make statements about identity (e.g.,
“I have an identity, it required some effort to create, and I
have used it in successful transactions”) seems particularly
useful for applications related to ad hoc networks, which are
famously vulnerable to Sybil attacks [26].

Even given the above systems, decentralized issuing of

423

Approved for Public Release; Distribution Unlimited.

anonymous credentials remains elusive. Specifically, decen-
tralized systems seem incompatible with most existing anony-
mous credential techniques, which typically rely on blind
signatures. The use of signatures necessitates a trusted is-
suer — or at least a small quorum of cooperating parties who
hold shares of the private key. Unfortunately, implementing
threshold cryptographic techniques seems challenging if we
wish to widely distribute trust or deal with ad hoc applica-
tions where nodes routinely enter and exit the network. This
appears to leave us with a binary choice: we must choose
centralized anonymous credentials that protect our privacy
or decentralized credentials that offer no privacy protection.

Our contribution. In this paper we show how to construct
anonymous credentials in a decentralized setting. Our ap-
proach extends prior work on anonymous credentials but
removes the need to appoint a trusted credential issuer. A
consequence of this result is that our credential system can
be instantiated on-demand and operated by an ad hoc group
of mistrustful peers. We show how to extend our creden-
tial scheme to create updatable (e.g. stateful) anonymous
credentials in which users obtain new credentials based on
changing properties of their identity. Finally, from updatable
credentials we construct the first fully peer-to-peer anony-
mous reputation system where users have a single global
reputation score. We believe the reputation system may be
of independent interest.

As a basic ingredient, our protocols require the existence
of a distributed public append-only ledger, a technology which
has most famously been deployed in distributed electronic
currencies such as Bitcoin [36]. This ledger can be employed
by individual nodes to make assertions about identity in a
fully anonymous fashion without the assistance of a credential
issuer.

We believe that our techniques have several immediate ap-
plications. These include:

• Anonymous resource management in ad hoc net-
works. Peer-to-peer networks are vulnerable to imper-
sonation attacks, where a single party simulates many
different peers in order to gain advantage against the
network [26]. We show that our credentials may be
useful in mitigating these attacks. The basic approach
is to construct an anonymous subscription service [22,
9, 34] where parties would establish unique or costly
pseudonyms (for example by completing a computa-
tional proof of work, submitting a payment, or demon-
strating satisfaction of some network criteria). They
can then assert possession on their identity under a
specific set of restrictions, e.g., a limit to the number
of requests they can make in each time period.

• Anonymous reputation management for ad hoc
networks. A further extension of our construction al-
lows parties to update credentials, i.e., by inserting new
credentials into the block chain. This admits a variety
of sophisticated enhancements such as fully anonymous
reputation systems [42, 1] in which parties update and
prove statements about a reputation score following
successful (or unsuccessful) interactions. These systems
can be useful in situations where reputation informa-
tion improves network efficiency but where traditional
(non-anonymous) reputation systems may expose high-
reputation nodes to malicious attacks.

• Auditable credentials. Our techniques may also be
used to extend existing centralized credential systems
by allowing for public audit of issued credentials. This
helps to guard against compromised credential issuers
and allows the network to easily detect and revoke in-
appropriate credential grants. For example, in Direct
Anonymous Attestation (DAA) one might want to pre-
vent a malicious DAA authority from covertly granting
certificates to users who do not have a TPM or whose
TPM did not attest.

1.1 Overview of Our Construction
We now provide a brief overview for our construction,

which is inspired by the electronic cash proposals of Sander
and Ta-Shma [45] and Miers et al. [35]. We begin with a
brief overview of decentralized identification techniques.

Decentralized identities. Decentralized identity systems
such as Namecoin are based on two assumptions: the exis-
tence of a distributed append-only transaction ledger and
a set of consensus rules for accepting new entries into this
ledger. In a basic PKI system, users are permitted to assert
ownership of arbitrary identity strings by submitting a trans-
action embedding the identity as well as a public key for
some digital signature scheme. The network then evaluates
the legitimacy of each claim according to rules defined in
the protocol. In a simple example – which corresponds to
the Namecoin DNS system – pseudonyms may be arbitrary
strings and will be accepted by the network on the condition
that the pseudonym has not previously been claimed.

Naturally it is possible to apply more complex rules to this
process. For example, identity claims may be conditioned
on the submission of a publicly-verifiable proof of work or
even proof that a sum of electronic currency has been spent
or destroyed. Identity claims may also leverage one or more
existing non-anonymous identity credentials: for example, a
proof that the claimant has a certificate from a PKI and/or
a signature using a TPM enrollment key. Identities may also
include externally verifiable assertions about the claiming
party, e.g., that the party is contributing a specific amount
of resources to a peer-to-peer network.

Issuing and showing credentials. The ability to estab-
lish identities and bind them to a public key ensures that
users can assert their identity in a non-anonymous fash-
ion, simply by issuing signatures from the corresponding
secret key. Unfortunately, this does not immediately show
us how to construct anonymous credentials, since traditional
anonymous credentials consist of a signature computed by
a credential issuer. Since no central party exists to com-
pute the credential signature, this approach does not seem
feasible without elaborate (and inefficient) use of threshold
cryptography.1

We instead take a different approach. To issue a new
credential in our decentralized system, the user establishes an
identity and related attributes as described above. She then
attaches a vector commitment to her secret key skU along
with the identity and attribute strings that are contained
within her identity assertion. Finally, she includes a non-
interactive proof that the credential is correctly constructed,

1A possibility is to use ring signatures [43], which do not
require a single trusted signer. Unfortunately these signatures
grow with the number of participating signers and require
expensive communication to generate.

424

Approved for Public Release; Distribution Unlimited.

i.e., that the attributes in the commitment correspond to
those revealed in the identity assertion. The network will
accept the identity assertion if and only if the assertion is
considered valid, and the attached proof is valid.

At a later point an individual can prove possession of
such a credential by proving the following two statements in
zero-knowledge:

1. She knows a commitment Ci in the set (C1, . . . , CN) of
all credentials previously accepted to the block chain.

2. She knows the opening (randomness) for the commit-
ment.

In addition to this proof, the user may simultaneously
prove additional statements about the identity and attributes
contained within the commitment Ci. The challenge in the
above construction is to efficiently prove statements (1) and
(2), i.e., without producing a proof that scales with N . Our
solution, which adapts techniques from distributed e-cash
systems [35], circumvents this problem by using an efficient
publicly-verifiable accumulator [12] to gather the set of all
previous commitments together. Using this accumulator
in combination with an efficient membership proof due to
Camenisch and Lysyanskaya in [13], we are able to reduce
the size of this proof to O(λ) for security parameter λ, rather
than the O(N · λ) proofs that would result from a naive OR
proof.

Of course, merely applying these techniques does not lead
to a practical credential system. A key contribution of this
work is to supply concrete instantiation of the above idea
under well-studied assumptions, and to prove that our con-
struction provides for consistency of credentials (ensuring
multiple users cannot pool their credentials), the establish-
ment of pseudonyms, and a long set of extensions built
upon anonymous credentials. Last but not least we need
to formally define and prove the security of a distributed
anonymous credential scheme and provide some model for
the distributed ledger. Our instantiation requires a single
trusted setup phase, after which the trusted party is no longer
required.2

Extensions: stateful credentials and reputation sys-
tems. We argue that our basic credential system is sufficient
to permit many useful activities in a decentralized network.
However, there are also cases where the user’s attributes
may be a function of previous transactions on the network.
One example is a decentralized reputation system, where the
user periodically updates his “attribute” (reputation count)
based on previous interactions with other users. In §6 and
§7 we propose extensions to our basic anonymous credential
system that allow users to update their credential based on
interactions with other parties. The key to our proposal is
that users can prove knowledge of a previous transaction
and an interaction with a third party and use these proofs
as the condition for obtaining a new credential. This means
that users can interact and exchange reputation according
to a set of network-wide transaction rules, without revealing
which users interacted and how that interaction affected their
score. Users may later prove statements about their current
reputation score, within a range of their choice. We believe
that this has numerous applications to peer networks with

2In §6 we discuss techniques for removing this trusted setup
requirement.

nodes of varying capabilities, e.g., electing supernodes in
hierarchical peer networks.

1.2 Outline of This Work
The remainder of this work is organized as follows. In the

next section we discuss specific applications for decentralized
anonymous credentials and argue that these systems can be
used to solve a variety of problems in peer-to-peer networks.
In §3 we describe the cryptographic building blocks of our
construction, and in §4 we define the notion of a decentralized
anonymous credential scheme and provide an ideal-world
security definition. In §5 we provide an overview of our
basic construction as well as a specific instantiation based on
the Discrete Logarithm and Strong RSA assumption. In §6
we extend our basic construction to add a variety of useful
features, including k-show credentials, stateful credentials,
and credential revocation. Finally, in §7 we detail the first
distributed, identity-bound, anonymous reputation systems
where users have a single global reputation.

2. APPLICATIONS
In this section we discuss several of the applications fa-

cilitated by decentralized anonymous credentials. While we
believe that these credential systems may have applications
in a variety of environments, we focus specifically on settings
where trusting a central credential issuer is not an option or
where issued credentials must be publicly audited.

Mitigating Sybil attacks in ad hoc networks. Imper-
sonation attacks can have grave consequences for both the
security and resource allocation capabilities of ad hoc net-
works. A variety of solutions have been proposed to address
this problem. One common approach is to require that
clients solve proofs of work: resource-consuming challenges
that typically involving either storage or computation [26].
Unfortunately it can be challenging to re-use a single proof of
work in an anonymous fashion, i.e., without either identifying
participants or allowing other users to clone the solution.

One solution to this problem is to use k-show anonymous
credentials. In this approach, peers establish a single cre-
dential by solving a proof of work. This allows the peer
to obtain a credential that can be used a limited number
of times or a limited number of times within a given time
period. When a peer exceeds the k-use threshold (e.g., by
cloning the credential for a Sybil attack), the credential can
be identified and revoked. We note that this proposal is a
distributed variant of the anonymous subscription service
concept, which was first explored in [22, 9].

Managing resource usage. In networks where peers both
contribute and consume resources, ensuring fair resource uti-
lization can be challenging. For example, a storage network
might wish to ensure peers provide as much storage as they
consume [39] or ensure that peers fairly use network band-
with [40]. This can be problematic in networks that provide
anonymity services (e.g. Tor) or VOIP3, where peers may
be reluctant to identify which traffic they originated. An
anonymous credential system allows peers to identify their
contributions to routing traffic in exchange for a credential
which they can then use to originate traffic. This helps to

3Prior its acquisition by Microsoft, Skype used a peer-to-peer
overlay network

425

Approved for Public Release; Distribution Unlimited.

ensures that peers contribute resources back to the network
while preserving their anonymity.

Reputation in peer-to-peer systems. As noted in [49],
the lack of trust relationships can be a fundamental problem
in peer-to-peer systems. This problem is exacerbated in
anonymous communication networks, where peer interactions
can reveal sensitive information about usage history. The
distributed anonymous reputation system we describe in
§7 allows nodes to establish a reputation based on a past
history of positive interactions with other nodes. We offer
two examples where this is useful.

First, consider the usage of Tor to circumvent censorship
by state level actors. While the identities of Tor nodes
themselves are public, entrance nodes (called bridges) need
to remain both (1) unblocked and thus unknown to censors
and (2) available to honest users. Wang et al. [48] propose
a solution to these seemingly incompatible goals: distribute
bridge addresses only to high-reputation users, and define
a user’s reputation as the uptime of the bridges they know
about. Being centralized, their system requires a central
party who must be trusted both not to reveal the whole
bridge list and with accurately maintaining users’ reputations.
Our proposal allows us to eliminate this party.

Similarly, file sharing networks may also benefit from rep-
utation, as these networks are vulnerable to malicious peers
uploading inauthentic files. Kamvar et al. [32] identify this
problem and propose a reputation system as a solution. How-
ever, their proposed solution associates each user with an
“opaque identifier” and thus offers users very little privacy.

3. PRELIMINARIES
We make use of the following complexity assumptions and

cryptographic building blocks to construct our scheme.

3.1 Complexity Assumptions
The security of our scheme relies on the following two

complexity assumptions:

Strong RSA Assumption [3, 28]. Given a randomly
generated RSA modulus n and a random element y ∈ Z∗n, it
is hard to compute x ∈ Z∗n and integer exponent e > 1 such
that xe ≡ y mod n. We can restrict the RSA modulus to
those of the form pq, where p = 2p′ + 1 and q = 2q′ + 1 are
safe primes.

Discrete Logarithm (DL) Assumption [23]. Let G be
a cyclic group with generator g. Given h ∈ G, it is hard to
compute x such that h = gx.

3.2 Cryptographic Building Blocks
Zero-knowledge proofs. In a zero-knowledge protocol [30]
a user (the prover) proves a statement to another party
(the verifier) without revealing anything about the state-
ment other than that it is true. Our constructions use
zero-knowledge proofs that can be instantiated using the
technique of Schnorr [47], with extensions due to, e.g., [21,
15, 17, 7]. We convert these into non-interactive proofs by
applying the Fiat-Shamir heuristic [27]. When we use these
proofs to authenticate auxiliary data, we refer to the resulting
non-interactive proofs as signatures of knowledge as defined
in [18].

When referring to these proofs we will use the notation of
Camenisch and Stadler [16]. For instance, NIZKPoK{(x, y) :

h = gx ∧ c = gy} denotes a non-interactive zero-knowledge
proof of knowledge of the elements x and y that satisfy both
h = gx and c = gy. All values not enclosed in ()’s are
assumed to be known to the verifier. Similarly, the extension
ZKSoK[m]{(x, y) : h = gx ∧ c = gy} indicates a signature
of knowledge on message m.

Accumulators [35]. An accumulator allows us to combine
many values into one smaller value (the accumulator). We
then have a single element, called the witness, that allows
us to attest to the fact that a given value is actually part
of the accumulator. Our constructions use an accumulator
based on the Strong RSA assumption. The accumulator we
use was first proposed by Benaloh and de Mare [5] and later
improved by Baric and Pfitzmann [3] and Camenisch and
Lysyanskaya [12]. We describe the accumulator using the
following algorithms:

• AccumSetup(λ)→ params. On input a security param-
eter, sample primes p, q (with polynomial dependence
on the security parameter), compute N = pq, and sam-
ple a seed value u ∈ QRN , u 6= 1. Output (N,u) as
params.

• Accumulate(params,C)→ A. On input params (N, u)
and a set of prime numbers C = {c1, . . . , ci | c ∈
[A ,B]},4 compute the accumulator A as uc1c2···cn mod
N .

• GenWitness(params, v,C) → ω. On input params
(N,u), a set of prime numbers C as described above,
and a value v ∈ C, the witness ω is the accumulation of
all the values in C besides v, i.e., ω = Accumulate(params,
C \ {v}).
• AccVerify(params,A, v, ω)→ {0, 1}. On input params

(N,u), an element v, and witness ω, compute A′ ≡
ωv mod N and output 1 if and only if A′ = A, v is
prime, and v ∈ [A,B] as defined previously.

For simplicity, the description above uses the full calculation
of A. Camenisch and Lysyanskaya [12] observe that the
accumulator may also be incrementally updated, i.e., given
an existing accumulator An it is possible to add an element
x and produce a new accumulator value An+1 by computing
An+1 = Axn mod N . 5

Camenisch and Lysyanskaya [12] show that the accumu-
lator satisfies a strong collision-resistance property if the
Strong RSA assumption is hard. Informally, this ensures
that no p.p.t. adversary can produce a pair (v, ω) such that
v /∈ C and yet AccVerify is satisfied. Additionally, they de-
scribe an efficient zero-knowledge proof of knowledge that a
committed value is in an accumulator. We convert this into
a non-interactive proof using the Fiat-Shamir transform and
refer to the resulting proof using the following notation:

NIZKPoK{(v, ω) : AccVerify((N,u), A, v, ω) = 1}.

Verifiable Random Functions. A pseudorandom func-
tion (PRF) [29] is an efficiently computable function whose
4“Where A and B can be chosen with arbitrary polynomial
dependence on the security parameter, as long as 2 < A and
B < A2.” [13] For a full description, see [13, §3.2 and §3.3].
5This allows the network to maintain a running value of the
accumulator and prevents individual nodes from having to
recompute it [35].

426

Approved for Public Release; Distribution Unlimited.

• RegNym(NymO
U , U,O): U logs into TP with skU to register a nym with organization O. If she does not have an account,

she first creates one. She gives TP a unique random string NymO
U for use as her nym with O. TP checks that the string is

indeed unique and if so stores (NymO
U , U,O) and informs U .

• MintCred(NymO
U , O, attrs, aux): U logs into TP authenticating with skU . If NymO

U is not U ’s nym with O or skU is
wrong, reject. Otherwise, TP checks that aux justifies issuing a credential under O’s issuing policy and if so generates a
unique random id ID and stores (NymO

U , U, ID, attrs). It then adds ID to its public list of issued credentials for O.

• ShowOnNym(NymO
U ,NymV

U , O, V, attrs,C): U logs into TP with skU . If NymO
U is not U ’s nym with O or NymV

U is not
U ’s nym with V , reject. Else, TP checks if the tuple (NymO

U , U) exists, if ID associated with that tuple is in the set of
credentials C that U provided, and if the given attributes attrs match the attributes associated with that tuple. If all
conditions hold, TP informs V that NymV

U has a credential from O in the set C. V then retrieves the set of credentials
CO issued by O from TP and accepts TP ’s assertion if and only if C ⊆ CO and O’s issuing policy is valid ∀c′ ∈ CO.

• GetCredList(O): TP retrieves the list of credentials for organization O and returns it.

Figure 1: Ideal Functionality. Security of a basic distributed anonymous credential system.

output cannot be distinguished (with non-negligible advan-
tage) from random by a computationally bounded adversary.
We denote the pseudorandom function as fk(·), where k
is a randomly chosen key. A number of PRFs possess effi-
cient proofs that a value is the output of a PRF on a set
of related public parameters. Two examples of this are the
Dodis-Yampolskiy (DY) PRF [24] and the Naor-Reingold
PRF [38].

Pedersen Commitments. A commitment scheme allows
a user to bind herself to a chosen value without revealing
that value to the recipient of the commitment. This commit-
ment to the value ensures that the user cannot change her
choice (i.e., binding), while simultaneously ensuring that the
recipient of the commitment does not learn anything about
the value it contains (i.e., hiding) [20]. In Pedersen commit-
ments [41], the public parameters are a group G of prime
order q, and generators (g0, . . . , gm). In order to commit to
the values (v1, . . . , vm) ∈ Zmq , pick a random r ∈ Zq and set
C = PedCom(v1, . . . , vm; r) = gr0

∏m
i=1 g

vi
i .

4. DECENTRALIZED ANONYMOUS CRE-
DENTIALS

A traditional anonymous credential system has two types of
participants: users and organizations. Users, who each have a
secret key skU , are known by pseudonyms both to each other
and organizations. NymO

A, for example, is the pseudonym
of user A to organization O. Decentralized anonymous cre-
dentials have no single party representing the organization.
Instead, this party is replaced with a quorum of users who
enforce a specific credential issuing policy and collaboratively
maintain a list of credentials thus far issued. For consistency
with prior work, we retain the term “organization” for this
group.

A distributed anonymous credential system consists of a
global transaction ledger as well as the following (possibly
probabilistic) algorithms:

• Setup(1λ) → params. Generates the system parame-
ters.

• KeyGen(params) → skU . Run by a user to generate
her secret key.

• FormNym(params, U,E, skU)→ (NymE
U , skNymE

U
). Run

by a user to generate a pseudonym NymE
U and an au-

thentication key skNymE
U

between a user U and some

entity (either a user or an organization) E.

• MintCred(params, skU , NymO
U , skNymO

U
, attrs, aux)

→ (c, skc, πM). Run by a user to generate a request for
a credential from organization O. The request consists
of a candidate credential c containing public attributes
attrs; the user’s key skU ; auxiliary data aux justifying
the granting of the credential; and a proof πM that
(1) NymO

U was issued to the same skU and (2) the
credential embeds attrs.

• MintVerify(params, c,NymO
U , aux, πM)→ {0, 1}. Run

by nodes in the organization to validate a credential.
Returns 1 if πM is valid, 0 otherwise.

• Show(params, skU ,NymV
U , skNymV

U
, c, skc,CO) → πS .

Run by a user to non-interactively prove that a given
set of attributes are in a credential c in the set of issued
credentials CO and that c was issued to the same person
who owns NymV

U . Generates and returns a proof πS .

• ShowVerify(params,NymV
U , πS ,CO)→ {0, 1}. Run by

a verifier to validate a shown credential. Return 1 if
πS is valid for NymV

U , 0 otherwise.

4.1 Security
We define our system in terms of an ideal functionality

implemented by a trusted party TP that plays the role that
our cryptographic constructions play in the real system. All
communication takes place through this ideal trusted party.
Security and correctness for our system comes from a proof
that this ideal model is indistinguishable from the real model
provided the cryptographic assumptions hold. Our ideal
functionality is outlined in Figure 1.

It consists of organizations who issue credentials and users
who both prove that they have these credentials and verify
such proofs. Organizations have only two things: 1) an
efficient and publicly evaluable policy, policyO, for granting
credentials and 2) an append-only list of credentials meeting
that policy maintained by the trusted party.

427

Approved for Public Release; Distribution Unlimited.

• Setup(1λ)→ params. On input a security parameter λ, run AccumSetup(1λ) to obtain the values (N, u). Next generate
primes p, q such that p = 2wq+ 1 for w ≥ 1. Let G be an order-q subgroup of Z?p, and select random generators g0, . . . , gn
such that G = 〈g0〉 = · · · = 〈gn〉. Output params = (N,u, p, q, g0, . . . , gn).

• KeyGen(params)→ sk . On input a set of parameters params, select and output a random master secret sk ∈ Zq.

• FormNym(params, sk) → (Nym , skNym). Given a user’s master secret sk , select a random r ∈ Zq and compute

Nym = gr0g
sk
1 . Set skNym = r and output (Nym , skNym).

• MintCred(params, sk ,NymO
U , skNymO

U
, attrs, aux) → (c, skc, πM). Given a nym NymO

U and its secret key skNymO
U

; at-

tributes attrs = (a0, . . . , am) ∈ Zq; and auxiliary data aux, select a random r′ ∈ Zq and compute c = gr
′

0 g
sk
1

m∏
i=0

gaii+2. Set

skc = r′ and output (c, skc, πM) where πM is a signature of knowledge on aux that the nym and the credential both
belong to the same master secret sk , i.e.:

πM = ZKSoK[aux]{(sk , r′, r) :

c = gr
′

0 g
sk
1

m∏

i=0

gaii+2 ∧ NymO
U = gr0g

sk
1 }

Finally, submit the resulting values (c, πM , attrs) to the public transaction ledger.

• MintVerify(params, c, attrs,NymO
U , aux, πM)→ {0, 1}. Given a credential c, attributes attrs, a nym NymO

U , and proof
πM , verify that πM is the signature of knowledge on aux. If the proof verifies successfully, output 1, otherwise output 0.
The organization nodes should accept the credential to the ledger if and only if this algorithm returns 1.

• Show(params, sk ,NymV
U , skNymV

U
, c, attrs, skc,CO)→ πS . Given a user’s master secret sk ; a nym NymV

U between the

user and the verifier and its secret key skNymV
U

; a credential c and its secret key skc; the attributes (a0, . . . , am) used in

the credential; and a set of credentials C, compute A = Accumulate(params,CO) and ω = GenWitness(params, c,CO)
and output the following proof of knowledge:

πS = NIZKPoK{(sk , ω, r′, c, r,NymV
U) :

AccVerify(params,A, c, ω) = 1 ∧ c = gr
′

0 g
sk
1

m∏

i=0

gaii+2 ∧ NymV
U = gr0g

sk
1 }

• ShowVerify(params,NymV
U , πS ,CO)→ {0, 1}. Given a nym NymV

U , proof of possession of a credential πS , and the set
of credentials issued by organization O CO, first compute A = Accumulate(params,CO). Then verify that πS is the
aforementioned proof of knowledge on c, CO, and NymV

U using the known public values. If the proof verifies successfully,
output 1, otherwise output 0.

Figure 2: Our basic decentralized anonymous credential scheme.

4.2 Trusting the Ledger
An obvious question is whether the append-only transac-

tion ledger is necessary at all. Indeed, if the list of valid
credentials can be evaluated by a set of untrusted nodes,
then it seems that a user (Prover) could simply maintain a
credential list compiled from network broadcasts and provide
this list to the Verifier during a credential show. However,
this approach can enable sophisticated attacks where a mali-
cious Verifier manipulates the Prover’s view of the network
to include a poisoned-pill credential that — although valid
by the issuing heuristic — was not broadcast to anyone else.
When the prover authenticates, she has completely identified
herself.

The distributed transaction ledgers employed by networks
such as Bitcoin and Namecoin provide a solution to this
problem, as their primary purpose is to ensure a shared view
among a large number of nodes in an adversarial network. In
practice this is accomplished by maintaining a high degree
of network connectivity and employing computational proofs
of work to compute a hash chain.

For an attacker to execute the poisoned credential attack

against such a ledger, she would need to both generate and
maintain a false view of the network to delude the prover.
This entails both simulating the prover’s view of the rest of
the network complete with all its computational power and
forging any assurances the prover might expect from known
peers about the present state of the network. If the prover
has a reasonable estimate of the actual network’s power (e.g.,
she assumes it monotonically increases), then an attacker
must actually have equivalent computational power to the
entirety of the network to mount such an attack. For the
purposes of this paper we assume such active attacks are
impossible even if the attacker controls a simple majority of
the computational power. Attackers are still free to attempt
any and all methods of retroactively identifying a user and
mount any other active attacks.

5. OUR CONSTRUCTION
We now provide an overview and instantiation of our con-

struction.

5.1 Overview

428

Approved for Public Release; Distribution Unlimited.

Alice’s pseudonym with a given organization/user is an
arbitrary identity that she claims in a transaction. She tags
this value with a Pedersen commitment to her secret key
sk and signs the resulting transaction using a signature of
knowledge that she knows the secret key. There is no sepa-
rate process for registering a pseudonym: instead they are
simply used in issue and show to allow operations to be
linked if necessary. Alice’s credential c is a vector Peder-
sen commitment to both sk and a set of public attributes
attrs = a0, . . . , am, which Alice also includes in her creden-
tial. To issue a credential, Alice provides the network with
a credential, a pseudonym, her attributes, optionally some
auxiliary data justifying the credential issue (e.g., a proof
of work that Alice is not a Sybil), and a proof that (1) the
commitment and the pseudonym contain the same secret
key and (2) the attributes are in some allowed set. If all of
this validates, the entry is added to the ledger. Alice shows
the credential under a different pseudonym by proving in
zero-knowledge that (1) she knows a credential on the ledger
from the organization, (2) the credential opens to the same
sk as her pseudonym, and (3) it has some attributes.

5.2 Concrete Instantiation
We instantiate our system with the cryptographic prim-

itives discussed in Section 3. Specifically, we use Pedersen
commitments and a Strong RSA based accumulator. The
proofs are conducted using standard techniques [47, 12] and
are similar to the proofs used by Miers et al. in [35]. See
Figure 2 for details.

Theorem 5.1. The basic distributed anonymous creden-
tial system described in Figure 2 is secure in the random
oracle model under the Strong RSA and the Discrete Loga-
rithm assumptions.

We sketch of the proof of Theorem 5.1 in Appendix A.

6. EXTENSIONS
We consider extending the basic system in several ways.

6.1 k-show Credentials
Damg̊ard et al. [22] first suggested a credential system

where users could only authenticate once per time period.
Camenisch et al. [9] independently proposed a significantly
more efficient construction that allows for up to k authenti-
cations per time period, with the ability to revoke all cloned
credentials if a credential was used beyond this limit. Ca-
menisch et al. suggested that these technique might be used
to build anonymous subscription services, allowing users
to access a resource (such as a website) within reasonable
bounds. We briefly show that these same techniques can be
applied to our basic credential system.

In the system of [9] an authority issues a credential on a
user’s secret seed s. To show a credential for the ith time in
validity period t, the user generates a serial number S using
a verifiable random function (VRF) as S = fs(0||t||i). She
also includes a non-interactive zero-knowledge proof that this
serial number is correctly structured.6 This technique can
be applied to our construction: the user simply generates a

6The re-use of a credential would result in a repeated serial
number, and yet the nature of the VRF’s output (for an
honest user) ensures that attackers cannot link individual
shows.

random seed s and includes this value in the commitment she
stores in the transaction ledger, along with a non-interactive
proof that she knows the value s. We note that for the trivial
case of one-time show credentials, we can simply reveal the
seed.7

6.2 Credentials with Hidden Attributes
In our basic construction of §5, users provide a full list of

attributes when requesting and showing credentials. While
this is sufficient for many applications, there exist cases
where a user might wish to conceal the attributes requested
or shown, opting instead to prove statements about them,
e.g., proving knowledge of a secret key or proving that an
attribute is within a certain range. We note that this requires
only minor changes to our protocols — the user simply
attaches a proof that the attribute values contained within
the credential c satisfy some statement.

6.3 Stateful Credentials
A stateful anonymous credential system [20] is a variant of

an anonymous credential system where credential attributes
encode some state that can be updated by issuing new cre-
dentials. This credential issuance is typically conditioned
on the user showing a previous credential and offering proof
that the new credential should be updated as a function of
the original.

Intuitively, we can add this capability quite easily due to
the fact that our credentials are non-interactively issued. We
construct a “single show” credential c embedding some state
state in the attributes and a serial number S. Users are
free to show c as many times as they like without revealing
the serial number. However, to update the state of the
credential, they must author a transaction that shows the
original credential and reveals the serial number S and “mint”
a new candidate credential c′ containing the updated state
state′ (hidden inside of a commitment) and a proof that
there exists a valid relationship between the state encoded
in c and the new state in c′ (for example, that the attributes
have been incremented).

This requires only minor extensions to our basic scheme. In
this case we add an Update algorithm that operates similarly
to MintCred but includes the earlier credential and a proof
of its construction. A valid proof of the existing credential
now becomes a condition for the organization accepting the
updated credential into the ledger. We provide a description
of this new algorithm in Figure 3.

6.4 Credential Revocation
Several previous works have proposed techniques for revok-

ing anonymous credentials [12, 10, 2]. We note that several
of these techniques can be applied to our credential sys-
tem. However, we also observe that our use of a centralized
transaction ledger may improve the security of the existing
proposals. Suppose our goal is only to revoke systems where
a user’s key secret key has been publicly compromised. A
common technique is to simply place such keys on a list and
have the user prove the secret key in his commitment is not
on the list. After all, no legitimate user’s key can appear on
this list. However, we observe that without a globally-shared

7Camenisch et al. [9] describe a further extension that reveals
the user’s identity in the event of a credential double-show.
We omit the details here for space reasons but observe that
the same technique can be applied to our construction.

429

Approved for Public Release; Distribution Unlimited.

• Update(params, sk , c, skc,CO, update relation, state
′)→ (c′, sk′c, πu). Given a credential c and associated secret key skc,

a set of credentials CO, an updated state state′ = (s′0, . . . , s
′
m) ∈ Zq, and an update relation update relation, generate a

fresh random serial number S′ ∈ Zq and random value r′ ∈ Zq to form a new credential c′ = gr
′

0 g
sk
1 g

S′
2

m∏
i=0

g
s′i
i+3. Compute

A = Accumulate(params,CO) and ω = GenWitness(params, c,CO). Output (c′, sk′c, πu) where sk′c = (S′, state′, r′) and

πu = NIZKPoK{(sk , ω, c, state, r, c′, state′, r′) :

AccVerify(params,A, c, ω) = 1

∧ c = gr0g
sk
1 g

S
2

m∏

i=0

gsii+3 ∧ c′ = gr
′

0 g
sk
1 g

S′
2

m∏

i=0

g
s′i
i+3

∧ update relation(state, state′) = 1}

• UpdateVerify(params, c,CO, πu)→ {0, 1}. Given a stateful credential c, a credential set CO, and proof πu, output 1 if
πu is correct, the proved state transition is a legal one, and the serial number S was not previously used. Otherwise 0.

Figure 3: Extensions for a stateful anonymous credential system. update relation(. . .) = 1 denotes that the update encodes
some arbitrary state transition (e.g. state′ = state+ 1).

state, a malicious revocation authority might be able to feed
different users different revocation lists, then collude with
verifiers to identify users.

Although we use an append-only list and cannot simply
delete the credential outright, we can add a marker stating
that the credential is no longer valid. Since this list is public
and shared amongst all the users, any user whose credential
is revoked will simply not attempt to authenticate. We thus
can realize almost any credential revocation policy without
a trusted party who could deanonymize users.

6.5 Avoiding trusted setup
Setting up the accumulator in our basic construction re-

quires generating an RSA modulus. However, its factor-
ization is never used and in fact must remain unknown to
prevent forged membership proofs. Because of this, we could
use a single trusted setup phase where the factorization is
destroyed immediately after the parameters are generated.
A more elegant option is to use so called RSA UFOs [44] for
accumulator parameters without a trapdoor, forgoing the
need for any trusted parameter generation.

7. ANONYMOUS REPUTATION SYSTEMS
The techniques described thus far allow users to show

a credential without fear of linking a pseudonym to their
identity. In the extreme case, a user can dispense with
persistent pseudonyms in their entirety and make all of her
transactions unlinkable. For certain applications, however,
this is not desirable: when a user’s actions are unlinkable,
malicious actions have no consequence and honest users
have no way to prove good behavior. A solution to this
problem is to create a reputation system in which users have
a single global reputation score they can demonstrate across
pseudonyms. Like an anonymous credential system, any
proof of reputation should be completely anonymous even in
the face of the retrospective collusion of all other parties in
the system.

Although a fair amount of work has been conducted on
systems with local reputation, reputation for pseudonyms
only [33], or reputation systems secure only if some sub-
set of trusted parties never collude even retroactively [31],
there appears to be no distributed solution that provides our

desired properties. To the best of our knowledge the only
construction to date which offers anonymous — even if all
parties collude after the fact — global reputation is due to
Androulaki et al. [1] and requires a semi-trusted third party
to keep track of reputation.

Informally, the security model for Androulaki et al.’s
scheme requires the following three properties which we use
as a starting point for our construction:

1. Anonymity of peers during reputation exchange and rep-
utation demonstration: pseudonyms cannot be linked
to each other or to the underlying user by any collection
of parties.

2. Unforgeability of reputation points.
3. Inflation resistance: the existence of some fixed number

of points allocable per day.

The first two properties map intuitively to the security
properties of a credential system (i.e., unforgeability of cre-
dentials and anonymity). The last one is a special restriction
due to [6]: if reputation can be handed out in an unlimited
manner, then the system is worthless.

At first glance, e-cash systems seem to provide an easy
way to realize such a system: users spend “repcoins” with
each other and an anonymous credential issued by the bank
is used to attest to their repcoin balance. However, e-cash
systems are only anonymous for the spender: a user and a
bank can collude to identify who the repcoins were deposited
with. A reputation system needs a superset of the privacy
features provided by e-cash: both parties in a transaction
need to maintain their anonymity and thus both spends
and deposits must be blind. Androulaki et al.’s solution in
fact uses blinded deposits to allow a bank trusted to track
reputation to issue anonymous reputation credentials. 8

7.1 A Basic Reputation System
Given a distributed, updatable anonymous credential sys-

tem, we can instantiate a distributed, global, identity-bound
anonymous reputation system as a special class of legal state
transitions between stateful credentials. In essence, we view

8Making this system distributed would entail constructing
both a distributed e-cash scheme and a distributed anony-
mous credential scheme. We opt for a cleaner approach.

430

Approved for Public Release; Distribution Unlimited.

• RepDec(params, sk , c, skc,CO,∆)→ (c′, sk′c, comm∆, r∆, πrd). Given a credential c and associated secret key skc, a set
of credentials CO, and an amount to decrement the reputation ∆ ∈ Zq, calculate the new balance balance′ = balance−∆.
Then generate a fresh random serial number S′ ∈ Zq and random values r′, r∆ ∈ Zq to form a credential c′ =

gr
′

0 g
sk
1 g

S′
2 gbalance

′
3 and comm∆ = gr∆0 g∆

1 . Compute A = Accumulate(params,CO) and ω = GenWitness(params, c,CO).
Output (c′, sk′c, comm∆, r∆, πrd) where sk′c = (S′, balance, r′) and

πrd = NIZKPoK{(sk , c, c′, ω, balance, balance′,∆, r, r′, r∆) :

AccVerify(params,A, c, ω) = 1

∧ c = gr0g
sk
1 g

S
2 g

balance
3 ∧ c′ = gr

′
0 g

sk
1 g

S′
2 gbalance

′
3

∧ comm∆ = gr∆0 g∆
1 ∧ balance′ = balance−∆}

• RepInc(params, sk , c, skc, comm∆,∆, r∆,CO) → (c′, sk′c, πre). Given a credential c and associated secret key skc, an
amount to increment the reputation ∆ ∈ Zq, a commitment to the reputation change comm∆ and its opening r∆, and
a set of credentials CO, calculate the new balance balance′ = balance + ∆. Generate a fresh random serial number

S′ ∈ Zq and random value r′ ∈ Zq to form a fresh credential c′ = gr
′

0 g
sk
1 g

S′
2 gbalance

′
3 encoding the new balance. Compute

A = Accumulate(params,CO) and ω = GenWitness(params, c,CO). Output (c′, sk′c, πre) where sk′c = (S′, balance, r′)
and

πre = NIZKPoK{(sk , c, c′, ω, balance, balance′,∆, r, r′, r∆) :

AccVerify(params,A, c, ω) = 1

∧ c = gr0g
sk
1 g

S
2 g

balance
3 ∧ c′ = gr

′
0 g

sk
1 g

S′
2 gbalance

′
3

∧ comm∆ = gr∆0 g∆
1 ∧ balance′ = balance+ ∆}

• RepVerify(cA, cB , πrd, πre,CO)→ {0, 1}. Given credentials cA and cB , proofs πrd and πre, and a set of credentials CO,
verify a reputation transaction between two parties by validating the proofs, checking that they use the same comm∆,
and checking that the revealed serial numbers were not previously used. Output 1 if all conditions hold, else 0.

Figure 4: Extensions for an anonymous reputation system.

a reputation system as simply an instance of an updatable
credential system where the encoded state is a user’s rep-
utation. Updates affect a pair of stateful credentials, and
we restrict state transitions to ones that conserve the total
amount of reputation in the credential pair. In fact, we can
realize more complex relations subject to that constraint,
but for simplicity we limit our discussion here to the simple
conservation of reputation.9 This system even allows for neg-
ative reputation, a notable feature which previously required
a continually available online bank [46].

We define three additional functions in Figure 4 that allow
users to transfer reputation and verify the transfer. Using
RepDec Alice would decrement her reputation by the amount
she wants to send and broadcast the resulting proof πrd for
insertion into the block chain. She would then send comm∆

and its opening values (∆, r∆) to Bob. Bob would run RepInc
and also broadcast the resulting proof. Alice can “give” Bob
negative reputation by forcing him to decrement his balance
by some amount prior to an encounter and then giving back
some (or none) of it after the encounter is completed. We
neglect pseudonyms in the above definition for the sake of
exposition, but they can be added in the usual way.

We leave a proof of security for the full version of this
work but provide a short intuition here: provided that our
updatable anonymous credential scheme is secure then so
is this scheme since clearly no user can increase his reputa-
tion without another depleting hers. Anonymity, however,

9Our policies are limited to the relations over committed
values that can be proved in zero-knowledge. If we restrict
ourselves to efficient proofs, we can realize a broad set of
polynomial relations over the reputation of both parties.

is not as clear. Bob must know the transaction in which
Alice decrements her reputation. Clearly this leaks some
information. However, due to the anonymity property of our
credential construction, the entire mint/update process can-
not be linked to a previous or subsequent show. As such, no
one learns anything that is linkable to any other transaction.
Because of this unlinkability, we obtain an identity-bound
reputation system where users do not need to discard their
reputation when switching pseudonyms. Similarly, inflation
resistance follows from the fact that we can specify arbitrary
rules of accepting credentials into the block chain in the first
place. As such we can limit how reputation is added to the
network by limiting the rate at which reputation points are
added.

8. RELATED WORK

Anonymous credentials. Introduced by Chaum [19] and
developed in a line of subsequent works (e.g., [8, 11, 14]),
anonymous credentials allow a user to prove that she has
a credential issued by some organization, without revealing
anything about herself other than that she has the credential.
Under standard security definitions, even if the verifier and
credential issuer collude, they cannot determine when the
credential was issued, who it was issued to, or when it was
or will be used. A common construction involves issuing a
credential by obtaining a signature from an organization on
a committed value (e.g., using the signature scheme of [12])
then proving in zero-knowledge that one has a signature under
the organization’s public key on that value. The contents
of the commitment may be revealed outright or various

431

Approved for Public Release; Distribution Unlimited.

properties can proved on the committed values (e.g., Alice
can prove she is over 21 years old). Extensions to this work
describe credentials that can only be shown anonymously a
limited number of times [9] or delegated to others [4]. All
of these schemes require issuing organizations to maintain a
secret key.

Bitcoin and append-only ledgers. Our construction re-
lies on the existence of a distributed append-only transaction
ledger, a technology that makes up the core component of
the Bitcoin distributed currency: the log of all currency
transactions called the block chain [36]. These ledgers are
maintained by an ad hoc group of network nodes who are free
to enter and leave the network (there is no key provisioning
necessary for them to join). A typical transaction ledger con-
sists of a sequence of blocks of data that are widely replicated
among the participating nodes, with each block connected
to the previous block using a hash chain. Nodes compete
for the opportunity to add new blocks of transactions to the
ledger by producing a partial hash collision over the new
data and the hash of the last block in the chain. The hash
collision serves two purposes: first, it is a computationally
difficult to forge authenticator of the ledger and second, since
finding a partial hash collision involves substantial compu-
tational effort, the peer who finds it is chosen “at random”
with a probability proportional to the rate at which they can
compute identify such partial collisions. As a result, an ad
hoc group of mutually distrusting and potentially dishonest
peers can correctly manage such a ledger provided that a
majority of their computational power is held by honest par-
ties. Recent experience with Bitcoin and Namecoin provides
evidence that this assumption holds in practice.

Namecoin. Namecoin [37] is a decentralized identity system
that uses the same block chain technology as Bitcoin. Al-
though Namecoin is in part a currency system — its internal
currency, the namecoin (NMC), is used to purchase a name
in the same way one pays for a domain name — its primary
purpose is to associate names with arbitrary data. A user
can claim a name provided (1) they pay the price in NMC for
it and (2) it is unclaimed. At that point, an entry is inserted
into the block chain mapping the name to a public key and
some arbitrary data. The public key allows the owner to
update the data by signing a new record. The data allows for
various uses. If it is an IP address, then one has a distributed
DNS system (such a system, .bit, is already deployed). On
the other hand, if it is a public key, the result is a basic
PKI. The first-come first-served nature of Namecoin seems
somewhat anachronistic, however it replicates in miniature
the way normal DNS names are generally assigned, where
the first person to claim the name gets it. Similarly, standard
(non-extended validation) SSL certificates for a domain are
typically issued to anyone who can demonstrate control of a
domain (usually via an email to admin@domain).

9. CONCLUSION
In this work we constructed a distributed anonymous cre-

dential system and extended this system to provide a dis-
tributed, identity-bound reputation system where users have
a single global reputation. Our constructions are secure in
the random oracle model under standard cryptographic as-
sumptions assuming the existence of a trustworthy global
append-only ledger. To realize such a ledger we propose
using the block chain system already in real world use with

the distributed cryptographic currency Bitcoin. Although we
are limited in the class of identity assertions we can certify,
we argue that several basic assertions are of particular use in
peer-to-peer systems, as they can be used to mitigate Sybil
attacks, ensure fair resource usage, and punish malicious
peers while maintaining user anonymity.

Future work. We leave two open problems for future work.
First, the proofs in this work assumed the security of a
transaction ledger. We leave a precise formal model of the
ledger, which attacks are allowable, and what bounds may be
placed on their consequence as an open problem. Second, the
efficiency of our construction can be improved. Although all
of our algorithms are efficient (in that they do not scale with
the size of the ledger), the need for double-discrete logarithm
proofs leads to somewhat large proof sizes when showing
a credential (roughly 40KB for modest parameters). Our
construction may be optimized for certain applications that
do not require the full flexibility of our construction. At the
same time, we hope that advances in bilinear accumulators,
mercurial commitments, or lattice based techniques may
provide a more efficient construction.

Acknowledgments
Christina Garman and Ian Miers are supported in part by
NSF CNS-1010928 and HHS 90TR0003/01.

Matthew Green is supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under contract FA8750-
11-2-0211, the Office of Naval Research contract N00014-11-
1-0470, NSF grant CNS-1010928 and HHS 90TR0003/01.

Applying to all authors, the contents and views expressed
are solely those of the authors and do not reflect the official
policy, position or views of the Department of Defense, the
HHS or the U.S. Government.

10. REFERENCES
[1] E. Androulaki, S. G. Choi, S. M. Bellovin, and

T. Malkin. Reputation systems for anonymous
networks. Privacy Enhancing Technologies. 2008.

[2] G. Ateniese, D. Song, and G. Tsudik. Quasi-efficient
revocation of group signatures. In Financial
Cryptography, 2003.

[3] N. Barić and B. Pfitzmann. Collision-free accumulators
and fail-stop signature schemes without trees. In
EUROCRYPT, 1997.

[4] M. Belenkiy, M. Chase, M. Kohlweiss, and
A. Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In Theory of Cryptography.
2008.

[5] J. Benaloh and M. de Mare. One-way accumulators: a
decentralized alternative to digital signatures. In
EUROCRYPT, 1994.

[6] R. Bhattacharjee and A. Goel. Avoiding ballot stuffing
in ebay-like reputation systems. P2PECON ’05, 2005.

[7] S. Brands. Rapid demonstration of linear relations
connected by boolean operators. In EUROCRYPT,
1997.

[8] S. A. Brands. Rethinking public key infrastructures and
digital certificates: building in privacy. The MIT Press,
2000.

432

Approved for Public Release; Distribution Unlimited.

[9] J. Camenisch, S. Hohenberger, M. Kohlweiss,
A. Lysyanskaya, and M. Meyerovich. How to win the
clonewars: efficient periodic n-times anonymous
authentication. CCS, 2006.

[10] J. Camenisch, M. Kohlweiss, and C. Soriente. An
accumulator based on bilinear maps and efficient
revocation for anonymous credentials. In Public Key
Cryptography, 2009.

[11] J. Camenisch and A. Lysyanskaya. An efficient system
for non-transferable anonymous credentials with
optional anonymity revocation. EUROCRYPT, 2001.

[12] J. Camenisch and A. Lysyanskaya. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. In CRYPTO, 2002.

[13] J. Camenisch and A. Lysyanskaya. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. In CRYPTO, 2002. Extended
Abstract.

[14] J. Camenisch and A. Lysyanskaya. A signature scheme
with efficient protocols. SCN’02, 2003.

[15] J. Camenisch and M. Michels. Proving in
zero-knowledge that a number n is the product of two
safe primes. In EUROCRYPT, 1999.

[16] J. Camenisch and M. Stadler. Efficient group signature
schemes for large groups. In CRYPTO, 1997.

[17] J. L. Camenisch. Group Signature Schemes and
Payment Systems Based on the Discrete Logarithm
Problem. PhD thesis, ETH Zürich, 1998.

[18] M. Chase and A. Lysyanskaya. On signatures of
knowledge. In CRYPTO, volume 4117 of LNCS, pages
78–96, 2006.

[19] D. Chaum. Security without identification: transaction
systems to make big brother obsolete. Communications
of the ACM, 1985.

[20] S. Coull, M. Green, and S. Hohenberger. Access
controls for oblivious and anonymous systems. In
TISSEC, 2011.

[21] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs
of partial knowledge and simplified design of witness
hiding protocols. In CRYPTO, 1994.

[22] I. Damg̊ard, K. Dupont, and M. Ø. Pedersen.
Unclonable group identification. EUROCRYPT, 2006.

[23] W. Diffie and M. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 1976.

[24] Y. Dodis and A. Yampolskiy. A verifiable random
function with short proofs and keys. PKC, 2005.

[25] Dot-bit. Available at http://dot-bit.org/.

[26] J. R. Douceur. The sybil attack. In Peer-to-Peer
Systems. 2002.

[27] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. In CRYPTO, 1986.

[28] E. Fujisaki and T. Okamoto. Statistical zero knowledge
protocols to prove modular polynomial relations. In
CRYPTO, 1997.

[29] O. Goldreich, S. Goldwasser, and S. Micali. How to
construct random functions. Journal of the ACM, 1986.

[30] O. Goldreich, S. Micali, and A. Wigderson. Proofs that
yield nothing but their validity and a methodology of
cryptographic protocol design. In FOCS, 1986.

[31] O. Hasan, L. Brunie, and E. Bertino. Preserving
privacy of feedback providers in decentralized
reputation systems. Computers & Security, 2012.

[32] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management in
P2P networks. WWW ’03, 2003.

[33] M. Kinateder and K. Rothermel. Architecture and
algorithms for a distributed reputation system. In Trust
Management. 2003.

[34] M. Z. Lee, A. M. Dunn, B. Waters, E. Witchel, and
J. Katz. Anon-pass: Practical anonymous subscriptions.
In IEEE Security and Privacy, 2013.

[35] I. Miers, C. Garman, M. Green, and A. Rubin.
Zerocoin: Anonymous distributed e-cash from bitcoin.
In IEEE Security and Privacy, 2013.

[36] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[37] Namecoin. Available at http://namecoin.info/.

[38] M. Naor and O. Reingold. Number-theoretic
constructions of efficient pseudo-random functions.
Journal of the ACM (JACM), 2004.

[39] T.-W. â. Ngan, D. S. Wallach, and P. Druschel.
Enforcing fair sharing of peer-to-peer resources. In
Peer-to-Peer Systems II. 2003.

[40] D. Obenshain, T. Tantillo, A. Newell, C. Nita-Rotaru,
and Y. Amir. Intrusion-tolerant cloud monitoring and
control. In LADIS. 2012.

[41] T. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO, 1991.

[42] P. Resnick, K. Kuwabara, R. Zeckhauser, and
E. Friedman. Reputation systems. Commun. ACM,
2000.

[43] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak
a secret. In ASIACRYPT. 2001.

[44] T. Sander. Efficient accumulators without trapdoor
extended abstract. In Information and Communication
Security, volume 1726 of LNCS, pages 252–262, 1999.

[45] T. Sander and A. Ta-Shma. Auditable, anonymous
electronic cash (extended abstract). In CRYPTO, 1999.

[46] S. Schiffner, S. Clauss, and S. Steinbrecher. Privacy
and liveliness for reputation systems. In Public Key
Infrastructures, Services and Applications. Springer
Berlin Heidelberg, 2010.

[47] C.-P. Schnorr. Efficient signature generation for smart
cards. Journal of Cryptology, 4(3):239–252, 1991.

[48] Q. Wang, Z. Lin, N. Borisov, and N. J. Hopper.
rBridge: user reputation based tor bridge distribution
with privacy preservation. 2009.

[49] B. Zhu, S. Setia, and S. Jajodia. Providing witness
anonymity in peer-to-peer systems. CCS, 2006.

APPENDIX
A. PROOF OF SECURITY FOR OUR BA-

SIC SYSTEM
We now provide a sketch of the proof of security for our

basic distributed anonymous credentials system.
Our basic approach is to show that for every real-world

adversary A against the credential system, we can construct
an ideal-world adversary S against the ideal-world system
such that the transcript of A interacting with the real sys-

433

Approved for Public Release; Distribution Unlimited.

tem is computationally indistinguishable from the transcript
produced by A interacting with S. We assume a static cor-
ruption model in which the adversary controls some set of
users and leave a proof in the adaptive corruption model
for future work. We also assume that our zero-knowledge
signatures of knowledge include an efficient extractor and
simulator and that the params are created using a trusted
setup process.

Our proof assumes the existence of a global, trusted trans-
action ledger, which we use as a black box. We leave a
complete proof that considers this construction and models
it to future work.

We begin by sketching the simulator S for our system.

A.1 Description of the Simulator

Minting a credential. When a user controlled by the ad-
versary with nym NymO

U wants a credential, the user first
generates (c, πM , attrs). When the simulator receives notifi-
cation of this, it first verifies that the credential and proof
are valid and meet the organization’s policy. If so it employs
the knowledge extractor for the signature of knowledge on
πM to get (sk , aux).

The simulator then checks if it has a record of (U, sk ,NymO
U)

on its list of users. If the user with key sk and nym NymO
U

exists, then S retrieves skU associated with (U, sk ,NymO
U)

and proceeds. If it is not on the list, the simulator checks
if it has previously seen a user with key sk . If the user
with key sk is not present, then the simulator creates a
user U and runs RegNym(NymO

U , U,O) to register NymO
U

and obtain skU for further interactions with TP . S then
stores (U, sk , skU ,NymO

U) in its list of users controlled by
the adversary. If a user U with key sk exists, then it runs
RegNym(NymO

U , U,O) to register NymO
U and adds NymO

U

to U ’s record.
Once the simulator has registered the nym or verified it

already exists, it runs MintCred(NymO
U , O, attrs, aux). The

simulator then transmits the credential information to the
trusted store and acknowledges the credential’s issuance.
S stores (sk ,NymO

U , attrs, aux, c, πM) in its list of granted
credentials.

When an honest user, through TP , wants to establish a
credential, the simulator creates a credential c (using the
publicly available attrs) and uses the simulator for the sig-
nature of knowledge πM to simulate the associated proof. It
then transmits the credential information (c, πM , attrs) to
the trusted store.

Showing a credential. When a user controlled by the
adversary wants to show a credential from organization O
to verifier V with which it has nyms NymO

U and NymV
U

respectively, the user first generates πS . When the simulator
receives notification of this, it verifies the proof as in the real
protocol (rejecting if it is invalid). If the show verifies, it
runs the knowledge extractor for the proof of knowledge on
πS to get sk .

The simulator then checks if it has a record of (U, sk ,
NymO

U ,NymV
U) on its list of users. If the user with key sk

and nyms NymO
U and NymV

U exists, then S retrieves skU
associated with (U, sk ,NymO

U) and proceeds. If the record
does not exist, either in part or in full, the simulator checks
if it has previously seen a user with key sk . If the user with
key sk is not present, then the simulator creates a user U
and runs RegNym(NymO

U , U,O) and RegNym(NymV
U , U, V)

to register NymO
U and NymV

U and obtain skU for further in-
teractions with TP . S then stores (U, sk , skU ,NymO

U ,NymV
U)

in its list of users controlled by the adversary. If a user U
with key sk exists, then it runs RegNym(NymO

U , U,O) (resp.
RegNym(NymV

U , U, V)) to register NymO
U (resp. NymV

U) and
adds NymO

U (resp. NymV
U) to U ’s record.

Now, the simulator S runs ShowOnNym(NymO
U ,NymV

U ,
O, V,C) where C is obtained by the simulator through a call
to GetCredList(O).

When an honest user (through TP) wants to show a creden-
tial to a verifier V controlled by the adversary, the simulator
runs the zero-knowledge simulator for πS to simulate a proof
that it then sends to V .

A.1.1 Proof (sketch) of a Successful Simulation
Our basic distributed anonymous credentials system is

secure under the Strong RSA and the Discrete Logarithm
assumptions if the view of the adversary in the real protocol
is computationally indistinguishable from his view in the
simulation. This means that the simulator must only fail
with negligible probability.

We first begin by discussing the signatures/proofs πM
and πS . Under the Discrete Logarithm assumption, πM is
a computational zero-knowledge signature of knowledge on
aux of the values sk , r, and r′ such that the nym NymO

U

and the credential c both belong to the same master secret
sk . The proof is clearly zero-knowledge because it can be
constructed using standard techniques [47]. One can see
that the only way to forge this proof would be to cause a
collision on the commitments, which occurs with negligible
probability under the Discrete Logarithm assumption [41].
Under the Strong RSA and Discrete Logarithm assumptions,
πS is a statistical non-interactive zero-knowledge proof of
knowledge of the values sk , ω, c, NymV

U , r, and r′ such that
ω is a witness that c is in the accumulator A and nym NymV

U

and the credential c both belong to the same master secret
sk . We can again see that this proof can be constructed using
known techniques [47, 12] similar to the proofs used by Miers
et al. in [35]. In order to forge such a proof, the adversary
would need to either find a collision on the commitments or
forge an accumulator membership witness. We previously
discussed how the first case occurs with negligible probability.
The second case occurs with negligible probability under the
Strong RSA assumption due to [12]. See the full version of the
paper for a formal treatment/reduction of these statements.

Intuitively, we can now see that the simulator will fail neg-
ligibly because it deals solely with zero-knowledge signatures
of knowledge and zero-knowledge proofs of knowledge, which
have efficient extractors and simulators. Our proofs πM and
πS have knowledge extractors that succeed with probability
1− ν(λ) for some negligible function ν(·). Since signatures
and proofs are the sole point of failure for our simulator
described above, it fails with negligible probability. Because
the only thing the adversary sees is the zero-knowledge proofs
and signatures, the simulated signatures and proofs are com-
putationally indistinguishable from legitimate ones, and the
adversary cannot cause our simulator to fail except with neg-
ligible probability, the adversary cannot distinguish between
an interaction with the simulator and the real protocol.

434

Approved for Public Release; Distribution Unlimited.

SCORAM: Oblivious RAM for Secure Computation∗

Xiao Shaun Wang1, Yan Huang2, T-H. Hubert Chan3, abhi shelat4 and Elaine Shi1

1UMD 2IU Bloomington 3HKU 4UVa
12{wangxiao,elaine,yanhuang}@cs.umd.edu 3hubert@cs.hku.hk 4abhi@virginia.edu

ABSTRACT
Oblivious RAM (ORAM) data structures have traditionally
been measured by their bandwidth overhead and client stor-
age. We observe that when using ORAM structures to build
secure computation protocols for RAM programs, the size
and depth of the circuit that implement the ORAM opera-
tions is a more relevant measure of performance. For exam-
ple, we note that, in the context of secure computation, an
ORAM design with an asymptotic bandwidth complexity of
O(logn) can be easily out-performed by an“inferior” scheme
due to its complicated read/write algorithm.

We therefore embark on a study of the circuit-complexity
of several recently proposed ORAM constructions. Through
careful implementations and experiments, we show that asymp-
totic analysis is not indicative of true performance of ORAMs
when they are used in a secure computation protocol for
RAM programs with realistic memory sizes.

We then present scoram, a heuristic compact ORAM de-
sign optimized for use in secure computation protocols. Our
new design is almost 10x smaller and also faster than all
other designs we have tested for realistic memories of size
4MB–2GB and for failure probabilities of 2−80. This new
scoram makes it feasible to perform more secure computa-
tions on gigabyte-sized data sets.

1. INTRODUCTION
Two-party secure computation refers to a cryptographic

technique that allow Alice, who holds private input x and
Bob, who holds private input y, to jointly compute f(x, y)
without revealing any information to each other aside from
the output f(x, y) . All known efficient constructions of such
generic cryptographic protocols require an oblivious repre-
sentation of the function f being evaluated to ensure that
the control flow of the algorithm does not depend on its in-
put and therefore leak partial information. The standard ap-
proach to creating such an oblivious representation is to gen-

∗The research was supported in part by a grant from Hong
Kong RGC under the contract HKU719312E.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

erate a binary circuit from the description of f . This is the
strategy chosen by dozens of prior works [?,?,?,?,?,?,?,?,?]
on secure computation.

A well-known drawback to the approach of creating a
boolean circuit for f is that the size of the circuit for f—and
thus the running time of the secure computation protocol for
Alice and Bob—relates to the worst-case running time and
space complexity of f . This circuit blow-up is especially
problematic in the case when the most efficient implemen-
tation of f is in the RAM model of computation in which
programs can access any cell of its working memory in O(1)
time (the RAM model represents how programs typically
run on modern processors). In contrast, a circuit requires
O(s) time to access a particular element of its “memory”
where s is the (worst-case) space complexity of the machine
that implements f .

To avoid this circuit overhead, Ostrovsky and Shoup [?]
considered whether RAM programs could be directly imple-
mented as secure computation protocols without having to
transform them to circuits. Unfortunately, the memory loca-
tions that are accessed by a program often leak intermediate
values of the program and thereby contradict the security
guarantees of secure computation. To overcome this issue,
Ostrovsky and Shoup use an Oblivious RAM (ORAM) data
structure proposed first by Goldreich [?] to compile RAM
programs into secure computation protocols.

Intuitively, an ORAM is a method for compiling a RAM
program into another RAM program whose memory ac-
cess pattern does not depend on any input to the program
(thus, the memory access pattern is said to be oblivious).
ORAM techniques have been widely studied in other con-
texts [?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?]. The goals of these
prior works have been to (a) reduce the bandwidth overhead
of the ORAM (b) reduce the “client storage” of the ORAM,
and (c) reduce the server’s overall memory overhead. Re-
markably, state of the art approaches to ORAM design limit
the overhead in all three aspects to various combinations of
O(logc(n)) for c ∈ {0, 1, 2, 3}!
Towards large-scale secure computation. At present,
secure computation is limited to small problems because
large datasets incur very-large overheads in the circuit-model.
Secure computation in the RAM model offers an asymptoti-
cally efficient way to circumvent these problems and can po-
tentially scale secure computation to large datasets. Indeed,
the development of practical ORAM techniques and demon-
strations of practical ORAM implementations [?] have lead
to recent notable works that demonstrate how ORAM-based
secure computation protocols enable dramatic efficiency im-

435

Approved for Public Release; Distribution Unlimited.

ORAM Circuit Size Circuit Size (gates) Number of Inputs
(Asymptotic Bounds) N = 220 N = 229 N = 220 N = 229

Linear Scan oram O(DN) 142.6M ≈82678.1M 33.5M 17180.0M
LO oram O(D log N)ω(1)

clp oram Õ(log5N +D log3N)ω(1) 29.4M 121.8M 0.6M 2.1M
Binary Tree oram O(log4N +D log2N)ω(1) 38.5M 127.7M 7.0M 24.2M
naive path oram O(log4N +D log2N)ω(1) 87.3M 278.1M 0.1M 0.3M

path scoram Õ(log3N +D logN)ω(1) 37.2M 111.7M 0.1M 0.3M
scoram N/A (heuristic) 4.6M 13.0M 0.3M 0.9M

Table 1: Performance metrics for different ORAM schemes when used in Secure Computation. N is the number
of blocks in the ORAM, D is number of bits in each block (i.e., the payload bit length), and the security parameter is
set to be O(logN)ω(1). We use the notation g(N) = O(f(N))ω(1) to denote that for any α(N) = ω(1), it holds that

g(N) = O(f(N)α(N)). The notation Õ hides log logN factors. All concrete measurements are for payload bit-length D = 32
bits with probability of SCORAM failure set to 2−80 and include all recursive instances of the ORAM to store the position
map. The circuit size reports all gates, and the number of inputs defines cost of input preprocessing, e.g., OT.

provements in processing large, secret datasets. For exam-
ple, the work of Gordon et al. [?] shows how repetitive bi-
nary search queries can be securely computed in amorized
sublinear time. Liu et al. [?] show how, under big data
sizes, RAM-model secure computation significantly outper-
forms the circuit model even for run-once tasks, including
KMP-string matching and shortest path. This work extends
this vision by tackling the problem of finding very efficient
ORAMs to enable secure computation on giga-byte sized
datasets.

1.1 Contribution
We embark on a comprehensive study of practical secure

computation ORAM techniques. We do so via both the-
oretical analysis of several metrics used to judge ORAMs
and several experiments performed on optimized implemen-
tations of 4 state-of-the-art ORAM designs. We report on
a new heuristic ORAM design that outperforms all other
ORAMs we considered.

Our first observation is that the traditional measures of
an ORAM scheme do not properly predict ORAM perfor-
mance. ORAM has been considered for two primary appli-
cation scenarios: the privacy-preserving cloud outsourcing
scenario [?,?,?], and the secure processor application [?,?].
In these settings, an ORAM’s overhead is measured by its
“bandwidth overhead”, i.e., how many data units the ORAM
must retrieve to serve a single memory query1.

We observe that the bandwidth overhead metric is inad-
equate at characterizing the performance of an ORAM in
a secure computation application. Instead, the circuit com-
plexity of the ORAM algorithm —a measure that is tradi-
tionally ignored by the literature—plays a critical role in
the efficiency ORAM-based secure computation. Although
this paper focuses on using ORAM in a garbled circuits ap-
proach to secure computation, we note that the metrics we
put forth are meaningful when SCORAM is used in other
secure computation techniques as well.

Re-evaluate and improve existing ORAMs. We then

1The bandwidth overhead metric is equivalent to the blowup
of the runtime of the Oblivious RAM in comparison with the
non-oblivious RAM machine – this was the terminology used
originally by Goldreich and Ostrovsky [?].

conduct a systematic evaluation of several state-of-the-art
ORAM schemes (e.g., Binary Tree oram [?], Path ORAM [?],
clp oram [?]) when applied to the secure computation set-
ting. Table 1 reports both the theoretical and concrete com-
plexity of these existing ORAM schemes. Our concrete pa-
rameters are derived from carefully optimized implementa-
tions of these algorithms.

In particular, we observe that the basic tree ORAM by
Shi et al. [?] has the same asymptotic efficiency as the Path
ORAM [?] (when implemented with a naive circuit), but the
latter has a much larger concrete circuit when implemented
for reasonable parameters. We therefore propose path sco-
ram, a new circuit construction for Path ORAM, achiev-
ing better asymptotic overhead than its naive counterpart.
However, this asymptotically efficient path scoram requires
3 oblivious sorts during the circuit construction, which in-
curs a large constant in practice. As a result, we observe that
its empirical performance is not a clear win over asymptoti-
cally worse schemes such as the simple Binary Tree oram [?]
or the clp oram [?].

A new ORAM scheme. Based on the experience gained,
we shift the focus: instead of aiming for an asymptotically
more efficient ORAM, we aim to construct a scheme that is
empirically the most efficient. We argue that within poly logN
complexity ranges, optimizing for asymptotics can be mis-
guided. For conceivable data sizes ranging from gigabytes
to terabytes, logN is typically 20 to 40, and can be easily
overwhelmed by even moderate constants (e.g. 100) that
may be incurred by asymptotically superior schemes. Sim-
ilar observations of asymptotics vs. practical performance
are widespread, e.g. by Stefanov et al. for constructing
small-domain PRPs [?].

Our result is a heuristic ORAM scheme, scoram, that
is almost 10X smaller and also faster than any other ap-
proach we are aware of. Our implementation of scoram
will be made available online for people to build efficient
ORAM-based secure computation protocols2. Our SCO-
RAM scheme and implementation are also an important

2The URL is not included here to preserve anonymity in the
submission. We will make our code available upon reviewers’
request.

436

Approved for Public Release; Distribution Unlimited.

building block for realizing efficient oblivious data struc-
tures [?] in secure computation.

1.2 Related Work
Keller and Scholl [?] implemented secure oblivious data

structures using both the SCSL ORAM [?] and the Path
ORAM [?]. Their implementations use a small security pa-
rameter 2−20 and works in a pre-processing model; in con-
trast, we evaluate at security parameter 2−60 to be more
realistic. At least two of our implementations achieve bet-
ter efficiency parameters while also enjoying provable error
bounds.

Gordon et al. [?] study the feasibility of constructing sublinear-
time secure computation protocols for functions that can
be computed in sublinear time on a random-access machine
(RAM). They show generically how any function f(·, ·) that
can be computed in time t and space s in the RAM model
can be securely computed by a protocol that requires amor-
tized time O(t)poly log(s), requires one party to use space
O(log(s)) and requires the other party to use spaceO(spoly log(s)).
Note, their goal is to ensure that one party in the protocol
requires very little space complexity. They report on an
implementation of a binary-tree based SCORAM; using se-
curity parameter 2−13, and N = 220, their ORAM scheme
requires roughly 6.6M non-free gates and 12M total gates.
To the best of our ability, we attempted to recreate their
parameters: our implementation of the same required 3.3M
non-free gates and 16m total gates. The implementation
of our best scheme at a much higher security parameter is
approximately 3 times smaller. See §6 for details.

Gentry et al. [?] optimize the binary tree ORAM for se-
cure computation. We did not include the scheme in Table 1
because their scheme is subsumed both asymptotically and
empirically by Path ORAM [?]. This can be observed with a
simple back-of-the-envelope calculation as follows: Gentry et
al. propose techniques to reduce the tree height by enlarging
the bucket size. They then proposed a new eviction algo-
rithm similar to Path ORAM’s eviction, except that they
directly compute where a block should be dropped along
the path—closest to leaf possible respecting invariant—and
then drop it in that bucket. Naively implementing their
eviction would result in O(A2) overhead where A is the total
number of blocks on the path, i.e., A = (bucket size)*(path
length). Notice that Path ORAM also has O(A2) overhead
for a naive eviction circuit, but Path ORAM’s A value is
both asymptotically and empirically smaller than that of
Gentry et al. In both schemes, we can have an asymptoti-
cally smaller eviction circuit with oblivious sort, but as we
show, oblivious sort introduces such a large constant, that
the practical performance is worse than that of the original
binary-tree ORAM.

As far as we know, Lu and Ostrovksy [?] report the asymp-
totically best ORAM in the literature. Their 2-server design
can perform a sequence of n reads or writes with O(logn)
amortized overhead per access while using O(n) storage for
the servers and O(1) client memory. These parameters meet
the lower-bound for performance of a single-server ORAM
and are superior to any known single-server ORAM. Thus,
it appears to be a perfect candidate for ORAM in secure
computation. Unfortunately, there are two serious practical
bottlenecks to the implementation of LO.

To understand the first issue, recall that the LO ORAM

builds upon the KLO ORAM [?] which further builds upon3

the map-reduce based cuckoo-hashing based ORAM of Goodrich
and Mitzenmacher [?]. In order to read or write at index
x, the scheme iteratively queries a hierarchy of hash tables
Hk, Hk+1, . . . , HL with either x or a dummy address t de-
pending on whether x has been found or not. The security
relies on the issuing of this dummy query once x has been
found in order to maintain the invariant that every lookup
is unique (i.e, there is never a lookup for the same address
x at any two levels in the hierarchy). This means that read
queries require several sequential executions of separate se-
cure computation protocols; in contrast, tree-based ORAM
designs require only 1 secure computation protocol to be run
per read/write operation.

The second serious problem is a large overhead constant
for cuckoo hashing. All cuckoo-hashing based ORAMs de-
pend on an lemma proven by Goodrich and Mitzenmacher [?]
which bounds the collision rate of a cuckoo-hashing struc-
ture via a combinatorial analysis of a graph G that is based
on the cuckoo-hashing function. This lemma requires the
cuckoo hash table size to be m = Ω(log7(N)); this technique
therefore only starts to beat the Linear scan SCORAM when
N > 2−37.

2. BACKGROUND: TREE-BASED ORAMS
Notation. We use N to denote the number of (real) data
blocks in ORAM, D to denote the bit-length of a block in
ORAM, Z to denote the capacity of each bucket in the
ORAM tree, and λ to denote the ORAM’s statistical se-
curity parameter. When discussing binary trees of depth L
in this paper, we say the leaves are at level 0 and the root is
at level L− 1. Although unconventional, this simplifies the
description of our algorithms.

2.1 Tree-based ORAM Construction
Shi et al. [?] proposed a new binary-tree based framework

for constructing a class of ORAM schemes. Many recent
efficient ORAM schemes [?,?,?] extend this construction, so
we briefly review this framework below. The key difference
between the schemes is the choice of eviction strategy.

Data organization. The server organizes N blocks into a
binary tree of height L = logN ; each node of the tree is a
bucket containing Z blocks. Each block is of the form:

{idx||label||data},
where idx is the index of a block, e.g., the (logical) address
of desired block; label is a leaf identifier specifying the path
on which the block resides; and data is the payload of the
block.

The client stores a position map, mapping memory ad-
dresses to leaf labels. Position map storage can be reduced
to O(1) by recursively storing the position map in a smaller
ORAM (see [?] for details). These leaf labels are assigned
randomly and are reassigned as blocks are accessed. If we
label the leaves from 0 to N−1, then each label is associated
with a path from the root to the corresponding leaf. Tree-
based ORAMs maintain the invariant that a block marked
label resides either on the path leading to the corresponding
leaf node specified by label; or resides in the client’s stash.

3KLO point out a subtle security issue that affects almost
all cuckoo-basing based ORAM schemes, and explain how
to fix it.

437

Approved for Public Release; Distribution Unlimited.

Operations. Tree-based ORAM have three main opera-
tions. Among these, the Eviction algorithm is the key differ-
ence between schemes.
• ReadAndRemove: Given an index idx, the client looks

up the its label from the position map, and fetches all
blocks on the path leading to label. The client finds
the block idx (due to the main invariant) and removes
it from the path.
• Add: The retrieved block is potentially updated, reen-

crypted and written back to the root bucket.
• Eviction: Percolate blocks towards leaves such that no

bucket will overflow except with negligible probability.
Various ORAMs use different eviction schemes which
we explain below.

Recursion. Instead of storing the entire position map in
the client’s local memory, the client can store it in a smaller
ORAM on the server. In particular, this position map ORAM
needs to store N log(N)-bit labels. By storing χ labels in
one block, this ORAM only needs N/χ blocks. Finally, by
applying recursion, the position map can be reduced to O(1)
size, after which the Linear scan ORAM can be used. See §5
for a discussion of how we set the recursion parameters. Un-
less otherwise noted, our discussion of the complexity of the
eviction strategy applies to a single ORAM (i.e., not taking
into consideration the recursion, which applies equally to all
tree-based strategies).

2.2 Various Eviction Strategies
Original binary-tree ORAM. The original Binary Tree
oram scheme [?] adopts random eviction: with every data
access, pick two random buckets from each level, and evict
one block from each selected bucket by placing the block
into the correct child node (subject to the invariant). Shi
et al. show that this eviction strategy requires a bucket
size of O(logN)ω(1) to avoid overflow except with negligible
probability.

Path ORAM. Path ORAM adopts a greedy eviction strat-
egy that works with a stash maintained in client storage.
Blocks on the path P are first unioned with the stash. Each
block in this set is then placed as close as possible to its desti-
nation leaf in path P subject to the path invariant. Stefanov
et al. [?] show that this aggressive eviction strategy works
with buckets that are only 4 blocks.

CLP ORAM. In the clp oram [?] scheme, internal nodes
of the binary tree have O(log logN) blocks per bucket, and
the stash is replaced by a queue that requires add, pop,
and find operations. After path P is read, block x is re-
moved and remapped, and then added to the queue. Next,
the ORAM performs a “flush” operation by selecting a new
leaf at random, reading its path into the ORAM, and then
placing each block in this path as close as possible to the
block’s destination leaf subject to the path invariant. This
flush operation is performed according to a geometrically
distributed random variable with expectation 2.

This scheme claims Õ(log2(N)) worst-case computational
overhead, constant memory overhead, and CPU cache size
that is poly log(N). Our empirical results confirm the claim
in CLP that the data structure required to implement the
queue is simpler than the one needed to implement the stash
in the Path ORAM construction. However, as we show in
the next section, the Path SCORAM and the scoram can be

1: P [0..L− 1][Z] stores the block to be put back
2: for i from 0 to L− 1 do //from leaf to root
3: for j from 1 to Z do
4: for k from 1 to LZ + stsize do
5: if LCA(A[k].label, P) ≤ i then
6: P [i][j] := A[k]
7: A[k] := ⊥

Figure 1: Naive oblivious algorithm for Path ORAM’s
Eviction. Variable A denotes a buffer created by concatenat-
ing the stash and the path P read in Path ORAM. This algo-
rithm writes as many blocks back to P as possible, packing
them as close to the leaf as possible.

optimized to support an even simpler (and smaller) eviction
algorithm.

2.3 SCORAM
A SCORAM is an ORAM scheme that is specifically de-

signed for use in the Ostrovksy-Shoup framework for se-
cure computation of RAM programs. Unlike the traditional
ORAM scenario, in this framework, both the server mem-
ory and the client storage of the ORAM are secret-shared
between the parties4.

Each instruction of a RAM program consists of an ad-
dress to read from memory, an operation to perform, and
an address to write back to memory. These three steps are
accomplished via a secure computation protocol between the
parties that takes as input (a) secret shares of the memory,
(b) secret shares of the ORAM client state, (c) and secret
shares of the program state.

The most significant component of this secure computa-
tion is typically the logic used to implement the read and
write operations via the SCORAM design. In particular,
the SCORAM design contributes most of the (a) inputs each
party must supply to the secure computation, (b) and the
logical gates of the secure computation protocol used to im-
plement the three steps of the instruction. Among the com-
ponents of the SCORAM design, the eviction procedures is
the costliest. In the next section, we analyze the eviction
procedures for several SCORAM designs.

3. FIRST ATTEMPT: PATH SCORAM
We first investigate the Path ORAM since has the least

bandwidth overhead among all tree-based ORAMs. Natu-
rally a good question is whether we can implement Path
ORAM with a small circuit as well. since ReadAndRemove
and Add algorithm are trivial to turn into O(D logN)ω(1)-
sized circuits, we focus our discussion on how to implement
Path ORAM’s eviction algorithm in circuit.

Expressing circuits. In the remainder of the paper, we
will need to describe circuit constructions. Since oblivious
algorithms can be easily transformed into circuits preserving
complexity, in this paper, we equate the notions of oblivious
algorithms and circuits, and describe circuits using oblivious
algorithms. When we sort lexicographically according to a

4We note that Gordon et al. propose an asymmetric division
of the server and client state to enable one party in the secure
computation protocol to have a sub linear number of input
bits.

438

Approved for Public Release; Distribution Unlimited.

1. Initialization. For each i ∈ {1, 2, . . . , LZ}: letA[i].bucket := LCA(A[i].label, P), let A[i].dummy denote whether A[i]
is a dummy block.

2. O-sort: real before dummy. Oblivious sort based on the key bucket. After sorting, all real blocks come first, in
bucket ascending order.

3. Scan A to compute the final offset (from leaf) for each block. We give the algorithm to calculate offset from
bucket in Figure 4.

4. Append dummy. Append LZ dummy blocks at the end whose offset are 1, . . . , LZ, respectively.
5. O-sort: reorder based on offset. Oblivious sort A by offset (where blocks with offset = ⊥ are put at the end).
6. Suppress unnecessary dummy. Scan A to “eliminate” unnecessary dummy blocks. A dummy block is considered

unnecessary if it is preceded by a real block with the same offset value. We “eliminate” this dummy block by setting
its offset to “⊥”.

7. O-sort: fall into place. Sort A by offset so that unnecessary dummys are moved to the end A.

Figure 2: The path scoram’s eviction algorithm.

key pair (key1, key2), we mean first sort according to key1,
and if there is a tie on key1, then we sort according to key2.

Notations. Suppose each of p1 and p2 represents a leaf or
a root-to-leaf path. We use LCA(p1, p2) to denote the level
of the lowest common ancestor of the leaves, or equivalently
the node where the two paths diverge when traversing from
the root. In the remainder of the paper, we sometimes use
the notation label and a path p interchangeably, since a path
p is defined by the label of a leaf node.

Let A denote a buffer created by concatenating the stash
concatenated with a path p (the data read path) in Path
ORAM. Path ORAM’s eviction writes as many blocks from
A to p as possible, and packs them as close to the leaf as
possible.

Naive O(D log2N) eviction circuit. A naive way to turn
Path ORAM’s eviction algorithm into a circuit would result
in a O(D log2N)ω(1)-sized circuit. We describe this naive
method in Figure 1.

3.1 A New Õ(D logN) Eviction Circuit
The rearrangement problem. Path ORAM’s eviction
can be recast as a rearrange problem: we would like to obliv-
iously rearrange the entries in A (by pairwise swapping) with
respect to the following conditions:

1. The blocks in A[1...LZ] will be written back to the
path P , where the block at i = kZ+j (where k = b i−1

Z
c

and 1 ≤ j ≤ Z) will go to bucket k. We require that for
each i, if A[i] is a real block, then LCA(A[i].label, P) ≤
k. If less than Z real blocks are assigned to a bucket,
dummy blocks will be added to that bucket.

2. For the real blocks that cannot be written in the path,
they will be stored in A[LZ+1...LZ+stsize]. Hence, if
A[LZ + stsize + 1] contains a real block, this indicates
stash overflow.

Circuit construction. First of all, we add three extra
fields bucket, offset and dummy (used only in this improved
eviction algorithm) to each entry A[i]. bucket takes values
from {0, . . . , L−1}∪{⊥}. For a dummy block, bucket is set
to ⊥. For a real block, bucket := LCA(label, P), where label
denotes the leaf label of the block. In other words, bucket
is the lowest level (i.e., closest to leaf) where the block is
allowed to reside on the path P . Recall that we assume
bucket = 0 refers to the leaf level while bucket = L−1 refers
to the root level. offset takes values from {1, . . . , LZ}∪{⊥}.
dummy indicates if a block is dummy.

The improved eviction algorithm is described in Figure 2.
At the end of the algorithm, the first Z blocks of A can go
to the leaf, path, and the next Z blocks should go to leaf
but one level, and so forth.

In Appendix B, we also consider how to construct a low-
depth circuit for our new eviction algorithm.

Examples. The most sophisticated part of the algorithm is
Step 3 in Figure 2, i.e., computing the offset of blocks. This
part of the algorithm is further explained in Figure 4. Below
we give an example of this step. Assume that Z = 3. Then,
a sequence of bucket values [0 0 0 0 1] should result in offset
values [1 2 3 4 5]. Additionally, bucket values [0 1 1 1 1]
should result in offset values [1 4 5 6 7].

An example of the full eviction circuit is given in Figure 3.

1: available := 1
2: for i from 1 to LZ + stsize do
3: if available ≥ Z ∗A[i].bucket + 1 then
4: A[i].offset := available
5: available := available + 1
6: else
7: A[i].offset := Z ∗A[i].bucket + 1
8: available := A[i].offset + 1

Figure 4: Computing offset from bucket.

Theorem 1. The path scoram with Eviction described
above can be fully implemented (i.e., including all the recur-

sive ORAMs used to store the position map) in Õ(log3N +
D log2N) boolean gates.

Proof. The circuit to implement the data level ORAM
requires O(D logN log logN) gates due to the oblivious sort-
ing operations in Figure 2. For recursion levels, we use
O(logN) for each block, and with O(logN) levels of recur-
sion, the total circuit size for position map recursion levels is
O(log3N log logN). Therefore, the total circuit size across

all levels is Õ(log3N +D logN).

Findings. We implement our path scoram and compare
its empirical performance with that of the Binary Tree oram
and clp oram. While path scoram is asymptotically su-
perior to both Binary Tree oram and clp oram in terms of
circuit size, for practical ranges of N , empirical results sug-
gest that both the Binary Tree oram and clp oram perform
better. Detailed empirical results are presented in Section 6.

439

Approved for Public Release; Distribution Unlimited.

b: 1	
o:
d: 0	

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b: 0
o:
d: 0

b:
o:
d: 1

b:
o:
d: 1

b: 1
o:
d: 0

b:
o:
d: 1

(1)

b: 0
o:
d: 0

b: 1
o:
d: 0

b: 1
o:
d: 0

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

(2)

b: 0
o: 1
d: 0

b: 1
o: 4
d: 0

b: 1
o: 5
d: 0

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

(3)

b: 0
o: 1
d: 0

b: 1
o: 4
d: 0

b: 1
o: 5
d: 0

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o: 1
d: 1

b:
o: 2
d: 1

b:
o: 3
d: 1

b:
o: 4
d: 1

b:
o: 5
d: 1

b:
o: 6
d: 1

(4)

b: 0
o: 1
d: 0

b:
o: 1
d: 1

b:
o: 2
d: 1

b:
o: 3
d: 1

b: 1
o: 4
d: 0

b:
o: 4
d: 1

b: 1
o: 5
d: 0

b:
o: 5
d: 1

b:
o: 6
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

(5)

b: 0
o: 1
d: 0

b:
o: ⊥
d: 1

b:
o: 2
d: 1

b:
o: 3
d: 1

b: 1
o: 4
d: 0

b:
o: ⊥
d: 1

b: 1
o: 5
d: 0

b:
o: ⊥
d: 1

b:
o: 6
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

(6)

b: 0
o: 1
d: 0

b:
o: 2
d: 1

b:
o: 3
d: 1

b: 1
o: 4
d: 0

b: 1
o: 5
d: 0

b:
o: 6
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o:
d: 1

b:
o: ⊥
d: 1

b:
o: ⊥
d: 1

b:
o: ⊥
d: 1

(7)

level-0 bucket level-1 bucket

Original A with b (bucket) computed.

Sort A by b (bucket).

Compute key from b (bucket) for real blocks.

Padding

Sort by
(o, d)

Reassign
o	 (offset)	

Sort by
o (offset)

stash

Figure 3: Running Õ(D logN) eviction algorithm over a toy example. Here we assume L = 2, Z = 3 and stsize = 3. b stands
for the bucket field while k the offset field. d=1 indicates dummy blocks, where the contents of other fields are not applicable.

Upon closer examination, we realize that path scoram
requires 3 oblivious sorts in its circuit construction, thus in-
curring a large constant. This motivated our observation
that asymptotics is not representative of practical perfor-
mance for the poly logN range, since logN is so small (e.g.,
20 to 30) for real-life ranges of N , that constants matter just
as much as logN factors.

4. SECOND ATTEMPT: A NEW SCORAM
Because asymptotic evaluation does not properly char-

acterize practical performance for our problem, we devise a
new SCORAM scheme optimized for empirical performance.
Our key idea is to have an effective eviction algorithm that
can be implemented in small circuit. In this section, we focus
on presentation of the algorithm, leaving optimal parameter
choices to the next section.

4.1 Our New SCORAM Scheme
Our new compact SCORAM, which we call scoram, is an-

other tree-based ORAM. ReadAndRemove and Add operate
in the same way as the tree-based ORAMs, and we therefore
focus the presentation on the Eviction algorithm.

Overall, Eviction will perform flush() (Algorithm 1) α
times. In our implementation, we choose α = 4 which we
determine to be the optimal choice (see §5 for more details).
Below we explain the intuition.

Greedy push pass (lines 7 to 10) We opt for a greedy
push pass similar to that of the clp oram, but avoid their
bucket overflows handling strategy. First, a random path is
selected for eviction with every data access. Next, for each
bucket from root to the leaf-1 level on the selected path:
pick a block that can be evicted deepest along this path,

and push it to the child bucket if there is room.
In the clp oram, a bucket overflow occurs when more

than half of the bucket capacity number of blocks can be
evicted to one of its children. Overflow events are indicative
of getting too crowded in some parts of the tree. Chung et
al. handles this event by choosing a block to remove from
the bucket, remapping its label, and putting it back into the
stash. This is an expensive operation, since (1) removing
(adding) blocks from a bucket (to the stash) requires a linear
scan; (2) it needs to be done for every bucket on the eviction
paths because we cannot reveal where the actual overflows
happen; (3) updating the (recursively stored) position map
is also very expensive. Our implementation suggests that for
a RAM storing 1 million 32-bit entries, more than 85% of
the computational cost are due to obliviously handling over-
flows. Although some of the above overflow handling logic
can be implemented asymptotically better using oblivious
sorting, this actually worsens the empirical overhead due to
the large constant factor associated with oblivious sorting.

Therefore, our new SCORAM avoids checking and han-
dling overflows. A block will only be evicted if the child
bucket is not full. Unfortunately, such a “greedy push pass”
alone would make the eviction less effective, as it is more
likely for a bucket to be full and the stash could grow un-
duly large. This motivates our idea of compensating with a
“reverse dropping pass”.

Reverse dropping pass (lines 3 to 6). Pick a block
that can be pushed deepest along the path, then put it into
a bucket as deep in the path as possible. This can be im-
plemented by scanning the eviction path in reverse order
from leaf to root and placing the block into the first non-full
bucket that satisfies the block’s path-invariant.

440

Algorithm 1 flush()

1: path := UniformRandom(0, ..., N − 1)
2: bucket[0, ..., L− 1] := array of buckets from leaf to root
3: B1 := the block in the stash with smallest LCA(path, B.label).
4: for i from 0 to L− 1 do (from leaf to root)
5: if bucket[i] is not full and LCA(path, B.label) ≤ i and B1 has not been added already then
6: Add B1 to bucket[i].

7: for i from L− 1 to 1 do (from root to leaf)
8: B2 := the block in bucket[i] with smallest LCA(path, B2.label).
9: if bucket[i− 1] is not full and LCA(path, B2.label) < i then

10: Move B2 from bucket[i] to bucket[i− 1].

16 18 20 22 24
Security Parameter

10

20

30

40

50

S
ta

sh
S

iz
e

logN=10

logN=14

logN=18

logN=22

Figure 5: scoram: stash size grows linear with secu-
rity parameter. Bucket size Z = 6, number of flushes
α = 4.

Security. Security of the scheme follows as per all other
tree-based ORAMs; the server’s view observes accesses along
random paths.

5. OPTIMIZATIONS
Our optimizations largely fall into two categories: (1) de-

termining the best parameters for a particular SCORAM
configuration (Section 5.1); (2) improving the circuit design
for frequently used logic components (Section 5.2).

In general, ORAM schemes have several decisive parame-
ters including bucket size, stash size (if it uses a stash) and
recursion factor. Depending on the specific eviction algo-
rithms employed, there are additional parameters describing
the eviction process. For example, in our new SCORAM,
we use α to denote the number times to call flush. These
parameters are subtly inter-related. For instance, a larger
bucket size allows for smaller α and smaller stash at the
same security parameter.

5.1 Parameter Optimization
We now systematically explore this parameter space to

determine heuristically good choices for our new SCORAM
scheme.

Methodology. Some of our optimizations rely on simula-
tions to count, for any particular ORAM setup, the number
of ORAM failures (for estimating the security guarantee)
and the total number of encryptions per memory access.
We use simulations because all of the proofs that upper-

bound the failure probabilities are too conservative in their
approximations.

For each ORAM, we first run 16 million ORAM accesses
to warm up the ORAM, such that it enters a steady state,
we then start collecting numbers to determine the security
parameters associated with this setup (including e.g., vari-
ous bucket and stash sizes). Since the time average is equal
to emsemble average for regenerative processes [?], we sim-
ulate each ORAM setup for a single long run of 1 billion
accesses to estimate the security parameter (instead of mul-
tiple runs). This allows us to estimate ORAM parameters
that achieve up to 2−80 security. A similar approach was
suggested by Stefanov et al. [?].

Number of flushes and bucket size. We have run sim-
iluations of our new ORAM that indicate a good choice of
α is 4.

After α is fixed, we consider two strategies to configure
bucket size: 1) a uniform bucket size everywhere; and 2)
varying bucket sizes across levels. For the former, we em-
pirically determine an optimal bucket size of 6. However,
we observe that buckets at the middle and lower part of the
path tend to be more congested. This motivates us to re-
distribute the bucket size across levels. For example, for a
binary tree of 21 levels, we find that increasing the bucket
size by 1 for the first 10 buckets from root and decreasing
the bucket size by 1 for the last 10 bucket at leaf is a bet-
ter distribution than evenly distributing buckets. Assuming
80-bit security, varying the bucket size in this way allows us
to reduce the stash size from 66 to 50, resulting in a circuit
of size of 4,094,832 gates versus 4,562,988 for the version of
scoram reported in Table 1, i.e., roughly a 10% reduction.

Stash size. We plot the stash size versus security param-
eters with different logN in Figure 5. Each point (x, y) on
the curve should be read as “with a stash size of more than
y, ORAM failures were observed 2−x fraction of the time”.
the stash size grows linearly with security parameters, sug-
gesting the failure probability decreases exponentially with
the stash size. Note that unlike the path scoram, the stash
size is super-linear in logN .

Recursion factor. Here we study the choices needed to re-
cursively implement the position-map in all tree-based SCO-
RAM designs. We formulate the choice as an optimization
problem as follows.

As before, let N denote the number of blocks (and thus
the size of the position map), D denote the number of bit per
blocks, and for our given scheme, let f(N,D) = O(D logeN)ω(1)
denote the the circuit size for one ORAM access excluding
the cost of the position map lookup. Let LS(N,D) denote

441

Approved for Public Release; Distribution Unlimited.

χ ` Total # gates
N = 220 N = 229

2 9 6,657,629 20,363,468
4 5 4,562,988 13,619,451
8 3 4,657,921 13,382,510
16 2 5,518,948 15,657,910
32 1 6,933,117 21,455,341
64 1 11,120,697 34,165,313

Table 2: How to pick χ and the recursion level This ta-
ble shows how we concretely optimize recursion parameters
needed to implement the position maps in the SCORAM. χ
describes how many addresses are packed into each block,
and ` describes the number of recursive steps before we use
the linear-scan ORAM as the base case.

the circuit size of the linear scan ORAM.
In our top-level ORAM, we have D0 = 32. When imple-

menting the position map recursively with another ORAM,
we must select the number of labels, χ, to pack into a block
and the number of times, `, to recurse before finally us-
ing the linear scan ORAM as the base case. Note, the
ORAM for the ith recursive level has Ni = N

χi blocks of

size Di = χ logNi−1. Thus, the total cost of the SCORAM
with recursion is

∑̀

i=0

f(Ni, Di) + LS(N`+1, D`+1)

For example, when N = 220, χ = 8 and ` = 3, we have
total cost: f(220, 32)+f(217, 160)+f(214, 136)+f(211, 112)+
LS(28, 88). Since we can empirically determine f for any
parameter setting, we can thus minimize the total cost. In
our case, we limit χ to a power of 2 and use the same χ
at each recursive level. See Table 2 for the results of this
optimization. When N = 220, we use χ = 4 and ` = 5, and
when N = 229, we use χ = 8 and ` = 3.

5.2 Backend-Independent Optimizations
Reducing gates. A highly frequently used logic is to de-
termine if a block is dummy. We add a single bit field is-
Dummy to each block indicating wether the block is dummy.
This simple trick reduces the circuit size from logN AND
gates to 1 AND gate. In addition, an important side benefit
is that it enables efficient oblivious removal of a block from
the bucket. We only need to set the isDummy field instead
of resetting all bits of a block.

5.3 Backend-Dependent Optimizations
Fewer non-free gates Some secure computation protocols
such as the garbled circuit and the GMW protocol support
almost-free XOR gates. We make several circuit level opti-
mizations especially exploiting this opportunity.

A common operation in some Eviction algorithms (e.g.,
clp scoram, scoram) is, given a bucket B of Z blocks
b1, . . . , bZ}, to find the block b∗ that can be pushed deep-
est along the path P without violating the path invariant.
Intuitively, we can first calculate LCA(bi.label, P) for every
i; then compute b∗ whose label is max1≤i≤Z(bi). Since each
label has logN bits, counting the number of leading zeros for
every block requires `+` log ` AND gates and computing the

maximum for all Z blocks requires (Z − 1) log ` AND gates.
Therefore, it uses a total of Z(`+` log `)+(Z−1) log ` gates.

In our implementation, we use a circuit of size (2Z − 1)L
to compute exactly this function. The idea is to (1) use a
linear scan to reset every bit of the label except the leading
’1’ bit (which costs a total of Z` gates per bucket); (2) then
use Z−1 comparison circuit to find the minimal label, which
belongs to the bucket to be flushed.

6. PERFORMANCE EVALUATION

6.1 Methodology and Metric
Our evaluation focuses on the following types of metrics:
1. Cryptographic backend independent metrics, such as

gate count. This characterizes the performance of a
SCORAM in general, relatively independent of the
cryptographic backends.

2. Cryptographic backend dependent metrics, such as the
number of encryptions, number of non-free gates, and
bandwidth. These metrics characterize the performance
of an ORAM scheme with a semi-honest Garbled Cir-
cuit backend in a manner that is independent of the
specific hardware configuration or implementation ar-
tifacts.

3. Implementation and machine dependent metrics, such
as runtime and breakdown of runtime. We will de-
scribe our specific hardware configuration and the spe-
cific Garbled Circuit implementation as the context of
our results. We also discuss the interpretation of these
results and project the performance had the experi-
ments been run on a different hardware configuration
or with a more optimized Garbled Circuit implemen-
tation.

For all ORAMs plotted, each payload data is chosen to
be 32 bits. We set both the computational and statistical
security parameters to be 80 bits.

6.2 Comparing ORAMs for secure computa-
tion

We reevaluate the state-of-the-art ORAM schemes over
secure computation, and compare their performance with
our new SCORAM scoram. The metrics we considered
include total gate count (Figure 6a), non-free gate count
(Figure 6b), number of AES encryptions (Figure 6c), and
input size of circuit (Figure 6d).

Table 3 summarizes the margin by which our SCORAM
outperforms existing schemes. In particular, we show that
across all metrics, we achieve 7.6× to 9.8× performance im-
provements comparing to the respective second best candi-
dates.

As mentioned earlier, even though the path scoram is
asymptotically better than Binary Tree oram, for practical
ranges of N , Binary Tree oram outperforms path scoram
due to lower constants in the asymptotic bound. This is
shown in Figure 6.

The most popular ORAM scheme used previously is Bi-
nary Tree oram. Our newest scheme is 7 times smaller and
requires 27x fewer inputs. Note that each input bit involves
an oblivious transfer, which, even with OT extension, incurs
2 encryptions.

For the sake of reproducibility, we report all parameter
settings that we used to run our experiments in Table 5 in
the Appendix.

442

Approved for Public Release; Distribution Unlimited.

10 15 20 25 30
log(Number of Blocks in ORAM)

0.0

0.5

1.0

1.5

2.0

S
iz

e
of

C
ir

cu
it

(#
G

at
es

)

×108

New SCORAM

CLP

PathSC

Path

Tree

Trivial

(a) Total gate count.

10 15 20 25 30
log(Number of Blocks in ORAM)

0

1

2

3

4

5

6

7

N
u

m
b

er
of

N
on

-F
re

e
G

at
es

×107

New SCORAM

CLP

PathSC

Path

Tree

Trivial

(b) Number of AND gates.

10 15 20 25 30
log(Number of Blocks in ORAM)

0.0

0.5

1.0

1.5

2.0

2.5

N
u

m
b

er
of

E
n

cr
y
p

ti
on

s

×108

New SCORAM

CLP

PathSC

Path

Tree

Trivial

(c) Number of encryptions.

10 15 20 25 30
log(Number of Blocks in ORAM)

0

1

2

3

4

5

6

7

S
iz

e
of

In
p

u
t

of
C

ir
cu

it
(B

it
s)

×106

New SCORAM

CLP

PathSC

Path

Tree

Trivial

(d) Number of Input bits.

Figure 6: Comparison of various ORAMs. Payload bitlength = 32 bits, security parameter = 80.

6.3 Performance Profiling for SCORAM
We further investigate the performance breakdown of sco-

ram scheme. Specifically, the cost can be broken down into
I/O overhead and computation overhead. I/O overhead can
be further broken down into transmission time (i.e, total #
bytes transferred/network bandwidth), and synchronization
overhead (i.e., all queuing delays in the JVM, OS, and on
the network stack).

Our machine/implementation-dependent measurements are
taken on a single server (Intel Xeon 2.13G Hz) running the
circuit generator and evaluator as two independent processes
(communicating through Java Socket). The memory usage
ranges from 4–80 GB for both processes depending on the
data size.

Interpreting the measurements. First, our implemen-
tation does not currently exploit the AES-NI instructions to
speed-up garbling. We expect a noticeable speedup for the
computation time when hardware AES is implemented.

Second, the Garbled Circuit backend we used is a Java-
based implementation. Therefore, our timing measurements
are subject to the artifacts of the Java-based implemen-
tation. There are two main sources of artifacts, memory
garbage collector and I/O synchronization. In Figure 7, we
note that a substantial portion of the time is due to I/O.
Since the experiments is run on the same machine where
network bandwidth is not a bottleneck, we infer majority of
the I/O time we recorded are due to I/O synchronization.

10 12 14 16 18
log(Number of blocks)

0

10

20

30

40

50

60

A
m

ou
n
t

of
D

at
a

T
ra

n
sf

er
re

d
/

M
B

Security Parameter = 60

Security Parameter = 80

Security Parameter = 128

Figure 8: The amount of data transferred per access for sco-
ram. Payload bitlength is 32 bit, 80-bit security parameter.

Note that for the circuit generator, we observe the computa-
tion time spent on OT and garbling is roughly the same. On
the circuit evaluator side, the portion of I/O cost is larger
because the evaluator indeed has less computational work
to do (thanks to the garbled row reduction technique) while
being stuck more often waiting for the generator.

Network transmission. Figure 8 plots the bandwidth

443

Approved for Public Release; Distribution Unlimited.

Metric Second best
Performance gain of scoram
N = 220 N = 229

Gate count clp oram 6.7X 9.4X

Non-Free Gates Binary Tree oram 7.6X 7.6X

Number of Encryptions
clp oram 7.2X −
Binary Tree oram − 9.8X

Table 3: Performance comparison of scoram over the second best candidates. (Data payload: 32 bits. Security
parameter: = 80). Considering the number of encryptions, the second best is the clp oram when N = 220, and the Binary
Tree oram when N = 229.

10 12 14 16 18 20 22 24 26
log(Number of Blocks in ORAM)

0

20

40

60

80

100

T
im

e
/

se
co

n
d

s

Computation for Garbling

Computation for Oblivious Transfer

I/O for Garbling

I/O for Oblivious Transfer

(a) Breakdown for the Garbled Circuit generator.

10 12 14 16 18 20 22 24 26
log(Number of Blocks in ORAM)

0

50

100

150

T
im

e
/

se
co

n
d

s

Computation for Garbling

Computation for Oblivious Transfer

I/O for Garbling

I/O for Oblivious Transfer

(b) Breakdown for the Garbled Circuit evaluator.

Figure 7: Cost breakdown of SCORAM. (Data payload: 32-bit, Security parameter: 80-bit)

consumption for our new SCORAM scheme, under differ-
ent security parameters. Note that the bandwidth overhead
is proportional to the total number of non-free gates in our
garbled circuit system. The non-free-gate counts (Figure 6b)
correlates with growth in the bandwidth.

Comparison with other ORAM implementations over
secure computation We are aware of two other SCORAM
implementations. Gordon et al. [?] report on an ORAM with
N = 220 and D = 512. The paper does not clearly report
the bucket size they use, but we assume the bucket size is
40 based on our interpretation of their paper. Their ORAM
requires 11.9M gates and takes approximately 50 seconds for
one operation. In contrast, our best implementation for their
parameters requires 3,743,213 total gates, and our imple-
mentation at significantly higher security parameters runs
in under 30 seconds.

The second ORAM implementation over secure compu-
tation is by Marcel Keller and Peter Scholl [?]. Their im-
plementation was based on the SPDZ protocol, running in
the preprocessing model (assuming sufficient CPU/Memory
resource for precomputation). Their flagship scheme was
based on Path ORAM, with heuristic modifications (so the
security is also based on simulation). They reported their
protocol can securely compute an ORAM access in under
250 ms (not counting the expensive pre-computation) over
a dataset of size 1 million (with 20-bit security). However,
besides the differences in the crypto-backends, hardware,
programming systems and execution model, many other im-
portant context (e.g., data payload size, gate counts, etc.)
remain to be clarified for a fair comparison. Complemen-
tary to their work, we provide implementations for 5 quite

different ORAMs and it is possible to run the SPDZ crypto
backend over our SCORAM implementations.

We also notice that Liu et al. [?] study RAM-based secure
computation. However, their experiments were based on an
program that only produces simulated performance numbers
rather than a functional SCORAM.

Execution of the Garbled Circuit in the Honest-but-
Curious model We also executed our SCORAM on a gar-
bled circuit platform and measured the time spent on the
different phases of the secure computation protocol. Fig-
ure 7b and Figure 7a shows the time for client and server
respectively. Here we split the work by task into Garbling
and Oblivious Transfer, which are further divided into Com-
putation time and I/O time. As the plot indicates, if we
have perfect communication channel, the overall time will
be dominated by computation time, which corresponds to
the white part of the bar. For N = 220, each SCORAM ac-
cess requires roughly 30 seconds. While this is several times
faster (at higher security parameters) than the best previ-
ous results, it indicates that secure computation in the RAM
still incurs several orders of magnitude slowdown over plain
implementations, and thus more research is needed.

7. CONCLUSION
As the key enabling primitive of RAM-based secure com-

putation, the construction of efficient SCORAM remains a
challenge. We have made the first step towards building
practical SCORAMs by performing a thorough study of the
performance of 5 state-of-art SCORAM constructions based
on several metrics closely related to common instantiation

444

Approved for Public Release; Distribution Unlimited.

of secure computation protocols. We look forward to releas-
ing our code to benefit the academic research in the related
fields.

8. REFERENCES
[1] M. A. H. Aseem Rastogi and M. Hicks. Wysteria: A

programming language for generic, mixed-mode
multiparty computations. IEEE S & P, 2014.

[2] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP:
A System for Secure Multi-party Computation. In
ACM Conference on Computer and Communications
Security, 2008.

[3] D. Boneh, D. Mazieres, and R. A. Popa. Remote
oblivious storage: Making oblivious RAM practical.
http://dspace.mit.edu/bitstream/handle/1721.1/

62006/MIT-CSAIL-TR-2011-018.pdf, 2011.

[4] K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure

oram with Õ(log2 n) overhead. arXiv preprint
arXiv:1307.3699, 2013.

[5] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly
secure oblivious RAM without random oracles. In
TCC, 2011.

[6] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell.
SCAPI: The secure computation application
programming interface. Cryptology ePrint Archive,
Report 2012/629, 2012.

[7] C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure
processor architecture for encrypted computation on
untrusted programs. In STC, 2012.

[8] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla,
M. Raykova, and D. Wichs. Optimizing ORAM and
using it efficiently for secure computation. In Privacy
Enhancing Technologies Symposium (PETS), 2013.

[9] O. Goldreich. Towards a theory of software protection
and simulation by oblivious RAMs. In ACM
Symposium on Theory of Computing (STOC), 1987.

[10] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. J. ACM, 1996.

[11] M. T. Goodrich and M. Mitzenmacher.
Privacy-preserving access of outsourced data via
oblivious RAM simulation. In ICALP, 2011.

[12] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Oblivious RAM simulation with
efficient worst-case access overhead. In CCSW, 2011.

[13] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Privacy-preserving group data
access via stateless oblivious RAM simulation. In
SODA, 2012.

[14] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell,
T. Malkin, M. Raykova, and Y. Vahlis. Secure
two-party computation in sublinear (amortized) time.
In ACM conference on Computer and
Communications Security, pages 513–524, 2012.

[15] M. Harchol-Balter. Performance Modeling and Design
of Computer Systems: Queueing Theory in Action.
Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge
University Press, 2013.

[16] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
Secure Two-Party Computation Using Garbled
Circuits. In USENIX Security Symposium, 2011.

[17] M. Keller and P. Scholl. Efficient, oblivious data
structures for mpc. Cryptology ePrint Archive, Report
2014/137, 2014. http://eprint.iacr.org/.

[18] B. Kreuter, B. Mood, A. Shelat, and K. Butler. PCF:
A Portable Circuit Format for Scalable Two-Party
Secure Computation. In USENIX Security
Symposium, 2013.

[19] B. Kreuter, A. Shelat, and C. hao Shen. Billion-Gate
Secure Computation with Malicious Adversaries. In
USENIX Security Symposium, 2012.

[20] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(in)security of hash-based oblivious RAM and a new
balancing scheme. In SODA, 2012.

[21] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks.
Automating efficient ram-model secure computation.
IEEE S & P, 2014.

[22] S. Lu and R. Ostrovsky. Distributed oblivious ram for
secure two-party computation. In Proceedings of the
10th Theory of Cryptography Conference on Theory of
Cryptography, TCC’13, pages 377–396, Berlin,
Heidelberg, 2013. Springer-Verlag.

[23] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song. Phantom:
Practical oblivious computation in a secure processor.
In CCS, 2013.

[24] P. MacKenzie, A. Oprea, and M. Reiter. Automatic
Generation of Two-party Computations. In ACM
Conference on Computer and Communications
Security, 2003.

[25] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay: A secure two-party computation system. In
USENIX Security, 2004.

[26] R. Ostrovsky. Efficient computation on oblivious
RAMs. In ACM Symposium on Theory of Computing
(STOC), 1990.

[27] R. Ostrovsky and V. Shoup. Private information
storage (extended abstract). In ACM Symposium on
Theory of Computing (STOC), 1997.

[28] B. Pinkas and T. Reinman. Oblivious RAM revisited.
In CRYPTO, 2010.

[29] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li.
Oblivious RAM with O((logN)3) worst-case cost. In
ASIACRYPT, 2011.

[30] E. Stefanov and E. Shi. Fastprp: Fast pseudo-random
permutations for small domains. Cryptology ePrint
Archive, 2012. http://eprint.iacr.org/.

[31] E. Stefanov and E. Shi. Multi-cloud oblivious storage.
In ACM Conference on Computer and
Communications Security (CCS), 2013.

[32] E. Stefanov and E. Shi. Oblivistore: High performance
oblivious cloud storage. In IEEE Symposium on
Security and Privacy (S & P), 2013.

[33] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an extremely
simple oblivious ram protocol. In In CCS, 2013.

[34] X. Wang, K. Nayak, C. Liu, E. Shi, E. Stefanov, and
Y. Huang. Oblivious data structures.
http://eprint.iacr.org/2014/185.pdf.

[35] P. Williams and R. Sion. Usable PIR. In Network and
Distributed System Security Symposium (NDSS), 2008.

[36] P. Williams and R. Sion. Round-optimal access

445

Approved for Public Release; Distribution Unlimited.

privacy on outsourced storage. In ACM Conference on
Computer and Communications Security (CCS), 2012.

[37] P. Williams, R. Sion, and B. Carbunar. Building
castles out of mud: Practical access pattern privacy
and correctness on untrusted storage. In CCS, 2008.

APPENDIX
A. NOTATIONS

Table 4: Some globally used notations.

Variable Meaning

N number of blocks in ORAM
D payload bit-length
L number of levels in binary tree
Z capacity of each bucket

label leaf label of a block
LCA(p1, p2) lowest common ancestor of paths p1

and p2

B. A LOGARITHMIC DEPTH CIRCUIT
We describe how to construct a low-depth circuit for path

scoram. The main steps of the algorithm are:
1. Setting temporary offset fields. As described be-

fore, we first sort the array A obliviously according to
the field bucket. For each entry A[i], if it is a dummy
block, set its field A[i].offset := ⊥. Otherwise, for
1 ≤ i ≤ LZ, set A[i].offset := Z · A[i].bucket + 1; recall
that our final goal is to rearrange blocks such that the
entry A[i] should go to bucket b i−1

Z
c, and so the offset

value is the smallest index at which the block can re-
side in A. For LZ + 1 ≤ i ≤ LZ + stsize, the block
A[i] cannot be written back in the path P , and we set
A[i].offset := st. Setting the offset fields takes circuit
of size O(S) and depth O(1). For sorting the key val-
ues, we use the natural order for positive integers Z+,
and use the convention Z+ < st < ⊥. Observe that for
stsize +LZ + 1 ≤ i ≤ stsize + 2LZ, A[i] must contain a
dummy block.

2. Determining final offset of real blocks. The blocks
that are going to be written back in the path P can
come from only A[1..LZ], which is sorted according to
the field offset, that currently indicates the lowest index
at which the block can reside in A. The purpose of this
step is to update the offset field to the final position
of each real block within A before being written back
to the path P . This can be achieved by linear scan as
described in Figure 4 in Section 3.1. However, a naive
implementation will incur a circuit depth of Θ(LZ).
We shall describe a more careful implementation using
divide and conquer with circuit depth of O(logLZ).

A naive way to implement linear scan will incur a circuit
depth of Θ(LZ) = Θ(logN). We shall describe a more care-
ful implementation such that the circuit depth is dominated
by that for oblivious sorting. Recall the input of the prob-
lem is an array A[1 . . .m] that is sorted according to the
offset field, which indicates the smallest integer that can be
received by the entry. The problem is equivalent to increas-
ing the offset field of each entry as little as possible such
that the array A is still sorted according to offset and no
two entries have the same offset value.

The high level idea is to use divide and conquer. The
standard procedure is to first solve the problem recursively
on A[1..j] and A[j+1..m], where j = bm

2
c. Observe that the

offset fields of entries in A[1..j] do not have to be changed,
and in order to achieve O(1) circuit depth, we need to update

446

Approved for Public Release; Distribution Unlimited.

the entries A[j + 1..m] in parallel.
Observe that at this point, the next available integer for

A[j + 1] is p := A[j].offset + 1. Hence, r := max{p − A[j +
1].offset, 0} is the amount that we need to increase A[j +
1].offset. The issue is whether we are able to deduce the
increment readily for entries A[i], for all j + 1 ≤ i ≤ m.

For such an i, observe that ri := (A[i].offset − A[j +
1].offset) − (i − j − 1) is the number of integers in [A[j +
1].offset..A[i].offset] that have not been assigned to any en-
try. Hence, the amount we need to increase A[i].offset is
max{r − ri, 0}. Hence, this step can be done in parallel for
all j + 1 ≤ i ≤ m. The whole procedure is achieved by
calling UpdateOffset(A[1..m]), whose pseudocode is given in
Algorithm 2. A standard analysis shows that this leads to a
circuit of size O(m logm) and depth O(logm).

Algorithm 2 UpdateOffset(A[a..b]) using divide and con-
quer

1: if a=b then return;

2: j := ba+b
2
c;

3: UpdateOffset(A[a..j]);
4: UpdateOffset(A[j + 1..b]);
5: r := max{A[j].offset + 1−A[j + 1].offset, 0};
6: s := A[j + 1].offset;
7: for i from j + 1 to b in parallel do
8: A[i].offset := A[i].offset+

max{r − (A[i].offset− s) + (i− j − 1), 0};
9: return;

C. A DESCRIPTION OF ALL EXPERIMENTS
In this section, we describe every ORAM experiment that

we report in this paper in order to facilitate reproducible
experiments. The details is summarized in Figure 5

ORAM design N Other Parameters Gates Inputs
Z Stash, Evict, ` (M) (M)

Binary Tree oram 220 120 N/A,2, 4 38.5 7.0
229 120 N/A,2, 8 127.7 24.2

clp oram 220 4 120,2, 4 29.4 0.7
229 4 144,2, 8 121.8 2.1

naive path oram 220 4 89,1, 4 87.3 0.1
229 4 89,1, 8 278.1 0.3

path scoram 220 4 89,1, 4 37.2 0.1
229 4 89,1, 8 111.7 0.3

scoram 220 6 88,4, 4 4.4 0.3
229 6 141,4,8 13.0 0.9

Table 5: A listing of all parameters used in our ex-
periments. The parameters are set to achieve statistical
security of 2−80. Gates and Inputs are obtained with pay-
load bitlength = 32bits; Cutoff Threashold is set at 210

447

Approved for Public Release; Distribution Unlimited.

Using SMT Solvers to Automate Design Tasks
for Encryption and Signature Schemes∗

Joseph A. Akinyele
Johns Hopkins University

Baltimore, MD, USA
akinyelj@cs.jhu.edu

Matthew Green
Johns Hopkins University

Baltimore, MD, USA
mgreen@cs.jhu.edu

Susan Hohenberger
Johns Hopkins University

Baltimore, MD, USA
susan@cs.jhu.edu

ABSTRACT
Cryptographic design tasks are primarily performed by hand
today. Shifting more of this burden to computers could make
the design process faster, more accurate and less expensive.
In this work, we investigate tools for programmatically alter-
ing existing cryptographic constructions to reflect particular
design goals. Our techniques enhance both security and ef-
ficiency with the assistance of advanced tools including Sat-
isfiability Modulo Theories (SMT) solvers.

Specifically, we propose two complementary tools, Au-
toGroup and AutoStrong. AutoGroup converts a pairing-
based encryption or signature scheme written in (simple)
symmetric group notation into a specific instantiation in the
more efficient, asymmetric setting. Some existing symmet-
ric schemes have hundreds of possible asymmetric transla-
tions, and this tool allows the user to optimize the construc-
tion according to a variety of metrics, such as ciphertext
size, key size or computation time. The AutoStrong tool
focuses on the security of digital signature schemes by auto-
matically converting an existentially unforgeable signature
scheme into a strongly unforgeable one. The main technical
challenge here is to automate the “partitioned” check, which
allows a highly-efficient transformation.

These tools integrate with and complement the Auto-
Batch tool (ACM CCS 2012), but also push forward on the
complexity of the automation tasks by harnessing the power
of SMT solvers. Our experiments demonstrate that the two
design tasks studied can be performed automatically in a
matter of seconds.

1. INTRODUCTION
Cryptographic design is challenging, time consuming and

mostly performed by hand. A natural question to ask is:
to what extent can computers ease this burden? Which

∗This work was partially supported by DARPA and the Air
Force Research Laboratory (AFRL) under contract FA8750-
11-2-0211. This document is a pre-print for DARPA and not
for public distribution.

common design tasks can computers execute faster, more
accurately or less expensively?

In particular, this work investigates tools for programmat-
ically altering existing cryptographic constructions in order
to enhance efficiency or security design goals. For instance,
digital signatures, which are critical for authenticating data
in a variety of settings, ranging from sensor networks to soft-
ware updates, come in many possible variations based on ef-
ficiency, functionality or security. Unfortunately, it is often
infeasible or tedious for humans to document each possible
optimal variation for each application. It would be enor-
mously valuable if there could be a small number of simple
ways to present a scheme – as simple as possible to avoid
human-error in the design and/or verification process – and
then computers could securely provide any variation that
may be required by practitioners.

A simple, motivating example (which we explore in this
work) is the design of pairing-based signature schemes, which
are often presented in a simple “symmetric” group setting
that aids in exposition, but does not map to the specific
pairing-based groups that maximize efficiency. Addressing
this disconnect is ripe for an automated tool.

Summary of Our Contributions In this work, we ex-
plore two novel types of design problems for pairing-based
cryptographic schemes. The first tool (AutoGroup) deals
with efficiency, while the second (AutoStrong) deals with
security. We illustrate how they interact in Figure 1. The
tools take a Scheme Description Language (SDL) represen-
tation of a scheme (and optionally some user optimization
constraints) and output an SDL representation of the altered
scheme. This SDL output can be run through another tool
or a Code Generator to produce C++ or Python software.

A contribution of this work is that we integrated our tools
with the publicly-available source code for AutoBatch [3,
2] (ACM CCS 2012), a tool that automatically identifies a
batch verification algorithm for a given signature scheme,
therein weaving together a larger automation system. For
instance, a practitioner could take any symmetric-pairing
signature scheme from the literature, use AutoGroup to re-
duce its bandwidth in the asymmetric setting, use Auto-
Batch to reduce its verification time, and then automatically
obtain a C++ implementation of the optimized construc-
tion. Our work appears unique in that we apply advanced
tools, such as SMT solvers and Mathematica, to perform
complex design tasks related to pairing-based schemes.

Automated Task 1: Optimize Efficiency of an En-
cryption or Signature Scheme via User Constraints.

1

448

Approved for Public Release; Distribution Unlimited.

Start: SDL of
Scheme S

SDL of
Scheme S'

Apply more
transformations?

AutoGroup
(sym-to-asym groups)

AutoStrong
(increase security)

AutoBatch
(batch verification)

C++ or Python

Code Generator

yes

no

Figure 1: A high-level presentation of the new automated tools, AutoGroup and AutoStrong. They take as
input a Scheme Description Language (SDL) representation of a cryptographic scheme and output an SDL
representation of a transformation of the scheme, which can possibly be further transformed by another tool.
These tools are compatible with the existing AutoBatch tool and Code Generator (shaded). An SDL input
to the Code Generator produces a software implementation of the scheme in either C++ or Python.

Pairings are often studied because they can realize new func-
tionalities, e.g., [18, 16], or offer low-bandwidth solutions,
e.g., [20, 16]. Pairing (a.k.a., bilinear) groups consist of
three groups G1,G2,GT with an efficient bilinear map e :
G1 ×G2 → GT . Many protocols are presented in a symmet-
ric setting where G1 = G2 (or equivalently, there exists an
efficient isomorphism from G1 to G2 or vice versa).

While symmetric groups simplify the description of new
cryptographic schemes, the corresponding groups are rarely
the most efficient setting for implementation [31]. The state
of the art is to use asymmetric groups where G1 6= G2 and
no efficient isomorphism exists between the two. See for
instance the work of Ramanna, Chatterjee and Sarkar [50]
(PKC 2012) which translates the dual system encryption
scheme of Waters [57] from the symmetric to a handful of
asymmetric settings.

Such conversions currently require manual analysis (of all
steps) – made difficult by the fact that certain operations
such as group hash functions only operate in a single group.
Moreover, in some cases, there are hundreds of possible sym-
metric to asymmetric translations, making it tedious to iden-
tify the optimal translation for a particular application.

We propose a tool called AutoGroup that automatically
provides a“basic”translation from symmetric to asymmetric
groups.1 It employs an SMT solver to identify valid group
assignments for all group elements and also accepts user con-
straints to optimize the efficiency of the scheme according
to a variety of metrics, including signature/ciphertext size,
signing/encryption time, and public parameter size. The
tool is able to enumerate the full set of possible solutions
(which may run to the hundreds), and can rapidly identify
the most efficient solution.

Automated Task 2: Strengthen the Security of a
Digital Signature Scheme. Most signature schemes are
presented under the classic, existential unforgeability defini-
tion [34], wherein an adversary cannot produce a signature
on a “new” message. However, strong unforgeability guar-
antees more – that the adversary cannot produce a “new”

1By ”basic”, we mean that it translates the scheme as writ-
ten into the asymmetric setting, with minor optimizations
performed, but does not attempt a re-imagining of the con-
struction based on a stronger asymmetric complexity as-
sumption. While the latter is sometimes possible, e.g., [50],
it may not be required in some applications and the novel se-
curity analysis required places it beyond the current ability
of our automation tools. See Section 3.3 for more.

signature even on a previously signed message. Strongly-
unforgeable signatures are often used as a building block in
signcryption [6], chosen-ciphertext secure encryption [27, 24]
and group signatures [7, 17].

There are a number of general transformations from clas-
sic to strong security [54, 36, 53, 14, 55, 15], but also a
highly-efficient transformation due to Boneh, Shen and Wa-
ters [21] that only applies to “partitioned” schemes. We pro-
pose a tool called AutoStrong that automatically decides
whether a scheme is “partitioned” and then applies BSW
if it is and a general transformation otherwise. The parti-
tioned test is non-trivial, and our tool harnesses the power of
both an SMT solver and Mathematica to make this determi-
nation. We are careful to err only on false negatives (which
impact efficiency), but not false positives (which could com-
promise security.) Earlier works [14, 15] claimed that there
were “very few” examples of partitioned schemes; however,
our tool proved this was not the case by identifying valid
partitions for most schemes we tested.

1.1 Related Work
Many exciting works have studied how to automate var-

ious cryptographic tasks. Automation has been introduced
into the design process for various security protocols [39, 52,
49, 40, 37], optimizations to software implementations in-
volving elliptic-curves [10] and bilinear-map functions [48],
the batch verification of digital signature schemes [3], se-
cure two-party computation [41, 42, 35], and zero-knowledge
proofs [22, 8, 9, 5, 43].

Our current work is most closely related to the AutoBatch
tool [3]. We borrow our tool-naming system from their pa-
per and designed our tools so that they can integrate with
the publicly-available source code of AutoBatch [2] to form a
larger, more comprehensive solution. This work is different
from AutoBatch in that it attacks new, more complicated
design tasks and integrates external SMT solvers and Math-
ematica to find its solutions.

Prior work on automating the writing and verification of
cryptographic proofs, such as the EasyCrypt work of Barthe
et al. [13], are complimentary to but distinct from our effort.
Their goal was automating the construction and verification
of (game-based) cryptographic proofs. Our goal is automat-
ing the construction of cryptographic schemes. A system
that combines both to automate the design of a scheme and
then automate its security analysis would be optimal.

2. TOOLS USED

2

449

Approved for Public Release; Distribution Unlimited.

Our automations make use of three external tools. First,
Z3 [25, 46] is a freely-available, state-of-the-art and highly
efficient Satisfiability Modulo Theories (SMT) solver pro-
duced by Microsoft Research. SMT is a generalization of
boolean satisfiability (SAT) solving, which determines whether
assignments exist for boolean variables in a given logical
formula that evaluates the formula to true. SMT solvers
builds on SAT to support many rich first-order theories such
as equality reasoning, arithmetic, and arrays. In practice,
SMT solvers have been used to solve a number of constraint-
satisfaction problems and are receiving increased attention
in a applications such as software verification, program anal-
ysis, and testing. Z3 in particular has been used as a core
building block in API design tools such as Spec#/Boogie [11,
26] and in verifying C compilers such as VCC.

We leverage Z3 v4.3.1 to perform reasoning over state-
ments involving arithmetic, quantifiers, and uninterpreted
functions. We use Z3’s theories for equality reasoning com-
bined with the decision procedures for linear arithmetic ex-
pressions and elimination of universal quantifiers (e.g., ∀x)
over linear arithmetic. Z3 includes support for uninterpreted
(or free) functions which allow any interpretation consistent
with the constraints over free functions and variables.

Second, we utilize the development platform provided by
Wolfram Research’s Mathematica [59] (version 9), which al-
lows us to simplify equations for several of our analytical
techniques. We leverage Mathematica in our automation to
validate that given cryptographic algorithms have certain
mathematical properties. Finally, we utilize some of the
publicly-available source code of the AutoBatch tool [2], in-
cluding its Scheme Description Language (SDL) parser and
its Code Generator, which translates an SDL representation
to C++ or Python.

3. AUTOGROUP
In this section, we present and evaluate a tool, called Au-

toGroup, for automatically altering a cryptographic scheme’s
algebraic setting to optimize for efficiency.

3.1 Background on Pairing Groups
Let G1,G2,GT be algebraic groups of prime order p.2

We say that e : G1 × G2 → GT is a pairing (a.k.a., bi-
linear map) if it is: efficiently-computable, (bilinear) for all
g ∈ G1, h ∈ G2 and a, b ← Zp, e(ga, hb) = e(g, h)ab; and
(non-degenerate) if g generates G1 and h generates G2, then
e(g, h) 6= 1. This is called the asymmetric setting. A spe-
cialized case is the symmetric setting, where G1 = G2.3

In practice, all candidate constructions for pairing groups
are constructed such that G1 and G2 are groups of points on
some elliptic curve E, and GT is a subgroup of a multiplica-
tive group over a related finite field. The group of points
on E defined over Fp is written as E(Fp). Usually G1 is a
subgroup of E(Fp), G2 is a subgroup of E(Fpk) where k is
the embedding degree, and GT is a subgroup of F∗pk . In the

symmetric case G1 = G2 is usually a subgroup of E(Fp).
The challenge in selecting pairing groups is to identify

parameters such that the size of GT provides acceptable se-

2Pairing groups may also have composite order, but we will
be focusing on the more efficient prime order setting here.
3An alternative instantiation of the symmetric setting has
G1 6= G2 but admits an efficiently-computable isomorphism
between the groups.

curity against the MOV attack [44]. Hence the size of pk

must be comparable to that of an RSA modulus to provide
the same level of security – hence elements of Fpk must be of
size approximately 3,072 bits to provide security at the 128-
bit symmetric equivalent level. The group order q must also
be large enough to resist the Pollard-ρ attack on discrete
logarithms, which means in this example q ≥ 256.

Two common candidates for implementing pairing-based
constructions are supersingular curves [30, 47] in which the
embedding degree k is ≤ 6 and typically smaller (an example
is |p| = 1536 for the 128-bit security level at k = 2), or ordi-
nary curves such as MNT or Barreto-Naehrig (BN) [12]. In
BN curves in particular, the embedding degree k = 12, thus
|p| = |q| can be as small as 256 bits at the 128-bit security
level, with a corresponding speedup in field operations.

A challenge is that the recommended BN subgroups do
not possess an efficiently-computable isomorphism from G1

to G2 or vice versa, which necessitates re-design of some
symmetric cryptographic protocols. A related issue is that
BN curves permit efficient hashing only into the group G1.
This places strict restrictions on the set of valid group as-
signments we can use.

3.2 How AutoGroup Works
AutoGroup is a new tool for automatically translating

a pairing-based encryption or signature scheme from the
symmetric-pairing setting to the asymmetric-pairing setting.
At a high-level, AutoGroup takes as input a representa-
tion of a cryptographic protocol (e.g., signature or encryp-
tion scheme) written in a Domain-Specific Language called
Scheme Description Language (SDL), along with a descrip-
tion of the optimizations desired by the user. These opti-
mizations may describe a variety of factors, e.g., requests to
minimize computational cost, key size, or ciphertext/signature
size. The tool outputs a new SDL of the scheme, that rep-
resents the optimal assignment of groups for the given con-
straints. The assignment of groups is non-trivial, as many
schemes are additionally constrained by features of common
asymmetric bilinear groups settings, most notably, restric-
tions on which groups admit efficient hashing. At a high
level, AutoGroup works by reducing this constrained group
assignment problem to a boolean satisfiability problem, ap-
plying an SMT solver, and processing the results. We next
describe the steps of AutoGroup, as illustrated in Figure 2.

1. Extract Generator Representation. The first stage
of the AutoGroup process involves parsing SDL to identify
all base generators of G that are used in the scheme. For
each generator g ∈ G, AutoGroup creates a pair of gener-
ators g1 ∈ G1 and g2 ∈ G2. This causes an increase in
the parameter size of the scheme, something that we must
address in later steps.

We assume the Parser knows the basic structure of the
scheme, and can identify the algorithm responsible for pa-
rameter generation. This allows us to parse the algorithm
to observe which generators that are created. When Auto-
Group detects the first generator, it marks this as the “base”
generator of G and splits g into a pair g1 ∈ G1 and g2 ∈ G2.
Every subsequent group element sampled by the scheme is
defined in terms of the base generators. For example, if the
setup algorithm next calls for “choosing a random generator
h in G”, then AutoGroup will select a random t′ ∈ Zp and

compute new elements h1 = gt
′

1 and h2 = gt
′

2 .

3

450

Approved for Public Release; Distribution Unlimited.

Input: SDL of
Scheme S

SDL
Parser

Extract
Generators

Output: SDL of
Scheme S'

Program Slice
for each pairing input

Encode Pairings
as Formula

Input: User
Optimization
Constraints

AutoGroup

Run Z3
1. find all solutions

2. reduce iteratively by constraint priorities
Efficiency Pass
optimize solution

Figure 2: A high-level presentation of the tool AutoGroup, which uses external tools Z3 and SDL Parser.

2. Traceback Inputs to the Pairing Function. Re-
call that the pairing function e(A,B) takes two inputs. We
extract all the pairings required in the scheme; these might
come from the setup algorithm, encryption/signing, or de-
cryption/verification. Prior to tracing the pairing inputs,
we split pairings of the form e(g,A ·B) as e(g,A) · e(g,B) to
prepare for encoding pairings as logical formulas in the SMT
solver. In the final step of AutoGroup we recombine the pair-
ings to preserve efficiency. We reuse techniques introduced
in [28, 3] to split and combine pairings in AutoGroup.

After splitting applicable pairings, we obtain a program
slice for each variable input to determine which (symmetric)
generators were involved in computing it. This also helps us
later track which variables are affected when an assignment
for a given variable is made in G1 or G2. Consider the
example A = X · Y . Clearly, the group assignment of A
affects variables X and Y , and capturing the slice for each
pairing input variable is crucial for AutoGroup to perform
correct re-assignment for the subset of affected variables.

3. Convert Pairings to Logical Formulas. Asymmet-
ric pairings require that one input to the function be in G1,
and the other be in G2. Conversion from a symmetric to
an asymmetric pairing can be reduced to a constraint sat-
isfiability problem; we model the asymmetric pairing as an
inequality operator over binary variables. This is analogous
because an inequality constraint enforces that the binary
variables either have a 0 or 1 value, but not both for the
equation to be satisfiable. Therefore, we express symmet-
ric pairings as a logical formula of inequality operators over
binary variables separated by conjunctive connectors (e.g.,
A 6= B ∧ C 6= D). We then employ an SMT solver to find
a satisfiable solution and apply the solver’s solution to pro-
duce an equivalent scheme in the asymmetric setting.

4. Convert Pairing Limitations into Constraints.
When translating from the symmetric to the asymmetric
pairing setting, we encounter several limitations that must
be incorporated into our model. Chief among these are lim-
itations on hashing: in some asymmetric groups, hashing to
G2 is not possible. In other groups, there is no such iso-
morphism, but it is possible to hash into G1. Depending on
the groups that the user selects, we must identify an asym-
metric solution that respects these constraints. Fortunately
these constraints can easily be expressed in our formulae, by
simply assigning the output of hash functions to a specific
group, e.g., G1.

5. Execute SMT Solver. We run the logical formula
plus constraints through an SMT solver to identify a satis-

fying assignment of variables. The solver checks for a sat-
isfiable solution and produces a model of 0 (or G1) and 1
(or G2) values for the pairing input variables that satisfies
the specified constraints. We can go one step further and
enumerate all the unique solutions (or models) found by the
solver for a given formula and constraints. After obtaining
all the possible models, we utilize the solver to evaluate each
model and determine the solutions that satisfies the user’s
application-specific requirements.

6. Satisfy Application-specific Requirements. To
facilitate optimizations in the asymmetric setting that suit
user applications, we allow users to additional constraints
requirements on the chosen solution. There are two possi-
ble ways of tuning AutoGroup: One set of options focus on
reducing the size of the group elements. For public key en-
cryption, the user can choose to minimize the representation
of the secret keys, ciphertext or both. Similarly, for signa-
tures schemes, the user can specify public keys, signatures
or both. The second set of options focus on reducing algo-
rithm execution times. This is possible due to the fact that
for many candidate asymmetric groups, group operations in
G1 are dramatically more efficient than those that take place
in G2. Users may also combine various operations, in order
to find an optimal solution based on a combination of size
and operation time.

We find application-specific solutions by minimizing an
objective function over all the possible models obtained from
the solver. Our objective function is straightforward and
calculated as follows:

F (A,C,w1, w2) =

n∑

i=1

((1− ai) · w1 + ai · w2) · ci

where A = ai, . . . , an and represents the pairing input
variables, w1 and w2 denote weights over groups G1 and G2,
respectively, C = ci, . . . , cn and each ci corresponds to the
cost for each ai. Each input variable ai can have a value of
0 = G1 or 1 = G2. We now give an example of how the above
options are converted into parameters of F and discuss how
the SMT solver is used to obtain a minimal solution.

For each parameter that we intend to optimize, we de-
fine a weight function that evaluates each candidate solution
according to some metric. For each assigned variable, the
weight function calculates the total “cost” of the construc-
tion as a function of some cost cable for the specific variable,
as well as an overall cost for an assignment of G1 and G2.
In the case of ciphertext size we assign the cost value to 1
for each group element that appears in the ciphertext, and
0 for all others. For encryption time, we assign a cost that
corresponds to the number of group operations applied to

4

451

Approved for Public Release; Distribution Unlimited.

this variable during the encryption operation. The overall
cost value then determines the cost of placing a value in one
of the two groups – for size-related calculations, this roughly
corresponds to the length of a group element’s representa-
tion, and for operation time it corresponds to the cost of a
single group operation. By assigning these costs correctly,
we are able to create a series of different weight functions
that represent all of the different values that we would like
to minimize (e.g., ciphertext size, parameter size, time).

If the user chooses to optimize for multiple criteria simul-
taneously, we must find a model that balances between all
of these at the same time. This is not always possible. For
example, some schemes admit solutions that favor a min-
imized secret key size or ciphertext size, but not both. In
this case, we allow the user to determine which constraint to
relax and thereby select the next best solution that satisfies
their requirements.

7. Evaluate and Process the Solution. Once the
application-specific solution is obtained from the solver, the
next step is to apply the solution to produce an asymmetric
scheme. As indicated earlier, we interpret the solution for
each variable as 0 = G1 and 1 = G2. To apply the solution,
we first pre-process each algorithm in SDL to determine how
the pairing inputs are affected by each assignment. Consider
a simplistic example: e(A,B) where A = ga and B = hb.
Let us assume that the satisfying solution is that A ∈ G1 and
B ∈ G2. Therefore, we would rewrite these two variables as
A = ga1 and B = hb2 where g1 ∈ G1 and h2 ∈ G2. The
program slice recorded for each pairing input in step (2)
provides the necessary information to correctly rewrite the
scheme in the asymmetric setting.

In addition to rewriting the scheme, AutoGroup performs
several final optimizations. First, it removes any unused pa-
rameter values in the public and secret keys. For signature
schemes, we try to optimize further by reducing the pub-
lic parameters used per algorithm. In particular, we trace
which variables in the public key are actually used during
signing and verification. For elements that appear only in
the signing (resp. decryption) algorithms, we split the pub-
lic key into two: one is kept just for computing signatures
(resp. decryption), and the other is given out for use in
encryption/verification. Second, AutoGroup performs an
additional efficiency check and attempts to optimize pair-
ing product equations to use as few pairings as possible.
This is due to the decoupling of pairings in earlier phases
of translating the scheme to the asymmetric setting or per-
haps, just a loose design by the original SDL designer. In
either case, we apply pairing optimization techniques from
previous work [3, 28] to provide this automatic efficiency
check. Finally, AutoGroup outputs a new SDL of the mod-
ified scheme.

We do not offer the efficiency check of AutoGroup as a
standalone tool for symmetric groups at present, because
our experience inclines us to believe that most practitioners
concerned with efficiency will want to work in asymmetric
groups. However, our results herein also demonstrate that
a simple tool of this sort is efficient and feasible.

3.3 Security Analysis of AutoGroup
Whether a scheme is translated by hand (as is done to-

day [50]) or automatically (as in this work), a completely
separate question applying to both is: is the resulting asym-

metric scheme secure? The answer is not immediately clear.
Unlike the signature transformation that we automate in
Section 4 that already has an established security proofs
showing that the transformations preserve security, the the-
oretical underpinnings of symmetric-to-asymmetric transla-
tions are less explored. Here are some things we can say.

First, the original proof of security is under a symmet-
ric pairing assumption, and thus can no longer immediately
apply since the construction and assumption are changing
their algebraic settings. This would seem to require the iden-
tification of a new complexity assumption together with a
new proof of security. In many examples, e.g., [20], the new
assumption and proof are only minor deviations from the
original ones, e.g., where the CDH assumption in G (given
(g, ga, gb), compute gab) is converted in a straight-forward
manner to the co-CDH assumption in (G1,G2) (given (g1, g2,
ga2), compute ga1). However, there could be cases where a
major change is required to the proof of security. For in-
stance, in some asymmetric groups it is not possible to hash
into G2, but in these groups there exists an isomorphism
from G2 to G1. In other groups there is no such isomor-
phism, but it is possible to hash into G2. So if a scheme
requires both for the security proof, that scheme may not
be realizable in the asymmetric setting (see [31] for more).

In best practices today, a human first devises the new
construction (based on their desired optimizations) and then
the human works to identify the new assumption and proof.
Our current work automates the first step in this process,
and hopefully gives the human more time to spend on the
second step. In this sense, our automation is arguably faster,
and no less secure than what is done by hand today.

However, a more satisfactory solution requires a deeper
theoretical study of symmetric-to-asymmetric pairing trans-
lations, which we feel is an important open problem, but
which falls outside the scope of the current work. What can
one prove about the preservation of security in symmetric-
to-asymmetric translations? Is it necessary to dig into the
proof of security? Or could one prove security of the asym-
metric scheme solely on the assumption of security of the
symmetric one? Will this work the same for encryption, sig-
natures and other protocols? Do the rules by which trans-
lations are done (by hand or AutoGroup) need to change
based on these findings? These questions remain open.

3.4 Experimental Evaluation of AutoGroup
To determine the effectiveness of our automation, we eval-

uate several encryption and signature schemes on a variety of
optimization combinations supported by our tool. We sum-
marize the results of our experiments on encryption schemes
in Figure 3 and signature schemes in Figure 4.

System Configuration. All of our benchmarks were executed
on a 2 x 2.66GHz 6-core Intel Xeon Mac Pro with 10GB
RAM running Mac OS X 10.8.3 using only a single core of
the Intel processor. Our implementation utilizes the MIR-
ACL library (v5.5.4), Charm v0.43 [4] in C++ due to the ef-
ficiency gains over Python code, and Z3 SMT solver (v4.3.1).
We based our implementations on the MIRACL library to
fully compare each scheme’s performance using symmetric
and asymmetric curves at the same security level.

Experiments and Results. To demonstrate the soundness of
AutoGroup on encryption and signature schemes, we com-
pare algorithm running times, key and ciphertext/signature

5

452

Approved for Public Release; Distribution Unlimited.

sizes between symmetric and asymmetric solutions. We tested
AutoGroup on a variety of optimization combinations to ex-
tract different asymmetric solutions. In each test case, Au-
toGroup reports all the unique solutions, obtains the best
solution for given user-specified constraints, and generates
the executable code of the solution in a reasonable amount
of time. AutoGroup execution time on each test case is re-
ported in Figure 6.

4. AUTOSTRONG
In this section, we present and evaluate a tool, called Au-

toStrong, for automatically generating a strongly-unforgeable
signature from an unforgeable signature scheme.

4.1 Background on Digital Signatures
A digital signature scheme is comprised of three algo-

rithms: key generation, signing and verification. The classic
(or “regular”) security definition for signatures, as formu-
lated by Goldwasser, Micali and Rivest [34], is called exis-
tential unforgeability with respect to chosen message attacks,
wherein any p.p.t. adversary, given a public key and the abil-
ity to adaptively ask for a signature on any message of its
choosing, should not be able to output a signature/message
pair that passes the verification equation and yet where the
message is “new” (was not queried for a signature), with
non-negligible probability.

An, Dodis and Rabin [6] formulated strong unforgeability
where the adversary should not only be unable to generate
a signature on a “new” message, but also be unable to gen-
erate a different signature for an already signed message.
Strongly-unforgeable signatures have many applications in-
cluding building signcryption [6], chosen-ciphertext secure
encryption systems [27, 24] and group signatures [7, 17].

Partitioned Signatures In 2006, Boneh, Shen and Wa-
ters [21] connected these two security notions, by provid-
ing a general transformation that converts any partitioned
(defined below) existentially unforgeable signature into a
strongly unforgeable one.

Definition 4.1 (Partitioned Signature [21]). A sig-
nature scheme is partitioned if it satisfies two properties for
all key pairs (pk , sk):

– Property 1: The signing algorithm can be broken into
two deterministic algorithms F1 and F2 so that a sig-
nature on a message m using secret key sk is computed
as follows:

1. Select a random r from a suitable randomness
space.

2. Set σ1 = F1(m, r, sk) and σ2 = F2(r, sk).
3. Output the signature (σ1, σ2).

– Property 2: Given m and σ2, there is at most one
σ1 such that (σ1, σ2) verifies as a valid signature on m
under pk.

As one example of a partitioned scheme, Boneh et al. par-
tition DSS [45] as follows, where x is the secret key:

F1(m, r, x) = r−1(m+ xF2(r, x)) mod q

F2(r, x) = (gr mod p) mod q

Our empirical evidence shows that many discrete-log and
pairing-based signatures in the literature are partitioned.

Interestingly, some prominent prior works [14, 15] claimed
that there were “few” examples of partitioned schemes “be-
yond Waters [56]”, even though our automation discovered
several examples existing prior to the publication of these
works. We conjecture that it is not always easy for a human
to detect a partition.

Chameleon Hashes The BSW transform uses a chameleon
hash [38] function, which is characterized by the nonstan-
dard property of being collision-resistant for the signer but
collision tractable for the recipient. The chameleon hash
is created by establishing public parameters and a secret
trapdoor. The hash itself takes as input a message m and
an auxiliary value s. There is an efficient algorithm that
on input the trapdoor, any pair (m1, s1) and any additional
message m2, finds a value s2 such that ChamHash(m1, s1) =
ChamHash(m2, s2).

Boneh et al. [21] employ a specific hash function based
on the hardness of finding discrete logarithms.4 Since pair-
ing groups also require the DL problem to be hard, this
chameleon hash does not add any new complexity assump-
tions. It works as follows in G, where g generates G of order
p. To setup, choose a random trapdoor t ∈ Zp∗ and com-
pute h = gt. The public parameters include the description
of G together with g and h. The trapdoor t is kept secret.
To hash on input (m, s) ∈ Zp2, compute

ChamHash(m, s) = gmhs.

Later, given any pair m, s and any message m′, anyone with
the trapdoor can compute a consistent value s′ ∈ Zp as

s′ = (m−m′)/t+ s

such that ChamHash(m, s) =ChamHash(m′, s′).

The BSW Transformation The transformation [21] is ef-
ficient and works as follows. Let Πp = (Genp,Signp,Verifyp)
be a partitioned signature, where the signing algorithm is
partitioned using functions F1 and F2. Suppose the ran-
domness for Signp is picked from some set R. Let || denote
concatenation. BSW constructs a new scheme Π as:

Gen(1λ): Select a group G with generator g of prime order
p (with λ bits). Select a random t ∈ Zp and com-
pute h = gt. Select a collision-resistant hash function
Hcr : {0, 1}∗ → Zp. Run Genp(1

λ) to obtain a key
pair (pkp, skp). Set the keys for the new system as
pk = (pkp, Hcr,G, g, h, p) and sk = (pk , skp, t).

Sign(sk ,m): A signature on m is generated as follows:

1. Select a random s ∈ Zp and a random r ∈ R.
2. Set σ2 = F2(r, skp).
3. Compute v = Hcr(m||σ2).
4. Compute the chameleon hash m′ = gvhs.
5. Compute σ1 = F1(m′, r, skp) and output the sig-

nature σ = (σ1, σ2, s).

4Indeed, we observe that substituting an arbitrary
chameleon hash could break the transformation. Suppose
H(m, s) ignores the last bit of s (it is easy to construct such
a hash assuming chameleon hashes exist.) Then the BSW
transformation using this hash would result in a signature
of the form (σ1, σ2, s), which is clearly not strongly unforge-
able, since the last bit can be flipped.

6

453

Approved for Public Release; Distribution Unlimited.

SS1536†/BN256∗

Encryption Time Approx. Size Num.
Keygen• Encrypt• Decrypt• Secret Key Ciphertext Solutions

ID-Based Enc.

BB04 [16] Sym.† 59.9ms 64.8ms 125.4ms 3072 bits 6144 bits
Asym. (Min. CT)∗ 4.8ms 7.8ms 27.6ms 2048 bits 3584 bits 4

Gentry06 [32] Sym.† 39.9ms 176.2ms 67.8ms 3072 bits 7680 bits
Asym. (Min. SK)∗ 1.4ms 41.0ms 19.1ms 512 bits 6400 bits 4

DSE09 [57] Sym.† 294.6ms 286.8ms 612.8ms 13824 bits 18432 bits
Asym. (Min. SK/CT/Exp)∗ 12.6ms 19.2ms 128.0ms 5376 bits 8704 bits 256

Broadcast Encryption

BGW05 [19] Sym. [§3.1]† (n = 100) 1992.2ms 119.6ms 136.9ms 19200 bytes 6144 bits
Asym. (Min. SK)∗ 70.4ms 25.7ms 28.5ms 3200 bytes 5120 bits 4

•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.

Figure 3: AutoGroup on encryption schemes under various optimization options. We show running times and
sizes for several schemes generated in C++ and compare symmetric to automatically generated asymmetric
implementations at the same security levels (roughly equivalent with 3072 bit RSA). For IBE schemes, we
measured with ID string length at 100 bytes. For BGW, n denotes the number of users in the system.

Verify(pk ,m, σ): A signature σ = (σ1, σ2, s) on a message m
is verified as follows:

1. Compute v = Hcr(m||σ2).
2. Compute the chameleon hash m′ = gvhs.
3. Output the result of Verifyp(pkp,m

′, (σ1, σ2)).

Theorem 4.2 (Security of BSW Transform [21]).
The signature scheme Π = (Gen,Sign,Verify) is strongly ex-
istentially unforgeable assuming the underlying scheme Πp =
(Genp,Signp,Verifyp) is existentially unforgeable, Hcr is a
collision-resistant hash function and the discrete logarithm
assumption holds in G.

The Bellare-Shoup Transformation The BSW trans-
formation [21], which only works for partitioned signatures,
sparked significant research interest into finding a general
transformation for any existentially unforgeable signature
scheme. Various solutions were presented in [54, 36, 53, 14,
55, 15], as well as an observation in [14] that an inefficient
transformation was implicit in [33].

We follow the work of Bellare and Shoup [14, 15], which is
less efficient than BSW and, for our case, requires a stronger
complexity assumption, but works on any signature. Their
approach uses two-tier signatures, which are “weaker” than
regular signatures as hybrids of regular and one-time schemes.
In a two-tier scheme, a signer has a primary key pair and,
each time it wants to sign, it generates a fresh secondary
key pair and produces a signature as a function of the both
secret keys and the message. Both public keys are required
to verify the signature. Bellare and Shoup transform any
regular signature scheme by signing the signature from this
scheme with a strongly unforgeable two-tier scheme. They
also show how to realize a strongly unforgeable two-tier sig-
nature scheme by applying the Fiat-Shamir [29] transfor-
mation to the Schnorr identification protocol [51], which re-
quires a one-more discrete logarithm-type assumption.

The BS transformation works as follows. Let Πr = (Genr,
Signr,Verifyr) be a regular signature scheme and let Πt =
(PGent, SGent, Signt,Verifyt) be a two-tiered strongly unforge-
able scheme. A new signature scheme Π is constructed as:

Gen(1λ): Run Genr(1
λ)→ (pkr, skr) and PGent(1

λ)→ (ppk ,
psk). Output the pair PK = (pkr, ppk) and SK =
(skr, psk).

Sign(SK,m): A signature on m is generated as follows:

1. Parse SK as (skr, psk).
2. Run SGent(1

λ)→ (spk , ssk).
3. Sign the message and secondary key as σ1 ←

Signr(skr, (spk ||m)).
4. Sign the first signature as σ2 ← Signt(psk , ssk , σ1).
5. Output the signature σ = (σ1, σ2, spk).

Verify(PK,m, σ): A signature σ = (σ1, σ2, spk) on a message
m is verified as follows:

1. Parse PK as (pkr, ppk).
2. If Verifyr(pkr, (spk ||m), σ1) = 0, then return 0.
3. If Verifyt(ppk , spk , σ1, σ2), then return 0.
4. Otherwise, return 1.

Theorem 4.3 (Security of BS Transformation [15]).
If the input scheme is existentially unforgeable, then the out-
put signature is strongly existentially unforgeable assuming
the strong unforgeability of the two-tier scheme.

The Transformation used in AutoStrong For our pur-
poses, we employ the following hybrid transformation com-
bining BSW and Bellare-Shoup. On input a signature scheme,
we automate the following procedure:

1. Identify a natural partition satisfying property 1 and
test if it has property 2. (We allow false negatives, but
not false positives. See Section 4.3.)

2. If a valid partition is found, apply the BSW transfor-
mation [21] (using SHA-256 and the DL-based chameleon
hash above).

3. If a valid partition is not found, apply the Bellare-
Shoup transformation [14, 15] (using the Schnorr Fiat-
Shamir based two-tier scheme suggested in [15].)

4. Output the result.

The security of this transformation follows directly from
the results of [21, 15] as stated in Theorems 4.2 and 4.3. The
most challenging technical part is step one: determining if a
scheme is partitioned.

7

454

Approved for Public Release; Distribution Unlimited.

SS1536†/BN256∗

Signature Time Approx. Size Num.
Security Sign• Verify• Public Key Signature Solutions

CL04 [23] Sym.† EU-CMA 169.8ms 316.6ms 3072 bits 4608 bits
Sym.† SU-CMA 192.0ms 387.8ms 4608 bits 6144 bits
Asym. (Min. SIG)∗ SU-CMA 3.4ms 56.8ms 2048 bits 1024 bits 2

BB Short [17] Sym.† EU-CMA 21.5ms 102.1ms 7680 bits 3072 bits
Sym.† SU-CMA 62.8ms 142.8ms 9216 bits 4608 bits
Asym. (Min. PK)∗ SU-CMA 5.0ms 18.3ms 3584 bits 1536 bits 2

WATERS05 [56] Sym.† EU-CMA 47.9ms 195.2ms 6144 bits 3072bits
Sym.† SU-CMA 88.7ms 236.4ms 7680 bits 4608 bits
Asym. (Min. SIG)∗ SU-CMA 6.5ms 62.9ms 3328 bits 768 bits 8

DSE09 [57] Sym.† WU-CMA 258.5ms 896.8ms 23040 bits 13824 bits
Asym. (Min. PK/SIG)∗ WU-CMA 13.6ms 129.2ms 6144 bits 5376 bits 256

ACDK12 [1] Sym. [§5.3]† RMA 346.4ms 1307ms 23040 bits 12288 bits
Asym. (Min. PK/SIG/Exp)∗ RMA 23.3ms 279.9ms 3584 bits 8192 bits 1024

•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.

Figure 4: We show the result of AutoGroup and AutoStrong on signature schemes. For CL, BB, and
Waters (with length of identities, ` = 128), we first apply AutoStrong to determine that the signature scheme
is partitioned, then apply the BSW transform to obtain a strongly unforgeable signature in the symmetric
setting. We then feed this as input to AutoGroup to realize an asymmetric variant under a given optimization.
We also tested AutoStrong on the DSE signature variant and ACDK structure-preserving signature, even
though these are not known to be existentially unforgeable. A partition was found for ACDK, but not DSE.

SDL
Parser

Output
SDL

AutoStrong

Property 2
Holds?

Apply BSW Transform
more efficient

Apply BS Transform
general

yes

no

Partition Checker
1: Identify Property 1
2: Identify Verification Eq.

3: Decompose to Model Pairing
4. Produce Equations.
5. Evaluate Equations

Z3 Input
SDL Mathematica

Figure 5: A high-level presentation of the tool AutoStrong, which uses external tools Z3, Mathematica and
SDL Parser.

4.2 How AutoStrong Works
AutoStrong takes as input the SDL description of a digital

signature scheme along with some metadata.5 At a high-
level, it runs the transformation described at the end of
the last section, where the most challenging step is testing
whether a scheme is partitioned according to Definition 4.1.

We now describe each step involved in testing that Prop-
erties 1 and 2 are satisfied and how we utilize Z3 and Math-
ematica to prove such properties, as illustrated in Figure 5.

Identify Property 1. The first goal is to identify the vari-
ables in the signature that should be mapped to σ1 or σ2

according to Definition 4.1. We assume that the input sig-
nature scheme is existentially unforgeable.6 Given this as-
sumption, our objective is to identify the portions of the
signature that are computed based on the message and des-
ignate that component as σ1. All other variables in the sig-
nature that do not meet this criteria are designated as σ2.
We determine that we have designated the correct variables
for property 1 if and only if the variable mapping satisfy

5The user must specify the variables that denote message,
signature, key material in a configuration file.
6We remark that we tested the partition checker for Au-
toStrong on schemes that are not existentially unforgeable
to fully vet the checker (see Figure 4), but the resulting out-
put in these cases may not be strongly unforgeable.

property 2. We test only the most “natural” division for
property 1, which could result in a false negative, but this
won’t impact the security, so our system allows it.

To illustrate each step, we will show how our tool identifies
the partition in the CL signature scheme [23].

CL signatures [23]: Key generation consists of selecting a
generator, g ∈ G, then chooses x ∈ Zq and y ∈ Zq. It sets
sk = (x, y) and pk = (g,X = gx, Y = gy). The signature is
computed as σ = (a, b = ay, c = ax+m·x·y) where a is chosen
randomly in G and m denotes the message in Zq. Finally,
the verification algorithm checks that e(a, Y) = e(g, b) and
e(X, a) · e(X, b)m = e(g, c) holds.

Our logic would identify that c is dependent on the mes-
sage, therefore, identifying that σ1 = c and σ2 = (a, b) which
satisfies the definition of property 1. The next challenge is
to determine whether property 2 holds given our identified
mapping for σ1 and σ2.

Prove Property 2. Proving that a scheme satisfies this
property requires the ability to abstractly evaluate the ver-
ification equations on the input variables. We require this
ability to automatically prove that there exists at most one
σ1 which verifies under a fixed σ2, m and pk for all pos-
sible inputs. To this end, the partition checker determines
whether a σ′1 exists such that σ′1 6= σ1 and is a valid sig-
nature over the fixed variables. Finding such a σ′1 means

8

455

Approved for Public Release; Distribution Unlimited.

Process BB-IBE Gentry BGW CL BB Short Sig Waters DSE-Sig ACDK

AutoGroup 0.33s 0.34s 0.54s 0.34s 0.31s 0.54s 4.17s 17.47s
AutoStrong - - - 0.28s 0.27s 0.38s 3.25s 1.22s

Figure 6: Running time required by the AutoGroup and AutoStrong routines to process the schemes discussed
in this work (averaged over 10 test runs). The running time for AutoGroup includes the running time for
executing the Z3 SMT solver. The running time for AutoStrong also includes Z3 and Mathematica and the
application of the BSW transformation. In all cases, the standard deviation in the results were within ±3%
of the average. For AutoGroup, running times are correlated with the number of unique solutions found
and the minimization of the weighted function using Z3. AutoStrong times are highly correlated with the
complexity of the verification equations.

the signature is not partitioned. The checker determines
whether it can find a solution or if no such solution exists.
If no solutions exist, then the signature is indeed partitioned.
Stated more precisely, does there exist a σ′1 6= σ1 such that
the following condition holds:

Verify(pk ,m, (σ1, σ2)) = 1 ∧ Verify(pk ,m, (σ′1, σ2)) = 1

At a high-level, our goal is to evaluate the pairing-based
verification algorithms in a way that allows us to find a
contradiction to the aforementioned condition. Recall that
the bilinearity property of pairings states that e(ga, gb) =
e(g, g)ab holds for all a, b ∈ Zq where g ∈ G. We observe
that pairings can be modeled as an abstract function that
performs multiplication in the exponent. Because the rules
of multiplication and addition hold in the exponent, we can
abstractly reduce pairings to basic integer arithmetic.

To accomplish this, we leverage Z3 to model the bilinear-
ity property of pairings so that it is possible to automatically
evaluate them. Our partition checker relies on Z3’s uninter-
preted functions and universal quantifiers to reduce pairing
product equations to simpler equations over the exponents.
However, this reduction alone is not sufficient to completely
evaluate the verification equations as required for detecting
a partitioned signature. To satisfy the property 2 condition,
we also need a way to evaluate these equations on all possi-
ble inputs. Z3 was less suited for this task and instead, we
employ the Mathematica scripting framework to evaluate
such equations. Our solution consists of five steps:

Step 1: Decompose Verification Equations. To model
pairings using an SMT solver, we encode the verification
equations into a form that the solver can interpret. The
first phase extracts the verification equations in SDL, then
decomposes the equations in terms of the generators and ex-
ponents used. We leverage recent term rewriting extensions
introduced in the SDL Parser by Akinyele et al. [3]. Their
improvements keep track of how variables are computed in
terms of the generators and exponents. With knowledge of
how each variable is computed, we are able to fully decom-
pose each equation in an automated fashion.

Our technique for modeling pairings in Z3 requires that
decomposition of verification equations be guided by a few
rules. First, generators must be rewritten in terms of a
base generator, g, if the scheme is specified in the symmetric
setting.7 For example, the random generator a ∈ G chosen

in CL would be rewritten as ga
′
. Second, hashing statements

of the form v = H(m) where v ∈ G are rewritten as gv

7The same applies for asymmetric pairings except that we
specify G1 generators in terms of a base generator g1 and
G2 in terms of g2.

where v ∈ Zq. Third, we do not decompose any variable
designated as σ1 for the purposes of determining whether
a signature is partitioned. The intuition is that since σ′1
variables are adversarially controlled we also treat σ1 as a
black box. Finally, whenever we encounter dot products, we
require the user to provide an upper bound (if known) so
that we can unroll the dot product then further apply our
rules. When these reduction rules are automatically applied
to the CL signature, we obtain the following equation:

e(a, Y) = e(g, b) becomes e(ga
′
, gy) = e(g, (ga

′
)y)

e(X, a) · e(X, b)m = e(g, c) becomes

e(gx, ga
′
) · e(gx, (ga′)y)m = e(g, gc

′
)

Note that c′ denotes the σ1 for CL and is a free variable. All
other variables that comprise m, pk, and σ2 are fixed.

Step 2: Encode Rules for Evaluating Pairings. Once
we have decomposed the verification equation as shown above,
the next step is to encode the equations in terms that Z3 can
understand. After the pairing equations are rewritten en-
tirely using the base generator, we can model the behavior
of pairings by simply focusing on the exponents. To cap-
ture the bilinearity of pairings, we rely on two features in
Z3: uninterpreted functions and universal quantifiers. As
mentioned earlier, uninterpreted functions enable one to ab-
stractly model a function’s behavior. Our model of a pair-
ing is an uninterpreted function, E, that takes two integer
variables and has a few mathematical properties. First, we
define the multiplication rule as ∀s, t : E(s, t) = s·t. Second,
we define the addition rule as ∀s, t, u : E(s+t, u) = s·u+t·u.8

Third, we define pairing products in terms of multiplication
with E and division as subtraction.

We note that these rules are straightforward and sufficient
for evaluating pairings. Moreover, by defining exponents in
terms of integers, Z3 can apply all the built-in simplifica-
tion rules for multiplication and addition. As a result, the
solver uses these rules to reduce any pairing-based verifica-
tion equation into a simpler integer equation.

To automatically encode the equations, we first simplify
the decomposed pairing equation as much as possible using
previous techniques [3]. Then, we convert each pairing to
the modeled pairing function, E and remove the base gener-
ators. Upon simplifying and encoding the decomposed CL
equations, we obtain the following:

e(ga
′
, gy) = e(g, (ga

′
)y) becomes E(a′, y) = E(1, a′ · y)

e(gx, ga
′
) · e(gx, (ga′)y)m = e(g, gc

′
) becomes

E(x, a′) + E(x ·m, a′ · y) = E(1, c′)

8Note that same rule applies if E(s, t+ u)

9

456

Approved for Public Release; Distribution Unlimited.

Step 3: Execute SMT Solver. After encoding the pair-
ing functions in terms of E, the goal is to employ the solver
to evaluate it. We first specify our rules in the SMT solver
then evaluate these rules on each input equation. The result
is a simplified equation representation of the verification al-
gorithm. For the above CL formulas, the solver determines
that the first equation is true for all possible inputs because
a′ and y are fixed variables. For the second equation, the
solver produces: a′ · x+ a′ ·m · x · y = c′.

Step 4: Evaluate equations. At this point, we have ob-
tained the equation representation of the verification equa-
tion, we can now concretely express the conditions for prop-
erty 2. That is, c′ 6= c′′ ∧
a′ · x+ a′ · x ·m · y = c′ ∧ a′ · x+ a′ · x ·m · y = c′′

We use Mathematica to prove that no such c′′ exists as-
suming the verification condition is correct via the Mathe-
matica Script API. In particular, we utilize the FindInstance
function to mathematically find proof over non-zero real
numbers then subsequently finding a solution over integers.
If no such solution exists, the FindInstance will return such
a statement and the result is interpreted as a fact that the
signature scheme is partitioned. Otherwise, the scheme may
not be partitionable.

During this step, we make an explicit assumption that the
verification condition is mathematically correct. Suppose
that this was not the case. In this scenario, our technique
would also determine that it is not possible to find a σ′1 such
that σ′1 6= σ1 and verifies over fixed variables. In reality,
however, no σ1 and σ2 pair can ever produce a valid signa-
ture because the verification equation does not hold for any
input. To limit the possibility of such scenarios, our parti-
tion checker offers a sanity check on the correctness of the
input verification equations.

By relaxing the rule for decomposing the variables that are
designated as σ1 in step 1, we can evaluate the verification
equation over all inputs using Mathematica. For the CL
scheme, a full decomposition would produce the following
equation in the exponent:

a′ · x+ a′ · x ·m · y = a′ · (x+ x ·m · y)

It is sufficient to leverage the Simplify function within
Mathematica to evaluate that this holds for all possible in-
puts. Since Mathematica has built-in techniques for solving
equations of this sort, it becomes trivial to show that the
above equation is correct in all cases (due to the law of dis-
tribution). We subsequently inform the user on the output
of this sanity check. This sanity check is useful for deter-
mining the correctness of SDL signature descriptions.

Step 5: Apply Transformation. Once the partition
checker determines whether the signature is partitioned or
not, we apply the efficient BSW transform if deemed parti-
tioned or the less-efficient BS transform if not as described
in Section 4.1. We elaborate further in the full version.

4.3 Security Analysis of AutoStrong
The theoretical security of the unforgeable-to-strongly-

unforgeable transformations that we use in AutoStrong were
previously established in [21, 14, 15], as discussed in Sec-
tion 4.1. The security of the BSW transform only holds,
however, if the input scheme is partitioned. Our partition
test allows false negatives, but not false positives. That is,
our algorithm may fail to identify a scheme as partitioned

even though it is, which results in a less efficient final scheme,
but it will not falsely identify a scheme as partitioned when
it is not, which would result in a security failure. To see why
this claim holds, consider that the partition tester guesses a
partition, Z3 to interprets the verification equation as a sys-
tem of equations, and then Mathematica fixes the variables
on one partition side and asks how many solutions there are
for the free variables on the other side. If 0 or 1 are found,
then the scheme meets the partitioned definition. If more
than 1 is found, then it is not partitioned. If there is no
answer (program crash or times out), then we consider it
not partitioned. Thus, false negatives can occur, but not
false positives (in theory). Proving that there are no soft-
ware or hardware errors in AutoStrong, Z3, Mathematica
or the underlying software and hardware on which they run
is outside the scope of this project. However, we did verify
AutoStrong’s outputs experimentally on a suite of test cases
and no errors were found.

4.4 Experimental Evaluation of AutoStrong
In 2008 [15], Bellare and Shoup remarked that “unfortu-

nately, there seem to be hardly any [partitioned signature]
schemes”. Interestingly, our experimental results show that
there are in fact many partitioned schemes, including a sub-
stantial number invented prior to 2008. We evaluated Au-
toStrong by testing it on a collection of signatures, includ-
ing the bilinear Camenisch-Lysyanskaya signature [23], the
Boneh-Boyen short signature [16], the Waters signature from
CRYPTO 2005 [56], the Waters Dual-System (DSE) signa-
ture from CRYPTO 2009 [57], and a structure-preserving
signature scheme due to Abe et al. [1].

Of the above signatures, all but one – the Waters DSE sig-
nature – were successfully partitioned, leading to strongly
unforgeable signatures via the BSW transform.9 Figure 6
shows the time that it took our tool to identify the parti-
tioning and output the revised signature equations. Figure 4
illustrates the performance and size of the resulting signa-
tures, when evaluated on two different types of curve (using
AutoGroup to calculate the group assignments).

5. CONCLUSION
We explored two new tasks in cryptographic automation.

First, we presented a tool, AutoGroup, for automatically
translating a symmetric pairing scheme into an asymmetric
pairing scheme. The tool allows the user to choose from a va-
riety of different optimization options. Second, we presented
a tool, AutoStrong, for automatically altering a digital sig-
nature scheme to achieve strong unforgeability [6]. The tool
automatically tests whether a scheme is “partitioned” ac-
cording to a notion of Boneh et al. [21] and then applies a
highly-efficient transformation if it is partitioned or a more
general transformation otherwise. To perform some of these
complex tasks, we integrated Microsoft’s SMT Solver Z3
and Mathematica into our tools. Our performance mea-
surements indicated that these standard cryptographic de-
sign tasks can be quickly, accurately and cost-effectively per-
formed by computers. We leave open the question of which
other design tasks are well suited for SMT solvers.

9However, we note that the partitioning of the Abe et al.
signature scheme destroys the structure-preserving property,
making this result somewhat less interesting.

10

457

Approved for Public Release; Distribution Unlimited.

6. REFERENCES
[1] Masayuki Abe, Melissa Chase, Bernardo David,

Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. Constant-size structure-preserving
signatures: Generic constructions and simple
assumptions. Cryptology ePrint Archive, Report
2012/285, 2012. http://eprint.iacr.org/.

[2] Joseph A. Akinyele, Matthew Green, Susan
Hohenberger, and Matthew W. Pagano. AutoBatch
Toolkit. https://github.com/jhuisi/auto-tools.

[3] Joseph A. Akinyele, Matthew Green, Susan
Hohenberger, and Matthew W. Pagano.
Machine-generated algorithms, proofs and software for
the batch verification of digital signature schemes. In
ACM CCS, pages 474–487, 2012.

[4] Joseph A. Akinyele, Matthew Green, and Avi Rubin.
Charm: A framework for rapidly prototyping
cryptosystems. Cryptology ePrint Archive, Report
2011/617, 2011. http://eprint.iacr.org/.

[5] José Bacelar Almeida, Endre Bangerter, Manuel
Barbosa, Stephan Krenn, Ahmad-Reza Sadeghi, and
Thomas Schneider. A certifying compiler for
zero-knowledge proofs of knowledge based on
σ-protocols. In ESORICS’10, pages 151–167, 2010.

[6] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the
security of joint signature and encryption. In
EUROCRYPT, volume 2332, pages 83–107, 2002.

[7] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and
Gene Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In
CRYPTO ’00, volume 1880, pages 255–270, 2000.

[8] Michael Backes, Matteo Maffei, and Dominique
Unruh. Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous
attestation protocol. In IEEE Symposium on Security
and Privacy, pages 202–215, 2008.

[9] Endre Bangerter, Thomas Briner, Wilko Henecka,
Stephan Krenn, Ahmad-Reza Sadeghi, and Thomas
Schneider. Automatic generation of sigma-protocols.
In EuroPKI’09, pages 67–82, 2009.

[10] M. Barbosa, A. Moss, and D. Page. Compiler assisted
elliptic curve cryptography. In OTM Conferences (2),
pages 1785–1802, 2007.

[11] Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte. The spec# programming system: An
overview. pages 49–69. Springer, 2004.

[12] Paulo S. L. M. Barreto and Michael Naehrig.
Pairing-friendly elliptic curves of prime order. In SAC,
volume 3897, pages 319–331, 2006.
http://cryptojedi.org/papers/\#pfcpo.

[13] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud,
and Santiago Zanella Béguelin. Computer-aided
security proofs for the working cryptographer. In
CRYPTO, pages 71–90, 2011.

[14] Mihir Bellare and Sarah Shoup. Two-tier signatures,
strongly unforgeable signatures, and fiat-shamir
without random oracles. In PKC, pages 201–216, 2007.

[15] Mihir Bellare and Sarah Shoup. Two-tier signatures
from the fiat-shamir transform, with applications to
strongly unforgeable and one-time signatures. IET
Information Security, 2(2):47–63, 2008.

[16] Dan Boneh and Xavier Boyen. Short signatures

without random oracles. In EUROCRYPT, volume
3027, pages 382–400, 2004.

[17] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short
group signatures. In CRYPTO ’04, volume 3152 of
LNCS, pages 45–55, 2004.

[18] Dan Boneh and Matthew K. Franklin. Identity-based
encryption from the Weil pairing. In CRYPTO, pages
213–229, 2001.

[19] Dan Boneh, Craig Gentry, and Brent Waters.
Collusion resistant broadcast encryption with short
ciphertexts and private keys. In CRYPTO’05, pages
258–275, 2005.

[20] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the Weil pairing. In ASIACRYPT ’01,
volume 2248 of LNCS, pages 514–532, 2001.

[21] Dan Boneh, Emily Shen, and Brent Waters. Strongly
unforgeable signatures based on computational
Diffie-Hellman. In PKC, pages 229–240, 2006.

[22] J. Camenisch, M. Rohe, and A.R. Sadeghi. Sokrates -
a compiler framework for zero- knowledge protocols.
In Proceedings of the Western European Workshop on
Research in Cryptology, WEWoRC 2005, 2005.

[23] Jan Camenisch and Anna Lysyanskaya. Signature
schemes and anonymous credentials from bilinear
maps. In CRYPTO, volume 3152, pages 56–72, 2004.

[24] Ran Canetti, Shai Halevi, and Jonathan Katz.
Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT, pages 207–222, 2004.

[25] Leonardo De Moura and Nikolaj Bjørner. Z3: an
efficient smt solver. In Proceedings of the Theory and
practice of Software, TACAS’08/ETAPS’08, pages
337–340, 2008.

[26] Robert DeLine, K. Rustan, and M. Leino. Boogie pl:
A typed procedural language for checking
object-oriented programs. Technical Report
MSR-TR-2005-70.

[27] Danny Dolev, Cynthia Dwork, and Moni Naor.
Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[28] Anna Lisa Ferrara, Matthew Green, Susan
Hohenberger, and Michael Østergaard Pedersen.
Practical short signature batch verification. In
CT-RSA, volume 5473 of LNCS, pages 309–324, 2009.

[29] Amos Fiat and Adi Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194, 1986.

[30] Steven D. Galbraith. Supersingular curves in
cryptography. In ASIACRYPT, pages 495–513, 2001.

[31] Steven D. Galbraith, Kenneth G. Paterson, and
Nigel P. Smart. Pairings for cryptographers, 2006.
Cryptology ePrint Archive: Report 2006/165.

[32] Craig Gentry. Practical identity-based encryption
without random oracles. In EUROCRYPT, pages
445–464, 2006.

[33] Oded Goldreich. The Foundations of Cryptography -
Volume 2, Basic Applications. Cambridge University
Press, 2004.

[34] S. Goldwasser, S. Micali, and R. Rivest. A digital
signature scheme secure against adaptive
chosen-message attacks. SIAM J. Comp., 17(2), 1988.

[35] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi,

11

458

Approved for Public Release; Distribution Unlimited.

Thomas Schneider, and Immo Wehrenberg. Tasty:
tool for automating secure two-party computations. In
ACM CCS, pages 451–462, 2010.

[36] Qiong Huang, Duncan S. Wong, and Yiming Zhao.
Generic transformation to strongly unforgeable
signatures. In ACNS, pages 1–17, 2007.

[37] Shinsaku Kiyomoto, Haruki Ota, and Toshiaki
Tanaka. A security protocol compiler generating C
source codes. In ISA’08, pages 20–25, 2008.

[38] Hugo Krawczyk and Tal Rabin. Chameleon signatures.
In NDSS, 2000.

[39] Gavin Lowe. Casper: a compiler for the analysis of
security protocols. J. Comput. Secur., 6(1-2):53–84,
1998.

[40] Stefan Lucks, Nico Schmoigl, and Emin Islam Tatli.
Issues on designing a cryptographic compiler. In
WEWoRC, pages 109–122, 2005.

[41] Philip MacKenzie, Alina Oprea, and Michael K.
Reiter. Automatic generation of two-party
computations. In ACM CCS, pages 210–219, 2003.

[42] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron
Sella. Fairplay – a secure two-party computation
system. In USENIX Security Symposium, pages
287–302, 2004.

[43] Sarah Meiklejohn, C. Chris Erway, Alptekin Küpçü,
Theodora Hinkle, and Anna Lysyanskaya. ZKPDL: a
language-based system for efficient zero-knowledge
proofs and electronic cash. In USENIX Security’10,
pages 193–206, 2010.

[44] A. Menezes, S. Vanstone, and T. Okamoto. Reducing
elliptic curve logarithms to logarithms in a finite field.
In STOC, pages 80–89, 1991.

[45] Alfred Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[46] Leonardo Moura and Grant Olney Passmore. The
strategy challenge in SMT solving. In Automated
Reasoning and Mathematics, volume 7788, pages
15–44. 2013.

[47] Dan Page, Nigel Smart, and Fre Vercauteren. A
comparison of MNT curves and supersingular curves.
Applicable Algebra in Eng,Com and Comp,
17(5):379–392, 2006.

[48] Luis J. Dominguez Perez and Michael Scott. Designing
a code generator for pairing based cryptographic
functions. In Pairing’10, pages 207–224, 2010.

[49] Davide Pozza, Riccardo Sisto, and Luca Durante.
Spi2java: Automatic cryptographic protocol java code
generation from spi calculus. In Advanced Information
Networking and Applications, pages 400–, 2004.

[50] Somindu C. Ramanna, Sanjit Chatterjee, and Palash
Sarkar. Variants of Waters’ dual system primitives
using asymmetric pairings - (extended abstract). In
Public Key Cryptography, pages 298–315, 2012.

[51] Claus-Peter Schnorr. Efficient signature generation by
smart cards. J. Cryptology, 4(3):161–174, 1991.

[52] Dawn Xiaodong Song, Adrian Perrig, and Doantam
Phan. Agvi - automatic generation, verification, and
implementation of security protocols. In Computer
Aided Verification, pages 241–245, 2001.

[53] Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang.

How to strengthen any weakly unforgeable signature
into a strongly unforgeable signature. In CT-RSA,
pages 357–371, 2007.

[54] Isamu Teranishi, Takuro Oyama, and Wakaha Ogata.
General conversion for obtaining strongly existentially
unforgeable signatures. In INDOCRYPT, pages
191–205, 2006.

[55] Isamu Teranishi, Takuro Oyama, and Wakaha Ogata.
General conversion for obtaining strongly existentially
unforgeable signatures. IEICE Transactions,
91-A(1):94–106, 2008.

[56] Brent Waters. Efficient identity-based encryption
without random oracles. In EUROCRYPT ’05, volume
3494 of LNCS, pages 320–329. Springer, 2005.

[57] Brent Waters. Dual system encryption: Realizing fully
secure ibe and hibe under simple assumptions. In
CRYPTO, pages 619–636, 2009.

[58] Brent Waters. Functional encryption for regular
languages. In CRYPTO, volume 7417, pages 218–235,
2012.

[59] Wolfram. Mathematica, version 9.
http://www.wolfram.com/mathematica/.

12

459

Approved for Public Release; Distribution Unlimited.

GPU and CPU Parallelization of Honest-but-Curious
Secure Two-Party Computation∗

Nathaniel Husted
Dept. of Comp. Sc.
Indiana University

nhusted@cs.indiana.edu

Steven Myers
Dept. of Comp. Sc.
Indiana University

samyers@cs.indiana.edu

abhi shelat
Dept. of Comp. Sc.
University of Virginia

abhi@cs.virginia.edu

Paul Grubbs
Dept. of Comp. Sc.
Indiana University

paulgrub@umail.iu.edu

ABSTRACT
Recent work demonstrates the feasibility and practical use of se-
cure two-party computation [5, 9, 15, 23]. In this work, we present
the first Graphical Processing Unit (GPU)-optimized implementa-
tion of an optimized Yao’s garbled-circuit protocol for two-party
secure computation in the honest-but-curious and 1-bit-leaked ma-
licious models. We implement nearly all of the modern protocol
advancements, such as Free-XOR, Pipelining, and OT extension.
Our implementation is the first allowing entire circuits to be gen-
erated concurrently, and makes use of a modification of the XOR
technique so that circuit generation is optimized for implementa-
tion on SIMD architectures of GPUs. In our best cases we generate
about 75 million gates per second and we exceed the state of the art
performance metrics on modern CPU systems by a factor of about
200, and GPU systems by about a factor of 2.3. While many re-
cent works on garbled circuits exploit the embarrassingly parallel
nature of many tasks that are part of a secure computation protocol,
we show that there are still various forms and levels of paralleliza-
tion that may yet improve the performance of these protocols. In
particular, we highlight that implementations on the SIMD archi-
tecture of modern GPUs require significantly different approaches
than the general purpose MIMD architecture of multi-core CPUs,
which again differ from the needs of parallelizing on compute clus-
ters. Additionally, modifications to the security models for many
common protocols have large effects on reasonable parallel archi-
tectures for implementation.

∗This work is supported by Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL)
under contract FA8750-11-2-0211. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or
the US government. This material is based upon work supported
by the National Science Foundation under Grant No. 1111149.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12 ...$15.00
http://dx.doi.org/10.1145/2523649.2523681.

1. INTRODUCTION
A company may wish to offer a generic screening service which

would let patients know if they are susceptible to disease based
on the presence of different proprietary markers in their DNA. In
such a scenario the company does not want to divulge its propri-
etary markers, and the consumer does not want to divulge their
genetic information in fear that it will be exploited by the com-
pany. The above problem represents a specific case of secure two-
party computation, in which there are two parties who wish to com-
pute a function f : ({0, 1}m)2 → {0, 1}m, on respective inputs
x0, x1 ∈ {0, 1}m, with the guarantee that no party learns anything
beyond what can be efficiently inferred from the output.

Cryptographers have studied this problem, and have suggested
solutions in various security models. However, while theoretically
interesting, it was historically believed that these protocols are too
inefficient for practical implementation. Work by Malkhi et al. [18]
gave the first implementation of Yao’s garbled-circuit protocol and,
while it could perform very modest computations in a reasonable
amount of time, the result seemed to validate the belief that these
protocols would not be practical. This has resulted in cryptogra-
phers pursuing specific protocols to solve specific instances of se-
cure two-party computation. For example, specific algorithms for
looking at the edit distance between two strings (e.g., for the ge-
netic problem discussed above), with the goal of making practi-
cal algorithms that could be deployed. However, recent advances
and improvements to Yao-based protocols and implementations (cf.
[13, 21, 8]) have shattered the belief that general purpose solutions
are too inefficient to be deployed in practice. These works have
lead to renewed interest in practical implementations of Yao’s pro-
tocol. Research now focuses on determining which problems might
be solved by efficiently engineered versions of Yao’s garbled cir-
cuits. Any such engineering will make use of parallel processing,
as Yao’s circuit protocol (and its improvements), have a high level
of inherent parallelism for both the honest-but-curious and mali-
cious security models. Importantly, there are key differences in the
available parallelism available in the two security models.

In this paper, we provide a high-performance parallel imple-
mentation of Yao’s circuits in the honest-but-curious (HbC) and
1-bit-leaked malicious model (1BM). The implementation is op-
timized for parallel processing architectures with both multi-core
CPUs and GPUs. We have implemented both circuit generation
and evaluation on GPUs. Additionally, on multi-core CPUs we
have implemented evaluation. GPUs have shown to provide more

460

Approved for Public Release; Distribution Unlimited.

GFLOPS per dollar and more GFLOPS per watt than leading x86
CPUs, and the gap in performance is expected to widen. There-
fore, any compute intensive task that can naturally be parallelized,
such as Yao’s garbled circuit technique, needs to be investigated
in this model. Further, it has previously been noted that GPUs
can potentially be used as cheap, “off-the-shelf” cryptographic co-
processors, and work has been done showing their use for imple-
menting both symmetric and asymmetric cryptographic primitives,
as well as for cryptanalysis.

Frederiksen and Nielsen[5] have recently produced a somewhat
optimized version of Yao’s protocol in the malicious security model
for GPUs. However, differences in Yao’s protocol for the malicious
model, as compared to the ones we consider, necessitate different
architectural approaches for implementation. This is particularly
poignant due to the the Single Instruction Multiple Data (SIMD) ar-
chitecture of the GPU: small changes in protocols can lead to large
changes in the appropriate processing units for a GPU. Thus, our
work is important as it provides a new GPU work scheduling ar-
chitecture optimized for the HbC and 1BM security models, which
have many practical deployment scenarios.

1.1 Our Contributions
We present the first modern implementation of Yao’s for the

Honest-but-Curious (HbC) and One-bit Leak Malicious (1BM) se-
curity models. There are many settings in practice, where these
security models are more than sufficient for use in secure compu-
tation. Due to the fact that protocols that satisfy these weaker se-
curity models are substantially less resource demanding, it permits
for either a larger array of circuits to be evaluated, or for systems
to potentially be much faster.

In this paper, we first present a new method to generate garbled
circuits with Free-XORs so that generation can be entirely paral-
lelized on the GPU. Prior works have parallelized the generation of
“layers" of the circuit, but suffered from inherent data dependen-
cies that prevented parallelizing the generation of the entire circuit
due to the Free-XOR optimization technique. By default, garbled
circuits are not designed to be optimal for GPUs and SIMD compu-
tation when using the Free-XOR technique because this technique
creates dependencies in XOR gate chains. A principle contribution
of this work is to fix this issue at the protocol level; we are the first
implementation to do so and our experimental results validate the
benefits of the approach. Our resulting GPU-based implementa-
tion provides significant improvements in circuit generation speed,
compared to all previous constructions, both those using GPUs and
those that do not. We provide a more detailed explanation of our
system in Sec. 7 and additionally discuss implementation issues
for the GPU and some simple optimizations to implementations of
SHA1.

Next we see that for our security models the evaluation of cir-
cuits on a relatively simple CPU implementation outperforms our
GPU implementation. Therefore, any system in which the GPU is
going to be used to maximal capacity for evaluation is going to need
to improve the ability to fully parallelize evaluation. Specifically,
evaluation of a garbled circuit has an inherent data dependency be-
tween layers; one cannot evaluate layer i of the circuit without hav-
ing first evaluated all the gates which it depends on layer i − 1. A
strong deployment will need to have a finer understanding of de-
pendency that allows for gates in higher levels to be evaluated (if
possible), before all lower level gates are evaluated. Further, our
experiments suggest a reasonable architecture for Yao circuits in
the HbC and 1bM models may also involve a hybrid approach: use
the GPU for generation and verification and then splitting evalua-
tion between the CPU and GPU.

Overall our performance results are better or comparable to the
other state of the art implementations, with results varying on the
facets of circuit generation or evaluation considered. We show we
can generate gates using the GPU significantly faster than the only
other GPU implementation of Yao’s [5], and on a per system basis
we can generate and evaluate gates on CPUs faster than Kreuter
et al. [15]. Specifically, on similar top-end hardware from 2013,
our system can generate roughly 74 million gates/sec, whereas [5]
achieves 21 million gates/sec and Kreuter et al. achieves 0.35 mil-
lion gates/sec.

1.2 Roadmap
In Section 2 we present related work. Section 3 gives a brief

overview of the different security models discussed in the paper,
and of Yao’s protocol and its variants. In Sections 4 and 5 we briefly
introduce and discuss some of the architectural issues in GPU de-
velopment and multi-core CPU development respectively. In Sec-
tion 6, we discuss how the different security models induce differ-
ent architectural approaches to accommodate the different types of
parallelism in the underlying protocols and the resources they use.
In Section 7 we detail how our system works, and our modifica-
tion to the Free-XOR technique that allows for faster circuit gen-
eration. In Section 8, we provide experimental results validating
our claims. Section 9 gives conclusions and discusses our current
directions with this work.

2. RELATED WORK
Malkhi et al.[18] describe the first secure multi-party scheme im-

plementing garbled circuits in the Fairplay system. Their system
uses a custom circuit definition language called SFDL compiled
into a machine-readable representation language called SHDL.

The first paper to consider the feasibility in practice of these
schemes was Pinkas et al. [22], who implemented the first Free-
XOR scheme [13] and OT Extension, and introduced the notion
of Garbled Row Reduction to save communication costs. They
also considered all modern security models. Huang et al. [8] im-
proved Pinkas’ et al.’s performance by utilizing a number of en-
hanced construction techniques for garbled circuits including Free-
XOR, oblivious-transfer extension [11], the Naor-Pinkas OT pro-
tocol [20], and introducing the notion of pipelined gate generation
and evaluation. The system still used serial gate generation and
evaluation, but the authors showed the potential performance ben-
efits of well-crafted circuits. Finally, the scheme was implemented
in Java which is highly portable, but suffers from the need to be run
through the virtual machine.

Pu et al. [23] gave the first implementation of Yao’s circuits us-
ing a GPU. However, their implementation only used the GPU as
a cryptographic co-processor to calculate symmetric encryptions
(i.e. 3DES) and elliptic curve operations. They do not attempt
to use the GPU to actually build or evaluate any of the garbled
circuits. The system does not implement any of the modern algo-
rithmic advances in garbled circuits such as Free-XORs, Pipelin-
ing, OT-extension, etc. The implementation is in the HbC security
model.

Kreuter et al. [15] presented the first garbled circuit protocol
that is secure against malicious adversaries and can scale to handle
circuits with several billion gates. They implement all of the mod-
ern efficiency improvements to Yao’s protocol, such as Free-XOR,
Pipelining, OT-extension, etc. They also introduced a circuit com-
piler that translated C-like code into circuits and both the compiler
and Yao’s system could scale to handle several billion gates.

Huang et al.[9]present the first efficient protocol and implemen-
tation of Yao’s in the 1BM model suggested by Franklin and Mo-

461

Approved for Public Release; Distribution Unlimited.

hassel [19], but do not consider a parallelized implementation. They
implement the Free-XOR technique, garbled row reduction and
pipelining.

Frederiksen and Nielsen [5] have recently implemented Yao’s on
the GPU in the malicious model. Unlike the work in [23], they use
the GPU not only to compute cryptographic primitives efficiently,
but to generate and evaluate the circuit. They also implement mod-
ern efficiency improvements such as Free-XOR, garbled gate row
reduction, OT extension. They do not implement pipelining.

Our approach is similar to the latter two works in that we ex-
ploit the parallel nature of certain subproblems of garbled circuits.
However, we target the HbC and 1BM security models and thus
the protocols we are implementing have less inherent parallelism.
This is because the malicious model adds another layer of an in-
herently parallelizable protocol. Thus Kreuter et al. accelerate the
cut-and-choose technique in the malicious model by giving each
thread (i.e., processor) a circuit. They use a large compute clusters
with hundreds of nodes to run their system. In particular, their MPI
implementation is optimized for a specific type of cluster. Their
code assumes the cluster’s scheduler allocates work at the granu-
larity of processors. Modern, high-end super computing clusters
schedule at the granularity of nodes thus will not work optimally
with their code. Similarly, Frederiksen and Nielsen also generate
each copy of a circuit’s gate in the cut-and-choose protocol on a
separate GPU core.

In contrast, our system parallelizes the generation of circuits
themselves, thus each core generates distinct gates of the circuit.
Indeed, doing so requires changes to the protocol itself, but nonethe-
less, our systems are highly complementary, and a garbled circuit
implementation that is a hybrid of our techniques could provide
high performance. Further, because of the differences in the proto-
col, communication overhead in the HBC or 1BM security model
is approximately 2 orders of magnitude less than these two prior
works. This means that circuit generation and evaluation times are
of prime importance, as compared to communication overhead as
Frederiksen and Nielsen observe for the malicious model.

While there are competing approaches for constructing two-party
secure computation protocols, it appears that the Yao garbled cir-
cuits approach is currently one of the fore-runner’s in performance,
although the recent SPDZ system of Damgard et al.[3] performs
efficiently on some forms of circuit (such as, importantly, AES).
Still, Major questions remain on how to optimize Yao’s garbled
circuits for speed depending on different compute models, and dif-
ferent security models. Solutions have currently focused on four
approaches: i) Implementation Optimizations (Parallelism, pipelin-
ing), ii) Security Model Compromises (Hybrid Model), iii) Con-
struction Optimizations (Free-XOR technique, OT Extension), and
iv) Compiler Optimizations (Maximize XOR gates, minimize gate
counts). This work focuses on implementation optimizations us-
ing the current best security model optimizations, construction op-
timizations, and compiler optimizations from the state of the art
work. Specifically, we focus on parallelizing the generation and
evaluation of garbled circuits so as to perform well on single ma-
chines with GPUs.

3. BACKGROUND
We (briefly) review Yao’s garbled-circuit approach to secure com-

putation [25], and the respective security models of interest: honest-
but-curious (HbC), malicious, and one-bit leaked malicious (1BM).

Garbled circuits provide a way for two parties, holding inputs
x and y respectively, to compute an arbitrary function f of their
inputs without revealing anything to either party other than the re-
sult f(x, y). At a high level, the idea behind the base protocol

is that one party—the garbled-circuit generator—prepares an “en-
crypted” version of a boolean circuit for f (the garbled circuit) and
sends it, along with an “encryption” of its input (say, x), to the
second party. This other party—the garbled-circuit evaluator—
obtains some additional information from the garbled-circuit gen-
erator (this information depends on the evaluator’s input y), and
then obliviously computes the output value f(x, y) without learn-
ing the values on any intermediate wires of the circuit.

Security Models.
In the honest-but-curious model, both parties execute a proto-

col correctly, but the parties are willing to try and extract any extra
information they can from protocol execution in other external pro-
cesses. Thus, informally, a secure protocol must ensure that no
extra information other than the output can be extracted or deduced
in polynomial time from the protocol transcripts. A secure protocol
in the malicious model is one that ensures the same even when an
adversary deviates arbitrarily from the protocols specification. The
prior two models apply rather generically to many cryptographic
protocols. The final model is the one-bit-leaked malicious model.
A secure computation protocol is secure in this model, if it is secure
against malicious adversaries with the relaxation that an arbitrary
predicate of the private inputs can be leaked to the adversary during
any execution. Formal definitions of each of these models can be
found in [6, 9].

All three of the models have legitimate practical scenarios. For
example, hospitals might, in order to preserve privacy as dictated by
law, determine if they have patients in common using the honest-
but-curious model. Whereas, its use to securely compute in the
presence of an adversary, such as a nation’s intelligence bureau,
would require malicious security. Companies might use secure
computation in the one-bit-leaked malicious model, when the com-
putation is not repeated frequently, and when no bit of the data is
particularly valuable.

Yao’s Protocol for the Honest-but-Curious Setting.
Given a boolean circuit for f (pre-agreed upon by the parties),

the circuit generator chooses two random cryptographic keys W 0
i ,W

1
i

for each wire i of the circuit. (The semantics are that W 0
i encodes

a 0-bit on the ith wire, while W 1
i encodes a 1-bit.) In addition, for

each wire i he chooses a random permutation bit πi, and assigns
key W b

i the label λb
i = b ⊕ πi. Next, for each binary gate g of

the circuit, having input wires i, j and output wire k, the circuit
generator computes a garbled gate consisting of the following four
ciphertexts (in order):

Encg
W

πi
i ,W

πj
j

(
W

g(πi,πj)

k ‖λg(πi,πj)

k

)

Encg
W

πi
i ,W

1⊕πj
j

(
W

g(πi,1⊕πj)

k ‖λg(πi,1⊕πj)

k

)

Encg
W

1⊕πi
i ,W

πj
j

(
W

g(1⊕πi,πj)

k ‖λg(1⊕πi,πj)

k

)

Encg
W

1⊕πi
i ,W

1⊕πj
j

(
W

g(1⊕πi,1⊕πj)

k ‖λg(1⊕πi,1⊕πj)

k

)
,

where EncgW,W ′(m) denotes symmetric-key encryption of plain-
text m using two keys W,W ′. In our implementation, we define
encryption as

EncgW,W ′(m) = H(g‖W‖W ′)⊕m,

where H represents a cryptographic hash function (SHA1) whose
output is truncated to the length of the given plaintext. The set of
all the garbled gates constitutes the garbled circuit that is sent to the

462

Approved for Public Release; Distribution Unlimited.

evaluator. In addition, the circuit generator sends the permutation
bit πi for any output wire i of the circuit.

To evaluate the garbled circuit, the circuit evaluator must obtain
keys for each input wire of the circuit; specifically, if the input bit
on some input wire i is bi, then the evaluator should be given the
key W bi

i along with the label λbi
i . (Furthermore, for each input

wire it should get only that key.) For input wires that correspond to
the input of the circuit generator, x, this can easily be arranged by
simply having the generator send the appropriate key/label for each
such wire. The parties can use oblivious transfer [6] to allow the
evaluator to obliviously learn the appropriate keys/labels for input
wires that correspond to its own input, y.

Given keys/labels Wi, λi and Wj , λj associated with the input
wires i, j of some gate g, the evaluator can compute a key/label for
the output wire of that gate by decrypting the ciphertext in position
(λi, λj) of the garbled table for g. Proceeding in this way through
the entire (garbled) circuit in topological order, the evaluator can
compute keys/labels for each output wire of the circuit. Using the
permutation bits sent to him by the circuit generator, this means
that the evaluator can determine the actual bit output of the circuit.
If specified as part of the protocol, the evaluator can send that result
back to the other party.

The crucial point for our purposes is that generation of all the
garbled gates can be done in parallel once the wire keys and per-
mutation bits have been chosen. Further details, along with a proof
of security, can be found in [17].

Malicious Security Model: Cut-and-Choose.
There are several known ways to modify Yao’s protocol to the

malicious model, but the only one that has been implemented and
deemed practical is the cut-and-choose approach. Here the circuit
generator creates not one ‘encrypted’ circuit, but ≈ k ‘encrypted’
copies of the circuit (where k is a security parameter). The gen-
erator sends the k encrypted circuits (without the encryption of its
input to the generator). The evaluator now chooses ≈ 60% of the
circuits to be revealed, at which point the generators gives all the
information necessary to generate the circuit to the evaluator who
then verifies that all the circuits are legitimate implementations of
the correct circuit for f . If not, the evaluator quits. If so, the evalu-
ator asks for the “encrypted” inputs to the remaining ≈ 40% of the
circuits, and computes the output. The evaluator takes as its output
the majority output of the many evaluated circuits. The argument
for the security of this protocols is beyond the scope of this paper
but can be found in many places (cf. [24]).

One Bit Leaked Malicious Model.
In this model, the protocol is modified so that each party plays

both the role of generator and evaluator. Each party generates a
circuit and sends it to the other, which in turn evaluates it. After
this is done, a specialized protocol that is secure in the traditional
malicious model does a secure function evaluation to ensure that
the outputs of both evaluated circuits are the same. A specialized
and efficient protocol (both in computation and communication) for
verifying the equality of outputs in the malicious security model is
given by Huang et al. [9].

4. GPU COMPUTING AND CUDA
Modern GPUs are massively parallel computational devices, but

differ from modern multi-core CPUs in significant aspects. In this
section we provide a brief overview of their architecture. Com-
munication to and from the GPU occurs over the system PCI bus,

which is substantially slower than the regular communication path
between RAM and the CPU on a modern machine.

Anatomy of a CUDA GPU.
The smallest execution unit on a CUDA1 GPU is called a stream-

ing processor (SP), or CUDA core, which is capable of executing
an independent thread. These cores are not equivalent to CPU cores
but more equivalent to lanes on a vector processor. An SP has ac-
cess to local memory and registers. Multiple SPs are combined to
construct one Streaming Multiprocessor (SM). The number of SPs
located in an SM, and complexity of the SM depend upon the GPU
hardware generation. Every NVIDIA GPU has multiple SMs.

SMs are in charge of scheduling work to their SPs. SM’s re-
ceive work in the form of thread blocks. Thread blocks can contain
a number of threads defined by the programmer at run time. The
SM then splits these thread blocks into groups of 32 threads called
warps. Each warp is run on a set of 32 SPs. Each thread in a warp
executes one common instruction at a time thus warps are akin to
32-wide vector processors. To ensure every thread is executing the
exact same instruction, each thread in a warp must execute the exact
same branch in program flow. If different threads need to run dif-
ferent branches, the GPU serializes them by having the appropriate
threads execute the branch, while non-branching threads’ proces-
sors sit idle. When such a divergence in execution occurs between
threads in a warp it is termed warp divergence. To get full efficiency
from the GPU it is essential that programs be written so that they
can be broken down into warps where all threads execute the same
instruction, and there is little to no conditional branching that does
not affect all the threads in the same manner. This is the Single
Instruction Multiple Data (SIMD) paradigm for parallel program-
ming, where the same instruction is applied to multiple pieces of
data at a time.

Also note that a given SM might be concurrently executing mul-
tiple warps via “hyper-threading”. If one warp is waiting on mem-
ory access or some other condition, the SM may start to execute
another warp. There is little to no cost in time for this context
switching, however it does mean that local resources such as regis-
ters and local memory need to be shared between these warps.

Relative Speeds of Memory and CPU-GPU bandwidth.
GPUs must deal with latency issues caused by transferring data

from the host machine to the GPU and vice-versa. Transfer rates
between the host and GPU are ≈ 8GB/s over the PCI-E bus when
the GPU is on a PCIe card. The transfer rates are orders of magni-
tude slower than the GPU’s theoretical compute throughput. Mem-
ory transfer on-board the GPU is several orders of magnitude faster
than the bus (e.g., global memory on a Tesla card transfers at 177.6
GB/s). Therefore, high performance requires minimizing memory
transfers and the communication between the GPU and CPU, and
maximizing the local computation performed on the GPU. Differ-
ing types of memory on the GPU, including global, shared, local
(L1, L2 cache), and registers, also operate at varying speeds and
thus create a memory hierarchy on the GPU mirroring that on a typ-
ical machine. Kernels must optimize the use of local registers and
shared memory while dealing with the extremely limited resources
of each. Register dependencies, such as when a read directly fol-
lows a write to the same register, can also increase latency. Thus
we want to maximize register usage to increase speed, however
any particular thread also wants to minimize usage so that a SM

1By CUDA (Compute Unified Device Architecture) we mean an
NVIDIA GPU that supports NVIDIA’s CUDA programming envi-
ronment. The most commonly developed for GPU.

463

Approved for Public Release; Distribution Unlimited.

can “hyper-thread” multiple warps, if any of them are latent due
to memory fetches or other reasons. These conflicting goals make
register usage a complicated trade-off in GPU programming.

5. MULTI-CORE CPU VS CLUSTERS
For our CPU based circuit evaluation system, we use local par-

allelism to take advantage of the multi-core environment found on
modern day CPUs. This is in contrast to the different, if not compli-
mentary, approach taken by Kreuter et al. [15], who take advantage
of the parallelism available on multi-node compute clusters. We
discuss the different technological approaches next.

MPI and OpenMP.
OpenMP and MPI (Message Passing Interface) are both com-

peting and complementary standards for parallelization in High
Performance Computing (HPC). OpenMPI is currently a dominant
MPI implementation but is not related to OpenMP beyond being a
parallelization technology.

MPI is a message passing technology that enables “scale-out”
parallelism on multi-device compute clusters, such as super com-
puting clusters. The developer defines an MPI process that is launched
many times on many different compute nodes. These MPI pro-
cesses are able to pass messages between one another when they
need to share computation. It works best for large jobs on large sys-
tems, as each MPI process incurs large overhead. MPI requires that
any machines running MPI code have an MPI implementation’s ex-
ecutables installed, for example, Open MPI’s libraries and executa-
bles.2 OpenMPI is the technology used by Kreuter et al.[15].

In contrast, OpenMP is an HPC technology designed for “scale-
up” parallelism on a single machine. It is a standard that is built
in to compilers such as GCC and includes a small driver library.
Developers use OpenMP to easily create many lightweight threads
with minimal syntax compared to traditional POSIX thread imple-
mentations. Unlike POSIX threads, OpenMP is optimized for a
data parallel programming paradigm and not a task parallel pro-
gramming paradigm. Data parallelization is akin to the SIMD (Sin-
gle Instruction Multiple Data) paradigm and task parallelization is
akin to the MIMD (Multiple Instruction Multiple Data) paradigm.
OpenMP is the technology we use for our parallel multi-core CPU
evaluation scheme.

6. SECURITY MODEL INDUCED ARCHI-
TECTURE TRADE-OFFS

While GPUs gain with massive parallelism, they lose in terms of
algorithmic flexibility. Programmers must specify the logical allo-
cation of their threads in terms of thread blocks, and these thread
blocks affect physical GPU allocation. If this logical allocation is
poor (e.g., setting thread blocks to have one thread) then poor per-
formance follows, as many cores in a SM sit idle while a single
core computes the thread. We compare the architectural approach
of Frederiksen and Nielsen [5] and Kreuter at al. [15] given their
malicious model implementations, and our approach in the HbC
and 1BM security models. Recall that in the cut-and-choose ma-
licious implementation the generator must generate ≈ k circuits
while the evaluator will evaluate some 40% of those circuits, and
verify the remaining 60% to ensure they were properly constructed.
In the HbC case the generator must generate only one circuit and
the evaluator must evaluate only one circuit. In the 1BM case, each
party must generate and evaluate one circuit.

2http://www.open-mpi.org/software/ompi/v1.6/

Similarity between HbC and 1BM.
Implementation details between HbC and 1BM protocols are

generally identical as the resources they need are very similar. The
1BM protocol differs in only requiring one more circuit genera-
tion and one more circuit evaluation than that of the HbC protocol.
Therefore, we address both protocols in our discussion as if they
were the same model.

Communication Differences.
One immediate observation is that in the malicious model, rea-

sonable values of k might vary between 60 and 120, and thus the
number of circuits that need to be transferred between the two
agents in the protocol 40% of this, 3 compared to the one or two
circuits that need to be transmitted our protocols. Frederiksen and
Nielsen show that in their protocol with varying security parame-
ters, that communication costs dominate, often by a factor of 3 to 4
times the generation or evaluation times. This is not by enough that
one should expect them to dominate in the HbC or 1BM scenario
we implement. Further, recent advances in the cut-and-choose method-
ology by Lindell [16] and optimizations that Frederiksen and Nielsen
did not implement [24], further reduce the communication burden.4

Finally, Frederiksen and Nielsen also increase the circuit-size to
include a universal hash of the inputs, and there are alternate ap-
proaches that will not increase the circuit size which can be con-
sidered. Therefore, we can consider optimizations that disallow
the garbled row-reduction methodology, and also slightly increase
communication for the sake of efficiency.

Malicious Cut-and-Choose and the GPU.
Cut-and-choose protocols must generate k circuits at a time. In-

stead of having each thread represent a gate, in cut-and-choose each
thread represents one of the k circuits and the thread block is used
to represent an individual gate. Thus, each thread block contains k
threads and each thread deals with the generation of a specific gate
for each of the k circuits. One can then allocate the same num-
ber of thread blocks as there are gates in the circuit to the GPU.
As each thread block will always have threads processing the same
gate type, there is no fear of warp divergence. The only caveat is
the thread block size, and thus the cut-and-choose security param-
eter, should be a multiple of 32 for optimal GPU allocation (again,
the SMs allocate 32 threads at a time). Levels are evaluated in turn,
but this is less problematic to performance, circuit widths are effec-
tively multiplied by k, meaning the GPU spends little relative time
idle waiting for a level to complete before the next is started. Eval-
uation occurs in a similar manner, but must use the level-by-level
process that was used in semi-honest evaluation. For each level
there will be a thread block for each gate in that circuit’s level and
each thread block will contain k threads. We note this is exactly
the approach taken by Frederiksen and Nielsen [5].

Honest-but-Curious and One-Bit Malicious.
The previous description of a successful approach to placing cut-

and-choose on the GPU should make it clear why the same ap-
proach is inefficient for the semi-honest case (and similarly the
1BM case). If only one circuit is being generated or evaluated, each
thread block will contain only one thread, and only one thread will
be allocated by the SMs on the GPU for each gate leaving 31/32

3It is known that only the circuits that are being evaluated need
to be transferred as noted in [7], as it suffices to communicate a
collision resistant hash of the verified circuits.
4In practice Frederiksen and Nielsen evaluate 50% of the circuits.

464

Approved for Public Release; Distribution Unlimited.

SPs in a warp dormant (meaning the vast majority of GPU cores
are consistently going unused).

We describe our approach to implementing HbC and 1BM on
the GPU. For simplicity we will assume the circuit we are generat-
ing and evaluating fits in GPU memory, although our approach is
not limited in this fashion. As we are only concerned with a single
circuit, we will pass the whole circuit description to the GPU for
generation and evaluation. In the case of generation, each thread
represents a single gate in the circuit and the number of threads al-
located are the number of gates in the circuit. The size of a thread
block does not matter for the HbC or 1BM case, although for effi-
ciency it should be a multiple of 32 (the physical thread allocation
count by the SM). We can handle XOR gates with one kernel and
all other truth table gates with another kernel. The latter essen-
tially always make a blank truth table, and the converts it to the
appropriate type by changing each line of the table to describe the
appropriate operator. However, to construct a truth table gate one
needs to have knowledge of its input wires’ labels. This too can
seemingly be solved because we can pseudo-randomly generate a
wire’s labels based on the wire’s identifier, but this conflicts with
the Free-XOR technique (as described in the next section). We
modify the Free-XOR technique at the cost of a small amount of
extra communication, and allow all gates in the circuit to be gener-
ated in parallel, independent of the level on which they reside.

Evaluation needs to occur on a level-by-level basis to honor data
dependencies between gates. Again,we would have two kernels for
evaluating the two types of gates, truth table and XOR. Consider
what happens when evaluating the end of a level: it is likely that
many symmetric processors will sit idle waiting for the level to
be completed, as there are no more gates on the current level, say
i − 1, to evaluate, but they cannot commence processing the level
i gates until the last few gates on level i − 1 are evaluated due to
potential dependency issues. The narrower a level is, the larger
the inefficiency if many of the GPU’s cores need to lay latent why
completing the level. Logic to check for dependencies is likely
to cause divergence, and latency problems. Therefore, for circuits
which are not wide, the relative amount of time that is spent by the
cores being idle at the end of a level can be quite large. In the cut-
and-choose approach, the fact that there are k copies of each circuit
has the effect of essentially multiplying the width of each circuit by
k, making the issue far less problematic. Of course, for particularly
large and wide circuits, this should not cause much of an issue for
the HbC or 1BM implementations.

7. ARCHITECTURE & METHODOLOGY
Several optimizations of Yao’s garbled-circuit protocol have been

proposed, but it is not clear how all of them can be efficiently imple-
mented in a massively parallel system. Here we discuss the major
techniques and our approach to implementing them. As a start-
ing point, we implement the folklore “single row evaluation" tech-
nique already described in the description of the Yao protocol in
Section 3. This optimization, created by [18], decreases evaluation
time on encrypted gates by roughly a factor of 4.

On the other hand, one popular technique for reducing the size
of garbled tables by 1/4, called Garbled-row reduction [21], is not
implemented as any such implementation would seem to slow exe-
cution on a SIMD parallelization.5 The benefit of this approach is
5There are two issues: i) wires in level i+1 of the circuit will now
depend on the gates in level i, making parallel generation of the
circuit difficult; and ii) during evaluation, about a 1/4 of the cores
evaluating encrypted gates would evaluate to the missing row, and
require different code than is required for the remaining 3/4 of the
cores (causing warp divergence).

that it reduces communication by 25%, but as discussed our secu-
rity models prompts us to be less concerned about communication
costs and more about gate generation and evaluation timings.

7.1 Selection of the Random-Oracle/Permutation
Function

The Yao-garbled circuit technique relies on symmetric encryp-
tion. In most modern implementations the symmetric encryption is
provided via a random oracle instantiated by a cryptographic hash
(SHA1). Recent work by Bellare et al. [1] has also considered the
use of a Random Permutation that can be instated with fixed key in
a block-cipher such as AES. In our implementation, we choose the
SHA1 function for this purpose. Jang et al. [12] showed that AES
had substantially slower throughput than SHA1 on GPU architec-
tures. We have not had the chance to consider an optimized version
of AES with a fixed key, as suggested in [1], and this should be
investigated. We experimentally tested BLAKE256, a SHA3 final-
ist, which also had a slower throughput on the GPU than SHA1,
when both are given inputs that require the same number of rounds
of Merkle-Damgard.Our implementation of SHA1 is a hand opti-
mized version of the John the Ripper implementation of SHA1.6 In
particular, we are able to reduce the number of rounds we typically
need to calculate in SHA1 by judiciously choosing the values we
hash. As others have done, we ensure that we never need to hash
more than one block of data. However, by ensuring that the prefix
of the values we hash for a given circuit remain relatively constant,
we can pre-compute the first few rounds of SHA1 for each query
in generating or evaluating a circuit. This allows us to knock off
either 6 or 14 rounds (out of the 80 rounds) of each SHA1 call. We
also note that to allow an SM to be able to “hyper-thread”, we need
to be miserly with our use of registers in this code. Profiling clearly
shows that hand optimization of the SHA1 code is a worthwhile en-
deavor.

7.2 GPUs and Free-XOR
One main challenge in this work is to develop a version of the

Free-XOR technique that is compatible with parallelization. We
begin by describing the technique.

The Free-XOR technique [13] allows XOR gates in the circuit
to be evaluated using only a bit-wise XOR operation instead of
the standard garbled-gate evaluation. In this approach, the circuit
generator chooses a global random offset R, and then ensures that
the keys for every wire i in the circuit satisfy W 0

i ⊕ W 1
i = R.

This is usually done by choosing keys for each wire i in the circuit
that is not the output of an XOR gate by sampling W 0

i at random
(as before) but then setting W 1

i = W 0
i ⊕ R. For k an output wire

of an XOR gate with input wires i, j, the evaluator sets W 0
k =

W 0
i ⊕W 0

j and W 1
k = W 0

k ⊕ R. Note that if the circuit evaluator
holds input-wire keys Wi,Wj associated with the input wires to an
XOR gate, he can compute the corresponding key for the output
wire k of that gate as Wk = Wi ⊕ Wj . Thus, no garbled tables
need to be prepared or sent for such gates.

We modify this technique to permit efficient parallel gate gener-
ation. In particular, note that when the circuit alternates between
non-XOR gates and XOR gates in the ‘encrypted’ circuit, this cre-
ates a dependency amongst wire-labels that would require gates to
be generated in leveled order. This is because the output wire labels
from the first XOR gates on level i−1 need to be computed for use
as the input wires on level i. This creates a dependency regardless
of whether or not the gates on level i are XOR or truth tables.

Our modification operates by first virtually generating the labels
(Sec. 7.3) for all wires in the circuit, even if the wire is the output
6John the Ripper is a brute force password hashing software suite.

465

Approved for Public Release; Distribution Unlimited.

wire from a XOR gate. This differs from the original Free-XOR
technique which does not randomly generate labels for XOR gate
output wires. Then, after wire label generation, during the gener-
ation of XOR gate i, we calculate a label offset (Vi) and a p-bit
offset (Pi) that is unique for XOR gate i in the circuit. In the orig-
inal Free-XOR technique it is at this point where an XOR gate’s
output wire labels would be generated. Instead, we make use of Vi

and Pi to modify our XOR gate to our previously generated wire
label and p-bit. The V and P values for every XOR gate can be
calculated in parallel on the GPU. Our scheme adds two bitwise
XOR operations to XOR gate generation, but this increased over-
head is minuscule compared to locating every XOR gate chain and
then serially computing each gate in the chain. The calculation of
our V and P values during generation are as follows:

1. For each XOR-Gate Gi with wires Wc = XOR(Wa,Wb)
where Wa = [〈k0

a, p
0
a〉, 〈k1

a, p
1
a〉], Wb = [〈k0

b , p
0
b〉, 〈k1

b , p
1
b〉],

Wc = [〈k0
c , p

0
c〉, 〈k1

c , p
1
c〉], and tuple [Vc, Pc]:

(a) Set value Vc = k0
a

⊕
k0
b

⊕
k0
c for wire WC

(b) Set value Pc = p0a
⊕

p0b
⊕

p0c for wire WC

The use of V and P during evaluation are as follows:

1. For each XOR-Gate Gi with wires Wc = XOR(Wa,Wb)
where Wa = 〈ka, pa〉, Wb = 〈kb, pb〉, and tuple [Vc, Pc]:

(a) Compute garbled output value WC = 〈kc, pc〉 which
is equal to 〈ka

⊕
kb

⊕
Vc, pa

⊕
pb

⊕
Pc〉

Communication Costs:As discussed, this modification increases
the communication costs by adding an extra ‘key’ for each XOR
gate in exchange for significant parallelized speed improvements.
This modification is also incompatible with the Garbled Row Re-
duction (GRR) optimization [10], which performs more computa-
tion in exchange for less communication because GRR also induces
a dependence on a circuit’s wire labels.

7.3 GPU Wire Creation and Gate Generation
Our system implements garbled circuit generation on the GPU

in parallel. We first note a method of virtually generating all label
pairs and permutation bits 〈k0

a, p
0
a〉, 〈k1

b , p
1
b〉 for every wire in the

circuit. Because of the memory hierarchy, one does not wish to
generate all of the keys associated with labels initially, as the costs
of moving and storing these keys in memory is substantial. Instead,
we use wire indexes from the circuit description (which are much
smaller than cryptographic keys), as inputs to a pseudo-random
function generator (PRFG), which outputs the labels for a given
wire. Specifically, we output k0

a = Fs(a) and k1
a = Fs(a) ⊕ R

for a PRFG F with a circuit specific seed s and the global Free-
XOR offset R. The permutation bits are handled similarly. Note
that wire-labels are not actually precomputed, but rather only vir-
tually assigned, and computed when constructing the gates that are
attached to a given label, for implementation optimization reasons.

7.4 GPU Evaluation
The entire circuit cannot be evaluated in parallel on the GPU.

The gates in the circuit must be topologically sorted, and then eval-
uated. That is, the circuit must be broken into smaller sub circuits
such that each subcircuit S has a start gate level Gs and end gate
level Ge.

Our API starts GPU evaluation by iteratively transferring sev-
eral consecutive levels of truth tables and XOR gates to the GPU’s
memory, and then evaluating them. The next grouping of levels
can be asynchronously transferred to the GPU while the previous

grouping of levels is being evaluated. At each level a separate ker-
nel must be used to evaluate XOR and truth table gates.

CPU Evaluation.
Besides GPU Evaluation of garbled circuits we also implemented

system to evaluate garbled circuits on the host both serially and in
parallel. Our parallel CPU implementation makes use of OpenMP
threads (cf. Sec. 5). The CPU parallel and serial evaluation work
using the similar process as GPU evaluation, but importantly CPU
evaluation does not need to perform any data transfers. The CPU
evaluation algorithm iterates over each circuit level in the same
manner as GPU evaluation. Serial CPU evaluation will iterate seri-
ally over each gate in a level and evaluate it. The parallel CPU eval-
uation algorithm iterates over gates in a level in parallel, where they
are divided up equally among all available threads on the machine.
Thus if a level contains N gates and the machine has t threads, each
thread will process N

t
gates. No balancing is done to try and ensure

a consistent mix of XOR and truth table gates, as the overheard was
deemed higher than the benefit. Given CPUs are MIMD processors
there is no need to worry about divergent branches, thus parallel
evaluation on the CPU is a more straightforward process.

8. RESULTS
In this section, we present several experiments that support the

main claims of this paper and give data on GPU circuit genera-
tion, GPU evaluation, and multi-core CPU evaluation. Given that
there are now several implementations in different security mod-
els, such as HbC, 1BM, and malicious security, it is clear a critical
metric to the performance of these systems is the number of gates
one can generate and evaluate per core per second. In the HBC
and 1BM security model, gate generation and evaluation are key,
as Huang et al.[9] also note. Frederiksen and Nielsen suggest that
communication is the fundamental limiting factor in the malicious
model, but we recall that there are are now several communications
improvements that will help to alleviate communication overhead,
as discussed in Section 6, which suggest that these metrics should
still be of some concern in the malicious model. We do not ad-
dress communication or its latency here, as it is not in scope of our
investigation on the use of different parallelizing technologies to
implement efficient and practical circuit generation and evaluation.
We discuss this in the Future Work section.

We show through experiment that circuit generation in the HbC
and 1BM security models can dramatically benefit from a combina-
tion of the fine-grained parallelization that has not been exploited in
prior works and our modification of the Free-XOR technique. Fur-
ther, it can easily be accommodated on SIMD-style architectures
such as GPUs. This applies to creating individual circuits, and can
be carried forward to many duplicates for cut-and-choose scenar-
ios, although the extra communications costs, and the availability
of other parallelization techniques in that model may make our ap-
proach for that security model less feasible: more experiments need
to be performed.

Finally, we show that circuit evaluation is more difficult to paral-
lelize for individual circuits, but can perform better in the cut-and-
choose scenario of malicious security.

8.1 Explanation of our Experiments and Data
Producing fair comparisons between different garbled circuit sys-

tems is currently challenging. In a perfect world we would execute
all systems on the same machine using the same circuit descriptor
files, and provide results. Unfortunately, we do not have access to
all of the systems and circuit description files necessary to do this.
We were able to get the Frederiksen and Nielsen [5] system work-

466

Approved for Public Release; Distribution Unlimited.

ing on two of our GPU systems for a direct comparison of our per-
formance to theirs. We do not have interchangeable circuit formats,
but we can provide comparisons on a per gate basis. Interestingly,
their system performs better on an older architectural generation of
GPU card then it was designed to function, so we compare their
best performance and ours on both generations of cards. Further,
since their implementation is in the malicious model, we cannot
simply compare execution times of their many cut-and-choose gen-
erations and evaluations with a single generation or evaluation on
our system. We took different AES circuits and “copy and pasted”
multiple independent copies into one file to simulate the workload
needed to generate or evaluate many copies of the circuit in the
cut-and-choose protocol, and then compare on a per gate basis.

In the case of Kreuter at al. [15], we have recently been able to
support generating and evaluating circuits form their most recent
compiler [14], allowing for comparison of generation between the
two systems on identical circuits, but we have not yet been able
to fully integrate their system with our pipelining code, so we can
only compile those circuits for which the entire final circuit fits on
the GPU at one time. Larger circuits that need to be broken up and
pipelined onto the GPU cannot yet be directly compared. For this
reason, the comparisons of our system halt in the experiments when
circuit sizes reach the maximal that will fit on the graphics cards.
We note that of our two systems, one system’s card has a newer
architecture than the other, and so can support slightly larger cir-
cuits. Unfortunately, we did not have access to a version of Kreuter
et al.’s system that would work on a non-clustered machine, so we
could not provide bare-metal side by side comparisons. Therefore,
in the case of Kreuter et al. [14], we take the results from their pa-
per and compare them with the same circuits on our machines. All
reported results from our experiments are the average of 100 runs.
Experiments from Kreuter at al. [14] report average results from
50 runs.

Most prior work in the area benchmarks the time it takes to gen-
erate and evaluate various circuits. This process indirectly bench-
marks the number of gates generated or evaluated per second. How-
ever, this is often run on systems with varying numbers of cores,
and to a lesser extent varying speeds. We report results on the av-
erage number of gates generated or evaluated per second per core.
We note this metric seems relatively stable, and thus we use it for a
near apples-to-apples comparison. Table 1 has details for the com-
parison systems. We note that even though EC2 has multiple GPUs,
only one is used in the results presented.7 EC2 is run on Amazon’s
elastic compute infrastructure, and is running under a Xen hypervi-
sor. Since we do not have direct access to the bare metal, we cannot
determine how much overhead the Xen hypervisor entails, but Xen
project benchmarks suggest, assuming appropriate kernel patches
have been applied, a 0-30% performance decrease [2].

8.2 GPU Circuit Generation
We ran circuit generation on the EC2 and Tie systems (cf. Ta-

ble 1). We first compare our results to those of Frederiksen and
Nielsen [5] in Fig. 1a. We remind the reader that we compare their
circuit generation times from experiments where they have similar,
but not identical circuits, due to the need to simulate the cut-and-
choose malicious protocol, and further, while we did have access to
their circuit file, we could not execute it directly as we do not sup-
port their file description language in our system, and their binary
file format was not conducive to easy translation. Thus, we show
in Fig. 1a that under similar workloads our scheme outperforms
theirs on the same hardware using the metric of gates generated per

7We discuss multiple GPUs in Sec. 9 with respect to future work

System CPU Core/ GHz Ram GPU
Thrd. (GB)

Kreuter et al. Xenon 4 2.13 8 N/A
[15] E5506
EC2 Xenon 8/16 2.93 24 Tesla

X5570 S2050
Tie Xenon 12/12 2 64 Tesla

E5-2620 K20

GPU Cores SMs GHz Memory Compute
(GB) Capability

S2050 (EC2) 448 14 1.15 2.7 2.0
K20 (Tie) 2496 13 0.71 4.8 3.5

Table 1: Benchmark system descriptions. EC2 runs a Xen virtual
machine.

second. Observe that we generate gates at about 2.3 times the rate
on the Tie system compared to Frederiksen and Nielsen on the EC2
system. Observe that we generate gates at about 3 times the rate on
the Tie system compared to Frederiksen and Nielsen. This is the
benchmark system, as Frederiksen’ and Nielsen’s code is targeted
at compute capability 3.X CUDA cards.

As the number of cores on systems can be highly variable, in
Fig. 1b we calculate the average rate of gate generation per core
for the two systems, to help with understanding performance on
other GPU cards with varying numbers of cores. Note that in the
benchmarks reported in Figs. 1a and 1b we have commented out
any code in our system necessary to split large circuits into smaller
sub-circuits so that they can fit onto the GPU, as Frederiksen and
Nielsen have no such corresponding code as they simply assume
the circuit will fit. Thus we are not penalized for computing over-
head that the other system also does not compute.

●

●

●

●
●

●

20 40 60 80 100 120

0
10

00
00

00
30

00
00

00
50

00
00

00
70

00
00

00

AES Comparison (No Pipelining)

AES Circuit Count/Security Parameter

G
at

es
 P

er
 S

ec
on

d

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)

(a)

●

●
● ● ● ●

20 40 60 80 100 120

0
50

00
0

10
00

00
15

00
00

AES Comparison (No Pipelining)

AES Circuit Count/Security Parameter

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)

(b)

Figure 1: 1a) Circuit gate generation rates of [5] vs. our technique
using fully parallelizable circuit generation. 1b) Gates generation
rate per multi-processor on differing circuit sizes.

Next, we considered a number of different circuit sizes from both
Kreuter et al.[14], and circuits that we have constructed. Given our
support of PCF we can compare the same circuits as are tested by
Kreuter et al.[14]. We see in Fig. 2, the absolute performance of our
system versus that of Kreuter et al. in terms of Gates per sec, and
then in Figs. 4a and 4b the relative performance per core. Note that
performance per core is relatively stable across medium-to-large
circuit sizes. Recall that our cores are substantially more abundant,
and have lower cost and energy usage that those of Kreuter et al.

467

Approved for Public Release; Distribution Unlimited.

Using the metric of gates per second we find our system, in the
case of generation, provides significantly higher generation rates:
approximately three orders of magnitude. Our system tops out at
around 75 million gates per second, while Kreuter et al tops out at
0.35 million gates per second. We note that their system is built
for cluster computing, and so they pay a significant overhead to
support it.

●

●●
●

●
●●

●

●
●

●

●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
00

00
40

00
00

00
60

00
00

00

Normalized Gate Generation

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(a) Gates Gen vs. Time

●
●●●

●●●
●

●● ●

●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Normalized Gate Generation

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(b) Gate Gen Per Core Per Sec vs. Gate Count

Figure 2: Gate Generation Times comparing to Kreuter et al.[14].

8.3 GPU Evaluation
While on generation we significantly outperform other systems,

we only comparable performance to the CPU evaluation techniques
of Kreuter et al. [15], and are slightly less efficient on a than the
current implementation by Frederiksen and Nielsen [5]. Results are
given in Fig. 3.

The advantage that the cut-and-choose protocol entails to parallel
evaluation, especially on the SIMD architecture, makes it difficult
for an HbC or 1BM model protocol to remain competitive. Our
evaluation problems seem to stem from two factors: i) It is difficult
to keep the GPU fully engaged in processing, due to the limited
width of any level of a circuit (recall level i of a circuit must be
evaluated before level i + 1); and, ii) The lack of memory coa-
lescence in our circuit evaluation data structure seems to impose
harsh time penalties on our circuit evaluation times, due to poor
poor memory read/write performance. Memory coalescence occurs
on a GPU when all the threads in a warp access adjacent memory
locations. Problem ii) is one we believe we can partially improve
upon in future work, although we doubt it is possible to achieve
the same levels as the cut-and-choose protocol permits (discussed
below). Problem i) is inherently more problematic for the HbC and
1BM security model protocols, as one can never have guarantees
that there are k identical copies of each gate to evaluate, nor do
we have the ability to naturally multiply the width of circuits by
a factor of O(k). For naturally large circuits, there may be some
hope.

Recall core utilization rates and memory coalescence are less of
an issue for Frederiksen and Nielsen: not only are they in fact com-
puting many copies of the AES circuit in the malicious model as
we are, but their evaluation algorithm is guaranteed of this fact.
This allows them several advantages when constructing kernels to
evaluate their circuits. In particular, they can solve the two prob-
lems above. First, they can construct a kernel for evaluating each
gate in a circuit, and they can evaluate gates from lowest level to
the highest. As long as these kernels are scheduled in a leveled
order—something easily done— the GPU need never sit with low
usage while waiting on kernels to complete a level. Second, since

●● ● ● ● ●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
0

40
00

0
60

00
0

80
00

0

GPU Evaluation Comparison

Evaluation Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)
Kreuter et al. (CPU)

(a) Comparing our GPU Eval Per Sec Per Core

●● ● ● ● ●

0 5000000 10000000 15000000 20000000 25000000

0
20

40
60

80
10

0
12

0

GPU Evaluation Comparison

Evaluation Circuit Gate count

Ev
al

ua
tio

n
Ti

m
e

(s
)

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)
Kreuter et al. (CPU)

(b) Comparing our GPU Eval Overall

Figure 3: GPU Evaluation Times with comparison to Kreuter et al.
[14], Frederiksen and Nielsen [5] and our GPU implementation.

the evaluation is guaranteed that it is executing multiple copies of
an identical circuit, it is easier to setup kernels that i) avoid warp
divergence, as warps will never process different gate types, and
ii)coalesce circuit data in the GPU’s global memory, by simply
storing each circuits data adjacent in memory. Note that both of
these solutions depend on the GPU taking advantage of multiple
identical copies of the same circuit executing.

We see that our GPU marginally outperforms Kreuter et al., sug-
gesting that they are paying a heavy price for using MPI on a single
machine (but of course, they are designed to run on large com-
pute clusters, and huge circuits where such performance penalties
should be amortized).

8.4 CPU Evaluation
Due in part to the seemingly structural problems of evaluation

on a SIMD GPU, we implemented a multi-threaded CPU evalua-
tion scheme in OpenMP. Results can be seen in Fig. 4. It is clear
that a MIMD architecture, such as a multi-core CPU will not suffer
from warp divergence or memory coalescing problems given their
advanced memory controllers and internal logic. A lack of warp
divergence removes the fear that large numbers of cores sit idle
while a level is completed is less of a problem. Also, we do not
need to create multiple distinct ‘kernels’ for different gate types,
nor worry that different cores are evaluating different gates. Simi-
larly, the fraction of cores that go unused while waiting for a level
to complete, as a total fraction of compute power will be smaller.

While we continue to under perform Frederiksen and Nielsen,
we improve over Kreuter et al, and show that their system is likely
to benefit from the inclusion of threading within their nodes on the
compute-cluster, as opposed to having all of the parallelism at the
node level.

9. CONCLUSION, LESSONS LEARNED, AND
FUTURE WORK

Given the ability of the GPU to generate large circuits (or large
numbers of circuits) efficiently, and the CPUs better performance
in evaluation, it seems that an implementation that aims to imple-
ment a cut-and-choose protocol, should do verification and gener-
ation on the GPU, and evaluation on the CPU in parallel. Sim-
ilarly, 1BM implementations should implement generation on the
GPU, and evaluation on the CPU. With appropriate pipelining these
would be done in parallel. The technique introduced which allows

468

Approved for Public Release; Distribution Unlimited.

●

●

●

●
●
●

●

●
●

●●

●
●
●

●

●
●

●
●

●

●●
●

●
● ●

●

●

●

●

● ●

0 2000000 4000000 6000000 8000000 10000000

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Evaluation Times Over Gate Count

Circuit Gate Count

Ev
al

ua
tio

n
Ti

m
e

(s
)

● Tie (CPU)
EC2 (CPU)
Kreuter et al. (CPU)
Frederiksen et al. (GPU)

(a) CPU System Gate Count Eval vs. Time

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

0 2000000 4000000 6000000 8000000 10000000

0
10

00
00

20
00

00
30

00
00

40
00

00

Normalized Gate Evaluation Per Second

Circuit Gate Count
G

at
es

 P
er

 S
ec

on
d

Pe
r C

or
e

● Tie (CPU)
EC2 (CPU)
Kreuter et al. (CPU)
Frederiksen et al. (GPU)

(b) CPU System Gate Eval per sec per core vs. Gate Count

Figure 4: Our Evaluation Times as implemented on the CPU with
comparison to Kreuter et al. [14] and Frederiksen and Nielsen [5] .

XOR gates to be generated in parallel greatly helps in the circuit
gate generation rate.

While we do not report the results here, we have initial work
showing there is potential for multiple GPUs to be used in a sin-
gle system to further speed generation and evaluation results, but
a more careful implementation must be done that carefully splits
work amongst the GPUs, and takes into consideration the single-
bus bottleneck, or card-to-card memory transfer. We plan to pursue
these directions as future work.

It is clear that in order for better performance comparisons to
be made in the future, there needs to be a test-bank of standard
circuits designed. They must be delineated in a standard file for-
mat that all future implementations can parse (although, they may
further process in this format). Currently, each implementation in
the field is rolling its own file format. The recent development of
MPCLounge aims to keep track of such circuits. Similarly, the
SCAPI project by Ejgenberg et al. will help in providing a long
term supported test environment [4].

10. ACKNOWLEDGEMENTS
The authors would like to thank the NSF and DARPA for fund-

ing, Jonathan Katz for discussion and aid on preliminary work, and
Tore Frederiksen and Ben Kreuter for aid with their systems.

11. REFERENCES
[1] BELLARE, M., HOANG, V. T., KEELVEEDHI, S., AND

ROGAWAY, P. Efficient garbling from a fixed-key
blockcipher. In IEEE Symposium on Security and Privacy
(2013), IEEE Computer Society, pp. 478–492.

[2] CAMPBELL, I. Baremetal vs. xen vs. kvm — redux.
http://blog.xen.org/index.php/2011/11/
29/baremetal-vs-xen-vs-kvm-redux/ (Nov
2011).

[3] DAMGÅRD, I., PASTRO, V., SMART, N. P., AND
ZAKARIAS, S. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO (2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of Lecture
Notes in Computer Science, Springer, pp. 643–662.

[4] EJGENBERG, Y., FARBSTEIN, M., LEVY, M., AND
LINDELL, Y. Scapi: The secure computation application
programming interface. IACR Cryptology ePrint Archive
2012 (2012), 629.

[5] FREDERIKSEN, T. K., AND NIELSEN, J. B. Fast and
maliciously secure two-party computation using the gpu.
Tech. rep., Cryptology ePrint Archive, Report 2013/046,
2013. http://eprint. iacr. org, 2012.

[6] GOLDREICH, O. Foundations of Cryptography, vol. 2: Basic
Applications. Cambridge University Press, Cambridge, UK,
2004.

[7] GOYAL, V., MOHASSEL, P., AND SMITH, A. Efficient two
party and multi party computation against covert adversaries.
In EUROCRYPT (2008), N. P. Smart, Ed., vol. 4965 of
Lecture Notes in Computer Science, Springer, pp. 289–306.

[8] HUANG, Y., EVANS, D., KATZ, J., AND MALKA, L. Faster
secure two-party computation using garbled circuits. In
USENIX Security Symposium (2011).

[9] HUANG, Y., KATZ, J., AND EVANS, D.
Quid-pro-quo-tocols: Strengthening semi-honest protocols
with dual execution. In Security and Privacy (SP), 2012
IEEE Symposium on (2012), IEEE, pp. 272–284.

[10] HUANG, Y., SHEN, C.-H., EVANS, D., KATZ, J., AND
SHELAT, A. Efficient secure computation with garbled
circuits. In Information Systems Security. Springer, 2011,
pp. 28–48.

[11] ISHAI, Y., KILIAN, J., NISSIM, K., AND PETRANK, E.
Extending oblivious transfers efficiently. Advances in
Cryptology-CRYPTO 2003 (2003), 145–161.

[12] JANG, K., HAN, S., HAN, S., MOON, S., AND PARK, K.
Sslshader: cheap ssl acceleration with commodity
processors. In Proceedings of the 8th USENIX conference on
Networked systems design and implementation (2011),
USENIX Association, pp. 1–1.

[13] KOLESNIKOV, V., AND SCHNEIDER, T. Improved garbled
circuit: Free XOR gates and applications. pp. 486–498.

[14] KREUTER, B., MOOD, B., SHELAT, A., AND BUTLER, K.
Pcf: A portable circuit format for scalable two-party secure
computation. In To Appear in USENIX Security 2013 (2013).

[15] KREUTER, B., SHELAT, A., AND SHEN, C.-H. Billion-gate
secure computation with malicious adversaries. In
Proceedings of the 21st USENIX conference on Security
symposium, Security (2012), vol. 12, pp. 14–14.

[16] LINDELL, Y. Fast cut-and-choose based protocols for
malicious and covert adversaries. In CRYPTO (2) (2013),
R. Canetti and J. A. Garay, Eds., vol. 8043 of Lecture Notes
in Computer Science, Springer, pp. 1–17.

[17] LINDELL, Y., AND PINKAS, B. A proof of security of Yao’s
protocol for two-party computation. 161–188.

[18] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y.
Fairplay—a secure two-party computation system. In
Proceedings of the 13th conference on USENIX Security
Symposium-Volume 13 (2004), USENIX Association,
pp. 20–20.

[19] MOHASSEL, P., AND FRANKLIN, M. K. Efficiency
tradeoffs for malicious two-party computation. In Public Key
Cryptography (2006), M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, Eds., vol. 3958 of Lecture Notes in Computer
Science, Springer, pp. 458–473.

[20] NAOR, M., AND PINKAS, B. Computationally secure
oblivious transfer. Journal of Cryptology 18, 1 (2005), 1–35.

[21] PINKAS, B., SCHNEIDER, T., SMART, N., AND
WILLIAMS, S. Secure two-party computation is practical.
pp. 250–267.

[22] PINKAS, B., SCHNEIDER, T., SMART, N. P., AND
WILLIAMS, S. C. Secure two-party computation is practical.
In Proceedings of the 15th International Conference on the
Theory and Application of Cryptology and Information
Security: Advances in Cryptology (Berlin, Heidelberg,
2009), ASIACRYPT ’09, Springer-Verlag, pp. 250–267.

[23] PU, S., DUAN, P., AND LIU, J.-C. Fastplay–a
parallelization model and implementation of smc on cuda
based gpu cluster architecture. Tech. rep., Cryptology ePrint
Archive, Report 2011/097, 2011. http://eprint. iacr. org,
2011.

[24] SHELAT, A., AND SHEN, C.-H. Two-output secure
computation with malicious adversaries. In EUROCRYPT
(2011), K. G. Paterson, Ed., vol. 6632 of Lecture Notes in
Computer Science, Springer, pp. 386–405.

[25] YAO, A. How to generate and exchange secrets. In
Foundations of Computer Science, 1986., 27th Annual
Symposium on (1986), IEEE, pp. 162–167.

469

Approved for Public Release; Distribution Unlimited.

Blackbox Construction of A More Than
Non-Malleable CCA1 Encryption Scheme from

Plaintext Awareness

Steven Myers
Indiana University

samyers@indiana.edu

Mona Sergi
University of Virginia
ms4bf@virginia.edu

abhi shelat
University of Virginia

abhi@virginia.edu
∗

Abstract
We construct a Non-Malleable Chosen Ciphertext Attack (NM-CCA1)

encryption scheme from any encryption scheme that is also plain-
text aware and weakly simulatable. We believe this is the first con-
struction of a NM-CCA1 scheme that follows strictly from encryption
schemes with seemingly weaker or incomparable security definitions
to NM-CCA1.

Previously, the statistical Plaintext Awareness #1 (PA1) notion was
only known to imply CCA1. Our result is therefore novel because un-
like the case of Chosen Plaintext Attack (CPA) and Chosen Chipher-
text Attack (CCA2), it is unknown whether a CCA1 scheme can be
transformed into an NM-CCA1 scheme. Additionally, we show both
the Damgård Elgamal Scheme (DEG) [6] and the Cramer-Shoup Lite
Scheme (CS-Lite) [5] are weakly simulatable under the DDH assump-
tion. Since both are known to be statistical Plaintext Aware 1 (PA1)
under the Diffie-Hellman Knowledge (DHK) assumption, they in-
stantiate our scheme securely.

Furthermore, in response to a question posed by Matsuda and
Matsuura [12], we define cNM-CCA1-security in which an NM-CCA1-
adversary is permitted to ask a c ≥ 1 number of parallel queries after

∗This work is Sponsored by the NSF under grant 0939718, and under DARPA and
AFRL.The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US government. This research
is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under contract FA8750-11-C0080.

1

470

Approved for Public Release; Distribution Unlimited.

receiving the challenge ciphertext. We extend our construction to
yield a cNM-CCA1 scheme for any constant c. All of our constructions
are black-box.

Keywords: Public-Key Encryption, Plaintext-Awareness, Non-Malleability.

1 Introduction

Public-key encryption is one of the most commonly used cryptographic
primitives in practice and theory. However, our community’s understand-
ing of its different security definitions and their relationships is still poor.
Goldwasser and Micali [11] formalized the notion of computational secu-
rity against passive eavesdroppers through the concept of semantic secu-
rity or chosen plaintext (CPA) security. However, security against passive
eavesdroppers is too weak to be used in modern applications, and thus
stronger notions of security have been proposed and studied.

Naor and Yung [15] introduced the first strengthening of security by
considering adversaries who have the ability to decrypt messages of their
choice. In their notion, called Chosen Ciphertext Attacks #1 (CCA1), the
adversary is not allowed to decrypt ciphertexts related to the ciphertext
of interest. Later, a more comprehensive notion of adversarial decryption
introduced by Simon and Rackoff [17] and termed CCA2 security became
the gold standard requirement for decryption on the Internet. While it is
clear that stronger security notions imply weaker ones, and thus CCA2-
secure schemes imply CCA1 secure ones which in turn imply CPA secure
ones, the converse directions are not known to be true. While it is the case
that a CPA (resp. CCA1) secure encryption scheme need not be CCA1
(resp. CCA2) secure, it is not known if the existence of a CPA (resp. CCA1)
secure scheme implies the existence of a CCA1 (resp. CCA2) scheme. These
are considered some of the major open questions in cryptography.

The CPA and CCA1 security notions for encryption suffer another
weakness which must also be addressed for public key encryption to
function in modern settings. In particular, the CPA and CCA1 security
definitions do not prevent an adversary who observes an encryption of
the message m from producing an encryption of the message f (m) for
some function f (even though the value m remains private). The semi-
nal work of Dolev, Dwork, and Naor [10] addressed this security issue by
introducing the notion of non-malleable cryptographic primitives such as
encryption schemes, commitment schemes, and zero-knowledge. Later,
Pass, shelat and Vaikuntanathan [16] strengthened the DDN definition

2

471

Approved for Public Release; Distribution Unlimited.

and presented a construction from CPA to non-malleable CPA encryp-
tion using non-blackbox use of the CPA encryption scheme. There have
been many follow-up works that propose more efficient constructions of
non-malleable primitives. A notable achievement in this line of research
has been the construction of non-malleable CPA encryption from standard
versions of encryption in a black-box manner [3].

In general, any progress on constructing public-key encryption schemes
with stronger security properties from weaker ones is of great interest in
furthering our understanding of public key encryption. Beyond theoretical
importance, it is of practical value: when new cryptographic assumptions
are shown to be sufficient for public-key encryption, it would be valuable
to know that they are simultaneously sufficient for the strong forms we
need for use in modern settings.

With this in mind, we consider the open question of whether an NM-CCA1
encryption scheme can be constructed from a CCA1 encryption scheme.
We present a black-box construction of an NM-CCA1 encryption scheme
from a subset of CCA1 encryption schemes which are also plaintext aware
under multiple keys and weakly simulatable (we will formally define
these concepts later). Intuitively, an encryption scheme is plaintext aware
(called sPA1 in [1]) if the only way that a ppt adversary can produce a
valid ciphertext is to apply the (randomized) encryption algorithm to the
public-key and a message. Notice that this definition does not imply non-
malleability since there is no constraint on what an adversary can do when
given a valid ciphertext. In fact, both plaintext-aware encryption schemes
constructed in [1] are multiplicatively homomorphic, and thus clearly mal-
leable. The weakly simulatable property in our construction is required for
technical reasons and roughly corresponds to the ability to sample cipher-
texts and pseudo-ciphertexts without knowing any underlying plaintext
(if such a plaintext exists).

Note that there exist encryption schemes that satisfy security notions
that “sit between” standard notions. One such example from Cramer et
al. [4] consists of a black-box construction of a q-bounded CCA2 encryption
scheme which is not NM-CPA-secure1, but which satisfies a stronger secu-
rity notion than CPA. In particular, as a generalization of NM-CPA, Mat-
suda and Matsuura [12] put forth the challenge of constructing encryption
schemes that can handle more than one parallel query after revealing the
challenge ciphertext. They write:

1The [4] construction supports only q queries, whereas an NM-CPA adversary can sub-
mit more than q ciphertexts in its final parallel query.

3

472

Approved for Public Release; Distribution Unlimited.

“Since any (unbounded) CCA secure PKE construction from
IND-CPA secure ones must first be secure against adversaries
who make two or more parallel decryption queries, we believe
that overcoming this barrier of two parallel queries is worth tack-
ling.”

In this spirit, we define an extension over NM-CCA1, cNM-CCA1, in
which the adversary can make c adaptive parallel decryption queries after
seeing the challenge ciphertext, where each parallel decryption query can
request that a polynomial number of ciphertexts (excluding the challenge
ciphertext) be decrypted. Thus that NM-CCA1 is cNM-CCA1 where the pa-
rameter c is set to be one. Next, we show how to construct a cNM-CCA1 se-
cure encryption scheme for an arbitrary constant c. Unfortunately, the size
of the ciphertext in our cNM-CCA1 encryption scheme is multiplicatively
polynomially bigger than the size of the ciphertext in a (c− 1)NM-CCA1
encryption scheme and thus c must be a constant to obtain an efficient
construction.

While our initial goal was to construct an NM-CCA1 scheme from a
subset of the CCA1-secure schemes, a result by Bellare and Palacio [1]
shows that any plain-text aware scheme that is CPA secure is also CCA1-
secure, and thus formally all of our results follow from any CPA-secure
that also has the necessary plaintext aware and simulatability properties.
However, we show that the weak simulatability requirement implies CPA
security, and therefore all of our results follow from any scheme which is
weakly simulatable and plaintext aware.

About Knowledge Extraction Assumptions Our constructions rely on
encryption schemes that are plaintext aware (sPA1`) in the multi-key setup
and are weakly simulatable. In Theorem 5, we show that such encryption
schemes exist under a suitable extension of the Diffie-Hellman Knowledge
(DHK) assumption that was originally proposed by Damgård, and modi-
fied to permit interactive extractors by Bellare and Palacio [1]. Dent [9] has
since shown that it is secure in the generic group model. Some critics of
the DHK assumption have commented on its strength and observed that
it is not efficiently falsifiable [14]. However, it is not our goal to argue
whether or not it is an assumption which should be used in deployable
systems. Instead we note it is seemingly a weaker assumption than the
Random Oracle model, which is known to be incorrect in full generality,
cf. [2] and is yet pervasively used in theory and practice. In contradis-
tinction, we are not aware of any general security definitions that are non-

4

473

Approved for Public Release; Distribution Unlimited.

trivially weaker or incomparable to NM-CCA1 yet imply schemes which
are NM-CCA1. Similarly, the gap between NM-CCA1 and CCA2 is poorly
understood.

Techniques Both our NM-CCA1 and cNM-CCA1 constructions are based
on the ideas of the nested encryption construction by Myers and shelat
in [13]. We first encrypt the message under one key (we refer to this ci-
phertext as the inner layer), and encrypt the resulting inner layer ciphertext
repetitively under an additional k keys, where k is the security parameter
(we refer to these k keys as the “outer keys”, and the ciphertexts they
produce as the “outer layer”). During decryption, all the outer layer ci-
phertexts are decrypted, and it is verified that they all encode the same
inner layer value. This idea is combined with the well-studied notion of
non-duplicatable set selection (in this case of public-keys used to encrypt
the outer-layer encryptions), such that anyone attempting to maul a ci-
phertext has to perform their own independent outer layer encryption.
Intuitively, anyone that can encrypt to a consistent outer layer encryption
under a new key must have knowledge of the underlying inner-layer.

On a more technical level, there are several challenges that need to be
overcome. The technical difficulty in proving weaker public-key encryp-
tion security notions imply stronger security notions lies in the simulation
of a decryption oracle. When beginning with a sPA1`-secure encryption
primitive, we can easily simulate the first phase decryption oracle in the
NM-CCA1 security definition by using the plaintext extractor guaranteed
by the sPA1` security definition. However, we cannot simply use the ex-
tractor to simulate the decryption oracle after the adversary receives the
challenge ciphertext in the NM-CCA1 security experiment. This is because
the plaintext-aware security definition does not guarantee that an extrac-
tor works if the underlying randomness used to create the ciphertext by
the challenger is not known to the challenger. Generally, an adversary
that mauls an input ciphertext may not have access to this underlying ran-
domness. To overcome this problem, we make use of the notion of weak
simulatability.

Contributions To summarize, our contribution is twofold. Our work
shows the first black-box construction of a non-malleable CCA1 encryption
scheme in the standard model from a weaker encryption primitive. Sec-
ondly, for the first time, we show how to construct an encryption scheme
that is not CCA2 secure but is secure against an adversary that can ask a

5

474

Approved for Public Release; Distribution Unlimited.

bounded number of polynomial-parallel queries after receiving the chal-
lenge ciphertext, satisfying a natural extension to the notion of NM-CCA1
security. This might be of independent interest since the development of
constructions that satisfy stronger notions than non-malleable CCA1 secu-
rity but do not satisfy CCA2 security can provide insight into the technical
difficulties with understanding the relationship between CCA1 and CCA2.
For example, prior to this work the authors did not believe it was clear that
such schemes existed. At least one of the authors felt it was plausible that
being able to provide multiple parallel queries after access to a challenge
ciphertext was equivalent to providing an arbitrary polynomial number of
parallel queries.

Finally, we note that none of our constructions

2 Notations and Definitions

We use [n] to denote the set {1, 2, · · · , n}. We say a function µ : N → R

is negligible if for all polynomials p and all sufficiently large n : µ(n) ≤
1/p(n). Given two families of distributions D0 = {D0,i}i∈N and D1 =
{D1,i}i∈N, we denote that they are computationally indistinguishable by
writing D0 ≈c D1.

We use the standard definition for CPA/CCA1/CCA2 security, and a
definition of non-malleability for CCA1 encryption schemes based on the
non-malleability definition for CPA encryption schemes in [16]. In the
NM-CCA1 game, the adversary is allowed to ask an unbounded number
of decryption queries before seeing the challenge ciphertext, and one par-
allel query afterwards. A parallel decryption query is one that consists of
unbounded number of ciphertexts, none of which will be decrypted until
all the ciphertexts in the query are submitted.

To generalize NM-CCA1 security, we can define cNM-CCA1 security
identically to NM-CCA1 except that the adversary can make c ≥ 1 parallel
queries after seeing the challenge ciphertext. For example, in the CCA2 se-
curity definition, the adversary may ask an unbounded number of queries
before and after seeing the challenge ciphertext; thus, cNM-CCA1 is an
intermediate notion that we study to understand public key encryption.

Definition 1 (cNM-CCA1). For an integer c ≥ 0, we say that a scheme Π =
(nmg, nme, nmd) is cNM-CCA1 or (c)NME secure if for all ppt adversaries and
distinguishers A = (A0, ...,Ac) and D respectively and for all polynomials p, we

6

475

Approved for Public Release; Distribution Unlimited.

have that
{
(c)NME0(Π

(c),A,D, k, p(k))
}

k
≈c

{
(c)NME1(Π

(c),A,D, k, p(k))
}

k

where experiment (c)NME is defined in Fig. 1.

(c)NMEb(Π,A,D, k, p(k))
1: (cnpk, cnsk)← nmg(1k)

2: (m0, m1, S1)← Anmd(cnsk,.)
0 (cnpk) s.t. |m0| = |m1|

3: y∗ ← nme(cnpk, mb)

4: ~d1 ← ⊥
5: for i = 1 to c
6: (~y, Si+1) ← Ai(y∗, Si, ~di) where |~y| = p(k) a: why do we

need the p(k) here?
7: ∀j ∈ [|~y|], di+1,j ← nmd(cnsk, yj) if yj 6=

y∗ and ⊥ otherwise
8: Output D(y, ~dc+1, Sc+1)

Fig. 1: The (c)NME Experiment For c ≥ 0 . An Adversary A gets c
parallel queries to a decryption oracle.

2.1 Weakly Simulatable Encryption Scheme

Dent [8] introduced the notion of simulatability for an encryption scheme.
Intuitively, an encryption scheme is simulatable if no attacker can distin-
guish valid ciphertexts from some family of pseudo-ciphertexts (which
will include both valid encryptions and invalid encryptions). This fam-
ily of pseudo-ciphertexts must be efficiently and publicly sampleable and
somewhat invertible (given any pseudo-ciphertext, one can find a ran-
dom looking string that generates it). In Dent’s definition, a distinguisher
is given a challenge “ciphertext” (i.e., either a legitimate ciphertext or a
pseudo-ciphertext) and must classify it. The distinguisher has access to a
decryption oracle to help it distinguish between pseudo-ciphertexts and
legitimate ones, but it cannot query the oracle on the challenges that it is
trying to distinguish. We introduce a weak notion of simulatability where
the attacker is not given access to the decryption oracle.

Definition 2. (Weakly Simulatable Encryption Scheme) An asymmetric en-
cryption scheme Π = (gen, enc, dec) is weakly simulatable if there exist two

7

476

Approved for Public Release; Distribution Unlimited.

poly-time algorithms (f , f−1), where f is deterministic and f−1 is probabilistic,
such that for all k ∈ N there exists the polynomial function p where l = p(k),
and the following correctness properties hold for every pk in the range of gen:

1. For each r ∈ {0, 1}l , assign c← f (pk, r) where c ∈ C. The set C is the set
of all “possible-ciphertext” strings that can be submitted to the decryption
oracle (notice that members of C are both valid and invalid ciphertexts).

2. For each c ∈ C, f−1(pk, c) ∈ {0, 1}l .

3. For each c ∈ C, f (pk, f−1(pk, c)) = c.

4. For every efficient distinguisher A and all k, |Pr[DISTΠ((f , f−1), k,A) =
1]− 1/2| ≤ µ(k), where µ is some negligible function and the DIST ex-
periment is defined as follows:

DISTΠ(k, (f , f−1),A)
1: (pk, sk)← gen(1k)
2: (m, σ)← A(pk), where σ is state.
3: b← {0, 1}, r ← {0, 1}l , c← encpk(m)
4: if b = 0, then p = (r, f (pk, r))
5: else p = (f−1(pk, c), c).
6: b′ ← A(σ, p).
7: Output 1 if b = b′.

When valid ciphertexts cannot be distinguished from pseudo-ciphertexts
that need not encode messages, CPA security is immediate. The converse
need not hold because ciphertexts might be hard to generate and invalid
ciphertexts might be easily distinguishable from illegitimate ones (for ex-
ample, they might contain a zero-knowledge proof of validity). Notice that
the weak simulatability notion is not equivalent to the Invertible Sampling
notion introduced in [7] since in this definition the plaintext is not needed
to compute the pseudo-random string that generates the ciphertext.

Theorem 1. If E is a weakly simulatable encryption scheme, then E is CPA
secure.

Proof. Let E be weakly simulatable using the efficiently computable func-
tions (f , f−1). Let A = (A1,A2) be a CPA adversary, that breaks the CPA
security of E with advantage ε. We will show that if E is a weakly simu-
latable encryption scheme, then ε should be negligible.

In Fig. 2 we present a distinguisher BA = (BA,1,BA,2) that employs A
internally and tries to break E’s weak simulatability property. We analyze

8

477

Approved for Public Release; Distribution Unlimited.

BA,1(pk)
1: (m0, m1, σ)← A1(pk)
2: d← {0, 1}
3: Output(md, σ′ = (σ, d))

BA,2(σ
′ = (σ, d), (r, c))

1: d′ ← A2(σ, c)
2: If d = d′ output 0, otherwise output 1

Fig. 2: The distinguisher BA used in the DIST experiment to break
the weak simulatable security of E.

the advantage of BA assuming A has advantage ε in breaking the CPA
security of E.
Assuming that A has advance ε in breaking the CPA security of E implies
that:

Pr
DISTE(k,(f , f−1),BA)

[d′ = d | b = 0] > 1/2 + ε(k) (1)

Notice that Pr[d′ = d|b = 0] is the probability thatA guesses the encrypted
message correctly when it is given a valid ciphertext. Also E is weakly
simulatable if and only if for some negligible function ε′

|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| < ε′(k) (2)

Note that by definition in DISTE(k, (f , f−1),BA), b′ = 0 if and only if
d′ = d. Hence Pr[b′ = 0|b = 0] = Pr[d = d′|b = 0] and Pr[b′ = 0|b = 1] =
Pr[d = d′|b = 1]. We have that

Pr[d = d′ | b = 1] = 1/2 (3)

because whenever b = 1, the ciphertext c to the distinguisher BA,2 is in-
dependent of the bit d, and the distinguisher’s probability guessing the
random bit d is exactly 1/2. We have that:

|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| = |Pr[d = d′|b = 0]− Pr[d = d′|b = 1]
> 1/2 + ε− 1/2 = ε

(4)
where the inequality follows from substituting the (in)equalities 1 & 3
respectively. We combine the inequalities 2 and 4:

ε < |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| < ε′(k)

9

478

Approved for Public Release; Distribution Unlimited.

→ ε < ε′(k)

Since ε is at most a negligible value in the security parameter, we con-
clude thatA has at most negligible advantage in breaking the CPA security
of E. Hence E is CPA secure.

Instantiating weak-simulatability Following the ideas of Dent [8], we
show in Appendix A how the Damgård ElGamal (DEG) and CS-lite en-
cryption schemes—summarized in Fig. 8 for convenience—can both be
weakly simulatable when instantiated in the proper groups.

2.2 Plaintext Awareness For Multiple Key Setup

In Fig. 3 we present a slight generalization to the definition of sPA1 by [1]
in which multiple keys are given to the ciphertext creator and the extractor
must be able to decrypt relative to any one of them.

sPA1`(Π = (gen, enc, dec),Crt,Ext, k)
1: Let R[Crt], R[Ext] be randomly chosen bit strings for Crt

and Ext
2: ((pki, ski))i∈[`(k)] ← gen(1k)

3: st←
(
(pki)i∈[`(k)], R[Crt]

)

4: CrtExt(st,.)
(
(pki)i∈[`(k)]

)

5: Let Q = {(qi = (pk ji , ci), mi)} be the set of queries and
responses made to Ext.

6: Return ∧|Q|i=1(mi = decskji
(ci)) (Note a = b is a boolean)

Fig. 3: The sPA1` Definition

Definition 3 (sPA1`-Security). A public-key encryption scheme Π = (gen, enc, dec)
is said to be sPA1` secure, for a polynomial `, if for each ppt ciphertext creator
Crt, there exists a ppt extractor Ext and negligible function µ s.t. for all k ∈ N:
Pr[sPA1`(Π,Crt,Ext, k) = 0] ≤ µ(k), in which case the Ext is deemed success-
ful for Crt. We define AdvsPA1`(E,Crt,Ext, k) to be Pr[sPA1`(E,Crt,Ext, k) =
0].

10

479

Approved for Public Release; Distribution Unlimited.

Notice that the sPA1 definition is a special case of sPA1` where `(k) =
1. In Fig. 3, Crt is a ciphertext creator. Ext is a stateful ppt algorithm called
the extractor that takes as input its state information st and a ciphertext
given by the ciphertext creator Crt. Ext will return the decryption of that
ciphertext and an updated state st. Ext’s initial state is set to the public-
keys pki and Crt’s random coins R[Crt]. The state gets updated by Ext as it
answers each decryption query that Crt submits.

In Appendix B, we argue that Cramer-Shoup Lite (CS-Lite) and Damgard’s
ElGammal (DEG), described in Fig. 8, are sPA1` secure based on a suitable
modification of the Diffie-Hellman Knowledge definition that was origi-
nally proposed by Damgård, and then later modified to permit interactive
extractors by Bellare and Palacio [1].

2.3 Why sPA1` does not follow from sPA1 security

It may seem that the sPA1` definition should follow naturally from sPA1
by composing extractors. The following toy example highlights the tech-
nical difficulty with natural composition. Let (g, e, d) be an sPA1-secure
primitive, and define a new encryption scheme (g′, e′, d′) which creates
two pairs of keys from the original encryption scheme, and chooses one
(at random) to use to encrypt during the encryption process. Formally,
g′(k) = (PK = (pk0, pk1), SK = (sk0, sk1)), where (pkb, skb) are an out-
put of the bth invocation of g(k). For encryption, e′(PK, m) chooses a
random coin z ∈ {0, 1} and outputs C = (z, e(pkz, m)); decryption is
d′(SK, C = (z, c)) outputs d(skz, c). One would expect that the resulting
scheme is sPA1 secure, but it is not clear that it is. In particular, one would
think that for any ciphertext creator for the modified scheme, one could
just use two extractors for the original scheme (one for each public-key)
to simulate an extractor for the creator. However, this argument does not
work, and we are not aware of any other methods for proving the equiva-
lence. One issue is that if a creator switches between making encryptions
under pkb and pk1−b, then at each switch we must incorporate the extractor
in to the original ciphertext creator in order to construct a new extractor.
The extractors must be continuously incorporated, because definitionally
they have no ability to extract encryptions when the ciphertext creator has
access to a decryption oracle other than the one simulated by the extractor.

More specifically, consider a ciphertext creator Crt = (Crt0,Crt1, ..,Crtn)
for the scheme (g′, e′, d′) where Crti denotes the execution after the ith

11

480

Approved for Public Release; Distribution Unlimited.

query.2 Let Crt switch between the public-key used to encrypt messages
for each query, i.e. it encrypts its even queries with pk0 and its odd queries
with pk1. To make an extractor for Crt (without including the oracles in the
definition, as we have done), we would first create Crt′0 using the standard
sPA1 definition and the extractor for pk0 that is guaranteed to exist for Crt0,
call it Ext0, by embedding the extractor as a subroutine into Crt0. The run-
ning time of Crt′0 is clearly the additive combination of the running time of
Ext0 and Crt0. One would then compose Crt′0 with Crt1 and use the sPA1
definition to construct an extractor for Crt1 ◦ Crt′0, called Ext1, which only
queries decryptions for pk1. We could continue this inductively, but after
a super-constant number of iterations, the running time of the resulting
extractor would be super-polynomial.

Finally, we note that common additional definitional traits, like the no-
tion of a history of computation, do not port readily to these extractability
definitions. In essence, one needs to consider the possibility that a history
string encodes a Turing Machine, which is then run by an extractor acting
as a Universal Turing machine. The semantic effect of such a notion in
the definition is to swap the order of quantifiers relating to the extractor,
further strengthening the definition.

2.4 A Note On PA1+

Dent [8] also investigated an augmented notion of plaintext awareness
called PA1+ in which he provides the ciphertext creator access to an oracle
that produces random bits. The extractor receives the answers to any
queries generated by the creator, but only at the time these queries are
issued. The point of this oracle in the context of a plaintext awareness
definition is to model the fact that the extractor might not receive all of the
random coins used by the creator at the beginning of the experiment. Much
in the spirit of “adaptive soundness” and “adaptive zero-knowledge”, this
oracle requires the extractor to work even when it receives the random
coins at the same time as the ciphertext creator. Therefore, the extractor
potentially needs to be able to extract some ciphertexts independent of
future randomness. This modification has implications when the notion
of plaintext awareness is computational—as in the case of Dent’s work.
However, in the case of statistical plaintext awareness, we argue that sPA1`
security also implies sPA1+` security.

2We can assume the Crti outputs its state, which is then used as auxiliary information
and passed as input to Crti+1.

12

481

Approved for Public Release; Distribution Unlimited.

Definition 4. Define the sPA1+` experiment in a similar way to the sPA1` ex-
periment. The only difference between the two is that during the sPA1+` experi-
ment, the ciphertext creator has access to a random oracle O that takes no input,
but returns independent uniform random strings upon each access. Any time the
creator access the oracle, the oracle’s response is forwarded to both the creator and
extractor.

If an encryption scheme would be deemed sPA1` secure, when we replace the
sPA1` experiment in the definition with the modified sPA1+` experiment, then the
encryption scheme is said to be sPA1+` secure.

Lemma 1. If an encryption scheme Π is sPA1` secure, then it is sPA1+` secure.

Proof. Notice that the only difference between sPA1 and sPA1+ security
definitions is that the latter makes use of an oracle O that returns random
bits upon access that is not known in advance to either the adversary or
the extractor. If the adversary Crt+ does not access O during its execu-
tion then sPA1+ security holds since i) with no access to O, sPA1+ and
sPA1 security are equivalent, ii) sPA1 security holds (i.e. for any given
adversary, there exists an extractor that can decrypt the queries correctly).
Hence in what follows we only argue that sPA1+ security holds if the
adversary accesses the oracle O at least once.

Let Crt+ be an sPA1+ adversary. The intuition for this argument is
that the answers that the Crt+ receives from O can be interpreted as “the
end of the random tape” for some sPA1 adversary Crt. In other words,
Crt runs Crt+ internally and answers the queries to O by reading the end
portion of its random tape. By properly formalizing this to handle poly-
nomially many queries to O, it is easy to see that Crt will make the same
distribution of queries to its extractor that Crt+ makes to its own extractor
Ext+. By sPA1-security, there exists an Ext that works for the queries that
Crt produces.

This observation provides a plausible model for how Ext+ could work:
it begins by sampling a random tape R+ ← (R|r′1| · · · |r′n) for Crt (i.e., with
randomly sampled answers ri to O queries at the end of the tape). When it
is asked queries to decrypt, it simply runs Ext (which must work properly)
using this random tape. At some point, the first oracle query to O will be
made and thus Ext+ will receive a random string r1 as the first oracle O
query answer. At this point, Ext+ updates the tape R+ ← (R|r1|r′2| · · · |r′n)
with the correct answer, restarts its execution of Ext on this new tape by
feeding it all of the same decryption queries that have been received up
until this point. This results in a new state for the extractor that will

13

482

Approved for Public Release; Distribution Unlimited.

be used to answer future decryption queries. The remaining decryption
queries and queries to O will be handled similarly.

One can observe that if ` queries to O are made, then Ext+ must restart
the execution of Ext ` times, and thus its running time will be a summation
of ` running times of Ext. This summation will still be polynomial in the
security parameter. Moreover, if Ext+ fails to answer a decryption query
properly, then it serves as a polynomial-time procedure that—by running
Ext at most ` times—is able to produce a set of queries that breaks sPA1-
security. In what follows, we present a more formal argument that shows
how an sPA1+-adversary Crt+ that succeeds in causing every Ext+ to fail
can be used, using the ideas above, to produce an sPA1-adversary Crt that
violates sPA1-security.

Assume that the Crt+ makes polynomially many queries using its ran-
dom tape R, then accesses O once (and gets in return some random coins
r1) and asks one more query q that Ext+ fails to decrypt correctly. Assume
that (R|r1) is ` bits. We build an adversary Crt that simulates Crt+ using
the first ` bits of its random tape. Crt reads the first ` bits of its random
tape, parses it as (R|r1) (call the rest of its random tape r′2|r′3| . . . |r′n) and
simulates Crt+ on random coins R. Crt submits Crt+’s queries to its ex-
tractor and forwards back the answer to Crt+. When Crt+ calls O, Crt
returns the r1 portion of its tape. Then it continues running Crt+ until it
gets its next decryption query q, submits this query to its extractor, and
halts. Notice the distribution of queries that Crt asks to its extractor is the
same as Crt+. Also, Crt does a perfect simulation of the sPA1+ game for
Crt+, so the query q is also distributed identically. Since Π is sPA1 secure,
there must be some extractor Ext such that Pr[sPA1(Π,Crt,Ext, k) = 0] is
negligible when Ext is run on input tape (R|r1|r′2|r′3| . . . |r′n) as the random
coins for Crt. Thus, the probability that Ext answers the query q correctly
must be 1− ε(k) for some negligible function ε. However, notice that Ext+

also answers q by running Ext on (R|r1|r′2|r′3| . . . |r′n) and hence returns the
same correct decryption of q to Crt+. This contradicts our assumption that
Ext+ decrypt q incorrectly. Similar argument can be made about any other
query that Crt+ makes to show that Ext+ returns the right decryption for
that query. Hence we conclude that Ext+ always returns the right answer
to all of the Crt+’s queries.

14

483

Approved for Public Release; Distribution Unlimited.

3 More Than Non-Malleable CCA1 Encryption Scheme

We show how to construct an encryption scheme that is cNM-CCA1 secure
where c is a constant. The high level idea for constructing a cNM-CCA1
scheme is to add c− 1 layers of encryption atop the basic encryption of a
message m, effectively redundantly re-encrypting the previous layer’s ci-
phertext and forming a new layer of encryptions. Intuitively, each parallel
query that the adversary asks can help it peel back the security of one of
the layers of encryption in the challenge ciphertext, and therefore if a chal-
lenge ciphertext is composed of c layers, then the scheme can withstand c
parallel queries.

3.1 The Construction

For the base case, we define NMGen(0) = gen; NMEnc†(0)(pk, m,SigVK) =
enc(pk, m); and NMDec†(0)(sk, c,SigVK) = dec(sk, c) where the weakly sim-
ulatable and sPA1` secure encryption primitive E = (gen, enc, dec) is the
starting point for our work. Next, we recursively perform multiple re-
dundant parallel encryptions of the last recursive steps output. In each
of these steps, we use the standard practice of interpreting the bits of
a freshly generated verification key for a one-time signature scheme to
choose appropriate public keys with which to encrypt. The resulting set
of ciphertexts is finally signed with the one-time signature’s signing key to
form the final encryption. Decryption proceeds as one might expect: first
the signature is checked for validity, and next the encryption is recursively
decrypted, where at each level it is ensured that the redundant parallel
decryptions all encode the same underlying “message”. The encryption
scheme Π(c) parameterized by an integer c > 0 appears in Fig. 4.

3.2 Preliminary Notion

Before we present our security proof, we introduce an intermediate “tagged
encryption” security game to simplify our proof. We call this notion
(c)NME∗ security and it allows each ciphertext to have an associated tag
used during both encryption and decryption. The challenge ciphertext is
tagged with the vector~0, and the adversary can submit any query with a
non-zero tag.
Along with this new definition, we present a natural analog of our original
encryption scheme Π∗(c) in Fig. 6. The difference is that the signature

15

484

Approved for Public Release; Distribution Unlimited.

NMGen(c)(1k)

1: (npk(c−1), nsk(c−1))← NMGen(c−1)(1k)

2: ∀i ∈ [k] and b ∈ {0, 1}, (pkb
i , skb

i) ← gen(1k) s.t. pkb
i encrypts

the range of NMEnc†(c−1)

3: Output npk(c) = {npk(c−1), {pkb
i } i∈[k]

b∈{0,1}
} and nsk(c) =

{nsk(c−1), {skb
i } i∈[k]

b∈{0,1}
}

NMEnc(c)(npk(c), m)
1: (SigSK, SigVK)← GenKey(1k)
2: c← NMEnc†(c)(npk(c), m, SigVK)
3: σ← SignSigSK(c)
4: Output C = (c,SigVK, σ)

NMEnc†(c)(npk(c), m, SigVK)
1: Parse npk(c) into (npk(c−1), ~pk = {pkb

1, . . . , pkb
k}b∈{0,1})

2: Let SigVKi be the ith bit of SigVK.
3: c′′0 ← NMEnc†(c−1)(npk(c−1), m,SigVK)
4: c′i ← enc

pk
SigVKi
i

(c′′0); ∀i ∈ [k]

5: Output c = ~c′

NMDec(c)(nsk(c), C)
1: Parse C as (c,SigVK, σ) and let SigVKi be the ith bit of SigVK.
2: if VerifySigVK(σ,~c) = 0 then Output ⊥
3: Output NMDec†(c)(nsk(c), c, SigVK)

NMDec†(c)(nsk(c), c,SigVK)
1: Parse nsk(c) into (nsk(c−1), ~sk = {skb

1, . . . , skb
k}b∈{0,1})

2: ∀i ∈ [k], compute c′i ← dec
sk

SigVKi
i

(ci)

3: if ∃i ∈ [k] s.t. c′1 6= c′i then Output ⊥
4: Output NMDec†(c−1)(nsk(c−1), c′1, SigVK)

Fig. 4: The cNM-CCA1 Encryption Scheme Π(c)

scheme used for unduplicatable set selection is replaced by the k-bit tag α.

16

485

Approved for Public Release; Distribution Unlimited.

(c)NMEb
∗(Π∗,A,D, k, p(k))

1: (npk, cnsk)← NMGen∗(1k)

2: (m0, m1, S1)← ANMDec∗(nsk,.)
0 (cnpk) s.t. |m0| = |m1|

The oracle NMDec∗(nsk, Y = (y, α)) returns ⊥ if α = 0k

3: Y∗ ← NMEnc∗(npk, mb, α = 0k)

4: ~d1 ← (⊥)
5: for i = 1 to c
6: (~Y, Si+1)← Ai(Y∗, Si, ~di) where |~Y| = p(k)
7: If α 6= 0k, di+1,j ← NMDec∗(nsk, Yj = (yj, α))

8: Else di+1,j ← ⊥; ∀j ∈ [|~Y|]
9: Output D(Y∗, ~dc+1, Sc+1)

Fig. 5: The (c)NME∗ Experiment For c ≥ 0

NMGen∗(c)(1k)
1: Defined as NMGen(c)(1k) in Fig. 4

NMEnc∗(c)(npk(c), m, α ∈ {0, 1}k)
2: Return (NMEnc†(c)(npk(c), m, α), α) where NMEnc†(c) is de-

fined in Fig. 4,
NMDec∗(c)(nsk(c), Y = (y, α ∈ {0, 1}k))

3: Defined as NMDec†(c)(nsk(c), y, α) in Fig. 4

Fig. 6: The Encryption Scheme Π∗(c) = (NMGen∗(c), NMEnc∗(c),
NMDec∗(c))

As the next lemma shows, there is no difference between these security
games; for every adversary in the tagged security game, there exists an
equivalently succesful adversary for the (c)NME game.

Lemma 2. For any ppt adversary A, integer c > 0, polynomial p and security
parameter k, there exists an adversary B s.t.
{
(c)NMEb(Π

(c),A,D, k, p(k))
}

k
≡
{
(c)NMEb

∗(Π∗(c),B,D, k, p(k))
}

k

Proof. We build a (c)NME∗ adversary B that interacts with the (c)NME∗

experiment by simulating the (c)NME experiment for A. B receives pk
as in Line 2 of the experiment (Fig. 5) and proceeds to generate a pair

17

486

Approved for Public Release; Distribution Unlimited.

of signature keys (skSig∗, vkSig∗) ← GenKey(1k). B then sets pk′ ←
ReArrange(pk, vkSig∗) where the function ReArrange is presented in Fig. 7.
Intuitively this function rearranges the keys in pk and pk′ so that B can sign
a challenge ciphertext that it will eventually receive using skSig∗ and then
produce an encryption according to the Π(c) scheme using only the keys
in pk. B runs A0 on pk′.

ReArrange(pk, vkSig∗)
1: Parse pk as

(
pk0, {pkb

i }i∈[c·k],b∈{0,1}
)

2: for i ∈ [0..c− 1]
3: for j ∈ [k]
4: if vkSig∗j = 1 then swap the values pk0

i·k+j and pk1
i·k+j

5: endFor
6: endFor
7: Return pk =

(
pk0, {pkb

i }i∈[0...ck],b∈{0,1}
)

Fig. 7: The Definition for the ReArrange Function

Whenever A0 asks a query Y = (~y, σ, vkSig), B does the followings:
B returns ⊥ to A0 as the answer to the query if either vkSig = vkSig∗ or
VerifyvkSig(σ,~y) = 0. Otherwise B sets α ← ⊕

(vkSig∗, vkSig) where
⊕

is
the bitwise XOR function on two vectors of the same length. Intuitively,
this finds the right α that shows under which subset of pk keys the vector
~y is encrypted.
B then asks (~y, α) to its oracle and forwards the answer to its simulation

of A0. Eventually A0 returns (m0, m1, S1) and halts. B outputs (m0, m1) to
the environment (i.e., its experiment) and receives a challenge ciphertext
(~y∗, 0k). B computes σ∗ ← SignskSig(~y∗), sets Y∗ ← (~y∗, σ∗, vkSig∗), sets
~d1 ← ⊥ and does the following for all q = 1 to c:

B simulates Aq on the input (Y∗, Sq, ~dq) and receives in return a vec-
tor of ciphertexts ~Y and the state information Sq+1. B computes the
decryption to each of Yi’s in the same way that it computed the de-
cryption to the CCA1 queries with the difference that it asks all of
the queries in the same parallel query at once from the environment
(instead of asking sequentially). Call the vector of decryption of the
queries ~dq+1.

Eventually B outputs ~dc+1 and Sc+1 and halts.

18

487

Approved for Public Release; Distribution Unlimited.

3.3 Main Theorem

The heart of our main theorem relies on Lemma 3 (introduced shortly)
which, informally, shows that for any ppt adversary A, there exists a ppt
adversary B such that
{
(c)NMEb

∗(Π∗(c),A,D, k, p(k))
}

b,k
≈c

{
(c-1)NMEb

∗(Π∗(c−1),B,D, k, p(k))
}

b,k
.

Assuming Lemma 3, we state and give the proof our main theorem below.
We then formally state and prove Lemma 3.

Theorem 2. If the encryption scheme E = (gen, enc, dec) is weakly simulatable
and sPA1` secure, then for any integer c > 0, construction Π(c) = (NMGen(c), NMEnc(c), NMDec(c))
in Fig. 4 is (c)NME secure.

Proof. By applying Lemma 3 c times, we have that

{
(c)NME0

∗(Π∗(c),A,D, k, p(k))
}

k

Lemma 3≈c · · · ≈c

{
(0)NME0

∗(Π∗(0),B,D, k, p(k))
}

k

In Claim 1 (below), we show that construction Π∗(0) is (0)NME∗-secure,
and thus it follows that
{
(c)NME0

∗(Π∗(c),A,D, k, p(k))
}

k
≈c

{
(0)NME1

∗(Π∗(0),B,D, k, p(k))
}

k

Applying Lemma 3 again on the right hand side, , it follows that
{
(c)NME0

∗(Π∗(c),A,D, k, p(k))
}

k
≈c

{
(c)NME1

∗(Π∗(c),A,D, k, p(k))
}

k

Finally applying Lemma 2 to show equivalence between (c)NME and (c)NME∗

completes the theorem.

Claim 1. If the encryption scheme E = (gen, enc, dec) is weakly simulatable and
sPA1` secure, then for all ppt adversaries and distinguishersA andD respectively
and for all polynomials p:
{
(0)NME0

∗(Π∗(0),A,D, k, p(k))
}

k
≈c

{
(0)NME1

∗(Π∗(0),A,D, k, p(k))
}

k

where the experiment (0)NME∗ is defined in Fig. 5 and the encryption scheme
Π∗(0) = (NMGen∗(0), NMEnc∗(0), NMDec∗(0)) is defined in Fig. 6.

19

488

Approved for Public Release; Distribution Unlimited.

Proof. By definition, notice that NMEnc∗(0) = NMEnc†(0)(pk, m, α) = enc(pk, m);
in fact, Π∗(0) is equivalent to E. Second, the (0)NME∗ experiment has no
parallel queries after the challenge has been submitted, and is therefore
(roughly) equivalent to the CCA1-security game. By assumption, E is
sPA1`-secure and therefore CCA1-secure, which completes the claim.

It remains to prove the key technical lemma; we first present a high-
level overview of the proof. Our goal is to show how to simulate an Ad-
versary A that makes c parallel decryption queries when given a c-layered
challenge ciphertext, with an adversary B that only has access to c− 1 par-
allel decryption queries, and a c− 1 layered challenge ciphertext. It is easy
to see how we can simulate the extra layer of the challenge ciphertext, B
can simply generate its own keys and add an extra layer to its challenge
ciphertext to simulate A. The question remains how to simulate the extra
parallel decryption that A has access to. It may seem, on first glance, to
follow immediately for the sPA1` security of the underlying encryption
scheme, because the whole purpose of an extractor is to simulate a de-
cryption oracle. However, A is fed a challenge ciphertext which it did not
produce (and thus there is no extraction guarantee), and A might create
its parallel decryption queries based on the challenge ciphertext, in which
case there is no a priori reason to believe that ExtA will be able to “de-
crypt” properly when used to decrypt the “extra” cth parallel decryption
query.

To solve this issue, we use the non-duplicatable set selection to ensure
that there is a new public-key with respect to which the adversary must
have generated part of the ciphertext (and not just mauled part of the
challenge ciphertext); we can then be assured that the extractor will work
on this portion of the challenge ciphertext. However, this by itself does
not allow us to simulate the consistency check in the decryption algorithm
that ensures that all of the encryptions at a given level are of the same
message. For the outer layer of ciphertexts that need to be decrypted, we
have the corresponding secret-keys since B generated the corresponding
public-keys. The inner-layers are another matter entirely. In order to argue
this, we use the sPA1`+ security of the underlying encryption scheme in
conjunction with the fact that it is weakly simulatable. In essence this
means that the extractor cannot tell the difference between when the outer
layer of the challenge ciphertext is legitimate encryptions and when they
were instead created on demand using the simulator with randomness
provided via an oracle. However, in the latter case, by the definition of
sPA1`+ security, the extractor must function.

20

489

Approved for Public Release; Distribution Unlimited.

There is one last subtlety, which is that due to technical requirements of
the proof, we actually do not necessarily have access to the secret-keys for
the outer layer of the encryptions of A when we need it, and therefore can-
not perform the outer layer consistency check via the extractor. It suffices
for this check to be done in a hybrid experiment using the actual secret-
key (independent of where it comes from). However, we need to ensure
that the responses from these consistency checks do not affect the viability
of finding a suitable extractor. Here, the fact that we have p(k) parallel de-
cryption queries to simulate, as opposed to p(k) adaptive queries, is used.
Essentially, we consider a system which decrypts all of the parallel queries
via the extractor, ignoring the initial consistency checks.

Lemma 3. For any integer c > 0, any ppt adversary A, polynomial p and
security parameter k, there exists a ppt adversary B such that
{
(c)NMEb

∗(Π∗(c),A,D, k, p(k))
}

b,k
≈c

{
(c-1)NMEb

∗(Π∗(c−1),B,D, k, p(k))
}

b,k

Proof. Consider the following hybrid experiment:
Experiment Hb

∗(Π∗(c),A,D, k, p(k)) proceeds similarly to (c)NMEb
∗ with

the difference that the former experiment handles the decryption of all
ciphertexts up to the second parallel query differently. After all of the
public keys have been generated, initialize st←

(
{pki}i∈[2ck+1], RA

)
where

RA are the random coins that will be used to run A. For all CCA1 queries
that A makes (i.e., queries that are made before the challenge ciphertext
is produced), everytime that NMDec∗ calls the decryption function dec on
yi, the experiment calls ExtA(st, yi, ·) with the appropriate pk as the third
argument. After A receives the challenge ciphertext, the first parallel
query {di} is decrypted using NMDecAlt defined below (without loss of
generality, assume that di = (~C, σ, vkSig)). The remaining (c− 1) parallel
queries are decrypted as per (c)NME∗.

NMDecAlt(di = (~C, α)):
1: If α = 0k output ⊥, else let i′ be the first index at which αi′ 6= 0.
2: For i ∈ [k], do C′i ← decsk

αi
i
(Ci)

3: Call Y(c−1) ← ExtA(st, Ci′ , pkαi′
i′)

(notice that Y(c−1) = (y(c−1)
1 , . . . , y(c−1)

k) is a vector).
4: m← ExtractAll(pk, Y(c−1), (c− 1), α)
5: If ∃j s.t. C′1 6= C′j, return ⊥. Else return m

ExtractAll(pk, Y = (yc
1, . . . , yc

k), c, α) :

21

490

Approved for Public Release; Distribution Unlimited.

1: for i = c− 1 to 0
2: for j = 1 to k
3: yi

j ← ExtA(st, y(i+1)
j , pk

αj

(i+1)·k+j)

4: if ∃d ∈ [k] s.t. yi
1 6= yi

d return ⊥
5: m← ExtA(st, y0

1, pk0)
6: Return m

Intuitively ExtractAll submits the inner layer of the query Y(c−1) to
the extractor to be decrypted under the appropriate keys until it
reaches the innermost layer containing message m.

To define the function extractor ExtA used in NMDecAlt above, we first
define an sPA1+2ck+1 ciphertext creator CrtA (which makes calls to an ex-
tractor oracle) that roughly mimics the queries made by adversary A in
the Hb experiment. We define CrtA as follows:

1. CrtA receives 2ck+ 1 public-keys pk =
(

pk0, {pkb
i }i∈[1...ck],b∈{0,1}

)
from

the sPA1+2ck+1 experiment. CrtA reads its random tape as RA and
runs A0(pk) using tape RA.

2. Whenever CrtA receives a query
(
{yi}i∈[k], α

)
from A0, it returns ⊥

if α = 0k. Otherwise, CrtA submits each (yi, pkαi
i) to its extractor. If

all of the queries do not decrypt to the same value, CrtA returns ⊥
to A0 as the answer to that query. Call the decrypted value Y(c−1)

and notice that it should be a vector of ciphertexts encrypted under k
public keys in pk. Next CrtA calls m←ExtractAll(pk, α, Y(c−1), c− 1).
CrtA returns m to A0 as the answer to the query. Eventually A0
returns (m0, m1, St) and halts.

3. CrtA accesses its oracle O to generate k blocks of ` random bits

(x1, . . . , xk) and then computes the vector~y =
(

f (pk0
k(c−1)+1, x1), . . . , f (pk0

k(c−1)+k, xk)
)

.

CrtA then runs A1(y∗, St) where y∗ = (~y, 0k) and St is the state in-
formation returned by A0.

4. A1 returns a vector of ciphertexts ~Y and the state information S and
halts. For each query Yj = ({yi}i∈[k], α), CrtA executes steps 1,3,
and 4 of procedure NMDecAlt to decrypt the message. After each
ciphertext in the first parallel query has been decrypted in this way,
CrtA halts.

22

491

Approved for Public Release; Distribution Unlimited.

The sPA1+` security of E implies there exists an extractor ExtA whose
answers to the decryption queries submitted by CrtA are indistinguishable
from their true decryptions. We have now defined ExtA used in NMDecAlt.
Notice that CrtA does not exactly simulate A’s view in Hb; we will argue
below why ExtA continues to work properly when it is used in Hb.

Claim 2. For b ∈ {0, 1}, {(c)NMEb
∗
(

Π(c),A,D, k, p (k)
)
}k∈N≈c{Hb

(
Π(c),A,D, k, p (k)

)
}k∈N

Proof. Experiments (c)NMEb
∗ and Hb differ only if ExtA answers with an

incorrect decryption in the latter experiment. The assumption on the
sPA1`-security of E implies:

Pr[sPA1+` (Π
∗(c),CrtA,ExtA, k) = 0] ≤ µ1(k) (5)

for some negligible µ1 and therefore ExtA correctly answers all of the
queries issued by CrtA with very high probability (recall that the sPA1
random variable being 0 corresponds to an incorrect decryption event).
As mentioned, CrtA does not exactly mimic A’s view in Hb and so it is not
obvious that ExtA answers correctly in Hb. The two notable differences are
that (i) CrtA uses the weak simulatability of the base encryption scheme
to create the challenge ciphertext instead of using enc to produce the chal-
lenge, and (ii) CrtA does not perform a consistency check that all C′1 = C′j
before decrypting the inner ciphertext but instead uses the extractor on
the outer layer at a position in which α differs from 0k and then uses the
ExtractAll method on the resulting inner ciphertext.

In order to handle the first difference, we analyze Pr[sPA1++
` (Π∗(c),CrtA,ExtA, k) =

0] where sPA1++
` is an experiment identical to sPA1+` with two differences:

1. First, a random bit d is selected and fixed for the remainder of the
game.

2. The oracle O returns random bits as follows: when CrtA accesses the
oracleO for the ith time, instead of r ∈ {0, 1}l ,O returns f−1(pk0

k(c−1)+i, encpk0
k(c−1)+i

(md)).

We argue that ExtA answers all queries correctly in these two games must
be negligibly close by the weak-simulatability property:

Claim 3. |Pr[sPA1+` (Π
∗(c),CrtA,ExtA, k) = 0]−Pr[sPA1++

` (Π∗(c),CrtA,ExtA, k) =
0]| < µ(k).

23

492

Approved for Public Release; Distribution Unlimited.

Proof. Consider the weak-simulatability adversary B defined as follows:
(Recall that in the first step, the weak-simulatability challenger samples

k pairs of keys (pki, ski) ← gen(1k) for i ∈ [k] and a random bit b.) The
attacker B receives k public keys which we call {pk0

k(c−1)+i}i∈[k] from the
environment. B then samples another k+ 2(c− 1)k+ 1 random keys using
the gen algorithm and fresh random coins to build the public key pk =

{pk0, (pkb
i , skb

i)i∈[ck],b∈{0,1}} (notice that {pk0
k(c−1)+i}i∈[k] in pk are received

from the environment and the rest are generated randomly). B samples
random coins RA for A and runs step (2) of the description of CrtA using
ExtA. Eventually A writes (m0, m1) to its write-only tape. B randomly
chooses d ∈ {0, 1} and stores c′d = NMEnc†(c−1)(pk′, md, 0k) where pk′ =
{pk0, (pkb

i , skb
i)i∈[(c−1)k],b∈{0,1}} (notice that pk′ is the public key for the inner

layer of ciphertexts encrypted under pk for the Π∗(c) encryption scheme
and c′d is the inner layer for an encryption of md under pk). For ease of
notation, we refer to {pk0

k(c−1)+i}i∈[k] as ~pk′′ (these are the public keys for
the outer layer of the challenge ciphertext). Next the challenger samples
ri ∈ {0, 1}l for 1 ≤ i ≤ k and returns

{
yi =

(
ri, f (pk′′i , ri)

)}
i∈[k] if b = 0,

and
{

yi =
(

f (pk′′i , ci = encpk′′i
(c′d)), ci

)}
i∈[k]

if b = 1. B then simulates step

(3) of CrtA by running A1(y∗, St) where y∗ = (~y, 0k) and St is the state
information returned by A0. A1 returns a vector of ciphertexts ~Y and
the state information S and halts. B runs step (4) of CrtA on ~Y. Finally
attacker B outputs b′ = 0 if all the queries made to ExtA so far were
answered correctly and b′ = 1 otherwise. This check can be done by using
the secret keys for the spots in pk that are generated by B (all of them
except {pk0

k(c−1)+i}i∈[k] which is received from the environment) because
after A returns (m0, m1), the only queries that it asks to its extractor are
with respect to ciphertexts encrypted under the mentioned keys in pk.

The case b = 0 corresponds to experiment sPA1+` (Π
∗(c),CrtA,ExtA, k)

and the case b = 1 corresponds to sPA1++
` (Π∗(c),CrtA,ExtA, k). For con-

venience, in the following equations, we abbreviate the two experiments
as sPA1+` and sPA1++

` respectively. It follows that:

Pr[DISTE′((f , f−1), k,B) = 1] = Pr[b = 0] · Pr[sPA1+` = 0] + Pr[b = 1] · Pr[sPA1++
` = 1]

= (1/2)Pr[sPA1+` = 0] + (1/2)(1− Pr[sPA1++
` = 0])

= 1/2 + 1/2(Pr[sPA1+` = 0]− Pr[sPA1++
` = 0])

Since the weak-simulatability property of E′ implies that |Pr[DISTE′((f , f−1), k,B) =

24

493

Approved for Public Release; Distribution Unlimited.

1]− 1/2| ≤ µ(k) for some negligible function µ, it must then follow that

|Pr[sPA1+` = 0]− Pr[sPA1++
` = 0]| ≤ 2µ(k)

which completes the proof of the claim.

Combining (5) with Claim 2 implies that Pr[sPA1++
` = 0] ≤ µ2(k) for

another negligible function µ2. Moreover, by Bayes rule, we can conclude
that there exists another negligible function µ3 such that both Pr[sPA1++

` =
0 | d = 0] ≤ µ3(k) and Pr[sPA1++

` = 0 | d = 1] ≤ µ3(k); i.e., the possibility
for incorrect extraction results remains negligible no matter which of m0
or m1 is used in the sPA1++

` experiment.
In order to handle (ii), we observe that ExtA only receives queries gen-

erated by the first parallel query in both sPA1++
` and experiment Hb. From

the beginning of both experiments and up to the point of the challenge ci-
phertext generation, the initial state st and the distribution of queries fed
to ExtA in Hb is identical to those in experiment sPA1++

` . (This explains
why it is necessary for experiment Hb to make “dummy” calls to ExtA for
every call to dec during the decryption of the CCA1 queries.)

When the ciphertext is generated, since f (f−1(c)) = c, that challenge
ciphertext in experiments Hb and sPA1++

` conditioned on d = b will also be
identically distributed, and this implies that the parallel query that A1 is-
sues will also be identically distributed. Once this parallel query has been
fixed, the queries that are sent to ExtA are also fixed in both experiments.
By inspection, again because NMDec∗(c)

∗
issues dummy queries to ExtA

during the decryption of the outer layer, it follows that the query distri-
bution will be identical, and the claim follows. Thus, the fact that CrtA
does not perform the same consistency check is irrelevant since the same
distribution of queries is fed to the extractor in both experiments.

It then follows that with high probability, all of the responses from
ExtA in Hb coincide with the true decryption, and therefore (c)NMEb

∗ and
Hb also output the same value which concludes the Claim.

Claim 4. For any ppt adversary A, polynomial p and security parameter k, there
exists an adversary B such that

Hb(Π∗(c),A,D, k, p(k)) ≡ (c− 1)NMEb
∗(Π∗(c−1),B,D, k, p(k))

Proof. We build the (c-1)NME∗ adversary B as follows: B receives the
public-key npk∗(c−1) = (pk′0, ~pk′ = {pk

′b
i }i∈[(c−1)k],b∈{0,1}) from the envi-

ronment and generates another 2k keys as (pk
′′b
i , sk

′′b
i)← gen(1k) for i ∈ [k]

25

494

Approved for Public Release; Distribution Unlimited.

and b ∈ {0, 1}. Let pk =
{

pk′0, ~pk′, ~pk
′′
}

. B generates random coins RA and

initializes st←
(
{pki}i∈[2ck+1], RA

)
. B runs A0(pk; RA).

For any CCA1 query Y = (~y, α) that A0 submits, B runs NMDecAlt us-
ing ~sk′′ to decrypt the outer layer. Eventually A0 returns (m0, m1) and the
state information S1 and halts. B then forwards (m0, m1) to the environ-
ment and receives a challenge ciphertext Y′ = (~y′, 0k) from the environ-
ment. B computes {y∗i ← enc(pk′′i ,~y′)}i∈[k] and sets Y∗ = (~y∗, 0k). B also
computes {ri ← f−1(pk′′i , y∗i)}i∈[k] and forwards {ri}i∈[k] to ExtA and runs
A1 on the challenge ciphertext Y∗ and the state information S1. Eventu-
ally A1 returns a vector of queries (the first parallel query) ~Y and the state
information S2 and halts. B submits each Yi to the extractor and receives
a value which we call m′ from it. B then uses ~sk

′′
to check that all the

ciphertexts in the outer layer of Yi decrypts to the same value. If so, it sets
m′ as the decryption of that query otherwise it sets ⊥ as the decryption of
that query. We refer to the resulting vector of decryptions to ~Y as ~d1.

For all q = 2 to c, B runs Aq on Y∗, S2 and ~dq and gets in return a vector
of ciphertexts ~Y and the state information Sq+1. B decrypts Yi = (~y, α) as

follows: the decryption is ⊥ if α = 0k. Otherwise B uses ~sk
′′

to check all
the ciphertexts in the outer layer of Yi decrypts to the same value y0. If
not, the decryption to this query will be ⊥. Otherwise B sets Y′i = (y0, α)

and moves to the next query. After processing all queries, B submits ~Y′

to the environment and gets in return a vector of decryptions to the ~Y′.
Using these answers and the results from the checks, B sets ~di (which is
the vector of the decryption to ~Yi). Eventually B outputs ~dc+1 and the state
information Sc+1 and halts.
B performs a perfect simulation of the Hb(Π∗(c),A,D, k, p(k)) experi-

ment, and thus the claim follows.

Combining Claim 2 and Claim 4 completes the proof of Lemma 3.

3.4 Remarks about the proof

In our construction, we use the k-bit outer-most signature SigVK to pick
the unduplicatable set for each of the c layers of encryption. Not only is
this choice an efficiency improvement in that only one signature key is
needed (instead of c), it is also a critical feature of our proof. This point

26

495

Approved for Public Release; Distribution Unlimited.

is used in Claim 4. Adversary B must not submit a 0-tag query to its
(c-1)NME challenger; but if each layer could use a different α tag, then A
might select 0 as the tag for the (c− 1) layer and therefore prevent B from
submitting it to its oracle.

4 Conclusions

We have shown both the first construction of a non-malleable CCA1 en-
cryption scheme from a seemingly weaker primitive, and that it is possi-
ble to realize cNM-CCA1 schemes without achieving full CCA2 security.
All of our constructions are black-box, although based on hardness as-
sumptions that are not efficiently falsifiable. Major open questions in the
area are clearly if CPA security implies CCA1 security, CCA1 security im-
plies CCA2, or the transitive closure. Progress on any of these questions,
with either black-box or white-box constructions (or impossibility results),
would be of foundational importance to the field.

4.1 Acknolwedgements

We thank the NSF (grant 0939718), DARPA and AFRL (joint contract FA8750-
11-2-0211) for their gracious support.

References

[1] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-
key encryption without random oracles. In Pil Joong Lee, editor,
ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pages
48–62. Springer, 2004.

[2] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, July 2004.

[3] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck
Wee. Black-box construction of a non-malleable encryption scheme
from any semantically secure one. In Ran Canetti, editor, TCC,
volume 4948 of Lecture Notes in Computer Science, pages 427–444.
Springer, 2008.

[4] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai,
Eike Kiltz, Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan.

27

496

Approved for Public Release; Distribution Unlimited.

Bounded cca2-secure encryption. In Kaoru Kurosawa, editor, ASI-
ACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 502–
518. Springer, 2007.

[5] Ronald Cramer and Victor Shoup. Design and analysis of practi-
cal public-key encryption schemes secure against adaptive chosen ci-
phertext attack. SIAM J. Comput., 33(1):167–226, 2003.

[6] Ivan Damgård. Towards practical public key systems secure against
chosen ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO, vol-
ume 576 of Lecture Notes in Computer Science, pages 445–456. Springer,
1991.

[7] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing
encryption schemes based on a general complexity assumption. In
Mihir Bellare, editor, CRYPTO, volume 1880 of Lecture Notes in Com-
puter Science, pages 432–450. Springer, 2000.

[8] Alexander W. Dent. The cramer-shoup encryption scheme is plain-
text aware in the standard model. In Serge Vaudenay, editor, EU-
ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages
289–307. Springer, 2006.

[9] Alexander W. Dent. The hardness of the dhk problem in the generic
group model. IACR Cryptology ePrint Archive, 2006:156, 2006.

[10] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryp-
tography. SIAM J. Comput., 30(2):391–437, 2000.

[11] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of computer and system sciences, 28(2):270–299, 1984.

[12] Takahiro Matsuda and Kanta Matsuura. Parallel decryption queries
in bounded chosen ciphertext attacks. In Dario Catalano, Nelly Fazio,
Rosario Gennaro, and Antonio Nicolosi, editors, Public Key Cryptogra-
phy, volume 6571 of Lecture Notes in Computer Science, pages 246–264.
Springer, 2011.

[13] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS,
pages 607–616. IEEE Computer Society, 2009.

[14] Moni Naor. On cryptographic assumptions and challenges. In Dan
Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 96–109. Springer, 2003.

28

497

Approved for Public Release; Distribution Unlimited.

[15] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen cypher-text attack. In STOC’90, pages 427–437, 1990.

[16] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction
of a non-malleable encryption scheme from any semantically secure
one. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes
in Computer Science, pages 271–289. Springer, 2006.

[17] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack. In CRYPTO’91, pages
433–444, 1991.

A Instantiating weak-simulatability

Algorithm 1: DEG
G(1k)

1: (p, q, g)← G(1k)
2: x1 ← Zq; X1 ← gx1 mod p
3: x2 ← Zq; X2 ← gx2 mod p
4: Return (pk = (p, q, g, X1, X2),

sk = (p, q, g, x1, x2))

E(pk, M)
1: y← Zq; Y ← gy mod p
2: W ← Xy

1 ; V ← Xy
2 mod p

3: U ← V ·M mod p
4: Return C = (Y, W, U)

D(sk, C)
1: if W 6= Yx1 mod p then Return ⊥
2: Return M← U ·Y−x2 mod p

Algorithm 2: CS-Lite
G(1k)

1: (p, q, g1)← G(1k); g2 ← Gq\{1}
2: x1 ← Zq; x2 ← Zq; z← Zq
3: X ← gx1

1 .gx2
2 mod p; Z ← gz

1 mod p
4: Return (pk = (p, q, g1, g2, X, Z),

sk = (p, q, g1, g2, x1, x2, z))

E(pk, M)
1: r ← Zq
2: R1 ← gr

1 mod p; R2 ← gr
2 mod p

3: E← Zr ·M mod p; V ← Xr mod p
4: Return C = (R1, R2, E, V)

D(sk, C)
1: if V 6= Rx1

1 · R
x2
2 mod p then Return ⊥

2: Return M← E · R−z
1 mod p

Fig. 8: The Encryption Schemes DEG and CS-Lite

Definition 5. (Simulatable Group) [8] A family of groups {Gk}k∈N is simu-
latable if there exist two poly-time functions (h, h−1) and a polynomial `, such
that the following correctness requirements are met.

1. ∀k, ∀r ∈ {0, 1}`(k), h(r) ∈ Gk.

2. h−1 is probabilistic. ∀k, ∀α ∈ Gk, h−1(α) ∈ {0, 1}`(k).

29

498

Approved for Public Release; Distribution Unlimited.

3. ∀k, h(h−1(α)) = α for all α ∈ Gk.

Similarly, the following two security requirements are met, for all probabilistic
distinguisher A and all k ∈ N, there exists a negligible function ε such that:
Pr[INVA(k, (h, h−1)) = 1] ≤ 1/2 + ε(k) and Pr[INDA{G}(k, h) = 1] ≤ 1/2 +
ε(k), where the experiments are defined in Fig. 9.

INVA(k, (h, h−1))
1: b← {0, 1}
2: b′ ← AOh,h−1,b(1k), where oracle Oh,h−1,b responds to a query

by
sampling r ∈ {0, 1}l(k), and returning r if b = 0 or h−1(h(r)) if

b = 1
3: Output 1 iff b = b′

INDA{G}(k, h)
1: b ∈ {0, 1}
2: b′ ← AOb,h(1k), where Ob,h responds to a query by

sampling r ∈ {0, 1}l(k) and sampling h ∈ Gk and returning h(r) if
b = 0 or h if b = 1

3: Output 1 iff b = b′

Fig. 9: The Experiments INDA and INVA{G} used to define security for
weakly simulatable security of a group family {G}.

Dent showed that groups in which the DDH assumptions are believed
to hold are simulatable.

Lemma 4. [8] For an infinite sequence of pairs of primes q and p, where p =
2q + 1, let G(p,q) be the subgroup of Z∗p of order q, then {G(p,q)} is simulatable
group family.

Theorem 3. The DEG encryption scheme is weakly simulatable if it is instanti-
ated with a simulatable group family {Gk} on which the DDH problem is hard.

Proof. Let (h, h−1) be the efficiently computable functions that exist by the
fact that the {Gk} is a simulatable group family. For ease of notation in
this proof, we assume all functions get the required public parameters (e.g.
the public-key) as part of their input. We need to give the two functions
(f , f−1) for DEG required by the definition of weakly simulatable. De-
fine f (x = (x1, x2, x3)) = (h(x1), h(x2), h(x3)), and f−1(c = (c1, c2, c3)) =

30

499

Approved for Public Release; Distribution Unlimited.

(h−1(c1), h−1(c2), h−1(c3)). From the properties in the definition of a sim-
ulatable group (family), (f , f−1) satisfies the corresponding requirements
given in the definition of a weakly simulatable encryption scheme.

We now need to argue the final property of a weakly simulatable en-
cryption scheme: no ppt adversary can distinguish between a valid cipher-
text and one sampled via f (which may not be a valid ciphertext). Namely,
we need to show Pr[DISTDEG(k, (f , f−1),A) = 1] ≈ 1/2

To meet this goal, we design a series of games (or experiments) to
show the advantage of an adversary being able to distinguish between
legitimate ciphertexts, and sampled outputs of f is negligible. Let Wi,k
be the random variable output of the security experiment in Game i with
security parameter k.

Let Game 1 be exactly the experiment DISTDEG(k, (f , f−1),A).
Let Game 2 be a modification of Game 1, in which the ciphertext c

produced on Line 3 of DIST returns an encryption of 1, independent of
the value of m.

Claim 5. {W1,k}k ≈c {W2,k}k.

Proof. Follows from CPA security of the DEG encryption scheme.

Let Game 3 be a modification of Game 2 in which again in Line 3 of
DIST, the value W computed in Line 2 of the DEG encryption algorithm
is computed as follows: W ← gr′ , where r′ ∈ Zq (instead of W ← Xy

1).

Claim 6. {W2,k} ≈c {W3,k}

Proof. (sketch) If there is any distinguisher D that can distinguish {W2,k}
from {W3,k} with reasonable probability, then one can use D be used to
build a DDH distinguisher D′. In particular, D′ when given either a tuple
(g, gx1 , gy, gx1y) or (g, gx1 , gy, gr′), can choose a random x2, simulate a pk
for the DEG scheme, and use x2 and the provided information to compute
an appropriate encryption for a perfect simulation of the either Game 2 or
Game 3. We can then simulate D, and use the result to break DDH.

Let Game 4 be a modification of Game 3 where the value U in Line
2 of the DEG encryption algorithm is computed as U = gr′′ for randomly
selected r′′ ∈ Zq.

Claim 7. {W3,k} ≈c {W4,k}

31

500

Approved for Public Release; Distribution Unlimited.

Proof. (sketch) The proof of this claim parallels that of the previous. If
there is a distinguisher D of {W2,k} and {W3,k} then to can be used to build
a DDH distinguisher D′. In particular, D′ given a tuple (g, gx2 , gy, gx2y) or
(g, gx2 , gy, gr′), it choose a random x1, simulates a pk for the DEG scheme,
and use x1 and the provided information to provide an appropriate en-
cryption, for a perfect simulation of the either Game 3 or Game 4.

In Game 4 each of the components of the ciphertext in Line 3 of DIST
is now random group element. In Game 5 we replace these random group
elements with random output from the group element sampling algorithm
h, which due to the simulatable group properties are indistinguishable
from random group elements. Specifically, in Game 5 in Line 5 of DIST we
return the “ciphertext” (Y = h(r1), W = h(r2), U = h(r3)), for randomly
chosen r1, r2, r3 ∈ {0, 1}l(k).

Claim 8. Pr{W4,k} ≈c {W5,k}

Proof. Follows immediately from simulatable group properties of G and
h.

We note that by the definition of f , the output of the encryption al-
gorithm in Game 5 Line 5 of DIST is an identically, but independently
distributed random variable as the one output on Line 4 of DIST (i.e.,
f (r1, r2, r3) for randomly chosen r1, r2, r3). It is clear that Pr[Wk,5 = 1] =
1/2.

Therefore, since we can combine all the claims to show that Pr[Wk,1 =
1] ≈c Pr[Wk,5 = 1] = 1/2 we conclude that DEG is weakly simulatable.

Theorem 4. The Cramer-Shoup lite encryption scheme is weakly simulatable if
it is instantiated on a simulatable group G on which the DDH problem is hard.

Proof. Similar to the proof of Theorem 3.

B Instantiating SPA secure schemes

Definition 6 (DHK` Assumption (modification of [1])). Let G be a prime-
order-group generator. Let CrtG be an algorithm that has access to an oracle,
takes an ` sequence of two primes and two group elements, and returns nothing.
Let ExtG be an algorithm that takes a pair of group elements and some state
information, and returns an exponent and a new state. We call CrtG a DHK`-
adversary and ExtG a DHK`-extractor.

32

501

Approved for Public Release; Distribution Unlimited.

DHK`(G,CrtG,ExtG, k)
1: (pi, qi, gi ← G(1k); ai ← Zqi ; Ai ← gai

i mod pi)i∈`(k)
2: Let R[CrtG] and R[ExtG] be randomly selected strings for CrtG and

ExtG
3: st← ((pi, qi, gi, Ai)i∈[`(k)], R[CrtG])

4: while Simulate CrtG((pi, qi, gi, Ai)i∈[`(k)]; R[CrtG]) do
5: if CrtG queries (i, B, W) then
6: (b, st)← ExtG((i, B, W), st; R[ExtG])
7: if W ≡ Bai mod pi and B 6≡ gb

i mod pi then Return 1
8: else Return b to CrtG
9: Return 0

Fig. 10: DHK`: An Extension to the DHK Definition

We say that G satisfies the DHK` assumption if for every polynomial-time
CrtG there exists a polynomial-time ExtG and negligible function µ, s.t. for all
k ∈N: Pr[DHK`(G,CrtG,ExtG, k) = 1] ≤ µ(k).

Our modification to DHK` versus the definition in [1] requires that the
ciphertext creator be able to generate ciphertexts relative to a polynomial
number of randomly chosen public-keys. It seems reasonable to conjecture
that any extractor that could extract exponents with respect to single value
A = ga, could do so efficiently for many Ai. We now argue that DEG is
sPA1` secure under the DHK` assumption.

Theorem 5. For any polynomial `, if the DHK` assumption holds and the DEG
scheme is instantiated with a simulatable group family {Gk}, then the DEG
scheme is sPA1` secure.

Proof. We need to show that for any adversary Crt there exists an ex-
tractor Ext that can decrypt its queries flawlessly. Ext receives (pki =
〈pi, qi, gi, Ai, Âi〉)i∈`(k) and R[Crt] as state information. Then Ext builds
the DHK` adversary CrtG that runs the sPA1` adversary Crt internally and
simulates the sPA1` experiment for it. CrtG receives (pi, qi, gi, Ai)i∈`(k) and
its random coins from Ext and parses its random coins as (f−1

G (Âi))i∈[`(k)] | R[Crt]
(prepared by Ext where Âi is a random group element in G). Notice that
since G, the group from which Âi is sampled from, is simulatable, it fol-
lows that f−1

G (Âi) is indistinguishable from random bits and should have
indistinguishable effect on the output of the extraction. Because CrtG is
a DHK` adversary, therefore there exists an extractor for it ExtG. For

33

502

Approved for Public Release; Distribution Unlimited.

each i ∈ [`(k)], CrtG sets pki ← (pi, qi, gi, Ai, Âi). CrtG then runs Crt on
(pki)i∈[`(k)] and the random coins R[Crt] until Crt halts, answering Crt’s
queries as follows: upon receiving the query C = (i, Y, W, U) from Crt,
CrtG submits (i, Y, W) to the DHK` extractor ExtG. The DHK` extrac-
tor ExtG returns the value b. If Y 6≡ gb

i mod pi or W 6≡ Ab
i mod pi

then CrtG returns ⊥ as the answer to this query, otherwise CrtG com-
putes M ← U · (Âi

b
)−1 mod pi and return the result to Crt. Notice that

since CrtG is a DHK` adversary, the extractor ExtG should return the right
answer to the queries CrtG submits. Since Ext makes a mistake in an-
swering Crt’s queries only when there is a mistake in ExtG’s answers to
CrtG’s queries, we conclude that Ext also returns the right decryption to
the queries submitted by Crt and is an extractor for it.

Theorem 6. For any polynomial `, The CS-Lite scheme is sPA1` secure if the
followings hold: i) the DHK` assumption, and ii) CS-Lite is instantiated with a
simulatable group family {Gk}.

Proof. Similar to the proof of Theorem 5.

34

503

Approved for Public Release; Distribution Unlimited.

Constant-Round Concurrent Zero Knowledge

From P-Certificates

Kai-Min Chung∗ Huijia Lin† Rafael Pass‡

Abstract

We present a constant-round concurrent zero-knowledge protocol for NP. Our protocol relies
on the existence of families of collision-resistant hash functions, and a new, but in our eyes,
natural complexity-theoretic assumption: the existence of P-certificates—that is, “succinct”
non-interactive proofs/arguments for P. As far as we know, our results yield the first constant-
round concurrent zero-knowledge protocol for NP with an explicit zero-knowledge simulator
based on any assumption.

∗Cornell University, Email: chung@cs.cornell.edu
†MIT and Boston University, Email: huijia@csail.mit.edu.
‡Cornell University, Email: rafael@cs.cornell.edu. Pass is supported in part by a Alfred P. Sloan Fellowship,

Microsoft New Faculty Fellowship, NSF CAREER Award CCF-0746990, AFOSR YIP Award FA9550-10-1-0093, and
DARPA and AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US government.

504

Approved for Public Release; Distribution Unlimited.

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that allow one player
(called the Prover) to convince another player (called the Verifier) of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Verifier. Beyond being fasci-
nating in their own right, ZK proofs have numerous cryptographic applications and are one of the
most fundamental cryptographic building blocks.

The notion of concurrent zero knowledge, first introduced and achieved in the paper by Dwork,
Naor and Sahai [DNS04], considers the execution of zero-knowledge proofs in an asynchronous and
concurrent setting. More precisely, we consider a single adversary mounting a coordinated attack
by acting as a verifier in many concurrent executions (called sessions). Concurrent ZK proofs are
significantly harder to construct and analyze. Since the original protocol by Dwork, Naor and Sahai
(which relied on so called “timing assumptions”), various other concurrent ZK protocols have been
obtained based on different set-up assumptions (e.g., [DS98, Dam00, CGGM00, Gol02, PTV12,
GJO+12]), or in alternative models (e.g., super-polynomial-time simulation [Pas03b, PV10]).

In the standard model, without set-up assumptions (the focus of our work,) Canetti, Kilian,
Petrank and Rosen [CKPR01] (building on earlier works by [KPR98, Ros00]) show that concurrent
ZK proofs for non-trivial languages, with “black-box” simulators, require at least Ω̃(log n) number
of communication rounds. Richardson and Kilian [RK99] constructed the first concurrent ZK
argument in the standard model without any extra set-up assumptions. Their protocol, which uses
a black-box simulator, requires O(nε) number of rounds. The round-complexity was later improved
in the work of Kilian and Petrank (KP) [KP01] to Õ(log2 n) round. Somewhat surprisingly, the
simulator strategy of KP is “oblivious”—the “rewinding schedule” of the simulator ignores how
the malicious verifier schedules its messages. The key insight behind this oblivious simulation
technique is that a single “rewinding” may be helpful for simulating multiple sessions; in essence,
KP performs an amortized analysis, which improves the round-complexity. (As we shall see shortly,
such an amortized analysis will play an important role also in this work.) More recent work by
Prabhakaran, Rosen and Sahai [PRS02] improves the analysis of the KP simulator, achieving an
essentially optimal, w.r.t. black-box simulation, round-complexity of Õ(log n); see also [PTV12] for
an (arguably) simplified and generalized analysis.

The central open problem in the area is whether a constant-round concurrent ZK protocol (for
a non-trivial language) can be obtained. A major breakthrough towards resolving this question
came with the work of Barak [Bar01], demonstrating a new non-black-box simulation technique that
seemed amenable for constructing constant-round protocols that are resilient to concurrent attacks.
Indeed, Barak demonstrated a constant-round bounded-concurrent argument for NP based on the
existence of collision-resistant hash-functions; bounded-concurrency here means that for every a-
priori polynomial bound m on the number of concurrent executions, there exists a protocol (which
depends on m) that remains zero-knowledge as long as the number of concurrent execution does
not exceed m. (In particular, in the protocol of Barak, the message length of the protocol grows
linearly with the a-priori bound m on the number of concurrent executions.)

But a decade later, the question of whether “full” (i.e., unbounded) concurrent zero-knowledge
is achievable in a constant number of rounds is still wide open. Note that it could very well be
the case that all “classic” zero-knowledge protocol already are concurrent zero-knowledge; thus,
simply assuming that those protocols are concurrent zero-knowledge yields an assumption under
which constant-round concurrent zero-knowledge (trivially) exists—in essence, we are assuming that
for every attacker a simulator exists. Furthermore, as we discuss in Section 1.4, if we make strong
“concurrent extractability” assumptions of the knowledge-of-exponent type [Dam91, HT98, BP04b],

1

505

Approved for Public Release; Distribution Unlimited.

concurrent zero-knowledge is easy to construct.1 But such extractability assumptions also simply
assume that for every attacker, a simulator (“the extractor”) exists. In essence, rather than basing
constant-round concurrent zero-knowledge on a hardness assumption, it is based on a “knowledge”
assumption; that is, an assumption that is very similar in flavour to simply assuming that a protocol
is zero-knowledge. The central question that we address in this paper is thus the following:

Can constant-round concurrent zero-knowledge be based on any (reasonable) complexity-
theoretic hardness assumption?

As an additional point, even under the above-mentioned strong “knowledge” assumptions, an
explicit construction of the concurrent zero-knowledge simulator is not known—it is simply as-
sumed that one exists. For some applications of zero-knowledge such as deniability (see e.g.,
[DNS04, Pas03b]), having an explicit simulator is crucial. As far as we know, there are currently no
assumptions (no matter how crazy) under which constant-round concurrent zero-knowledge with
an explicit simulator is known.

In fact, even in the common reference string (CRS) model, there are no known constructions
of constant-round concurrent zero-knowledge where the simulator does not “program” the CRS;
such zero-knowledge protocols were referred to as deniable zero-knowledge in the CRS model in
[Pas03b].2 Indeed, as shown in [Pas03b], the black-box lower-bounds for concurrent zero-knowledge
in the plain model extend also to such a “non-programmable” CRS model.

1.1 Our Results

In this work, we present new complexity-theoretic assumptions, which in our eyes are both natu-
ral and reasonable (and can be efficiently falsified), under which constant-round concurrent zero-
knowledge is achievable. Furthermore, we provide an explicit zero-knowledge simulator.

P-certificates We consider an analogue of Micali’s non-interactive CS-proofs [Mic00] for lan-
guages in P. Roughly speaking, we say that (P, V) is a P-certificate system if (P, V) is a non-
interactive proof system (i.e., the prover send a single message to the verifier, who either accepts
or rejects) allowing an efficient prover to convince the verifier of the validity of any deterministic
polynomial-time computation M(x) = y using a “certificate” of some fixed polynomial length (in-
dependent of the size and the running-time of M) whose validity the verifier can check in some
fixed polynomial time (independent of the running-time of M). That is, a P-certificate allows
every deterministic polynomial-time computation to be “succintly” certified using a “short” certifi-
cate (of a-priori bounded polynomial length) that can be “quickly” verified (in a-priori bounded
polynomial-time).

We may consider the existence of P-certificates either in the “plain” model (without any set-
up), or with some set-up, such as the CRS model. We may also consider various different notions
of soundness: uniform computational soundness—which states that no uniform polynomial-time
algorithm can output an accepting certificate for any false statement, non-uniform computational
soundess—where the same condition holds also w.r.t. non-uniform polynomial-time attackers, and
statistical soundness—where soundness condition holds also with respect to unbounded attackers
restricted to selecting statements of polynomial length.

1Furthermore, as shown in the recent independent work of [GS12], even a “non-concurrent” (but quite strong in
a different way) extractability-type assumption can be used.

2Again, if the simulator gets to program the CRS, such a simulator cannot be used to get deniability.

2

506

Approved for Public Release; Distribution Unlimited.

Note that in the plain model, non-uniform soundness and statistical soundnes are equivalent,
since if an accepting proof of a false statement exists, a non-uniform efficient attacker can simply
get it as non-uniform advice. In the CRS model, however, the notions are (seemingly) distinct.

For our application we will require a slightly stronger soundness condition: soundness needs to
hold even against T (·)-time attackers attempting to prove the validity also of T (·)-time computa-
tions, where T (·) is some “nice” (slightly) super-polynomial function (e.g., T (n) = nlog log logn). We
refer to such proof systems as strong P-certificates.

On the Existence of P-certificates In the plain model, a candidate construction of uniformly
computationally-sound P-certificate systems come from Micali’s CS-proofs [Mic00]. These con-
structs provide short certificates even for all of NEXP. However, since we here restrict to cer-
tificates only for P, the assumption that these constructions are sound (resp. strongly sound)
P-certificates is falsifiable [Pop63, Nao03]: Roughly speaking, we can efficiently test if an attacker
outputs a valid proof of an incorrect statement, since whether a statement is correct or not can be
checked in deterministic polynomial time.3

In our eyes, on a qualitatively level, the assumption that Micali’s CS-proofs yield strong P-
certificates is not very different from the assumption that e.g., the Full Domain Hash [BR93] or
Schnorr [Sch91] signature schemes are existentially unforgeable: 1) whether an attacker succeeds can
be efficiently checked, 2) no attacks are currently known, and 3) the “design-principles” underlying
the construction rely on similar intuitions.

As a final point, recall that Micali’s CS-proofs rely on the Fiat-Shamir heuristic, which in general
may result in unsecure schemes [Bar01, GK03]; however, note that whereas Micali’s construction
is unconditionally secure in the random oracle model, the counterexamples of [Bar01, GK03] ex-
tensively rely on the underlying protocol only being computationally secure; as such, at this time,
we have no reason to believe that the Fiat-Shamir heuristic does not work for Micali’s protocol (or
any other protocol that is unconditionally secure in the random oracle model).

In the CRS model, we may additionally assume that Micali’s CS-proofs satisfy non-uniform
computational soundness. Additionally, several recent works provide constructions of “SNARGs”
(succinct non-interactive arguments) for NP in the CRS model [Gro10, Lip12, BCCT13, GGPR13];
such constructions are trivially P-certificates with non-uniform comptuational soundness in the
CRS model. However, since we restrict to languages in P, checking whether soundness of any of
these constructions is broken now becomes efficiently checkable (and thus assuming that they are
secure becomes falsifiable).

Finally, let us remark that even statistically-sound P-certificates may exist: Note that the exis-
tence of statistically-sound strong P-certificates is implied by the assumption that 1) DTIME(nω(1)) ⊆
NP and 2) NP proofs for statements in DTIME(t) can be found in time polynomial in t [BLV06].
In essence, these assumptions says that non-determinism can slightly speed-up computation, and
that the non-deterministic choices can be found efficiently, where efficiency is measured in terms
of the original deterministic computation. Although we have no real intuition for whether this
assumption is true or false,4 it seems beyond current techniques to contradict it. (As far as we
know, at this point, there is no substantial evidence that even SUBEXP 6⊆ NP.)

From P-certificates to O(1)-round Concurrent ZK Our main theorem is the following.

3In contrast, as shown by Gentry and Wichs [GW11], (under reasonable complexity theoretic assumptions) non-
interactive CS-proofs for NP cannot be based on any falsifiable assumption using a black-box proof of security.

4As far as we know, the only evidence against it is that it contradicts very strong forms of derandomization
assumptions [BLV06, BOV07].

3

507

Approved for Public Release; Distribution Unlimited.

Theorem. Assume the existence of families of collision-resistant hash-functions secure against
polynomial-size circuits, and the existence of a strong P-certificate system with uniform (resp. non-
uniform) soundness. Then there exists a constant-round concurrent zero-knowledge argument for
NP with uniform (resp. non-uniform) soundness. Furthermore, the protocol is public-coin and its
communication complexity depends only on the security parameter (but not on the length of the
statement proved).

Let us briefly remark that from a theoretical point of view, we find the notion of uniform
soundness of interactive arguments as well-motivated as the one of non-uniform soundness; see e.g.,
[Gol93] for further discussion. From a practical point of view (and following Rogaway [Rog06])5, an
asymptotic treatment of soundness is not needed for our results, even in the uniform setting: our
soundness proof is a constructive black-box reduction that (assuming the existence of families of
collision-resistant hash-functions), transforms any attacker that breaks soundness of our concurrent
ZK protocol on a single security parameter 1n into an attacker that breaks the the soundness of the
P-certificate systems with comparable probability on the same security parameter 1n, with only a
“small” polynomial overhead. In particular, if some attacker manages to break the soundness of a
particular instantiation of our protocol using e.g., Micali’s CS-proof for languages in P implemented
using some specific hash function (e.g., SHA-256), then this attacker can be used to break this
particular implementation of CS-proofs.

Furthermore, by the above argument, we may also instantiate our protocol with P-certificates in
the CRS model, leading to a constant-round concurrent zero-knowledge protocol (with non-uniform
soundness) in the non-programmable CRS model.

Beyond Concurrent ZK Since the work of Barak [Bar01], non-black-box simulation techniques
have been used in several other contexts (e.g., [BGGL01, DGS09, BP12, Lin03, PR03a, Pas04a,
BS05, GJ10]. We believe that our techniques will be applicable also in those scenarios. In particular,
in Section 1.3, we show that our protocols directly yield a constant-round simultanously-resettable
ZK [BGGL01, DGS09] for NP, and discuss applications to concurrent secure computation.

1.2 Outline of Our Techniques

We here provide a detailed outline of our techniques. The starting point of our construction is
Barak’s [Bar01] non-black-box zero-knowledge argument for NP. Let us start by very briefly
recalling the ideas behind his protocol (following a slight variant of this protocol due to [PR03b]).
Roughly speaking, on common input 1n and x ∈ {0, 1}poly(n), the Prover P and Verifier V , proceed
in two stages. In Stage 1, P starts by sending a computationally-binding commitment c ∈ {0, 1}n to
0n; V next sends a “challenge” r ∈ {0, 1}2n. In Stage 2, P shows (using a witness indistinguishable
argument of knowledge) that either x is true, or there exists a “short” string σ ∈ {0, 1}n such that
c is a commitment to a program M such that M(σ) = r.6

Soundness follows from the fact that even if a malicious prover P ∗ tries to commit to some
program M (instead of committing to 0n), with high probability, the string r sent by V will
be different from M(σ) for every string σ ∈ {0, 1}n. To prove ZK, consider the non-black-box

5Rogaway used this argument to formalize what it means for a concrete hash function (as opposed to a family of
hash functions) to be collision resistant.

6We require that C is a commitment scheme allowing the committer to commit to an arbitrarily long string
m ∈ {0, 1}∗. Any commitment scheme for fixed-length messages can easily be modified to handle arbitrarily long
messages by asking the committer to first hash down m using a collision-resistant hash function h chosen by the
receiver, and next commit to h(m).

4

508

Approved for Public Release; Distribution Unlimited.

simulator S that commits to the code of the malicious verifier V ∗; note that by definition it thus
holds that M(c) = r, and the simulator can use σ = c as a “fake” witness in the final proof.
To formalize this approach, the witness indistinguishable argument in Stage 2 must actually be
a witness indistinguishable universal argument (WIUA) [Mic00, BG08] since the statement that c
is a commitment to a program M of arbitrary polynomial-size, and that M(c) = r within some
arbitrary polynomial time, is not in NP.

Now, let us consider concurrent composition. That is, we need to simulate the view of a verifier
that starts m = poly(n) concurrent executions of the protocol. The above simulator no longer
works in this setting: the problem is that the verifier’s code is now a function of all the prover
messages sent in different executions. (Note that if we increase the length of r we can handle a
bounded number of concurrent executions, by simply letting σ include all these messages).

So, if the simulator could commit not only to the code of V ∗, but also to a program M that
generates all other prover messages, then we would seemingly be done. And at first sight, this
doesn’t seem impossible: since the simulator S is actually the one generating all the prover messages,
why don’t we just let M be an appropriate combination of S and V ∗? This idea can indeed be
implemented [PR03b, PRT11], but there is a serious issue: if the verifier “nests” its concurrent
executions, the running-time of the simulation quickly blows up exponentially—for instance, if we
have three nested sessions, to simulate session 3 the simulator needs to generate a WIUA regarding
the computation needed to generate a WIUA for session 2 which in turn is regarding the generation
of the WIUA of session 1 (so even if there is just a constant overhead in generating a WIUA, we can
handle at most log n nested sessions).

P-certificates to The Rescue Our principal idea is to use P-certificates to overcome the above-
mentioned blow-up in the running time. On a very high-level, the idea is that once the simulator S
has generated a P-certificate π to certify some partial computation performed by S in a particular
session i, then the same certificate may be reused (without any additional “cost”) to certify the
same computation also in other sessions i′ 6= i. In essence, by reusing the same P-certificates,
we can amortize the cost of generating them and may then generate WIUA’s about WIUA’s etc.,
without blowing-up the running time of the simulator. Let us briefly mention how the two salient
features of P-certificates, namely “non-interactivity” and “succinctness”, are used: Without non-
interactivity, the same certificate cannot be reused in multiple sessions, and without succinctness,
we do not gain anything by reusing a proof, since just reading the proof may be more expensive
than verifying the statement from “scratch”.

Implementing the above high-level idea, however, is quite non-trivial. Below, we outline our
actual implementation. We proceed in three steps:

1. We first present a protocol that only achieves bounded-concurrent ZK, using P-certificates,

2. We next show how this bounded-concurrent protocol can be slightly modified to become a
(fully) concurrent ZK protocol assuming the existence of so-called unique P-certificates—P-
certificates having the property that for every true statement, there exists a single accepting
certificate.

3. In the final step, we show how to eliminate the need for uniqueness, by generating P-
certificates about the generation of P-certificates etc., in a tree-like fashion.

Step 1: Bounded Concurrency Using P-certificates In this first step, we present a (some-
what convoluted) protocol using strong P-certificates that achieves m(·)-bounded concurrency (us-
ing an even more convoluted simulation). As mentioned, Barak’s original protocol could already

5

509

Approved for Public Release; Distribution Unlimited.

be modified to handle bounded concurrency, without the use of P-certificates; but as we shall see
shortly, our protocol can later be modified to handle full concurrency.

The protocol proceeds just as Barak’s protocol in Stage 1 except that the verifier now sends a
string r ∈ {0, 1}2m(n)n2

(instead of length 2n). Stage 2 is modified as follows: instead of having P
prove (using a WIUA) that either x is true, or there exists a “short” string σ ∈ {0, 1}m(n)n2

such
that c is a commitment to a program M such that M(σ) = r, we now ask P to use a WIUA to
prove that either x is true, or

• commitment consistency: c is a commitment to a program M1, and

• input certification: there exists a “short” string σ ∈ {0, 1}m(n)n, and

• prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(σ) = r.

(Note that the only reason we still need to use a universal argument is that there is no a-priori
upper-bound on the length of the program M1; the use of the P-certificate takes care of the fact
that there is no a-priori upper-bound on the running-time of M1, though.) Soundness follows using
essentially the same approach as above, except that we now also rely on the strong soundness of
the P-certificate; since there is no a-priori upper-bound on neither the length nor the running-time
of M1, we need to put a cap on both using a (slightly) super-polynomial function, and thus to
guarantee soundness of the concurrent zero-knowledge protocol, we need the P-certificate to satisfy
strong soundness.

Let us turn to (bounded-concurrent) zero-knowledge. Roughly speaking, our simulator will
attempt to commit to its own code in a way that prevents a blow-up in the running-time. Recall
that the main reason that we had a blow-up in the running-time of the simulator was that the
generation of the WIUA is expensive. Observe that in the new protocol, the only expensive part of
the generation of the WIUA is the generation of the P-certificates π; the rest of the computation
has a-priori bounded complexity (depending only on the size and running-time of V ∗). To take
advantage of this observation, we thus have the simulator only commit to a program that generates
prover messages (in identically the same way as the actual simulator), but getting certificates ~π as
input.

In more detail, to describe the actual simulator S, let us first describe two “helper” simulators
S1, S2. S1 is an interactive machine that simulates prover messages in a “right” interaction with
V ∗. Additionally, S1 is expecting some “external” messages on the “left”—looking forward, these
“left” messages will later be certificates provided by S2. See Figure 1 for an illustration of the
communication patterns between S1, S2 and V ∗.

S1 proceeds as follows in the right interaction. In Stage 1 of every session i, S1 first commits to
a machine S̃1(j′, τ) that emulates an interaction between S1 and V ∗, feeding S1 input τ as messages
on the left, and finally S̃1 outputs the verifier message in the j′’th communication round in the
right interaction with V ∗. (Formalizing what it means for S1 to commit to S̃1 is not entirely trivial
since the definition of S̃1 depends on S1; we refer the reader to the formal proof for a description of
how this circularity is broken.7 S1 next simulates Stage 2 by checking if it has received a message
(j, πj) in the left interaction, where j is the communication round (in the right interaction with
V ∗) where the verifier sends its random challenge and expects to receive the first message of Stage
2; if so, it uses M1 = S̃1 (and the randomness it used to commit to it), j and σ being the list of
messages received by S1 in the left interaction, as a ”fake” witness to complete Stage 2.

7Roughly speaking, we let S1 take the description of a machine M as input, and we then run S1 on input M = S1.

6

510

Approved for Public Release; Distribution Unlimited.

S2 S1 V ∗

πj

πi

π1

mj

aj

mi

ai

m1

a1

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

Figure 1: Simulation using P-certificates.

The job of S2 is to provide P-certificates πj for S1 allowing S1 to complete its simulation. S2

emulates the interaction between S1 and V ∗, and additionally, at each communication round j, S2

feeds S1 a message (j, πj) where πj is a P-certificate showing that S̃1(j, σ<j) = rj , where σ<j is the
list of message already generated by S2, and rj is the verifier message in the j’th communication
round. Finally, S2 outputs its view of the full interaction.

The actual simulator S just runs S2 and recovers from the view of S2 the view of V ∗ and outputs
it. Note that since S1 has polynomial running-time, generating each certificate about S̃1 (which is
just about an interaction between S1 and V ∗) also takes polynomial time. As such S2 can also be
implemented in polynomial time and thus also S. Additionally, note that if there are m(n) sessions,
the length of σ is at most O(m(n)n)� m(n)n2—for each of the m(n) sessions, and for each round
of the constant number of rounds in each session, we need to store a pair (j, π) where π is of length
n; therefore, the simulation always succeeds without getting “stuck”.

Finally, indistinguishability of this simulation, roughly speaking, should follow from the hiding
property of the commitment in Stage 1, and the WI property of the WIUA in Stage 2. Or does it?
Note that since S1 is committing to its own code (including its randomness), it is committing to a
message that depends on the randomness used for the commitment. (In the language of [BCPT12],
this constitutes a randomness-dependent message (RDM) attack on the commitment scheme.) This
circularity can be easily overcome (as in [PRT11]) by simply not committing to the randomness of
S̃1, and instead providing it as an additional input to S̃1 that may be incorporated in σ; without
loss of generality, we may assume that the randomness is “short” since S1 can always use a PRG
to expand it. But the same circularity arises also in the WIUA, and here σ, which contains the seed
used to generate the randomness of S1, needs to be an input. To overcome it, we here require S1

to use a forward-secure PRG [BY03] to expand its randomness; roughly speaking, a forward-secure
PRG ensures that ”earlier” chunks of the output of the PRG are indistinguishable from random,
even if a seed generating the ”later” ones is revealed. We next have S1 use a new chunk of the
output of the PRG to generate each new message in the interaction, but uses these chunk in reverse
order (i.e., in step 1, the last chunk of the output of the PRG is used, etc.); this means that we
can give proofs about ”earlier” computations of S1 (which requires knowing a seeds expanding
the randomness used in the computation) while still guaranteeing indistinguishability of ”later”
messages.8

8Although the language of forward-security was not used, it was noticed in [PR03b] that GGM’s pseudo-random
function [GGM86] could be used to remove circularity in situations as above. A related trick is used in the contem-
porary work of [CLP12].

7

511

Approved for Public Release; Distribution Unlimited.

Step 2: Full Concurrency using Unique P-certificates The reason that the above approach
only yields a bounded concurrent zero-knowledge protocol is that for each new session i, we require
S2 to provide S1 with new certificates, which thus grows the length of σ. If we could somehow guar-
antee that these certificates are determined by the statement proved in the WIUA, then soundness
would hold even if σ is long. Let’s first sketch how to do this when assuming the existence of unique
strong P-certificates—that is, P-certificates having the property that for each true statement x,
there exists a single proof π that is accepted. (We are not aware of any candidates for unique
P-certificates, but using them serves as a simpler warm-up for our actual protocol.) We simply
modify the input certification and prediction correction conditions in the WIUA to be the following:

• input certification: there exists a vector λ = ((1, π1), (2, π2), . . .) and a vector of messages
~m such that πi certifies that M1(λ<j) output mj in its j’th communication round, where
λ<j = ((1, π1), . . . , (j − 1, πj−1)), and

• prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(λ) = r.

Soundness of the modified protocol, roughly speaking, follows since by the unique certificate prop-
erty, for every program M1 it inductively follows that for every j, mj is uniquely defined, and thus
also the unique (accepting) certificate πj certifying M1(λ<j) = mj ; it follows that M1 determines a
unique vector λ that passes the input certification conditions, and thus there exists a single r that
make M1 also pass the prediction correctness conditions. Zero-knowledge, on the other hand, can
be shown in exactly the same way as above (using S1, S2), but we can now handle also unbounded
concurrency (since there is no longer a restriction on the length of the input λ).

Step 3: Full Concurrency Using (Plain) P-certificates Let us finally see how to implement
the above idea while using “plain” (i.e., non-unique) P-certificates. The above protocol is no longer
sounds since we cannot guarantee that the proofs πj are unique, and thus the messages mj may not
be unique either, which may make it possible for an attacker to pass the “prediction correctness”
condition (without knowing the code of V ∗) and thus break soundness. A natural idea would
thus be to ask the prover to commit to a machine M2 (which in the simulation will be a variant
of S2) that produces the certificates πj , and then require the prover to provide a ”second-level”
certificate that the ”first-level” certificates were generated (deterministically) by running M2. But
have we really gained anything? Now, to perform the simulation, we need to provide the second-
level certificates as input to both M1 and M2; however, for these second-level certificates, we have
no guarantees that they were deterministically generates and again there is no a-prior upper bound
on the number of such certificates, so it seems we haven’t really gained anything.

Our main observation is that a single ”second-level” certificate can be used to to certify the
(deterministic generation) of n ”first-level”certificates. And a sequence of n “second-level” cer-
tificates can be certified by a single “third-level” certificate, etc. At each level, there will be less
than n certificates that are not certified by a higher-level certificate; we refer to these as “dan-
gling” certificates. See Figure 2 for an illustration of the tree structure, and certified and dangling
certificates.

Note that since the number of messages in the interaction with V ∗ is polynomially bounded, we
only have a polynomial-number of level-1 certificates, and thus, the above higher-level certification
process does not go beyond a constant number of levels (at each level we need a factor of n less
certificates). Finally, note that the total number of “dangling” (uncertified) certificates is bounded
by the number of levels times n (and is thus bounded by, say, n2.) This means that all the dangling

8

512

Approved for Public Release; Distribution Unlimited.

π1
1 π1

n·· · π1
n2−n+1 π1

n2·· · π1
n2+1 π1

n2+n·· · π1
n2+n+1 π1

n2+2n−1·· ·

π2
n π2

n2 π2
n2+n·· ·

π3
n2

Figure 2: An illustration of the tree structure for generating P-certificates. Nodes that are not
circled are “certified” certificates; nodes that are circled are “dangling” certificates.

certificates may be provided as a “short” input σ to the committed program, and all the certified
certificates can be provided as a “long” (but certified deterministically generated) input λ.

Let us explain this idea more closely using only second-level certificates; this still only gives us
bounded-concurrency, but we may now handle O(m(n)n) sessions (instead of just m(n)). (More
generally, if we use k-levels of certification, we can handle m(n)nk sessions.) We now change Stage
2 of the protocol to require P to use a WIUA to prove that either x is true, or

• commitment consistency: c is a commitment to programs M1,M2, and

• input certification: there exists

– a vector of ”certified level-1 certificates” λ1 = ((1, π1), (2, π2), . . . , (an, πan)),

– a ”small” number of ”dangling level-1 certificates” σ1 = (σ1
1, σ

1
2, . . . , σ

1
j′), where j′ < n

and for each j ≤ j′, σ1
j ∈ {0, 1}n,

– a ≤ m(n) level-2 certificates σ2 = (σ2
n, σ

2
2n, . . . , σ

2
an) where for each j ≤ a, σ2

jn ∈ {0, 1}n,

such that,

– σ2
an certifies that M2(σ2

<an) generates the certificates λ1,

and

• prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(λ1, σ1, σ2) = r.

Soundness of this protocol follows since the total length of “arbitrary” (not deterministic) input is
bounded by (m(n)+n)n� m(n)n2. m(n)n-bounded concurrent zero-knowledge on the other hand,
roughly speaking, follows by letting M1 be as above (i.e., S̃1) and M2 be a variant of the simulator
S2 that outputs all the certificates generated by S2. We then define a simulator S3 responsible
for generating second-level certificates for S2, and finally outputs its full view of the interaction.
The final simulator S runs S3 and outputs the view of V ∗ in the interaction. See Figure 3 for an
illustration of the communication patterns of S1, S2, S3 and V ∗.

Note that as long as there are less than m(n)n message in the interaction with V ∗, the number
of first-level certificates is bounded by m(n)n, and thus we have enough “spots” for second-level
certificates (in σ2) to perform the simulation.

9

513

Approved for Public Release; Distribution Unlimited.

S3 S2 S1 V ∗

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

π1
1
·· ·
π1
n

π1
n+1
·· ·
π1

2n

π1
n2+1
·· ·

π1
n2+n

π1
n2+n+1
·· ·

π1
n2+2n

π1
n2+2n+1

π2
n

π2
2n

π2
n2+n

π2
n2+2n

·· ·

Figure 3: Simulation using second-level P-certificates.

In the final protocol, we instead have the simulator commit to a sequence M1,M2, . . . of machine;
roughly speaking, M1 will be as above, M2 is responsible for generating first-level certificates (while
receiving level k > 1 certificates externally), M3 will be responsible for generating second-level
certificates (while receiving level k > 2 certificates externally), etc. Note that although there is a
(potentially) exponential blow-up in the time needed to generate higher-level certificates, since we
only have a constant-number of levels, simulation can be performed in polynomial-time.

1.3 Applications

Our techniques are useful also beyond concurrent ZK. For instance, by applying the transformation
of [BGGL01] to our protocol, we directly get a constant-round resettably-sound concurrent ZK. By
additionally applying the transformation of [DGS09] to the resulting resettably-sound concurrent
ZK protocol, we get a constant-round simultanously-resettable ZK protocol.

For another application, a recent result by Goyal on concurrent secure computation [Goy12],
demonstrates classes of two-party functionalities that can be securely computed in a concur-
rent “single-input” setting—that is, we consider a “client-server” setting, where the (honest)
server is using the same input in all concurrent sessions. By using our simulation techniques,
we can get a crisp condition on the class of functions that can be securely computed in this
setting (that significantly expands beyond the class considered in [Goy12]) : any function f
for which there exists an efficient procedure M that on input an arbitrary polynomial sequence
(x1, f(x1, y)), (x2, f(x2, y)), . . . (xm, f(xm, y)) can output a circuit of a-priori bounded (indepen-
dent of m) size C and an input y′ of a-priori bounded length such that for every i ∈ [m],
f(xi, y) = C(xi, y

′). Note that if there exists an efficient procedure for finding the input y (i.e.,
inverting the function f ′(x1, x2, . . . xm, y) = f(x1, y) . . . f(xm, y)), then this condition is trivially
satisfied by simply setting C = f, y = y′. (We remark that this condition is very related to
the “bounded-entropy” conjecture of [Goy12].) This result is obtained by simply plugging-in our
concurrent ZK protocol into the bounded-concurrent secure two-party computation protocol of

10

514

Approved for Public Release; Distribution Unlimited.

[Pas04b] and noticing that once “straight-line” concurrent ZK simulation is achieved (as it is in
our protocol), the only obstacle for fully concurrent simulation is the need to “compress” outputs
from trusted party computing f ; the above condition stipulates that such a compression is always
possible. (We expand on these result in the final version of the paper.)

1.4 Related Work

We provide a detailed discussion of some other related works:

• As mentioned in the introduction, constant-round concurrent zero-knowledge protocols with
super-polynomial-time simulators have been constructed in the plain model [Pas03a, PV08].
For the protocol of [Pas03a], the only super-polynomial-time “advantages” needed by the
simulator is to find a pre-image x′ = f−1(y) to any point y output by the malicious verifier
V ∗, as long as y actually is in the range of some one-way function f . If we assume that the
only way for V ∗ to output some y in the range of f is by applying f to an input x that it
explicitly knows, then the protocol of [Pas03a] is concurrent zero-knowledge. A problem with
formalizing this is that V ∗ may already get some string y = f(x) as its auxiliary input and
thus may not know x. As in the literature on “knowledge-of-exponent”-type extractability
assumptions (see e.g., [Dam91, HT98, BP04b, CD09, BCCT12, DFH12, GLR11]), this issue
can be resolved by having the prover select the one-way function f from a family F of one-way
functions. Now the extractability assumption we need is that for every polynomial-time oracle
machine M , there exists some polynomial-time machine M ′ such that given any z ∈ {0, 1}∗,
and uniformly selected functions ~f = f1, . . . fpoly(n) ∈ F , MO(~f)(1n, z, ~f) and M ′(1n, z, ~f)

generate the same output, where O(~f) is an oracle that inverts the functions in ~f . In other
words, we are assuming that in the simulation, the simulator together with the verifier can
—in polynomial-time—emulate the one-way function inverter used in [Pas03a]. Note that the
above extractability assumption is stronger than the typical “knowledge-of-exponent”-type
extractability assumptions since we require simultaneous “concurrent” extractability of many
images y that are chosen adaptively by the adversary.9 However, as shown in [Pas03b], any
sufficiently length-expanding random oracle satisfies exactly such an concurrent extractability
assumption—this was used in [Pas03a] to construct a concurrent ZK protocol in the “non-
programmable” random oracle model.

A very recent work by Gupta and Sahai [GS12] independent of the current work present an al-
ternative “non-concurrent” extractability assumption under which constant-round concurrent
zero-knowledge can be achieved.

One important difference between the above approaches and our work is that we here provide
an explicit concurrent ZK simulator. The above-mentioned approaches simply assume that
such a simulator exists; and, even if the assumption is true, it is not clear, how to find it. In
particular, for the purpose of deniability (see e.g., [DNS04, Pas03b]) it is not clear whether
the approach based on “extractability” assumptions provides sufficient guarantees (unless an
explicit simulator strategy is found).

• Barak, Lindell and Vadhan [BLV06] show that under the assumptions that 1) DTIME(nω(1)) ⊆
NP and 2) NP proofs for statements in DTIME(t) can be found in time polynomial in t,
2-round proof exists that are zero-knowledge for uniform verifiers that do not receive any

9On the other hand, it is weaker that most other usages of extractability in it requires less structure from the
function (i.e., only one-wayness).

11

515

Approved for Public Release; Distribution Unlimited.

auxiliary input. Their zero-knowledge simulator is non-black-box. As mentioned in the
introduction, the above-mentioned assumptions imply the existence of statistical strong P-
certificates. We note that the protocol of [BLV06] is not known to be concurrent (or even
sequential) zero-knowledge, even with respect to uniform malicious verifiers.

• Contemporary work by Canetti, Lin and Paneth [CLP12] constructs a public-coin concur-
rent zero-knowledge protocol using non-black-box simulation techniques10. As shown by
Pass, Tseng and Wikstrom [PTW11], public-coin concurrent (and in fact even parallel) zero-
knowledge protocols require non-black-box simulation, no matter what the round-complexity
is. The protocol of [CLP12] is in the “non-programmable” CRS model of [Pas03a] but as
showed in [Pas03a] black-box separation of the Goldreich-Krawczyk [GK96] type (and, in
particular, the [PTW11] one, falls into this category) extend also to zero-knowledge in the
non-programmable CRS model; thus non-black-box simulation is necessary also for their re-
sult. In contrast to our protocol, theirs, however, requires O(log1+ε n) number of rounds for
arbitrarily small constant ε, but instead only relies on the existence of families of collision-
resistant hash functions. (Additionally, [CLP12] note that if assuming the existence of a
single hash function that is collision-resistant against uniform adversaries, their protocol can
be instantiated also in the plain model with uniform soundness.)

On a technical level, both our work and theirs provide methods for overcoming the exponential
blow-up in the simulation time when dealing with non-black-box simulations, but the actual
details of the methods are very different: [CLP12] increases the round-complexity to tackle
this blow-up, and relies on ideas from the literature on concurrent zero-knowledge with black-
box simulation [RK99, KP01, PRS02]; as a result, their techniques only apply in the context
of super-logarithmic round protocols. In contrast, we rely on P-certificates to overcome the
blow-up and obtain a constant-round protocol.

• A recent work by Bitansky, Canetti, Chiessa, Tromer [BCCT13] present techniques for com-
posing SNARKs (succinct non-interactive arguments of knowledge) for NP; roughly speaking,
[BCCT13] shows that if for some sufficiently large c, any non-deterministic nc computation
can be proved using an “argument of knowledge” of length n that can be verified in time n2,
then for any d, every non-deterministic nd-time computation can be also be proved (using a
SNARK of length n that can be verified in time n2). This is achieved by having the prover
first generate a SNARK for each subcomputation of nc steps, and then for each “chunk” of n
SNARKs, having the prover prove that it knows SNARKs that are accepted for all these sub-
computations, and so on in a tree-like fashion. Finally, the prover only provides the verifier
with a “top-level” SNARK that it knows lower-level SNARKs that proves that it knows even
lower-level SNARKs etc. This type of proof composition was previously also used by Valiant
[Val08]. To prove that this type of composition works it is crucial to work with languages
in NP (since we are proving statements about the existence of some SNARKs); additionally,
it is crucial that we are dealing with arguments of knowledge—SNARKs of false statements
may exists, so to guarantee soundness, the prover needs to show that not only appropriate
SNARKs exists, but also that it “knows” them.

At a superficial level, our simulator strategy also uses a tree of “proofs”. However, rather than
proving knowledge of lower-level “proofs” etc, in our approach, higher-level P-certificates are
only used to demonstrate that lower-level P-certificates have been deterministically generated.
As a consequence, we do not need to certify non-deterministic computations; additionally, we

10Our results and theirs were developed in parallel

12

516

Approved for Public Release; Distribution Unlimited.

do not need the certificates to satisfy an argument of knowledge property. Indeed, this is
what allows us to base P-certificates on a falsifiable assumption.

1.5 Acknowledgements

We are very grateful to Ran Canetti, Johan H̊astad Omer Paneth, and Alon Rosen for many
discussions about concurrent zero-knowledge and non-black-box simulation. We are especially
grateful to both Alon Rosen and Omer Paneth for very insightful discussions about how to formalize
non-black-box simulations that “commit to their own code”; additionally, as we mention in the
paper, several obstacles to using non-black-box simulation to obtain constant-round concurrent
zero-knowledge were noticed in an unpublished manuscript with Alon dating back to 2003 [PR03a].
Thanks a lot!

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We denote by PPT
probabilistic polynomial time Turing machines. We assume familiarity with interactive Turing
machines, denoted ITM, interactive protocols. Given a pair of ITMs, A and B, we denote by
(A(x), B(y))(z) the random variable representing the (local) output of B, on common input z and
private input y, when interacting with A with private input x, when the random tape of each
machine is uniformly and independently chosen, and ViewB 〈A(x), B(y)〉 (z) the random variable
representing B’s view in such an interaction. The term negligible is used for denoting functions
that are (asymptotically) smaller than one over any polynomial. More precisely, a function ν(·)
from non-negative integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.1 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {y : (x, y) ∈ L}. In the
following, we assume a fixed witness relation RL for each language L ∈ NP.

2.2 Computational Indistinguishability

The following definition of computational indistinguishability originates in the seminal paper of
Goldwasser and Micali [GM84]. Let X be a countable set of strings. A probability ensemble indexed
by X is a sequence of random variables indexed by X. Namely, any element of A = {Ax}x∈X is a
random variable indexed by X.

Definition 2 (Indistinguishability). Let X be a countable set. Two ensembles {An,x}n∈N,x∈X and
{Bn,x}n∈N,x∈X are said to be computationally indistinguishable over N if for every probabilistic

13

517

Approved for Public Release; Distribution Unlimited.

machine D (the distinguisher) whose running time is polynomial in its first input, there exists a
negligible function ν(·) so that for every n ∈ N and x ∈ X:

|Pr [a← An,x : D(1n, x, a) = 1]− Pr [b← Bn,x : D(1n, x, b) = 1]| < ν(n)

2.3 Interactive Proofs and Arguments

We recall the standard definitions of interactive proofs [GMR89] and arguments (a.k.a computa-
tionally sound proofs) [BCC88]. In our definition of arguments, we distinguish between uniform
soundness, where soundness only needs to hold against a uniform probabilistic polynomial-time
algorithms, and non-uniform soundness, where it holds against non-uniform polynomial-time algo-
rithms. Typically, in the literature on zero-knowledge argument, non-uniform soundness is more
commonly used (but there are exceptions, see e.g., [BP04a]). We find the uniform model of com-
putation as well-motivated as the non-uniform one; see e.g., [Gol93].

Definition 3 (Interactive Proof System). A pair of interactive machines (P, V) is called an inter-
active proof system for a language L if there is a negligible function ν(·) such that the following
two conditions hold:

• Completeness: For every n ∈ N , x ∈ L, and every w ∈ RL(x),

Pr[(P (w), V)(1n, x) = 1] = 1

• Soundness: For every pair of machines B1, B2 and every n ∈ N ,

Pr[(x, z)← B1(1n) : x /∈ L ∧ (B2(z), V)(1n, x) = 1] ≤ ν(n)

If the soundness condition only holds against all polynomial-time (resp. non-uniform polynomial-
time) machines B1, B2, the pair (P, V) is called a uniformly-sound (resp. non-uniformly sound)
interactive argument system.

2.4 Witness Indistinguishability

An interactive protocol is witness indistinguishable (WI) [FS90] if the verifier’s view is “indepen-
dent” of the witness used by the prover for proving the statement.

Definition 4 (Witness-indistinguishability). An interactive protocol (P, V) for L ∈ NP is witness
indistinguishable for RL if for every PPT adversarial verifier V ∗, and for every two sequences
{w1

n,x}n∈N,x∈L∩{0,1}poly(n) and {w2
n,x}n∈N,x∈L∩{0,1}poly(n) , such that w1

n,x, w
2
n,x ∈ RL(x) for every

n ∈ N and x ∈ L∩{0, 1}poly(n), the following ensembles are computationally indistinguishable over
N :

• {ViewV ∗
〈
P (w1

n,x), V ∗(z)
〉

(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

• {ViewV ∗
〈
P (w2

n,x), V ∗(z)
〉

(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

14

518

Approved for Public Release; Distribution Unlimited.

2.5 Commitment Schemes

Commitment protocols allow a sender to commit itself to a value while keeping it secret from
the receiver ; this property is called hiding. At a later time, the commitment can only be opened
to a single value as determined during the commitment protocol; this property is called binding.
Commitment schemes come in two different flavors, statistically binding and statistically hiding; we
only make use of statistically binding commitments in this paper. Below we sketch the properties
of a statistically binding commitment; full definitions can be found in [Gol01].

In statistically binding commitments, the binding property holds against unbounded adver-
saries, while the hiding property only holds against computationally bounded (non-uniform) ad-
versaries. The statistical-binding property asserts that, with overwhelming probability over the
randomness of the receiver, the transcript of the interaction fully determines the value committed
to by the sender. The computational-hiding property guarantees that the commitments to any two
different values are computationally indistinguishable.

Non-interactive statistically-binding commitment schemes can be constructed using any one-to-
one one-way function (see Section 4.4.1 of [Gol01]). Allowing some minimal interaction (in which
the receiver first sends a single random initialization message), statistically-binding commitment
schemes can be obtained from any one-way function [Nao91, HILL99].

2.6 Universal Arguments

Universal arguments (introduced in [BG08] and closely related to the notion of CS-proofs [Mic00])
are used in order to provide “efficient” proofs to statements of the universal language LU with
witness relation RU defined in [BG08, Mic00]. A triplet y = (M,x, t) ∈ LU if the non-deterministic
machine M accepts input X within t < T (|x|) steps, for a slightly super-polynomial function
T (n) = nlog logn. We denote by TM (x,w) the running time of M on input x using the witness w.
Notice that every language in NP is linear time reducible to LU . Thus, a proof system for LU
allows us to handle all NP-statements. Below we recall the definition in [BG08].

Definition 5 (Universal argument). A pair of interactive Turing machines (P, V) is called a uni-
versal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that for any y = (M,x, t), the total
time spent by the (probabilistic) verifier strategy V , on common input 1n, y, is at most
p(n + |y|). In particular, all messages exchanged in the protocol have length smaller than
p(n+ |y|).

• Completeness by a relatively efficient prover: For every n ∈ N , y = (M,x, t) ∈ LU and w in
RU (y),

Pr[(P (w), V)(1n, (M,x, t)) = 1] = 1

Furthermore, there exists a polynomial q such that the total time spent by P (w), on common
inputs 1n and (M,x, t), is at most q(n+ |y|+ TM (x,w)) ≤ q(n+ |y|+ t).

• Computational Soundness: For every polynomial size circuit family {P ∗n}n∈N , there is a neg-
ligible function ν, such that, for every n ∈ N and every triplet (M,x, t) ∈ {0, 1}poly(n) \ LU ,

Pr[(P ∗n , V)(1n, (M,x, t)) = 1] < ν(n)

15

519

Approved for Public Release; Distribution Unlimited.

• Weak proof of knowledge: For every positive polynomial p there exists a positive polynomial
p′ and a probabilistic polynomial-time oracle machine E such that the following holds: for
every polynomial-size circuit family {P ∗n}n∈N , every sufficiently large n ∈ N and every y =
(M,x, t) ∈ {0, 1}poly(n) if Pr[(P ∗n , V)(1n, y) = 1] > 1/p(n) then

Pr
r

[∃w = w1, . . . wt ∈ RU (y) s.t. ∀i ∈ [t], EP
∗
n

r (1n, y, i) = wi] >
1

p′(n)

where RU (y)
def
= {w : (y, w) ∈ RU} and E

P ∗n
r (·, ·, ·) denotes the function defined by fixing the

random-tape of E to equal r, and providing the resulting Er with oracle access to P ∗n .

The weak proof-of-knowledge property of universal arguments only guarantees that each indi-
vidual bit wi of some witness w can be extracted in probabilistic polynomial time. Given an input
1n and y = (M,x, t) in LU ∩ {0, 1}poly(n), since the witness w ∈ RU (y) is of length at most t, it
follows that there exists a extractor running in time polynomial in poly(n) · t that extracts the
whole witness; we refer to this as the global proof-of-knowledge property of a universal argument.

The notion of witness indistinguishability of universal argument for RU is defined similarly
as that for interactive proofs/arguments for NP relations; we refer the reader to [BG08] for a
formal definition. [BG08] (based on [Mic00, Kil95]) presents a witness indistinguishable universal
argument based on the existence of families of collision-resistant hash functions.

2.7 Concurrent Zero-Knowledge

An interactive proof is said to be zero-knowledge if it yields nothing beyond the validity of the
statement being proved [GMR89].

Definition 6 (Zero-knowledge). An interactive protocol (P, V) for language L is zero-knowledge
if for every PPT adversarial verifier V ∗, there exists a PPT simulator S such that the following
ensembles are computationally indistinguishable over n ∈ N :

• {ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

• {S(1n, x, z)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

In this work we consider the setting of concurrent composition. Given an interactive protocol
(P, V) and a polynomial m, an m-session concurrent adversarial verifier V ∗ is a PPT machine that,
on common input x and auxiliary input z, interacts with up to m(|x|) independent copies of P
concurrently. The different interactions are called sessions. There are no restrictions on how V ∗

schedules the messages among the different sessions, and V ∗ may choose to abort some sessions
but not others. For convenience of notation, we overload the notation ViewV ∗ 〈P, V ∗(z)〉 (1n, x) to
represent the view of the cheating verifier V ∗ in the above mentioned concurrent execution, where
V ∗’s auxiliary input is z, both parties are given common input 1n, x ∈ L, and the honest prover
has a valid w witness of x.

Definition 7 (Concurrent Zero-Knowledge [DNS04]). An interactive protocol (P, V) for language
L is concurrent zero-knowledge if for every concurrent adversarial verifier V ∗ (i.e., any m-session
concurrent adversarial verifier for any polynomial m), there exists a PPT simulator S such that
following two ensembles are computationally indistinguishable over n ∈ N .

• {ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

• {S(1n, x, z)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

16

520

Approved for Public Release; Distribution Unlimited.

2.8 Forward Secure PRG

Roughly speaking, a forward-secure pseudorandom generator (PRG) (first formalized by [BY03],
but early usages go back to [BH92]) is a pseudorandom generator where the seed is periodi-
cally updated—thus we have a sequence of seeds s1, s2, . . . generating a pseudorandom sequence
q1, q2, . . .—such that if the seed st is exposed (and thus the “later” sequence qt+1, qt+2, . . . is also
exposed), the “earlier” sequence q1, . . . , qt still remains pseudorandom.

We provide a simple definition of a forward secure pseudorandom generator, where the “expo-
sure” time t is statically selected.11

Definition 8 (Forward-secure Pseudorandom Generator). We say that a polynomial-time com-
putable function G is a forward secure Pseudo-Random Generator (fsPRG) if on input a string
s, and ` ∈ N , it outputs two sequences (s1, s2, . . . s`) and (q1, q2, . . . , q`) such that the following
properties hold:

• Consistency: For every n, ` ∈ N , s ∈ {0, 1}n, the following holds

– if G(s, `) = ((s1, ~s), (q1, ~q)), then G(s1, `− 1) = (~s, ~q).

• Forward Security: For every polynomial p, the following ensembles are computationally in-
distinguishable

– {s← Un, (~s, ~q)← G(s, `) : st, ~q≤t}n∈N,`∈[p(n)],t∈[`]

– {st ← Un, ~q ← (Un)` : st, ~q≤t}n∈N,`∈[p(n)],t∈[`]

where Un is the uniform distribution over {0, 1}n and ~q≤t = (q1, . . . , qt).

Any (traditional) PRG implies the existence of a forward secure PRG; thus by the result of
[HILL99] the existence of forward secure PRGs are implied by the existence of one-way functions.

In our application of forward secure PRGs, we will use the outputs of the PRG in reverse
order, and thus write G(s, `) = (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1). As a consequence, we may reveal
a seed st “explaining” the “earlier” sequence ((st−1, . . . s1), (qt−1, . . . , q1)) while guaranteeing that
the “later” sequence (q`, . . . qt) still is indistinguishable from random.

3 P-certificates

In this section we define the notion of P-certificates. On a high-level, P-certificates can be viewed
as an analogue of Micali’s CS-proofs [Mic00], but where we restrict to languages in P. As we shall
see, by restricting to languages in P, we can make the soundness condition of (a restricted class
of) P-certificates falsifiable.

Roughly speaking, we say that (P, V) is a P-certificate system if (P, V) is a non-interactive proof
system (i.e., the prover send a single message to the verifier, who either accepts or rejects) allowing
an efficient prover to convince the verifier of the validity of any deterministic polynomial-time
computation M(x) = y using a “certificate” of some fixed polynomial length (independent of the
size and the running-time of M) whose validity the verifier can check in some fixed polynomial time
(independent of the running-time of M); that is, any deterministic polynomial-time computation
can be certified using a “short” certificate that can be “quickly” verified.

11The definition of [BY03] allows an attacker to adaptively select the exposure time t. For our purposes the simpler
non-adaptive notion suffices.

17

521

Approved for Public Release; Distribution Unlimited.

To formalize this, we consider the following canonical languages for P: for every constant c ∈ N ,
let Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let TM (x) denotes the running time of M on
input x.

Definition 9. A pair of probabilistic interactive Turing machines, (Pcert, Vcert), is a P-certificate
system if there exist polynomials gP , gV , ` such that the following holds:

• Efficient Verification: On input c ≥ 1, 1k and a statement q = (M,x, y) ∈ Lc, and π ∈ {0, 1}∗,
Vcert runs in time at most gV (k + |q|);
• Completeness by a Relatively Efficient Prover: For every c, d ∈ N , there exists a negligible

function µ such that for every k ∈ N and every q = (M,x, y) ∈ Lc such that |q| ≤ kd,
Pr[π ← Pcert(c, 1

k, q) : Vcert(c, 1
k, q, π) = 1] ≥ 1− µ(k)

Furthermore, Pcert on input (c, 1k, q) outputs a certificate of length `(k) in time bounded by
gP (k + |M |+ TM (x)).

• Soundness: For every c ∈ N , and every PPT P ∗, there exists a negligible function µ such
that for every k ∈ N ,

Pr[(q, π)← P ∗(c, 1k) : Vcert(c, 1
k, q, π) = 1 ∧ q 6∈ Lc] ≤ µ(k)

We also consider a stronger soundness condition stipulating that soundness holds even if the at-
tacker selects a slightly super-polynomial-size statement and specifies some slightly super-polynomial
runtime.

• Strong Soundness: There exists some “nice” super-polynomial function12 T (k) ∈ kω(1) and
some “nice” super-constant function13 C(·) ∈ ω(1) such that for every probabilistic algorithm
P ∗ with running-time bounded by T (·), there exists a negligible function µ, such that, for
every k ∈ N , c ≤ C(k)

Pr[(c, q, π)← P ∗(1k) : Vcert(c, 1
k, q, π) = 1 ∧ q 6∈ Lc] ≤ µ(k)

We say that (Pcert, Vcert) is a statistically-sound P-certificate system (resp. statistically sound strong
P-certificate system if the soundness condition holds also against (unbounded) P ∗ with polynomially-
bounded (resp. T (·)-bounded) output.

Remark 1. The reason that we do not consider a notion of computational soundness with respect to
non-uniform polynomial-time attackers is that such a notion is equivalent to statistical soundness:
if an accepting proof of a false statement exists, a non-uniform efficient attacker can simply get
it as non-uniform advice. Nevertheless, it still makes sense to consider a notion of a(·)-bounded-
non-uniform soundness, where soundness holds for attacker that on input the security parameter
1k additionally receive a(k) bits of non-uniform advice. Our results regarding uniform soundness
directly extend also to the regime of bounded non-uniform soundness.

As we shall see shortly, a candidate construction of a (computationally-sound) P-certificate
systems comes from Micali’s CS-proofs [Mic00]. We also note that the assumption that statistically-
sound strong P-certificates exists is implied by the assumption that 1) DTIME(nω(1)) ⊆ NP and
2) NP proofs for statements in DTIME(t) can be found in time polynomial in t [BLV06]. (In
essence, the assumption says that non-determinism can slightly speed-up computation, and that
the non-deterministic choices can be found efficiently, where efficiency is measured in terms of the
original deterministic computation.)

12For instance, T (n) = nlog log logn.
13For instance, C(k) = log log logn.

18

522

Approved for Public Release; Distribution Unlimited.

3.1 Time-Representation Invariant P-certificates

At first sight it may seem that since we consider only languages in P, the sound (resp., strongly
soundness) condition of P-certificates is falsifiable [Pop63, Nao03]: we should be able to efficiently
test if an attacker outputs a valid proof of an incorrect statement, since whether a statement is
correct or not can be checked in deterministic polynomial time.

This intuition is somewhat misleading: recall that soundness needs to hold for all polynomial-
time computations, where the time-bound nc may be selected by the attacker trying to break
soundness. Since there is no a-priori constant bound on c, the attacker may make the test (checking
whether soundness was broken) run in super-polynomial-time (by selecting a large c.) The situation
is even worse for the case of strongly sound P-certificates.

At first one may think that this issue can be easily resolved by restricting to certificate systems
where the prover is asked to provide an upper-bound on the running-time of M in unary; this
certainly makes the soundness condition falsifiable, but such certificates are no longer “short”. We
overcome this issue by allowing for a more flexible representation of (upper-bound on) the running-
time of M , and restrict to time-representation invariant P-certificates—namely proof systems where
whether the verifier accepts a proof of a statement x does not depend on how the time-bound is
represented. For a time-invariant P-certificate, it suffices to define soundness in the case that the
attacker specifies the running-time bound in unary; by the time-representation invariance condition,
this implies soundness also for other (more efficient) representations.

Towards this, we consider an alternative variant of canonical languages in P: for every constant
c ∈ N , let L′c = {(M,x, y, 1n) : M(x) = y within nc steps}.

Definition 10. A pair of probabilistic interactive Turing machines, (Pcert, Vcert), is a time-representation
invariant P-certificate system if there exist polynomials gP , gV , ` such that the following holds:

• Efficient Verification: On input c ≥ 1, 1k and a statement q = (M,x, y, 1n) ∈ L′c, and
π ∈ {0, 1}∗, Vcert runs in at most gV (k + |q|) time.

• Time-Representation Invariant Verification: There exists a negligible function µ such that
every c, c̃, n, ñ, such that nc = ñc̃, every k ∈ N and every (M,x, y) ∈ {0, 1}∗ and every
certificate π ∈ {0, 1}∗,

|Pr[Vcert(c, 1
k, (M,x, y, 1n), π) = 1]− Pr[Vcert(c̃, 1

k, (M,x, y, 1ñ), π) = 1]| ≤ µ(k)

• Completeness by a Relatively Efficient Prover: For every c, d ∈ N , there exists a negligible
function µ such that for every k ∈ N and every q = (M,x, y, 1n) ∈ L′c such that |q| ≤ kd,

Pr[π ← Pcert(c, 1
k, q) : Vcert(c, 1

k, q, π) = 1] ≥ 1− µ(k)

Furthermore, Pcert on input (c, 1k, q) outputs a certificate of length at most `(k) in time
bounded by gP (k + |M |+ nc).

• Soundness for L′1: For every PPT P ∗, there exists a negligible function µ such that for every
k ∈ N ,

Pr[(q, π)← P ∗(1k) : Vcert(1, 1
k, q, π) = 1 ∧ q 6∈ L′1] ≤ µ(k)

We say that (Pcert, Vcert) is a strong time-representation invariant P-certificate system if there
exists some “nice” T (k) ∈ kω(1) such that the soundness for L′1 condition holds with respect
to all probabilistic algorithms with running-time bounded by T (·). We say that (Pcert, Vcert) is

19

523

Approved for Public Release; Distribution Unlimited.

a statistically-sound time-representation invariant P-certificate system (resp. statistically sound
strong time-representation invariant P-certificate system) if the soundness for L′1 condition holds
also against (unbounded) P ∗ with polynomially-bounded (resp. T (·)-bounded) output.

Note that the soundness condition of time-representation invariant P-certificates is clearly fal-
sifiable since checking whether the attacker actually outputs a statement q /∈ L′1 can be done in
linear-time in the length of the statement, and verification of a certificate π for a statement q can
be done in polynomial-time by definition.

Let us briefly outline a candidate construction of time-representation invariant P-certificates
(where both Pcert and Vcert are deterministic).

A Candidate Construction Based on CS-proofs. Micali’s CS proofs [Mic00] are obtained by
first constructing a public-coin 4-round interactive argument for NEXP (similar to the “succinct”
4-round interactive argument for NP of [Kil95]) and then eliminating interaction through the Fiat-
Shamir paradigm [FS90]: that is, the verifier’s random message are generated by applying a random
oracle to the prover’s messages, and next the random oracle may be instantiated with a concrete
family of hash function {hk}k∈N . More precisely, CS proofs are used to prove membership of the
CS language LCS with witness relation RCS as defined in [Mic00]. A quadruple (M,x, y, t) ∈ LCS

iff the lengths of x and y are smaller than t and M(x) = y in t steps. Roughly speaking, to prove
a statement q = (M,x, y, t), the prover, on input a security parameter 1k, proceeds in two steps.
In the first step, it constructs a PCP (Probabilistically Checkable Proof) [BFLS91, FGL+91] proof
π′ for q and computes a Merkle’s hash tree [Mer89] with π′ as the leaves using a hash function
hk, producing a root r. Then, in the second step, it computes a polylogarithmic number l of PCP
queries, determined by the hash value hk(r); for each PCP query i, it finds the authentication
path ai that reveals the corresponding PCP answer bi. Finally, the prover sends a CS proof
π = t‖r‖bi‖ai‖ · · · ‖bl‖al. The verifier, on input a statement x and such a proof π, checks whether
all the authentication paths are accepting w.r.t. r, recomputes the PCP queries using hk(r) and
checks whether all the PCP answers are accepting.

In our language L′c, recall that a statement is of form q = (M,x, y, 1n). The prover and the
verifier on input c, 1k and q can thus recover a time bound t by computing nc and then recover
the corresponding CS language instance (M,x, y, t), and next simply runs the prover and verifier
algorithms of CS-proofs. By construction it follows that the above construction satisfies prover’s
relative efficiency and completeness. Additionally, since the verification procedure only depends on
the time bound t = nc, and not on the values of n and c, the verification procedure also has the
time-representation invariance property.

Finally, in our eyes, assuming that the above construction satisfies the soundness condition of
time-representation invariant P-certificates is a reasonable and “well-behaved” complexity theoretic
assumption: on a qualitatively level, the assumption is not very different from the assumption
that e.g., the Full Domain Hash [BR93] or Schnorr [Sch91] signature schemes are existentially
unforgeable: 1) whether an attacker succeeds can be efficiently checked, 2) no attacks are currently
known, and 3) the “design-principles” underlying the constructions rely on similar intuitions (e.g.,
that instantiating random-oracles with hash functions in “natural” schemes lead to secure protocol).

Finally, recall that Micali’s CS-proofs rely on the Fiat-Shamir heuristic, which in general may
result in unsecure schemes [Bar01, GK03]; however, note that whereas Micali’s construction is un-
conditionally secure in the random oracle model, the counterexamples of [Bar01, GK03] extensively
rely on the underlying protocol only being computationally secure; as such, at this time, we have no
reason to believe that the Fiat-Shamir heuristic does not work for Micali’s protocol (or any other
protocol that is unconditionally secure in the random oracle model).

20

524

Approved for Public Release; Distribution Unlimited.

Time Representation Invariant P-certificates in the CRS model In the CRS model, we
may additionally assume that Micali’s CS-proofs satisfy non-uniform computational soundness.
Additionally, several recent works provide constructions of “SNARGs” (succinct non-interactive
arguments) for NP in the CRS model [Gro10, Lip12, BCCT13, GGPR13]; such constructions
are trivially P-certificates with non-uniform comptuational soundness in the CRS model. It follows
using exactly the same argument as above that these new constructions also are time-representation
invariant.

From Time-Representation Invariant P-certificates to P-certificates As we now show,
time-representation invariant P-certificates imply P-certificates.

Theorem 1. Assume the existence of a time-representation invariant P-certificate system (resp.
a strong time-representation invariant P-certificate system) (P ′cert, V

′
cert). Then, there exists a P-

certificate system (resp. a strong P-certificate system) (Pcert, Vcert). Furthermore if (P ′cert, V
′
cert) is

statistically sound (resp. statistically strong sound), then (Pcert, Vcert) is so as well.

Proof. Let (P ′cert, V
′
cert) be a time-representation invariant P-certificate system. Consider a P-

certificate system (Pcert, Vcert) where Pcert and Vcert simply runs P ′cert and V ′cert respectively with n
fixed to the length of the input x. More precisely, Pcert on input c, 1k and a statement q = (M,x, y) ∈
Lc, lets q′ = (M,x, y, 1|x|) ∈ L′c, runs P ′cert(c, 1

k, q′) and outputs whatever P ′cert outputs.; Vcert on
input (c, 1k, q, π) computes q′ in exactly the same way, runs V ′cert(c, 1

k, q′, π) and outputs the verdict
of V ′cert. It follows from the relative prover efficiency and completeness properties of (P ′cert, V

′
cert)

that (Pcert, Vcert) also satisfies relative prover efficiency and completeness. Let us turn to soundness.
We only prove the case of strong soundness (assuming that (Pcert, Vcert) is strongly sound), all the
other cases follow analogously.

Assume for contradiction that for every T (k) ∈ kω(1) and C(k) ∈ ω(1), there exists a T (k)-time
cheating prover A, and a polynomial p such that for infinitely many k ∈ N and ck ≤ C(k), it
holds that the probability that A(1k) outputs ck, a false statement q = (M,x, y) 6∈ Lck and a
certificate π for q ∈ Lck that is accepted by Vcert (that is, Vcert(ck, 1

k, q, π) = 1) is at least 1/p(k).
Fix some arbitrary function T ′(k) ∈ kω(1). Let T (k) ∈ kω(1) and C(k) ∈ ω(1) be two functions
such that T (k)C(k) ≤ T ′(k). By our assumption, there exists a cheating prover A that violates the
strong soundness property of (Pcert, Vcert) w.r.t. the functions T (k) and C(k) with some polynomial
probability 1/p(k). Using A, we construct another cheating prover A′ that violates the strong
soundness for L′1 of (P ′cert, V

′
cert) w.r.t. function T ′(k) with the same probability 1/p(k). Machine A′

on input 1k simply runs A(1k) to obtain ck, q = (M,x, y) and π; it then sets n = |x|ck and outputs
q′ = (M,x, y, 1n) and π. Clearly, A′ runs in time T (k)C(k) ≤ T ′(k). By construction of Vcert, the
probability that Vcert(ck, 1

k, q, π) = 1 is the same as the probability that V ′cert(ck, 1
k, q̃, π) = 1, where

q̃ = (M,x, y, 1|x|). Furthermore, by the time-representation-invariance of V ′cert, the probability that
V ′cert(ck, 1

k, q̃, π) = 1 is negligibly close to the probability that V ′cert(1, 1
k, q′, π) = 1. It follows

that A′ (whose running-time is bounded by T ′(k)) outputs accepting proofs of false statements
with probability negligibly close to 1

p(k) for infinitely many k ∈ N . Since the above holds for any

function T ′(k), we have that (P ′cert, V
′
cert) is not strongly sound for L′1, which is a contradiction.

4 Constant-round Concurrent ZK
In this section, we present our construction of a constant-round concurrent ZK protocol. To
simplify the exposition (and following the description in the introduction), as a warm-up, we first

21

525

Approved for Public Release; Distribution Unlimited.

present a protocol that only uses one level of P-certificates and thus only handles a bounded
number, O(m(n)), of concurrent executions; we refer to this protocol as “Protocol 1”. We then
generalize Protocol 1 and describe a protocol that uses k levels of certificates and can handle O(nk)
concurrent executions; we refer to this protocol as “Protocol k”. By setting k to be super-constant,
say, k = log n, we obtain a (fully) concurrent ZK protocol.

4.1 Protocol 1

We proceed to describe Protocol 1, (P1, V1), which we prove ism-bounded concurrent zero-knowledge.
The protocol relies on the following primitives:

• A commitment scheme com: for simplicity of presentation, we assume that com is a non-
interactive commitment scheme, but the protocol can be modified in a straight-forward way
to work for any two-message commitment scheme (as in [Nao91]).

• A strong P-certificate system (Pcert, Vcert) with parameter T (·) and C(·), where T (·) is a
“nice” super-polynomial function and C(·) is a “nice” super-constant function: for, simplicity
of exposition, we assume that both Pcert and Vcert are deterministic. We discuss in Section
4.3 how to modify the protocol to also handle randomized P-certificate systems.

• A family of hash functions {Hn}n: to simplify the exposition, we here assume that both
com and {Hn}n are collision resistant against circuits of size T ′(·), where T ′(·) is “nice”
super-polynomial function. As in [BG02], this assumption can be weakened to just collision
resistance against polynomial-size circuits by modifying the protocol to use a “good” error-
correcting code ECC (i.e., with constant distance and with polynomial-time encoding and
decoding), and replace commitments com(h(·)) with com(h(ECC(·))).

Let us now turn to specifying the protocol (P1, V1). The protocol makes use of three parameters:
m(·) is a polynomial that upper bounds the number of concurrent sessions; Γ(·) is a “nice” super-
polynomial function such that T (n), T ′(n) ∈ Γ(n)ω(1), and D(·) is a “nice” super-constant function
such that D(n) ≤ C(n). Let m = m(n), Γ = Γ(n) and D = D(n). In the description below, when
discussing P-certificates, we always consider the language LD.

The prover P1 and the verifier V1, on common input 1n and x and private input a witness w to
P1, proceed as follow:

Phase 1: P1 and V1 exchanges the following three messages.

1. V1 chooses a randomly sampled hash function h← Hn.

2. P1 sends a commitment to 0n using com.

3. V1 replies with a random “challenge” r of length 3mn.

Phase 2: P1 gives a WIUA argument of the statement that either x ∈ L OR there exists S̃1 ∈
{0, 1}Γ(n), j ∈ [m], s ∈ {0, 1}n, π ∈ {0, 1}n, σ ∈ {0, 1}Γ(n), ρ, such that

1. Commitment Consistency: c = com(h(S̃1); ρ),

2. Input Certification: |σ| ≤ 2mn,

3. Prediction Correctness: π certifies that S̃1(1n, j, s, σ) = r.

A formal description of the protocol can be found in Figure 4 and 5.

22

526

Approved for Public Release; Distribution Unlimited.

Protocol 1

Common Input: A security parameter 1n in unary and an instance x of a language L ∈ NP with
witness relation RL.

Parameters: m = m(n) is an upper bound on the number of concurrent sessions. Γ = Γ(n) and
D = D(n) are respectively upper bounds on the size of the committed program and the time
bound.

Phase 1:

V1 → P1: Send h← Hn.

P1 → V1: Send c = com(0n; ρ).

V1 → P1: Send r ← {0, 1}3mn
.

Phase 2:

P1 ⇔ V1: A WIUA 〈PUA, VUA〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|)
s.t. RL(x,w) = 1.

2. ∃ 〈S̃1, j, s, π, σ, ρ〉 s.t. RS(〈h, c, r〉 , 〈S̃1, j, s, π, σ, ρ〉) = 1.

Figure 4: A public-coin non-black-box bounded concurrent zero-knowledge protocol.

Our Simulator. As explained in the introduction, the goal of our simulator is to try to “commit
to its own code” in a way that prevents a blow-up in the running-time. Note that in our protocol,
the only expensive part of the generation of the WIUA is the generation of the P-certificates π; the
rest of the computation has a-priori bounded complexity (depending only on the size and running-
time of V ∗). To take advantage of this observation, we thus have the simulator only commit to a
program that generates prover messages (in identically the same way as the actual simulator), but
getting certificates ~π as input.

In more detail, to describe the actual simulator S, let us first describe two “helper” simula-
tors S1, S2. Roughly speaking, S1 is an interactive machine that simulates prover messages in a
“right” interaction with V ∗. Additionally, S1 is expecting some “external” messages on the “left”;
these “left” messages will be certificates provided by S2. See Figure 1 in the introduction for an
illustration of the communication patterns between S1, S2 and V ∗.

Let us turn to a formal description of the S1 and S2. To simplifiy the exposition, we assume
w.l.o.g that V ∗ has its non-uniform advice z hard-coded, and is deterministic (as it can always get
its random tape as non-uniform advice).

On a high-level, S1(1n, x,M, s, `) acts as a prover in a “right” interaction, communicating with
a concurrent verifier V ∗, while receiving some additional “external” messages on the “left”. (The
input x is the statement to be proved, the input M will later be instantiated with the code of S1,
and the input (s, `) is used to generate the randomness for S1; s is the seed for the forward secure
pseudorandom generator g, and ` is the number of n-bit long blocks to be generated using g.) A
communication round in the “right” interaction with V ∗ refers to a verifier message (sent by V ∗)
followed by a prover message (sent by S1).

Let us now specify how S1 generates prover messages in its “right” interaction with V ∗.
S1(1n, x,M, s, `) acts as follows:

• Upon invocation, S1 generates its “random-tape” by expanding the seed s; more specifically,

23

527

Approved for Public Release; Distribution Unlimited.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}poly(n) × {0, 1}3mn
.

Witness: 〈S̃1, j, s, π, σ, ρ〉: A program S̃ ∈ {0, 1}Γ, an integer j ∈ [m], a seed s ∈ {0, 1}n, a P-certificate

π ∈ {0, 1}n, a string σ ∈ {0, 1}Γ, a randomness ρ ∈ {0, 1}n.

Relation: RS(〈h, c, r〉 , 〈S̃1, j, s, π, σ, ρ〉) = 1 if and only if:

1. Commitment Consistency: c = com(h(S̃1); ρ),

2. Input Certification: |σ| ≤ 2mn,

3. Prediction Correctness: Vcert(D, 1
n, (S̃1, (1

n, j, s, σ), r), π) = 1 (i.e., π certifies that
S̃1(1n, j, s, σ) = r).

Figure 5: RS , a relation that Protocol 1 uses in WIUA of Phase 2.

let (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1) be the output of g(s, `). We assume without loss of
generality that S1 only needs n bits of randomness of generate any prover message (it can
always expand these n bits into a longer sequence using a PRG); in order to generate its j’th
prover message, it uses qj as randomness.

• Upon receiving a hash function hi in session i during the j-th communication round, S1 pro-
vides a commitment ci to (the hash of) the program S̃1(1n, j, s′, τ) = wrap(M(1n, x,M, s′, j),
V ∗, τ, j), where wrap(A,B, τ, j) is the program that lets A communicate with B for j rounds,
while allowing A to receive τ as external messages, and finally outputting B’s message in the
j’th communication round. (That is, S̃1(1n, j, s′, τ) emulates j rounds of an execution between
S1 and V ∗ where S1 expands out the seed s′ into j blocks of randomness and additionally
receives τ as external messages.)

• Upon receiving a challenge ri in session i during the j’th communication round, S1 needs
to provide a WIUA. To do so, it checks whether it was received an external message (j, πj),
and if so, it uses the certificate πj to complete the WIUA (and otherwise halts). More pre-
cisely, S1 provides an honest WIUA that ci is a commitment to S̃1 and that πj certifies that
S̃1(1n, j, sj , τ) = ri where τ is list of external messages received by S1 so far. (Note that
since we only require S̃1 to generate the j’th verifier message, giving him the seed (sj , j) as
input suffices to generate all prover messages in rounds j′ < j. It follows from the consistency
requirement of the forward secure PRG that S̃1 using (sj , j) as seed will generate the exact
same random sequence for the j − 1 first blocks as if running S̃1 using (s, `) as seed.)

S2(1n, x,M, s, `) internally emulates ` messages of an execution between S1(1n, x,M, s, `) and
V ∗. In each communication round j, after V ∗ generates a verifier message mj , S2 generates a
certificate πj (using Pcert) that S̃1(1n, j, sj , σ) = mj , where σ is the list of external messages
received by S1 so far, and feeds (j, πj) to S1. Finally, S2 outputs its view (which in particular,
contains the view of V ∗) at the end of the execution.

The final simulator S(1n, x) simply runs S2(1n, x, S1, s, T (n + |x|)), where s is a uniformly
random string of length n and T (n+ |x|) is a polynomial upper-bound on the number of messages
sent by V ∗ given the common input 1n, x, and extracts out, and outputs, the view of V ∗ from the
output of S2.

24

528

Approved for Public Release; Distribution Unlimited.

Running-time of S. Let us first argue that S1 runs in polynomial time. Clearly it only takes
S1 polynomial-time to generate the commitments in Phase 1 (since V ∗ has a polynomial-length
description, and thus also the code of S1). During the WIUA in Phase 2, the length of the witness
used by the simulator is polynomial in length of the description of S̃1 and the length of the certificate
π used by S1; both are of polynomial length. Since the P-certificates verification time is polynomial
in the length of the statement proved, it follows that the relation being proved in the WIUA has a
time complexity that is upper bounded by a fixed polynomial in the length of V ∗. By the relative
prover efficiency condition of the WIUA, each such proof only requires some fixed polynomial-time,
and thus the whole execution of S1 takes some fixed polynomial time (in the length of V ∗ and thus
also in the length of x.) It directly follows that also S̃1’s running-time is polynomially bounded.

Finally, since S2 is simply providing certificates about the execution of S̃1, it follows by the
relative prover efficiency condition of P-certificates, that S2 runs in polynomial time, and thus also
S.

Indistinguishability of the simulation Assume that there exists a cheating verifier V ∗, a
distinguisher D and a polynomial p such that the real view and the simulated view of V ∗ can be
distinguished by D with probability 1

p(n) for infinitely many n. More formally, for infinitely many

n ∈ N , x ∈ L ∩ {0, 1}poly(n), w ∈ RL(x) and z ∈ {0, 1}poly(n), it holds that

|Pr[D(ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)) = 1]− Pr[D(S(1n, x, z)) = 1]| ≥ 1

p(n)

Consider a hybrid experiment Real′V ∗(n, x, z) that proceeds just as the real experiment except
that all phase 1 commitments are generated by committing to the code of S̃1 (as done by S). We
also denote by Real′V ∗(n, x, z) the view of the verifier V ∗ in the hybrid. It follows by a simple hybrid
argument that there exists a polynomial p′ such that the view of V ∗ in the hybrid Real′ and in
simulation by S can be distinguished by D with probability 1

p′(n) for infinitely many n. That is,

for infinitely many n ∈ N , x ∈ L ∩ {0, 1}poly(n), w ∈ RL(x) and z ∈ {0, 1}poly(n), it holds that

∣∣Pr[D(Real′V ∗(n, x,w, z))) = 1]− Pr[D(S(1n, x, z)) = 1]
∣∣ ≥ 1

p′(n)
(1)

Consider such n, x, z (and assume that z is hard-coded into the description of V ∗), and consider
T = T (n+|x|) hybrid experiments (recall that T (n+|x|) is the maximum number of communication
rounds given common input 1n, x). In hybrid Hj , the first j communication rounds are simulated
exactly as by S (using pseudo-randomness), but all later communication round j′ > j are simulated
by S (and more specifically by S1) using true randomness q′j being uniformly distributed in {0, 1}n;
additionally, to complete all WIUA that begin at or after communication round j, S1 uses the true
witness w instead of the “fake” witness used by S1. (Note that once we start using real randomness
is some session i, it is no longer clear whether simulation of “later” sessions can be completed.
To deal with this issue, we thus also switch all WIUA that begin at or after round j to use a real
witness; if some WIUA already began at some communication round j′ < j, then the simulation of
this WIUA can still be completed.)

It follows by Equation 1 and a hybrid argument that there exist some j and a polynomial
p′′ such that D distinguishes Hj and Hj+1 with probability 1

p′′(n) . Now, consider another hybrid

experiment H̃j that proceeds just at Hj , but where true randomness is used in communication
round j + 1 (but still using the fake witness). It follows by the forward security of the PRG g
that the outputs of Hj+1 and H̃j are indistinguishable—the reason we need forward security is

25

529

Approved for Public Release; Distribution Unlimited.

that to emulate communication rounds j′ ≤ j, the seeds sj′ may need to be known (as they are
used by S1 to provide WIUA’s). Indistinguishability of H̃j and Hj follows directly by the witness
indistinguishability property of the WIUA. It thus leads to a contradiction and completes the proof
of the indistinguishability of the simulation.

4.2 Protocol k

We move on to describe our actual concurrent ZK protocol: Protocol k, (Pk, Vk). We refer the
reader to the introduction for the ideas underlying this protocol.

As with Protocol 1, Protocol k proceeds in two phases. In Phase 1, the prover Pk and the
verifier Vk proceeds exactly as in Protocol 1 but the length of the “challenge” r is modified to be
3kn2. Next, Phase 2 is modified as follows:

Phase 2: Pk gives a WIUA argument of the statement that either x ∈ LOR there exists S̃1, . . . , S̃k ∈
{0, 1}Γ(n), 0 < j < nk, s1, . . . , sk ∈ {0, 1}n, π1, . . . , πk ∈ {0, 1}n, σ1, . . . , σk ∈ {0, 1}Γ(n),

λ1, . . . , λk ∈ {0, 1}Γ(n), ρ, such that

1. Commitment Consistency: c = com(h(S̃1, . . . , S̃k); ρ),

2. Input Certification:

(a) |~σ| ≤ 2kn2; and

(b) Let l∗ be the largest l such that j ≥ nl−1. Then λ≥l
∗

= null and for 2 ≤ l ≤ l∗, πl

certifies that S̃l(1
n, bjcnl−1 , sl, ([λ≥l]bjc

nl−1
, σ≥l)) = λl−1.

3. Prediction Correctness: π1 certifies that S̃1(1n, j, s1, ([λ≥1]j , σ
≥1))) = r

where bjcx , j − (j mod x), and the bracket operator [·]j is defined as follows: The input
is expected to be a set of triples of the form (j′, l′, πl

′
j′), and the output is a subset of these

obtained by removing elements with j′ ≥ j; that is, we are “filtering out” all messages that
were generated in communication round j or later. Roughly speaking, the bracket operator
is used to eliminate “unnecessary” inputs to the program. We require this to be able to reuse
P-certificates; we provide a more detailed explanation of why this is needed in Remark 2,
after having formalized the simulator.

Using the notation from the introduction, the messages ~λ are “certified” certificates (each compo-
nent of ~λ may of an unbounded polynomial length), and the messages ~σ are “dangling” certificates
(each component of ~σ, however, is “short” by the input certification condition).

A formal description of Protocol k can be found in Figure 6 and 7.
We will be analyzing (Pk, Vk) when k = log n (but the analysis works as long as k is a “nice”

super-constant, but polynomially-bounded, function). It is easy to check that the protocol is
complete. Furthermore, since the honest prover Pk, on private input a valid witness w of the
statement x, always succeeds in the Phase 2 by proving that x ∈ L, by the prover and verifier
efficiency conditions of WIUA, both the honest prover Pk and verifier Vk run in some fixed polynomial
time. Furthermore note that the communication complexity of the protocol depends only on the
security parameter 1n but not the length of the statement x; thus the protocol is “succinct”.

We turn to showing that (Pk, Vk) is sound and concurrent ZK when k = log n.

26

530

Approved for Public Release; Distribution Unlimited.

Protocol k

Common Input: A security parameter 1n and an instance x of a language L ∈ NP with witness
relation RL.

Parameters: m = m(n) is an upper bound on the number of concurrent sessions. Γ = Γ(n) and
D = D(n) are respectively upper bounds on the size of the committed program and the time
bound.

Phase 1:

Vk → Pk: Send h← Hn.

Pk → Vk: Send c = com(0n; ρ).

Vk → Pk: Send r ← {0, 1}3kn
2

.

Phase 2:

Pk ⇔ Vk: A WIUA 〈PUA, VUA〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|)
s.t. RL(x,w) = 1.

2. ∃ 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉 s.t. RS(〈h, c, r〉 , 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉) = 1.

Figure 6: A public-coin non-black-box concurrent zero-knowledge protocol.

4.2.1 Soundness of Protocol k

Lemma 1. Under the above-mentioned cryptographic assumptions, (Pk, Vk) is uniformly sound.
Additionally, if (Pcert, Vcert) is a statistically strong P-certificate system, then (Pk, Vk) is non-
uniformly sound.

Proof. We prove this lemma w.r.t. uniform soundness assuming (Pcert, Vcert) is a strong P-certificate;
the non-uniform part of the lemma follows in identically the same way.

Assume for contradiction that there is a probabilistic polynomial time cheating prover P ∗ and
a polynomial p, such that for infinitely many n ∈ N, with probability 1/p(n), P ∗ selects a false

statement x ∈ {0, 1}poly(n) \ L and convinces Vk of the membership of x in L.
Fix one such n. Let P ∗u,h,r be the “residual” deterministic WIUA prover resulting from fixing P ∗’s

randomness to u and feeding it the messages h and r. Let E be the “global” proof-of-knowledge
extractor of the WIUA. Note that E runs in time poly(Γ(n)). Let Es denote E with randomness
fixed to s. Now, consider the following experiment Exp:

• Sample a tuple (u, h, r, s) uniformly at random.

• Let (x, c) ← P ∗u,h,r and w′ ← E
P ∗u,h,r
s , where x is the statement selcted by P ∗u,h,r, c is the

commitment generated by P ∗u,h,r, and w′ is the witness extracted by E
P ∗u,h,r
s .

Let BAD denote the event that E
P ∗u,h,r
s extracts a valid “fake” witness w′ = (~̃S, j′, ~s′, ~π′, ~σ′, ~λ′, ρ′) ∈

RS(h, c, r) in the above experiment.
Let us first argue that by our assumption (that P ∗ breaks soundness), BAD happens with non-

negligible probability: By an averaging argument, with probability at least 1/2p(n) over (u, h, r), the
statement x selected by P ∗u,h,r is not a member of L and yet P ∗u,h,r convinces the WIUA verifier with

27

531

Approved for Public Release; Distribution Unlimited.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}poly(n) × {0, 1}3kn
2

.

Witness: 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉: A sequence of programs ~̃S = (S̃1, . . . , S̃k) ∈ {0, 1}k·Γ, an integer j ∈ [nk],

a sequence of seeds ~s = (s1, . . . , sk) ∈ {0, 1}k·n, a sequence of P-certificates ~π = (π1, . . . , πk) ∈
{0, 1}k·n, a sequence ~σ = (σ1, . . . , σk) ∈ {0, 1}k·Γ, a sequence ~λ = (λ1, . . . , λk) ∈ {0, 1}k·Γ, a
randomness ρ ∈ {0, 1}n.

Relation: RS(〈h, c, r〉 , 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉) = 1 if and only if:

1. Commitment Consistency: c = com(h(~̃S); ρ),

2. Input Certification:

(a) |~σ| ≤ 2kn2, and

(b) Let l∗ be the largest l such that j ≥ nl−1. λ≥l
∗

= null and for 2 ≤ l ≤ l∗,
Vcert(D, 1

n, (S̃l, (1
n, bjcnl−1 , sl, ([λ≥l]bjc

nl−1
, σ≥l)), λl−1), πl) = 1 (i.e., πl certifies that

S̃l(1
n, bjcnl−1 , sl, ([λ≥l]bjc

nl−1
, σ≥l)) = λl−1).

3. Prediction Correctness: Vcert(D, 1
n, (S̃1, (1

n, j, s1, ([λ≥1]j , σ
≥1)), r), π1) = 1 (i.e., π cer-

tifies that S̃1(1n, j, s1, ([λ≥1]j , σ
≥1)) = r).

where bjcx , j − (j mod x), and the operator [·]j is defined as follows: The input is expected to

be a set of triples of the form (j′, l′, πl′
j′), and the output is a subset of these obtained by removing

elements with j′ ≥ j.

Figure 7: RS , a relation that Protocol k uses in WIUA of Phase 2.

probability 1/2p(n). For each such a tuple (u, h, r), by the “global” proof-of-knowledge property of

WIUA, E
P ∗u,h,r
s extracts a valid “fake” witness w′ ∈ RS(h, c, r) with some non-negligible probability

1/q(n) (over the randomness s). It follows that BAD happens with non-negligible probability.
We now show that under our cryptographic assumptions, BAD can only happen with negligible

probability, which is a contradiction.
First, note that by the soundness of (Pcert, Vcert) with parameters T (·) and C(·), and the fact

that T (n) = Γ(n)ω(1) and D(n) ≤ C(n), we have that except with negligible probability over the

choice of (u, h, r, s), whenever the P-certificates ~pi
′

that E
P ∗u,h,r
s extracts out are convincing, their

corresponding statements are true; otherwise, we can construct a uniform poly(Γ(n))-time adversary

that samples u, h, r, s uniformly at random, runs E
P ∗u,h,r
s , and outputs a random certificate from

w′. Additionally, by the binding property of com and the collision-resistant property of Hn it

follows that with overwhelming probability over (u, h), there exists a vector of machines ~̃S∗ such

that except with negligible probability over the choice of r, s, it holds that if E
P ∗u,h,r
s outputs a

valid w′ ∈ RS(h, c, r), then the machines ~̃S in w′ equals ~̃S∗.14 By a union bound it follows that

with overwhelming probability over (u, h), there exists a vector of machines ~̃S∗ such that except

with negligible probability over the choice of r, s, the following holds: a) if E
P ∗u,h,r
s outputs a valid

w′ ∈ RS(h, c, r), then the machines ~̃S in w′ equals ~̃S∗, and b) all accepting certificates ~π′ prove

14Note that for this to hold, we here rely on the fact that binding of com and collision-resistancy of Hn hold also for
circuits of size poly(Γ(n)); however, as mentioned, by slightly modifying the protocol as in [BG02], this assumption
can be weakened to just collision resistance against polynomial-size circuits.

28

532

Approved for Public Release; Distribution Unlimited.

true statements. Let us refer to such pairs (u, h) as good.

For any valid “fake” witness w′ = (~̃S, j′, ~s′, ~π′, ~σ′, ~λ′, ρ′) ∈ RS(h, c, r) define a machine Mw′

(using ~̃S in w′) that given the input (j′, ~s′, ~σ′) of length smaller than 2kn2, outputs r:

Machine Mw′: Mw′(1
n, j, ~s, ~σ) lets l∗ be the largest l such that j > nl−1. Mw′ next runs the

machines S̃l∗ , S̃l∗−1, . . . , S1 in sequence as follows: S̃l∗ is run on input 1n, jl
∗
, sl
∗

and σl
∗
; let

λl
∗−1 denote its output. Next for each l ≤ l∗, S̃l is given 1n, jl, sl, σ≥l and [λ≥l]j,l where λ≥l

are the outputs of the executions of S̃l+1, . . . , S̃l∗ . Finally, M outputs the string r returned
by S̃1.

Note that by definition, if all the P-certificates in w′ prove true statements, then Mw′ given the
input (j′, ~s′, ~σ′) indeed outputs r. However, for any machine M , since the input to the machine
M is of length 2kn2, it follows by a counting argument that only for a negligible fraction of length
3kn2 strings r, there exists some input that makes M output r. Thus, whenever (u, h) is good
(which happens with overwhelming probability), except with negligible probability (over the choice
of r, s) BAD cannot happen; it follows that BAD can only happen with negligible probability,
which is a contradiction.

4.2.2 Concurrent ZK of Protocol k

The simulator S for Protocol k will define k+ 1 “helper” simulators S1, . . . , Sk+1. Before providing
the formal definition of S1, . . . , Sk+1, let us first describe the interaction among them.

Sk+1 S3 S2 S1 V ∗

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

π1
1
·· ·
π1
n

π1
n+1
·· ·
π1

2n

π1
n2−n+1
·· ·
π1
n2

π1
n2+1
·· ·

π1
n2+n

π1
n2+n+1

π2
n

π2
2n

π2
n2

π2
n2+n

·· ·

πkn2

·· ·

Figure 8: Simulation of protocol (Pk, Vk) for k = 3.

Recall that in the simulation of Protocol 1, S1 is an interactive machine that communicates
with a concurrent verifier V ∗, on the “right”, while expecting to receive a P-certificates (j, πj)
from S2, on the “left”, for every communication round j in the right interaction with V ∗; S1 then
makes use of these certificates to complete the right interaction with V ∗ (and more specifically,

29

533

Approved for Public Release; Distribution Unlimited.

to complete the WIUAs it is supposed to provide V ∗). In the simulation of Protocol k, S1 still
communicates with V ∗ on the “right”, but now additionally expects to receive P-certificates from
all of S2, . . . , Sk+1 on the “left”. In more detail, recall that a communication round in the “right”
interaction refers to a verifier message (sent by V ∗) followed by a prover message (sent by S1).
Now, in each communication round j in the right interaction, upon receiving a message from the
verifier V ∗, S1 also expects to receive (j, 1, π1

j) from S2, and furthermore, for every 2 ≤ l ≤ k, if

j mod nl−1 = 0, then S1 additionally expects to receive (j, l, πlj) from Sl+1. In other words, S1

expects to receive a “level-l” certificate (of the form (j = a ·nl−1, l, πlj) for some a) from Sl+1 every

nl−1 communication rounds. Roughly speaking, each such “level-l” certificatate, certifies that all
“level-(l − 1)” certificates up to round j were actually generated by Sl; and those “level-(l − 1)”
certificates certify that Sl−1 actually generated the “level-(l− 2)” certificates up until round j, etc.
See Figure 8 for an illustration of the communication pattern between V ∗, S1, . . . , Sk+1.

For every 2 ≤ l ≤ k, for Sl to be able to generate its level (l − 1)-certificates, Sl internally
emulates the interaction among Sl−1, . . . , S1, V

∗, but additionally needs to receive all level-l′ cer-
tificates, where l′ ≥ l; thus each machine Sl produces level-l − 1 certificates on the “right”, while
receiving level-l, level-(l + 1), . . . level-k certificates from respectively Sl+1, Sl+2, . . . Sk+1, on the
“left”. See Figure 9 for an illustration of Sl.

Sl

Sl−1

Sl−2 S1 V ∗·· · Sl−2 S1 V ∗·· ·
πl
nl−1

πl
2nl−1

·· ·

·· ·

πl−1
nl−2

·· ·
πl−1
nl−1

πl−1
nl−1+nl−2

·· ·
πl−1

2nl−1

·· ·

Figure 9: Simulator Sl.

We now define S1. As before, on a high-level, S1(1n, x, ~M, s, `), acts as a prover in a “right”
interaction, communicating with a concurrent verifier V ∗, while receiving some additional “exter-
nal” messages on the “left”. (The input x is the statement to be proved, the input ~M will later be
instantiated with the codes of S1, . . . Sk, and the input (s, `) is used to generate the randomness
for S1; s is the seed for the forward secure pseudorandom generator g, and ` is the number of n-bit
long blocks to be generated using g.)

Let us now specify how S1 generates prover messages in its “right” interaction with V ∗.
S1(1n, x, ~M, s, `) acts as follows:

• Upon invocation, S1 generates its “random-tape” by expanding the seed s; more specifically,
let (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1) be the output of g(s, `). Again, we assume without loss
of generality that S1 only needs n bits of randomness of generate any prover message; in order
to generate its j’th prover message, it uses qj as randomness.

• Upon receiving a hash function hi for session i in communication round j, S1 provides a
commitment ci to the hash of the programs S̃1, . . . , S̃k defined as follows.

– S̃1(1n, j, s′, σ) = wrap(M1(1n, x, ~M, s′, j), V ∗, σ, j).

30

534

Approved for Public Release; Distribution Unlimited.

– For 2 ≤ l ≤ k, S̃l(1
n, j, s′, σ) = wrap′(Ml(1

n, x, ~M, s′, j), σ, j) where wrap′(A, σ, j) is the
program that executes A for j “communication rounds,” while allowing A to receive σ as
external messages “on the left”, and finally outputs the set of messages generated by A
“on the right”—recall that Ml will be instantiated by Sl, who emulates the interaction
among Sl−1, . . . , S1, V

∗, receives level-l′ certificates for l′ ≥ l externally “on the left”,
and generates level-(l− 1) certificates on the “right”; “communication rounds” here still
refer to the communication rounds of S1 and V ∗. (wrap′ simply returns ⊥ whenever A
does not have the specified structure.)

• Upon receiving a challenge ri in session i during the jth communication round, S1 needs to
provide a WIUA. To do so, S1 collects the witness as follows.

– Let l∗ be the largest l such that j ≥ nl−1.

– For 1 ≤ l ≤ l∗, set sl = sbjc
nl−1

(i.e., the seed corresponding to communication rounds

bjcnl−1 ; recall that bjcx , j − (j mod x)).

– For 1 ≤ l ≤ l∗, recall that S1 expects to have received al = bjcnl−1/nl−1 messages from
Sl+1 of the form (a · nl−1, l, πl

a·nl−1) for a ∈ [al].

∗ Let πl be the P-certificate in the last message received from Sl+1; by construction,
this message was received in round bjcnl−1 and thus we have πl = πlbjc

nl−1
.

∗ Let λl be the messages received from Sl+1 up until and including round bjcnl ; by
construction, since Sl+1 generates a message every nl−1 communication rounds, λl

contains a total of bjcnl/nl−1 messages.

∗ Let σl be the messages generated by Sl+1 after round bjcnl but before round bjcnl−1

(thus, we exclude the last message πl and the messages included in λl); since there
are at most nl communication rounds after round bjcnl and before round bjcnl−1 ,
and (again) Sl+1 generates a message every nl−1 rounds, σl contains at most n
messages; each such message is of length n+O(log n) < 2n.

– For l∗ < l ≤ k, let λl = null. (Note that also λl∗ = null since bjcnl∗ = 0.)

– Finally, let ρ and ~̃S be the randomness and machines, respectively, used to generate the
commitment ci in the ith session.

If S1 fails to find a valid witness, S1 simply halts. Otherwise, S1 uses the above witness to
provide an honest WIUA to V ∗ that

1. (Commitment consistency:) ci = com(hi(S̃1, . . . , S̃k); ρ),

2. (Input certification:) |~σ| ≤ 2kn2, λ≥l
∗

= null and for 2 ≤ l ≤ l∗, πl certifies that
S̃l(1

n, bjcnl−1 , sl, ([λ≥l]bjc
nl−1

, σ≥l)) = λl−1,

3. (Prediction correctness:) π1 certifies that S̃1(1n, j, s1, ([λ≥1]j , σ
≥1)) = ri

Remark 2. Above, for every 1 ≤ l ≤ l∗, S1 uses the P-certificates πl to certify that the execution of
S̃l up until communication round bjcnl−1 when providing S̃l with the “certified” inputs [λ≥l]bjc

nl−1

and “dangling” inputs σ≥l. The bracket operator is used to ensure that the inputs given to S̃l
are identically the same as were given to it when generating the P-certificate πl at round bjcnl
(or else the statement proved by πl would be different from the one that S1 needs to provide a
certificate about). The bracket operator simply “filters” out all messages that are generated at or
after communication round bjcnl−1.

31

535

Approved for Public Release; Distribution Unlimited.

As noted above, by construction, ~σ always satisfies the appropriate length restrictions. Thus,
the only thing we need to ensure is that the certificates received by S1 indeed prove the “right”
statements for S1 to be able to complete its WIUAs; we shall see why this is the case shortly.

We now turn to defining Sl for 2 ≤ l ≤ k + 1, inductively. Suppose S1, . . . , Sl−1 are defined.
Sl(1

n, x, ~M, s, `) emulates the interaction among Sl−1(1n, x, ~M, s, `), . . . , S1(1n, x, ~M, s, `), V ∗ for `
communication rounds, while expecting to receive external messages “on the left”.

• In each communication round j with j mod nl−1 = 0, after V ∗ sends a verifier message mj ,
we distinguish two cases.

– If l = 2, S2 generates a certificate π1
j (using Pcert) that wrap(S1(1n, x, ~M, sj , j), V

∗, τ, j)
= mj , where τ is the set of messages S1 has received so far, and outputs (j, 1, π1

j).

– If l > 2, Sl continues to emulate the round to the point that (the internally emulated)
Sl−1 outputs its message (j, l − 2, πl−2

j), and then Sl generates a certificate πl−1
j that

wrap′(Sl−1(1n, x, ~M, sj , j), τ, j) = η, where τ is the set of messages that Sl−1 has received
so far and η is the set of messages Sl−1 has generated so far (in the internal emulation).
Then Sl outputs the message (j, l − 1, πl−1

j).

• In each communication round j s.t., j mod nl = 0, after generating its message (j, l−1, πl−1
j),

Sl expects to receive external messages (j, l′− 1, πl
′−1
j) “on the left” for every l′ > l such that

j mod nl
′−1 = 0. Sl simply relays these messages to its internally emulated Sl−1, . . . S1.

Finally, Sl outputs its own view at the end of the execution (which in particular, contains the view
of V ∗, and all the messages generate by Sl).

Note that the construction of S2, . . . , Sk+1 ensures that S1 will always have the appropriate
certificates to complete every WIUA it reaches; as a consequence, S1 never gets “stuck”.

Let ~S = (S1, . . . , Sk). The final simulator S(1n, x) simply runs Sk′(1
n, x, ~S, s, T (n+ |x|)), where

s is a uniformly random string of length n, T (n+|x|) is a polynomial upper-bound on the number of
messages sent by V ∗ on input 1n and statement x ∈ {0, 1}poly(n), and k′ = dlogn T (n+ |x|)e+1, and
then extracts and outputs the view of V ∗ from the output of Sk′ . Note that since T is polynomial
in n, k′ is a constant.

Running-time of S We first note that essentially the same argument as for Protocol 1 shows that
S1 runs in polynomial time: It only takes S1 polynomial-time to generate the commitments in Phase
1 (since V ∗ has a polynomial-length description, and the programs S̃l’s have length polynomial in
the size of V ∗). During the WIUA in Phase 2, the length of the witness used by the simulator is
polynomial in length of the programs S̃l’s, and their inputs and outputs, all of which are polynomial
in the circuit-size of V ∗. Since the P-certificates verification time is polynomial in the length of
the statement proved, it follows that the relation being proved in the WIUA has a time complexity
that is upper bounded by a fixed polynomial in the length of V ∗. By the relative prover efficiency
condition of the WIUA, each such proof only requires some fixed polynomial-time, and thus the
whole execution of S1 takes some fixed polynomial time (in the size of V ∗ and thus also in the
length of x.) It directly follows that also S̃1’s running-time is polynomially bounded.

It now follows by an induction that Sl and thus S̃l run in polynomial time for every constant
l. Suppose Sl−1 and S̃l−1 run in polynomial time. Since Sl is simply providing certificates about
the execution of S̃l−1, it follows by the relative prover-efficiency condition of P-certificates, that Sl
runs in polynomial time, and thus also S̃l. Finally, as S simply runs Sk′ with a constant k′, the
running-time of S is polynomially bounded as well.

32

536

Approved for Public Release; Distribution Unlimited.

Indistinguishability of the simulation Note that by construction of S, it follows that the
simulation never gets “stuck” in the sense that whenever V ∗ expects a WIUA in some session, S
has an appropriate “fake” witness and can complete the WIUA using this “fake” witness. Indistin-
guishability of the simulation follows in identically the same way as for Protocol 1.

4.3 Dealing with Randomized P-certificates

As mentioned above, to simplify the exposition, our protocol uses strong P-certificate system
(Pcert, Vcert) with deterministic prover and verifier strategies. We here sketch how to deal with the
case when Pcert and Vcert are randomized.

• Handling randomized Vcert. If Vcert is randomized, we simply need to the verifier V generate
the randomness for Vcert, but to guarantee soundness of the P-certificate, V needs to do so
after the P-certificates are determined. We do this by adding a new communication round
before Phase 2 where the prover first is asked to commit to the k P-certificates π1, . . . , πk

that it wants to use in Phase 2 (the honest prover should simply commit to 0k·n) and next the
verifier selects randomness ρ1, . . . , ρk for Vcert for each of these certificates. In Phase 2, the
prover is then asked to demonstrate that for each certificate l ∈ [k], Vcert using randomness
ρl accepts πl.

• Handling randomized Pcert. If Pcert is randomized, the helper simulators S2, . . . , Sk+1 also
become randomized. As with S1, there is now a potential “randomness-dependent” issue
since the simulators generate certificates about their own behaviour in earlier communication
rounds (in particular, S1 needs to know the randomness of all “helper” simulators). We can
break the circularity by using forward secure PRGs in exactly the same way as was done for
S1; each the simulator Sl use independent seeds s(l) for a forward secure PRG to expand the
randomness for generating level-(l − 1) certificates in each communication round, and then

uses the seed s
(l)
j as an input to S̃l’s when generating certificates at communication round j.

4.4 A Note on Uniform Assumptions

We remark that even in the case of uniform soundness, our protocol currently relies on families of
hash-functions collision-resistant also for non-uniform polynomial-time. Note, however, that for our
soundness proof, it suffices to use commitment schemes that are binding for uniform polynomial-
time algorithms and a WIUA where the proof of knowledge property is proven secure using a
uniform security reduction. (We still need the hiding and the witness indistinguishability properties
to hold for non-uniform polynomial-time to establish ZK with arbitrary auxiliary inputs). We
see no obstacles in getting these properties by instantiating our protocol with statistically-hiding
commitments and a “special-purpose” WIUA from [PR05], which also relies on statistically-hiding
commitments, but we haven’t verified the details. In particular, if we only rely on statistically-
hiding commitments where the (computational) binding hold against uniform polynomial-time
algorithms, such commitment can be based on families of hash functions collision-resistant against
uniform polynomial-time.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, volume 0,
pages 106–115, 2001.

33

537

Approved for Public Release; Distribution Unlimited.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, pages 326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composi-
tion and bootstrapping for snarks and proof-carrying data. In STOC, 2013.

[BCPT12] Eleanor Birrell, Kai-Min Chung, Rafael Pass, and Sidharth Telang. Randomness-
dependent message security. Unpublished Manuscript, 2012.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In STOC, pages 21–31, 1991.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In
Computational Complexity, pages 162–171, 2002.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM
J. Comput., 38(5):1661–1694, 2008.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound
zero-knowledge and its applications. In FOCS, pages 116–125, 2001.

[BH92] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against
dynamic adversaries. In Rainer A. Rueppel, editor, EUROCRYPT, volume 658 of
Lecture Notes in Computer Science, pages 307–323. Springer, 1992.

[BLV06] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-box
zero knowledge. J. Comput. Syst. Sci., 72(2):321–391, 2006.

[Bon03] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Computer Science. Springer, 2003.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography.
SIAM J. Comput., 37(2):380–400, 2007.

[BP04a] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge.
In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science, pages
121–132. Springer, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption
without random oracles. In ASIACRYPT, pages 48–62, 2004.

[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-
black-box simulation technique. In FOCS, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, ACM Conference on Computer and Com-
munications Security, pages 62–73. ACM, 1993.

34

538

Approved for Public Release; Distribution Unlimited.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In FOCS, pages 543–552,
2005.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In
Marc Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages
1–18. Springer, 2003.

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable functions.
In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 595–613. Springer, 2009.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC, pages 235–244, 2000.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires ω̃(log n) rounds. In STOC, pages 570–579, 2001.

[CLP12] Ran Canetti, Huijia Lin, and Omer Paneth. Public coin concurrent zero-knowledge in
the global hash model. Manuscript, 2012.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen cipher-
text attacks. In Joan Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in
Computer Science, pages 445–456. Springer, 1991.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT, pages 418–430, 2000.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In TCC, pages 54–74, 2012.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability con-
jecture and a new non-black-box simulation strategy. In FOCS, pages 251–260, 2009.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[DS98] Cynthia Dwork and Amit Sahai. Concurrent zero-knowledge: Reducing the need for
timing constraints. In CRYPTO, pages 177–190, 1998.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Ap-
proximating clique is almost np-complete (preliminary version). In FOCS, pages 2–12.
IEEE Computer Society, 1991.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In STOC, pages 416–426, 1990.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In EUROCRYPT, 2013.

35

539

Approved for Public Release; Distribution Unlimited.

[GJ10] Vipul Goyal and Abhishek Jain. On the round complexity of covert computation. In
Schulman [Sch10], pages 191–200.

[GJO+12] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan Visconti. Con-
current zero knowledge in the bounded player model. Cryptology ePrint Archive, Re-
port 2012/279, 2012. http://eprint.iacr.org/.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In FOCS, pages 102–, 2003.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint
Archive, 2011:456, 2011.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[Gol93] Oded Goldreich. A uniform-complexity treatment of encryption and zero-knowledge.
J. Cryptology, 6(1):21–53, 1993.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge University
Press, 2001.

[Gol02] Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In STOC, pages
332–340, 2002.

[Goy12] Vipul Goyal. Positive results for concurrently secure computation in the plain model.
In FOCS, 2012.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340, 2010.

[GS12] Divya Gupta and Amit Sahai. On constant-round concurrent zero-knowledge from a
knowledge assumption. Cryptology ePrint Archive, Report 2012/572, 2012. http:

//eprint.iacr.org/.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, pages 99–108, 2011.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28:12–24, 1999.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge proto-
cols. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 408–423. Springer, 1998.

36

540

Approved for Public Release; Distribution Unlimited.

[Kil95] Joe Kilian. Improved efficient arguments (preliminary version). In CRYPTO, pages
311–324, 1995.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC, pages 560–569, 2001.

[KPR98] Joe Kilian, Erez Petrank, and Charles Rackoff. Lower bounds for zero knowledge on
the internet. In FOCS, pages 484–492, 1998.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup as-
sumptions. In STOC, pages 683–692, 2003.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, pages 169–189, 2012.

[Mer89] Ralph C. Merkle. A certified digital signature. In CRYPTO, pages 218–238, 1989.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4:151–
158, 1991.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Boneh [Bon03], pages
96–109.

[Pas03a] Rafael Pass. On deniability in the common reference string and random oracle model.
In Boneh [Bon03], pages 316–337.

[Pas03b] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In EUROCRYPT, pages 160–176, 2003.

[Pas04a] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In STOC, pages 232–241, New York, NY, USA, 2004. ACM.

[Pas04b] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In STOC, pages 232–241, 2004.

[Pop63] Karl Popper. Conjectures and Refutations: The Growth of Scientific Knowledge. Rout-
ledge, 1963.

[PR03a] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a
constant number of rounds. In FOCS, pages 404–, 2003.

[PR03b] Rafael Pass and Alon Rosen. How to simulate using a computer virus. Unpublished
manuscript, 2003.

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS, pages
563–572, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, pages 366–375, 2002.

37

541

Approved for Public Release; Distribution Unlimited.

[PRT11] Rafael Pass, Alon Rosen, and Wei-Lung Dustin Tseng. Public-coin parallel zero-
knowledge for np. J. Cryptology, 2011.

[PTV12] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam.
Concurrent zero-knowledge, revisited. Unpublished manuscript, 2012.

[PTW11] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikström. On the composition of
public-coin zero-knowledge protocols. SIAM J. Comput., 40(6):1529–1553, 2011.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-round con-
current zero-knowledge. In TCC, pages 553–570, 2008.

[PV10] Rafael Pass and Muthuramakrishan Venkitasubramaniam. Private coins versus public
coins in zero-knowledge proofs. To appear in TCC 2010, 2010.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Eurocrypt, pages 415–432, 1999.

[Rog06] Phillip Rogaway. Formalizing human ignorance. In VIETCRYPT, pages 211–228, 2006.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge. In
CRYPTO, pages 451–468, 2000.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4(3):161–174, 1991.

[Sch10] Leonard J. Schulman, editor. Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010. ACM, 2010.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2008.

38

542

Approved for Public Release; Distribution Unlimited.

Unprovable Security of Perfect NIZK and

Non-interactive Non-malleable Commitments

Rafael Pass∗

Cornell University
rafael@cs.cornell.edu

May 27, 2015

Abstract

We present barriers to provable security of two fundamental (and well-studied) cryptographic
primitives perfect non-interactive zero knowledge (NIZK), and non-malleable commitments:

• Black-box reductions cannot be used to demonstrate adaptive soundness (i.e., that sound-
ness holds even if the statement to be proven is chosen as a function of the common
reference string) of any statistical (and thus also perfect) NIZK for NP based on any
“standard” intractability assumptions.

• Black-box reductions cannot be used to demonstrate non-malleability of non-interactive, or
even 2-message, commitment schemes based on any “standard” intractability assumptions.

We emphasize that the above separations apply even if the construction of the considered prim-
itives makes a non-black-box use of the underlying assumption.

As an independent contribution, we suggest a taxonomy of game-based intractability as-
sumptions.

∗A preliminary verion of this paper appeared in TCC’13. Pass is supported in part by a Alfred P. Sloan Fellowship,
Microsoft New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990, NSF Award
CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2- 0211.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the US Government.

543

Approved for Public Release; Distribution Unlimited.

1 Introduction

Modern Cryptography relies on the principle that cryptographic schemes are proven secure based
on mathematically precise assumptions; these can be general—such as the existence of one-way
functions—or specific—such as the hardness of factoring products of large primes. The security
proof is a reduction that transforms any attacker A of the scheme into a machine that breaks the
underlying assumption (e.g., inverts an alleged one-way function). This study has been extremely
successful, and during the past three decades many cryptographic tasks have been put under
rigorous treatment and numerous constructions realizing these tasks have been proposed under a
number of well-studied complexity-theoretic hardness assumptions.

In this paper, we study two fundamental cryptographic primitives—perfect non-interactive zero-
knowledge with adaptive statements and non-interactive non-malleable commitments—for which
security proofs based on well-studied intractability assumptions have remained elusive.

Perfect NIZK with Adaptive Inputs A non-interactive zero-knowledge (NIZK) protocol [?]
is protocol between two parties, a Prover, and a Verifier, through which the Prover can non-
interactively (i.e., by sending a single message π) convince the Verifier of the validity of a statement
x, only if x is true (this is called the soundness property), while at the same time revealing nothing
beyond the fact that x is true (this is called the zero-knowledge property). To make such constructs
possible both parties are additionally assumed to have access to a “Common Reference String”
(CRS) that has been ideally sampled according to some distribution. The original definition of
[?] only considered non-adaptive notions of soundness and zero-knowledge: Roughly speaking,
the (non-adaptive) soundness condition requires that for every false statement x /∈ L, with high
probability over the choice of the CRS, any proof π output by a malicious prover will be rejected
by the verifier. The (non-adaptive) zero-knowledge property, on the other hand, requires that for
every true statement x ∈ L, the joint distribution consisting of the reference string, and an honestly
generated proof, can be reconstructed by a simulator. In both of these properties, the statement x is
required to be fixed before the reference string is known. Feige, Lapidot and Shamir [?] introduced
stronger adaptive notions of both soundness and zero-knowledge; roughly speaking, here soundness
and zero-knowledge should hold even if the statement x is adversarially chosen as a function of the
reference string.

As with traditional zero-knowledge protocols, NIZKs come in several flavors: computational
NIZK, statistical NIZK, and perfect NIZK. In the computational notion, the simulator’s output is
only required to be computationally indistinguishable from an honestly generated view, whereas
in the statistical (resp. perfect) variants, it is required to be statistically close (resp. identical) to
an honestly generated view. Computational NIZK with adaptive zero-knowledge and soundness
were constructed early on based on standard cryptographic intractability assumptions [?, ?], but
constructions of statistical and perfect NIZK were elusive.

Only recently, a breakthrough result by Groth, Ostrovsky and Sahai (GOS) [?] provided a
construction of a perfect NIZK for NP based on the hardness of a number theoretic assumption
over bilinear groups. Their protocol satisfies the adaptive notion of zero-knowledge; however, it only
satisfies the non-adaptive notion of soundness (that is, soundness is no longer guaranteed to hold
if the attacker chooses a statement x /∈ L as a function of the common reference string). We focus
on whether there exists a perfect NIZK for NP with both adaptive soundness and zero-knowledge.

A step towards answering this question appears in the work of Abe and Fehr [?], which presented
a perfect NIZK for NP with both adaptive soundness and zero-knowledge, using an “knowledge-
extractaction” assumption (simular to the “knowledge-of-exponent” assumption of [?]), as opposed

1

544

Approved for Public Release; Distribution Unlimited.

to a computational-intractability assumption. Abe and Fehr also demonstrate that certain (ar-
guably natural) types of proof techniques—which they refer to as “direct” black-box reductions—
cannot be used to prove adaptive soundness of perfect NIZKs for NP. Their notion of a “direct”
proof, however, is quite restrictive (very roughly speaking, it requires the security reduction to
“directly embed” some hard instance into the CRS in a “structure preserving way”).1

Non-interactive Non-malleable Commitments Often described as the “digital” analogue of
sealed envelopes, commitment schemes enable a sender to commit itself to a value while keeping it
secret from the receiver. This property is called hiding. Furthermore, the commitment is binding,
and thus in a later stage when the commitment is opened, it is guaranteed that the “opening” can
yield only a single value determined in the committing stage. For many applications, however, the
most basic security guarantees of commitments are not sufficient. For instance, the basic definition
of commitments does not rule out an attack where an adversary, upon seeing a commitment to a
specific value v, is able to commit to a related value (say, v − 1), even though it does not know
the actual value of v. This kind of attack might have devastating consequences if the underlying
application relies on the independence of committed values (e.g., consider a case in which the
commitment scheme is used for securely implementing a contract bidding mechanism). In order
to address the above concerns, Dolev, Dwork and Naor introduced the concept of non-malleable
commitments [?]. Loosely speaking, a commitment scheme is said to be non-malleable if it is
infeasible for an adversary to “maul” a commitment to a value v into a commitment to a related
value ṽ.

More precisely, we consider a man-in-the-middle (MIM) attacker that participates in two con-
current executions of a commitment scheme Π; in the “left” execution it interacts with an honest
committer; in the “right” execution it interacts with an honest receiver. Additionally, we assume
that the players have n-bit identities (where n is polynomially related to the security parameter),
and that the commitment protocol depends only on the identity of the committer; we sometimes
refer to this as the identity of the interaction.2 Intuitively, Π being non-malleable means that if
the identity of the right interaction is different than the identity of the left interaction (i.e., A does
not use the same identity as the left committer), the value A commits to on the right does not
depend on the value it receives a commitment to on the left; this is formalized by requiring that
for any two values v1, v2, the value A commits to after receiving left commitments to v1 or v2 are
indistinguishable.3

The first non-malleable commitment protocol was constructed by Dolev, Dwork and Naor [?]
in 1991. The security of their protocol relies on the minimal assumption of one-way functions and
requires Ω(log k) rounds of interaction, where k ∈ N is the length of party identities. The round-
complexity of non-malleable commitments has since been extensively studied (see e.g., [?, ?, ?, ?,
?, ?, ?]), leading up to constant round protocols based on one-way functions [?, ?].

1Among other things, the structure preserving property requires that if the “hard instance” being directly embed-
ded in the CRS is true, the CRS is valid, and if the hard instance is false, then the CRS is “invalid”. This property
can never hold when considering NIZK in the Uniform Reference String model (as every CRS is valid), and as such
their result holds vacuously when considering NIZK in the Uniform Reference String model.

2Non-malleable commitments are sometimes also considered in settings where players do not have identities.
However, as shown in [?], any non-malleable commitment that handles sufficiently long identities can be turned into
a non-malleable commitment without identities (and any non-malleable commitment without identities can trivially
be turned into one with identities). Since our goal is to prove lower bounds, we focus on the more general (relaxed)
notion of non-malleability with respect to identities.

3Note that the value A commits to is not efficiently computable from the transcript of the right interaction;
nevertheless, if the commitment is statistically binding, the value is determined with overwhelming probability. Our
focus here is on non-malleability for statistically-binding commitments (as is typically the case in the literature.

2

545

Approved for Public Release; Distribution Unlimited.

The question of whether non-interactive, or even 2-round, non-malleable commitments exist,
however, is wide open. (We note that in the Common Reference String model, constructions of
non-interactive non-malleable commitments are known [?]; we here focus on constructions in the
plain model, without any set-up.) Some initial progress towards this question can be found in
[?] where a construction of non-interactive non-malleable commitments based on a new hardness
assumption is given. This assumption, however, has a strong non-malleability flavor; as such, it
provides little insight into the question of whether non-malleability can be obtained from a “pure”
hardness assumptions (such as e.g., the hardness of factoring).

1.1 Our results

The main result of this paper is showing that Turing (i.e., black-box) reductions cannot be used to
base the security of the above-mentioned primitives, on a general class of intractability assumption.

More precisely, following Naor [?] (see also [?, ?, ?, ?, ?]), we model an intractability assump-
tion as an arbitrary game between a (potentially) unbounded challenger C, and an attacker A.
The attacker A is said to break the challenger C with respect to the threshold t if it can make C
output 1 with probability non-negligibly higher than the threshold t. An intractability assumption
is defined as a pair (C, t) where C is a challenger and t is a threshold. All traditional cryptographic
hardness assumptions (e.g., the hardness of factoring, the hardness of the discrete logarithm prob-
lem, the decisional Diffie-Hellman problem etc.) can be modeled as 2-round challengers C with the
threshold t being either 0 (in case of the factoring or discrete logarithm problems) or 1/2 (in case
of the decisional Diffie-Hellman problem).4 In all these examples, C is polynomial-time; Naor [?]
and Gentry and Wichs [?] refer to such assumptions as “falsifiable”. For generality, we (following
[?]) refer to these as “efficient-challenger” assumptions. More generally, we refer to an assumption
where the challenger can be implemented in time (resp. circuit size) T (·) as a “T (·)-time (resp.
size) challenger assumption” Note that some “esoteric” assumptions such as the “one-more dis-
crete logarithm assumption” [?, ?], or “adaptive one-way functions” [?], are not efficient-challenger
assumptions, but they are exponential-time challenger assumptions.

Our first result rules out basing statistical (and thus also perfect) NIZK with adaptive soundness
on efficient-challenger (a.k.a falsifiable) assumptions.

Theorem 1 (Informally stated). Assume the existence of (non-uniformly hard) one-way func-
tions. Then there exists an NP-language L such that the following holds. Let Π be a statistical
non-interactive adaptively zero-knowledge argument for L, and let (C, t) be an efficient challenger
assumption. Assume there exists a polynomial-time (resp. polynomial-size) Turing reduction R
such that RA breaks the C w.r.t. the threshold t for every A that breaks adaptive soundness of Π.
Then C can be broken in polynomial-time (resp. by a polynomial-size circuit) with respect to the
threshold t.

We also show that if we additionally assume the existence of sub-exponential one-way functions,
and consider constructions of NIZK for proving any polynomial-length (in the security parameter)
statement in NP based on a particular exponential-time challenger assumption (C, t), then the
assumption can already be broken in polynomial time.

Moving on to non-interactive non-malleable commitments, we show that if non-malleability of
a non-interactive, or two message, commitment scheme Π can be based on a efficient-challenger
(resp. T (·)-size) challenger assumption (C, t) using a polynomial-time (resp. T (·)-sized) security
reduction, then C can be broken in polynomial-time (resp. by a poly(T (·))-sized circuit).

4For instance, for the case of factoring, the challenger C picks two random k-bit primes p, q, and outputs N = pq;
the attacker A sends back a number p′ and C finally outputs 1 iff p′ ∈ {p, q}.

3

546

Approved for Public Release; Distribution Unlimited.

Theorem 2 (Informally stated). Let Π be a two-message commitment scheme, and let (C, t) be
an efficient-challenger (resp. T (·)-size) assumption. Assume there exists a polynomial-time (resp.
T (·)-size) Turing reduction R such that RA breaks C w.r.t. the threshold t for every A that breaks
non-malleability of Π. Then C can be broken in polynomial-time (resp. by a poly(T (·))-sized circuit)
with respect to the threshold t.

We emphasize that for all the above-mentioned results, the construction of the protocols Π need
not make use of the underlying assumption in a black-box way; the only restriction we impose is
that the security reduction (establishing the security of Π) is a Turing (i.e., black-box) reduction.

Why these primitives? On a very high-level, non-interactive statistical NIZK and non-interactive
non-malleable commitments share three properties that enable our unprovability results: 1) they
are both “non-interactive” primitives, and 2) whether the primitives get broken cannot be veri-
fied efficiently, and 3) they both have a zero-knowledge flavor (explicitly in the case of NIZK, and
implicitly for the case of commitments). These are exactly the properties that we need for our un-
provability results5, and consequently both unprovability results have significant overlaps in terms
of the techniques employed.

Dealing with “Slightly” Non-black-box Security Reductions In this work we focus on
ruling out security reductions that only use the attacker in a black-box way. In particular, the
security reduction, although it may be a non-uniform algorithm, may not get any non-uniform
advice about the attacker (more precisely, if it is a non-uniform algorithm, the same non-uniform
advice should work for every attacker). In contrast, some quite commonly used proof techniques
in cryptography rely on the reduction receiving a non-unform advice string that depends on the
attacker—this may be viewed as a slightly non-black-box use of the attacker. We mention that a
recent work by Chung, Lin, Mahmoody and Pass [?] provides techniques for extending certain types
of separation results for the black-box setting to deal also with reductions receiving non-uniform
advice about the attacker. These techniques readily apply to our results, which thus also extend
to rule out such “slightly non-black-box” security reductions.

A Taxonomy of Intractability Assumption As an independent contribution, we slightly
generalize the notion of an intractability assumption from [?] (see also [?, ?, ?, ?, ?]) and provide a
natural taxonomy of intractability assumptions based on 1) the security threshold, 2) the number of
communication rounds in the security game, 3) the computational complexity of the game challenger,
4) the communication complexity of the challenger, and 5) the computational complexity of the
security reduction. Our results, combined with [?, ?], demonstrate several natural primitives that
may be (trivially) based on an assumption of a certain type (e.g., the soundness condition of a
perfect NIZK can trivially be viewed as a bounded-round assumption), but cannot be based on
a different type of assumption (e.g., an assumption where the challenger is efficient). Our results
focus on understanding limitations in terms of items 1, 2, 3 and 5; we leave open an exploration of
item 4, i.e., the communication complexity of the challenger. More generally, we are optimistic that
cryptographic tasks may be classified in this taxonomy, based on whether they can be achieved—
even using a non-black-box construction—based on a class of assumptions in this taxonomy, but
not on another.

5But our results do not apply to all primitives satisfying these properties; for instance, computational NIZK also
satisfies them.

4

547

Approved for Public Release; Distribution Unlimited.

A Note on Random Oracles Let us point out that in the Random Oracle model [?], both
of the above-mentioned primitives are easy to construct. Perfect NIZK were constructed in [?]
(by relying on the “Fiat-Shamir heuristic” [?] which is sound in this model) and non-interactive
non-malleable commitments in [?]. Indeed, many practical protocols rely on the assumption that
a “good” hash function behaves like a non-interactive non-malleable commitment, and on non-
interactive zero-knowledge arguments constructed by applying the “Fiat-Shamir heuristic” [?] to
a three-message perfect zero-knowledge protocol. Our results show that such commonly used sub-
protocols cannot be proven secure based on standard hardness assumptions. Note that these results
are incomparable to those of e.g., [?, ?] on the “uninstantiability of random oracles”: the results
of [?, ?] are stronger in the sense that any instantiation of their scheme with a concrete function
can actually be broken, whereas we just show that the instantiated scheme cannot be proven secure
using a Turing reduction based on standard assumptions. On the other hand, the separations of
[?, ?] consider “artificial protocols”, whereas the protocols we consider are natural (and commonly
used in practice).

1.2 Related Separation Results

There is a large literature on separation results between cryptographic primitives and/or assump-
tions. We distinguish between two types of results.

Separations for fully black-box constructions The seminal work of Impagliazzo and Rudich
[?] provides a framework for proving black-box separations between cryptographic primitives. We
stress that this framework considers so-called “fully-black-box constructions” (see [?] for a taxonomy
of various black-box separations); that is, the framework considers both black-box constructions
(i.e., the higher-level primitive only uses the underlying primitive as a black-box), and black-box
reductions.

Separations for black-box reductions In recent years, new types of black-box separations
have emerged. These types of separation apply even to non-black-box constructions, but still only
rule out black-box proofs of security: Pass [?] and Pass, Tseng and Venkitasubramaniam [?] (re-
lying on the works of Brassard [?] and Akavia et al [?], demonstrating limitations of “NP-hard
Cryptography”6) demonstrate that under certain (new) complexity theoretic assumptions, various
cryptographic task cannot be based on one-way functions using a black-box security reduction, even
if the protocol uses the one-way function in a non-black-box way. Very recently, two independent
works demonstrate similar types of separation bounds, but this time ruling our security reductions
to a general set of intractability assumptions: Pass [?] demonstrates impossibility of using black-
box reductions to prove the security of several primitives (e.g., Schnorr’s identification scheme,
commitment scheme secure under weak notions of selective opening, Chaum Blind signatures, etc)
based on any “bounded-round” intractability assumption (where the challenger uses an a-priori
bounded number of rounds, but is otherwise unbounded). Gentry and Wichs [?] demonstrate (as-
suming the existence of strong pseudorandom generators) impossibility of using black-box security
reductions to prove soundness of “succinct non-interactive arguments” based on any “falsifiable”
assumption (where the challenger is computationally bounded). Both of the above-mentioned work
fall into the ”meta-reduction” paradigm of Boneh and Venkatesan [?], which was earlier used to

6See also the results of Feigenbaum and Fortnow [?] and the result of Bogdanov and Trevisan [?] that demonstrate
limitations of NP-hard cryptography for restricted types of reductions.

5

548

Approved for Public Release; Distribution Unlimited.

prove separations for restricted types of reductions (see e.g., [?, ?, ?, ?]).7 Our separation results
are in the vein of these two works, and follows some of their techniques.

1.3 Proof Overview: Ruling out Perfect NIZK with Adaptive Inputs

Following in an overview of the proof of Theorem 1. Assume there exists a perfect NIZK (P, V) for
a hard-on-the average language L; for simplicity, let us further assume that there exists efficient
algorithms SamL, SamL̄ such that a) with overwhelming probability, SamL (resp SamL̄) sample
elements x ∈ L ∩ {0, 1}n (resp x ∈ L ∩ {0, 1}n), and b) elements sampled by SamL and SamL̄ are
indistinguishable. Such an L exists based on the existence of one-way functions, which exists by
hypothesis.

For simplicity, in this proof overview we focus on the case when the reference string is uniformly
random (i.e., we consider only NIZK in the so-called Uniform Reference String (URS) Model).
Assume, further, that there exists a Turing reduction R such that RA breaks the assumption C
(with respect to some thresholds t) whenever A breaks adaptive soundness of (P, V). Following the
“meta-reduction” paradigm by Boneh and Venkatesan [?] (which is used in both [?] and [?], and
also [?]), we want to use R to directly break C.

More precisely (just as in [?, ?]) we exhibit a particular attacker A to the adaptive soundness of
(P, V) and next show how to “emulate” this attacker for R without disturbing R’s interaction with
C. Whereas in [?] the emulation was statistically close (and thus the separation could be applied
also to unbounded challengers), in [?] the emulation was only computationally indistinguishable,
but this still suffices for convincing C as long as C is computationally efficient. We here follow the
approach of [?].

Let us turn to describing our attacker A, and next explain how to emulate it. Given a CRS ρ, A
first attempts to recover the random coins r used by the simulator S when outputting the CRS ρ;
since the simulation is perfect, such a string r exists (but finding r might require super-polynomial
time and so A is not necessarily polynomial-time). (Recall that since we are dealing with adaptive
zero-knowledge, the zero-knowledge simulator needs to output a reference string ρ before knowing
what statement it needs to simulate a proof of.) Next, A samples a false instance x /∈ L that is
indistinguishable from a true instance (by hypothesis, this can be done efficiently).8 Finally, it runs
the simulator S on the random coins r to generate ρ, and next feeds it the instance x, and lets π
denote the proof output by S (again this final step is efficient).

Let us argue that the proof π of x is accepted by V (ρ). Towards this, consider a hybrid attacker
A′ that performs exactly the same steps as A, but instead samples a true instance x ∈ L. It follows
from the ZK property (combined with the completeness property) that V accepts the proofs output
by A′. Now, intuitively, it should follow from the hard-on-the-average property of L that V also
accepts the proofs output by A. But there is a problem: recall that A is not (necessarily) efficient.
However, since it is only the first step of A that is inefficient, we can fix the random string r
non-uniformly and still use the remaining steps of A and the efficient verifier V to contradict the
hard-on-average property of L, as long as we assume that L is hard-on-average for non-uniform
polynomial-time. Note that we here rely on the fact that A is allowed to choose the statement x
after having seen the reference string ρ (i.e., we rely on A breaking adaptive soundness)—this is
what allows us to non-uniformly choose r as a function of ρ, before sampling x ∈ L.

7For instance, these separations results restrict to “algebraic” reductions, or reductions that run the attacker in a
“straigth-line” fashion.

8The careful reader may notice that A actually does not choose the statement x adaptively. The fact that the
reduction needs to work for attackers A that may choose the statement adaptively, and as a consequence must output
the reference string ρ before A gets to pick the statement, suffices for us.

6

549

Approved for Public Release; Distribution Unlimited.

Now given this breaker A, let us see an efficient attacker Ã that is computationally indistin-
guishable from A. On inputs a URS ρ, Ã(ρ) simply picks a random true statement x together
with a witness w, and next runs the honest prover strategy P (ρ, x, w) to produce a proof π (this
strategy is similar to the one used in [?]). It follows by the ZK property that the output of C when
communicating with Ã and A′ are indistinguishable, and we can then apply a similar argument as
above (but more complicated) to argue that the output of C when communicating with A′ and A

are indistinguishable, and thus RÃ breaks C with roughly the same probability as RA does.

Generalizing Theorem 1 to Exponential-time Challenger Assumptions In case the running-
time of the challenger C is super-polynomial in the security parameter k, the above approach seem-
ingly fails: the fact that Ã generates computationally indistinguishable messages does not suffice to
argue that C still accepts in the interaction with RÃ. However, if we assume that the language L is
hard-on-the-average for non-uniform subexponential time, then the above approach still works, as
long as C is subexponential time; in fact, it rules out also subexponential-time reductions. To deal
with also exponential-time challenger assumptions, we proceed as follows. If the same assumption
C can be used to prove any statement in NP of length polynomial in the security parameter, then
if the language L is hard-on-the-average for non-uniform sub-exponential time, it suffices to pick
statements x that are sufficiently long (but still of polynomial length) to ensure that Ã generates
messages that are indistinguishable from those sent by Ã, even by C.

1.4 Proof Overview: Ruling out Non-interactive Non-malleable Commitments

Following is an overview of the proof of Theorem 2. Assume there exists a non-interactive commit-
ment scheme Π; for simplicity of exposition we here focus only on non-interactive, as opposed to
two-message, commitments. Assume, further, that there exists a Turing reduction R such that RA

breaks the assumption C (with respect to some thresholds t) whenever A breaks non-malleability of
Π. Recall that an attacker A that breaks non-malleability of Π participates in two interactions—one
on the “left” acting as a receiver, and one on the “right” acting as a committer. To be successful
A needs to choose a different identity for the left and right interactions, and must commit to a
value ṽ which is related to the value v it receives a commitment to on the left. Consider a strong
attacker A that chooses identity 0 on the left, and identity 1 on the right, and upon receiving a
commitment c recovers (using brute force) the unique value v that c is a commitment to (if the
value is not unique v is set to ⊥), and next honestly commits to v on the right. Clearly A breaks
non-malleability of Π, and thus RA also breaks C w.r.t. t.

Let us now see how to efficiently “emulate” A. We simply consider a “trivial” adversary Ã
that picks identity 0 on the left and 1 on the right (just as A), but instead of trying to commit to
v on the right, it simply commits to 0 on the right. Now, intuitively, if the reduction R and the
challenger C are polynomial-time, then it should follow by the hiding property of Π that RÃ still
breaks C (w.r.t. t). Note, however, that R may be asking its oracle to break non-malleability of
multiple commitments (rather than a single one as we implicitly assumed above), and since A is not
efficiently computable, we need to be a bit careful when doing the hybrid argument. Nevertheless,
using a careful ordering of the hybrids, relying on the non-uniform security of Π (more precisely,

that Π is hiding w.r.t. non-uniform PPT algorithms) we can show that RÃ still breaks C (w.r.t.
t).

Note that the above proof idea applies to a very weak notion of “one-sided” non-malleability,
where the attacker always uses identity 0 on the left and identity 1 on the right; Liskov et al [?]
call commitments satisfying this weak notion of non-malleability, mutually independent. Interest-

7

550

Approved for Public Release; Distribution Unlimited.

ingly, [?] shows a construction of a mutually independent commitment based on the existence of
subexponentially-hard one-way permutations. The idea (a.k.a. “complexity-leveraging” [?]) is sim-
ple: Let Com0 be a commitment scheme that is hiding for subexponential time, and let Com1 be a
(polynomial-time) secure commitment scheme whose hiding property can be fully broken (i.e., the
commited value can be recovered) in subexponential time. A committer with identity b ∈ {0, 1}
shall use Comb. Now, if a MIM upon receiving a commitment of v using Com0 is able to output
a commitment to a related value ṽ using Com1, then we can violate the hiding of Com0 by simply
breaking Com1 by brute-force. This security reduction, however, is super-polynomial (subexponen-
tial) time. A natural question is whether subexponential time/size reductions may be helpful for
constructing “full-fledged” (as opposed to one-sided) non-interactive commitments.9 We proceed to
rule out such reductions (or rather to show that if there exists such a reduction, then the reduction
itself must already break the assumption).

Consider a T (k)-sized reduction R, where T (k) is super-polynomial, for basing non-malleability
on an efficient challenger assumption C10, and consider the algorithms A and Ã described above.
Note that if R has super-polynomial size, we have no guarantees that RÃ breaks C even when RA

does; indeed, since hiding of Π is only required to hold for polynomial-sized algorithms, RÃ’s success
probability may be very different from RA’s success probability. But, in this case, intuitively, R
itself must be able to break the hiding of commitments using identity 1 (recall that A and Ã use
identity 1 on the right).

So, very roughly, if RÃ does not already convince C, we can use R (in conjunction with C) to
obtain a circuit D that distinguishes, say, commitments to 0k and 1k using identity 1.11 We may
then use D to construct a man-in-the-middle attacker A′ that chooses identity 1 on the left and 0 on
the right (as opposed to 0 on the left and 1 on the right, as A and Ã did) to break non-malleability

of Π, and finally use R combined with A′ to directly break C. So, summarizing, either RÃ works,
or else, we use R in order to construct an MIM A′ that breaks non-malleability, and then use RA

′

to convince C—in essence, we use R “on itself” to convince C.

1.5 Overview of the Paper

We provide some preliminaries and standard definitions in Section 2. We provide definitions of
intractability assumptions and black-box reductions in Section 3; this section also contains our
taxonomy of intractability assumptions. We formally state and prove our results about NIZK in
Section 4. We formally state and prove our results about non-malleable commitments in Section 5.

2 Preliminaries

2.1 Notation

Integer, Strings and Vectors. We denote by N the set of natural numbers. Unless otherwise
specified, when given as an input to an algorithm, a natural number is presented in its binary

9Indeed, [?] rely on intuitions similar to those from mutually independent commitments to construct a “full-
fledged” non-malleable commitment, but this construction requires multiple communication rounds.

10The assumption that C is an efficient challenger is only made here to simplify exposition; our actual proof also
works when C is T (k)-sized.

11As in the previous proof, to obtain a machine that breaks the hiding of the commitment, we need to rely a
polynomial-length non-uniform advice to deal with the above-mentioned inefficiency issue in the hybrid argument;
this is why we work with circuits here.

8

551

Approved for Public Release; Distribution Unlimited.

expansion (with no leading 0s). For n ∈ N, we denote by 1n the unary expansion of n (i.e., the
concatenation of n 1’s).

Probabilistic notation. We employ the following probabilistic notation from [?]. We focus on
probability distributions X : S → R+ over finite sets S.

Probabilistic assignments. If D is a probability distribution then “x← D” denotes the elementary
procedure consisting of choosing an element x at random according to D and returning x. If
F is a finite set, then the notation “x← F” denotes the act of choosing x uniformly from F .

Probabilistic experiments. Let p be a predicate and D1, D2, . . . probability distributions, then the
notation Pr [x1 ← D1; x2 ← D2; . . . : p(x1, x2, . . .)] denotes the probability that p(x1, x2, . . .)
will be true after the ordered execution of the probabilistic assignments x1 ← D1; x2 ←
D2; . . .

New probability distributions. If D1, D2, . . . are probability distributions, the notation {x ←
D1; y ← D2; · · · : (x, y, · · ·)} denotes the new probability distribution over {(x, y, · · ·)} gen-
erated by the ordered execution of the probabilistic assignments x← D1, y ← D2, · · · .

Probability ensembles. A probability ensemble is an infinite sequence of random variables X =
{Xn}n∈N . We will consider ensembles of the form X = {Xn}n∈N where Xn ranges over
strings of length p(k), for some fixed, positive polynomial p.

In order to simplify notation, we sometimes abuse of notation and employ the following “short-
cut”: Given a probability distribution X, we let X denote the random variable obtained by selecting
x← X and outputting x.

Algorithms. We employ the following notation for algorithms.

Probabilistic algorithms. By a probabilistic algorithm we mean a Turing machine that receives an
auxiliary random tape as input. If M is a probabilistic algorithm, then for any input x, the
notation “Mr(x)” denotes the output of the M on input x when receiving r as random tape.
We let the notation “M(x)” denote the probability distribution over the outputs of M on
input x where each bit of the random tape r is selected at random and independently, and
then outputting Mr(x).

Oracle algorithms. An oracle algorithm is a machine that gets oracle access to another machine.
Given a probabilistic oracle algorithm M and a probabilistic algorithm A, we let MA(x)
denote the probability distribution over the outputs of the oracle algorithm M on input x,
when given oracle access to A. We emphasize that if the algorithm A is probabilistic, M does
not get to control the randomness of A, and each time A is invoked fresh randomness is used
by A. The fact that we do not allow black-box reductions to control the randomness of the
oracle they communicate with may seem restrictive. As we shall see later on, however, our
result apply even if we consider reductions that work only for deterministic attackers using a
technique from Goldreich and Krawczyk [?]; see Remark 2 for more details.

Negligible functions. The term “negligible” is used for denoting functions that are asymp-
totically smaller than the inverse of any fixed polynomial. More precisely, a function ν(·) from
non-negative integers to reals is called negligible if for every constant c > 0 and all sufficiently large
k, it holds that ν(k) < k−c.

9

552

Approved for Public Release; Distribution Unlimited.

Subexponential Function. We say that a function f(·) is subexponential if there exists some
constant c < 1 such that for all sufficiently large k, it holds that f(k) < 2k

c
.

2.2 Indistinguishability

The following definition of (computational) indistinguishability originates in the seminal paper of
Goldwasser and Micali [?].

Let X be a countable set of strings. A probability ensemble indexed by X is a sequence of random
variables indexed by X. Namely, any element of A = {Ax}x∈X is a random variable indexed by X.

Definition 1 (Indistinguishability). Let X ⊆ {0, 1}∗. Two ensembles {An,x}n∈N,x∈X and {Bn,x}n∈N,x∈X
are said to be computationally indistinguishable, if for every probabilistic machine D (the “distin-
guisher”) whose running time is polynomial in its first input, there exists a negligible function ν(·)
so that for every n ∈ N, x ∈ X:

|Pr [D(n, x,An,x) = 1]− Pr [D(n, x,Bn,x) = 1]| < ν(k)

In the above expression, D is simply given a sample from Ax,y and Bx,y, respectively. {An,x}n∈N,x∈X
and {Bn,x}n∈N,x∈X are said to be statistically indistinguishable over X if the above condition holds
for all (possibly computationally unbounded) machines D.

2.3 Witness Relations

We recall the standard definition of a witness relation for an NP language.

Definition 2 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃w s.t. (x,w) ∈ RL}.

We say that w is a witness for the membership x ∈ L if (x,w) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {w : (x,w) ∈ L}.

3 Intractability Assumptions and Black-box Reductions

Our definition of an intractability assumption closely follows [?]. Following Naor [?] (see also
[?, ?, ?]), we model an intractability assumption as an interaction (or game) between a probabilistic
machine C—called the challenger—and an attacker A. Both parties get as input 1k where k is the
security parameter. Any such challenger C, together with a threshold function t(·) intuitively
corresponds to the assumption:

For every polynomial-time adversary A, there exists a negligible function µ such that
for all k ∈ N , the probability that C outputs 1 after interacting with A is bounded by
t(k) + µ(k).

Hence, we say that A breaks C w.r.t t with probability p on common input 1k if Pr
[
〈A,C〉(1k) = 1

]
≥

t(k) + p.
If the challenger C is polynomial-time in the length of the messages it receives, we say that

the assumption is efficient challenger ; such assumptions are referred to as falsifiable assumptions
by Naor [?] and Gentry and Wichs [?]. More generally, we refer to an assumption as having a

10

553

Approved for Public Release; Distribution Unlimited.

T (·, ·)-time (resp. size) challenger if C can be implemented in time (resp. size) T (k, `) on input
the security parameter 1k, and when receiving messages of length `. Hence, (C, t) is an efficient
challenger assumption if C is a T (·, ·)-assumption where T (k, `) is polynomial in both k and `. For
simplicity, we here consider either poly(k, `)-time (or size) challengers, or T (k, `) = T (k)-time (or
size) challengers, where the running-time of the challenger is bounded only as a function of the
security parameter.

A Taxonomy of Intractability Assumption We can easily model all “traditional” crypto-
graphic assumptions as efficient challengers C and a threshold t. For instance, the assumption that
a particular function f is (strongly) one-way corresponds to the threshold t(k) = 0 and the 2-round
challenger C that on input 1k pick a random input x of length k, sends f(x) to the attacker, and
finally outputs 1 iff the attacker returns an inverse to f(x). Indistinguishability assumptions (such
as, e.g., the decisional Diffie-Hellman problem, or the assumption that a particular function g is a
pseudorandom generator) can also easily be modelled as 2-round challengers but now we have the
threshold t(k) = 1/2. More esoteric assumptions such as the “one-more discrete logarithm assump-
tion” [?, ?], or “adaptive one-way functions” [?], are not efficient-challenger assumptions: for these
notions of one-way functions, the attacker gets (some restricted) access to an inversion oracle that
cannot be implemented in polynomial-time (or else the function could not be one-way) ; however,
these assuption can be modeled as exponential-time challenger assumptions (the challenger can now
implement the oracle for the attacker).

We may also consider other restricted types of intractability assumptions. For instance, [?] con-
siders challengers C that are computationally unbounded, but for which there exists a polynomial
upper bound (in the terms of the security parameter k) on the number of communications rounds
by C; we refer to these assumptions as bounded-round intractability assumptions. Another interest-
ing class of assumptions is obtained by further restricting the communication complexity of C; for
instance, we may require that there is a polynomial bound (again in terms of the security parameter
k) on the communication complexity of C; we refer to these assumptions as bounded-communication
intractability assumption.

Finally, let us note that our notion of an assumption (C, t) does not talk about the complexity
of the attacker A that attempts to break the assumption. Rather, we simply let security reduction
used to based some primitive P on the hardness of (C, t) dictate computational complexity limita-
tions on the attacker. For instance, if we have a polynomial-time (resp. polynomial-size) security
reduction to an assumption (C, t), the security of P is based on the hardness of breaking (C, t)
w.r.t. polynomial-time (resp. polynomial-size) attackers A. Similarly, super-polynomial hardness
of an assumption can be captured by allowing super-polynomial-time reductions to the assumption.

The above way of modeling assumptions, provides an, in our eyes, natural taxonomy of in-
tractability assumptions based on 1) the security threshold t, 2) the number of communication
rounds used by C, 3) the computational complexity of C, 4) the communication complexity of C,
and 5) the computational complexity of the security reduction (specifying whether we consider e.g.,
polynomial-time hardness or subexponential-time hardness).

Let us end this section by noting that “knowledge-extractaction” assumptions (similar to the
“knowledge-of-exponent” assumption of [?]) do not fit within our taxonomy of intractability as-
sumption. This is because such assumption actually are not intractractability assumptions: they
are tractability assumption! Roughly speaking, such assumption stipulate feasibility of efficiently
performing some particular task (namely “extraction” of some inputs from every machine that wins
some game).

11

554

Approved for Public Release; Distribution Unlimited.

Classifying Cryptographic Tasks As mentioned above, the assumption that a particular func-
tion is a one-way function can be formalized as a 2-round efficient-challenger assumption; so can
the DDH assumption. But also security properties of more elaborate cryptographic tasks can also
be formalized as intractability assumptions of the above kind:12

• For instance, the notion of “IND-CPA security” of an encryption scheme [?] can be formalized
as a 4-round efficient-challenger, bounded-communication, assumption using the standard
CPA security game. (Recall that the classic notion of Chosen Plain-text Attack (CPA)
security considers an attacker that first receives a public key, next picks two messages m1 and
m2, then receives an encryption c of a (a randomly) selected choice of these messages mb; the
attacker wins if he manages to guess the bit b.)

• On the other hand, the security game of a signature scheme [?] requires using an unbounded-
round (and thus also communication) challenger, but still has an efficient challenger. (Recall
that the standard notion of security for signatures schemes considers an attacker than receives
the verification key for a signature scheme, and then gets oracle access of a “signing” oracle
that signs any message of the attackers choice: the attacker finally wins the game if it manages
to come up with a valid signature on a “new” message m on which it has not queries its
signature oracle. To model this assumption (C, t), we simply have the challenger C implement
the signing oracle.)

• Also note that non-malleability of a two-round commitment and adaptive soundness of NIZKs
can be formalized as bounded-round, bounded-communication assumptions, but they require
an inefficient challenger (to check whether the attack was successful).

We refer to the intractability assumption associated with the (game-based) security definition of
an instantiation of a cryptographic task as the trivial intractability assumption on which it can
be based (for instance, clearly, the security of a particular signature scheme can be based on the
intractability assumption that the scheme is secure.) Note, however, that not all cryptographic
tasks have even a trivial intractability assumption on which they can be based (e.g., it is not clear
whether the zero-knowledge property of a protocol can be formalized as a game-based security
property).

Many major results in the cryptographic literature demonstate “jumps” in our taxonomy: we
base the security of some cryptographic tasks on an intractability assumption of a more restrictive
nature. For instance,

• When we construct a pseudorandom generator from a particular one-way permutation [?, ?]
or even a one-way function [?], we base a primitive (the pseudorandom generator) whose
trivial associated intractability has 2-rounds, is efficient challenger, and threshold of 1/2, on
an intractability assumption that is 2-round, efficient challenger, but threshold 0.13

• When we base the security of a signature scheme on one-way functions [?, ?], or when we
based pseudorandom functions on one-way functions [?, ?], we base primitives whose associ-
ated trivial intractability assumption are unbounded-round, on a 2-round efficient challenger
assumption (with bounded communication).

12Specifically, this refers to all cryptographic task with “game-based” definition of security (e.g., one-way functions,
signatures etc), as opposed to simulation-based definitions of security (e.g. zero-knowledge).

13Any threshold t assumption can always be turned into a threshold t + δ assumption by having the challenger
accept with probability δ, and otherwise proceed as before. The other direction is less clear.

12

555

Approved for Public Release; Distribution Unlimited.

In contrast, some intractability assumptions may be unbridgable at least as far as black-box
reductions are concerned. ndeed, as mentioned above, the results of [?, ?] yield some results in
this direction, separating unbounded-round and bounded-round assumptions [?] and unbounded-
challenger and efficient-challenger assumptions [?]. The results in this paper further elucidate this
landscape; among other things, separating unbounded challenger and exponential-time challenger
assumptions, and exponential-time and efficient-challenger assumptions.

Black-box Reductions We consider probabilistic polynomial time Turing reductions—i.e., black-
box reductions. A black-box reduction refers to a probabilistic polynomial-time oracle algorithm.
Roughly speaking, a black-box reduction for basing the security of a primitive P on the hardness
of an assumption C, is a probabilistic polynomial-time oracle machine R such that whenever the
oracle O “breaks” P with respect to the security parameter k, then RO “breaks” C with respect to
a polynomially-related security parameter k′ such that k′ can be efficiently computed given k. We
restrict to the case when k′ = k. This is without loss of generality because we can always redefine
the challenger C so that it on input k acts as if its input actually was k′ (since k′ can be efficiently
computed given k). To formalize this notion, we thus restrict to oracle machines R that on input
1k always query their oracle on inputs (1k, ·).

Definition 3. We say that R is a security-parameter preserving black-box reduction if R is an
oracle machine such that R(1k) only queries its oracle with inputs of the form (1k, y), where y ∈
{0, 1}∗.

A more liberal notion of a black-box reduction allows the reduction R to (on input 1k) query
its oracle on multiple security parameters (that are all polynomially related to k). In our eyes,
such a liberal notion is less justified from a practical point of view (and as far as we are aware,
cryptographic reductions typically do not rely on such liberal reductions); nevertheless, all our
proofs directly apply also for such a notion of black-box reductions.14 i

4 Security of Perfect Adaptive NIZK

We recall the definition of non-interactive proofs in the Common Reference String (CRS) model.
For generality (and since we are proving a lower bound) we allow the CRS to be generated by an
arbitrary polynomial-time distribution (as opposed to requiring it to be uniformly random). In the
adaptively-sound notion of a non-interactive proof/argument, we require that soundness holds even
if the attacker may adaptively pick the statement after having seen the CRS. We consider only
proofs/arguments for languages in NP where the prover is efficient when given an NP-witness.

Definition 4 (Non-Interactive Proofs/Arguments). A triple of algorithms, (D, P, V), is called a
non-interactive proof system (with non-adaptive soundness) for a language L if the algorithm D (the
“CRS generator”) is probabilistic polynomial-time, the algorithm V (the “verifier”) is a determin-
istic polynomial-time, and P (the “prover”) is probabilistic polynomial-time, such that the following
two conditions hold:

14In fact, as remarked in [?], in the context of black-box separations, restricting to reductions that only query its
oracle on a single security parameter is actually without loss of generality if we consider primitives with “standard”
cryptographic definitions where to break security an attacker only needs to be successful for infinitely many input
lengths.

13

556

Approved for Public Release; Distribution Unlimited.

• Completeness: There exists a negligible function µ such for every x ∈ L, every w ∈ RL(x)
and every k ∈ N ,

Pr
[
ρ← D(1k, 1|x|); π ← P (1k, x, w, ρ) : V (1k, x, ρ, π) = 1

]
≥ 1− µ(k)

• Soundness: For every algorithm B and every polynomial q, there exists a negligible function
µ such that for every k ∈ N and every x /∈ L such that |x| ≤ q(k)

Pr
[
ρ← D(1k, 1|x|); π′ ← B(1k, x, ρ) : V (1k, x, ρ, π′) = 1

]
≤ µ(k)

If additionally the following condition holds, then we call (D, P, V) an adaptively-sound non-
interactive proof system:

• Adaptive Soundness: For every algorithm B and every polynomial q, there exists a negligible
function µ such that for every k ∈ N,n ∈ [q(k)]

Pr
[
ρ← D(1k, 1n); (x, π′)← B(1k, 1n, ρ) : V (1k, x, ρ, π′) = 1 ∧ |x| = n ∧ x /∈ L

]
≤ µ(k)

Finally, if the soundness (resp adaptive soundness) condition only holds w.r.t polynomial-time
adversaries B, we call (D, P, V) a non-interactive argument (resp. an adaptively-sound non-
interactive argument)).

Let us turn to defining zero-knowledge. Also here there is a non-adaptive and an adaptive
version. In the non-adaptive definition of zero-knowledge from [?], there is a single simulator,
which, after seeing the statement to be proven, generates both the CRS and the proof at the same
time. In the adaptive definition from [?], there are two simulators—the first of which must output
a string before seeing any theorems. The stronger adaptive definition guarantees zero-knowledge
even when the statement to be proved is chosen as a function of the CRS. We here focus only on
adaptive zero-knowledge.

Definition 5 (Non-Interactive Zero-Knowledge). Let (D, P, V) be an non-interactive proof system
for the language L. We say that (D, P, V) is (adaptively) zero-knowledge if there exists two proba-
bilistic polynomial-time simulators S1 and S2 such that for every polynomial q, every non-uniform
polynomial-time statement-witness chosing algorithm c(·, ·, ·) that on input (1k, 1n, ρ) outputs a n-bit
statement x and witness w such that (x,w)inRL, the following two ensembles are computationally
indistinguishable

{
ρ← D(1k, 1n); x,w ← c(1k, 1n, ρ);π ← P (1k, x, w, ρ) : (ρ, x, π)

}
k∈N,n∈[q(k)]{

(ρ, aux)← S1(1k, 1n); x,w ← c(1k, 1n, ρ);π′ ← S2(1k, x, aux) : (ρ, x, π′)
}
k∈N,n∈[q(k)]

We furthermore say that (D, P, V) is perfect (resp. statistical) zero-knowledge if the above ensembles
are identically distributed (resp. statistically close).

We use the (common) acronym “NIZK” to denote a non-interactive zero-knowledge proof or
argument. Feige, Lapidot and Shamir and Bellare and Yung [?, ?] (building on [?]) show that the
existence of enhanced trapdoor permutations [?] implies that all of NP has a adaptively-sound
NIZK, but the zero-knowledge property is only computational. As mentioned, Groth, Ostrovsky
and Sahai [?] show (under some number theoretic assumptions) that all of NP has a perfect NIZK
with non-adaptive soundness. More recently, Abe and Fehr [?] present a perfect NIZK for NP
also with adaptive soundness but based the soundness property on a “knowledge-extractaction”

14

557

Approved for Public Release; Distribution Unlimited.

assumption (simular to the “knowledge-of-exponent” assumption of [?]) rather than an intractability
assumption.

We aim to prove limitations of basing notions of adaptive soundness for perfect or statistical
NIZK for NP on intractability assumptions. Let us first explicitly define what it means to break
adaptive soundness of a NIZK.

Definition 6 (Breaking Adaptive Soundness). We say that A breaks adaptive soundness of (D, P, V)
w.r.t the language L on input lengths q(·) with probability ε(·) if for every k ∈ N ,

Pr
[
ρ← D(1k, 1q(k)); (x, π′)← A(1k, ρ) : V (1k, x, ρ, π′) ∧ |x| = q(k) ∧ x /∈ L = 1

]
≥ ε(k)

Let us turn to defining what it means to base adaptive soundness on an intractability assumption
C.

Definition 7 (Basing Adaptive Soundness on the Hardness of C). We say that R is a black-box
reduction for basing adaptive soundness of (D, P, V) w.r.t. L and input lengths q(·) on the hardness
of C w.r.t threshold t(·) if R is a valid black-box reduction and there exists a polynomial p(·, ·) such
that for every probabilistic machine A that breaks adaptive soundness of (D, P, V) w.r.t L and inputs
lengths q(·) with probability ε(·), for every k ∈ N , RA breaks C w.r.t t with probability p(ε(k), 1/k)
on input 1k.

Note that we here require that RO breaks the assumption C on the security parameter k by
querying O on the same security parameter k. As previously mentioned, a seemingly more general
definition would allow RO to break C on a polynomially-related security parameter k′ (which can
be efficiently computed given k), but this extra generality does not buy us anything as we can
always re-define C to act as its input was k′ when getting the input k.

We are now ready to formally state Theorem 1 from the introduction.

Theorem 3. Assume the existence of non-uniformly hard one-way functions. Then there exists
an NP-language L such that the following holds. Let (D, P, V) be a statistical non-interactive
adaptively zero-knowledge argument for L, let q(·) be a super-constant polynomial, and let (C, t)
be any efficient-challenger assumption. If there exists a black-box reduction R for basing adaptive
soundness of (D, P, V) w.r.t L and input lengths q(·) on the hardness of C w.r.t threshold t, then
there exists a probabilistic polynomial-time machine B and a polynomial p′(·) such that for infinitely
many k ∈ N , B breaks C w.r.t t with probability 1

p′(k) on input 1k. If furthermore assuming
the existence of one-way functions secure against non-uniform subexponential-time algorithms, the
above holds even if C is subexponential-time computable.

Let us remark that as shown in [?, ?, ?], any (even computational) NIZK for a hard-on-
the-average language (for non-uniform polynomial-time algorithms), implies the existence of non-
uniformly hard one-way functions. So the assumption of one-way functions could actually be relaxed
to assume that there exists a hard-on-the average language in NP. Let us also remark that under
the assumption of one-way functions secure against non-uniform subexponential-time algorithms,
Theorem 3 directly extends also to a super-polynomial-time (SPS) [?] relaxation of the notion of a
statistical NIZK, where the simulator may run in subexponential time.

Note that in Theorem 3, we rule out statistical NIZK where adaptive soundness only needs to
hold w.r.t. statements of a particular (polynomial) length n = q(k).

Our next theorem rules out even exponential-time challenger assumptions C if the same assump-
tion C can be used to prove adaptive soundness for any polynomial length statement (indeed, as
far as we know, in all known NIZK constructions the underlying intractability assumption depends
only on the security parameter for the NIZK but not on the length of the statement to be proven).

15

558

Approved for Public Release; Distribution Unlimited.

Theorem 4. Assume the existence of one-way functions secure against non-uniform subexponential-
time algorithms. Then there exists an NP-language L such that the following holds. Let (D, P, V)
be a statistical non-interactive adaptively zero-knowledge argument for L, and let (C, t) be any
exponential-time challenger assumption. If for every polynomial q(·), there exists a black-box re-
duction R for basing adaptive soundness of (D, P, V) w.r.t L and the input length q(·) on the
hardness of C w.r.t threshold t, then there exists a probabilistic polynomial-time machine B and a
polynomial p′(·) such that for infinitely many k ∈ N , B breaks C w.r.t t with probability 1

p′(k) on

input 1k.

Note that Theorem 4 is weaker than Theorem 3 in one aspect: we require that the same
assumption C can be used to prove any polynomial-length statement, whereas in Theorem 3 we
rule out NIZK where the underlying hardness assumption may depend also on the length of the
statement proved. This additional restriction is necessary: the assumption that a particular NIZK
is adaptively sound for statements of length q(k) = k can clearly be stated as an exponential-time
challenger assumption: the challenger first sends a CRS to the attacker; upon receiving back a
statement x and proof π, the challenger ouputs 1 iff π is an accepting proof of x (which can be
efficiency checked) and x ∈ {0, 1}k is a false statement (which can be checked in time 2poly(k)).
Thus, the challenger can be implemented in some fixed exponential time.

4.1 Proof of Theorem 3

We start by considering a simplified case when the zero-knowledge property is perfect and the
distribution sampled by D is uniform over {0, 1}poly(k); that is, we consider perfect NIZK in the
so-called “Uniform Reference String” (URS) model.

Ruling out Perfect NIZK in the URS Model Let g : {0, 1}∗ → {0, 1}∗ be a length-doubling
PRG (which can be constructed based on one-way functions [?]). Consider the language L =
{g(s)|s ∈ {0, 1}∗}. Assume there exists a perfect NIZK (D, P, V) for L in the URS model, where
the reference string is of length `(k) given the security parameter k, and assume there exists a
black-box reduction R for basing adaptive soundness of (D, P, V) w.r.t L and input length q(·) on
the hardness of C w.r.t threshold t. That is, there exists a polynomial p(·, ·) such that for every
probabilistic machine A that breaks adaptive soundness of (D, P, V) w.r.t L and inputs lengths q(·)
with probability ε(·), for every k ∈ N , RA breaks C w.r.t t with probability p(ε(k), 1/k) on input
1k; that is,

Pr
[
〈RA, C〉(1k) = 1

]
≥ t(k) + p(ε(k), 1/k). (1)

Our overall proof strategy proceeds in two steps:

• We first construct devise a particular inefficient attacker A that breaks adaptive soundness
of (D, P, V) with overwhelming probability. By Equation 1, it then follows that there exists
some polynomial ˜̂p(·) such that RA breaks C with probability t(k) + 1

p̂(k) for infinitely many
k.

• We then show how to indistinguishably simulate A by an efficient “emulator” Ã15. This
concludes that RA breaks C with probability t(k) + 1

p̂(k) − µ(k) for infinitely many k, where

µ(k) is a negligible function, and thus proves the theorem.

15We use the term emulator to describe Ã to not overload the word simulator.

16

559

Approved for Public Release; Distribution Unlimited.

In our actual proof, the above two steps happen somewhat in parallel. We first construct A and
Ã, and then prove that Ã simulates A, and then use this fact to argue that A is a “good” attacker
(that with overwhelming probability provides accepting proofs of false statements).

For simplicity of notation, we assume that q(k) = 2k; it is easy to see that the same proof works
as long as q(·) is any super-constant polynomial.

Constructing the Attacker A We present a randomized attacker A, that on each query uses
fresh random coins. (Recall that our notion of a black-box reduction requires the reduction to
work even if the attacker if A is probabilistic. As we point out in Remark 2, at the cost of a minor
complication, the proof can be adapted to work also if only considering reductions that work as long
as the attacker is deterministic. To simplify exposition, we consider also randomized attackers.)

On input 1k and a reference string ρ, attacker A proceeds as follows (letting n = q(k) = 2k):

• Verify CRS: A first checks that |ρ| = `(k); if not, it return ⊥.

• Inverting S1: Otherwise, A uniformly picks a random tape r such that S1(1k, 1n) outputs
ρ, aux given the random tape r, where aux is some arbitrary string. Since, by our assumption,
the simulation is perfect, every string ρ ∈ {0, 1}`(k) is output by S1(1k, 1n) with positive (and
the same) probability, so A will succeed in this task. Note, however, that this step is not
necessarily efficient.

• Picking FALSE statement x: Next, A uniformly picks a string x ∈ {0, 1}n. Note that,
except with probability 2−k, it holds that x /∈ L (there are 22k strings, and at most 2k can be
in the range of the PRG g).

• Generate SIMULATED proof π: Finally, A runs the simulator S2(1k, 1n, x, aux) to pro-
duce the proof π, and return (x, π).

As noted above, with high probability the statement x picked by A is false. But it remains to
argue that the proof π of x output by A is accepting (for the reference string ρ). (Very roughly
speaking, the intuition for why π ought to be accepting is that the statement x is indistinguishable
from a true statements (in the range of the PRG), and for such statements the simulator ought to
produce accepting proofs.) As mentioned above, towards formalizing this intuition, we first present
an efficient emulator, Ã, for A.

Constructing the Emulator Ã We construct an efficient ”emulator”, Ã that on input 1k and
a reference string ρ, proceeds as follows:

• Verfiy CRS: Just as A, Ã first check that |ρ| = `(k); if not it simply sends back ⊥.

• Picking TRUE statement x: Next, Ã uniformly picks a string s ∈ {0, 1}k, and lets
x = g(s). Note that by definition x ∈ L.

• Generate HONEST proof π: Ã runs the honest prover algorithm P (1k, ρ, x, s) to produce
the proof π, and outputs (x, π).

Proving that A is a “good” attacker We now turn to proving that A breaks adaptive sound-
ness of (D, P, V) with overwhelming probability. In particular, we show the following claim.

17

560

Approved for Public Release; Distribution Unlimited.

Claim 1. There exists a negligible function µ such that for every k ∈ N ,

Pr
[
ρ← D(1k, 1n); (x, π′)← A(1k, ρ) : V (1k, x, ρ, π′) = 1 ∧ x /∈ L

]
≥ 1− µ(k)

Proof. Let us first note that by the completeness property of (D, P, V), we have that there exists
a negligible function µ′ such that for every k ∈ N ,

Pr
[
ρ← D(1k, 1n); (x, π′)← Ã(1k, ρ) : V (1k, x, ρ, π′) = 1

]
≥ 1− µ′(k) (2)

Ã, however, clearly does not break (adaptive) soundness of (D, P, V) as it picks true statements
x. As noted above, A does pick false statements (with overwhelming probability). To prove that
it also provides accepting proofs of these statements, consider a hybrid attacker A′ that performs
exactly the same steps as A, but samples a true statement x ∈ L in exactly the same way as the
emulator Ã (in particular, A′ still generates proofs π using the NIZK simulator strategies S1, S2,
just as A does).

Note that by construction, the following probability distributions are identical (as the only
difference between the experiments generating them is the order in which the randomness of the
simulator used to generate proofs is sampled).

{
(ρ, aux)← S1(1k, 1n); x, π′ ← A′(1k) : (ρ, x, π′)

}

{
(ρ, aux)← S1(1k, 1n); s← {0, 1}k, x = g(s);π′ ← S2(1k, x, aux) : (ρ, x, π′)

}

By the perfect zero-knowledge property of (D, P, V) (and considering the statement-witness chosing
algorithm c(1k, 1n, ρ) that picks s ← {0, 1}k and outputs (g(s), s)), it follows that the latter one
(and thus also the former one) is identical to the following one.

{
ρ← D(1k, 1n); s← {0, 1}k, x = g(s);π ← P (1k, x, s, ρ) : (ρ, x, π)

}

By the completeness of (D, P, V), we thus have that A′ provides convincing proofs (of true state-
ments) with overwhelming probability: there exists some negligible function µ′′ such that

Pr
[
ρ, aux← S1(1k, 1n); (x, π′)← A′(1k, ρ) : V (1k, x, ρ, π′) = 1

]
≥ 1− µ(k) (3)

which in turn (by the Perfect NIKZ property) implies that

Pr
[
ρ← D(1k, 1n); (x, π′)← A′(1k, ρ) : V (1k, x, ρ, π′) = 1

]
≥ 1− µ(k) (4)

Finally, as the only difference between A and A′ is the choice of the statement x (being truly
random in the case of A and pseudorandom in the case of A′), it intuively should follow from the
security of the pseudorandom generator g that A also provides convincing proofs (which combined
with equation 2 would prove the claim.). But there is a problem: although, the verification algo-
rithm V is efficient, A and A′ are not, so efficiently contradicting the pseudo-randomness property
of g becomes problematic. This, issue, however, can be dealt with by noting that the only inefficient
part of A (and A′) is the “inverting S1 step” which happens before A chooses the statement x. We
can thus non-uniformly fix these inefficient computations, and rely on the fact that the pseudo-
randomness property of g holds even against non-uniform polynomial-time algorithms to conclude
that there exists a negligible function µ′′′ such that for every k ∈ N ,

Pr
[
ρ← D(1k, 1n); (x, π′)← Ã(1k, ρ) : V (1k, x, ρ, π′) = 1

]
≥ 1− µ′′′(k) (5)

which combined with equation 6 concludes the proof of the claim.

18

561

Approved for Public Release; Distribution Unlimited.

As consequence of Claim 1 and the fact that R is a good reduction (i.e., Equation 1), there
exists some polynomial ˜̂p(·) such that RA breaks C with probability t(k) + 1

p̂(k) for infinitely many
k; that is,

Pr
[
〈RA, C〉(1k) = 1

]
≥ t(k) +

1

p̂(k)
(6)

Proving that Ã is a good emulator for A To conclude the proof of the theorem, we finally
show that Ã is a “good” emulator for A, even if A is repeatedly invoked by R (in an interaction
with C.

Claim 2. For every efficient C and R, there exists a negligible function µ such that for every
k ∈ N , ∣∣∣Pr

[
〈RÃ, C〉(1k) = 1

]
− Pr

[
〈RA, C〉(1k) = 1

]∣∣∣ ≤ µ(k).

Proof. The proof of the claim is similar to that of Claim 1 but more complicated in order to deal
with the fact that R can make many queries to its oracle. The key point is that all these queries
are answered independently (by both A and Ã), and thus we can perform a hybrid argument which
essentially reduces us to the situation in Claim 1. Let us point to have this independence property
it is cruicial that A generates a “fresh” random statement (independent of all earlier statements)
on each query it receives. (If, for instance, A had been stateful and had picked a random statement
x once (before seing any CRS), and then provided proofs of the same x in every query, then this
independence property would not hold. This clarifies why our proof does not extend to rule out
also reductions proving non-adaptive soundness of (D, P, V).)

We proceed to a formal proof. Assume for contradiction that the claim is false. That is, there
exists a polynomial p′ such that for infinitely many k ∈ N ,

|Pr
[
〈RÃ, C〉(1k) = 1

]
− Pr

[
〈RA, C〉(1k) = 1

]
| ≥ 1

p′(k)
.

Let m(k) be an upper-bound on the number of oracle queries by R on input 1k, and fix a canonical
k for which the above happens. Consider a sequence of hybrid experiments H0, . . . ,Hm(k), where

Hi is defined as the output of C(1k) after communicating with R(1k) where the first i oracle queries
of R are answered by A, and the remaining ones are answered by the efficient Ã. Note that both
A and Ã are stateless and thus these hybrid experiments are well defined. Furthemore, note that

• H0 = 〈RÃ, C〉(1k), and

• Hm(k) = 〈RA, C〉(1k)

It follows that there exists some j such that

|Pr [Hj+1 = 1]− Pr [Hj = 1] | ≥ 1

m(k)p′(k)
.

Define another hybrid H ′j which is identically defined to Hj , but where the statement xj+1 in the
answer to the j + 1th oracle query is selected as a true statement (just as in Hj+1) but we still
generate the proof πj+1 by using the NIZK simulator (as in Hj).

We now have the following Subclaim:

Subclaim 1. H ′j and Hj are identically distributed.

19

562

Approved for Public Release; Distribution Unlimited.

Proof. Note that conditioned on the jth query ρj being “invalid” (i.e. outside of {0, 1}`(k)), H ′j
and Hj proceed identically the same (the jth query is simply answered ⊥). Conditioned on ρj ∈
{0, 1}`(k), on the other hand, it follows by the perfect zero-knowledge property of (D, P, V) (in the
same way as in the proof of Claim 1) that the output of H ′j is identically distributed to the output
of Hj+1; note that, perfect zero-knowledge is important here to ensure that the zero-knowledge
simulation works for every reference string ρj ∈ {0, 1}`(k).

To reach a contradiction, let us finally argue that the output of Hj is indistinguishable to that of
H ′j . Note that up until the point when R receives its (j+1)st statement-proof pair (xj+1, πj+1) back
from the oracle, the two experiments proceed identically the same. Thus, if they are distinguishable,
there exists some prefix τ of the execution of Hj

16, up until and including the j + 1 query of R,
such that conditioned on this prefix τ , Hj and H ′j are distinguishable. We may also extend τ to
also include the string aux picked by A in the j + 1 query, and conclude that there exists some
extension τ ′ such that

• |Pr [Hj+1|τ ′ = 1]− Pr [Hj = 1] |τ ′| ≥ 1
m(k)p′(k) .

• Hj |τ ′ and H ′j |τ ′ are efficiently computable (given τ ′).

The only difference between Hj |τ ′ and H ′j |τ ′ is the choice of the statement xj+1: in the former is

chosen as a truly random string 2k-bit string, where in the latter as a g(s), where s← {0, 1}k. We
can thus contradict the pseudorandomness property of g (with respect to non-uniform polynomial-
time adversaries). Note in this last step, we cruicially rely on the fact queries to A and Ã are
answered independently, and the statement xj+1 is chosen at random independently of everything
that has happened up until query j+1. (As mentioned above, in the case of a non-adaptive attacker
A, this would not be true—it needs to stick to the same statement x—and as such our proof does
not extend to deal with non-adaptive soundness.)

The proof of the theorem (w.r.t. Perfect NIZK in the URS model) is concluded by combining
Equation 6 with Claim 2.

We now show how to extend the proof to deal with statistical NIZK in the “general” CRS model
(i.e., the reference string need no longer be uniform). We start by dealing with Perfect NIZK in the
CRS model, and then further extend the proof to also deal with Statistical NIZK. In both cases, the
issue that needs to be handled is how to deal with reductions that query its oracle on “untypical”
CRS: in the case of Perfect NIZK in the CRS model, the CRS can be invalid (i.e., not in the range
of CRS generation algorithm; in the case of statistical NIZK, we also need to deal with “deviating”
CRS that are in the range of the CRS generation algorithm, but still lead to a large statistical gap
for the zero-knowledge simulation.

Handling Perfect NIZK in the CRS Model We start by considering Perfect NIZK (D, P, V)
in the “general” CRS model. The attacker A described above it not well defined when executed on
input a CRS ρ that is not in the range of D (in particular, the “inverting S1” may fail). To adress
this issue we, a) remove the “Verify CRS” step from Ã, and b) modify the “Verify CRS” step of A
as follows:

• Verify CRS: A first checks that ρ is in the range D(1k, 12k); if not, let x, π ← Ã(1k, ρ) and
return x, π.

16Technically, the prefix includes the random tape of C and R and all the answers to the first j queries by R.

20

563

Approved for Public Release; Distribution Unlimited.

That is, we now let A check whether the reference string ρ is the range of the CRS generating
algorithm, and if not, A outputs a honest proof of a true statement.

The proof of Claim 1 remains unchanged with respect to this modified A: in a “real” execution,
the CRS ρ is always in the range of D and thus the new execution mode will never be entered;
likewise, the change to Ã will not have any effect.

The proof of Claim 2 remains essentially unchanged; the only (minor) difference is in the proof
of Subclaim 1; previously, we argued that Hj and H ′j are identically distributed condition on ρj
being invalid (i.e., not in the range of the CRS generation algorithm) by noting that in both Hj

and H ′j the answer to the j + 1th query is ⊥. With our modified A, the answer may no longer
be ⊥, but by construction of the modified A, both experiments proceed in exactly the same way
conditioned on ρj being invalid.

Handling Statistical NIZK in the CRS Model As mentioned, for the case of statistical
NIZK, the above modifications to A (and Ã) may not suffice. The problem is that R may query its
oracle on a “deviating” CRS for which the zero-knowledge simulation is statistically far from the
distribution of honestly generated proof. However, such “deviating” CRS must be “rare”; we can
thus afford to have A fail given such deviating CRS.

More precisely, let Sim(1k, ρ) denote the output of the following process:

• Inverting S1: Pick a random tape r such that S1(1k, 12k) outputs ρ, aux given the random
tape r, where aux is some arbitrary string.

• Picking TRUE statement x: Pick a string s ∈ {0, 1}k, and let x = g(s).

• Generate SIMULATED proof π: Run the simulator S2(1k, 12k, x, aux) to produce the
proof π, and return (x, π).

We say that a CRS ρ is α-deviating if following distributions are α-far in statistical distance

{
s← {0, 1}k, x = g(s);π ← P (1k, ρ, x, s) : (ρ, x, π)

}

{
x, π′ ← Sim(1k, ρ) : (ρ, x, π′)

}

Claim 3. There exists a negligible function µ′ such that for every k ∈ N ,

Pr
[
ρ← D(1k, 1n) : ρ is µ′(k)-deviating

]
≤ µ′(k)

Proof. Assume for contradiction that there exists some polynomial p(·) such that for infinitely
many k, with probability at least 1

p(k) over the choice of ρ, the statistical distance between the

above distributions (w.r.t. ρ) is at least 1
p(k) . It follows that the statistical distance between the

following distributions is at least 1
p(n)2

:

{
ρ← D(1k, 12k); s← {0, 1}k;x = g(s);π ← P (1k, x, s) : (ρ, x, π)

}

{
ρ← D(1k, 12k);x, π′ ← Sim(1k, ρ) : (ρ, x, π′)

}

By the statistical ZK propoperty of (D, P, V), there exists some negligible function µ′′ such that
the latter distribution is µ′′(k) close to the following distribution

{
ρ← S1(1k, 12k);x, π′ ← Sim(1k, ρ) : (ρ, x, π′)

}
,

21

564

Approved for Public Release; Distribution Unlimited.

which in turn is identical to
{
ρ, aux← S1(1k, 12k); s← {0, 1}k;x = g(s);π ← S2(1k, x, aux) : (ρ, x, π)

}

But this contradict the statistical ZK property of (D, P, V).

Given Claim 3, we now modify the “Verify CRS” step of A to run Ã not only when the CRS
is invalid, but also when the CRS ρ is µ′(k)-deviating (this may not be efficienty checkable, but
it is well defined). Given this new A, the proof of Claim 1 goes through exactly as before if
we restrict all experiments to conditioning the CRS on not being µ′(k)-deviating (and relying on
the simulation-closeness requirement guaranteed by the the definition of a µ′(k)-deviating CRS
instead of appealing perfect zero-knowledge). Since by Claim 3, an honestly generated CRS is
µ′(k)-deviating with negligible probability, it follows by a union bound that Claim 1 still holds
with respect to the modified A.

The proof of Claim 2 goes through essentially unchanged: we simply need to weaken Subclaim
1 to the following new subclaim that suffices to conclude Claim 2.

Subclaim 2. H ′j and Hj are µ′(k) close in statistical distance.

Proof. Conditioned on the (j + 1)th query ρj being “invalid” (i.e. outside the range of D(1k, 12k))
or µ′(k)-deviating, H ′j and Hj proceed identically the same (by construction of A).

Conditioned on ρj being in the range of D and not µ′(k)-deviating, it follows by definition of
µ′(k)-deviating that that the output of H ′j is µ′(k)-close to the output of Hj+1.

This concludes the proof of Theorem 3.

Ruling out Subexponential-time Challenger Assumptions. If the challenger C is not ef-
ficient, then in the above hybrid argument, when switching the statement x = g(s) from being
pseudorandom to being truly random, we can no longer directly argue that the probability of C
outputting 1 does not change by much. However, if we could ensure that the pseudo-randomness
property held against subexponential-size circuits, then the same proof would go through as long
as C is a subexponential-size circuit. Thus, if we assume the existence of one-way functions secure
against subexponential-size circuit, we prove the theorem also when C is a subexponential-size
circuit.

Remark 1. On Adaptive Culpable Soundness Groth, Ostrovsky and Sahai [?] also define
a weaker definition of adaptive soundness which they call adaptive culpable soundness. Roughly
speaking, 1) we restrict to languages in NP ∩ coNP, and 2) require a successful attacker to not
only prove a false statement, but also provide a an NP proof of the fact that the statement is true.

Let us remark that simply restricting to languages in NP∩coNP does not suffice for overcoming
our lower-bound: assuming the existence of one-way permutations, our impossibility result rules out
statistical NIZK with adaptive soundness also for NP∩coNP: by the Blum-Micali-Goldreich-Levin
[?, ?] construction of a pseudo random generator (see [?]), the existence of one-way permutations
implies the existence of a hard-on-the-average language in NP∩coNP, which suffices to concluding
the theorem.

It is also worthwhile to note why our proof strategy breaks down in case we required the attacker
to also provide a witness for false statements (as in the definition of adaptive culpable soundness):
a key component in our proof is that the attacker chooses statements that are false but look indis-
tinguishable from true statements (and this is exactly the same method as the one used in [?]). In
case the attacker also needs to provide an NP witness for the statement being false, we can no
longer simulate such an attacker by using a true statement.

22

565

Approved for Public Release; Distribution Unlimited.

Remark 2. Deterministic v.s. Randomized Attackers. In the above proof, we consider a
randomized oracle A, and thus only rule out reductions that work for randomized attackers. Follow-
ing [?], we can easily extend the proof to also rule out reductions that only work for deterministic
attackers. First, if we consider a deterministic attacker, we may assume w.l.o.g. that R never
asks the same query (1k, ρ) twice (since can we can internally emulate responses to all repeated
queries). Next, we define a deterministic attacker Af that on input (1k, ρ) selects the random tape
of A as f(1k, ρ) and next executes A(1k, ρ), as defined above, using the pre-selected random tape.
Let RO : {0, 1}∗ → {0, 1}∞ be a uniformly distributed random oracle. Note that ARO acts exactly
as the attacker A defined in our proof as long as we never ask the attacker the same query twice.
It follows that R’s view when talking to ARO and A are identical. We can thus replace A with ARO

in Claim 2. Finally, by an averaging argument, with overwhelming probability over the choice of a
random oracle f ← RO, Af breaks adaptive soundness of (D, P, V) with overwhelming probability,

and for each such “good” choice of f we have that RA
f
(1k) breaks C with advantage 1/p(k), where

p(·) is a polynomial; thus RA
RO

(1k) also breaks C with advantage negligibly close to 1
p(k) .

Remark 3. On Non-uniform Reductions Our current lower bound only considers uniform
security reductions R. However, by using the recent techniques of [?] (and relying on the fact that
we can rule out reductions that only need to work for deterministic attackers), it readily extends
also to rule out non-uniform reductions. We refer the reader to [?] for further details.

4.2 Proof of Theorem 4

The proof of theorem 4 is essentially identical to the proof of theorem 3. The only obstacle we need
to deal with is to ensure that true and false statements are indistinguishable for time 2k. This is
easily achieved if 1) assuming the existence of a pseudorandom generator secure against time 2n

ε

where n is its output length, and 2) letting A prove statements of length q(k) = k
1
ε . Note that

we here rely on the fact that the same assumption C (with the same security parameter k) can be
used to prove adaptive soundness of any polynomial length statement.

5 Security of Non-interactive Non-malleable Commitments

Commitment schemes are used to enable a party, known as the sender, to commit itself to a
value while keeping it secret from the receiver (this property is called hiding). Furthermore, the
commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed
that the “opening” can yield only a single value determined in the committing phase. In this work,
we consider commitment schemes that are statistically-binding, namely while the hiding property
only holds against computationally bounded (non-uniform) adversaries, the binding property is
required to hold against unbounded adversaries. We refer the reader to [?] for a formal definition.
In the rest of the paper, a commitment scheme always refers to a statistically-binding commitment.

Following [?, ?], we consider tag-based commitment schemes where, in addition to the security
parameter, the committer and the receiver also receive a “tag”—a.k.a. the identity—id as common
input.

Let us turn to defining non-malleable commitments. We use a definition essentially due to
[?, ?], which follows the earlier definition from [?]. Let 〈C,R〉 be a tag-based commitment scheme,
and let k ∈ N be a security parameter. Consider a man-in-the-middle adversary A that, on inputs
n and z (where z is received as an auxiliary input), participates in one “left” and one “right”
interaction. In the left interaction, the man-in-the-middle adversary A interacts with C, receiving

23

566

Approved for Public Release; Distribution Unlimited.

a commitment to the value v using an identity id of length `(k) of its choice. In the right interaction
A interacts with R attempting to commit a value ṽ, again an identity ĩd of length `(k) of its choice.
If the right commitments is invalid, or undefined, its value is set to ⊥; furthermore, if the adversary
uses the same identity on the left as on the right, the right interaction is considered invalid. Let
MIMΠ(A, `, v, z) denote a random variable that describes the value ṽ in the above experiment.17

Definition 8. A commitment scheme Π is said to be non-malleable (with respect to itself) for
identities of length `(·) if for every PPT man-in-the-middle adversary A the following ensembles
are computationally indistinguishable.

{
MIMΠ(A, `, v, z)

}
k∈N,v∈{0,1}n,z∈{0,1}∗{

MIMΠ(A, `, v, z)
}
k∈N,v∈{0,1}n,z∈{0,1}∗

We say that Π is non-malleable (with respect to itself) if it is non-malleable for identities of length
`(k) = k.

Our lower bound will apply to non-malleability with respect to identities of length 1, and even
if only considering the messages 0k and 1k. We now explicitly define what it means to break
non-malleability in this particular way.

Definition 9 (Breaking Non-malleability). Let Π be a tag-based commitment scheme. We say that
A breaks non-malleability of Π with probability µ(·) if for every n ∈ N ,

|Pr
[
MIMΠ(A, `, 0k,⊥) = 0k

]
− Pr

[
MIMΠ(A, `, 1k,⊥) = 0k

]
| > µ(k)

where `(k) = 1. We furthermore say that A breaks one-sided non-malleability of Π with probability
µ(·) if the above holds and A always picks identity 0 for the left interaction and identity 1 for the
right one.

We call a commitment weakly non-malleable if no attacks of the above kind exist.

Definition 10 (Basing Weak Non-malleability on the Hardness of C). We say that R is a T (·)-
black-box reduction for basing weak non-malleability of Π (resp. weak one-sided non-malleability)
on the hardness of C w.r.t threshold t(·) if R is a time T (·) a probabilistic oracle machine and there
exists a polynomial p(·, ·) such that for every probabilistic machine A that breaks non-malleability
(resp. one-sided non-malleability) of Π with probability µ(·), for every k ∈ N , RA breaks C w.r.t t
with probability p(µ(k), 1/k) on input 1k.

We are now ready to state our first lower bound for non-malleable commitments.

Theorem 5. Let Π be a two-round tag-based commitment scheme (i.e., the commit-phase consists
of a single message from the receiver, followed by a single message from the committer), and let
(C, t) be any efficient challenger assumption. If there exists a probabilistic polynomial-time black-
box reduction R for basing weak one-sided non-malleability of Π on the hardness of C w.r.t threshold
t, then there exists a probabilistic polynomial-time machine B and a polynomial p′(·) such that for
infinitely many k ∈ N , B breaks C w.r.t t with probability 1

p′(k) on input 1k.

17We note that more recent definitions of non-malleability [?, ?] additionally output the view of A in the above
experiment. Since we are proving a lower-bound we simply state the weaker definition.

24

567

Approved for Public Release; Distribution Unlimited.

Proof. Consider an unbounded attacker A that chooses identity 0 in the left interaction and 1 in
the right and upon receiving a commitment to the value bk commits to bk, and otherwise (e.g.,
if the commitment is invalid) simply commits to 0k. (Note that implementing A requires super-
polynomial time by the hiding property of Π.) Now consider Ã that picks the same identities, but
simply commits to 0k in the right interaction (no matter what messages it receives on the left). We

claim that RÃ breaks C w.r.t t with inverse polynomial probability for infinitely many k. Assume
not; that is, there exists a negligible function µ such that for every k ∈ N , RÃ breaks C w.r.t t
with probability at most µ(k). Consider a fixed k, and hybrids H1, . . . ,Hm(k) where Hi denotes
the success probability of R when the first i queries are answered by A and the remaining ones
answered by Ã. By the triangle inequality there exists some i such |Hi−Hi+1| is inverse polynomial
(where the polynomial only depends on R). Since Hi and Hi+1 proceed identically up until query i,
this means there exists some prefix ρ of the executions up until query i such that 1) conditioned on
ρ the gap in probability is as high, and 2) the executions of Hi and Hi+1 are efficiently computable
conditioned on this prefix (recall that Ã is efficient, so once we fix all the answers of A in all the
first i + 1 queries, the rest of the experiment is efficient). Since the only difference between the
hybrids is the commitment received by R in round i+ 1, we contradict the non-uniform hiding of
Π. Note that we here rely on the fact that Π only has two rounds (or else hiding may no longer
hold since R could be rewinding its oracle), and that C is polynomial-time computable.

We remark that the above theorem is tight; we cannot hope to rule out also super-polynomial-
time reductions for one-sided non-malleability: Liskov et al [?] present a construction of such
commitments assuming the existence of one-way permutations with subexponential security.

Let us now turn to ruling out also super polynomial-time reductions for “two-sided” non-
malleability (i.e., where the attacker may choose which identity to use).

Theorem 6. Let Π be a two-round tag-based commitment scheme (i.e., the commit-phase consists
of a single message from the receiver, followed by a single message from the committer), and let
(C, t) be an T (·)-size challenger intractability assumption. If there exists a T (·)-size randomized
black-box reduction R for basing weak non-malleability of Π on the hardness of C w.r.t threshold t,
then there exists a poly(T (·)-sized attacker B and a polynomial p′(·) such that for infinitely many
k ∈ N , B breaks C w.r.t t with probability 1

p′(k) on input 1k.

Proof. Consider the attacker A, Ã from the proof of Theorem 5. We consider two cases: Either RÃ

breaks C w.r.t t with inverse polynomial probability for infinitely many k (as in the proof of Theorem

5) in which case we are done. Or, there exists a negligible function µ such that for every k ∈ N , RÃ

breaks C w.r.t t with probability at most µ(k). As shown in the proof of Theorem 5, in this case
R together with C and using a polynomial-size advice string may distinguish commitments to 0k

and 1k with inverse polynomial probability for infinitely many k; let D denote this “commitment
distinguisher” (outputting a bit b ∈ {0, 1}). Now consider a third attacker A′ that chooses identity
1 on the left and 0 on the right (instead of using 0 on the left and 1 on the right as A and Ã) and
next applies D to the commitment it receives on the left in order to decide what value to commit
to on the right. More formally, A′(1k) proceeds as follows:

• A′ internally emulates D(1n), outputs the first output of D (the first message of the commit-
ment18);

18Recall that D is a commitment distinguisher for two-round commitment, and thus must first specify the first
message of the commitment.

25

568

Approved for Public Release; Distribution Unlimited.

• Upon receiving a commitment c on the left, and a first message r on the right, A′ simply
forwards c to D;

• Let b denote the final bit output by D; output on the right a commitment to bn (i.e., 0n if
b = 0 and 1n if b = 1) using r as a first message.

It directly follows from the fact that D is a good distinguisher that A′ breaks non-malleability of
Π, and thus there exists a polynomial p′(·) such that for infinitely many k ∈ N , RA

′
breaks C

w.r.t t with probability 1
p′(k) on input 1k. The theorem follows by noting that both R and D are

computable in size poly(T (·)).

A Remark on Deterministic Attackers and Non-uniform Reductions Just as the proof
of Theorem 3, the proofs of the above theorem readily extends to rule out reductions that only work
with deterministic attackers, and, relying on the techniques from [?], also non-uniform reductions.

6 Acknowledgements

I am extremely grateful to Kai-min Chung and Mohammad Mahmoody for many helpful comments
and definitional discussions.

26

569

Approved for Public Release; Distribution Unlimited.

Black-Box Proof of Knowledge of Plaintext and
Multiparty Computation with Low

Communication Overhead

Steven Myers1 ?, Mona Sergi2, and abhi shelat2

1 Indiana University, Bloomington, IN, USA
2 University of Virginia, Charlottesville, VA, USA

Abstract. We present a 2-round protocol to prove knowledge of a plain-
text corresponding to a given ciphertext. Our protocol is black-box in
the underlying cryptographic primitives and it can be instantiated with
almost any fully homomorphic encryption scheme.

Since our protocol is only 2 rounds it cannot be zero-knowledge [GO94];
instead, we prove that our protocol ensures the semantic security of the
underlying ciphertext.

To illustrate the merit of this relaxed proof of knowledge property, we
use our result to construct a secure multi-party computation protocol
for evaluating a function f in the standard model using only black-box
access to a threshold fully homomorphic encryption scheme. This protocol
requires communication that is independent of |f |; while Gentry [Gen09a]
has previously shown how to construct secure multi-party protocols with
similar communication rates, the use of our novel primitive (along with
other new techniques) avoids the use of complicated generic white-box
techniques (cf. PCP encodings [Gen09a] and generic zero-knowledge
proofs [AJLA+12,LATV11].)

In this sense, our work demonstrates in principle that practical TFHE
can lead to reasonably practical secure computation.

Keywords: Fully Homomorphic Encryption, Threshold Encryption, Se-
cure Multi-Party Computation, Communication and Round Complexity,
Proof Of Knowledge

1 Introduction

The main technical contribution of this paper is a novel proof of knowledge
of a plaintext protocol and its demonstrated use in the construction of a fully
black-box multi-party computation protocol with low communication overhead.
We briefly describe the motivation behind our work.

?
This work, and the authors are sponsored by NSF Grant 0939718, and DARPA and Air Force Research Laboratory
under Grant FA8750-11-C0080. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US government.

570

Approved for Public Release; Distribution Unlimited.

2

Communication Secure computation with an honest majority can be accomplished
without any cryptographic assumptions, but the best such protocol requires the
parties to communicate |f | log |f |+ d2 · poly(n, log |f |) bits [DIK10] and at least
d rounds. Here |f | is the size of the function being computed and d is the
circuit depth of f , and thus the communication of the protocol is super-linearly
related to the number of gates in f . Until recently, even the use of cryptographic
assumptions for secure computation required polylog(λ) communication overhead
per gate [DIK10] where λ is a security parameter.

Gentry [Gen09a] circumvents per-gate overhead as follows: the honest-but-
curious parities use secure multi-party computation to generate an FHE key, each
party encrypts its input, and sends the resulting ciphertext and proof to other
parties. Once all parties have encryptions of everyone’s inputs, they compute the
function of interest locally using the evaluation procedure of the FHE. Finally, to
use the resulting ciphertexts as inputs to a secure multi-party computation which
computes the decryption of the majority input. In order to be secure against
malicious adversaries, the Naor and Nissim compiler [NN01], which makes use
of the PCP theorem, can be applied. The use of the PCP theorem in the SMC
steps makes the approach impractical, even when presented with a practical FHE
scheme.

The motivation behind our work is to remove any use white-box techniques,
such as the PCP theorem or generic ZK or NIZK, from the above framework
for constructing communication-efficient secure protocols. These techniques have
historically been inefficient. In other words, we seek a black-box transformation
from TFHE to secure computation.

First Contribution The main technical hurdle in devising a black-box transforma-
tion from TFHE to secure computation is to implement the requirement for each
player to prove that they “know the plaintext” corresponding to the encrypted
input that they have broadcast. This step is essential because it prevents one
player from copying (or mauling via the homomorphism) the input of a player
who has acted earlier. To handle this step, we show how to construct a two-round
black-box proof of knowledge of an encrypted bit for any circuit private FHE
scheme using only the encryption scheme. Since our protocol is only two rounds,
it is not zero-knowledge (cf. [GO94]), but can provably keep the encrypted bit
hidden. Our POK requires that the public-key contain a labeled encryption of 0
and 1, which given all known FHE schemes seems to be a natural modification. 3

For traditional FHE schemes, the POK can be used completely black-box, without
even the need for the modification.

The basic idea of our proof of knowledge protocol is to first modify the
encryption scheme so that the message is encoded using an error-correcting code
(ECC) based verifiable secret sharing (VSS) scheme. To encrypt a message we first

3 Since all current schemes contain bit-wise encryptions of their own secret-keys
which are random bit strings, and a natural extension of any protocol that provides
encryptions of one’s own secret-key can be used to derive a labeled encryption of 0
and 1 which we describe.

571

Approved for Public Release; Distribution Unlimited.

3

generate its secret shares, and encrypt them independently using fresh randomness.
A verifier now requests the Prover to reveal the randomness used to encrypt a
sub-threshold number of the shares. The verifier then does a consistency check,
based on the ECC underlying the scheme, to ensure that the shares were encoded
properly. In particular, the error-correcting code we choose offers a property
that allows one to check whether local parts of the codeword are error-free. The
verifier accepts if everything appears to be properly coded. Since the number
of shares revealed is less than the threshold, it does not leak any information
about the original message. To show a proof of knowledge property, we argue
that an extractor can rewind the Prover and ask for another set of shares to be
opened. With high probability, this second transcript provides enough new shares
to run the VSS recover algorithm, and recover the original message. The one
issue with this approach is that the Prover must reveal the randomness used to
encrypt some of the shares. The semantic security of an encryption scheme does
not guarantee any security when these random bits are revealed—in particular,
the security of the rest of the unopened encryptions are not guaranteed. Instead,
we require the encryption scheme to be secure against a selective opening attack
(SOA). Fortunately, a result of Hemenway et al. [HLOV11] can be generalized to
show that any circuit private homomorphic encryption scheme can be made into
an SOA-secure one.

We point out that our proof of knowledge requires the encryption scheme
to be homomorphic and circuit-private. Recently, Damg̊ard et al. [DPSZ12]
demonstrates a three-round Σ-protocol for knowledge of plaintext, but their
protocol requires the underlying encryption scheme to also be homomorphic on
the random coins used to encrypt. Although many FHE schemes support this
property on their random coins, it is certainly not specified in the definition of
FHE. In contrast, circuit privacy has been independently defined and seems to
be a naturally weaker property.4 Moreover, their scheme requires the message
space for the FHE to be over ZN for N related to the security parameter. While
in general, single-bit FHE implies many-bit FHE, we are not aware of any such
transformation that also preserves the homomorphism over the random coins
as required by their protocol. Thus, the requirement for large message space
and homomorphism over the random coins seem to be extra assumption which
our work can avoid (our protocol also works on single-bit FHE). Finally, the
Σ-protocol from [DPSZ12] must be compiled into a full zero-knowledge protocol
using standard techniques which add round complexity and/or setup assumptions;
we show that our two-round protocol with its hidden-bit property suffices for our
secure computation protocol.

Second Contribution By combining our result with almost any TFHE scheme, we
construct a secure multi-party protocol that avoids both per-gate communication

4 Even though current schemes achieve circuit privacy via randomness homomorphisms,
it is certainly plausible for future constructions to achieve circuit privacy in other
ways. Moreover, there do not seem to be any natural ways to transform a circuit
private scheme to one with a randomness homomorphism, and thus we feel it is a
weaker notion.

572

Approved for Public Release; Distribution Unlimited.

4

complexity and white-box techniques such as the PCP theorem or Zero-Knowledge.
The communication complexity of our protocol is O(λc · n2) where λ is a security
parameter and c is a small constant for the TFHE scheme and is thus independent
of |f |. Our black-box transformation is particularly important because if practical
FHE (and TFHE) can be constructed, our transformations will result in practical
SFE. Our work is in the standard model and does not require trust assumptions
such as the common reference string, a random oracle or public-key setup.

Final Contribution For completeness, we also construct a threshold fully homo-
morphic public-key encryption scheme (TFHE) based on the Approximate GCD
problem and the fully homomorphic encryption scheme presented by van Dijk
et al. [vDGHV10], and our result was the first to demonstrate the feasibility of
directly achieving this threshold primitive for FHE. Since our original eprint
submission, [AJLA+12] and [LATV11] present more efficient TFHE constructions
based on LWE-style assumptions. The point of this construction is to demonstrate
feasibility of TFHE under different complexity assumptions.5

We present our protocols in the information-theoretic model over secure point-
to-point channels, and thus our protocols are secure in the presence of an honest
majority. Thus, when used with our transformation, the resulting protocol is also
only secure with an honest majority. By using another TFHE that tolerates a
dishonest majority, our transformation results in an secure computation protocol
that also tolerates the same.

The TFHE scheme provides a constant-round protocol for n players to generate
a public-key and distribute private shares of the corresponding secret-key of a
fully homomorphic encryption scheme. This step itself is non-trivial since the
generation of the public-key for an FHE scheme (that is based on bootstrapping)
requires encryption of the secret-key. Later, a majority of players can cooperatively
decrypt a ciphertext by running a constant-round protocol on their private shares
and a public ciphertext. We also provide methods for distributed encryption and
for proving knowledge of an encrypted value.

We note that both our TFHE key generation and decryption protocols are
more efficient than generically applying secure function evaluation techniques
to the key generation or decryption algorithms of an FHE scheme. For example,
with the right set of the parameters, our decryption protocol requires only a
constant number of share multiplications, whereas generic techniques would
require O(poly(λ)) such multiplications. We heavily exploit the linear nature of
the operations involved in key generation, encryption and decryption for the
particular FHE scheme of van Dijk et al. For key generation and decryption, we
develop specific multiparty computation protocols that evaluates an arithmetic
circuit using verifiable secret sharing techniques, that is more efficient than the
application of generic techniques.

5 We note that historically, threshold encryption has been presented where the key-
generation algorithm and decryption algorithms are single algorithms, or they are
multi-party protocols. We present multi-party protocols.

573

Approved for Public Release; Distribution Unlimited.

5

Comparison With Other FHE-based Secure Computation Protocols Gentry’s [Gen09a]
secure computation protocol was the first to achieve communication complexity
that is independent of |f | by using the PCP theorem in several steps.

Asharov, Jain and Wichs [AJLA+12] and López-Alt, Tromer, and Vaikun-
tanathan [LATV11] have constructed more efficient TFHE schemes based on
LWE and the closely related RLWE assumption, which can be reduced to varying
degrees to worst-case lattice problems. Their approaches rely on the ability to
construct an FHE that also has a homomorphism on the secret-keys, and can also
be used to achieve secure computation with communication that is independent of
|f |. Together, our results demonstrate that the TFHE primitive can be developed
from reductions to different classes of hardness assumptions, and therefore TFHE
is not simply a consequence of a specific hardness property.

To achieve security against malicious adversaries, López-Alt et al. rely on a
common reference string setup so that players can use a NIZK to prove to each
other that their keys and their input ciphertexts are well-formed. The use of such
NIZK also requires additional hardness assumptions, since (T)FHE is not known
to imply NIZK. They can also instantiate their ideas in the standard model
by replacing these NIZK proofs with traditional interactive ZK proofs; but in
either case, the generic (NI)ZK techniques used require non-blackbox use of the
underlying TFHE scheme.6 By choosing the CRS model, the authors observed
that by using a more expensive simulation-sound NIZK, their protocols can also
achieve UC-security. Our protocols only claim standard security, but it has bee
pointed out to us that it is likely that we can state some of ours results as UC in
a TFHE-hybrid model.

Asharov et al. use efficient Σ-Protocol constructions to prove well-formedness;
these make heavy use of the underlying mathematical structure of the LWE
assumption. In order to have efficient NIZK proofs, they must rely on the use of
the Random Oracle model, and the use of the Fiat-Shamir heuristic to transform
the Σ-protocols into NIZK proofs. In any case, due to the black-box nature of
our SMC construction, with simple modifications to the public-key to include
labeled ciphertexts representing encryptions of 0 and 1, either of the López-Alt
et al. or Asharov et al. TFHE schemes can be plugged in to our construction
to achieve security against an arbitrary number of malicious adversaries, with
abort. In contrast, with our scheme we are guaranteed output delivery, but need
an honest majority of players.

The protocols of Damg̊ard et al. [DPSZ12] and Bendlin et al. [BDOZ11] use a
different approach to constructing secure computation protocols from traditional
homomorphic encryption. Their schemes rely on the idea from Beaver [Bea91] for
circuit randomization. First, they use an offline phase in which the parties use a
somewhat homomorphic encryption primitive to create shares of triples (a, b, c)
such that a · b = c. One triple is required for each multiplication gate in f that
is to be evaluated and requires approximately O(n/s) “heavy” cryptographic

6 In other words, the encryption algorithm of the TFHE will need to be expressed in
terms of a graph-coloring instance (or Hamiltonicity, circuit-sat ,etc...). As far as we
know, this transformation requires a high-order polynomial overhead.

574

Approved for Public Release; Distribution Unlimited.

6

operations to generate. Next, after such triples have been created, the parties use
only information-theoretic methods to evaluate the circuit. This approach results
in admirable communication parameters for small circuits (as they have also run
practical examples); nonetheless, the approach requires linear communication
for each gate in |f |, and thus does not achieve our main aim of eliminating this
relationship.

Finally, these prior results are all in a model in which n parties are computing,
and the protocols can tolerate up to n − 1 malicious parties. In contrast, our
protocols require an honest majority. The relative incomparability of these models
is well understood. In particular, in the model that tolerates up to n−1 malicious
adversaries, if any one party deviates form the protocol or fails, then all parties
output ⊥. Alternately, with an honest majority, all parties can output an effective
output, as supported by our protocol. For a discussion of the relative merits of
the two models, and the impossibility of having protocols that achieve the best
of both worlds for general functionalities, see the work of Ishai et al. [IKK+11].

In summary, all of these recent works have advantages and disadvantages
of their own; our major contribution is the black-box transformation and the
independent hardness assumption.

Related work Cramer, Damg̊ard and Nielson [CDN01], along with Jakobbsson
and Juels [JJ00] show how to use threshold cryptography to construct secure mul-
tiparty computation protocols. In more detail, we use many ideas from [CDN01]
which shows how a homomorphic threshold cryptosystem can be used to achieve
general multiparty computation protocols. The notion of using secret-sharing to
encode encryptions, as we will do, was first seen in [CDSMW08] and has recently
been extended in [GLOV12], although these works use the technique to ensure
consistency, and not a proof-of-knowledge, as pursued here.

2 Preliminaries and Notation

A 4-tuple of protocols and algorithms (Gen,Enc,Dec,Eval) is a (t, n)-threshold
fully homomorphic encryption scheme if the following hold:

Key Generation An n-party protocol Gen that at each invocation returns
a new public-key PK and the secret-key (SK1, . . . ,SKn), where SKi is the
share of the secret-key for Playeri.

Encryption A PPT algorithm EncPK(m, r) that returns the encryption of the
plaintext m under the public-key PK with random coins r.

Decryption There exists a PPT n-party protocol Dec(c,SK1, . . . ,SKn), which
returns the plaintext m using the shares SKi held by honest party Playeri,
where c = Enc(m, r) for some random r.

fPK-homomorphic There exists a PPT algorithm Eval which given a polyno-
mial f , ciphertexts c1 ∈ EncPK(m1), . . . , ck ∈ EncPK(mk) for some k and a
public-key PK, outputs c ∈ Enc(f(m1, . . . ,mk)).

575

Approved for Public Release; Distribution Unlimited.

7

The natural notion of chosen plaintext attack indistinguishability needs to be
modified in the venue of threshold cryptography to take into account the fact that
the adversary has access to shares of the secret-key. The appropriate corresponding
and natural definition is given in [CDN01], and full version of our paper [MSas11].
Standard security notions for secure multi-party computation protocols can
be used to define the security for the protocols Gen and Dec in any given
instantiation of a TFHE (e.g., we can consider security in the real/ideal standalone
paradigm, the UC framework, etc..)

Next, we present the notion of bootstrapping a ciphertext. Gentry developed
the notion of Bootstrapping to reduce noise in a somewhat fully homomorphic
encryption scheme, in order to achieve a fully homomorphic scheme. In contrast,
we assume the existence of an FHE and simply use it to reduce noise produced
in ciphertexts generated in our selective opening attack secure scheme that we
introduce later.

Definition 1. (Bootstrapping a Ciphertext) For a FHE scheme Π = (G,E,D,Eval)
and the security parameter k, let DΠ be Π’s decryption circuit, which takes a
secret-key and s ciphertext as input. Given a ciphertext C encrypted with respect
to a public-key PK and secret-key SK = (SK1, ..,SK`) we require that PK con-
tains a bit-wise encryption of SK, denoted s1, ..., s` where si = E(PK,SKi). Let
(C1, .., Cn) denote the bits of C, and generate ci = E(PK, Ci). We say that the
value C† = Eval(PK, Dπ, s1, ..., s`, c1, .., cn) (which homomorphically evaluates
D(SK, C)) is the result of bootstrapping C.

2.1 Selective Opening Security

In our construction, we will need to refer to encryption schemes where messages
that are encrypted remain secure, even after the randomness used to encrypt
related messages is revealed. This notion of security is called Selective Opening
Security.

Definition 2 (IND-SO-SEC Encryption Security). A public-key encryp-
tion scheme Π = (G,E,D) is Indistinguishable Selective Opening secure if, for
any message sampler M that supports efficient conditional resampling, and any
ppt adversary A = (A1, A2) there exists a negligible function µ such that for all
sufficiently large k:

∣∣Pr[AInd-SO-Real
Π (1k) = 1]− Pr[AInd-SO-Ideal

Π (1k) = 1]
∣∣ ≤ µ(k).

A message sampler M is a PPT algorithm that outputs a vector m of n messages
from a given distribution. It is an efficient conditional resampler if, when given
two auxiliary inputs, a set of indices I ⊆ [n], and a vector of messages m =
(m1, ...,mn), M samples another vector m′ = (m′1, · · · ,m′n) conditioned on
mi = m′i for each i ∈ I. We define the experiments Ind-SO-Real and Ind-SO-Ideal
as follows.

576

Approved for Public Release; Distribution Unlimited.

8

Ind-SO-Real(1k, A)
(PK,SK)← G(1k)
m = (m1, . . . ,mn)←M
r1, . . . , rn ← R
(I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
Output A2(σ, (mi, ri)i∈I ,m)

Ind-SO-Ideal(1k, A)
(PK,SK)← G(1k)
m = (m1, . . . ,mn)←M
(I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
m′ = (m′1, . . . ,m

′
n)←M|I,m[I].

Output A2(σ, (mi, ri)i∈I ,m′)

2.2 Circuit Privacy

Definition 3. ((Statistical) Circuit Private Homomorphic Encryption). A homo-
morphic encryption scheme ε = (Gen,Enc,Dec) is circuit-private for circuits in
a set Cε if, for any key pair (PK,SK) output by Gen(λ), any circuit C ∈ Cε, and
any fixed ciphertext ψ = 〈ψ1, . . . , ψt〉 that are in the image of Enc for plaintexts
π1, . . . , πt, the following distributions (over the random coins in Enc, Eval) are
(statistically) indistinguishable:

EncPK(C(π1, . . . , πt)) ≈ EvalPK(C,ψ)

In the original schemes first presented by both Dijk et al. [vDGHV10] and
Gentry [Gen09a], the initial evaluation functions are deterministic and not circuit-
private. In order to overcome this problem, both works introduce a method for
adding random noise to encryptions, whether they are output from Eval or
Enc, and thus in some sense rerandomizing them. This is done by adding
an ‘encryption’ of 0 to the ciphertext in question, but where the ‘encryption’
has significantly more noise than would be generated by either the legitimate
encryption or evaluation process. Specifically, they introduce ppt algorithms
labeled CircuitPrivacy : Cb → C′b, where C consists of all the ciphertexts that are
output from EncPK(b) or a call to Eval with an encrypted output bit of b. It is
the case that for any b and any cb,0,cb,1 ∈ Cb.

CircuitPrivacy(cb,0) ≈s CircuitPrivacy(cb,1).

3 Proof of Knowledge of an Encryption

As noted in the Introduction, the method of Cramer, Damg̊ard, and Nielsen [CDN01]
requires an honest-verifier zero-knowledge proof of knowledge of encrypted val-
ues for the threshold schemes that they employ. We provide a weaker 2-round
solution to that requirement, which alas, is not zero-knowledge, but also does not

577

Approved for Public Release; Distribution Unlimited.

9

release any information about the bit being discussed (we formalize this below).
Moreover, our construction is black-box in the underlying circuit-private FHE
scheme.

We construct this proof through a two-step process. At a high-level, instead of
encrypting a bit b, we use a specific (n, n/2 + 2) verifiable secret sharing scheme
to generate n shares of b and encrypt those shares.7 In order to give a proof of
knowledge of the encryption of b, we allow a verifier to select n/2 + 1 of the
encryptions of shares of b, and then direct the Prover to reveal the randomness
used to encrypt those shares. To extract the bit, our extractor rewinds the proof
and selects an alternate n/2 + 1 shares, so that with high probability, it can use
n/2 + 2 shares to reconstruct b, and only b due to the verifiability of the secret
sharing scheme. The problem with this approach is that revealing the randomness
for an encryption raises selective decommitment issues. We use techniques from
Hemenway et al. [HLOV11] to construct a bit-wise Indistinguishable Selective-
Opening Secure encryption scheme from our threshold fully-homomorphic scheme.
We can then use it to bitwise encrypt the VSS shares.

We note that the encryptions of the shares under the bit-wise Indistinguishable
Selective-Opening Secure scheme, is not itself a homomorphic encryption scheme.
For example, we cannot multiply directly two sets of shares encoding b0 and
b1 and expect the result to encode b0 · b1. However, the individual encrypted
bits are still properly encoded ciphertexts under the FHE scheme that have a
circuit-privacy evaluation function applied to them. Intuitively, therefore, we can
homomorphically evaluate the reveal function of the secret sharing scheme to get
a single encryption representing the reconstituted bit. This encryption can then
be used to homomorphically evaluate the function as in Cramer et al. [CDN01].
There is however a snag: in principle, once the circuit-privacy function has been
applied to a ciphertext, it may no longer be able to have homomorphic operations
applied to it, as this is not guaranteed by the definition.8 However, this problem
is easily surmounted by applying Gentry’s bootstrapping technique (cf. Defn 1)
to re-encode the selective-opening secure schemes into ciphertexts which can have
homomorphic operations applied to them, and thus the VSS’s reveal algorithm
can be applied to the individual bits of the shares, resulting in ciphertext of the
encoded bit, which is in the ciphertext space of the TFHE scheme.

Using FHE to construct a Selective Opening Encryption Scheme Hemenway et
al. [HLOV11] show how any re-randomizable encryption scheme can be used to
construct a natural lossy encryption scheme and thus, by the result of Bellare et
al. [BHY09], is secure against indistinguishable selective opening attacks.

Since the Hemenway and Ostrovsky construction relies on re-randomization,
they suggest that the distribution of a “fresh” encryption of a message should be

7 We use a verifiable secret sharing scheme with a n/2 + 2 threshold to simplify the
proof of the VSS, thus |T | = n/2 + 1 is chosen to be right under the threshold of the
VSS, as one might expect.

8 Further, in practice, with known schemes, these ciphertexts have too much noise
in them to allow further homomorphic operations without sacrificing decryption
correctness.

578

Approved for Public Release; Distribution Unlimited.

10

statistically close to a rerandomization of a fixed message. They point out that
all homomorphic encryption schemes up to that point achieved this property by
adding an encryption of 0 to the current message. While this property was true
of all schemes at the time, it is not actually true of the known fully homomorphic
encryption schemes, because each time we add an encrypted message to another
we increase the amount of noise that is embedded in the ciphertexts, and thus
fresh encryptions have less noise than encryptions that have had operations (such
as addition) applied to them. Fortunately, the property they state is overly strong,
and a simple observation shows that for their construction to go through they
only require that the distributions

{r ← R : Epk(0, r) � Epk(m, r0)} ≈s {r ← R : Epk(0, r) � Epk(m, r1)},

for all public-keys pk, messages m and random strings r0 and r1 where � is the
homomorphic addition operation. However, it is simple to see that even these
two distributions are not statistically close for the fully homomorphic encryption
schemes that have been proposed. Fortunately, both schemes under consideration
have rerandomization functions built to ensure Circuit-Privacy, as is defined
in [Gen09b] and Def. 3.

Construction of a SOA from Lossy We generate a public-key for the Lossy scheme
by generating a traditional public-key and secret-key for the TFHE, and then
we augment the public-key with two labeled ciphertexts c0 and c1, representing
encryptions of 0 and 1. Now, to encrypt a bit b, we take cb, and rerandomize it
using the circuit-privacy function (In comparison, Hemenway and Ostrovsky add
an encryption of the bit 0). Decryption works as it does in the FHE scheme. The
lossy key generator simply has c1 represent an encryption of 0 instead of 1. By
the IND-CPA security of the TFHE scheme, the keys are indistinguishable. The
scheme is formally described below.

Key Generation G′(1k, b), b ∈ {INJ, LOSSY}: Let (PK,SK) ← G(1k), c0 ←
E(PK, 0), c1 ← E(PK, 1) and c′1 ← E(PK, 0). If b = INJ Output PK′ =
(pk, c0, c1) and SK′ = SK, else when b = LOSSY output PK′ = (PK, c0, c

′
1)

and SK′ = SK.
Encryption E′(PK′ = (PK, c0, c1), b): Output ReRand(cb).
Decryption D′(SK, c): Output D(SK, c).

Theorem 1. If (G,E,D) is a circuit-private FHE, then the blackbox construction
(G′, E′, D′) described above is an IND-SO-SEC secure encryption scheme.

Proof. Follows from [HLOV11] and [BHY09].

Modifying the SOA-secure Encryption Scheme to Support POKs Again, in order
to be able to provide a proof of knowledge that a party has knowledge of the value
encrypted, we need to provide a POK. We will show a 2-round public-coin proof
of knowledge of the encrypted bit based on any selective opening secure scheme.
The protocol is neither zero-knowledge nor witness indistinguishable, but does

579

Approved for Public Release; Distribution Unlimited.

11

maintain secrecy of the encrypted bit. First, we encrypt bits using the following
protocol. Let Π ′ = (G′, E′, D′) be the selective-opening attack secure scheme
described in Thm. 1. We construct a new encryption scheme Π̂ = (Ĝ, Ê, D̂) to
encode bits as follows. We define Ĝ = G′, and present the algorithms for Ê and
D̂ below. Refer to a full version of our work [MSas11] for the standard definitions
of the Verifiable Secret Sharing algorithms.

Ê(PK, b, r) D̂(SK,C)
(s1, ..., sn)← VSShare(n,n/2+2)(b) M = {Mi,j}i,j∈[n] ← D′(SK,C)
Let M be the n× n matrix Let (s1, . . . , sn) be the shares
representation of shares (s1, . . . , sn) corresponding to matrix M .
ci,j = E′(PK,Mi,j , ri,j) T ′ = {t|1 ≤ t ≤ n share st
Output C = {ci,j}i,j∈n is n/2 + 2 -consistent}

If |T ′| < n/2 + 2 output ⊥.
Let T ⊆ T ′ s.t. |T | = n/2 + 2.
Output VSReveal(n,n/2+2)({sti})ti∈T

Hidden Bit POK Given a ciphertext C = {ci,j}i,j∈n output by encryption

algorithm Ê and the random coins r used to generate it, we show how to perform
a two-round proof of knowledge of the encrypted bit D̂(SK,C). P will prove
that it has knowledge of the underlying shares of the verifiable secret-sharing
scheme that have been encrypted. In order to do this, the verifier sends a random
challenge of indices T ⊂ [n], where |T | = n/2 + 1. The encryptor then decommits
to these encryptions by providing the random-bits used to encrypt each share of
the bit. If each bit decommits successfully, and the result is n/2 + 1 valid shares
to the VSS, then the verifier accepts.

Prover(PK,C = {ci,j}i,j∈[n] Verifier(PK,C = {ci,j}i,j∈[n])

= Ê(PK, b, r),M, r)

Let ci,j = E′(PK,Mi,j , ri,j)
T←− T ← {S|S ⊂ [n] ∧ |S| = n

2
+ 1}

{Mi,x,ri,x,Mx,i,rx,i} i∈T
x∈[n]−→ if ∃i, j: cij 6= E′(PK,Mi,j , ri,j),

output ⊥.
Output 1.

Extractor(C,PK, U1 = {Mi,x, ri,x,Mx,i, rx,i} i∈T1
x∈[n]

, U2 = {Mi,x, ri,x,Mx,i, rx,i} i∈T2
x∈[n]

)

Let T = T1 ∪ T2, U = U1 ∪ U2

If |T | < n/2 output ⊥.
If ∃i ∈ T, x ∈ [n] s.t. E′(PK,Mi,x, ri,x) 6= ci,x or E′(PK,Mx,i, rx,i) 6= cx,i output ⊥.
For each i ∈ T reconstruct its corresponding share si.
Output VSReveal(n,n/2+2)(sr1 , .., srn

2
), where r1, .., rn

2
are the smallest indices in T .

Completeness Follows by inspection.
Extractability (Soundness) Soundness follows from an extractor.

580

Approved for Public Release; Distribution Unlimited.

12

Theorem 2. For all sufficiently large n, for all d > 0, for all (SK,PK) ← Ĝ,
for all ‘ciphertext’ inputs C, and provers P ′, if (P ′, V)(C = {ci,j}i,j∈[n],PK)

accepts with probability 1/nd, then there exists a probabilistic polynomial time
extractor that, with all but negligible probability, outputs a set of decommitments
to all ciphertexts for a given set of indices L = {`1, · · · , `n/2+2} ⊆ [n] that consti-
tute shares S = {s`1 , ..., s`n/2+2

} such that VSReveal(n,n/2+2)(s`1 , ..., s`n/2+2
) =

D̂(SK, C).

Definition 4. We say an n× n matrix representation of shares has t-consistent
indices if there is a set S of size t such that for each i ∈ S, each row i and column
i is n/2 + 2 consistent.

Proof. Given the ability to rewind the prover-verifier protocol, we can extract
the encrypted bit by recovering enough shares of the VSS scheme. We continue to
execute the prover/verifier protocol until we get two distinct separate accepting
proofs. It is a simple observation that except with exponentially small probability,
we will succeed in O(nd+1) rewinds. Let (T1, U1) and (T2, U2) be the flows in the
first and second accepting proofs, respectively. By the security of the commitment
scheme (Here we are using our encryption scheme as a simple commitment
scheme), the probability that there is a ciphertext ci,j that is ever decommitted
to in two distinct fashions is negligble.

We feed these inputs in to Extractor . If there is not a valid encryption of a
bit (fewer than n/2 + 2 committed and consistent shares), then by Lemma 1, the
probability that the verifier outputs anything other than ⊥ is less than 1

(n
n/2+2)

which grows exponentially small.
Given the decommitments of the shares {si}i∈Ti for different randomly chosen

set of indices T1 and T2, note these sets are not the same by selection, and
therefore there is no chance that ⊥ is output by the extractor. Next the extractor
executes a VSReveal(n,n/2+2) command. However, this is not necessarily over
the same shares as would be revealed in a legitimate decryption. We need to
ensure that no matter which of the rewound and newly played legitimate traces
we receive, we are going to reveal the same encrypted bit, with all but negligible
probability. That is, we need to ensure that VSReveal(n,n/2+2)(sr1 , ..., srn/2

) =
VSReveal(n,n/2+2)(s1, ..., sn/2). This is the case, as shown in Lemma 2 because of
the verifiable properties of the secret sharing scheme ensures that even in the case
of a corrupted dealer (improper ciphertext encoding of shares) then all honest
players will reveal the same value, with all but negligible probability. Therefore,
with all but negligible probability we have that the extractor outputs the same
value as D(SK, c).

Lemma 1. Let M be an n× n matrix with at most n/2 + 1 consistent indices.
The probability that any n/2 + 1 randomly selected indices (without replacement)
choose a set of n/2 + 1 consistent indices is no more than

1/

(
n

n/2 + 1

)
.

581

Approved for Public Release; Distribution Unlimited.

13

Proof. There can be at most 1 set of size (n/2 + 1) that is (n/2 + 1) consistent
in an n× n matrix. The lemma follows by computing the probability of choosing
this one set from a set of n objects.

Lemma 2. Let M be n×n matrix representation of shares. Let S, T ⊆ [n], |S| =
|T | = n/2 + 2, S 6= T , and the rows RS = {ri}i∈S, RT = {ri}i∈T and columns
CS = {ci}i∈S, CT = {ci}i∈T are all n/2 + 2-consistent. Let s = (s1, ..., sn/2+2)
and t = (t1, ..., tn/2+2) be the shares drawn from M corresponding to the sets of
indices S and T respectively. Then

VSReveal(n,n/2+2)(s1, ..., sn/2+1) = VSReveal(n,n/2+2)(t1, ..., tn/2+1)

Proof. Note that VSReveal(n,n/2+2) will never output ⊥ under our conditions,
so all that we need do is show that f will interpolate to the same value in both
cases.

We know that the rows RT = {ri}i∈T and columns CR = {ci}i∈T are
all (n/2 + 2)-consistent. Choose any j ∈ S \ T . Let T = {t1, . . . , tn/2+2}.
Consider cj = (c1,j , c2,j , . . . , cn,j)

T . Since cj is n/2 + 2-consistent, the points
(ct1,j , t1), . . . , (ctn/2+1,j , tn/2+2), interpolate to a unique univariate degree n/2 + 1

polynomial (i.e. f(x, j)). This defines (c1,j , c2,j , . . . , cn,j)
T , so the column j must

be consistent with T . Since the jth column was an arbitrary column in S different
from those in T , all such columns must be consistent with the rows defined be T .
A symmetric argument shows that rows selected by S must be consistent with
the columns selected by T . Therefore, both sets are consistent in that they define
the same polynomials. Therefore, interpolation in VSReveal(n,n/2+2) will result
in the same output.

Hidden Bit We show that no efficient cheating verifier can predict the bit b, when
given C = Ê(PK, b, r) as a theorem for which we are engaging in a POK.

Theorem 3. For every P.P.T. adversary A = (A1, A2), there exists a negligible
function µ such that Pr[HBA(1k) = 1] ≤ 1/2 +µ(k), where HBA is defined below:

HBA(1k)

(PK,SK)← Ĝ(1k)
b ∈ {0, 1}
C = {ci,j}i,j∈[n] = Ê(PK, b) where ci,j = E′(PK,Mi,j , ri,j) are SOA-sec.
(T, σ)← A1(PK, C) where T ⊂ [n], |T | = n/2 + 1.
b′ ← A2(σ, (Mi,j , ri,j)i,j∈T)
Output 1 iff b = b′

Proof. This follows directly from the IND-SO-SEC security of Π ′ = (G′, E′, D′).
Suppose an adversary A = (A1, A2) breaks the hidden bit security of the protocol.
That is for some d > 0 and infinitely many k: Pr[HBA(1k) = 1] ≥ 1/2 + 1/kd.
We use it to build an adversary B = (B1, B2) and message selector M that
breaks the IND-SO-SEC security (cf. Defn. in [BHY09] or [MSas11]) of Π ′ =

582

Approved for Public Release; Distribution Unlimited.

14

(G′, E′, D′). The message selector M chooses a random bit b, let (s1, ..., sn)←
VSShare(n,n/2+2)(b), and let M be the n× n matrix that represents the shares
(s1, . . . , sn) according to the ECC representation of the VSS. Output M.

The adversary B1

(
PK, (E(PK,Mi,j, ri,j))i,j∈n

)
for the IND-SO-SEC exper-

iment simulates (T, σ) ← A1(PK, C = (E(PK,Mi,j, ri,j)), and outputs I =
{(i, j)|i, j ∈ n, i ∈ T or j ∈ T} and σ′ = (T, σ). Recall by the definition of A1,
|T | = n/2 + 1.

The conditional message selector MI,m[I] from the SOA security definition
finds a random bi-variate polynomial of degree n/2 + 1 in each variable over
the field F such that f(0, 0) ∈ {0, 1} and for each (i, j) ∈ I, it holds that
f(i, j) = Mi,j . Since |T | = n/2 + 1, and thus we have effectively release n/2 + 1
shares for a VSS scheme that requires n/2 + 2 for reconstruction, the information
secrecy property of the VSS guarantees there are exactly the same number
of such selections for the case f(0, 0) = 0 and f(0, 0) = 1. MI,m[I] outputs
{f(i, j)}1≤,i,j≤n.

The adversary B2(σ, (Mi,j , ri,j)(i,j)∈I ,M∗) computes the shares (s∗1, ..., s
∗
n)

that correspond to M∗, and runs VSReveal(n,n/2+2)(s
∗
1, .., s

∗
n) = b′, it then

executes b← A2(σ, (mi,j , ri,j)(i,j)∈I) and outputs 1 iff b = b′.
Now consider Pr[BInd-SO-Real

Π (1k) = 1], this is a perfect simulation of HBA(1k),
and therefore by the assumption that A breaks the hidden-bit security, the term
must exceed 1/2+ε, where ε ≥ 1/kc. In contrast, consider Pr[BInd-SO-Ideal

Π (1k) = 1].
In the case that VSReveal(n,n/2+2)(s

∗
1, . . . , s

∗
n) = VSReveal(n,n/2+2)(s1, . . . , sn),

which occurs with probability exactly 1/2, it is again a perfect simulation
of HBA(1k), and so the experiment outputs 1 with probability 1/2 + ε. In
contrast, when VSReveal(n,n/2+2)(s

∗
, 1..., s

∗
n)) 6= VSReveal(n,n/2+2)(s1, ..., sn),

then we know that A2 outputs VSReveal(n,n/2+2)(s1, ..., sn) with probability
1/2 + ε, and so B2 outputs 1 with probability 1 − (1/2 + ε) = 1/2 − ε. There-
fore, Pr[BInd-SO-Ideal

Π (1k) = 1] = (1/2)(1/2 + ε + 1/2 − ε) = 1/2. Therefore,
Pr[BInd-SO-Real

Π (1k) = 1] − Pr[BInd-SO-Ideal
Π (1k) = 1] = 1/2 + ε − 1/2 ≥ 1/kc,

breaking IND-SO-SEC security.

Using the SOA Ciphertexts in a Secure Multiparty Computation Protocol In our
SMC construction, we encode all users’ inputs using the POK scheme above.
The encrypted inputs are sent to the other parties. After each party’s input has
been confirmed with a proof of knowledge, the parties homomorphically evaluate
the different ciphertexts to get an appropriate encrypted output. However, as
explained before, the POK encryptions are not themselves homomorphic. To
solve this problem we use Gentry’s bootstrapping technique. Bootstrapping lets
us take a ciphertext in an FHE scheme with any amount of noise that still
allows for proper decryption (specially, this is potentially more noise than is
permissible to perform any extra homomorphic operations without destroying
the correctness of the ciphertext), and output a new ciphertext in the FHE
scheme, of the same value, but with a small enough amount of noise that it
can be properly computed on through the use of the FHE’s evaluation function.
Given a ciphertext C = {ci,j}i,j∈[n] in the POK scheme, each ci,j is a ciphertext

583

Approved for Public Release; Distribution Unlimited.

15

from a lossy encryption scheme. To convert C into a corresponding encryption c†

in the TFHE scheme we do the following: We bootstrap each ci,j which is simply
a TFHE ciphertext that has had the circuit-privacy function applied to it—thus
containing potentially too much noise to apply further homomorphic operations
to, but not so much that it decrypts improperly— to receive the corresponding
lower-noise TFHE ciphertext c′i,j . The c′ ciphertexts can now be evaluated in the
THFE eval function, and in particular we can use the TFHE eval function, to
evaluate VSReveal(n,n/2+2). The result of this evaluation is the ciphertext C†

corresponding to the output.

Protocols vs. Algorithms We note that there is one technical issue that needs to
be resolved, which is that in this section we have described the key generation
and decryption algorithms as stand-alone algorithms, rather than protocols. For
our purposes, we need a joint protocol for key generation and decryption. For
this reason, we need to modify our key generation algorithm in the TFHE scheme
to include an encryption of the bits 0 and 1 in the public-key. These values allow
the parties to encrypt under the SOA secure encryption scheme Π̂. The SOA
secure scheme does not modify the decryption algorithm, so there is no need for
modification to the decryption protocol.

4 Secure Multiparty Computation

We follow the Cramer et al. [CDN01] approach for constructing a multi-party
computation protocol based on threshold cryptography. Our biggest changes are
that we do not need a protocol for multiplication, we use a different approach
for proving knowledge of encryption, and we explicitly describe a key generation
phase whereas it is assumed as an external setup in [CDN01]. Since our solution
requires less interaction among the parties, our simulation argument is simpler
than the argument from [CDN01].

We use the standard simulation-based definition of stand-alone secure multi-
party computation. We assume the existence of a standard n-party CoinFlipping
protocol which guarantees soundness in the presence of < n/2 adversaries: namely,
for any minority set of adversaries, the protocol guarantees that the distribution
is still statistically close to uniform. Such a protocol can be easily constructed
based on the existence of hiding commitments. (Unlike [CDN01], we do not need
this coin flipping protocol to be simulatable.). See our full version [MSas11]
for a definition of the real/ideal paradigm for secure multi-party computation
from [CDN01] and [IKK+11]. In this section the TFHE scheme used is denoted
Π̃ = (G̃, Ẽ, D̃,Eval).

We assume that the players can communicate via an authenticated broadcast
channel and via point-to-point private and authenticated channels (which may
in turn be implemented using signatures, public-key encryption, etc.)

584

Approved for Public Release; Distribution Unlimited.

16

Protocol 1 . Each party holds private input xi; the parties jointly
compute f(x1, . . . , xn).

1: Party Pi receives as input (1k, n, xi). (We assume the adversary receives
as input 1k, n, a set of corrupted parties C and the inputs {xc}c∈X for
the corrupted parties, and auxiliary information.)

2: Players run the TFHE key generation subprotocol G̃(η, τ, ρ, θ, Θ, κ) to
generate a public-key P̃K and shares of the secret for the threshold
scheme Π̃. At the end of this step, player pi holds share SKi of the
secret-key SK. If the sub-protocol halts prematurely, then players halt
and output ⊥.

3: The players take sequential turns sharing their input using the encryption
scheme Π̂ that is constructed from Π (see §3). More specifically, for
i ∈ [n], player Pi broadcasts ci,j ← Ê(P̃K, xi,j). Then all of the players
run a standard CoinFlipping protocol to generate a random string ri.
Player Pi now interprets ri as n strings ri,1, . . . , ri,n and uses coins ri,j
as the random coins to run Verifier(PK,ci,j) (see §3) of the Hidden Bit
POK protocol on input ci,j for each bit j ∈ [n] of input xi. Player Pi
runs the corresponding Prover algorithm on ci,j using the random coins
used to generate ci,j as the witness, and broadcasts the Prover message.
The remaining players also execute the Verifier algorithm using the same
random coins and verify that the first message is consistent and the
second message is accepted. If player Pi fails the POK protocol, then Pi
is excluded from the rest of the protocol, and the remaining players that
have not been excluded use a canonical encryption of 0 as the input for
Pi (e.g., they use Ẽ(P̃K, 0; 0) as each input bit).

4: The players that have not been excluded locally run
Eval(P̃K, c1,1, . . . , cn,n, f̃) where the function f̃ first transforms

the input ciphertexts encrypted under Π̂ into ones for scheme Π̃. This is
done by homomorphically evaluating the decryption procedure described
in §3 (i.e. bootstrapping, see Defn. 1).(Note: All of the ciphertexts in ci,j
have a large degree of noise in them due to the circuit-privacy call that
was used to rerandomize the ciphertexts. Therefore, the first thing that
is done is that the ciphertexts are re-encoded with less noise using the
same procedure as FHE bootstrapping.) Next, compute ciphertext zi of
the result f(x1, . . . , xn). Note that each player can complete this step
using only local information (since the public-key for the FHE includes
all the information needed for evaluation).

5: Each player Pi that has not been excluded broadcasts the ciphertext zi
computed in the previous step. Each player then locally computes the
majority of the broadcasts as ciphertext z′. A majority is guaranteed to
exist since the malicious players form a minority and Eval is deterministic.
Any player whose broadcast differs from the majority is excluded from
the remaining portion of the protocol.

585

Approved for Public Release; Distribution Unlimited.

17

6: Players pi that have not been excluded run the distributed subprotocol
D̃(z′,SK1, . . . ,SKn) using input z′ and their local share SKi. The output
of the protocol is taken as the output.

Theorem 4. Let π be Protocol 8 for a function f , and fix s ∈ {1, . . . , n/2}. If
Π is a circuit-private TFHE encryption scheme, then for any ppt adversary A,
there exists a ppt adversary A′ such that for every polynomial-size circuit family
Z = Zk corrupting a minority of parties the following is negligible:

|Pr [REALπ,A,Z(k) = 1]− Pr [IDEALf,A′,Z(k) = 1]| .

See full version for details.

5 Threshold FHE for the Integers

In this section we briefly highlight the construction of a TFHE scheme Π̃ =
(G̃, Ẽ, D̃, ˜Eval) from the FHE schemeΠ = (G,E,D,Eval) based on the Approximate-
GCD problem described by [vDGHV10]. The details are presented in our full
version online. We point out that in any such transformation Ẽ = E and

˜Eval = Eval, and thus we only need to describe protocols for computing G̃ and
D̃.

Sharing the Public and Secret-key Recall the secret-key p for the “somewhat
homomorphic encryption scheme” is an odd η-bit integer. To sample p in a
distributed fashion, we notice that the bits p0 and pη−1 should be 1 whereas the
rest of the bits p1, . . . , pη−2 should be randomly shared. At the end, each player
holds a share of p. We then extend techniques from [KLML05] to allow multiple
parties who hold shares of p to compute shares of 1/p and xp = b2κ/pe.

Recall that the secret-key for Π consists of a Θ-bit vector s with Hamming
weight θ. Our first modification to Π is to note that instead of θ, it suffices
to select a vector with Hamming weight in the interval θ ± θ/4. To verify this,
note that the sparse subset-sum problem is assumed to be hard for θ = Θε for
0 < ε < 1; our change does not violate this condition. Also, our new range of
settings for θ does not increase the total degree of the decryption circuit by
more than a factor of 2 and thus the condition that the decryption protocol
is admissible is maintained (and thus the scheme is bootstrappable. See the
computation on p.18 [vDGHV10].) Our approach for producing s is to securely
generate a random number ri in the range [0, Θ] for each si and setting si = 1 if
ri ≤ θ and 0 otherwise.

The public-key consists of the vectors x and u. Using s and xp, we compute
the vector u using the formula u =

∑
i si · ui mod 2κ+1. These shares can be

used to compute the vector y.
Using bits of 1/p computed in previous steps, we generate the xi’s. Recall from

the original public-key generation algorithm that we need to sample xi ← Dγ,ρ(p)

586

Approved for Public Release; Distribution Unlimited.

18

for i = 0, . . . , τ . Intuitively, these xi represent random encryptions of 0 that get
added to our base encryption in the homomorphic scheme. Further, recall that

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : output x← pq + r}.

After sampling, the list should be relabeled so that x0 is the largest. The
key-generation process requires that the process is restarted if either x0 is even or
x0−bx0/pe · p is odd. Since x0 = pq+ r is generated as directed for some random
q and r and since p is an odd number, the requirement that x0 is odd can be
checked by inspecting the least significant bits of the q and r: If q0 + r0 = 1, then
x0 satisfies the first condition. To check the second condition, that x0−bx0/pe · p
is an odd number, we observe that because of the constraints −2ρ < r < 2ρ and
2η−1 ≤ p < 2η, it follows that −2ρ−η+1 < r/p < 2ρ−η+1.

Since ρ = λ and η = Õ(λ2), therefore for all sufficiently large λ (if η = λ2,
then for λ > 2), br/pe = 0 and as a result r can be ignored. That is bx0/qe =
bpq + r/qe = q + br/qe = q. So x0 − bx0/pe · p = x0 − q · p. Because x0 and p are
both odd, q must be odd to make the term x0−bx0/pe ·p even. These constraints
imply that for x0 to be odd and x0 − bx0/pe · p to be even, then q must be even
and r must be odd.

Computing encryptions of s One step in Gentry’s paradigm for FHE construc-
tion requires the public-key to contain an encryption of the secret-key. We
assume circular security of the underlying encryption scheme, as do van Dijk et
al. [vDGHV10] and Gentry [Gen09b]. Towards this goal, we design a protocol
that enables players who hold private shares of the secret-key (as well as the entire
public-key) to compute an encryption of the secret-key under the public-key.
Note this cannot be done trivially with homomorphic evaluation because the
encrypted secret-key is in fact necessary to homomorphically evaluate circuits of
an arbitrary depth, resulting in a circular requirement.

Recall that in Dijk et al. [vDGHV10], the encryption of m under the public-
key 〈x0, . . . , xτ 〉 computes as [m+ 2r + 2

∑
i∈S xi]x0

, where r ∈ (−2ρ
′
, 2ρ

′
) and

S ⊆ {1, . . . , τ} is a random subset. Since both the xi’s and r can take negative
values (as integers) whereas the computation is in a finite field, we need to
somehow make sure the computation in the finite field result in the same integer
value of the encryption of m. To resolve this issue, we compute the value min
which is a unique value that satisfies the following two properties: 1) min = 0
mod x0, and 2) for an arbitrary S and for our set of xi’s and any value of r, it
would make the summation m+ 2r + 2

∑
i∈S xi positive. Because the range of

values that r can take is public, all users can compute min locally and agree on
respective shares. Next, to encrypt the secret-key, all users generate shares for a
set S and the shares for a value r. All users then add their shares of r, use shares
in S to add in appropriate xi’s, and add min.See the full version for details.

Computing encryptions of 0 and 1 for PK The same techniques from the previous
step can be used to produce encryptions of random bits. These encryptions can
then be collaboratively decrypted until both an encryption of 0 and an encryption

587

Approved for Public Release; Distribution Unlimited.

19

of 1 are identified. These two ciphertexts can then be adjoined to the public-key—
they are guaranteed to be well-formed and have the right amount of noise.

References

AJLA+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold fhe. In EU-
ROCRYPT, pages 483–501, 2012. 1, 4, 5

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT,
pages 169–188, 2011. 5

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In CRYPTO, pages 420–432, 1991. 5

BHY09. Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibil-
ity results for encryption and commitment secure under selective opening.
In EUROCRYPT, pages 1–35, 2009. 9, 10, 13

CDD+99. Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and
Tal Rabin. Efficient multiparty computations secure against an adaptive
adversary. In EUROCRYPT, pages 311–326, 1999. 20

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty
computation from threshold homomorphic encryption. In EUROCRYPT,
pages 280–299, 2001. 6, 7, 8, 9, 15

CDSMW08. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee.
Black-box construction of a non-malleable encryption scheme from any
semantically secure one. In TCC, pages 427–444, 2008. 6

DIK10. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure
multiparty computation and the computational overhead of cryptography.
In EUROCRYPT, pages 445–465, 2010. 2

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
pages 643–662, 2012. 3, 5

Gen09a. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig. 1, 2, 5, 8

Gen09b. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169–178, 2009. 10, 18

GLOV12. Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Con-
structing non-malleable commitments: A black-box approach. In FOCS,
pages 51–60, 2012. 6

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. J. Cryptology, 7(1):1–32, 1994. 1, 2

HLOV11. Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien Vergnaud.
Lossy encryption: Constructions from general assumptions and efficient
selective opening chosen ciphertext security. In ASIACRYPT, pages 70–88,
2011. 3, 9, 10

IKK+11. Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez
Petrank. On achieving the “best of both worlds” in secure multiparty
computation. SIAM J. Comput., 40(1):122–141, 2011. 6, 15

588

Approved for Public Release; Distribution Unlimited.

20

JJ00. Markus Jakobsson and Ari Juels. Mix and match: Secure function evalua-
tion via ciphertexts. In ASIACRYPT, pages 162–177, 2000. 6

KLML05. Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of
the mean and related statistics. In TCC, pages 283–302, 2005. 17

LATV11. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. Cloud-
assisted multiparty computation from fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2011:663, 2011. 1, 4, 5

MSas11. Steven Myers, Mona Sergi, and abhi shelat. Threshold fully homomorphic
encryption and secure computation. Cryptology ePrint Archive, Report
2011/454, 2011. http://eprint.iacr.org/. 7, 11, 13, 15

NN01. Moni Naor and Kobbi Nissim. Communication preserving protocols for
secure function evaluation. In STOC, pages 590–599, 2001. 2

vDGHV10. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In EUROCRYPT, pages
24–43, 2010. 4, 8, 17, 18

A Verifiable Secret-Sharing Scheme

A
(

n
n/2+2

)
Verifiable Secret-Sharing scheme consists of a sharing algorithm which

takes as input a secret s and produces n-shares s1, ..., sn. These shares have
the property that for any T ⊂ {1, . . . n}, |T | < n/2 + 2 it is the case that
{si}i∈T is information theoretically independent from s. However, for any S ⊆
{1, . . . n}, |S| ≥ n/2 + 2, it is the case that the reveal algorithm, when given
{si}i∈S , can reconstruct s. In a traditional interactive setting we require that all
non-cheating parties agree on the reconstructed secret. We use a modification
of the Cramer et al. [CDD+99] verifiable secret sharing scheme; we do not need
to deal with interactive adversaries, nor players, so the scheme is significantly
simplified. We present the sharing and revealing algorithms in our full version.

Protocol 2 . [s],VSShare(s)

1: Choose a random degree n/2 + 1 bi-variate polynomial f such that
f(0, 0) = s.

2: Share si = (a, b) = (i, (f(i, 1), . . . , f(i, n)), (f(1, i), . . . , f(n, i))).
3: Output s1, ..., sn.

Protocol 3 . [s],VSReveal(n,n/2+2)(s1, ..., sn/2+2)

1: For each si = (i,ai, bi) ensure that ai and bi are n/2 + 2-consistent
2: If not output ⊥.
3: For each i 6= j ensure sj , si are pairwise-consistent
4: If not output ⊥.
5: Interpolate f , based on shares.
6: Output f(0, 0)

Definition 5. A vector (e1, ..., en) ∈ Fn is n/2 + 2−consistent if there exists a
polynomial w of degree at most n/2 + 1 such that w(i) = ei for 0 ≤ i < n.

589

Approved for Public Release; Distribution Unlimited.

21

Definition 6. Given two shares si = (i,ai = (ai1, . . . , ain), bi = (b1i, . . . , bni))
and sj = (j,aj(aj1, . . . , ajn), bj = (b1j , . . . , bnj)), we say that they are pairwise
consistent if aij = bij and aji = bji.

Definition 7. For our purposes it is useful to note that given the n× n matrix

f(1, 1) f(1, 2) . . . f(1, n)
f(2, 1) f(2, 2) . . . f(2, n)

...
...

. . .
...

f(n, 1) f(n, 2) . . . f(n, n)

 ,

that a share si simply corresponds to the ith row and column of the matrix. We
will call this the matrix representation of the shares. Notice that when given in the
matrix representation, any two shares are necessarily pairwise consistent. Given
a set of n pairwise consistent shares s = (s1, ..., sn), we define Ms as the n× n
matrix representation of the shares.

590

Approved for Public Release; Distribution Unlimited.

Black-box Constructions of Composable Protocols without Set-Up

Huijia Lin∗ Rafael Pass†

Abstract

We present the first black-box construction of a secure multi-party computation protocol
that satisfies a meaningful notion of concurrent security in the plain model (without any set-
up, and without assuming an honest majority). Moreover, our protocol relies on the minimal
assumption of the existence of a semi-honest OT protocol, and our security notion “UC with
super-polynomial helpers” (Canetti et al, STOC’10) is closed under universal composition, and
implies “super-polynomial-time simulation”.

∗MIT and Boston University, E-Mail: huijia@csail.mit.edu.
†Cornell University, E-Mail: rafael@cs.cornell.edu. Pass is supported in part by a Alfred P. Sloan Fellowship,

Microsoft New Faculty Fellowship, NSF CAREER Award CCF-0746990, AFOSR YIP Award FA9550-10-1-0093, and
DARPA and AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US government.

591

Approved for Public Release; Distribution Unlimited.

1 Introduction

The notion of secure multi-party computation allows m mutually distrustful parties to securely
compute (or, realize) a functionality f(x̄) of their corresponding private inputs x̄ = x1, ..., xm, such
that party Pi receives the ith component of f(x̄). Loosely speaking, the security requirements
are that the output of each party is distributed according to the prescribed functionality—this
is called correctness—and that even malicious parties learn nothing more from the protocol than
their prescribed output—this is called privacy. These properties should hold even in case that an
arbitrary subset of the parties maliciously deviates from the protocol.

Soon after the concept was proposed [Yao86], general constructions were developed that ap-
peared to satisfy the intuitive correctness and secrecy for practically any multi-party functionality
[Yao86, GMW87]. These constructions require only authenticated communication and can use any
enhanced trapdoor permutation. However, definitions that capture the security properties of se-
cure multi-party computation protocols (and, in fact, of secure cryptographic protocols in general)
took more time to develop. Here, the simulation paradigm emerged as a natural approach: Orig-
inally developed for capturing the security of encryption and then extended to Zero-Knowledge
[GM84, GMR89]. The idea is to say that a protocol π securely realizes f if running π “emu-
lates” an idealized process where all parties secretly provide inputs to an imaginary trusted party
that computes f and returns the outputs to the parties; more precisely, any “harm” done by a
polynomial-time adversary in the real execution of π, could have been done even by a polynomial-
time adversary (called a simulator) in the ideal process. The simulation paradigm provides strong
security guarantees: It ensures that running the protocols is “as good as” having a trusted third
party computing the functionality for the players, and an adversary participating in the real execu-
tion of the protocols does not gain any “computational advantage” over the simulator in the ideal
process (except from polynomial time advantage). We call this definition basic security.

The original setting in which secure multi-party protocols were investigated, however, only
allowed the execution of a single instance of the protocol at a time; this is the so called stand-alone
setting. A more realistic setting, is one which allows the concurrent execution of protocols. In the
concurrent setting, many protocols are executed at the same time. This setting presents a new risk
of a “coordinated attack” in which an adversary interleaves many different executions of a protocol
and chooses its messages in each instance based on other partial executions of the protocol. To
prevent coordinated attacks, we require the following basic security guarantee:

Concurrent Security: The security properties, correctness and privacy, of the ana-
lyzed protocol should remain valid even when if multiple instance of the protocol are
concurrently executed in a potentially unknown environment.

Another natural desideratum is the capability of supporting modular design of secure protocols.

Modular analysis: The notion of security should support designing composite pro-
tocols in a modular way, while preserving security. That is, there should be a way to
deduce security properties of the overall protocol from security properties of its compo-
nents. This is essential for asserting security of complex protocols.

Unfortunately, these properties are not implied by the basic security. In the literature, the
strongest and also the most realistic formalization of concurrent security is the notion of Univer-
sal Composability (UC) [Can01]: It considers the concurrent execution of an unbounded number
of instances of the analyzed protocol, in an arbitrary, and adversarially controlled, network en-
vironment. It also supports modular analysis of protocols. But, these strong properties come
at a price: Many natural functionalities cannot be realized with UC security in the plain model,
where players only have access to authenticated communication channels; some additional trusted

1
592

Approved for Public Release; Distribution Unlimited.

set-up is necessary [CF01, CKL03]; furthermore, the need for additional trusted set up extends to
any protocol that only guarantees a concurrent extension of basic security [Lin04]. A large body of
works (e.g. [CLOS02, BCNP04, KLP05, CPS07, GO07, Kat07, CDPW07]) have shown that indeed,
with the appropriate trusted set-ups, UC-security becomes feasible. However, in many situations,
trusted set-up is hard to come by (or at least expensive). It is thus important to have a notion of
concurrent security that can be achieved in the plain model.

Concurrent Security in the Plain model. Security with super-polynomial simulators (SPS) [Pas03a]
is a relaxation of UC security that allows the adversary in the ideal execution to run in super-
polynomial time. Informally, this corresponds to guaranteeing that “any polytime attack that can
be mounted against the protocol can also be mounted in the ideal execution—albeit with super-
polynomial resources.” Although SPS security is sometimes weaker than basic security, it often
provides an adequate level of security. In constrast to basic security, however, SPS directly consid-
ers security in the concurrent setting. Protocols that realize practically any functionality with SPS
security in the plain model were shown based on sub-exponential hardness assumptions [Pas03a,
BS05, LPV09]. Very recently, improved constructions are presented [CLP10, GGJS12, LPV12] that
are based on only standard polynomial-time hardness assumptions.

One drawback of SPS security that it is not closed under composition; thus it is not a convenient
basis for modular analysis of protocols. Angel-based UC security [PS04] is a framework for notions
of security that provides similar security guarantees as SPS and at the same supports modular
analysis. Specifically, angel-based security considers a model where both the adversary and the
simulator have access to an oracle (an “angel”) that allows some judicious use of super-polynomial
resources. Since the angels can be implemented in super-polynomial time, for any angel, angel-based
security implies SPS security. Furthermore, akin to UC security, angel-based UC security, with any
angel, can be used as a basis for modular analysis. Prabhakaran and Sahai [PS04] exhibited an angle
with respect to which practically all functionalities can be securely realized; later another angle is
given by [MMY06]; both constructions, however, rely on some non-standard hardness assumptions.

Recently, Canetti, Lin and Pass [CLP10] proposed a new notion of security, called UC with
super-polynomial time helpers. This notion is very similar to the angel-based security where both
the adversary and the simulator have access to a helper that provides some super-polynomial time
help through a limited interface. Like angel-based security, UC security with super-polynomial
time helpers implies SPS security. But, unlike angel-based security where angels are basically non-
interactive and stateless, the helpers are highly interactive and stateful. Canetti, Lin and Pass
[CLP10] then constructed protocols that realize practically all functionalities with respect to a par-
ticular super-polynomial-time interactive helper, based on the existence of trapdoor permutations.

Summarizing the state-of-the-art, there are constructions [CLP10, GGJS12, LPV12] of protocols
satisfying a meaningful notion of concurrent security—SPS security—in the plain model based on
standard polynomial time hardness assumptions. Furthermore, the construction of [CLP10] also
supports modular analysis (the constructions of [GGJS12, LPV12] are better in terms of round-
complexity—they only require a constant number of communication rounds—but they only acheives
“non-composable” SPS security).

However, all these constructions are non-black-box, that is, the constructed protocols make non-
black-box use of the underlying primitives. In fact, these constructions all follow the ”Feige-Shamir”
paradigm [FS90]: The protocols contain “trapdoors” embedded into the messages of the protocol,
allowing a super-polynomial time simulator to extract the trapdoor and simulate messages in the
protocol by ”proving that it knows the trapdoor”. In general, protocols following this approach
seems hard to turn into a ”practical” protocol for secure computations; as such, there result should
only be viewed as “feasibility results” regarding concurrent secure computation without set-up, but
not candidates for practical purposes.

In contrast, black-box constructions that only use the underlying primitives through their in-

2
593

Approved for Public Release; Distribution Unlimited.

put/output interfaces, are often much more efficient and are more suitable for implementation.
Therefore, a series of recent works [DI05, IKLP06, IPS08, LP07, Wee10, Goy11] have focused on
constructing black-box construction of secure computation protocols, as an important step towards
bringing secure multi-party computation closer to the practice. However, their constructions are
all in either the stand-alone setting or rely on strong trusted set-ups (e.g., trusted hardware). This
leaves open the following basic question:

Can we obtain a black-box construction of concurrently secure protocols in the plain
model (preferrably based only standard polynomial-time assumptions)?

Can we have such a black-box construction that also satisfies a notion of security sup-
porting composability?

1.1 Our Results

We present a black-box construction of protocols that satisfy UC security with super-polynomial
time helper for a specific helper, based on the existence of a stand-alone semi-honest oblivious
transfer (OT) protocols; that is, the weakest possible assumption. The framework of UC with
super-polynomial time helper of [CLP10] is formalized through the extended UC (EUC) framework
of [CDPW07]; it is identical to the standard UC model [Can00] except that the corrupted parties
(and the environement) have access to an additional super-polynomial time entityH, called a helper
functionality.

Main Theorem (Informally Stated): Assume the existence of stand-alone semi-honest oblivious
transfer protocols. Then there exists a sub-exponential-time computable interactive machine H such
that for any “well-formed” polynomial-time functionality F , there exists a protocol that realizes F
with H-EUC security, in the plain model. Furthermore, the protocol makes only black-box calls to
the underlying oblivious transfer protocol.

As far as we know, this is the first black-box construction of secure multi-party computation
protocols that achieve any non-trivial notion of concurrent security in the plain model (without
any trusted-set up, and without assuming an honest majority).

The main technical tool used in our construction is a new notion of a commitment that is
secure against adaptive chosen commitment attack (CCA security). The notion of CCA secure
commitments was previously introduced in [CLP10]. Roughly speaking, a tag-based commitment
scheme (i.e., commitment scheme that take an identifier—called the tag—as an additional input)
is said to be CCA-secure if the value committed to using the tag id remains hidden even if the
receiver has access to a (super-polynomial time) oracle that “breaks” commitments using any tag
id′ 6= id, where by breaking, it means the oracle returns a decommitment of the commitment. Thus
the oracle is called a decommitment oracle. In [CLP10], a commitment scheme that is CCA-secure
w.r.t. a decommiment oracle is constructed based on the minimal assumption of one-way functions.
However, their construction is non-black-box. In this work, to obtain black-box secure computation
protocols, we need a new black-box construction of a CCA-secure commitment scheme. Towards
this, we weaken the notion of CCA security w.r.t. decommitment oracle to instead consider an
oracle that “breaks” commitments by returning only the unique committed value (and not the
decommitment information) of the commitments (or ⊥ if there is no unique committed value); we
call this the committed-value oracle. We then provide a black-box construction of a commitment
scheme that is CCA-secure w.r.t. the committed-value oracle.

Theorem (Informally Stated): Assume the existence of one-way functions. Then, for every
ε > 0, there exists an O(nε)-round commitment scheme that is CCA-secure w.r.t. the committed-
value oracle and only relies on black-box access to one-way functions (where n is the security
parameter).

3
594

Approved for Public Release; Distribution Unlimited.

We next show that the notion of CCA-secure commitments intuitively is better behaved than
traditional notions of non-malleability [DDN00] in the context of black-box construction of concur-
rently secure protocol. On a very high-level (and significantly oversimplifying), CCA security of
commitment schemes allow us to deal with “cut-and-choose” techniques (typically used in black-box
constructions) in concurrent executions, while ensuring hiding of commitments in other executions.

1.2 Outline

In Section 2, we define the notion of CCA-security w.r.t. the committed-value oracle. (Notations
and definitions of basic primitives appear in Appendix A.) In Section 4, we present our black-box
robust CCA-secure commitment scheme; and provide the proof of security in Appendix B. We
recall the notion of UC security with super-polynomial time helper in Appendix C, and show how
to achieve this security notion using CCA-secure commitments in a black-box way in Section 3.

2 Definition of CCA-Secure Commitments

We assume familiarity with the definition of commitment schemes and the statistically/computational
binding and statistically/computational hiding properties. Unless specified otherwise, by a com-
mitment scheme, we mean one that is statistically binding and computationally hiding. A tag-based
commitment schemes with l(n)-bit identities [PR05, DDN00] is a commitment scheme where, in
addition to the security parameter 1n, the committer and the receiver also receive a “tag”—a.k.a.
the identity—id of length l(n) as common input.

2.1 CCA-Security w.r.t. Committed Value Oracle

Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit identities. A committed-value oracle
O of 〈C,R〉 acts as follows in interaction with an adversary A: it participates with A in many
sessions of the commit phase of 〈C,R〉 as an honest receiver, using identities of length l(n), chosen
adaptively by A. At the end of each session, if the session is valid, it reveals the unique committed
value of that session to A; otherwise, it sends ⊥. (If a session has multiple committed values,
the decommitment oracle also returns ⊥. The statistically binding property guarantees that this
happens with only negligible probability.) Loosely speaking, a tag-based commitment scheme
〈C,R〉 is said to be CCA-secure w.r.t. the committed-value oracle, if the hiding property of the
commitment holds even with respect to adversaries with access to the committed-value oracle O.
More precisely, denote by AO the adversary A with access to the committed-value oracle O. Let
INDb(〈C,R〉, A, n, z), where b ∈ {0, 1}, denote the output of the following probabilistic experiment:
on common input 1n and auxiliary input z, AO (adaptively) chooses a pair of challenge values
(v0, v1) ∈ {0, 1}n—the values to be committed to—and an identity id ∈ {0, 1}l(n), and receives a
commitment to vb using identity id. Finally, the experiment outputs the output y of AO; the output
y is replaced by ⊥ if during the execution A sends O any commitment using identity id (that is,
any execution where the adversary queries the decommitment oracle on a commitment using the
same identity as the commitment it receives, is considered invalid). Let

Definition 1 (CCA-secure Commitments.). Let 〈C,R〉 be a tag-based commitment scheme with
l(n)-bit identities. We say that 〈C,R〉 is CCA-secure w.r.t. the committed-value oracle, if for every
PPT ITM A, the following ensembles are computationally indistinguishable:

• {IND0(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗

• {IND1(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗

4
595

Approved for Public Release; Distribution Unlimited.

2.1.1 k-Robustness w.r.t. Committed-Value Oracle

Consider a man-in-the-middle adversary that participates in an arbitrary left interaction with a
limited number of rounds, while having access to a committed oracle. Roughly speaking, 〈C,R〉 is
k-robust if the (joint) output of every k-round interaction, with an adversary having access to the
oracle O, can be simulated without the oracle. In other words, having access to the oracle does not
help the adversary in participating in any k-round protocols much.

Definition 2. Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit identities. We say that
〈C,R〉 is k-robust w.r.t. the committed-value oracle, if there exists a simulator S, such that, for every
PPT adversary A, the following two conditions hold.

Simulation: For every PPT k-round ITM B, the following two ensembles are computationally
indistinguishable.

•
{

outputB,AO [〈B(y), AO(z)〉(1n, x)]
}
n∈N,x,y,z∈({0,1}∗)3

•
{

outputB,SA [〈B(y), SA(z)〉(1n, x)]
}
n∈N,x,y,z∈({0,1}∗)3

where outputA,B[〈B(y), A(z)〉(x)] denote the joint output of A and B in an interaction between
them, on common input x and private inputs z to A and y to B respectively, with uniformly
and independently chosen random inputs to each machine.

Efficiency: There exists a polynomial t and a negligible function µ, such that, for every n ∈ N ,
z ∈ {0, 1}∗ and x ∈ {0, 1}∗, and every polynomial T , the probability that S with oracle access

to A(z) and on input 1n, x, runs for more than T (n) steps is smaller than t(n)
T (n) + µ(n).

The following proposition shows that to construct a robust CCA-secure commitment scheme
for identities of length n, it suffices to construct one for identities of length `(n) = nε. The same
proposition is established in [CLP10] for robust CCA-security w.r.t. decommitment oracles, and
the proof there also applies to CCA-security w.r.t. committed-value oracles; we omit the proof here.

Proposition 1. Let ε be any constant such that 0 < ε < 1, ` a polynomial such that `(n) = nε, and
〈C,R〉 a k-round robust CCA-secure commitment scheme (w.r.t. the committed-value oracle) with
`-bit identities. Then assuming the existence of one-way functions, there exists a robust k+1-round
CCA-secure commitment scheme 〈Ĉ, R̂〉 (w.r.t. the committed-value oracle) with n-bit identities.

3 Black-Box UC-Secure Protocols with Super-Polynomial Helpers

We consider the model of UC with super-polynomial helper introduced in [CLP10]. At a very high-
level, this model is essentially the same as the UC-model introduced by [Can00], except that both
the adversary and the environment in the real and ideal worlds have access to a super-polynomial
time functionality that acts as a helper. A formal definition of the model is presented in Appendix C.
In this section, we show the following theorem:

Theorem 1. Let δ be any positive constant. Assume the existence of a T ′OT -round stand-alone semi-
honest oblivious transfer protocol. Then there exists a super-polynomial time helper functionality H,
such that, for every well-formed functionality1 F , there exists a O(max(nδ, T ′OT))-round protocol Π
that H-EUC-emulates F . Furthermore, the protocol Π only uses the underlying oblivious transfer
protocol in a black-box way.

1See [CLOS02] for a definition of well-formed functionalities.

5
596

Approved for Public Release; Distribution Unlimited.

Towards this theorem, we need to first exhibit a super-polynomial time helper functionality
H. Roughly speaking, H simply acts as the committed-value oracle of a CCA secure commitment
scheme. More precisely, consider the following two building blocks: First, given any T ′OT (n)-
round stand-alone semi-honest OT protocol, it follows from previous works [IKLP06, Hai08] that
there exists an TOT (n)-round OT protocol 〈S,R〉 that is secure against a malicious sender and
a semi-honest receiver—called mS-OT protocol for short—that only relies on black-box access to
the semi-honest OT protocol; furthermore TOT = O(T ′OT (n)). Second, we need a TOT (n)-robust
CCA-secure commitment scheme 〈C,R〉, whose committed-value oracle O can be computed in sub-
exponential time.2 As we will show in the next section (see Theorem 2), such a protocol exists with
O(max(TOT , n

δ)) = O(max(T ′OT , n
δ)) rounds, relying on the underlying OWF in a black-box way.

Since OWFs can be constructed from a semi-honest OT protocol in a black-box way. Therefore,
we have that the second building block can also be based on the semi-honest OT protocols in a
black-box way.

Consider a helper functionality H that “breaks” commitments of 〈C,R〉 in the same way as its
committed-value oracle O does, subject to the condition that player Pi in a protocol instance sid
can only query the functionality on commitments that uses identity (Pi, sid). More precisely, every
party Pi in a secure computation can simultaneously engage with H in multiple sessions of the
commit phase of 〈C,R〉 as a committer using identity Pi, where the functionality simply forwards
all the messages internally to the committed-value oracle O, and forwards Pi the committed value
returned from O at the end of each session. Since the committed-value oracle O can be computed
in sub-exponential time, this functionality can also be implemented in sub-exponential time. A
formal description of the functionality appears in Figure 6 in Appendix D.

We show that Theorem 1 holds w.r.t. the helper functionality defined above in two steps.
First, note that to realize any well-formed functionality in a black-box way, it suffices to realize
the ideal oblivious transfer functionality FOT [Rab05, EGL85]. This is because it follows from
previous works [Kil92, BOGW88, GMW91, IPS08] that every functionality can be UC securely
implemented in the FOT -hybrid model, even w.r.t. super-polynomial time environments. Based on
previous works, [CLP10] further shows that by considering only dummy adversaries and treating
environments with access to a super-polynomial functionality H as sub-exponential time machines,
we have that every functionality can be H-EUC securely implemented in the FOT model. Formally,
we have the following lemma from [CLP10].

Lemma 1. Fix any super-polynomial time functionality H. For every well-formed functionality F ,
there exists a constant-round FOT -hybrid protocol that H-EUC-emulates F .

Next we show how to implement the FOT functionality in the H-EUC model. Then combining
with Lemma 1, we conclude Theorem 1.

Lemma 2. Let δ be any positive constant. Assume the existence of a T ′OT -round semi-honest
oblivious transfer protocol. Then there exists a O(max(nδ, T ′OT))-round protocol ΠOT that H-EUC-
emulates FOT. Furthermore, the protocol ΠOT only uses the underlying oblivious transfer protocol
in a black-box way.

3.1 Overview of the OT Protocol ΠOT

In this section we first provide an overview of our black-box construction of H-EUC secure OT
protocol ΠOT, in comparison with the black-box construction of an OT protocol secure against
both malicious players from a mS-OT protocol of [IKLP06, Hai08]. Roughly speaking, the protocol

2This can be instantiated by simply using a normal TOT -robust CCA secure commitments with an exponential
time committed value O, with a “scaled-down” security parameter.

6
597

Approved for Public Release; Distribution Unlimited.

of [IKLP06, Hai08], relying on a stand-alone mS-OT protocol 〈S,R〉, proceeds in the following four
stages:

Stage 1 (Receiver’s Random Tape Generation) The sender and the receiver jointly decide
the receiver’s inputs and random tapes in Stage 2 using 2n parallel “coin tossing in the well”
executions.

Stage 2 (OT with Random Inputs) The sender and the receiver perform 2n parallel OT exe-
cutions of 〈S,R〉 using random inputs (s0

j , s
1
j) and rj respectively, where the receiver’s inputs

rj ’s (and its random tapes) are decided in Stage 1.

Stage 3 (Cut-and-Choose) A random subset Q ⊂ [2n] of n locations is chosen using a 3-round
coin-tossing protocol where the sender commits to a random value first. (Thus the receiver
knowing that random value can bias the coin-tossing output.) The receiver is then required
to reveal its randomness in Stage 1 and 2 at these locations, which allows the sender to check
whether the receiver behaved honestly in the corresponding OT executions. The randomness
of the receiver at the rest of locations remains hidden.

Stage 4 (OT Combiner) Finally, for these locations j 6∈ Q that are not open, the receiver sends
αj = u⊕cj where u is the receiver’s true input. The sender replies with β0 = v0⊕ (

⊕
j 6∈Q s

αj
j)

and β1 = v1 ⊕ (
⊕

j 6∈Q s
1−αj
j). The honest receiver obtains s

cj
j ’s through the OT execution,

and thus can always recover vu.

At a very high-level, the protocol of [IKLP06, Hai08] augments security of the mS-OT protocol
〈S,R〉 to handle malicious receivers, by adding the cut-and-choose (as well as the random tape
generation) stage to enforce the adversary behaving honestly in most (Stage 2) OT executions.
(This is in a similar spirit as the non-black-box approach of requiring the receiver to prove that it
has behaved honestly.) Then the security against malicious receivers can be based on that against
semi-honest receivers of 〈S,R〉.

Wee [Wee10] further augmented the stand-alone security of the protocol of [IKLP06, Hai08]
to achieve parallel security, that is, obtaining a protocol that is secure against man-in-the-middle
adversaries that simultaneously acts as sender and receiver in many parallel executions. Towards
this, Wee instantiates the commitments in the coin-tossing sub-protocols of the protocol of [IKLP06,
Hai08], with ones that are satisfy a notion of “non-malleable w.r.t. extraction”. Roughly speak-
ing, non-malleability w.r.t. extraction [Wee10] is a weaker notion than non-malleability of [DDN00,
LPV08]; it guarantees that no matter what values the adversary is receiving commitments to, the
committed values extracted out of the commitments from the adversary (with over-extraction)
are indistinguishable. This guarantees that a simulator can bias the coin-tossing output by ex-
tracting the committed values from the adversary while the adversary cannot, as otherwise, by
non-malleability w.r.t. extraction, it could do so even if the honest player sends a commitment to 0
instead of its true random challenge q. However, this is impossible as in this case no information of q
is revealed. In other words, the coin-tossing protocol when instantiated with a non-malleable w.r.t.
extraction commitment becomes parallel secure, relying which Wee shows that the OT protocol
also becomes parallel secure.

Towards H-EUC-Secure OT protocols, we need to further overcome two problems.
First, we need to go from parallel security to concurrent security. In other words, we need

coin-tossing protocols that are concurrently secure. Informally speaking, non-malleability w.r.t. ex-
traction guarantees that the simulator can extract the committed values of commitments from the
adversary (to bias the output of the coin-tossing) while keeping the commitment to the adversary
hiding amid rewindings (to ensure that the adversary cannot bias the output). However, this only
holds in the parallel setting, as non-malleability only guarantees hiding of a commitment when

7
598

Approved for Public Release; Distribution Unlimited.

values of the commitments from the adversary are extracted in parallel at the end of the execution.
But, in the concurrent setting, the simulator needs to extract the committed values from the ad-
versary in an on-line manner, that is, whenever the adversary successfully completes a commitment
the committed value is extracted. To resolve this problem, we resort to CCA-secure commitments,
which guarantees hiding of a commitment even when the committed values are extracted (via the
committed-value oracle) concurrently and immediately after each commitment. Now, instantiat-
ing the commitment scheme in the coin-tossing protocols with a CCA-secure commitment yields a
coin-tossing protocol that is concurrently secure.

The second problem is that to achieve H-EUC-security (similar to UC-security), we need to
design a protocol that admits straight-line simulation. The simulator of a OT protocol has three
tasks: It needs to simulate the messages of the honest sender and receiver, extract a choice from the
adversary when it is acting as a receiver, and extract two inputs when it is acting as a sender. To
achieve the first two tasks, the original simulation strategy in [IKLP06, Hai08, Wee10] uses rewind-
ings to breaking the non-malleable commitments from the adversary to bias coin-tossing. When
using CCA-secure commitments, the simulator can extract the committed values in a straight-line,
by forwarding the commitment from the adversary to the helper functionality H that breaks the
CCA commitments using brute force. For the last task, the original simulation strategy uses the
simulator of the mS-OT protocol 〈S,R〉 against malicious senders to extract the adversary’s inputs
sbj ’s in the Stage 3 OT executions, which then allows extraction of the real inputs v0 and v1 from
the last message. However, the simulator of the mS-OT protocol may use rewindings. To solve
this, one way is to simply assume a mS-OT protocol that has a straight-line simulator. We here
however, present a different solution.

In our protocol, the sender and the receiver participate in parallel “coin tossing in the well”
executions to decide the sender’s random inputs sbj (and random tapes) in the Stage 3 OT executions
(besides the receiver’s inputs and random tapes). Since the simulator can bias the coin-tossing in
a straight line, it can determine the sender’s inputs sbj ’s, which allows extraction of the sender’s
true inputs. For this to work, we need to make sure that a malicious sender would indeed uses
the outputs of coin-tossing as inputs in the OT executions. Towards this, we again use the cut-
and-choose technique: After the OT execution, the sender is required to reveal its randomness in
the coin-tossing and OT execution at a randomly chosen subset of locations. The cut-and-choose
technique guarantees that a malicious sender will behave consistently in most OT executions.
Therefore the simulator extracts (through the coin-tossing executions) the inputs sbj ’s correctly at
most locations. However, in the protocol of [IKLP06, Hai08, Wee10], to recover the real inputs v0

and v1, the simulator needs to obtain all sbj ’s correctly. To bridge the gap, we modify the protocol to

have the sender compute a random secret-sharing
{
abj

}
of each input vb and hide each share using

the appropriate sbj , that is, it sends abj ⊕ sb⊕αj for every j (that is not open in the cut-and-choose

procedures). Then, the simulator, able to extract most sbj ’s correctly, can recover enough shares
to decode to the real inputs correctly. In contrast, a malicious receiver that is enforced to behave
honestly in most OT executions by the cut-and-choose procedure, cannot obtain enough shares for
both inputs and thus can only recover one of them. Finally, we remark that as in [Wee10], to avoid
over-extraction from the secret shares, we use the technique used in [CDSMW08, CDSMW09],
which adds a another cut-and-choose procedure. A formal description of our OT protocol ΠOT

that implements FOT is provided in Figure 1; a formal proof of security of ΠOT (i.e., Lemma 2)
appears in Appendix D.1.

8
599

Approved for Public Release; Distribution Unlimited.

OT protocol ΠOT

Inputs: The sender and receiver receive common input a security parameter 1n and private inputs (v0, v1)
and u ∈ {0, 1} respectively.

Stage 1: The sender chooses a random subset ΓR ⊆ [20n] of size n and commits to ΓR using 〈C,R〉.
The receiver chooses a random subset ΓS ⊆ [20n] of size n and another random subset Γ ⊆ [18n] of
size n; it then commits to both ΓS and Γ using 〈C,R〉.

Stage 2 (Coin-Tossing):

Receiver Random-Tape Generation: The receiver chooses 20n random strings (aR1 , . . . a
R
20n) and

commits to them using 〈C,R〉. The sender sends 20n random strings (bR1 , . . . b
R
20n). The receiver

calculates rRi = aRi ⊕ bRi for every i ∈ [20n], and interprets rRi as ci‖τRi , where ci will be used as the
receiver’s input bit, and τRi the random tape in the OT executions below.

Sender Random-Tape Generation: The sender chooses 20n random strings (aS1 , . . . a
S
20n) and commits

to them using 〈C,R〉. The receiver sends 20n random strings (bS1 , . . . b
S
20n). The sender calculates

rSi = aSi ⊕ bSi for every i ∈ [20n], and interprets rSi as s0
i ‖s1

i ‖τSi , where s0
i and s1

i will be used as the
sender’s two input bits, and τSi the random tape in the OT executions below.

Stage 3 (OT with Random Inputs): The sender and the receiver participates in 20n executions of
the OT protocol 〈S,R〉 in parallel, where the sender acts as S and the receiver acts as R. In the ith

execution of 〈S,R〉, the sender uses inputs s0
i , s

1
i and random tape rSi and the receiver uses input ci

and random tape rRi . At the end of the execution, the receiver obtains outputs s̃1 . . . s̃20n.

Stage 4 (Cut-and-Choose—Honesty Checking):

Sender Honesty Checking: The receiver opens ΓS and sender responds as follows: for every j ∈ ΓS ,
the sender opens the jth commitments of 〈C,R〉 in Stage 2 to ãSj . The receiver checks if the openings

are valid, and if for every j ∈ ΓS , the sender acted honestly in the jth OT execution according to
ãSj ⊕ bSj . The receiver aborts if not.

Receiver Honesty Checking: The sender opens ΓR and receiver responds as follows: for every j ∈ ΓR,
the receiver opens the jth commitments of 〈C,R〉 in Stage 2 to ãRj . The sender checks if the openings

are valid and if for every j ∈ ΓR, the receiver acted honestly in the jth OT execution according to
ãRj ⊕ bRj . The sender aborts if not.

Stage 5 (Combiner): Set ∆ = [20n]−ΓR−ΓS (i.e., ∆ is the set of unopened locations). For every i ∈ ∆
The receiver computes αi = u ⊕ ci and sends αi. The sender responds as follows: It computes a
10n-out-of-18n secret-sharing of v0; without loss of generality, we index shares in that secret-sharing
with elements in ∆; let the secret-sharing be ρ0 =

{
ρ0
i

}
i∈∆

. Similarly, it also computes a 10n-out-

of-18n secret-sharing ρ1 =
{
ρ1
i

}
i∈∆

for v1. Then the sender computes βbi = ρbi ⊕ sb⊕αi
i for every

i ∈ ∆ and sends back all the βbi ’s.

The receiver after receiving all the βbi ’s, computes shares corresponding to the uth input as ρ̃i =
βui ⊕ s̃i for every i ∈ ∆, and sets ρ̃ = {ρ̃i}i∈∆.

Stage 6 (Cut-and-Choose—Consistency Checking): The receiver opens to Γ. Then for every j ∈
Γ ∩∆, the sender reveals the two inputs ŝ0

j and ŝ1
j and random tape τ̂Sj that it uses in the jth OT

execution in Stage 3. The receiver checks if the sender acts honestly according to input (ŝ0
j , ŝ

1
j) and

random tape τ̂Sj and aborts if not.

Finally the receiver checks whether ρ̃ computed in Stage 5 is 17n-close to a valid codeword w (that

is, it agrees with w at 17n locations), and if for every j ∈ Γ ∩∆, wj is equal to βuj ⊕ ŝ
u⊕αj

j . If so it
outputs the value v encoded in w; otherwise, it aborts.

Figure 1: Our OT protocol ΠOT that implements FOT in the H-EUC model

9
600

Approved for Public Release; Distribution Unlimited.

4 Black-Box Robust CCA-Secure Commitments

In this section, we present a black-box construction of a robust CCA-secure commitment scheme
w.r.t. committed-value oracle based on one-way functions. For simplicity of exposition, the presen-
tation below relies on a non-interactive statistically binding commitment scheme com; this can be
replaced with a standard 2-round statistically binding commitment scheme using standard tech-
niques3. Our construction makes use of previous black-box constructions of extractable commit-
ments and trapdoor commitment scheme. So let’s start by reviewing them.

Extractable Commitments Intuitively, an extractable commitment is one such that for any
machine C∗ sending a commitment, a committed value can be extracted from C∗ if the commitment
it sends is valid; otherwise, if the commitment is invalid, then no guarantee is provided, that is, an
arbitrary garbage value may be extracted. This is known as the “over-extraction” problem. (See
Appendix A.7 for a formal definition.) As shown in [PW09], the following protocol used in the
works of [DDN00, PRS02, Ros04] (also [Kil88]) yields a black-box extractable commitment scheme
ExtCom: To commit to a value v ∈ {0, 1}m, the committer and receiver on common input a security
parameter 1n, proceed as follows:

Commit: The committer finds n pairs of random shares
{
vi0, v

i
1

}
i∈[n]

that sum up to v, (i.e., vi0⊕
vi1 = v for all i ∈ [n]) and commits to them in parallel using the non-interactive statistically
binding commitment scheme com. Let cib be the commitment to vib.

Challenge: The receiver sends a n-bit string ch ∈ {0, 1}n sampled at random.

Reply: The committer opens commitments cichi for every i ∈ [n].

To decommit, the sender sends v and opens the commitments to all n pairs of strings. The receiver
checks whether all the openings are valid and also v = vi0 ⊕ vi1 for all i.

It is proved in [PW09] that ExtCom is extractable. Furthermore, the commitment scheme has
the property that from any two accepting transcripts of the commit stage that has the same commit
message but different challenge messages, the committed value can be extracted. This property is
similar to the notion of special-soundness for interactive proof/argument systems; here we overload
this notion, and refer to this special extractability property of ExtCom as special-soundness.

In our construction, we will actually need an extractable commitment scheme to a string σ ∈
{0, 1}m for which we can open any subset of the bits in σ without compromising the security (i.e.
hiding) of the remaining bits. As shown in [PW09], we may obtain such a scheme PExtCom by
running ExtCom to commit to each bit of σ in parallel. It is easy to see that PExtCom is also
special-sound in the sense that, given two accepting transcripts of PExtCom that have the same
commit message and two challenge messages that contain a pair of different challenges for every
ExtCom commitment, the committed string σ can be extracted. We call such two transcripts a pair
of admissible transcripts for PExtCom.

Trapdoor Commitments Roughly speaking, a trapdoor commitment scheme is a computation-
ally biding and computationally hiding commitment scheme, such that, there exists a simulator
that can generate a simulated commitment, and later open it to any value. (See Appendix A.8 for
a formal definition.) Pass and Wee [PW09] presented a black-box trapdoor bit commitment scheme
TrapCom. To commit to a bit σ, the committer and the receiver on common input 1n do:

Stage 1: The receiver picks a random string challenge e = (e1, . . . , en) and commits to e using the
non-interactive statistically binding commitment scheme com.

3This can be done by sending a first message of a 2-round commitment scheme at the beginning of the protocol,
and using the second message of the 2-round commitment scheme w.r.t. that first message as a non-interactive
commitment in the rest of the protocol.

10
601

Approved for Public Release; Distribution Unlimited.

Stage 2: The committer prepares v1, . . . , vn. Each vi is a 2× 2 0,1-matrix given by
(
v00
i v01

i
v10
i v11

i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)

where ηi is a random bit. The sender commits to v1, . . . , vn using PExtCom (i.e., committing
using ExtCom bit by bit in parallel). In addition, the sender prepares (a0

1, a
1
1), . . . , (a0

n, a
1
n)

where aβi is the opening to vβ0
i , vβ1

i (i.e., either the top or bottom row of vi).

Stage 3: The receiver opens to the challenge e = (e1, . . . , en); the sender responds with ae11 , . . . , a
en
n .

To decommit, the sender sends σ. In addition, it chooses a random γ ∈ {0, 1}, sends γ, sends the

openings to values v0γ
i , v

1γ
i for i = 1, 2, . . . , n (i.e., either the left columns or the right columns of

all the matrices). The receiver checks that all the openings are valid, and also that σ = v0γ
1 ⊕v1γ

1 =

· · · = v0γ
n ⊕ v1γ

n .
As shown in [PW09], the protocol TrapCom is trapdoor, following a Goldreich-Kahan [GK96]

style proof; moreover, by running TrapCom in parallel, we obtain a trapdoor commitment scheme
PTrapCom for multiple bits. Furthermore, since Stage 2 of the protocol TrapCom is simply an
execution of PExtCom, given any two admissible transcripts of Stage 2, the matrices v1, . . . , vn
prepared in Stage 2 can be extracted; we show that from these matrices, the actual bit committed
in the TrapCom commitment can be extracted, provided that the commitment is valid and has
a unique committed value. We call this, again, the special-soundness of TrapCom. It is easy to
see that the notion of special soundness (and admissible transcripts) can be easily extended for
PTrapCom. The formal definition and proof of special-soundness of TrapCom (and PTrapCom)
appear in Appendix B.1.

4.1 Overview of Our Construction

The CLP Construction: At a very high level, the CLP construction proceeds by having the
committer first commit to the value v using a normal statistically binding commitment com, followed
by a sequence of poly(n)WISSP proofs of the committed value. TheWISSP proofs are the non-
black-box component of the CLP construction, but are crucial for achieving CCA-security. Recall
that proving CCA-security w.r.t. O amounts to showing that the views of A in experiments IND0

and IND1 are indistinguishable (when A has oracle access to O). Let us refer to the adversary’s
interaction with C as the left interaction, and its interactions with O as the right interactions.
The main hurdle in showing the indistinguishability of IND0 and IND1 is that the oracle O is not
efficiently computable; if it were, indistinguishability would directly follow from the hiding property
of the left interaction. The main idea of the security proof of [CLP10] is then to implement the
oracle O by extracting the committed values from the adversary, via “rewinding” the special-sound
proofs in the right interactions. The two main technical challenges arises in simulating oracle O.

First, once the simulation starts rewinding the right interactions, A might send new messages
also in the left interaction. So, if done naively, this would rewind the left interaction, which
could violate its hiding property. To solve this problem, the CLP protocol schedules messages
in the special-sound proofs using a special message scheduling (according to the identity of the
commitment), called the CLP scheduling, which is a variant of the message scheduling technique
of [DDN00, LPV08]. The special message scheduling ensures that for every accepting right inter-
action with an identity that is different from the left interaction, there exists many points—called
safe-points—in the interaction, from which one can rewind the right interaction without requesting
any new message in the left interaction.

Second, in the experiment INDb, the adversary A expects to receive the committed value at
the very moment it completes a commitment to its oracle. If the adversary “nests” its oracle

11
602

Approved for Public Release; Distribution Unlimited.

calls, these rewindings become recursive and the running-time of the extraction quickly becomes
exponential. To avoid the extraction time from exploding, the simulation strategy in CLP rewinds
from safe-points using a concurrent extraction strategy that is similar to that used in the context
of concurrent ZK by Richardson and Killian [RK99].

New Approach: To obtain a black-box construction, our main goal is to replace the WISSP
proofs with an “equivalent” black-box component. The key property that the CLP proof relies
on is that the protocol contains many 3-round constructs satisfying that rewinding the last two
messages reveals the committed value, but rewinding three messages reveals nothing. It seems
that the 3-round commitment scheme PExtCom is a good replacement of WISSP proofs as one
such 3-round construct: The special-soundness property of PExtCom ensures that rewinding the
last two messages reveals the committed value, and the hiding property ensures that rewinding
three messages reveals nothings. It is thus tempting to consider a commitment scheme in which the
committer commits to value v using poly(n) invocations of PExtCom, arranged according to the CLP
scheduling; the CLP extraction strategy guarantees that for every accepting right interaction, (the
last two messages of) one PExtCom commitment is rewound and a committed value is extracted.
Indeed, if a commitment of this scheme is valid, meaning that all the PExtCom commitments
contained in it are valid commitments to the same value, the CLP extraction strategy returns the
unique committed value. However, if the commitment is invalid, there arises the over-extraction
problem: The CLP extraction strategy may extract a garbage value from an invalid PExtCom
commitment or from a valid commitment that is inconsistent with the other commitments.

To solve the over-extraction problem, we use the cut-and-choose technique to enforce the com-
mitter to give valid and consistent PExtCom commitments. Instead of having the committer commit
to v directly, let it commit to a (n + 1)-out-of-10n Shamir’s secret sharing s1, . . . , s10n of v using
many PExtCom invocations, still arranged according to the CLP scheduling; we refer to all the
commitments to the jth share sj the jth column. After all the PExtCom commitments, the receiver
requests the committer to open all the commitments in n randomly chosen columns; the receiver
accepts only if each column contains valid commitments to the same value. It follows from the cut-
and-choose technique that except with negligible probability, at most n columns may contain invalid
or inconsistent commitments. Therefore, when applying the CLP extraction strategy on a commit-
ment of this scheme, it guarantees to extract out a secret-sharing that is .9-close to all the secret-
sharing committed to in this commitment. Then by relying on the error-correcting property of the
secret sharing, a valid committed value can be reconstructed. The formal analysis is actually more
subtle; to avoid over-extraction, we employ the technique used in [CDSMW08, CDSMW09, Wee10],
which involves setting the validity condition of the commitment scheme carefully so that invalid
commitment can be identified. We refer the reader to Appendix B.3 for more details.

Unfortunately, our use of the cut-and-choose technique brings another problem: The above
commitment scheme may not be hiding. This is because, in the last stage, the receiver may request
the committer to open an adaptively chosen subset of commitments of PExtCom, the remaining
unopened commitments may not be hiding, unless PExtCom were secure against selective opening
attack. To resolve this problem, we use the trapdoor commitment scheme PTrapCom to replace
PExtCom. Since PTrapCom is trapdoor, it is secure against selective opening attack, and thus
the hiding property holds. Furthermore, since Stage 2 of PTrapCom is simply a commitment of
PExtCom, we can use Stage 2 of PTrapCom as an implementation of the 3-round construct needed
for the CLP scheduling and extraction strategy. More precisely, the commitment scheme proceeds
as follow: The committer commits to a (n+ 1)-out-of-10n secret sharing of the value v using many
invocations of PTrapCom, where all the invocations share the same Stage 1 message sent at the
beginning, followed by all the 3-round Stage 2 executions arranged according to the CLP scheduling,
and then all the Stage 3 executions performed in parallel; finally, the committer and the receiver
conducts a cut-and-choose consistency check as described above.

12
603

Approved for Public Release; Distribution Unlimited.

It seems that the security proof of our CCA-secure commitment should follow from that of the
non-black-box construction of [CLP10]. Unfortunately, due to the fact that the “rewinding slots” of
our protocol, that is the commitment of ExtCom, may have over-extraction, whereas the WISSP
proofs in the CLP protocol never has this problem, the technical proof of [CLP10] does not go
through; and in Appendix B we rely on a different analysis to show the security of our protocol. A
formal description of our CCA secure protocol 〈C,R〉 in Figure 2.

The robust CCA-secure protocol 〈C,R〉

Let κ be an arbitrary polynomial, `, η two polynomials such that `(n) = nν and η(n) = nε for ν, ε > 0,
and L a polynomial such that L(n) = max(κ(n)+η(n), 4`(n)η(n)). To commit to a value v, the committer
C and the receiver R, on common input 1n and the identity id ∈ {0, 1}`(n) of the committer C do:

Stage 1: The receiver sends the Stage 1 message of a commitment of PTrapCom. That is, a commitment
of com to a randomly chosen string challenge e = (e1, . . . , en).

Stage 2: The committer C prepares a (n+ 1)-out-of-10n Shamir’s secret sharing s1, . . . , s10n of the value
v, and commits to these shares using Stage 2 of the protocol PTrapCom in parallel, for L(n) times;
we call the ith parallel commitment the ith row, and all the commitments to the ith share si the ith

column.

Messages in the first 4`(n)η(n) rows are scheduled based on the identity id and relies on scheduling
pairs of rows according to schedules design0 and design1 depicted in Figure 3. More precisely, Stage
2 consist of `(n) phases. In phase i, the committer provides η(n) sequential designidi pairs of rows,
followed by η(n) sequential design1−idi pairs of rows. Messages in the rest of the rows are simply
arranged sequentially.

Stage 3: The receiver opens the Stage 1 commitment to the challenge e. The committer completes the
10nL(n) executions of PTrapCom w.r.t. challenge e in parallel.

Stage 4 (cut-and-choose): The receiver sends a randomly chosen subset Γ ∈ [10n] of size n. For every
j ∈ Γ, the committer opens all the commitments in the jth column of Stage 3. The receiver checks
that all the openings are valid, and reveal the same committed values sj .

Decommitment Message: To decommit, the committer sends v, and opens all the commitments in the
first row of Stage 2 to s1, . . . , s10n. The receiver checks all the openings to s1, . . . , s10n are valid;
furthermore, it checks that s1, . . . , s10n is 0.9-close to a valid codeword w = (w1, · · · , w10n), and for
every j ∈ Γ, wj equals to the share sj revealed in Stage 4.

In other words, a commitment of 〈C,R〉 is valid if and only if the first row in Stage 2 of the
commitment contains valid commitments to shares s1, . . . , s10n, such that, s1, . . . , s10n is 0.9 close
to a valid codeword w, and w agrees with all the shares revealed in Stage 4 (i.e., for every j ∈ Γ,
wj = sj).

Figure 2: The formal description of the κ(n)-robust CCA-secure protocol 〈C,R〉

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally com-
posable protocols with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

13
604

Approved for Public Release; Distribution Unlimited.

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

Figure 3: Description of the schedules used in Stage 2 of the protocol. (α1, β1, γ1) and (α2, β2, γ2)
are respectively the transcripts of a pair of rows in Stage 2 of the protocol 〈C,R〉.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In FOCS, pages 543–552,
2005.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, pages 143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
CSFW, pages 219–, 2004.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-
able security with global setup. In TCC, pages 61–85, 2007.

[CDSMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box
construction of a non-malleable encryption scheme from any semantically secure one.
In TCC, pages 427–444, 2008.

[CDSMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-
box constructions of adaptively secure protocols. In TCC, pages 387–402, 2009.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO,
pages 19–40, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In EUROCRYPT,
pages 68–86, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In STOC, pages 494–503,
2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In FOCS, pages 541–550, 2010.

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to
use an imperfect reference string. In FOCS, pages 249–259, 2007.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

14
605

Approved for Public Release; Distribution Unlimited.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In STOC, pages 416–426, 1990.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure
computation in constant rounds. To appear in EUROCRYPT 2012, 2012.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):690–728, 1991.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In
CRYPTO, pages 323–341, 2007.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge University
Press, 2001.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
STOC, pages 695–704, 2011.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In
TCC, pages 412–426, 2008.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28:12–24,
1999.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box con-
structions for secure computation. In STOC, pages 99–108, 2006.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In EUROCRYPT, pages 115–128, 2007.

15
606

Approved for Public Release; Distribution Unlimited.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31,
1988.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992.

[KLP05] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent general
composition of secure protocols in the timing model. In STOC, pages 644–653, 2005.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In TCC, pages 203–
222, 2004.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In EUROCRYPT, pages 52–78,
2007.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In TCC, pages 571–588,
2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for concurrent security: universal composability from stand-alone non-
malleability. In STOC, pages 179–188, 2009.

[LPV12] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Uc from
semi-honest ot. Manuscript, 2012.

[MMY06] Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental se-
curity from number theoretic assumptions. In TCC, pages 343–359, 2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4:151–
158, 1991.

[Pas03a] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In EUROCRYPT, pages 160–176, 2003.

[Pas03b] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In EUROCRYPT, pages 160–176, 2003.

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS,
pages 563–572, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In STOC, pages 242–251, 2004.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In TCC, pages 403–418, 2009.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Eurocrypt, pages 415–432, 1999.

16
607

Approved for Public Release; Distribution Unlimited.

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for np. In TCC, pages
191–202, 2004.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability
amplification. To appear in FOCS 2010, 2010.

[Xia11] David Xiao. (nearly) round-optimal black-box constructions of commitments secure
against selective opening attacks. In TCC, pages 541–558, 2011.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

A General Definitions

A.1 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 3 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {y : (x, y) ∈ L}. In the
following, we assume a fixed witness relation RL for each language L ∈ NP.

A.2 Indistinguishability

Definition 4 (Computational Indistinguishability). Let Y be a countable set. Two ensembles
{An,y}n∈N,y∈Y and {Bn,y}n∈N,y∈Y are said to be computationally indistinguishable (denoted by
{An,y}n∈N,y∈Y ≈ {Bn,y}n∈N,y∈Y), if for every PPT “distinguishing” machine D, there exists a
negligible function ν(·) so that for every n ∈ N, y ∈ Y :

|Pr [a← An,y : D(1n, y, a) = 1]− Pr [b← Bn,y : D(1n, y, b) = 1]| < ν(n)

A.3 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [GMR89]
and arguments (a.k.a computationally-sound proofs) [BCC88]. Given a pair of interactive Turing
machines, P and V , we denote by 〈P (w), V 〉(x) the random variable representing the (local) output
of V , on common input x, when interacting with machine P with private input w, when the random
input to each machine is uniformly and independently chosen.

Definition 5 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called an inter-
active proof system for a language L if there is a negligible function ν(·) such that the following two
conditions hold :

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr [〈P (w), V 〉(x) = 1] = 1

• Soundness: For every x /∈ L, and every interactive machine B, Pr [〈B, V 〉(x) = 1]
≤ ν(|x|)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.

17
608

Approved for Public Release; Distribution Unlimited.

A.4 Witness Indistinguishable Proofs

The notion of witness indistinguishability (WI) was introduced by Feige and Shamir in [FS90].
Roughly speaking, an interactive proof is said to beWI if the verifier’s output is “computationally
independent” of the witness used by the prover for proving the statement. In this context, we focus
on languages L ∈ NP with a corresponding witness relation RL. Namely, we consider interactions
in which, on common input x, the prover is given a witness in RL(x). By saying that the output
is computationally independent of the witness, we mean that for any two possible NP-witnesses
that could be used by the prover to prove the statement x ∈ L, the corresponding outputs are
computationally indistinguishable.

Definition 6 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive proof system for a lan-
guage L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable for RL, if for every PPT ITM V ∗

and for every two sequences {w1
n,x}n∈N,x∈L∩{0,1}n and {w2

n,x}n∈N,x∈L∩{0,1}n, such that w1
n,x, w

2
n,x ∈

RL(x) for every x, the following probability ensembles are computationally indistinguishable.

• {〈P (w1
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

• {〈P (w2
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

A.5 Special-sound WI proofs

A 4-round public-coin interactive proof for the language L ∈ NP with witness relation RL is
special-sound with respect to RL, if for any two transcripts (δ, α, β, γ) and (δ′, α′, β′, γ′) such that
the initial two messages, δ, δ′ and α, α′, are the same but the challenges β, β′ are different, there is
a deterministic procedure to extract the witness from the two transcripts and runs in polynomial
time. In this paper, we rely on special sound proofs that are also witness indistinguishable (WI)
Special-soundWI proofs for languages inNP can be based on the existence of 2-round commitment
schemes, which in turn can be based on one-way functions [GMW91, FS90, HILL99, Nao91].

A.6 Concurrent ZK Protocols

Let 〈P, V 〉 be an interactive proof for a language L. Consider a concurrent adversarial verifier
V ∗ that on common input a security parameter 1n, a statement x ∈ {0, 1}n and auxiliary input
z, interacts with m(n) independent copies of P concurrently, without any restrictions over the
scheduling of the messages in the different interactions with P .

Definition 7. Let 〈P, V 〉 be an interactive proof system for a language L. We say that 〈P, V 〉 is
black-box concurrent zero-knowledge if for every polynomials q and m, there exists a probabilistic
polynomial time algorithm Sq,m, such that for every concurrent adversary V ∗ that on common input
1n, x and auxiliary input z opens up m(n) executions and has a running-time bounded by q(n),
Sq,m(1n, x, z) runs in time polynomial in n. Furthermore, it holds that the following ensembles are
computationally indistinguishable

• {viewV ∗ [〈P (w), V ∗(z)〉(1n, x)]}n∈N,x∈L∩{0,1}n,w∈RL(x),z∈{0,1}∗

• {Sq,m(1n, x, z)}n∈N,x∈L∩{0,1}n,w∈RL(x),z∈{0,1}∗

A.7 Extractable Commitments

We recall the definition of extractable commitments defined in [PW09]. Let 〈Cs, Rs〉 be a statisti-
cally binding commitment scheme. We say that 〈Cs, Rs〉 is an extractable commitment scheme if
there exists an expected polynomial-time probabilistic oracle machine (the extractor) E that given
oracle access to any PPT cheating sender C∗ outputs a pair (τ, σ∗) such that:

18
609

Approved for Public Release; Distribution Unlimited.

• (simulation) τ is identically distributed to the view of C∗ at the end of interacting with an
honest receiver Rs in commit phase.

• (extraction) the probability that τ is accepting and valid σ∗ = ⊥ is negligible.

• (binding) if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than σ∗.

We will also consider extractable commitment schemes that are computationally binding; the defi-
nition is as above, except if σ∗ 6= ⊥, we only require that it is computationally infeasible to open
τ to any value other than σ∗.

A.8 Trapdoor Commitments

We say that 〈Ct, Rt〉 is a trapdoor commitment scheme if there exists an expected polynomial-time
probabilistic oracle machine S = (S1,S2) such that for any PPT R∗ and all v ∈ {0, 1}n, the output
(τ, w) of the following experiments are computationally indistinguishable:

• an honest sender Ct interacts with R∗ to commit to v, and then opens the com-
mitment: τ is the view of R∗ in the commit phase, and w is the message Ct sends
in the open phase.

• the simulator S generates a simulated view τ for the commit phase, and then opens
the commitment to v in the open phase: formally, SR∗1 (1n, 1k)→ (τ, state),S2(state, v)→
w.

B Proofs for Our Black-Box Robust CCA-Secure Commitments

B.1 Properties of the Trapdoor Commitments TrapCom

Before proving the security properties of our robust CCA-secure commitment scheme, we first
prove a few properties of the trapdoor commitment scheme TrapCom of [PW09], which will be very
instrumental the proof of robust CCA-security.

Special-soundness of TrapCom: Since Stage 2 of the protocol TrapCom is simply a PExtCom
commitment, given any two admissible transcripts of Stage 2, a committed value can be extracted.
Consider the following deterministic polynomial time procedure reconst that on input two admissible
transcripts T1, T2 of Stage 2 extracts a committed value as follows: It first reconstructs all the
matrices v1, · · · , vn from T1, T2 by relying on the extractability of PExtCom; then it checks whether
all the left columns of the matrices sum up to the same bit b, and sets σ0 to b if this is the case
and ⊥ otherwise; it computes σ1 similarly with respect to the right columns; next,

• If σ1 and σ1 equal to two different bits, reconst outputs err.

• Else if σ0 and σ1 both equal to ⊥, it outputs ⊥ as well.

• Finally, if σ0 and σ1 equal to the same bit b, or only one of them equals to b and the other
equals to ⊥, reconst outputs b.

We show below in Lemma 3 that as long as the reconst procedure does not output err, then
the extracted value must be the committed value—we call this the special-soundness property of
TrapCom—and in Lemma 4 that when the reconst procedure outputs err, then the receiver’s chal-
lenge in the TrapCom commitment can be computed efficiently. It follows essentially from Lemma 3
and 4 that TrapCom is computationally hiding. Formally, let T be a commitment of TrapCom, we
say that a pair of admissible transcripts T1, T2 is consistent with TrapCom if the first message in T1

and T2 equals to the first message of Stage 2 in T . Then,

19
610

Approved for Public Release; Distribution Unlimited.

Lemma 3 (Special-soundness of TrapCom). Let T be a commitment of TrapCom, and T1, T2 a pair
of admissible transcripts of TrapCom that is consistent with T . Then, if reconst(T1, T2) = σ 6= err,
it is statistically impossible to open T to any value other than σ.

Proof. Assume for contradiction that reconst(T1, T2) outputs σ 6= err but there exists a decommit-
ment that opens T to a bit σ′ ∈ {0, 1} different from σ.

It follows from the validity condition of TrapCom that if a commitment can be opened to σ′

there must exist a γ ∈ {0, 1}, such that all the commitments of ExtCom to v0γ
i , v

1γ
i for i = 1, 2, . . . , k

are valid and σ′ = v0γ
1 ⊕ v1γ

1 = · · · = v0γ
k ⊕ v

1γ
k , where σ is the committed value. That is, either all

the left columns or the right columns are valid commitments to values that sum up to σ′. Since
two admissible transcripts of TrapCom contains a pair of admissible transcripts of ExtCom for each
commitment to a bit vb1b2j . It follows from the extractability of ExtCom that from T1 and T2, values

v0γ
i , v

1γ
i can be extracted correctly, as by the validity condition commitments to vbγi ’s are all valid.

Therefore the procedure reconst will set bit σγ to σ′. Then, conditioned on reconst does not output
err, it must output σ′, which gives a contradiction.

Lemma 4. Let T be an accepting commitment of TrapCom, and T1, T2 a pair of admissible tran-
scripts of TrapCom that is consistent with T . Then, if reconst(T1, T2) = err, the receiver’s challenge
committed to in Stage 1 of T can be computed efficiently and deterministically from T1, T2.

Proof. The reconst procedure, on input T1, T2, reconstructs a tuple of n matrices ṽ1, . . . , ṽn by
relying on the special soundness of ExtCom, and outputs err if and only if all the values ṽ00

j , ṽ
10
j

in the left columns sum up to a bit b whereas all the values ṽ01
j , ṽ

11
j in the right columns sum up

to 1 − b. Furthermore, since T is accepting, in Stage 3 of T , the receiver must successfully open
the stage 1 com commitment to a challenge e and the committer must successfully open the two
commitments in the eth

j row of the jth matrices to the same value ηj for every j ∈ [k]. Thus, by the

special soundness of ExtCom, values extracted from the eth
j row v

ej0
j , v

ej1
j must equal to ηj , which

means the two bits v
(1−ej)0
j , v

(1−ej)1
j extracted from the (1 − ej)th row must differ. Thus from T1

and T2, the receiver’s challenge e in T can be computed efficiently.

Strong Computational Binding: We show that TrapCom enjoys a strong computational binding
property as described in Lemma 5.

Lemma 5 (Strong computational binding). For every PPT machine C∗, the probability that C∗

in interaction with the honest receiver of TrapCom, generates a commitment that has more than
one valid committed values is negligible. 4

Proof. Assume for contradiction that there is a committer C∗ that can generate a commitment that
has two valid committed values with polynomial probability. Then we can construct a machine A
that violates the hiding property of com.

The machine A on input a com commitment c to a random n-bit string e, internally incorporates
C∗ and emulates the messages from the receiver for C∗ honestly, except that: it forwards c to A
at the Stage 1 message; after C∗ completes Stage 2, it repeatedly rewinds C∗ from the challenge
message in Stage 2 by sending C∗ freshly sampled challenges, until another accepting transcript of
Stage 2 is obtained; then it checks whether the pair of transcripts of Stage 2 is admissible and if
so whether reconst outputs err on input these two transcripts; if this is the case, it computes the
challenge e′ from the two admissible transcripts by Lemma 4 and outputs e′; otherwise, it aborts.
Finally, A cuts its execution off after 2n/3 steps.

4Note that the computational binding property only guarantees that it is impossible for an efficient committer to
generate a commitment of TrapCom and opens it to two different values.

20
611

Approved for Public Release; Distribution Unlimited.

It follows from standard technique that the expected running time of C∗ is bounded by a
polynomial. Furthermore, each challenge in Stage 2 of a TrapCom commitment is a n-tuple of
n-bit strings. Then Since A runs for at most 2n/3 steps, the probability that any n-bit string is
picked for a second time in A is 2n/3/2n; since A picks at most 2n/3 strings, by union bound, the

probability that any n-bit string is picked twice is 1
2n/3

= 2n/3 2n/3

2n . Therefore, except with negligible
probability, the pair of accepting transcripts collected by A is also admissible.

Next, we show that conditioned on that the pair of transcripts collected by A is admissible, A
outputs the value committed to in c with polynomial probability. Since A emulates the execution
of C∗ perfectly, with polynomial probability C∗ in A generates a commitment that can be opened
to both 0 and 1. When this happens, by the validity condition of TrapCom, the commitment
generated by C∗ must have the property that all the commitments of ExtCom in Stage 2 are valid,
and the committed values in the left columns sum up to a bit b whereas the committed values in
the right columns sum up to another bit 1− b. In this case, the procedure reconst fails to extract
a value from the pair of admissible transcripts collected by A and outputs err. The by Lemma 4
the challenge committed to in Stage 1 can be computed. Thus A outputs the committed value of
c with polynomial probability.

Extension to multiple bits. As shown in [PW09], by running the trapdoor bit commitment
scheme TrapCom in parallel, we obtain a trapdoor commitment scheme PTrapCom for multiple bits,
with the additional property that we can open the commitment to any subset of the bits without
compromising the security of the remaining bits. The hiding, binding and trapdoor property of the
commitment remains. Furthermore, Stage 2 of the protocol PTrapCom consists of many parallel
executions of PExtCom. We say that two transcripts of Stage 2 of PTrapCom are admissible if they
contain a pair of admissible transcripts of PTrapCom for each parallel execution in it. Then given
a pair of admissible transcripts of PTrapCom, the committed string can be extracted by running
the following procedure reconst: For each parallel execution, it extracts a value σi using the reconst
procedure; then it outputs err if any σi equals to err, otherwise, it outputs all the extracted bits
σi’s concatenated. Again, we call this property the special-soundness of PTrapCom.

B.2 〈C,R〉 is a Statistically-Binding Commitment Scheme

In this section, we provide formally that that 〈C,R〉 is a statistically binding commitment scheme.

Proposition 2. 〈C,R〉 is a statistically binding commitment scheme.

Proof. The statistically bindng property of 〈C,R〉 follows directly from that of com. We then, focus
on showing the hiding property.

Recall that the commitment scheme TrapCom is trapdoor. In particular, as shown in [PW09],
if the receiver’s challenge is fixed, then there is a straight-line simulator that can generate a sim-
ulated transcript of the commit phase that can be equivocated to both 0 and 1 later. We recall
the simulation strategy. Let R∗ be a malicious receiver using a fixed challenge e, then to simulate
Stage 2 and 3 of TrapCom for R∗, the simulator samples a random bit γ and prepares v1 · · · vn where
each vi is a 2 × 2 0,1-matrix such that, the eth

i row of vi has the form (ηi, ηi) and the (1 − ei)th

row has the form (γ ⊕ ηi, (1− γ)⊕ ηi) with a randomly and independently sampled bit ηi. It then
commits to v1, · · · , vn using PExtCom in Stage 2; later, in Stage 3, upon receiving challenge e, for
every i, it opens commitments to the eth

i row in the ith matrix to (ηi, ηi), yielding an accepting
commitment. To equivocate the simulated commitment to 0, the simulator sends γ and opens all
the commitments in the γth column of the matrices; to equivocate the commitment to 1, it sends
1−γ and opens the (1−γ)th column of the matrices. It follows from the hiding property of ExtCom
(recall that a commitment of PExtCom to v1 · · · vn is simply many commitments of ExtCom to bits

21
612

Approved for Public Release; Distribution Unlimited.

vb1,b2j in parallel) that, for every b ∈ {0, 1}, the simulated commitment of TrapCom together with
the equivocated opening to b is indistinguishable from an honest commitment and opening to b.
Furthermore, since the simulation is straight-line and thus is composable under concurrent compo-
sition, we have that TrapCom is secure under selective opening attack with concurrent composition
(See [Xia11] for a formal definition) against malicious receivers that always use a fixed challenge.

Next, by relying on the security against selective opening attack of TrapCom, we show that
for every malicious receiver R∗ of 〈C,R〉, there is a simulator S that can generate a simulated
commitment that is indistinguishable from an honest commitment to R∗ to any value v; then
the hiding property follows. More precisely, given a malicious receiver R∗ of 〈C,R〉 (with loss of
generality, deterministic), let c1 be the Stage 1 commitment from R∗ and e the challenge committed
to in c1. The simulator S, on input e, simulates a commitment of 〈C,R〉 to v as follows: In Stage 2
and 3, it simulates the 10nL(n) commitments of PTrapComw.r.t. challenge e by using the simulator
of PTrapCom described above does; finally in Stage 4, upon receiving Γ, for every column j ∈ Γ, it
samples a random string s̃j and equivocate all the simulated commitments of PTrapCom in the jth

column to s̃j . Since R∗ uses a fixed challenge e in all the PTrapCom commitments, it follows from
the security against selective opening attack of TrapCom that in H the simulated commitments of
PTrapCom in Stage 2 and 3, together with the equivocated openings to n random values in Stage
4 is indistinguishable from, the honest commitments and openings to n shares of v in the real
execution (since by the property of the (n+1)-out-of-10n secret-sharing, n shares of v is identically
distributed to n random values). Thus, the simulated commitment by S is indistinguishable to an
honest commitment to v. Since S does not depend on the committed value v, we conclude that
honest commitments to any two values v1 and v2 are indistinguishable.

B.3 Proof of Robust CCA-Security of 〈C,R〉
In this section, we prove the following theorem.

Theorem 2. 〈C,R〉 is κ(n)-robust CCA-secure w.r.t. committed value oracles.

The formal proof of Theorem 2 consists of two parts: in Section B.3.2, we show that 〈C,R〉
is CCA-secure. and in section B.3.3, we show that it is also robust. Towards this, below we first
adapt the definition of safe-points in [CLP10] to work with our protocol 〈C,R〉.

B.3.1 Safe-Points

Our notion of safe-points is almost the same as that in [CLP10] (which in turn is based on the notion
of safe-points of [LPV08] and safe rewinding block of [DDN00]), with the only exception that our
definition considers the 3-round rows in our black-box construction of CCA commitment 〈C,R〉,
instead of the 3-round WISSP proofs in the non-black-box construction in [CLP10]. Recall that,
like a WISSP proof, each row in Stage 3 of the protocol 〈C,R〉 has the 3-round challenge-reply
structure—we call the three messages respectively, the commit, challenge and reply messages—and
has the property that rewinding a complete row reveals nothing about the committed value.

Let ∆ be a transcript of one left and many right interactions of 〈C,R〉. Intuitively, a safe-point ρ
of a right interaction k is a prefix of a transcript ∆ that lies in between the first two messages αr and
βr of a row (αr, βr, γr) in interaction k, such that, when rewinding from ρ to γr, if A uses the same
“scheduling of messages” as in ∆, then the left interaction can be emulated without affecting the
hiding property. This holds, if in ∆ from ρ to where γr is sent, A expects either no message or only
complete rows in the left interaction, as shown in Figure 4 (i) and (ii) respectively, (Additionally,
in both cases, A may request the reply message of some row in the left, as shown in Figure 4 (iii).
This is because, given the first two messages of a row, the reply message is deterministic, and hence
can be emulated in the rewinding by replaying the reply in ∆.)

22
613

Approved for Public Release; Distribution Unlimited.

γl

βl

αl

γr

βr

αrρ

γl

βl

αl

γr

βr

αrρ

γl

βl

αl

γr

βr

αrρ

(i) (ii) (iii)

Figure 4: Three characteristic safe-points.

γ′l

β′l

αl

γr

βr

αrρ

Figure 5: Prefix ρ that is not a safe point.

Definition 8. Let ∆ be any transcript of one left interaction, and many right interactions, of
〈C,R〉. A prefix ρ of a transcript ∆ is called a safe-point for right interaction k, if there exists an
accepting row (αr, βr, γr) in the right interaction k, such that:

1. αr occurs in ρ, but not βr (and γr).

2. for any row (αl, βl, γl) in the left interaction, if αl occurs in ρ, then βl occurs after γr.

3. messages in Stage 1, 3, and 4 of the left interaction occur either before ρ or after γr.

If ρ is a safe-point, let (αρ, βρ, γρ) denote the canonical “safe” right row associated with ρ. Note
that the only case a right-interaction row is not associated with any safe-point is if it is “aligned”
with a left-execution row, as shown in Figure 5. In contrast, in all other cases, a right-interaction
row has a safe-point, as shown in Figure 4.

It follows from exactly the same proof in [CLP10] that in any transcript of one left and many
right interactions of 〈C,R〉, every accepting right interaction that has a different identity from the
left interaction, has at least η(n) safe-points. This technical lemma will be very instrumental in the
proof of CCA-security in the next section.

Lemma 6 (Safe-point Lemma). Let ∆ be any transcript of one left interaction, and many right
interactions, of 〈C,R〉. Then, in ∆, for every successful right interaction that has a different
identity from the left interaction, there exist at least a number of Ω(η(n)) non-overlapping rows
that are associated with a safe-point.

B.3.2 Proof of CCA Security

We show that for every PPT adversary A, the following ensembles are computationally indistin-
guishable.

• {IND0(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗

23
614

Approved for Public Release; Distribution Unlimited.

• {IND1(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗

Towards this, we consider new commitment scheme 〈Ĉ, R̂〉 (similar to the “adaptor” schemes of
[DDN00, LPV08, CLP10]), which is a variant of 〈C,R〉 where the receiver can ask for an arbitrary

number of designs in Stage 2. Furthermore, 〈Ĉ, R̂〉 does not have a fixed scheduling in Stage 2; the
receiver instead gets to choose which design to execute in each iteration (by sending bit b to select

designb). Note that, clearly, any execution of 〈C,R〉 can be emulated by an execution of 〈Ĉ, R̂〉 by
simply requesting the appropriate designs. It follows using essentially the same proof for the hiding
property of 〈C,R〉 in Proposition 2 that 〈Ĉ, R̂〉 is computationally hiding; we omit the proof here.

Now assume for contradiction that there exists an adversary A, a distinguisher D, and a poly-
nomial p, such that for infinitely many n ∈ N , there exists z ∈ {0, 1}∗, such that,

∣∣Pr [D(IND0(〈C,R〉, A, n, z)) = 1]− Pr [D(IND1(〈C,R〉, A, n, z)) = 1]
∣∣ ≥ 1

p(n)

We reach a contradiction by exhibiting a (stand-alone) adversary B∗ that distinguishes com-

mitments using 〈Ĉ, R̂〉. Let STAb(〈Ĉ, R̂〉, B∗, n, z) denote the output of B∗(1n, z) after receiving a

commitment of 〈Ĉ, R̂〉 to value vb, where as in experiment INDb the challenges v0 and v1 are chosen
adaptively by B∗. We show that the following two claims hold w.r.t B∗.

Lemma 7. There exists a polynomial function t and a negligible function µ, such that for every
b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, and every function p, the probability that B∗ in experiment

STAb(〈Ĉ, R̂〉, B∗, n, z) takes more than p(n) steps is less than or equal to t(n)
p(n) + µ(n).

Lemma 8. Let b ∈ {0, 1}. The following ensembles are computationally indistinguishable.

•
{

STAb(〈Ĉ, R̂〉, B∗, n, z)
}
n∈N,z∈{0,1}∗

•
{

INDb(〈C,R〉, A, n, z)
}
n∈N,z∈{0,1}∗

By Lemma 8, it thus follows that for infinitely many n ∈ N , there exists z ∈ {0, 1}∗, such that,

∣∣∣Pr
[
D(STA0(〈Ĉ, R̂〉, B∗, n, z)) = 1

]
− Pr

[
D(STA1(〈Ĉ, R̂〉, B∗, n, z)) = 1

]∣∣∣ ≥ 3

4p(n)

Furthermore, by Lemma 7, the probability that B∗ runs for more than T (n) = 4t(n)p(n) steps is
smaller than 1/4p(n). Therefore, the execution of B∗ can be truncated after T (n) steps, while only
affecting the distinguishing probability by at most 1

4p(n) , which means there exists a PPT machine

that distinguishes commitments with probability 1
2p(n) ; this contradicts the hiding property of

〈Ĉ, R̂〉.
Construction of B∗. On a high-level, B∗ in interaction with an honest committer Ĉ on the
left emulates the committed-value oracle O for A by extracting the committed values of the right
interactions from the rows in Stage 2 of 〈C,R〉. Recall that Stage 2 of 〈C,R〉 contains multiple
rows; each in turn contains commitments to secret shares of the committed value (more precisely,
shares of a decommitment of Stage 2 of 〈C,R〉), using Stage 2 of PTrapCom. It follows from the
special soundness of PTrapCom that, given a pair of transcripts of a row that are admissible for
each commitment of TrapCom contained in that row, the secret shares committed in that row can
be reconstructed using the reconst procedure (provided that it does not output err)—we say that
such a pair of transcripts of a row is admissible. Then the committed value can be recovered.

24
615

Approved for Public Release; Distribution Unlimited.

The construction of B∗ contains two parts, a rewinding procedure and a reconstruction pro-
cedure. The rewinding procedure recursively rewinds the rows of the right integrations and guar-
antees that at the end of every accepting right interaction with different identity from the left
interaction, a pair of admissible transcripts (of one row) of that right interaction is collected. The
reconstruction procedure, on the other hand, on input a pair of admissible transcripts of one right
interaction, reconstructs the committed value of that interaction. The rewinding procedure that
we use here is essentially the same as that used in the CLP extraction procedure, except from the
superficial difference that in [CLP10], pairs of accepting transcripts ofWISSP proofs are collected.
However, in [CLP10] given two different accepting transcripts of aWISSP proof in one right inter-
action, a committed value can be extracted directly using the special-soundness property without
over-extraction. In this work, in order to avoid the over-extraction problem, the procedure for
reconstructing the committed value from two admissible transcripts is much more involved; we em-
ploy the technique used in [CDSMW08, CDSMW09, Wee10] and formalize it in the reconstruction
procedure REC.

Next, we formally describe the rewinding procedure, which invokes the reconstruction procedure
REC whenever it obtains a pair of admissible transcripts; readers who are familiar with the CLP
extraction procedure can skip this part and jump to the description reconstruction procedure REC.

The Rewinding Procedure At a high-level, the rewinding procedure rewinds A only from safe-
points. This ensures that we do not have to rewind the external left execution; rather, it suffices
to request an additional design on the left to handle these rewindings. But, as the simulator
needs to provide the committed values in a “on-line” fashion (i.e., as soon as a right-interaction
completes, the simulator needs to provide A with decommitment information for this interaction),
these rewindings might become recursive (if the right interactions are nested). And, if we were
to perform these rewindings naively, the running-time quickly grows exponentially (just as in the
context of concurrent zero knowledge [DNS04]). To make sure that the recursion depth is constant,
we instead only rewind from safe-points ρ such that the number of new right-rows that start between
ρ and the last message γρ of the right-row associated with ρ, is “small”; here, “small” is defined
appropriately based on the recursion level. More precisely, we say that a safe-point ρ is d+ 1-good
for a transcript ∆ if less than kd = M/η′d right-rows start between ρ and γρ, where M is an upper-

bound on the total number of messages that A sends or receives, and η′ = nε
′

for some constant ε′

such that 0 < ε′ < ε. On recursion level d, B∗ then only rewinds A from d+ 1-good safe-points.
Formally, we describe the rewinding procedure using a recursive helper procedure EXT. EXT,

on input an integer d (the recursion level), a partial joint view V of A and the (emulated) right
receivers, the index s of a right-row, a “repository” R of pairs of admissible transcripts of the right
interactions that have been previously collected, proceeds as follows.

Procedure EXT(d,V, s,R): Let ρ be the (partial) transcript contained in V. If d = 0, EXT will
emulates a complete execution of IND with the adversary A. If d > 0, it will instead extends the
partial view V to the completion of the right-row s; if at any point in the emulation, ρ is not a
d+ 1-good safe-point for s, EXT aborts and returns ⊥. Finally, EXT returns the the view VA of A
in the emulation (generated so far). We now turn to describe how EXT emulates the left and the
right interactions.

The left interaction is emulated by simply requesting the appropriate messages from the external
committer. At the top level (i.e., d = 0), A participates in a complete 〈C,R〉 commitment on the

left, which can be easily emulated by simply requesting the appropriate designs from Ĉ. At lower
levels (i.e., d > 0), EXT cancels every execution in which ρ is not a safe-point. Hence it only needs
to emulate the left interaction when ρ is a safe-point. In this case, as previously discussed, A either
does not request any new messages on the left, or only asks for complete new rows; the former
case can be trivially emulated (by simply doing nothing or replaying old messages if A asks for the

25
616

Approved for Public Release; Distribution Unlimited.

third message of a left row again), in the latter case, EXT emulates the left interaction by asking

for more designs from Ĉ.
On the other hand, in the right interactions EXT follows the honest receiver strategy of 〈C,R〉.

Furthermore, whenever A completes a row (αr, βr, γr) in a right interaction j, EXT attempts to
extract a decommitment for this interaction, if the row (αr, βr, γr) is associated with a d+ 1-good
safe-point ρ′. To extract, EXT invokes itself recursively on input (d + 1,V ′, s′,R), where V ′ is the
(partial) joint view of A and the right receivers corresponding to the transcript ρ′, and s′ is the
index of the right-row (αr, βr, γr). It continues invoking itself recursively until one of the recursive
invocations returns a view containing another accepting transcript (αr, β

′
r, γ
′
r) of the s′th row. When

this happens, if (αr, βr, γr) and (αr, β
′
r, γ
′
r) are a pair of admissible transcripts, EXT records them

in the repository R. Later, whenever A expects the committed value for a right interaction j, it
simply checks the repository R for a matching pair of admissible transcripts T1, T2, and invokes
REC with T1, T2 and the transcript T of the right integration j to obtain the committed value u; it
aborts and outputs fail if no pair of admissible transcripts is available or the REC procedure returns
err—we say that EXT “gets stuck” on interaction j in this case. (If A expects the committed value
of a right interaction that fails or has the same identity as the left, it simply sends ⊥ to A.)

The Reconstruction Procedure Let T1 = (αr, βr, γr) and T2 = (αr, β
′
r, γ
′
r) be a pair of ad-

missible transcripts of one row of a right commitment T . Recall that Stage 2 in T contains a
com commitment to the committed value v, and each row in T commits to the 10n secret shares
of a decommitment (v, d) of the com commitment, using Stage 2 of PTrapCom. Since T1 and T2

are admissible, they contain a pair of admissible transcripts of PTrapCom for each commitment to
one of the 10n share. Therefore, by the special-soundness property of PTrapCom, a value can be
reconstructed from each pair of admissible transcripts of PTrapCom using the reconst procedure;
if the extracted value is not err, then either the corresponding commitment is invalid, or it is and
the reconstructed value is the committed share. At a high-level, the reconstruction procedure REC
uses this property to try to extract shares of the decommitment (v, d) and then decode the shares
to obtain the committed value; it utilizes the final cut-and-choose Stage in the right commitment
T to avoid over-extraction. Formally,

Procedure REC(T1, T2, T): For every j ∈ [10n], REC sets T j1 , T
j
2 to the pair of admissible tran-

scripts of PTrapCom for the commitment to the jth secret share contained in T1, T2, and yj to the

output of reconst(T j1 , T
j
2); it aborts and outputs err if yj equals to err; otherwise, it sets the jth share

s̃j to yj . After extracting all the shares π̃ = (s̃1, . . . , s̃10n), it recovers a valid codeword w that is
0.8-close to π̃; then, it checks whether w agrees with all the shares revealed in the cut-and-choose
stage in the right commitment T (that is, for every i ∈ [Γ], it checks whether wi equals to the share
ŝi revealed for the ith column in the cut-and-choose stage in T); if this holds, it decodes w to a
tuple (v′, d′), and outputs v′ if (v′, d′) is a valid decommitment of the Stage 2 com commitment
in T . It aborts and outputs ⊥ whenever any of the following events happens: (1) the extracted
shares π̃ is not 0.8-close to any valid codeword, or (2) the codeword w does not agree with any of
the shares revealed in the cut-and-choose stage, or (3) the tuple (v′, d′) decoded from w is not a
valid decommitment of the Stage 2 com commitment.

We now return to the description of B∗. B∗ in interaction with Ĉ, simply invokes EXT on
inputs (0,V, null, ∅), where V is the initial joint states of A and honest right receivers. Once EXT
returns a view VA of A, B∗ return the output of A in this view if A never used the identity of the
left interaction in any of the right interactions, and returns ⊥ otherwise. Furthermore, to simplify
our analysis, B∗ cuts-off EXT whenever it runs for more than 2n steps. If this happens, B∗ halts
and outputs fail.

26
617

Approved for Public Release; Distribution Unlimited.

Proof of Lemma 7 and 8: Next we proceed to show that B∗ runs in expected polynomial time
(Lemma 7) and the output of B∗ is correctly distributed (Lemma 8).5 Towards this, we consider
another machine B̃ that proceeds identically to B∗ except that it has access to an oracle Õ that on
input an accepting transcript T of a commitment of 〈C,R〉, returns the unique committed value of
that commitment if it is valid, and returns ⊥ if it is invalid or has more than one valid committed

value; furthermore, B̃ runs a variant ẼXT of the recursive helper procedure EXT that B∗ runs.

ẼXT proceeds identically to EXT except that whenever A during the rewindings in ẼXT expects
the committed value of a right commitment T (that is accepting and has an identity different from
that of the left commitment), it queries the oracle Õ on T and feeds A the value v returned by

Õ. ẼXT still reconstructs a value v′ for that right interaction as EXT does, but, it does abort and
outputs fail as EXT does when reconstruction fails; instead it continues the execution and simply

outputs f̃ail on a special output tape; additionally, it outputs f̃ail on a special output tape if the
reconstructed value v′ is different from the value v returned by O∗. Finally, as B∗, B̃ cuts the

execution of ẼXT after 2n steps and outputs fail. Below we show that the expected running time
of B̃ is bounded by a polynomial and the output of B̃ in experiment STAb is statistically close to
the view of A in the experiment INDb.

Claim 1. There exists a polynomial function t, such that for every b ∈ {0, 1}, n ∈ N and z ∈
{0, 1}∗, B̃ in experiment STAb(〈Ĉ, R̂〉, B̃Õ, n, z) takes t(n) steps in expectation.

Claim 2. Let b ∈ {0, 1}. The following ensembles are statistically close.

•
{

STAb(〈Ĉ, R̂〉, B̃Õ, n, z)
}
n∈N,z∈{0,1}∗

•
{

INDb(〈C,R〉, A, n, z)
}
n∈N,z∈{0,1}∗

Furthermore, we show that except with negligible probability the, during the execution of B̃,

the probability that B̃ outputs f̃ail on the special output tape is negligible.

Claim 3. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, the probability that B̃ during the execution

of STAb(〈Ĉ, R̂〉, B̃Õ, n, z) outputs f̃ail on its special output tape is negligible.

By construction, B̃ outputs f̃ail only when during the rewindings in ẼXT, it fails to reconstruct
a committed value for a right interaction (that is accepting and has an identity different from
that of the left commitment), or a value is reconstructed but is different from that returned by
Õ. By Claim 3, the above event happens with negligible probability. In other words, during the
execution of B̃, except with negligible probability, the value B̃ reconstructs is always identical to
that extracted by O∗. Thus, except with negligible probability, it is equivalent to replace the values
returned by the oracle Õ with the values B̃ reconstructs. Then since the only difference between
B̃ and B∗ lies in which values they use to feed the adversary A when it expects a committed value,
we have that except with negligible probability, the running time and output distributions of B̃ are
identical to that of B∗. Therefore, combining Claim 2, we directly have that for every b ∈ {0, 1},
the output of B∗ in experiment STAb(〈Ĉ, R̂〉, B̃Õ, n, z) is statistically close to INDb(〈C,R〉, A, n, z),
which concludes Lemma 8. Furthermore, By Claim 1, the expected running time of B̃ is bounded
by a polynomial t; therefore, for every function T , the probability that B̃ runs for more than T (n)
steps is no more than p(n) = t(n)/T (n); then, the probability that B∗ runs for more than T (n)

5Though the rewinding strategy of B∗ is very similar to that in [CLP10], due to the difference in the reconstruction
procedure, the analysis of the running time and output distribution of B∗ is quite different from that in [CLP10].

27
618

Approved for Public Release; Distribution Unlimited.

steps must be bounded by p(n) plus a negligible amount, which concludes Lemma 7. Now it remains
to prove Claim 1, 2 and 3.

Proof of Claim 1—Running-time Analysis of B̃.
To bound the expected running time of B∗, it suffices to bound the expected running time of

the procedure ẼXT. Below in Subclaim 1 we first show that the recursive depth of ẼXT is always

a constant, and then bound the running time of ẼXT in Subclaim 2.

Subclaim 1. There exists a constant D such that for every n ∈ N , and every V, s, and R,

ẼXT(D,V, s,R) does not perform any recursive calls.

Proof. Recall that at recursion level d, the procedure ẼXT terminates and returns ⊥ whenever more
than kd = M(n)/η′(n)d new right-rows has started in its execution, where M(n) is an upper bound
on the total number of messages that the adversary A may send and receive, and η′(n) equals to
nε
′

for some constant 0 < ε′ < ε < 1. Let nc be an upper bound on M(n); set D to dlogη′(n) n
ce,

which is a constant. When d = D, kD < 1, which means the execution terminates whenever A

starts a new right-row. On the other hand, ẼXT only makes a recursive call at the completion of a

new right-row. Therefore at recursion level D, ẼXT never makes any recursive calls.

Next, we show that the expected number of queries that ẼXT makes to A at every recursion
level d ≤ D is always bounded by a polynomial.

Subclaim 2. For every 0 ≤ d ≤ D, it holds that for every n ∈ N , V, s, and R, the expected

number of queries that ẼXT(d,V, s,R) makes to A is bounded by θ(d) = M(n)3(D−d+1).

Proof. Consider some fixed V, s and R. We prove the subclaim by induction on d. When d = D,

the claim follows, since ẼXT does not perform any recursive calls and the number of queries made

by ẼXT can be at most the total number of messages, which is M = M(n).
Assume the claim is true for d = d′ + 1. We show that it holds also for d = d′. The procedure

ẼXT simulates an execution with A in a straight-line on recursion level d′, until it encounters the
completion of a right-row s that has a d′ + 1-good safe-point ρ, then it tries to obtain another

transcript of s, by repeatedly invoking ẼXT on recursion level d′+1 from (the partial transcript) ρ.

Hence, the number of queries made by ẼXT is bounded by the sum of the number of queries made
on level d′, and the queries made by the recursive calls: the former is at most the total number of
messages, that is, M , while the latter is bounded by the sum of the queries made by those recursive
calls invoked for every right-row s. Furthermore we compute the expected number of queries made
by the recursive calls for a right-row s by taking expectation over all partial transcript that is
potentially a d′-good safe-point for s. let Γi denote the set of all partial transcripts of length i that
are consistent with V; for every ρ ∈ Γi, we denote by Pr [ρ occurs on level d′] the probability that
ρ occurs (in the simulation) on level d′, and E[Qsd′(ρ)|ρ] the expected number of queries made by
the recursive calls started from ρ for the right-row s, conditioned on ρ occurring on level d′. Then

E[number of queries by ẼXT] = M +
∑

s

∑

i

∑

ρ∈Γi

Pr[ρ occurs on level d′] E[Qsd′(ρ)|ρ]

Next we bound E[Qsd′(ρ)|ρ] in two steps: the first step bounds the expected number of recursive
calls started from ρ for proof s, and the second step uses the induction hypothesis to derive a bound
on E[Qsd′(ρ)|ρ].

Step 1: Given a partial transcript ρ from Γi, let psd′(ρ) denote the probability that conditioned on

ρ occurring on level d′, ẼXT starts recursive calls from ρ for the right-row s, which happens if and
only if ρ is a d′ + 1-good safe-point for proof s, that is,

psd′(ρ) = Pr
[
ρ is d′ + 1-good at level d′ | ρ

]

28
619

Approved for Public Release; Distribution Unlimited.

When this happens, ẼXT repeatedly calls itself on recursion level d′+1, until an invocation succeeds
without cancelling. Let qsd′(ρ) denote the probability that conditioned on ρ occurring on level d′, a

recursive call to ẼXT on level d′ + 1 succeeds without cancelling. Since an invocation is cancelled
if and only if ρ fails to be a d′ + 1-good safe-point for s in the invocation on level d′ + 1, we have

qsd′(ρ) = Pr
[
ρ is d′ + 1-good at level d′ + 1 | ρ

]

We claim that qsd′(ρ) ≥ psd′(ρ). This is because, conditioned on ρ occurring, the view of A on levels

d′ and d′ + 1 are simulated identically: on both levels d′ and d′ + 1, ẼXT emulates messages in the
commitments of 〈C,R〉 for A perfectly; and furthermore, whenever A expects a committed value of

a right interaction, ẼXT sends it the value returned by the oracle O∗, which is deterministic; thus
A always receives the same value on both level d′ and d′ + 1.

Then conditioned on ρ occurring on level d′, the expected number of recursive invocations

to level d′ + 1 before encountering a successful one is 1/qsd′(ρ). Since ẼXT only starts recursive
invocations from ρ with probability psd′(ρ), we have that the expected number of recursive calls
from ρ for proof s, conditioned on ρ occurring on level d′, is at most psd′(ρ)/qsd′(ρ) ≤ 1.

Step 2: From the induction hypothesis, we know that the expected number of queries made by an

invocation of ẼXT on level d′+1 is at most θ(d′+1). Therefore, if u recursive invocations are made
from ρ for a right row s, the expected number of queries made is bounded by uθ(d′ + 1). Then we
bound E[Qsd′(ρ)|ρ] as follow:

E[Qsd′(ρ)|ρ] ≤
∑

u∈N
Pr [u recursive calls are made from ρ for s] u θ(d′ + 1)

= θ(d′ + 1)
∑

u∈N
Pr [u recursive calls are made from ρ for s] u

≤ θ(d′ + 1)

Therefore,

E[number of queries by ẼXT] ≤ M +
∑

s

∑

i

∑

ρ∈Γi

Pr
[
ρ occurs on level d′

]
θ(d′ + 1)

= M + θ(d′ + 1)
∑

s

∑

i

∑

ρ∈Γi

Pr
[
ρ occurs on level d′

]

= M + θ(d′ + 1)M2

≤ M3(D−d′+1) = θ(d′)

Combining Subclaim 1 and 2, we conclude that the expected running time of machine B̃ is
bounded by a polynomial t′(n). This concludes Claim 1.

Proof of Claim 2—Correctness of the Output distribution of B̃. We show that for every

b ∈ {0, 1}, the output of B̃ in STAb(〈Ĉ, R̂〉, B̃Õ, n, z) is statistically close to INDb(〈C,R〉, A, n, z).
Towards this, we show that conditioned on that B̃ does not output fail in STAb(〈Ĉ, R̂〉, B̃Õ, n, z),
the output of B̃ is identically distributed to INDb(〈C,R〉, A, n, z). By construction, B̃ invokes the

recursive helper procedure ẼXT (at the top recursion level d = 0) and outputs fail if ẼXT runs for
more than 2n steps. Conditioned on B̃ not outputting fail, B̃ returns the output of A contained in

the simulated view VA returned by ẼXT. As in INDb(〈C,R〉, A, n, z), the output is replaced with ⊥

29
620

Approved for Public Release; Distribution Unlimited.

if A copies the identity of the left interaction in any right interaction. Hence it suffices to show that

in the case where A does not copy the identity of the left interaction, ẼXT simulates the messages in

the left and right interactions for A perfectly. By construction of ẼXT, all the messages belonging
to the commitments of 〈C,R〉 (both on the left and right) are simulated perfectly; furthermore,

ẼXT emulates the committed values of the right commitments using the values returned by the
oracle Õ, which are identical to the values extracted by the committed-value oracle O of 〈C,R〉.
Therefore, the simulated view of A output by ẼXT is identically distributed to the real view of A in
INDb. Finally, by Claim 1, the probability that B̃ runs for more than 2n steps is exponentially small.

Therefore we conclude that STAb(〈Ĉ, R̂〉, DÕ, n, z) is statistically close to INDb(〈C,R〉, A, n, z).
Proof of Claim 3—B̃ almost never outputs f̃ail. Assume for contradiction that there exist
a polynomial p, b ∈ {0, 1} and an infinitely number of n ∈ N and z ∈ {0, 1}∗ such that B̃ in

experiment STAb(〈Ĉ, R̂〉, B̃Õ, n, z) outputs f̃ail with probability 1/p(n). Fix a b, n, and z for which
this holds. Then by Claim 1, the probability that B̃ runs for more than T (n) = 2t(n)p(n) steps
is no more than 1/2p(n), where t(n) is the expected running time of B̃. Then consider another
machine B̃T that proceeds identically to B̃ except that it cuts-off the execution after T (n) steps.
We have that B̃T takes a strict polynomial number T (n) of steps and the probability that B̃T
outputs f̃ail is at least 1/2p(n).

Now consider another machine B∗T that proceeds identically to B∗ except that it also cuts-
off the execution after T (n) steps. We claim that in the experiment STAb, B

∗
T outputs fail or

reconstructs a value for a right interaction that is not the valid committed value with polynomial
probability. Assume for contradiction that this is false, that is, except with negligible probability,
B∗T always succeeds in reconstructing a valid committed value whenever the adversary expects a
committed value during the rewindings. Then except with negligible probability, the committed
values emulated by B∗T are identical to that emulated by B̃T . Therefore, the simulated view of

A in B∗T is statistically close to that in B̃T . This implies that except with negligible probability,

B̃T also always succeeds in reconstructing a valid committed value whenever the adversary expects

one. Thus B̂T outputs f̃ail only with negligible probability, which contradicts with our hypothesis.
Therefore with polynomial probability, B∗T fails to extract a valid committed value for some right
interaction during its execution.

Below we reach a contradiction by showing that the probability thatB∗T outputs fail (Subclaim 3)
and the probability that B∗T reconstructs a value that is not the value committed value are negligible.

Subclaim 3. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, the probability that B∗T outputs fail

during the execution of STAb(〈Ĉ, R̂〉, B∗T , n, z) is negligible.

Subclaim 4. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, the probability that there exists a right
interaction that is accepting and has an identity different from that of the left interaction, for which
B∗T reconstruct a value that is not the valid committed value in STAb(〈Ĉ, R̂〉, B∗T , n, z) is negligible.

Proof of Subclaim 3. Consider a fixed b ∈ {0, 1}. By construction, B∗T outputs fail if and only if
one of the following cases occurs (in which B∗ outputs fail).

Case 1: None of the rows in the right interaction is rewound.

Case 2: Some row is rewound and a pair of accepting transcripts of that row is collected, but that
pair of transcripts is not admissible.

Case 3: A pair of admissible transcripts is collected, but the REC construction invoked with them
outputs err.

30
621

Approved for Public Release; Distribution Unlimited.

Below we analyze the probabilities that each of the above cases occurs. We show that all these
events occur with only negligible probability. Therefore, overall the probability that B∗T outputs

f̃ail is negligible.

Analysis of Case 1: We show that Case 1 never happens. More precisely, for every accepting
right interaction j with a different identity from the left interaction, one of its rows must
be rewound. By Lemma 6, there exist a number of Ω(η(n)) non-overlapping rows in the

right interaction j that has a safe-point. Recall that in B∗T (more precisely, in ẼXT), a right
interaction may be carried out at multiple different recursion levels (through recursive calls);
and at level d, B∗T rewinds every row in this interaction that has a d+ 1-good safe-point. By
Subclaim 1, the recursion depth is only a constant; hence there must be a level d, on which
a number of Ω(η(n)) non-overlapping rows with a safe-point start in interaction j. Since the
total number of right-rows that start on level d is bounded by kd = M/η′(n)d (otherwise,
the simulation is cancelled) and η′(n) = o(η(n)), there must exist one right-row that has a
safe-point ρ, such that there are less than M/η′(n)d+1 right-rows starting in between ρ and
the last message of the row. Therefore ρ is a d+ 1-good safe-point for this right-row, and will
be rewound.

Analysis of Case 2: Recall that a transcript of one row consists of a polynomial number of par-
allel commitments using Stage 2 of PTrapCom, each of which consists of a polynomial number
of parallel commitments using ExtCom. For a pair of transcripts of one row to be admissible,
it must hold that all the pairs of transcripts it contains for each commitment of ExtCom
are admissible w.r.t. ExtCom, that is, the two n-bit challenges in that pair of transcripts are
different. Therefore, a pair of transcripts of a row is admissible if and only if the two chal-
lenge messages it contains, which are two tuples of a polynomial number q of n-bit strings
α = (α1, . . . , αq), β = (β1, . . . , βq), are different at every location, that is, αi 6= βi for every
i ∈ [q].

We bound the probability that any n-bit challenge message is picked twice in whole execution
of B∗T to be negligible. Then since conditioned on this not happening, every two accepting
transcripts of a row are admissible, we conclude that this case happens with negligible prob-
ability. Since B∗T runs for at most T (n) steps, it picks at most T (n) n-bit challenges during
the whole execution. By applying the union bound, we obtain that, the probability that a

challenge β is picked again is at most T (n)
2n , and hence, using the union bound again, the

probability that any challenge in the execution is picked twice is at most T (n)T (n)
2n . Hence,

overall, the probability that this case occurs is negligible.

Analysis of Case 3: Let T1, T2 be a pair of admissible transcripts of one row of an accepting
commitment T of 〈C,R〉. The REC procedure, on input T1, T2, T , outputs err if and only if
one of the invocations to the reconst procedure returns err. Then by Lemma 4, the receiver’s
challenge in T , which is shared among all the TrapCom commitments in T , can be computed
efficiently and deterministically from T1 and T2.

Then, suppose for contradiction that, there exists a polynomial g, such that for infinitely
many n ∈ N and z, case 3 occurs with probability at least 1/g(n) during the execution of B∗T .
Then the probability that case 3 occurs in a randomly chosen right interaction in B∗T is at
least 1/g(n)T (n). In other words, with polynomial probability, for a randomly chosen right
interaction in B∗T , REC is invoked and outputs err; then by the argument above, the receiver’s
challenge in this randomly chosen right interaction can be computed efficiently from the pair
of admissible transcripts collected for this interaction (as input to REC). Furthermore, we
note that in B∗T , a pair of admissible transcripts is collected (if at all) for a right interaction,

31
622

Approved for Public Release; Distribution Unlimited.

before Stage 3 of that right interaction starts, and thus before the com commitment to the
receiver’s challenge is opened. Therefore we can use B∗ to violate the hiding property of com.

More precisely, we construct a machine A∗ that violates the hiding property of com. A∗ on
input a com commitment c to a random n-bit string e, internally emulates an interaction
between Ĉ and B∗T , except that it picks a random right interaction (in simulation by B∗T)
and feeds c as the Stage 1 message of that interaction; furthermore, after a pair of admissible
transcripts T1, T2 is collected for this right interaction, A∗ computes a challenge e′ as described
above; then, it aborts and outputs e′. Since A∗ emulates an interaction between Ĉ and
B∗T perfectly before it aborts, the probability case 3 happens in a randomly chosen right
interaction in A∗ is identical to that in a randomly chosen right interaction in B∗T , which
is 1/g(n)T (n). Thus with polynomial probability, the challenge computed by A∗ is the real
challenge committed to in c. Thus A∗ violates the hiding property of com.

Proof of Subclaim 4. Consider a fixed b ∈ {0, 1}, n, z and a fixed right interaction j ∈ [T (n)], we
show that the probability that B∗T reconstructs a value for the jth right interaction that is not
the valid committed value is negligible. Then it follows from a union bound that the probability
that B∗T reconstructs a value that is not the valid committed value in any right interaction is also
negligible. If a value is reconstructed successfully for the jth right interaction T , it must be the
case that interaction j is accepting, and a pair of admissible transcripts T1, T2 is collected and
REC(T1, T2, T) = x 6= err in B∗T . Then we show that except with negligible probability, x must be
the committed value in T .

Each row of a commitment of 〈C,R〉 contains 10n commitments of TrapCom. It follows from
the strong computational binding property (see Lemma 5) of TrapCom that the probability that
any of the TrapCom commitments generated by machine B∗T has two valid committed value is
negligible.6 Therefore, the shares committed to using TrapCom in the jth right interaction T are
uniquely defined; let si1, · · · , si10n be the committed shares in the ith row of T (sik is set to ⊥ if
the kth commitment in the ith row is invalid). We say a column k is inconsistent if it contains
a ski equals to ⊥ or two ski1 , s

k
i2

that are different; we claim that the probability that there are

more than n inconsistent columns in the jth right interaction is negligible. Recall that in the cut-
and-choose stage of the right interaction j, B∗T emulates the honest receiver’s message by sending
a randomly chosen subset Γ of size n; since the jth right interaction is accepting, the adversary
A must successfully reveal all the commitments in each column in Γ to the same value; therefore
all the columns in Γ are consistent. Since Γ is chosen at random, the probability that the jth

right interaction contains more than n inconsistent columns, but none of them is chosen in Γ
is exponentially small. Therefore, except with negligible probability, at least 0.9 fraction of the
columns are consistent.

Now we are ready to show that the value x returned by the procedure REC on input a pair
of admissible transcripts T1, T2 of the kth row of the right commitment T is the valid committed
value. From T1, T2, the procedure RECextracts 10n values s̃k1, · · · , s̃k10n corresponding to the 10n
shares committed to in the kth row of T . Then consider the following two possible cases:

In the first case, the shares s1
1, · · · , s1

10n committed to in the first row of T is 0.9-close to a
valid code w. Since except with negligible probability, at least 0.9 fraction of the columns
are consistent, by the special soundness of TrapCom, the extracted shares s̃k1, · · · , s̃k10n and
with s1

1, · · · , s1
10n agree with each other at no less than 0.9 fraction of positions. Therefore

6This also relies on the fact that TrapCom is a generalized public-coin protocol, in the sense, that given a partial
transcript of a commitment of TrapCom, messages from the honest receiver continuing from that partial transcript
can be emulated efficiently, by simply sending random strings.

32
623

Approved for Public Release; Distribution Unlimited.

s̃k1, · · · , s̃k10n is 0.8-close to w. Therefore the procedure REC will recover w uniquely. Then if w
agrees with all the shares opened in the cut-and-choose stage in T , the valid committed value
is the value v encoded in w; in this case, REC also performs the same check and will output
v as the committed value correctly. On the other hand, if w disagrees with one of the shares
opened in the cut-and-choose stage in T , the commitment is invalid and the committed value
is set to ⊥; in this case REC performing the same check, will also return ⊥ correctly.

In the second case, the shares s1
1, · · · , s1

10n committed to in the first row of T is 0.1-far away
from every valid code w. In this case, the commitment T is invalid and the committed value is
set to ⊥. We show that in this case, the probability that the procedure REC does not output
⊥ is negligible. If REC outputs a value v′ 6= ⊥, it must be the case that s̃k1, · · · , s̃k10n is 0.8-close
to a valid codeword w′ that encodes v′. By our hypothesis, s1

1, · · · , s1
10n is 0.1-far away from

w′. Since T is accepting, all the columns in Γ are consistent, and thus the shares revealed
in the cut-and-choose stage equals to

{
s1
i

}
i∈Γ
6= ⊥. By construction of REC, it outputs v′

only if w′ agrees with all the shares revealed in the cut-and-choose stage, that is, s1
i = w′i for

every i ∈ Γ. However, since the set Γ is chosen at random by the honest receiver (emulated
by B∗T), the probability that w′ disagrees with s1

1, · · · , s1
10n at more than n locations but none

of them is selected in Γ is exponentially small. Therefore, except with negligible probability,
REC outputs ⊥ correctly.

Combining the above two cases, we conclude that, except with negligible probability, the values
reconstructed by REC must be the valid committed value.

B.3.3 Proof of Robustness

In this section, we extend the proof in the last section to show that 〈C,R〉 is also robust w.r.t.
the committed-value oracle O. Towards this, we need to show that for every k ≤ κ(n), and every
PPT adversary A, there exists a simulator S, such that, for every PPT k-round ITM B, the
interaction between B and A with access to O is indistinguishable from that between B and S.
The construction of the simulator is similar to that in [CLP10], but the correctness follows from a
proof similar to the proof of CCA in the last section. For completeness, we provide the construction
of S below; but omit the proof.

Given an adversary A, and a constant k, the construction of the simulator S is very similar to
that of B∗ in the last section. On a high-level, S externally interacts with an arbitrary k-round
ITM B, and internally simulates an execution between B and AO, by forwarding messages from B
internally to A, while concurrently extracting the committed values of the right interactions from A
to simulate O. The extraction strategy of S is essentially the same as that used by B∗: it recursively
rewinds A over the rows in Stage 2 of the protocol to extract the committed values, except that, here
the goal is to make sure that the left interaction with B is never rewound, (instead of the goal of
ensuring that the left interaction remains hiding (in B∗)). This is achieved by rewinding only those
right-rows that do not interleave with any messages in the left interaction, and cancelling every
rewinding in which the right-row interleaves with a left-message. More precisely, consider the notion
of R-safe-point (which is in analogous to the notion of safe-point)—a prefix ρ of a transcript ∆ is a
R-safe-point for a right-row (α, β, γ) if it includes all the messages in ∆ up to α (inclusive), and that
no left-message is exchanged in between ρ and γ. Then S simply runs the procedure EXTdefined in
the last section internally, except that it replaces the notion of safe-point with R-safe-point, and that
it simulates the left interaction with A by forwarding the messages between A and B; everything
else remains the same. Then it follows from the fact that S always rewinds A from a R-safe-point ρ,
and cancels every rewindings in which ρ is not a R-safe-point, the left interaction is never rewound.
Furthermore, since the left interaction with B consists of only k ≤ κ(n) rounds, and the protocol
〈C,R〉 contains at least κ(n)+η(n) rows, there exist at least η = nε R-safe-point in every successful

33
624

Approved for Public Release; Distribution Unlimited.

right interaction. Then, it follows from the same proof as in Claim 7 and Claim 8 that there is a
polynomial t, such that the probability that S takes more than T (n) steps is smaller than t(n)/T (n)
plus a negligible amount, and that the joint output of S and B is indistinguishable from that of
AO and B.

C Model of Security

C.1 UC and Global UC security

We briefly review UC and externalized UC (EUC) security. For full details see [Can00, CDPW07].
The original motivation to define EUC security was to capture settings where all ITMs in the system
have access to some global, potentially trusted information (such as a globally available public key
infrastructure or a bulletin board) [CDPW07]. Here however we use the EUC formalism to capture
the notion of global helper functionalities that are available only to the corrupted parties.

We first review the model of computation, ideal protocols, and the general definition of securely
realizing an ideal functionality. Next we present hybrid protocols and the composition theorem.

The basic model of execution. Following [GMR89, Gol01], a protocol is represented as an
interactive Turing machine (ITM), which represents the program to be run within each participant.
Specifically, an ITM has three tapes that can be written to by other ITMs: the input and subroutine
output tapes model the inputs from and the outputs to other programs running within the same
“entity” (say, the same physical computer), and the incoming communication tapes and outgoing
communication tapes model messages received from and to be sent to the network. It also has an
identity tape that cannot be written to by the ITM itself. The identity tape contains the program
of the ITM (in some standard encoding) plus additional identifying information specified below.
Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is
an ITM along with an identifier that distinguishes it from other ITIs in the same system. The
identifier consists of two parts: A session-identifier (SID) which identifies which protocol instance
the ITI belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol
instance. Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent
some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes
in certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI
in the system. With one exception (discussed within) we assume that all ITMs are probabilistic
polynomial time.7

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to
an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed
to capture the desired functionality of the task at hand. A protocol is said to securely realize an
ideal functionality if the process of running the protocol amounts to “emulating” the ideal process

7An ITM is PPT if there exists a constant c > 0 such that, at any point during its run, the overall number of
steps taken by M is at most nc, where n is the overall number of bits written on the input tape of M in this run. In
fact, in order to guarantee that the overall protocol execution process is bounded by a polynomial, we define n as the
total number of bits written to the input tape of M , minus the overall number of bits written by M to input tapes of
other ITMs; see [Can01].

34
625

Approved for Public Release; Distribution Unlimited.

for that ideal functionality. Below we overview the model of protocol execution (called the real-life
model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running
an instance of a protocol π, an adversary A that controls the communication among the parties, and
an environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter k ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol π. That is, all the ITMs invoked by the
environment must have the same SID and the code of π. In the context of EUC security the
environment can in addition invoke an additional ITI that interacts with all parties. We call this
ITI the helper functionality, denoted H.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on
the party’s incoming communication tape or report information to Z by writing this information
on the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we
assume authenticated communication; that is, the adversary may deliver only messages that were
actually sent. (This is however not essential since authentication can be realized via a protocol,
given standard authentication infrastructure [Can04].)

Once a protocol party (i.e., an ITI running π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let execπ,A,Z(k, z, r) denote the output of the environment Z when interacting with parties
running protocol π on security parameter k, input z and random input r = rZ , rA, r1, r2, ... as
described above (z and rZ for Z; rA for A, ri for party Pi). Let execπ,A,Z(k, z) denote the
random variable describing execπ,A,Z(k, z, r) when r is uniformly chosen. Let execπ,A,Z denote
the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .
Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of
F is null.)) In addition, F can interact with the adversary according to its code. Whenever F
outputs a value to a party, the party immediately copies this value to its own output tape. We call
the parties in the ideal protocol dummy parties. Let π(F) denote the ideal protocol for functionality
F .

35
626

Approved for Public Release; Distribution Unlimited.

Securely realizing an ideal functionality. We say that a protocol π emulates protocol φ if
for any adversary A there exists an adversary S such that no environment Z, on any input, can
tell with non-negligible probability whether it is interacting with A and parties running π, or it
is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol π is ‘just as good’ as interacting with φ. We say that π securely
realizes an ideal functionality F if it emulates the ideal protocol π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition 9. Let π and φ be protocols. We say that π UC-emulates (resp., EUC-emulates) φ if for
any adversary A there exists an adversary S such that for any environment Z that obeys the rules
of interaction for UC (resp., EUC) security we have execφ,S,Z ≈ execπ,A,Z .

Definition 10. Let F be an ideal functionality and let π be a protocol. We say that π UC-realizes
(resp., EUC-realizes) F if π UC-emulates (resp., EUC-emulates) the ideal protocol π(F).

Security with dummy adversaries. Consider the adversary D that simply follows the instruc-
tions of the environment. That is, any message coming from one of the ITIs running the protocol
is forwarded to the environment, and any input coming from the environment is interpreted as a
message to be delivered to the ITI specified in the input. We call this adversary the dummy adver-
sary. A convenient lemma is that UC security with respect to the dummy adversary is equivalent
to standard UC security. That is:

Definition 11. Let π and φ be protocols. We say that π UC-emulates (resp., EUC-emulates) φ w.r.t
the dummy adversary D if there exists an adversary S such that for any environment Z that obeys
the rules of interaction for UC (resp., EUC) security we have execφ,S,Z ≈ execπ,D,Z .

Theorem 3. Let π and φ be protocols. Then π UC-emulates (resp., EUC-emulates) φ if and only if
π UC-emulates (resp., EUC-emulates) φ with respect to the dummy adversary.

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual
as in the standard model of execution, the parties also have access to (multiple copies of) an ideal
functionality. Hybrid protocols represent protocols that use idealizations of underlying primitives,
or alternatively make trust assumptions on the underlying network. They are also instrumental in
stating the universal composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid
protocol with access to an ideal functionality F), the parties may give inputs to and receive outputs
from an unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all outputs from
each copy carry the corresponding SID. The model does not specify how the SIDs are generated,
nor does it specify how parties “agree” on the SID of a certain protocol copy that is to be run by
them. These tasks are left to the protocol. This convention seems to simplify formulating ideal
functionalities, and designing protocols that securely realize them, by freeing the functionality from
the need to choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

36
627

Approved for Public Release; Distribution Unlimited.

The universal composition operation. We define the universal composition operation and state
the universal composition theorem. Let ρ be an F-hybrid protocol, and let π be a protocol that
securely realizes F . The composed protocol ρπ is constructed by modifying the code of each ITM
in ρ so that the first message sent to each copy of F is replaced with an invocation of a new copy
of π with fresh random input, with the same SID, and with the contents of that message as input.
Each subsequent message to that copy of F is replaced with an activation of the corresponding
copy of π, with the contents of that message given to π as new input. Each output value generated
by a copy of π is treated as a message received from the corresponding copy of F . The copy of π
will start sending and receiving messages as specified in its code. Notice that if π is a G-hybrid
protocol (i.e., ρ uses ideal evaluation calls to some functionality G) then so is ρπ.

The universal composition theorem. Let F be an ideal functionality. In its general form, the
composition theorem basically says that if π is a protocol that UC-realizes F (resp., EUC-realizes
F) then, for any F-hybrid protocol ρ, we have that an execution of the composed protocol ρπ

“emulates” an execution of protocol ρ. That is, for any adversary A there exists a simulator S such
that no environment machine Z can tell with non-negligible probability whether it is interacting
with A and protocol ρπ or with S and protocol ρ, in a UC (resp., EUC) interaction. As a corollary,
we get that if protocol ρ UC-realizes F (resp., EUC-realizes F), then so does protocol ρπ.8

Theorem 4 (Universal Composition [Can01, CDPW07]). Let F be an ideal functionality. Let ρ
be a F-hybrid protocol, and let π be a protocol that UC-realizes F (resp., EUC-realizes F). Then
protocol ρπ UC-emulates ρ (resp., EUC-emulates ρ).

An immediate corollary of this theorem is that if the protocol ρ UC-realizes (resp., EUC-realizes)
some functionality G, then so does ρπ.

C.2 UC Security with Super-polynomial Helpers

We modify the definitions of UC security by giving the corrupted parties access to an external
“helper” entity, in a conceptually similar way to [PS04]. This entity, denoted H, is computationally
unbounded, and can be thought of as providing the corrupted parties with some judicious help.
(As we’ll see, this help will be used to assist the simulator to “reverse engineering” the adversary
in order to extract relevant information hidden in its communication.)

The definition uses the formalism of EUC security [CDPW07]. Specifically, we model the
helper entity as an ITM that is invoked directly by the environment, and that interacts with the
environment and the corrupted parties. More formally, let H be an ITM. An environment Z is
called aided by H if: (a) Z invokes a single instance H immediately after invoking the adversary;
(b) As soon as a party (i.e., an ITI) P is corrupted (i.e., P receives a corrupted message), Z lets
H know of this fact; (c) H interacts only with the corrupted parties. Then:

Definition 12. Let π and φ be protocols, and let H be a helper functionality (i.e., an ITM). We
say that π H-EUC-emulates φ if for any adversary A there exists an adversary S such that for any
environment Z that’s aided by H we have execφ,S,Z ≈ execπ,A,Z .

The meaningfulness of relativized UC security of course depends on the particular helper ITM
in use. Still, it is easy to see that if protocol π H-EUC-emulates protocol φ where H obeys the
above rules and runs in time T (n), then π UC-emulates φ according to a relaxed notion where
the adversary S can run in time poly(T (n)). As noted in the past, for many protocols and ideal

8The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system. In [CDPW07] the theorem is extended to
protocols that share subroutines with arbitrary other protocols, as long as the composed protocol, ρπ, realizes F with
EUC security.

37
628

Approved for Public Release; Distribution Unlimited.

functionalities, this relaxed notion of security suffices even when T (n) = exp(n) [Pas03b, PS04,
BS05, MMY06].

Universal Composition with super-polynomial helpers. The universal composition theorem
generalizes naturally to the case of EUC, even with super-polynomial helper functionalities:

Theorem (universal composition for relativized UC). Let F be an ideal functionality, let H be a
helper functionality, let π be an F-hybrid protocol, and let ρ be a protocol that H-EUC-realizes F .
Then protocol πρ H-EUC-emulates π.

Proof. The proof of Theorem C.2 follows the same steps as the proof of Theorem 4 (see e.g. the
proof in [Can00]). The only difference is in the construction of the distinguishing environment Zπ
(see there). Recall that Zπ takes an environment Z that distinguishes between an execution of π
and an execution of πρ, and uses it to distinguish between an execution of ρ and an ideal evaluation
of F . For this purpose, Zπ emulates for Z an execution of πρ.

Now, in the presence of the helper H, Zρ must emulate for Z also the interaction with H. Note
that Zπ cannot run H on its own, since H may well be super-polynomial in complexity. Instead,
Zπ will forward to the external instance of H each message sent to H by Z. Similarly, whenever
any of the corrupted parties that Zπ locally runs sends a message to H, Zπ externally invokes a
party with the same ID and code, corrupts it, and instructs it to send the query to the external
instance of H. The responses of H are handled analogously.

Note that the proof uses the fact that the helper functionality H does not take messages directly
from the adversary. Indeed, Zπ cannot emulate for the external instance of H messages coming
from the adversary.

D Black-Box UC-Secure Protocols in H-EUC Model

In this work, we consider UC-security with the a super-polynomial time helper that help breaks
commitments of our black-box robust CCA secure commitment scheme 〈C,R〉. More precisely, it
proceeds as described in Figure 6

Functionality H

Corrupted Parties: Upon receiving an input (Corrupt, Pi, sid) from the environment, record (Corrupt,
Pi, sid).

Initialization: Upon receiving an input (Init,Pi, sid, k) from party Pi in the protocol instance
sid, if there is no previously recorded tuple (Corrupt, Pi, sid) or there is a previously recorded session
(Pi, sid, k), ignore this message; otherwise, initialize a session of 〈C,R〉 with O using identity (Pi, sid),
and record session (Pi, sid, k).

Accessing O: Upon receiving an input (Mesg,Pi, sid, k,m) from party Pi in the protocol instance
sid, if there is no previously recorded session (Pi, sid, k), ignore the message; otherwise, forward m to O
in the kth session that uses identity (Pi, sid), obtain a reply m′, and return (Mesg,Pi, sid, k,m

′) to Pi.

Figure 6: The ideal functionality H

D.1 Proof of Lemma 2

In this section, we first recall the protocol ΠOT that H-EUC emulates FOT and then prove its
security. The construction relies on the TOT-round mS-OT protocol 〈S,R〉 and the CCA-secure

38
629

Approved for Public Release; Distribution Unlimited.

commitment scheme 〈C,R〉. On common input 1n, the sender and the receiver of the protocol ΠOT

on private inputs (v0, v1) and u respectively proceed as follow:

Stage 1: The sender chooses a random subset ΓR ⊆ [20n] of size n and commits to ΓR using
〈C,R〉.
The receiver chooses a random subset ΓS ⊆ [20n] of size n and another random subset
Γ ⊆ [18n] of size n; it then commits to both ΓS and Γ using 〈C,R〉.

Stage 2 (Coin-Tossing):

Receiver Random-Tape Generation: The receiver chooses 20n random strings (aR1 , . . . a
R
20n)

and commits to them using 〈C,R〉. The sender sends 20n random strings (bR1 , . . . b
R
20n). The

receiver calculates rRi = aRi ⊕ bRi for every i ∈ [20n], and interprets rRi as ci‖τRi , where ci will
be used as the receiver’s input bit, and τRi the random tape in the OT executions below.

Sender Random-Tape Generation: The sender chooses 20n random strings (aS1 , . . . a
S
20n) and

commits to them using 〈C,R〉. The receiver sends 20n random strings (bS1 , . . . b
S
20n). The

sender calculates rSi = aSi ⊕ bSi for every i ∈ [20n], and interprets rSi as s0
i ‖s1

i ‖τSi , where
s0
i and s1

i will be used as the sender’s two input bits, and τSi the random tape in the OT
executions below.

Stage 3 (OT with Random Inputs): The sender and the receiver participates in 20n execu-
tions of the OT protocol 〈S,R〉 in parallel, where the sender acts as S and the receiver acts
as R. In the ith execution of 〈S,R〉, the sender uses inputs s0

i , s
1
i and random tape rSi and the

receiver uses input ci and random tape rRi . At the end of the execution, the receiver obtains
outputs s̃1 . . . s̃20n.

Stage 4 (Cut-and-Choose—Honesty Checking):

Sender Honesty Checking: The receiver opens ΓS and sender responds as follows: for every
j ∈ ΓS , the sender opens the jth commitments of 〈C,R〉 in Stage 2 to ãSj . The receiver checks

if the openings are valid, and if for every j ∈ ΓS , the sender acted honestly in the jth OT
execution according to ãSj ⊕ bSj . The receiver aborts if not.

Receiver Honesty Checking: The sender opens ΓR and receiver responds as follows: for every
j ∈ ΓR, the receiver opens the jth commitments of 〈C,R〉 in Stage 2 to ãRj . The sender checks

if the openings are valid and if for every j ∈ ΓR, the receiver acted honestly in the jth OT
execution according to ãRj ⊕ bRj . The sender aborts if not.

Stage 5 (Combiner): Set ∆ = [20n] − ΓR − ΓS (i.e., ∆ is the set of unopened locations). For
every i ∈ ∆ The receiver computes αi = u⊕ ci and sends αi. The sender responds as follows:
It computes a 10n-out-of-18n secret-sharing of v0; without loss of generality, we index shares
in that secret-sharing with elements in ∆; let the secret-sharing be ρ0 =

{
ρ0
i

}
i∈∆

. Similarly, it

also computes a 10n-out-of-18n secret-sharing ρ1 =
{
ρ1
i

}
i∈∆

for v1. Then the sender computes

βbi = ρbi ⊕ sb⊕αii for every i ∈ ∆ and sends back all the βbi ’s.

The receiver after receiving all the βbi ’s, computes shares corresponding to the uth input as
ρ̃i = βui ⊕ s̃i for every i ∈ ∆, and sets ρ̃ = {ρ̃i}i∈∆.

Stage 6 (Cut-and-Choose—Consistency Checking): The receiver opens to Γ. Then for ev-
ery j ∈ Γ ∩∆, the sender reveals the two inputs ŝ0

j and ŝ1
j and random tape τ̂Sj that it uses

in the jth OT execution in Stage 3. The receiver checks if the sender acts honestly according
to input (ŝ0

j , ŝ
1
j) and random tape τ̂Sj and aborts if not.

39
630

Approved for Public Release; Distribution Unlimited.

Finally the receiver checks whether ρ̃ computed in Stage 5 is 17n-close to a valid codeword
w (that is, it agrees with w at 17n locations), and if for every j ∈ Γ ∩ ∆, wj is equal to

βuj ⊕ ŝ
u⊕αj
j . If so it outputs the value v encoded in w; otherwise, it aborts.

Next we proceed to show that ΠOT is indeed a secure realization of FOT. Below we describe the
technique for simulating the protocol execution of ΠOT in the ideal-world, where parties have access
to the ideal commitment functionality FOT, and give a proof that the simulation in the ideal-world
setting is indistinguishable from a real-world execution of ΠOT. Recall that we only need to prove
that ΠOT H-EUC-emulates FOT; hence in both the ideal and real worlds, the environment and the
adversary have access to the H functionality.

Let A be any PPT adversary and Z any PPT environment. The simulator Sim for A in the
ideal world internally simulates a real-world execution with A on auxiliary input z: it simulates A’s
interaction with the environment Z and the functionality H, by simply forwarding the communi-
cations between A and Z or H; furthermore, it simulates messages belonging to the OT protocol
ΠOT for A as follows:

Strategy 1: If the Sender (Pi) is honest and the Receiver (Pj) is corrupted, the simula-
tor needs to be able to extract the choice u of the receiver (controlled by A) so that it can
send u to the ideal OT functionality FOT to obtain an input vu, and simulate the view of A
without knowing the other input v1−u.

Towards this, the simulator Sim first acts honestly in Stage 1 to 4 except the following: It
forwards all the commitments of 〈C,R〉 from A in Stage 1 and 2 to the helper functionality H.
Since the receiver Pj is corrupted, H accepts commitments with identity Pj from Sim, and
returns Sim the unique committed value if the commitment is valid and ⊥ otherwise. These
committed values include ΓS and Γ committed to by A in Stage 1 and all the random strings
aRi for i ∈ [20n] committed to by A in Stage 2, which allows Sim to recover the inputs and
random tapes

{
ci, τ

R
i

}
i∈[20n]

that A is supposed to use in the Stage 3 OT executions. Then

for every j ∈ [20n], Sim checks whether A behaves honestly according to cj , τ
R
j in the jth

OT execution in Stage 3, and sets Φ to be the set of locations in which A cheats. Next, if A
successfully completes the first 4 stages, Sim needs to extract its input choice u and simulate
the Stage 5 sender’s message. To do so, it first extracts u by counting how many shares out
of the 18n shares ρ0 =

{
ρ0
i

}
i∈∆

and ρ1 =
{
ρ1
i

}
i∈∆

that A will get (in Stage 5 and 6) for each
input v0 and v1 as follows:

• For every location j ∈ ∆ and also in Γ, since the sender’s inputs s0
j and s1

j will be

revealed in stage 6, Sim counts that A obtains one more share for both ρ0 and ρ1.

• For every location j ∈ ∆ and also in Φ, A has cheated in the jth OT in Stage 3 and
thus may obtain both of the sender’s inputs s0

j and s1
j in that OT execution; recall that

in Stage 5 of the protocol, the two shares ρ0
j and ρ1

j will be covered using the sender’s

inputs s0
j and s1

j as one-time pads. Therefore, after receiving the Stage 5 message (which

contains βbj = ρbj ⊕ s
b⊕αj
j), A will be able to recover both shares. Thus Sim counts that

A again obtains one more share for both ρ0 and ρ1.

• For the rest of locations j ∈ ∆−Φ−Γ, since A acts honestly using input cj and the two
sender’s inputs s0

j and s1
j will not be revealed in Stage 6, A obtains s

cj
j through the OT

execution while s
1−cj
j remains computationally hidden. Thus A later can only recover

the share ρ
cj⊕αj
j . Therefore, Sim counts that A gets one more share of ρcj⊕αj .

Then to simulates the sender’s Stage 5 message, Sim proceeds as follows: If for both inputs A
gets more than 10n shares, the simulator Sim outputs fail and aborts. Otherwise, if for only

40
631

Approved for Public Release; Distribution Unlimited.

one input A gets more than 10n shares, Sim sends its index b∗ to the ideal functionality FOT

and receives a value w; it then sets vb∗ = w and sets v1−b∗ to a random bit, and complete the
rest of the simulation by following the honest sender’s strategy using vb∗ and v1−b∗ as inputs.
Finally, if for none of the inputs A gets more than 10n shares, then Sim simply sets both v0

and v1 to random bits and complete the simulation honestly according to these two values.

Strategy 2: If the Sender (Pi) is corrupted and the Receiver (Pj) is honest, the simula-
tor needs to simulate the view of the sender (controlled by A) without knowing the choice of
the receiver and extracts the two inputs from A.

Towards this, first note that during the whole execution of ΠOT, the only message that
depends on the receiver’s choice u is the Stage 5 receiver’s message, consisting of {αj}j∈∆
that are supposed to be set to αj = u ⊕ cj . The simulator Sim simulates the αj ’s by
simply sending random bits (and emulates the rest of the receiver’s messages for A honestly).
Furthermore, to extract the two inputs of the sender (controlled by A), Sim proceeds as
follows: It forwards all the commitments of 〈C,R〉 from A in Stage 1 and 2 to the helper
functionality H. Since the sender Pi is corrupted, H accepts commitments with identity Pi
from Sim, and returns Sim the unique committed value if the commitment is valid and ⊥
otherwise. These committed values include ΓR committed to by A in Stage 1 and all the
random strings aSi for i ∈ [20n] committed to by A in Stage 2, which allows Sim to recover
the inputs and random tapes

{
s0
i , s

0
i , τ

R
i

}
i∈[20n]

that A is supposed to use (as a sender) in the

Stage 3 OT executions. Next, if A completes the execution of ΠOT successfully, Sim extracts

shares of the sender’s inputs by computing ρ̂b =
{
ρ̂bj = βbj ⊕ s

b⊕αj
j

}
j∈∆

for b ∈ {0, 1} (The

rationale behind this extraction strategy is that, for every input b, the sender of the protocol

ΠOT is supposed to send “encryption”
{
βbj

}
of the shares

{
ρbj

}
of that input in Stage 5,

hidden using the appropriate inputs
{
s
b⊕αj
j

}
of the OT executions). Given the shares ρ̂0 and

ρ̂1, Sim reconstructs inputs v̂0 and v̂1 as follows: For every b, it checks whether ρ̂b is 16n-close
to a valid codeword ŵb, and whether ŵb passes the consistency check in the last stage, that

is, if ŵb agrees with βbj ⊕ ŝ
b⊕αj
j for all j ∈ Γ; If so, then it sets v̂b to the value encoded in ŵb;

otherwise it sets v̂b = ⊥. Finally Sim sends the two values v̂0 and v̂1 externally to the OT
functionality.

Strategy 3: If both the Sender (Pi) and the Receiver (Pj) are honest, the simulator needs
to simulate the transcript of an honest execution of ΠOT for A without knowing the inputs
of the honest players. To do so, it simply generates the transcript of an honest execution of
ΠOT using inputs all 0.

Below we analyze each of the simulation strategies above, and show that the environment Z’s
interactions with S in the ideal-world is indistinguishable from that with A in the real-world in
each of the cases.

Analysis of the first case: Consider the following five hybrids:

Hybrid H1: Hybrid H1 proceeds identically to the ideal execution, except that: In Stage 2,
for every location j that the sender would not need to reveal the randomness, that is, j 6∈
ΓS∪Γ (recall that the simulator obtains ΓS and Γ by forwarding A’s commitments to the
helper functionalityH at the end of Stage 1), the simulator simulates the jth commitment
of 〈C,R〉 to A by committing to 0 instead of aSj . Since these commitments all have
identities belonging to an honest player, and the helper functionality H only breaks

41
632

Approved for Public Release; Distribution Unlimited.

commitments with identities of corrupted parties, it follows from the CCA-security of
〈C,R〉 that the ideal-execution is indistinguishable from H1.

Hybrid H2: Hybrid H2 proceeds identically to H1 except that in Stage 5, instead of always
using the sender’s inputs s0

j and s1
j for j ∈ ∆ to hide the shares ρ0 =

{
ρ0
i

}
i∈∆

and

ρ1 =
{
ρ1
i

}
i∈∆

, the simulator replace those inputs sbj ’s that are computationally hidden
from A with random strings to hide the shares. More precisely, recall that in every
location j ∈ ∆ − Φ − Γ, A acts honestly in the OT execution (using input cj) and

the sender’s inputs are not revealed in Stage 6; thus the input s
1−cj
j is computationally

hidden. Then, instead of using s
1−cj
j as a one-time pad to hide one of the jth shares ρ0

j

or ρ1
j in Stage 5, Sim uses a truly random string.

We claim that H2 is indistinguishable from H1. Towards showing this, we first show
that it follows from the security of the OT protocol 〈S,R〉 against semi-honest receiver
that the views of a malicious receiver R∗ in the following two experiments are indistin-
guishable.

In both experiments, the receiver R∗ on input a choice u, random input τ and
auxiliary input z, first engages in an execution with the honest sender S with
inputs s0 and s1 chosen at random. After the execution with S completes, R∗

receives the two inputs s0 and s1 in the first experiment. On the other hand,
what R∗ receives in the second experiment depends on whether it has acted
honestly according to inputs u and τ : If it is dishonest, then it still receives s0

and s1; otherwise, if it is honest, it receives su and a random bit s′.

It follows from the security against semi-honest receivers that when R∗ acts honestly
according to a choice u, the sender’s input s1−u that is not chosen is computationally
hidden, and thus R∗ cannot tell apart later whether it receives s1−u or a random bit.
Therefore its views in the above two experiments are indistinguishable. It further fol-
lows from a simple hybrid argument that, no malicious receiver can tell apart the two
experiment even if they are executed in parallel.

Then, since the only difference between hybrid H1 and H2 lies in whether the sender’s

message in Stage 5 is generated using honest inputs s
1−cj
j or random strings, for those

locations j ∈ ∆ − Φ − Γ where the adversary A acts honestly in the OT execution
according to the inputs and random tapes decided in Stage 2. It then follows from the
indistinguishability of the above two experiments (executed in parallel) that the sender’s
messages in Stage 5 in H1 and H2 are indistinguishable. Then, by the 1-robustness of
the CCA-secure commitment 〈C,R〉, we have that the view of A in the two hybrids are
indistinguishable. Thus H1 and H2 are indistinguishable.

Hybrid H3: This hybrid proceeds identically to H2 except the following: The ideal func-
tionality FOT does not expect to receive a choice from the simulator and instead directly
discloses both of the sender’s inputs v0 and v1 to the simulator; then after the simulator
extracts the adversary’s choice u, instead of using inputs vu and a random bit to simulate
the Stage 5 message as in H2, the simulator uses v0 and v1.

To show that H3 is indistinguishable from H2, we first prove that due to the cut-and-
choose procedure in Stage 4, the probability that A cheats in a large number of—more
than n—OT executions in Stage 3 without being caught is negligible.

Claim 4. In hybrid H4, the probability that A cheats in more than n OT executions in
Stage 3, and successfully passes the receiver’s honesty check in Stage 4 is negligible.

We remark that this claim holds, even if A receives a commitment to the set of locations
ΓR to be opened in the cut-and-choose procedure in Stage 1. This is because the CCA-

42
633

Approved for Public Release; Distribution Unlimited.

security of the commitment guarantees that ΓR remains hidden even if all the values
that A commits to in Stage 2 are extracted via a committed-value oracle (since these
commitments use identities of corrupted parties, different from the identity of the com-
mitment to ΓR, which is the identity of the honest sender.) Then since we can identify
the locations where A cheats using these committed values efficiently, these locations
must be computationally independent of ΓR. Thus if A cheats in a large number of OT
executions, one of them will be selected by ΓR to check with overwhelming probability,
causing A to fail in Stage 4. A formal proof of this claim is presented at the end of this
section.

It follows directly from Claim 4 that except with negligible probability, if A completes
Stage 4 successfully, then the total number of shares that it gets is at most 20n; then,
by the pigeon hold principle, it gets more than 10n shares for at most one input. This
implies that the probability that the simulator outputs fail is negligible. Assume that
S4 does not output fail. Then the only difference between the simulation in hybrid H2

and H3 lies in how the Stage 5 sender’s message is simulated. In H2, for the input
that A gets more than 10n shares, the simulator obtains the true value through the OT
functionality and thus simulate the corresponding part of the sender’s message perfectly.
On the other hand, for the inputs that A gets no more than 10n shares, it simulates
shares of these inputs using shares of random bits. However, since A gets at most 10n
shares of these random bits and the rest of shares are all covered by truly random strings
in H2, switching the random bits to true inputs does not change the distribution of the
simulated message (of Stage 5). Thus we conclude that the views of A in H3 and H4 are
statistically close, and so are the executions of H3 and H4.

Hybrid H4: Hybrid H4 proceeds identically to H3 except that in Stage 5, the simulator
switches back to using the sender’s inputs s0

j and s1
j in the OT executions to hide the

shares ρ0 =
{
ρ0
j

}
j∈∆

and ρ1 =
{
ρ1
j

}
j∈∆

(instead of using random strings to hide part of

the shares). In other works, H4 reverses the changes done in H2. Then it follows from
the same argument as in H2 that, by the 1-robustness of the commitment 〈C,R〉, the
hybrid H4 proceeds indistinguishably from H3.

Hybrid H5: Hybrid H5 proceeds identically to H4 except that, in Stage 2, for every location
j that the sender do not need to reveal the randomness, that is, j 6∈ ΓS∪Γ, the simulator
switches the jth commitment of 〈C,R〉 to A from committing to 0 back to committing to
aSj . That is, H4 reverses the changes done in H1. Then it follows from the same argument
as in H1 that by the CCA-security of 〈C,R〉, the hybrid H5 proceeds indistinguishably
from H4.

Finally note that in H5, the simulator receives from FOT both inputs v0 and v1, and internally
emulates the real-execution with A perfectly. Therefore, by a hybrid argument, we have that
the real execution is indistinguishable from an execution of H1, which in turn is indistinguish-
able from from the ideal execution. Thus we concludes that the simulator Sim is constructed
correctly.

Analysis of the second case: Consider the following sequence of hybrids.

Hybrid H̃1: This hybrid proceeds identically to the ideal execution, except the following:
In Stage 2, for every location j that the receiver do not need to reveal the randomness,
that is, j 6∈ ΓR (recall that the simulator obtains ΓR by forwarding A’s commitments
to the helper functionality H at the end of Stage 1), the simulator simulates the jth

commitment of 〈C,R〉 from the receiver to A, by committing to 0 instead of aRj . Since

43
634

Approved for Public Release; Distribution Unlimited.

these commitments all have the identity of the honest receiver, and the helper function-
ality H only breaks commitments with identities of corrupted parties, it follows from the
CCA-security of 〈C,R〉 that the ideal-execution is indistinguishable from H̃1.

Hybrid H̃2: This hybrid proceeds identically to H̃1 except the following: the ideal func-
tionality FOT discloses the external receiver’s choice u to the simulator; furthermore, in
Stage 5, instead of simulating all the αj ’s using random bits, the simulator computes
them honestly as αj = u ⊕ cj (where cj ’s are the inputs that the receiver uses in the
Stage 3 OT executions).

We claim that H̃2 is indistinguishable from H̃1. Towards showing this, we first show that
it follows from the security of the OT protocol 〈S,R〉 against malicious senders that the
views of a malicious sender S∗ in the following two experiments are indistinguishable.

In both experiments, the sender S∗ first participates in an interaction with an
honest receiver R using a random inputs u. After the execution with R, in the
first experiment, S∗ receives the input u, whereas in the second experiment, it
receives another independently sampled random bit u′.

It follows from the security against malicious senders of the OT protocol that the views
of the malicious sender S∗ in the above two experiments are indistinguishable. Further-
more, it follows from a simple hybrid argument that, no malicious receiver can tell apart
the above two experiments even if they are executed in parallel.

Then, note that the only difference between hybrid H̃1 and H̃2 lies in whether in Stage
5, the αj ’s (for j ∈ ∆) from the receiver are simulated using random bits or generated
honestly as u ⊕ cj ; in other words, the differenece is whether the αj ’s are computed as
the sum of u and a random bit (yielding a random bit) or cj (yielding u ⊕ cj). It then
follows from the indistinguishability of the above two experiments (executed in parallel)
that the receiver’s messages in Stage 5 in H̃1 and H̃2 are indistinguishable. Thus, by
the 1-robustness of the CCA-secure commitment 〈C,R〉, we have that the view of A
and the output of the external OT receiver (which will be v̂u) in the two hybrids are
indistinguishable. Hence H̃1 and H̃2 are indistinguishable.

Hybrid H̃3: This hybrid proceeds identically to H̃2 except that, in Stage 2, for every location
j that the receiver do not need to reveal the randomness, that is, j 6∈ ΓR, the simulator
switches the jth commitment of 〈C,R〉 from the receiver to A from a commitment to
0 back to a commitment to aSj . That is, H̃3 reverses the changes done in H̃1. Then it

follows from the same argument as in H̃1 that by the CCA-security of 〈C,R〉, the hybrid
H̃3 proceeds indistinguishably from H̃2. We remark that in H̃3 the simulator essentially
emulates the execution of ΠOT for A perfectly as an honest receiver (using the external
receiver’s true input u that it gets from FOT), except that it tries to extract the two
sender’s inputs from A at the end of the execution.

Hybrid H̃4: This hybrid proceeds identically to H̃3 except the following: The external re-
ceiver no longer interacts with FOT, and instead, simply outputs a value that the sim-
ulator feeds it. On the other hand, the simulator internally emulates the execution of
ΠOT for A by following the honest receiver’s strategy (as in H̃3), obtaining an output
v; it then skips extracting the sender’s inputs v̂0 and v̂1 and simply feeds the external
receiver the value v as the its output.

We show that the output of the environement in H̃4 is statistically close to that in
H̃3. Since the only difference between the two hybrids lies in how the outputs of the
external receiver are derived, it suffices to show that except with negligible probability,
the outputs of the external receiver in the two hybrids are the same. In H̃4, the external
receiver directly outputs the value v the simulator feeds it, which is just the output of

44
635

Approved for Public Release; Distribution Unlimited.

an honest receiver of ΠOT with input u (emulated by the simulator for A). In H̃3, the
external receiver obtains the uth input from FOT, which is v̂u extracted by the simulator
from A. Recall that both v and v̂u are derived in two steps:

• In the first step, shares of the two values are recovered. The honest receiver obtains
shares of v by computing ρ̃ = {ρ̃j = βui ⊕ s̃i}j∈∆, where s̃j ’s are the outputs it
obtains in the Stage 3 OT executions with inputs cj ’s. On the other hand, the

simulator extracts shares of v̂u as ρ̂u =
{
ρ̂uj = βuj ⊕ s

u⊕αj
j

}
j∈∆

, where the sbj ’s are

the inputs that A is supposed to use in the OT executions.

• In the second step, a codeword is recovered from the shares: The honest receiver
recovers w that is 17n-close to ρ̃, whereas the simulator recovers ŵu that is 16n-
close to ρ̂u. Then both codewords are checked for consistency, that is whether they

agrees with βuj ⊕ ŝ
u⊕αj
j at locations j ∈ Γ, where the ŝbj ’s are A’s actual inputs in

the OT executions revealed in the last stage. If w (or ŵu respectively) passes the
consistency check, then v (or v̂u resp.) is set to the value encoded in w (or ŵu resp.);
otherwise, it is set to ⊥.

Towards showing that v and v̂u are (almost) always the same, Consider the following
two possible cases: ρ̃ is 17n-close to a valid codeword w or not.

• If it is, (in H̃4) the honest receiver will recover w from ρ̃. We show that the simulator
will recover the same codeword w from ρ̂u (i.e., ŵu = w). This relies on the following
claim:

Claim 5. Let ρ̃ and ρ̂u be defined as above. Then, except with negligible probability,
the shares ρ̃ and ρ̂u are 17n-close to each other.

This claim essentially follows from the fact that due to the cut-and-choose procedure,
the probability that A cheats in more than n OT executions in Stage 3, and yet,
passes the sender’s honesty check in Stage 4 is negligible. (This follows from the
same proof as Claim 4). Therefore, there are at least 17n locations where A acted
honestly (in the OT executions), meaning that the output s̃j of the honest receiver

in these OT executions equals to s
cj
j , which in turn equals to s

u⊕αj
j since α = u⊕ cj

in H̃3 and H̃4. This implies that ρ̃ and ρ̂u agree with each other at at least 17n
locations.
Therefore, except with negligible probability, ρ̂u is 16n-close to w. Then the sim-
ulator will uniquely recover w as well (i.e., ŵu = w). After that, both the honest
receiver and the simulator conduct the same consistency check against w, leading
to the same outputs v = v̂u.

• Otherwise, if ρ̃ is n-far away from any valid codeword, the honest receiver sets v to
⊥. We need to show that the simulator will also set v̂u to ⊥ with overwhelming
probability. Suppose not, then the simulator must have recovered a codeword ŵu

from ρ̂u. By our hypothesis, ŵu is n-far away from ρ̃; let Ψ be the set of locations
j at which ŵu and ρ̃ differ. Then we show that the probability that ŵu passes the
consistency check is negligible. Formally,

Claim 6. Let Ψ be defined as above. Then, the probability that |Ψ| > n and A
successfully passes the consistency check in Stage 6 is negligible.

This claim essentially follows from the fact that due to the cut-and-choose procedure,
the probability that Ψ is large but none of the locations j in Ψ is checked in the last
stage (i.e., Ψ ∩ Γ = ∅) is negligible. (This follows from a similar proof as Claim 4).
With overwhelming probability there is a location j in Ψ being checked, forcing A
to reveal the inputs ŝ0

j and ŝ1
j it uses in that OT execution, which also reveals the

45
636

Approved for Public Release; Distribution Unlimited.

difference between ρ̃j and ŵuj . That is,

ρ̃j = βuj ⊕ s̃j = βuj ⊕ ŝ
cj
j = βuj ⊕ ŝ

u⊕αj
j 6= ŵuj

Thus, except with negligible probability, the adversary fails to pass the consistency
check, and v̂u is set to ⊥ as claimed.

By construction, in the last hybrid H̃4, the view of A is emulated perfectly according
to ΠOT and the output of the external OT receiver is the same as that of the honest
receiver of ΠOT. Therefore, the output of the environment in hybrid H̃4 is identically
distributed to the real-execution. Then by a hybrid argument, we have that the real
execution is indistinguishable to H̃1, and thus the ideal execution. Thus the simulator
Sim is constructed correctly.

Analysis of the third case: Consider the following sequence of hybrids:

Hybrid Ĥ1: This hybrid proceeds identically to the ideal execution except the follow-
ing: The ideal FOT functionality discloses the inputs (v0, v1) and u of the external
sender and receiver to A, and furthermore, the simulator switches the sender’s and
receiver’s inputs that it uses for simulating the transcript of ΠOT (for A) from all
0 to (0, v1) and 0. It follows from the analysis of the first case above that when
considering a semi-honest adversary acting as the receiver of ΠOT and using input
0, the adversary cannot tell apart if the honest sender is using inputs (0, 0) or (0, v1).

Thus the simulated transcripts in Ĥ1 and the ideal execution must be indistinguish-
able. Furthermore since no player is corrupted, the helper functionality H would
not accept any query from the adversary, the indistinguishability of the simulated
transcripts directly implies the indistinguishability of Ĥ1 and the ideal execution.

Hybrid Ĥ2: This hybrid proceeds identically to Ĥ1 except that the simulator switches
the receiver’s input that it uses for simulating the transcript of ΠOT from 0 to 1.
It follows from the analysis of the second case above that when considering a semi-
honest adversary acting as the sender of ΠOT, the adversary cannot tell apart if the
honest receiver is using inputs 0 or 1. Thus the simulated transcripts in Ĥ1 and Ĥ2

must be indistinguishable. Therefore, it follow from a similar argument as in Ĥ1

that Ĥ1 and Ĥ2 are indistinguishable.

Hybrids Ĥ3 and Ĥ4: These two hybrids proceed identically to Ĥ2 except that the
simulator switches the inputs that it uses for simulating the transcript of ΠOT from
((0, v1), 1) in Ĥ2 to ((v0, v1), 1) in Ĥ3 and to ((v0, v1), u) in Ĥ4. It follows from the

same argument as in Ĥ1 that hybrid Ĥ3 is indistinguishable to Ĥ2, and from the
same argument as in Ĥ2 that hybrid Ĥ4 is indistinguishable to Ĥ3.

Finally, in the last hybrid, A receives the transcript of the execution of ΠOT using true
inputs as in the real execution. Furthermore, since the outputs of the honest receiver in
Ĥ4 is identical to that in the real execution (both equal to vu), we have that the output

of the environment in Ĥ4 is identically distributed to that in the real execution. Then by
a hybrid argument we conclude that the real and ideal executions are indistinguishable.

Proof of Claim 4. Let Φ be the set of locations where A cheats in Stage 3. We note that Φ can
be computed efficiently given the values that A commits to using 〈C,R〉 in Stage 2. Recall that
the receiver’s honesty check in Stage 4 requires the receiver to open all the commitments it sends
in Stage 2 at locations in ΓR. Therefore if Φ ∩ ΓR 6= ∅, by the statistically binding property of
〈C,R〉, A would have been caught cheating. Thus if A successfully completes Stage 4, it must hold
that Φ ∩ ΓR = ∅. Now assume for contradiction that A cheats in more than n OT executions, but

46
637

Approved for Public Release; Distribution Unlimited.

successfully completes Stage 4 in H4 (i.e., |Φ| > n and Φ ∩ ΓR = ∅) with polynomial probability.
Then we show that A can be used to violate the CCA-security of 〈C,R〉.

Consider a machine B that acts as a receiver of 〈C,R〉 externally with access to the committed-
value oracle O; internally, it emulates an execution of hybrid H4 with A, by using O to implement
the helper functionality H, except the following: It forwards messages from the external committer
C to A as the sender’s commitment in Stage 1; then after Stage 3, it computes the set Φ using the
values that A commits to in Stage 2 obtained through the helper functionality H as in H4; finally,
it simply outputs Φ and aborts. It follows from the construction that, when B externally receives
a commitment to ΓR—a randomly chosen set of size n—using the identity of the honest sender,
it internally emulates the execution of H4 perfectly up to Stage 3; then by our hypothesis, with
polynomial probability, it outputs a set Φ of size greater than n, disjoint with ΓR. However, on
the other hand, if B externally receives a commitment to 0 (still using the identity of the honest
sender), then the probability that B outputs a set of size greater than n that is disjoint with the
randomly chosen ΓR is exponentially small. Finally since all the commitments that B queries to
the committed-value oracle O have identities belonging to a corrupted party, different from the
identity of the honest sender, we have that B violates the CCA security of 〈C,R〉.

47
638

Approved for Public Release; Distribution Unlimited.

Interactive Coding, Revisited

Kai-Min Chung
Cornell University

chung@cs.cornell.edu

Rafael Pass ∗

Cornell University
rafael@cs.cornell.edu

Sidharth Telang
Cornell University

sidtelang@cs.cornell.edu

March 16, 2013

Abstract

How can we encode a communication protocol between two parties to become resilient to
adversarial errors on the communication channel? This question dates back to the seminal
works of Shannon and Hamming from the 1940’s, initiating the study of error-correcting codes
(ECC). But, even if we encode each message in the communication protocol with a “good” ECC,
the error rate of the encoded protocol becomes poor (namely O(1/m) where m is the number
of communication rounds). Towards addressing this issue, Schulman (FOCS’92, STOC’93)
introduced the notion of interactive coding.

We argue that whereas the method of separately encoding each message with an ECC ensures
that the encoded protocol carries the same amount of information as the original protocol, this
may no longer be the case if using interactive coding. In particular, the encoded protocol may
completely leak a player’s private input, even if it would remain secret in the original protocol.
Towards addressing this problem, we introduce the notion of knowledge-preserving interactive
coding, where the interactive coding protocol is required to preserve the “knowledge” transmitted
in the original protocol. Our main results are as follows.

• The method of separately applying ECCs to each message is essentially optimal: No
knowledge-preserving interactive coding scheme can have an error rate of 1/m, where m
is the number of rounds in the original protocol.

• If restricting to computationally-bounded (polynomial-time) adversaries, then assuming
the existence of one-way functions (resp. subexponentially-hard one-way functions), for
every ε > 0, there exists a knowledge-preserving interactive coding schemes with constant
error rate and information rate n−ε (resp. 1/polylog(n)) where n is the security parameter;
additionally to achieve an error of even 1/m requires the existence of one-way functions.

• Finally, even if we restrict to computationally-bounded adversaries, knowledge-preserving
interactive coding schemes with constant error rate can have an information rate of at
most o(1/ log n). This results applies even to non-constructive interactive coding schemes.

∗Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty Fellowship, NSF Award CNS-
1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093,
and DARPA and AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US Government.

1
639

Approved for Public Release; Distribution Unlimited.

1 Introduction

The study of how to communicate over a noisy channel dates back to the seminal works of Shannon
[Sha48] and Hamming [HAM50] from the 1940s, initiating the study of error-correcting codes.
Roughly speaking, an error-correcting code encodes a k-bit message m into a ck bit message with
the property that even if a fraction η < 1 of the bits of the encoded messages are adversarially
changed, the original message m can be decoded; R = 1/c is referred to as the information rate of
the code, and η as the error rate. Efficiently encodable and decodable error correcting codes with
constant information rate and error rate are known [Jus]; in fact, such codes can even be made
linear-time encodable and decodable [Spi96].

In this work, we are interested in the question of how to encode interactive communication:
Given an interactive protocol π = (A,B) between two parties, how can we encode this protocol to
become resilient to adversarial errors? A naive approach would be to simply apply a “good” (i.e.,
constant information and error rate) error correcting code to each message of the protocol. This
results in a poor error rate: if the protocol has m rounds and each round requires sending a k-bit
message, then it suffices to corrupt O(k) out of the O(km) communicated bits (that is, a fraction
O(1/m)) to ensure an incorrect decoding. To address this problem, Schulman [Sch92, Sch93, Sch96]
introduced the notion of interactive coding. Roughly speaking, an interactive coding scheme is an
algorithm Q = (Q1, Q2) such that for any interactive protocol π = (A,B), (QA1 , Q

B
2) emulates the

interaction of (A,B) in the sense that (with overwhelming probability) the execution of the actual
protocol (A,B) and the “encoded protocol” (QA1 , Q

B
2) yield the same outputs. Additionally, the

protocol (QA1 , Q
B
2) is error-resilient: the execution of (QA1 , Q

B
2) yields the same outputs even if a η

fraction of the communication is adversarially corrupted, where η is an error rate. Schulman [Sch96]
presented an interactive coding scheme with constant information and error rate. Schulman’s
construction achieved an error rate of 1/240, which was later improved by Braverman and Rao
[BR11] and Braverman [Bra12] to (close to) 1/8. The interactive coding scheme Q in their works,
however, requires exponential or subexponential time. Gelles, Moitra and Sahai [GMS11] showed
to get a polynomial-time interactive coding (with constant information and error rate) for the case
of uniformly distributed (as opposed to adversarial) errors. More recently, the elegant work of
Brakerski and Kalai [BK12] showed how to get a polynomial-time interactive coding handling also
adversarial errors, with a constant information rate and an error rate of (close to) 1/32, and even
more recently Brakerski and Naor [BN13] show how to get quasi-linear time interactive coding with
constant information and error rate.

Interactive Coding, revisited When we encode messages using error correcting codes we ensure
that the encoded messages carry exactly the same information as the original messages; in other
words, they carry all the information in the original messages (or else we cannot decode), and
additionally they do not carry any other information (say, about future messages). Consider, for
instance, transmitting an “interactive exam” (e.g., an oral exam) in an error resilient way. The
exam has the property that question 2 in the exam reveals the answer to question 1. Ideally, we
would like to guarantee that the error resilient version of the exam does not allow the student
(taking the exam) to see question 2 before it needs to provide the answer to question 1 (or else it
can trivially answer question 1). Clearly this property would hold if we use the “naive approach”
of separately encoding every message using an error correcting code, but as we shall see shortly,
this property may no longer hold if we use interactive coding. Intuitively, the problem is that
interactive coding (and in particular, the above-mentioned solutions), while guaranteeing that the
encoded protocol carries at least the same amount of information as the original protocol, does not
necessarily guarantee that the encoded protocol does not reveal more information than the original

1
640

Approved for Public Release; Distribution Unlimited.

protocol.
As another example, consider two mutually distrustful players that wish to runs some secure

cryptographic protocol (A,B) over a noisy channel. Can these players instead run an interactive
coding (QA1 , Q

B
2) of (A,B)? In other words, does the interactive coding preserve the security of the

original underlying protocol? It is easy to see that the “naive approach” of separately encoding
every message using an error correcting code preserves security of the underlying protocol. However,
if we use interactive coding, this may no longer be the case. The problem is that the notion of
interactive coding only requires that the encoded protocol (QA1 , Q

B
2) emulates (A,B) as long as

both of the communicating parties are honestly executing the protocol. In particular, if one of the
players is adversarial, it could be the case that the player gains more information when participating
in the encoded protocol than it would have in the original protocol; for instance, player 1 may, by
deviating from the protocol instructions in the encoded protocol (QA1 , Q

B
2), learn something about

player 2’s private input that is guaranteed to remain secret in the original protocol (A,B) (no
matter what player 1 does).

The reason interactive coding schemes do not necessarily provide the desired guarantees in the
above scenarios is that such schemes typically “bundle together” multiple rounds of interactions
of the original protocol, and when an error in the communication is detected, the whole bundle is
“replayed”. (Looking forward, as we show in Theorem 2, any interactive coding with a “good” error
rate in fact needs to replay messages in this way.) This may allow an attacker to “fake” an error in
the communication in order to get the bundle replayed, but this time change its messages, and as a
consequence may learn two (or more) partial transcripts where the attackers messages are different:
in essence, the encoded protocol gives the attack the opportunity to “rewind” the honest player in
original protocol. In the above “interactive exam” example such rewindings mean that the student
may get knowledge of the second question before having to provide the answer to the first one;
for the cryptographic protocol example, it is well-known that most (but not all, see [CGGM00])
cryptographic protocols are not secure under such rewindings: Consider, for instance, any of the
classic zero-knowledge protocols (e.g., [GMR89, Blu86]); if the verifier can rewind the prover just
once, it can completely recover the NP-witness used by the prover, although the protocols are
zero-knowledge without such rewindings.

Knowledge-preserving interactive coding Towards addressing this problem, we here put
forward, and study, the notion of knowledge-preserving interactive coding : Roughly speaking, we
require not only that (QA1 , Q

B
2) conveys at least as much “knowledge” as (A,B), but also that it does

not convey more, even if one of the players adversarially deviaties from the protocol instructions;
that is, (QA1 , Q

B
2) preserves the knowledge transmitted in (A,B). In other words, we require not only

that (QA1 , Q
B
2) emulates (A,B) when the players are honest (only caring about their correct output

and not trying to extract any other knowledge), but also that it is a good emulation when one of the
players adversarially deviaties from the protocol instructions (e.g., trying to obtain more knowledge
about the other player’s input and potentially use it in the interaction). We formalize this notion
through the classic zero-knowledge “simulation-paradigm” from cryptography [GMR89, GMW91]:
We require that for every adversarial strategy Ã∗ for player 1 (resp. B̃∗ for player 2) participating
in the encoded protocol (Ã, B̃) = (QA1 , Q

B
2), there exists a “simulator” A∗ (resp. B∗) such that

the output of both players in the execution of (Ã∗, B̃) (resp. (Ã, B̃∗)) are indistinguishable from
the outputs of players in the execution of (A∗, B) (resp. (A,B∗)). In other words, an adversary
participating in the encoded protocol does not gain any more “knowledge” than it would have in
the original protocol, and cannot affect the honest parties output more than it could have in the
original protocol.

2
641

Approved for Public Release; Distribution Unlimited.

As we shall see, achieving knowledge-preserving interactive coding is significantly harder than
“plain” interactive coding, and studying resilience against only computationally bounded adver-
saries, as was done by Lipton [Lip94] and Micali, Peikert, Sudan and Wilson [MPSW10] in the
context of error correcting codes, is actually essential for achieving good error rates in the context
of knowledge-preserving interactive coding.

1.1 Our Results

We are interested in knowledge-preserving interactive coding schemes Q = (Q1, Q2) where Q1

and Q2 are efficient; we formalize this by requiring that Q1, Q2 receive as input the communication
complexity ` and number of roundsm of the protocol (A,B), and a security parameter n, and require
that Q1, Q2 run in time polynomial in `,m and n; in the sequel, when referring to a knowledge-
preserving interactive coding scheme, we only refer to such efficiently computable schemes.

The information-theoretic regime We start by stating the folklore result that the “naive
approach” of separately encoding each message in the protocol with a good error correcting code
is a knowledge-preserving interactive coding:

Theorem 1. [Informally stated] There exists a knowledge-preserving interactive coding scheme Q
with polynomial information rate and error rate O(1/m) where m is the number of communication
rounds in the original protocol.

Our first result is a strong negative result for knowledge-preserving interactive coding, show-
ing that the naive approach is essentially optimal (if requiring resilience against computationally
unbounded adversaries).

Theorem 2. [Informally stated] For every knowledge-preserving interactive coding scheme Q =
(Q1, Q2), every polynomial m(·), there exists an m(n)-round protocol (A,B) such that (QA1 , Q

B
2)

has an error rate of at most 1/m(n), where n is the security parameter. (In particular, no knowledge
preserving coding scheme can have error rate 1/poly(n) where n is the security parameter).

Let us provide a high-level overview of the proof of the theorem. The key idea is to come
up with a protocol π having the property that the only way to make the protocol error resilient
makes it possible for an attacker to “rewind” the honest players (just as what is done in known
interactive protocols, as described above). Consider some interactive coding protocol Q = (Q1, Q2)
and let M(n,m, `) be a polynomial upper bound on the number queries made by Q1, Q2 to its
oracles (where n is the security parameter, m is the number of round in the protocol π to be
encoded, and ` is the communication complexity of π). Consider the m(n) = poly(n)-round “ping-
pong” protocol π where each player d ∈ {1, 2} gets an M(n, 2mn,m) + 1-wise independent hash
function Hd : {0, 1}poly(n) → {0, 1}n as input and proceeds as follows: player 1 computes and sends
a1 = H1(∅) to player 2; player 2 computes and sends b1 = H2(a1) to player 1; player 1 computes and
send a2 = H1(a1, b1) to player 2, etc, for m rounds, and finally both player output the transcript
of the interaction. That is, at each round, each player d, computes its next message by applying
its hash function Hd to the current transcript. Note that in this protocol, by the unpredictability
of the output of the hash functions, player 1, even if maliciously deviating from the protocol, will
with overwhelming probability be able to obtain at most m distinct pairs (q,H2(q)).

In contrast, as we show, unless the encoded protocol has an error rate less than 1/m, a malicious
player 1 in the encoded protocol can with inverse polynomial probability get m+ 1 such pairs (and
as such a malicious player 1 can learn something new in Qπ that it couldn’t have learnt in π).
The key lemma needed to establish this shows that the encoded protocol “implicitly executes” the

3
642

Approved for Public Release; Distribution Unlimited.

original ping-pong protocol. More precisely, the rounds of the encoded protocol can be divided into
“chunks”, where each chunk in the encoded protocol corresponds to a round in ping-pong protocol1,
and additionally by observing the oracle queries made by Q, we can read out a polynomial list of
candidates for the current transcript of the ping-pong protocol; to establish this lemma we rely
on the “elusiveness” property of the output of the hash functions (and the fact that Q queries the
hash functions at most M(n, 2mn,m) times).

Next, by an averaging argument, one of these chunks, say chunk i, must be shorter than a
fraction 1/m of the total communication complexity of the encoded protocol. The idea now is for
a malicious player 1 to honestly execute the encoded protocol using its actual input, except that
during the i’th chunk, the player acts as if its input was a random hash function H ′1 consistent
with the transcript up until the end of chunk i − 1; that is, we switch the input only in chunk i,
but make sure we pick an input that is consistent with the transcript so far. (Note that this attack
is not necessarily efficient since picking an input consistent with the current transcript may not
be compuationally feasible.) Now, intuitively, since the chunk was “small”, by the error resilience
property of the interactive coding scheme, with overwhelming probability, player 1 will finally
output the same transcript (including m distinct pairs (q,H2(q))) as if it had been running the
protocol honestly. (Formalizing this requires showing that the attack performed by player 1 can be
perfectly emulated by the channel).

Additionally, as we show, by observing the oracle queries made by Q1 during the i’th chunk
(which corresponds to the i’th round in the implicitely executed ping-pong protocol), player 1 may
learn a new pair (q′, H2(q

′)); intuitively, this follows since player 1 is using a new input in round i
of the implicitely executed ping-pong protocol (but formally proving this claim is quite non-trivial).
Thus, in essence, player 1, by using a different input in only chunk i manages to “rewind” player
2 in the implict ping-pong protocol.

So, if player 1 could just identify the i’th chunk, it can learn m + 1 distinct pairs (q,H2(q)),
which was not possible in π; but it can simply guess the starting round of the i’th chunk with inverse
polynomial probability. Summarizing, in π, an attacker can learn m + 1 distinct pairs (q,H2(q))
only with negligible probability, whereas in Qπ this can be done with inverse polynomial probability
(if Qπ has a “non-trivial” error rate); thus, we are “blatantly” violating knowledge-preservance of
Q.

The computational regime We next turn to consider computational knowledge-preserving in-
teractive coding, where we only require resilience against computationally bounded adversaries:
we only require the error-resilience property to hold against computationally-bounded channel
adversaries, and the knowledge-preserving property to hold against computationally-bounded ad-
versaries. We first present a positive result, showing that constant-error rate is possible (albeit at
a sub-constant information rate):

Theorem 3. [Informally stated] Assume the existence of one-way functions. Then, for every
ε > 0, there exists a knowledge-preserving interactive coding scheme with error rate (1/12)− ε and
information rate O(1/nε) where n is the security parameter. If additionally subexponentially-hard
one-way functions exists, the information rate can be improved to O(1/polylogn).

The idea behind this scheme is simple: The players start by exchanging verification keys for
a signature scheme; the verification keys are appropriately padded to become “long” and then
encoded using a good error-correcting code. Next, we run the original protocol, except that all
messages in the protocol are signed and additionally encoded using a good error-correcting code.

1These chunks may depend on the inputs of the players and the randomness of Q.

4
643

Approved for Public Release; Distribution Unlimited.

Whenever a player receives a message that does not have a valid signature, it requests to hear the
message again. It is easy to show that this coding scheme is knowledge preserving (even against
unbounded attackers); additionally, if the verification keys exchanged in the first round are long
enough, then the scheme has error rate close to η/4, where η is the error rate of the error-correcting
code. Using state of the art error-correcting codes this would yield an error rate of 1/16− ε (where
ε > 0 is an arbitrarly small constant). We can further improve the error rate by relying on an
idea from [MPSW10]: since messages are signed and we only consider a computationally bounded
channel, it in fact suffices to “list-decode” the error-correcting code used to encode the messages
in the protocol (while still using unique decoding for error-correcting code used to encode the
verification keys).2 This allows us to improve the error rate to 1/12− ε.

As our next result demonstrates, one-way functions are necessary to achieve a “non-trivial”
error rate.

Theorem 4. [Informally stated] Assume the existence of a computational knowledge-preserving
interactive coding scheme with error rate 1/m, where m is the number of communication rounds in
the original protocol. Then one-way functions exist.

The proof of Theorem 4 follows by carefully showing that the attack constructed in the proof of
Theorem 2 can be “approximately” implemented in polynomial-time, if one-way functions do not
exists.

We finally show that every computational knowledge-preserving interactive coding scheme with
constant error rate must have an information rate of o(1/ log n).

Theorem 5. [Informally stated] Assume the existence of a computational knowledge-preserving
interactive coding scheme with information rate R and error rate η. Then Rη ∈ o(1/ log(n)), where
n is the security parameter.

Let us first mention that a weaker version of the above theorem, demonstrating that the infor-
mation rate needs to sub constant (as opposed to o(1/ log n)) can be obtained by carefully “scaling
down” the proof of Theorem 2 by considering a constant-round ping-pong protocol where the length
of each message is O(log n). To give the tight bound, we need to rely on an even more scaled down
version where the length of the messages in the ping-pong protocol is just 1. In this regime, the
previous proof no longer works: we can no longer ensure that the transcript from the ping-pong
protocol can be decoded by observing all the oracle calls made by Q. (In the proof of Theorem
2 this was proven by relying on the elusiveness property of the image of the hash function, but
since we now consider the range {0, 1}, this no longer holds.) Rather, we here provide a different
information-theoretic definition of chunks and rely on the fact that the protocol is knowledge pre-
serving to show that chunks are well-defined (to simplify the proof of this, we actually rely on a
simpler variant of the ping-pong protocol). The idea, which turn out to be quite subtle to formalize,
is that if a partial transcript contained information about, say, player 2’s message in round j, before
player 1’s message in round j has been fully determined in the partial transcript, then intuitively,
player 1 has the opportunity to (with non-negligible probability) change its message in round j as
a function of player 2’s message in the same round, which isn’t possible in the original ping-pong
protocol.

2[MPSW10] relies on this idea to show how to achieve an error-correcting code with error rate 1/2− ε if assuming
a (noiseless) public-key infrastructure and a computationally-bounded channel. In our context, we do not have a
public-key infrastructure, but our initial exchange of verification keys using a uniquely decodable error-correcting
code can be viewed as a way to set-up the appropriate public-key infrastructure needed for their results.

5
644

Approved for Public Release; Distribution Unlimited.

Non-constructive knowledge-preserving interactive coding All the above-mentioned re-
sults rely on the standard notion of interactive coding where the algorithm Q = (Q1, Q2) only uses
the original protocol π = (A,B) as a black-box (i.e., the encoded protocol is (QA1 , Q

B
2)). One may

also consider a more relaxed notion of coding, where the encoded protocol uses the description
of the protocol π in a non-black-box way, or is even non-constructive. We note that the proof
of Theorem 6 is actually stronger than stated; we actually show that every protocol (not just
those protocols obtained by accessing the original protocol π as a black-box) that preserves the
knowledge transmitted in the 1-bit ping-pong protocol and has an error rate of O(1), must have a
communication complexity of at least ω(log n).

Theorem 6. [Informally stated] For every function η(n) ≥ O(1/ log n), there exists a protocol
π with communication complexity O(1/η(n)) such that for every protocol π′ that is a knowledge-
preserving variant of π (even just w.r.t. computationally-bounded adversaries) and is computation-
ally η-error resilient, the communication complexity of π′ is at least ω(log n).

It is worthwhile to compare Theorem 6 with Theorem 2. As mentioned above, Theorem 6 is
stronger that Theorem 2 in that it rules out also non-constructive interactive coding schemes. On
the other hand, it is weaker is several other aspects: First, in Theorem 2 we “blatantly” violate
knowledge preservance: we exhibit some explicit information that can only be learnt with negligible
probability in π, but can be learnt with inverse polynomial probability in the encoded protocol. In
contrast, in the proof of Theorem 6 we rely on the knowledge-preservance property in a stronger
way (in particular, as mentioned above, we rely the knowledge-preservance property to show that
the encoded protocol implicitly executed π, whereas in Theorem 2 this could be showed uncon-
ditionally). Secondly, the error rate achieved in Theorem 6 is weaker than the one rate achieved
in Theorem 2. This, to some extent, is necessary, since Theorem 6 also rules out computational
knowledge-preserving interactive coding, and as showed in our positive result (Theorem 3), an error
rate of O(1) can be achieved in this setting.

1.2 Overview of the Paper

In Section 2 we provide some notation and preliminaries. In Section 3 we formally define the notion
of knowledge-preserving interactive coding. Section 4 contains our results for the information-
theoretic setting, and Section 5 contains our result for the computational setting; finally, in Section
6 we present our impossibility results for non-constructive interactive coding.

2 Notation and Preliminaries

2.1 Notation

Basic Notation Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}.
By a probabilistic algorithm we mean a Turing machine that receives an auxiliary random tape
as input. If M is a probabilistic algorithm, then for any input x, the notation “Mr(x)” denotes
the output of the M on input x when M ’s random tape is fixed to r, while M(x) represents the
distribution of outputs of Mr(x) when r is chosen uniformly. We say that a function ε : N→ [0, 1]
is negligible if for every constant c ∈ N, ε(n) < n−c for sufficiently large k. We say that a function
µ : N → [0, 1] is overwhelming if there exists a negligible function ε such that for all n ∈ N,
µ(n) ≥ 1− ε(n).

6
645

Approved for Public Release; Distribution Unlimited.

Probabilistic Notation We use probabilistic notation from [GMR89]: By x← S, we denote that
an element x is sampled from a distribution S. If F is a finite set, then x← F means x is sampled
uniformly from the set F . To denote the ordered sequence in which the experiments happen we use
comma, e.g. (x← S, (y, z)← A(x)). Using this notation we can describe probability of events. For
example, if p(·, ·) denotes a predicate, then Pr[x← S, (y, z)← A(x) : p(y, z)] is the probability that
the predicate p(y, z) is true in the ordered sequence of experiments (x ← S, (y, z) ← A(x)). The
notation {(x ← S, (y, z) ← A(x) : (y, z))} denotes the resulting probability distribution {(y, z)}
generated by the ordered sequence of experiments (x← S, (y, z)← A(x)).

Notation for Interactive protocols An interactive protocol is a tuple π = (A,B,XA,XB)
where A and B are interactive probabilistic Turing machines and XA and XB specify the set of
inputs to A and B (parametrized by a security parameter n). A and B, on input x ∈ XA(1n) and
y ∈ XB(1n) interact with each other and generate some output at the end of the interaction. We
denote this interaction by A(x)↔ B(y) (formally, it is a random variable over joint views of A and
B, including the randomness of both players, their inputs, and all the messages received). Given
an interaction e, we denote by outi[e] the output of player i ∈ {1, 2}, by out[e] the output of both
parties, and by trans[e] the transcript of the interaction.

2.2 Statistical Distance and Computational Indistinguishability

We recall the definitions of statistical distance and computational indistinguishability.

Definition 7 (Statistical distance). The statistical distance between two probability distributions
X,Y is defined by ∆(X,Y) = (1/2) ·∑x |Pr[x ← X] − Pr[x ← Y]|. X and Y are ε-close if
∆(X,Y) ≤ ε.

The statistical distance between two ensembles {Xk}k and {Yk}k is a function δ defined by
δ(k) = ∆(Xk, Yk). Two probability ensembles are said to be statistically close if their statistical
distance is negligible. We also say Xk and Yk are statistically close if ∆(Xk, Yk) ≤ ε(k) for some
negligible function ε.

Definition 8 (Computational Indistinguishability). Two ensembles {Xk}, {Yk} are computationally
indistinguishable if for every probabilistic polynomial time distinguisher D, there exists a negligible
function µ such that for every k ∈ N,

|Pr[D(1k, Xk) = 1]− Pr[D(1k, Yk) = 1]| ≤ µ(k).

2.3 Hash Functions

We recall the standard definition of t-wise independent hash functions.

Definition 9 (t-wise Independent Hash Functions). A family of hash functions H = {h : S1 → S2}
is t-wise independent if the following two conditions hold:

1. ∀x ∈ S1, the random variable h(x) is uniformly distributed over S2, where h← H.

2. ∀x1 6= · · · 6= xt ∈ S1, the random variables h(x1), . . . , h(xt) are independent, where h← H.

7
646

Approved for Public Release; Distribution Unlimited.

2.4 One-way Functions and Distributionally One-way Functions

We start by recalling the definition of a one-way function.

Definition 10 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is one-way if it is computable
in polynomial time and for every non-uniform probabilistic polynomial time machine A, there exists
a negligible function µ(·) such that for every n ∈ N ,

Pr
[
x← {0, 1}n : A(f(x)) ∈ f−1(f(x))

]
< µ(|x|)

Additionally, if there exists some ε such that above holds for every poly(2n
ε
)-sized circuits A, f is

a subexponentially-hard one-way function.

A distributionally one way function is weaker primitive: here it is only computationally infeasible
to find a random pre-image to f(x) (but finding some pre-image may be easy).

Definition 11 ([IL89]:Distributionally one-way functions). We say a function f : {0, 1}∗ → {0, 1}∗
is distributionally one-way if it is computable in polynomial time and there exists a constant c > 0
such that for every non-uniform probabilistic polynomial-time algorithm A, for sufficiently large
n ∈ N, the statistical distance between the following distributions is at least 1

nc :

• {x← {0, 1}n : (f(x), x)}

• {x← {0, 1}n : (f(x), A(f(xn))}
While distributionally one-way functions are a weaker primitive than one way functions, [IL89]

shows that the existence distributionally one-way functions implies the existence of one-way func-
tions.

Theorem 12 ([IL89]). Distributionally one-way functions exist if and only if one way functions
exist.

2.5 Signature schemes

We recall the definition of an (adaptive-secure) signature schemes.

Definition 13 (Signature scheme [GMR89]). A secure signature scheme with signature-length l(·)
and key-length v(·) is a triple (Gen,Sig,Ver) of probabilistic polynomial time algorithms, such that

• for all n ∈ N,m ∈ {0, 1}∗,

Pr[(sk, vk)← Gen(1n), σ ← Sigsk(m) : |sigma| ≤ l(n) ∧ |vk| ≤ v(n) ∧ Vervk(m,σ) = 1] = 1

• for every non-uniform probabilistic polynomial time adversary A, there exists a negligible
function µ(·) such that

Pr[(sk, vk)← Gen(1n), (m,σ)← ASigsk(·)(1n) : Vervk(m,σ) = 1 ∧m /∈ L] ≤ µ(n)

where L denotes the list of A’s queries to its oracle.

The existence of signatures schemes is implied by the existence of one-way functions [NY89,
Rom90]:

Theorem 14. Assume the existence of one-way functions (resp. sub-exponentially hard one-way
functions). Then there exists a secure signature scheme (resp. a secure signature scheme with
signature-length and key-length polylogn).

8
647

Approved for Public Release; Distribution Unlimited.

2.6 Error-correcting Codes

We recall the definition of error correcting codes.

Definition 15 (Coding function). An (n, `)-coding function C = (E,D) is an encoding function
E : {0, 1}n → {0, 1}` and a decoding function D : {0, 1}` → {0, 1}n for some positive integers ` ≥ n.
The information rate of the scheme, denoted R is defined as n/`. The scheme has error rate (or
decoding distance) η if, for all m ∈ {0, 1}n and all r ∈ {0, 1}m such that the codeword E(m) and r
differ in at most ηm bits, D(r) = m.

Definition 16 (ECC). An family of coding functions {Cn = (En, Dn)}n∈N is an efficient error
correcting code (ECC) C = (E,D) with error rate η : N → (0, 1) and information rate R : N →
(0, 1) if for every n ∈ N, (En, Dn) is a (n, n/R(n)) coding function with error rate η(n), and {En}
and {Dn} can be computed by uniform polynomial time algorithms.

As shown by Justesen in [Jus], ECCs with constant error and information rate exist.

Theorem 17 ([Jus]). There exists an ECC with error rate O(1) and information rate O(1).

Justensen codes, however, do not give a tight error rate. The concatenation of the Reed-Solomon
code [RS60] and the Hadamard code, however, yield an ECC with error rate close to 1/4 (which is
optimal), but require a polynomial information rate.

Theorem 18 ([GS00]). For every ε > 0, there exists an ECC with error rate 1
4−ε and information

rate R(n) = O(1/n).

When unique decoding is impossible, it may be still possible to decode to a short list of candidate
messages; the notion of list-decoding captures this.

Definition 19. A (n, `)-coding function is (ε, L)-list decodable if for any r ∈ {0, 1}`, there exists
a list of at most l ≤ L distinct m1,m2, . . .ml such that E(mi) and r differ in at most εm bits,
for all i ∈ [l]. A family of coding functions {(En, Dn)}n∈N with information rate R : N → (0, 1)
is efficiently ε-list decodable if for every n ∈ N, (En, Dn) is a (n, n/R(n)) coding function that is
(ε(n), Ln)-list decodable for some Ln ∈ N, and there exists a polynomial time algorithm LD that
finds this list.

As shown by Guruswami and Sudan [GS00], the concatenation of the Reed-Solomon code and
Hadamard code is efficiently list decodable up to an error rate close to 1/2.

Theorem 20. For every ε > 0, there exists an ECC with information rate R(n) = O(1/n) that is
is efficiently 1

2 − ε-list decodable.

3 Knowledge-Preserving Interactive Coding

In this section we provide a formal definition of knowledge-preserving interactive coding.

3.1 Error Resilience for Interactive Protocols

Let us start by defining error rate for interactive protocols; in contrast to earlier works on interactive
coding, we here consider error-resilience against both unbounded adversarial channels (as is typically
done [Sch96]) and also error-resilience against computationally bounded channels (as was done in
the context of error correcting codes in [Lip94, MPSW10]).

9
648

Approved for Public Release; Distribution Unlimited.

Towards providing these definitions, we need some additional notation. The communication
complexity of a protocol π on security parameter n, denoted by CCn(π), is the worst-case total
number of bits transmitted in the interaction A(x)↔ B(y), over all possible input x ∈ XA(1n), y ∈
XB(1n) and randomness of both players. The round complexity m(n) of a protocol π on security
parameter n is the worst-case number of communication rounds (one round corresponds to two
message) in the interaction A(x) ↔ B(y), over all possible input x ∈ XA(1n), y ∈ XB(1n) and
randomness of both players.

We consider interactive protocols running over noisy/adversarial channels, which may flip some
of the bits transmitted by both players. We model channels as interactive Turing machines that
relay messages between the two players.

Definition 21 (Channel). A channel is an interactive Turing machine C that on input a security
parameter 1n interacts with two interactive machines by relaying messages for the machines as
follows: upon receiving a message m from one machine, C sends a message m′ to the other machine
of length |m′| = |m|.

We denote by A(x) ↔C(1n) B(y) the interaction between A(x) and B(y) over the channel
C given the security parameter n. (Note that the interaction A(x) ↔ B(y) is identical to the
interaction A(x) ↔C0 (1n)B(y), where C0 is the “honest” channel that simply relays messages
between A and B without flipping any bits.)

Definition 22 (Communication Complexity over Noisy Channels). Let π = (A,B,XA,XB) be a
protocol. The communication complexity of π over noisy channels on security parameter n, denoted
by CC∗n(π), is the worst-case number of bits transmitted in the interaction A(x) ↔ B(y), over all
possible inputs x ∈ XA(1n), y ∈ XB(1n), randomness of both players, and the channel C.

We are now ready to define error resilience.

Definition 23. A protocol π = (A,B,XA,XB) with round-complexity m(·) is (computationally)
η(·, ·)-error resilient if there exists a negligible function µ such that for every security parameter n,
inputs x ∈ XA(1n), y ∈ XB(1n), and any (non-uniform probabilistic polynomial-time in the security
parameter n)3 channel C that flips at most η(n,m(n)) · CC∗n(π) bits, the following holds:

Pr
[
out[A(x)↔ B(y)] = out[A(x)↔C(1n) B(y)

]
≥ 1− µ(n).

3.2 Knowledge Preservance

Let us move on to defining what it means for a protocol π̃ = (Ã, B̃,XA,XB) to be convey “as much
knowledge” as a protocol π = (A,B,XA,XB). We formalize this using the classic “simulation-
paradigm” from cryptography [GMR89, GMW91]. We require that for every adversarial strategy
Ã∗ for player 1 (resp. B̃∗ for player 2) participating in π̃, there exists a simulator A∗ such that the
output of both players in the execution of (Ã∗, B̃) (resp. (Ã, B̃∗)) are indistinguishable from the
outputs of players in the execution of (A∗, B) (resp. (A,B∗)). That is, any “harm” Ã∗ can do in
π̃, the simulator A∗ could have also done in π.

Definition 24. A protocol π̃ = (Ã, B̃,XA,XB) is a (computationally) knowledge-preserving variant
of π = (A,B,XA,XB) if the following two properties hold:

3We could also have defined the channel as a uniform polynomial-time algorithm. All our result hold for both
choices.

10
649

Approved for Public Release; Distribution Unlimited.

• Completeness: There exists a negligible function µ such that the following ensembles are
statistically close as a function of n.

– {out[Ã(x)↔ B̃(y)]}n∈N,x∈XA(1n),y∈XB(1n)

– {out[A(x)↔ B(y)]}n∈N,x∈XA(1n),y∈XB(1n)

• (Computational) Knowledge Preservance: For every (probabilistic polynomial-time) adver-
sary strategy Ã∗ for player 1, there exists a (probabilistic polynomial-time) strategy A∗ such
that the following ensembles are statistically close (resp. computationally indistinguishable)
as a function of n.

– {out[Ã∗(x, z)↔ B̃(y)]}n∈N,x∈XA(1n),y∈XB(1n),z∈{0,1}∗

– {out[A∗(x, z)↔ B(y)]}n∈N,x∈XA(1n),y∈XB(1n),z∈{0,1}∗

We make the analogous requirement for every (probabilistic polynomial-time) adversary strat-
egy B̃∗ for player 2.

A Remark on Auxiliary Input Just as in the classic definitions of zero-knowledge [GMR89,
GO94] and secure computation [GMW91], the additional input z to Ã∗ (and A∗) models any
auxiliary information available to the attacker. All our results hold regardless of whether we allow
the attacker to receive such auxiliary information.

Single-session v.s. Multiple session Knowledge Preservance Our notion of knowledge
preservance assumes that the attacker is only participating in a single execution of π′, and stipulates
that this execution of π′ emulates π. A stronger notion of concurrent knowledge preservance
(in analogy with the notion of concurrent zero-knowledge [DNS04]) would instead require that
multiple concurrent executions of π′ still emulate π′ (in the sense that an attacker participating in
an arbitrary polynomial number of sessions of π′ can be emulated by a simulator participating in
concurrent sessions of π.) We omit a formal definition of concurrent knowledge preservance, and
simply remark that our positive results extend also to the concurrent multi-session setting.

A Remark on Preserving Cryptographic Protocol Security In this comment we assume
the reader is familiar with classic definitions of protocol security [GMW91]; see [Gol04] for details.
It easily follows from the definition of knowledge preservance that if a protocol π is a “secure
implementation” of some functionality F (in the sense of [Gol04]), then any knowledge-preserving
variant π′ of π will also be a secure implementation of F . Indeed, if π′ is a knowledge-preserving
variant of π, then π′ is “as secure as” π. (Additionally, if π is a concurrently secure implementation
of F and π′ is a concurrent knowledge preserving variant of π, then π′ is a concurrently secure
implementation of F .)

3.3 Knowledge-Preserving Interactive Coding

We are now ready to define knowledge-preserving interactive coding. An interactive coding scheme is
a pair of oracle-aided interactive probabilistic Turing machines Q = (Q1, Q2). For every interactive
protocol π = (A,B,XA,XB), Q induces an encoded interactive protocol Qπ = (QA1 , Q

B
2 ,XA,XB),

defined as follows. In the interaction of Qπ, Q1 and Q2 do not receive the input directly. Instead, Q1

and Q2 receive as input the security parameter 1n, the round complexity 1m and the communication
complexity 1CCn(π) of π, and are given oracle access to ArA(x) and BrB (y) respectively, where
x ∈ XA(1n), y ∈ XB(1n) are the inputs and rA, rB ∈ {0, 1}∞ are uniformly sampled. More precisely,

11
650

Approved for Public Release; Distribution Unlimited.

Q1 (resp., Q2) gets oracle access to the next-message functions of ArA(x) (resp., BrB (y)), which on
input a partial transcript T returns the next message (or the final output, in case T is a complete

transcript). The interaction is denoted by Q
A(x)
1 ↔ Q

B(y)
2 where the inputs 1n, 1m, and 1CCn(π)

are omitted for notational simplicity. When we are explicit about the randomness used by Q1 and

Q2, we write Q
A(x)
1 (r1)↔ Q

B(y)
2 (r2).

Definition 25 (Knowledge-Preserving Interactive Coding Schemes). Let η(·, ·), r(·, ·) ∈ (0, 1) be
functions. A pair of oracle-aided interactive probabilistic Turing machines Q = (Q1, Q2) is a (com-
putational) knowledge-preserving interactive coding scheme with error rate η(·, ·) and information
rate R(·, ·) if for every interactive protocol π = (A,B,XA,XB), the corresponding encoded protocol
Qπ satisfies the following properties.

• Efficiency : Q1 and Q2 run in polynomial time in n,m(n) and CCn(π).

• Information Rate: CC∗n(Qπ) ≤ CCn(π)/R(n,m(n)); that is the worst-case “blow-up” of the
encoded protocol is bounded by 1/R(n,m(n)).

• Error Resilience: Qπ is (computationally) η-error resilient.

• Knowledge Preservance: Qπ is a (computationally) knowledge-preserving variant of π.

Q is a (computational) knowledge-preserving interactive coding scheme with information rate
R(·) and error rate η(·) if Q is (computational) knowledge-preserving interactive coding scheme
with information rate R′(n,m) = R(n) and error rate η′(n,m) = η(n).

4 The Information-Theoretic Regime

As we shall see, achieving knowledge-preserving interactive coding is significantly harder than
“plain” interactive coding, and studying resilience against only computationally bounded adversaries
(as was done in [Lip94, MPSW10] in the context of error correcting codes) actually is essential for
acheiving good error rates in the context of knowledge-preserving interactive coding.

To put our result in context, let us start by showing that the “naive approach” of separately
encoding each message in the protocol with a good error correcting code is a knowledge-preserving
interactive coding:

Theorem 26. There exists a knowledge-preserving interactive coding scheme Q with information
rate R(n,m) = O(m) and error rate η(n,m) = O(1/m).

Proof. We simply pad each message in the protocol π to become of equal length (this increases the
communication complexity by at most a factor m) and next encode each message using a constant-
rate error correcting code (see Theorem 17); let π̃ denote the encoded protocol. Clearly, π̃ is error
resilient as long as we corrupt at most one message; thus we have an error rate of O(1/m). It easily
follows that π̃ is a security preserving variant of π; the simulator A∗ for an attacker Ã∗ for player 1
emulates an execution of π̃ for Ã∗ by simply encoding all messages in π (using the error correcting
code) and decoding all messages received by Ã∗ before sending them to player 2. The simulator for
player 2 is defined analogously.

Let us now turn to our main impossibility result for the information-theoretic setting. We show
that naive approach is essentially optimal: namely, any knowledge preserving interactive coding
scheme must have an error rate of at most 1/m.

12
651

Approved for Public Release; Distribution Unlimited.

Theorem 27. Let Q be a knowledge-preserving interactive coding scheme with information rate
R(·, ·) and error rate η(·, ·). Then for every polynomial m(·), we have that for sufficiently large
n, η(n,m(n)) < 1/m(n). (In particular, there does not exists a knowledge-preserving interactive
coding scheme with error rate η′(n) = 1/poly(n).)

Proof. Consider some knowledge-preserving interactive coding protocol Q = (Q1, Q2) with informa-
tion rate R(·, ·) and error rate η(·, ·) and let M(n, `,m) be a polynomial upper bound on the number
queries made by Q1, Q2 to its oracles (where n is the security parameter, ` is the communication
complexity of the protocol π to be encoded and m is the number of round in π). Assume for contra-
diction that there exists a polynomial m(·) such that for infinitely many n, η(n,m(n)) ≥ 1/m(n).
We will construct a “ping-pong” protocol π = (A,B,XA,XB) with round complexity m(·) such that
Qπ cannot be a knowledge-preserving variant of π.

The ping-pong protocol π. Let t(n) = M(n,m(n), 2m(n)n)+1, andHn = {Hk : ∪i∈{0,...,2m(n)n}{0, 1}i →
{0, 1}n} be a t-wise independent hash function family. On security parameter n, let XA(1n) =
XB(1n) = Hn, i.e., the inputs x ∈ XA(1n) and y ∈ XB(1n) for both players specify hash functions Hx

and Hy in Hn. π is a deterministic protocol that on the inputs x ∈ XA(1n) and y ∈ XB(1n) proceeds
as follows: First, A sends a1 = Hx(∅) to B, who sends back b1 = Hy(a1) to A. Then at each round
i, A sends ai = Hx(a1, b1, . . . , ai−1, bi−1) to B, who sends back bi = Hy(a1, b1, . . . , ai−1, bi−1, ai)
to A; namely, both parties generates their next messages by applying their hash function to the
current transcript. At the end of the interaction, both A and B output the whole transcript
(a1, b1, . . . , am, bm).

Since π is deterministic, the transcript (a1, b1, . . . , am, bm) is determined by the inputs x and y.
Let ai(x, y) (and bi(x, y) resp.) denote the i-th messages A (and B resp.) send in the interaction of
A(x)↔ B(x), and âi(x, y) = (a1, b1, . . . , ai−1, bi−1, ai) and b̂i = (a1, b1, . . . , ai, bi) denote the partial
transcripts of the interaction of A(x)↔ B(x) up until round i; by definition, bi(x, y) = Hy(âi(x, y))

for i ∈ [m] and ai(x, y) = Hx(b̂i−1(x, y)) for i ∈ [m], where b̂0(x, y) is defined to be ∅. Let m′(·)
denote the round complexity of the encoded protocol Qπ.

Privacy of the Ping-pong Protocol Our first observation is that in the ping-pong protocol,
by the unpredictability of the output of the hash functions, player 1, even if maliciously deviating
from the protocol instructions, can only guess more than m distinct pairs (q,Hy(q)) with negligible
probability. Let the predicate PrivacyBreach(o, y) = 1 iff o contains m+ 1 distinct pairs (q,Hy(q)).

Claim 28. For every adversarial strategy A∗ and every n ∈ N,

Pr [x← XA(1n), y ← XB(1n) : PrivacyBreach(out1[A
∗(x)↔ B(y)], y) = 1] ≤ L/2n,

where L denotes the length of A∗’s output (i.e., L = |out1[A∗(x)↔ B(y)]|).

Proof. Note that the interaction with B(y) only allows A∗ to make m queries to Hy. Thus, for the
predicate PrivacyBreach to output 1, A∗ needs to predict one extra pair (q′, Hy(q

′)) that A∗ does not
learn from B; that is, q′ is different from any partial transcript of the interaction. However, since Hy

is t-wise independent, Hy(q
′) remains uniformly random for every such q. Therefore, each guess of

A∗ in its output can only be correct with probability 2−n. Since A∗ can only make at most L guesses
in its output, by an union bound, Pr[PrivacyBreach(out1[A

∗(x)↔ B(y)], y) = 1] ≤ L/2n.

We shall now see that in the encoded protocol Qπ, this “privacy-property” no longer holds, and
as such Qπ cannot be a knowledge preserving variant of π. As a first step towards showing this,
we demonstrate a structural property of the encoded protocol Qπ. In the sequel of the proof, we

13
652

Approved for Public Release; Distribution Unlimited.

assume without loss of generality that Q never makes the same query twice to its oracle (since the
oracle anyway is deterministic).

Implicit Ping-pong Computation. We show that (with overwhelming probability) the en-
coded protocol Qπ “implicitly executes” the original ping-pong protocol in a chronological order.
More precisely, as formalized below, the rounds of the encoded protocol can be divided into (non-
empty) “chunks”, where each chunk in the encoded protocol corresponds to a single round (i.e.,
two consecutive messages) in ping-pong protocol; additionally by observing the oracle queries made
by Q, we can read out a polynomial list of candidates for the current transcript of the (implicitly
executed) ping-pong protocol. We emphasize here that definition of the chunks may depend on the
inputs of the players and the randomness of Q.

Formally, let the predicate ImplicitComp(x, y, r1, r2) = 1 iff Q1 asks its oracle (that is, A(x))

the queries b̂0(x, y)4, b̂1(x, y), b̂2(x, y), . . . , b̂m−1(x, y) in order during the interaction of Q
A(x)
1 (r1)↔

Q
B(y)
2 (r2) and all m queries are made in different rounds. When ImplicitComp(x, y, r1, r2) = 1, Q1’s

queries partition the rounds of the interaction into non-empty chunks in the natural way: for every

i ∈ [m], the i-th chunk of the interaction Q
A(x)
1 (r1)↔ Q

B(y)
2 (r1) starts at the round where Q1 makes

the query b̂i−1(x, y) and finishes when makes Q1 the query b̂i(x, y).5 The following lemma shows

that with overwhelming probability (over random inputs x, y and the execution of Q
A(x)
1 ↔ Q

B(y)
2)

ImplicitComp holds and thus chunks are well-defined.

Lemma 29 (Implicit Computation Lemma). There exists a negligible function µ(·) such that for
every n ∈ N,

Pr[x← XA(1n), y ← XB(1n), r1, r2 ∈ {0, 1}∞ : ImplicitComp(x, y, r1, r2) = 1] ≥ 1− µ(n)

Intuitively, the lemma follows by the “elusiveness” property of the output of the hash function
Hx used by A: if Q1 is not asking its oracle all the queries in order it must be able to guess the
output of Hx on a new point q, which contradicts its t-wise independent property. Note that we
here rely on the fact that the output of the hash functions are “long” (i.e., super-logarithmic);
otherwise, it is easy to guess the output of the hash function with inverse polynomial probability.
We proceed to a formal proof.

Proof (of Lemma 29). For convenience, we actually prove a slightly stronger statement: We show
that with overwhelming probability, the following three properties holds during the execution of

Q
A(x)
1 (r1)↔ Q

B(y)
2 (r2): (a) Q1 makes the queries b̂0(x, y), b̂1(x, y), b̂2(x, y), . . . , b̂m−1(x, y) to A(x),

(b) Q2 makes the queries â1(x, y), â2(x, y), . . . , âm(x, y) to B(y), and (c) the queries are made in
chronological order; that is, every i ∈ [m], Q1 make the query b̂i−1(x, y) before Q2 makes the query
âi(x, y) and Q2 make the query âi(x, y) before Q1 makes the query b̂i(x, y). It easily follows that
if the above three properties hold with respect to (x, y, r1, r2) then ImplicitComp(x, y, r1, r2) = 1.
We now show that except with negligible probability (over x, y, r1, r2), each of these properties
(individually) hold; we can then conclude by a union bound that with overwhelming probability,
all of them simultaneously hold.

For (a), suppose for the sake of contradiction that with some noticeable probability ε(n), Q1

does not make the query b̂i(x, y) for some i ∈ {0, . . . ,m− 1}. By completeness of Qπ, Q1 outputs
b̂m(x, y) with overwhelming probability. Thus, by an union bound, with noticeable probability

4Recall that b̂0(x, y) is defined to be ∅.
5We can assume without loss of generality that Q1 always queries the full transcript b̂m(x, y) before generating

the output (at the cost of at most one extra query), so that the last chunk m also is well defined.

14
653

Approved for Public Release; Distribution Unlimited.

ε′(n), Q1 does not query b̂i(x, y) but outputs b̂m(x, y), which contains ai(x, y) = Hx(b̂i(x, y)). But,
this can only happen with probability at most 2−n since Hx is t-wise independent and Q1 makes at
most t− 1 queries to its oracle, none of which is b̂i(x, y), and its oracle is exactly computing Hx(·);
thus, even conditioned on Q1 view of the interaction, Hx(b̂i(x, y)) is uniform and can thus only be
guessed by Q1 with probability 2−n. By identically the same argument it follows that (b) happens
except with negligible probability.

For (c), suppose for the sake of contradiction that with some noticeable probability ε(n), Q2

make the query âi(x, y) before Q1 makes the query b̂i−1(x, y) for some i ∈ [m]. Note that âi(x, y)
contains ai(x, y) = Hx(b̂i−1(x, y)). Thus, by guessing which query of Q2 is b̂i−1(x, y), we can
construct an algorithm R that predicts the value of Hx(b̂i−1(x, y)) with probability ε(n)/t(n),
while querying Hx on at most t(n) − 1 points, none of which is b̂i−1(x, y), contradicting t-wise
independence of Hx. By identically the same argument if follows that Q1 only make the query
b̂i(x, y) before Q2 makes the query âi(x, y) for some i ∈ [m] with negligible probability.

Obtaining a Privacy Breach in the Encoded Protocol We are now ready show how to
obtain a privacy breach in the encoded protocol Qπ.

Claim 30. There exists an adversarial strategy Ã∗ for player 1 in Qπ such that for sufficiently
large n ∈ N, the output length of Ã∗ is bounded by 2M(n,m, 2mn)m(n)n and

Pr[x← XA(1n), y ← XB(1n) : PrivacyBreach(out1[Ã
∗(x)↔ Q

B(y)
2], y) = 1] ≥ 1/4m′(n)

Proof. The idea behind the attacker Ã∗ (acting as player 1) is the following. By an averaging
argument, one of the chunks, say chunk i, in the encoded protocol must be shorter than a fraction
1/m of the total communication complexity of the encoded protocol. The idea now is for Ã∗ to
honestly execute the encoded protocol using its actual input x and randomness r1, except that
during the i’th chunk, Ã∗ samples a fresh input x′ (and a fresh randomness r′1 for Q1) consistent
with the transcript up until (and including) chunk i−1,6 and executes the chunk using the input x′

(and randomness r′1) instead of x. Intuitively, since the chunk was “small”, by the error resilience
property of the interactive coding scheme, player 1 will finally produce the same output (including
m pairs (q,Hy(q))) as if it had been running the protocol honestly (that is, without “deviating” in
chunk i). Formally proving this requires showing that the attack performed by Ã∗ can be modelled
as channel that flips a sufficiently small number of bits; indeed, note that the way Ã∗ deviates from
the protocol does not rely the original random coins r1 used by Q1 or the input x, and this property
is crucial for us to be able to emulate the attacker by a channel.

Finally, by observing the oracle queries made by Q1 during the i’th chunk—which corresponds
to the i’th round in the ping-pong protocol, by the “implicit computation” property—Ã∗ may learn
an additional pair (q′, Hy(q

′)); intuitively, the reason for this is that, with overwhelming probability,
the messages in the i-th round in “implicit computation” of π remain uniformly distributed, even
after conditioning on the first i − 1 rounds. (We, however, warn the reader that proving this is
quite subtle; see Sub-claim 32). Thus, if Ã∗ could just identify the i’th chunk, it can learn m + 1
pairs (q,Hy(q)) of Hy. Towards this, Ã∗ simply guesses the starting round of the i’th chunk.

We proceed to a formal description of the attacker Ã∗. (Recall that m′(·) denotes the round
complexity of Qπ.) On input x ∈ XA(1n), and randomness r1, Ã

∗ performs the follow “forking”
attack:

6Note that this step may not be efficiently computable in general, but this is not a problem since we here consider
information-theoretic security.

15
654

Approved for Public Release; Distribution Unlimited.

1. Ã∗ uniformly picks a random round j ← [m′(n)] and honestly executes the encoded protocol
Q1 up to the end of (j − 1)-th round. Let T be the resulting partial transcript.

2. Ã∗ samples a fresh input-randomness pair (x′, r′1) conditioned on the partial transcript T ;

namely, (x′, r′1) are uniformly random over all input-randomness pair such that Q
A(x′)
1 (r′1) is

consistent with T .7 Then, Ã∗ continues executing Q1 but now with inputs x′ and randomness
r′1, for as many rounds as possible, subject to the restriction that the number of bits it
transmitted since round j does not exceed η(n,m) · CCn(Qπ).

3. Ã∗ continues the rest of the interaction honestly, with the “true” input x and randomness r1
of Q1 pretending that its own messages were honestly sent all along (including the messages
sent since round j), but may have been incorrectly received by player 2. At the end of the
interaction, Ã∗ outputs (o, L), where o is the output of Q1, and L is the list of queries Q1

made during the “deviation” (using the new input x′).

We first show that, with overwhelming probability, Ã∗ can still learn the “valid” m pairs (q,Hy(q))
(that it would have learn even if it didn’t deviate).

Sub-claim 31. There exist a negligible function µ(·) such that for every n ∈ N,

Pr[x← XA(1n), y ← XB(1n), (o, L)← out1[Ã
∗(x)↔ Q

B(y)
2] : o = out1[A(x)↔ B(y)]] ≥ 1− µ(n).

Proof. Note that the deviation performed by Ã∗ in Step 2 can be implemented by a channel C,
since it only relies on knowledge of the transcript of the interaction and not the internal state
(inputs and randomness) of either of the players. Also, by construction of Ã∗, C never needs to flip
more than η · CCn(Qπ) bits. The claim follows directly by the η-error resilience and completeness
of Qπ.

Note that o = out1[A(x)↔ B(y)] containsm distinct pairs (q,Hy(q), namely, (âi(x, y), bi(x, y) =
Hy(âi(x, y)) for i ∈ [m]; below we abuse of notation and let o denote the set of of these pairs. We
next show that L contains one additional distinct pair (q′, Hy(q

′)) with noticeable probability. Re-
call that a query of Q1 is of the form (a1, b1, . . . , ai, bi); below we sometimes abuse of notation and
interpret each such query as a pair (q, v) where q = (a1, b1, . . . , ai) and v = bi (that is, q is the
vector containing all but the last component, and v contains only the last component).

Sub-claim 32. For sufficiently large n ∈ N, the following holds

Pr

[
x← XA(1n), y ← XB(1n), (o, L)← out1[Ã

∗(x)↔ Q
B(y)
2] :

∃(q,Hy(q)) ∈ L and (q,Hy(q)) /∈ out1[A(x)↔ B(y)]

]
≥ 1/2m′(n).

Proof. Note that in the experiment {x ← XA(1n), y ← XB(1n) : out1[Ã
∗(x) ↔ Q

B(y)
2]}, for every

choice of j (by Ã∗), the tuple (x′, y, r′1, r2) is uniformly distributed (since we can view the experiment
as first sampling a uniform j−1-round transcript T and then then sampling (x′, y, r′1, r2) conditioned
on T). It follows that the distribution of (x′, y, r′1, r2) is independent of j.

Additionally, note that Ã∗ could have picked x′, r′1 is a somewhat more convoluted way, gen-
erating exactly the same distribution: instead of directly sampling x′, r′1 conditioned on T , first
sample a list L1 of (at most t(n)−1) query-answer pairs corresponding to Q1’s queries to its oracle
A(x) up until round j − 1, conditioned on the transcript being T ; next, sample x′ conditioned on
L1 and T , and finally r′ conditioned on x′, L1 and T . The following observation will be useful in
what follows:

7Note that this is the only inefficient step in the forking attack.

16
655

Approved for Public Release; Distribution Unlimited.

Sampling x′ conditioned on L1 and T is equivalent to sampling x′ just conditioned on
just the query-answer pairs L1.

The reason this holds is that conditioned on L1, x
′ and T are independent (recall that T is deter-

mined as a function of just L1, y, r1, r2).
Now, by observing the list of queries L1 (up to the transcript T) and the input y of player 2,

let us determine the next round in the “implicit computation” of π (or said otherwise, the “next
chunk” in the encoded protocol after the transcript T). If L1 does not contains the query ∅, let
i = 1 (i.e., the implicit computation has not begun yet since player 1 has not generated its first
input a1; consequently, the next round is 1). If L1 contains the query-answer pair (∅, a1) (since
Q1’s oracle A is deterministic, there can be at most one such query), check if L1 contains a query of
the form (b1 = Hy(a1), a2) (again, there can be at most one such query); if not set i = 2, otherwise,
check if L1 contains a query of the form (b2 = Hy(a1, b1, a2), a3), and so on.

Below we show the following two statements:

1. With probability at least 1/m′(n) − negl(n), it holds that i ∈ [m(n)] (i.e., the implicit com-
putation of π has not ended) and L contains the query b̂i(x

′, y) (which corresponds to the
pair (âi(x

′, y), bi(x
′, y) = Hy(âi(x

′, y)))

2. With probability at most 2−n, it holds that (âi(x
′, y), bi(x

′, y)) ∈ out1[A(x)↔ B(y)].8

The claim then follows by a union bound.
To prove statement (1), consider some fixed (x′, y, r′1, r2) where chunks are well-defined (i.e.

ImplicitComp(x′, y, r′1, r2) = 1). Note that the event in (1) means that the whole i-th chunk of

Q
A(x′)
1 (r′1)↔ Q

B(y)
2 (r2) is completed during the deviation, i.e., the chunk starts at or after round j,

and ends before the “cut-off”. By an averaging argument, there must exist some chunk i∗ that is
shorter than (1/m) ·CCn(Qπ) ≤ η(n,m) ·CCn(Qπ). Clearly, when j equals to the starting round of
chunk i∗, which happens with probability 1/m′(n) since j is uniformly distributed and independent
of (x′, y, r′1, r2), chunk i = i∗ and thus chunk i will be completed before the cut-off; consequently,
since ImplicitComp(x′, y, r′1, r2) = 1, L contains the query b̂i(x

′, y). Since, by Lemma 29 (and
the observation that x′, y, r′1, r2 are uniformly distributed) ImplicitComp(x′, y, r′1, r2) = 1 holds with
overwhelming probability, we have Pr[b̂i(x

′, y) ∈ L] ≥ 1/m′(n)−negl(n) for some negligible function
negl(n).

To prove statement (2), note that if ai(x, y) 6= ai(x
′, y), then (âi(x

′, y), bi(x
′, y)) /∈ out1[A(x)↔

B(y)]. Thus, it sufficient to show that Pr[ai(x, y) = ai(x
′, y)] ≤ 2−n; that is Pr[Hx(b̂i−1(x, y)) =

Hx′(b̂i−1(x′, y))] ≤ 2−n. Consider some fixed x, y, r1, r2, L1; note that i is determined as a function
of these (recall that it is a function of L1, y), and trivially Hx(b̂i−1(x, y) is determined. Additionally,
note that for every x′ consistent with L1, b̂i−1(x′, y) = Hy(âi−1(x′, y) is determined and furthermore

b̂i−1(x′, y) is not contained in L1 (since by definition of i, b̂i−2(x′, y) is the “last” ping-pong query
in L1). Since, as observed above, x′ is uniformly sampled conditioned only on L1 (and since
L1 contains at most t(n) − 1 queries, none of which is b̂i−1(x′, y)), it follows that every fixed
x, y, r1, r2, L1, Pr[Hx(b̂i−1(x, y) = Hx′(b̂i−1(x′, y)] ≤ 2−n, and thus this condition also holds for
random x, y, r1, r2.

By combining Sub-claim 31 and 32, and applying the union bound we get that

Pr[PrivacyBreach(out1[Ã
∗(x)↔ Q

B(y)
2], y) = 1] ≥ 1/2m′(n).

which concludes the proof of Claim 30.

8Pedantically, in case i > m(n), âi is not defined; in this case the event is simply defined to not hold.

17
656

Approved for Public Release; Distribution Unlimited.

Combining Claim 28 and 30 shows that Qπ is not a knowledge-preserving variant of π, which
leads to a contradiction and completes the proof of Theorem 27.

5 The Computational Regime

We here turn to studying knowledge-preserving interactive coding in the presence of only computationally-
bounded adversaries (i.e., computational knowledge-preserving interactive coding).

5.1 Positive Results

We first present a positive result, showing that assuming the existence of one-way function, compu-
tational knowledge-preserving interactive coding with constant error rate (more specifically, close
to 1/12) and sub-polynomial (or even poly logarithmic, if assuming subexponentially-hard one-way
functions) information rate is possible.

Theorem 33. Assume the existence of one-way functions. For every ε > 0, there exists a com-
putational knowledge-preserving interactive coding scheme with perfect completeness, error rate
η = 1

12 − ε and information rate R(n) = O(1/nε). If additionally sub-exponentially hard one-way
functions exists, the information rate is 1/polylogn.

Roughly speaking, the idea behind the scheme is the following. In a “preamble phase” , the
players start by exchanging verification keys for a signature scheme; the verification keys first are
padded with ρ 0’s to become “long” enough (where ρ is a parameter to be set) and then encoded
using a good ECC (Ep, Dp); let α(n) denote the length of the encoded verification key. Next, in
the “main execution phase” we run the original protocol π, except that each messages is signed
and encoded using a good error correcting code (Em, Dm) (which may be different from the code
(Ep, Dp)). More precisely, player 1 keep track of the “current round” number i1 in the protocol π,
and encode its ith-round message ai as ci = Em(i, ai, σi) where σi is a signature of (i, ai). Upon
receiving a message c while having the “current round” number (in the protocol π) being i, player 1
decodes the message ((i′, b), σ) = Dm(c) and interprets b as the i’th round message bi in π, as long
as 1) i′ = i − 1, and 2) σ is a valid signature on (i′, b); if not, player 1 “signals” that the received
message was corrupted by simply resending its message ci−1 = Em(i−1, ai−1, σi) from the previous
round. Player 2’s strategy is defined analogously except that player 2 accepts the received message
if i′ = i (since player 2 is sending the second message in each round). Finally, we impose a bound
c on the communication complexity of the protocol (or else the protocol may run forever, due to
“resend” message); both players simply abort outputting nothing if the communication complexity
would exceed c if they send their message. Let β(n) denote the length of each encoded message,
and let γ(n,m) = 2α(n) + 2mβ(n) be the length of the protocol if all messages get sent through on
the first trial, and there is no cut-off.

We must set ρ such that the length α(n) of the encoded verification keys is within a constant
factor of c (or else, either the preamble phase can be fully corrupted, or the main phase can be fully
corrupted). On the other hand, c must be long enough to execute the encoded version of π (that is
c > γ(n,m), and additionally handle sufficiently many “resend” requests, before the error-quota of
the adversary runs out. By appropriately setting ρ and c, this leads to an error rate of η/4 if η is
the error rate of both (Ep, Dp) and (Em, Dm); roughly speaking, we lose a factor of two because the
adversary may choose to corrupt either the verification key of player 1 or that of player 2; we loose
another (additively) factor of two due to the fact that the length of the encoded messages must
be within a constant factor of c, and the fact that each time the attacker corrupts the message of

18
657

Approved for Public Release; Distribution Unlimited.

a single player in the main phase protocol execution, we need to resend the whole round (i.e., 2
messages).

We can further improve the error rate by relying on an idea from [MPSW10]: since the messages
in the main phase are signed and we only consider a computationally bounded channel, it in fact
suffices to list-decode the error-correcting code (Em, Dm) used in the main phase.9 It follows using
the same argument as in [MPSW10] that (with overwhelming probability) list-decoding can only
yields at most a single valid message (since all the messages are signed), and thus using list-decoding
here yields unique decoding.

We provide a formal description of the scheme in Figure 1. We assume without loss of generality
that in the original protocol π each player sends a single bit at each round in the protocol (we refer
to such protocols as “bit protocols”).

The following key lemma shows that the above-described scheme is a knowledge preserving
interactive coding schemes. The proof of Theorem 33 is then concluded by appropriately setting ρ
and c.

Lemma 34. Let π = (A,B,XA,XB) be a bit protocol with round complexity m(·). Let (Gen,Sig,Ver)
be a secure signature scheme with signature length l(n) and verification-key length v(n), let (Ep, Dp)
be an ECC with constant error rate ηp and information rate Rp(·) and (Em, Dm) be an error
correcting codes that is efficiently ηm-list-decodable and has information rates Rp(·). Consider
Q,α, β, γ defined in Figure 1 w.r.t the functions ρ(·, ·), c(·, ·). If c(n,m) ≥ γ(n,m), then Q is a
computational knowledge preserving interactive coding scheme with perfect completeness, and:

• information rate R(·) s.t.
R(n,m) = c(n,m)/2m;

• error rate η(·, ·) s.t.

η(n,m) = min

(
ηm ·

c(n,m)− γ(n,m)

2c(n,m)
, ηp ·

α(n)

c(n,m)

)
.

Proof. We separately prove each of the required properties.

Efficiency and Information rate: Q is clearly polynomial-time computable, and by defini-
tion of Q, we have that CC∗(Qπ) = c(n,m); it follows that Q has information rate R(n,m) =
c(n,m)/(2m).

Perfect Completeness: It easily follow from the definition of Q that Qπ perfectly emulates π if
both players are honest. In fact, for every n, input pair x ∈ XA(1n), y ∈ calXB(1n) and randomness
pair rA, rB ∈ {0, 1}∞,

Pr
[
out[Q

ArA (x)
1 ↔ Q

BrB (y)
2] = out[ArA(x)↔ BrB (y)]

]
= 1

We refer to this property as perfect completeness, and it will be useful shortly.

9[MPSW10] relies on this idea to show how to acheive an error-correcting code with error rate 1/2− ε if assuming
a (noiseless) public-key infrastructure and a computationally-bounded channel. In our context, we do not have a
public-key infrastructure, but our initial exchange of verification keys using a uniquely decodable error-correcting
code can be viewed as a way to set-up the appropriate public-key infrastructure needed for their results.

19
658

Approved for Public Release; Distribution Unlimited.

Input protocol: A bit protocol π = (A,B,XA,XB) with round complexity m = m(n).

Parameters:

• Let ρ = ρ(n,m) be a padding parameter.

• Let c = c(n,m) be a cut-off parameter.

Primitives used:

• Let (Gen,Sig,Ver) be a signature scheme with signature length l = l(n) and verification key
length v = v(n).

• Let (Ep, Dp) be an error correcting code with (constant) error rate ηp and information rate
Rp = Rp(·).

• Let (Em, Dm) be an error correcting code that is efficiently ηm-list decodable and has infor-
mation rate Rm = Rm(·).

Initialization: On input a security parameter 1n, round complexity 1m, and communication complex-
ity 12m, Q1 (resp., Q2) initializes a counter i1 = 1 (resp., i2 = 1).

Preamble: Q1 runs (sk1, vk1) ← Gen(1n) and sends c1,0 = Ep(vk1||0ρ) to Q2. Then Q2 runs
(sk2, vk2) ← Gen(1n) and sends c2,0 = Ep(vk2||0ρ) to Q1. Both Q1 and Q2 decode the
received message c′2,0 and c′1,0 and store vk′2 = Dp(c′2,0) and vk′1 = Dp(c′1,0), respectively.
Let α(n) denote the length of each message c′1,0, c′2,0 in the preamble phase; that is α(n) =
(v(n) + ρ(n))/Rp(v(n) + ρ(n))

Main: We first define the strategy of Q1:

• First, Q1 queries its oracle A to obtain the first message a1, appends a1 to t1, computes
σ1 ← Sigsk1((i1, a1)), sends c1,1 = Em((i1, a1, σ1)) to Q2, and increases the counter by 1
(i.e., i1 := i1 + 1).

• Upon receiving a message c′ from Q2, Q1 list-decodes c, and verifies that there exists a
unique message (i′, b′, σ′) such that (a) i′ = i1 − 1 and (b) Vervk′2((i′, b′), σ′) = 1. If the
verification rejects, Q1 resends its previous message c1,i1−1. If the verification accepts, then
Q1 appends b′ to t1 and queries t1 to its oracle A. If A returns an output o1, then Q1

outputs o1 and terminates. If A returns a next message ai1 , then Q1 appends ai1 to t1,
computes σi1 ← Sigsk1((i1, ai1)), sends c1,i1 = Em((i1, ai1 , σi1)) to Q2, and increases the
counter by 1 (i.e., i1 := i1 + 1).

The strategy of Q2 is defined analogously, except that in step (a) , Q2 verifies that i′ = i2 (as
opposed to i2 − 1).

• Upon receiving a message c′ from Q1, Q2 list-decodes c, and verifies that there exists a
unique message (i′, b′, σ′) such that (a) i′ = i2 and (b) Vervk′1((i′, a′), σ′) = 1. If the
verification rejects, Q2 resends its previous message c2,i2−1. If the verification accepts, then
Q2 appends a′ to t2 and queries t2 to its oracle B. If B returns an output o2, then Q2

outputs o2 and terminates. If B returns a next message bi2 , then Q2 appends bi2 to t2,
computes σi2 ← Sigsk2((i2, ai2)), sends c2,i2 = Em((i2, bi2 , σi2)) to Q1, and increases the
counter by 1 (i.e., i2 := i2 + 1).

Let β(n) denote the length of each round in the main phase. Let γ(n,m) = 2α(n) + 2mβ(n).

Abort condition: At any point, if sending the next message causes the total communication to exceed
c(n,m) bits, the scheme Q aborts (with the players outputting ⊥).

Figure 1: Interactive coding scheme Q = (Q1, Q2) encoding an interactive bit protocol π.

20
659

Approved for Public Release; Distribution Unlimited.

Knowledge Preservance: First note that if c(n,m) ≥ γ(n,m) then Q is complete. Note that
Q executes π in a straight-line fashion (without any “rewindings”). We now use this observation to
show that π̃ = Qπ is a knowledge preserving variant of π. More precisely, for every polynomial-time
attacker Ã∗ for player 1, we show the existence of a polynomial-time simulator A∗ such that for every

x ∈ XA, y ∈ XB and z ∈ {0, 1}∗ we have that outÃ∗ [Ã
∗(x, z) ↔ Q

B(y)
2] is identically distributed

to outA∗ [A
∗(x, z) ↔ B(y)]. The simulator A∗(x, z), in essence, is just the encoding algorithm Q2:

A∗(x, z) simply emulates an interaction between Ã∗(x, z) and Q2, while externally forwarding all
the oracle queries by Q2 and answering those queries by forwarding back all the external message.
Since Q2 never rewinds its oracle, the view of Ã∗ in the simulation is identical to its view in the
real execution. (Note that the knowledge preservance property holds unconditionally.) A simulator
for an adversarial player 2 is constructed in the analogous way.

Error resilience We turn to showing that Qπ is η-error-resilient, where

η(n) = min

(
ηm ·

c(n,m(n))− γ(n,m(m))

2c(n,m(m))
, ηp ·

α(n)

c(n,m(m))

)

Consider some non-uniform polynomial-time channel C, security parameter n, inputs x, y and

randomness rA, rB and an execution e ∈ supp(Q
ArA (x)
1 ↔C(1n) Q

BrB (y)
2) such that out(e) 6=

out(ArA(x) ↔ BrB (y)) (recall that by perfect completeness, for every e′ ∈ supp(Q
ArA (x)
1 ↔

Q
BrB (y)
2), we have that out(e) = out(ArA(x) ↔ BrB (y)).) For this to happen, either of two things

must have happened:

1. either execution gets cut-off (in which case both players output ⊥); or,

2. either Q1 or Q2 queries its oracle on a partial transcript t′ that is not a partial transcript in
the execution of A(x)↔ B(y).

We show that neither of these cases can happen with inverse polynomial probability for infinitely
many n (and selections of x, y, rA, rB) as long as C corrupts at most η(n)c(n,m(n)) bits.

Let us first prove that case 1 only can happen with negligible probability. First, note that since
c(n,m(n)) ≥ γ(n,m(n)) we have that Qπ does not abort when run over a noiseless channel. Next,
note that since η(n) ≤ ηpα(n)/c(n,m(n)), the channel can corrupt at most ηp ·α(n) bits. It follows
that each message in the preamble phase will always be correctly decoded, since (Ep, Dp) has error
rate ηp and each message in the preamble phase is of length α(n).

Additionally, since η(n) ≤ ηm · (c(n,m(n))− γ(n,m(n)))/(2c(n,m(n)), the channel can corrupt
at most

ηm ·
(c(n,m(n))− γ(n,m(n)))

2

bits. Note that unless channel corrupts ηmβ(n) bits in a message in the main phase, the message
can still be list decoded. Furthermore, it follows (as in [MPSW10]), relying on the security of the
signature scheme (against non-uniform polynomial-time attackers)10 that except with negligible
probability, the correct message is the unique one that has an accepting signature (since the channel
has seen at most a single signed message of the form (i, ·) for each verification key). On the other
hand, if the channel corrupts more than ηmβ(n) bits in one message, list decoding is no longer
guaranteed to work, and this may cause the players to resend two messages (recall that the player

10Note that the reason we require non-uniform security of the signature scheme is that the attacker needs to get
the inputs x, y and the non-uniform advice of C.

21
660

Approved for Public Release; Distribution Unlimited.

that notices a corrupted message, resends its previously send message, which forces the other player
to resend the corrupted one). Thus, every time the channel corrupts ηmβ(n) bits, it may cause
the interaction to become 2β(n) bits longer. So, to make the interaction become cut-off (with
non-negligible probability), we need j such corruptions of ηmβ(n) bits, where

γ(n) + 2β(n)j > c(n,m(n)).

In other words,

j >
c(n,m(n))− γ(n,m(n))

2β(n)
,

which means that the channels needs to corrupt more than

ηm ·
c(n,m)− γ(n,m)

2

bits, which is a contradiction.
We proceed to show that case 2 only can happen with negligible probability. The key observation

needed to prove this is that, as mentioned above, the preamble phase is always uniquely decoded
and thus C cannot change the verification keys vk1, vk2. Consider the first time that, say, Q1 queries
its oracle on a partial trascript t′ that is not a partial transcript in the execution of A(x)↔ B(y).
It means that Q1 accepts an incorrect message (i′, b′, σ′) such that b′ is different from the message
bi1−1 it should have received in π in round i1 − 1, it must be the case that a) i′ = i1 − 1 (or else
Q1 would reject it), and b) C provided a valid signature (for the verification key vk2) on (i′, b′).
But the channel has seen at most a single signature (for the verification key vk2) on a message
of the type (i1 − 1, ·) (since Q2 will only send a single message of this type); it thus follows from
the non-uniform security of the signature scheme that player 2 accepts an incorrect message with
at most negligible probability. It follows analogously that C can only make player 2 accept an
incorrect message with negligible probability.

Equipped with Lemma 34, we now turn to proving Theorem 33.

Proof of Theorem 33. Assume the existence of one-way functions, fix some ε > 0. By scaling down
the security parameter in the construction from Theorem 14, there exists a signature scheme with
both verification-key length and signature length O(nε). Additionally, by Theorem 18 and 20, there
exists ECCs (Ep, Dp), (Em, Dm) with information rate R(n) = O(1/n), and such that (Ep, Dp) has
error-rate 1/4− ε and (Em, Dm) is 1/2− ε efficiently list decodable. By Lemma 34, we get that the
error rate η(n) is (approximately) maximized11 when

c(n,m) = γ(n,m) + α(n) = 3α(n) + 2m(n)β(n).

(that is, the two expressions inside the min are the same). In this case,

η(n) = ηp ·
α(n)

3α(n) + 2m(n)β(n)
.

Note that we can set the padding parameter ρ(n) to be a sufficiently big polynomial such that
ε · α(n) ≥ 2m(n)β(n); it follows that the error rate is at least

ηp

3 + ε
=

(1/4)− ε
3 + ε

≥ 1

12
− ε

11For simplicity, we ignore ε terms.

22
661

Approved for Public Release; Distribution Unlimited.

By Lemma 34, the information rate of Q is c(n,m)/2m = O(nε). This concludes the first part of
the theorem.

If additionally assuming the existence of subexponentially-hard one-way functions, it instead
follows that c(n,m) ≤ O(m · polylogn).

5.2 Negative Results

We show that our positive result is optimal in two ways:

1. The existence of one-way functions is necessary.

2. If a constant error rate is desired, it is impossible to achieve an information rate of Ω(1/ log n).

The necessity of one-way functions We show that the existence of one-way functions is nec-
essary to acheive computational knowledge-preserving interactive coding with error rate 1/poly(n).

Theorem 35. For every polynomial m(·), the existence of a computational knowledge-preserving
interactive coding scheme Q with error rate η(n,m) ≥ 1/m(n) implies the existence of one-way
functions.

Proof. At a high level, the theorem follows by observing that the forking attacker Ã∗ in the proof
of Theorem 27 can be approximated efficiently if one-way functions do not exist, and so can the
channel adversary. We turn to a formal proof. Assume for contradiction that one-way functions
do not exist, we show that there does not exist a computational knowledge-preserving interactive
coding scheme with polynomial error and information rate.

Consider some polynomial m(·) and computational knowledge-preserving interactive coding
protocol Q = (Q1, Q2) with error rate η(n,m) ≥ 1/m(n); let M(n,m, `) be a polynomial upper
bound on the number queries made by Q1, Q2 to its oracles (where n is the security parameter, m
and ` are the round complexity and communication complexity of the protocol π to be encoded).

Let t = M(n,m, 2mn) + 1. Let π = (A,B,XA,XB) be the ping-pong protocol defined in
the proof of Theorem 27 with m rounds and using t-wise independence hash functions as inputs.
Let m′(·) be the round complexity of the encoded protocol Qπ. We show that Qπ cannot be a
computational knowledge-preserving variant of π by obtaining a privacy breach using the same
forking attacker Ã∗ as in the proof of Theorem 27, but relying on the assumed non-existence of
one-way functions, to make Ã∗ and the channel C that emulates the attacker Ã∗, efficient.

Recall that the only inefficient step of Ã∗ is in Step 2, where Ã∗ needs to sample a fresh input-
randomness pair (x′, r′1) conditioned on the first j − 1 rounds partial transcript T of the execution

Q
A(x)
1 (r1) ↔ Q

B(y)
2 (r2). Let f denote the function that maps (x, y, r1, r2, j) to T . Clearly, f

is efficient. By Theorem 12 and the assumed non-existence of one-way functions, there exists a
polynomial-time inverter M such that (T,M(T)) and (T, (x, y, r1, r2, j)) has statistical distance at
most 1/8m′(n) for infinitely many n ∈ N. (Note that M only works for infinitely many n ∈ N.
Nevertheless, this is sufficient.) Namely, M can approximately sample a random pre-image of a
random transcript T with small inverse polynomial error. Relying on the inverter M , Ã∗ can be
made efficient straightforwardly, with the following modification; let us denote the modified attacker
Ã∗eff .

• In the second step, Ã∗eff appliesM to the partial transcript T to obtain a pre-image (x′, y′r′1, r
′
2, j
′).

Then Ã∗eff uses (x′, r′1) to continue the attack as before. Namely, Ã∗eff continues the interac-
tion, but with the input and randomness to Q1 switched to x′ and r′1, for as many rounds
as possible, subject to that the number of bits it transmits since round j does not exceed
η(n) · CCn(Qπ).

23
662

Approved for Public Release; Distribution Unlimited.

By construction, the attacker Ã∗eff runs in polynomial time; additionally, since the channel C
used in the proof of Theorem 27 perfectly mimics the attacker, it is also efficient.

We now show that Ã∗eff approximate Ã∗ well over random inputs, which implies that Ã∗eff can
also obtain a privacy breach with inverse polynomial probablity for infinitely many n. Specifically,
we show that the following two experiments have a statistical distance of at most 1/8m′(n) for
infinitely many n ∈ N.

• Exp1(1
n) =

{
x← XA(1n), y ← XB(1n) : Ã∗(x)↔ Q

B(y)
2

}

• Exp2(1
n) =

{
x← XA(1n), y ← XB(1n) : Ã∗eff(x)↔ Q

B(y)
2

}

Claim 36. For infinitely many n ∈ N, the statistical distance between Exp1(1
n) and Exp2(1

n) is
at most 1/8m′(n).

Proof. Recall that both experiments are determined by the values of (x, y, r1, r2, j, x
′, r′1), where

(x, y, r1, r2, j) are independently and uniformly sampled, and then in Exp1, (x′, r′1) are sampled

conditioned on the first j − 1 round partial transcript T of the execution Q
A(x)
1 (r1) ↔ Q

B(y)
2 (r2),

and in Exp2, (x′, r′1) are sampled by first applying the efficient inverter to obtain (x′, y′, r′1, r
′
2, j
′)

and then discarding (y′, r′2, j
′).

Fix a security parameter n ∈ N such thatM works; that is, such that (T,M(T)) and (T, (x, y, r1, r2, j))
have a statistical distance of at most 1/8m′(n). This implies that the distributions of (T, x′, r′1)
in Exp1(1

n) and Exp2(1
n) have a statistical distance of at most 1/8m′(n), since projection (i.e.,

removing (y′, r′2, j
′)) cannot increase statistical distance. We claim that additionally, the distribu-

tion of the whole tuple (x, y, r1, r2, j, x
′, r′1) in Exp1(1

n) and Exp2(1
n) have a statistical distance of

at most 1/8m′(n) as well. To see this, as a thought experiment, we can view the experiments as
sampled in the following different order: first, T is sampled, then (x′, r′1) are sampled conditioned
on T , and finally (x, y, r1, r2, j) are sampled conditioned on T (note that conditioned on T , (x′, r′1)
and (x, y, r1, r2, j) are independent). Note that in both experiments, (x, y, r1, r2, j) are sampled in
an identical way after sampling (T, x′, r′1), so it does not increase the statistical distance. Therefore,
the statistical distance between Exp1(1

n) and Exp2(1
n) on this security parameter n is at most

1/8m′(n).

Now, since Ã∗ obtains a privacy breach with probability ≥ 1/4m′(n) in Exp1(1
n) for sufficiently

large n ∈ N, and Exp1(1
n) and Exp2(1

n) have statistical distance at most 1/8m′(n) for infinitely
many n ∈ N, it follows that Ã∗eff can also obtains a privacy breach with probability ≥ 1/8m′(n)
in Exp2(1

n) for infinitely many n ∈ N. This shows that Qπ is not a computationally knowledge-
preserving variant of π and completes the proof.

The necessity of a communication complexity blow-up We show that every computational
knowledge-preserving interactive coding scheme with constant error rate must have an information
rate of o(1/ log n), showing that the inverse polylogarithmic rate achieved in Theorem 33 (assuming
subexponentially hard one-way functions) is essentially optimal.

Theorem 37. Assume the existence of a computational knowledge-preserving interactive coding
scheme with information rate R(n) and error rate η(n). Then R(n)η(n) ∈ o(1/ log(n)).

Proof. The theorem is a direct consequence of Theorem 38 proven in Section 6.

24
663

Approved for Public Release; Distribution Unlimited.

6 Lower Bound for Non-constructive Schemes

In this section, we present an impossibility result for the computational setting, which applies
even to non-constructive interactive coding scheme. In particular, for every η(n) > 1/ log n, we
demonstrate the existence of protocol π with communication complexity 1/η(n) such that every
computationally η-error resilient, computationally knowledge-preserving variant of π must have
communication complexity at least ω(log n). In particular, for the case η(n) = O(1), we get that
the information rate also for non-constructive interactive coding is at most o(1/ log n). (Note that
this result is interesting also in the information theoretic setting, since in contrast to Theorem 27,
we here provide an impossibility result also for non-constructive interactive coding.)

Theorem 38. For every function η(·) such that η(n) ≥ O(1/ log n), there exists a protocol π =
(A,B,XA,XB) with communication complexity CCn(π) = O(1/η(n)) such that for every protocol
π′ = (Q1, Q2,XA,XB) that is a computationally knowledge-preserving variant of π and is computa-
tionally η-error resilient, the communication complexity of π′ is at least ω(log n).

Proof. We here consider a somewhat simpler variant of the ping-pong protocol, which we refer to
as the “bit-exchange” protocol π (the protocol is almost identical to a protocol used in [CP11] in
a quite different context). We show that any protocol π′ with communication complexity O(log n)
that is computational η-error resilient cannot be a computationally knowledge preserving variant
of π.

Similarly to the proof of Theorem 27, let us first formally define π and formalize a security
property that it satisfies.

The “bit-exchange” protocol π. Let m(·) = d2/η(·)e [Kai-Min’s Note: Make m = 2/η
instead of 1/η so that we can do Markov on the length of i-th block.] and consider the
following simple bit-exchange protocol π = (A,B,XA,XB), where both players simply send their
inputs to each other, bit-by-bit. On security parameter n, let m = m(n) and XA(1n) = XB(1n) =
{0, 1}m(n). π is a deterministic m-round protocol that on the inputs x ∈ {0, 1}m and y ∈ {0, 1}m
proceeds as follows: at each round i ∈ [m], A sends ai = xi to B, who sends back bi = yi to A,
where xi, yi denote the i-th bit of x, y, respectively. At the end of the interaction, both A and B
output the whole transcript (a, b), where a = (a1, . . . , am) ∈ {0, 1}m and b = (b1, . . . , bm) ∈ {0, 1}m.

“Guess-the-next-bit” security of the bit-exchange protocol. We say that player matches
in a round i ∈ [m] if it guesses the bit sent by its opponent in the next message. Formally, for
i ∈ [m], defined the predicates Match1,i(a, b) = 1 iff ai = bi, Match2,i(a, b) = 1 iff bi = ai+1. Note
that if the inputs are uniformly distributed, then for every i ∈ [m], the probability that each player
matches in round i with probability exactly 1/2.

Claim 39. For every adversarial strategy A∗, every n ∈ N and i ∈ [m],

Pr [x, y ← {0, 1}m : Match1,i(out2[A
∗(x)↔ B(y)]) = 1] = 1/2.

Similarly, for every adversarial strategy B∗, every n ∈ N and i ∈ [m− 1],

Pr [x, y ← {0, 1}m : Match2,i(out1[A(x)↔ B∗(y)]) = 1] = 1/2.

Proof. The claim trivially follows by noting that for every A∗ (resp., B∗), yi (resp., xi+1) remains
uniformly random conditioned on the view of A∗ (resp., B∗) when A∗ (resp., B∗) needs to send its
i-th message.

25
664

Approved for Public Release; Distribution Unlimited.

Now, consider some computationally knowledge preserving variant π′ = (Q1, Q2, {0, 1}m(n), {0, 1}m(n))
of π that hasO(log n) communication complexity and is η-error resilient. Let c(n) = max{CCn(π′), log n},
and m′(·) be the round complexity of π′. As in the proof of Theorem 27, we first show that π′

needs to be “implicitly executing” π in a chronological order. In contrast to this step in the proof
of Theorem 27, we here rely on the knowledge preservance property of π′ to demonstrate this.

Implicit bit-exchange computation. Our formalization of implicit computation here is quite
different from how it was formalized in the proof of Theorem 27. Here we rely on information-
theoretic definitions of what it means to implicitely execute π (which is what allows us to provide
an impossibility result also for non-constructive coding schemes). Towards formalizing it, let us
first introduce some additional definitions.

For two strings T and T ′, we denote by T � T ′ (resp., T ≺ T ′) that T is a prefix (resp., proper
prefix) of T ′. Fix a security parameter n and let m = m(n). If x, y ∈ {0, 1}m and T is a partial
transcript, then let p(x, y, T) = Pr[T � trans[Q1(x) ↔ Q2(y)]]; that is, the probability that T is
consistent with the execution of Q1(x) ↔ Q2(y). Let δ > ε ∈ (0, 1) be two parameters (to be
determined later). For inputs x, y ∈ {0, 1}m, a partial transcript T , i ∈ [m] and β ∈ {0, 1}, we say
that (y, T) (resp., (x, T)) is (δ, ε)-binding for (i, β) if the following two conditions hold:

1. There exists x′ ∈ {0, 1}m with x′i = β (resp., y′ ∈ {0, 1}m with y′i = β) such that p(x′, y, T) ≥ δ
(resp., p(x, y′, T) ≥ δ).

2. For every x′ ∈ {0, 1}m with x′i 6= β (resp., y′ ∈ {0, 1}m with y′i 6= β), p(x′, y, T) ≤ ε (resp.,
p(x, y′, T) ≤ ε).

Intuitively, this means that (y, T) “determines” xi = β. Consider an execution T ← trans[Q1(x, r1)↔
Q2(y, r2)] for some inputs x, y ∈ {0, 1}m and randomness r1, r2 ∈ {0, 1}∞. Note that since the prob-
ability p(x, y, T) can be estimated by sampling, the above two conditions can be checked in time
poly(2c, 1/δ, 1/ε), which allows player 1 to “decode” the bit yi from (x, T) when (x, T) is binging for
player 2’s i-th bit input. Specifically, there is an algorithm Dec1 with runtime poly(n, 2c, 1/δ, 1/ε)
that takes (x, T, i, δ, ε) as input such that (a) if (x, T) is (δ, ε)-binding for (i, β), then Dec1 outputs
β with probability at least 1 − 2−n, and (b) if (x, T) is not (δ/2, 2ε)-binding for both (i, 0) and
(i, 1), then Dec outputs ⊥ with probability at least 1 − 2−n. Analogously, there is an algorithm
Dec2 to “decode” player 1’s bit xi from (y, T).

Define the i-th binding-point for player 1 (resp., 2) of the execution (x, y, r1, r2) with parameters
(δ, ε) to be the shortest partial transcript T1,i � T (resp., T2,i � T) such that (i) the last message in
T1,i (resp., T2,i) is sent by player 1 (resp. player 2), and (ii) (y, T1,i) (resp., (x, T2,i)) is (δ, ε)-binding
for (i, xi) (resp., (i, yi)); if no such partial transcript exists, define T1,i = ⊥ (resp., T1,i = ⊥). For
convenient, we use notation Td,i(x, y, r1, r2; δ, ε) to denote the i-th binding-point for player d of the
execution (x, y, r1, r2) with parameters (δ, ε).

Intuitively, Td,i is the point where player d sends its i-bit to the other player (corresponding to
the i-th message in the implicit computation of π). Formally, let the predicate ImplicitComp(x, y, r1, r2; δ, ε) =
1 iff (i) Td,i(x, y, r1, r2; δ, ε) 6= ⊥ for every d ∈ {1, 2} and i ∈ [m], (ii) T1,i ≺ T2,i for every i ∈ [m],
and (iii) T2,i ≺ T1,i+1 for every i ∈ [m−1]; that is, the i-th binding-points for both players occur in
a chronological order corresponding to the execution of π and do not occur at the same time. When
ImplicitComp(x, y, r1, r2; δ, ε) = 1, the interaction of π′ can be partitioned into non-empty chunks as
before: for every i ∈ [m], the i-th chunk of the execution Q1(x, r1) ↔ Q2(y, r1) starts after T2,i−1
and finishes at the end of T2,i; that is, the i-th chunk starts when player 1 starts sending i-message
and finished when player 1 receives the i-th message from player 2.

26
665

Approved for Public Release; Distribution Unlimited.

The following lemma shows that ImplicitComp holds with high probability for every input pair
(x, y) and appropriate (sufficiently small) inverse polynomial δ and ε.

Lemma 40 (Implicit Computation Lemma). For every polynomial q(n) ≥ n5 · 25(m(n)+c(n)), for
sufficiently large n ∈ N,

Pr[x, y ← {0, 1}m(n), r1, r2 ∈ {0, 1}∞ : ImplicitComp(x, y, r1, r2; 1/q(n), 1/q2(n)) = 1] ≥ 1− 1/n.

Proof. Let δ(n) = 1/q(n) and ε(n) = 1/q2(n). Let µ(n) be a negligible function such that π′ is a
computational knowledge preserving variant of π with respect to µ(n) (for both completeness and
computational knowledge preservance). Recall that the completeness property says that for every
n ∈ N, every x, y ∈ {0, 1}m(n),

Pr[out[Q1(x)↔ Q2(y)] = out[A(x)↔ B(y)] ≥ 1− µ(n).

Fix n to be a sufficiently large security parameter such that µ(n) ≤ 1/q5(n). We first show that
for every x, y ∈ {0, 1}m,

Pr[r1, r2 ← {0, 1}∞ : ∀d ∈ {1, 2}, i ∈ [m], Td,i(x, y, r1, r2; δ, ε) 6= ⊥] ≥ 1− 1/2n.

Namely, condition (i) of the predicate ImplicitComp is satisfied for every inputs x, y{0, 1}m(n) with
high probability. Note that it suffices to show that with probability at least 1 − 1/2n over T ←
trans[Q1(x)↔ Q2(y)], for every i ∈ [m], (y, T) is (δ, ε)-binding for (i, xi) and (x, T) is (δ, ε)-binding
for (i, yi); that is, every bit of both players’ input are eventually binding at the end of the execution.
To show this, it suffices to show the following two statements.

1. For every x, y ∈ {0, 1}m(n), Pr[T ← trans[Q1(x)↔ Q2(y)] : p(x, y, T) ≥ δ(n)] ≥ 1− 1/2n.

2. For every x 6= x′ ∈ {0, 1}m(n), y 6= y′ ∈ {0, 1}m(n), and a full transcript T ∈ {0, 1}∗,

min{p(x, y, T), p(x′, y, T)} ≤ 3µ(n) and min{p(x, y, T), p(x, y′, T)} ≤ 3µ(n).

Statement (1) implies that condition (1) in the definition of binding is satisfied with probability at
least 1− 1/2n, and when the event in statement (1) holds, statement (2) guarantees that condition
(2) is also satisfied. Now, statement (1) follows by noting that

Pr[T ← trans[Q1(x)↔ Q2(y)] : p(x, y, T) ≤ δ(n)] ≤ δ(n) · 2c(n) ≤ 1/2n.

For statement (2), suppose that there exist x 6= x′{0, 1}m(n), y ∈ {0, 1}m(n) and a full transcript
T ∈ {0, 1}∗ such that both p(x, y, T), p(x′, y, T) ≥ 3µ(n). Consider two executions Q1(x)↔ Q2(y)
and Q1(x

′) ↔ Q2(y). Note that conditioned on the full transcript, the output of player 2 is
independent of the input of player 1. Thus, when the transcript is T , player 2 must generate an
incorrect output for one of the two executions (i.e., out2[Q1(x) ↔ Q2(y)] 6= out2[A(x) ↔ B(y)],
which is simply (x, y)). Since in both executions, T occurs with probability at least 3µ(n), it follows
that player 2 produces incorrect output in one of the execution with probability ≥ 3µ(n)/2 > µ(n),
violating the completeness property. This shows that min{p(x, y, T), p(x′, y, T)} ≤ 3µ(n) for every
x 6= x′ ∈ {0, 1}m(n), y ∈ {0, 1}m(n), and full transcript T ∈ {0, 1}∗. An analogous argument shows
that min{p(x, y, T), p(x, y′, T)} ≤ 3µ(n) for every x 6= x′ ∈ {0, 1}m(n), y ∈ {0, 1}m(n), and full
transcript T ∈ {0, 1}∗.

We proceed to show that condition (ii) and (iii) hold with high probability, relying on the
following claim.

27
666

Approved for Public Release; Distribution Unlimited.

Claim 41. For every i ∈ [m], suppose one of the following holds.

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi 6= yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥
1/q(n), or

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi = yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥
1/q(n).

Then there exists an adversarial strategy Ã∗ for player 1 such that
∣∣∣Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : Match1,i(o) = 1
]
− 1/2

∣∣∣ ≥ 1/8q(n).

Similarly, for every i ∈ [m− 1], suppose one of the following holds.

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : yi 6= xi+1 ∧ T1,i+1(x, y, r1, r2; δ, ε) ≺ T2,i(x, y, r1, r2; δ, ε)] ≥
1/q(n), or

• Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : yi = xi+1 ∧ T1,i+1(x, y, r1, r2; δ, ε) ≺ T2,i(x, y, r1, r2; δ, ε)] ≥
1/q(n), or

Then there exists an adversarial strategy B̃∗ for player 2 such that
∣∣∣Pr
[
x, y ← {0, 1}m, o← out2[Q1(x)↔ B̃∗(y)] : Match2,i(o) = 1

]
− 1/2

∣∣∣ ≥ 1/8q(n).

Note that the conclusions of the claim contradict to the knowledge preserving property. Thus,
it follows that for every i ∈ [m],

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≤ 2/q(n), and

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : T1,i+1(x, y, r1, r2; δ, ε) ≺ T2,i(x, y, r1, r2; δ, ε)] ≤ 2/q(n).

It now follows by a union bound that condition (ii) and (iii) hold with probability at least 1 −
4m/q(n) ≥ 1− 1/2n, and another union bound concludes that

Pr[x, y ← {0, 1}m(n), r1, r2 ∈ {0, 1}∞ : ImplicitComp(x, y, r1, r2; 1/q(n), 1/q2(n)) = 1] ≥ 1− 1/n.

It remains to prove the claim.

Proof of Claim 41. We start by proving the first case of the claim. Namely, we show that if

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi 6= yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥ 1/q(n),

then

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : Match1,i(o) = 1
]
≥ 1/2 + 1/8q(n).

At a high level, the idea is simple: whenever yi is bound at point T2,i before xi is bound, Ã∗ can
first decode yi from (x, T2,i), and then if xi = yi, Ã

∗ simply continues honestly, but if xi 6= xi, Ã
∗

changes its input from x to some x′ with x′i = yi (Ã∗ can do so since xi is not bound yet). Formally,
on input x ∈ {0, 1}m, Ã∗ performs the following strategy to interact with Q2:

• Ã∗ samples a uniform randomness r1 ← {0, 1}∞ and starts by honestly executing the protocol
Q1, but at the end of each round j, Ã∗ runs Dec1(x, Tj , i, δ, ε) where Tj is the current partial
transcript. If Dec1 outputs ⊥, then Ã∗ simply continues honestly at round j + 1. If Dec1
outputs β ∈ {0, 1}, let T ∗ denote the current transcript and Ã∗ proceeds as follows.

28
667

Approved for Public Release; Distribution Unlimited.

– If β = xi, then Ã∗ simply continues the execution honestly throughout.

– If β 6= xi, then Ã∗ uses rejection sampling to sample a random (x′, r′1) conditioned on
x′i = β and the current transcript T ∗. Ã∗ cuts-off the rejection sampling procedure when
it fails for more than M = O(n2m/δε) samples; in this case, Ã∗ sets (x′, r′1) = (x, r1)
(i.e., does not change the input-randomness pair). Then Ã∗ continues executing the
protocol Q1 with the alternative input-randomness pair (x′, r′1) throughout.

We proceed to analyze Ã∗. The following sub-claim says that Match1,i holds with high proba-
bility when xi = yi.

Sub-claim 42. Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi = yi ∧Match1,i(o) = 1
]
≥ 1/2 −

1/8q(n).

Proof. First note that by completeness, we have

Pr [x, y ← {0, 1}m, o← out2[Q1(x)↔ Q2(y)] : xi = yi ∧Match1,i(o) = 1] ≥ 1/2− µ(n).

Additionally, note that when xi = yi and there is no “decoding error” (i.e., during the execution
Dec1 does not return β = ȳi), then Ã∗ simply executes Q1 honestly. Thus, to lower bound the
probability of the desired event, it suffices to upper bound the probability that a decoding error
occur during the execution. Now, observe that during the execution, the property of Dec1 ensures
that when p(x, y, T) > 2ε, Dec1(x, T, i, δ, ε) outputs incorrect answer β = ȳi with probability at
most 2−n. Noting that for every (x, y), Pr[T ← trans[Q1(x)↔ Q2(y)] : p(x, y, T) ≤ 2ε] ≤ 2c(n) · 2ε,
and that Ã∗(x) invokes Dec1 at most m′(n) times, the probability that a decoding error occur can
be upper bounded by m′(n) · 2−n + 2c(n) · 2ε. A final union bound implies that

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi = yi ∧Match1,i(o) = 1
]

1/2− µ(n)−m′(n) · 2−n − 2c(n) · 2ε ≥ 1/2− 1/8q(n).

We next show that when xi 6= yi, Match1,i still holds with noticeable probability.

Sub-claim 43. Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi 6= yi ∧Match1,i(o) = 1
]
≥ 1/4q(n).

Proof. Let Good denote the event that during the execution, the tuple (x, y, T ∗) satisfies the fol-
lowing three conditions: (i) xi 6= yi, (ii) p(x, y, T ∗) ≥ δ, (iii) Dec1(x, T

∗, i, δ, ε) outputs yi (i.e., Dec1
decodes correctly), and (iv) let T− denote the partial transcript obtained by removing the last
message from T ∗ (thus, the last message is from player 1 to player 2); (y, T−) is not (δ, ε)-binding
for (i, xi).

We first show that Good happens with probability at least 1/2q(n). Recall that Ã∗ executes Q1

honestly before the end of T ∗, and that in the execution of Q1(x)↔ Q2(y),

Pr[x, y ← {0, 1}m(n), r1, r2 ← {0, 1}∞ : xi 6= yi ∧ T2,i(x, y, r1, r2; δ, ε) ≺ T1,i(x, y, r1, r2; δ, ε)] ≥ 1/q(n).

Now, consider any tuple (x, y, r1, r2) such that the above event hold, and let T2,i = T2,i(x, y, r1, r2; δ, ε)
and T−2,i be T2,i with the last message removed. Note that Dec1(x, T2,i, i, δ, ε) outputs yi with

probability at least 1 − 2−n, and that (y, T−2,i) is not (δ, ε)-binding for (i, xi). Therefore, in the

execution of Ã∗(x) ↔ Q2(y), conditioned on such (x, y, r1, r2), we have that with probability at

29
668

Approved for Public Release; Distribution Unlimited.

least 1 −m′(n) · 2−n, it holds that the above four conditions hold with T ∗ � T2,i (the m′(n) · 2−n
term comes from union bound over at most m′(n) invocation of Dec1; note that it is possible that
T ∗ ≺ T2,i and in this case, the probability that Dec1 outputs ȳi is also upper bounded by 2−n).
Therefore, the probability that the Good event happens is at least 1/q(n)·(1−m′(n)·2−n ≥ 1/2q(n).

We next show that conditioned on any tuple (x, y, T ∗) such that the Good event holds, with
probability at least (1 − 1/8q(n)), (a) Ã∗ can successfully sample a fresh input-randomness pair
(x′, r′1) through rejection sampling, and (b) Q2 outputs (x′, y) at the end of the execution. For (a),
the fact that (y, T−) is not (δ, ε)-binding for (i, xi) and p(x, y, T−) ≥ p(x, y, T ∗) ≥ δ implies that
there exists some x∗ such that x∗i 6= xi and p(x∗, y, T−) ≥ ε. Now, the facts that the last message of
T ∗ is sent by player 2 and that p(x, y, T ∗) ≥ δ imply that p(x∗, y, T ∗) ≥ εδ. Therefore, the chance
of sampling a pair (x′, r′1) that is consistent with T ∗ is at least 2−mεδ, and rejection sampling with
M = O(n2m/δε) samples can succeed with probability at least 1 − 2−n. For (b), note that the
execution now is equivalent to an honest execution of Q1(x

′) ← Q2(y) conditioned on transcript
T ∗. By completeness, Q2 outputs (x′, y) with probability at least 1−µ(n)/p(x′, y, T ∗). Now, recall
that there exists x∗ with p(x∗, y, T ∗) ≥ εδ. A Markov argument shows that the rejection sampling
procedure returns an x′ with p(x′, y, T ∗) ≤ εδ2−m/8q(n) is at most 1 − 1/8q(n). Therefore, when
condition (a) holds, we have that condition (b) also holds with probability at least (1− 1/8q(n)) ·
(1 − µ(n)8q(n)2m/εδ) ≥ (1 − 1/4q(n)). Therefore, the probability that both conditions hold is at
least (1− 2−n) · (1− 1/4q(n)) ≥ 1− 1/2q(n).

Finally, we can conclude that

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : xi 6= yi ∧Match1,i(o) = 1
]

≥ 1/2q(n) · (1− 1/2q(n)) ≥ 1/4q(n).

Combining the above two sub-claims, we have that

Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗(x)↔ Q2(y)] : Match1,i(o) = 1
]

≥ 1/2− 1/8q(n) + 1/4q(n) ≥ 1/2 + 1/8q(n).

This completes the proof of the first case of the claim. The remaining three cases of the claim can
be proved by an analogous argument.

Obtaining a match-deviation in π′ Now that we have established that implicit computation
holds in π′ with high probability, we can obtain a deviation on the matching probability in π′

relying on a similar forking attack as in the proof of Theorem 27; such deviation shows that π′

cannot be a knowledge-preserving variant of π.
Let δ(n) = 1/n5 · 25(m(n)+c(n)) and ε(n) = δ2(n). For i ∈ [m] and e ∈ {0, 1}, consider the

following adversarial strategy Ã∗i,e for player 1. On input x ∈ {0, 1}m, and randomness r1, Ã
∗

performs the follow “forking” attack:

1. Ã∗i,e uniformly picks a random round j ← [m′(n)] and honestly executes the encoded protocol
Q1 up to the end of (j − 1)-th round. Let T be the resulting partial transcript.

30
669

Approved for Public Release; Distribution Unlimited.

2. Ã∗i,e samples a fresh input-randomness pair (x′, r′1) conditioned on the partial transcript T

using rejection sampling with a sufficiently large cuts-off parameter M = 1/ε5. Then, Ã∗

continues executing Q1 but now with inputs x′ and randomness r′1, for as many rounds as
possible, subject to the restriction that the number of bits it transmitted since round j does
not exceed η(n) · CCn(π′). Let T ′ be the resulting partial transcript.

3. Ã∗i,e invokes Dec1(x, T
′, i, δ, ε), and proceeds with the following two cases.

• If Dec1 outputs ⊥ or β ∈ {0, 1} such that β ⊕ xi = e, then Ã∗i,e continues the rest of the
interaction honestly, with the “true” input x and randomness r1 of Q1 5 (pretending that
it was player 2 that deviated since round j, but its own messages were correctly sent).
(pretending that it sent its own messages correctly but was corrupted by the channel).

• If Dec1 outputs β ∈ {0, 1} such that β ⊕ xi 6= e, then Ã∗i,e samples another fresh input-
randomness pair (x′′, r′′1), conditioned on the partial transcript T and that β ⊕ x′′i = e,
using rejection sampling with a sufficiently large cuts-off parameter M = 1/ε5; if the
rejection sampling fails, Ã∗i,e sets (x′′, r′′1) = (x, r1) (i.e., Ãi,e does not change the input-

randomness pair). Then Ã∗i,e continues the rest of the interaction honestly, with the
“new” input x′′ and randomness r′′1 of Q1 (again, pretending that it sent its own messages
correctly but was corrupted by the channel).

4. Ãi,e produces no output.

Claim 44. For sufficiently large n, there exists i ∈ [m(n)] and e ∈ {0, 1} such that
∣∣∣Pr
[
x, y ← {0, 1}m, o← out2[Ã

∗
i,e(x)↔ Q2(y)] : Match1,i(o) = 1

]
− 1/2

∣∣∣ ≥ 1/32m′(n).

Proof. (sketch.) The claim is proved by combining the analysis of Sub-claim 32 in Theorem 27 and
the proof of Claim 41 above.

Recall that implicit computation holds with probability at least 1−1/n, and in such case, chunks
are well-defined. Let i∗ ∈ [m] be such that the i∗-th chunk has shortest expected length when
chunks are well-defined. By an averaging argument, the expected length of the i∗-th chunk is at
most (1/m) ·CCn(π′). By an identical argument to the analysis of Sub-claim 32, for both e ∈ {0, 1},
in the experiment {x, y ← {0, 1}m : Ã∗i∗,e(x) ↔ Q2(y)}, (x′, y, r′1, r2) is uniformly distributed and
independent of j. By a Markov argument, with probability at least 1/2, the i∗-th chunk has length
at most (2/m) · CCn(π) < η(n) · CCn(π). Define Good to be the event that (i) chunks are well-
defined, (ii) the i∗-th chunk has length at most (2/m)·CCn(π) and (iii) j equals to the starting round
of the i∗-th chunk. Note that when Good happens, the i∗-th chunk finished before T ′ and when
Ãi∗,e invokes Dec1, it returns a correct bit β = yi with overwhelming probability. Additionally, by
definition, (y, T−) is not (δ, ε)-binding for xi, where T− is obtained by removing the last message
from T . Note that Good happens with probability at least (1−1/n)·(1/2)·(1/m′(n))·(1−negl(n)) ≥
1/4m′(n).

By a similar argument to the proof of Sub-claim 43, when Good happens, Q2 outputs (a, b) with
ai⊕ bi = e with high probability. Roughly, the reason is that in this case, with high probability (a)
Ã∗i∗,e can sample a input-randomness pair (x′′, r′′1) such that x′′i ⊕ yi = e and (b) the error-resilient

property implies that Q2 outputs (x′′, y). Therefore, for either e = 0 or e = 1, Ã∗i∗,e can gain
at least 1/16m′(n) advantage from the Good event. On the other hand, as argued in the proof
of Sub-claim 42, the only chance that Ã∗i∗,e is when Dec1 returns incorrect answer β = ȳi, which

happens with negligible probability. Therefore, the overall advantage of Ã∗i,e is at last 1/32m′(n).

31
670

Approved for Public Release; Distribution Unlimited.

References

[BK12] Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against adversarial
noise. In FOCS, pages 160–166, 2012.

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. Proc. of the International
Congress of Mathematicians, pages 1444–1451, 1986.

[BN13] Zvika Brakerski and Moni Naor. Fast algorithms for interactive coding. In SODA ’13,
2013. To appear.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive
communication. In STOC, pages 159–166, 2011.

[Bra12] Mark Braverman. Interactive information complexity. In STOC, pages 505–524, 2012.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC ’00, pages 235–244, 2000.

[CP11] Kai-Min Chung and Rafael Pass. The randomness complexity of parallel repetition. In
FOCS, pages 658–667, 2011.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In FOCS, pages 768–777, 2011.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity, or all languages in np have zero-knowledge proof systems. Journal of the ACM,
38(1):691–729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2. Cambridge University
Press, 2004.

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain con-
catenated codes. In STOC, pages 181–190, 2000.

[HAM50] R. W. HAMMING. Error detecting and error correcting codes. BELL SYSTEM TECH-
NICAL JOURNAL, 29(2):147–160, 1950.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 230–235, 1989.

32
671

Approved for Public Release; Distribution Unlimited.

[Jus]

[Lip94] Richard J. Lipton. A new approach to information theory. In STACS, pages 699–708,
1994.

[MPSW10] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correc-
tion for computationally bounded noise. IEEE Transactions on Information Theory,
56(11):5673–5680, 2010.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In STOC ’89, pages 33–43, 1989.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 387–
394, 1990.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the
Society of Industrial and Applied Mathematics, 8:300–304, 1960.

[Sch92] Leonard J. Schulman. Communication on noisy channels: A coding theorem for com-
putation. In FOCS, pages 724–733, 1992.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In STOC,
pages 747–756, 1993.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on
Information Theory, 42(6):1745–1756, 1996.

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 623–656, July, October 1948.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996.

33
672

Approved for Public Release; Distribution Unlimited.

Non-Black-Box Simulation from One-Way Functions
And Applications to Resettable Security

Kai-Min Chung
Cornell University

chung@cs.cornell.edu

Rafael Pass
∗

Cornell University
rafael@cs.cornell.edu

Karn Seth
Cornell University

karn@cs.cornell.edu

ABSTRACT
The simulation paradigm, introduced by Goldwasser, Mi-
cali and Rackoff, is of fundamental importance to modern
cryptography. In a breakthrough work from 2001, Barak
(FOCS’01) introduced a novel non-black-box simulation tech-
nique. This technique enabled the construction of new cryp-
tographic primitives, such as resettably-sound zero-knowledge
arguments, that cannot be proven secure using just black-
box simulation techniques. The work of Barak and its follow-
ups, however, all require stronger cryptographic hardness
assumptions than the minimal assumption of one-way func-
tions.

In this work, we show how to perform non-black-box sim-
ulation assuming just the existence of one-way functions.
In particular, we demonstrate the existence of a constant-
round resettably-sound zero-knowledge argument based only
on the existence of one-way functions. Using this technique,
we determine necessary and sufficient assumptions for sev-
eral other notions of resettable security of zero-knowledge
proofs. An additional benefit of our approach is that it
seemingly makes practical implementations of non-black-box
zero-knowledge viable.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Interactive and reactive
computation

∗Pass is supported in part by an Alfred P. Sloan Fellow-
ship, a Microsoft Research Faculty Fellowship, NSF Awards
CNS-1217821 and CCF-1214844, NSF CAREER Award
CCF-0746990, AFOSR YIP Award FA9550-10-1-0093, and
DARPA and AFRL under contract FA8750-11-2-0211. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Gov-
ernment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC ’13 Palo Alto, California USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

General Terms
Theory

Keywords
zero-knowledge, non-black-box simulation, one-way functions,
resettable security

1. INTRODUCTION
Zero-knowledge (ZK) interactive protocols [16] are para-

doxical constructs that allow one player (called the Prover)
to convince another player (called the Verifier) of the validity
of a mathematical statement x ∈ L, while providing zero ad-
ditional knowledge to the Verifier. Beyond being fascinating
in their own right, ZK proofs have numerous cryptographic
applications and are one of the most fundamental crypto-
graphic building blocks.

The zero-knowledge property is formalized using the so-
called simulation paradigm: for every malicious verifier V ∗,
we require the existence of a “simulator” S that, given just
the input x, can indistinguishably reproduce the view of V ∗

in an interaction with the honest prover. (We note that the
simulation paradigm extends well beyond the notion of zero-
knowledge, and is a crucial component of modern definitions
of protocol security.) The most typical way of performing
such a simulation is using black-box simulation [15]: here we
exhibit a universal simulator S that, given only black-box
access to any (efficient) V ∗, can reproduce the view of V ∗

in an interaction with the honest prover. Indeed most zero-
knowledge protocols (and more generally protocols for secure
computation) are analyzed using black-box simulators. But
several limitations of black-box simulators are also known;
see e.g. [13, 10, 3, 26].

In a breakthrough result from 2001, Barak [1] demon-
strated a new, powerful non-black-box simulation technique,
and used this technique to construct a constant-round public-
coin zero-knowledge argument; by the result of [13] such pro-
tocols cannot be proved zero-knowledge using just black-box
simulation. In the same year, Barak, Goldwasser, Goldreich
and Lindell [3] demonstrated that this non-black-box simula-
tion technique could be used to acheive a new cryptographic
primitive that cannot be proven secure using black-box sim-
ulation, namely resettably-sound zero-knowledge protocols.
In a resettably-sound zero-knowledge protocol, the sound-
ness property is required to hold even if the malicious prover
is allowed to “reset” and “restart” the verifier. This model is
particularly relevant for cryptographic protocols being ex-
ecuted on embedded devices, such as smart cards. (Since

673

Approved for Public Release; Distribution Unlimited.

these devices have neither a built-in power supply, nor a non-
volatile rewritable memory, they can be “reset” by simply
disconnecting and reconnecting the power supply.) Roughly
speaking, the reason why non-black-simulation is cruicial for
resettably-sound zero-knowledge protocols is that a black-
box simulator has essentially the same “powers” as a ma-
licious resetting prover (i.e., it can only reset and restart
the verifier); from this observation it follows that, unless
L ∈ BPP, a “good” simulator can be as a successful cheating
prover. Since these results, non-black-box simulation tech-
niques have found applications in various other contexts (see
e.g. [2, 24, 25, 11]).

One important limitation of the non-black-box simulation
technique of Barak [1] (also present in its follow-up works) is
that the technique requires stronger assumptions than those
typically needed for constructing zero-knowledge protocols.
In particular, the protocol of Barak (using the refinement in
[2]) relies on the existence of families of collision-resistant
hash functions (CRH), and as a consequence, such hash
functions are needed in the above applications too.1 In con-
trast, for “plain” zero-knowledge (i.e., without, for instance,
resettable soundness) one-way functions are both sufficient
and (essentially) necessary [14, 17, 23], leaving open the fol-
lowing question, which is the focus of this work.

Do one-way functions suffice for performing non-
black-box simulation (for primitives that cannot
be proven secure using black-box simulation tech-
niques)?

A very recent elegant work by Bitansky and Paneth [6] takes
us a step closer to answering this question. They present a
resettably-sound zero-knowledge argument without relying
on hash functions; instead, they rely on the existence of an
oblivious transfer (OT) protocol. Although, the existence of
an OT protocol is seemingly a more “complex” assumption
than the existence of CRHs,2 it is not known whether the
existence of an OT protocol implies the existence of CRH (or
vice versa). More important, to achieve this result, Bitansky
and Paneth devise a quite different method for performing
non-black-box simulation.

1.1 Our Result
In this work, we answer the above question in the affir-

mative. We show that for the case of resettably-sound zero-
knowledge, the existence of one-way functions suffices.

Theorem 1 (Main Theorem). Assume the existence
of one-way function. Then there exists a constant-round
resettably-sound zero-knowledge argument for all of NP.

Interestingly, our protocol is quite close in spirit to Barak’s
original protocol, while dispensing of the need for collision-
resistant hash functions.

By relying on the above main theorem, we establish sev-
eral other results on resettable security: Assuming one-way
functions, all of NP has

1The original protocol of Barak relies on a very slightly
super-polynomially hard collision-resistant hash function;
the need for super-polynomial hardness was removed in [2].
2Most candidate constructions of OT protocols rely on
“structured”, number-theoretic or lattice-based, assump-
tions. Additionally, all these assumptions are known to im-
ply also the existence of collision-resistance hash function
(but the converse is not true).

• a constant-round resettably-witness-indistinguishable
argument of knowledge;

• a Õ(logn)-round resettable-zero-knowledge argument
of knowledge.

(Roughly speaking, in a resettably-witness indistinguishable
(resp., zero-knowledge) argument, the witness indistinguisha-
bility (resp., zero-knowledge) property is required to hold
also in the presence of a resetting verifier.) For the above-
mentioned primitives, previous results required additional
cryptographic assumptions (the existence of collision-resistant
hash-functions or oblivious transfer protocols). We addition-
ally show how to eliminate the need for CRHs in the con-
struction of [11] of a simultaneously resettable zero-knowledge
argument for NP—simultaneous resettability here means that
security (both zero-knowledge and soundness) holds even
with respect to resetting attackers.

We emphasize that for all the above results, the use of
non-black-box techniques are inherent. Our results lead to
improvements also for cases when black-box simulation can
be used: prior to our results, resettable zero-knowledge argu-
ments (without the argument of knowledge property) were
known only based on the existence of CRHs, but these pro-
tocols were actually proven secure using black-box simula-
tion. As mentioned above, we are able to establish even the
stronger notion of a resettable zero-knowledge argument of
knowledge assuming only one-way functions.

1.2 Our Techniques
To explain our techniques, let us start by very briefly re-

calling the idea behind Barak’s constant-round public-coin
protocol; we will then explain how this protocol is used to
get a resettably-sound zero-knowledge protocol. The proto-
col relies on the existence of a family of collision-resistant
hash function h : {0, 1}∗ → {0, 1}n; note that any such fam-
ily of collision-resistant hash functions can be implemented
from a family of collision-resistant hash functions mapping
n-bit string into n/2-bit strings using tree hashing [19].

Roughly speaking, on common input 1n and x ∈ {0, 1}poly(n),
the Prover P and Verifier V , proceed in two stages. In
Stage 1, V starts by selecting a function h from a family of
collision-resistant hash function and sends it to P ; P next
sends a commitment c = Com(0n) of length n, and finally,
V next sends a “challenge” r ∈ {0, 1}2n. In Stage 2, P shows
(using a witness indistinguishable argument of knowledge)
that either x is true, or that c is a commitment to a “hash”
(using h) of a program M (i.e., c = Com(h(M)) such that
M(c) = r.

Roughly speaking, soundness follows from the fact that
even if a malicious prover P ∗ tries to commit to (the hash
of) some program M (instead of committing to 0n), with
high probability, the a string r sent by V will be different
from M(c) (since r is chosen independently of c). To prove
ZK, consider the non-black-box simulator S that commits
to a hash of the code of the malicious verifier V ∗; note that,
by definition, it thus holds that M(c) = r, and the simulator
can use c as a “fake” witness in the final proof. To formal-
ize this approach, the witness indistinguishable argument in
Stage 2 must actually be a witness indistinguishable univer-
sal argument (WIUARG) [20, 2] since the statement that c is
a commitment to a program M of arbitrary polynomial-size,
and that proving M(c) = r within some arbitrary polyno-
mial time, is not in NP. WIUARG are known based on the

674

Approved for Public Release; Distribution Unlimited.

existence of CRH and those protocols are constant-round
public-coin; as a result, the whole protocol is constant-round
and public-coin.

Finally, Barak et al. [3] show that any constant-round
public-coin zero-knowledge argument of knowledge can be
transformed into a resettable-sound zero-knowledge argu-
ment, by simply having the verifier generate its (random)
message by applying a pseudorandom function to the cur-
rent partial transcript.3

Why hash functions are needed Note that hash func-
tions are needed in two locations in Barak’s protocol. First,
since there is no a-priori polynomial upper-bound of the
length of the code of V ∗, we require the simulator to com-
mit to the hash of the code of V ∗ . Secondly, since there is
no a-priori polynomial upper-bound on the running-time of
V ∗, we require the use of universal arguments (and such con-
structions are only known based on the existence of collision-
resistant hash functions).

Using signature schemes instead of CRHs Our main
idea is noticing that digital signature schemes—which can
be constructed based on one-way functions—share many of
the desirable properties of CRHs. In particular, we will show
how to appropriately instantiate (a variant of) Barak’s pro-
tocol using signature schemes instead of using CRHs. Re-
call that“fixed-length” signature schemes, that allow signing
messages of arbitrary polynomial-length (e.g length 2n) us-
ing a length n signature, are known based on just one-way
functions [27]. In fact, based on the same assumption, strong
fixed-length signature schemes are known: in a strong signa-
ture scheme no polynomial time attacker can obtain a new
signature even for messages that it has seen a signature on
[12]. We observe that such signature scheme share a lot of
properties with CRHs. First of all, they are compressing.
More importantly, we observe that by the unforgeability re-
quirement of strong signatures, no attacker can find a sin-
gle valid signature σ for two distinct messages m,m′—that
is, signatures satisfy a collision-resistance property. Addi-
tionally, by using an appropriate analog of tree hashing, a
signature tree could be used to compress arbitrary length
messages into a signature of length n.

So, can we just replace the CRHs in Barak’s protocol with
strong, fixed-length, signature schemes? The problem with
naively implementing this idea is that the collision-resistance
property of strong signature schemes only holds against an
attacker that does not know the secret key. On the other
hand, to generate signatures, knowledge of the secret key
is needed. In our application, the simulator—acting as a
prover—needs to be able to generate signature (in order to
“hash down” the program, and in the universal argument)
but at the same time, we need to ensure collision-resistance
against cheating provers. So if we let the prover generate the
signature keys, simulation is easy, but soundness no longer
holds, whereas if we let the verifier generate the signature
keys and only sends the verification key to the prover, then
soundness holds, but it is no longer clear how to perform
a simulation. We resolve this issue by using a “hybrid ap-
proach”: we let the verifier generate the signature keys, but
gives the prover access to a single signing query. More pre-

3Strictly speaking, Barak’s protocol is not a argument of
knowledge, but rather a “weak” argument of knowledge (see
[2, 3] for more details), but the transformation of [3] applies
also to such protocol.

cisely, in an initial stage of the protocol, the verifier gener-
ates a signature key-pair sk, vk and send only the verification
key vk to the prover. Next, in a “signature slot”, the prover
sends a message m to the verifier, and the verifier computes
and returns a valid signature σ of m (using sk). (We note
that such a signature slot previously used by [18] in a quite
different context, but as we shall see shortly, some of their
techniques will be useful also to us.) Finally, the protocol
proceeds essentially as in Barak’s protocol, but where the
CRH is replaced using the signature scheme. Implement-
ing this is somewhat subtle: First, the statement proved in
the WIUARG in Barak’s protocol considers the hash func-
tion h (e.g., prover needs to prove statements of the type
h(m) = q). In our approach since “hashing” has been re-
placed by “signing”, this would require the honest prover to
prove things related to the secret-key (e.g., Signsk(m) = q),
but the honest prover does not know sk. This issue is easily
resolved by instead of letting the prover show that signatures
used (as “hashes”) verify—i.e., that Vervk(m) = q. Another
issue is that in Barak’s protocol, the honest prover actu-
ally needs to perfom hashes to complete the WIUARG. We
resolve this second issue by relying on an instantiation of
Barak’s protocol due to Pass and Rosen [25], which relies
on a special-purpose WIUARG, in which the honest prover
never needs to perform any hashing.4 Now completeness of
this protocol follows in exactly the same way as in [1, 25].

For soundness, note that since the prover does not get to
see sk, soundness follows in a similar way to Barak’s pro-
tocol. In fact, if the signature scheme used satisfies strong
unforgeability, then the signature trees are collision-resistant
with respect to attackers that get vk and have access to a
signing oracle, and collision-resistance of the signature tree
is the only property needed to prove soundness as in Barak’s
protocol. (Note that we here only require collision-resistance
with respect to attackers that get a single query to a signing
oracle, but the more general result will be useful when we
consider resettable-soundness.)

Let us turn to zero-knowledge. At first sight, it seems that
we still have an issue. The prover just gets a single signature,
but to complete the simulation, the simulator needs an a-
priori unbounded polynomial number of signatures (to e.g.,
“hash down” a program of a-priori unbounded polynomial-
size.5) Note, however, that the simulator can always rewind
the verifier to get as many signatures as it wants and can
thus complete the simulation in a similar way to the one
used in Barak’s protocol. This approach doesn’t quite work:
the malicious verifier V ∗ may not always agree to sign every
message requested by the simulator; we deal with this issue
in the same way as in [18], rather than having the simula-
tor send the messages it wants to be signed in the clear, it
simply sends a commitment to them. To make use of such
a simulator strategy, we appropriately modify the notion of
a signature tree to consist of signatures of commitments to
signatures etc; we refer to this type of a signature tree as a
“sig-com” tree.

So, we now have a zero-knowledge protocol that is based
on one-way functions (and is constant-round). But it is no
longer public-coin!

Nonetheless, let us still apply the PRF transformation of

4In fact, an early version of Barak’s protocol also had this
property.
5Also in the implementation of the WIUARG, an a-priori
unbounded number of “hashes” are needed.

675

Approved for Public Release; Distribution Unlimited.

[3] to the protocol (i.e., we have the verifier generate its
random coins in each round by applying a PRF to the cur-
rent partial transcript). Clearly, the protocol is still zero-
knowledge (since we only modified the verifier strategy). As
it turns out, the resulting protocol is actually also resettably-
sound: note that, except for the signature slot added in the
beginning of the protocol, the protocol still is public-coin,
and the same argument as in [13, 3] can be used to show that
in the public-coin part of the protocol, rewindings do not
“help” a resetting cheating prover. So, in essence, the only
“advantages”a resetting prover gets is that it may rewind the
signature slot, and thus get an arbitrary polynomial number
of signatures on messages of its choice. But, as noted above,
signature trees are collision-resistant even with respect to an
attacker that gets an arbitrary polynomial number of queries
to a signing oracle and thus resettable-soundness follows in
exactly the same way as the (non-resetting) soundness prop-
erty.

Beyond resettably-sound zero-knowledge For the ap-
plications of a) a constant-round resettably witness-indist-

inguishable argument of knowledge, and b) Õ(logn)-round
resettable-zero-knowledge argument of knowledge for NP, we
simply plug in our resettably-sound zero-knowledge argu-
ment of knowledge into the protocols of [8, 3] with some
minor modifications.

To achieve simulateously resettable zero-knowledge, we in-
stead instantiate the protocol of Deng, Goyal and Sahai [11]
with signature trees, in exactly the same way as Barak’s
protocol. Resettable-soundness follows exactly as in [11], re-
lying on the collision-resistance property of signature trees.
Resettable-zero-knowledge is more tricky though: [11] pro-
vides an intricate simulation strategy that combines black-
box simulation, using rewinding, and non-black-box simu-
lation (as in [1]). Roughly speaking, the protocol consists
of polynomially many “rewinding slots” (say 2n2), and for
each session started by the resetting verifier, the simulator
of [11] rewinds a polynomial fraction (say 2n) of them twice.
Their argument shows that for each such slot, the rewinding
“succeeds” with probability close to 1/2 and the slot gets
“solved”; as a consequence, except with negligible probabil-
ity, for each session, there exists some slot that is “solved”
and this suffices for simulating the session. In our instan-
tiation of their protocol, rewinding a slot just once does
not suffice to “solve” the session (and complete the simula-
tion of that session). Rather we need polynomially many,
say g(n) = poly(|V ∗|) where |V ∗| is the size of the verifier
(including its auxiliary input), successful rewindings (in or-
der to rewind the signature slot sufficiently many times to
provide the signature trees). We deal with this issue in a
straight-forward way: we use exactly the same rewinding
strategy as in [11] but instead rewind each slot (that was
being rewound once in [11]) 3g(n) times. It follows using a
slight generalization of the argument in [11] that each slot
that is rewound is successfully solved with probability close
to 1/2, and the rest of the simulation argument continues
in identically the same way as [11]. Additionally, rewind-
ing polynomially many times (as opposed to twice) only in-
creases the running-time by a polynomial factor (the tech-
nical reason for this is that the [11] simulator only performs
a constant-number of recursive rewindings).

A PCP-free construction Just as the construction of
Barak’s protocol, our constructions rely on universal ar-

guments, which in turn rely on Probabilistically Checkable
Proofs (PCPs). Intriguingly, the approach of Bitansky and
Paneth [6] does not rely on PCPs; on the other hand, it re-
lies on some other quite heavy machinery: “unobfuscatable
functions”[4] and general secure two-party computation [14].

As we now sketch, our approach can be instantiated with-
out the use of PCPs, and without introducing any other
machinery. (Indeed, although we have not verified the de-
tails, it would seem that a practical implementation of our
protocol can be given by relying on efficient signatures and
zero-knowledge proofs of committed signatures, as in e.g.,
[7].) Recall that in Barak’s protocol the universal argument
is used to prove a statement of the form c is a commitment
to a hash of a program M such that M(c) = r. Also recall
that (in the [25] variant of [1]) the honest prover never needs
to engage in the universal argument, it is only the simula-
tor that needs to prove the above statement. Rather than
providing a universal argument, we let the simulator prove
M(c) = r in a piecemeal fashion, by making the verifier cer-
tify every step of the computation of M . This strategy is
very similar to one employed in the “impossibility of instan-
tiating random oracles” result of [9]6 (On a high-level, this
type of piecemeal decomposition is also somewhat similar to
what is done in the impossibility result of [4]; as such our
approach brings out the connection between the techniques
from [1] and [6].) More precisely, in the actual protocol, the
verifier generates a key-pair vk′, sk′ for a signature scheme
and sends vk′ to the prover. The prover then provides the
verifier with a commitment c1 to a tree hash7 of a current-
configuration, a commitment c2 to a tree-hash of a next-
configuration, and a witness indistinguishable argument of
knowledge that either a) x ∈ L or b) next-configuration is a
starting configuration or c) performing one step of computa-
tion given current-configuration leads to next-configuration,
and current-configuration has been previously signed. (Note
that since we use tree-hashing, verification of condition b)
and c) can both be done in time polylogarithmic in the
length of the configurations). If the argument of knowl-
edge is accepting, the verifier signs c2. Roughly speaking,
the above “slot” makes it possible for the simulator to get a
signature on (commitments to signature-trees of) s0, where
s0 is the initial configuration of M(σ) (using condition b),
and next by rewinding the verifier sufficiently many times to
get signatures on later configurations st in the computation
of M(σ) (using condition c). Thus, finally, the simulator can
get a signature on sT where sT is the terminating configu-
ration of the computation of M(σ). The simulator can then
use this signature to convince the verifier that M(c) = r
where M is the program committed to in c. A complete
formalization appears in the full version of this paper.

1.3 Subsequent Work
A very recent elegant work by Bitansky and Paneth [5]

(developed subsequently to our results) shows an alternative
approach for obtaining resettably-sound arguments (and re-

6They key difference is that construction of [9] only consid-
ers an honest “non-aborting” verifier, whereas we need to
deal with also malicious “aborting” verifiers. This issue is
analogous to why we rely on “sig-com” trees (consisting of
signatures of commitments to signatures etc.) as opposed
to “plain” signature trees.
7We may also instantiate tree-hashing with signature-trees
to get an implementation based on one-way functions.

676

Approved for Public Release; Distribution Unlimited.

lated primitives) from one-way functions, by first construct-
ing functions that are “approximately” unobfuscatable, and
relying on the connection between resettable-soundness and
unobfuscatable functions from [6].

1.4 Outline
In Section 3 we provide formal definitions of signature

trees, and provide collision-resistance properties of such trees.
To formalize our construction of resettably-sound zero-know-
ledge in a modular way, in Section 4, we first consider an
“oracle-aided” model, in which players have access to a sign-
ing oracle. We first show that the universal argument con-
struction of Barak and Goldreich [2] can be instantiated
using one-way functions in such an oracle-aided model, by
replacing “hashing” with “signing”. We next show how to
instantiate Pass and Rosen’s [25] variant of Barak protocol
in the same way (by relying on the oracle-aided construc-
tion of universal arguments). This leads to a constant-round
oracle-aided public-coin zero-knowledge argument of knowl-
edge, satifying a key property: the honest prover never needs
to access the oracle. We may next apply the transformation
of [3] to this protocol to obtain an oracle-aided resettably-
sound zero-knowledge argument of knowledge satisfying the
same key property (the results of [3] relativize and thus we
can directly apply them also to oracle-aided protocols).

In Section 5, we present a general transformation, trans-
forming any oracle-aided resettably-sound zero-knowledge
argument (of knowledge) satisyfing the above key property,
into a resettably-sound zero-knowledge argument (of knowl-
edge) in the “plain” model (i.e. without any oracle): the
transformation simply consists of adding a signature slot
at the beginning of the protocol. Taken together with our
result in Section 4, this yields a constant-round resettably-
sound zero-knowledge argument of knowledge for NP based
on one-way functions.

Applications (such as simultanously resettable zero-know-
ledge) are presented in the full version of the paper.

2. DEFINITIONS
We assume familiarity with interactive arguments, argu-

ments of knowledge and witness indistinguishability; see the
full version for more details.

We start by recalling the definition of zero knowledge
from [16].

Definition 1 (Zero-knowledge [16]). An interactive
protocol (P, V) for language L is zero-knowledge if for every
PPT adversarial verifier V ∗, there exists a PPT simulator
S such that the following ensembles are computationally in-
distinguishable over x ∈ L:

{ViewV ∗ 〈P, V ∗(z)〉 (x)}x∈L,z∈{0,1}∗ ≈ {S(x, z)}x∈L,z∈{0,1}∗

Let us recall the definition of resettable soundness due to [3].

Definition 2 (Resettably-sound Arguments [3]).
A resetting attack of a cheating prover P ∗ on a resettable
verifier V is defined by the following two-step random pro-
cess, indexed by a security parameter n.

1. Uniformly select and fix t = poly(n) random-tapes, de-
noted r1, . . . , rt, for V , resulting in deterministic strate-

gies V (j)(x) = Vx,rj defined by Vx,rj (α) = V (x, rj , α),8

where x ∈ {0, 1}n and j ∈ [t]. Each V (j)(x) is called
an incarnation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-

many interactions with the V (j)(x)’s. The activity of
P ∗ proceeds in rounds. In each round P ∗ chooses x ∈
{0, 1}n and j ∈ [t], thus defining V (j)(x), and conducts
a complete session with it.

Let (P, V) be an interactive argument for a language L.
We say that (P, V) is a resettably-sound argument for L if
the following condition holds:

• Resettable-soundness: For every polynomial-size reset-
ting attack, the probability that in some session the
corresponding V (j)(x) has accepted and x /∈ L is neg-
ligible.

We will also consider a slight weakening of the notion of
resettable soundness, where the statement to be proven is
fixed, and the verifier uses a single random tape (that is,
the prover cannot start many independent instances of the
verifier).

Definition 3 (Fixed-input r.s. Arguments [?]). An
interactive argument (P, V) for a NP language L with wit-
ness relation RL is fixed-input resettably-sound if it satisfies
the following property: For all non-uniform polynomial-time
adversarial prover P ∗, there exists a negligible function µ(·)
such that for every all x /∈ L,

Pr[R← {0, 1}∞; (P ∗VR(x,pp), VR)(x) = 1] ≤ µ(|x|)
As the following claim (which essentially follows from tech-

niques in [3]) shows, any zero-knowledge argument of knowl-
edge satisfying the weaker notion can be transformed into
one that satisfies the stronger one, while preserving zero-
knowledge (or any other secrecy property against malicious
verifiers).

Claim 2. Let (P, V) be a fixed-input resettably sound zero-
knowledge (resp. witness indistinguishable) argument of knowl-
edge for a language L ∈ NP . Then there exists a pro-
tocol (P ′, V ′) that is a (full-fledged) resettably-sound zero-
knowledge (resp. witness indistinguishable) argument of knowl-
edge for L.

The proof is found in the full version.

3. SIGNATURE TREES
In this section, we define an analogue of Merkle-hash trees

using signature schemes. Towards this, we will rely on the
existence of strong, fixed-length, deterministic secure signa-
ture schemes. Recall that in a strong signature scheme, no
polynomial-time attacker having oracle access to a signing
oracle can produce a valid message-signature pair, unless it
has received this pair from the signing oracle. The signature
scheme being fixed-length means that signatures of arbitrary
(polynomial-length) messages are of some fixed polynomial
length. Deterministic signatures do not use any randomness
in the signing process once the signing key has been chosen.
In particular, once a signing key has been chosen, a message
m will always be signed in the same way.
8Here, V (x, r, α) denotes the message sent by the strat-
egy V on common input x, random-tape r, after seeing the
message-sequence α.

677

Approved for Public Release; Distribution Unlimited.

Definition 4 (Strong Signatures). A strong, length-
`, signature scheme SIG is a triple (Gen,Sign,Ver) of PPT
algorithms, such that

1. for all n ∈ N,m ∈ {0, 1}∗,
Pr[(sk, vk)← Gen(1n), σ ← Signsk(m);

Vervk(m,σ) = 1 ∧ |σ| ≤ `(n)] = 1

2. for every non-uniform PPT adversary A, there exists
a negligible function µ(·) such that

Pr[(sk, vk)← Gen(1n), (m,σ)← ASignsk(·)(1n);

Vervk(m,σ) = 1 ∧ (m,σ) /∈ L] ≤ µ(n),

where L denotes the list of query-answer pair of A’s
query to its oracle.

Strong, length-`, deterministic signature schemes with `(n) =
n are known based on the existence of OWFs; see [22, 27, 12]
for further details. In the rest of this paper, whenever we re-
fer to signature schemes, we always means strong, length-n
deterministic signature schemes.

Let us first note that strong signatures satisfy a “collision-
resistance” property.

Claim 3. Let SIG = (Gen, Sign,Ver) be a strong (length-
n) signature scheme. Then, for all non-uniform PPT ad-
versaries A, there exists a negligible function µ(·) such that
for every n ∈ N,

Pr[(sk, vk)← Gen(1n), (m1,m2, σ)← ASignsk(·)(1n, vk);

Vervk(m1, σ) = Vervk(m2, σ) = 1] ≤ µ(n)

Proof. Assume for contradiction that there exists some
non-uniform polynomial-timeA such thatA breaks“collision-
resistance”property of SIG with probability 1

p(n)
for infinitely

many n ∈ N, where p is a polynomial. We show that A
can be used to break the strong unforgeability property of
SIG. More precisely, note that if A outputs a valid signa-
tures (m1, σ), (m2, σ) without querying querying the sign-
ing oracle with m1 and m2 and receiving σ as a response
to both queries, then A already breaks the security of the
signature scheme. Thus w.l.o.g. we may assume A queries
both m1 and m2 to the signing oracle and receives σ as a
response. We then simulate A, recording the previous mes-
sages queried to the oracle along with the responses. At each
point during the execution of A, before forwarding the next
query m to the oracle, we test if any of the previously re-
ceived signatures are valid signatures for m. If so, we output
m together with such a signature σ. Notice that if A always
queries m1 and m2 and receives σ as a response, then we will
intercept whichever of the two A queries second. Thus, for
infinitely many n, with probability ≥ 1

p(n)
, we forge a sig-

nature σ for some m before ever querying the signing oracle
and receiving σ as a response.

We now define an analog of Merkle-hash tree which we call
signature trees and show that they also satisify a collision-
resistant property. We index each node of a complete binary
tree Γ of depth d by a binary string of length at most d,
where the root is indexed by the empty string λ, and each
node indexed by γ has left and right children indexed γ0
and γ1, respectively.

Definition 5 (Signature Trees). Let SIG = (Gen,
Sign,Ver) be a strong, length-n signature scheme. Let (sk, vk)
be a key-pair of SIG, and s be a string of length 2d. A signa-
ture tree of the string s w.r.t. (sk, vk) is a complete binary
tree of depth d, defined as follows.

• A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at
position γ in s.

• An internal node lγ indexed by γ ∈ ⋃d−1
i=0 {0, 1}i satis-

fies that Vervk((lγ0, lγ1), lγ) = 1.

Note that to verify whether a Γ is a valid signature-tree
of a string s w.r.t. the signature scheme SIG and the key-
pair (sk, vk) knowledge of the secret key sk is not needed.
However, to create a signature-tree for a string s, the secret
key sk is needed.

The following notion of a signature path is the natural
analog of an authentication path in a Merkle-tree.

Definition 6 (Signature Path). A signature path

w.r.t. SIG,vk and the root lλ for the bit b at leaf γ ∈ {0, 1}d
is a vector ~ρ = ((l0, l1), ((lγ≤10, lγ≤11), . . . (lγ≤d−10, lγ≤d−10))
such that for every i ∈ {0, . . . , d−1}, Vervk((lγ≤i0, lγ≤i1), lγ≤i

)

= 1. Let PATHSIG(~ρ, b, γ, lλ, vk) = 1 if ρ is a signature path
w.r.t. SIG, vk, lλ for b at γ.

The following claim states that signature trees also satisfy
an appropriate collision-resistance property: no non-uniform
PPT attacker having oracle access to a signing oracle can
output a root and valid signature paths for both 0 and 1 at
some leaf γ.

Claim 4. Let SIG = (Gen, Sign,Ver) be a strong, length-
n, signature scheme. Then, for every non-uniform PPT ad-
versary A, there exists a negligible function µ such that:

Pr[(sk, vk)← Gen(1n), (~ρ0, ~ρ1, γ, lλ)← ASignsk(·)(1n, vk);

∀b ∈ {0, 1} PATHSIG(~ρb, b, γ, lλ, vk) = 1] ≤ µ(n)

Proof. The claim directly follows from Claim 3 since any
two valid signature-paths with the same root but different
leaf value must contain a collision for the underlying signa-
ture scheme.

3.1 Sig-Com Schemes
For the technical reason explained in the introduction, we

will rely on variant of signature trees consisting of alter-
nating signatures and commitments. To formalize this, we
consider the notion of a “sig-com” scheme:

Definition 7 (Sig-Com Schemes). Let SIG = (Gen,
Sign, Ver) be a strong, length-n, signature scheme, and let
Com be a non-interactive commitment schemes. Define SIG′ =
(Gen′, Sign′,Ver′) to be a triple of PPT machines defined as
follows:

• Gen′ = Gen.

• Sign′sk(m) : compute a commitment c = Com(m; τ) us-
ing a uniformly selected τ , and let σ = Signsk(c); out-
put (σ, τ)

• Ver′vk(m,σ, τ) : Output 1 iff Vervk(Com(m, τ), σ) = 1.

We call SIG′ the Sig-Com Scheme corresponding to SIG and
Com.

678

Approved for Public Release; Distribution Unlimited.

Note that the above definition of a sig-com scheme assumes
that Com is a non-interactive commitment scheme. This is
only for convenience of notation; the above definition, as
well as all subsequent results directly apply also to 2-round
commitment (i.e., families of non-interactive commitment
schemes), as in [21], by simply adding the first message q to
the verfication key of the sig-com scheme.

Sig-com schemes also satisfy a collision-resistant property:

Claim 5 (Collision Resistance of Sig-Coms). Let SIG
= (Gen, Sign,Ver) be a strong, length-n signature scheme,
Com be non-interactive commitment scheme, and let SIG′ =
(Gen′, Sign′,Ver′) be a sig-com scheme corresponding to SIG
and Com. Then, for any non-uniform PPT adversary A,
there exists a negligible function µ such that for all n ∈ N:

Pr[(sk, vk)← Gen(1n), (σ,m1,m2, τ1, τ2)← ASignsk(·)(1n, vk);

m1 6= m2,Ver
′
vk(m1, σ, τ1) = Ver′vk(m2, σ, τ2) = 1] ≤ µ(n)

Proof. Note that by the binding property of Com, no
non-uniform PPT can output a valid commitment c to two
different messages m1 6= m2 except with negligible proba-
bility. Thus, except with negligible probability, a successful
non-uniform PPT attacker must output a signature for two
different commitments c1 6= c2, violating collision-resistance
of SIG (i.e., Claim 3).

Note that in Claim 5, the attacker gets oracle access to a
signature oracle (for SIG) as opposed to a sig-com oracle.

We may now define sig-com trees and sig-com path in an
analogous way to (plain) signature trees and paths.

Definition 8 (Sig-Com Trees). Let SIG = (Gen, Sign,
Ver) be a strong, length-n signature scheme, let Com be a
non-interactive commitment and let SIG′ = (Gen′, Sign′,Ver′)
be the sig-com scheme corresponding to SIG and Com. Let
(sk, vk) be a key-pair of SIG′, and s be a string of length 2d.
A signature tree of the string s w.r.t. (sk, vk) is a complete
binary tree of depth d, defined as follows.

• A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at
position γ in s.

• An internal node lγ indexed by γ ∈ ⋃d−1
i=0 {0, 1}i satis-

fies that there exists some τγ such that Ver′vk((lγ0, lγ1),
lγ , τγ) = 1.

Definition 9 (Sig-Com Path). Let SIG′ = (Gen′, Sign′,
Ver′) be a sig-com scheme. A sig-com path w.r.t. SIG′,vk
and the root lλ for the bit b at leaf γ ∈ {0, 1}d is a vector ~ρ =
((l0, l1, τλ), ((lγ≤10, lγ≤11, τγ≤1

), . . . , (lγ≤d−10, lγ≤d−10, τγ≤d−1
)

such that for every i ∈ {0, . . . , d − 1}, Ver′vk((lγ≤i0, lγ≤i1,

lγ≤i
, τγ≤i

)) = 1. Let PATHSIG′(~ρ, b, γ, lλ, vk) = 1 if ~ρ is a

signature path w.r.t. SIG′, vk, lλ for b at γ.

Sig-com trees also satisfy a collision-resistance property:

Claim 6. Let SIG = (Gen, Sign, Ver) be a strong, length-n
signature scheme, let Com be a non-interactive commitment
and let SIG′ = (Gen′, Sign′,Ver′) be the sig-com scheme cor-
responding to SIG and Com. Then, for every non-uniform
PPT adversary A, there exists a negligible function µ such
that:

Pr[(sk, vk)← Gen(1n), (~ρ0, ~ρ1, γ, lλ)← ASignsk(·)(1n, vk);

∀b ∈ {0, 1} PATHSIG′(~ρb, b, γ, lλ, vk) = 1 ≤ µ(n)

Proof. As in Claim 4, the claim follows directly from
Claim 5 since any two valid sig-com paths with the same
root but different leaf values must contain a collision for the
underlying sig-com scheme.

Canonical Sig-com Schemes Throughout the rest of the
paper, we consider sig-com schemes SIG′ and sig-com trees
corresponding to a strong, length-n deterministic signature
scheme SIG and a non-interactive commitment Com that
generates n2 bits long commitments to 2n bits strings. Thus,
each node of the sig-com tree is an n-bit signature of an n2

bits commitment of the two signatures of the children nodes.
Hereafter, we refer to such a SIG′ as a canonical sig-com
scheme.

4. ORACLE-AIDED RS-ZK
In this section we show how to construct a resettably-

sound ZK argument in an oracle-aided model where prover
and verifier additionally have access to a public parameter
generated prior to the interaction (in our protocol, this will
be the verification key for a signature scheme), and, further
the prover has access to an oracle, also generated prior to the
interaction (in our protocol, this will be a signature/sig-com
oracle).

More formally, let O be a probabilistic algorithm that on
input a security parameter n, outputs a polynomial-length
(in n) public-parameter pp, as well as the description of
an oracle O. The oracle-aided execution of an interactive
protocol with common input x between a prover P with
auxiliary input y and a verifier V consist of first generating
pp, O ← O(1|x|) and then letting PO(x, y, pp) interact with
V (x, pp).

Definition 10 (Oracle-aided Interactive Arg). A
pair of oracle algorithms (P, V) is an O-oracle aided ar-
gument for a NP language L with witness relation RL if it
satisfies the following properties:

• Completeness: There exists a negligible function µ(·),
such that for all x ∈ L, if w ∈ RL(x),

Pr[pp, O ← O(1|x|); (PO(w), V)(x, pp) = 1] = 1−µ(|x|)

• Soundness: For all non-uniform polynomial-time ad-
versarial prover P ∗, there exists a negligible function
µ(·) such that for every all x /∈ L,

Pr[pp, O ← O(1|x|); (P ∗O, V)(x, pp) = 1] ≤ µ(|x|)

We will also define an O-oracle aided version of arguments
of knowledge, essentially analogously to their canonical def-
initions, except with a setup phase in which pp and O are
generated and made available to the players. The formal
definitions can be found in the full version of this paper.

Towards our goal of constructing of oracle-aided reset-
tably-sound zero-knowledge, we now define and construct
an oracle-aided version of universal arguments.

4.1 Oracle-aided Universal Arguments
Universal arguments (introduced in [2] and closely related

to CS-proofs [20]) are used in order to provide “efficient”
proofs to statements of the form y = (M,x, t), where y is
considered to be a true statement if M is a non-deterministic
machine that accepts x within t steps. The corresponding

679

Approved for Public Release; Distribution Unlimited.

language and witness relation are denoted LU and RU re-
spectively, where the pair ((M,x, t), w) is in RU ifM (viewed
here as a two-input deterministic machine) accepts the pair
(x,w) within t steps. Notice that every language in NP is
linear time reducible to LU . Thus, a proof system for LU al-
lows us to handle all NP-statements. In fact, a proof system
for LU enables us to handle languages that are presumably
“beyond”NP, as the language LU is NE-complete (hence the
name universal arguments).9

Definition 11 (Oracle-aided Universal argument).
An oracle-aided protocol (P, V) is called an O-oracle-aided
universal argument system if it satisfies the following prop-
erties:

• Efficient verification: There exists a polynomial p such
that for any y = (M,x, t), and for any pp, O gener-
ated by O, the total time spent by the (probabilistic)
verifier strategy V , on common input y, pp, is at most
p(|y|+ |pp|). In particular, all messages exchanged in
the protocol have length smaller than p(|y|+ |pp|).

• Completeness by a relatively efficient oracle-aided prover:
For every (y = (M,x, t), w) in RU ,

Pr[pp, O ← O(1|y|); (PO(w), V)(y, pp) = 1] = 1.

Furthermore, there exists a polynomial q such that the
total time spent by PO(w), on common input y =
(M,x, t), pp, is at most q(TM (x,w)+|pp|) ≤ q(t+|pp|),
where TM (x,w) denotes the running time of M on in-
put (x,w).

• Weak proof of knowledge for adaptively chosen state-
ments: For every polynomial p there exists a poly-
nomial p′ and a probabilistic polynomial-time oracle
machine E such that the following holds: for every
non-uniform polynomial-time oracle algorithm P ∗, if
Pr[pp, O ← O(1n);R← {0, 1}∞; y ← P ∗OR (pp) :
(P ∗OR (pp), V (y, pp)) = 1] > 1/p(n) then

Pr[pp, O ← O(1n);R, r ← {0, 1}∞; y ← P ∗OR (pp) :

∃w = w1, . . . wt ∈ RU (y) s.t. ∀i ∈ [t],

E
P∗OR
r (pp, y, i) = wi] >

1

p′(n)

where RU (y)
def
= {w : (y, w) ∈ RU}.

Note that our proof of knowledge condition is somewhat dif-
ferent from the one used in [2] in that we allow the (cheating)
prover to adaptively choose the statement to be proved, af-
ter having seen the public parameter, and having interacted
with its oracle.

Nevertheless, as we shall see, the construction of [2] and
their analysis will be useful to us. Recall that in the con-
struction of [2] tree hashing is used to hash down a “long”
PCP proof into a fixed-length “tree root”; the soundness
property relies on collision resistant of this tree hashing. Let
SIG′ be a canonical sig-com scheme with SIG = (Gen, Sign,
Ver) and Com being its underlying signature scheme and
commitment scheme. We observe that if we replace the use
of tree hashing in [2] scheme with a sig-com tree using SIG′,
then the resulting protocol is an OSIG-aided universal argu-
ment for the following signature oracle OSIG.
9Furthermore, every language in NEXP is polynomial-time
(but not linear-time) reducible to LU

Definition 12 (Signature Oracle). A signature or-
acle OSIG is defined as follows: On input a security pa-
rameter n, OSIG(1n) generates (vk, sk) ← Gen(1n) and lets

pp = vk and O(m) = Signsk(m) for every m ∈ {0, 1}poly(n).

In fact, the universal argument has an even stronger com-
pleteness property that will be useful for us: completeness
hold even if the prover only gets access to a sig-com oracle
(instead of a signature oracle), and even if this is an ar-
bitrary (not necessarily using the honest sign and commit
algorithms) sig-com oracle, as long as the oracle outputs
valid sig-com’s (for messages of a certain fixed length) with
overwhelming probability. More formally,

Definition 13 (Valid Sig-com Oracle). An oracle O′
is a valid (SIG′, `) oracle if there is a negligible µ(·) such
that for every n ∈ N , the following holds with probability

1 − µ(n) over pp, O ← O′(1n): for every m ∈ {0, 1}`(n),
O(m) returns (σ, τ) such that Ver′vk(m,σ, τ) = 1 with proba-
bility at least 1− µ(n).

We note that oracles that use arbitrarily biased random-
ness for commitment are also considered valid sig-com or-
acles. (These are precisely the kind of oracles we will be
forced to use later on).

Definition 14. An OSIG-aided universal argument (P, V)
has (SIG′, `)-completeness if there exists a prover P ′ such
that the completeness condition holds for (P ′, V) when the
oracle OSIG is replaced by any valid (SIG′, `) oracle O′.

We now have the following theorem.

Theorem 7. Let SIG′ be a canonical sig-com scheme with
SIG and Com being its underlying signature scheme and com-
mitment scheme. Then there exists a polynomial ` and a
(SIG′, `)-complete OSIG-aided universal argument Π.

The proof of the theorem identically follows that of Barak
and Goldreich [2], with a minor modification to deal with
adaptively chosen statements. The proof is found in the full
version.

4.2 Oracle-aided Zero-Knowledge Protocols
We now turn to constructing oracle-aided resettably-sound

zero-knowledge protocols. We start by defining a strong no-
tion of an O-oracle-aided version of ZK. First of all, we re-
strict to protocols where the honest prover does not accesses
the oracle. Secondly, we require that simulation can be per-
formed given oracle access to any valid SIG′ oracle. These
two restrictions will be important when we later instantiate
the oracle-aided protocol in the plain model.

Definition 15 (Oracle-aided Zero-Knowledge). A
pair of algorithms (P, V) is (SIG′, `)-oracle aided zero-
knowledge for a NP language L with witness relation RL
if for every non-uniform adversarial verifier V ∗, there exists
a simulator S, such that for every valid (SIG′, `) oracle O′,
the following ensembles are indistinguishable over x ∈ L,

{pp, O ← O′(1|x|);ViewV ∗(P (w), V ∗(z))(x, pp)}x,w,z
≈ {pp, O ← O′(1|x|);SO(x, z, pp)}x,w,z

where the ensembles are over x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗.

680

Approved for Public Release; Distribution Unlimited.

We now turn to the question of constructing a protocol that
satisfies the above requirements. Note that, as a first at-
tempt, we could try constructing a constant-round public-
coin ZK protocol by replacing the tree hashing in Barak’s
protocol [1] with sig-com trees, and then apply the PRF
transformation of [3] to achieve resettable soundness. While
this indeed could be used to get a resettably-sound ZK pro-
tocol in the oracle-aided model, the resulting protocol would
require the honest prover to make polynomially many queries
to the oracle (to complete the WIUARG). To get around
this, we instead rely on a variant of Barak’s protocol used
in Pass and Rosen [25], which provides a “special-purpose”
implementation of the WIUARG used in Barak’s protocol
in which the honest prover does not need to perform any
“hashing”.10

More precisely, our protocol proceeds as follows. In Stage
1, POZK sends a commitment c = Com(0n), and then VZK

sends back a challenge r ∈ {0, 1}2n as in Barak’s protocol.
In Stage 2, POZK and VZK first execute an “encrypted” univer-
sal argument (POUA, VUA) of the statement that “c is a com-
mitment to a sig-com tree root of a program M and there is a
short string y ∈ {0, 1}n such that M(y) = r,” where instead
of sending the message in the clear, the prover sends com-
mitments to the messages. The honest prover simply sends
commitments to 0 (and thus will fail in this encrypted uni-
versal argument). Finally, POZK and VZK execute a witness-
indistinguishable argument of knowledge of the statement
that “x ∈ L OR VUA accepts in the encrypted universal ar-
gument”.

A formal description of the protocol can be found in Fig. 1
and Fig. 2. Note that, in this construction, the honest prover
POZK can convince the verifier by proving x ∈ L in the final
witness indistinguishable argument without making any or-
acle queries.

Theorem 8. Let SIG′ be a canonical sig-com scheme with
SIG and Com being its underlying signature scheme and com-
mitment scheme. Then there exists an OSIG-oracle aided ar-
gument of knowledge (P, V) for NP; additionally,

1. (P, V) is constant-round and public-coin;

2. P does not make any queries to its oracle;

3. (P, V) is (SIG′, `)-oracle-aided zero-knowledge for some
polynomial `.

The proof of Theorem 8 is found in the full version. The
proof closely follows [1, 25] but the proof of the “argument
of knowledge” property requires special care to deal with
the fact that a cheating prover may adaptively choose the
statements to be proved in the encrypted universal argument
(after having interacted with its oracle).11

Finally, we apply the PRF transformation of [3] to (POZK, VZK)
to achieve resettable soundness. More precisely, we modify
the public-coin verifier VZK to a“PRF-verifier” ṼZK that sam-
ples a seed s for a PRF fs at beginning and then generates
each verifier message by applying fs to the current tran-
script. The proof in [3] relativizes and as a consequence we
have the following theorem:

10In fact, early versions of Barak’s protocol also relied on
such a special-purpose implementation of WIUARG.

11In [1, 25] these issue does not arise since different, inde-
pendently chosen hash-functions are used in Stage 1 and in
Stage 2.

Common Input: An instance x of a language L ∈ NP with
witness relation RL.

Auxiliary input to P : A witness w such that (x,w) ∈ RL.

Primitives Used: A canonical sig-com scheme SIG′ with SIG
and Com as the underlying signature and commitment
schemes, OSIG defined relative to SIG, and a OSIG-aided
universal argument (PUA, VUA) defined in Sec. 4.1.

Set Up: Run (pp, O) ← OSIG(1n), add pp to common input
for P and V . Further, allow P oracle access to O.

Stage One (Trapdoor):

P1: Send c0 = Com(02n, τ0) to V with uniform τ0

V1: Send r
$←{0, 1}n to P

Stage Two (Encrypted OA-UA):

P2: Send c1 = Com(02n, τ1) for uniformly selected τ1

V3: Send r′, uniformly chosen random tape for
VOA−UA

P3: Send c2 = Com(0k, τ2) for uniformly selected τ2,
where k is the length of POA−UA’s second message.

Stage Three (Main Proof):

P ⇔ V : A WI-AOK 〈PWI, VWI〉 proving the OR of the
following statements:

1. ∃ w ∈ {0, 1}poly(|x|) s.t. (x,w) ∈ RL.

2. ∃ 〈p1, p2, τ1, τ2〉 s.t.
(〈c0, r, c1, c2, r′, pp〉, 〈p1, p2, τ1, τ2〉) ∈ RL2

(defined in Fig. 2).

Figure 1: OSIG-aided ZK argument of knowledge.

Relation 1: Let SIG′ a sig-com scheme, with underlying sig-
nature scheme SIG and commitment scheme Com. Let
ECC be a strong error-correcting code. We say that
〈c0, r, pp〉 ∈ L1 if ∃〈τ0, d, lλ, C, {~ρi}i∈[2d]〉 such that

• c0 = Com((d, lλ), τ0)

• (d, lλ) are the depth and root of a sig-com tree for
C w.r.t. pp

• Each ~ρi is a valid sig-com path for leaf i of this sig-

com tree. That is, PATHSIG′ (~ρi, Ci, i, lλ, pp) = 1
for each i.

• C = ECC(Π) for some circuit Π

• Π(c0) = r.

We let RL1 be the witness relation corresponding to L1.

Relation 2: Let L1 be described as above, with respect to
schemes SIG′ and ECC. Let (PUA, VUA) be the OSIG-
aided universal argument constructed in Sec. 4.1. We
say that 〈c0, r, c1, c2, r′, pp〉 ∈ L2 if ∃〈p1, p2, τ1, τ2〉
such that

• c1 = Com(p1, τ1), c2 = Com(p2, τ2)

• (p1, r′, p2) constitutes an accepting (PUA, VUA)
transcript for 〈c0, r〉 ∈ L1.

We let RL2 be the witness relation corresponding to L2.

Figure 2: Relations used in OSIG-aided ZK protocol.

681

Approved for Public Release; Distribution Unlimited.

Theorem 9. Let SIG′ be a canonical sig-com scheme with
SIG and Com being its underlying signature scheme and com-
mitment scheme. Then there exists an OSIG-aided constant-
round resettably-sound argument of knowledge (P, V) for NP;
additionally,

1. P does not make any queries to its oracle;

2. (P, V) is (SIG′, `)-oracle-aided zero-knowledge for some
polynomial `.

5. RS-ZK IN THE PLAIN MODEL
Let SIG′ be a canonical sig-com scheme with SIG and

Com being its underlying signature scheme and commitment
scheme. Let (P, V) be a OSIG-aided resettably sound argu-
ment of knowledge for the language L with witness rela-
tion RL, where P does not make any queries to its oracle.
Consider the protocol (P̃ , Ṽ) that on common input x, and
auxiliary prover input w proceeds as follows.

1. Init: Ṽ runs (sk, vk)← Gen(1n) and sends vk to P̃ .

2. Signing Slot:

• P̃ generates c = Com(02n; τ), where τ is uni-

formly sampled, and sends c to Ṽ .

• Ṽ replies with σ = Signsk(c).

• P̃ aborts if σ is not a valid signature of c.

3. Body: Invoke (P (w), V)(x, pp) with pp = vk.

Lemma 10. If (P, V) is (SIG′, 2n)-oracle-aided zero-know-

ledge for L with witness relation RL, then (P̃ , Ṽ) is a single-
instance resettably-sound zero-knowledge argument of knowl-
edge for L with witness relation RL.

Note that here we only obtain a single-instance resettably
sound argument of knowledge (defined in Defn. 3), but this
can be transformed into a ”full-fledged”resettably sound one
by using the transformation in Claim 2, which thus estab-
lishes our main Theorem 1. The proof of Lemma 10 is found
in the full version. We provide a very brief sketch below.

Proof. (sketch) Completeness of (P̃ , Ṽ) follows directly
from the completeness of (P, V) since by assumption, P
never makes any oracle queries. Resettable-soundness and
the argument of knowledge property, roughly speaking, fol-
low by emulating all signature slot messages using the oracle;
note that we here rely on the fact that the signature scheme
is deterministic to ensure that “rewindings” of the signature
slot can be emulated as oracle queries. The zero-knowledge
simulator proceeds by first honestly emulating the signature
slot for the malicious verifier V ∗, and if V ∗ provides an ac-
cepting signature, we next run the oracle-aided simulator,
and appropriately rewinding the malicious verifier during
the signature slot to appropriately implement some valid
sig-com oracle. The verifier may not always answer, but we
can “keep rewinding” him, sending fresh commitments until
he does. Roughly speaking, the key point is that if V ∗ did
provide a valid signature during the first pass, then in expec-
tation, by the hiding property of the commitment scheme,
we only need a polynomial number of rewindings. This “al-
most” works: just as in [13], we need to take special care to
deal with verifier’s that only provide valid signatures with
very small probability.

Acknowledgements
We are very grateful to Ran Canetti for pointing out the
connection to [9].

6. REFERENCES
[1] B. Barak. How to go beyond the black-box simulation barrier.

In FOCS ’01, pages 106–115, 2001.

[2] B. Barak and O. Goldreich. Universal arguments and their
applications. In Computational Complexity, pages 162–171,
2002.

[3] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell.
Resettably-sound zero-knowledge and its applications. In
FOCS’02, pages 116–125, 2001.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. P. Vadhan, and K. Yang. On the (im)possibility of
obfuscating programs. J. ACM, 59(2):6, 2012.

[5] N. Bitansky and O. Paneth. On the impossibility of
approximate obfuscation and applications to resettable
cryptography. In STOC, 2011.

[6] N. Bitansky and O. Paneth. From the impossibility of
obfuscation to a new non-black-box simulation technique. In
FOCS, 2012.

[7] J. Camenisch and A. Lysyanskaya. An efficient system for
non-transferable anonymous credentials with optional
anonymity revocation. Advances in
CryptologyâĂŤEUROCRYPT 2001, pages 93–118, 2001.

[8] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali.
Resettable zero-knowledge (extended abstract). In STOC ’00,
pages 235–244, 2000.

[9] R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle
methodology as applied to length-restricted signature schemes.
In TCC, pages 40–57, 2004.

[10] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-box
concurrent zero-knowledge requires ω̃(log n) rounds. In STOC
’01, pages 570–579, 2001.

[11] Y. Deng, V. Goyal, and A. Sahai. Resolving the simultaneous
resettability conjecture and a new non-black-box simulation
strategy. In Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on, pages 251–260.
IEEE, 2009.

[12] O. Goldreich. Foundations of Cryptography — Basic Tools.
Cambridge University Press, 2001.

[13] O. Goldreich and A. Kahan. How to construct constant-round
zero-knowledge proof systems for NP. Journal of Cryptology,
9(3):167–190, 1996.

[14] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity for all languages in NP have
zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[15] O. Goldreich and Y. Oren. Definitions and properties of
zero-knowledge proof systems. Journal of Cryptology, 7:1–32,
1994.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on
Computing, 18(1):186–208, 1989.

[17] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A
pseudorandom generator from any one-way function. SIAM
Journal on Computing, 28:12–24, 1999.

[18] H. Lin and R. Pass. Constant-round non-malleable
commitments from any one-way function. In STOC, pages
705–714, 2011.

[19] R. Merkle. Digital signature system and method based on a
conventional encryption function, Nov. 14 1989. US Patent
4,881,264.

[20] S. Micali. Computationally sound proofs. SIAM Journal on
Computing, 30(4):1253–1298, 2000.

[21] M. Naor. Bit commitment using pseudorandomness. Journal of
Cryptology, 4(2):151–158, 1991.

[22] M. Naor and M. Yung. Universal one-way hash functions and
their cryptographic applications. In STOC ’89, pages 33–43,
1989.

[23] R. Ostrovsky and A. Wigderson. One-way functions are
essential for non-trivial zero-knowledge. In Theory and
Computing Systems, 1993, pages 3–17, 1993.

[24] R. Pass. Bounded-concurrent secure multi-party computation
with a dishonest majority. In STOC ’04, pages 232–241, 2004.

[25] R. Pass and A. Rosen. New and improved constructions of
non-malleable cryptographic protocols. In STOC ’05, pages
533–542, 2005.

682

Approved for Public Release; Distribution Unlimited.

[26] R. Pass, W.-L. D. Tseng, and M. Venkitasubramaniam.
Concurrent zero knowledge: Simplifications and generalizations.
Manuscript, 2008. http://hdl.handle.net/1813/10772.

[27] J. Rompel. One-way functions are necessary and sufficient for
secure signatures, 1990.

683

Approved for Public Release; Distribution Unlimited.

Fast Two-Party Secure Computation with
Minimal Assumptions∗

ABSTRACT
Almost all existing protocols for secure two-party computa-
tion require a specific hardness assumption such as decisional
Deffie-Hellman, discrete logarithm, or a random oracle even
after assuming oracle access to the oblivious transfer func-
tionality for their correctness and/or efficiency. We propose
and implement a Yao-based protocol that is secure against
malicious adversaries and enjoys the following benefits:

1. it requires the minimal hardness assumption, i.e., OTs;

2. it uses 10 rounds of communication plus OT rounds;

3. it has the optimal overhead complexity (for an approach
that uses the circuit-level cut-and-choose technique); and

4. it is embarrassingly parallelizable in the sense that each
circuit can be processed in a pipelined manner, and all cir-
cuits can be processed in parallel.

To achieve these properties, we solve the three main is-
sues for achieving malicious security in a novel and effi-
cient manner. In particular, we propose an efficient witness-
indistinguishable proof for the generator’s output authentic-
ity ; we suggest the use of an auxiliary circuit that computes
a hash to ensure the generator’s input consistency ; and we
advance the performance of the state-of-the-art approach
defending the selective failure attack.

Not only does our protocol require weaker cryptographic
assumptions, but our implementation of this protocol also
demonstrates a several factor improvement over the best
prior work, which relies on specific number-theoretic as-
sumptions. Thus, we show that performance does not rely
on specific assumptions.

∗This work is supported by Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Lab-
oratory (AFRL) under contract FA8750-11-2-0211. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US gov-
ernment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
the Yao protocol, malicious model, cut-and-choose

1. INTRODUCTION
Secure two-party computation research aims to allow two

parties to collaborate in a way that achieves maximal pri-
vacy of their inputs with simultaneous guarantees of correct-
ness of outputs. The correctness property guarantees that
when both parties follow the protocol honestly, the proto-
col output is indeed the output of the objective function.
The privacy property ensures that during the protocol ex-
ecution, neither party can learn more than that derivable
from her own input and output. A trivial solution is have
both parties hand their private inputs to this third party
who performs the work and later distributes the computa-
tion result. However, the solution that cryptographers desire
achieves the effect of a trusted party without one.

The first generic solution for secure two-party computa-
tion in the honest-but-curious model was proposed by Yao [24].
In this protocol, both parties agree on an objective function
and its boolean circuit format (called the objective circuit)
in advance1. One party (called the generator) constructs a
garbled version of this objective circuit, and the other party
(called the evaluator) then obliviously evaluates this gar-
bled circuit and gets the output. By oblivious evaluation
we mean that the evaluator does not learn any intermediate
value of the computation. This protocol satisfies the two
security properties if both participants follow the protocol
instructions honestly.

This basic protocol must be hardened to handle the sit-
uation in which either party arbitrarily deviates from the
protocol. A simply cheat is for a malicious generator to con-
struct a faulty circuit that breaks the security properties, for
example, one that purposely reveals the evaluator’s private
input. Since the circuit is garbled, the evaluator could not
tell whether the circuit is faulty or not.

The cut-and-choose technique is one of the most efficient
methods that enforce honest circuit garbling [9,13,14,17,21].
At a high level, this technique instructs the generator to
prepare multiple copies of the garbled circuit, each with in-
dependent randomness, and instructs the evaluator then to
randomly pick a fraction of the circuits whose randomness is
later revealed. If any of the chosen circuits (called the check
circuits) is not consistent with the revealed randomness, the
evaluator aborts and the generator is caught cheating; other-

1The equivalence between the objective function and the
objective circuit is out of the scope of this paper.

684

Approved for Public Release; Distribution Unlimited.

wise, the evaluator starts to evaluate the remaining circuits
(called the evaluation circuits) as instructed in the Yao pro-
tocol. Finally, the evaluator takes the majority of the eval-
uation outputs as the final output. As a result, a malicious
generator constructs either too many faulty circuits and gets
caught, or only a few and does not influence the final output
at all.

Besides the threat of faulty circuits, there remain three
other subtle but equally critical security issues that need to
be addressed when dealing with malicious adversaries. The
first two in fact result from the use of multiple garbled cir-
cuits (as instructed by the cut-and-choose technique): two-
output function handling and the generator’s input consis-
tency. The third issue is also known as the selective failure
attack. Prior work in this area that addresses these three
concerns either requires specific hardness assumptions, or
introduces large overheads in communication and computa-
tion.

1.1 Contributions
The main contribution of this work is to construct an op-

timal protocol in the circuit-level cut-and-choose-based cat-
egory that (1) it requires minimal hardness assumptions,
namely, an oblivious transfer (OT) protocol secure in the
presence of malicious adversaries; (2) it introduces little
computational and communicational overhead to solve the
above three problems. In particular, its complexity is lin-
ear (in terms of the security parameter) to the original Yao
protocol’s, which is the best a circuit-level cut-and-choose-
based solution could ever achieve. In other words, we show
that malicious security comes almost for free both in terms
of required hardness assumptions and various protocol per-
formance metrics. Let n denote the input and output size,
k denote the security parameter, σ denote the number of
garbled circuits needed (typically, σ = O(k)). The contri-
butions of this work are as follows:

1. We propose a novel witness-indistinguishable proof to en-
sure the generator’s output authenticity that requires only
standard primitives (any symmetric encryption scheme and
commitment scheme to be precise) and incurs about the
same amount of overhead as garbling and evaluating the gen-
erator’s output gates. In other words, it requires only O(σn)
symmetric cryptographic operations; prior approaches re-
quire O(σ2n) symmetric operations [13, 20] or O(σn) sym-
metric operations plus O(σ) algebraic operations [9].

2. We suggest the use of an auxiliary circuit to achieve the
generator’s input consistency. This auxiliary circuit only
needs to compute the (universal) hash of the generator’s in-
put. By utilizing an XOR-homomorphic hash, we are able
to evaluate the auxiliary circuit almost for free. Our solu-
tion is much more efficient than the prior works which need
O(σ2n) symmetric operations [13,16] or O(σn) algebraic op-
erations [21].

3. Most importantly, the above two techniques allow us to
handle issues of two-output functions and the generator’s in-
put consistency while avoiding algebraic operations entirely.
Lindell and Pinkas’ [13] and Woodruff’s [23] approaches are
the only prior works, to the best of our knowledge, that
do not rely on any number-theoretic assumptions. Never-
theless, our approach works in a more efficient manner as
shown in Table 1.

4. Lindell and Pinkas suggested the use of a k-probe-resistant
matrix (cf. Definition 5) to defend against the selective fail-
ure attack [13]. This solution has little overhead while com-
bining with the free-XOR technique. However, it increases
the number of OTs needed at the same time. While XOR
gates can be computed almost for free, the OTs can not.
While there exist extension techniques for OTs, not all vari-
ants of OTs can be efficiently extended. We therefore design
a probabilistic algorithm based on Reed-Solomon code such
that the number of OTs needed can be as low as 25% of that
in the original Lindell and Pinkas’ solution.

5. We propose an optimization technique that can save com-
munication overhead by up to 60% (when 60% of all the
garbled circuits are check circuits) with the price of a slight
increase of computation overhead. We stress that our tech-
nique compares favorably with the Random Seed Checking
technique [12]. In particular, our approach is compatible
with the pipelining technique [6].

6. Based on an open-source system [12], we experimentally
verify our theories by developing some of the above tech-
niques. The integrated system can process 650,000+ gates
per second on Stampede [22]. This is the fastest maliciously
secure two-party system reported.

1.2 Related Work
While substantial efforts have been spent on converting

the Yao protocol based on the cut-and-choose technique [9,
12–14, 16, 20, 21, 23] into maliciously secure protocols, sev-
eral completely different approaches have been reported.
Jarecki and Shmatikov suggested an approach that needs
only a single copy of the garbled circuit, but this approach
requires expensive zero-knowledge proof of correctness for
every single gate [8] that also rely on specific RSA-based
hardness assumptions. Nielson et al. reported a solution
that uses efficient OTs to generate a pool of authenticated
primitives [19]. With these primitives, both parties are able
to securely evaluate a boolean circuit based on the generic
Goldreich, Micali, and Wigderson protocol [3]. However,
this protocol requires interactive communication for every
AND gate, and therefore the number of rounds of commu-
nication depends on the circuit. While suitable for small
circuits, large complicated circuits will require thousands of
back-and-forth messages. Damg̊ard et al. proposed a solu-
tion that uses somewhat homomorphic encryption to pre-
compute a bunch of triples that are later used to securely
compute an arithmetic circuit [1].

Our approach outperforms other approaches in the cut-
and-choose-based category in terms of the number of sym-
metric or algebraic operations needed, as shown in Table 1.
Note that by “in the cut-and-choose-based category,” we
mean that the number of the garbled circuits needed is lin-
ear to the security parameter. So there is a hidden cost of
O(kC) of symmetric cryptographic operations in all these
approaches, where C is circuit size. More details about Ta-
ble 1 will be given in Section 3.

Our approach is also as competitive as any other in terms
of computation complexity, round complexity, and the com-
putation assumptions needed, as shown in Table 2. While
Jarecki and Shmatikov’s approach requires hundreds of ex-
pensive algebraic operations per gate, ours does not need
any (given oracle access to OTs) [8]. Although Neilson et
al.’s approach favorably compares to our approach in terms

685

Approved for Public Release; Distribution Unlimited.

Gen. Input Consist. Gen. Output Auth. Assumptions
Symm. Op. Alge. Op. Symm. Op. Alge. Op. (besides OT)

[13] O(k2n) O(k2n) Standard (OWF)

[9] O(k2n) O(kn) O(k) Discrete Log.

[14] O(kn) O(kn) not mentioned Decisional Diffie-Hellman

[21] O(kn) O(kn) O(kn) O(kn) Discrete Log.

[12] O(kn) O(kn) O(kn) O(k) Discrete Log.

This Work O(kn) O(kn) Standard (OWF)

Table 1: Complexity of various circuit-level cut-and-choose-based approaches in terms of symmetric (or algebraic) operations.

of computation complexity, ours requires constant communi-
cation rounds while theirs needs rounds linear to the circuit
depth [19]. At last, since Damg̊ard et al.’s approach works
with arithmetic circuits, it is incomparable to our work and
thus omitted in the table [1]

Symm. Op. Alge. Op. Rounds Assumptions

[8] O(C) O(C) O(1) DCR + RSA

[18] O(k
lgC

C) O(k
lgC

C) O(1) Discrete Log

[19] O(k
lgC

C) O(D) Random Oracle

This O(kC) O(1) Standard (OWF)

Table 2: Overall complexity comparison with prior works, where
C is the circuit size and Df is the circuit depth.

We recently noticed an independent work by Mohassel
and Riva that also proposes an optimal Yao-based proto-
col [17]. Their protocol indeed shares the same asymptotic
complexity as ours and also relies on minimal assumptions.
However, our approach favorably compares to theirs for two
reasons:

1. The protocols for ensuring the generator’s output au-
thenticity in both works are essentially the same. Both pro-
tocols capture the idea that the evaluator provides a unique
random key corresponding to each of the generator’s out-
put wires as the proof of authenticity. The only difference
is that for each of the generator’s output wires in each of
the garbled circuits, Mahassel and Riva’s protocol requires
two possible random keys, which correspond to 0 or 1, to be
encrypted and exchanged, whereas our protocol only needs
the one that corresponds to the generator’s output value to
be encrypted and exchanged. In other words, although both
solutions need O(σn) symmetric cryptographic operations,
ours has a smaller constant factor.

2. Their approach for checking Gen’s input consistency uses
a different instance of circuit garbling, in which Gen’s and
Eval’s roles are reversed. In other words, while their so-
lution introduces O(n) instances of OTs, which is arguably
the most expensive component of the Yao protocol, ours in-
troduces only cryptographic symmetric operations.

Paper Organization: We first give background and no-
tations in Section 2. We then show how the three attacks
are handled by cryptographic primitives in Section 3. A de-
tailed description of our main protocol and the argument of
its security is presented in Section 4. The optimization tech-
nique that saves the communication overhead by at much as

60% is reported in Section 5. Finally, experimental results
are reported in Section 6.

2. PRELIMINARIES
Since our solution is based on the Yao protocol, the two

parties are referred to as Gen and Eval for the rest of
this paper. We denote by f(x, y) 7→ (f1(x, y), f2(x, y)) a
two-output objective function, where Gen with input x gets
output f1(x, y) and Eval with input y gets output f2(x, y).
For simplicity, f1(x, y) and f2(x, y) are often noted as f1

and f2, respectively. We use f1 = ⊥ or f2 = ⊥ to indi-
cate that either Gen or Eval gets no output. We denote by
com(x; r) the commitment to message x with randomness r.
The randomness may be omitted for simplicity. We denote
by ence(x) the encryption of message x under encryption
key e and by decd(c) the decryption of ciphertext c under
decryption key d. Additionally, we denote by x||y or some-
times (x, y) the concatenation of x and y, and by [n] the set
{1, 2, . . . , n} for some n ∈ N. We also adopt the notation

that x(j)’s superscript implies that this variable is related to
the j-th garbled circuit.

Furthermore, for the rest of this paper, we denote by k
the security parameter, by σ the number of copies of the
garbled circuit needed (also known as the statistical security
parameter), and by n the size of a participant’s input and
output..

3. MALICIOUS SECURITY
Our protocols achieve security against malicious adver-

saries according to the standard ideal-real paradigm for defin-
ing security. In the full version of this paper, we present the
standard definition of ideal-real security and prove that our
protocols achieve this notion. Since the proof techniques al-
ready highlighted in [13] and [21] suffice for our proof, in
this short abstract, we omit the full proofs and focus on dis-
cussing our important contributions—namely, how we solve
the three security issues faced by the protocol that trans-
forms the Yao protocol into one that is secure in the mali-
cious model via the cut-and-choose technique.

3.1 Two-Output Function Handling
For many real-world applications, both parties want to

learn an output from the secure computation. Since Eval
always learns her output, the challenge is for Gen to learn
hers securely. In particular, a solution needs to achieve
Gen’s output privacy and output authenticity. The former
requires that Eval does not learn Gen’s output, and the
latter requires that Gen gets either an authentic output or

686

Approved for Public Release; Distribution Unlimited.

no output at all, in which case Eval is caught cheating. We
stress that the two-output protocols we consider are not fair,
that is, Eval may learn her own output but refuse to send
Gen’s back—but if so, Eval is caught cheating.

Goldreich suggested the use of an auxiliary circuit that
encrypts Gen’s output and computes the digital signature
of the resulting ciphertext so that a malicious Eval could
neither learn Gen’s output from the ciphertext nor forge
an arbitrary signature [2]. Later, Lindell and Pinkas pro-
posed an approach that uses one-time-pad encryption and
one-time MAC circuits instead, which incurs O(kn) extra
gates per circuit [13]. Kiraz presented a two-party protocol
in which a zero-knowledge proof of size O(σ) is executed at
the end [9]. shelat and Shen reported a signature-based solu-
tion that adds O(n) gates to each circuit, and requires a WI
proof of size O(σ + n) [21] that requires specific complexity
assumptions.

Our approach solves Gen’s output privacy problem with
a one-time-pad encryption circuit, which requires only O(n)
extra XOR-gates per circuit. The novel part of our ap-
proach is that we tackle the output authenticity problem
in a way that needs no algebraic operations at all (hence no
number-theoretic intractability assumption is needed). Our
idea comes from the following three observations.

We first observe that the random keys retrieved from eval-
uating Gen’s output gates can in fact serve as “message au-
thentication codes” sufficient for Eval to prove Gen’s out-
put authenticity. Recall that the Yao protocol ensures that
Eval learns exactly one of the two random keys assigned to
each wire. So the knowledge of the retrieved random key
corresponding to Gen’s output wire is more than enough
for Eval to show the output authenticity. What remains
is how Eval demonstrates this knowledge without revealing
the index of the garbled circuit from which Eval retrieves
the random key. This index has been shown to be exploitable
in breaching Eval’s input privacy [9].

The second observation we have, which is also pointed out
in shelat and Shen’s work [21], is that a WI proof suffices the
purposes here. Let us consider the case in which Gen (plays

as the verifier) has private input U = (u(1), u(2), . . . , u(s))

for some s ∈ N, and Eval (plays as the prover) knows u(m)

for some m ∈ [s]. In the honest-but-curious model, a simple

WI proof of Eval’s knowledge u(m) can be done as follows:

1. Gen picks random nonce r, and sends Eval

(encu(1)(r), encu(2)(r), . . . , encu(s)(r)).

2. Eval receives C = (c(1), c(2), . . . , c(s)) and returns decu(m)(c(m)).

3. Gen receives r′ and accepts if r′ = r, or aborts other-
wise.

This proof is sound because an Eval with no knowledge of
any u(m) ∈ U can only guess r with negligible probability.
However, this proof is not WI in the malicious model. In
fact, a malicious Gen may pick distinct r(j)s and send Eval

(encu(1)(r
(1)), encu(2)(r

(2)), . . . , encu(s)(r
(s)))

so that u(m) can later be deduced by locating r′ in (r(1), r(2), . . . , r(s)).
To force Gen to behave honestly in Step 1, we suggest that

Gen discloses (U, r) after receiving r′ so that Eval could
check if C is constructed correctly. Our third observation is
that this disclosure does not compromise Gen’s input pri-
vacy. Indeed, Eval should have already learned the majority

of U from the circuit evaluation, and r is a random nonce
that has no information about Gen’s input at all. So Gen’s
input is not leaked through (U, r). Moreover, this disclosure
does not compromise the soundness of the protocol since af-
ter Gen receives r′, Eval has already delivered her proof
of authenticity so that learning (U, r) afterwards will not
change the proof retroactively. Nonetheless, we stress that
Gen should not learn r′ before Eval finishes the check, and
nor should Eval be able to change r′ after the check. This
property suggests the use of a commitment scheme. Our
idea is that Eval commits to decu(m)(c(m)) instead of giv-
ing it away in clear. After Gen reveals (U, r), Eval checks
if C is indeed correctly generated. If the check fails, Eval
aborts; otherwise, Eval decommits to r′. Then Gen checks
if r′ = r and responds as in the honest-but-curious protocol.

One more issue is that a malicious Gen could learn Eval’s
private input u(m) with non-negligible probability by faking
her private inputs from the beginning. More specifically,
a malicious Gen could guess u(m) with probability 1/s and

then pretend that her private input is Ū = (ū(1), . . . , ū(m−1), u(m), ū(m+1), . . . , ū(s))

instead of U , where ū(j) is randomly picked. With this at-
tack, a malicious Gen is capable of providing checkable ci-
phertexts C when Eval’s private input is indeed u(m). Be-
sides, the fact that Eval can provide the correct nonce r
confirms that her private input is u(m). A straightforward
way to get around this issue is for the two parties to share
the commitments to Gen’s private inputs in the first place.
By the binding property of the commitment scheme, a ma-
licious Gen cannot change her private inputs at will. The
correctness of these commitments will be guaranteed by the
circuit-level cut-and-choose technique.

The complete description of our Gen’s output authentic-
ity protocol is presented in Figure 1, and the security of this
protocol is stated in Lemma 1.

Common Input: security parameter 1k, statisti-
cal security parameter 1s, Gen’s output bit
b, and commitments to Gen’s private input

{(com(u
(j)
0), com(u

(j)
1))}j∈[s].

Private Input: Gen has {(u(j)
0 , u

(j)
1)}j∈[s] and Eval has

random key v corresponding to Gen’s output wire of
value b in the m-th garbled circuit for some m ∈ [s].

1. Gen picks a random nonce r ∈ {0, 1}k and sends Eval

(enc
u
(1)
b

(r), enc
u
(2)
b

(r), · · · , enc
u
(s)
b

(r)).

2. After receiving C = (c(1), c(2), · · · , c(s)), Eval sends

com(decv(c(m))) back to Gen.

3. After receiving com(r′), Gen decommits to {u(j)
b }j∈[s].

4. Eval checks the decommitted values {u(j)}j∈[s] that

(a)if com(u
(j)
b) is correctly opened to u(j) for all j?

(b)if decu(i) (c(i))
?
= decu(j) (c(j)) for all i, j?

Eval aborts if any of the checks fails; otherwise, she decom-
mits to r′.

5. Gen accepts the proof if com(r′) is correctly opened and
r′ = r; otherwise, she rejects.

Figure 1: A WI proof for Gen’s output authenticity with mali-
cious security (where Eval plays the role of the prover)

687

Approved for Public Release; Distribution Unlimited.

Lemma 1. Let {(com(u
(j)
0), com(u

(j)
1))}j∈[s] and bit b be

common inputs. Suppose Gen has private input {(u(j)
0 , u

(j)
1)}j∈[s],

where u
(j)
0 , u

(j)
1 ∈ {0, 1}k. The protocol presented in Figure 1

satisfies the following properties:

1. (Completeness) If Eval knows u
(j)
b for some j ∈ [s],

Gen always accepts.

2. (Soundness) If Eval does not know any of u
(j)
b s, Gen

rejects with probability at least 1− 2−k.

3. (Witness-indistinguishability) Let us denote by VIEWv

the view of Gen from running the protocol with Eval using

input v. If Eval knows the majority V of (u
(1)
b , u

(2)
b , . . . , u

(s)
b),

then for any v1, v2 ∈ V , {VIEWv1}k∈N and {VIEWv2}k∈N
are computationally indistinguishable.

3.2 Generator’s Input Consistency
In the cut-and-choose technique, multiple copies of the

garbled circuit are constructed and then either checked or
evaluated. It is conceivable that a malicious Gen may pro-
vide inconsistent inputs to different evaluation circuits. Lin-
dell and Pinkas showed that for some functions, it is not
difficult for a malicious Gen to use inconsistent inputs to
extract information of Eval’s input [13]. For instance, sup-
pose both parties agree upon the objective function

f((a1, a2, a3), (b1, b2, b3)) 7→ (a1b1 ⊕ a2b2 ⊕ a3b3,⊥),

where ai and bi is Gen’s and Eval’s i-th input bit, re-
spectively. Instead of providing (a1, a2, a3) consistently, a
malicious Gen may send (1, 0, 0), (0, 1, 0), and (0, 0, 1) to
different evaluation circuits. In the end, Gen learns the ma-
jority bit of Eval’s input, which is the extra information
that Eval did not agree to reveal.

Several approaches have been proposed to defend this at-
tack. Mohassel and Franklin proposed the equality-checker
technique, which requires O(σ2n) commitments to be com-
puted and exchanged [16]. Lindell and Pinkas developed
an approach that also requires O(σ2n) commitments [13].
Later, they realized that O(σ2n) commitments are too much
of the communication overhead, and then further suggested
a pseudo-random synthesizer that relies on efficient zero-
knowledge proofs under specific hardness assumptions and
requires O(σn) algebraic operations [14]. shelat and Shen
proposed the use of malleable claw-free collections, which
also uses O(σn) algebraic operations, but they showed that
the witness-indistinguishability is sufficient [21]. Our ap-
proach gets the best of the both worlds, i.e., it requires only
O(σn) symmetric cryptographic operations.

We suggest to tackle this issue with an auxiliary circuit, in
addition to the objective circuit, that computes a function
of Gen’s input. At a high level, the circuit-level cut-and-
choose technique ensures the correctness of this auxiliary
circuit, and its output is used to ensure Gen’s input consis-
tency. In particular, for this idea to work, we need to endow
the output of this auxiliary circuit with collision-free and
hiding properties. The former ensures that the consistency
of the auxiliary outputs implies the consistency of Gen’s in-
puts, and the latter ensures that the auxiliary outputs do
not reveal any information of Gen’s inputs.

A natural candidate for this auxiliary circuit is a commit-
ment circuit. The binding and hiding properties of a com-
mitment scheme satisfy the two security properties needed

here. This is a conceptually much simpler solution. We,
however, failed to find a commitment circuit that intro-
duces less overhead than the previous state-of-the-art so-
lution does. Fortunately, we figured that a universal hash
circuit is a sufficient and much more efficient alternative.
We next give the definition of universal hash functions, and
then we discuss how we achieve both collision-free and hiding
properties with a universal hash circuit. Finally, we present
an efficient instantiation with proper parameters.

Definition 2 (Universal Hash). A collection of hash
functions H = {h|h : A → B} is called universal if for any
distinct x, y ∈ A, the probability that a uniformly chosen
h ∈ H satisfies that h(x) = h(y) is at most 1/|B|.

3.2.1 Collision-Free Property
This property comes naturally with universal hash func-

tions. Indeed, Definition 2 shows that for any distinct x, y,
if they are fixed before h is uniformly chosen, their hashes
are unlikely to collide. This suggests that the collision-
free property can be achieved by letting Gen commit to
(fix) her inputs before a hash function is jointly (uniformly)
picked. Later, the consistency of Gen’s inputs can be ver-
ified by checking the consistency of the auxiliary outputs
(the hashes). Since both the objective circuit and the aux-
iliary circuit share the same input from Gen, Gen’s input
consistency to the auxiliary circuits implies the same to the
objective circuits. Our protocol is outlined as follows:

1. Gen commits to her inputs x(1), x(2), . . . , x(σ), where x(j)

denotes her input to the j-th garbled circuit.

2. Gen and Eval jointly and uniformly pick h ∈ H.

3. Gen constructs σ copies of the garbled circuit. Each cir-
cuit contains two parts: the objective circuit and the aux-
iliary circuit. While the first part computes the objective
function, the j-th auxiliary circuit uses the input wires of
the objective circuit to compute h(x(j)).

4. Eval asks to check the correctness of a random fraction
of the garbled circuits. If the check fails, Eval aborts; oth-
erwise, Eval asks Gen to decommit to her inputs for the
remaining (unchecked) circuits.

5. Eval first evaluates the remaining auxiliary circuits. If
the evaluation outputs (the hashes) are not consistent, Eval
aborts; otherwise, Eval proceeds to evaluating the remain-
ing objective circuits.

Since the cut-and-choose technique instructs a majority
operation at the end, the final evaluation output will not
be influenced by a few inconsistent inputs introduced by a
malicious Gen. We next argue, at a high level, that with
high probability, this protocol enjoys the desired security
property that Gen’s inputs to the majority of the remaining
circuits are consistent. Indeed, if a malicious Gen is able
to pass the hash consistency check and provide inconsistent
inputs to the majority of the remaining objective circuits,
there are only three possibilities: (1) The (auxiliary) circuits
are faulty: The cut-and-choose technique ensures that with
high probability, this only happens to a minority of the re-
maining circuits. (2) Gen is really lucky to have found a
collision: By Definition 2, this happens with probability at
most 1/|B|, which becomes negligible ifB is properly chosen.

688

Approved for Public Release; Distribution Unlimited.

(3)Gen is able to break the binding property of the commit-
ments: Note that since universal hash functions do not even
provide pre-image resistance, given h and h(x(i)), it can be

easy to find x(j) such that h(x(i)) = h(x(j)) . Thus, if Gen
is able to open the commitment from Step 1 to some value
computed after h is chosen in Step 2, she breaks the desired
security property. However, this would imply that Gen is
able to break the commitment scheme’s binding property.
This happens with negligible probability too.

Remark 3.1. Since the above protocol is not the final ver-
sion of our solution, we only provide the intuitions for now.
A simpler and more elaborate protocol will be given in Fig-
ure 2, but the same outline and security argument will apply.

3.2.2 Hiding Property
A deterministic universal hash h : A → B provides the

collision-free property we need, yet it is insufficient for the
purposes here due to the lack of the hiding property. Indeed,
if the size ofA is small, Eval could exhaustively compute the
hash of all possibilities in A and then deduce x(j) ∈ A from
h(x(j)). As a result, the hash function has to be randomized.
If the hashes are pseudo-random, they reveal little informa-
tion about the input, which is the hiding property we desire.
In particular, the celebrated left-over-hash lemma [7] (LHL
for short, omitted here for space) states that the output
of a uniformly picked universal hash function h is pseudo-
random (even if h is made public) as long as the input has
enough (min-)entropy. As a consequence, all we need to do
is introduce entropy to the input of the auxiliary circuit.
We suggest that objective function f(x, y) 7→ (f1, f2) is con-
verted to g(x||r, y) 7→ (f1, h(x||r)||f2), where r is a proper
randomness picked by Gen at the beginning and h is a uni-
versal hash function uniformly picked after Gen commits to
her new input x||r.

We argue that the introduction of random input r does
provide the hiding property even when h is public. Indeed,
given h(x||r) and h, as long as r is long enough (has enough
entropy), for any x′, there must exist r′ such that h(x||r) =
h(x′||r′). This shows that fixing h(x||r) does not rule out
any possibilities of x.

Efficient Instantiation.
We suggest the use of the matrix universal hash family

Mk,m = {hM | hM (x) = M · x for some M ∈ {0, 1}k×m},
for some m ∈ N. A nice property of this hash family is that
it is ⊕-homomorphic, that is, for any x, y ∈ {0, 1}m and
hM ∈Mk,m, it holds that hM (x⊕y) = hM (x)⊕hM (y). This
homomorphism allows a very efficient instantiation of the
protocol outline presented in Section 3.2.1 with the following
twists:

1. Gen commits not to x(j) directly but to x(j) ⊕ π(j) and
π(j) instead, where π(j) is uniformly picked from {0, 1}m.

2. Gen provides not a garbled circuit that lets Eval com-
pute h(x(j)) obliviously but rather h(π(j)) that Gen com-
putes locally.

3. Let S be the indices of the evaluation circuits.

•For j ∈ [s]\S, Eval checks not the correctness of the

j-th garbled circuit but the correctness of h(π(j)) (by

asking Gen to decommit to π(j) first).

•For j ∈ S, Eval learns h(x(j)) not via evaluating the
j-th garbled circuit but via asking Gen to decommit to
y(j) = x(j)⊕π(j) and then computing h(y(j))⊕h(π(j)).

The main goal of the above twist is to replace the garbled
circuit that computes h(x(j)) with h(π(j)) that is locally
computed while maintaining the main structure of the pro-
tocol, that is, letting Gen commit to her inputs before h
is jointly picked and letting Eval learn the hash of the in-
put to the evaluation circuits. The complete protocol of our
Gen’s input consistency check is presented in Figure 2, and
its security is stated in Lemma 3.

Common Input: security parameter 1k, statistical secu-
rity parameter 1σ , and matrix hash function family
Mk,m for some m ∈ N.

Private Input: Gen has private inputs
χ(1), χ(2), . . . , χ(σ) ∈ {0, 1}m, and Eval has
private input S ⊂ [σ].

1. Gen randomly picks π(1), π(2), . . . , π(σ) ∈ {0, 1}m.

2. For all j ∈ [σ], Gen commits to χ′(j) = χ(j)⊕π(j) and

π(j) by sending com(χ′(j)) and com(π(j)) to Eval.

3. Gen and Eval jointly pick a random h ∈Mk,m.

4. Gen sends h(π(1)), h(π(2)), . . . , h(π(σ)) to Eval.

5. Eval receives h
(1)
π , h

(2)
π , . . . , h

(σ)
π and asks Gen to

open

• com(π(j)) if j ∈ [s]\S. Let π̂(j) be the opened

value. Eval checks if h
(j)
π = h(π̂(j));

• com(χ′(j)) if j ∈ S. Let χ̂′(j) be the opened

value. Eval computes h
(j)
χ = h(χ̂′(j))⊕ h(j)

π .

Eval rejects if any of the commitments fail to open,
any of the checks fails, or for any distinct i, j ∈ S,

h
(i)
χ 6= h

(j)
χ ; otherwise, Eval accepts.

Figure 2: A proof for Gen’s input consistency

Lemma 3 (Gen’s Input Consistency Check). Let k, σ ∈
N be common inputs. Gen has input {χ(1), χ(2), . . . , χ(σ)},
and Eval has input S ⊂ [σ]. If |S| = c · σ for some
1 > c > 0 and Eval accepts the proof presented in Fig-
ure 2, the probability that no χ(j) appears more than |S|/2
times in {χ(j)}j∈S is at most 2−O(k+σ).

Remark 3.2. k in Lemma 3 is the security parameter for
the commitment scheme used in the protocol presented in
Figure 2.

Remark 3.3. We chose to let Eval have a total control
over S, the set of circuits to evaluate. This saves the effort
of jointly picking S, but still guarantees that whatever S that
Eval picks will not compromise Gen’s privacy. Lemma 3
holds as long as S is a constant fraction of [σ]. However,
Eval is motivated to use the optimal c = 2/5 as suggested
by shelat and Shen [21].

Finally, we suggest the parameters for security level 2−k.
By Definition 2, Gen cannot find a collision with probability
better than 1/|B|. So |B| needs to be at least 2k. As to the
size of random input r, the LHL lemma shows that if the

689

Approved for Public Release; Distribution Unlimited.

min-entropy of x||r is at least k + 2k = 3k and the output
hash is k-bits long, then the output is indistinguishable from
a truly random k-bit string with probability at least 1−2−k.
Since we make no assumptions about the input distribution
of x, a simple approach is to uniformly pick r such that
|r| = 3k. We can do better by exploiting specific properties
of Mk,m and reach the same goal with |r| = 2k + lg(k) as
shown in Lemma 4.

Lemma 4. Let Xn denote {0, 1}n for some n ∈ N and
Mk,m be defined as above. For any x ∈ Xn and any t ≥
2k + lg(k), distributions {(h, h(x||r))} and {(h, y)} are sta-
tistically indistinguishable with probability at least 1 − 2−k,
where h, r, and y are uniformly chosen from Mk,n+t, Xt,
and Xk, respectively.

Proof omitted for space.

3.3 Selective Failure Attack
A subtle selective failure attack possible in the presence of

malicious adversaries has been pointed out by Mohassel and
Franklin [16] and independently by Kiraz and Schoenmak-
ers [10]. This attack occurs when a malicious Gen assigns
(K0,K1) to an Eval’s input wire in the garbled circuit while
using (K0,K

∗
1 6= K1) instead in the corresponding OT. Con-

sequently, if Eval’s input is 1, she learns K∗1 , gets stuck
during the evaluation, and so Gen eventually learns that
Eval’s input is 1.

Lindell and Pinkas [13] suggested that Eval picks M ∈
{0, 1}n×m for some m ∈ N and computes her new input
ȳ ∈ {0, 1}m such that M · ȳ = y. An auxiliary circuit will
later convert ȳ back to y to use as input to the original
circuit. The insight is that selective failures allow Gen to
probe some partial information of ȳ. For this approach to
work, the security property needed here is given as follows:

Definition 5. For some m,n, k ∈ N, M ∈ {0, 1}n×m is
called k-probe-resistant if for any non-empty L ⊂ [n], the
Hamming distance of

⊕
i∈LMi is at least k, where Mi is the

i-th row of M .

As long as M is k-probe-resistant, a malicious Gen will have
to successfully probe k bits of ȳ in order to gain any partial
information of y, the probability of which is negligible. [13]
shows that when M is uniformly chosen from {0, 1}n×m
where m = max(4n, 8k), the probability that M fails to be
k-probe-resistant will be negligible. We stress that matrixM
can even be made public so that the auxiliary circuit could
consist of only XOR-gates, which requires no communication
overhead and can be computed efficiently when combining
with the free-XOR trick [11]. In short, not only does this
approach elegantly reduce the selective failure attack prob-
lem to the classic error correcting code construction, it also
has the potential to incur only little overhead.

Our idea to construct a k-probe-resistant matrix is to use
a maximum distance separable code such as Reed-Solomon
codes.2 We will work on the Reed-Solomon code over F2t

for some t ∈ N with codeword size N and message size K.

2We acknowledge that this direction has indeed been men-
tioned in the original work by Lindell and Pinkas: “an ex-
plicit construction can be achieved using any explicit lin-
ear code. [13]” However, we believe an explicit solution that
enjoys the optimal performance—optimal asymptotic com-
plexity with a constant factor of one—is worth-reporting.

By optimizing parameters, we prove the following in the
full version of this paper:

Lemma 6. Suppose K ≥ (lg(n)+n+k)/t. Let P1, P2, . . . , Pn
be distinct, non-zero polynomials with degree at least K − 1
uniformly picked from F2t [x]. The probability that there exist
some i ∈ [n] and some L ⊂ [n]\{i} such that Pi =

∑
j∈L Pj

is at most 2−k.

Finally, we describe and implement an algorithm to find
a k-probe-resistant M with high probability and prove the
correctness of this algorithm as follows:

Theorem 7. With probability at least 1 − 2−k, the al-
gorithm presented in Figure 5 outputs a k-probe-resistant
M ∈ {0, 1}n×m such that m ∈ N and m ≤ lg(n) + n + k +
k ·max(lg(4n), lg(4k)).

Proof omitted.

4. THE MAIN PROTOCOL
Our presentation uses the permuted garbled truth table

technique [15] (also known as the point-and-permute tech-
nique in literature). Briefly, this technique suggests to as-
sign each wire wi an extra random permutation bit πi. The
circuit garbling and evaluating is then slightly modified: for
Gen, each garbled truth table is constructed in the way that
its entries are permuted according to its input wires’ permu-
tation bits; and for Eval, each random key now comes with
a locator that helps Eval identify the right entry in the
garbled truth table while evaluating it.

For each wire, Eval learns exactly one key-locator pair
out of the two assigned to that wire from the circuit evalua-
tion, and the learned locator is in fact the evaluation result
of that wire one-time padded with the permutation bit. This
property ensures that Eval is oblivious to the intermediate
result of the circuit evaluation and allows Eval to learn the
output by revealing the permutation bits assigned to circuit-
output wires.

Common Input: security parameter 1k, statistical secu-
rity parameter 1σ, symmetric cipher (enc, dec) with se-
mantic security, (perfectly-hiding) commitment scheme
com, and objective function f : (x, y) 7→ (f1, f2).

Private Input: Gen has input x and Eval has input y.

Private Output: Gen receives f1 and Eval receives f2.

1. (New Inputs) Gen uniformly picks e ∈ {0, 1}|f1| (as

the one-time pad for f1) and r ∈ {0, 1}2k+lg(k) (as her
random input for computing the universal hash). Eval
samples a k-probe-resistant matrix M and computes ȳ
such that M · ȳ = y. From now on, Gen’s input refers
to x̄ = x||e||r = x̄1x̄2 . . . x̄m1 and Eval’s input refers
to ȳ = ȳ1ȳ2 . . . ȳm2 . Let x̄i and ȳi denote the i-th bit
of x̄ and ȳ, respectively.

Remark 4.1. By definition, k-probe-resistant ma-
trix M has to have full (row) rank. So for any y, there
must exist some ȳ such that M · ȳ = y. Moreover,
given y and M , ȳ can be efficiently computed by Gaus-
sian elimination.

2. (Pick the randomness) For all j ∈ [σ], Gen picks

randomness ρ(j) for the j-th garbled circuit.

690

Approved for Public Release; Distribution Unlimited.

Remark 4.2. Randomness ρ(j) can be considered as
either a pool of truly random bits or a truly random
seed to a pseudo-random number generator. It has in-
ternal states that keep track of used and fresh random
bits, and it always returns fresh random bits when it is
used. We stress that when later requested, Gen needs
to reveal ρ(j)’s initial state so that Eval will be able to
regenerate the random bits that Gen used to construct
the j-th garbled circuit.

3. (Fix Gen’s input) For all j ∈ [σ] and i ∈ [m1], Gen

uses ρ(j) to compute (K
(j)
i,0 ,K

(j)
i,1 , π

(j)
i) ∈ {0, 1}2k+1.

Let W
(j)
i,b denote the key-locator pair (K

(j)
i,b , b ⊕ π

(j)
i).

W
(j)
i,b is called the label corresponding to wire wi of

value b in the j-th garbled circuit hereafter. Gen com-
mits to her input by sending {Γ(j)}j∈[σ] to Eval, where

Γ(j) = {com(W
(j)
i,x̄i

; γ
(j)
i)}i∈[m1]. Moreover, Gen uses

ρ(j) to commit to both labels assigned to {wi}i∈[m1]

by sending {Θ(j)}j∈[σ] to Eval, where

Θ(j) = {com(W
(j)

i,0⊕π(j)
i

; θ
(j)
i), com(W

(j)

i,1⊕π(j)
i

; θ
(j)
i)}i∈[m1].

Remark 4.3. It is crucial that commitments Γ(j)

cannot use the randomness from ρ(j) like commitments
Θ(j) do. If they do, Eval will learn Gen’s inputs to
all check circuits.

4. (Determine the objective circuit) Eval first re-
veals M , and then both parties jointly run a coin flip-
ping protocol to uniformly pick H ∈ {0, 1}k×m1 . Both
parties now have determined the objective circuit C
that computes g : (x̄, ȳ) 7→ (⊥, (c, g2)), where x̄ =
x||e||r, y = M · ȳ, g1 = f1(x, y), c = g1 ⊕ e, and
g2 = f2(x, y).

5. (Commit to input/output label pairs) Let {wi}i∈[m1]

be the wires corresponding to Gen’s input, {wm1+i}i∈[m2]

be those corresponding to Eval’s input, and {wi}i∈O1

be those corresponding to the first part of Eval’s out-
put (output c in particular). Gen uses randomness

ρ(j) to

(a) compute (K
(j)
i,0 ,K

(j)
i,1 , π

(j)
i) ∈ {0, 1}2k+1 for all wires

but those corresponding to Gen’s input3 and

(b) commit to the label pairs assigned to {wi}i∈[m2]∪O1

by sending {Ω(j),Φ(j)}j∈[σ] to Eval, where

Ω(j) = {com(W
(j)
m1+i,0;ω

(j)
i), com(W

(j)
m1+i,1;ω

(j)
i)}i∈[m2],

Φ(j) = {com(W
(j)
i,0), com(W

(j)
i,1)}i∈O1 .

Remark 4.4. Gen commits to the label pairs as-
signed to Gen’s input wires (in Step 3) and Eval’s
input wires so that when Eval later receives proper
decommitments, she will know that the decommitted
labels are valid. Gen also commits to the label pairs as-
signed to Gen’s output wires, and these commitments
are for Gen’s output authenticity proof.

3The random keys assigned to the wires corresponding to
Gen’s input were already computed in Step 3.

Moreover, the commitment pairs corresponding to Gen’s
input wires need to be randomly swapped so that each
label’s semantics is independent of its location. In
other words, the location of a successfully decommit-
ted label will not disclose Gen’s input to Eval. This
random swap is done by reusing the permutation bit

π
(j)
i that is assigned to each wire and used to permute

entries in garbled truth tables. In contrast, the commit-
ment pairs corresponding to Eval’s input wires, need
to follow a known order so that Eval can know the
semantics of her input labels and can verify that the
successfully decommitted labels actually match her in-
put. As a result, the commitment pairs in Θ(j) are
randomly swapped so that the commitment to b-label

of the i-th wire is the (2 · i+ b⊕π(j)
i)-th entry, whereas

in Ω(j), the commitment to b-label of the i-th wire is
the (2 · i+ b)-th.

The order of commitments in Φ(j) simply follows Gen’s
output authenticity proof presented in Figure 1.

6. Both parties jointly execute (m2 +σ) instances of
(

2
1

)
-

OTs. In particular,

(a) (Eval’s Input OTs) For each i ∈ [m2], both
parties run a

(
2
1

)
-OT in which Gen’s input equals

(
{(W (j)

m1+i,0, ω
(j)
i)}j∈[σ], {(W (j)

m1+i,1, ω
(j)
i)}j∈[σ]

)

and Eval’s input equals ȳi. Let Y (j) denote the
set of decommitments Eval received for the j-th

garbled circuit, that is, Y (j) = {(W (j)
m1+i,ȳi

, ω
(j)
i)}i∈[m2].

(b) (Circuit OTs) Eval randomly picks S ⊂ [σ]
such that |S| = 2σ/5. Let s ∈ {0, 1}σ such that
sj = 1 if j ∈ S; or sj = 0 otherwise. If sj = 0,
Eval will learn the randomness and check the
j-th circuit; otherwise, Eval will retrieve Gen’s
input labels and evaluate the j-th circuit. More
specifically, for each j ∈ [σ], both parties run
a
(

2
1

)
-OT in which Eval’s input equals sj and

Gen’s input equals (ρ(j), (X
(j)
1 , X

(j)
2 , h

(j)
π)), where

X
(j)
1 = {(W (j)

i,x̄i
, γ

(j)
i)}i∈[m1], X

(j)
2 = {(W (j)

i,x̄i
, θ

(j)
i)}i∈[m1],

and h
(j)
π = H · (π(j)

1 ||π(j)
2 || · · · ||π(j)

m1).

Either party aborts if any
(

2
1

)
-OT fails.

Remark 4.5. The above
(

2
1

)
-OTs could run in par-

allel if they provide security for parallel execution.

Remark 4.6. We chose to let Eval have a total
control over S, the set of circuits to evaluate. On one
hand, both parties save the efforts to jointly pick S. On
the other hand, our solution has the property that what-
ever S that Eval picks will not compromise Gen’s
privacy.

Remark 4.7. Decommitments X
(j)
1 are for Eval

to retrieve Gen’s input labels from commitments Γ(j),

which Eval received in Step 3; decommitments X
(j)
2

are for Eval to retrieve Gen’s input labels from com-
mitments Θ(j), which Eval received in Step 3; and
decommitments Y (j) are for Eval to retrieve Eval’s
input labels from commitments Ω(j), which Eval re-
ceived in Step 5b.

691

Approved for Public Release; Distribution Unlimited.

7. (Circuit Garbling) For each gate g : {0, 1}×{0, 1} 7→
{0, 1} with input wires wa and wb and output wire wc,
Gen computes its garbled truth table

G(g)(j) =(〈π(j)
a , π

(j)
b 〉, 〈π(j)

a , 1⊕ π(j)
b 〉,

〈1⊕ π(j)
a , π

(j)
b 〉, 〈1⊕ π(j)

a , 1⊕ π(j)
b 〉),

where 〈b1, b2〉 = enc
K

(j)
a,b1

(enc
K

(j)
b,b2

(W
(j)

c,g(b1,b2))).

Remark 4.8. Note that once (K
(j)
i,0 ,K

(j)
i,1 , π

(j)
i) are

chosen for every wire wi, no more randomness is needed
for generating the j-th garbled circuit. So ρ(j) is not
used here.

8. (Circuit Checking) Let {wi}i∈O be the circuit-output

wires. Gen then sends {G(C)(j)}j∈[σ] to Eval, where

G(C)(j) =
(
{G(g)(j)}g∈C , {π(j)

i }i∈O
)
.

• (Check Circuits) For each j ∈ [σ]\S, Eval
checks:

(a) if ρ(j) received in Step 6b can regenerate com-

mitments {Θ(j),Ω(j),Φ(j)} received in Step 5b

and reconstruct garbled circuit G(C)(j)?

(b) if h
(j)
π indeed equals H ·(π(j)

1 ||π(j)
2 || · · · ||π(j)

m1)?

• (Evaluation Circuits) For each j ∈ S, Eval
checks:

(a) if X
(j)
1 and X

(j)
2 both received in Step 6b suc-

cessfully opens Γ(j) and half of Θ(j) both re-
ceived in Step 3, respectively? and if the de-
committed labels match? In particular,

i. if the i-th entry of X
(j)
1 successfully opens

the i-th entry of Γ(j)?

ii. if the i-th entry of X
(j)
2 successfully opens

the (2 · i+ x̄i ⊕ π(j)
i)-th entry of Θ(j)?

iii. if the i-th decommitted labels from the
above two steps coincide?

(b) if Y (j) received in Step 6a successfully opens

half of the commitments in Ω(j)? In particu-
lar, if the i-th entry of Y (j) successfully opens
the (2 · i+ ȳi)-th entry of Ω(j)?

Eval aborts immediately as long as a failure occurs.

Remark 4.9. For evaluation circuits, the fact that

decommitments X
(j)
2 (resp. Y (j)) successfully open Θ(j)

(resp. Ω(j)) shows that the decommitted labels corre-
sponding to Gen’s (resp. Eval’s) input to the j-the
garbled circuit are valid. Furthermore, the fact that the
decommitted labels from Γ(j) coincide with those from
Θ(j) shows that Gen indeed commits to her inputs be-
fore H is chosen, which is the necessary condition for
our 2-universal hash idea to work.

9. (Circuit Evaluating) Eval has now obtained gar-

bled circuit G(C)(j) and (m1 +m2) labels correspond-
ing to the circuit-input wires of C. Eval then evalu-
ates the circuit:

(a) For each gate g with retrieved input labels W
(j)
a =

(K
(j)
a , δ

(j)
a) and W

(j)
b = (K

(j)
b , δ

(j)
b), Eval picks the (2 ·

δ
(j)
a + δ

(j)
b)-th entry E in G(g)(j) and computes output

label W
(j)
c = (K

(j)
c , δ

(j)
c) = dec

K
(j)
b

(dec
K

(j)
a

(E)).

(b) For each circuit-output wire wi with correspond-

ing label W
(j)
i = (K

(j)
i , δ

(j)
i), Eval computes the wire

value b
(j)
i = δ

(j)
i ⊕ π

(j)
i .

Eval interprets {b(j)i } as (c(j), g
(j)
2). Let Z(j) denote

the labels that came with c(j).

10. (Gen’s Input Consistency Check) Let {wi}i∈[m1]

be the wires corresponding to Gen’s input and W
(j)
i =

(δ
(j)
i ,K

(j)
i) be the decommitted label corresponding to

wi in the j-th garbled circuit. Eval computes the hash
of Gen’s input

h
(j)
x̄ = h(j)

π ⊕H · (δ(j)
1 ||δ(j)

2 || · · · ||δ(j)
m1

).

Eval verifies Gen’s input consistency by checking if

for any i, j ∈ S, h
(i)
x̄ = h

(j)
x̄ . Eval aborts if any of the

checks fails.

Remark 4.10. The proof for Gen’s input consis-
tency presented in Figure 2 is in fact embedded in our
main protocol. In particular, Step 3, Step 4, Step 6b,
Step 8, and this step constitute that proof. It is worth-
mentioning that Γ(j) and Θ(j) here are equivalent to
the commitments to χ(j) ⊕ π(j) and π(j), respectively,
in the protocol presented in Figure 2.

11. (Majority Operation) Let (c, g2) be the most com-

mon tuple in Π = {(c(j), g(j)
2)}j∈S . Eval aborts if

(c, g2) is not the majority in Π, that is, (c, g2) does

not appear more than |Π|
2

= σ
5

times in Π; otherwise,
Eval outputs g2.

12. (Gen’s Output Authenticity Proof) The two par-
ties conduct the protocol presented in Figure 1. In par-
ticular, the common inputs include security parameter
1k, statistical security parameter 1|S|, commitments to
label pairs assigned to Gen’s output wires {Φ(j)}j∈S ,
and Gen’s alleged output c. Also, Gen’s input equals

{W (j)
i,0 ,W

(j)
i,1 }i∈O,j∈S and Eval’s input equals Z(j) for

some j ∈ S such that c(j) = c. If the proof fails, Gen
aborts; otherwise, Gen outputs c⊕ e.

Remark 4.11. Due to the well-known selective decom-
mitment attack, the commitment scheme needs to be perfectly-
hiding so that the unopened commitments remain hiding [5].

Theorem 8. Assume that the
(

2
1

)
-OT protocol is secure

in the presence of malicious adversaries, and there exist
a perfectly-hidng commitment scheme, a family of pseudo-
random functions, the main protocol (Gen,Eval) presented
above securely computes f : (x, y) 7→ (f1, f2) in the presence
of malicious adversaries.

The proof sketch is provided in Appendix B.

692

Approved for Public Release; Distribution Unlimited.

5. REDUCING COMMUNICATION COST
In this section, we provide an effective technique that re-

duces the communication overhead of the cut-and-choose-
based protocol by up to 60%. We stress that this is not the
first technique that enjoys such an improvement [4, 12], but
this is the first one that is compatible with the pipeline tech-
nique that vastly increases the scalability of secure two-party
computation [6].

Our trick starts from the idea of random seed checking [12].
This idea suggests that Gen sends not the whole check cir-
cuit but its hash to Eval. Since Eval will learn each check
circuit’s randomness, she can regenerate the circuit and ver-
ify its correctness by comparing its hash with the one re-
ceived from Gen. As a consequence, only a fixed amount of
data needs to be exchanged for a check circuit regardless of
the circuit size.

Another useful technique is the pipeline technique. This
technique suggests that circuit garbling and evaluating is
done in a pipeline manner. The garbled circuits are sent in
batches of gates. The i-th batch consists the i-th garbled
gate from all circuits. Gen sends out the current batch
immediately after it is generated. While Eval is working
with the current batch, Gen could start generating the next.
The advantages include that the idle time is greatly reduce
and that minimal memory is needed (since at any moment,
only a batch of gates reside in memory).

Our technique nicely combines the advantages of the above
two techniques, that is, each check circuit incurs only a small
amount of communication overhead, while at the same time,
circuit garbling and evaluating can be pipelined. The chal-
lenge is that the random seed checking technique requires
Gen to handle a check circuit and an evaluation circuit dif-
ferently, while at the same time, she does not get to know if
a circuit is checked or evaluated. The problem can thus be
formulated as follows:

Gen wants to send σ numbers {g(1), g(2), . . . , g(σ)}
to Eval, while Eval actually knows µ of them.
How do they reduce the communication overhead
while Gen remains oblivious to which numbers
Eval knows?

An interesting trick is that they could treat {g(j)} as co-

efficients of a polynomial, that is, P (x) = g(1) + g(2)x +

· · · g(σ)xσ−1. Although Gen does not know which µ num-
bers out of {g(j)} that Eval knows, she does know that Eval
only needs (σ−µ) points to fully recover the polynomial. We
therefore suggest that Gen sends P (1), P (2), . . . , P (σ − µ)
to Eval. With the µ coefficients she already knew and the
(σ − µ) points from Gen, Eval can efficiently recover all

{g(j)} with simple polynomial interpolation.
Since our protocol suggests 60%-40% check circuit and

evaluation circuit ratio, with a slight increase of the compu-
tation overhead due to the polynomial interpolations, this
trick reduces the communication overhead by 60%, and more
importantly, this trick is compatible with the pipeline tech-
nique.

6. EXPERIMENTAL RESULTS
In this section, we report empirical evidence of our per-

formance advantages over prior work. We implemented our
work on top of the open-source project—KSS [12]. We ran
our experiments on the grid Stampede hosted in Texas Ad-

vanced Computing Center. Each instance of the experiments
invokes 32 computing nodes; each node has 32GB memory
and two 2 Intel Xeon E5-2680 2.7G processors; and each
processor has 8 cores.

Performance of our Proposed Technique:.
We show the performance of our Gen’s input consistency

check and k-probe-resistant matrix generating algorithm com-
pared with the prior state-of-the-art in Figure 3.

We first compare the performance of the KSS system with
that of the KSS system integrated with our Gen’s input con-
sistency check. This experiment is conducted by using both
systems to evaluate circuits of various input sizes. These
circuits compute 2n blocks of AES128 encryption, where
n = 1, 2, . . . , 10 in which Gen provides inputs for 2n blocks
of AES128 (and thus has a 2n+7-bit input), Eval provides
a 128-bit encryption key, and Eval receives the 2n+7-bit
ciphertext. Figure 3a shows that when the input size in-
creases only to a moderate level (217), the performance gap
due to Gen’s input consistency check has almost dominated
the whole protocol execution. Specifically, the wall-clock
running of the improved protocol is 48.8 seconds versus 92.1
seconds for KSS (which was the fastest published protocol
whose results we could replicate on our setup).

Next, we show in Figure 3b that as Gen’s input size in-
creases, the ratio between the width and height of the k-
probe-resistant matrices generated by our algorithm indeed
approximates 1, while the ratio of those generated by Lindell
and Pinkas’s approach remains constant 4. This compari-
son suggests that for a circuit that has OTs as the dominant
component, the overall protocol execution time could be re-
duced to 25% simply by replacing the k-probe-resistant ma-
trix generated by the original work with the one generated
by our algorithm.

102 103 104 1050

20

40

60

80

100

GEN’s Input Size (bits)

W
al

l−
C

lo
ck

 T
im

e
(s

ec
)

KSS12
This Work

(a)

102 104 1060

1

2

3

4

5

n

m
/n

LP07
This Work

(b)

Figure 3: Performance comparison with prior works

Performance of the Main Protocol:.
We show in Figure 4 the overall execution time of our

system securely evaluating circuits EDT-40954, RSA-2565,
and 1024-AES128. Overall, our system is able to handle
650, 000+ (or ∼ 200, 000 non-XOR) gates per second. We
also observe that for all three circuits that we evaluated,
more than 60% of the execution time is spent on commu-
nicating the huge amount of data, the garbled circuits. If
we consider only the circuit garbling, the rate that our sys-
tem actually achieves could be as high as 1,600,000+ (or
500,000+ non-XOR) gates per second, with the help of var-

4This circuit computes the edit distance of two 4,095-bit
inputs.
5This circuit computes a 256-bit modular exponentiation.

693

Approved for Public Release; Distribution Unlimited.

Gen Eval Comm
(sec) (sec) (MB)

OT
comp 0.4±0.09% –

6
comm 0.1± 1% 0.3±0.6%

cut-& comp – –
9

chk comm – –

Inp. comp 0.8± 1% 0.3±0.2%
2,008

Chk comm 0.3± 1% 0.9± 1%

Evl.
comp 11.4± 0.6% 28.0±0.4%

72,271
comm 9.2± 1% 30.3±0.8%

Total
comp 12.6± 0.3% 28.0±0.2%

74,294
comm 9.6± 1% 31.5±0.4%

Table 3: The 95% two-sided confidence intervals of the com-
putation andcommunication time for each stage in the 1024-
AES128 experiment (x, y) 7→ (⊥, 1024-AES128y(x)).

ious optimization techniques, including SSE2 and AESNI
instruction sets, and the free-XOR technique.

circuit gates (non-XOR) time (sec) comm.

EDT-4095 5.9B (2.4B) 9,042 18 TB
RSA-256 0.93B (0.33B) 1,437 3 TB
1024-AES128 32M (9.3M) 49 74 GB

Figure 4: The performance of our main protocol with k = 80 and
σ = 256. All numbers in “time” column come from an average of
30 data points and have the 95% confidence interval < 1%.

It is also worth-mentioning that our system has not reached
its full potential yet. The communication overhead is ex-
pected to drop to 40% of the reported once the technique
presented in Section 5 is integrated. An interesting future
task is to explore the computational price paid, due to the
polynomial interpolation, for those 60% savings.

7. REFERENCES
[1] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias.

Multiparty Computation from Somewhat Homomorphic
Encryption. CRYPTO ’12, 2012.
http://eprint.iacr.org/2011/535.

[2] O. Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, 2004.

[3] O. Goldreich, S. Micali, and A. Wigderson. How to Play
any Mental Game. STOC ’87, pp. 218–229.

[4] V. Goyal, P. Mohassel, and A. Smith. Efficient Two-Party
and Multiparty Computation against Covert Adversaries.
EUROCRYPT’08, pp. 289–306. Springer-Verlag.

[5] D. Hofheinz. Possibility and Impossibility Results for
Selective Decommitments. J. Cryptol., 24(3):470–516, July
2011.

[6] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure
Two-Party Computation using Garbled Circuits. USENIX
SEC’11, pp. 35–35.

[7] R. Impagliazzo and D. Zuckerman. How to Recycle
Random Bits. SFCS ’89.

[8] S. Jarecki and V. Shmatikov. Efficient Two-Party Secure
Computation on Committed Inputs. EUROCRYPT ’07, pp.
97–114.

[9] M. Kiraz. Secure and Fair Two-Party Computation. PhD
thesis, Technische Universiteit Eindhoven, 2008.

[10] M. Kiraz and B. Schoenmakers. A Protocol Issue for The
Malicious Case of Yao’s Garbled Circuit Construction. In

27th Symposium on Information Theory in the Benelux,
2006.

[11] V. Kolesnikov and T. Schneider. Improved Garbled Circuit:
Free XOR Gates and Applications. ICALP ’08, pp.
486–498.

[12] B. Kreuter, a. shelat, and C. Shen. Billion-Gate Secure
Computation with Malicious Adversaries. USENIX SEC’12,
2012.

[13] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure
Two-Party Computation in the Presence of Malicious
Adversaries. EUROCRYPT ’07.

[14] Y. Lindell and B. Pinkas. Secure Two-Party Computation
via Cut-and-Choose Oblivious Transfer. TCC’11, pp.
329–346.

[15] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay: A
Secure Two-Party Computation System. USENIX SEC’04,
volume 13, pp. 287–302.

[16] P. Mohassel and M. Franklin. Efficiency Tradeoffs for
Malicious Two-Party Computation. PKC’06, pp. 458–473.

[17] P. Mohassel and B. Riva. Garbled Circuits Checking
Garbled Circuits: More Efficient and Secure Two-Party
Computation, 2013. http://eprint.iacr.org/2013/051.

[18] J. Nielsen and C. Orlandi. LEGO for Two-Party Secure
Computation. TCC’09, volume 5444 of LNCS, pages
368–386.

[19] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra.
A New Approach to Practical Active-Secure Two-Party
Computation. CRYPTO ’12, 2012.

[20] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams.
Secure Two-Party Computation is Practical. ASIACRYPT
’09, pp. 250–267.

[21] a. shelat and C.-H. Shen. Two-Output Secure Computation
with Malicious Adversaries. EUROCRYPT’11, pp 386–405.

[22] Stampede. Tacc stampede. http://www.tacc.utexas.edu/
user-services/user-guides/stampede-user-guide.

[23] D. Woodruff. Revisiting the Efficiency of Malicious
Two-Party Computation. EUROCRYPT’07, volume 4515
of LNCS, pp. 79–96.

[24] A. C. Yao. Protocols for Secure Computations. SFCS ’82,
pp. 160–164.

APPENDIX
A. ALGORITHMS AND PROTOCOLS

Input: Eval’s input size n and a security parameter 1k

Output: A k-probe-resistant M ∈ {0, 1}n×m for some m ∈
N

1 begin
2 t← dmax(lg(4n), lg(4k))e
3 while 2t−1 > k + (lg(n) + n+ k)/(t− 1) do
4 t← t− 1;
5 end
6 K ← d(lg(n) + n+ k)/te;
7 N ← K + k − 1;
8 for i← 1 to n do

9 Pick P (x) =
∑K−1
i=0 aix

i, where ai ←R F2t ;
10 Mi ← [P (1)2||P (2)2|| . . . ||P (N)2]

11 end

12 return M ; // M ∈ {0, 1}n×m, where m = Nt

13 end
Remark A.1. Line 2-5 is to find the minimum t such

that 2t ≥ k + (lg(n) + n + k)/t, and P (i)2 denotes a t × 1
row vector over {0, 1}.

Figure 5: A probabilistic algorithm to generate a k-probe-
resistant matrix M ∈ {0, 1}n×m for some m ∈ N.

694

Approved for Public Release; Distribution Unlimited.

B. MAIN THEOREM PROOF SKETCH

B.1 Malicious Generator P ∗
1

S1 first randomly picks a k-probe-resistant M and a fake
input y′. Then S1 finds a pre-image ȳ′ such that M · ȳ′ = y′.
This ȳ′ is used as input to Eval’s input OTs. The OT’s
receiver security ensures that P ∗1 (as the OT sender) cannot
distinguish the OT receiver’s input being ȳ′ provided by S1

in the ideal model from being ȳ provided by P2 in the real
model.

Next, for the circuit OTs, S1 invokes the OT’s simula-
tor (the existence of which is guaranteed by OT’s security)

to extract both inputs from P ∗1 , including randomness ρ(j),

decommitments (X
(j)
1 , X

(j)
2) to Gen’s input keys, and hash

h
(j)
π . A garbled circuit is bad if the retrieved randomness

cannot be used to regenerate the provided commitments and
garbled circuit. S1 aborts if more than σ/5 of the garbled
circuits are bad. This step is indistinguishable from the real
model due to the cut-and-choose technique. In particular, if
more than σ/5 circuits are bad, P2 in the real model would
abort with high probability too since the probability that
none of the bad circuits is checked is negligible.

If S1 does not abort, it learns the randomness of at least
4σ/5 good garbled circuits. Note that after P ∗1 passes the

circuit checking, S1 also learns the decommitments X(j) of
the 2σ/5 evaluation circuits. In other words, S1 learns the
randomness of at least σ/5 evaluation circuits, which are
good circuits too. The binding property of the commitments
ensures that S1 learns the private inputs that P ∗1 provided
to those good evaluation circuits. S1 aborts if these pri-
vate inputs are inconsistent. This step is indistinguishable
from the real model due to Gen’s input consistency check.
In particular, the input consistency check ensures that the
probability of good evaluation circuits having inconsistent
inputs is negligible.

Let P ∗1 ’s private input extracted from above be x̄′ = x′||r′||e′.
S1 sends x′ to the external trusted party and gets f1(x′, y)
in return, where y = M · ȳ. If S1 in the ideal model (resp. P2

in the real model) has come to this far, with high probabil-
ity, P ∗1 must have provided majority good evaluation circuits
with valid input labels corresponding to P ∗1 ’s input x̄′ and
S2’s input ȳ′ (resp. P2’s input ȳ). So the majority of P2’s
evaluation outputs are exactly f1(x′, y) ⊕ e′. This implies
that P ∗2 cannot distinguish S1 on input ȳ′ but providing
f1(x′, y) ⊕ e′ (from the external party) versus P1 on input
ȳ and provding the evaluation output f1(x′, y) ⊕ e′. More-
over, the k-probe-resistant matrix also helps to support the
indistinguishability between S1 on protocol input y′ and P1

on protocol input y. In particular, the k-probe-resistant ma-
trix ensures that the difference between the probability that
S1 on fake input y′ aborts (due to selective failure) and the
probability that P2 on real input y aborts is negligible.

Finally, since S1 knows the randomness of many circuits, it
also knows the random keys corresponding to P ∗1 ’s encrypted
output f1(x′, y)⊕e′. S1 is able to complete the Gen’s output
authenticity proof as P1 does.

B.2 Malicious Evaluator P ∗
2

Simulator S2 honestly follows the main protocol all the
way until the step of OTs except that S2 picks a random
x̄′ ∈ {0, 1}m1 at the beginning and uses this fake input as
input. In particular, S2 commits to fake input x̄′ in Step 3 by

committing to the corresponding labels. The commitments
are denoted by {Γ(j)}j∈[σ]. In the step of OTs, S2 invokes

OT’s simulator SOT
2 (whose existence is guaranteed by OT’s

security) to extract P ∗2 ’s input to OTs, that is, her private
input ȳ′ to Eval’s input OTs and the choice string s′ to the
circuit OTs. Recall that s′ determines the check circuits and
evaluation circuits. Next, S2 externally invokes the trusted
third party with input y′ = M · ȳ′ and gets f2(x, y′) in
return. Note that M is the k-probe-resistant matrix received
from P ∗2 before OTs. After this, if s′j = 0, the j-th garbled
circuit is a check circuit and needs to be honestly constructed
according to objective circuit C; otherwise, the j-th garbled
circuit is an evaluation circuit and is constructed in a way
that it always outputs (h′, c′, f2(x, y′)), where h′ and c′ are
randomly picked by S2. From now on, S2 follows the Main
protocol faithfully. Finally, if S2 accepts in the step of Gen’s
Output Authenticity Proof, it sends 1 to the external oracle
so that S1 gets f1(x, y′); otherwise, S2 sends 0 to the external
oracle so that S1 gets ⊥.

Here we argue at a high level that P ∗2 cannot distinguish
S2 using fake input x̄′ in the ideal model versus P1 using
real input x̄ in the real model.

For check circuits, the only difference between S2 in the
ideal model and P1 in the real model is the committed
message in Γ(j). Note that this commitment is never
opened for check circuits. Therefore, if P ∗1 is able to
distinguish S2 committing to fake input x̄′ from P1

committing to real input x̄ in any check circuit, P ∗1
is able to break the hiding property of the commitment
scheme.

For evaluation circuits, the information P ∗1 learned re-
lated the other party’s input is the location of the de-
committed labels within each pair of commitments and
the evaluation output:

1. Recall that the pairs of commitments to the la-
bels assigned to Gen’s input wires are randomly

swapped by permutation bits {π(j)
i }i∈[m1],j∈[σ]. This

random swapping implies that the location learned

in the ideal model is x̄′⊕π′(j), where π′(j) = π′(j)1 ||π′(j)2 || . . . ||π′(j)m1
,

while that learned in the real model is x̄ ⊕ π(j),

where π(j) = π
(j)
1 ||π(j)

2 || . . . π(j)
m1 . Since π′(j) and

π(j) are independently chosen from the uniform dis-
tribution, the location information is statistically
indistinguishable.

2. The other message that might give S2 away is the
evaluation output. First, we claim that P ∗2 always
gets consistent output among different garbled cir-
cuits. Indeed, in the real model, since P1 is as-
sumed to be honest, the outputs from the evalua-
tion circuits are identical, and similarly, in the ideal
model, S2 also generates evaluation circuits that
have a fixed output. So it remains to argue that
(h, c, f2) in the real model is indistinguishable from
(h′, c′, f ′2) in the ideal model. Intuitively, h and h′

are indistinguishable due to the hiding property of
our 2-universal hash scheme, c and c′ are indistin-
guishable due to the perfect secrecy of the one-time
pad encryption, and f2 and f ′2 are indistinguishable
due to the simulation security of OTs.

695

Approved for Public Release; Distribution Unlimited.

Common Input: security parameter 1k, symmetric en-
cryption scheme (enc, dec) with semantic security, and
boolean circuit C that computes f(x, y).

Private Input: Gen has private input x = x1x2 · · ·xm1

and Eval has private input y = y1y2 · · · ym2 , where
xi and yi denote the i-th bit of x and y, respectively.

Output: Both Gen and Eval receive f(x, y) at the end.

1. (Circuit Garbling) Gen garbles C as follows:

(a) Gen picks (Ki,0,Ki,1, πi) ∈ {0, 1}2k+1 at random
for each wire wi. Let Wi,b denote the key-locator
pair (Ki,b, b ⊕ πi). Wi,b is called the label corre-
sponding to wire wi of value b hereafter.

(b) For each gate g : {0, 1} × {0, 1} → {0, 1} with
input wires wa and wb and output wire wc, Gen
computes its garbled truth table

G(g) =(〈πa, πb〉, 〈πa, 1⊕ πb〉,
〈1⊕ πa, πb〉, 〈1⊕ πa, 1⊕ πb〉),

where 〈b1, b2〉 = encKa,b1
(encKb,b2

(Wc,g(b1,b2))).

Let {wi}i∈O be the circuit-output wires. Gen sends
G(C) = ({G(g)}g∈C , {πi}i∈O) to Eval.

2. (Input Labels Retrieving) Let {wi}i∈[m1] be
the wires corresponding to Gen’s input, and let
{wm1+i}i∈[m2] be those corresponding to Eval’s in-
put.

(a) (Gen’s Input Labels) Gen sends Eval the la-
bels corresponding to her input {Wi,xi}i∈[m1].

(b) (Eval’s Input Labels) For each i ∈ [m2], Gen

and Eval execute a
(2
1

)
-OT in which Gen’s in-

put equals (Wm1+i,0,Wm1+i,1) and Eval’s input
equals yi.

The above
(2
1

)
-OTs could all be run in parallel.

3. (Circuit Evaluating) Eval has now obtained gar-
bled circuit G(C) and (m1 +m2) labels corresponding
to the (m1 +m2) circuit-input wires. Eval evaluates
the circuit as follows:

(a) For each gate g with retrieved input labels Wa =
(Ka, δa) and Wb = (Kb, δb), Eval picks the (2 ·
δa + δb)-th entry E in G(g) and computes the
output label Wc = (Kc, δc) = decKb

(decKa (E)).

(b) For each circuit-output wire wi with correspond-
ing label Wi = (Ki, δi), Eval computes the wire
value bi = δi ⊕ πi. Recall that πi for wire wi
comes with G(C).

Finally, Eval interprets {bi} as f(x, y) and sends
f(x, y) to Gen. Both parties output f(x, y).

Figure 6: The Yao protocol using the point-and-permute trick.

696

Approved for Public Release; Distribution Unlimited.

Full Domain Hash from (Leveled) Multilinear Maps

and Identity-Based Aggregate Signatures

Susan Hohenberger ∗

Johns Hopkins University
Amit Sahai †

UCLA
Brent Waters ‡

University of Texas at Austin

July 9, 2013

Abstract

In this work, we explore building constructions with full domain hash structure, but with
standard model proofs that do not employ the random oracle heuristic. The launching point for
our results will be the utilization of a “leveled” multilinear map setting for which Garg, Gentry,
and Halevi (GGH) recently gave an approximate candidate. Our first step is the creation of a
standard model signature scheme that exhibits the structure of the Boneh, Lynn and Shacham
signatures. In particular, this gives us a signature that admits unrestricted aggregation.

We build on this result to offer the first identity-based aggregate signature scheme that
admits unrestricted aggregation. In our construction, an arbitrary-sized set of signatures on
identity/message pairs can be aggregated into a single group element, which authenticates the
entire set. The identity-based setting has important advantages over regular aggregate signatures
in that it eliminates the considerable burden of having to store, retrieve or verify a set of
verification keys, and minimizes the total cryptographic overhead that must be attached to a set
of signer/message pairs. While identity-based signatures are trivial to achieve, their aggregate
counterparts are not. To the best of our knowledge, no prior candidate for realizing unrestricted
identity-based aggregate signatures exists in either the standard or random oracle models.

A key technical idea underlying these results is the realization of a hash function with a
Naor-Reingold-type structure that is publicly computable using repeated application of the
multilinear map. We present our results in a generic “leveled” multilinear map setting and then
show how they can be translated to the GGH graded algebras analogue of multilinear maps.

∗Supported by the National Science Foundation (NSF) CNS-1154035, CNS-1228443; the Defense Advanced Re-
search Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211,
DARPA N11AP20006, the Office of Naval Research under contract N00014-11-1-0470, and a Microsoft Faculty Fel-
lowship.
†Research supported in part from a DARPA/ONR PROCEED award, NSF grants 1228984, 1136174, 1118096,

1065276, 0916574 and 0830803, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the
Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-
0389. The views expressed are those of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.
‡Supported by NSF CNS-0915361, CNS-0952692, CNS-1228599; DARPA through the U.S. Office of Naval Research

under Contract N00014-11-1-0382, DARPA N11AP20006, a Google Faculty Research Award, an Alfred P. Sloan
Fellowship, a Microsoft Faculty Fellowship, and a Packard Foundation Fellowship. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Department of Defense or the U.S. Government.

697

Approved for Public Release; Distribution Unlimited.

1 Introduction

Applying a full domain hash is a common technique in cryptography where a hash function, modeled
as a random oracle, is used to hash a string into a set. Originally, the concept referred to a signature
scheme where one hashed into the range of a trapdoor permutation [4]. Subsequently, full domain
hash has been treated as a more general concept and applied in bilinear map cryptography where
typically a hash function H : {0, 1}∗ → G is used to hash a string into a bilinear group. (We note
that multiple early works [11, 13, 12] employ this terminology.) Pairing-based applications of Full
Domain Hash include: the original Boneh-Franklin [11], short and aggregate signatures [13, 12],
Hierarchical Identity-Based Encryption [25], and decentralized Attribute-Based Encryption [30].
Typically, proofs of such schemes will use the random oracle heuristic to “program” the output of
the hash function in a certain way for which there is no known standard model equivalent (see [28]).

Given that there are well-known issues with random oracle instantiability in general [16] and
problems with Full Domain Hash in particular [20, 19], there has been a push to find standard model
realizations of these applications. These endeavors have been successful in several applications such
as signatures [9, 40] and (Hierarchical) Identity-Based Encryption [17, 7, 8, 40, 23, 41]. Despite
this progress, the current state is not entirely satisfactory on two fronts. First, each of the standard
model examples given above created new cryptographic constructions with fundamentally different
structure than the original Full Domain Hash construction. While creating a new structure is
a completely valid and novel approach, that path does not necessarily lend insight or further
understanding of the original constructions.

Second, there are important applications of the Full Domain Hash method where implementing
such a hash using a random oracle introduces significant limitations in the applicability of the
Full Domain Hash method. A prominent example concerns aggregate signature schemes and their
identity-based counterparts:

An aggregate signature system is one in which a signature σ′ on verification key/message pair
(VK′,M ′) can be combined with a signature σ̃ on (ṼK, M̃) producing a new signature σ on the set
S = {(VK′,M ′), (ṼK, M̃)}. This process can be repeated indefinitely to aggregrate an arbitrary
number of signatures together. Crucially, the size of σ should be independent of the number of
signatures aggregated, although the description of the set S will grow. The ultimate goal, however,
is to minimize the entire transmission size [35].

The need for a public-key infrastructure for verification keys is a major drawback of traditional
public-key cryptography, and for this reason identity-based cryptography has flourished [39, 11]:
In an identity-based aggregate signature scheme, verification keys like VK would be replaced with
simple identity strings like I =“harrypotter@hogwarts.edu”. This offers a very meaningful savings
for protocols such as BGPsec, which require routers to store, retrieve and verify certificates for
over 36,000 public keys [18, 15]. We note that while identity-based signatures follow trivially from
standard signatures, identity-based aggregate signatures are nontrivial (more on this below).

A decade ago, the Boneh, Gentry, Lynn and Shacham (BGLS) [12] aggregate signature scheme
was built using the Full Domain Hash methodology. In the original vision of BGLS, aggregation
could be performed by any third party on any number of signatures. The authors showed how
the Boneh, Lynn and Shacham (BLS) [13] signatures (which are in turn comprised of Boneh-
Franklin [11] private IBE keys) can be aggregated in this manner. The BLS construction uses a full
domain hash and its security proof is in the random oracle model. However, even though the BGLS
scheme was built upon the key mechanism for Boneh-Franklin Identity-Based Encryption, BGLS
does not support identity-based aggregation. The Full Domain Hash in BGLS is realized using

2

698

Approved for Public Release; Distribution Unlimited.

a random oracle, which destroys the structure that would be needed for identity-based aggregate
signatures. To the best of our knowledge, no prior solution to identity-based aggregate signatures
in either the standard or random oracle models exists. Prior work considered ID-based aggregates
restricted to a common nonce [24] (e.g., where signatures can only be aggregated if they were
created with the same nonce or time period) or sequential additions [6] (e.g., where a group of
signers sequentially form an aggregate by each adding their own signature to the aggregate-so-far).

Our results in a nutshell. In this work, we give a new method for implementing the Full
Domain Hash method using leveled multilinear maps, including the ones recently proposed by
Garg, Gentry, and Halevi (GGH) [21]. We show how to use this method to implement aggregate
signatures in the standard model in a way that naturally extends to give the first full solution to
the problem of identity-based aggregate signatures (also in the standard model).

Prior work on standard model aggregate signatures. All previous work on achieving stan-
dard model aggregate signatures did so by departing fundamentally from the Full Domain Hash
methodology.

Subsequently to BGLS [12], different standard model solutions were proposed, but with differ-
ent restrictions on aggregation. These include: constructions [31] where the signatures must be
sequentially added in by the signers, multisignatures [31] where aggregation can occur only for the
same message M , or where aggregation is limited to signatures associated with the same nonce or
time period [1].1 These restrictions limit their practical applicability.

In 2009, Rückert and Schröder [38] gave an intriguing vision on how multilinear maps might
enable standard model constructions of aggregate signatures, also departing from the Full Domain
Hash methodology. They did not discuss or achieve identity-based aggregate signatures. Their
proposal came before the Garg, Gentry and Halevi [21] candidate and used the earlier Boneh-
Silverberg [14] view of multilinear maps, where a k-linear map would allow the simultaneous multi-
plication of k source group elements into one target group element. The GGH candidate in contrast
allows for encodings to exist on multiple levels and a pairing between an encoding on level i and
one on level j gives an encoding on level i+ j as long as i+ j is less than or equal to some k. One
drawback of the Rückert and Schröder construction is that the security proof requires access to an
interactive (or oracle-type) assumption in order to answer the signature queries where the structure
of the oracle output is essentially identical to the signatures required. This property seems to be
tightly coupled with the modeling of a multilinear map as a one time multiplication. In contrast, we
will exploit the leveling of the GGH abstraction to actually replace the hash function in a BLS-type
structure and obtain proofs from non-interactive assumptions.

1.1 Overview of our Aggregate Signature Constructions

We now overview the constructions and their security claims. To simplify the description of the
main ideas, we describe the constructions here in terms of leveled multilinear maps. Later on, we
explicitly give translations of both constructions to the GGH framework.

1We remark that these restrictions were considered in other works such as [37, 36, 33, 5, 32] prior to the standard
model constructions cited above.

3

699

Approved for Public Release; Distribution Unlimited.

The Base Construction. A trusted setup algorithm will take as input security parameter λ
and message bit-length ` and run a group generator G(1λ, k = ` + 1) and outputs a sequence of
groups ~G = (G1, . . . ,Gk) of prime order p.2 The group sequence will have canonical generators
g = g1, g2, . . . , gk along with a pairing operation that computes e(gai , g

b
j) = gabi+j for any a, b ∈ Zp

and i + j ≤ k. The setup algorithm will also choose ~A = (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A`,0 =

ga`,0 , A`,1 = ga`,1) ∈ G2
1. We define H : {0, 1}` → Gk−1 as H(M) = g

∏
i∈[1,`] ai,mi

k−1 , where mi are the
bits of message M . The hash function hashes a message into the group Gk−1. It exhibits a Naor-
Reingold [34]-type structure and is publicly computable using repeated application of a multilinear
map. Since a group element in Gk−1 has one pairing left, it intuitively reflects the bilinear map
setting. In our scheme a private key contains a random exponent α ∈ Zp and the corresponding
verification key VK contains gα. A signature on a message M is computed as σ = H(M)α and

verified by testing e(σ, g)
?
= e(H(M), gα).

Stepping back, the structure of our scheme very closely resembles BLS signatures. For this
reason it is possible to aggregate them in the BGLS fashion by simply multiplying two together. The
size of an aggregate signature depends on the security parameter plus message length ` (assuming
the group representation size increases with k = `+ 1), but is independent of the number of times
aggregation is applied. Aggregation is unrestricted and can be done by any third party.

The Rückert and Schröder construction [38] also insightfully uses a Naor-Reingold type function
for aggregation. A key distinction is that in the RS method there is a unique NR function for each
signer and it is privately computed by each signer per each message/input. In our construction the
Naor-Reingold function is computed as a public hash using the levels of the multilinear map. A
signer simply multiplies in his secret exponent after computing the hash. Thus, this mimicks the
BLS structure much more closely. One advantage of our structure is that the hash function can be
derived from a single common reference string and then public keys are just a single group element.
In addition, we will see that our structure is amenable to proofs under non-interactive assumptions
and allow us to extend to the identity-based setting. In the aggregation setting, where bandwidth
is at a premium, our smaller public keys and the ability to go identity-based is important.

Proofs of Security. We view our aggregate signatures as signatures on a multiset of mes-
sage/verification key pairs for full generality. We prove security in a modular way as a two step
process. First, we define a weaker “distinct message” variant of security that only considers an
attacker successful if the aggregate forgery no two signers sign the same message. We then show
how to transform any distinct message secure scheme into one with standard security. The trans-
formation captures the BGLS idea (formalized by Bellare, Namprempre and Neven [2]) of hashing
the public key plus message together. Using the transformation we can focus on designing proofs
in the distinct message game. We first prove selective security under a natural analog of the CDH
assumption we call the k-Multilinear Computational Diffie-Hellman (k-MCDH) assumption. We
next show full (a.k.a., adaptive) security using a subexponentially secure version of the assumption.
Finally, we show full security with only polynomial factors in the reduction using a non-interactive,
but parameterized assumption.

Realizing Identity-Based Aggregation. The authority will run a setup algorithm that takes
the message bit-length ` and identity bit-length n. It runs a group generator G(1λ, k = ` + n)

2In practice one will perform a CRHF of an arbitrary length message to ` bits.

4

700

Approved for Public Release; Distribution Unlimited.

and outputs a sequence of groups ~G = (G1, . . . ,Gk) of prime order p. It creates the parameters ~A
as in the prior scheme and ~B = (B1,0 = gb1,0 , B1,1 = gb1,1), . . . , (Bn,0 = gbn,0 , Bn,1 = gbn,1) ∈ G2

1.

We define H : {0, 1}n × {0, 1}` → Gk−1 as H(I,M) = g
(
∏
i∈[1,n] bi,idi)(

∏
i∈[1,`] ai,mi)

k , where mi are
the bits of message M and idi the bits of I. The hash function is publicly computable from the

multilinear map. A secret key for identity I is computed as SKI = g

∏
i∈[1,n] bi,idi

n−1 ∈ Gn−1. This

can be used to produce a signature on message M by computing (gk−1)(
∏
i∈[1,n] bi,idi)(

∏
i∈[1,`] ai,mi)

using the multilinear map. Finally, a signature can be verified by checking e(σ, g)
?
= H(I,M). The

signatures will aggregate in the same manner by multiplying together.
The distinct message translation is not required in the identity-based setting, because there is

no rogue key problem. We first prove selective security under the k-MCDH assumption, and then
show full security using a subexponentially secure version of the assumption. We provide these
proofs in both the generic multilinear and the GGH framework.

Further Applications. Taken altogether we show that multilinear forms provide an opportu-
nity for revisiting cryptographic structures that were strongly associated with the random oracle
heuristic. It remains to be seen how widely this direction will apply. One interesting example of
an application that currently requires the full domain hash is the decentralized Attribute-Based
Encryption system of Lewko and Waters [30]. There is no standard model candidate that has com-
parable expressiveness. Here performing an analogous transformation to our aggregate signatures
hash function gives a candidate construction that we do not immediately see how to break. However,
it is less easy to see how our proof techniques would extend to the variant of the Lewko-Waters [30]
decentralized ABE scheme.

2 Leveled Multilinear Maps and the GGH Graded Encoding

We give a description of generic, leveled multilinear maps. The assumptions used in this setting
are defined inline with their respective security proofs. More details of the GGH graded algebras
analogue of mulitlinear maps are included in Appendix A, and for further details, please refer
to [21].

For generic, leveled multilinear maps, we assume the existence of a group generator G, which
takes as input a security parameter 1λ and a positive integer k to indicate the number of allowed
pairing operations. G(1λ, k) outputs a sequence of groups ~G = (G1, . . . ,Gk) each of large prime
order p > 2λ. In addition, we let gi be a canonical generator of Gi (and is known from the group’s
description). We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi ×Gj → Gi+j | i, j ≥ 1; i+ j ≤ k}.
The map ei,j satisfies the following relation:

ei,j

(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid i, j.
When the context is obvious, we will sometimes abuse notation and drop the subscripts i, j,

For example, we may simply write e
(
gai , g

b
j

)
= gabi+j .

5

701

Approved for Public Release; Distribution Unlimited.

Algorithmic components of GGH encodings. While we assume familiarity with the basics of
GGH encodings [21], we now review the algorithmic components of the GGH encodings that we will
use in our constructions and proofs. The setup algorithm InstGen(1λ, 1k) takes as input a security
parameter 1λ and the level of multilinearity 1k, and outputs the public parameters params needed
for using the remaining GGH algorithms, along with a special parameter pzt to be used for zero
testing. The sampling algorithm samp(params) outputs a level-0 encoding of a randomly chosen
element. The canonicalizing encoding cence(params, i, α) algorithm takes as input an encoding α
of some element a, and outputs a level-i encoding of a, with re-randomization parameter e. This
canonicalizing encoding algorithm can re-randomize an encoding for a fixed constant number of
re-randomization parameters e. Finally, the zero-testing algorithm isZero(pzt, α) takes as input
a level-k encoding α, and accepts iff α is an encoding of 0. A more elaborate review of these
algorithms can be found in Appendix A.

3 Definitions for Aggregate and ID-based Aggregate Signatures

We now give our definitions for aggregate signatures. In our setting, each aggregate signature is
associated with a multiset S over verification key/message pairs (or identity/message pairs in the
ID-based setting). A set S is of the form {(VK1,M1), . . . , (VK|S|,M|S|)}. Since S is a multiset it is
possible to have (VKi,Mi) = (VKj ,Mj) for i 6= j. All signatures, including those that come out of
the sign algorithm, are considered to be aggregate signatures. The aggregation algorithm is general
in that it can take any two aggregate signatures and combine them into a new aggregate signature.

Our definition allows for an initial trusted setup that will generate a set of common public
parameters PP. This will define a bit length of all messages (and identities). In practice one could
set these fixed lengths to be the output length ` of a collision resistant hash function and allow
arbitrary-length messages/identities by first hashing them down to ` bits. In the ID-based setting,
the authority also produces a master secret key used later to run the key generation algorithm.

We emphasize a few features of our setting. First, aggregation is very general in that it allows for
the combination of any two aggregate signatures into a single one. Some prior definitions required
an aggregate signature to be combined with a single message signature. This is a limitation for
applications where an aggregator comes across two aggregate signatures that is wishes to combine.
The aggregation operation does not require any secret keys. The multiset structure allows one to
combine two aggregate signatures which both include the same message from the same signer.

We begin formally with the ID-based definition, because it is novel to this work, and then
discuss its simpler counterpart.

Authority-Setup(1λ, `, n) The trusted setup algorithm takes as input the security parameter
as well the bit-length ` of messages and bit-length n of the identities. It outputs a common set of
public parameters PP and master secret key MSK.

KeyGen(MSK, I ∈ {0, 1}n) The key generation algorithm is run by the authority. It takes as
input the system master secret key and an identity I, and outputs a secret signing key SKI .

Sign(PP,SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm takes as input a secret signing
key and corresponding identity I ∈ {0, 1}n, the common public parameters as well as a message

6

702

Approved for Public Release; Distribution Unlimited.

M ∈ {0, 1}`. It outputs a signature σ for identity I. We emphasize that a single signature that is
output by this algorithm is considered to also be an aggregate signature.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm takes as input two multisets S̃ and S′ and
purported signatures σ̃ and σ′. The elements of S̃ consist of identity/message pairs {(Ĩ1, M̃1), . . . ,
(Ĩ|S̃|, M̃|S̃|)} and the elements of S′ consist of {(I ′1,M ′1), . . . , (I ′|S′|,M ′|S′|)}. The process produces a

signature σ on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm takes as input the public parameters, a multiset S
of identity and message pairs and an aggregate signature σ. It outputs true or false to indicate
whether verification succeeded.

Correctness The correctness property states that all valid aggregate signatures will pass the
verification algorithm, where a valid aggregate is defined recursively as an aggregate signature
derived by an application of the aggregation algorithm on two valid inputs or the signing algorithm.
More formally, for all integers λ, `, n, k ≥ 1, all PP ∈ Authority-Setup(1λ, `, n), all I1, . . . , Ik ∈
{0, 1}n, all SKIi ∈ KeyGen(PP, Ii), Verify(PP, S, σ) = 1, if σ is a valid aggregate for multiset S
under PP. We say that an aggregate signature σ is valid for multiset S if: (1) S = {(Ii,M)}
for some i ∈ [1, k], M ∈ {0, 1}` and σ ∈ Sign(PP,SKIi , Ii,M); or (2) there exists multisets
S′, S̃ where S = S′ ∪ S̃ and valid aggregate signatures σ′, σ̃ on them respectively such that σ ∈
Aggregate(PP, S̃, S′, σ̃, σ′).

Security Model for Aggregate Signatures. Adapting aggregation [12, 2] to the identity-
based setting takes some care in considering how keys are handled and which query requests the
adversary should be allowed to make. Informally, in the unforgeability game, it should be computa-
tionally infeasible for any adversary to produce a forgery implicating an honest identity, even when
the adversary can control all other identities involved in the aggregate and can mount a chosen-
message attack on the honest identity. This is defined using a game between a challenger and an
adversary A with respect to scheme Π = (Authority-Setup, KeyGen, Sign, Aggregate, Verify).

– ID-Unforg(Π,A, λ, `, n):

Setup. The challenger runs Authority-Setup(1λ, `, n) to obtain PP. It sends PP to A.
Queries. Proceeding adaptively, A can make three types of requests:

1. Create New Key: The challenger begins with an index i = 1 and an empty sequence of
index/identity/private key triples T . On input an identity I ∈ {0, 1}n, the challenger
runs KeyGen(MSK, I) to obtain SKI . It adds the triple (i, I,SKI) to T and then
increments i for the next call. Nothing is returned to the adversary. We note that the
adversary can query this oracle multiple times for the same identity. This will capture
security for applications that might release more than one secret key per identity.

2. Corrupt User: On input an index i ∈ [1, |T |], the challenger returns to the adversary the
triple (i, Ii,SKIi) ∈ T . It returns an error if T is empty or i is out of range.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the challenger obtains the
triple (i, Ii,SKIi) ∈ T (returning an error if it does not exist) and returns the signature
resulting from Sign(PP, SKIi , Ii,M) to A.

7

703

Approved for Public Release; Distribution Unlimited.

Response. Finally, A outputs a multiset S∗ of identity/message pairs and a purported aggregate
signature σ∗.

We say the adversary “wins” or that the output of this experiment is 1 if: (1) Verify(PP, S∗, σ∗) = 1
and (2) there exists an element (I∗,M∗) ∈ S∗ such that M∗ was not queried for a signature by the
adversary on any index corresponding to I∗; i.e., any index i such that (i, I∗, ·) ∈ T . Otherwise,
the output is 0. Define ID-ForgA as the probability that Unforg(Π,A, λ, `, n) = 1, where the
probability is over the coin tosses of the Authority-Setup, KeyGen, and Sign algorithms and of A.

Definition 3.1 (Adaptive Unforgeability) An ID-based aggregate signature scheme Π is exis-
tentially unforgeable with respect to adaptive chosen-message attacks if for all probabilistic polynomial-
time adversaries A, the function ID-ForgA is negligible in λ.

Selective Security. We consider a selective variant to ID-Unforg (selective in both the identity
and the message) where there is an Init phase before the Setup phase, wherein A gives to the
challenger a forgery identity/message pair (I∗ ∈ {0, 1}n,M∗ ∈ {0, 1}`). The adversary cannot
request a signing key for I∗. (It may request that the challenger create one or more keys for this
identity, but it cannot corrupt any user index i associated with I∗.) Moreover, the adversary only
“wins” causing the experiment output to be 1 if the normal checks hold (i.e., its signature verifies
and it did not request that I∗ sign M∗) and additionally (I∗,M∗) appears in S∗.

Non-ID-Based Aggregates and the Distinct Message Variant. We provide security defi-
nitions for the non-ID-based setting in Appendix B that follow from [12, 2]. We provide adaptive
and selective variants. We also identify a weaker “distinct message” security game that is easier
to work with. In Appendix C, we describe and prove secure a simple transformation from distinct
message security to standard aggregate signature security. The transformation captures the idea
of hashing the public key and message together [12, 2] in a modular way. Focusing on distinct
message security allows one to avoid the “rogue key” attack (see Section 4.3). We do not consider
distinct message security in the ID-based setting, because there are no verification keys.

4 Our Base Aggregate Signature Construction

4.1 Generic Multlinear Construction

Setup(1λ, `) The trusted setup algorithm takes as input the security parameter as well as the
length ` of messages. It first runs G(1λ, k = `+1) and outputs a sequence of groups ~G = (G1, . . . ,Gk)
of prime order p, with canonical generators g1, . . . , gk, where we let g = g1.

Next, it outputs random group elements (A1,0, A1,1), . . . , (A`,0, A`,1) ∈ G2
1. These will be

used to compute a function H(M) : {0, 1}` → Gk−1, which serves as the analog of the full do-
main hash function of the BGLS [12] construction. Let m1, . . . ,m` be the bits of message M .
It is computed iteratively as H1(M) = A1,m1 and for i ∈ [2, `], Hi(M) = e(Hi−1(M), Ai,mi).
We define H(M) = H`(M). The public parameters, PP, consist of the group descriptions plus
(A1,0, A1,1), . . . , (A`,0, A`,1).

KeyGen(PP) The key generation algorithm first chooses random α ∈ Zp. It outputs the public
verification key as VK = gα. The secret key SK is α ∈ Zp.

8

704

Approved for Public Release; Distribution Unlimited.

Sign(PP,SK,M ∈ {0, 1}`) The signing algorithm computes the signature as σ = H(M)α ∈ Gk−1.
This serves as an aggregate signature for the (single element) multiset S = (VK,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ · σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as {(VK1,M1), . . . , (VK|S|,M|S|)}. It then

checks that e(σ, g)
?
=
∏
i=1,...,|S| e(H(Mi),VKi) and accepts if and only if it holds.

Correctness To see correctness, an aggregate σ on S = {(VK1,M1), . . . , (VK|S|,M|S|} will be the

product of individual signatures; i.e., σ =
∏|S|
i=1H(Mi)

αi where VKi = gαi , and thus will pass the

verification equation as e(σ, g) = e(
∏|S|
i=1H(Mi)

αi , g) =
∏|S|
i=1 e(H(Mi)

αi , g) =
∏|S|
i=1 e(H(Mi), g)αi =∏|S|

i=1 e(H(Mi), g
αi) =

∏|S|
i=1 e(H(Mi), V Ki).

Efficiency and Tradeoffs An aggregate signature is one group element in Gk−1 independent of
the number of messages aggregated. In a multilinear setting, the space to represent a group element
might grow with k (which is `+1). Indeed, this happens in the GGH [21] graded algebra translation.
One way to mitigate this is to differ the message alphabet size in a tradeoff of computation versus
storage. The above construction uses a binary message alphabet. If it used an alphabet of 2d

symbols, then the aggregate signature could resident in the group G`/d with `/d − 1 pairings

required to compute it, at the cost of the public parameters requiring 2d` group elements in G.

4.2 Construction in the GGH Framework

We give a translation of the above construction to the GGH [21] framework in Appendix E.

4.3 Security Analysis

Assumption 4.1 (Multilinear Computational Diffie-Hellman: k-MCDH) The k-Multilinear
Computational Diffie-Hellman (k-MCDH) problem states the following: A challenger runs G(1λ, k)
to generate groups and generators of order p. Then it picks random c1, . . . , ck ∈ Zp. The assump-
tion then states that given g = g1, g

c1 , . . . , gck it is hard for any poly-time algorithm to compute

g

∏
j∈[1,k] cj

k−1 with better than negligible advantage (in security parameter λ).

We say that the k-MCDH assumption holds against subexponential advantage if there exists a
universal constant ε0 > 0 such that no polynomial-time algorithm can succeed in the experiment
above with probability greater than 2−λ

ε0 . In Section 5.3, we will give a variant of the k-MCDH
assumption in the approximate multilinear maps setting of GGH [21] that we will call the GGH
k-MCDH assumption. We note that the best cryptanalysis available of the GGH framework [21]
suggests that the GGH k-MCDH assumption holds against subexponential advantage.

In Appendix D, we show that the basic aggregate signature scheme for message length ` in the
distinct message unforgeability game is:

• (Theorem D.1) selectively secure under the (`+ 1)-Multilinear Computational Diffie-Hellman
(MCDH) assumption.

9

705

Approved for Public Release; Distribution Unlimited.

• (Corollary D.2) fully secure under the (` + 1)-MCDH assumption against subexponential
advantage.
• (Theorem D.4) fully secure under a non-interactive, parameterized assumption which depends

on `, the number of adversarial signing queries and the number of messages in the adversary’s
forgery.

By applying the simple transformation of Appendix C, the distinct message requirement can be
removed. Without this transformation, there is a simple attack where the attacker sets some VK′ =
VK−1 and submits the identity element in Gk−1 as an aggregate forgery for S = {(VK,M), (VK′,M)}
for any message M of its choosing.

5 Our ID-Based Aggregate Signature Construction

5.1 Generic Multilinear Construction

Authority-Setup(1λ, `, n) The trusted setup algorithm is run by the master authority of the
ID-based system. It takes as input the security parameter as well the bit-length ` of messages
and bit-length n of identities. It first runs G(1λ, k = ` + n) and outputs a sequence of groups
~G = (G1, . . . ,Gk) of prime order p, with canonical generators g1, . . . , gk, where we let g = g1.

Next, it chooses random group elements (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A`,0 = ga`,0 , A`,1 =
ga`,1) ∈ G2

1. It also chooses random exponents (b1,0, b1,1), . . . , (bn,0, bn,1) ∈ Zp2 and sets Bi,β = gbi,β

for i ∈ [1, n] and β ∈ {0, 1}.
These will be used to define a function H(I,M) : {0, 1}n × {0, 1}` → Gk. Let m1, . . . ,m` be

the bits of message M and id1, . . . , idn as the bits of I. It is computed iteratively as

H1(I,M) = B1,id1 for i ∈ [2, n] Hi(I,M) = e(Hi−1(I,M), Bi,idi)

for i ∈ [n+ 1, n+ ` = k] Hi(I,M) = e(Hi−1(I,M), Ai−n,mi−n).

We define H(I,M) = Hk=`+n(I,M).
The public parameters, PP, consist of the group sequence description plus:

(A1,0, A1,1), . . . , (A`,0, A`,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

The master secret key MSK includes PP together with the values (b1,0, b1,1), . . . , (bn,0, bn,1).

KeyGen(MSK, I ∈ {0, 1}n) The signing key for identity I is SKI = g

∏
i∈[1,n] bi,idi

n−1 ∈ Gn−1.

Sign(PP,SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm lets temporary variable D0 =
SKI . Then for i = 1 to ` it computes Di = e(Di−1, Ai,mi) ∈ Gn−1+i. The output signature is

σ = D` = (gk−1)(
∏
i∈[1,n] bi,idi)(

∏
i∈[1,`] ai,mi).

This serves as an ID-based aggregate signature for the (single element) multiset S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ · σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

10

706

Approved for Public Release; Distribution Unlimited.

Verify(PP, S, σ). It parses S as {(I1,M1), . . . , (I|S|,M|S|)}. It then accepts if and only if

e(σ, g)
?
=

∏

i=1,...,|S|
H(Ii,Mi).

Correctness and Security To see correctness, an aggregate σ on S = {(I1,M1), . . . , (I|S|,M|S|)
will be the product of individual signatures; i.e., σi where e(σi, g) = H(Ii,Mi), and thus we have∏|S|
i=1 e(σi, g) = e(

∏|S|
i=1 σi, g) = e(σ, g) =

∏|S|
i=1H(Ii,Mi). We show that this scheme is selectively

secure under the k-MCDH assumption in Appendix F, where the proof is very similar to that of
the GGH translation which we provide shortly in Section 5.3.

5.2 ID-Based Construction in the GGH Framework

We show how to modify our ID-based construction to use the GGH [21] graded algebras analogue
of multilinear maps. Please note that we use the same notation developed in [21], with some minor
changes: Firstly, we use the canonical encoding function cenc provided by the GGH framework
more than once at each level of the encoding, but only a globally fixed constant number of times
per level. This is compatible with the GGH encoding [21], and allows for a simpler exposition of
our scheme and proof. Also, for ease of notation on the reader, we suppress repeated
params arguments that are provided to every algorithm. Thus, for instance, we will write
α ← samp() instead of α ← samp(params). Note that in our scheme, there will only ever be a
single uniquely chosen value for params throughout the scheme, so there is no cause for confusion.
Finally, we use the variant of the GGH framework with “strong” zero-testing, where the zero test
statistically guarantees that a vector is a valid encoding of zero if it passes the zero test. For further
details on the GGH framework, please refer to [21]. See also the summary of [22] as included in
Appendix A.

Authority-Setup(1λ, `, n) The trusted setup algorithm is run by the master authority of the
ID-based system. It takes as input the security parameter as well the bit-length ` of messages and
bit-length n of identities. It then runs (params,pzt)← InstGen(1λ, 1k=`+n). Recall that params will
be implicitly given as input to all GGH-related algorithms below.

Next, it chooses random encodings ai,β = samp() for i ∈ [1, `] and β ∈ {0, 1}; and random
encodings bi,β = samp() for i ∈ [1, n] and β ∈ {0, 1}. Then it assigns Ai,β = cenc1(1, ai,β) for
i ∈ [1, `] and β ∈ {0, 1}; and it assigns Bi,β = cenc1(1, bi,β) for i ∈ [1, n] and β ∈ {0, 1}.

These will be used to compute a function H mapping `+ n bit strings to level k− 1 encodings.
Let m1, . . . ,m` be the bits of M and id1, . . . , idn be the bits of I. It is computed iteratively as

H1(I,M) = B1,id1 for i ∈ [2, n] Hi(I,M) = Hi−1(I,M) ·Bi,idi
for i ∈ [n+ 1, n+ ` = k] Hi(I,M) = Hi−1(I,M) ·Ai−n,mi−n .

We define H(I,M) = cenc2(k,Hk=`+n(I,M)).
The public parameters, PP, consist of the params,pzt plus:

(A1,0, A1,1), . . . , (A`,0, A`,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

Note that params includes a level 1 encoding of 1, which we denote as g.
The master secret key MSK includes PP together with the encodings (b1,0, b1,1), . . . , (bn,0, bn,1).

11

707

Approved for Public Release; Distribution Unlimited.

KeyGen(MSK, I ∈ {0, 1}n) The signing key for identity I is SKI = cenc2(n− 1,
∏
i∈[1,n] bi,idi).

Sign(PP,SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm lets temporary variable D0 =
SKI . Then for i = 1 to ` it computes Di = Di−1 ·Ai,mi . The output signature is

σ = cenc3(k − 1, D`).

This serves as an ID-based aggregate signature for the (single element) multiset S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ + σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as {(I1,M1), . . . , (I|S|,M|S|)}. It rejects if

the multiplicity of any identity/message pair is greater than 2λ.
The algorithm then proceeds to check the signature by setting τ = cenc2(1, g), and testing: :

isZero

pzt, τ · σ −

∑

i=1,...,|S|
H(Ii,Mi)

and accepts if and only if the zero testing procedure outputs true. Recall that g above is a canonical
level 1 encoding of 1 that is included in params, part of the public parameters.

Correctness. Correctness follows from the same argument as for the ID-based aggregate signa-
ture scheme in the generic multilinear setting.

5.3 Proof of Security for ID-based Aggregate Signatures in the GGH framework

We now describe how to modify our proof of security for our ID-based construction to use the
GGH [21] graded algebras analogue of multilinear maps. As before, for ease of notation on the
reader, we suppress repeated params arguments that are provided to every algorithm. For further
details on the GGH framework, please refer to Appendix A or [21].

We begin by describing the GGH analogue of the k-MCDH assumption that we will employ:

Assumption 5.1 (GGH analogue of k-MCDH: GGH k-MCDH) The GGH k-Multilinear
Computational Diffie-Hellman (GGH k-MCDH) problem states the following: A challenger runs
InstGen(1λ, 1k) to obtain (params,pzt). Note that params includes a level 1 encoding of 1, which we
denote as g. Then it picks random c1, . . . , ck each equal to the result of a fresh call to samp().

The assumption then states that given params,pzt, cenc1(1, c1), . . . , cenc1(1, ck) it is hard for any
poly-time algorithm to compute an integer t ∈ [1, 2λ] and an encoding z such that

zTst

pzt, cenc2(1, g) · z − cenc1(k, t ·

∏

j∈[1,k]

cj)

outputs true.

12

708

Approved for Public Release; Distribution Unlimited.

We say the GGH k-MCDH assumption holds against subexponential advantage if there exists
a universal constant ε0 > 0 such that no polynomial-time algorithm can succeed in the experiment
above with probability greater than 2λ

ε0 . The best cryptanalysis available of the GGH frame-
work [21] suggests that the GGH k-MCDH assumption holds against subexponential advantage.

We establish full security of our ID-based aggregate signature scheme conditioned on the k-
MCDH assumption holding against subexponential advantage. This follows immediately from the
following theorem and a standard complexity leveraging argument:

Theorem 5.2 (Selective Security of GGH ID-Based Construction) The ID-based aggregate
signature scheme for message length ` and identity length n in Section 5.2 is selectively secure in
the unforgeability game in Section 3 under the GGH (`+ n)-MCDH assumption.

Corollary 5.3 The ID-based aggregate signature scheme for message length ` in Section 5.2 is
fully secure in the distinct message unforgeability game under the GGH (`+n)-MCDH assumption
against subexponential advantage.

Proof. This follows immediately from a complexity leveraging argument: the security parameter
λ is chosen to ensure that 2λ

ε0 >> 2`, where 2−λ
ε0 is the maximum probability of success allowed

in the k-MCDH assumption against subexponential advantage. Now, to establish full security, the
simulator performs exactly as in the selective security proof, but first it simply guesses the message
that will be forged (instead of expecting the adversary to produce this message). Because this
guess will be correct with probability at least 2−`, and the security parameter λ is chosen carefully,
full security with polynomial advantage (or even appropriately defined subexponential advantage)
implies an attacker on the GGH k-MCDH assumption with subexponential advantage. �
Proof. (of Theorem 5.2) We show that if there exists a PPT adversary A that can break
the selective security of the ID-based aggregate signature scheme in the unforgettability game
with probability ε for message length `, identity length n and security parameter λ, then there
exists a PPT simulator that can break the GGH (`+n)-MCDH assumption for security parameter
λ with probability ε. The simulator takes as input a GGH MCDH instance params,pzt, C1 =
cenc1(1, c1), . . . , Ck = cenc1(1, ck) where k = `+ n. Let mi denote the ith bit of M and idi denote
the ith bit of I. The simulator plays the role of the challenger in the game as follows.

Init. Let I∗ ∈ {0, 1}n and M∗ ∈ {0, 1}` be the forgery identity/message pair output by A.

Setup. The simulator chooses random x1, . . . , x`, y1, . . . , yn with fresh calls to samp(). For i = 1
to `, let Ai,m∗i = Ci+n and Ai,m̄∗i

= cenc1(1, xi). For i = 1 to n, let Bi,id∗i = Ci and

Bi, ¯id∗i
= cenc1(1, yi). We remark that the parameters are distributed independently and

uniformly at random as in the real scheme.

Queries. Conceptually, the simulator will be able to create keys or signatures for the adversary,
because his requests will differ from the challenge identity or message in at least one bit.
More specifically,

1. Create New Key: The simulator begins with an index i = 1 and an empty sequence of
index/identity/private key triples T . On input an identity I ∈ {0, 1}n, if I = I∗, the
simulator records (i, I∗,⊥) in T . Otherwise, the simulator computes the secret key as
follows. Let β be the first index such that idi 6= id∗i . Compute s =

∏
i=1,...,n∧i6=β Bi,idi .

13

709

Approved for Public Release; Distribution Unlimited.

Then compute SKI = cenc2(n − 1, s · yβ). Record (i, I,SKI) in T . Secret keys are
well-formed and, due to the rerandomization in the cenc2 algorithm, are distributed in
a manner statistically exponentially close to the keys generated in the real game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the adversary the
triple (i, Ii, SKIi) ∈ T . It returns an error if T is empty or i is out of range. Recall that
i cannot be associated with I∗ in this game.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the simulator obtains
the triple (i, Ii, SKIi) ∈ T or returns an error if it does not exist. If Ii 6= I∗, then the
simulator signs M with SKIi in the usual way.

If Ii = I∗, then we know M 6= M∗. Let β be the first index such that mβ 6= m∗β.
First compute σ′ =

∏
i=1,...,`∧i6=β Ai,mi . Next, compute σ′′ = σ′ · xi. Also compute γ =∏

i=1,...,nBi,idi . Finally, compute σ = cenc3(k − 1, γ · σ′′) Return σ to A. Signatures are
are well-formed and, due to the rerandomization in the cenc3 algorithm, are distributed
in a manner statistically exponentially close to the keys generated in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗ where (I∗,M∗) ∈
S∗. The simulator will extract from this a solution to the MCDH problem. This works
by iteratively computing all the other signatures in S∗ and then subtracting them out of
the aggregate until only one or more signatures on (I∗,M∗) remain. That is, the simulator
takes an aggregate for S∗ and computes an aggregate signature for S′ where S′ has one less
verification key/message pair than S at each step. These signatures will be computed as in
the query phase.

Eventually, we have an aggregate σ′ on t ≥ 1 instances of (I∗,M∗). However recall that
H(I∗,M∗) is a level k encoding of (

∏
i∈[1,n] bi,id∗i)(

∏
i∈[1,`] ai,m∗i) =

∏
i∈[k] ci. Thus verification

of the signature σ′ implies that (t, σ′) is a solution to the GGH k-MCDH problem, and so the
simulator returns (t, σ′) to break the GGH k-MCDH assumption.

As remarked above, the responses of the challenger are distributed statistically exponentially
closely to the real unforgeability game. The simulator succeeds whenever A does. �

References

[1] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate signatures:
new definitions, constructions and applications. In ACM Conference on Computer and Com-
munications Security, pages 473–484, 2010.

[2] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In ICALP, pages 411–422, 2007.

[3] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof
and improved concrete security for waters’ ibe scheme. In EUROCRYPT, pages 407–424, 2009.

[4] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages
62–73, 1993.

14

710

Approved for Public Release; Distribution Unlimited.

[5] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-diffie-hellman-group signature scheme. In Public Key Cryptography, pages 31–46, 2003.

[6] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications to secure routing.
In ACM Conference on Computer and Communications Security, pages 276–285, 2007.

[7] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223–238, 2004.

[8] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443–459, 2004.

[9] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EUROCRYPT,
pages 56–73, 2004.

[10] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT, pages 440–456, 2005.

[11] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. SIAM
J. Comput., 32(3):586–615, 2003. extended abstract in Crypto 2001.

[12] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
ASIACRYPT, pages 514–532, 2001.

[14] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive, 2002:80, 2002.

[15] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures with lazy
verification from trapdoor permutations - (extended abstract). In ASIACRYPT, pages 644–
662, 2012.

[16] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J.
ACM, 51(4):557–594, 2004.

[17] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, pages 255–271, 2003.

[18] Ying-Ju Chi, Ricardo Oliveira, and Lixia Zhang. Cyclops: The Internet AS-level Observatory.
In ACM SIGCOMM CCR, 2008.

[19] Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the instantiability of hash-and-sign rsa
signatures. In TCC, pages 112–132, 2012.

[20] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecurity of the
full domain hash. In CRYPTO, pages 449–466, 2005.

[21] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices
and applications. In EUROCRYPT, 2013.

15

711

Approved for Public Release; Distribution Unlimited.

[22] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based
encryption for circuits from multilinear maps. In CRYPTO, 2013.

[23] Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT,
pages 445–464, 2006.

[24] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Public Key Cryp-
tography, pages 257–273, 2006.

[25] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASIACRYPT, pages
548–566, 2002.

[26] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key cryp-
tosystem. In ANTS, pages 267–288, 1998.

[27] Dennis Hofheinz, Tibor Jager, and Edward Knapp. Waters signatures with optimal security
reduction. In Public Key Cryptography, pages 66–83, 2012.

[28] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. J.
Cryptology, 25(3):484–527, 2012.

[29] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large
input spaces. In EUROCRYPT, pages 656–672, 2010.

[30] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EURO-
CRYPT, pages 568–588, 2011.

[31] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggre-
gate signatures and multisignatures without random oracles. In EUROCRYPT, pages 465–485,
2006.

[32] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate
signatures from trapdoor permutations. In EUROCRYPT, pages 74–90, 2004.

[33] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: ex-
tended abstract. In ACM Conference on Computer and Communications Security, pages
245–254, 2001.

[34] Moni Naor and Omer Reingold. Constructing pseudo-random permutations with a prescribed
structure. J. Cryptology, 15(2):97–102, 2002.

[35] Gregory Neven. Efficient sequential aggregate signed data. IEEE Transactions on Information
Theory, 57(3):1803–1815, 2011.

[36] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on the fiat-shamir
scheme. In ASIACRYPT, pages 139–148, 1991.

[37] Tatsuaki Okamoto. A digital multisignature schema using bijective public-key cryptosystems.
ACM Trans. Comput. Syst., 6(4):432–441, 1988.

[38] Markus Rückert and Dominique Schröder. Aggregate and verifiably encrypted signatures from
multilinear maps without random oracles. In ISA, pages 750–759, 2009.

16

712

Approved for Public Release; Distribution Unlimited.

[39] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,
1984.

[40] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114–127, 2005.

[41] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple
assumptions. In CRYPTO, pages 619–636, 2009.

A Background on GGH

In this section, we provide some background on the GGH framework. We use the GGH framework
in a manner very similar to the way it was used in the recent work of Garg, Gentry, Halevi, Sahai,
and Waters on constructing Attribute-Based Encryption for Circuits [22]. For consistency, the
following text is taken verbatim from [22]:

A.1 Graded Encoding Systems: Definition

Garg, Gentry and Halevi (GGH) [21] defined an “approximate” version of a multilinear group family,
which they call a graded encoding system. As a starting point, they view gαi in a multilinear group
family as simply an encoding of α at “level-i”. This encoding permits basic functionalities, such as
equality testing (it is easy to check that two level-i encodings encode the same exponent), additive
homomorphism (via the group operation in Gi), and bounded multiplicative homomorphism (via
the multilinear map e). They retain the notion of a somewhat homomorphic encoding with equality
testing, but they use probabilistic encodings, and replace the multilinear group family with “less
structured” sets of encodings related to lattices.

Abstractly, their n-graded encoding system for a ring R includes a system of sets S = {S(α)
i ⊂

{0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n], the sets {S(α)
i : α ∈ R} are disjoint

(and thus form a partition of Si :=
⋃
α S

(α)
i). The set S

(α)
i consists of the “level-i encodings of α”.

Moreover, the system comes equipped with efficient procedures, as follows:3

Instance Generation. The randomized InstGen(1λ, 1n) takes as input the security parameter λ
and integer n. The procedure outputs (params,pzt), where params is a description of an
n-graded encoding system as above, and pzt is a level-n “zero-test parameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S0, such that

the induced distribution on α such that a ∈ S(α)
0 is statistically uniform.

Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [n] and a level-zero encoding

a ∈ S(α)
0 for some α ∈ R, and outputs a level-i encoding u ∈ S(α)

i for the same α.

Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings to the same
level, as long as the initial encoding is under a given noise bound. Specifically, for a level

i ∈ [n] and encoding u ∈ S(α)
i , it outputs another encoding u′ ∈ S(α)

i . Moreover for any two

3Since GGH’s realization of a graded encoding system uses “noisy” encodings over ideal lattices, the procedures
incorporate information about the magnitude of the noise.

17

713

Approved for Public Release; Distribution Unlimited.

encodings u1, u2 ∈ S
(α)
i whose noise bound is at most some b, the output distributions of

reRand(params, i, u1) and reRand(params, i, u2) are statistically the same.

Addition and negation. Given params and two encodings at the same level, u1 ∈ S
(α1)
i and

u2 ∈ S(α2)
i , we have add(params, u1, u2) ∈ S(α1+α2)

i , and neg(params, u1) ∈ S(−α1)
i , subject to

bounds on the noise.

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

, we have mult(params, u1, u2) ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S(0)
n and 0 otherwise. Note that

in conjunction with the procedure for subtracting encodings, this gives us an equality test.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements
from their level-n encoding. Namely ext(params,pzt, u) outputs (say) K ∈ {0, 1}λ, such that:

(a) With overwhelming probability over the choice of α ∈ R, for any two u1, u2 ∈ S
(α)
n ,

ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈ R, u ∈ S
(α)
n } is statistically uniform over

{0, 1}λ.

We can extend add and mult to handle more than two encodings as inputs, by applying the
binary versions of add and mult iteratively. Also, it is convenient to define a canonicalized encoding
algorithm cenc`params, i, a) which takes as input encoding of a and generates another encoding
according to a “nice” distribution. The parameter ` denotes that the noise introduced with `
successive invocations of the reRand operation. This parameter was implicit in [21] encoding scheme
and we make it explicit. This parameter essentially captures the noise present in the encodings.
In our scheme we will need to re-randomize at most a constant number of times and hence the
maximum value ` takes will be a small constant.

A.2 Graded Encoding Systems: Realization

Concretely, GGH’s n-graded encoding system works as follows. (This is a whirlwind overview; see
[21] for details.) The system uses three rings. First, it uses the ring of integers O of the m-th
cyclotomic field. This ring is typically represented as the ring of polynomials O = Z[x]/(Φm(x)),
where Φm(x) is the m-th cyclotomic polynomial, which has degree N = φ(m). Second, for some
suitable integer modulus q, it uses the quotient ring O/(q) = Zq[x]/(Φm(x)), similar to the NTRU
encryption scheme [26]. The encodings live in O/(q). Finally, it uses the quotient ring R = O/I,
where I = 〈g〉 is a principal ideal of O that is generated by g and where |O/I| is a large prime.
This is the ring “R” referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an element of S
(α)
i – that

is, a level-i encoding of α ∈ R – has the form e/zi ∈ O/(q), where e ∈ O is a “small” representative
of the coset α + I (it has coefficients that are very small compared to q). To add encodings

e1/z
i ∈ S(α1)

i and e2/z
i ∈ S(α2)

i , just add them in O/(q) to obtain (e1 + e2)/zi, which is in S
(α1+α2)
i

if e1 + e2 is “small”. To mult encodings e1/z
i1 ∈ S(α1)

i1
and e2/z

i2 ∈ S(α2)
i2

, just multiply them in

O/(q) to obtain e1 ·e2/z
i1+i2 , which is in S

(α1·α2)
i1+i2

if e1 ·e2 is “small”. This smallness condition limits
the GGH encoding system to degree polynomial in the security parameter. Intuitively, dividing
encodings does not “work”, since the resulting denominator has a nontrivial term that is not z.

18

714

Approved for Public Release; Distribution Unlimited.

The GGH params allow everyone to generate encodings of random (known) values. The params
include a level-1 encoding of 1 (from which one can generate encodings of 1 at other levels), and
(for each i ∈ [n]) a sufficient number of level-i encodings of 0 to enable re-randomization. To encode
(say at level-1), run samp(params) to sample a small element a from O, e.g. according to a discrete
Gaussian distribution. For a Gaussian with appropriate deviation, this will induce a statistically
uniform distribution over the cosets of I. Then, multiply a with the level-1 encoding of 1 to get
a level-1 encoding u of a ∈ R. Finally, run reRand(params, 1, u), which involves adding a random
Gaussian linear combination of the level-1 encodings of 0, whose noisiness (i.e., numerator size)
“drowns out” the initial encoding. The parameters for the GGH scheme can be instantiated such
that the re-randomization procedure can be used for any pre-specified polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0, GGH publishes a
level-n zero-test parameter pzt = hzn/g, where h is “somewhat small”4 and g is the generator of I.
The procedure isZero(params,pzt, u) simply computes pzt · u and tests whether its coefficients are
small modulo q. If u encodes 0, then e ∈ I and equals g ·c for some (small) c, and thus pzt ·u = h ·c
has no denominator and is small modulo q. If u encodes something nonzero, pzt · u has g in the
denominator and is not small modulo q. The ext(params,pzt, u) procedure works by applying a

strong extractor to the most significant bits of pzt · u. For any two u1, u2 ∈ S(α)
n , we have (subject

to noise issues) u1 − u2 ∈ S(0)
n , which implies pzt(u1 − u2) is small, and hence pzt · u1 and pzt · u2

have the same most significant bits (for an overwhelming fraction of α’s).
Garg et al. provide an extensive cryptanalysis of the encoding system, which we will not

review here. We remark that the underlying assumptions are stronger, but related to, the hardness
assumption underlying the NTRU encryption scheme: that it is hard to distinguish a uniformly
random element from O/(q) from a ratio of “small” elements – i.e., an element u/v ∈ O/(q) where
u, v ∈ O/(q) both have coefficients that are on the order of (say) qε for small constant ε.

B Definitions for Aggregate Signatures

We introduced our general definitional setting in Section 3. Now, for our regular aggregate security
definition, we define adaptive and selective variants. We also identify a slightly weaker “distinct
message” security game that is easier to work with. In Appendix C, we describe and prove secure
a simple transformation from distinct message security to standard aggregate signature security.
The transformation captures the idea of hashing the public key and message together [12, 2] in a
modular way.

An aggregate signature scheme is comprised of the following algorithms:

Setup(1λ, `) The trusted setup algorithm takes as input the security parameter as well the bit-
length ` of messages. It outputs a common set of public parameters PP.

KeyGen(PP) The key generation algorithm takes as input the system public parameters and
outputs a signature verification key and secret key pair (VK, SK).

4Its coefficients are on the order of (say) q2/3, while other terms – such as a numerator e or the principal ideal
generator g – are much, much smaller.

19

715

Approved for Public Release; Distribution Unlimited.

Sign(PP,SK,M ∈ {0, 1}`) The signing algorithm takes as input a secret signing key, the common
public parameters as well as a message M ∈ {0, 1}`. It outputs a signature σ. We emphasize that
a single signature that is output by this algorithm is considered to also be an aggregate signature.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm takes as input two multisets S̃ and S′,
two purported signatures on these multisets and the public parameters. The elements of S̃ consist
of verification key/message pairs {(ṼK1, M̃1), . . . , (ṼK|S̃|, M̃|S̃|)} and the elements of S consist of

{(VK′1,M
′
1), . . . , (VK′|S′|,M

′
|S′|)}. The process produces a signature σ on the multiset S = S̃ ∪ S′,

where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm takes a input the public parameters, a multiset S of
verification key/message pairs and a purported aggregate signature σ. It outputs true or false to
indicate whether verification succeeded.

Correctness The correctness property states that all valid aggregate signatures will pass the
verification algorithm, where a valid aggregate is defined recursively as an aggregate signature
derived by an application of the aggregation algorithm on two valid inputs or the signing algorithm.
More formally, for all integers λ, `, k ≥ 1, all PP ∈ Setup(1λ, `), all (VKi,SKi) ∈ KeyGen(PP) for
i = 1 to k, Verify(PP, S, σ) = 1, if σ is a valid aggregate for multiset S under PP. We say that an
aggregate signature σ is valid for multiset S if: (1) S = {(VKi,M)} for some i ∈ [1, k], M ∈ {0, 1}`
and σ ∈ Sign(PP,SKi,M); or (2) there exists multisets S′, S̃ where S = S′ ∪ S̃ and valid aggregate
signatures σ′, σ̃ on them respectively such that σ ∈ Aggregate(PP, S̃, S′, σ̃, σ′).

B.1 Security Model for Aggregate Signatures

We define the adaptive security game as in [12, 2]. Informally, it should be computationally
infeasible for any adversary to produce a forgery implicating an honest signer, even when the
adversary can control all other keys involved in the aggregate and can mount a chosen-message
attack on the honest signer. This is defined using a game between a challenger and an adversary
A with respect to scheme Π = (Setup, KeyGen, Sign, Aggregate, Verify).

– Unforg(Π,A, λ, `):
Setup. The challenger runs Setup(1λ, `) to obtain PP and KeyGen(PP) to obtain (VK, SK). It

sends (PP,VK) to A.
Queries. Proceeding adaptively, A requests signatures under VK on `-bit messages of his choice.
Response. Finally, A outputs a multiset S∗ of verification key/message pairs and a purported

aggregate signature σ∗.

We say the adversary “wins” or that the output of this experiment is 1 if: (1) Verify(PP, S∗, σ∗) = 1
and (2) there exists an element (VK,M∗) ∈ S∗ such that M∗ was not queried for a signature by the
adversary. Otherwise, the output is 0. Define ForgA as the probability that Unforg(Π,A, λ, `) = 1,
where the probability is over the coin tosses of the Setup, KeyGen, and Sign algorithms and of A.

Definition B.1 (Adaptive Unforgeability) An aggregate signature scheme Π is existentially
unforgeable with respect to adaptive chosen-message attacks if for all probabilistic polynomial-time
adversaries A, the function ForgA is negligible in λ.

20

716

Approved for Public Release; Distribution Unlimited.

Selective Security. We consider a selective variant to Unforg where there is an Init phase
before the Setup phase, wherein A gives to the challenger the forgery message M∗ ∈ {0, 1}`. This
message M∗ cannot be queried for a signature and yet (VK,M∗) must appear in S∗.

Distinct Message Security. We consider a distinct message variant to Unforg, where the
game is the same as above, but we change how we define the experiment output. The output of the
experiment is 1 if and only if: (1) it was 1 in the Unforg game, and (2) the message M∗ was not
associated with any other signer. That is, for all (V Ki,Mi) ∈ S∗, if V Ki 6= VK, then Mi 6= M∗.
(The forgery message M∗ could be associated with the key VK multiple times. This is allowed.)

C Transforming Distinct Message Security into Standard Security

In this section, we show how to transform any aggregate signature scheme proved in the distinct
message security game into one which is secure in the standard security game. This will apply to
both the selective and full security games. We remind the reader that distinct message security is
not used in the ID-based setting, so we consider only regular signatures here.

The transformation essentially captures and modularizes idea of Boneh, Gentry, Lynn and
Shacham [12], which was formally captured by Bellare, Namprempre, and Neven [2], of hashing the
public key and message to get an output that is plugged in as the message for the core scheme.
To execute this transformation the message length, `, of the core scheme must be as large as the
output of a collision-resistant hash function. We give the construction.

Let Π =(Setup, KeyGen, Sign, Aggregate, Verify) be an aggregate signature scheme for message
length `. Let H : {0, 1}∗ → {0, 1}` be a collision resistant hash function. We build a second
aggregate signature scheme Π′ derived from Π as follows. The public parameters now include the
description of H. Keys are generated as before. To sign a message M ∈ {0, 1}∗ for the user
associated with verification key VK, first compute M ′ = H(VK,M) and then run the regular
signing algorithm on M ′. Aggregation works the same as before. The verification algorithm re-
computes M ′i = H(VKi,Mi) for each (VKi,Mi) ∈ S and treats these as the messages in the regular
verification algorithm.

Lemma C.1 (Distinct Message to Standard Transformation) If Π is an adaptively (resp.,
selectively), distinct message secure aggregate signature scheme for message length ` and H :
{0, 1}∗ → {0, 1}` is a collision-resistant hash function, then Π′ as defined above is an adaptively
(reps., selectively) secure aggregate signature scheme.

Proof. We argue that any PPT adversary A′ against Π′ can be turned into a PPT adversary A
that breaks either Π in the distinct message game or finds a collision in H. Let σ∗ be the forgery
on S∗ submitted by the adversary at the end of the standard security game. Let M ′1, . . . ,M

′
|S| be

derived as M ′i = H(VKi,Mi) for each entry (VKi,Mi) in S∗. We consider two cases.
First, suppose there exists some M ′i ,M

′
j such that M ′i = M ′j and yet (VKi,Mi) 6= (VKj ,Mj).

Then, the simulator can use the adversary to find a collision in the hash function sinceH(VKi,Mi) =
H(VKj ,Mj) and the inputs are not equal.

Otherwise, it must be the case that if M ′i = M ′j , then (VKi,Mi) = (VKj ,Mj). Thus, the
adversary is not violating the distinct message property since there cannot be VKi 6= VKj where
M ′i = M ′j . The simulator can reduce to the security of the underlying distinct message secure
scheme. �

21

717

Approved for Public Release; Distribution Unlimited.

There are alternatives to proving security in the distinct message setting and then applying the
above transformation, which have been explored in prior works. One possibility is to require public
keys to be registered with some authority, where registration is contingent upon proving knowledge
of the secret key to the authority. Verification only proceeds if the public key includes a registration
certificate from the authority. Alternatively, one could include a non-interactive zero knowledge
proof of knowledge of the private key as part of the private key. Verification only proceeds after
the verifier checks the NIZKs. While we choose the distinct message plus transformation route, we
expect these other alternatives would be viable with only minor technical modifications.

D Security of the Base Construction

We provide three claims on the security of the generic, base construction from Section 4.1. The
proofs for the translation to the GGH framework follow along the same lines from these and the
proof of the ID-Based construction in the GGH framework.

D.1 Security against Selective or Subexponential Advantage Attacks

The k-Multilinear Computational Diffie-Hellman (k-MDDH) assumption was defined in Section 4.3.
We establish full security of our basic aggregate signature scheme conditioned on the k-MCDH
assumption holding against subexponential advantage. This follows immediately from the following
theorem and a standard complexity leveraging argument:

Theorem D.1 (Selective Security of Base Construction) The aggregate signature scheme for
message length ` in Section 4.1 is selectively secure in the distinct message unforgeability game un-
der the (`+ 1)-MCDH assumption.

Corollary D.2 The aggregate signature scheme for message length ` in Section 4.1 is fully secure
in the distinct message unforgeability game under the (` + 1)-MCDH assumption against subexpo-
nential advantage.

Proof. This follows immediately from a complexity leveraging argument: the security parameter
λ is chosen to ensure that 2λ

ε0 >> 2`, where 2−λ
ε0 is the maximum probability of success allowed

in the k-MCDH assumption against subexponential advantage. Now, to establish full security, the
simulator performs exactly as in the selective security proof, but first it simply guesses the message
that will be forged (instead of expecting the adversary to produce this message). Because this
guess will be correct with probability at least 2−`, and the security parameter λ is chosen carefully,
full security with polynomial advantage (or even appropriately defined subexponential advantage)
implies an attacker on the k-MCDH assumption with subexponential advantage. �
Proof. (of Theorem D.1) We show that if there exists a PPT adversary A that can break the
selective security of the aggregate signature scheme in the distinct message unforgeability game with
probability ε for message length ` and security parameter λ, then there exists a PPT simulator
that can break the (` + 1)-MCDH assumption for security parameter λ with probability ε. The
simulator takes as input a MCDH instance (g, gc1 , . . . , gck) together with the group descriptions
where k = `+ 1. The simulator plays the role of the challenger in the game as follows.

Init. Let M∗ ∈ {0, 1}` be the forgery message output by A.

22

718

Approved for Public Release; Distribution Unlimited.

Setup. The simulator chooses random x1, . . . , x` ∈ Zp. Let Ai,m∗i = gci and Ai,m̄∗i
= gxi . Set

the challenge verification key as VK∗ = gck . We remark that the parameters are distributed
independently and uniformly at random as in the real scheme.

Queries. The simulator can sign any of A’s message requests using the multilinear map. Let
M ∈ {0, 1}` be the request. The key point is that since M 6= M∗ there will be at least one i
where xi is used (and xi is known to the simulator). So at most ` of the k = `+ 1 parameters
associated with ci will need to be accumulated to make σ which is doable. That is, letting β
be the first index such that mβ 6= m∗β, compute the pairing of all `− 1 elements Ai,mi where
i 6= β together with VK∗ and denote this σ′. This requires ` − 1 pairings resulting in an
element in Gk−1. Next compute σ = σ′xβ and return σ. Signatures are unique and perfectly
distributed as in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗ where (VK∗,M∗) ∈
S∗. The simulator will extract from this a solution to the MCDH problem. This works
by iteratively computing all the other signatures in S∗ and then dividing them out of the
aggregate until only one or more signatures on (VK∗,M∗) remain. That is, the simulator
takes an aggregate for S∗ and computes an aggregate signature for S′ where S′ has one less
verification key/message pair than S at each step. These signatures will be peeled off in one
of two ways. If the signature is under key VK∗, then it can be computed as in the query
phase. If the signature is under key VK 6= VK∗, then due to the distinct message restriction,
we know M 6= M∗. Thus, there is some β where mβ 6= m∗β. The signature can be computed
similarly to the query phase by pairing VK with all Ai,mi where i 6= β and then raising the
result to xβ. To help see why this works, recall that these signatures are unique.

Eventually, we have an aggregate σ′ on t ≥ 1 instances of (VK∗,M∗). We have that e(σ′, g) =

e(H(M∗), V K∗)t = g
t
∏k
i=1 ci

k and thus σ′ = g
t
∏k
i=1 ci

k−1 . The simulator computes σ′1/t (recall

that t is not 0 mod p) which gives g
∏k
i=1 ci

k−1 and this is given as the solution to the MCDH
problem.

As remarked in the Setup and Query phase, the responses of the challenger are distributed
identically to the real unforgeability game. The simulator succeeds whenever A does. �

D.2 Security against Adaptive Attacks

We now give an adaptive proof of security under a polynomial assumption (as opposed to the
subexponential advantage assumption necessary to achieve full security given previously). We
will employ a parameterized assumption family, where the choice of assumption depends on the
adversary’s behavior. It can be viewed as a modification/adaptation of the computation Bilinear-
Diffie Hellman Assumption (introduced by Boneh, Boyen, and Goh [10]) to the multilinear map
setting.

Assumption D.3 ((n, k)-Modified Multilinear Computational Diffie-Hellman Exponent)
The (n, k)-Modified Multilinear Computational Diffie-Hellman Exponent ((n, k)-MMCDHE) prob-
lem states the following: A challenger runs G(1λ, k) to generate groups and generators of order p.
Then it picks random a, b, c ∈ Zp.

23

719

Approved for Public Release; Distribution Unlimited.

The assumption then states that given

g = g1, g
b, ∀i ∈ [1, n] ga

ic, ∀i 6= n ∈ [1, 2n] (gk−2)a
ick−1

it is hard to compute (gk−1)a
nck−1b with better than negligible advantage (in security parameter λ).

The above assumption is only defined for k ≥ 3 due to the reference of the gk−2 generator.
Intuitively, our proof will follow in the Waters [40] framework. Waters gave a technique for

partitioning approximately a (hidden) 1/Q fraction of messages to be useful as challenge forgeries
and the other 1−1/Q to be messages a reduction algorithm could create signatures on. 5 Typically,
one sets Q to be the maximum number of queries made by the adversary, although in this case, we
must also add in the messages involved in the adversary’s forgery aggregate signature. We will use
a multiplicative analog of the technique which is closer to the VRF analysis of Hohenberger and
Waters [29].

Theorem D.4 (Adaptive Security of Base Construction) The aggregate signature scheme for
message length ` in Section 4.1 is adaptively secure in the distinct message unforgeability game un-
der the (4Q(` + 2), ` + 1)-MMCDHE assumption, where Q is the number of signing queries made
by the adversary plus one minus the number of distinct messages in the forgery aggregate.

Proof. We show that if there exists a PPT adversary A that can break the adaptive security of
the aggregate signature scheme in the distinct message unforgeability game with probability ε for
message length `, security parameter λ, making at most Q signing queries and Q′ distinct messages
in the forgery aggregate, then there exists a PPT simulator that can break the (n, k)-MMCDHE
assumption for security parameter λ with probability ≥ 3ε

64Q(`+1) .
The simulator takes as input an MMCDHE instance

(g, gb, ∀i ∈ [1, n] ga
ic, ∀i 6= n ∈ [1, 2n] (gk−2)a

ick−1
)

together with the group descriptions where n = 4Q(`+ 2) and k = `+ 1. The simulator’s challenge

is to compute (gk−1)a
nc(k−1)b = (gk−1)a

nc`b. The simulator plays the role of the challenger in the
game as follows.

Setup. The simulator first sets an integer z = 4Q and chooses an integer t uniformly at random
between 0 and `. Recall that Q is the number of queries made by the adversary plus one
minus the number of distinct messages in S∗ that forms the forgery aggregate and ` is the
message bit-length. It then chooses random integers r1,0, r1,1, . . . , r`,0, r`,1, r

′ between 0 and
z − 1. Additionally, the simulator chooses random values s1,0, s1,1, . . . , s`,0, s`,1 ∈ Zp∗. These
values are all kept internal to the simulator. Intuitively, the r values will be used to embed the
challenge, while the s values will be used as blinding factors to present the proper distribution
to the adversary.

Let mi denote the ith bit of M . For M ∈ {0, 1}`, define the functions:

C(M) = zt+ r′ +
∑̀

i=1

ri,mi , J(M) =
∏̀

i=1

si,mi

5There exists some variants of this technique [3, 28, 27] with different loss tradeoffs. We believe these tradeoffs
are applicable to our setting, but we choose to stick closest to the original analysis.

24

720

Approved for Public Release; Distribution Unlimited.

For M ∈ {0, 1}`, define the binary function:

K(M) =

{
0 if r′ +

∑`
i=1 ri,mi ≡ 0 mod z;

1 otherwise.

If the function K outputs 1 on a given message, then we know that the simulator will be
able to correctly produce a signature on this message. If the function outputs 0, then the
simulator may or may not be able to do it. This function will be used in later analysis.

The simulator sets the public parameters asA1,0 = (ga
(zt+r′+r1,0)c)s1,0 , A1,1 = (ga

(zt+r′+r1,1)c)s1,1 ,

and Ai,0 = (ga
ri,0c)si,0 and Ai,1 = (ga

ri,1c)si,1 for i = 2 to `. The simulator can compute
these values from the challenge input since all powers of a in the exponent are at most
zt + 2(z − 1) = 4Q(` + 2) − 2 < n for any possible choice of r′, ri, t. It sets the challenge
verification key as VK∗ = gb. It passes the public information to the adversary. We remark
that the parameters are distributed independently and uniformly at random as in the real
scheme.

Queries. The adversary will ask for signatures under the challenge verification key. On message
input M , the simulator first checks if C(M) = n and aborts if this is true. Otherwise, it
outputs the signature as

σ = e(gb, ga
C(M)ck−1

k−2)J(M) = g
baC(M)c`J(M)
k−1 .

Given the above settings, we can verify that for any value of M ∈ {0, 1}`, the maximum value
of C(M) is z`+ (`+ 1)(z − 1) < 2z(`+ 1) = 2n. Thus, if C(M) 6= n, then the simulator can
correctly compute the signature.

Response. Eventually, the adversary will output a multiset S∗ of verification key/message pairs
and a purported aggregate signature σ∗ such that:

1. Verify(PP, S∗, σ∗) = 1, and

2. there exists an element (VK,M∗) ∈ S∗ such that M∗ was not one of the adversary’s
signature query inputs, and

3. the message M∗ is not signed by any other signer. (This is the distinct message require-
ment.)

If C(M∗) 6= n, then the simulator will abort. The goal is that the forgery message will fall
into the “hole” of the assumption and that all other messages with not.

If C(M∗) = n, then the simulator will now work to extract a forgery on M∗ from the aggregate
by calculating the other signatures and then removing them from the aggregate. These can
come both from the challenge signer and other signers. The simulator does this as follows:

Signatures from other signers. For (VK′,M) where VK′ = gb
′ 6= VK, if C(M) = n, then the

simulator aborts. Otherwise, it computes the signature as

σ = e(VK′, ga
C(M)ck−1

k−2)J(M) = g
b′aC(M)c`J(M)
k−1 .

25

721

Approved for Public Release; Distribution Unlimited.

Signatures from challenge signer. For (VK,M) where M 6= M∗, if C(M) = n, then the
simulator aborts. Otherwise, it computes the signature as

σ = e(gb, ga
C(M)ck−1

k−2)J(M) = g
baC(M)c`J(M)
k−1 .

Extracting the response. Once these signatures are calculated they can be removed from the
aggregate by division, resulting in an aggregate on w ≥ 1 (non-multiple of p) signatures by
the challenge signer on M∗. The uniqueness of this scheme dictates that this aggregate is:

σ′ = ((gk−1)ba
C(M∗)c`)J(M∗)w = ((gk−1)ba

nck−1
)J(M∗)w

and raising σ′ to 1/(J(M∗)w) results in (gk−1)ba
nck−1

, the solution to the MMCDHE instance.
Recall that w is not a multiple of the group order p. J(M∗) is a product of elements from
Zp∗ where p is prime and therefore will also have an inverse modulo p.

A Series of Games Analysis. We now argue that any successful adversaryA against our scheme
will have success in the game presented by the simulator. To do this, we first define a sequence of
games, where the first game models the real security game and the final game is exactly the view
of the adversary when interacting with the simulator. We then show via a series of claims that if
A is successful in Game j, then it will also be successful in Game j + 1.

Game 1: This game is defined to be the same as the distinct message unforgeability game.

Game 2: The same as Game 1, with the exception that we keep a record of each signing query
made by A concatenated together with each distinct message in the forgery multiset S∗ minus
M∗. We’ll denote ~M = (M0,M1,M2,,MQ). Without loss of generality, let M0 = M∗. At
the end of the game, we set z = 4Q and choose random integers ~r = (r1,0, r1,1, . . . , r`,0, r`,1, r

′)
between 0 and z − 1 and a random integer t between 0 and `. We define the regular abort
function:

regabort(~M,~r, t) =

{
1 if C(M∗) 6= n

∨Q
i=1 K(Mi) = 0;

0 otherwise.

This function evaluates to 0 if the queries and forgery messages will not cause a regular
abort by the simulator for the given choice of simulation values. Consider the probabil-
ity over all simulation values for the given set of queries and forgery messages as ζ(~M) =
Pr~r,t[regabort(~M,~r, t) = 0].

As in [40], the simulator estimates ζ(~M) as ζ ′ by evaluating τ(~M,~r, t) with fresh random
~r, t values a total of O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) times, where ζmin = 1

8Q(`+1) . This does not
require running the adversary again.

The adversary’s success in the game is determined as follows:

1. Regular Abort. If regabort(~M,~r, t) = 1, then the adversary wins.

2. Balancing (Artificial) Abort. Let ζmin = 1
8Q(`+1) as derived from Claim D.5. If ζ ′ ≥ ζmin,

the simulator will abort with probability ζ′−ζmin
ζ′ (not abort with probability ζmin

ζ′). If it
aborts, then the adversary wins.

26

722

Approved for Public Release; Distribution Unlimited.

3. Otherwise, the adversary wins if and only if it outputs a valid forgery.

Game 3: The same as Game 2, with the exception that the simulator tests if any abort conditions
are satisfied, with each new query or response from the adversary, and if so, follows the abort
procedure immediately instead of waiting until the end.

Game 3 is exactly the view of the adversary when interacting with the simulator. We will
shortly prove that if A succeeds in Game 1 with probability ε, then it succeeds in Game 3 with
probability ≥ 3ε

64Q(`+1) .

Claims Regarding the Probability of Aborting. We now establish one claim which was
referenced above and two claims which will be needed shortly. Our first claim helps us establish a
minimum probability that a given set of queries/forgery sets do not cause a regular abort. We use
this minimum during our balancing abort in Game 2, to “even out” the probability of an abort over
all possible queries/forgery sets. In the next two claims, we employ Chernoff Bounds to establish
upper and lower bounds for any abort (regular or balancing) for any adversary behavior. The latter
two claims will be used in the analysis of the adversary’s probability of success in Game 2.

Proofs of these claims are similar to related arguments in [40, 29], but we include them here for
completeness.

Claim D.5 Let ζmin = 1
8Q(`+1) . For any vector ~M , ζ(~M) ≥ ζmin.

Proof. In other words, the probability of the simulation not triggering a general abort is at least
ζmin. This analysis follows that of [40], which we reproduce here for completeness. Without loss
of generality, we can assume the adversary always makes the maximum Q queries and number of
distinct messages in the output forgery set (since the probability of not aborting increases with
fewer queries/smaller output set size). Fix an arbitrary ~M = (M∗,M1, . . . ,MQ) ∈ {0, 1}(Q+1)×`.

27

723

Approved for Public Release; Distribution Unlimited.

Then, with the probability over the choice of ~r, t, we have that Pr[abort on ~M] is

= Pr[

Q∧

i=1

K(Mi) = 1 ∧ C(M∗) = n)] (1)

= (1− Pr[

Q∨

i=1

K(Mi) = 0]) Pr[(zt+ r′ +
∑̀

i=1

ri,m∗i = n)|
Q∧

i=1

K(Mi) = 1] (2)

≥ (1−
Q∑

i=1

Pr[K(Mi) = 0]) Pr[(zt+ r′ +
∑̀

i=1

ri,m∗i = n)|
Q∧

i=1

K(Mi) = 1] (3)

= (1− Q

z
) · Pr[(zt+ r′ +

∑̀

i=1

ri,m∗i = n) |
Q∧

i=1

K(Mi) = 1] (4)

=
1

`+ 1
· (1− Q

z
) · Pr[K(M∗) = 0 |

Q∧

i=1

K(Mi) = 1] (5)

=
1

`+ 1
· (1− Q

z
) · Pr[K(M∗) = 0] · Pr[

∧Q
i=1K(Mi) = 1] | K(M∗) = 0]

Pr[
∧Q
i=1K(Mi) = 1]]

(6)

≥ 1

(`+ 1)z
· (1− Q

z
) · Pr[

Q∧

i=1

K(Mi) = 1] | K(M∗) = 0] (7)

=
1

(`+ 1)z
· (1− Q

z
) · (1− Pr[

Q∨

i=1

K(Mi) = 0] | K(M∗) = 0]) (8)

≥ 1

(`+ 1)z
· (1− Q

z
) · (1−

Q∑

i=1

Pr[K(Mi) = 0] | K(M∗) = 0]) (9)

=
1

(`+ 1)z
· (1− Q

z
)2 (10)

≥ 1

(`+ 1)z
· (1− 2Q

z
) (11)

=
1

8Q(`+ 1)
(12)

Equations 4 and 7 derive from Pr[K(M) = 0] = 1
z for any query M . Equation 5 gets a factor of

1
`+1 from the simulator taking a guess of t. Equation 6 follows from Bayes’ Theorem. Equation 10
follows from the pairwise independence of the probabilities that K(M) = 0,K(M ′) = 0 for any
pair of queries M 6= M ′, since they will differ in at least one random rj value. Equation 12 follows
from our setting of z = 4Q. �

Claim D.6 For any vector ~M , the probability that there is an abort (i.e., regular or balancing) is
≥ 1− ζmin − 3

8ζminε.

Proof. Let ζx = ζ(~M) be the probability that the set of queries/forgery messages ~M do not cause
a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) samples are taken to approximate this

28

724

Approved for Public Release; Distribution Unlimited.

value as ζ ′x. By Chernoff Bounds, we have that for all ~M ,

Pr[Tζ ′x < Tζx(1− ε

8
)] < e−[128ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)(ζmin)(ε/8)2/2],

which reduces to
Pr[ζ ′x < ζx(1− ε

8
)] < ζmin

ε

8
.

The probability of not aborting is equal to the probability of not regular aborting (RA) times the
probability of not artificial aborting (AA). Recall that for a measured ζ ′x an artificial abort will not
happen with probability ζmin/ζ

′
x. The probability of aborting is therefore

Pr[abort] = 1− Pr[abort] = 1− Pr[RA] Pr[AA] = 1− ζx Pr[AA]

≥ 1− ζx(ζmin
ε

8
+

ζmin

ζx(1− ε/8)
)

≥ 1− (ζmin
ε

8
+

ζmin

1− ε/8)

≥ 1− (
ζminε

8
+ ζmin(1 +

2ε

8
))

≥ 1− ζmin − ζmin
3ε

8

�

Claim D.7 For any vector ~M , the probability that there is no abort (i.e., regular or balancing) is
≥ ζmin − 1

4ζminε.

Proof. Let ζx = ζ(~M) be the probability that the set of queries/forgery messages ~M do not cause
a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) samples are taken to approximate this

value as ζ ′x. By Chernoff Bounds, we have that for all ~M ,

Pr[Tζ ′x > Tζx(1 +
ε

8
)] < e−[256ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)](ζmin)(ε/8)2/4],

which reduces to
Pr[ζ ′x > ζx(1 +

ε

8
)] < ζmin

ε

8
.

Recall that for a measured ζ ′x an artificial abort (AA) will not happen with probability ζmin/ζ
′
x.

Therefore, for any ~M , the Pr[AA] ≥ (1− ζminε
8) ζmin

ζx(1+ε/8) . It follows that

Pr[abort] ≥ ζx(1− ζminε

8
)

ζmin

ζx(1 + ε/8)
≥ ζmin(1− ε

8
)2 ≥ ζmin(1− 1

4
ε).

�

29

725

Approved for Public Release; Distribution Unlimited.

Analyzing A’s Probability of Winning in Each Game. Define A’s probability of success in
Game x as AdvA[Game x]. We reason about the probability of A’s success in the series of games
as follows.

Lemma D.8 If AdvA[Game 1] = ε, then AdvA[Game 2] ≥ 3·ε
64Q(`+1) .

Proof. We begin by observing that AdvA[Game 2] is

= AdvA[Game 2|abort] · Pr[abort] + AdvA[Game 2|abort] · Pr[abort] (13)

= Pr[abort] + AdvA[Game 2|abort] · Pr[abort] (14)

= Pr[abort] + Pr[A forges |abort] · Pr[abort] (15)

= Pr[abort] + Pr[A forges] · Pr[abort|A forges] (16)

= Pr[abort] + ε · Pr[abort|A forges] (17)

≥ (1− ζmin − ζmin
3ε

8
) + ε · (ζmin − ζmin

ε

4
) (18)

≥ 3 · ε · ζmin

8
(19)

=
3 · ε

64Q(`+ 1)
(20)

Equation 14 follows from the fact that, in the case of abort, A always wins. It would be very
convenient if we could claim that AdvA[Game 2 | abort] = AdvA[Game 1], but unfortunately, this
is false. The event that A wins Game 2 and the event of an abort are not independent; however,
we have inserted the balancing abort condition in the attempt to lessen the dependence between
these events. Equation 15 simply states that, when there is no abort, A wins if and only if it forges
correctly. Equation 16 follows from Bayes’ Theorem. In Equation 17, we observe that Pr[A forges]
is exactly A’s success in Game 1.

Now, the purpose of our balancing abort is to even the probability of aborting, for all queries
and outputs of A, to be roughly ζmin. This will also get rid of the conditional dependence on A
forging. There will be a small error, which must be taken into account. We set ζmin = 1

8Q(`+1) from

Claim D.5. We know, for all queries/outputs, that Pr[abort] ≥ 1 − ζmin − 3
8ζminε from Claim D.6

and that Pr[abort] ≥ ζmin − 1
4ζminε from Claim D.7. Plugging these values into Equations 18 and

20 establishes the lemma. �

Lemma D.9 AD[Game 3] = AD[Game 2].

Proof. We make the explicit observation that these games are equivalent by observing that their
only difference is the time at which the regular aborts occur. The artificial abort stage is identical.
All public parameters and signatures provided by the simulator have the same distribution. �

�

E The Base Aggregate Construction in the GGH framework

We now describe how to modify the construction of Section 4.1 to use the GGH [21] graded algebras
analogue of multilinear maps. The translation of our scheme above is straightforward to the GGH

30

726

Approved for Public Release; Distribution Unlimited.

setting. Please note that we use the same notation developed in [21], with some minor changes:
Firstly, we use the canonical encoding function cenc provided by the GGH framework more than
once at each level of the encoding, but only a globally fixed constant number of times per level. This
is compatible with the GGH encoding [21], and allows for a simpler exposition of our scheme and
proof. Also, for ease of notation on the reader, we suppress repeated params arguments
that are provided to every algorithm.. Thus, for instance, we will write α← samp() instead of
α← samp(params). Note that in our scheme, there will only ever be a single uniquely chosen value
for params throughout the scheme, so there is no cause for confusion. Finally, we use the variant
of the GGH framework with “strong” zero-testing, where the zero test statistically guarantees that
a vector is a valid encoding of zero if it passes the zero test. For further details on the GGH
framework, please refer to [21].

Setup(1λ, `) The trusted setup algorithm takes as input the security parameter as well as the
length ` of messages. It then runs (params,pzt) ← InstGen(1λ, 1k=`+1). Recall that params will be
implicitly given as input to all GGH-related algorithms below.

Next, it generates elements (A1,0, A1,1), . . . , (A`,0, A`,1), each equal to a fresh invocation of
cenc1(1, samp()).

These will be used to compute a function H mapping ` bit messages to level k − 1 encodings.
This function serves as the analog of the full domain hash function of the BGLS [12] construction.
Let m1, . . . ,m` be the bits of message M . It is computed iteratively as

H1(M) = A1,m1 for i ∈ [2, `] Hi(M) = Hi−1(M) ·Ai,mi .

We define H(M) = cenc2(k − 1, H`(M)).
The public parameters, PP, consist of the params,pzt plus:

(A1,0, A1,1), . . . , (A`,0, A`,1)

Note that params includes a level 1 encoding of 1, which we denote as g.

KeyGen(PP) The key generation algorithm first chooses random α = samp(). It outputs the
public verification key as

VK = cenc2(1, α).

The secret key SK is α.

Sign(PP,SK,M ∈ {0, 1}`) The signing algorithm computes the signature as

σ = cenc3(k − 1, H(M) · α).

This serves as an aggregate signature for the (single element) multiset S = {(VK,M)}.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ + σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

31

727

Approved for Public Release; Distribution Unlimited.

Verify(PP, S, σ). The verification algorithm parses S as {(VK1,M1), . . . , (VK|S|,M|S|)}. It re-

jects if the multiplicity of any public key, message pair is greater than 2λ. We don’t expect this to
naturally occur much in practice.

The algorithm then proceeds to check the signature by setting τ = cenc2(1, g), and testing:

isZero

pzt, τ · σ −

∑

i=1,...,|S|
H(Mi) ·VKi

and accepts if and only if the zero testing procedure outputs true. Recall that g above is a canonical
level 1 encoding of 1 that is included in params, part of the public parameters.

Correctness. Correctness follows from the same argument as for the “basic” aggregate signature
scheme in the generic multilinear setting.

Proof of Security. In Section 5.2, we generalize this construction to provide ID-based aggregate
signatures in the GGH framework. We provide a proof of selective security for the ID-based version
of this scheme in the GGH framework, based on a variant of the MCDH assumption. Since our main
focus is the ID-based aggregate signature scheme, we omit the formal proof of selective security for
this scheme, but we note that it would be essentially identical to the proof of the ID-based scheme
that we give in Section 5.3.

Efficiency and Tradeoffs. An aggregate signature is one level k−1 encoding, independent of the
number of messages aggregated. In a multilinear setting, the space to represent an encoding might
grow with k (which is ` + 1). Indeed, this happens in the GGH [21] graded algebra translation.
One way to mitigate this is to differ the message alphabet size in a tradeoff of computation versus
storage. The above construction uses a binary message alphabet. If it used an alphabet of 2d

symbols, then the aggregate signature could be an `/d level encoding, with `/d− 1 multiplications
required to compute it, at the cost of the public parameters requiring 2d` encodings in order to
define the hash function H.

F Proof of Security for the Generic ID-Based Construction

The k-MCDH assumption is defined in Appendix D.1.

Theorem F.1 (Selective Security of ID-Based Construction) The ID-based aggregate sig-
nature scheme for message length ` and identity length n in Section 5.1 is selectively secure in the
unforgeability game in Section 3 under the (`+ n)-MCDH assumption.

Proof. We show that if there exists a PPT adversary A that can break the selective security
of the ID-based aggregate signature scheme in the unforgettability game with probability ε for
message length `, identity length n and security parameter λ, then there exists a PPT simulator
that can break the (` + n)-MCDH assumption for security parameter λ with probability ε. The
simulator takes as input a MCDH instance (g, gc1 , . . . , gck) together with the group descriptions
where k = ` + n. Let mi denote the ith bit of M and idi denote the ith bit of I. The simulator
plays the role of the challenger in the game as follows.

32

728

Approved for Public Release; Distribution Unlimited.

Init. Let I∗ ∈ {0, 1}n and M∗ ∈ {0, 1}` be the forgery identity/message pair output by A.

Setup. The simulator chooses random x1, . . . , x`, y1, . . . , yn ∈ Zp. For i = 1 to `, let Ai,m∗i = gci+n

and Ai,m̄∗i
= gxi . For i = 1 to n, iet Bi,id∗i = gci and Bi, ¯id∗i

= gyi . We remark that the
parameters are distributed independently and uniformly at random as in the real scheme.

Queries. Conceptually, the simulator will be able to create keys or signatures for the adversary,
because his requests will differ from the challenge identity or message in at least one bit.
More specifically,

1. Create New Key: The simulator begins with an index i = 1 and an empty sequence of
index/identity/private key triples T . On input an identity I ∈ {0, 1}n, if I = I∗, the
simulator records (i, I∗,⊥) in T . Otherwise, the simulator computes the secret key as
follows. Let β be the first index such that idi 6= id∗i . Use n−2 pairings on the Bi,idi values

to compute s = (gn−1)
∏
i=1,...,n∧i6=β bi,idi . Then compute SKI = syβ = (gn−1)

∏
i=1,...,n bi,idi .

Record (i, I,SKI) in T . Secret keys are unique and perfectly distributed as in the real
game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the adversary the
triple (i, Ii, SKIi) ∈ T . It returns an error if T is empty or i is out of range. Recall that
i cannot be associated with I∗ in this game.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the simulator obtains
the triple (i, Ii, SKIi) ∈ T or returns an error if it does not exist. If Ii 6= I∗, then the
simulator signs M with SKIi in the usual way.

If Ii = I∗, then we know M 6= M∗. Let β be the first index such that mβ 6= m∗β. Use

`−2 pairings on the Ai,mi values to compute σ′ = (g`−1)
∏
i=1,...,`∧i6=β ai,mi . Next, compute

σ′′ = σ′xi = (g`−1)
∏
i=1,...,` ai,mi . Use n − 1 pairings on the Bi,idi values to compute

γ = (gn)
∏
i=1,...,n bi,idi . Finally, compute σ = e(γ, σ′′) = (gk−1)(

∏
i∈[1,n] bi,idi)(

∏
i∈[1,`] ai,mi).

Return σ to A. Signatures are unique and perfectly distributed as in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗ where (I∗,M∗) ∈
S∗. The simulator will extract from this a solution to the MCDH problem. This works
by iteratively computing all the other signatures in S∗ and then dividing them out of the
aggregate until only one or more signatures on (I∗,M∗) remain. That is, the simulator
takes an aggregate for S∗ and computes an aggregate signature for S′ where S′ has one less
verification key/message pair than S at each step. These signatures will be computed as in
the query phase.

Eventually, we have an aggregate σ′ on t ≥ 1 instances of (I∗,M∗). We have that e(σ′, g) =

H(I∗,M∗)t = (gk)
t(
∏
i∈[1,n] bi,id∗i

)(
∏
i∈[1,`] ai,m∗i

)
= (gk)

t
∏k
i=1 ci and thus σ′ = (gk−1)t

∏k
i=1 ci . The

simulator computes σ′1/t (recall that t is not 0 mod p) which gives (gk−1)
∏k
i=1 ci and this is

given as the solution to the MCDH problem.

As remarked in the Setup and Query phase, the responses of the challenger are distributed
identically to the real unforgeability game. The simulator succeeds whenever A does. �

33

729

Approved for Public Release; Distribution Unlimited.

Zerocoin: Anonymous Distributed E-Cash from Bitcoin

Ian Miers, Christina Garman, Matthew Green, Aviel D. Rubin
The Johns Hopkins University Department of Computer Science, Baltimore, USA

{imiers, cgarman, mgreen, rubin}@cs.jhu.edu

Abstract—Bitcoin is the first e-cash system to see widespread
adoption. While Bitcoin offers the potential for new types of
financial interaction, it has significant limitations regarding
privacy. Specifically, because the Bitcoin transaction log is
completely public, users’ privacy is protected only through the
use of pseudonyms. In this paper we propose Zerocoin, a crypto-
graphic extension to Bitcoin that augments the protocol to allow
for fully anonymous currency transactions. Our system uses
standard cryptographic assumptions and does not introduce
new trusted parties or otherwise change the security model of
Bitcoin. We detail Zerocoin’s cryptographic construction, its
integration into Bitcoin, and examine its performance both in
terms of computation and impact on the Bitcoin protocol.

I. INTRODUCTION

Digital currencies have a long academic pedigree. As of
yet, however, no system from the academic literature has
seen widespread use. Bitcoin, on the other hand, is a viable
digital currency with a market capitalization valued at more
than $100 million [1] and between $2 and $5 million USD
in transactions a day [2]. Unlike many proposed digital
currencies, Bitcoin is fully decentralized and requires no
central bank or authority. Instead, its security depends on a
distributed architecture and two assumptions: that a majority
of its nodes are honest and that a substantive proof-of-
work can deter Sybil attacks. As a consequence, Bitcoin
requires neither legal mechanisms to detect and punish double
spending nor trusted parties to be chosen, monitored, or
policed. This decentralized design is likely responsible for
Bitcoin’s success, but it comes at a price: all transactions
are public and conducted between cryptographically binding
pseudonyms.

While relatively few academic works have considered the
privacy implications of Bitcoin’s design [2, 3], the preliminary
results are not encouraging. In one example, researchers
were able to trace the spending of 25,000 bitcoins that were
allegedly stolen in 2011 [3, 4]. Although tracking stolen coins
may seem harmless, we note that similar techniques could
also be applied to trace sensitive transactions, thus violating
users’ privacy. Moreover, there is reason to believe that
sophisticated results from other domains (e.g., efforts to de-
anonymize social network data using network topology [5])
will soon be applied to the Bitcoin transaction graph.

Since all Bitcoin transactions are public, anonymous
transactions are necessary to avoid tracking by third parties
even if we do not wish to provide the absolute anonymity

typically associated with e-cash schemes. On top of such
transactions, one could build mechanisms to partially or
explicitly identify participants to authorized parties (e.g.,
law enforcement). However, to limit this information to
authorized parties, we must first anonymize the underlying
public transactions.

The Bitcoin community generally acknowledges the
privacy weaknesses of the currency. Unfortunately, the
available mitigations are quite limited. The most common
recommendation is to employ a laundry service which
exchanges different users’ bitcoins. Several of these are in
commercial operation today [6, 7]. These services, however,
have severe limitations: operators can steal funds, track coins,
or simply go out of business, taking users’ funds with them.
Perhaps in recognition of these risks, many services offer
short laundering periods, which lead to minimal transaction
volumes and hence to limited anonymity.

Our contribution. In this paper we describe Zerocoin, a
distributed e-cash system that uses cryptographic techniques
to break the link between individual Bitcoin transactions
without adding trusted parties. To do this, we first define
the abstract functionality and security requirements of a new
primitive that we call a decentralized e-cash scheme. We next
propose a concrete instantiation and prove it secure under
standard cryptographic assumptions. Finally, we describe
the specific extensions required to integrate our protocol
into the Bitcoin system and evaluate the performance of a
prototype implementation derived from the original open-
source bitcoind client.

We are not the first to propose e-cash techniques for
solving Bitcoin’s privacy problems. However, a common
problem with many e-cash protocols is that they rely
fundamentally on a trusted currency issuer or “bank,” who
creates electronic “coins” using a blind signature scheme.
One solution (attempted unsuccessfully with Bitcoin [8])
is to simply appoint such a party. Alternatively, one can
distribute the responsibility among a quorum of nodes using
threshold cryptography. Unfortunately, both of these solutions
introduce points of failure and seem inconsistent with the
Bitcoin network model, which consists of many untrusted
nodes that routinely enter and exit the network. Moreover, the
problem of choosing long-term trusted parties, especially in
the legal and regulatory grey area Bitcoin operates in, seems
like a major impediment to adoption. Zerocoin eliminates

730

Approved for Public Release; Distribution Unlimited.

Block N

Block N

Block 1 Block 2 ... Block N

Block 1 Block 2 ... Block N

Bitcoin Zerocoin Mint Zerocoin Spend

(a)

(b)

Figure 1: Two example block chains. Chain (a) illustrates a normal Bitcoin transaction history, with each transaction linked
to a preceding transaction. Chain (b) illustrates a Zerocoin chain. The linkage between mint and spend (dotted line) cannot
be determined from the block chain data.

the need for such coin issuers by allowing individual Bitcoin
clients to generate their own coins — provided that they
have sufficient classical bitcoins to do so.

Intuition behind our construction. To understand the intuition
behind Zerocoin, consider the following “pencil and paper”
protocol example. Imagine that all users share access to
a physical bulletin board. To mint a zerocoin of fixed
denomination $1, a user Alice first generates a random coin
serial number S, then commits to S using a secure digital
commitment scheme. The resulting commitment is a coin,
denoted C, which can only be opened by a random number
r to reveal the serial number S. Alice pins C to the public
bulletin board, along with $1 of physical currency. All users
will accept C provided it is correctly structured and carries
the correct sum of currency.

To redeem her coin C, Alice first scans the bulletin board
to obtain the set of valid commitments (C1, . . . , CN) that
have thus far been posted by all users in the system. She next
produces a non-interactive zero-knowledge proof π for the
following two statements: (1) she knows a C ∈ (C1, . . . , CN)
and (2) she knows a hidden value r such that the commitment
C opens to S. In full view of the others, Alice, using a
disguise to hide her identity,1 posts a “spend” transaction
containing (S, π). The remaining users verify the proof π
and check that S has not previously appeared in any other
spend transaction. If these conditions are met, the users allow

1Of course, in the real protocol Alice will emulate this by using an
anonymity network such as Tor [9].

Alice to collect $1 from any location on the bulletin board;
otherwise they reject her transaction and prevent her from
collecting the currency.

This simple protocol achieves some important aims. First,
Alice’s minted coin cannot be linked to her retrieved funds:
in order to link the coin C to the the serial number S used
in her withdrawal, one must either know r or directly know
which coin Alice proved knowledge of, neither of which are
revealed by the proof. Thus, even if the original dollar bill
is recognizably tainted (e.g., it was used in a controversial
transaction), it cannot be linked to Alice’s new dollar bill.
At the same time, if the commitment and zero-knowledge
proof are secure, then Alice cannot double-spend any coin
without re-using the serial number S and thus being detected
by the network participants.

Of course, the above protocol is not workable: bulletin
boards are a poor place to store money and critical informa-
tion. Currency might be stolen or serial numbers removed
to allow double spends. More importantly, to conduct this
protocol over a network, Alice requires a distributed digital
backing currency.2

The first and most basic contribution of our work is
to recognize that Bitcoin answers all of these concerns,
providing us with a backing currency, a bulletin board, and
a conditional currency redemption mechanism. Indeed, the
core of the Bitcoin protocol is the decentralized calculation

2One could easily imagine a solution based on existing payment networks,
e.g., Visa or Paypal. However, this would introduce the need for trusted
parties or exchanges.

731

Approved for Public Release; Distribution Unlimited.

of a block chain which acts as a trusted, append-only
bulletin board that can both store information and process
financial transactions. Alice can add her commitments and
escrow funds by placing them in the block chain while
being assured that strict protocol conditions (and not her
colleagues’ scruples) determine when her committed funds
may be accessed.

Of course, even when integrated with the Bitcoin block
chain, the protocol above has another practical challenge.
Specifically, it is difficult to efficiently prove that a commit-
ment C is in the set (C1, . . . , CN). The naive solution is to
prove the disjunction (C = C1) ∨ (C = C2) ∨ . . . ∨ (C =
CN). Unfortunately such “OR proofs” have size O(N),
which renders them impractical for all but small values of
N .

Our second contribution is to solve this problem, producing
a new construction with proofs that do not grow linearly as
N increases. Rather than specifying an expensive OR proof,
we employ a “public” one-way accumulator to reduce the
size of this proof. One-way accumulators [10, 11, 12, 13, 14],
first proposed by Benaloh and de Mare [10], allow parties to
combine many elements into a constant-sized data structure,
while efficiently proving that one specific value is contained
within the set. In our construction, the Bitcoin network com-
putes an accumulator A over the commitments (C1, . . . , CN),
along with the appropriate membership witnesses for each
item in the set. The spender need only prove knowledge of
one such witness. In practice, this can reduce the cost of the
spender’s proof to O(log N) or even constant size.

Our application requires specific properties from the
accumulator. With no trusted parties, the accumulator and
its associated witnesses must be publicly computable and
verifiable (though we are willing to relax this requirement
to include a single, trusted setup phase in which parameters
are generated). Moreover, the accumulator must bind even
the computing party to the values in the set. Lastly, the
accumulator must support an efficient non-interactive witness-
indistinguishable or zero-knowledge proof of set membership.
Fortunately such accumulators do exist. In our concrete
proposal of Section IV we use a construction based on the
Strong RSA accumulator of Camenisch and Lysyanskaya [12],
which is in turn based on an accumulator of Baric and
Pfitzmann [11] and Benaloh and de Mare [10].

Outline of this work. The rest of this paper proceeds as
follows. In Section II we provide a brief technical overview
of the Bitcoin protocol. In Section III we formally define
the notion of decentralized e-cash and provide correctness
and security requirements for such a system. In Section IV
we give a concrete realization of our scheme based on
standard cryptographic hardness assumptions including the
Discrete Logarithm problem and Strong RSA. Finally, in
Sections V, VI, and VII, we describe how we integrate our
e-cash construction into the Bitcoin protocol, discuss the

security and anonymity provided, and detail experimental
results showing that our solution is practical.

II. OVERVIEW OF BITCOIN

In this section we provide a short overview of the Bitcoin
protocol. For a more detailed explanation, we refer the reader
to the original specification of Nakamoto [15] or to the
summary of Barber et al. [2].

The Bitcoin network. Bitcoin is a peer-to-peer network of
nodes that distribute and record transactions, and clients used
to interact with the network. The heart of Bitcoin is the
block chain, which serves as an append-only bulletin board
maintained in a distributed fashion by the Bitcoin peers.
The block chain consists of a series of blocks connected in
a hash chain.3 Every Bitcoin block memorializes a set of
transactions that are collected from the Bitcoin broadcast
network.

Bitcoin peers compete to determine which node will
generate the next canonical block. This competition requires
each node to solve a proof of work based on identifying
specific SHA-256 preimages, specifically a block B such
that SHA256(SHA256(B)) = (0`||{0, 1}256−`).4 The value
` is selected by a periodic network vote to ensure that on
average a block is created every 10 minutes. When a peer
generates a valid solution, a process known as mining, it
broadcasts the new block to all nodes in the system. If the
block is valid (i.e., all transactions validate and a valid proof
of work links the block to the chain thus far), then the new
block is accepted as the head of the block chain. The process
then repeats.

Bitcoin provides two separate incentives to peers that mine
new blocks. First, successfully mining a new block (which
requires a non-trivial computational investment) entitles the
creator to a reward, currently set at 25 BTC.5 Second, nodes
who mine blocks are entitled to collect transaction fees from
every transaction they include. The fee paid by a given
transaction is determined by its author (though miners may
exclude transactions with insufficient fees or prioritize high
fee transactions).

Bitcoin transactions. A Bitcoin transaction consists of a set
of outputs and inputs. Each output is described by the tuple
(a, V) where a is the amount, denominated in Satoshi (one
bitcoin = 109 Satoshi), and V is a specification of who is
authorized to spend that output. This specification, denoted
scriptPubKey, is given in Bitcoin script, a stack-based non-
Turing-complete language similar to Forth. Transaction inputs

3For efficiency reasons, this chain is actually constructed using a hash
tree, but we use the simpler description for this overview.

4Each block includes a counter value that may be incremented until the
hash satisfies these requirements.

5The Bitcoin specification holds that this reward should be reduced every
few years, eventually being eliminated altogether.

732

Approved for Public Release; Distribution Unlimited.

Input:
Previous tx: 030b5937d9f4aaa1a3133b...
Index: 0
scriptSig: 0dcd253cdf8ea11cdc710e5e92af7647...

Output:
Value: 5000000000
scriptPubKey: OP_DUP OP_HASH160
a45f2757f94fd2337ebf7ddd018c11a21fb6c283
OP_EQUALVERIFY OP_CHECKSIG

Figure 2: Example Bitcoin transaction. The output script
specifies that the redeeming party provide a public key that
hashes to the given value and that the transaction be signed
with the corresponding private key.

are simply a reference to a previous transaction output,6

as well as a second script, scriptSig, with code and data
that when combined with scriptPubKey evaluates to true.
Coinbase transactions, which start off every block and pay
its creator, do not include a transaction input.

To send d bitcoins to Bob, Alice embeds the hash7 of
Bob’s ECDSA public key pk b, the amount d, and some script
instructions in scriptPubKey as one output of a transaction
whose referenced inputs total at least d bitcoins (see Figure 2).
Since any excess input is paid as a transaction fee to the node
who includes it in a block, Alice typically adds a second
output paying the surplus change back to herself. Once the
transaction is broadcasted to the network and included in
a block, the bitcoins belong to Bob. However, Bob should
only consider the coins his once at least five subsequent
blocks reference this block.8 Bob can spend these coins in
a transaction by referencing it as an input and including in
scriptSig a signature on the claiming transaction under sk b
and the public key pk b.

Anonymity. Anonymity was not one of the design goals
of Bitcoin [3, 15, 17]. Bitcoin provides only pseudonymity
through the use of Bitcoin identities (public keys or their
hashes), of which a Bitcoin user can generate an unlimited
number. Indeed, many Bitcoin clients routinely generate new
identities in an effort to preserve the user’s privacy.

Regardless of Bitcoin design goals, Bitcoin’s user base
seems willing to go through considerable effort to maintain
their anonymity — including risking their money and paying
transaction fees. One illustration of this is the existence of
laundries that (for a fee) will mix together different users’
funds in the hopes that shuffling makes them difficult to
trace [2, 6, 7]. Because such systems require the users to trust
the laundry to both (a) not record how the mixing is done

6This reference consists of a transaction hash identifier as well as an
index into the transaction’s output list.

7A 34 character hash that contains the double SHA-256 hash of the key
and some checksum data.

8Individual recipients are free to disregard this advice. However, this
could make them vulnerable to double-spending attacks as described by
Karame et al. [16].

and (b) give the users back the money they put in to the pot,
use of these systems involves a fair amount of risk.

III. DECENTRALIZED E-CASH

Our approach to anonymizing the Bitcoin network uses a
form of cryptographic e-cash. Since our construction does not
require a central coin issuer, we refer to it as a decentralized
e-cash scheme. In this section we define the algorithms
that make up a decentralized e-cash scheme and describe
the correctness and security properties required of such a
system.

Notation. Let λ represent an adjustable security parameter,
let poly(·) represent some polynomial function, and let ν(·)
represent a negligible function. We use C to indicate the set
of allowable coin values.

Definition 3.1 (Decentralized E-Cash Scheme): A decen-
tralized e-cash scheme consists of a tuple of possibly
randomized algorithms (Setup,Mint,Spend,Verify).
• Setup(1λ)→ params. On input a security parameter,

output a set of global public parameters params and a
description of the set C.

• Mint(params) → (c, skc). On input parameters
params, output a coin c ∈ C, as well as a trapdoor
skc.

• Spend(params, c, skc,R,C) → (π, S). Given
params, a coin c, its trapdoor skc, some transaction
string R ∈ {0, 1}∗, and an arbitrary set of coins C,
output a coin spend transaction consisting of a proof π
and serial number S if c ∈ C ⊆ C. Otherwise output
⊥.

• Verify(params, π, S,R,C) → {0, 1}. Given params,
a proof π, a serial number S, transaction information R,
and a set of coins C, output 1 if C ⊆ C and (π, S,R)
is valid. Otherwise output 0.

We note that the Setup routine may be executed by a
trusted party. Since this setup occurs only once and does not
produce any corresponding secret values, we believe that this
relaxation is acceptable for real-world applications. Some
concrete instantiations may use different assumptions.

Each coin is generated using a randomized minting
algorithm. The serial number S is a unique value released
during the spending of a coin and is designed to prevent
any user from spending the same coin twice. We will
now formalize the correctness and security properties of
a decentralized e-cash scheme. Each call to the Spend
algorithm can include an arbitrary string R, which is intended
to store transaction-specific information (e.g., the identity of
a transaction recipient).

Correctness. Every decentralized e-cash scheme must satisfy
the following correctness requirement. Let params ←
Setup(1λ) and (c, skc) ← Mint(params). Let C ⊆ C
be any valid set of coins, where |C| ≤ poly(λ), and

733

Approved for Public Release; Distribution Unlimited.

assign (π, S)← Spend(params, c, skc,R,C). The scheme
is correct if, over all C, R, and random coins used in
the above algorithms, the following equality holds with
probability 1− ν(λ):

Verify(params, π, S,R,C ∪ {c}) = 1

Security. The security of a decentralized e-cash system is
defined by the following two games: Anonymity and Balance.
We first describe the Anonymity experiment, which ensures
that the adversary cannot link a given coin spend transaction
(π, S) to the coin associated with it, even when the attacker
provides many of the coins used in generating the spend
transaction.

Definition 3.2 (Anonymity): A decentralized e-cash
scheme Π = (Setup,Mint,Spend,Verify) satisfies the
Anonymity requirement if every probabilistic polynomial-
time (p.p.t.) adversary A = (A1,A2) has negligible
advantage in the following experiment.

Anonymity(Π,A, λ)
params← Setup(1λ)
For i ∈ {0, 1}: (ci, skci)← Mint(params)
(C, R, z)← A1(params, c0, c1); b← {0, 1}
(π, S)← Spend(params, cb, skcb, R,C ∪ {c0, c1})
Output: b′ ← A2(z, π, S)

We define A’s advantage in the above game as
|Pr [b = b′]− 1/2|.

The Balance property requires more consideration. Intu-
itively, we wish to ensure that an attacker cannot spend more
coins than she mints, even when she has access to coins and
spend transactions produced by honest parties. Note that to
strengthen our definition, we also capture the property that
an attacker might alter valid coins, e.g., by modifying their
transaction information string R.

Our definition is reminiscent of the “one-more forgery”
definition commonly used for blind signatures. We provide
the attacker with a collection of valid coins and an oracle
Ospend that she may use to spend any of them.9 Ultimately
A must produce m coins and m+ 1 valid spend transactions
such that no transaction duplicates a serial number or modifies
a transaction produced by the honest oracle.

Definition 3.3 (Balance): A decentralized e-cash scheme
Π = (Setup,Mint,Spend,Verify) satisfies the Balance
property if ∀N ≤ poly(λ) every p.p.t. adversary A has
negligible advantage in the following experiment.

Balance(Π,A, N, λ)
params← Setup(1λ)
For i = 1 to N : (ci, skci)← Mint(params)
Output: (c′1, . . . , c

′
m,S1, . . . ,Sm,Sm+1)

← AOspend(·,·,·)(params, c1, . . . , cN)

9We provide this functionality as an oracle to capture the possibility that
the attacker can specify arbitrary input for the value C.

The oracle Ospend operates as follows: on the jth
query Ospend(cj ,Cj , Rj), the oracle outputs ⊥ if
cj /∈ {c1, . . . , cN}. Otherwise it returns (πj , Sj) ←
Spend(params, cj , skcj , Rj ,Cj) to A and records (Sj , Rj)
in the set T .

We say that A wins (i.e., she produces more spends
than minted coins) if ∀s ∈ {S1, . . . ,Sm,Sm+1} where
s = (π′, S′, R′,C′):
• Verify(params, π′, S′, R′,C′) = 1.
• C′ ⊆ {c1, . . . , cN , c′1, . . . , c′m}.
• (S′, R′) /∈ T .
• S′ appears in only one tuple from {S1, . . . ,Sm,Sm+1}.
We define A’s advantage as the probability that A wins

the above game.

IV. DECENTRALIZED E-CASH FROM STRONG RSA

In this section we describe a concrete instantiation of a
decentralized e-cash scheme. We first define the necessary
cryptographic ingredients.

A. Cryptographic Building Blocks

Zero-knowledge proofs and signatures of knowledge. Our
protocols use zero-knowledge proofs that can be instantiated
using the technique of Schnorr [18], with extensions due to
e.g., [19, 20, 21, 22]. We convert these into non-interactive
proofs by applying the Fiat-Shamir heuristic [23]. In the
latter case, we refer to the resulting non-interactive proofs
as signatures of knowledge as defined in [24].

When referring to these proofs we will use the notation of
Camenisch and Stadler [25]. For instance, NIZKPoK{(x, y) :
h = gx ∧ c = gy} denotes a non-interactive zero-knowledge
proof of knowledge of the elements x and y that satisfy both
h = gx and c = gy. All values not enclosed in ()’s are
assumed to be known to the verifier. Similarly, the extension
ZKSoK[m]{(x, y) : h = gx ∧ c = gy} indicates a signature
of knowledge on message m.

Accumulators. Our construction uses an accumulator based
on the Strong RSA assumption. The accumulator we use
was first proposed by Benaloh and de Mare [10] and later
improved by Baric and Pfitzmann [11] and Camenisch and
Lysyanskaya [12]. We describe the accumulator using the
following algorithms:
• AccumSetup(λ)→ params. On input a security param-

eter, sample primes p, q (with polynomial dependence on
the security parameter), compute N = pq, and sample a
seed value u ∈ QRN , u 6= 1. Output (N, u) as params.

• Accumulate(params,C) → A. On input params
(N, u) and a set of prime numbers C =
{c1, . . . , ci | c ∈ [A ,B]},10 compute the accumulator A
as uc1c2···cn mod N .

10See Appendix A for a more precise description.

734

Approved for Public Release; Distribution Unlimited.

• GenWitness(params, v,C) → w. On input params
(N, u), a set of prime numbers C as described above,
and a value v ∈ C, the witness w is the accumu-
lation of all the values in C besides v, i.e., w =
Accumulate(params,C \ {v}).

• AccVerify(params,A, v, ω) → {0, 1}. On input
params (N, u), an element v, and witness ω, compute
A′ ≡ ωv mod N and output 1 if and only if A′ = A,
v is prime, and v ∈ [A ,B] as defined previously.

For simplicity, the description above uses the full calculation
of A. Camenisch and Lysyanskaya [12] observe that the
accumulator may also be incrementally updated, i.e., given
an existing accumulator An it is possible to add an element
x and produce a new accumulator value An+1 by computing
An+1 = Axn mod N . We make extensive use of this
optimization in our practical implementation.

Camenisch and Lysyanskaya [12] show that the accumu-
lator satisfies a strong collision-resistance property if the
Strong RSA assumption is hard. Informally, this ensures
that no p.p.t. adversary can produce a pair (v, ω) such that
v /∈ C and yet AccVerify is satisfied. Additionally, they
describe an efficient zero-knowledge proof of knowledge that
a committed value is in an accumulator. We convert this into
a non-interactive proof using the Fiat-Shamir transform and
refer to the resulting proof using the following notation:

NIZKPoK{(v, ω) : AccVerify((N, u), A, v, ω) = 1}.
B. Our Construction

We now describe a concrete decentralized e-cash scheme.
Our scheme is secure assuming the hardness of the Strong
RSA and Discrete Logarithm assumptions, and the existence
of a zero-knowledge proof system.

We now describe the algorithms:
• Setup(1λ)→ params. On input a security parameter,

run AccumSetup(1λ) to obtain the values (N, u). Next
generate primes p, q such that p = 2wq + 1 for w ≥ 1.
Select random generators g, h such that G = 〈g〉 =
〈h〉 and G is a subgroup of Z∗q . Output params =
(N, u, p, q, g, h).

• Mint(params) → (c, skc). Select S, r ← Z∗q and
compute c ← gShr mod p such that {c prime | c ∈
[A ,B]}.11 Set skc = (S, r) and output (c, skc).

• Spend(params, c, skc,R,C) → (π, S). If c /∈ C
output ⊥. Compute A ← Accumulate((N, u),C) and
ω ← GenWitness((N, u), c,C). Output (π, S) where π
comprises the following signature of knowledge:12

π = ZKSoK[R]{(c, w, r) :

AccVerify((N, u), A, c, w) = 1 ∧ c = gShr}
• Verify(params, π, S,R,C)→ {0, 1}. Given a proof π,

a serial number S, and a set of coins C, first compute

11See Appendix A for a more precise description.
12See Appendix B for the construction of the ZKSoK.

A← Accumulate((N, u),C). Next verify that π is the
aforementioned signature of knowledge on R using the
known public values. If the proof verifies successfully,
output 1, otherwise output 0.

Our protocol assumes a trusted setup process for generating
the parameters. We stress that the accumulator trapdoor
(p, q) is not used subsequent to the Setup procedure and
can therefore be destroyed immediately after the parameters
are generated. Alternatively, implementers can use the
technique of Sander for generating so-called RSA UFOs
for accumulator parameters without a trapdoor [26].

C. Security Analysis

We now consider the security of our construction.
Theorem 4.1: If the zero-knowledge signature of knowl-

edge is computationally zero-knowledge in the random oracle
model, then Π = (Setup,Mint,Spend,Verify) satisfies the
Anonymity property.

We provide a proof sketch for Theorem 4.1 in Appendix A.
Intuitively, the security of our construction stems from the fact
that the coin commitment C is a perfectly-hiding commitment
and the signature proof π is at least computationally zero-
knowledge. These two facts ensure that the adversary has at
most negligible advantage in guessing which coin was spent.

Theorem 4.2: If the signature proof π is sound in the
random oracle model, the Strong RSA problem is hard, and
the Discrete Logarithm problem is hard in G, then Π =
(Setup,Mint,Spend,Verify) satisfies the Balance property.

A proof of Theorem 4.1 is included in Appendix A.
Briefly, this proof relies on the binding properties of the coin
commitment, as well as the soundness and unforgeability
of the ZKSoK and collision-resistance of the accumulator.
We show that an adversary who wins the Balance game
with non-negligible advantage can be used to either find a
collision in the commitment scheme (allowing us to solve
the Discrete Logarithm problem) or find a collision in the
accumulator (which leads to a solution for Strong RSA).

V. INTEGRATING WITH BITCOIN

While the construction of the previous section gives an
overview of our approach, we have yet to describe how our
techniques integrate with Bitcoin. In this section we address
the specific challenges that come up when we combine a
decentralized e-cash scheme with the Bitcoin protocol.

The general overview of our approach is straightfor-
ward. To mint a zerocoin c of denomination d, Alice runs
Mint(params) → (c, skc) and stores skc securely.13 She
then embeds c in the output of a Bitcoin transaction that
spends d+ fees classical bitcoins. Once a mint transaction
has been accepted into the block chain, c is included in the

13In our implementation all bitcoins have a single fixed value. However,
we can support multiple values by running distinct Zerocoin instantiations
simultaneously, all sharing the same set of public parameters.

735

Approved for Public Release; Distribution Unlimited.

global accumulator A, and the currency cannot be accessed
except through a Zerocoin spend, i.e., it is essentially placed
into escrow.

To spend c with Bob, Alice first constructs a partial
transaction ptx that references an unclaimed mint transaction
as input and includes Bob’s public key as output. She
then traverses all valid mint transactions in the block
chain, assembles the set of minted coins C, and runs
Spend(params, c, skc, hash(ptx),C) → (π, S). Finally,
she completes the transaction by embedding (π, S) in the
scriptSig of the input of ptx. The output of this transaction
could also be a further Zerocoin mint transaction — a
feature that may be useful to transfer value between multiple
Zerocoin instances (i.e., of different denomination) running
in the same block chain.

When this transaction appears on the network, nodes check
that Verify(params, π, S, hash(ptx),C) = 1 and check that
S does not appear in any previous transaction. If these
condition hold and the referenced mint transaction is not
claimed as an input into a different transaction, the network
accepts the spend as valid and allows Alice to redeem d
bitcoins.

Computing the accumulator. A naive implementation of
the construction in Section IV requires that the verifier re-
compute the accumulator A with each call to Verify(. . .). In
practice, the cost can be substantially reduced.

First, recall that the accumulator in our construction can
be computed incrementally, hence nodes can add new coins
to the accumulation when they arrive. To exploit this, we
require any node mining a new block to add the zerocoins in
that block to the previous block’s accumulator and store the
resulting new accumulator value in the coinbase transaction
at the start of the new block.14 We call this an accumulator
checkpoint. Peer nodes validate this computation before
accepting the new block into the blockchain. Provided that
this verification occurs routinely when blocks are added to
the chain, some clients may choose to trust the accumulator
in older (confirmed) blocks rather than re-compute it from
scratch.

With this optimization, Alice need no longer compute the
accumulator A and the full witness w for c. Instead she can
merely reference the current block’s accumulator checkpoint
and compute the witness starting from the checkpoint
preceding her mint (instead of starting at T0), since computing
the witness is equivalent to accumulating C \ {c}.

New transaction types. Bitcoin transactions use a flexible
scripting language to determine the validity of each transac-
tion. Unfortunately, Bitcoin script is (by design) not Turing-
complete. Moreover, large segments of the already-limited

14The coinbase transaction format already allows for the inclusion of
arbitrary data, so this requires no fundamental changes to the Bitcoin
protocol.

script functionality have been disabled in the Bitcoin produc-
tion network due to security concerns. Hence, the existing
script language cannot be used for sophisticated calculations
such as verifying zero-knowledge proofs. Fortunately for
our purposes, the Bitcoin designers chose to reserve several
script operations for future expansion.

We extend Bitcoin by adding a new instruction: ZERO-
COIN MINT. Minting a zerocoin constructs a transaction
with an output whose scriptPubKey contains this instruction
and a coin c. Nodes who receive this transaction should
validate that c is a well-formed coin. To spend a zerocoin,
Alice constructs a new transaction that claims as input
some Zerocoin mint transaction and has a scriptSig field
containing (π, S) and a reference to the block containing the
accumulator used in π. A verifier extracts the accumulator
from the referenced block and, using it, validates the spend
as described earlier.

Finally, we note that transactions must be signed to prevent
an attacker from simply changing who the transaction is
payed to. Normal Bitcoin transactions include an ECDSA
signature by the key specified in the scriptPubKey of the
referenced input. However, for a spend transaction on an
arbitrary zerocoin, there is no ECDSA public key. Instead, we
use the ZKSoK π to sign the transaction hash that normally
would be signed using ECDSA.15

Statekeeping and side effects. Validating a zerocoin changes
Bitcoin’s semantics: currently, Bitcoin’s persistent state
is defined solely in terms of transactions and blocks of
transactions. Furthermore, access to this state is done via
explicit reference by hash. Zerocoin, on the other hand,
because of its strong anonymity requirement, deals with
existentials: the coin is in the set of thus-far-minted coins
and its serial number is not yet in the set of spent serial
numbers. To enable these type of qualifiers, we introduce
side effects into Bitcoin transaction handling. Processing a
mint transaction causes a coin to be accumulated as a side
effect. Processing a spend transaction causes the coin serial
number to be added to a list of spent serial numbers held by
the client.

For coin serial numbers, we have little choice but to keep
a full list of them per client and incur the (small) overhead
of storing that list and the larger engineering overhead of
handling all possible ways a transaction can enter a client.
The accumulator state is maintained within the accumulator
checkpoints, which the client verifies for each received block.

Proof optimizations. For reasonable parameter sizes, the
proofs produced by Spend(. . .) exceed Bitcoin’s 10KB
transaction size limits. Although we can simply increase this
limit, doing so has two drawbacks: (1) it drastically increases
the storage requirements for Bitcoin since current transactions

15In practice, this modification simply requires us to include the transaction
digest in the hash computation of the challenge for the Fiat-Shamir proofs.
See Appendix A for details.

736

Approved for Public Release; Distribution Unlimited.

are between 1 and 2 KB and (2) it may increase memory
pressure on clients that store transactions in memory.16

In our prototype implementation we store our proofs in
a separate, well-known location (a simple server). A full
implementation could use a Distributed Hash Table or non
block-chain backed storage in Bitcoin. While we recommend
storing proofs in the block chain, these alternatives do not
increase the storage required for the block chain.17

A. Suggestions for Optimizing Proof Verification

The complexity of the proofs will also lead to longer
verification times than expected with a standard Bitcoin
transaction. This is magnified by the fact that a Bitcoin
transaction is verified once when it is included by a block
and again by every node when that block is accepted into
the block chain. Although the former cost can be accounted
for by charging transaction fees, it would obviously be ideal
for these costs to be as low as possible.

One approach is to distribute the cost of verification over
the entire network and not make each node verify the entire
proof. Because the ZKSoK we use utilizes cut-and-choose
techniques, it essentially consists of n repeated iterations
of the same proof (reducing the probability of forgery to
roughly 2−n). We can simply have nodes randomly select
which iterations of the proofs they verify. By distributing this
process across the network, we should achieve approximately
the same security with less duplication of effort.

This optimization involves a time-space tradeoff, since
the existing proof is verified by computing a series of (at a
minimum) 1024 bit values T1, . . . , Tn and hashing the result.
A naive implementation would require us to send T1, . . . , Tn
fully computed — greatly increasing the size of the proof –
since the client will only compute some of them but needs
all of them to verify the hash. We can avoid this issue by
replacing the standard hash with a Merkel tree where the
leaves are the hashed Ti values and the root is the challenge
hash used in the proof. We can then send the 160 bit or
256 bit intermediate nodes instead of the 1024 bit Ti values,
allowing the verifier to compute only a subset of the Ti
values and yet still validate the proof against the challenge
without drastically increasing the proof size.

B. Limited Anonymity and Forward Security

A serious concern in the Bitcoin community is the loss
of wallets due to poor endpoint security. In traditional
Bitcoin, this results in the theft of coins [4]. However, in
the Zerocoin setting it may also allow an attacker to de-
anonymize Zerocoin transactions using the stored skc. The

16The reference bitcoind client stores transactions as STL Vectors,
which require contiguous segments of memory. As such, storing Zerocoin
proofs in the transaction might cause memory issues far faster than expected.

17Furthermore, this solution allows for the intriguing possibility that
proofs be allowed to vanish after they have been sufficiently verified by the
network and entombed in the block chain. However, it is not clear how this
interacts with Bitcoin in theory or practice.

obvious solution is to securely delete skc immediately after
a coin is spent. Unfortunately, this provides no protection if
skc is stolen at some earlier point.

One solution is to generate the spend transaction imme-
diately (or shortly after) the coin is minted, possibly using
an earlier checkpoint for calculating C. This greatly reduces
the user’s anonymity by decreasing the number of coins in
C and leaking some information about when the coin was
minted. However, no attacker who compromises the wallet
can link any zerocoins in it to their mint transactions.

C. Code Changes

For our implementation, we chose to modify bitcoind,
the original open-source Bitcoin C++ client. This required
several modifications. First, we added instructions to the
Bitcoin script for minting and spending zerocoins. Next,
we added transaction types and code for handling these
new instructions, as well as maintaining the list of spent
serial numbers and the accumulator. We used the Charm
cryptographic framework [27] to implement the cryptographic
constructions in Python, and we used Boost’s Python utilities
to call that code from within bitcoind. This introduces
some performance overhead, but it allowed us to rapidly pro-
totype and leave room for implementing future constructions
as well.

D. Incremental Deployment

As described above, Zerocoin requires changes to the
Bitcoin protocol that must happen globally: while transactions
containing the new instructions will be validated by updated
servers, they will fail validation on older nodes, potentially
causing the network to split when a block is produced that
validates for some, but not all, nodes. Although this is not
the first time Bitcoin has faced this problem, and there is
precedent for a flag day type upgrade strategy [28], it is
not clear how willing the Bitcoin community is to repeat
it. As such, we consider the possibility of an incremental
deployment.

One way to accomplish this is to embed the above protocol
as comments in standard Bitcoin scripts. For non Zerocoin
aware nodes, this data is effectively inert, and we can use
Bitcoin’s n of k signature support to specify that such
comment embedded zerocoins are valid only if signed by
some subset of the Zerocoin processing nodes. Such Zerocoin
aware nodes can parse the comments and charge transaction
fees for validation according to the proofs embedded in the
comments, thus providing an incentive for more nodes to
provide such services. Since this only changes the validation
mechanism for Zerocoin, the Anonymity property holds as
does the Balance property if no more than n− 1 Zerocoin
nodes are malicious.

Some care must be taken when electing these nodes to
prevent a Sybil attack. Thankfully, if we require that such a
node also produce blocks in the Bitcoin block chain, we have

737

Approved for Public Release; Distribution Unlimited.

a decent deterrent. Furthermore, because any malfeasance
of these nodes is readily detectable (since they signed an
invalid Zerocoin transaction), third parties can audit these
nodes and potentially hold funds in escrow to deter fraud.

VI. REAL WORLD SECURITY AND PARAMETER CHOICE

A. Anonymity of Zerocoin

Definition 3.2 states that given two Zerocoin mints and one
spend, one cannot do much better than guess which minted
coin was spent. Put differently, an attacker learns no more
from our scheme than they would from observing the mints
and spends of some ideal scheme. However, even an ideal
scheme imposes limitations. For example, consider a case
where N coins are minted, then all N coins are subsequently
spent. If another coin is minted after this point, the size of
the anonymity set for the next spend is k = 1, not k = 11,
since it is clear to all observers that the previous coins have
been used. We also stress that — as in many anonymity
systems — privacy may be compromised by an attacker who
mints a large fraction of the active coins. Hence, a lower
bound on the anonymity provided is the number of coins
minted by honest parties between a coin’s mint and its spend.
An upper bound is the total set of minted coins.

We also note that Zerocoin reveals the number of minted
and spent coins to all users of the system, which provides
a potential source of information to attackers. This is in
contrast to many previous e-cash schemes which reveal this
information primarily to merchants and the bank. However,
we believe this may be an advantage rather than a loss,
since the bank is generally considered an adversarial party in
most e-cash security models. The public model of Zerocoin
actually removes an information asymmetry by allowing users
to determine when such conditions might pose a problem.

Lastly, Zerocoin does not hide the denominations used in
a transaction. In practice, this problem can be avoided by
simply fixing one or a small set of coin denominations and
exchanging coins until one has those denominations, or by
simply using Zerocoin to anonymize bitcoins.

B. Parameters

Generally, cryptographers specify security in terms of a
single, adjustable security parameter λ. Indeed, we have
used this notation throughout the previous sections. In reality,
however, there are three distinct security choices for Zerocoin
which affect either the system’s anonymity, its resilience to
counterfeiting, or both. These are:

1) The size of the Schnorr group used in the coin
commitments.

2) The size of the RSA modulus used in the accumulator.
3) λzkp, the security of the zero-knowledge proofs.

Commitments. Because Pedersen commitments are informa-
tion theoretically hiding for any Schnorr group whose order
is large enough to fit the committed values, the size of

the group used does not affect the long term anonymity
of Zerocoin. The security of the commitment scheme does,
however, affect counterfeiting: an attacker who can break
the binding property of the commitment scheme can mint a
zerocoin that opens to at least two different serial numbers,
resulting in a double spend. As a result, the Schnorr group
must be large enough that such an attack cannot be feasibly
mounted in the lifetime of a coin. On the other hand, the
size of the signature of knowledge π used in coin spends
increases linearly with the size of the Schnorr group.

One solution is to minimize the group size by announcing
fresh parameters for the commitment scheme periodically
and forcing old zerocoins to expire unless exchanged for
new zerocoins minted under the fresh parameters.18 Since
all coins being spent on the network at time t are spent
with the current parameters and all previous coins can be
converted to fresh ones, this does not decrease the anonymity
of the system. It does, however, require users to convert old
zerocoins to fresh ones before the old parameters expire.
For our prototype implementation, we chose to use 1024 bit
parameters on the assumption that commitment parameters
could be regenerated periodically. We explore the possibility
of extensions to Zerocoin that might enable smaller groups
in Section IX.

Accumulator RSA key. Because generating a new accumulator
requires either a new trusted setup phase or generating a
new RSA UFO [26], we cannot re-key very frequently. As a
result, the accumulator is long lived, and thus we truly need
long term security. Therefore we currently propose an RSA
key of at least 3072 bits. We note that this does not greatly
affect the size of the coins themselves, and, because the proof
of accumulator membership is efficient, this does not have
a large adverse effect on the overall coin spend proof size.
Moreover, although re-keying the accumulator is expensive,
it need not reduce the anonymity of the system since the new
parameters can be used to re-accumulate the existing coin
set and hence anonymize spends over that whole history.

Zero-knowledge proof security λzkp. This parameter affects
the anonymity and security of the zero-knowledge proof. It
also greatly affects the size of the spend proof. Thankfully,
since each proof is independent, it applies per proof and
therefore per spend. As such, a dishonest party would have
to expend roughly 2λzkp effort to forge a single coin or could
link a single coin mint to a spend with probability roughly

1

2λzkp
. As such we pick λzkp = 80 bits.

VII. PERFORMANCE

To validate our results, we conducted several experiments
using the modified bitcoind implementation described
in Section V. We ran our experiments with three different

18Note that this conversion need not involve a full spend of the coins.
The user may simply reveal the trapdoor for the old coin, since the new
zerocoin will still be unlinkable when properly spent.

738

Approved for Public Release; Distribution Unlimited.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1024 2048 3072

Ti
m

e
 (

se
c)

Modulus Size (bits)

Performance of Zerocoin Algorithms

Mint
Spend
Verify

(a) Times for a single Zerocoin operation measured in seconds. These
operations do not include the time required to compute the accumulator.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

1024 2048 3072

P
ro

o
f

S
iz

e
 (

b
y
te

s)

Modulus Size (bits)

Zerocoin Spend Proof Size

(b) Zerocoin proof sizes measured in bytes as a function of RSA
modulus size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10000 20000 30000 40000 50000

Ti
m

e
 (

se
c)

Number of Elements Accumulated

Accumulation Time

N=1024
N=2048
N=3072

(c) Time required to accumulate x elements. Note, this cost is amortized
when computing the global accumulator.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

Tr
a
n
sa

ct
io

n
s

p
e
r

m
in

u
te

Percentage of Zerocoins

Zerocoin Block Verification Performance

N = 1024
N = 2048
N = 3072

(d) Transaction verifications per minute as a function of the percentage
of Zerocoin transactions in the network (where half are mints and half
are spends). Note, since we plot the reciprocal of transaction time, this
graph appears logarithmic even though Zerocoin scales linearly.

Figure 3: Zerocoin performance as a function of parameter size.

parameter sizes, where each corresponds to a length of the
RSA modulus N : 1024 bits, 2048 bits, and 3072 bits.19

We conducted two types of experiments: (1) microbench-
marks that measure the performance of our cryptographic
constructions and (2) tests of our whole modified Bitcoin
client measuring the time to verify Zerocoin carrying blocks.
The former gives us a reasonable estimate of the cost of
minting a single zerocoin, spending it, and verifying the
resulting transaction. The latter gives us an estimate of
Zerocoin’s impact on the existing Bitcoin network and the
computational cost that will be born by each node that verifies
Zerocoin transactions.

All of our experiments were conducted on an Intel Xeon
E3-1270 V2 (3.50GHz quad-core processor with hyper-
threading) with 16GB of RAM, running 64-bit Ubuntu Server
11.04 with Linux kernel 2.6.38.

19These sizes can be viewed as roughly corresponding to a discrete
logarithm/factorization security level of 280, 2112, and 2128 respectively.
Note that the choice of N determines the size of the parameter p. We select
|q| to be roughly twice the estimated security level.

A. Microbenchmarks

To evaluate the performance of our Mint, Spend, and
Verify algorithms in isolation, we conducted a series of
microbenchmarks using the Charm (Python) implementation.
Our goal in these experiments was to provide a direct estimate
of the performance of our cryptographic primitives.

Experimental setup. One challenge in conducting our mi-
crobenchmarks is the accumulation of coins in C for the
witness in Spend(. . .) or for the global accumulator in both
Spend(. . .) and Verify(. . .). This is problematic for two
reasons. First, we do not know how large C will be in
practice. Second, in our implementation accumulations are
incremental. To address these issues we chose to break our
microbenchmarks into two separate experiments. The first
experiment simply computes the accumulator for a number of
possible sizes of C, ranging from 1 to 50,000 elements. The
second experiment measures the runtime of the Spend(. . .)
and Verify(. . .) routines with a precomputed accumulator
and witness (A,ω).

We conducted our experiments on a single thread of the
processor, using all three parameter sizes. All experiments

739

Approved for Public Release; Distribution Unlimited.

were performed 500 times, and the results given represent
the average of these times. Figure 3a shows the measured
times for computing the coin operations, Figure 3b shows
the resulting proof sizes for each security parameter, and
Figure 3c shows the resulting times for computing the
accumulator. We stress that accumulation in our system is
incremental, typically over at most the 200−500 transactions
in a block (which takes at worst eight seconds), and hence
the cost of computing the global accumulator is therefore
amortized. The only time one might accumulate 50,000 coins
at one time would be when generating the witness for a very
old zerocoin.

B. Block Verification

How Zerocoin affects network transaction processing de-
termines its practicality and scalability. Like all transactions,
Zerocoin spends must be verified first by the miner to make
sure he is not including invalid transactions in a block and
then again by the network to make sure it is not including an
invalid block in the block chain. In both cases, this entails
checking that Verify(. . .) = 1 for each Zerocoin transaction
and computing the accumulator checkpoint.

We need to know the impact of this for two reasons. First,
the Bitcoin protocol specifies that a new block should be
created on average once every 10 minutes.20 If verification
takes longer than 10 minutes for blocks with a reasonable
number of zerocoins, then the network cannot function.21

Second, while the cost of generating these blocks and
verifying their transactions can be offset by transaction
fees and coin mining, the cost of verifying blocks prior to
appending them to the block chain is only offset for mining
nodes (who can view it as part of the cost of mining a new
block). This leaves anyone else verifying the block chain
with an uncompensated computational cost.

Experimental setup. To measure the effect of Zerocoin on
block verification time, we measure how long it takes our
modified bitcoind client to verify externally loaded test
blocks containing 200, 400, and 800 transactions where 0,
10, 25, 75, or 100 percent of the transactions are Zerocoin
transactions (half of which are mints and half are spends).
We repeat this experiment for all three security parameters.

Our test data consists of two blocks. The first contains z
Zerocoin mints that must exist for any spends to occur. The
second block is our actual test vector. It contains, in a random
order, z Zerocoin spends of the coins in the previous block,
z Zerocoin mints, and s standard Bitcoin sendToAddress
transactions. We measure how long the processblock
call of the bitcoind client takes to verify the second
block containing the mix of Zerocoin and classical Bitcoin

20This rate is maintained by a periodic network vote that adjusts the
difficulty of the Bitcoin proof of work.

21For blocks with unreasonable numbers of Zerocoin transaction we can
simply extend bitcoind’s existing anti-DoS mechanisms to reject the
block and blacklist its origin.

transactions. For accuracy, we repeat these measurements
100 times and average the results. The results are presented
in Figure 3d.

C. Discussion

Our results show that Zerocoin scales beyond current
Bitcoin transaction volumes. Though we require significant
computational effort, verification does not fundamentally
threaten the operation of the network: even with a block
containing 800 Zerocoin transactions — roughly double the
average size of a Bitcoin block currently — verification
takes less than five minutes. This is under the unreasonable
assumption that all Bitcoin transactions are supplanted by
Zerocoin transactions.22 In fact, we can scale well beyond
Bitcoin’s current average of between 200 and 400 transactions
per block [29] if Zerocoin transactions are not the majority
of transactions on the network. If, as the graph suggests, we
assume that verification scales linearly, then we can support
a 50% transaction mix out to 350 transactions per minute
(3,500 transactions per block) and a 10% mixture out to 800
transactions per minute (8,000 per block).

One remaining question is at what point we start running a
risk of coin serial number collisions causing erroneous double
spends. Even for our smallest serial numbers — 160 bits —
the collision probability is small, and for the 256 bit serial
numbers used with the 3072 bit accumulator, our collision
probability is at worst equal to the odds of a collision on a
normal Bitcoin transaction which uses SHA-256 hashes.

We stress several caveats about the above data. First, our
prototype system does not exploit any parallelism either for
verifying multiple Zerocoin transactions or in validating an
individual proof. Since the only serial dependency for either
of these tasks is the (fast) duplicate serial number check, this
offers the opportunity for substantial improvement.

Second, the above data is not an accurate estimate of
the financial cost of Zerocoin for the network: (a) it is an
overestimate of a mining node’s extra effort when verifying
proposed blocks since in practice many transactions in a
received block will already have been received and validated
by the node as it attempts to construct its own contribution
to the block chain; (b) execution time is a poor metric in
the context of Bitcoin, since miners are concerned with
actual monetary operating cost; (c) since mining is typically
performed using GPUs and to a lesser extent FPGAs and
ASICs, which are far more efficient at computing hash
collisions, the CPU cost measured here is likely insignificant.

Finally, our experiment neglects the load on a node both
from processing incoming transactions and from solving
the proof of work. Again, we contend that most nodes will
probably use GPUs for mining, and as such the latter is
not an issue. The former, however, remains an unknown. At

22In practice we believe Zerocoin will be used to anonymize bitcoins that
will then be spent in actual transactions, resulting in far lower transaction
volumes.

740

Approved for Public Release; Distribution Unlimited.

the very least it seems unlikely to disproportionately affect
Zerocoin performance.

VIII. PREVIOUS WORK

A. E-Cash and Bitcoin

Electronic cash has long been a research topic for cryp-
tographers. Many cryptographic e-cash systems focus on
user privacy and typically assume the existence of a semi-
trusted coin issuer or bank. E-cash schemes largely break
down into online schemes where users have contact with
a bank or registry and offline schemes where spending can
occur even without a network connection. Chaum introduced
the first online cryptographic e-cash system [30] based on
RSA signatures, later extending this work to the offline
setting [31] by de-anonymizing users who double-spent.
Many subsequent works improved upon these techniques
while maintaining the requirement of a trusted bank: for
example, by making coins divisible [32, 33] and reducing
wallet size [34]. One exception to the rule above comes
from Sander and Ta-Shma [35] who presciently developed
an alternative model that is reminiscent of our proposal: the
central bank is replaced with a hash chain and signatures
with accumulators. Unfortunately the accumulator was not
practical, a central party was still required, and no real-world
system existed to compute the chain.

Bitcoin’s primary goal, on the other hand, is not anonymity.
It has its roots in a non-academic proposal by Wei Dai
for a distributed currency based on solving computational
problems [36]. In Dai’s original proposal anyone could create
currency, but all transactions had to be broadcast to all clients.
A second variant limited currency generation and transaction
broadcast to a set of servers, which is effectively the approach
Bitcoin takes. This is a marked distinction from most, if not
all, other e-cash systems since there is no need to select one
or more trusted parties. There is a general assumption that
a majority of the Bitcoin nodes are honest, but anyone can
join a node to the Bitcoin network, and anyone can get the
entire transaction graph. An overview of Bitcoin and some
of its shortcomings was presented by Barber et. al. in [2].

B. Anonymity

Numerous works have shown that “pseudonymized” graphs
can be re-identified even under passive analysis. Narayanan
and Shmatikov [5] showed that real world social networks
can be passively de-anonymized. Similarly, Backstrom et
al. [37] constructed targeted attacks against anonymized
social networks to test for relationships between vertices.
Previously, Narayanan and Shmatikov de-anonymized users
in the Netflix prize data set by correlating data from
IMDB [38].

Bitcoin itself came into existence in 2009 and is now
beginning to receive scrutiny from privacy researchers. De-
anonymization techniques were applied effectively to Bitcoin
even at its relatively small 2011 size by Reid and Harrigan [3].

Ron and Shamir examined the general structure of the Bitcoin
network graph [1] after its nearly 3-fold expansion. Finally,
we have been made privately aware of two other early-stage
efforts to examine Bitcoin anonymity.

IX. CONCLUSION AND FUTURE WORK

Zerocoin is a distributed e-cash scheme that provides
strong user anonymity and coin security under the assumption
that there is a distributed, online, append-only transaction
store. We use Bitcoin to provide such a store and the
backing currency for our scheme. After providing general
definitions, we proposed a concrete realization based on RSA
accumulators and non-interactive zero-knowledge signatures
of knowledge. Finally, we integrated our construction into
Bitcoin and measured its performance.

Our work leaves several open problems. First, although our
scheme is workable, the need for a double-discrete logarithm
proof leads to large proof sizes and verification times. We
would prefer a scheme with both smaller proofs and greater
speed. This is particularly important when it comes to
reducing the cost of third-party verification of Zerocoin
transactions. There are several promising constructions in the
cryptographic literature, e.g., bilinear accumulators, mercurial
commitments [13, 39]. While we were not able to find an
analogue of our scheme using alternative components, it is
possible that further research will lead to other solutions.
Ideally such an improvement could produce a drop-in
replacement for our existing implementation.

Second, Zerocoin currently derives both its anonymity
and security against counterfeiting from strong cryptographic
assumptions at the cost of substantially increased computa-
tional complexity and size. As discussed in section VI-B,
anonymity is relatively cheap, and this cost is principally
driven by the anti-counterfeiting requirement, manifesting
itself through the size of the coins and the proofs used.

In Bitcoin, counterfeiting a coin is not computationally
prohibitive, it is merely computationally costly, requiring the
user to obtain control of at least 51% of the network. This
provides a possible alternative to our standard cryptographic
assumptions: rather than the strong assumption that com-
puting discrete logs is infeasible, we might construct our
scheme on the weak assumption that there is no financial
incentive to break our construction as the cost of computing
a discrete log exceeds the value of the resulting counterfeit
coins.

For example, if we require spends to prove that fresh
and random bases were used in the commitments for the
corresponding mint transaction (e.g., by selecting the bases
for the commitment from the hash of the coin serial number
and proving that the serial number is fresh), then it appears
that an attacker can only forge a single zerocoin per discrete
log computation. Provided the cost of computing such a
discrete log is greater than the value of a zerocoin, forging a
coin is not profitable. How small this allows us to make

741

Approved for Public Release; Distribution Unlimited.

the coins is an open question. There is relatively little
work comparing the asymptotic difficulty of solving multiple
distinct discrete logs in a fixed group,23 and it is not clear
how theory translates into practice. We leave these questions,
along with the security of the above proposed construction,
as issues for future work.

Finally, we believe that further research could lead to
different tradeoffs between security, accountability, and
anonymity. A common objection to Bitcoin is that it can
facilitate money laundering by circumventing legally binding
financial reporting requirements. We propose that additional
protocol modifications (e.g., the use of anonymous creden-
tials [40]) might allow users to maintain their anonymity
while demonstrating compliance with reporting requirements.

Acknowledgements. We thank Stephen Checkoway, George
Danezis, and the anonymous reviewers for their helpful
comments. The research in this paper was supported in part
by the Office of Naval Research under contract N00014-11-
1-0470, and DARPA and the Air Force Research Laboratory
(AFRL) under contract FA8750-11-2-0211.

REFERENCES

[1] D. Ron and A. Shamir, “Quantitative Analysis of the Full
Bitcoin Transaction Graph,” Cryptology ePrint Archive, Report
2012/584, 2012, http://eprint.iacr.org/.

[2] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better
– how to make bitcoin a better currency,” in Financial
Cryptography 2012, vol. 7397 of LNCS, 2012, pp. 399–414.

[3] F. Reid and M. Harrigan, “An analysis of anonymity in the
Bitcoin system,” in Privacy, security, risk and trust (PASSAT),
2011 IEEE Third Internatiojn Conference on Social Computing
(SOCIALCOM). IEEE, 2011, pp. 1318–1326.

[4] T. B. Lee, “A risky currency? Alleged $500,000 Bitcoin heist
raises questions,” Available at http://arstechnica.com/, June
2011.

[5] A. Narayanan and V. Shmatikov, “De-anonymizing social net-
works,” in Security and Privacy, 2009 30th IEEE Symposium
on. IEEE, 2009, pp. 173–187.

[6] “Bitcoin fog company,” http://www.bitcoinfog.com/.

[7] “The Bitcoin Laundry,” http://www.bitcoinlaundry.com/.

[8] “Blind Bitcoin,” Information at https://en.bitcoin.it/wiki/Blind
Bitcoin Transfers.

[9] [Online]. Available: https://www.torproject.org/

[10] J. Benaloh and M. de Mare, “One-way accumulators: a
decentralized alternative to digital signatures,” in EUROCRYPT

’93, vol. 765 of LNCS, 1994, pp. 274–285.

[11] N. Barić and B. Pfitzmann, “Collision-free accumulators and
fail-stop signature schemes without trees,” in EUROCRYPT

’97, vol. 1233 of LNCS, 1997, pp. 480–494.

23We note that both SSH and the Internet Key Exchange protocol used
in IPv6 use fixed Diffie-Hellman parameters.

[12] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators
and application to efficient revocation of anonymous creden-
tials,” in CRYPTO ’02, 2002, pp. 61–76.

[13] L. Nguyen, “Accumulators from bilinear pairings and appli-
cations,” in Topics in Cryptology – CT-RSA 2005, 2005, vol.
3376 LNCS, pp. 275–292.

[14] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator
based on bilinear maps and efficient revocation for anonymous
credentials,” in PKC ’09, vol. 5443 of LNCS, 2009, pp. 481–
500.

[15] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
2009,” 2012. [Online]. Available: http://www.bitcoin.org/
bitcoin.pdf

[16] G. O. Karame, E. Androulaki, and S. Capkun, “Two bitcoins
at the price of one? double-spending attacks on fast payments
in bitcoin,” Cryptology ePrint Archive, Report 2012/248, 2012,
http://eprint.iacr.org/.

[17] European Central Bank, “Virtual currency schemes,”
Available at http://www.ecb.europa.eu/pub/pdf/other/
virtualcurrencyschemes201210en.pdf, October 2012.

[18] C.-P. Schnorr, “Efficient signature generation for smart cards,”
Journal of Cryptology, vol. 4, no. 3, pp. 239–252, 1991.

[19] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of
partial knowledge and simplified design of witness hiding
protocols,” in CRYPTO ’94, vol. 839 of LNCS, 1994, pp.
174–187.

[20] J. Camenisch and M. Michels, “Proving in zero-knowledge that
a number n is the product of two safe primes,” in EUROCRYPT

’99, vol. 1592 of LNCS, 1999, pp. 107–122.

[21] J. L. Camenisch, “Group signature schemes and payment
systems based on the discrete logarithm problem,” Ph.D.
dissertation, ETH Zürich, 1998.

[22] S. Brands, “Rapid demonstration of linear relations connected
by boolean operators,” in EUROCRYPT ’97, vol. 1233 of
LNCS, 1997, pp. 318–333.

[23] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” in CRYPTO

’86, vol. 263 of LNCS, 1986, pp. 186–194.

[24] M. Chase and A. Lysyanskaya, “On signatures of knowledge,”
in CRYPTO’06, vol. 4117 of LNCS, 2006, pp. 78–96.

[25] J. Camenisch and M. Stadler, “Efficient group signature
schemes for large groups,” in CRYPTO ’97, vol. 1296 of
LNCS, 1997, pp. 410–424.

[26] T. Sander, “Efficient accumulators without trapdoor extended
abstract,” in Information and Communication Security, vol.
1726 of LNCS, 1999, pp. 252–262.

[27] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano,
M. Rushanan, M. Green, and A. D. Rubin, “Charm:
A framework for rapidly prototyping cryptosystems,” To
appear, Journal of Cryptographic Engineering, 2013. [Online].
Available: http://dx.doi.org/10.1007/s13389-013-0057-3

[28] [Online]. Available: https://en.bitcoin.it/wiki/BIP 0016

742

Approved for Public Release; Distribution Unlimited.

[29] [Online]. Available: http://blockchain.info/charts/n-
transactions-per-block

[30] D. Chaum, “Blind signatures for untraceable payments,” in
CRYPTO ’82. Plenum Press, 1982, pp. 199–203.

[31] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic
cash,” in CRYPTO 88, 1990, vol. 403 of LNCS, pp. 319–327.

[32] T. Okamoto and K. Ohta, “Universal electronic cash,” in
CRYPTO 91, 1992, vol. 576 of LNCS, pp. 324–337.

[33] T. Okamoto, “An efficient divisible electronic cash scheme,”
in Crypt ’95, 1995, vol. 963 of LNCS, pp. 438–451.

[34] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact
e-cash,” in EUROCRYPT ’05, 2005, vol. 3494 of LNCS, pp.
566–566.

[35] T. Sander and A. Ta-Shma, “Auditable, anonymous electronic
cash (extended abstract),” in CRYPTO ’99, vol. 1666 of LNCS,
1999, pp. 555–572.

[36] W. Dai. B-money proposal. [Online]. Available: http:
//www.weidai.com/bmoney.txt

[37] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art
thou r3579x?: Anonymized social networks, hidden patterns,
and structural steganography,” in Proceedings of the 16th
international conference on World Wide Web, ser. WWW ’07.
New York, NY, USA: ACM, 2007, pp. 181–190.

[38] A. Narayanan and V. Shmatikov, “Robust de-anonymization
of large sparse datasets,” in IEEE Symposium on Security and
Privacy. IEEE, 2008, pp. 111–125.

[39] M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin,
“Mercurial commitments with applications to zero-knowledge
sets,” in EUROCRYPT ’05, vol. 3494, 2005, pp. 422–439.

[40] J. Camenisch and A. Lysyanskaya, “An efficient system
for non-transferable anonymous credentials with optional
anonymity revocation,” in EUROCRYPT ’01, vol. 2045 of
LCNS, 2001, pp. 93–118.

[41] ——, “Dynamic accumulators and application to efficient
revocation of anonymous credentials,” in CRYPTO ’02, 2002,
extended Abstract. [Online]. Available: http://cs.brown.edu/
∼anna/papers/camlys02.pdf

[42] D. Pointcheval and J. Stern, “Provably secure blind signature
schemes,” in ASIACRYPT ’96, vol. 1163 of LNCS, 1996, pp.
252–265.

APPENDIX A.
SECURITY PROOFS

A. Proof Sketch of Theorem 4.1

Proof sketch. Consider the following simulation. First, the
simulation generates params← Setup(1λ) and two primes
C0, C1 that are uniformly sampled from the set of prime
numbers in the range [A ,B].24 A1 takes these values as
input and outputs a set C and transaction string R using

24“Where A and B can be chosen with arbitrary polynomial dependence
on the security parameter, as long as 2 < A and B < A2.” [41] For a full
description, see [41, §3.2 and §3.3].

any strategy it wishes. Next the simulation runs A2 with a
simulated25 zero-knowledge signature of knowledge π and a
random coin serial number S sampled from Z∗q . Note that if
π is at least computationally zero-knowledge then with all but
negligible probability, all values provided to A are distributed
as in the real protocol. Moreover, all are independent of the
bit b. By implication, Pr [b = b′] = 1/2 + ν(λ) and A’s
advantage is negligible. 2

B. Proof of Theorem 4.2

Proof: Let A be an adversary that wins the Balance game
with non-negligible advantage ε. We construct an algorithm
B that takes input (p, q, g, h), where G = 〈g〉 = 〈h〉 is a
subgroup of Z∗p of order q, and outputs x ∈ Zq such that
gx ≡ h (mod p). B works as follows:

On input (p, q, g, h), first generate accumulator param-
eters N, u as in the Setup routine and set params ←
(N, u, p, q, g, h). For i = 1 to K, compute (ci, skci) ←
Mint(params), where skci = (Si, ri), and run
A(params, c1, . . . , cK). Answer each of A’s queries to
Ospend using the appropriate trapdoor information. Let
(S1, R1), . . . , (Sl, Rl) be the set of values recorded by the
oracle.

At the conclusion of the game, A outputs a set of M
coins (c′1, . . . , c

′
M) and a corresponding set of M + 1 valid

tuples (π′i, S
′
i, R
′
i,C

′
i). For j = 1 to M+1, apply the ZKSoK

extractor to the jth zero-knowledge proof π′j to extract the
values (c∗j , r

∗
j) and perform the following steps:

1) If the extractor fails, abort and signal EVENTEXT.
2) If c∗j /∈ C′j , abort and signal EVENTACC.
3) If c∗j ∈ {c1, . . . , cK}:

a) If for some i, (S′j , r
∗
j) = (Si, ri) and R′j 6= Ri,

abort and signal EVENTFORGE.
b) Otherwise if for some i, (S′j , r

∗
j) = (Si, ri), abort

and signal EVENTCOL.
c) Otherwise set (a, b) = (Si, ri).

4) If for some i, c∗j = c∗i , set (a, b) = (S′i, r
∗
i).

If the simulation did not abort, we now have
(c∗j , r

∗
j , S

′
j , a, b) where (by the soundness of π) we know

that c∗j ≡ gS
′
jhr

∗
j ≡ gahb (mod p). To solve for logg h,

output (S′j − a) · (b− r′j)−1 mod q.

Analysis. Let us briefly explain the conditions behind this
proof. When the simulation does not abort, we are able to
extract (c∗1, . . . , c

∗
M+1) where the win conditions enforce that

∀j ∈ [1,M + 1], c∗j ∈ C′j ∈ {c1, . . . , cK , c′1, . . . , c′M} and
each S′j is distinct (and does not match any serial number
output by Ospend). Since A has produced M coins and yet
spent M + 1, there are only two possibilities:

1) A has spent one of the challenger’s coins but has
provided a new serial number for it. For some (i, j),

25Our proofs assume the existence of an efficient simulator and extractor
for the ZKSoK. See Appendix B.

743

Approved for Public Release; Distribution Unlimited.

c∗j = ci ∈ {c1, . . . , cK}. Observe that in cases where
the simulation does not abort, the logic of the simu-
lation always results in a pair (a, b) = (Si, ri) where
gahb ≡ gS

′
jhr

∗
j ≡ c∗j (mod p) and (a, b) 6= (S′j , r

∗
j).

2) A has spent the same coin twice. For some (i, j),
c∗j = c∗i and yet (S′j 6= S′i). Thus again we identify
a pair (a, b) = (S′i, r

∗
i) that satisfies gahb ≡ c∗j

(mod p) where (a, b) 6= (S′j , r
∗
j).

Finally, we observe that given any such pair (a, b) we can
solve for x = logg h using the equation above.

Abort probability. It remains only to consider the probability
that the simulation aborts. Let ν1(λ) be the (negligible)
probability that the extractor fails on input π. By sum-
mation, Pr [EVENTEXT] ≤ (M + 1)ν1(λ). Next consider
the probability of EVENTCOL. This implies that for some
i, A has produced a pair (S′j , r

∗
j) = (Si, ri) where S′j

has not been produced by Ospend. Observe that there are
l distinct pairs (S, r) that satisfy c∗j = gShr mod p and
A’s view is independent of the specific pair chosen. Thus
Pr [EVENTCOL] ≤ 1/l.

Next, we argue that under the Strong RSA and Dis-
crete Log assumptions, Pr [EVENTACC] ≤ ν2(λ) and
Pr [EVENTFORGE] ≤ ν3(λ). We show this in Lemmas A.1
and A.2 below. If A succeeds with advantage ε, then by
summing the above probabilities we show that B succeeds
with probability ≥ ε−((M+1)ν1(λ)+ν2(λ)+ν3(λ)+1/l).
We conclude with the remaining Lemmas.

Lemma A.1: Under the Strong RSA assumption,
Pr [EVENTACC] ≤ ν2(λ).

Proof sketch. The basic idea of this proof is that an A′ who
induces EVENTACC with non-negligible probability can be
used to find a witness ω to the presence of a non-member in a
given accumulator. Given this value, we apply the technique
of [12, §3] to solve the Strong RSA problem. For the complete
details we refer the reader to [12, §3] and simply outline the
remaining details of the simulation.

Let A′ be an adversary that induces EVENTACC with non-
negligible probability ε′ in the simulation above. We use
A′ to construct a Strong RSA solver B′ that succeeds with
non-negligible probability. On input a Strong RSA instance
(N, u), B′ selects (p, q, g, h) as in Setup and sets params =
(N, u, p, q, g, h). It generates (c1, . . . , cK) as in the previous
simulation and runs A′. To induce EVENTACC, A′ produces
valid output (π′,C′) and (by extraction from π′) a c∗ /∈ C′.
B′ now extracts ω∗ from π′ using the technique described
in [12, §3] and uses the resulting value to compute a solution
to the Strong RSA instance. 2

Lemma A.2: Under the Discrete Logarithm assumption,
Pr [EVENTFORGE] ≤ ν3(λ).

Proof sketch. We leave a proof for the full version of this
paper, but it is similar to those used by earlier schemes,

e.g., [25]. Let A′ be an adversary that induces EVENTFORGE

with non-negligible probability ε′ in the simulation above.
On input a discrete logarithm instance, we run A′ as in
the main simulation except that we do not use the trapdoor
information to answer A′’s oracle queries. Instead we select
random serial numbers and simulate the ZKSoK responses
to A′ by programming the random oracle. When A′ outputs
a forgery on a repeated serial number but a different string
R′ than used in any previous proof, we rewind A′ to extract
the pair (S′j , r

∗
j) and solve for the discrete logarithm as in

the main simulation. 2

APPENDIX B.
ZERO-KNOWLEDGE PROOF CONSTRUCTION

The signature of knowledge

π = ZKSoK[R]{(c, w, r) :

AccVerify((N, u), A, c, w) = 1 ∧ c = gShr}
is composed of two proofs that (1) a committed value c
is accumulated and (2) that c is a commitment to S. The
former proof is detailed in [41, §3.3 and Appendix A]. The
latter is a double discrete log signature of knowledge that,
although related to previous work [21, §5.3.3], is new (at
least to us). A proof of its security can be found in the full
version of this paper. It is constructed as follows:

Given y1 = ga
xbzhw.

Let l ≤ k be two security parameters and H :
{0, 1}∗ → {0, 1}k be a cryptographic hash func-
tion. Generate 2l random numbers r1, . . . , rl and
v1, . . . , vl. Compute, for 1 ≤ i ≤ l, ti = ga

xbrihvi .
The signature of knowledge on the message m is
(c, s1, s2, . . . , sl, s

′
1, s
′
2, . . . , s

′
l), where:

c = H(m‖y1‖a‖b‖g‖h‖x‖t1‖ . . . ‖tl)
and

if c[i] = 0 then si = ri, s
′
i = vi;

else si = ri − z, s′i = vi − wbri−z;
To verify the signature it is sufficient to compute:

c′ = H(m‖y1‖a‖b‖g‖h‖x‖t̄1‖ . . . ‖t̄l)
with

if c[i] = 0 then t̄i = ga
xbsihs

′
i ;

else t̄i = yb
si

1 hs
′
i ;

and check whether c = c′.

Simulating and extracting. Our proofs in Appendix A assume
the existence of an efficient simulator and extractor for the
signature of knowledge. These may be constructed using well-
understood results in the random oracle model, e.g., [25, 42].
We provide further details in the full version of this work.

744

Approved for Public Release; Distribution Unlimited.

PCF: A Portable Circuit Format For Scalable Two-Party Secure
Computation

Ben Kreuter
Computer Science Dept.

U. Virginia

Benjamin Mood
Computer and Info. Science Dept.

U. Oregon

abhi shelat
Computer Science Dept.

U. Virginia

Kevin Butler
Computer and Info. Science Dept.

U. Oregon

Abstract
A secure computation protocol for a function f (x,y)

must leak no information about inputs x,y during its ex-
ecution; thus it is imperative to compute the function f
in a data-oblivious manner. Traditionally, this has been
accomplished by compiling f into a boolean circuit. Pre-
vious approaches, however, have scaled poorly as the cir-
cuit size increases. We present a new approach to com-
piling such circuits that is substantially more efficient
than prior work. Our approach is based on online cir-
cuit compression and lazy gate generation. We imple-
mented an optimizing compiler for this new representa-
tion of circuits, and evaluated the use of this representa-
tion in two secure computation environments. Our eval-
uation demonstrates the utility of this approach, allow-
ing us to scale secure computation beyond any previous
system while requiring substantially less CPU time and
disk space. In our largest test, we evaluate an RSA-1024
signature function with more than 42 billion gates, that
was generated and optimized using our compiler. With
our techniques, the bottleneck in secure computation lies
with the cryptographic primitives, not the compilation or
storage of circuits.

1 Introduction

Secure function evaluation (SFE) refers to several related
cryptographic constructions for evaluating functions on
unknown inputs. Typically, these constructions require
an oblivious representation of the function being eval-
uated, which ensures that the control flow of the algo-
rithm will not depend on its input; in the two party case,
boolean circuits are most frequently seen. These oblivi-
ous representations are often large, with millions and in
some cases billions of gates even for relatively simple
functions, which has motivated the creation of software
tools for producing such circuits. While there has been
substantial work on the practicality of secure function

evaluation, it was only recently that researchers began
investigating the practicality of compiling such oblivious
representations from high-level descriptions.

The work on generating boolean circuits for SFE has
largely focused on two approaches. In one approach,
a library for a general purpose programming language
such as Java is created, with functions for emitting cir-
cuits [13, 20]. For convenience, these libraries typically
include pre-built gadgets such as adders or multiplex-
ers, which can be used to create more complete func-
tions. The other approach is to write a compiler for a
high level language, which computes and optimizes cir-
cuits based on a high level description of the functional-
ity that may not explicitly state how the circuit should
be organized [18, 21]. It has been shown in previous
work that both of these approaches can scale up to cir-
cuits with at least hundreds of millions of gates on mod-
ern computer hardware, and in some cases even billions
of gates [13, 18].

The approaches described above were limited in terms
of their practical utility. Library-based approaches like
HEKM [13] or VMCrypt [20] require users to understand
the organization of the circuit description of their func-
tion, and were unable to apply any optimizations across
modules. The Fairplay compiler [21] was unable to scale
to circuits with only millions of gates, which excludes
many interesting functions that have been investigated.
The poor scalability of Fairplay is a result of the com-
piler first unrolling all loops and inlining all subroutines,
storing the results in memory for later compiler stages.
The PALC system [23] was more resource efficient than
Fairplay, but did not attempt to optimize functions, re-
lying instead on precomputed optimizations of specific
subcircuits. The KSS12 [18] system was able to apply
some global optimizations and used less memory than
Fairplay, but also had to unroll all loops and store the
complete circuit description, which caused some func-
tions to require days to compile. Additionally, the lan-
guage used to describe circuits in the KSS12 system was

1
745

Approved for Public Release; Distribution Unlimited.

brittle and difficult to use; for example, array index val-
ues could not be arbitrary functions of loop indices.

1.1 Our Approach

In this work, we demonstrate a new approach to compil-
ing, optimizing, and storing circuits for SFE systems. At
a high level, our approach is based on representing the
function to be evaluated as a program that computes the
circuit representation of the function, similar to the cir-
cuit library approaches described in previous work. Our
compiler then optimizes this program with the goal of
producing a smaller circuit. We refer to our circuit rep-
resentation as the Portable Circuit Format (PCF).

When the SFE system is run, it uses our interpreter
to load the PCF program and execute it. As the PCF
program runs, it interacts with the SFE system, managing
information about gates internally based on the responses
from the SFE system itself. In our system, the circuit is
ephemeral; it is not necessary to store the entire circuit,
and wires will be deleted from memory once they are no
longer required.

The key insight of our approach is that it is not neces-
sary to unroll loops until the SFE protocol runs. While
previous compilers discard the loop structure of the func-
tion, ours emits it as part of the control structure of the
PCF program. Rather than dealing directly with wires,
our system treats wire IDs as memory addresses; a wire
is “deleted” by overwriting its location in memory. Loop
termination conditions have only one constraint: they
must not depend on any secret wire values. There is no
upper bound on the number of loop iterations, and the
programmer is responsible for ensuring that there are no
infinite loops.

To summarize, we present the following contributions:

• A new compiler that has the same advantages as the
circuit library approach

• A novel, more general algorithm for translating con-
ditional statements into circuits

• A new representation of circuits that is more com-
pact than previous representations which scales to
arbitrary circuit sizes.

• A portable interpreter that can be used with differ-
ent SFE execution systems regardless of the security
model.

Our compiler is a back end that can read the byte-
code emitted by a front end; thus our compiler allows
any language to be used for SFE. Instead of focusing on
global optimizations of boolean functions, our optimiza-
tion strategy is based on using higher-level information

from the bytecode itself, which we show to be more ef-
fective and less resource-intensive. We present compar-
isons of our compiler with previous work and show ex-
perimental results using our compiler in two complete
SFE systems, one based on an updated version of the
KSS12 system and one based on HEKM. In some of our
test cases, our compiler produced circuits only 30% as
large as previous compilers starting from the same source
code. With the techniques presented in this work, we
demonstrate that the RSA algorithm with a real-world
key size and real-world security level can be compiled
and run in a garbled circuit protocol using a typical desk-
top computer. To the best of our knowledge, the RSA-
1024 circuit we tested is larger than any previous garbled
circuit experiment, with more than 42 billion gates. We
also present preliminary results of our system running
on smartphones, using a modified version of the HEKM
system.

For testing purposes, we used the LCC compiler [8]
as a front-end to our system. A high-level view of our
system, with the LCC front-end, is given in Figure 1.

The rest of this paper is organized as follows: Sec-
tion 2 is a review of SFE and garbled circuits; Section 3
presents an overview of bytecode languages; Section 4
explains our compiler design and describes our represen-
tation; Section 5 discusses the possibility of using dif-
ferent bytecode and SFE systems; Section 6 details the
experiments we performed to evaluate our system and re-
sults of those experiments; Section 7 details other work
which is related to our own; and Section 8 presents future
lines of research.

2 Secure Function Evaluation

The problem of secure two-party computation is to allow
two mutually distrustful parties to compute a function
of their two inputs without revealing their inputs to the
opposing party (privacy) and with a guarantee that the
output could not have been manipulated (correctness).
Yao was the first to show that such a protocol can be
constructed for any computable function, by using the
garbled circuits technique [30]. In his original formula-
tion, Yao proposed a system that would allow users to de-
scribe the function in a high level language, which would
then be compiled into a circuit to be used in the garbled
circuits protocol. The first complete implementation of
this design was the Fairplay system given by Malkihi et
al. [21].
Oblivious Transfer One of the key building blocks
in Yao’s protocol is oblivious transfer, a cryptographic
primitive first proposed by Rabin [25]. In this primitive,
the “sender” party holds a database of n strings, and the
“receiver” party learns exactly k strings with the guar-
antee that the sender will not learn which k strings were

2
746

Approved for Public Release; Distribution Unlimited.

Gen. PCF
Interpreter

C Code

Evl. PCF
InterpreterLCC

Bytecode

C Compiler LCC to PCF
Compiler

PCF File

Figure 1: High-level design of our system. We take a C
program and compile it down to the LCC bytecode. Our
compiler then transforms the LCC bytecode to our new
language PCF. Both parties then execute the protocol in
their respective role in the SFE protocol. The interpreter
could be any execution system.

sent and the receiver will not learn more than k strings;
this is known as a k-out-of-n oblivious transfer. Given a
public key encryption system it is possible to construct
a 1-out-of-2 oblivious transfer protocol [7], which is the
building block used in Yao’s protocol.
Garbled Circuits The core of Yao’s protocol is the con-
struction of garbled circuits, which involves encrypting
the truth table of each gate in a circuit description of the
function. When the protocol is run, the truth values in the
circuit will be represented as decryption keys for some
cipher, with each gate receiving a unique pair of keys for
its output wire. The keys for a gate’s input wires are then
used to encrypt the keys for its output wires. Given a sin-
gle key for each input wire of the circuit, the party that
evaluates the circuit can decrypt a single key that rep-
resents a hidden truth value for each gate’s output wire,
until the output gates are reached. Since this encryption
process can be applied to any circuit, and since any com-
putable function has a corresponding circuit family, this
allows the construction of a secure protocol for any com-
putable function.

The typical garbled circuit protocol has two parties
though it can be expanded to more. Those two parties
are Bob, the generator of the garbled circuit, and Alice,
the evaluator of the garbled circuit. Bob creates the gar-
bled circuit and therefore knows the decryption keys, but
does not know which specific keys Alice uses. Alice will
receive the input keys from Bob using an oblivious trans-
fer protocol, and thus learns only one key for each input
wire; if the keys are generated independent of Bob’s in-
put, Alice will learn only enough to compute the output
of the circuit.

Several variations on the Yao protocol have been pub-
lished; a simple description of the garbling and eval-
uation process follows. Let f : {0,1}A × {0,1}B →
{0,1} j ×{0,1}k be a computable function, which will
receive input bits from two parties and produce output
bits for each party (not necessarily the same outputs). To
garble the circuit, a block cipher 〈E,D,G〉 will be used.

For each wire in the circuit, Bob computes a pair of
random keys (k0,k1)← (G(1n),G(1n)), which represent

logical 0 and 1 values. For each of Alice’s outputs, Bob
uses these keys to encrypt a 0 and a 1 and sends the pair
of ciphertexts to Alice. Bob records the keys correspond-
ing to his own outputs. The rest of the wires in the cir-
cuit are inputs to gates. For each gate, if the truth table is
[v0,0,v0,1,v1,0,v1,1], Bob computes the following cipher-
text:

[
Ekl,0(Ekr,0(kv0,0)),Ekl,0(Ekr,1(kv0,1))

Ekl,1(Ekr,0(kv1,0)),Ekl,1(Ekr,1(kv1,1))

]

where kl,∗ and kr,∗ are the keys for the left and right input
wires (this can be generalized for gates with more than
two inputs). The order of the four ciphertexts is then
randomly permuted and sent to Alice.

Now that Alice has the garbled gates, she can begin
evaluating the circuit. Bob will send Alice his input wire
keys. Alice and Bob then use an oblivious transfer to give
Alice the keys for her input wires. For each gate, Alice
will only be able to decrypt one entry, and will receive
one key for the gate’s output, and will continue to de-
crypt truth table entries until the output wires have been
computed. Alice will then send Bob his output keys, and
decrypt her own outputs.
Optimizations Numerous optimizations to the basic Yao
protocol have been published [10, 13, 17, 24, 27]. Of
these, the most relevant to compiling circuits is the “free
XOR trick” given by Kolesnikov and Schneider [17].
This technique allows XOR gates to be evaluated with-
out the need to garble them, which greatly reduces the
amount of data that must be transferred and the CPU time
required for both the generator and the evaluator. One ba-
sic way to take advantage of this technique is to choose
subcircuits with fewer non-XOR gates; Schneider pub-
lished a list of XOR-optimal circuits for even three-input
functions [27].

Huang et al. noted that there is no need for the eval-
uator to wait for the generator to garble all gates in the
circuit [13]. Once a gate is garbled, it can be sent to
the evaluator, allowing generation and evaluation to oc-
cur in parallel. This technique is very important for large
circuits, which can quickly become too large to store in
RAM [18]. Our approach unifies this technique with the
use of an optimizing compiler.

3 Bytecode

A common approach to compiler design is to translate a
high level language into a sequence of instructions for a
simple, abstract machine architecture; this is known as
the intermediate representation or bytecode. Bytecode
representations have the advantage of being machine-
independent, thus allowing a compiler front-end to be
used for multiple target architectures. Optimizations per-

3
747

Approved for Public Release; Distribution Unlimited.

formed on bytecode are machine independent as well; for
example, dead code elimination is typically performed
on bytecode, as removing dead code causes programs to
run faster on all realistic machines.

For the purposes of this work, we focus on a com-
monly used bytecode abstraction, the stack machine. In
this model, operands must be pushed onto an abstract
stack, and operations involve popping operands off of the
stack and pushing the result. In addition to the stack, a
stack machine has RAM, which is accessed by instruc-
tions that pop an address off the stack. Instructions in
a stack machine are partially ordered, and are divided
into subroutines in which there is a total ordering. In
addition to simple operations and operations that interact
with RAM, a stack machine has operations that can mod-
ify the program counter, a pointer to the next instruction
to be executed, either conditionally or unconditionally.

At a high level, our system translates bytecode pro-
grams for a stack machine into boolean circuits for SFE.
At first glance, this would appear to be at least highly
inefficient, if not impossible, because of the many ways
such an input program could loop. We show, however,
that imposing only a small set of restrictions on permis-
sible sequences of instructions enables an efficient and
practical translator, without significantly reducing the us-
ability or expressive power of the high level language.

4 System Design

Our system divides the compiler into several stages, fol-
lowing a common compiler design. For testing, we used
the LCC compiler front end to parse C source code and
produce a bytecode intermediate representation (IR). Our
back end performs optimizations and translates the byte-
code into a description of a secure computation proto-
col using our new format. This representation greatly re-
duces the disk space requirements for large circuits com-
pared to previous work, while still allowing optimiza-
tions to be done at the bit level. We wrote our compiler
in Common Lisp, using the Steel Bank Common Lisp
system.

4.1 Compact Representations of Boolean
Circuits

In Fairplay and the systems that followed its design, the
common pattern has been to represent Boolean circuits as
adjacency lists, with each node in the graph being a gate.
The introduces a scalability problem, as it requires stor-
age proportional to the size of the circuit. Generating,
optimizing, and storing circuits has been a bottleneck
for previous compilers, even for relatively simple func-
tions like RSA. Loading such large circuits into RAM

OR

Memory

LOC: 65+iLOC: 33+i LOC: 1+i

Loop?

… ...

… ...

YESNO

OR

Memory

LOC: 65+iLOC: 65+i LOC: 97+i

… ...

Figure 2: The high-level concept of the PCF design. It
is not necessary to unroll loops at compile time, even to
perform optimizations on the circuit. Instead, loops can
be evaluated at runtime, with gates being computed on-
the-fly, and loop indices being updated locally by each
party. Wire values are stored in a table, with each gate
specifying which two table entries should be used as in-
puts and where the output should be written; previous
wire values in the table can be overwritten during this
process, if they are no longer needed.

is a challenge, as even very high-end machines may not
have enough RAM for relatively simple functions.

There have been some approaches to addressing this
scalability problem presented in previous work. The
KSS12 system reduced the RAM required for protocol
executions by assigning each gate’s output wire a refer-
ence count, allowing the memory used for a wire value to
be deallocated once the gate is no longer needed. How-
ever, the compiler bottleneck was not solved in KSS12,
as even computing the reference count required memory
proportional to the size of the circuit. Even with the engi-
neering improvements presented by Kreuter, shelat, and
Shen, the KSS12 compiler was unable to compile circuits
with more than a few billion gates, and required several
days to compile their largest test cases [18].

The PAL system [23] also addresses memory require-
ments, by adding control structures to the circuit descrip-
tion, allowing parts of the description to be re-used. In
the original presentation of PAL, however, a large circuit
file would still be emitted in the Fairplay format when
the secure protocol was run. An extension of this work
presented by Mood [22] allowed the PAL description to
be used directly at runtime, but this work sacrificed the
ability to optimize circuits automatically.

Our system builds upon the PAL and KSS12 systems
to solve the memory scalability problem without sacri-

4
748

Approved for Public Release; Distribution Unlimited.

ficing the ability to optimize circuits automatically. Two
observations are key to our approach.

Our first observation is that it is possible to free the
memory required for storing wire values without com-
puting a reference count for the wire. In previous work,
each wire in a circuit is assigned a unique global identi-
fier, and gate input wires are specified in terms of these
identifiers (output wires can be identified by the position
of the gate in the gate list). Rather than using global
identifiers, we observe that wire values are ephemeral,
and only require a unique identity until their last use as
the input to a gate.

We therefore maintain a table of “active” wire values,
similar to KSS12, but change the gate description. In
this format, wire values are identified by their index in
the table, and gates specify the index of each input wire
and an index for the output wire; in other words, a gate
is a tuple 〈t, i1, i2,o〉, where t is a truth table, i1, i2 are the
input wire indexes, and o is the output wire index. When
a wire value is no longer needed, its index in the table
can be safely used as an output wire for a gate.

Now, consider the following example of a circuit
described in the above format, which accumulates the
Boolean AND of seven wire values:

〈AND1,1,2,0〉
〈AND2,0,3,0〉
〈AND3,0,4,0〉
〈AND4,0,5,0〉
〈AND5,0,6,0〉
〈AND6,0,7,0〉

Our second observation is that circuits such as this can
be described more compactly using a loop. This builds
on our first observation, which allows wire values to be
overwritten once they are no longer needed. A simple ap-
proach to allowing this would add a conditional branch
operation to the description format. This is more general
than the approach of PAL, which includes loops but al-
lows only simple iteration. Additionally, it is necessary
to allow the loop index to be used to specify the input or
output wire index of the gates; as a general solution, we
add support for indirection, allowing wire values to be
copied.

This representation of Boolean circuits is a bytecode
for a one-bit CPU, where the operations are the 16 pos-
sible two-arity Boolean gates, a conditional branch, and
indirect copy. In our system, we also add instructions
for function calls (which need not be inlined at compile
time) and handling the parties’ inputs/outputs. When the
secure protocol is run, a three-level logic is used for wire
values: 0, 1, or ⊥, where ⊥ represents an “unknown”
value that depends on one of the party’s inputs. In the
case of a Yao protocol, the ⊥ value is represented by a

garbled wire value. Conditional branches are not allowed
to depend on ⊥ values, and indirection operations use
a separate table of pointers that cannot computed from
⊥ values (if such an indirection operation is required, it
must be translated into a large multiplexer, as in previous
work).

We refer to our circuit representation as the Portable
Circuit Format or PCF. In addition to gates and branches,
PCF includes support for copying wires indirectly, a
function call stack, data stacks, and setting function pa-
rameters. These additional operations do not emit any
gates and can therefore be viewed as “free” operations.
PCF is modeled after the concept of PAL, but instead
of using predefined sub-circuits for complex operations,
a PCF file defines the sub-circuits for a given function
to allow for circuit structure optimization. PCF includes
lower level control structures compared to PAL, which
allows for more general loop structures.

In Appendix A, we describe in detail the semantics of
the PCF instructions. Example PCF files are available at
the authors’ website.

4.2 Describing Functions for SFE

Most commonly used programming languages can de-
scribe processes that cannot be translated to SFE; for ex-
ample, a program that does not terminate, or one which
terminates after reading a specific input pattern. It is
therefore necessary to impose some limitation on the de-
scriptions of functions for SFE. In systems with domain
specific languages, these limitations can be imposed by
the grammar of the language, or can be enforced by
taking advantage of particular features of the grammar.
However, one goal of our system is to allow any pro-
gramming language to be used to describe functionality
for SFE, and so we cannot rely on the grammar of the
language being used.

We make a compromise when it comes to restricting
the inputs to our system. Unlike model checking sys-
tems [2], we impose no upper bound on loop iterations or
on recursive function calls (other than the memory avail-
able for the call stack), and leave the responsibility of en-
suring that programs terminate to the user. On the other
hand, our system does forbid certain easily-detectable
conditions that could result in infinite loops, such as
unconditional backwards jumps, conditional backwards
jumps that depend on input, and indirect function calls.
These restrictions are similar to those imposed by the
Fairplay and KSS12 systems [18,21], but allow for more
general iteration than incrementing the loop index by a
constant. Although false positives, i.e., programs that
terminate but which contain such constructs are possible,
our hypothesis is that useful functions and typical com-
pilers would not result in such instruction sequences, and

5
749

Approved for Public Release; Distribution Unlimited.

we observed no such functions in our experiments with
LCC.

4.3 Algorithms for Translating Bytecode
Our compiler reads a bytecode representation of the
function, which lacks the structure of higher-level de-
scriptions and poses a unique challenge in circuit gener-
ation. As mentioned above, we do not impose any upper
limit on loop iterations or the depth of the function call
stack. Our approach to translation does not use any sym-
bolic analysis of the function. Instead, we translate the
bytecode into PCF, using conditional branches and func-
tion calls as needed and translating other instructions into
lists of gates. For testing, we use the IR from the LCC
compiler, which is based on the common stack machine
model; we will use examples of this IR to illustrate our
design, but note that none of our techniques strictly re-
quire a stack machine model or any particular features of
the LCC bytecode.

In our compiler, we divide bytecode instructions into
three classes:

Normal Instructions which have exactly one successor
and which can be represented by a simple circuit.
Examples of such instructions are arithmetic and
bitwise logic operations, operations that push data
onto the stack or move data to memory, etc.

Jump Instructions that result in an unconditional con-
trol flow switch to a specific label. This does not
include function calls, which we represent directly
in PCF. Such instructions are usually used for if/else
constructs or preceding the entry to a loop.

Conditional Instructions that result in control flow
switching to either a label or the subsequent instruc-
tion, depending on the result of some conditional
statement. Examples include arithmetic compar-
isons.

In the stack machine model, all operands and the
results of operations are pushed onto a global stack.
For “normal” instructions, the translation procedure is
straightforward: the operands are popped off the stack
and assigned temporary wires, the subcircuit for the op-
eration is connected to these wires, and the output of the
operation is pushed onto the stack. “Jump” instructions
appear, at first, to be equally straightforward, but actually
require special care as we describe below.

“Conditional” instructions present a challenge. Condi-
tional jumps whose targets precede the jump are assumed
to be loop constructs, and are translated directly into PCF
branch instructions. All other conditional jumps require
the creation of multiplexers in the circuit to deal with

If If[code] [code] [code]
True True

False

False

[code]

Figure 3: Nested if statements, which can be handled
using the stack-based algorithm.

conditional assignments. Therefore, the branch targets
must be tracked to ensure that the appropriate condition
wires are used to control those multiplexers.

In the Fairplay and KSS12 compilers, the condition
wire for an “if” statement is pushed onto a stack along
with a “scope” that is used to track the values (wire as-
signments) of variables. When a conditional block is
closed, the condition wire at the top of the stack is used
to multiplex the value of all the variables in the scope at
the top with the values from the scope second to the top,
and then the stack is popped. This procedure relies on
the grammar of “if/else” constructs, which ensures that
conditional blocks can be arranged as a tree. An exam-
ple of this type of “if/else” construct is in Figure 3. In a
bytecode representation, however, it is possible for con-
ditional blocks to “overlap” with each other without be-
ing nested.

In the sequence shown in Figure 4, the first branch’s
target precedes the second branch’s target, and indirect
loads and assignments exist in the overlapping region of
these two branches. The control flow of such an overlap
is given in Figure 5. A stack is no longer sufficient in this
case, as the top of the stack will not correspond to the ap-
propriate branch when the next branch target is encoun-
tered. Such instruction sequences are not uncommon in
the code generated by production compilers, as they are
a convenient way to generate code for “else” blocks and
ternary operators.

To handle such sequences, we use a novel algorithm
based on a priority queue rather than a stack, and we
maintain a global condition wire that is modified as
branches and branch targets are reached. When a branch
instruction is reached, the global condition wire is up-
dated by logically ANDing the branch condition with
the global condition wire. The priority queue is updated
with the branch condition and a scope, as in the stack-
based algorithm; the priority is the target, with lower
targets having higher priority. When an assignment is
performed, the scope at the top of the priority queue is
updated with the value being assigned, the location be-
ing assigned to, the old value, and a copy of the global
condition wire. When a branch target is reached, multi-
plexers are emitted for each assignment recorded in the
scope at the top of the priority queue, using the copy of
the global condition wire that was recorded. After the

6
750

Approved for Public Release; Distribution Unlimited.

EQU4 A
INDIRI4 16
EQU4 B
INDIRI4 24
LABELV A
ASGNI4
LABELV B
ASGNI4

Figure 4: A bytecode sequence where overlapping con-
ditional blocks are not nested; note that the target of
the first branch, “A,” precedes the target of the second
branch, “B.”

[code] [code] A:
[code]

False False

True
True

B:
[code]EQU4: BEQU4: A

Figure 5: A control flow with overlapping conditional
blocks.

multiplexers are emitted, the global condition wire is up-
dated by ORing the inverse of the condition wire at the
top of the priority queue, and then the top is removed.

Unconditional jumps are only allowed in the forward
direction, i.e., only if the jump precedes its target. When
such instructions are encountered, they are translated into
conditional branches whose condition wire is the inverse
of the conjunction of the condition wires of all enclos-
ing branches. In the case of a jump that is not in any
conditional block, the condition wire is set to false; this
does not necessarily mean that subsequent assignments
will not occur, as the multiplexers for these assignments
will be emitted and will depend on a global control line
that may be updated as part of a loop construct. The op-
timizer is responsible for determining whether such as-
signments can occur, and will rewrite the multiplexers as
direct assignments when possible.

Finally, it is possible that the operand stack will have
changed in the fall-through path of a conditional jump.
In that case, the stack itself must be multiplexed. For
simplicity, we require that the depth of the stack not
change in a fall-through path. We did not observe any
such changes to the stack in our experiments with LCC.

4.4 Optimization
One of the shortcomings of the KSS12 system was the
amount of time and memory required to perform opti-
mizations on the computed circuit. In our system, opti-
mization is performed before loops are unrolled but after
the functionality is translated into a PCF representation.
This allows optimizations to be performed on a smaller

representation, but increases the complexity of the opti-
mization process somewhat.

The KSS12 compiler bases its optimization on a rudi-
mentary dataflow analysis, but without any conditional
branches or loops, and with single assignments to each
wire. In our system, loops are not eliminated and wires
may be overwritten, but conditional branches are elim-
inated. As in KSS12, we use an approach based on
dataflow analysis, but we must make multiple passes to
find a fixed point solution to the dataflow equations. Our
dataflow equations take advantage of the logical rules of
each gate, allowing more gates to be identified for elimi-
nation than the textbook equations identify.

We perform our dataflow analysis on individual PCF
instructions, which allows us to remove single gates even
where entire bytecode instructions could not be removed,
but which carries the cost of somewhat longer compila-
tion time, on the order of minutes for the experiments we
ran. Currently, our framework only performs optimiza-
tion within individual functions, without any interproce-
dural analysis. Compile times in our system can be re-
duced by splitting a large procedure into several smaller
procedures.

Optimization 128 mult. 5x5 matrix 256 RSA

None 707,244 260,000 904,171,008
Const. Prop. 296,960 198,000 651,504,495
Dead Elim. 700,096 255,875 883,307,712

Both 260,073 131,875 573,156,735

Table 1: Effects of constant propagation and dead code
elimination on circuit size, measured with simulator that
performs no simplification rules. For each function, the
number of non-XOR gates are given for all combinations
of optimizations enabled.

4.4.1 Constant Propagation

The constant propagation framework we use is straight-
forward, similar to the methods used in typical compil-
ers. However, for some gates, simplification rules can re-
sult in constants being computed even when the inputs to
a gate are not constant; for example, XORing a variable
with itself. The transfer function we use is augmented
with a check against logic simplification rules to account
for this situation, but remains monotonic and so conver-
gence is still guaranteed.

4.4.2 Dead Gate Removal

The last step of our optimizer is to remove gates whose
output wires are never used. This is a standard bit vector
dataflow problem that requires little tailoring for our sys-
tem. As is common in compilers, performing this step

7
751

Approved for Public Release; Distribution Unlimited.

Function With Without Ratio

16384-bit Comp. 32,228 49,314 65%
128-bit Sum 345 508 67%
256-sit Sum 721 1,016 70%

1024-bit Sum 2,977 4,064 73%
128-bit Mult. 76,574 260,073 20%
256-bit Mult. 300,634 1,032,416 20%

1024-bit Mult. 8,301,962 19,209,120 21%

Table 2: Non-XOR gates in circuits computed by the in-
terpreter with and without the application of simplifica-
tion rules by the runtime system.

last yields the best results, as large numbers of gates be-
come dead following earlier optimizations.

4.5 Externally-Defined Functions

Some functionality is difficult to describe well in byte-
code formats. For example, the graph isomorphism ex-
periment presented in Section 6 uses AES as a PRNG
building block, but the best known description of the
AES S-box is given at the bit-level [4], whereas the
smallest width operation supported by LCC is a single
byte. To compensate for this difficulty, we allow users to
specify functions with the same language used internally
to translate bytecode operations into circuits; an example
of this language is shown in Section 5.1. This allows for
possible combinations of our compiler with other circuit
generation and optimization tools.

4.6 PCF Interpreter

To use a PCF description of a circuit in a secure protocol,
an interpreter is needed. The interpreter simulates the ex-
ecution of the PCF file for a single-bit machine, emitting
gates as needed for the protocol. Loops are not explicitly
unrolled; instead, PCF branch instructions are condition-
ally followed, based on the logic value of some wire, and
each wire identifier is treated as an address in memory.
This is where the requirement that loop bounds be in-
dependent of both parties’ inputs is ultimately enforced:
the interpreter cannot determine whether or not to take a
branch if it cannot determine the condition wire’s value.

For testing purposes, we wrote two PCF interpreters:
one in C, which is packaged as a reusable library, and
one in Java that was used for tests on smartphones. The
C library can be used as a simulator or for full protocol
execution. As a simulator it simply evaluates the PCF file
without any garbling to measure the size of the circuit
that would have been garbled in a real protocol. This
interpreter was used for the LAN tests, using an updated
version of the KSS12 protocol. The Java interpreter was

Function With (s) Without (s)

16384-bit Comp. 4.41±0.3% 4.44± 0.3%
128-bit Sum 0.0581±0.3% 0.060± 2%
256-bit Sum 0.103±0.3% 0.105± 0.3%

1024-bit Sum 0.365±0.3% 0.367± 0.2%
128-bit Mult. 0.892±0.1% 0.894± 0.1%
256-bit Mult. 3.02±0.1% 3.04± 0.1%

1024-bit Mult. 39.7±0.2% 39.9±0.06%

Table 3: Simulator time with simplification rules versus
without, using the C interpreter. Times are averaged over
50 samples, with 95% confidence intervals, measured us-
ing the time function implemented by SBCL.

incorporated into the HEKM system for the smartphone
experiments, and can also be used in a simulator mode.

4.7 Threat Model

The PCF system treats the underlying secure computa-
tion protocol as a black box, without making any as-
sumptions about the threat model. In Section 6, we
present running times for smaller circuits in the mali-
cious model version of the KSS12 protocol. This ma-
licious model implementation simply invokes multiple
copies of the same PCF interpreter used for the semi-
honest version, one for each copy of the circuit needed
in the protocol.

4.8 Runtime Optimization

Some optimizations cannot be performed without un-
rolling loops, and so we defer these optimizations until
the PCF program is interpreted. As an example, logic
simplification rules that eliminate gates whose output
values depend on no more than one of their input wires
can only be partially applied at compile time, as some
potential applications of these rules might only be possi-
ble for some iterations of a loop. While it is possible to
compute this information at compile time, in the general
case this would involve storing information about each
gate for every iteration of every loop, which would be as
expensive as unrolling all loops at compile time.

A side effect of applying such logic simplification
rules is copy propagation. A gate that always takes on
the same value as one of its inputs is equivalent to a copy
operation. The application of logic simplification rules to
such a gate results in the interpreter simply copying the
value of the input wire to the output wire, without emit-
ting any gate. As there is little overhead resulting from
the application of simplification rules at runtime, we are
able to reduce compile times further by not performing
this optimization at compile time.

8
752

Approved for Public Release; Distribution Unlimited.

Function This Work KSS12 HFKV

16384 Comp. 32,229 49,149 -
RSA 256 235,925,023 332,085,981 -

Hamming 160 880 - 3,003
Hamming 1600 9,625 - 30,318

3x3 Matrix 27,369 160,949 47,871
5x5 Matrix 127,225 746,177 221,625
8x8 Matrix 522,304 3,058,754 907,776

16x16 Matrix 4,186,368 24,502,530 7,262,208

Table 4: Comparisons between our compiler’s output and
the output of the KSS12 and Holzer et al. (HFKV) com-
pilers, in terms of non-XOR gates.

For each gate, the interpreter checks if the gate’s value
can be statically determined, i.e., if its output value does
not rely on either party’s input bits. This is critical, as
some of the gates in a PCF file are used for control flow,
e.g., to increment a loop index. Additionally, logic sim-
plification rules are applied where possible in the inter-
preter. This allows the interpreter to not emit gates that
follow an input or which have static outputs even when
their inputs cannot be statically determined. As shown
in Table 2, we observed cases where up to 80% of the
gates could be removed in this manner. Even in a sim-
ulator that performs no garbling, applying this runtime
optimization not only shows no performance overhead,
but actually a very slight performance gain, as shown in
Table 3. The slight performance gain is a result of the
transfer of control that occurs when a gate is emitted,
which has a small but non-trivial cost in the simulator. In
a garbled circuit protocol, this cost would be even higher,
because of the time spent garbling gates.

5 Portability

5.1 Portability Between Bytecodes
Our compiler can be given a description of how to trans-
late bytecode instructions into boolean circuits using a
special internal language. An example, for the LCC in-
struction “ADDU,” is shown in Figure 6. The first line is
specific to LCC, and would need to be modified for use
with other front-ends. The second line assumes a stack
machine model: this instruction reads two instructions
from the stack. Following that is the body of the transla-
tion rule, which can be used in general to describe circuit
components and how the input variables should be con-
nected to those components.

The description follows an abstraction similar to VM-
Crypt, in which a unit gadget is “chained” to create a
larger gadget. It is possible to create chains of chains,
e.g., for a shift-and-add multiplier as well. For more
complex operations, Lisp source code can be embedded,

(‘‘ADDU’’ nil second normal nil nil
(two-stack-arg (x y) (var var)
(chain [o1 = i1 + i2 + i3,
o2 = i1 + (i1 + i2) * (i1 + i3)]

(o2 -> i3
x -> i1
y -> i2
o1 -> stack)

(0 -> i3))))

Figure 6: Code used in our compiler to map the bytecode
instruction for unsigned integer addition to the subcircuit
for that operation.

which can interact directly with the compiler’s internal
data structures.

5.2 Portability Between SFE Systems
Both the PCF compiler and the interpreter can treat the
underlying secure computation system as a black box.
Switching between secure computation systems, there-
fore, requires work only at the “back end” of the inter-
preter, where gates are emitted. We envision two pos-
sible approaches to this, both of which we implemented
for our tests:

1. A single function should be called when a gate
should be used in the secure computation proto-
col. The Java implementation of PCF uses this ap-
proach, with the HEKM system.

2. Gates should be generated as if they are being read
from a file, with the secure computation system call-
ing a function. The secure computation system may
need to provide “callback” functions to the PCF in-
terpreter for copying protocol-specific data between
wires. The C implementation we tested uses this
abstraction for the KSS12 system.

6 Evaluation

We compiled a variety of functions to test our com-
piler, optimizer, and PCF interpreter. For each circuit,
we tested the performance of the KSS12 system on a
LAN, described below. For the KSS12 timings, we av-
eraged the runtime for 50 runs, alternating which com-
puter acted as the generator and which as the evaluator to
account for slight configuration differences between the
systems. Compiler timings are based on 50 runs of the
compiler on a desktop PC with an Intel Xeon 5560 pro-
cessor, 8GB of RAM, a 7200 RPM hard disk, Scientific
Linux 6.3 (kernel version 2.6.32, SBCL version 1.0.38).

9
753

Approved for Public Release; Distribution Unlimited.

Function Total Gates non-XOR Gates Compile Time (s) Simulator Time (s)

16384-bit Comp. 97,733 32,229 3.40± 4% 4.40±0.2%

Hamming 160 4,368 880 9.81± 1% 0.0810±0.3%
Hamming 1600 32,912 6,375 11.0±0.4% 0.52± 8%

Hamming 16000 389,312 97,175 10.8±0.2% 4.83±0.5%

128-bit Sum 1,443 345 4.70± 3% 0.0433±0.4%
256-bit Sum 2,951 721 4.60± 3% 0.0732±0.4%

1024-bit Sum 11,999 2,977 4.60± 3% 0.250±0.5%

64-bit Mult. 105,880 24,766 71.7±0.2% 0.332±0.4%
128-bit Mult. 423,064 100,250 74.9±0.1% 0.903±0.3%
256-bit Mult. 1,659,808 400,210 79.5±0.9% 3.07±0.2%

1024-bit Mult. 25,592,368 6,371,746 74.0±0.2% 40.9±0.4%

256-bit RSA 673,105,990 235,925,023 381.±0.2% 980.±0.3%
512-bit RSA 5,397,821,470 1,916,813,808 350.±0.2% 7,330±0.2%

1024-bit RSA 42,151,698,718 15,149,856,895 564.±0.2% 56,000±0.3%

3x3 Matrix Mult. 92,961 27,369 306.± 1% 0.256±0.5%
5x5 Matrix Mult. 433,475 127,225 343.±0.7% 0.94± 2%
8x8 Matrix Mult. 1,782,656 522,304 109.±0.1% 3.14±0.3%

16x16 Matrix Mult. 14,308,864 4,186,368 109.±0.1% 23.7±0.3%

4-Node Graph Iso. 482,391 97,819 684.±0.2% 3.63±0.5%
16-Node Graph Iso. 10,908,749 4,112,135 1040±0.1% 47.0±0.1%

Table 5: Summary of circuit sizes for various functions and the time required to compile and interpret the PCF files
in a protocol simulator. Times are averaged over 50 samples, with 95% confidence intervals, except for RSA-1024
simulator time, which is averaged over 8 samples. Run times were measured using the time function implemented in
SBCL.

Source code for our compiler, our test systems, and our
test functions is available at the authors’ website.

6.1 Effect of Array Sizes on Timing

Some changes in compile time can be observed as some
of the functions grow larger. The dataflow analysis deals
with certain pointer operations by traversing the entire
local variable space of the function and all global mem-
ory, which in functions with large local arrays or pro-
grams with large global arrays is costly as it increases the
number of wires that optimizer must analyze. Reducing
this cost is an ongoing engineering effort.

6.2 Experiments

We compiled and executed the circuits described below
to evaluate our compiler and representation. Several of
these circuits were tested in other systems; we present
the non-XOR gate counts of the circuits generated by our
compiler and other work in Table 4. The sizes, compile
times, and interpreter times required for these circuits are
listed in Table 5. By comparison, we show compile times
and circuit sizes using the KSS12 and HFKV compilers
in Table 6. As expected, the PCF compiler outperforms

these previous compilers as the size of the circuits grow,
due to the improved scalability of the system.
Arbitrary-Width Millionaire’s Problem As a simple
sanity check for our system, we tested an arbitrary-width
function for the millionaire’s problem; this can be viewed
as a string comparison function on 32 bit characters. It
outputs a 1 to the party which has the larger input. We
found that for this simple function, our performance was
only slightly better than the performance of the KSS12
compiler on the same circuit.
Matrix Multiplication To compare our system with the
work of Holzer et al. [12], we duplicated some of their
experiments, beginning with matrix multiplication on
32-bit integers. We found that our system performed fa-
vorably, particularly due to the optimizations our com-
piler and PCF interpreter perform. On average, our sys-
tem generated circuits that are 60% smaller. We tested
matrices of 3x3, 5x5, 8x8, and 16x16, with 32 bit integer
elements.
Hamming Distance Here, we duplicate the Hamming
distance experiment from Holzer et al. [12]. Again, we
found that our system generated substantially smaller cir-
cuits. We tested input sizes of 160, 1600, and 16000 bits.
Integer Sum We implemented a basic arbitrary-width in-
teger addition function, using ripple-carry addition. No

10
754

Approved for Public Release; Distribution Unlimited.

HFKV KSS12
Function Total Gates non-XOR gates Time (s) Total Gates non-XOR gates Time (s)

16384-bit Comp. 330,784 131,103 105. ± 0.1% 98,303 49,154 4.66 ± 0.5%
3x3 Matrix Mult. 172,315 47,871 2.2 ± 4% 424,748 160,949 10.5 ± 0.5%
5x5 Matrix Mult. 797,751 221,625 8.40 ± 0.3% 1,968,452 746,177 48.2 ± 0.2%
8x8 Matrix Mult. 3,267,585 907,776 59.4 ± 0.3% 8,067,458 3,058,754 210 ± 2%

16x16 Matrix Mult. 26,140,673 7,262,208 2,600 ± 7% 64,570,969 24,502,530 2,200 ± 1%
32-bit Mult. 65,121 26,624 6.43 ± 0.3% 15,935 5,983 0.55 ± 5%
64-bit Mult. 321,665 126,529 71.4 ± 0.3% 64,639 24,384 1.6 ± 2%

128-bit Mult. 1,409,025 546,182 999. ± 0.1% 260,351 97,663 6.10 ± 0.6%
256-bit Mult. 5,880,833 2,264,860 16,000 ± 2% 1,044,991 391,935 24.5 ± 0.2%
512-bit Mult. - - - 4,187,135 1,570,303 105. ± 0.2%

1024-bit Mult. - - - 16,763,518 6,286,335 430. ± 0.3%

Table 6: Times of HFKV and KSS12 compilers with circuit sizes. The Mult. program uses a Shift-Add implementa-
tion. All times are averaged over 50 samples with the exception of the HFKV 256-bit multiplication, which was run
for 10 samples; times are given with 95% confidence intervals.

array references are needed, and so our compiler easily
handles this function even for very large input sizes. We
tested input sizes of 128, 256, and 1024 bits.
Integer Multiplication Building on the integer addition
function, we tested an integer multiplication function that
uses the textbook shift-and-add algorithm. Unlike the in-
teger sum and hamming distance functions, the multipli-
cation function requires arrays for both input and out-
put, which slows the compiler down as the problem size
grows. We tested bit sizes of 64, 128, 256, and 1024.
RSA (Modular Exponentiation) In the KSS12 sys-
tem [18], it was possible to compile an RSA circuit for
toy problem sizes, and it took over 24 hours to compile
a circuit for 256-bit RSA. This lengthy compile time and
large memory requirement stems from the fact that all
loops are unrolled before any optimization is performed,
resulting in a very large intermediate representation to
be analyzed. As a demonstration of the improvement
our approach represents, we compiled not only toy RSA
sizes, but also an RSA-1024 circuit, using only modest
computational resources. We tested bit sizes of 256, 512,
and 1024.
Graph Isomorpism We created a program that allows
two parties to jointly prove the zero knowledge proof
of knowledge for graph isomorphism, first presented by
Goldreich et al. [9]. In Goldreich et al.’s proof system,
the prover has secret knowledge of an isomorphism be-
tween two graphs, g1 and g2. To prove this, the prover
sends the verifier a random graph g3 that is isomorphic
to g1 and g2, and the verifier will then choose to learn
either the g1→ g3 isomorphism or the g2→ g3 isomor-
phism. We modify this protocol so that Alice and Bob
must jointly act as the prover; each is given shares of
an isomorphism between graphs g1 and g2, and will use
the online protocol to compute g3 and shares of the two
isomorphisms.

Our implementation works as follows: the program
takes in XOR shares of the isomophism between g1 and
g2 and a random seed from both participants. It also
takes the adjacency matrix representation of g1 as input
by a single party. The program XORs the shares together
to create the g1 → g2 isomorphism. The program then
creates a random isomorphism from g1→ g3 using AES
as the PRNG (to reduce the input sizes and thus the OT
costs), which effectively also creates g3.

Once the random isomorphism g1→ g3 is created, the
original isomorphism, g1→ g2, is inverted to get an iso-
morphism from g2 → g1. Then the two isomorphisms
are “followed” in a chain to get the g2 to g3 isomor-
phism, i.e., for the ith instance in the isomorphic ma-
trix, iso2→3[i] = iso1→3[iso2→1[i]]. The program outputs
shares of both the isomorphism from g1 to g3 and the
isomorphism from g2 to g3 to both parties.

An adjacency matrix of g3 is also an output for the
party which input the adjacency matrix g1. This is calcu-
lated by using g1 and the g1→ g3 isomorphism.

6.3 Online Running Times

To test the online performance of our new format, we
modified the KSS12 protocol to use the PCF interpreter.
Two sets of tests were run: one between two computers
with similar specifications on the University of Virginia
LAN, a busy 100 megabit Ethernet network, and one be-
tween two smartphones communicating over a wifi net-
work.

For the LAN experiments, we used two comput-
ers running ScientificLinux 6.3, a four core Intel Xeon
E5506 2.13GHz CPU, and 8GB of RAM. No time limit
on computation was imposed on these machines, so we
were able to run the RSA-1024 circuit, which requires a
little less than two days. To compensate for slight con-

11
755

Approved for Public Release; Distribution Unlimited.

Function CPU (s) Network (s) CPU (s) Network (s)

Generator Evaluator

16384-bit Comp. 99.8±0.2% 5.63±0.6% 26.0±0.6% 79.4±0.2%

Hamming 1600 9.13±0.4% 0.64± 4% 2.9± 4% 6.87± 2%
Hamming 16000 91.2±0.2% 5.67±0.7% 28.±3% 69.± 2%

64-bit Mult. 0.749±0.3% 0.158±0.7% 0.409±0.3% 0.494±0.6%
128-bit Mult. 2.04±0.3% 0.52± 1% 1.25±0.2% 1.31±0.6%
256-bit Mult. 5.74±0.5% 1.2± 2% 4.2± 2% 2.7± 3%

1024-bit Mult. 72.7±0.2% 28.± 4% 60.± 2% 40.± 3%

256-bit RSA 1940±0.2% 767.±0.7% 1620± 2% 1080± 3%
1024-bit RSA 1.15×105±0.5% 4.4×104± 4% 9.5×104± 5% 6.5×104± 7%

3x3 Matrix Mult. 5.33±0.4% 0.403±0.6% 1.45±0.8% 4.28±0.6%
5x5 Matrix Mult. 24.4±0.2% 1.81±0.4% 6.75±0.9% 19.5±0.4%
8x8 Matrix Mult. 100.±0.2% 7.39±0.4% 26.8±0.7% 81.1±0.3%

4-node ISO 10.1±0.1% 1.05±0.7% 4.96±0.3% 6.15±0.4%
16-node ISO 116.±0.2% 15.7±0.6% 71.6±0.3% 60.3±0.6%

Table 7: Total running time, including PCF operations and protocol operations such as oblivious transfer, for online
protocols using the PCF interpreter and the KSS12 two party computation system, on two computers communicating
over the University of Virginia LAN. With the exception of RSA-1024, all times are averaged over 50 samples; RSA-
1024 is averaged over 8 samples. Running time is divided into time spent on computation and time spent on network
operations (including blocking).

figuration differences between the two systems, we alter-
nated between each machine acting as the generator and
acting as the evaluator.

We give the results of this experiment in Table 7. We
note that while the simulator times given in Table 5 are
more than half the CPU time measured, they are also on
par with the time spent waiting on the network. Non-
blocking I/O or a background thread for the PCF inter-
preter may improve performance somewhat, which is an
ongoing engineering task in our implementation.

6.4 Malicious Model Tests

The PCF system is not limited to the semi-honest model.
We give preliminary results in the malicious model ver-
sion of KSS12. These experiments were run on the same
test systems as above, using two cores for each party.
We present our results in Table 9. The increased running
times are expected, as we used only two cores per party.
In the case of 16384-bit comparison, the increase is very
dramatic, due to the large amount of time spent on obliv-
ious transfer (as both parties have long inputs).

6.5 Phone Execution

We created a PCF interpreter for use with the HEKM ex-
ecution system and ported it to the Android environment.
We then ran it on two Galaxy Nexus phones where one

phone was the generator and another phone was the eval-
uator. These phones have dual core 1.2Ghz processors
and were linked over Wi-Fi using an Apple Airport.

6.6 Phone Trials
As seen in Table 8, we were able to run the smaller pro-
grams directly on two phones. Since the interpreter ex-
ecutes slower on a phone and what would have taken
a week of LAN trials would have taken years of phone
time, we did not complete trials of the larger programs.
Not all of the programs had output for the generator, al-
lowing the generator to finish before the evaluator. This
leads to a noticeable difference in total running time be-
tween the two parties.

Mood’s work on designing SFE applications for mo-
bile devices [22] found that allocation and deallocation
was a bottleneck to circuit execution. This issue was
addressed by substituting the standard BigInteger type
for a custom class that reduced the amount of alloca-
tion required for numeric operations, resulting in a four-
fold improvement in execution time. The lack of this
optimization in our mobile phone experiments may con-
tribute to the reduced performance that we observed.

In future work, we will port the C interpreter and
KSS12 system to Android and run the experiment with
that execution system. Since overhead appears to be tied
to Android’s Dalvik Virtual Machine (DVM), running
programs natively should reduce overhead and hence re-

12
756

Approved for Public Release; Distribution Unlimited.

Function CPU (s) Network (s) CPU (s) Network (s)

Generator Evaluator

16384-bit Comp. 163.±0.5% 12.± 3% 142.±0.5% 68.± 1%

128-bit Sum 5.8±8.2% 1.±30% 5.6± 8% 3.±20%
256-bit Sum 7.3±5.0% 1.±30% 6.± 5% 4.±20%

1024-bit Sum 16.±3.1% 2.±20% 16.± 3% 6.4± 7%

64-bit Mult. 63.3±0.5% 1.±10% 66.3±0.6% 5.±10%
128-bit Mult. 257.±0.2% 3.8± 5% 280.±0.3% 12.± 6%

3x3 Matrix Mult. 76.9±0.4% 12.± 2% 82.0±0.5% 8.5± 4%
5x5 Matrix Mult. 352.±0.3% 49.± 2% 371.±0.3% 32.± 4%
8x8 Matrix Mult. 1,588.±0.1% 82.± 3% 1,550.±0.1% 120.± 1%

Table 8: Execution results from the phone interpreter using the HEKM execution system on two Galaxy Nexus phones.
Times are averages of 50 samples, with 95% confidence intervals.

Function CPU (s) Network (s) CPU (s) Network (s)

Generator Evaluator

16384-bit comp. 3900± 3% 76± 4% 2820± 2% 1200± 10%

128-bit sum 23.± 2% 21± 2% 33.3±0.5% 11.2±0.2%
256-bit sum 63.0±0.4% 10± 20% 49.± 6% 27.± 4%

1024-bit sum 260± 10% 16± 6% 187.± 2% 100± 40%

128-bit mult. 192.±0.3% 47.2±0.6% 168.±0.4% 70.1± 1%
256-bit mult. 637.±0.5% 160± 1% 577.±0.3% 210± 2%

Table 9: Online running time in the malicious model for several circuits. Times are averaged over 50 samples, with
95% confidence intervals.

duce the performance differential between the phone and
PC environments. Additionally, the KSS12 system uses
more efficient cryptographic primitives, potentially fur-
ther improving performance.

7 Related Work

Compiler approaches to secure two-party computation
have attracted significant attention in recent years. The
TASTY system presented by Henecka et al. [11] com-
bines garbled circuit approaches with homomorphic en-
cryption, and includes a compiler that emits circuits that
can be used in both models. As with Fairplay and
KSS12, TASTY requires functions to be described in a
domain-specific language. The TASTY compiler per-
forms optimizations on the abstract syntax tree for the
function being compiled. Kruger et al. developed an or-
dered BDD compiler to test the performance of their sys-
tem relative to Fairplay [19]. Mood et al. focused on
compiling secure functions on mobile devices with the
PALC system, which involved a modification to the Fair-
play compiler [23].

Recently, a compiler approach based on bounded
model checking was present by Holzer et al. [12]. In that

work, the CBMC system [5] was used to construct cir-
cuits, which were then rewritten to have fewer non-XOR
gates. This approach had several advantages over pre-
vious approaches, most prominent being that functions
could be described in the widely used C programming
language, and that the use of CBMC allows for more
advanced software engineering techniques to be applied
to secure computation protocols. Like KSS12, however,
this approach unrolls all loops (up to some fixed number
of iterations), and converts a high level description di-
rectly to a boolean circuit which must then be optimized.

In addition to SFE, work on efficient compilers for
proof systems has also been presented. Almeida et al.
developed a zero-knowledge proof of knowledge com-
piler for Σ-protocols, which converts a protocol specifi-
cation given in a domain-specific language into a pro-
gram for the prover and the verifier to run [1]. Setty
et al. presented a system for verifiable computation that
uses a modification of the Fairplay compiler, which com-
putes a system of quadratic constraints instead of boolean
circuits, and emits executables for the prover and veri-
fier [28, 29]. Our system is somewhat similar to these
approaches, in that the circuit representation we present
can be viewed as a program that is executed by the par-

13
757

Approved for Public Release; Distribution Unlimited.

ties in the SFE system; however, our approach is unique
in its handling of control flow and iterative constructs.

Closely related to our work is the Sharemind sys-
tem [3, 14], which uses secure computation as a building
block for privacy-preserving distributed applications. As
in our approach, the circuits used in the secure compu-
tation portions of Sharemind are not fully unrolled until
the protocol is actually run. Functions in Sharemind are
described using a domain-specific language called Se-
creC. Although there has been work on static analysis
for SecreC [26], the SecreC compiler does not perform
automatic optimizations. By contrast, our approach is fo-
cused on allowing circuit optimizations at the bit-level to
occur without having to unroll an entire circuit.

Kerschbaum has presented work on automatically op-
timizing secure computation at the protocol level, with
an approach based on term and expression rewriting [15,
16]. This approach is based on maximizing the use of of-
fline computation by inferring what each party can com-
pute without knowledge of the other party’s input, and
does not treat the underlying secure computation primi-
tives as a black box. It therefore requires additional work
to remain secure in the malicious model. Our techniques
could conceivably be combined with Kerschbaum’s to re-
duce the overhead of online components.

8 Future Work

Our compiler can conceivably read any bytecode repre-
sentation as input; one immediate future direction is to
write translations for the instructions of another byte-
code format, such as LLVM or the JVM, which would
allow functions to be expressed in a broader range of
languages. Additionally, we believe that our techniques
could be combined with Sharemind, by having our com-
piler read the bytecode for the Sharemind VM and com-
pute optimized PCF files for cases where garbled circuit
computations are used in a Sharemind protocol.

The PCF format does not convey high-level informa-
tion about data operations or types. Such information
may further reduce the size of the circuits that are com-
puted. Static analysis of such information by compilers
has been widely studied, and it is possible that our com-
piler could be extended to support further reductions in
the sizes of circuits emitted by the PCF interpreter. High-
level information about data structures could also be used
to improve the generation of circuits prior to optimiza-
tion, using techniques recently presented by Evans and
Zahur [6].

Our system and techniques can likely be generalized to
the multiparty case, and to other representations of func-
tions, such as arithmetic circuits. This would require sig-
nificant changes to the optimization strategies and goals
in our compiler, but fewer changes would be necessary

for the PCF interpreter. Similar modifications to support
homomorphic encryption systems are also possible.

9 Conclusion

We have presented an approach to compiling and stor-
ing circuits for secure computation systems that requires
substantially lower computational resources than previ-
ous approaches. Empirical evidence of the improve-
ment and utility of our approach is given, using a vari-
ety of functions with different circuit sizes and control
flow structures. Additionally, we have presented a com-
piler for secure computation that reads bytecode as an in-
put, rather than a domain-specific language, and have ex-
plored the challenges associated with such an approach.
We also presented interpreters, which evaluate our new
language on both PCs and phones.

The code for the compiler, PCF interpreters, and test
cases will be available on the authors’ website.

Acknowledgments We would like to thank Elaine Shi
for her helpful advice. We also thank Chih-hao Shen for
his help with porting KSS12 to use PCF. This material is
based on research sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under contract FA8750-
11-2-0211. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those
of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Gov-
ernment.

References
[1] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R.

Sadeghi, and T. Schneider. A Certifying Compiler For Zero-
Knowledge Proofs of Knowledge Based on Σ-Protocols. In Pro-
ceedings of the 15th European conference on Research in com-
puter security, ESORICS’10, pages 151–167, Berlin, Heidelberg,
2010. Springer-Verlag.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Anal-
ysis of Systems, TACAS ’99, pages 193–207, London, UK, UK,
1999. Springer-Verlag.

[3] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A Frame-
work for Fast Privacy-Preserving Computations. In Proceedings
of the 13th European Symposium on Research in Computer Secu-
rity - ESORICS’08, 2008.

[4] J. Boyar and R. Peralta. A New Combinational Logic Minimiza-
tion Technique with Applications to Cryptology. In P. Festa, ed-
itor, Experimental Algorithms, volume 6049 of Lecture Notes in
Computer Science, pages 178–189. Springer Berlin / Heidelberg,
2010.

14
758

Approved for Public Release; Distribution Unlimited.

[5] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-
C Programs. In K. Jensen and A. Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages
168–176. Springer, 2004.

[6] D. Evans and S. Zahur. Circuit structures for improving efficiency
of security and privacy tools. In IEEE Symposium on Security and
Privacy (to appear), 2013.

[7] S. Even, O. Goldreich, and A. Lempel. A randomized protocol
for signing contracts. Commun. ACM, 28(6):637–647, June 1985.

[8] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: De-
sign and Implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[9] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in np have zero-
knowledge proof systems. J. ACM, 38(3):690–728, July 1991.

[10] V. Goyal, P. Mohassel, and A. Smith. Efficient Two Party and
Multi Party Computation Against Covert Adversaries. In Pro-
ceedings of 27th annual international conference on Advances
in cryptology, EUROCRYPT’08, pages 289–306, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[11] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY
computations. In ACM Conference on Computer and Communi-
cations Security, 2010.

[12] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure Two-
Party computations in ANSI C. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12,
pages 772–783, New York, NY, USA, 2012. ACM.

[13] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-
Party Computation Using Garbled Circuits. In USENIX Security
Symposium, 2011.

[14] R. Jagomägis. SecreC: a Privacy-Aware Programming Language
with Apllications in Data Mining. Master’s thesis, University of
Tartu, 2010.

[15] F. Kerschbaum. Automatically optimizing secure computation.
In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, pages 703–714, New York,
NY, USA, 2011. ACM.

[16] F. Kerschbaum. Expression rewriting for optimizing secure com-
putation. In Conference on Data and Application Security and
Privacy, 2013.

[17] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free
XOR Gates and Applications. In L. Aceto, I. Damgård, L. Gold-
berg, M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, edi-
tors, ALP 2008, volume 5126 of LNCS, pages 486–498. Springer,
2008.

[18] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure com-
putation with malicious adversaries. In Proceedings of the 21st
USENIX conference on Security symposium, Security’12, pages
14–14, Berkeley, CA, USA, 2012. USENIX Association.

[19] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function
evaluation with ordered binary decision diagrams. In Proceedings
of the 13th ACM conference on Computer and communications
security (CCS’06), Alexandria, VA, Oct. 2006.

[20] L. Malka. VMCrypt: modular software architecture for scalable
secure computation. In ACM Conference on Computer and Com-
munications Security, pages 715–724, 2011.

[21] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay: A Secure
Two-Party Computation System. In 13th Conference on USENIX
Security Symposium, volume 13, pages 287–302. USENIX Asso-
ciation, 2004.

[22] B. Mood. Optimizing Secure Function Evaluation on Mobile De-
vices. Master’s thesis, 2012, University of Oregon.

[23] B. Mood, L. Letaw, and K. Butler. Memory-Efficient Garbled
Circuit Generation for Mobile Devices. In Financial Cryptogra-
phy and Data Security, volume 7397. Springer Berlin Heidelberg,
2012.

[24] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure Two-
Party Computation Is Practical. In M. Matsui, editor, Asiacrypt,
volume 5912 of LNCS, pages 250–267. Springer, 2009.

[25] M. Rabin. How to Exchange Secrets by Oblivious Transfer.
Technical Report TR-81, Harvard Aiken Computation Labora-
tory, 1981.

[26] J. Ristioja. An analysis framework for an imperative privacy-
preserving programming language. Master’s thesis, Institute of
Computer Science, University of Tartu, 2010.

[27] T. Schneider. Engineering Secure Two-Party Computation Proto-
cols - Design, Optimization, and Applications of Efficient Secure
Function Evaluation. Springer, 2012.

[28] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Mak-
ing Argument Systems for Outsourced Computation Practical
(Sometimes). In NDSS, 2012.

[29] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In Proceedings of the 21st USENIX confer-
ence on Security symposium, Berkeley, CA, USA, 2012.

[30] A. Yao. Protocols for Secure Computations. In 23rd Sympo-
sium on Foundations of Computer Science, pages 160–164. IEEE
Computer Society, 1982.

A PCF Semantics

The PCF file format consists of a header section that de-
clares the input size, followed by a list of operations that
are divided into subroutines. At runtime, these opera-
tions manipulate the internal state of the PCF interpreter,
causing gates to be emitted when necessary. The inter-
nal state of the PCF interpreter consists of an instruction
pointer, a call stack, an array of wire values, and an ar-
ray of pointers. The pointers are positive integers. Wire
values are 0, 1, or ⊥, where ⊥ represents a value that de-
pends on input data, which is supplied by the code that
invokes the interpreter. Each position in the wire table
can be treated as a stack.

Each PCF instruction can take up to 3 arguments. The
instructions and their semantics are as follows:

CLABEL/SETLABELC Appears only in the header,
used for setting the input size for each party. CLA-
BEL declares the bit width of a value, SETLA-
BELC sets the value.

FUNCTION Denotes the beginning of a subroutine.
When the subroutine is called, the instruction
pointer is set to the position following this instruc-
tion.

GADGET Denotes a branch target

15
759

Approved for Public Release; Distribution Unlimited.

BRANCH Takes two arguments: a target, declared with
GADGET, and a location in the wire table. In the
wire value is 0, the instruction pointer is set to the
instruction following the target. If the wire value is
1, the instruction pointer is incremented. If the wire
value is ⊥, evaluation halts with an error.

FUNC Calls a subroutine, pushing the current instruc-
tion pointer onto the call stack.

PUSH Pushes a copy of the wire value at a specified
position onto the stack at that position.

POP Pops a stack at a specified position. If there is only
one value on that stack, evaluation halts with an er-
ror.

ALICEIN32/BOBIN32 Fetches 32 input bits from one
party, beginning at a specified bit position in that
party’s input. The bit position is specified by an
array of 32 values in the wire table. If any of the
values is⊥, evaluation halts with an error. The input
values will all have the value ⊥, and will be stored
in the wire table at positions 0 through 31.

SHIFT OUT Outputs a single bit for a given party

RETURN Return from a subroutine. The instruction
pointer is repositioned to the value popped from the
top of the call stack.

STORECONSTPTR Sets a value in the pointer table

OFFSETPTR Adds a value to a pointer, specified by an
array of 32 wire values starting at a position in the
wire table. If any value in the array is ⊥, evaluation
halts with an error.

PTRTOWIRE Saves a pointer value as a 32 bit un-
signed integer. Each of the bits is pushed onto the
stack at a location in the wire table.

PTRTOPTR Copies a value from one position in the
pointer table to another.

CPY121 Copy a wire value from a position specified by
a pointer to a statically specified position.

CPY32 Copy a wire value from a statically specific po-
sition to a position specified by a pointer.

g0,0g0,1g1,0g1,1 Compute a gate with the specified truth
table on two input values from the wire table, with
output stored at a specified position. Logic simpli-
fication rules are applied when one or both of the
input values is ⊥. If no simplification is possible,
then the output will be ⊥ and the interpreter will
emit a gate. This is used for both local computa-
tions such as updating a loop index, and for com-
puting the gates used by the protocol.

A.1 Example PCF Description
Below is an example of a PCF file. It iterates over a loop
several times times, XORing the two parties’ inputs with
a bit from the internal state.

GADGET: main
CLABEL ALICEINLENGTH 32
CLABEL BOBINLEGNTH 32
CLABEL xxx 32
SETLABELC ALICEINLENGTH 128
SETLABELC ALICEINLENGTH 128
FUNCTION: main
1111 32 0 0
0000 33 0 0
0000 34 0 0
0000 35 0 0
GADGET: L
0110 36 35 34
0001 35 36 36
0110 36 34 33
0001 34 36 36
0110 36 33 32
0001 33 36 36
ALICEINPUT32 0 0
0001 36 0 0
BOBINPUT32 0 0
0001 37 0 0
0110 38 37 36
0110 39 33 38
SHIFT OUT ALICE 39
BRANCH L 35
RETURN xxx

16
760

Approved for Public Release; Distribution Unlimited.

Machine-Generated Algorithms, Proofs and Software for the Batch
Verification of Digital Signature Schemes

Joseph Ayo Akinyele Matthew Green Susan Hohenberger Matthew Pagano
Johns Hopkins University

Abstract—1

Digital signatures provide assurance and trust in almost
all aspects of today’s electronic communications from SSL
certificates to software signing to email. For applications
that process many signed messages at once, batch verifi-
cation is a tempting way to increase throughput, since it
is a method for saving on computation time by processing
many signatures together.

This is a challenge, because human design error has
been a problem historically in batch verification and yet
it is desirable to have a large set of signature schemes with
their batch verifiers to choose from to take advantage of
various features and as a hedge against security flaws.

We address this by presenting AutoBatch, an automated
tool for generating batch verification code from the code of
a signature scheme. While prior works suggested generic
techniques for batch verification, to our knowledge, this
is the first work to systematically identify when these
techniques are applicable and apply them. Moreover, we
argue that this process preserves the unforgeability of the
original scheme. AutoBatch can handle any pairing-based
signature scheme, including variants of signatures, such
as identity-based and ring.

The techniques behind AutoBatch and its implementa-
tion are described herein with performance measurements
for the output of AutoBatch on several existing signature
schemes. The conversion process executes quickly and the
resulting batch savings is significant.

We believe that AutoBatch is a valuable cryptographic
design, proof and implementation tool and, moreover, that
it opens up a new direction in the larger landscape of
computer-aided cryptography.

I. INTRODUCTION

Digital signatures are fundamental to establishing
trust in today’s electronic communications. For ap-
plications where devices are asked to process many
certificates and signed messages, several prior works
focused on batch verification. In batch verification, a
batch of signatures are processed together according to a

1This document is a special courtesy copy created for the DARPA
PROCEED administrators of a work in progress which was partially
funded by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under contract
FA8750-11-2-0211. It is not intended for public distribution. Applying
to all authors, the views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or
the U.S. Government.

special algorithm to save on the overhead. It is desirable
to have batch verifiers for many signature schemes, to
take advantage of their various properties and as a hedge
against a security flaw being found in any one scheme.
Unfortunately, the lesson of the past fifteen years is that
designing batch verifiers is hard and error prone.

For instance, in 1994, an interactive batch verifier for
DSA presented in an early version of [32] was broken
by Lim and Lee [28]. In 1995 Laih and Yen proposed
a new method for batch verification of DSA and RSA
signatures [25], but the RSA batch verifier was broken
five years later by Boyd and Pavlovski [8]. In 1998, two
batch verification techniques were presented for DSA
and RSA [19], [20] but both were later broken [8],
[23], [24]. The same year, Bellare, Garay and Rabin
took the first systematic look at batch verification [4]
and presented three generic methods for batching mod-
ular exponentiations, one of which was called the
small exponents test. Unfortunately, in 2000, Boyd and
Pavlovski [8] published attacks against various batching
schemes which were using the small exponents test
incorrectly. In 2003 and 2004, several batch verification
schemes based on bilinear maps (a.k.a., pairings) were
proposed [12], [37], [38], [39] but all were later broken
by Cao, Lin and Xue [11]. In 2006, a method was
proposed for identifying invalid signatures in RSA-type
batch signatures [27], but it was also flawed [35].

These examples highlight that the design of batch
verifiers can be challenging and that human error has
historically been a problem in this area. Even when
general frameworks for designing schemes have been
made available [4], they have often been misapplied [8].

A. Our Contributions

We address this by presenting AutoBatch, an auto-
mated tool that transforms a digital signature scheme
into an optimized batch verification program. To our
knowledge, this is the first such attempt to remove
the human element, as much as possible, from the
batch verification design and implementation process.
The algorithm behind AutoBatch is a combination of
batching techniques, including the small exponents test

761

Approved for Public Release; Distribution Unlimited.

from [4], the bilinear equation substitutions in [15], the
testing of bilinear group membership and a divide-and-
conquer approach to finding invalid signatures. While
the majority of these ideas are drawn from prior work,
unlike prior work, we are able to automatically identify
when they are applicable and automatically apply them
to the verification equation in a consistent and secure
way. We also introduce new logic for altering the
behavior of the batching algorithm based on its input
size or past input.

Importantly, the way in which we combine these
techniques and optimizations preserves the unforgeabil-
ity of the original scheme. Specifically, with all but
a negligible probability, the batch verifier will accept
a batch S of signatures if and only if every s ∈ S
would have been accepted by the individual verification
algorithm. To provide transparency, AutoBatch also
produces a machine-generated PDF document written
in LaTeX that specifies each technique applied and
provides a proof that security holds.

AutoBatch can handle various flavors of signatures,
as we illustrate with tests on identity-based and ring
signatures. AutoBatch exclusively accepts pairing-based
schemes. Given that the pairing setting offers low band-
width solutions, this is consistent with our overall goal
of keeping cryptographic overhead low.

We believe AutoBatch is a tool with many applica-
tions, assisting both scheme designers and practitioners.
It removes the human element from a cryptographic de-
sign task that appears to be easier for machines to nav-
igate. It concentrates what human experts must verify
to AutoBatch itself and its proof of security. Moreover,
it makes meaningful progress toward the larger goal of
reducing security errors through computer-aided design
and implementation tools.

B. Overview of Our Approach

We present a detailed explanation of AutoBatch in
§III. In this section and in Figure 1 we provide a brief
overview of the techniques. At a high level, AutoBatch
is designed to analyze a scheme, extract the signature
verification equation, and derive working code for a
batch verifier. This involves three distinct components:

1) A Code Parser, which retrieves the verification
equation and variable types from some existing
scheme implementation. This process naturally
assumes that the scheme has been implemented
within certain constraints, which we discuss later
in the paper. Given such an implementation, the
Parser obtains the signature verification equation
and encodes it into an intermediate representation
called Scheme Description Language (SDL).

2) A Batcher, which takes as input an SDL file
describing a signature verification equation. The
Batcher applies a series of rules to optimize the
equation and thus derive a new equation for a
batch verifier. The output of this equation is sec-
ond SDL file containing the individual and batch
equations, along with an analysis of the batcher’s
estimated running time. The Batcher optionally
outputs human-readable LaTeX file containing a
security proof for the batch verifier.

3) A Code Generator, which takes the output of the
Batcher and generates working source code to im-
plement the batch verifier. Beyond simply imple-
menting the verification equation, the Generator
adds a series of additional components, including
group element membership checks, a recursive
divide-and-conquer process to handle batches that
contain invalid signatures, and additional logic
to identify cases where individual verification is
likely to outperform batch verification.

There are two usage scenarios for AutoBatch. In the
first case, a user already has a working implementation
of a (non-batched) signature scheme, and proceeds via
the steps above. However, if the user does not have a
working implementation, a second usage of AutoBatch
allows the user to skip the Code Parsing phase of
the process, and begin with a hand-coded SDL file.
Since SDL files are human-readable ASCII-based files
containing a mathematical representation of the scheme,
some developers may prefer to implement new schemes
directly in this language, which is agnostic to the
final programming language that will be used for the
implementation.

Although the techniques behind Autobatch can be
applied to many languages and development environ-
ments, our implementation is based on Charm [1].
Charm is a Python-based rapid prototyping framework
created by Akinyele, Green and Rubin that provides
infrastructure for developing advanced cryptographic
schemes. Charm implements all high performance op-
erations (e.g., bilinear group operations) in native C
code using libraries such as MIRACL [33]. By using
Charm we are able to obtain many of the performance
advantages of C code, while taking advantage of the
features offered by an interpreted language. One such
advantage is that AutoBatch verifiers may be generated
at runtime and executed dynamically when they are
needed by an application.

C. Related Work

Computer-aided tools to assist cryptographers has
long been a goal of high importance. Recently, the best

2

762

Approved for Public Release; Distribution Unlimited.

Parsing
Engine

Signature
Scheme in

Python

SDL rep of
Signature
Scheme

Batcher

SDL rep of
Batch Verifier

Code
Generator

Individual
Loop Code

Batching
Code

Proof of
Security

Figure 1. The flow of AutoBatch is illustrated above. The input is a signature scheme, comprised of key generation, signing and verification
algorithms, coded in Python. The Parsing Engine extracts from this code the verification equations and classifies each element involved, e.g.,
an element of the public parameters, public key, signature or message space. This output is passed in an SDL representation of the signature
scheme to the Batcher. The Batcher applies the techniques and optimizations from Section III to produce an SDL representation of a batch
verification algorithm together with some performance estimates. It also outputs a proof of security (as a PDF written in LaTeX) that explains,
line by line, each technique applied and its security justification. Finally, the Code Generator produces executable Python code implementing
the batching verifier, as well as a loop over the individual verification algorithm to use as a comparison. The Code Generator can be set with
different flags to offer further optimize the batching code, such as beginning a few levels into the recursive divide-and-conquer procedure when
expecting batches with a moderate number of invalid signatures.

paper award at CRYPTO 2011 was given to Barthe,
Grégoire, Heraud and Zanella Béguelin [3] for their
invention of EasyCrypt, an automated tool for gen-
erating security proofs of cryptographic system from
proof sketches. The reader is referred to this work for
a summary of prior efforts to automate the verification
of cryptographic security proofs.

In 1989, batch cryptography was introduced by
Fiat [16] for a variant of RSA. In addition to the
batching work mentioned before, we provide a few
notes. Shacham and Boneh presented a modified version
of Fiat’s batch verifier for RSA to improve the efficiency
of SSL handshakes on a busy server [34]. Shacham,
Lynn and Boneh provided a single-signer batch verifier
for their BLS signatures [6]. Camenisch, Hohenberger
and Pedersen [10] gave multiple-signer batch verifiers
for the Waters identity-based signatures [36] and a
novel construction. Ferrara, Green, Hohenberger, and
Pedersen outlined some techniques for batching pairing-
based signatures and also showed how to batch verify
other types of signatures, such as group and ring sig-
natures [15]. Blazy, Fuchsbauer, Izabachéne, Jambert,
Sibert and Vergnaud [5] applied batch verification tech-
niques to the Groth-Sahai zero-knowledge proof system
as well as group signatures and anonymous credential
systems relying on them, obtaining significant savings.

Law and Matt describe methods for identifying in-
valid signatures in a batch [26], [29], [30].

II. BACKGROUND

A. Signatures

Definition 2.1 (A Digital Signature Scheme): A dig-
ital signature scheme is a tuple of probabilistic
polynomial-time algorithms (Gen,Sign,Verify) as:

1) Gen(1λ) → (pk , sk): the key generation algo-
rithm takes as input the security parameter 1λ and
outputs a pair of keys (pk , sk).

2) Sign(sk ,m) → σ: the signing algorithm takes as
input a secret key sk and a message m from the
message space and outputs a signature σ.

3) Verify(pk ,m, σ) → {0, 1}: the verification algo-
rithm takes as input a public key pk , a message
m and a purported signature σ, and outputs a bit
indicating the validity of the signature.

A scheme is correct if for all Gen(1`) → (pk , sk), the
algorithm Verify(pk ,m,Sign(sk ,m)) = 1.

Goldwasser, Micali and Rivest [17] defined a scheme
to be unforgeable as follows: Let Gen(1`) → (pk , sk).
Suppose (m,σ) is output by a probabilistic polynomial-
time adversary with access to a signing oracle Osk (·)
and input pk . Then the probability that m was not
queried to Osk (·) and yet Verify(pk ,m, σ) = 1 is
negligible in `.

In this work, we explore signature schemes with two
additional properties, which we informally review:

1) Identity-Based Signatures: The Gen algorithm
is executed by a master authority who publishes

3

763

Approved for Public Release; Distribution Unlimited.

pk and uses sk to generate signing keys for users
according to their public identity string, such as
an email address. To verify a signature on a given
message, one only needs to have the pk of the
master authority and the public identity string of
the purported signer.

2) Ring Signatures: The signature is associated with
a group of users, where verification shows that
at least one member of the group signed the
message, but it is difficult to tell whom.

B. Batch Verification

In this paper, we will not be concerning ourselves
much with the traditional definitions of unforgeability.
Rather we are interested in designing batch verification
algorithms that accept a set of signatures if and only
if each signature would have been accepted by its
verification algorithm individually. Thus, if a scheme is
unforgeable, then our batching algorithm will preserve
this property. No more, no less.

Specifically, we consider the case where we want to
quickly verify a set of signatures on possibly different
messages by possibly different signers. The input is
{(t1,m1, σ1), . . . , (tn,mn, σn)}, where ti specifies the
verification key against which σi is purported to be a
signature on message mi. It is important to understand
that here one or more signers may be maliciously
colluding against the batch verifier.

We recall the definition of Bellare, Garay and Ra-
bin [4] as extended by Camenisch, Hohenberger and
Pedersen [10] to deal with multiple signers.

Definition 2.2 (Batch Verification of Signatures):
Let ` be the security parameter. Suppose
(Gen,Sign,Verify) is a signature scheme,
k, n ∈ poly(`), and (pk1, sk1), . . . , (pkk, skk) are
generated independently according to Gen(1`). Let
PK = {pk1, . . . , pkk}. Then we call probabilistic
Batch a batch verification algorithm when the following
conditions hold:
• If pk ti ∈ PK and Verify(pk ti ,mi, σi) = 1 for all
i ∈ [1, n], then
Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 1.

• If pk ti ∈ PK for all i ∈ [1, n] and
Verify(pk tj ,mj , σj) = 0 for some j ∈ [1, n], then
Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 0
except with probability negligible in `,
taken over the randomness of Batch.

Definition B.1 generalizes beyond signatures to ap-
ply to any keyed scheme, or combination of keyed
schemes, with a verification algorithm. This includes
zero-knowledge proofs, verifiable random functions,

and variants of regular signatures, such as identity-
based, attribute-based, ring, group, aggregate, etc. In-
deed, when the individual verification procedure in-
volves evaluating a single pairing equation, then apply-
ing the small exponents test with security parameter λ
to the product of these equations results in a pairing-
based batch verifier that accepts an invalid batch with
probability at most 2−λ [15].

The above definition requires that signing keys be
generated honestly. In practice, users could register their
keys and prove some necessary properties of the keys
at registration time [2].

C. Algebraic Setting and Group Membership

Bilinear Groups: We recall some of the basics of
our algebraic setting as discussed in [10]. Let BSetup
be an algorithm that, on input the security parameter 1`,
outputs the parameters for a bilinear map (also called a
pairing) as (q, g,G,GT , e), where G and GT are groups
of prime order q ∈ Θ(2`). The efficient mapping e :
G × G → GT is both: (bilinear) for all g ∈ G and
a, b ← Zq , e(ga, gb) = e(g, g)ab; and (non-degenerate)
if g generates G, then e(g, g) 6= 1.

The above bilinear map is called a symmetric bilinear
map. A more general version of the bilinear map is the
asymmetric bilinear map e : G1×G2 → GT , where G1

and G2 are distinct groups, possibly without efficient
isomorphisms between them. We use this setting in our
implementations because it allows for the most compact
representations in G1, as we explain in Section IV.

Testing Membership in Bilinear Groups: When
batching a group of signatures, it is critical to test
that the elements of each signature are members of
the appropriate algebraic group. Indeed, Boyd and
Pavlovski [8] demonstrated efficient attacks on batching
algorithms for DSA signature verification which omitted
a subgroup membership test.

In this paper, we must test membership in bilinear
groups. We require that elements of purported signatures
are members of G and not, say, members of E(Fp)\G.
Determining whether some data represents a point on
a curve is easy. The question is whether it is in the
correct subgroup. Assume we have a bilinear map e :
G1×G2 → GT and want to test membership in G1. (G1

will contain the smallest group elements, so signature
elements will almost exclusively come from G1.)

If the order of G1 is a prime q, one option is to
verify that an element y is in G1 by checking that
yq mod q = 1 [10]. While one might worry that this
extra work diminishes the batching savings, it is not a
problem in practice for pairing-based schemes, since the
cost for a single exponentiation is considerably less than

4

764

Approved for Public Release; Distribution Unlimited.

the cost for computing a pairing. This has been verified
experimentally before by Ferrara et al. [15] and our tests
confirm this.

III. THE TECHNIQUES BEHIND AUTOBATCH

In this section we summarize the techniques used to
programatically generate batch verifiers from a standard
signature implementation. A highlevel abstraction was
provided in Figure 1. We now give the details. The
AutoBatch toolchain begins with a Charm-Python im-
plementation of a signature, and then proceeds as:

1. Parse the program to extract the verification
equation. The first phase of the toolchain analyzes the
implemented scheme to extract the signature verification
equation2 as well as the datatypes of the parameter and
signature elements. An advantage of using Python for
our implementations is that our tools may leverage var-
ious capabilities that are built into Python. Specifically,
we use introspection to obtain variable types, and we
traverse the Python Abstract Syntax Tree (AST) to parse
the verification equation. The output of this process is an
intermediate representation of the signature verification
equation in Scheme Description Language (SDL). An
example Python input and its corresponding SDL output
is presented in Figure 2.

2. Apply batching techniques and optimize the veri-
fication equation. We next apply a set of techniques
designed to convert the extracted signature verification
equation into a batch verifier. These tools drawn from
the summary in [15] re-arrange the verification equa-
tion by combining pairing equations and re-arranging
the components to minimize the number of expensive
pairing operations. To prevent known attacks, we apply
the small exponents test of Bellare, Garay and Rabin [4],
and optimize the resulting equation to ensure that all
signature elements are in the smallest group (typically,
G1). The output of this phase is a modified SDL file, and
(optionally) a human-readable proof that the resulting
equation is a batch verifier.

3. Evaluate the capabilities of the batch verifier.
Given the optimized batching equation produced in
the previous step, we estimate the performance of
the verifier under various conditions. This is done by
counting the operations in the verifier, and deriving a

2To be clear, our Parser only handles extraction for schemes
with a single verification equation. This is only a gentle restriction
for two reasons. First, many equations can be coalesced into a
single equation using the combination step from [15]. Moreover, the
AutoBatch process can be started at any stage, so one can start with an
SDL representation of a signature scheme with multiple verification
equations and proceed automatically from there.

runtime estimate based on the expected cost of each
mathematical operation (e.g., pairing, exponentiation,
multiplication). The cost of each operation is determined
via a set of diagnostic tests conducted when the library
is initialized.3

4. Generate code for the resulting batch verifier.
Finally, we invert the procedure of step 1 to generate
a working verifier implemented in Charm-Python. This
verifier implements the SDL-specified batch verification
equation as well as the individual verification equation.
Based on the calculations of the previous step, the
generated code embeds logic to automatically determine
which verifier is most appropriate for a given dataset
(individual or batch). Additionally, the generated code
embeds a recursive divide-and-conquer strategy to han-
dle cases where batch verification fails due to invalid
signatures. A fragment of generated code is shown in
the rightmost panel of Figure 2.

We note that processing can begin at any point in the
above process. For example, one might begin with a
hand-coded SDL representation of a signature scheme,
and proceed directly from step 2. We will now describe
each the above steps in detail.

A. Code Parsing

The Code Parsing engine extracts meaning from a
Charm-Python implementation of a signature scheme.
It produces a resulting SDL file that contains the data
types and verification equation for the signature. This
process is facilitated by two aspects: first, Charm [1]
provides a generic class interface for signature schemes.
This greatly constrains the code we have to work with,
meaning that we only have to focus on Charm-compliant
schemes. Secondly, we are assisted by the Python inter-
preter, which grants programatic access to the Python
Abstract Syntax Tree via the compiler.ast module.

Code parsing consists of the following stages. First,
we parse the entire signature scheme file into a Python
AST node. We refer to this as the root node. Next, we
identify the AST node of the signature verify() method.
We then use heuristics to identify one comparison in
this function that is fundamentally responsible for the
signature verification process.

From this point, we next build a map of variable
names, types, structure, and operations. We do this by
visiting all assignment statements in the code using
Python’s AST NodeVisitor class. For each assignment,

3Obviously these experiments are very specific to the machine and
curve parameters on which they are run. Hence, we re-run these
experiments whenever the library is initialized with a given set of
parameters.

5

765

Approved for Public Release; Distribution Unlimited.

name := bls
signers := one or many

BEGIN :: types
 sig := G1
 M := str
 g := G2
 pk := G2
 h := G1
END :: types

BEGIN :: constant
 g, pk
END :: constant

BEGIN :: precompute
 h := H(M, G1)
END :: precompute

BEGIN :: signature
h, sig
END :: signature

verify := { e(h, pk) == e(sig, g) }

class BLS(PKSig):
 def __init__(self):
 global group
 group = PairingGroup(MNT160)

 def keygen(self, secparam):
 g = group.random(G2)
 x = group.random(ZR)
 g_x = g ** x
 pk = { 'g^x':g_x, 'g':g,
 'identity':str(g_x),
 'secparam':secparam }
 sk = { 'x':x }
 return (pk, sk)

 def sign(self, x, msg):
 sig = group.hash(msg, G1) ** x
 return sig

 def verify(self, pk, sig, msg):
 h = group.hash(msg, G1)
 if pair(h, pk['g^x']) == pair(sig, pk['g']):
 return True
 return False

Python Input Intermediate SDL

…
Choose deltas for small exponents test
for sigIndex in range(0, numSigs):
 deltaz[sigIndex] = prng_bits(group, 80)

 # Initialize dot products
 dotA_prod = group.init(G1)
 dotB_prod = group.init(G1)

 # Precompute dot products that can be
 # cached between runs of divide-and-conquer
 for z in range(0, N):
 # group membership checks
 # … variables calculated over sigs…
batch verification check
if pair(dotA_prod , pk) == pair(dotB_prod, g):
 return True
else:
 # divide and conquer (recurse on first half)
 verifySigsRecursive(group, dotA_cache,
 dotB_cache, start = i, stop = N / 2)
 # recurse on second half
 verifySigsRecursive(group, dotA_cache,
 dotB_cache, start = N/2+1, stop = N)
...

Python output (fragment)

Figure 2. The Boneh-Lynn-Shacham (BLS) signature scheme [6] at various stages in the AutoBatch toolchain. At the left, an initial Charm-
Python implementation of the scheme. In the center, an SDL representation of the same scheme, programmatically extracted by the Parsing
Engine. At right, a fragment of the resulting batch verifier generated after applying the Batcher and Code Generator.

we check the properties of that assignment using a
further set of heuristics, which we store in a database.
If we determine that a given assignment is relevant,
we extract certain information about it. We use this
information to identify any operations that are relevant
to the verification equation, even if they are spread
throughout the file.

We also use our map to determine the type of each
variable referenced. To obtain this, we apply known
rules to infer type. For example, we know that certain
hash calls indicate an element of G1, a pairing indicates
an element in GT , random element generation calls
typically indicate the type of element being generated,
and so on.4 Our database currently includes signatures
for the following types:

1) Python’s lambda functions, which may be used to
compute dot-product functionality.

2) All pairings and their parameters and types.
3) All hashes and their parameters and types.
4) All Python dictionaries, their key names, their

value names, and their types. Charm makes ex-

4We believe that this approach may also be useful in the future
for static checking and formal verification of dynamically-typed
cryptographic implementations.

tensive use of this data structure, so this is partic-
ularly important.

5) All constant numbers and strings.
If the assignment expression does not match any of

our signatures, we perform a recursive traversal on its
elements to determine if any of its sub-elements fit one
of our signatures. If we find a match, we return that
signatures information.

This process is not perfect. It makes certain assump-
tions about the structure of an implementation, and
therefore is highly dependent on the quality of our
heuristic rules. However, the more code we examine,
the more powerful our inference becomes.

Finally, we transform the verify equation into an SDL
file that the Batcher understands. This requires several
straightforward transformations of the verify equation,
to produce a simple bilinear-map based representation.
In addition, we prepend a list of all constants, precom-
puted values, variable names and types to the file.

B. Batching and Optimization

Given an SDL file containing the verification equation
and variable times, the Batcher applies a series of opti-
mizations to the verification equation in order to derive
an efficient batch verifier. Many of these techniques

6

766

Approved for Public Release; Distribution Unlimited.

are drawn from previous works [10], [15]. However,
unlike previous works we are able to programmatically
identify when they are applicable, and apply them
to the verification equation in a consistent way. The
Batcher assumes that the input will be a collection of
η signatures, possibly on different messages and public
keys (or identities). To construct a batch verifier, the
Batcher first combines all instances into one equation
using the small exponents test, Technique 1. Next, it
optimizes the resulting equation using Techniques 2-4.

The order in which Techniques 2−4 are applied varies
from scheme to scheme. Our batcher tries various or-
derings based on heuristics, which examine the equation
and attempt to estimate which techniques will result in a
successful batch. In some cases a single technique must
be applied multiple times, generally with one or more
different techniques used in between. For some com-
plex schemes, we may specify some guidance on the
ordering manually to improve performance. Resolving
this is an open problem for our techniques.

Technique 1: Combine equations. Assume we are given
η instances that can be verified using the individual
verification equation. We then combine all instances into
one equation by applying the Combination Step of [15],
which employs as a subroutine the small exponents test
from [4]. This results in a single verification equation.
The correctness of the resulting equation requires that
all elements be in the correct subgroup, i.e., that group
membership has already been checked. AutoBatch en-
sures that this check will be explicitly conducted in the
final batch verifier program.

As to the security of this step, suppose we use
security parameter λ in the small exponents test. Then
Ferrara et al. [15, Theorem 3.2] prove that this equation
will verify if and only if all individual equations verify,
except with probability at most 2−λ. By default in
AutoBatch, we set λ = 80.

Technique 2: Move exponents into the pairing. When
a pairing of the form e(gi, hi)

δi appears, move the
exponent δi into e(). Since elements of G1 and G2

are usually smaller than elements of GT , this gives a
noticeable speedup when computing the exponentiation.

Replace e(gi, hi)δi with e(gδii , hi)

Wherever possible, we move the exponent into the
group with the lowest exponentiation cost. We identify
this group based on a series of operation microbench-

marks that run automatically at code initialization.5

Technique 3: Combine pairings with common elements.
When two or more pairings share a common first or
second element, they can be combined. For example:

Replace e(a, g) · e(b, g) with e(ab, g)

As Ferrara et al. note [15], in rare cases it can
be useful to apply this technique in reverse: splitting
a single pairing into two pairings, to allow for more
efficient batch verification. E.g., this can be applied to
the ring signature scheme due to Boyen [9] in order to
next apply the technique below.

Technique 4: Optimize the Waters Hash. A variety
of bilinear signature schemes employ a hash function
by Waters [36], which can be generalized [31], [13].
Assume the identity is a k-bit string V = v1v2 . . . vz
where each vi is a short string. The hash function is
evaluated as u′

∏m
i=1 u

vi
i .

When batching η equations containing the Waters
hash, one will often end up with something of the form∏η
j=1 e(gj ,

∏z
i=1 u

vij
i). This can be rewritten to make

the number of pairings independent of the number of
equations one wants to batch.

Replace
η∏

j=1

e(gj ,
z∏

i=1

u
vij
i) with

z∏

i=1

e(

η∏

j=1

gj
vij , ui)

C. The Security of AutoBatch

At this point in the narration, we take a short break
from our description of how AutoBatch works to argue
that that batching and optimization techniques applied in
the previous section preserve the security of the original
signature scheme, up to a negligible probability of error.

Theorem 3.1 (Security of AutoBatch): Let λ be the
security parameter used in the small exponents test dur-
ing Technique 1. Then the batch verification algorithm
resulting from an application of the above techniques, as
is done in AutoBatch, is a pairing-based batch verifier
that accepts an invalid batch with probability at most
2−λ.

Proof: The truth of this theorem after the initial
and only application of Technique 1 follows directly
from the proof of this step in [15, Theorem 3.2]. This
step introduces a 2−λ probability of error. After this
point, we apply Techniques 2-4 in arbitrary order and

5For many common elliptic curves, this is the G1 base group.
However, in some curves the groups G1 and G2 have similar operation
costs; this may give us some flexibility in modifying the equation.

7

767

Approved for Public Release; Distribution Unlimited.

Figure 3. A fragment of the machine-generated security proof of
a single-signer batch verifier for the Boneh-Lynn-Shacham (BLS)
signature scheme [6]. An early portion of the proof asserted that a
group membership test would be done prior to checking the final
equation and defined h to be the hash of the message.

potentially multiple times. Each of these techniques
involve substituting one equation or value for an equiv-
alent formulation of that equation or value and thus
the equation output by our Batcher is equivalent to the
equation output after Technique 1.

D. Analysis and Machine-Generated Security Proofs

Once the Batcher has produced a final equation for
the batch verifier, it counts the number of operations
required as a function of the batch size. These opera-
tions include point operations, pairings, hashes, as well
as random element generation. It then combines this op-
eration count with a database of average operation times
that were measured at library initialization. The result-
ing calculation allows it to determine the “crossover
point”, i.e., the batch size where batch verification
becomes more efficient than individual verification.

The Batcher produces both an SDL file and, option-
ally, a human-readable proof of security for the resulting
batch verifier. This proof is a LaTeX file that includes
the individual and batch verification equations, with an
enumeration of the various steps used to convert the

former into the latter. This proof is designed to give
users confidence in the correctness of the Batcher’s
output. One example of such a proof for the single-
signer batch verification of the BLS signatures [6] is
presented in Figure 3. The resulting batching equation
is the same as the one proposed by [6].

A full machine-generate proof appears in Appendix B
for the batch verification of the HW signatures [22],
which is a novel contribution of this work.

E. Code Generation

The output of the Batcher is a batch verification equa-
tion encoded in Scheme Description Language (SDL).
This file defines all of the datatypes for the signature,
message and public key (or identity and public param-
eters in the case of an identity-based signature). The
Code Generator converts this SDL representation into a
useable Python signature class that can operate on real
batch inputs.

The Code Generator is essentially a mirror of the
Code Parser. However, its design is substantially sim-
pler, since there is less ambiguity in the layout of an
SDL description. It translates the individual and batch
verification equations into Python code, and wraps them
with the following additional logic components:

1) Group membership tests. For each element in
the signature (and optionally the public key, if
the user requests)6 the membership of the group
is tested using an exponentiation. Section II-C
discusses the importance and details of this test.

2) Pre-computation. Several values often will be
re-used within a verification equation. When this
happens, the batch verifier can pre-compute cer-
tain results once, rather than needlessly compute
them several times.

3) Technique selection. For relatively small batch
sizes, it may be more efficient to bypass the batch
verifier and simply verify the signatures using the
individual verification function. For this reason,
our Code Generator generates this function as
well (the output of the Batcher contains both
functions), and adds logic to programmatically
choose between batch and individual verification
when the batch size is below a certain threshold
automatically determined in the Analysis phase.

4) Invalid signature detection. To handle the pres-
ence of invalid signatures in a batch, our batch
verifier code includes a recursive divide-and-
conquer strategy to recover from a batching fail-

6In many applications we can assume that the public keys are
trusted, thus we can omit group membership testing on these values.

8

768

Approved for Public Release; Distribution Unlimited.

ure (see e.g,. [15] for a discussion of this). On
failure, this verifier divides the signature collec-
tion into two halves and recurses by repeating
verification on each halve until all of the invalid
signatures have been identified.

IV. IMPLEMENTATION AND PERFORMANCE DETAILS

A. Experimental Setup

To evaluate the performance of our techniques we
implemented them as part of the Charm prototyping
framework [1]. Charm is a Python-based cryptographic
prototyping framework, and provides native for bilinear-
map based crypto and other useful primitives, e.g., hash-
ing and serialization. We used a version of Charm that
implements all bilinear group operations using the C-
based MIRACL library [33].7 The necessary MIRACL
calls are accessed from within our Python code via the
C module interface.

To determine the performance of our system in isola-
tion, we first conducted a number of experiments on
various components of our code. First, we used the
code extraction component to convert several Python
signature implementations into our intermediate “SDL”
representation. Next, we applied our batcher to the SDL
result in order to obtain an optimized equation for
a batch verifier. We then applied our code generator
to convert this representation into a functioning batch
verifier program, which we applied to various test data
sets.

Hardware configuration. For consistent results we ran
all of our experiments on a single hardware platform:
a 2 x 2.66 GHz 6-Core Intel Xeon Macintosh Pro
running MacOS version 10.7.2 with 12GB of RAM.
We ran all of our tests within a single thread, and
thus used resources from only a single core of the
Intel processor. We instantiated all of our cryptographic
implementations using a 160-bit MNT elliptic curve
provided with MIRACL.

B. Signature Schemes used as Test Cases

We ran our experiments using three signature
schemes, three identity-based signature schemes and
one identity-based ring signature scheme, as summa-
rized in Figure 4. All of these schemes are pairing-based
schemes. (See Section II for the definitions of these
signature types and the background on a pairing.) These

7The version of Charm we used (.30) has not been officially
released, but can be found in the Charm github repository at
www.charm-crypto.com. It uses MIRACL 5.5.4 for bilinear group
operations.

schemes were selected because they represent some of
the shortest and most practical schemes in the literature.

The batch verification algorithm for the CDH-based
scheme due to Hohenberger and Waters [22] is, to
our knowledge, the first batching algorithm for this
scheme and it was machine-generated by AutoBatch.
Prior batch verifiers were known for the remaining
schemes (see [15] for a summary) and we note that
our machine-generated verifiers match their efficiency.

C. Batch Verification Time: Microbenchmarks

To evaluate the overall efficiency of our approach, we
implemented several pairing-based signature schemes
in Charm and applied our techniques to extract an
SDL-based intermediate representation of the scheme’s
verification equation; derive an optimized batch verifier
for the scheme; and generate a new Python program
implementing the batch verifier. We measured the pro-
cessing time for each of the above steps. Our timings,
averaged over five runs, are presented in Figure 5.

To obtain our microbenchmarks, we ran AutoBatch
on several exemplary bilinear signature schemes, in-
cluding the BLS [6], CHP [10] and HW [22] signature
schemes, the Hess [21] and Waters [36] identity-based
signatures and the CYH ring signature [14]. We then
experimented with these schemes at different batch
sizes, to evaluate their raw performance. The results are
presented in Figure 6.

Each graph shows the average per-signature verifi-
cation time for a batch of η signatures, with η in-
creasing from 1 to 100. We conducted these tests by
first generating a collection of η keypairs and random
messages,8 then computing a valid signature over each
message. We fed each collection to the batch verifier.
ID-based signatures were handled in a similar manner,
although we substituted random identities in place of
keys. For the CYH ring signature, we constructed a
group of twenty signing keys to construct a twenty
member ring. In each case, we averaged our results over
20 experimental runs and computed verification time
per signature by dividing the total batching time by the
number of signatures batched.

D. Batch Verification in Practice

Several previous works have considered the implica-
tion of having invalid signatures in a batch, e.g., [26],
[15], [29], [30]. For the most part, these works estimated
raw signature verification times under various condi-
tions, but did not model the implications of these results
for building real systems. To evaluate how signature

8We used 160-byte random strings for each message.

9

769

Approved for Public Release; Distribution Unlimited.

Scheme Model Ind-Verify Batch-Verify Techniques-Order
Signatures
Boyen-Lynn-Shacham (BLS) [7] (same signer) RO 2η 2 2,3
Camenisch-Hohenberger-Pedersen (CHP) [10] (same time period) RO 3η 3 2,3
Hohenberger-Waters (HW) [22] (same signer) plain 2η 4 2,3
ID-based Signatures
Hess [21] RO 2η 2 2,3
Cha-Cheon (ChCh) [12] RO 2η 2 2,3
Waters [36] plain 3η z + 3 3,2,4,3
ID-based Ring Signatures
Chow-Yiu-Hui (CYH) [14] RO 2η 2 2,3

Figure 4. Digital Signature Schemes used as test cases in AutoBatch. RO stands for random oracle. For the verification, we count the total
number of pairings needed to process η valid signatures, i.e., the best case for batch verificaiton. For the Waters signatures, we set z = 5. The
final columns indicates the order of the techniques from Section III that AutoBatch recognized as applicable and applied to obtain the resulting
batch verifier.

Process BLS / CHP / HW / Hess / ChCh / Waters / CYH
(ms)

Parse input 67.5
Batch/optimize 133.3
Generate code 83.2
Total 284.0ms

Figure 5. Micro benchmark results: average time required by the Parser, Batcher, and Code Generator to process a variety of signature schemes.
Batcher time also includes generating the proof and estimating cross over point between individual and batch verification.

batching might work in real life, we constructed a
simulation to determine the resilience of our techniques
to various denial of service attacks launched by an
adversary.

Basic Model. For this experiment, we simulated a server
that verifies incoming signed messages read from a
network connection. We believe that this might be a
reasonable model for a busy server-side TLS endpoint
using client authentication, for example, or for a vehicle-
to-vehicle communications base station.

Our server is designed to process as many signatures
as possible, and is limited only by its computational
resources.9 Signatures are drawn off of the “wire” and
grouped into batches, with each batch size representing
the expected number of signatures that can be verified
in one second. Initially this number is simply a guess,
which is adjusted upwards or downwards based on the
time required to verify each batch.10 In practice, this
approach can lead to some transient errors (batches
that require significantly more or less than one sec
on to evaluate) when the initial guess is wrong, or
when conditions change. In normal usage, however, this
approach converges on an appropriate batch size within

9This models a server that either delays, drops or redirects the
signatures that it cannot handle (e.g., via load balancing).

10The adjustment is handled in a relatively naive way: the server
simply computes the next batch size by extrapolating based on its
time to compute the previous batch.

1-2 seconds.
1) Basic DoS Attacks: A major concern when using

a batch verifier is the possibility of service denial or
degradation, resulting from the presence of some invalid
signatures in the batch. As described in §III, each of
our generated batch verifiers incorporates a recursive
divide-and-conquer strategy for identifying these invalid
signatures. In practice, however, this recursion comes at
a price; the presence of even a small number of invalid
signatures can seriously degrade the performance of a
batcher.

To measure this, we simulated an adversary who
injects a fraction of invalid signatures into the server’s
input stream. We assume that these signatures are well-
mixed with the remaining valid signatures.11 Within
a single experimental run, the adversary tries various
attack strategies, including no attack, a gradual increase
in the number of invalid signatures, and sudden bursts
of invalid signatures. In all cases we limited the fraction
of invalid signatures received by the verifier to 15% of
the overall signature stream.

Given this adversary, we measured the verifier’s
throughput. The adversary injects no invalid signatures
for the first 25 seconds of the experiment, then gradually
ramps up its output until the number of invalid sig-
natures received by the verifier reaches approximately

11In practice, this is not a strong assumption, as a server can simply
randomize the order of the signatures it receives.

10

770

Approved for Public Release; Distribution Unlimited.

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100

m
s

pe
r s

ig
na

tu
re

Number of signatures

MNT160

BLS (batched)
BLS (individual)

 0

 10

 20

 30

 40

 50

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

MNT160

CHP (batched)
CHP (individual)

 0

 10

 20

 30

 40

 50

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

MNT160

HW (batched)
HW (individual)

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

MNT160

HESS (batched)
HESS (individual)

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

m
s
 p

e
r

s
ig

n
a
tu

re

Number of signatures

MNT160

WATERS (batched)
WATERS (individual)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100

m
s

pe
r s

ig
na

tu
re

Number of signatures

MNT160

CYH (ring=20)
CYH (ring=20)

Figure 6. Signature scheme microbenchmarks for BLS (same signer), CHP (same period) and HW (same signer) signatures, Hess and Waters
IBS, and CYH ring signature (20 signer ring). Per-signature times were computed by dividing total batch verification time by the number of
signatures verified. Note that in the BLS and HW cases, all signatures are formulated by the same signer (as for certificate generation), while
for CHP each signature was produced by a different signer but with a special restriction that they be issued in the same time period. All other
schemes are without such restrictions. Individual verification times are included for comparison.

15%. At approximately 55 seconds into the experiment,
the adversary switches to long bursts of invalid signa-
tures. This measures the verifier’s ability to recover from
a short, bursty attack. These strategies are by no means
a thorough catalog of the types of attack that a verifier
might experience; rather, our effort represents simple
experimentation with a few basic attack shapes.

A countermeasure. To handle extended DoS attacks, we
also experimented by adding some simple DoS coun-
termeasures within our batching algorithm. Our basic
countermeasure uses knowledge of previous batches to
estimate the likely number of invalid signatures that will
occur in the next batch. Based on this information, the
verifier can either (a) switch to individual verification,
in cases where recursive batch verification is expected
to underperform, or (b) optionally skip some phases of
the recursive batch verification process.

For case (b), at each phase of the recursive batch
verifier we estimate the probability that the batch veri-
fication will fail, and skip the verification process when-
ever that probability exceeds a threshold (e.g., 3/4). For
example, when we process a batch of η signatures, if
we anticipate that there will be even 1 invalid signature
in the batch, then verification of the whole batch is
unnecessary (i.e., it should fail). Thus we can avoid the
work of verifying this batch, and instead move directly
to the recursive case as though verification had failed.

We repeat this check at each phase of the process where
the batch size > 1.

Analysis of results. We tested the batch verifier with
and without the above countermeasures. Our results are
presented in Figure 7. We observe several things. First,
though our recursive process is able to deal with invalid
signatures, throughput is quite sensitive to even small
numbers of invalid signatures in the input stream. How-
ever, when comparing our batch verification throughput
to the individual verification throughput, we note that
even under a significant attack batch verification dra-
matically outperforms individual verification.

Thus, while an attacker is able to reduce verifier
throughput, the verifier still remains quite efficient com-
pared to the individual verification case. In other words,
we are a “victim of our own success”; since batching so
dramatically increases throughput in the all-valid case,
the drop in throughput caused by invalid signatures
makes the verifier seem relatively inefficient, even while
it still outperforms individual verification.

The impact of our countermeasures is less obvi-
ous. Examining the raw numbers closely, we notice
a marginal improvement when the rate of invalid sig-
natures is steady, or grows slowly. However, this is
offset by a slightly slower return to normal throughput
when an attack ends suddenly. We also note that even
at these levels, the adversary is not able to push us

11

771

Approved for Public Release; Distribution Unlimited.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10000 20000 30000 40000 50000 60000 70000
 0

 0.05

 0.1

 0.15

 0.2

Si
gn

at
ur

es
 /

se
c

Fr
ac

tio
n

of
 In

va
lid

 S
ig

na
tu

re
s

Cumulative Time (ms)

Without Countermeasures
Signatures / sec (without countermeasures)

Fraction of Invalid Signatures (without countermeasures)
Individual Verification

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10000 20000 30000 40000 50000 60000 70000
 0

 0.05

 0.1

 0.15

 0.2

Si
gn

at
ur

es
 /

se
c

Fr
ac

tio
n

of
 In

va
lid

 S
ig

na
tu

re
s

Cumulative Time (ms)

With Countermeasures
Signatures / sec (with countermeasures)

Fraction of Invalid Signatures (with countermeasures)
Individual Verification

Figure 7. Simulated service denial attacks against a batch verifier (BLS signatures, single signer). The top chart considers a standard batch
verifier, and the bottom chart shows the performance of a batch verifier that employs countermeasures. In each graph, the black line (left scale)
indicates the throughput of the batch verifier measured in signatures/second. The gray line (right scale) represents the average fraction of invalid
signatures that the adversary is able to inject into the stream. Note that in both experiments, the adversary varies this fraction between 0% and
15% using a consistent process. Finally, for comparison, the dashed line shows the comparable throughput of an individual verifier.

into territory where individual verification becomes a
better strategy. Given how poorly the individual verifier
performs relative to batch verification, we hypothesize
that this countermeasure will not be very useful in
practice.

While there is no magic bullet when it comes to batch
verification of signatures, we believe that these results
are interesting, and that system designers may want to
take them into account. At a minimum, designers should
build systems to tolerate large swings in verification
throughput when an attack is present.

V. CONCLUSION

Batch verification holds great promise for applica-
tions where short signatures are a design requirement,
yet high signature throughput is required. Where pre-
vious works constructed batch verifiers by hand and
on a per-scheme basis, we have presented an approach
that can programmatically apply batching techniques to
a large class of bilinear signature schemes, including

schemes that do not yet exist. We believe that this ap-
proach will make it possible for implementers to rapidly
determine which schemes can be batched efficiently.
Moreover, it will help to eliminate errors that arise
when human beings attempt to manually perform such
optimizations.

This work leaves several open problems. On the
implementation side, the latest versions of the MIRACL
library include an elegant new interface for efficiently
computing “multipairings” (efficient products of multi-
ple bilinear pairings). Since Charm does not currently
provide an API to this new functionality, we did not
include it in our optimizations. We hope to rectify this
in future versions.

We also believe that there is much to be done in mak-
ing batch verifiers more resilient to invalid signatures,
and therefore more useful in practice. Our work is a
first step in this direction. We hope that future work will
implement alternative techniques for recognizing invalid
signatures in a batch, such as those considered by of
Law and Matt [26], [29], [30], along with additional

12

772

Approved for Public Release; Distribution Unlimited.

countermeasure strategies for responding to service de-
nial attacks.

Additionally, we leave open the problem of automat-
ically batching other types of pairing-based equation,
including Groth-Sahai proofs [18]. Substantial work
has been conducted in this direction by Blazy et al.
[5]. We believe that these techniques may be extended
to the automated setting. Finally, a future batching
system might even be capable of batching many distinct
signature or proof types together.

REFERENCES

[1] Joseph A. Akinyele, Matthew Green, and Avi Rubin.
Charm: A framework for rapidly prototyping cryptosys-
tems. Cryptology ePrint Archive, Report 2011/616,
2011. http://eprint.iacr.org/.

[2] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and
Rafael Pass. Universally composable protocols with
relaxed set-up assumptions. In FOCS, pages 186–195.
IEEE Computer Society, 2004.

[3] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and
Santiago Zanella Béguelin. Computer-aided security
proofs for the working cryptographer. In CRYPTO, pages
71–90, 2011.

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast
batch verification for modular exponentiation and digital
signatures. In EUROCRYPT ’98, volume 1403 of LNCS,
pages 236–250. Springer, 1998.

[5] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène,
Amandine Jambert, Hervé Sibert, and Damien Vergnaud.
Batch groth-sahai. In ACNS ’10, pages 218–235.
Springer, 2010.

[6] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the Weil pairing. In ASIACRYPT ’01,
volume 2248 of LNCS, pages 514–532, 2001.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the Weil pairing. Journal of Cryptology,
17(4):297–319, 2004.

[8] Colin Boyd and Chris Pavlovski. Attacking and repairing
batch verification schemes. In Advances in Cryptology
– ASIACRYPT ’00, volume 1976, pages 58–71, 2000.

[9] Xavier Boyen. Mesh signatures: How to leak a secret
with unwitting and unwilling participants. In EURO-
CRYPT, volume 4515, pages 210–227, 2007.

[10] Jan Camenisch, Susan Hohenberger, and Michael Øster-
gaard Pedersen. Batch verification of short signatures. In
EUROCRYPT ’07, volume 4515 of LNCS, pages 246–
263. Springer, 2007. Full version at http://eprint.iacr.org/
2007/172.

[11] Tianjie Cao, Dongdai Lin, and Rui Xue. Security anal-
ysis of some batch verifying signatures from pairings.
International Journal of Network Security, 3(2):138–
143, 2006.

[12] Jae Choon Cha and Jung Hee Cheon. An identity-based
signature from gap Diffie-Hellman groups. In PKC ’03,
volume 2567 of LNCS, pages 18–30. Springer, 2003.

[13] Sanjit Chatterjee and Palash Sarkar. HIBE with short
public parameters without random oracle. In ASI-
ACRYPT ’06, volume 4284 of LNCS, pages 145–160,
2006.

[14] Sherman S. M. Chow, Siu-Ming Yiu, and Lucas C.K.
Hui. Efficient identity based ring signature. In ACNS,
volume 3531 of LNCS, pages 499–512, 2005.

[15] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger,
and Michael Østergaard Pedersen. Practical short sig-
nature batch verification. In CT-RSA, volume 5473 of
LNCS, pages 309–324, 2009.

[16] Amos Fiat. Batch RSA. In Advances in Cryptology –
CRYPTO ’89, volume 435, pages 175–185, 1989.

[17] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A
digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Computing, 17(2), 1988.

[18] Jens Groth and Amit Sahai. Efficient non-interactive
proof systems for bilinear groups. In EUROCRYPT ’08,
volume 4965 of LNCS, pages 415–432. Springer, 2008.

[19] Lein Harn. Batch verifying multiple DSA digital signa-
tures. Electronics Letters, 34(9):870–871, 1998.

[20] Lein Harn. Batch verifying multiple RSA digital signa-
tures. Electronics Letters, 34(12):1219–1220, 1998.

[21] Florian Hess. Efficient identity based signature schemes
based on pairings. In Selected Areas in Cryptography,
volume 2595 of LNCS, pages 310–324. Springer, 2002.

[22] Susan Hohenberger and Brent Waters. Realizing hash-
and-sign signatures under standard assumptions. In
EUROCRYPT, pages 333–350, 2009.

[23] Min-Shiang Hwang, Cheng-Chi Lee, and Yuan-Liang
Tang. Two simple batch verifying multiple digital
signatures. In 3rd Information and Communications
Security (ICICS), pages 233–237, 2001.

[24] Min-Shiang Hwang, Iuon-Chang Lin, and Kuo-Feng
Hwang. Cryptanalysis of the batch verifying multi-
ple RSA digital signatures. Informatica, Lithuanian
Academy of Sciences, 11(1):15–19, 2000.

[25] Chi-Sung Laih and Sung-Ming Yen. Improved digital
signature suitable for batch verification. IEEE Transac-
tions on Computers, 44(7):957–959, 1995.

13

773

Approved for Public Release; Distribution Unlimited.

[26] Laurie Law and Brian J. Matt. Finding invalid signatures
in pairing-based batches. In Cryptography and Coding,
volume 4887 of LNCS, pages 34–53, 2007.

[27] Seungwon Lee, Seongje Cho, Jongmoo Choi, and
Yookun Cho. Efficient identification of bad signa-
tures in RSA-type batch signature. IEICE Transactions
on Fundamentals of Electronics, Communications and
Computer Sciences, E89-A(1):74–80, 2006.

[28] C. Lim and P. Lee. Security of interactive DSA batch
verification. In Electronics Letters, volume 30(19), pages
1592–1593, 1994.

[29] Brian J. Matt. Identification of multiple invalid signa-
tures in pairing-based batched signatures. In Public Key
Cryptography, pages 337–356, 2009.

[30] Brian J. Matt. Identification of multiple invalid pairing-
based signatures in constrained batches. In Pairing,
pages 78–95, 2010.

[31] D. Naccache. Secure and practical identity-based en-
cryption, 2005. Cryptology ePrint Archive: Report
2005/369.

[32] David Naccache, David M’Raı̈hi, Serge Vaudenay, and
Dan Raphaeli. Can DSA be improved? complexity trade-
offs with the digital signature standard. In Advances in
Cryptology – EUROCRYPT ’94, volume 950, pages 77–
85, 1994.

[33] Michael Scott. Multiprecision Integer and Rational
Arithmetic C/C++ Library (MIRACL), Oct. 2007. Pub-
lished by Shamus Software Ltd., http://www.shamus.ie/.

[34] Hovav Shacham and Dan Boneh. Improving SSL hand-
shake performance via batching. In Cryptographer’s
Track at RSA Conference ’01, volume 2020, pages 28–
43, 2001.

[35] Martin Stanek. Attacking LCCC batch verification
of RSA signatures, 2006. Cryptology ePrint Archive:
Report 2006/111.

[36] Brent Waters. Efficient identity-based encryption without
random oracles. In EUROCRYPT ’05, volume 3494 of
LNCS, pages 320–329. Springer, 2005.

[37] HyoJin Yoon, Jung Hee Cheon, and Yongdae Kim. Batch
verifications with ID-based signatures. In ICISC, Lecture
Notes in Computer Science, pages 233–248, 2004.

[38] Fangguo Zhang and Kwangjo Kim. Efficient ID-based
blind signature and proxy signature from bilinear pair-
ings. In 8th Information Security and Privacy, Aus-
tralasian Conference (ACISP), volume 2727, pages 312–
323, 2003.

[39] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy
Susilo. Efficient verifiably encrypted signature and par-
tially blind signature from bilinear pairings. In Progress
in Cryptology – INDOCRYPT ’03, volume 2904, pages
191–204, 2003.

APPENDIX A.
MACHINE-GENERATED BATCH VERIFICATION

EQUATIONS

In Figure 8, we provide the final batch verification
equations output by AutoBatch for each of the signature
schemes tested.

APPENDIX B.
A MACHINE-GENERATED PROOF OF SECURITY

The following proof was automatically generated by
the Batcher while processing of the HW signature
scheme [22]. It has been edited to fit the two column
format. This execution was restricted to signatures on
a single signing key.

A. Definitions

This document contains a proof that HW.BatchVerify
is a valid batch verifier for the signature scheme HW.
Let g,A, U, V,D,w, z, h be values drawn from the key
and/or parameters, and M,σ1, σ2, r, i represent a mes-
sage (or message hash) and signature. The individual
verification equation HW.Verify is:

e(σ1, g)
?
=

UM · V r ·D · e(σ2lg(i), w) · e(σ2i, z) · e(σ2, h)

Let η be the number of signatures in a batch, and
δ1, . . . δη ∈R Zq be a set of random exponents cho-
sen by the verifier. The batch verification equation
HW.BatchVerify: is:

e(

η∏

z=1

σ1
δz
z , g)

?
=

U
Pη
z=1Mz·δz · V

Pη
z=1 rz·δz ·D

Pη
z=1 δz ·

e(

η∏

z=1

σ2
lg(iz)·δz
z , w) · e(

η∏

z=1

σ2
iz·δz
z , z) · e(

η∏

z=1

σ2
δz
z , h)

We will now formally define a batch verifier and demon-
strate that HW.BatchVerify is a secure batch verifier for
the HW signature scheme.

Definition B.1 (Pairing-based Batch Verifier): Let
BSetup(1τ) → (q, g,G,GT , e). For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) be a generic pairing-based
claim and let Verify be a pairing based verifier.
We define pairing-based batch verifier for Verify a
probabilistic poly(τ)-time algorithm which outputs
accept if X(j) holds for all j ∈ [1, η] whereas it outputs
reject if X(j) does not hold for any j ∈ [1, η] except
with negligible probability.

Theorem B.2: HW.BatchVerify is a batch verifier for
the HW signature scheme.

14

774

Approved for Public Release; Distribution Unlimited.

Scheme Batch Verification Equation output by AutoBatch
Signatures

BLS [7] (same signer) e(
Qη
z=1 h

δz
z , pk)

?
= e(

Qη
z=1 sig

δz
z , g)

CHP [10] (same time period) e(
Qη
z=1 sig

δz
z , g)

?
= e(a,

Qη
z=1 pk

δz
z) · e(h,Qη

z=1 pk
bz ·δz
z)

HW [22] (same signer) e(
Qη
z=1 σ1

δz
z , g)

?
= U

Pη
z=1Mz ·δz · V

Pη
z=1 rz ·δz ·D

Pη
z=1 δz

·e(Qη
z=1 σ2

lg(iz)·δz
z , w) · e(Qη

z=1 σ2
iz ·δz
z , z) · e(Qη

z=1 σ2
δz
z , h)

ID-based Signatures

Hess [21] e(
Qη
z=1 S2

δz
z , g2)

?
= e(

Qη
z=1 pk

az ·δz
z , Ppub) ·

Qη
z=1 S1

δz
z

ChCh [12] e(
Qη
z=1 S2

δz
z , g2)

?
= e(

Qη
z=1(S1z · pkaz)δz , Ppub)

Waters [36] e(
Qη
z=1 S1

δz
z , g2) · e(

Qη
z=1 S2

δz
z , û1′) ·

Ql
i=1 e(

Qη
z=1 S2

δz ·ki,z
z · S3

δz ·mi,z
z , ûi)

·e(Qη
z=1 S3

δz
z , û2′) ?

= A
Pη
z=1 δz

ID-based Ring Signatures

CYH [14] e(
Qη
z=1

Ql
y=1 uy,z · pk

hy,z
y,z

δz
, P)

?
= e(

Qη
z=1 S

δz
z , g)

Figure 8. These are the final batch verification equations output by AutoBatch. Due to space, we do not include the full schemes or further
describe the elements of the signature or our shorthand for them, such as setting h = H(M) in BLS. However, a reader could retrace our steps
by applying the techniques in Section III to the original verification equation in the order specified in Figure 4.

B. Proof

Proof: Via a series of steps, we will show that
if HW is a secure signature scheme, then BatchVerify
is a secure batch verifier. Recall our batch verification
software will perform a group membership test to ensure
that each group element of the signature is a member of
the proper subgroup, so here will we assume this fact.
We begin with the original verification equation.

e(σ1, g)
?
=

UM · V r ·D · e(σ2lg(i), w) · e(σ2i, z) · e(σ2, h) (1)

Step 1: Combined Equation:

η∏

z=1

e(σ1z, g)
?
=

η∏

z=1

UMz · V rz ·D

· e(σ2lg(iz)z , w) · e(σ2izz , z) · e(σ2z, h)

Step 2: Apply the small exponents test, using exponents

δ1, . . . δη ∈R Zq:

η∏

z=1

(e(σ1z, g))δz
?
=

η∏

z=1

UMz·δz ·
η∏

z=1

V rz·δz ·
η∏

z=1

Dδz ·

η∏

z=1

(e(σ2
lg(iz)
z , w))δz ·

η∏

z=1

(e(σ2
iz
z , z))

δz ·
η∏

z=1

(e(σ2z, h))δz (2)

Step 3: Move the exponent(s) into the pairing (tech-

nique 2):
η∏

z=1

e(σ1
δz
z , g)

?
=

η∏

z=1

UMz·δz ·
η∏

z=1

V rz·δz ·
η∏

z=1

Dδz

·
η∏

z=1

e(σ2
lg(iz)·δz
z , w) ·

η∏

z=1

e(σ2
iz·δz
z , z) ·

η∏

z=1

e(σ2
δz
z , h) (3)

Step 4: Combine pairings with common 1st or 2nd

element. Reduce N pairings to 1 (technique 3):

e(

η∏

z=1

σ1
δz
z , g)

?
= U

Pη
z=1Mz·δz · V

Pη
z=1 rz·δz ·D

Pη
z=1 δz

·e(
η∏

z=1

σ2
lg(iz)·δz
z , w) · e(

η∏

z=1

σ2
iz·δz
z , z) · e(

η∏

z=1

σ2
δz
z , h) (4)

Steps 1 and 2 form the Combination Step in [15], which
was proven to result in a secure batch verifier in [15,
Theorem 3.2]. We observe that the remaining steps are
merely reorganizing terms within the same equation.
Hence, the final verification equation (4) is also batch
verifier for HW.

15

775

Approved for Public Release; Distribution Unlimited.

Detecting Dangerous Queries:

A New Approach for Chosen Ciphertext Security

Susan Hohenberger∗

Johns Hopkins University
Allison Lewko†

University of Texas at Austin

Brent Waters‡

University of Texas at Austin

January 4, 2012

Abstract

We present a new approach for creating chosen ciphertext secure encryption. The focal point
of our work is a new abstraction that we call Detectable Chosen Ciphertext Security (DCCA).
Intuitively, this notion is meant to capture systems that are not necessarily chosen ciphertext
attack (CCA) secure, but where we can detect whether a certain query CT can be useful for
decrypting (or distinguishing) a challenge ciphertext CT∗.

We show how to build chosen ciphertext secure systems from DCCA security. We motivate
our techniques by describing multiple examples of DCCA systems including creating them from
1-bit CCA secure encryption — capturing the recent Myers-shelat result (FOCS 2009). Our
work identifies DCCA as a new target for building CCA secure systems.

1 Introduction

A central goal of public key cryptography is to design encryption systems that are secure against
chosen ciphertext attacks. Public key encryption systems that are chosen ciphertext attack (CCA)
secure are robust against powerful adversaries that are able to leverage interaction with a decryptor.
Such an attacker is modeled by allowing him to query for the decryption of any ciphertext except
a challenge ciphertext for which he is trying to break. This includes ciphertexts derived from the
challenge ciphertext1. Due to its robustness against powerful attackers, chosen ciphertext security
has become the accepted goal for building secure encryption. For this reason, building chosen
ciphertext secure systems has been a central pursuit of cryptographers for over twenty years and
we have seen many distinct approaches to achieving CCA security.

∗Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL) under contract FA8750-11-2-0211, the Office of Naval Research under contract N00014-11-1-0470, a Microsoft
Faculty Fellowship and a Google Faculty Research Award. Applying to all authors, the views expressed are those of
the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
†Sponsored by a Microsoft Research Ph.D. Fellowship.
‡Supported by NSF CNS-0915361 and CNS-0952692, AFOSR Grant No: FA9550-08-1-0352, DARPA PROCEED,

DARPA N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, and Microsoft Faculty Fel-
lowship, and Packard Foundation Fellowship.

1We use “CCA” and “CCA2” interchangeably in this paper.

1

776

Approved for Public Release; Distribution Unlimited.

Early pioneering work in chosen ciphertext security [24, 14, 27] introduced the technique of lever-
aging Non-Interactive Zero Knowledge Proofs (NIZKs) [5] to build CCA-secure encryption systems
from chosen plaintext secure encryption systems. Roughly, a NIZK is used to prove that a ciphertext
is “well-formed” or legal. Later Cramer and Shoup [12, 13] introduced the first practical CCA-
secure systems that were built on specific number theoretic assumptions such as Decisional Diffie
Hellman. These techniques implicitly embed a certain form of designated verifier Non-Interactive
Zero Knowledge proofs in them. More recently, different methods for building chosen ciphertext
security from Identity-Based Encryption [7] and Lossy Trapdoor Functions [26] have emerged. In
addition, Myers and shelat [23] described general methods for amplifying CCA encryption of 1 bit
to many bits.

In this work, we introduce a new approach to obtaining chosen ciphertext secure systems. The
focal point of our work is a new abstraction that we call Detectable Chosen Ciphertext Security
(DCCA). Intuitively, this notion is meant to capture systems that are not necessarily CCA secure,
but where we can detect whether a certain query CT can be useful for decrypting (or distinguishing)
a challenge ciphertext CT∗.

A system that is DCCA secure will be associated with a boolean function F that takes in three
inputs: a public key pk , a challenge ciphertext CT∗ and a query ciphertext CT. The function will
output 1 if the query CT is “dangerous” for the an attacker wishing to distinguish CT∗. A DCCA
secure system must have the following two properties stated here informally:

• Unpredictability Without seeing CT∗ it should be hard to find a ciphertext CT such that
F (PK,CT∗,CT) = 1. In other words, an attacker must first see a challenge ciphertext in
order to discover a dangerous query for it.

• Indistinguishability The system will be secure under a detectable chosen ciphertext attack
if the attacker is limited to decryption queries of ciphertexts CT where F (pk ,CT∗,CT) = 0
for challenge ciphertext CT∗. I.e. the system is CCA secure if the attacker does not make
dangerous queries.

The goal of our work will be to construct fully chosen ciphertext secure systems from detectable
CCA-secure systems. We first motivate this goal by observing multiple DCCA systems that natu-
rally occur:

• Many bit encryption from 1-bit CCA Suppose we have a 1-bit CCA-secure system and
we wish to encrypt multiple bits by concatenating multiple 1-bit encryptions together. The
resulting system is no longer chosen ciphertext secure, but is DCCA secure. The detecting
function F is 1 iff any of the 1-bit ciphertext components between CT∗ and CT are equal.
This scenario is akin to the problem of showing that bit encryption is complete considered by
Myers and shelat [23], where they worried about such “quoting” attacks.

• Tag-Based Encryption Systems MacKenzie, Reiter and Yang [22] and Kiltz [20] define
a tag-based encryption scheme as an encryption scheme that takes in an additional “tag”
parameter on encryption and decryption. The security game allows an attacker to make
decryption queries with any tag parameter t, except for the tag t∗ that the challenge ciphertext
is encrypted under. Several examples of tag-based schemes exist. Kiltz [20] gave a direct
construction from the linear assumption. The CCA1-secure encryption variant of the Canetti,
Halevi and Katz [7] construction where the tag is an IBE identity is an additional example.

2

777

Approved for Public Release; Distribution Unlimited.

One can also view the CCA1-secure variant of Peikert and Waters [26] as a tag-based scheme,
where the tag is the “branch” in an all-but-one encryption scheme.

Most of the above examples of tag-based encryption can be proven selectively secure, where
an attacker must commit to the tag of the challenge ciphertext before seeing the public key.
However, if we are willing to utilize complexity leveraging arguments, we can argue that these
are adaptively secure. In addition, the CHK-lite transformation will be an adaptively secure
tag-based scheme if used with an adaptively secure Identity-Based Encryption system.

We observe that adaptively-secure tag-based encryption immediately gives rise to DCCA-
secure encryption. A ciphertext of the DCCA-secure system consists of a random tag t
plus a tag-based encryption of the message under the tag t. Decryption follows analogously
and the function F simply tests if two ciphertexts have the same tag. Unpredictability
follows from having a large tag space. Although it is already possible to transform tag-based
encryption into CCA-secure encryption using a strongly unforgeable signature [20], these
examples demonstrate natural DCCA systems. We detail this argument in Appendix D.

• “Sloppy” CCA Encryption One can envision that in practice an encryption system is
CCA secure, but an implementation of it is not due to certain nuances. For instance, suppose
a number theoretic library had a slack bit in its representation of group elements (e.g. a bit
that was always supposed to be 0, but if set to 1 does not affect any computations.) A CCA
attacker could exploit this weakness in an implementation, however, it is possible that the
system would still be DCCA secure. Thus, one might use our techniques as a hedge against
such problems. This is somewhat analogous to recent work [2] on applying deterministic
encryption as a hedge against faulty random bit generation.

In addition to the examples listed above, we believe that it is useful to identify DCCA security as
a new “target” for achieving chosen ciphertext security.

Overview of Our Techniques We now give an overview of our construction and proof. Our
construction will build a chosen ciphertext secure system from three components: a chosen plaintext
secure system, 1-bounded CCA-secure system 2, and a detectable CCA-secure system. Since DCCA
security (trivially) implies CPA, and we can build 1-bounded CCA from CPA encryption [25, 11, 10],
it follows that all components are realizable from DCCA as a building block.

A public key from our system consists of three components. An “inner” public key PKin which
is a DCCA public key and two “outer” keys PKA,PKB respectively from 1-bounded CCA and CPA
secure systems. To encrypt a message M , one first chooses the randomness rA, rB to be used for
the outer encryptions and then encrypts the tuple (rA, rB,M) under the inner (detectable) key to
compute an inner ciphertext CTin. Next, the encryption algorithm encrypts CTin under the outer
public key PKA using randomness rA to get CTA. It then analogously creates CTB as the encryption
of CTin under key PKB and randomness rB. The output ciphertext is CT = (CTA,CTB).

The structure of our ciphertexts is that the two outer ciphertexts both encrypt the same message
— the inner ciphertext. This ciphertext itself encrypts the message and the randomness used to
create the outer ciphertexts. Thus, the outer ciphertexts indirectly encrypt their own randomness. 3

2A 1-bounded CCA-secure encryption system is secure against one chosen ciphertext query.
3This construction implicitly assumes that the length of the random string needed for encryption is dependent

only on the security parameter and is independent (or at least smaller than) the message size of the outer ciphertexts.

3

778

Approved for Public Release; Distribution Unlimited.

The decryption algorithm will receive CT = (CTA,CTB) and first decrypt CTA to get CT′in and
decrypt this to get (rA

′, rb′,M ′) using the appropriate secret keys. Finally, it will check that the
ciphertext is well formed by itself encrypting CT′in under PKA,PKB and the respective randomness
rA
′, rB ′ and validating that the output matches CTA and CTB before accepting M ′ as the message.

Our encryption system has elements both of the Naor-Yung [24] two key method for our two outer
keys and the Myers-shelat [23] method of embedding outer randomness in inner ciphertexts.

Security of our system depends on the premise that no attacker is able to learn the message
encrypted in the inner ciphertext. This will follow from the Detectable CCA security if we are
able to guarantee that an attacker is unable to make any ciphertext queries CTA,CTB where the
decryption of CTA, denoted CTin, is related to the inner component of our challenge ciphertext CT∗in
according to to the DCCA function F . Intuitively, we hope to achieve this from the combination
of two features of our system. First, the 1-bounded CCA security of PKA will (hopefully) make it
difficult to create an encryption under PKA related to CT∗in. Second, the embedded randomness
will allow us to check that ciphertexts are well formed and thus answer multiple ciphertext queries
under the Naor-Yung two key type manner.

The trickiness in proving security lies with the embedded randomness which is a two-edge sword.
On one hand, forcing the attacker queries to embed randomness allows a reduction algorithm to
decrypt if it knows either one of the two outer keys. On the other hand, it is not clear how
such a reduction can create valid ciphertexts while playing the 1-bounded CCA game, since a
reduction algorithm will not know the randomness rA to embed. Thus, this circularity creates
a fundamental barrier similar to difficulties encountered in attempts to create trapdoor functions
from encryption [15].

We deal with this by arguing security in an indirect way that steps around this barrier. We first
define a security game specific to our construction called nested indistinguishability. In this game,
an attacker will receive a public key and is allowed to make decryption queries. The attacker at
some point submits a single message M . The challenger will flip a coin z. If z = 0, the challenger
creates a valid encryption of M ; otherwise, if z = 1 the challenger creates a encryption where the
innermost message is all 0’s — it neither includes the message nor the embedded randomness. The
attacker continues to make decryption queries (other than the challenge ciphertext) and wins if it
is successfully able to guess z. It follows that if no attacker is successful in this game, then our
system is chosen ciphertext secure.

To prove security of this nested indistinguishability game, we begin by defining a “bad event”.
The bad event is defined to be when the attacker submits a query (CTA,CTB) such that CTA 6=
CT∗A where CT∗A is from the challenge ciphertext and the decryption of CTA gives a ciphertext
that is related to the inner challenge ciphertext according to F . If we can argue that such bad
events only occur with negligible probability, then security of the nested indistinguishability game
follows straightforwardly from DCCA security.

The crux of our proof is how we eliminate the possibility of a bad event. We do so in an indirect
manner. We begin by arguing this event cannot happen in the case where z = 1, which is where
all 0’s are encrypted and the randomness is not embedded. In this case, we get the best of both
worlds. We are able to require that the attacker’s queries have the randomness embedded in them,

We can justify this assumption with the common technique of using a seed to a (variable length) Pseudo Random
Generator (PRG) as the input to each encryption algorithm. The PRG can then extend the randomness to whatever
length is required by the underlying encryption system. By using this justified assumption in our definitions, we are
able to simplify the presentation of our construction and proofs. In contrast, Myers and shelat [23] explicitly carry
the PRG technique through their exposition. This choice gives our exposition and proof an advantage in simplicity.

4

779

Approved for Public Release; Distribution Unlimited.

so that we can check ciphertext well-formedness, however, the challenge ciphertext is not required
to embed the outer randomness. We argue that the bad event does not happen by applying a set
of hybrid experiments. First, we change CT∗B to be an encryption of all 1’s. Next, we change the
decryption algorithm to decrypt using the secret key for PKB. Finally, we change CT∗A to be an
encryption of all 1’s. In each experiment we argue that the chance of a bad event must be very
close to that of the prior experiment. For the last step we leverage the 1-bounded CCA property
of the first component. Finally, we note that in the last experiment the probability of a bad event
is negligible since the inner challenge ciphertext CT∗in is replaced by all 1’s and is not even present.

One interesting question is why is 1-bounded CCA security needed for the PKA since at the
last step in the proof we can use the secret key SKB to execute decryption. While this is true, it is
actually possible for the bad event to occur on a malformed ciphertext that will not decrypt. We
need the 1-bounded CCA property to detect the occurrence of the bad event in this case during
the security reduction.

We are not able to argue the lack of a bad event in a similar manner for the z = 0 (embed-
ded randomness) case due to the aforementioned circularity problems. Instead, we can infer this
from the lack of event in the z = 1 case along with DCCA security. To prove this, we can create
an algorithm that plays the DCCA indistinguishability game while simulating the nested indistin-
guishability game to the attacker. The simulator will choose the outer keys and outer randomness
for the challenge ciphertext itself. It submits the message and outer randomness as one inner mes-
sage and the 0’s string as another. Then it will be able to decrypt all ciphertext queries until a
bad event happens using its keys in addition to the DCCA decryption oracle. Once a bad event
query is made though, it is stuck. However, it need not go any further! The fact that the attacker
was able to create a bad event at all must mean that the message and randomness were embedded.
It can then break the DCCA distinguishing game. Thus, we can infer that the bad event happens
with negligible probability in either case. The remainder of the proof follows straightforwardly.

Comparison to Myers-shelat Myers and shelat [23] showed how to achieve many-bit chosen
ciphertext security from 1-bit chosen ciphertext security and motivated us to explore the notion
of detectability. They created a system using an inner/outer structure where the inner ciphertext
encrypted the outer random coins. Their inner scheme, built from 1-bit CCA, is what they call
“unquoteable” secure. Their concept is roughly analogous to a specific instance of a DCCA scheme.
Encryptions of many-bit messages are concatenations of 1-bit encryptions; the system is chosen
ciphertext secure as long as queries do not copy a 1-bit ciphertext component of the underlying
scheme. For the outer scheme, they use a notion of security that is an amalgam of unquoteability
and non-malleability. Their outer construction follows a specific adaptation of the Choi et. al. [10]
methods applied to the 1-bit primitive. (No two key structure is used.) Their proof relies on
defining quoting attacks on both the inner and outer layers and then establishing a certain order
that outer quoting attacks must happen before inner quoting attacks.

We believe our methods offer benefits in terms of generality, simplicity, and efficiency. First,
our general notion of Detectable Chosen Ciphertext Security can be realized by multiple systems.
These include the 1-bit to many-bit examples, the tag-based encryption class and future systems
that can leverage this as a new target path for creating CCA secure encryption.

Another key difference is that the outer layer of our scheme is built from simple 1-bounded
CCA and CPA-secure parts. We argue these provide simpler concepts and are easier to work with.
In addition, one can instantiate them from any 1-bounded encryption system. For instance, we

5

780

Approved for Public Release; Distribution Unlimited.

can apply any candidate 1-bounded CCA-secure system and do not need to work through the Choi
et. al. [10] construction. Instead we can apply the 1-bounded CCA system of Cramer et. al. [11],
which is signficantly more efficient and simpler than the non-malleable systems of either PSV [25]
or Choi et. al. [10]. We also regard avoiding a combination security definition between 1-bounded
CCA (or non-malleability) and detection as a benefit for simplicity. This simplification will also
improve efficiency in the case where there is a candidate CPA primitive that is more efficient than
the candidate DCCA primtive, since we can build the 1-bounded scheme out of the CPA primitive.

Our choice of abstractions and structure allow us to have a simple proof. We can eliminate the
possibility of a bad event using a basic Naor-Yung two key argument. Then once we are able to
eliminate this, the rest of the proof follows in a straightforward manner.

Why not CCA1? One intriguing possibility is to try to leverage our techniques to build full
chosen ciphertext security from CCA1 security. A natural direction would be to use a CCA1 system
for the inner component in place of the detectable encryption scheme. The intuitive rationale would
be if the outer keys are 1-bounded CCA or non-malleable then the queries produced by the attacker
should not be related to the inner challenge ciphertext and thus CCA1 might suffice. Unfortunately,
we were able to create an attack oracle which breaks full CCA security in our scheme, yet does
not perturb the 1-bounded CCA or CCA1 primitives, giving evidence that this approach may not
work. However, the oracle we use is quite strong and “exotic”. This suggests that there might be
primitives that lie somewhere in between DCCA and CCA1. One interesting example is the CCA-1
secure “Cramer-Shoup lite” [12] cryptosystem. There exists a malleability attack on a challenge
CT∗ that produces a query ciphertext which has the same distribution as a fresh encryption of
a random message. Hence the CS-lite system is not CCA secure. However, it would be very
interesting and surprising if there existed attack algorithms that matched the above oracle.

We describe these issues in more detail in Section 5.

1.1 Related Work

Relaxations of CCA Multiple relaxations of chosen ciphertext security have been proposed in
the literature.

One interesting class of relaxations is the notion of Replayable Chosen Ciphertext Security [8]
and other similar works [30, 1]. These works aim to capture the concept that some malleability
attacks might intuitively be benign. In particular, consider a cryptosystem where an attacker is only
able to maul a ciphertext CT encrypting a message M into a different ciphertext C ′ that encrypts
the same message M . If an application (or user) makes all decisions based on the decrypted
plaintexts as opposed to the representation of the ciphertext such notions might be sufficient.

The primary goal of RCCA is to formally capture a form of “good enough” security under
ciphertext attacks. In contrast, Detectable CCA inherently does not have good enough security on
its own. In DCCA systems, it may be possible to maul ciphertexts to be encryptions of different
messages or even create attack ciphertexts that each target a single bit of a target ciphertext. Thus,
our primary focus is to create CCA security from a fundamentally less secure DCCA building block.

We observe that DCCA does not imply RCCA. In [8], the authors gave an example of an RCCA
scheme that could not be publicly detected. Conversely, not all DCCA schemes will be RCCA
secure. Our bit encryption instance serves as an example. We also note that [8] discusses a notion
of detectability and introduces a definition that combines replayable and detectable properties. This
combined definition is a particular instance of DCCA. However, they do not explore the notion of

6

781

Approved for Public Release; Distribution Unlimited.

detectability in isolation or how to build CCA security from it. Canetti, Krawcyzk, and Nielsen [8]
do show how to create CCA security from RCCA security using the KEM/DEM framework.

Finally, Hofheinz and Kiltz [17] introduce a notion they call Constrained CCA security partic-
ular to developing Key Encapsulation Mechanisms. In their definition an attacker must include a
predicate p along with each query ciphertext CT. The challenger will only answer the query if the
predicate evaluated on the decrypted key of the ciphertext is true and the predicate is false for all
but a negligible fraction of possible KEM keys. While this notion is weaker than CCA security,
they show that when combined with a (symmetric) authenticated encryption scheme, the resulting
system is CCA secure.

Other Related Work Goldwasser and Micali [16] gave the first formal definition of security for
public key encryption systems. Naor and Yung [24] and Rackoff and Simon [27] extended this to
include chosen ciphertext attacks.

Naor and Yung [24] initiated the approach of leveraging NIZKs to build chosen ciphertext secu-
rity by introducing their “two key” method. A NIZK would guarantee the integrity of the ciphertext
by giving a proof that the same message was encrypted to two keys. While their system gave security
against lunchtime or CCA1 attacks, Dolev, Dwork and Naor [14] showed how to achieve full CCA2
security. In addition, they introduced the fundamental concept of non-malleability. Sahai [29] in-
troduced a concept of simulation sound NIZKs that could be used to achieve CCA security through
the NY two key structure. Bellare and Sahai [4] gave relations between non-malleability [14] chosen
ciphertext security.

Since then, different approaches to achieving CCA security have been proposed. Cramer and
Shoup [12, 13] showed techniques for proving ciphertexts were well-structured and abstracted this
into projective hash functions. Several other novel cryptosystems make use of specific number-
theoretic techniques (e.g. [20, 9, 18]). Boneh, Canetti, Halevi and Katz [6] showed a generic
method of achieving chosen ciphertext security from IBE systems. Peikert and Waters [26] gave a
new avenue for achieving CCA security with the introduction of Lossy Trapdoor Functions (TDFs).
Notably, this gave the first chosen ciphertext secure systems from lattice-based assumptions. Subse-
quently, various refinements of weaker conditions on the trapdoor functions were introduced [28, 21].

The above techniques are proven secure in the standard model. Bellare and Rogaway [3] show
that in the random oracle model chosen ciphertext security can be built from chosen plaintext
security.

2 Detectable Chosen Ciphertext Security

In this section, we define detectable chosen ciphertext security. An encryption scheme satisfying
this definition is called a detectable encryption system. Our discussions assume a familiarity with
CPA, CCA1 and CCA2 security as well as bounded CCA security and non-malleability. A reader
wishing to review these definitions can find them in Appendix A.

2.1 Detectable Encryption

We define a detectable encryption scheme as having the usual algorithms (KeyGen,Enc,Dec), as
defined in Definition A.1, together with an efficiently-computable boolean function F . Informally,
F tests for a “detectable” relationship between two ciphertexts. The security game will mirror

7

782

Approved for Public Release; Distribution Unlimited.

that of CCA2 security, except that decryption queries in the second phase will not be answered for
ciphertexts detectably-related to the challenge ciphertext. Our formal definition follows below.

Definition 2.1 (Detectable Encryption System) A detectable encryption system is a tuple
of probabilistic polynomial-time algorithms (KeyGen,Enc,Dec, F) such that:

1. (KeyGen,Enc,Dec) satisfy Definition A.1, where we sometimes denote Enc(pk ,m; r) as a de-
terministic function of the public key pk, the message m and randomness r, and

2. F (pk , c′, c)→ {0, 1} : the detecting function F takes as input a public key pk and two cipher-
texts c′ and c, and outputs a bit.

Correctness is the same as a regular encryption system.

A detectable encryption system must have two properties, which we now define.

Unpredictability of the Detecting Function F . Informally, given the description of F and a
public key pk , for an unknown ciphertext c, it should be hard to find a second ciphertext c′ that is
“related” to c; i.e., such that F (pk , c′, c) = 1. We consider both a basic and a strong formalization.

Basic Unpredictability Experiment. Consider the following experiment Exppredict.basicA,Π (λ) defined
for a detectable encryption scheme Π = (KeyGen,Enc,Dec, F) and an adversary A:

1. Setup: KeyGen(1λ) is run to obtain keys (pk , sk).
2. Queries: Adversary A is given pk and access to a decryption oracle Dec(sk , ·). The adversary

outputs a message m in the message space associated with pk and a ciphertext c in the
ciphertext space associated with pk .

3. Challenge: A ciphertext c∗ ← Enc(pk ,m) is computed.
4. Output: The output of the experiment is defined to be 1 if F (pk , c∗, c), and 0 otherwise.

We also define a stronger variant Exppredict.strongA,Π (λ) of the unpredictability experiment where
the adversary is additionally given sk . We observe that strong unpredictability implies basic un-
predictability since the adversary can simulate the decryption oracle using the secret key.

Indistinguishability of Encryptions. Next, we formalize the confidentiality guarantee. Con-
sider the following experiment ExpindistA,Π (λ) defined for a detectable encryption scheme Π = (KeyGen,
Enc,Dec, F) and an adversary A:

1. Setup: KeyGen(1λ) is run to obtain keys (pk , sk).
2. Phase 1: Adversary A is given pk and access to a decryption oracle Dec(sk , ·). A outputs a

pair of messages m0,m1 of the same length in the message space associated with pk .
3. Challenge: A random bit b ← {0, 1} is chosen, and then a ciphertext c∗ ← Enc(pk ,mb) is

computed and given to A. We call c∗ the challenge ciphertext.
4. Phase 2: A continues to have access to Dec(sk , ·), but may not request a decryption of a

ciphertext c such that F (pk , c∗, c) = 1. Finally, A outputs a bit b′.
5. Output: The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

8

783

Approved for Public Release; Distribution Unlimited.

Definition 2.2 (Detectable Chosen Ciphertext Security) A detectable encryption scheme Π =
(KeyGen,Enc,Dec, F) has an unpredictable detecting function and indistinguishable encryptions
under a detectable chosen-ciphertext attack (or is DCCA-secure) if for all probabilistic polynomial-
time adversaries A there exists a negligible function negl such that:

1. (F is unpredictable:) Pr[Exppredict.basicA,Π (λ) = 1] ≤ negl(λ) and

2. (Encryptions are indistinguishable:) Pr[ExpindistA,Π (λ) = 1] ≤ 1
2 + negl(λ).

2.2 Facts about DCCA Security

For space reasons, we omit the simple proofs of the first two claims. We conjecture that the
converse of Claim 2.4 is not true. Indeed if the DDH assumption holds, then the CCA-1 secure
Cramer-Shoup lite system would separate these two notions as discussed in the introduction.

Claim 2.3 (CCA2 =⇒ DCCA) If Π = (KeyGen,Enc,Dec) is a CCA2-secure encryption scheme,
then Π′ = (KeyGen,Enc,Dec, F) is a DCCA-secure encryption scheme where F outputs 0 on all
inputs except those of the form (·, c, c).

Claim 2.4 (DCCA =⇒ CCA1) If Π = (KeyGen,Enc,Dec, F) is a DCCA-secure encryption scheme,
then Π′ = (KeyGen,Enc,Dec) is a CCA1-secure encryption scheme.

We also claim that one-bit DCCA-secure encryption implies arbitrary-length DCCA-secure
encryption. Say Π = (KeyGen,Enc,Dec, F) is a detectable encryption system with plaintext space
{0, 1}. We can construct a new scheme Π′ = (KeyGen,Enc′,Dec′, F ′) with plaintext space {0, 1}∗
by defining Enc′ as follows:

Enc′(pk ,m) = Enc(pk ,m1), . . . ,Enc(pk ,mn)

wherem = m1 . . .mn. The decryption algorithm Dec′ decrypts each ciphertext piece using Dec. The
function F ′ performs n2 invocations of F , testing each ciphertext piece of C with each ciphertext
piece of C ′, and outputting 1 if any invocation of F returned 1, and 0 otherwise.

Lemma 2.5 (1-bit DCCA encryption implies arbitrary-length DCCA encryption) Let Π
and Π′ be as above. If Π is DCCA-secure, then so is Π′.

We prove this lemma in Appendix B.

3 The Construction: CCA2 Security from DCCA Security

An overview of the techniques used for our construction is provided in Section 1.

The Construction Description We now construct a CCA2-secure public-key encryption scheme
Π = (KeyGen, Enc,Dec) using three building blocks4:

4A 1-bounded CCA-secure encryption system is secure if an attacker makes at most one decryption query. One-
bounded CCA security can be constructed from CPA security [25, 10]. See Appendix A. CPA security is trivially
implied by DCCA security. Thus, there is really only one necessary building block: a DCCA-secure system.

9

784

Approved for Public Release; Distribution Unlimited.

1. a DCCA-secure encryption scheme, denoted Πdcca = (KeyGendcca,Encdcca, Decdcca, F).
2. a 1-bounded CCA-secure encryption scheme with perfect correctness, denoted Π1b−cca =

(KeyGen1b−cca, Enc1b−cca, Dec1b−cca).
3. a CPA-secure encryption scheme with perfect correctness, denoted Πcpa = (KeyGencpa, Enccpa,

Deccpa).

We assume that the message space of each system is {0, 1}∗ and that messages of the form (x, y, z)
can be uniquely and efficiently encoded as strings in {0, 1}∗, where the encoding length is the same
for all inputs of the same length. We assume that λ bits will be sufficient randomness for the
encryption algorithm of each system, where 1λ is the security parameter. We assume that Π1b−cca

and Πcpa have perfect correctness for decryption. Finally, we assume that for Πdcca the ciphertext
length is a deterministic function of the security parameter and the message length. We discuss
the justification behind these assumptions in Section B.

KeyGen(1λ) Run KeyGendcca(1λ) to produce (PKin,SKin). Run KeyGen1b−cca(1λ) to produce
(PKA, SKA). Run KeyGencpa(1λ) to produce (PKB, SKB). Set the public key as PK := (PKin,PKA,
PKB) and the secret key as SK := (SKin, SKA, SKB).

Enc(PK,M) The encryption algorithm first chooses three random strings rin, rA, rB ∈ {0, 1}λ.
Next, it computes the ciphertext CTin := Encdcca(PKin, (rA, rB,M); rin). It then treats this cipher-
text as the message and computes CTA := Enc1b−cca(PKA,CTin; rA) and CTB := Enccpa(PKB,CTin;
rB). Finally, it outputs the encryption as (CTA,CTB).

Dec(SK,CT) The decryption algorithm takes a ciphertext CT := (CTA,CTB). It decrypts the
first ciphertext as CTin := Dec1b−cca(SKA,CTA). It then decrypts this output as (rA, rB,M) :=
Decdcca(SKin,CTin). It then checks that

CTA = Enc1b−cca(PKA,CTin; rA) and CTB = Enccpa(PKB,CTin; rB).

If all checks pass, it outputs M ; otherwise, it outputs ⊥.

4 Proof of Security

We will now argue that the Section 3 construction is CCA2 secure, assuming the respective security
properties of the underlying building blocks. To do so, it will be easier to consider a slight variant
of the CCA2 security game, which we call nested indistinguishability, where the challenger either
encrypts one of the two challenge messages or encrypts a string of zeros. The experiment involves
three encryption schemes and combines them in the same manner as our main construction.

Nested Indistinguishability. Consider the experiment ExpnestedA,Πdcca,Π1b−cca,Πcpa
(λ) defined for de-

tectable encryption scheme Πdcca, encryption schemes Π1b−cca,Πcpa and an adversary A:

1. Setup: Run KeyGendcca, KeyGen1b−cca and KeyGencpa to obtain key pairs (PKin, SKin), (PKA,
SKA) and (PKB,SKB) respectively. Set pk := (PKin,PKA,PKB) and sk := (SKin, SKA, SKB).

10

785

Approved for Public Release; Distribution Unlimited.

2. Phase 1: Adversary A is given pk and access to a decryption oracle Dec(sk , ·), which executes
the decryption algorithm as defined in Section 3. A outputs a pair of messages m0,m1 of the
same length in the message space associated with pk .

3. Challenge: Randomness β, z ← {0, 1} and rA, rB ← {0, 1}λ are chosen. Let ` denote the
length of the encoding of (rA, rB,mβ). Then compute:

CT∗in :=

{
Encdcca(PKin, (rA, rB,mβ)) if z = 0;

Encdcca(PKin, 0
`) if z = 1.

(1)

Next compute CT∗A := Enc1b−cca(PKA,CT∗in; rA) and CT∗B := Enccpa(PKB,CT∗in; rB). Return
to A the ciphertext CT∗ := (CT∗A,CT∗B).

4. Phase 2: A continues to have access to Dec(sk , ·), but may not request a decryption of the
challenge ciphertext CT∗. Finally, A outputs a bit z′.

5. Output: The output of the experiment is defined to be 1 if z′ = z, and 0 otherwise.

Definition 4.1 (Nested Indistinguishability) A tuple of systems (Πdcca, Π1b−cca,Πcpa) has
nested indistinguishable encryptions under a chosen-ciphertext attack if for all probabilistic polynomial-
time adversaries A there exists a negligible function negl such that:

Pr[ExpnestedA,Πdcca,Π1b−cca,Πcpa
(λ) = 1] ≤ 1

2
+ negl(λ).

It is important to observe that the nested indistinguishability experiment combines Πdcca,Π1b−cca,
Πcpa in exactly the same manner as the Section 3 construction. When z = 1, it encrypts “properly”
and when z = 0, it encrypts all zeros.

With a goal of proving CCA2 security, our main task is to argue that our Section 3 construction
provides nested indistinguishability. To do this, we must first establish that a certain event does
not happen, except with negligible probability. We define this event as follows.

Definition 4.2 (The Bad Query Event) Let Πdcca, Π1b−cca, and Πcpa be the schemes parame-
terizing the experiment Expnested. Let PKin be the public key output by running KeyGendet during the
course of the experiment. We say that a bad query event has occurred during an execution of this
experiment if in Phase 2, the adversary A makes a decryption query of the form CT := (CTA,CTB)
such that

• (Query inner is “related” to challenge inner:) F (PKin,CT∗in,Dec1b−cca(SKA,CTA)) = 1, and
• (Query ciphertext differs from challenge ciphertext in first half): CT∗A 6= CTA.

where CT∗ := (CT∗A,CT∗B) is the challenge ciphertext and CT∗A is an encryption of CT∗in. We note
that this event is well defined in both the cases where z = 0 and z = 1.

4.1 Proof that Bad Query Event Does Not Happen

Claim 4.3 (No Bad Query Event when z = 1 (all zeros encrypted)) Suppose that Πdcca is
DCCA secure, Π1b−cca is 1-bounded CCA secure, and Πcpa is CPA secure, all with perfect cor-
rectness. Then for all probabilistic polynomial-time adversaries A, during a run of experiment
ExpnestedA,Πdcca,Π1b−cca,Πcpa

(λ) with z = 1, a bad query event does not take place except with negligible
probability in λ where the probability is taken over the coins of the adversary and the experiment.

Proof. We proceed via a series of hybrids. Let BQE denote a bad query event.

11

786

Approved for Public Release; Distribution Unlimited.

Step 1: Pr[BQE in Nested] ∼ Pr[BQE in Right-Erased] from CPA-security of Πcpa. We
first define a variation of the nested indistinguishability experiment with z = 1, which we call the
right-erased experiment. In this experiment, CT∗B is formed as CT∗B := Enccpa(PKB, 1

k; rB) where
k denotes the length of CT∗in. CT∗A is formed the same as in the nested indistinguishability exper-
iment with z = 1. We suppose there exists a PPT adversary A for the nested indistinguishability
experiment which causes the bad query event to occur with non-negligibly different probability in
the usual experiment with z = 1 compared to the right-erased experiment. We construct a PPT
algorithm B which violates the CPA-security of Πcpa.
B is given PKB. B then runs KeyGendcca and KeyGen1b−cca for itself to produce PKin, SKin and

PKA, SKA respectively. It gives A pk = (PKin,PKA,PKB). B can simulate the decryption oracle
Dec(sk , ·) for A by running the usual decryption algorithm (note that this does not require SKB).

The adversary A outputs a pair of messages m0,m1 of the same length in the message space
associated with pk . B chooses rA ∈ {0, 1}λ and computes CT∗in = Encdcca(PKin, 0

`), where ` is
the length of the encoding of (rA, rA,m0). It then computes CT∗A = Enc1b−cca(PKA,CT∗in; rA). It
submits CT∗in and 1k to its challenger as its two messages. It receives CT∗B as the ciphertext. It
gives CT∗ := (CT∗A,CT∗B) to A.

To respond to remaining decryption queries A makes, B runs the usual decryption algorithm
(after checking that the query is not equal to the challenge ciphertext). In addition, B checks for the
bad query event by first checking if CTA 6= CT∗A and then computing F (PKin,CT∗in,Dec1b−cca(SKA,
CTA)). We recall that B generated SKA,PKA for itself, so it can compute Dec1b−cca(SKA,CTA).

If CT∗B is an encryption of CT∗in, then B has properly simulated the usual experiment with z = 1.
If it is instead an encryption of 1k, then B has properly simulated the right-erased experiment. We
note that the bad query event occurs in the simulation if and only if it is detected by B.

We let ε denote the probability that the bad query event occurs in the usual experiment with
z = 1 and δ denote this probability in the right-erased experiment. We suppose ε−δ is positive and
non-negligible (the opposite case is analogous). Now, if B detects the bad query event, it guesses
that CT∗A is an encryption of CT∗in. Otherwise, it guesses the opposite. B’s probability of guessing
correctly in the CPA security game for Πcpa is then equal to ε

2 + 1
2(1 − δ) = 1

2 + 1
2(ε − δ). The

quantity ε − δ is non-negligible, so B violates the CPA-security of Πcpa. Hence we may conclude
that the probability of the bad query event happening in the usual experiment with z = 1 is the
same (up to a negligible difference) as the probability of the bad query event happening in the
right-erased experiment for any PPT adversary.

Step 2: Pr[BQE in Full-Erased] is negligible from the unpredictability of the detecting
function of Πdcca. We now define an additional variation of the experiment, which we call the full-
erased experiment. This is like the right-erased experiment, except that CT∗A is also an encryption
of 1k, instead of an encryption of CT∗in. We claim that in the full-erased experiment, the bad query
event can only occur with negligible probability. To see this, we suppose we have a PPT adversary
A which causes the bad query event to occur with non-negligible probability in the full-erased
experiment. We will build a PPT adversary B for the basic unpredictability experiment which
violates unpredictability of the detecting function for Πdcca.
B is given PKin and access to a decryption oracle Dec(SKin, ·). It runs KeyGen1b−cca and

KeyGencpa for itself to produce PKA,SKA and PKB,SKB. It gives (PKin,PKA,PKB) to A. B
can simulate the decryption oracle for A using SKA and its own decryption oracle. A outputs
m0,m1. B then computes CT∗A = Enc1b−cca(PKA, 1

k) and CT∗B = Enccpa(PKB, 1
k) and gives

12

787

Approved for Public Release; Distribution Unlimited.

CT∗ = (CT∗A,CT∗B) to A. We let q denote the number of Phase 2 queries made by A. B can respond
to these queries as before. B chooses a random i ∈ {1, 2, . . . , q} and a random bit b ∈ {0, 1}. It takes
the ith Phase 2 query of A, denoted by (CTi

A,CTi
B), and computes CTi

in = Dec1b−cca(SKA,CTi
A).

It submits mb and CTi
in to its challenger. Then, the distribution of c∗ = Encdcca(PKin,mb) in the

basic unpredictability experiment is precisely the distribution of CT∗in. Hence, the bad query event
for query i corresponds to an output of 1 for basic unpredictability experiment. Thus, if the bad
query event occurs with some non-negligible probability ε, B will cause an output of 1 in the basic
unpredictability experiment with probability at least ε

q , which is non-negligible.

Step 3: Pr[BQE in Right-Erased] ∼ Pr[BQE in Full-Erased] from the 1-bounded CCA
security of Π1b−cca. We now return to considering a PPT adversary A in the right-erased ex-
periment. We let q denote the number of Phase 2 queries made by A. We suppose that A causes
the bad query event with non-negligible probability. Then there exists some index i ∈ {1, . . . , q}
such that A causes the bad query event to occur with non-negligible probability on its ith Phase
2 query. In other words, if there exists a PPT adversary A for which the bad query event occurs
with non-negligible probability in the right-erased experiment, then for each value of the security
parameter, there exists an index i such that A causes the BQE to occur on its ith Phase 2 query
with non-negligible probability. We note that for any i, the probability that A causes the BQE to
occur on its ith Phase 2 query in the full-erased experiment is negligible, as we proved above.

We fix such an i, and we define a PPT algorithm B which violates the 1-bounded CCA security
of Π1b−cca. B receives PKA from its challenger. It runs KeyGendcca and KeyGencpa for itself to
produce PKin,SKin and PKB,SKB. It gives (PKin,PKA,PKB) to A as the public key.
B simulates the decryption oracle for A as follows. Upon receiving a ciphertext (CTA,CTB), B

decrypts CTB using Deccpa with SKB, and we let CTin denote the output. It then decrypts CTin us-
ing Decdcca with SKin, and parses the output as rA, rB,M . It checks if CTA = Enc1b−cca(PKA,CTin;
rA) and if CTB = Enccpa(PKB,CTin; rB). If both checks pass, it outputs M . Else, it outputs ⊥.

We claim that this matches the output of the usual decryption algorithm, even though B is
first decrypting CTB instead of CTA. To see this, note that the outputs are clearly the same
whenever Dec1b−cca(CTA,SKA) = Deccpa(CTB,SKB). Whenever these are unequal, both de-
cryption methods will output ⊥. This is because CTA = Enc1b−cca(PKA,CTin; rA) and CTB =
Enccpa(PKB,CTin; rB) imply that Dec1b−cca(CTA, SKA) = CTin = Deccpa(CTB,SKB). (Recall
here that we have assumed Π1b−cca and Πcpa have perfect correctness.)

At some point, A outputsm0,m1. B forms CT∗in = Encdcca(PKin, 0
`) and CT∗B = Enccpa(PKB, 1

k).
It outputs the messages CT∗in and 1k to its challenger, and receives a ciphertext which it sets as CT∗A.
It gives the ciphertext (CT∗A,CT∗B) to A. It can then respond to A’s Phase 2 decryption queries in
the same way as before. When it receives the ith Phase 2 query of A, denoted by (CTi

A,CTi
B), B

checks for the bad query event by first checking if CTi
A 6= CT∗A and if so, submitting CTi

A as its one
decryption query to its decryption oracle for PKA. It can compute F (PKin,CT∗in,Dec(SKA,CTi

A)).
This equals 1 if and only if the bad query event has occurred for query i, and in this case B guesses
that CT∗A is an encryption of CT∗in. Otherwise, B guesses the opposite.

We observe that when CT∗A is an encryption of CT∗in, then B has properly simulated the right-
erased experiment, and when CT∗A is an encryption of 0k, then B has properly simulated the full-
erased experiment. We let ε denote the non-negligible probability that A causes the bad query event
to occur on (Phase 2) query i in the right-erased experiment, and we let δ denote the corresponding
probability for the full-erased experiment. We know that δ must be negligible, therefore ε − δ is

13

788

Approved for Public Release; Distribution Unlimited.

positive and non-negligible. The probability that B guesses correctly is: 1
2(1−δ)+ 1

2ε = 1
2 + 1

2(ε−δ),
so B achieves a non-negligible advantage in the 1-bounded CCA security game for Π1b−cca.

Thus, it must be the case that for all PPT algorithms A, the BQE occurs with only negligible
probability in the right-erased experiment, and hence also in the nested experiment with z = 1. �

Claim 4.4 (No Bad Query Event when z = 0 (real message encrypted)) As a consequence
of Claim 4.3 and the DCCA security of Πdcca, it holds that for all probabilistic polynomial-time ad-
versaries A, during a run of experiment ExpnestedA,Πdcca,Π1b−cca,Πcpa

(λ) with z = 0, a bad query event
does not take place except with negligible probability in λ where the probability is taken over the
coins of the adversary and the experiment.

Proof. In Claim 4.3, we established that bad query events happen with at most negligible probability
when z = 1. We will use this fact to argue that they cannot happen much more frequently when
z = 0. Suppose to the contrary that there exists a PPT adversary A that forces bad query events to
happen with non-negligible probability ε when z = 0. We create an PPT adversary B who interacts
with A in a run of the nested indistinguishability experiment to break the DCCA security of Πdcca

with detecting function F with probability negligibly-close to 1
2 + ε

2 as follows:

1. Setup: B obtains PKin from the Expindist challenger. It runs KeyGen1b−cca to obtain (PKA,SKA)
and KeyGencpa to obtain (PKB,SKB).

2. Phase 1: B gives toA the public key PK = (PKin,PKA,PKB). WhenA queries the decryption
oracle on CT, B can simulate the normal decryption algorithm using SKA and the phase 1
oracle Dec(SKin, ·). Eventually, A outputs a pair of messages m0,m1.

3. Challenge: Choose random β ∈ {0, 1} and rA, rB ∈ {0, 1}λ. Send to the Expindist challenger
the messages M0 = (rA, rB,mβ) and M1 = 0|M0|, and obtain from this challenger the cipher-
text CT∗in. Compute CT∗A := Enc1b−cca(PKA,CT∗in; rA) and CT∗B := Enccpa(PKB,CT∗in; rB).
Return CT∗ := (CT∗A,CT∗B) to A.

4. Phase 2: When A queries the decryption oracle on CT := (CTA,CTB), compute CTin :=
Dec1b−cca(SKA,CTA). If

(a) Case 1 (a bad query event): CTA 6= CT∗A and yet F (PKin,CT∗in,CTin) = 1, then abort
and output the bit 0.

(b) Case 2 (partial match with challenge): CTA = CT∗A, then return ⊥ to A.

Otherwise, query the phase 2 oracle, Dec(SKin, ·), to decrypt CTin, and return its response
to A.

5. Output: When A outputs a bit, B echos the bit as its output.

Analysis. We begin our analysis by arguing that B correctly answers all decryption queries
except when it aborts. First, we show that a partial match with the challenge, causing the ⊥
response in Case 2, is correct because that query must be invalid. Since a decryption query on
the challenge is forbidden by the experiment, if CTA = CT∗A, then CTB 6= CT∗B. However, we
argue that this must be an invalid ciphertext, i.e., one on which the main construction’s decryption
algorithm would return ⊥. We see this as follows. Since decryption is deterministic, we have

14

789

Approved for Public Release; Distribution Unlimited.

T := Dec1b−cca(SKA,CTA) = Dec1b−cca(SKA,CT∗A) and (rA, rB,m) := Decdcca(SKin, T). By the
checks enforced by the main construction’s decryption algorithm, there is only one “second half”
that matches CTA = CT∗A, that is Enccpa(PKB, T ; rB). Since the challenge is a valid ciphertext,
CT∗B must be this value and CTB must cause an error.

When neither Case 1 or Case 2 applies in phase 2, the inner decryption query will succeed since
the ciphertext is not detectably related to the challenge. This allows B to respond correctly.

When a bad query event occurs in Phase 2, B cannot query Expindist’s decryption oracle to
decrypt the ciphertext. At first glance, one seems stuck. However, we assumed bad query events
happen only when z = 0 with all but negligible probability. Thus, B can guess that A thinks z = 0,
which corresponds to M0 being encrypted in our reduction. Thus, B can abort and guess 0 at this
point.

When B aborts, it causes the Expindist experiment to output 1 with high probability. When
B does not abort, it causes Expindist experiment to output 1 with probability 1

2 . Since B aborts
with non-negligible probability ε when z = 0, then B causes the experiment’s output to be 1 with
probability non-negligibly greater than 1

2 . �

4.2 Putting the Proof of the Main Theorem Together

Theorem 4.5 (Main Construction is Nested Indistinguishable) Our main construction in
Section 3, comprised of the three building blocks Πdcca,Π1b−cca,Πcpa, has nested indistinguishable
encryptions under a chosen-ciphertext attack under the assumptions that Πdcca is DCCA secure,
Π1b−cca is 1-bounded CCA secure, and Πcpa is CPA secure, all with perfect correctness.

Proof of Theorem 4.5 is given in Appendix C. The crux of the argument is that bad query events
do not happen (except with negligible probability). This was already established in Claims 4.3 and
4.4. Armed with this fact, we can prove the nested indistinguishability of the main construction
based on the indistinguishability property of the DCCA-security of Πdcca. The reduction and its
analysis are similar to those in the proof of Claim 4.4. 5

The following corollary follows from Theorem 4.5. Informally, if the adversary cannot distinguish
an encryption of a message from an encryption of zeros, then she also cannot distinguish between
the encryptions of two different messages.

Corollary 4.6 (Main Construction is CCA2 Secure) Our main construction in Section 3,
comprised of the three building blocks Πdcca,Π1b−cca,Πcpa, is CCA2 secure under the assumptions
that Πdcca is DCCA secure, Π1b−cca is 1-bounded CCA secure, and Πcpa is CPA secure, all with
perfect correctness.

5 Why not use CCA1?

We now consider using an arbitrary CCA1-secure scheme in place of the DCCA-secure scheme in
our construction in Section 3. To give intuition about why we believe this approach fails in general

5We note that we alternatively could have merged the proofs of Claim 4.4 and Theorem 4.5. However, we chose to
keep the bad event analysis separate for pedagogical purposes at the expense of some redundancy in the description
of the related reductions.

15

790

Approved for Public Release; Distribution Unlimited.

to provide a CCA2-secure scheme, we define the following oracle. This oracle enables a CCA2
attack on the construction, without appearing to break the CCA1 security of the inner scheme or
the 1-bounded CCA security/CPA security of the outer schemes.

Oracle The oracle takes in the public key (consisting of the three public keys for the three
building blocks) and a ciphertext CT. It runs the decryption algorithm of the construction on CT.
If the decryption algorithm outputs a message M , then the oracle runs the encryption algorithm
to produce a new ciphertext C̃T encrypting M . If the decryption algorithm outputs ⊥ (indicating
that the ciphertext was malformed), the oracle encrypts a string of 0’s of the appropriate length to

produce the new ciphertext C̃T. (The length of the 0 string is chosen so that the inner ciphertext

has the same size as CTin for CT.) The oracle outputs C̃T.

A Chosen Ciphertext Attack on the System. Using the oracle, an attacker can violate the
CCA2 security of the construction as follows. Upon receiving the challenge ciphertext CT∗, the

attacker sends this to the oracle to obtain a ciphertext C̃T
∗

encrypting the same message. Since

C̃T
∗ 6= CT∗, it can query C̃T

∗
to its decryption oracle in the CCA2 security game. It receives the

message, thereby violating security.

Why Security of the Underlying Primitives Remains. Intuitively, the oracle should only
be useful to an attacker who still has access to the decryption oracle in the security game. This does
not violate CCA1 security of the inner scheme, since in the CCA1 security game the attacker loses
access to the decryption oracle completely after receiving the challenge ciphertext. It is important
to note here that the oracle’s output does not give away whether the ciphertext it received was
malformed. The oracle also does not break the 1-bounded CCA and CPA security guarantees of
the outer encryption schemes, because even though the attacker may use its one query for the 1-
bounded CCA-secure scheme after seeing the challenge ciphertext, it will not know the randomness
used in the challenge encryption, and hence cannot create from it a well-formed ciphertext. Since
the oracle runs the usual decryption algorithm which checks that the ciphertext is well-formed, it
will not be useful to the attacker attempting to break security of the outer schemes.

Open Questions. This oracle is quite strong, and this leaves some remaining questions. First,
might there be a useful notion between CCA1 security and DCCA security for the inner building
block that would suffice for the outer scheme to imply CCA2 security for our construction? Also,
it would be interesting to construct a more concrete counterexample to CCA2 security for our
construction with a CCA1-secure inner scheme.

Acknowledgments

The authors thank Steven Myers and the anonymous reviewers for helpful comments.

References

[1] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption.
In EUROCRYPT, volume 2332, pages 83–107, 2002.

16

791

Approved for Public Release; Distribution Unlimited.

[2] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham,
and Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In
ASIACRYPT, pages 232–249, 2009.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages
62–73, 1993.

[4] Mihir Bellare and Amit Sahai. Non-malleable encryption: Equivalence between two notions,
and an indistinguishability-based characterization. In CRYPTO, pages 519–536, 1999.

[5] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In STOC, pages 103–112, 1988.

[6] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[7] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT, pages 207–222, 2004.

[8] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security.
In CRYPTO, volume 2729, pages 565–582, 2003.

[9] David Cash, Eike Kiltz, and Victor Shoup. The twin diffie-hellman problem and applications.
In EUROCRYPT, pages 127–145, 2008.

[10] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box construction
of a non-malleable encryption scheme from any semantically secure one. In TCC, pages 427–
444, 2008.

[11] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass,
Abhi Shelat, and Vinod Vaikuntanathan. Bounded cca2-secure encryption. In ASIACRYPT,
pages 502–518, 2007.

[12] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998.

[13] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[14] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended ab-
stract). In STOC, pages 542–552, 1991.

[15] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor func-
tions on trapdoor predicates. In FOCS, pages 126–135, 2001.

[16] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[17] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In CRYPTO, volume 4622, pages 553–571, 2007.

17

792

Approved for Public Release; Distribution Unlimited.

[18] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring.
In EUROCRYPT, pages 313–332, 2009.

[19] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman & Hall,
CRC, 2007.

[20] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, 2006.

[21] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and chosen-
ciphertext security. In EUROCRYPT, pages 673–692, 2010.

[22] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability:
Definitions, constructions, and applications (extended abstract). In TCC, pages 171–190,
2004.

[23] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.

[24] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[25] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-malleable en-
cryption scheme from any semantically secure one. In CRYPTO, pages 271–289, 2006.

[26] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC,
pages 187–196, 2008.

[27] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In CRYPTO, pages 433–444, 1991.

[28] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In TCC, pages
419–436, 2009.

[29] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In FOCS, pages 543–553, 1999.

[30] Victor Shoup. A proposal for an iso standard for public key encryption. Cryptology ePrint
Archive, Report 2001/112, 2001. http://eprint.iacr.org/.

A Background on Security Definitions for Encryption

There is a rich body of literature on how to formalize the confidentiality guarantee of encryption
as we discussed in Section 1.1. We define several of these concepts here.

First, we recall the algorithms comprising an encryption system.

Definition A.1 (Encryption System) An encryption system is a tuple of probabilistic polynomial-
time algorithms (KeyGen,Enc,Dec) such that:

1. KeyGen(1λ) → (pk , sk): the key generation algorithm takes as input the security parameter
1λ and outputs a pair of keys (pk , sk).

18

793

Approved for Public Release; Distribution Unlimited.

2. Enc(pk ,m) → c: the encryption algorithm takes as input a public key pk and a message
m from some underlying plaintext space and outputs a ciphertext c. Enc is a probabilistic
algorithm, although we will sometimes cast it as a deterministic algorithm with an explicit
random input, r, by writing

c := Enc(pk ,m; r).

3. Dec(sk , c) → m: the decryption algorithm takes as input a secret key sk and a ciphertext c,
and outputs a message m or a special symbol ⊥ denoting failure. Wlog, we assume that this
algorithm is deterministic and write m := Dec(sk , c).

For the system to be correct, we require that Dec(sk ,Enc(pk ,m)) = m, except with negligible
probability over (pk , sk) output by KeyGen(1λ) and any randomness used by Enc.

CCA Security Experiment. We now recall the definition of CCA Security. Consider the
following experiment ExpccaA,Π(λ) defined for public-key encryption scheme Π = (KeyGen,Enc,Dec)
and an adversary A:

1. Setup: KeyGen(1λ) is run to obtain keys (pk , sk).

2. Phase 1: Adversary A is given pk and access to a decryption oracle Dec(sk , ·). The adversary
outputs a pair of messages m0,m1 of the same length in the message space associated with
pk .

3. Challenge: A random bit b ← {0, 1} is chosen, and then a ciphertext c∗ ← Enc(pk ,mb) is
computed and given to A. We call c∗ the challenge ciphertext.

4. Phase 2: A continues to have access to Dec(sk , ·) provided he does not request a decryption
of c∗. Finally, A outputs a bit b′.

5. Output: The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition A.2 (CCA Security [27]) A public-key encryption scheme Π = (KeyGen,Enc, Dec)
has indistinguishable encryptions under a chosen-ciphertext attack (or is CCA-secure) if for all
probabilistic polynomial-time adversaries A there exists a negligible function negl such that:

Pr[ExpccaA,Π(λ) = 1] ≤ 1

2
+ negl(λ).

We also consider the following variants of the above definition:

1. Chosen Plaintext Attack (CPA) Security [16]: same as above, except that A is not
given access to the decryption oracle in phase 1 or phase 2.

2. Lunchtime or CCA1 Security [24]: same as above, except that A is not given access to
the decryption oracle in phase 2.

3. q-Bounded CCA Security [11]: same as above, except that the total number of decryption
queries made by A in phase 1 and phase 2 is at most q. In this work, we will use 1-bounded
CCA (a.k.a., “one-time CCA”) security, where A can make a single decryption query.

19

794

Approved for Public Release; Distribution Unlimited.

Realizations We note that CPA security implies 1-bounded CCA security [25, 11, 10]. Actually,
the above works allow for a stronger notion of one parallel query of many ciphertexts. This is
related to the notion of non-malleability [14, 4].

B Plaintext, Randomness and Ciphertext Spaces

For this paper, we assume that detectable schemes allow arbitrary-length messages and that the
encryption randomness will always be of the length of the security parameter and therefore inde-
pendent of the message length. We also assume that the ciphertext size is a deterministic function
of the security parameter and the message length.

This will be useful for a property of our systems where we will implicitly encrypt our own
randomness by having it nested inside of another ciphertext. Having short randomness is actually
more important for the one-time CCA-secure schemes used as a building block in our construction,
but we argue generally that this is not a limiting assumption for encryption schemes here.

We justify our main assumptions with two lemmas.
First, we use Lemma 2.5, which asserts that one-bit DCCA-secure encryption implies arbitrary-

length DCCA-secure encryption. Recall the construction. Say Π = (KeyGen,Enc,Dec, F) is a
detectable encryption system with plaintext space {0, 1}. We can construct a new scheme Π′ =
(KeyGen,Enc′,Dec′, F ′) with plaintext space {0, 1}∗ by defining Enc′ as follows:

Enc′(pk ,m) = Enc(pk ,m1), . . . ,Enc(pk ,mn)

wherem = m1 . . .mn. The decryption algorithm Dec′ decrypts each ciphertext piece using Dec. The
function F ′ performs n2 invocations of F , testing each ciphertext piece of C with each ciphertext
piece of C ′, and outputting 1 if any invocation of F returned 1, and 0 otherwise. We now prove
Lemma 2.5.

Proof. Recall that our construction defined the function F ′ to perform n2 invocations of F , testing
each ciphertext piece of C with each ciphertext piece of C ′, and outputting 1 if any invocation of
F returned 1, and 0 otherwise. Clearly F ′ is efficiently computable if F is.

Unpredictability of F ′. We suppose there exists a PPT adversary A that causes the output
of the basic unpredictability experiment with Π′ to be 1 with non-negligible probability ε. We
construct a PPT adversary B against the basic unpredictability experiment with Π. The experiment
for B begins by a run of KeyGen producing pk , sk . B is given pk and access to a decryption oracle
Dec(sk , ·). It gives pk to A. To simulate a decryption oracle for A, B takes a ciphertext query
from A in the form c1, . . . , cn and separately queries each of c1, . . . , cn to its decryption oracle. It
returns the ordered n-tuple of replies to A.

When A outputs a message m = m1 . . .mk and a ciphertext c1, . . . , c`, B chooses two random
indices i ∈ [k], j ∈ [`] and outputs mi, cj . The experiment then proceeds to the challenge phase,
computing c∗i ← Enc(pk ,mi). This is distributed identically to the ith piece of the challenge
ciphertext that would be created in the experiment for A. We let K and L be polynomial-size
bounds such that A chooses k ≤ K and ` ≤ L with all but negligible probability. Then the
probability that the outcome of B’s is 1 is negligibly close to ε

KL .
To see this, we consider simulating the full experiment forA by also computing c∗i′ ← Enc(pk ,mi′)

for all i′ 6= i. We note that when A succeeds, there must be some indices i∗, j∗ such that

20

795

Approved for Public Release; Distribution Unlimited.

F (pk , cj∗ ,Enc(pk ,mi∗)) = 1. Fixing all the randomness except for the choice of i, j by B, B
will now succeed in its experiment as long as it chooses i = i∗ and j = j∗: this occurs with
probability 1

kl , which is ≥ 1
KL with all but negligible probability. We note that the choices of i, j

by B are made independently of all other random choices occurring in this simulated experiment
for A. Hence, B causes the output of the basic unpredictability experiment with Π′ to be 1 with
non-negligible probability. We note that the same proof (with trivial adjustments) works for the
strong unpredictability experiment.

Indistinguishability of Encryptions. It remains to show a PPT adversary must have a neg-
ligible advantage in the indistinguishability of encryptions experiment. We suppose there exists a
PPT adversary A that causes the output of the indistinguishability of encryptions experiment with
Π′ to equal 1 with probability non-negligibly greater than 1

2 . We construct a PPT adversary B for
the indistinguishability of encryptions experiment with Π. We employ a hybrid argument. We let
k denote an upper bound of the length of the messages m0,m1 produced by A as its output for
Phase I of the experiment. We then define experiments 1 through k as follows. Each experiment i
is like the indistinguishability of encryptions experiment except for how the challenge ciphertext is
created. In experiment i, the first i− 1 pieces of the ciphertext are created by encrypting the first
i− 1 bits of m0, the ith piece is created by encrypting the ith bit of mb, and the remaining pieces
are encryptions of the bits of m1, starting from the i+ 1 bit. The output of each experiment is still
defined to be 1 when b = b′.

We observe that there must exist some i∗ such that A causes the output of experiment i∗ with
Π′ to be 1 with probability non-negligibly greater than 1

2 . The experiment for B begins by a run
of KeyGen producing pk , sk . B is given pk and access to a decryption oracle Dec(sk , ·). It forwards
pk to A. To simulate a decryption oracle for A, B takes a ciphertext query from A in the form
c1, . . . , cn and separately queries each of c1, . . . , cn to its decryption oracle. It returns the ordered
n-tuple of replies to A.
A produces two messages m0,m1 of the same length in the message space associated with pk .

B produces the ciphertext c∗ as follows. It encrypts the first i∗ − 1 bits of m0 to form the first
i∗ − 1 pieces of c∗, and submits the i∗th bits of m0,m1 as its messages to the challenger for the
indistinguishability of encryptions experiment for Π. It uses the ciphertext it receives in return as
the i∗ piece of c∗. It forms the remaining pieces by encrypting the final bits of m1, (starting from
the i∗ + 1 bit). It gives c∗ to A.
A may continue to make decryption queries, as long as none of the pieces of these queries are

“related” to pieces of c∗ in the sense defined by F (this is just a restatement of the definition
for F ′). This restriction allows B to simulate the decryption oracle on these queries as before, by
submitting them separately to its own decryption oracle. Finally, A will output a bit b′, which B
copies as its own output. This will equal b with probability non-negligibly greater than 1

2 , since A
accomplishes this in experiment i∗. �

Next, we rely on the common trick of replacing the randomness for encryption with the output of
a pseudorandom generator. Thus the “real” randomness needed for encryption is just a seed of the
length of the security parameter. Say Π = (KeyGen,Enc,Dec, F) is a detectable encryption system
with randomness s of length ` = `(λ), where λ is the security parameter and ` is a polynomial.
Let G : {0, 1}λ → {0, 1}`(λ) be a pseudorandom generator; if pseudorandom generators exist,
then such a pseudorandom generator must exist [19, p. 76]. We can construct a new scheme

21

796

Approved for Public Release; Distribution Unlimited.

Π′ = (KeyGen′,Enc′,Dec, F) with randomness s′ of length λ. The first step of KeyGen′ and Enc′ is
to run t := G(s′). Then they operate exactly as KeyGen and Enc using the appropriate bits of t.

Lemma B.1 (Short Randomness is Sufficient) Let Π and Π′ be as above. If Π is DCCA-
secure, then so is Π′.

We omit the straightforward proof of the above lemma. It expands in the obvious way to CPA
and CCA2-secure systems.

Finally, we assume that the ciphertext size can be considered a deterministic function of the se-
curity parameter and message length. Informally, the length of the ciphertext cannot be predictably
related to the message value, because this would break the indistinguishability of encryptions prop-
erty. It is possible that some systems might, for example, have variable-length ciphertexts by
appending a variable-length random string to the end of the encryption. However, we focus our
attention on schemes that do not allow this.

C Proof of Theorem 4.5 (Main Construction is Nested Indistin-
guishable)

Proof. Given that bad query events occur with only negligible probability, we use this fact to prove
the nested indistinguishability of our main construction based on the indistinguishability property
of the DCCA-security of Πdcca.

The Reduction Algorithm. Let 1λ be the security parameter. Suppose there exists a PPT
adversary A that causes the output of the nested experiment with the main construction to output 1
with probability 1

2 +ε. We construct a PPT adversary B against the indistinguishability experiment
of the DCCA security of Πdcca with detecting function F .

1. Setup: B obtains PKin from the Expindist challenger. It runs KeyGen1b−cca to obtain (PKA,SKA)
and KeyGencpa to obtain (PKB,SKB).

2. Phase 1: B gives toA the public key PK = (PKin,PKA,PKB). WhenA queries the decryption
oracle on CT, B can simulate the normal decryption algorithm using SKA and the phase 1
oracle Dec(SKin, ·). Eventually, A outputs a pair of messages m0,m1.

3. Challenge: Choose random β ∈ {0, 1} and rA, rB ∈ {0, 1}λ. Send to the Expindist challenger
the messages M0 = (rA, rB,mβ) and M1 = 0|M0|, and obtain from this challenger the cipher-
text CT∗in. Compute CT∗A := Enc1b−cca(PKA,CT∗in; rA) and CT∗B := Enccpa(PKB,CT∗in; rB).
Return CT∗ := (CT∗A,CT∗B) to A.

4. Phase 2: When A queries the decryption oracle on CT := (CTA,CTB), compute CTin :=
Dec1b−cca(SKA,CTA). If

(a) Case 1 (a bad query event): CTA 6= CT∗A and yet F (PKin,CT∗in,CTin) = 1, then abort
and take a random guess.

(b) Case 2 (partial match with challenge): CTA = CT∗A, then return ⊥ to A.

Otherwise, query the phase 2 oracle, Dec(SKin, ·), to decrypt CTin, and return its response
to A.

22

797

Approved for Public Release; Distribution Unlimited.

5. Output: When A outputs a bit, B echoes the bit as its output.

Analysis. We begin our analysis by arguing that B correctly answers all decryption queries except
when it aborts. Through Claims 4.3 and 4.4, we have already established that a bad query event,
causing the abort in Case 1, happens with only negligible probability assuming that Πdcca is DCCA
secure, Π1b−cca is 1-bounded CCA secure, and Πcpa is CPA secure.

Next, we show that a partial match with the challenge, causing the ⊥ response in Case 2, is
correct because that query must be invalid. Since a decryption query on the challenge is forbidden
by the experiment, if CTA = CT∗A, then CTB 6= CT∗B. However, we argue that this must be an
invalid ciphertext, i.e., one on which the main construction’s decryption algorithm would return
⊥. We see this as follows. Since decryption is deterministic, we have T := Dec1b−cca(SKA,CTA) =
Dec1b−cca(SKA,CT∗A) and (rA, rB,m) := Decdcca(SKin, T). By the checks enforced by the main
construction’s decryption algorithm, there is only one “second half” that matches CTA = CT∗A,
that is Enccpa(PKB, T ; rB). Since the challenge is a valid ciphertext, CT∗B must be this value and
CTB must cause an error.

When neither Case 1 or Case 2 applies in phase 2, the inner decryption query will succeed since
the ciphertext is not detectably related to the challenge. This allows B to respond correctly.

Finally, B causes all inputs to A to have the same distribution as the nested experiment. When
B aborts, it causes the Expindist experiment to output 1 with probability 1

2 . When B does not abort,

all decryption queries are answered correctly and this causes the Expindist experiment to output 1
with probability 1

2 + ε. Since B does not abort with high probability, if ε is non-negligible, then B
causes the experiment’s output to be 1 with probability non-negligibly greater than 1

2 . �

D Detectable CCA from (Adaptive) Tag-Based Encryption

MacKenzie, Reiter and Yang [22] define a tag-based encryption scheme as an encryption scheme
that takes in an additional “tag” parameter on encryption and decryption. We recall this definition.

Consider the following experiment Exptbe−atag−ccaA,Π (λ) defined for a tag-based encryption scheme
Π = (TBKeyGen,TBEnc,TBDec) and an adversary A:

1. Setup: TBKeyGen(1λ) is run to obtain keys (pk , sk).
2. Phase 1: Adversary A is given pk and access to a decryption oracle TBDec(sk , ·, ·). A outputs

a pair of messages m0,m1 of the same length in the message space associated with pk and a
target tag t∗ from the tag space.

3. Challenge: A random bit b← {0, 1} is chosen, and then a ciphertext c∗ ← TBEnc(pk , t∗,mb)
is computed and given to A. We call c∗ the challenge ciphertext.

4. Phase 2: A continues to have access to TBDec(sk , ·, ·), but may not request a decryption of
a ciphertext with tag t such that t 6= t∗. Finally, A outputs a bit b′.

5. Output: The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition D.1 (Adaptive Tag-Based Security) A tag-based encryption scheme Π = (TBKeyGen,
TBEnc,TBDec) has indistinguishable encryptions under a tag-based chosen-ciphertext attack if for
all probabilistic polynomial-time adversaries A there exists a negligible function negl such that:

Pr[Exptbe−atag−ccaA,Π (λ) = 1] ≤ 1

2
+ negl(λ).

23

798

Approved for Public Release; Distribution Unlimited.

Kiltz [20] considered a selective variant of this definition where the target tag t∗ used in the
challenge ciphertext must be output by the adversary before the public key is created.

We now show that any tag-based scheme satisfying Definition D.1 gives rise to a DCCA-secure
system. Let Π = (TBKeyGen,TBEnc,TBDec) be a tag-based encryption system with tag space T .
We create a detectable encryption system, Π′ = (KeyGen,Enc,Dec, F), as:

1. KeyGen(1λ) : Run TBKeyGen(1λ) and output the resulting key pair.

2. Enc(pk ,m) : Select a random tag t ← T and compute d ← TBEnc(pk , t,m). Output the
ciphertext c := (t, d).

3. Dec(sk , c) : Parse c as (t, d). Output the result of TBDec(sk , t, d).

4. F (pk , c, c′) : Parse c as (t, d) and c′ as (t′, d′). Output 1 if t = t′ and 0 otherwise.

Lemma D.2 (DCCA from Tag-Based Encryption) If Π is an adaptively-secure tag-based sys-
tem according to Definition D.1 with an exponentially-large tag space T , then Π′ is a DCCA-secure
detectable system according to Definition 2.2.

Proof. This proof involves two parts. First, we argue that the detecting function F is unpredictable.
In the basic unpredictability game, the adversary must fix a tag t ∈ T as part of the ciphertext
c. After this is fixed, the challenger chooses a random tag t∗ ∈ T for the challenge ciphertext.
The detecting function F outputs 1, causing the experiment to output 1, if and only if t = t∗.
This happens with probability exactly 1/|T |. Since we conditioned that T is exponentially-large
in the security parameter, we can conclude that the adversary causes the basic unpredictability
experiment to output 1 will only negligible probability.

Second, we argue that the encryptions of Π′ are indistinguishable under a detectable chosen
ciphertext attack. Suppose this is false and there exists a PPT adversary A with probability 1/2
plus a non-negligible advantage ε, then we use this adversary to construct a PPT adversary B for
the tag-based experiment as follows. B passes the public key pk to A. When A makes a decryption
query on ciphertext c := (t, d), B passes this query to its decryption oracle with tag t and ciphertext
d and returns the answer. When A outputs a pair of messages m0,m1, B chooses a random t∗ ∈ T
and outputs (m0,m1, t

∗). The tag-based challenger responds with a ciphertext c∗ := (t∗, d∗), which
B passes to A. When A makes a decryption query it must obey the detecting predicate F which is
defined to forbid any ciphertext c := (t, d) such that t = t∗, thus B will be able to pass the query on
to its decryption oracle and return the answer. When A outputs a bit, B outputs the same bit. It
is straightforward to see that B is able to simulate the DCCA game for A exactly and will succeed
in the tag-based experiment with probability 1/2 + ε, thereby breaking the security of Π. �

24

799

Approved for Public Release; Distribution Unlimited.

New Definitions and Separations for Circular Security

David Cash∗ Matthew Green† Susan Hohenberger‡

An extended abstract of this paper appears in Marc Fischlin (Ed.): 15th IACR International Conference on
Practice and Theory of Public-Key Cryptography - PKC 2012, Lecture Notes in Computer Science,

Springer-Verlag, 2012. This is the full version.

Abstract

Traditional definitions of encryption security guarantee secrecy for any plaintext that can be computed
by an outside adversary. In some settings, such as anonymous credential or disk encryption systems,
this is not enough, because these applications encrypt messages that depend on the secret key. A
natural question to ask is do standard definitions capture these scenarios? One area of interest is n-
circular security where the ciphertexts E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1) must be
indistinguishable from encryptions of zero. Acar et al. (Eurocrypt 2010) provided a CPA-secure public
key cryptosystem that is not 2-circular secure due to a distinguishing attack.

In this work, we consider a natural relaxation of this definition. Informally, a cryptosystem is n-weak
circular secure if an adversary given the cycle E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1)
has no significant advantage in the regular security game, (e.g., CPA or CCA) where ciphertexts of
chosen messages must be distinguished from ciphertexts of zero. Since this definition is sufficient for
some practical applications and the Acar et al. counterexample no longer applies, the hope is that
it would be easier to realize, or perhaps even implied by standard definitions. We show that this is
unfortunately not the case: even this weaker notion is not implied by standard definitions. Specifically,
we show:

• For symmetric encryption, under the minimal assumption that one-way functions exist, n-weak
circular (CPA) security is not implied by CCA security, for any n. In fact, it is not even implied
by authenticated encryption security, where ciphertext integrity is guaranteed.

• For public-key encryption, under a number-theoretic assumption, 2-weak circular security is not
implied by CCA security.

In both of these results, which also apply to the stronger circular security definition, we actually show
for the first time an attack in which the adversary can recover the secret key of an otherwise-secure
encryption scheme after an encrypted key cycle is published. These negative results are an important
step in answering deep questions about which attacks are prevented by commonly-used definitions and
systems of encryption. They say to practitioners: if key cycles may arise in your system, then even if you
use CCA-secure encryption, your system may break catastrophically; that is, a passive adversary might
be able to recover your secret keys.

Keywords: Encryption, Definitions, Circular Security, Counterexamples

1 Introduction

Encryption is one of the most fundamental cryptographic primitives. Most definitions of encryption secu-
rity [21, 18, 34] follow the seminal notion of Goldwasser and Micali which guarantees indistinguishability of

∗IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, N.Y. 10598, cdc@ucsd.edu. This work was
performed at University of California, San Diego, supported in part by NSF grant CCF-0915675.
†Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218. Supported in part by the Defense Advanced Research

Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, the Office of
Naval Research under contract N00014-11-1-0470, NSF grant CNS-1010928 and HHS 90TR0003/01. Its contents are solely the
responsibility of the authors and do not necessarily represent the official views of the HHS mgreen@cs.jhu.edu
‡Johns Hopkins University. Supported in part by the Defense Advanced Research Projects Agency (DARPA) and the Air

Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, the Office of Naval Research under contract N00014-11-
1-0470, NSF CNS 1154035, a Microsoft Faculty Fellowship and a Google Faculty Research Award. Applying to all authors, the
views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

1

800

Approved for Public Release; Distribution Unlimited.

encryptions for messages chosen by the adversary [21]. However, Goldwasser and Micali wisely warned to
be careful when using a system proven secure within this framework on messages that the adversary cannot
derive himself.

Over the past several years, there has been significant interest in designing schemes secure against key-
dependent message attacks, e.g., [15, 11, 30, 3, 26, 28, 13, 14, 5, 2], where the system must remain secure even
when the adversary is allowed to obtain encryptions of messages that depend on the secret keys themselves.
In this work, we are particularly interested in circular security [15]. A public-key cryptosystem is n-circular
secure if the ciphertexts E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1), as well as ciphertexts of
chosen messages, cannot be distinguished from encryptions of zero, for independent key pairs. Either by
design or accident, these key cycles naturally arise in many applications, including storage systems such as
BitLocker [13], anonymous credentials [15], the study of “axiomatic security” [30, 3] and more. See [13] for
a discussion of the applications.

Until recently, few positive or negative results regarding circular security were known outside of the
random oracle model. On one hand, no n-circular secure cryptosystems were known for n > 1. On the other
hand, no counterexamples existed for n > 1 to separate the definitions of circular and CPA security; that
is, as far as anyone knew the CPA-security definition already captured circular security for any cycle larger
than a self-loop.

Recently, this gap has been closing in two ways. On the positive side, several circular-secure schemes
have been proposed [13, 5, 14]. The focus of the current work is on negative results – namely, investigating
whether standard notions of encryption are “safe” for circular applications.

In 2008, Boneh, Halevi, Hamburg and Ostrovsky proved, by counterexample, that one-way security
does not imply circular security [13]. Recently, Acar, Beleniky, Bellare and Cash [2] proved that, under an
assumption in bilinear groups, CPA-security does not imply circular security.

Our Results We narrow this gap even further by studying the extent to which standard definitions (e.g.,
CPA, CCA) imply a weak form of circular security. Our results are primarily negative.

1. Relaxing the Circular Security Notion. Perhaps the current formulation of circular security is “too
strong”; that is, perhaps there is a relaxed notion of this definition which simultaneously satisfies many
practical applications and yet is also already captured by standard security notions. This is an area worth
investigating. We begin by proposing a natural relaxation called weak circular security where the adversary
is handed an encrypted cycle E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1) along with the public
keys and then proceeds to play the CPA or CCA security game as normal (where these ciphertexts are also
off-limits for the decryption oracle). We stress here that the encrypted cycle is always generated as described,
and is never changed to encryptions of zero. This definition is intriguing, and perhaps of independent interest,
for two reasons.

First, the Acar et al. [2] counterexample does not apply to it. That construction uses the bilinear map
to test whether a sequence of ciphertexts contain a cycle or zeros. Here the adversary knows he’s getting an
encrypted cycle, but then must extract some knowledge from this that helps him distinguish two messages
of his choosing.

Second, this definition appears sufficient for some practical settings. Using a weak circular secure encryp-
tion scheme, Alice and Bob could exchange keys with each other over an insecure channel knowing that: (1)
Eve can detect that they did so, but (2) Eve cannot learn anything about their other messages. Similarly, an
adversary scanning over a user’s BitLocker storage may detect that her drive contains an encrypted cycle, but
cannot read anything on her drive. In an anonymous credential system of Camenisch and Lysyanskaya [15],
a user has multiple keys. To participate in the system, the user must encrypt them in a cycle, provide
this cycle to the other users, and prove that she has done this correctly. Then, if she shares one key, she
automatically shares all her keys. In their application, detection of a cycle is actually desirable, provided
that subsequent encryptions remain secure.

2. Symmetric-Key Counterexamples. In the symmetric setting, we show that standard notions do not
imply n-circular security for any positive n. Specifically, given any n ≥ 1, we show how to construct a

2

801

Approved for Public Release; Distribution Unlimited.

secure authenticated encryption scheme (which is necessarily CCA-secure; see Section 2) that is not n-weak
circular secure, under the minimal assumption that secure authenticated encryption schemes exist, which
are equivalent to one-way functions.

The main technical ingredient in our counterexample is a lemma showing that it is provably hard for an
adversary to compute an encrypted key cycle itself, assuming that the symmetric scheme under attack is a
secure authenticated encryption scheme (or CCA secure). We stress that this lemma does not hold if the
encryption scheme is only CPA secure.

Our lemma gives us leverage in constructing a counterexample because it means the adversary is given
strictly more power in the weak circular security game than in the standard security game. Specifically, the
adversary is given an encrypted key cycle in the weak circular security game that it could not have computed
itself, and we design a scheme to help such an adversary without affecting regular security.

3. Public-Key Counterexamples. We show that neither CPA nor CCA-security imply (even) weak circular
security for cycles of size 2. That is, we show secure systems that are totally compromised when the
independently-generated ciphertexts E(pkA, skB) and E(pkB , skA) are released. This is a difficult task,
because the system must remain secure if either one, but only one, of these ciphertexts are released. Moreover,
this counterexample requires new ideas. We cannot use the common trick in self-loop counterexamples that
test if the message is the secret key corresponding to the public key, since there is no way for the encryption
algorithm with public key pkA to distinguish, say, skB from any other valid message. Specifically, we show
that:

If there exists an algebraic setting where the Symmetric External Diffie-Hellman 1 (SXDH) assumption
holds, then there exists a CPA-secure cryptosystem which is not 2-weak circular secure. The proposed scheme
is particularly interesting in that it breaks catastrophically in the presence of a 2-cycle — revealing the secret
keys of both users.

Moreover, if simulation-sound non-interactive zero- knowledge (NIZK) proof systems exist for NP and
there exists an algebraic setting where the Symmetric External Diffie-Hellman (SXDH) assumption holds,
then there exists a CCA-secure cryptosystem which is not 2-weak circular secure. This is also the first
separation of CCA security and (regular) circular security.

These results deepen our understanding of how to define “secure” encryption and which practical attacks
are captured by the standard definitions. They also provide additional justification for the ongoing effort,
e.g. [13, 14, 5], to develop cryptosystems which are provably circular secure.

1.1 Related Work

In 2001, Camenisch and Lysyanskaya [15] introduced the notion of circular security and used it in their
anonymous credential system to discourage users from delegating their secret keys. They also showed how
to construct a circular-secure cryptosystem from any CPA-secure cryptosystem in the random oracle model.
Independently, Abadi and Rogaway [1] and Black, Rogaway, Shrimpton [11] introduced the more general no-
tion of key-dependent message (KDM) security, where the encrypted messages might depend on an arbitrary
function of the secret keys. Black et al. showed how to realize this notion in the random oracle model.

Halevi and Krawczyk [26] extended the work of Black et al. to look at KDM security for deterministic
secret-key functions such as pseudorandom functions (PRFs), tweakable blockciphers, and more. They give
both positive and negative results, including some KDM-secure constructions in the standard model for PRFs.
In the symmetric setting, Hofheinz and Unruh [28] showed how to construct circular-secure cryptosystems in
the standard model under relaxed notions of security. Backes, Pfitzmann and Scedrov [7] presented stronger
notions of KDM security (some in the random oracle model) and discussed the relationships among these
notions.

1The SXDH assumption states that there is a bilinear setting e : G1×G2 → GT where the Decisional Diffie-Hellman (DDH)
assumption holds in both G1 and G2. It has been extensively studied and used e.g., [20, 38, 31, 12, 8, 6, 23, 9, 24], perhaps
most notably as a setting of the Groth-Sahai NIZK proof system [24].

3

802

Approved for Public Release; Distribution Unlimited.

In the public-key setting, Boneh, Halevi, Hamburg and Ostrovsky [13] presented the first cryptosystem
which is simultaneously CPA-secure and n-circular-secure (for any n) in the standard model, based on
either the DDH or Decision Linear assumptions. As mentioned earlier, Boneh et al. [13] also proved, by
counterexample, that one-way security does not imply circular security. One-way encryption is a very
weak notion, which informally states that given (pk , E(pk ,m)), the adversary should not be able to recover
m. Given any one-way encryption system, they constructed a one-way encryption system that is not n-
circular secure (for any n). Their system generates two key pairs from the original and sets PK = pk1 and
SK = (sk1, sk2). A message (m1,m2) is encrypted as (m1, E(pk1,m2)). In the event of a 2-cycle, the values
Enc(pkA, skB) = (skB,1, E(pkA,1, skB,2)) and Enc(pkB , skA) = (skA,1, E(pkB,1, skA,2)) provide the critical
secret key information (skB,1, skA,1) in the clear.

Subsequently, Applebaum, Cash, Peikert and Sahai [5] adapted the circular-secure construction of [13]
into the lattice setting. Camenisch, Chandran and Shoup [14] extended[13] to the first cryptosystem which is
simultaneously CCA-secure and n-circular-secure (for any n) in the standard model, by applying the “double
encryption” paradigm of Naor and Yung [33]. (Interestingly, we use this same approach in Section 4.4 to
extend our public-key counterexample from CPA to CCA security.)

Haitner and Holenstein [25] recently provided strong impossibility results for KDM-security with respect to
1-key cycles (a.k.a., self-loops.) They study the problem of building an encryption scheme where it is secure to
release E(k, g(k)) for various functions g. First, they show that there exists no fully-black-box reduction from
a KDM-secure encryption scheme to one-way permutations (or even some families of trapdoor permutations)
if the adversary can obtain encryptions of g(k), where g is a poly(n)-wise independent hash function. Second,
there exists no reduction from an encryption scheme secure against key-dependent messages to, essentially,
any cryptographic assumption, if the adversary can obtain an encryption of g(k) for an arbitrary g, as long
as the security reduction treats both the adversary and the function g as black boxes. These results address
the possibility of achieving strong single-user KDM-security via reductions to cryptographic assumptions.
The results in this paper study a version of KDM security that is in one sense weaker – we only allow a
narrow class of functions g – but also stronger because it considers multiple users. Our results also address
a different question regarding KDM security. We study whether or not KDM security is always implied
by regular security while Haitner and Holenstein study the possibility of achieving strong single-user KDM
security via specialized constructions.

Most closely related to our work, Acar et al. [2] demonstrated both public and private key encryption
systems that are provably CPA-secure and yet also demonstrably not 2-circular secure. Their counterexample
does not apply to CCA or weak circular security.

Subsequent to the original posting of this work, Rothblum [36] studied the circular security of bit encryp-
tion. In particular, using n-linear maps, for large n, where DDH is assumed hard in every pre-image group,
he constructs a CPA (or CCA) secure bit-encryption scheme that is not circular secure; that is, where it is
not “safe” to encrypt the secret key sk bit-by-bit using the corresponding public key pk . This approach is
conceptually similar to extending either the Acar et al. [2] or our 2-circular counterexample in Section 4 to
an n-circular counterexample using n-linear maps. Unfortunately, there are no candidate implementations
for n-linear maps where n > 2 and even the discrete logarithm problem is believed to be hard in one of the
pre-image groups. Thus, it remains an open problem to resolve these two fascinating questions relating to
circular security.

There is also a relationship to recent work on leakage resilient and auxiliary input models of encryption,
which mostly falls into the “self-loop” category. In leakage resilient models, such as those of Akavia, Gold-
wasser and Vaikuntanathan [4] and Naor and Segev [32], the adversary is given some function h of the secret
key, not necessarily an encryption, such that it is information theoretically impossible to recover sk . The
auxiliary input model, introduced by Dodis, Kalai and Lovett [17], relaxes this requirement so that it only
needs to be difficult to recover sk .

Self-Loops In sharp contrast to all n ≥ 2, the case of 1-circular security is fairly well understood. A
folklore counterexample shows that CPA-security does not directly imply 1-circular security. Given any
encryption scheme (G,E,D), one can build a second scheme (G,E′, D′) as follows: (1) E′(pk ,m) outputs

4

803

Approved for Public Release; Distribution Unlimited.

IND-CPA(Π,A, λ)

b
r← {0, 1}

(pk , sk)← KeyGen(1λ)
(m0,m1, z)← A1(pk)
y ← Enc(pk ,mb)

b̂← A2(y, z)

Output (b̂
?
= b)

AE(Π,A, λ)

b
r← {0, 1}

K ← KeyGen(1λ)

b̂← AEaeK,b(·,·),Dae
K,b(·)(1λ)

Output (b̂
?
= b).

Figure 1: Experiments for Definitions 2.1 and 2.3.

E(pk ,m)||0 if m 6= sk and m||1 otherwise, (2) D′(sk , c||b) outputs D(sk ,m) if b = 0 and sk otherwise. It
is easy to show that if (G,E,D) is CPA-secure, then (G,E′, D′) is CPA-secure. When E′(pk , sk) = sk ||1 is
exposed, then there is a complete break. Conversely, given any CPA-secure system, one can build a 1-circular
secure scheme in the standard model [13].

2 Definitions of Security

A public-key encryption system Π is a tuple of algorithms (KeyGen,Enc,Dec), where KeyGen is a key-
generation algorithm that takes as input a security parameter λ and outputs a public/secret key pair (pk , sk);
Enc(pk ,m) encrypts a message m under public key pk ; and Dec(sk , c) decrypts ciphertext c with secret key
sk . A symmetric-key encryption system is a public-key encryption system, except that it always outputs
pk = ⊥, and the encryption algorithm computes ciphertexts using sk , i.e. by running Enc(sk ,m). In the
symmetric case we will sometimes write K instead of sk . As in most other works, we assume that all
algorithms implicitly have access to shared public parameters establishing a common algebraic setting.

Our definitions of security will associate a message space, denoted M , with each encryption scheme.
Throughout this paper, we assume that the space of possible secret keys output by KeyGen is a subset of the
message space M and thus any secret key can be encrypted using any public key. For symmetric encryption
schemes we will always have M ⊂ {0, 1}∗.

By ν(k) we denote some negligible function, i.e., one such that, for all c > 0 and all sufficiently large k,
ν(k) < 1/kc. We abbreviate probabilistic polynomial time as PPT.

2.1 Standard Security Definitions

Public-key encryption We recall the standard notion of indistinguishability of encryptions under a
chosen-plaintext attack due to Goldwasser and Micali [21].

Definition 2.1 (IND-CPA) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for the message
space M . For b ∈ {0, 1}, A = (A1,A2) and λ ∈ N, let the random variable IND-CPA(Π,A, λ) be defined by
the probabilistic algorithm described on the left side of Figure 1. We denote the IND-CPA advantage of A by
AdvcpaΠ,A(λ) = 2 · Pr[IND-CPA(Π,A, λ) = 1]− 1. We say that Π is IND-CPA secure if AdvcpaΠ,A(λ) is negligible
for all PPT A.

We also consider the indistinguishability of encryptions under chosen-ciphertext attacks [33, 34, 18].

Definition 2.2 (IND-CCA) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for the message
space M . Let the random variable IND-CCA(Π,A, λ) be defined by an algorithm identical to IND-CPA(Π,A, λ)
above, except that both A1 and A2 have access to an oracle Dec(sk , ·) that returns the output of the decryp-
tion algorithm and A2 cannot query this oracle on input y. We denote the IND-CCA advantage of A by
AdvccaΠ,A(λ) = 2 · Pr[IND-CCA(Π,A, λ) = 1]− 1. We say that Π is IND-CCA secure if AdvccaΠ,A(λ) is negligible
for all PPT A.

5

804

Approved for Public Release; Distribution Unlimited.

IND-CIRC-CPAn(Π,A, λ)

b
r← {0, 1}

For i = 1 to n:

(pk i, sk i)← KeyGen(1λ)
If b = 1 then

y← EncCycle(pk, sk)
Else

y← EncZero(pk, sk)

b̂← A(pk,y)

Output (b̂
?
= b)

IND-WCIRC-CPAn(Π,A, λ)

b
r← {0, 1}

For i = 1 to n:

(pk i, sk i)← KeyGen(1λ)
y← EncCycle(pk, sk)
(j,m0,m1, z)← A1(pk,y)
y ← Enc(pk j ,mb)

b̂← A2(y, z)

Output (b̂
?
= b)

EncCycle(pk, sk)

For i = 1 to n
yi ← Enc(pk i, sk (imod n)+1)

Output y

EncZero(pk, sk)

For i = 1 to n

yi ← Enc(pk i, 0
|sk(imod n)+1|)

Output y

Figure 2: Experiments for Definitions 2.4 and 2.5. Each is defined with respect to a message space M ,
and we assume that m0,m1 ∈ M always. We write pk, sk, and y for (pk1, . . . , pkn), (sk1, . . . , skn) and
(y1, . . . , yn) respectively.

Symmetric-key authenticated encryption We recall the definition of secure authenticated (symmetric-
key) encryption due to [35], except that we will not require pseudorandom ciphertexts. Bellare and Nam-
prempre [10] showed that AE implies IND-CCA, and is in fact strictly stronger. For our counterexample, we
target this very strong definition of security in order strengthen our results by showing that even this does
not imply weak circular security.

Definition 2.3 (AE) Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme for the message
space M . Let the random variable AE(Π,A, λ) be defined by the probabilistic algorithm described on the
right side of Figure 1. In the experiment, the oracle Eae

K,b(·, ·) takes as input a pair of equal-length messages
(m0,m1) and computes Enc(K,mb). The oracle Dae

K,b(·) takes as input a ciphertext c and computes Dec(K, c)
if b = 1 and always returns ⊥ if b = 0. The adversary is not allowed to submit any ciphertext to Dae

K,b(·) that
was previously returned by Eae

K,b(·, ·). We denote the AE advantage of A by AdvaeΠ,A(λ) = 2 ·Pr[AE(Π,A, λ) =
1]− 1. We say that Π is AE secure if AdvaeΠ,A(λ) is negligible for all PPT A.

2.2 Circular Security Definitions

We next give definitions for circular security of public-key and symmetric-key encryption. These definitions
are variants of the Key-Dependent Message (KDM) security notion of Black et al. [11]. By restricting the
adversary’s power, we make it significantly harder for us to devise a counterexample and thus prove a stronger
negative result.2

Definition 2.4 (IND-CIRC-CPAn) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for the
message space M . For b ∈ {0, 1}, integer n > 0, adversary A and λ ∈ N, let the random variable
IND-CIRC-CPAn(Π,A, λ) be defined by the probabilistic algorithm on the left side of Figure 2. We denote the
IND-CIRC-CPAn advantage of A by

Advn-circ-cpaΠ,A (λ) = 2 · Pr[IND-CIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-CIRC-CPAn secure if Advn-circ-cpaΠ,A (λ) is negligible for all PPT A.

One could augment this definition by modifying the IND-CIRC-CPAn experiment to allow for a challenge
“left-or-right” query as in IND-CPA. While this is a quite natural modification, it only strengthens the
definition, and we are interested in studying the weakest notions for which we can give a separation. Next
we give a definition of weak circular security of public-key encryption.

2If we allowed the adversary to obtain encryptions of any affine function of the secret keys, as is done in [26, 13], then we
could devise a trivial counterexample where the adversary uses 1-cycles to break the system.

6

805

Approved for Public Release; Distribution Unlimited.

Definition 2.5 (IND-WCIRC-CPAn) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for
the message space M . For b ∈ {0, 1}, integer n > 0, adversary A and λ ∈ N, let the random variable
IND-WCIRC-CPAn(Π,A, λ) be defined by probabilistic algorithm on the center of Figure 2. We denote the
IND-WCIRC-CPAn advantage of A by

Advn-wcirc-cpaΠ,A (λ) = 2 · Pr[IND-WCIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-WCIRC-CPAn secure if the function Advn-wcirc-cpaΠ,A (λ) is negligible for all PPT A.

Finally, we give a definition of weak circular security for symmetric encryption. We will abuse notation
and also call this IND-WCIRC-CPAn security, since it will be clear from the context whether or not we mean
public-key and symmetric-key.

Definition 2.6 (IND-WCIRC-CPAn) Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme for
the message space M . For b ∈ {0, 1}, integer n > 0, adversary A and λ ∈ N, let IND-WCIRC-CPAn(Π,A, λ)
be defined by the following probabilistic algorithm:

IND-WCIRC-CPAnb (Π,A, λ)

b
r← {0, 1}

For i = 1 to n:
Ki ← KeyGen(1λ)

y← EncCycle(K)

b̂← AẼnc(·,·,·)(y)

Output (b̂
?
= b)

EncCycle(K)

For i = 1 to n
yi ← Enc(Ki,K(imod n)+1)

Output y

Ẽnc(j,m0,m1)

Return Enc(Kj ,mb)

We denote the IND-WCIRC-CPAn advantage of A by

Advn-wcirc-cpaΠ,A (λ) = 2 · Pr[IND-WCIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-WCIRC-CPAn secure if Advn-wcirc-cpaΠ,A (λ) is negligible for all PPT A.

Discussion In both the IND-CPA and IND-CIRC-CPA notions, the adversary must distinguish an encryption
(or encryptions) of a special message from the encryption of zero. This choice of the message zero is arbitrary.
We keep it in the statement of our definition to be consistent with [13]; however, it is important to note,
for systems such as ours where zero is not in the message space, that zero can be replaced by any constant
message for an equivalent definition. Acar et al. [2] use an equivalent definition where zero is replaced by a
fresh random message.

We will not need to define a notion of security to withstand circular and chosen-ciphertext attacks, because
we are able to show a stronger negative result. In Section 4.4, we provide an IND-CCA-secure cryptosystem,
which is provably not IND-CIRC-CPA-secure. In other words, we are able to devise a peculiar cryptosystem:
one that withstands all chosen-ciphertext attacks, and yet breaks under a weak circular attack which does
not require a decryption oracle.

3 Counterexample for Symmetric Encryption

Encryption Scheme Πae Let Π′ae = (KeyGen′,Enc′,Dec′) be a secure authenticated encryption scheme.
To simplify our results, we assume that KeyGen′(1λ) outputs a uniformly random key K in {0, 1}λ, that the
message space M ′ = {0, 1}∗, and that ciphertexts output by Enc′(K,m) are always in {0, 1}p(|m|), where
p is some polynomial that depends on λ. We also assume that the first λ bits of a ciphertext are never
equal to K. All of these assumptions can be removed via straightforward and standard modifications to our
arguments below.

7

806

Approved for Public Release; Distribution Unlimited.

Fix a positive integer n. We now construct our counterexample scheme, denoted Πae = (KeyGen,Enc,Dec).
We will take KeyGen = KeyGen′, i.e., Πae also uses keys randomly chosen from {0, 1}λ. The message-space
of Πae will consist of M = {0, 1}λ ∪ {0, 1}np(λ), bit strings of length either λ or np(λ). The algorithms Enc
and Dec are defined as follows.

Enc(K,m)

If IsCycle(K,m) then
Output K ‖ m

Else
Output Enc′(K,m)

Dec(K, c)

If c = K ‖ m̃ then
Output m̃

Else
Output Dec′(K, c)

IsCycle(K,m)

If |m| 6= np(λ)
Return false

Parse m as (c1, . . . , cn)
K2 ← Dec′(K, c1)
For i = 2 to n
Kimod n+1 ← Dec′(Ki, ci)

Return (K1
?
= K)

Decryption is always correct. This follows from our assumption that Enc′ will never output a ciphertext that
contains K as a prefix. We first establish the AE security of our scheme.

Theorem 3.1 Encryption scheme Πae is AE secure whenever Π′ae is AE secure.
(Proof in Appendix A.2.)

The proof proceeds by showing that computing an encrypted key-cycle during the AE game is equivalent to
recovering the secret key. From there we can reduce the security of Πae to Π′ae easily.

Curiously, Theorem 3.1 is no longer true if one replaces AE security with a symmetric version of IND-CPA
security for both Πae and Π′ae. Namely, some type of chosen-ciphertext security is required on Π′ae to prove
even chosen-plaintext security of Πae. Intuitively, this is because it might be possible for an adversary to
compute an encrypted key-cycle on its own if the scheme is only IND-CPA-secure, but not if the scheme is
AE-secure. In fact, the work of Boneh et al. [13] gives an explicit example of a scheme where the adversary
can compute a cycle himself.

The Attack We now show that Πae is not circular-secure for n cycles, even in a weak sense.

Theorem 3.2 Πae is not IND-WCIRC-CPAn secure.

Proof. We give an explicit adversary A that has advantage negligibly close to 1. The adversary takes as

input the encrypted key-cycle y in the IND-WCIRC-CPAn game. It queries Ẽnc(1,m0,m1), where m0 = y
and m1 is a random message of the same length. Let y be the ciphertext returned by the oracle.

At this point, there are many ways to proceed; perhaps the simplest is to observe that the length of
y depends on the challenge bit b. This is because, if b = 0, then m0 = y was encrypted, resulting in
y = K ‖ y, which is λ+ np(λ) bits long. If b = 1 then y was computed by running Enc′(K,m1), which will
be p(|m1|) = p(np(λ)) bits long if IsCycle(K,m1) returns false. Thus, as long as IsCycle(K,m1) returns false,
A2 can compute the value of b by measuring y’s length.

But why should IsCycle(K,m1) return false? This follows from the AE security of Π′ae. Let us parse m1

into (c1, . . . , cn), where each ci ∈ {0, 1}p(λ) is random. When IsCycle(K,m1) returns true, it must be that
Dec′(K, c1) did not return ⊥. But if this happens, then we can construct an adversary to break the AE
security of Π′ae. The adversary simply queries Dae

K,b(·) at a random point, observes if it returns ⊥ or not, and

outputs b̂ = 0 or 1 depending on this observation. 2

We note that we could design an encryption scheme that does not have this type of ciphertext-length
behavior by giving a different attack that abuses the fact that K is present in the ciphertext in one case,
but not the other. We have chosen to present the attack this way for simplicity only.

8

807

Approved for Public Release; Distribution Unlimited.

4 Counterexamples for Public-Key Encryption

4.1 Preliminaries and Algebraic Setting

Bilinear Groups We work in a bilinear setting where there exists an efficient mapping function e :
G1×G2 → GT involving groups of the same prime order p. Two algebraic properties required are that: (1) if g
generates G1 and h generates G2, then e(g, h) 6= 1 and (2) for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab.

Decisional Diffie-Hellman Assumption (DDH) Let G be a group of prime order p ∈ Θ(2λ). For all
PPT adversaries A, the following probability is 1/2 plus an amount negligible in λ:

Pr

[
g, z0 ← G; a, b← Zp; z1 ← gab; d← {0, 1};
d′ ← A(g, ga, gb, zd) : d = d′

]
.

Strong External Diffie-Hellman Assumption (SXDH): Let e : G1×G2 → GT be bilinear groups. The
SXDH assumption states that the DDH problem is hard in both G1 and in G2. This implies that there does
not exist an efficiently computable isomorphism between these two groups. The SXDH assumption appears
in many prior works, such as [20, 38, 31, 12, 8, 6, 23, 9, 24, 2].

Indistinguishability and Pseudorandom Generators

Definition 4.1 (Indistinguishability) Two ensembles of probability distributions {Xk}k∈N and {Yk}k∈N
with index set N are said to be computationally indistinguishable if for every polynomial-size circuit family
{Dk}k∈N, there exists a negligible function ν such that

|Pr [x← Xk : Dk(x) = 1]− Pr [y ← Yk : Dk(y) = 1]|

is less than ν(k). We denote such sets {Xk}k∈N
c≈ {Yk}k∈N.

Definition 4.2 (Pseudorandom Generator [29]) Let Ux denote the uniform distribution over {0, 1}x.
Let `(·) be a polynomial and let G be a deterministic polynomial-time algorithm such that for any input
s ∈ {0, 1}n, algorithm G outputs a string of length `(n). We say that G is a pseudorandom generator if the
following two conditions hold:

• (Expansion:) For every n, it holds that `(n) > n.

• (Pseudorandomness:) For every n, {U`(n)}n
c≈ {s← Un : G(s)}n.

The constructions of Section 4.2 use a PRG where the domain of the function is an exponentially-sized
cyclic group.

4.2 Encryption Scheme Πcpa

We now describe an encryption scheme Πcpa = (KeyGen,Enc,Dec). It is set in asymmetric bilinear groups
e : G1 × G2 → GT of prime order p where we assume that the groups G1 and G2 are distinct and that the
DDH assumption holds in both. We assume that a single set of group parameters (e, p,G1,G2,GT , g, h),
where G1 = 〈g〉,G2 = 〈h〉, will be shared across all keys generated at a given security level and are implicitly
provided to all algorithms.

The message space is M = {0, 1} × Z∗p × Z∗p. Let encode :M→ {0, 1}`(λ) and decode : {0, 1}`(λ) →M
denote an invertible encoding scheme where `(λ) is the polynomial length of the encoded message. Let
F : GT → {0, 1}`(λ) be a pseudorandom generator secure under the Decisional Diffie Hellman assumption.
(Recall that pseudorandom generators can be constructed from any one-way function [27].)

9

808

Approved for Public Release; Distribution Unlimited.

KeyGen(1λ). The key generation algorithm selects a random bit β ← {0, 1} and random values a1, a2 ← Z∗p.
The secret key is set as sk = (β, a1, a2). We note that sk ∈M. The public key is set as:

pk =

{
(0, e(g, h)a1 , ga2) ∈ {0, 1} ×GT ×G1 if β = 0

(1, e(g, h)a1 , ha2) ∈ {0, 1} ×GT ×G2 if β = 1.

Encrypt(pk ,M). The encryption algorithm parses the public key pk = (β, Y1, Y2), where Y2 may be in G1

or G2 depending on the structure of the public key, and message M = (α,m1,m2) ∈ M. Note that
m1 and m2 cannot be zero, but these values can be easily included in the message space by a proper
encoding.

Select random r ← Zp and R← GT . Set I = F (R)⊕ encode(M).

Output the ciphertext C as:

C =

{
(gr, R · Y r1 , Y rm2

2 · gm1 , I) if β = 0;

(hr, R · Y r1 , Y rm2
2 , I) if β = 1.

We note that in the first case, C ∈ G1×GT ×G1×{0, 1}`(λ), while in the second C ∈ G2×GT ×G2×
{0, 1}`(λ).

Decrypt(sk , C). The decryption algorithm parses the secret key sk = (β, a1, a2) and the ciphertext C = (C1,
C2, C3, C4). Next, it computes:

R =

{
(C2/e(C1, h))a1 if β = 0;

(C2/e(g, C1))a1 if β = 1.

Then it computes M ′ = F (R)⊕ C4 ∈ {0, 1}`(λ) and outputs the message M = decode(M ′).

Discussion Like the circular-secure scheme of Boneh et al. [13], the above cryptosystem is a variation on
El Gamal [19]. It is a practical system, which on first glance might be somewhat reminiscent of schemes the
readers are used to seeing in the literature. The scheme includes a few “artificial” properties: (1) placing
a public key in either G1 or G2 at random and (2) the fact that the ciphertext value C3 is unused in the
decryption algorithm. We will shortly see that these features are “harmless” in a semantic-security sense,
but very useful for recovering the secret keys of the system in the presence of a two cycle. While it is
not unusual for counterexamples to have artificial properties (e.g., [16, 22]), we can address these points as
well.3 In Appendix C, we show that property (1) can be removed by doubling the length of the ciphertext.
For property (2), we observe that many complex protocols such as group signatures (e.g., [12]) combine
ciphertexts with other components that are unused in decryption but are quite important to the protocol
as a whole. Thus, we believe our counterexample is not that far fetched. It is possible that such an attack
could exist on one of today’s commonly-used encryption algorithms.

We first show that Πcpa meets the standard notion of CPA security.

Theorem 4.3 Encryption scheme Πcpa is IND-CPA secure under the Decisional Diffie-Hellman Assumption
in G1 and G2 (SXDH).

The proof is given in Appendix B. It is relatively standard and involves repeated applications of the DDH
assumption and PRG security.

3While our scheme is different from that of Acar et al. [2], that scheme also has similar artificial properties such as the
presence of values that are not used in decryption.

10

809

Approved for Public Release; Distribution Unlimited.

4.3 The Attack

Despite being IND-CPA-secure, cryptosystem Πcpa is not even weakly circular secure for 2-cycles. Specifically,
given a circular encryption of two keys, we show that an adversary can distinguish another ciphertext with
advantage 1/2. Our adversary actually does much more than this: with probability 1/2 over the coins used
in key generation, it can recover both secret keys.

This is the first circular attack that allows the adversary to recover the secret keys. (In Appendix C, we
discuss how to improve these probabilities to almost 1.) Our attack combines elements of both ciphertexts
in an attempt to recover skA, which can then be used to decrypt the first ciphertext and obtain skB . It is
counterintuitive that this is possible, given that it is easy to see that IND-CPA-security guarantees that it is
safe for one of them to send their message.

Theorem 4.4 Πcpa is not IND-WCIRC-CPA2-secure.

Proof. We give PPT adversaryA = (A1,A2) such that Adv2-wcirc-cpa
Πcpa,A (λ) is equal to 1/2. Since IND-WCIRC-CPA

security requires that this advantage be negligible, this attack breaks security. The adversary proceeds as
follows. The first stage of the adversary, A1, obtains the two public keys, which we will write as pkA and
pkB , and an encrypted cycle, which we will write as (CA, CB).

If both keys have β = 0 or β = 1 (call this event E1), the adversary aborts and instructs the second stage
(A2) to output a random bit. Since the two keys are independently generated by the challenger, this event
will occur with probability exactly 1/2. Below we will condition on E1 not happening, and wlog assume
that pkA = (0, e(g, h)a1 , ga2) and pkB = (1, e(g, h)b1 , hb2). The corresponding secret keys skA = (0, a1, a2),
skB = (1, b1, b2) are not known to the adversary.

We write the given ciphertexts CA = (cA,1, cA,2, cA,3, cA,4) and CB = (cB,1, cB,2, cB,3, cB,4). A1 will
output two arbitrary distinct messages, and request that the challenge use pkA. For the state passed to A2,
it now computes:

X := cB,2 ·
e(cA,1, cB,3)

e(cA,3, cB,1)
.

A1 sets ŝkA = decode(cB,4 ⊕ F (X)) and passes this with the challenge messages as state to A2.

A2 receives a ciphertext y and the passed state. It parses ŝkA as a secret key for Πcpa and computes

Dec(ŝkA, y), and tests if this is equal to either of the challenge messages. If so, it outputs the corresponding
bit. Otherwise it outputs a random bit.

Let’s explore why this test works. Write CA = Enc(pkA, skB) and CB = Enc(pkB , skA). Then:

CA = (cA,1, cA,2, cA,3, cA,4)

= (gr, R · e(g, h)ra1 , gra2b2+b1 , F (R)⊕ encode(skB))

CB = (cB,1, cB,2, cB,3, cB,4)

= (hs, S · e(g, h)sb1 , hsa2b2 , F (S)⊕ encode(skA))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)

e(cA,3, cB,1)
= S · e(g, h)sb1 · e(gr, hsa2b2)

e(gra2b2+b1 , hs)

= S · e(g, h)sb1 · e(g, h)rsa2b2

e(g, h)rsa2b2 · e(g, h)sb1
= S.

Thus, A1 recovers ŝkA = skA as decode(cB,4 ⊕ F (S)), and A2 will correctly guess bit b in this case.

11

810

Approved for Public Release; Distribution Unlimited.

Write b̂ for the output of A2. We have

Adv2-wcirc-cpa
Πcpa,A (λ) = 2 Pr[b̂ = b]− 1

= 2(Pr[b̂ = b|E1] Pr[E1]+

Pr[b̂ = b|¬E1] Pr[¬E1])− 1

= 2(1 · 1/2 + 1/2 · 1/2)− 1

= 1/2

This completes the proof. 2

4.4 Extension: A Counterexample for CCA Security

We show that there exists an IND-CCA-secure cryptosystem, which suffers a complete break when Alice and
Bob trade secret keys over an insecure channel; i.e., transmit the two-key cycle E(pkA, skB) and E(pkB , skA).
Our construction follows the “double-encryption” approach to building IND-CCA systems from IND-CPA
systems as pioneered by Naor and Yung [33] and refined by Dolev, Dwork and Naor [18] and Sahai [37]. Our
building blocks will be:

1. The IND-CPA-secure cryptosystem Πcpa = (G,E,D) from Section 4. Let E(pk ,m; r) be the encryption
of m under public key pk with randomness r.

2. An adaptively non-malleable non-interactive zero-knowledge (NIZK) proof system with unpredictable
simulated proofs and uniquely applicable proofs for the language L of consistent pairs of encryptions,
defined as:

L =

{
(e0, e1, c0, c1) : ∃m, r0, r1 ∈ {0, 1}∗ s.t.
c0 = E(e0,m; r0) and c1 = E(e1,m; r1)

}
.

A proof system for L can be realized under relatively mild assumptions, such as the difficulty of factoring
Blum integers (e.g., [37]). One complication is that the secret keys for this cryptosystem now change and
the construction must be adapted accordingly, so that the secret key can still be recovered by the adversary
during a circular attack. We show that this is possible.

5 Conclusion and Open Problems

In this work, we presented a natural relaxation of the circular security definition, which may prove interesting
for positive results in its own right. We demonstrated that its guarantees are not already captured by standard
definitions of encryption. To do this, we presented symmetric and public-key encryption systems that are
secure in the IND-CPA and IND-CCA sense, but fail catastrophically in the presence of an encrypted cycle.
This provides the first answer to the foundational question on whether IND-CCA-security captures (weak or
regular) circular security for all cycles larger than self-loops. In either case, it does not.

Our work leaves open the interesting problem of finding a public-key counterexample for cycles of size
≥ 3. Secondly, while our symmetric counterexample depended only on the existence of AE-secure symmetric
encryption, our public-key counterexample, like that of Acar et al. [2], required a specific bilinear map
assumption. It would be highly interesting to find a counterexample assuming only that IND-CPA- or
IND-CCA-secure systems exist.

Finally, we observe that our public-key counterexample contains a novel and curious property – certain
combinations of independently generated ciphertexts trigger the release of their underlying plaintext. From
Rabin’s 1

2 -OT system to DH-DDH gap groups, the cryptographic community has a strong history of turning
such oddities to an advantage. If we view a cryptosystem with this property as a new primitive, what new
functionalities can be realized using it?

12

811

Approved for Public Release; Distribution Unlimited.

Acknowledgments

The authors thank Ronald Rivest for the suggestion to view the public key counterexample in Section 4 as
a potential building block for other functionalities.

References

[1] Martin Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational sound-
ness of formal encryption). J. Cryptology, 15(2):103–127, 2002.

[2] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. Cryptographic agility and its relation to
circular encryption. In EUROCRYPT ’10, volume 6110 of LNCS, pages 403–422. Springer, 2010.

[3] Pedro Adao, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of formal encryption in
the presence of key-cycles. In ESORICS ’05, volume 3679 of LNCS, pages 374–396, 2005.

[4] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and cryptogra-
phy against memory attacks. In TCC ’09, volume 5444 of LNCS, pages 474–495, 2009.

[5] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In CRYPTO ’09, volume 5677 of LNCS,
pages 595–618, 2009.

[6] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable RFID tags via insubvertible
encryption. In CCS ’05, pages 92–101, 2005.

[7] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active attacks -
BRSIM/UC-soundness of Dolev-Yao-style encryption with key cycles. J.of Comp.Security, 16(5):497–
530, 2008.

[8] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-resistant storage.
Technical Report TR-SP-BGMM-050705, Johns Hopkins University, CS Dept, 2005. http://spar.

isi.jhu.edu/~mgreen/correlation.pdf.

[9] Mira Belenkiy, Melissa Chase, Markulf Kolweiss, and Anna Lysyanskaya. Non-interactive anonymous
credentials. In TCC ’08, volume 4948 of LNCS, pages 356–374, 2008.

[10] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. J. Cryptology, 21(4):469–491, 2008.

[11] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence of
key-dependent messages. In SAC, volume 2595 of LNCS, pages 62–75, 2002.

[12] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO ’04, volume 3152
of LNCS, pages 45–55, 2004.

[13] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-Secure Encryption from
Decision Diffie-Hellman. In CRYPTO ’08, volume 5157 of LNCS, pages 108–125, 2008.

[14] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure against
key dependent chosen plaintext and adaptive chosen ciphertext attacks. In EUROCRYPT ’09, volume
5479 of LNCS, pages 351–368, 2009.

[15] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In EUROCRYPT ’01, volume 2045 of LNCS, pages 93–118, 2001.

13

812

Approved for Public Release; Distribution Unlimited.

[16] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. of the
ACM, 51(4):557–594, 2004.

[17] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary input. In
STOC ’09, pages 621–630, 2009.

[18] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Computing,
30(2):391–437, 2000.

[19] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO ’84, pages 10–18, 1984.

[20] Steven D. Galbraith. Supersingular curves in cryptography. In ASIACRYPT ’01, volume 2248 of LNCS,
pages 495–513, 2001.

[21] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.

[22] Shafi Goldwasser and Yael Tauman Kalai. On the (In)security of the Fiat-Shamir Paradigm. In FOCS
’03, page 102, 2003.

[23] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer. In ASI-
ACRYPT, volume 5350, pages 179–197, 2008.

[24] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT
’08, volume 4965 of LNCS, pages 415–432, 2008.

[25] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent encryption. In TCC
’09, volume 5444 of LNCS, pages 202–219, 2009.

[26] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In ACM CCS ’07, pages
466–475, 2007.

[27] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM J. Computing, 28(4):1364–1396, 1999.

[28] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in the standard
model. In EUROCRYPT ’08, volume 4965 of LNCS, pages 108–126, 2008.

[29] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC,
2008.

[30] Peeter Laud and Ricardo Corin. Sound computational interpretation of formal encryption with com-
posed keys. In ICISC, volume 2971, pages 55–66, 2003.

[31] Noel McCullagh and Paulo S. L. M. Barreto. A new two-party identity-based authenticated key agree-
ment. In CT-RSA ’04, volume 3376, pages 262–274, 2004.

[32] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO ’09, volume
5677 of LNCS, pages 18–35, 2009.

[33] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In STOC ’90, pages 427–437, 1990.

[34] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In CRYPTO ’91, volume 576 of LNCS, pages 433–444, 1991.

[35] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem. In
EUROCRYPT, pages 373–390, 2006.

14

813

Approved for Public Release; Distribution Unlimited.

[36] Ron Rothblum. On the circular security of bit-encryption. Cryptology ePrint Archive, Report 2012/102,
2012. http://eprint.iacr.org/.

[37] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
FOCS ’99, pages 543–553, 1999.

[38] Mike Scott. Authenticated id-based key exchange and remote log-in with simple token and pin number,
2002. Available at http://eprint.iacr.org/2002/164.

A Security Proof for Πae

A.1 Security against Key Recovery Attacks

It will simplify our results to use the following concept of key recovery security, which is implied by AE
security.

Definition A.1 (KR) Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme for the message
space M . Let the random variable KR(Π,A, λ) be defined by the following probabilistic algorithm:

KR(Π,A, λ)

K ← KeyGen(1λ)

K̂ ← AEkrK (·),Dkr
K (·)(1λ)

Output (K̂
?
= K).

Here the oracle Ekr
K (·) takes as input a message m ∈ M and returns Enc(K,m), and the oracle Dkr

K (·) takes
as input a ciphertext and returns Dec(K, c).

We denote the KR advantage of A by

AdvkrΠ,A(λ) = Pr[KR(Π,A, λ) = 1].

We say that Π is KR secure if AdvkrΠ,A(λ) is negligible for all PPT A.

We will use the following theorem below. The proof is standard.

Theorem A.2 Any AE-secure symmetric-key encryption scheme is also KR-secure.

A.2 Proof of Security for System Πae

Theorem A.3 Encryption scheme Πae is AE secure whenever Π′ae is AE secure.

Proof. We prove the theorem by giving a reduction to the AE security of Π′ae. We proceed by describing a
pair of hybrid games, where the first H0 is defined to be the AE experiment from Definition 2.3 with Πae,
and the second is a modified experiment that will be seen to be essentially equivalent to the AE experiment
with Π′ae.

We denote the hybrids H0,H1, and define them as follows:

H0: The AE experiment with Πae.
H1: Exactly as in H0, except that the oracles Eae

K,b(·, ·) and Dae
K,b(·) use modified versions of the algo-

rithms Enc and Dec which ignore their “If” statements and proceed directly the “Else” clause.

Fix some PPT adversary A, and let

AdvHi

A (λ) = 2 Pr[Hi(A, λ) = 1]− 1

for i = 0, 1. Then we have
AdvH0

A (λ) = AdvaeΠae,A(λ), (1)

which is negligible by assumption. Next we relate AdvH0

A (λ) and AdvH1

A (λ).

15

814

Approved for Public Release; Distribution Unlimited.

Lemma A.4 For all PPT adversaries A,

AdvH0

A (λ)− AdvH1

A (λ) ≤ ε1(λ) (2)

for some negligible function ε1.

Proof. Suppose to the contrary that a PPT adversaryA exists that violates (2). UsingA we construct an PPT
adversary B such that AdvkrΠ′

ae,B(λ) is non-negligible which contradicts the AE security Π′ae by Theorem A.2.

The adversary B has access to two oracles in the KR experiment with Π′ae, Ekr
K (·) and Dkr

K (·). B will run
A, which expects the two oracles Eae

K,b(·, ·),Dae
K,b(·) in the AE experiment with Πae.

B starts by selecting b
r← {0, 1} and initializing a list L to be empty. B then runs A, simulating queries

to Eae
K,b(·, ·) and Dae

K,b(·) as follows:

Eae
K,b(m0,m1)

UseCycle(mb)
Return Ekr

K (mb)

UseCycle(x)

If |x| 6= np(λ) then
Return

Parse x as (c1, . . . , cn)
K2 ← Dkr

K (c1)
For i = 2 to n
Kimod n+1 ← Dec′(Ki, ci)

Add K1 to L

Dae
K,b(c)

If b = 0 then
Return ⊥

Else

Parse c as K̃ ‖ m̃
Add K̃ to L
Return Dkr

K (c)

When A halts, B selects and outputs K̂ at random from L.
Before moving on, let us intuitively explain how B is simulating the game. We have implemented the

oracle simulation so that B assumes that the “If” statements in both oracles do not ever pass, and indeed it
properly simulates both hybrids as long as this is case. It keeps track of the keys induced by the queries of
A which might have caused an “If” statement to pass, and afterwards it chooses a random one and hopes it
was the first such query.

Let E be the event that A queries either Eae
K,b(·, ·) or Dae

K,b(·) at a point that causes their “If” statements
to evaluate to true. It is apparent that H0 and H1 are identical unless E occurs, so we have

AdvH0

A (λ)− AdvH1

A (λ) ≤ Pr[E].

Conditioned on E occurring, we have that K̂ is equal to K (where K was chosen in the KR experiment) with
probability 1/Q, where Q is (polynomial) number of queries issued by A. This follows from the fact that B
perfectly simulates H0 until the first query that triggers the event E. Thus, B recovers the secret key with
probability at least AdvkrΠ′

ae,B(λ) = Pr[E]/Q. But this is negligible by the assumption that Π′ae is AE-secure
and hence KR-secure, which bounds Pr[E] by a negligible function. 2

Lemma A.5 For every PPT adversary A

AdvaeΠ′
ae,A(λ) = AdvH1

A (λ). (3)

Proof. This lemma follows by the observation that in H1, A is interacting with oracles that are functionally
identical to those in AE(Π′ae,A, λ). The only difference is in the message space restriction in H1, which is a
strict subset of those allowed in AE(Π′ae,A, λ). 2

Finally, we observe that AdvaeΠ′
ae,B(λ) is negligible by assumption. Combining this observation with (1),

(2) and (3) proves the theorem. 2

16

815

Approved for Public Release; Distribution Unlimited.

B Security Proof for System Πcpa

We first recall Theorem 4.3.

Theorem B.1 Encryption scheme Πcpa is IND-CPA secure under the Decisional Diffie-Hellman Assumption
in G1 and G2 (SXDH).

Proof. To show that scheme Πcpa meets security Definition 2.1, suppose PPT adversary A = (A1,A2) has
advantage ε in the IND-CPA(Πcpa,A, λ) experiment. Let ψ(·) be some polynomial function that will be
determined in the proof. Using a series of hybrid games we show that if all PPT adversaries have negligible
advantage ε1 in solving the DDH problem in G1 or G2 and advantage ψ(ε1) at distinguishing the PRG F
(secure under DDH) from a random function, then ε is bounded by the negligible value 4ε1 + 2ψ(ε1).

In all hybrids, the adversary plays the IND-CPA game with a challenger. The public key is distributed
normally, but the structure of the challenge ciphertext differs between the hybrids. Let CT = (C1, C2, C3, C4)

denote the challenge ciphertext computed in IND-CPA and let R2
r← GT , R3

r← G1 (if β = 0) or R3
r← G2

(if β = 1) and R4
r← {0, 1}|C4| be randomly chosen. The hybrids are as follows:

H0: The challenge ciphertext is CT = (C1, C2, C3, C4).
H1: The challenge ciphertext is CT1 = (C1, R2, C3, C4).
H2: The challenge ciphertext is CT2 = (C1, R2, R3, C4).
H3: The challenge ciphertext is CT3 = (C1, R2, R3, R4).

We will write AdvHi

A (λ) to denote the advantage of A in Hi, i.e., 2 Pr[Hi(A, λ) = 1] − 1. By definition,
the ciphertext in H0 is as in IND-CPA(Πcpa,A, λ), while the challenge ciphertext in hybrid H3 information-
theoretically hides the plaintext. We argue that under the DDH assumption in G1 and G2, for all PPT A,
we have

AdvH0

A − AdvH3

A ≤ 2ε1 + ψ(ε1). (4)

It remains to observe that, by definition,

AdvH0

A (λ) = IND-CPA(Πcpa,A, λ), (5)

and
AdvH3

A (λ) = 0 (6)

because the adversary’s output is independent of the bit b it is trying to guess.

We now turn to proving (4). We start by bounding the difference in advantage between H0 and H1.

Lemma B.2 For all PPT A = (A1,A2), if the DDH assumption holds in G1 and G2, then

AdvH1

A (λ)− AdvH0

A (λ) ≤ ε1.

Proof. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be the common parameters. Suppose for contradiction that
an adversary A violates the inequality in the lemma. Then, we construct an adversary A′ that decides the
DDH problem in G1 or G2 with advantage ε′. A′ works as follows.

1. Sample a bit β ← {0, 1}.
2. Obtain a DDH problem instance:

Γ =

{
(g, ga, gb, G) ∈ G4

1 if β = 0;

(h, ha, hb, H) ∈ G4
2 if β = 1.

3. Sample v ← Z∗p.
4. Set the public key as:

pk =

{
(0, e(ga, h), gv) ∈ {0, 1} ×GT ×G1 if β = 0;

(1, e(g, ha), hv) ∈ {0, 1} ×GT ×G2 if β = 1.

17

816

Approved for Public Release; Distribution Unlimited.

5. Run A1(pk) to produce a tuple (M0,M1, z). Parse M0 as (α,m1,m2).
6. Sample R← GT and set I ← F (R)⊕ encode(M0).
7. Set the challenge ciphertext as:

C =

{
(gb, R · e(G, h), (gb)vm2 · gm1 , I) if β = 0;

(hb, R · e(g,H), (hb)vm2 , I) if β = 1.

Note that in the first case, C ∈ G1 × GT × G1 × {0, 1}`(λ), while in the second case C ∈ G2 × GT ×
G2 × {0, 1}`(λ).

8. Run A2(C, z) and output whatever it outputs.

We argue that when Γ is a proper DDH instance, A′ perfectly simulates the experiment H0. The
distribution of keys and encryption values are exactly as they should be. When Γ is not a DDH instance, A′
perfectly simulates the experiment H1. The only impacted ciphertext part is C2, where the proper public
key information has been replaced by a random value. Thus, A′’s advantage in solving DDH in G1 or G2

will be ε′. Under the DDH assumption in G1,G2, ε′ ≤ ε1. 2

Lemma B.3 For all PPT A = (A1,A2), if the DDH assumption holds in G1 and G2, then

AdvH2

A (λ)− AdvH1

A (λ) ≤ ε1.

Proof. Suppose adversary A = (A1,A2) violates the lemma. Then, we construct an adversary A′ that decides
the DDH problem in G1 or G2 with advantage ε′ as follows. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be
the common parameters. A′ works as follows:

1. Sample a bit β ← {0, 1}.
2. Obtain a DDH problem instance:

Γ =

{
(g, ga, gb, G) ∈ G4

1 if β = 0;

(h, ha, hb, H) ∈ G4
2 if β = 1.

3. Sample v ← Z∗p.
4. Set the public key as:

pk =

{
(0, e(g, h)v, ga) ∈ {0, 1} ×GT ×G1 if β = 0;

(1, e(g, h)v, ha) ∈ {0, 1} ×GT ×G2 if β = 1.

5. Run A1(pk) to produce a tuple (M0,M1, z). Parse M0 as (α,m1,m2).
6. Sample R,R2 ← GT and set I ← F (R)⊕ encode(M0).
7. Set the challenge ciphertext as:

C =

{
(gb, R2, G

m2 · gm1 , I) if β = 0;

(hb, R2, H
m2 , I) if β = 1.

8. Run A2(C, z) and output whatever it outputs.

When Γ is a proper DDH instance, A′ perfectly simulates experiment H1. When Γ is not a DDH instance,
A′ perfectly simulates experiment H2. The only impacted ciphertext part is C3, where the proper public key
information has been replaced by a random value. Thus, A′’s advantage in solving DDH in G1 or G2 will
be ε′. Under the DDH assumption in G1,G2, ε′ ≤ ε1. 2

Lemma B.4 For all PPT A = (A1,A2) if F is secure under the DDH assumption in G1,G2 then

AdvH3

A (λ)− AdvH2

A (λ) ≤ ψ(ε1).

18

817

Approved for Public Release; Distribution Unlimited.

Proof. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be the common parameters. Note that in our construction,
F has domain GT and range {0, 1}`(λ).4 Let us suppose that adversary A = (A1,A2) violates the lemma.
Then, we construct an adversary A′ that breaks the security of the PRG F with advantage ε′. A′ accepts as
input a value I ′ sampled from ensemble Eb where E0 = {R ← GT : F (R)}λ, E1 = {U`(λ)}λ and b ∈ {0, 1}
and operates as follows:

1. Compute (pk , sk)← KeyGen(1k) and parse pk = (β, Y1, Y2).
2. Run A1(pk) to produce a tuple (M0,M1, z).
3. Sample r ← Zp, R2 ← GT and R3 ← G1 (if β = 0) or R3 ← G2 (if β = 1). Set I ← I ′ ⊕ encode(M0).

Compute the challenge ciphertext as follows:

C =

{
(gr, R2, R3, I) if β = 0;

(hr, R2, R3, I) if β = 1.

4. Run A2(C, z) and output whatever it outputs.

If I ′ is sampled from distribution E0 then A′ perfectly simulates H2. If I ′ is sampled from the uniform
distribution E1, then I ′ ⊕ encode(M0) is uniformly distributed in {0, 1}`(λ) and A′ perfectly simulates H3.
Additionally, R is independent of the adversary’s view. Thus A′’s advantage in distinguishing the two
distributions will be ε′. Under the DDH assumption, we have ε′ ≤ ψ(ε1). 2

We complete the proof of the theorem by combining (4), (5), (6), and Lemmas B.2, B.3, and B.4. 2

C An Alternative Counterexample for CPA Security

As mentioned in Section 4, one “artificial” feature of the cryptosystem Πcpa is that the KeyGen algorithm
randomly embeds the public key into either G1 or G2 with probability 1/2 and then the group setting of the
ciphertext also differs depending on the public key. We know of no deployed cryptosystems that alternate the
setting of keys in such a manner. Some readers might hope that this property renders our result inapplicable
to the domain of “practical” cryptosystems, i.e., to assume that cryptosystems with a single, defined key
and ciphertext structure are immune to the concerns we note here. We must disappoint these readers.

Below we propose an alternative IND-CPA-secure scheme Π′cpa that does not exhibit this “group switching”
feature, and yet still breaks catastrophically in the face of a 2-cycle. Indeed, this result is even stronger than
that of Section 4 since it permits an adversary to win the IND-CIRC-CPA game with a higher probability.
Π′cpa has keys and ciphertexts that are twice the length of those in Πcpa.

Construction Π′cpa Cryptosystem Π′cpa = (KeyGen′,Enc′,Dec′) uses Πcpa = (KeyGen, Enc,Dec) as a build-
ing block. As before we assume that a single set of bilinear group parameters will be shared across all keys
generated at a given security level and are implicitly provided to all algorithms. LetM be the message space
of Πcpa. Then the message space for Π′cpa is M′ =M×M. We define the system as follows.

KeyGen′(1λ). The key generation algorithm runs KeyGen repeatedly to obtain pk1, sk1 and pk2, sk2 where
pk1 = (0, ·, ·) and pk2 = (1, ·, ·).5 The public key is set as pk = (pk1, pk2), and the secret key as
sk = (sk1, sk2).

Encrypt′(pk ,M). The encryption algorithm parses the public key pk = (pk1, pk2), and message M =
(m1,m2) ∈M′. Output the ciphertext C as:

C = (Enc(pk1,m2),Enc(pk2,m1))

4Although this specification differs slightly from Definition 4.2, this specific construction can be constructed from traditional
PRGs using standard techniques.

5This can be accomplished probabilistically by repeatedly calling KeyGen and discarding redundant keypairs; alternatively
the KeyGen algorithm can be trivially modified to produce the needed keys in only two calls.

19

818

Approved for Public Release; Distribution Unlimited.

Decrypt′(sk , C). The decryption algorithm parses the secret key sk = (sk1, sk2) and the ciphertext C =
(C1, C2). Next, it computes:

M = (Dec(sk2, C2),Dec(sk1, C1))

Correctness follows trivially from the correctness of Πcpa.

Theorem C.1 Encryption scheme Π′cpa is IND-CPA secure under the Decisional Diffie-Hellman Assumption
in G1 and G2 (SXDH).

Attack on IND-CIRC-CPA Security The above scheme breaks completely for 2-key cycles.

Theorem C.2 Encryption scheme Π′cpa is not IND-CIRC-CPA secure for cycles of length 2.

Proof sketch. To show that scheme Π′cpa is not IND-CIRC-CPA-secure for key cycles of length two, we recall
the attack of Section 4.3. As in that attack, we assume that the adversary receives CA = Enc(pkA, skB)
and CB = Enc(pkB , skA) or two encryptions of a fixed message, and must distinguish which. Unlike that
attack, we do not abort based on the structure of the public keys. Instead we receive pkA = (pkA,1, pkA,2),
pkB = (pkB,1, pkB,2), CA = (CA,1, CA,2) and CB = (CB,1, CB,2). Now, there are two options. Either:

1. CA,1 = Enc(pkA,1, skB,2) and CB,2 = Enc(pkB,2, skA,1) and
CA,2 = Enc(pkA,2, skB,1) and CB,1 = Enc(pkB,1, skA,2); or

2. CA,1 = Enc(pkA,1, α2) and CB,2 = Enc(pkB,2, α1) and
CA,2 = Enc(pkA,2, α1) and CB,1 = Enc(pkB,1, α2)
for any fixed (α1, α2) ∈M′ as defined by Definition 2.4.

If we are in case 1, then we simply apply the exact attack from Section 4.3 twice to the pairs (CA,1, CB,2)
and (CA,2, CB,1) to recover both secret keys in full (skA,1, skA,2) and (skB,1, skB,2) with probability 1. Once
this is done and detected, D outputs 1.

If we are in case 2, then let α1 = (·,m1,m2) and α2 = (·,m′1,m′2). Parse skA,1 = (0, a1, a2) and
skB,2 = (1, b1, b2) and we have:

CA,1 =(cA,1, cA,2, cA,3, cA,4)

=(gr, R · e(g, h)ra1 , gra2m
′
2+m′

1 , F (R)⊕ encode(α2))

CB,2 =(cB,1, cB,2, cB,3, cB,4)

=(hs, S · e(g, h)sb1 , hsm2b2 , F (S)⊕ encode(α1))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)

e(cA,3, cB,1)
= S · e(g, h)sb1 · e(gr, hsm2b2)

e(gra2m
′
2+m′

1 , hs)

= S · e(g, h)s(b1−m
′
1) · (e(g, h)s(m2b2−m′

2a2))r

Now, D will return 1 if and only if skA = decode((F (S)⊕encode(α1))⊕F (X)). What is the probability that
this event occurs? First, suppose that s(m2b2−m′2a2) mod p 6= 0 (event E1), which happens with probability
≥ 1 − 3/(p − 1) = (p − 4)/(p − 1) for honest executions. Next, consider the values α1, α2, s, S as fixed and
r is the only variable. What is the chance that the challenger’s random choice of r will induce a value X
such that F (X) = F (S)⊕ encode(α1)⊕ encode(skA)? First, we observe that since s(m2b2 −m′2a2) 6= 0 and
r is chosen uniformly at random in Zp, then X is also distributed uniformly at random in GT . Thus, by the
assumption that F is computationally indistinguishable from a uniform, random function, D will incorrectly
guess a key cycle in this case with probability at most 2−`(λ) plus a negligible amount ν(λ), where λ is the
security parameter.

20

819

Approved for Public Release; Distribution Unlimited.

Thus, D’s total probability of success in this attack is:

Pr[D wins] = Pr[Case 1] · Pr[D wins |Case 1]

+ Pr[Case 2] · Pr[D wins |Case 2]

≥1

2
· 1 +

1

2
· (Pr[E1] · Pr[D wins |E1])

≥1

2
+

1

2
·
(
p− 4

p− 1
· (1− 2−`(λ) − ν(λ))

)

≥3

4
− (2−`(λ) + ν(λ))

2
for all p ≥ 7

Of course, for practical 80-bit or higher values of p, this probability is much closer to 1. 2

21

820

Approved for Public Release; Distribution Unlimited.

Billion-Gate Secure Computation with Malicious Adversaries

Benjamin Kreuter
brk7bx@virginia.edu
University of Virginia

abhi shelat
abhi@virginia.edu

University of Virginia

Chih-hao Shen
cs6zb@virginia.edu

University of Virginia

Abstract

The goal of this paper is to assess the feasibility of
two-party secure computation in the presence of a ma-
licious adversary. Prior work has shown the feasibil-
ity of billion-gate circuits in the semi-honest model, but
only the 35k-gate AES circuit in the malicious model,
in part because security in the malicious model is much
harder to achieve. We show that by incorporating the
best known techniques and parallelizing almost all steps
of the resulting protocol, evaluating billion-gate circuits
is feasible in the malicious model. Our results are in
the standard model (i.e., no common reference strings
or PKIs) and, in contrast to prior work, we do not use the
random oracle model which has well-established theoret-
ical shortcomings.

1 Introduction

Protocols for secure computation allow two or more mu-
tually distrustful parties to collaborate and compute some
function on each other’s inputs, with privacy and correct-
ness guarantees. Andrew Yao showed that secure two-
party protocols can be constructed for any computable
function [34]. Yao’s protocol involves representing the
function as a boolean circuit and having one party (called
the generator) encrypt the circuit in such a way that it
can be selectively decrypted by the other party (called
the evaluator) to compute the output, a process called
garbling. In particular, oblivious transfers are used for
the evaluator to obtain a subset of the decryption keys
that are needed to compute the output of the function.

Yao’s protocol is of great practical significance. In
many real-world situations, the inputs to a function may
be too valuable or sensitive to share. Huang et al. ex-
plored the use of secure computation for biometric iden-
tification [14] in national security applications, in which
it is desirable for individual genetic data to be kept pri-
vate but still checked against a classified list. In a similar

security application, Osadchy et al. described how face
recognition could be performed in a privacy-preserving
manner [30]. The more general case of multiparty com-
putation has already seen real-world use in computing
market clearing prices in Denmark [2].

Yao’s original protocol ensures the privacy of each
party’s input and the correctness of the output under the
semi-honest model, in which both parties follow the pro-
tocol honestly. This model has been the basis for sev-
eral scalable secure computation systems [4, 10, 12, 13,
17, 22, 26]. It is conceivable, however, that one of the
parties may deviate from the protocol in an attempt to
violate privacy or correctness. Bidders may attempt to
manipulate the auction output in their favor; spies may
attempt to obtain sensitive information; and a computer
being used for secure computation may be infected with
malware. Securing against malicious participants, who
may deviate arbitrarily from pre-agreed instructions, in
an efficient manner is of more practical importance.

There have been several attempts on practical systems
with security against active, malicious adversaries. Lin-
dell and Pinkas presented an approach based on garbled
circuits that uses the cut-and-choose technique [23], with
an implementation of this system having been given by
Pinkas et al. [31]. Nielsen et al. presented the LEGO+
system [29], which uses efficient oblivious transfers and
authenticated bits to enforce honest behaviors from par-
ticipants. shelat and Shen proposed a hybrid approach
that integrates sigma protocols into the cut-and-choose
technique [33]. The protocol compiler presented by
Ishai, Prabhakaran, and Sahai [16] also uses an approach
based on oblivious transfer, and was implemented by
Lindell, Oxman, and Pinkas [21]. In all these cases, AES
was used as a benchmark for performance tests.

Protocols for general multiparty computation with se-
curity against a malicious majority have also been pre-
sented. Canetti et al. gave a construction of a uni-
versally composable protocol in the common reference
string model [5]. The protocol compiler of Ishai et al.,

1
821

Approved for Public Release; Distribution Unlimited.

mentioned above, can be used to construct a multiparty
protocol with security against a dishonest majority in the
UC model [16]. Bendlin et al. showed a construction
based on homomorphic encryption [1], which was im-
proved upon by Damgård et al. [7]; these protocols were
also proved secure in the UC model, and thus require ad-
ditional setup assumptions. The protocol of Damgård et
al. (dubbed “SPDZ” and pronounced “speedz”) is based
on a preprocessing model, which improves the amortized
performance. Damgård et al. presented an implementa-
tion of their protocol, which could evaluate the function
(x× y) + z in about 3 seconds with a 128 bit security
level, but with an amortized time of a few milliseconds.

This paper presents a scalable two-party secure com-
putation system which guarantees privacy and correct-
ness in the presence of a malicious party. The system
we present can handle circuits with hundreds of millions
or even billions of gates, while requiring relatively mod-
est computing resources. Our system follows the Fair-
play framework, allowing general purpose secure com-
putation starting from a high level description of a func-
tion. We present a system with numerous technical ad-
vantages over the Fairplay system, both in our compiler
and in the secure computation protocol. Unlike previ-
ous work, we do not rely solely on AES circuits as our
benchmark; our goal is to evaluate circuits that are orders
of magnitude larger than AES in the malicious model,
and we use AES only as a comparison with other work.
We prove the security of our protocol assuming circular
2-correlation robust hash functions and the hardness of
the elliptic curve discrete logarithm problem, and require
neither additional setup assumptions nor the random or-
acle model.

2 Contributions

Our principal contribution is to build a high perfor-
mance secure two-party computation system that inte-
grates state-of-the-art techniques for dealing with ma-
licious adversaries efficiently. Although some of these
techniques have been reported individually, we are not
aware of any attempt to incorporate them all into one sys-
tem, while ensuring that a security proof can still be writ-
ten for that system. Even though some of the techniques
are claimed to be compatible, it is not until everything is
put together and someone has gone through all the details
can a system as a whole be said to be provably secure.

System Framework We start by using Yao’s garbled
circuit [34] protocol for securely computing functions
in the presence of semi-honest adversaries, and she-
lat and Shen’s cut-and-choose-based transformation [33]
that converts Yao’s garbled circuit protocol into one that

is secure against malicious adversaries.
We then modify the above to use Ishai et al.’s obliv-

ious transfer extension [15] that has efficient amortized
computation time for oblivious transfers secure against
malicious adversaries, and Lindell and Pinkas’ random
combination technique [23] that defends against selec-
tive failure attacks. We implement Kiraz’s randomized
circuit technique [18] that guarantees that the generator
gets either no output or an authentic output, i.e., the gen-
erator cannot be tricked into accepting arbitrary output.

Optimization Techniques For garbled circuit gener-
ation and evaluation, we incorporate Kolesnikov and
Schneider’s free-XOR technique that minimizes the
computation and communication cost for XOR gates in
a circuit [20]. We also adopt Pinkas et al.’s garbled-row-
reduction technique that reduces the communication cost
for k-fan-in non-XOR gates by 1/2k [31], which means
at least a 25% communication saving in our system since
we only have gates of 1-fan-in or 2-fan-in. Finally, we
implement Goyal et al.’s technique for reducing commu-
nication as follows: during the cut-and-choose step, the
check circuits are given to the evaluator by revealing the
random seeds used to produce them rather than the check
circuits themselves [11]. Combined with the 60%-40%
check-evaluation ratio proposed by shelat and Shen [33],
this technique provides a near 60% saving in communi-
cation. As far as we know, although these techniques ex-
ist individually, ours is the first system to incorporate all
of these mutually-compatible state-of-the-art techniques.

Circuit-Level Parallelism The most important new
technique that we use is to exploit the embarrassingly
parallel nature of shelat and Shen’s protocol for achiev-
ing security in the malicious model. Exploiting this,
however, requires careful engineering in order to achieve
good performance while maintaining security. We paral-
lelize all computation-intensive operations such as obliv-
ious transfers or circuit construction by splitting the
generator-evaluator pair into hundreds of slave pairs.
Each of the pairs works on an independently generated
copy of the circuit in a parallel but synchronized man-
ner as synchronization is required for shelat and Shen’s
protocol [33] to be secure.

Computation Complexity For the computation time
of a secure computation, there are two main contribut-
ing factors: the input processing time I (due to oblivi-
ous transfers) and the circuit processing time C (due to
garbled circuit construction and evaluation). In the semi-
honest model, the system’s computation time is simply
I+C. Security in the malicious model, however, requires
several extra checks. In the first instantiation of our sys-

2
822

Approved for Public Release; Distribution Unlimited.

tem, through heavy use of circuit-level parallelism, our
system needs roughly I + 2C to compute hundreds of
copies of the circuit. Thus when the circuit size is suf-
ficiently larger than the input size, our system (secure in
the malicious model) needs roughly twice as much com-
putation time as that needed by the original Yao proto-
col (secure in the semi-honest model). This is a tremen-
dous improvement over prior work [31,33] which needed
100x more time than the semi-honest Yao. In the second
instantiation of our scheme, we are able to achieve I +C
computation time, albeit at the cost of moderately more
communication overhead.

Large Circuits In the Fairplay system, a garbled cir-
cuit is fully constructed before being sent over a net-
work for the other party to evaluate. This approach is
particularly problematic when hundreds of copies of a
garbled circuit are needed against malicious adversaries.
Huang et al. [13] pointed out that keeping the whole gar-
bled circuit in memory is unnecessary, and that instead,
the generation and evaluation of garbled gates could be
conducted in a “pipelined” manner. Consequently, not
only do both parties spend less time idling, only a small
number of garbled gates need to reside in memory at one
time, even when dealing with large circuits. However,
this pipelining idea does not work trivially with other op-
timization techniques for the following two reasons:

• The cut-and-choose technique requires the gener-
ator to finish constructing circuits before the coin
flipping (which is used to determine check circuits
and evaluation circuits), but the evaluator cannot
start checking or evaluating before the coin flipping.
A naive approach would ask the evaluator to hold
the circuits and wait for the results of the coin flip-
ping before she proceeds to do her jobs. When the
circuit is of large size, keeping hundreds of copies
of such a circuit in memory is undesirable.

• Similarly, the random seed checking technique [11]
requires the generator to send the hash for each gar-
bled circuit, and later on send the random seeds for
check circuits so that the communication for check
circuits is vastly reduced. Note that the hash for an
evaluation circuit is given away before the garbled
circuit itself. However, a hash is calculated only af-
ter the whole circuit is generated. So the generation-
evaluation pipelining cannot be applied directly.

Our system, however, integrates this pipelining idea with
the optimization techniques mentioned above, and is ca-
pable of handling circuits of billions of gates.

AES-NI Besides the improvements by the algorith-
mic means, we also incorporate the Intel Advanced En-

cryption Standard Instructions (AES-NI) in our system.
While the encryption is previously suggested to be

EncX ,Y (Z) = H(X ||Y)⊕Z

in the literature [6, 20], where H is a 2-circular correla-
tion robust function instantiated either with SHA-1 [13]
or SHA-256 [31], we propose an alternative that

Enck
X ,Y (Z) = AES-256X ||Y (k)⊕Z,

where k is the index of the garbled gate. With the help
of the latest instruction set, an AES-256 operation could
take as little as 30% of the time for SHA-256. Since this
operation is heavily used in circuit operations, with the
help of AES-NI instructions, we are able to reduce the
circuit computation time C by at least 20%.

Performance To get a sense of our improvements, we
list the experimental results of the benchmark function—
AES—from the most recent literature and our system.
The latest reported system in the semi-honest model was
built by Huang et al. [13] and needs 1.3 seconds (where
I = 1.1 and C = 0.2) to complete a block of secure AES
computation. The fastest known system in the malicious
model was proposed by Nielson et al. [29] and has an
amortized performance 1.6 seconds per block (or more
precisely, I = 79 and C = 6 for 54 blocks). Our system
provides security in the malicious model and needs 1.4
(= I+2C, where I = 1.0 and C = 0.2) seconds per block.
Note that both the prior systems require the full power
of a random oracle, while ours requires a weaker crypto-
graphic primitive, 2-circular correlation robust functions,
which was recently shown to be sufficient to prove the
security of the free-XOR technique. It should also be
noted that our system benefits greatly from parallel com-
putation, which was not tested for LEGO+.

Scalable Circuit Compiler One of the major bottle-
necks that prevents large-scale secure computation is the
need for a scalable compiler that generates a circuit de-
scription from a function written in a high-level program-
ming language. Prior tools could barely handle circuits
with 50,000 gates, requiring significant computational
resources to compile such circuits. While this is just
enough for an AES circuit, it is not enough for the large
circuits that we evaluate in this paper.

We present a scalable boolean circuit compiler that
can be used to generate circuits with billions of gates,
with moderate hardware requirements. This compiler
performs some simple but highly effective optimizations,
and tends to favor XOR gates. The toolchain is flexible,
allowing for different levels of optimizations and can be
parameterized to use more memory or more CPU time
when building circuits.

3
823

Approved for Public Release; Distribution Unlimited.

As a first sign that our compiler advances the state
of the art, we observe that it automatically generates a
smaller boolean circuit for the AES cipher than the hand-
optimized circuit reported by Pinkas et al. [31]. AES
plays an important role in secure computation, and obliv-
ious AES evaluation can be used as a building block in
cryptographic protocols. Not only is it one of the most
popular building blocks in cryptography and real life se-
curity, it is often used as a benchmark in secure com-
putation. With the textbook algorithm, the well-known
Fairplay compiler can generate an AES circuit that has
15,316 non-XOR gates. Pinkas et al. were able to de-
velop an optimized AES circuit that has 11,286 non-
XOR gates. By applying an efficient S-box circuit [3]
and using our compiler, we were able to construct an
AES circuit that has 9,100 non-XOR gates. As a result,
our AES circuit only needs 59% and 81% of the commu-
nication needed by the other two, respectively.

Most importantly, with our system and the scalable
compiler, we are able to run experiments on circuits with
sizes in the range of billions of gates. To the best of
our knowledge, secure computation with such large cir-
cuits has never been run in the malicious model before.
These circuits include 256-bit RSA (266,150,119 gates)
and 4095x4095-bit edit distance (5,901,194,475). As the
circuit size grows, resource management becomes cru-
cial. A circuit of billions of gates can easily result in
several GB of data stored in memory or sent over the
network. Special care is required to handle these diffi-
culties.

Paper Organization The organization of this paper is
as follows. A variety of security decisions and optimiza-
tion techniques will be covered in Section 3 and Sec-
tion 4, respectively. Then, our system, including a com-
piler, will be introduced in Section 6 and Section 5. Fi-
nally, the experimental results are presented in Section 6
followed by the conclusion and future work in Section 7.

3 Techniques Regarding Security

The Yao protocol, while efficient, assumes honest behav-
ior from both parties. To achieve security in the mali-
cious model, it is necessary to enforce honest behavior.
The cut-and-choose technique is one of the most efficient
methods in the literature and is used in our system. Its
main idea is for the generator to prepare multiple copies
of the garbled circuit with independent randomness, and
the evaluator picks a random fraction of the received cir-
cuits, whose randomness is then revealed. If any of the
chosen circuits (called check circuits) is not consistent
with the revealed randomness, the evaluator aborts; oth-
erwise, she evaluates the remaining circuits (called eval-

uation circuits) and takes the majority of the outputs, one
from each evaluation circuit, as the final output.

The intuition is that to pass the check, a malicious gen-
erator can only sneak in a few faulty circuits, and the
influence of these (supposedly minority) faulty circuits
will be eliminated by the majority operation at the end.
On the other hand, if a malicious generator wants to ma-
nipulate the final output, she needs to construct faulty
majority among evaluation circuits, but then the chance
that none of the faulty circuits is checked will be negli-
gible. So with the help of the cut-and-choose method,
a malicious generator either constructs many faulty cir-
cuits and gets caught with high probability, or constructs
merely a few and has no influence on the final output.

However, the cut-and-choose technique is not a cure-
all. Several subtle attacks have been reported and would
be a problem if not properly handled. These attacks in-
clude the generator’s input inconsistency attack, the se-
lective failure attack, and the generator’s output authen-
ticity attack, which are discussed in the following sec-
tions. Note that in this section, n denotes the input size
and s denotes the number of copies of the circuit.

Generator’s Input Consistency Recall that in the cut-
and-choose step, multiple copies of a circuit are con-
structed and then evaluated. A malicious generator
is therefore capable of providing altered inputs to dif-
ferent evaluation circuits. It has been shown that for
some functions, there are simple ways for the gen-
erator to extract information about the evaluator’s in-
put [23]. For example, suppose both parties agree
to compute the inner-product of their input, that is,
f ([a2,a1,a0], [b2,b1,b0]) 7→ a2b2 +a1b1 +a0b0 where ai
and bi is the generator’s and evaluator’s i-th input bit,
respectively. Instead of providing [a2,a1,a0] to all eval-
uation circuits, the generator could send [1,0,0], [0,1,0],
and [0,0,1] to different copies of the evaluation circuits.
After the majority operation from the cut-and-choose
technique, the generator learns major(b2,b1,b0), the ma-
jority bit in the evaluator’s input, which is not what the
evaluator agreed to reveal in the first place.

There exist several approaches to deter this attack.
Mohassel and Franklin [28] proposed the equality-
checker that needs O(ns2) commitments to be computed
and exchanged. Lindell and Pinkas [23] developed an
approach that also requires O(ns2) commitments. Later,
Lindell and Pinkas [24] proposed a pseudorandom syn-
thesizer that relies on efficient zero-knowledge proofs
for specific hardness assumptions and requires O(ns)
group operations. shelat and Shen [33] suggested the
use of malleable claw-free collections, which also uses
O(ns) group operations, but they showed that witness-
indistinguishability suffices, which is more efficient than
zero-knowledge proofs by a constant factor.

4
824

Approved for Public Release; Distribution Unlimited.

In our system, we incorporate the malleable claw-free
collection approach because of its efficiency. Although
the commitment-based approaches can be implemented
using lightweight primitives such as collision-resistant
hash functions, they incur high communication overhead
for the extra complexity factor s, that is, the number of
copies of the circuit. On the other hand, the group-based
approach could be more computationally intensive, but
this discrepancy is compensated again due to the param-
eter s.1 Hence, with similar computation cost, group-
based approaches enjoy lower communication overhead.

Selective Failure A more subtle attack is selective fail-
ure [19, 28]. A malicious generator could use inconsis-
tent keys to construct the garbled gate and OT so that
the evaluator’s input can be inferred from whether or not
the protocol completes. In particular, a cheating genera-
tor could assign (K0,K1) to an input wire in the garbled
circuit while using (K0,K∗1) instead in the corresponding
OT, where K1 6= K∗1 . As a result, if the evaluator’s input
is 0, she learns K0 from OT and completes the evalu-
ation without complaints; otherwise, she learns K∗1 and
gets stuck during the evaluation. If the protocol expects
the evaluator to share the result with the generator at the
end, the generator learns whether or not the evaluation
failed, and therefore, the evaluator’s input is leaked.

Lindell and Pinkas [23] proposed the random input re-
placement approach that involves replacing each of the
evaluator’s input bits with an XOR of s additional in-
put bits, so that whether the evaluator aborts due to a se-
lective failure attack is almost independent (up to a bias
of 21−s) of her actual input value. Both Kiraz [18] and
shelat and Shen [33] suggested a solution that exploits
committing OTs so that the generator commits to her in-
put for the OT, and the correctness of the OTs can later
be checked by opening the commitments during the cut-
and-choose. Lindell and Pinkas [24] also proposed a so-
lution to this problem using cut-and-choose OT, which
combines the OT and the cut-and-choose steps into one
protocol to avoid this attack.

Our system is based on the random input replacement
approach due to its scalability. It is a fact that the com-
mitting OT or the cut-and-choose OT does not alter the
circuit while the random input replacement approach in-
flates the circuit by O(sn) additional gates. However,
it has been shown that max(4n,8s) additional gates suf-
fice [31]. Moreover, both the committing OT and the cut-

1To give concrete numbers, with an Intel Core i5 processor and
4GB DDR3 memory, a SHA-256 operation (from OpenSSL) requires
1,746 cycles, while a group operation (160-bit elliptic curve from the
PBC library with preprocessing) needs 322,332 cycles. It is worth-
mentioning that s is at least 256 in order to achieve security level 2−80.
The gap between a symmetric operation and an asymmetric one be-
comes even smaller when modern libraries such as RELIC are used
instead of PBC.

and-choose OT require O(ns) group operations, while
the random input replacement approach needs only O(s)
group operations. Furthermore, we observe that the ran-
dom input replacement approach is in fact compatible
with the OT extension technique. Therefore, we were
able to build our system which has the group operation
complexity independent of the evaluator’s input size, and
as a result, our system is particularly attractive when han-
dling a circuit with a large evaluator input.

Generator’s Output Authenticity It is not uncommon
that both the generator and evaluator receive outputs
from a secure computation, that is, the goal function is
f (x,y) = (f1, f2), where the generator with input x gets
output f1, and the evaluator with input y gets f2.2 In
this case, the security requires that both the input and
output are hidden from each other. In the semi-honest
setting, the straightforward solution is to let the gener-
ator choose a random number c as an extra input, con-
vert f (x,y) = (f1, f2) into a new function f ∗((x,c),y) =
(λ ,(f1⊕c, f2)), run the original Yao protocol for f ∗, and
instruct the evaluator to pass the encrypted output f1⊕ c
back to the generator, who can then retrieve her real out-
put f1 with the secret input c chosen in the first place.
However, the situation gets complicated when either of
the participants could potentially be malicious. In partic-
ular, a malicious evaluator might claim an arbitrary value
to be the generator’s output coming from the circuit eval-
uation. Note that the two-output protocols we consider
are not fair since the evaluator always learns her own out-
put and may refuse to send the generator’s output. How-
ever, they can satisfy the notion that the evaluator cannot
trick the generator into accepting arbitrary output.

Many approaches have been proposed to ensure the
generator’s output authenticity. Lindell and Pinkas [23]
proposed a solution similar to the aforementioned so-
lution in the semi-honest setting, where the goal func-
tion is modified to compute f1⊕ c and its MAC so that
the generator can verify the authenticity of her output.
This approach incurs a cost of adding O(n2) gates to
the circuit. Kiraz [18] presented a two-party computa-
tion protocol in which a zero knowledge proof of size
O(s) is conducted at the end. shelat and Shen [33] sug-
gested a signature-based solution which, similar to Ki-
raz’s, adds n gates to the circuit, and requires a proof of
size O(s+ n) at the end. However, they observed that
witness-indistinguishable proofs are sufficient.

Lindell and Pinkas’ approach, albeit straightforward,
might introduce greater communication overhead than
the description function itself. We therefore employ the
approach that takes the advantages of the remaining two
solutions. In particular, we implement Kiraz’s approach

2Here f1 and f2 are short for f1(x,y) and f2(x,y) for simplicity.

5
825

Approved for Public Release; Distribution Unlimited.

(smaller proof size), but only a witness-indistinguishable
proof is performed (weaker security property).

4 Techniques Regarding Performance

Yao’s garbled circuit technique has been studied for
decades. It has drawn significant attention for its sim-
plicity, constant round complexity, and computational ef-
ficiency (since circuit evaluation only requires fast sym-
metric operations). The fact that it incurs high communi-
cation overhead has provoked interest that has led to the
development of fruitful results.

In this section, we will first briefly present the Yao
garbled circuit, and then discuss the optimization tech-
niques that greatly reduce the communication cost while
maintaining the security. These techniques include free-
XOR, garbled row reduction, random seed checking, and
large circuit pre-processing. In addition to these original
ideas, practical concerns involving large circuits and par-
allelization will be addressed.

4.1 Baseline Yao’s Garbled Circuit
Given a circuit that consists of 2-fan-in boolean gates,
the generator constructs a garbled version as follows: for
each wire w, the generator picks a random permutation
bit πw ∈ {0,1} and two random keys w0,w1 ∈ {0,1}k−1.
Let W0 = w0||πw and W1 = w1||(πw⊕ 1), which are as-
sociated with bit value 0 and 1 of wire w, respectively.
Next, for gate g ∈ { f | f : {0,1}×{0,1} 7→ {0,1}} that
has input wire x with (X0,X1,πx), input wire y with
(Y0,Y1,πy), and output wire z with (Z0,Z1,πz), the gar-
bled truth table for g has four entries:

GT Tg

Enc(X0⊕πx ||Y0⊕πy , Zg(0⊕πx,0⊕πy))

Enc(X0⊕πx ||Y1⊕πy , Zg(0⊕πx,1⊕πy))

Enc(X1⊕πx ||Y0⊕πy , Zg(1⊕πx,0⊕πy))

Enc(X1⊕πx ||Y1⊕πy , Zg(1⊕πx,1⊕πy)).

Enc(K,m) denotes the encryption of message m under
key K. Here the encryption key is a concatenation of two
labels, and each label is a random key concatenated with
its permutation bit. Intuitively, πx and πy permute the
entries in GT Tg so that for ix, iy ∈ {0,1}, the (2ix + iy)-th
entry represents the input pair (ix⊕πx, iy⊕πy) for gate g,
in which case the label associated with the output value
g(ix⊕πx, iy⊕πy) could be retrieved. More specifically,
to evaluate the garbled gate GT Tg, suppose X ||bx and
Y ||by are the retrieved labels for input wire x and wire
y, respectively, the evaluator will use X ||bx||Y ||by to de-
crypt the (2bx + by)-th entry in GT Tg and retrieve label
Z||bz, which is then used to evaluate the gates at the next
level. The introduction of the permutation bit helps to
identify the correct entry in GT Tg, and thus, only one,
rather than all, of the four entries will be decrypted.

4.2 Free-XOR
Kolesnikov and Schneider [20] proposed the free-XOR
technique that aims for removing the communication
cost and decreasing the computation cost for XOR gates.

The idea is that the generator first randomly picks a
global key R, where R = r||1 and r ∈ {0,1}k−1. This
global key has to be hidden from the evaluator. Then
for each wire w, instead of picking both W0 and W1 at
random, only one is randomly chosen from {0,1}k, and
the other is determined by Wb = W1⊕b ⊕ R. Note that
πw remains the rightmost bit of W0. For an XOR gate
having input wire x with (X0,X0 ⊕ R,πx), input wire y
with (Y0,Y0⊕R,πy), and output wire z, the generator lets
Z0 = X0⊕Y0 and Z1 = Z0⊕R. Observe that

X0⊕Y1 = X1⊕Y0 = X0⊕Y0⊕R = Z0⊕R = Z1

X1⊕Y1 = X0⊕R⊕Y0⊕R = X0⊕Y0 = Z0.

This means that while evaluating an XOR gate, XORing
the labels for the two input wires will directly retrieve
the label for the output wire. So no garbled truth table
is needed, and the cost of evaluating an XOR gate is re-
duced from a decryption operation to a bitwise XOR.

This technique is only secure when the encryption
scheme satisfies certain security properties. The solution
provided by the authors is

Enc(X ||Y,K) = H(X ||Y)⊕Z,

where H : {0,1}2k 7→ {0,1}k is a random oracle. Re-
cently, Choi et al. [6] have further shown that it is
sufficient to instantiate H(·) with a weaker crypto-
graphic primitive, 2-circular correlation robust func-
tions. Our system instantiates this primitive with
H(X ||Y) = SHA-256(X ||Y). However, when AES-NI
instructions are available, our system instantiates it with
Hk(X ||Y) =AES-256(X ||Y,k),where k is the gate index.

4.3 Garbled Row Reduction
The GRR (Garbled Row Reduction) technique suggested
by Pinkas et. al [31] is used to reduce the communication
overhead for non-XOR gates. In particular, it reduces the
size of the garbled truth table for 2-fan-in gates by 25%.

Recall that in the baseline Yao’s garbled circuit, both
the 0-key and 1-key for each wire are randomly chosen.
After the free-XOR technique is integrated, the 0-key and
1-key for an XOR gate’s output wire depend on input key
and R, but the 0-key for a non-XOR gate’s output wire is
still free. The GRR technique is to make a smart choice
for this degree of freedom, and thus, reduce one entry in
the garbled truth table to be communicated over network.

In particular, the generator picks (Z0,Z1,πz) by letting
Zg(0⊕πx,0⊕πy) = H(X0⊕πx ||Y0⊕πy), that is, either Z0 or Z1

6
826

Approved for Public Release; Distribution Unlimited.

is assigned to the encryption mask for the 0-th entry of
the GT Tg, and the other one is computed by the equa-
tion Zb = Z1⊕b⊕R. Therefore, when the evaluator gets
(X0 πx ,Y0 πy), both X0 πx and Y0 πy have rightmost bit
0, indicating that the 0-th entry needs to be decrypted.
However, with GRR technique, she is able to retrieve
Zg(0⊕πx,0⊕πy) by running H(·) without inquiring GT Tg.

Pinkas et al. claimed that this technique is compatible
with the free-XOR technique [31]. For rigorousness pur-
poses, we carefully went through the details and came
up with a security proof for our protocol that confirms
this compatibility. The proof will be included in the full
version of this paper.

4.4 Random Seed Checking
Recall that the cut-and-choose approach requires the
generator to construct multiple copies of the garbled cir-
cuit, and more than half of these garbled circuits will
be fully revealed, including the randomness used to con-
struct the circuit. Goyal, Mohassel, and Smith [11] there-
fore pointed out an insight that the evaluator could exam-
ine the correctness of those check circuits by receiving
a hash of the garbled circuit first, acquiring the random
seed, and reconstructing the circuit and hash by herself.

This technique results in the communication overhead
for check circuits independent of the circuit size. This
technique has two phases that straddle the coin-flipping
protocol. Before the coin flipping, the generator con-
structs multiple copies of the circuit as instructed by the
cut-and-choose procedure. Then the generator sends to
the evaluator the hash of each garbled circuit, rather than
the circuit itself. After the coin flipping, when the eval-
uation circuits and the check circuits are determined, the
generator sends to the evaluator the full description of
the evaluation circuits and the random seed for the check
circuits. The evaluator then computes the evaluation cir-
cuits and tests the check circuits by reconstructing the
circuit and comparing its hash with the one received ear-
lier. As a result, even for large circuits, the communi-
cation cost for each check circuit is simply a hash value
plus the random seed. Our system provides that 60% of
the garbled circuits are check circuits. As a result, this
optimization significantly reduces communication over-
head.

4.5 Working with Large Circuits
A circuit for a reasonably complicated operation can eas-
ily consist of hundreds of millions of gates. For example,
a 1023-bit edit distance circuit has 309,454,016 gates.
When circuits grow to such a size, the task of achieving
high performance secure computation becomes challeng-
ing.

An (I + 2C)-time solution Our solution for handling
large circuits is based on Huang et. al’s work [13], which
is the only prior work capable of handling large circuits
(of up to 1.2 billion non-XOR gates) in the semi-honest
setting. Intuitively, the generator could work with the
evaluator in a pipeline manner so that small chunks of
gates are being processed at a time. The generator could
start to work on the next chunk while the evaluator is still
processing the current one. However, this technique does
not work directly with the random seed checking tech-
nique described above in §4.4 because the generator has
to finish circuit construction and hash calculation before
the coin flipping, but the evaluator could start the evalua-
tion only after the coin flipping. As a result, the generator
needs a way to construct the circuit first, wait for the coin
flipping, and send the evaluation circuits to the evaluator
without keeping them in memory the whole time. We
therefore propose that the generator constructs the eval-
uation circuits all over again after the coin flipping, with
the same random seed used before and the same keys for
input wires gotten from OT.

We stress that when fully parallelized, the second con-
struction of an evaluation circuit does not incur overhead
to the overall execution time. Although we suggest to
construct an evaluation circuit twice, the fact is that ac-
cording to the random seed checking, a check circuit is
already being constructed twice—once before the coin
flipping by the generator for hash computation and once
after by the evaluator for correctness verification. As a
result, when each generator-evaluator pair is working on
a single copy of the garbled circuit, the constructing time
for a evaluation circuit totally overlaps with that for a
check circuit. We therefore achieve the overall computa-
tion time I+2C mentioned earlier, where the first C is for
the generator to calculate the circuit hash, and the other
C is either for the evaluator to reconstruct a check circuit
or for both parties to work on an evaluation circuit in a
pipeline manner as suggested by Huang et. al [13].

Achieving an (I +C)-time solution We observe that
there is a way to achieve I +C computation time, which
exactly matches the running time of Yao in the semi-
honest setting. This idea, however, is not compatible
with the random-seed technique, and therefore repre-
sents a trade-off between communication and computa-
tion. Recall that the generator has to finish circuit con-
struction and hash evaluation before beginning coin flip-
ping, whereas the evaluator can start evaluating only af-
ter receiving the coin flipping results. The idea is to run
the coin flipping in the way that only the evaluator gets
the result and does not reveal it to the generator until the
circuit construction is completed. Since the generator
is oblivious to the coin flipping result, she sends every
garbled circuit to the evaluator, who could then either

7
827

Approved for Public Release; Distribution Unlimited.

evaluate or check the received circuit. In order for the
evaluator to get the generator’s input keys for evaluation
circuits and the random seed for the check circuits, they
run an OT, where the evaluator uses the coin flipping re-
sult as input and the generator provides either the ran-
dom seed (for the check circuit) or his input keys (for the
evaluation circuit). After the generator completes circuit
construction and reveals the circuit hash, the evaluator
compares the hash with her own calculation, if the hashes
match, she proceeds with the rest of the original protocol.
Note that this approach comes at the cost of sacrificing
the random seed checking technique and its 60% savings
in communication.

Working Set Optimization Another problem encoun-
tered while dealing with large circuits is the working
set minimization problem. Note that the circuit value
problem is log-space complete for P. It is suspected that
L 6= P, that is, there exist some circuits that can be eval-
uated in polynomial time but require more than logarith-
mic space. This open problem captures the difficulty of
handling large circuits during both the construction and
evaluation, where at any moment there is a set of wires,
called the working set, that are available and will be ref-
erenced in the future. For some circuits, the working set
is inherently super-logarithmic. A naive approach is to
keep the most recent D wires in the working set, where
D is the upper bound of the input-output distance of all
gates. However, there may be wires which are used as
inputs to gates throughout the entire circuit, and so this
technique could easily result in adding almost the whole
circuit to the working set, which is especially problem-
atic when there are hundreds of copies of a circuit of
billions of gates. While reordering the circuit or adding
identity gates to minimize D would mitigate this prob-
lem, doing so while maintaining the topological order of
the circuit is known to be an NP-complete problem, the
graph bandwidth problem [9].

Our solution to this difficulty is to pre-process the cir-
cuit so that each gate comes with a usage count. Our
system has a compiler that converts a program in high-
level language into a boolean circuit. Since the compiler
is already using global optimization in order to reduce
the circuit size, it is easy for the global optimizer to an-
alyze the circuit and calculate the usage count for each
gate. With this information, it is easy for the genera-
tor and evaluator to decrement the counter for each gate
whenever it is being referenced and to toss away the gate
whenever its counter becomes zero. In other words, we
keep track of merely useful information and heuristically
minimize the size of the working set, which is small com-
pared with the originial circuit size as shown in Table 1.

AES Dot64
4 RSA-32 EDT-255

circuit size 49,912 460,018 1,750,787 15,540,196
wrk set size 323 711 235 2,829

Table 1: The size of the working set for various circuits

5 Boolean Circuit Compiler

Although the Fairplay circuit compiler can generate cir-
cuits, it requires a very large amount of computational
resources to generate even relatively small circuits. Even
on a machine with 48 gigabytes of RAM, Fairplay ter-
minates with an out-of-memory error after spending 20
minutes attempting to compile an AES circuit. This
makes Fairplay impractical for even relatively small cir-
cuits, and infeasible for some of the circuits tested in this
project. One goal of this project was to have a general
purpose system for secure computation, and so writing
application specific programs to generate circuits, a tech-
nique used by others [13], was not an option.

To address this problem, we have implemented a new
compiler that generates a more efficient output format
than Fairplay, and which requires far lower computa-
tional resources to compile circuits. We were able to
generate the AES circuit in only a few seconds on a typi-
cal desktop computer with only 8GB of RAM, and were
able to generate and test much larger non-trivial circuits.
We used the well-known flex and bison tools to generate
our compiler, and implemented an optimizer as a sepa-
rate tool. We also use the results from [31] to reduce 3
arity gates to 2 arity gates.

As a design decision, we created an imperative, un-
typed language with static scoping. We allow code, vari-
ables, and input/output statements to exist in the global
scope; this allows very simple programs to be written
without too much extra syntax. Functions may be de-
clared, but may not be recursive. Variables do not need to
be declared before being used in an unconditional assign-
ment; variables assigned within a function’s body that are
not declared in the global scope are considered to be lo-
cal. Arrays are a language feature, but array indices must
be constants or must be determined at compile time. If
run-time determined indices are required for a function,
a loop that selects the correct index may be used; this is
necessary for oblivious evaluation. Variables may be ar-
bitrarily concatenated, and bits or groups of bits may be
selected from any variable and bits or ranges of bits may
be assigned to; as with arrays, the index of a bit must be
determined at compile time, or else a loop must be used.
Note that loop variables may be used as such an index,
since loops are always completely unrolled, and there-
fore the loop index can always be resolved at compile
time. Additional language features are planned as future

8
828

Approved for Public Release; Distribution Unlimited.

work.
We use some techniques from the Fairplay compiler

in our own compiler. In particular we use the single as-
signment algorithm from Fairplay, which is required to
deal with assignments that occur inside of if statements.
Otherwise, our compiler has several distinguishing char-
acteristics that make it more resource efficient than Fair-
play. The front end of our compiler attempts to gener-
ate circuits as quickly as possible, using as little memory
as possible and performing only rudimentary optimiza-
tions before emitting its output. This can be done with
very modest computational resources, and the intermedi-
ate output can easily be translated into a circuit for evalu-
ation. The main optimizations are performed by the back
end of the compiler, which identifies gates that can be
removed without affecting the output of the circuit as a
whole.

Unlike the Fairplay compiler, we avoided the use of
hash tables in our compiler, using more memory-efficient
storage. Our system can use one of three storage strate-
gies: memory-mapped files, flat files without any map-
ping, and Berkeley DB. In our tests, we found that mem-
ory mapped files always resulted in the highest perfor-
mance, but that Berkeley DB is only sometimes better
than direct access without any mapping.

In the following sections, we describe these contribu-
tions in more detail, and provide experimental results.

5.1 Circuit Optimizations

The front-end of our compiler tends to generate ineffi-
cient circuits, with large numbers of unnecessary gates.
As an example, for some operations the compiler gener-
ates large numbers of identity gates i.e. gates whose out-
puts follow one of their inputs. It is therefore essential
to optimize the circuits emitted by the front end, particu-
larly to meet our system’s overall goal of practicality.

Our compiler uses several stages of optimization, most
of which are global. As a first step, a local optimiza-
tion removes redundant gates, i.e. gates that have the
same truth table and input wires. This first step operates
on a fixed-size chunk of the circuit, but we have found
that there are diminishing improvements as the size of
this window is increased.We also remove constant gates,
identity gates, and inverters, which are generated by the
compiler and which may be inadvertently generated dur-
ing the optimization process. Finally, we remove gates
that do not influence the output, which can be thought
of as dead code elimination. The effectiveness of each
optimization on different circuits is shown in Figure 1.
The circuit that was least optimizable was the edit dis-
tance circuit, being reduced to only 82% of its size from
the front end, whereas the RSA signing and the dot prod-
uct circuits were the most optimizable, being reduced to

roughly half of the gates emitted by the front end.

Gate Removal The front-end of the compiler emits
gates in topological order, and similar to Fairplay, our
compiler assigns explicit identifiers to each emitted gate.
To remove gates efficiently, we store a table that maps
the identifiers of gates that were removed to the previ-
ously emitted gates, and for each gate that is scanned
the inputs are rewritten according to this table. The ta-
ble itself is then emitted, so that the identifiers of non-
removed gates can be corrected. This mapping process
can be done in linear time and space using an appropriate
key-value store.

Removing Redundant Gates Some of the gates gen-
erated by the front end of our compiler have the same
truth table and input wires as previously generated gates;
such gates are redundant and can be removed. This re-
moval process has the highest memory requirement of
any other optimization step, since a description of ev-
ery non-redundant gate must be stored. However, we
found during our experiments that this optimization can
be performed on discrete chunks of the circuit with re-
sults that are very close to performing the optimization
on the full circuit, and that there are diminishing im-
provements in effectiveness as the size of the chunks is
increased. Therefore, we perform this optimization us-
ing chunks, and can use hash tables to improve the speed
of this step.

Removing Identity Gates and Inverters The front
end may generate identity gates or inverters, which are
not necessary. This may happen inadvertently, such as
when a variable is incremented by a constant, or as part
of the generation of a particular logic expression. While
removing identity gates is straightforward, the removal
of inverters requires more work, as gates which have in-
verted input wires must have their truth tables rewritten.
There is a cascading effect in this process; the removal of
some identity gates or inverters may transform later gates
into identity gates or inverters. This step also removes
gates with constant outputs, such as an XOR gate with
two identical inputs. Constant propagation and folding
occur as a side effect of this optimization.

Removing Unused Gates Finally, some gates in the
circuit may not affect the output value at all. For this
step, we scan the circuit backwards, and store a table of
live gates; we then re-emit the live gates in the circuit
and skip the dead gates. Immediately following this step,
the circuit is prepared for the garbled circuit generator,
which includes generating a usage count for each gate.

9
829

Approved for Public Release; Distribution Unlimited.

Figure 1: Average fraction of circuits remaining after each optimization is applied in sequence. We see that the relative
change in circuit sizes after each optimization is dependent on the circuit itself, with some circuits being optimized
more than others.

Circuit DB (s) mmap (s) flat (s)

7200RPM Spinning Disk (ext4-fs)

AES 4.3±0.5% 1.05±1% 3.48±0.3%

RSA-32 103±0.3% 24.6±0.2% 78.4±0.3%

Dot64
4 32.56±0.1% 7.1±0.3% 28.37±0.1%

EDT-255 975±0.1% 240±1% 700±0.9%

Solid-State Drive

AES 3.62±0.3% 0.86±1% 3.17±0.6%

RSA-32 96.5±0.2% 21.6±0.4% 68.3±0.3%

Dot64
4 30.5±0.5% 6.27±1% 25.9±0.2%

EDT-255 907±0.1% 200 ±0.4% 590±1%

Amazon EC2

AES 5.56±4% 1.12±0% 7.11±0.3%

RSA-32 208±0.4% 45.7±3% 240±0.1%

Dot64
4 46.3±0.1% 9.2±0.2% 60.7±0.2%

EDT-255 2500±1% 405±0.2% 2050±0.2%

Circuit Sizes

AES RSA-32 Dot64
4 EDT-255

49,912 1,750,787 460,018 15,540,196

Table 2: Compile times for different storage systems for
small circuits (sizes include input gates), using differ-
ent storage media. Results are averaged over 30 experi-
ments, with 95% confidence intervals. On EC2, a high-
memory quadruple extra large instance was used.

Key-Value Stores Unfortunately, even though our
compiler is more resource efficient than Fairplay, it still
requires space that is linear in the size of the circuit. For
very large circuits, circuits with billions of gates or more,
this may exceed the amount of RAM that is available.
Our compiler can make use of a computer’s hard drive to
store intermediate representations of circuits and infor-
mation about how to remove gates from the circuit. We
used memory-mapped I/O to reduce the impact this has
on performance; however, our use of mmap and ftruncate
is not portable, and so our system also supports using an
unmapped file or Berkeley DB. Our tests revealed that,
as expected, memory-mapped I/O achieves the highest
performance, but that Berkeley DB is sometimes better
than unmapped files on high-latency filesystems. A sum-
mary of the performance of each method on a variety of
storage systems is shown in Table 2.

Using the hard drive in this manner, we were able
to compile our largest circuits. The performance im-
pact of writing to disk should not be understated; a
several-billion-gate edit distance 4095x4095 circuit re-
quired more than 3 days to compile on an Amazon EC2
high-memory image, with 68 GB of RAM, one third of
which was spent waiting on I/O. Note, however, that this
is a one-time cost; a compiled circuit can be used in un-
limited evaluations of a secure computation protocol.

5.2 Compiler Testing Methodology
We tested the performance of our compiler using five cir-
cuits. The first was AES, to compare our compiler with
the Fairplay system. We also used AES with the com-
pact S-Box description given by Boyar and Parelta [3],
which results in a smaller AES circuit. We used an RSA

10
830

Approved for Public Release; Distribution Unlimited.

RSA Size Circuit Size Compile Time (s) Gates/s Edit-Dist Size Circuit Size Compile Time (s) Gates/s

16 208,499 2.6±7 % 80,000 31x31 144,277 1.70±0.7% 84,900
32 1,750,787 21.6±0.4% 81,100 63x63 717,233 8.56±0.7% 83,800
64 14,341,667 189 ±0.3% 75,900 127x127 3,389,812 41.7±0.5% 81,300
128 116,083,983 1810 ±0.3% 64,100 255x255 15,540,196 200 ±0.4% 77,700

Table 3: Time required to compile and optimize RSA and edit distance circuits on a workstation with an Intel Xeon
5506 CPU, 8GB of RAM and a 160GB SSD, using the textbook modular exponentiation algorithm. Note that the
throughput for edit distance is higher even for comparably sized circuits; this is because the front end generates a more
efficient circuit without any optimization. Compile times are averaged over 30 experiments, with 95% confidence
intervals reported.

signing circuit with various toy key sizes, up to 128 bits,
to test our compiler’s handling of large circuits; RSA cir-
cuits have cubic size complexity, allowing us to generate
very large circuits with small inputs. We also used an edit
distance circuit, which was the largest test case used by
Huang et al. [13]; unlike the other test circuits, there is no
multiplication routine in the inner loop of this function.
Finally we used a dot product with error, a basic sam-
pling function for the LWE problem, which is similar to
RSA in creating large circuits, but also demonstrates our
system’s ability to handle large input sizes.

After compiling these circuits, we tested the correct-
ness by first performing a direct, offline evaluation of the
circuit, and comparing the output to a non-circuit imlpe-
mentation. We then compared the output of an online
evaluation to the offline evaluation. Additionally, for the
AES circuit, we compared the output of the circuit gener-
ated by our compiler to the output of a circuit generated
using Fairplay. We tested all three key-value stores on a
variety of filesystems, including a fast SSD, a spinning
disk, and an Amazon EC2 instance store, checking for
correctness as described above in each case.

5.3 Summary of Compiler Performance

Our compiler is able to emit and optimize large circuits
in relatively short periods of time, less than an hour for
circuits with tens of millions of gates on an inexpensive
workstation. In Figure 1 we summarize the effectiveness
of the various optimization stages on different circuits;
in circuits that involve multiplication in finite fields or
modulo an integer, the identity gate removal step is the
most important, removing more than half of the gates
emitted by the front-end. The edit distance circuit is the
best-case for our front end, as less than 1/5 of the gates
that are emitted can be removed by the optimizer. The
throughput of our compiler is dependent on the circuit
being compiled, with circuits which are more efficiently
generated by the front-end being compiled faster; in Ta-
ble 3 we compare the generation of RSA circuits to edit
distance circuits.

6 Experimental Results

In this section, we give a detailed description of our
system, upon which we have implemented various real
world secure computation applications. The experimen-
tal environment is the Ranger cluster in the Texas Ad-
vanced Computing Center. Ranger is a blade-based sys-
tem, where each node is a SunBlade x6240 blade run-
ning a Linux kernel and has four AMD Opteron quad-
core 64-bit processors, as an SMP unit. Each node in the
Ranger system has 2.3 GHz core frequency and 32 GB of
memory, and the point-to-point bandwidth is 1 GB/sec.
Although Ranger is a high-end machine, we use only a
small fraction of its power for our system, only 512 out of
62,976 cores. Note that we use the PBC (Pairing-Based
Cryptography) library [25] to implement the underly-
ing cryptographic protocols such as oblivious transfers,
witness-indistinguishable proofs, and so forth. However,
moving to more modern libraries such as RELIC [32] is
likely to give even better results, especially to those cir-
cuits with large input and output size.

System Setup In our system, both the generator and
the evaluator run an equal number of processes, includ-
ing a root process and many slave processes. A root pro-
cess is responsible for coordinating its own slave pro-
cesses and the other root process, while the slave pro-
cesses work together on repeated and independent tasks.
There are three pieces of code in our system: the genera-
tor, the evaluator, and the IP exchanger. Both the genera-
tor’s and evaluator’s program are implemented with Mes-
sage Passing Interface (MPI) library. The reason for the
IP exchanger is that it is common to run jobs on a cluster
with dynamic working node assignment. However, when
the nodes are dynamically assigned, the generator run-
ning on one cluster and the evaluator running on another
might have a hard time locating each other. Therefore,
a fixed location IP exchanger helps the match-up pro-
cess as described in Figure 2. Our system provides two
modes—the user mode and the simulation mode. The
former works as mentioned above, and the latter simply

11
831

Approved for Public Release; Distribution Unlimited.

spawns an even number of processes, half for the gen-
erator and the other half for the evaluator. The network
match-up process is omitted in the latter mode to sim-
plify the testing of this system.

To achieve a security level of 2−80, meaning that a ma-
licious player cannot successfully cheat with probability
better than 2−80, requires at least 250 copies of the gar-
bled circuit [33]. For simplicity, we used 256 copies in
our experiments, that is, security parameters k = 80 and
s= 256. Each experiment was run 30 times (unless stated
otherwise), and in the following sections we report the
average runtime of our experiments.

1 4

32

5

5
5

5

Evl Gen

IP server

Figure 2: Both the generator and evaluator consist of a
root process (solid dot) and a number of slave processes
(hollow dots). The match-up works as follows: the slave
evaluator processes send their IP’s to the root evaluator
process (Step 1), who then forwards them to the IP ex-
changer (Step 2). Next, the root generator process comes
to acquire these IP’s (Step 3) and dispatch them to its
slaves (Step 4), who then proceed to pair up with one of
the slave evaluator processes (Step 5) and start the main
protocol. The arrows show the message flow.

Timing methodology When there is more than one
process on each side, care must be taken in measuring
the timings of the system. The timings reported in this
section are the time required by the root process at each
stage of the system. This was chosen because the root
process will always be the longest running process, as
it must wait for each slave process to run to completion.
Moreover, in addition to doing all the work that the slaves
do, the root processes also perform the input consistency
check and the coin tossing protocol.

Impacts of the Performance Optimization Techniques
We have presented several performance optimization
techniques in Section 4 with theoretical analyses, and
here we demonstrate their empirical effectiveness in Ta-
ble 4. As we have anticipated, the Random Seed Check-
ing reduces the communication cost for the garbled cir-
cuits by 60%, and the Garbled Row Reduction further
reduces by another 25%. In the RS and GRR columns,

the small deviation from the theoretical fraction 40%
and 30%, respectively, is due to certain implementation
needs. Our compiler is designed to reduce the number of
non-XOR gates. In these four circuits, the ratio of non-
XOR gates is less than 43%. So after further applying
the Free-XOR technique, the final communication is less
than 13% of that in the baseline approach.

non-XOR Baseline RS GRR FX
(%) (MB) (%) (%) (%)

AES 30.81 509 39.97 30.03 9.09
Dot64

4 29.55 4,707 39.86 29.91 8.88
RSA-32 34.44 17,928 39.84 29.88 10.29
EDT-255 41.36 159,129 39.84 29.87 12.36

Table 4: The impact of various optimization techniques:
The Baseline shows the communication cost for 256
copies of the original Yao garbled circuit when k = 80;
RS shows the remaining fraction after Random Seed
technique is applied; GRR shows when Garbled Row Re-
duction is further applied; and FX shows when the previ-
ous two techniques and the Free-XOR are applied. (The
communication costs here only include those in the gen-
eration and evaluation stages.)

Performance Gain by AES-NI On a machine with
2.53 GHz Intel Core i5 processor and 4GB 1067 MHz
DDR3 memory, it takes 784 clock cycles to run a single
SHA-256 (with OpenSSL 1.0.0g), while it needs only
225 cycles for AES-256 (with AES-NI). To measure the
benefits of AES-NI, we use two instantiations to con-
struct various circuits, listed in Table 5, and observe a
consistent 20% saving in circuit construction.3

size AES-NI SHA-256 Ratio
(gate) (sec) (sec) (%)

AES 49,912 0.12± 1% 0.15± 1% 78.04
Dot64

4 460,018 1.11±0.4% 1.41±0.5% 78.58
RSA-32 1,750,787 4.53±0.5% 5.9±0.8% 76.78
EDT-255 15,540,196 42.0±0.5% 57.6± 1% 72.92

Table 5: Circuit generation time (for a single copy) with
different instantiations (AES-NI vs SHA-256) of the 2-
circular correlation robust function.

AES We used AES as a benchmark to compare our
compiler to the Fairplay compiler, and as a test circuit

3The reason that saving 500+ cycles does not lead to more improve-
ments is that this encryption operation is merely one of the contributing
factors to generating a garbled gate. Other factors, for example, in-
clude GNU hash map table insertion (∼1,200 cycles) and erase (∼600
cycles).

12
832

Approved for Public Release; Distribution Unlimited.

for our system. We tested the full AES circuit, as spec-
ified in FIPS-197 [8]. In the semi-honest model, it is
possible to reduce the number of gates in an AES circuit
by computing the key schedule offline; e.g. this is one of
the optimizations employed by Huang et al. [13]. In the
malicious model, however, such an optimization is not
possible; the party holding the key could attempt to re-
duce the security level of the cipher by computing a ma-
licious key schedule. So in our experiments we compute
the entire function, including the key schedule, online.

In this experiment, two parties collaboratively com-
pute the function f : (x,y) 7→ (⊥,AESx(y)), i.e., the cir-
cuit generator holds the encryption key x, while the eval-
uator has the message y to be encrypted. At the end, the
generator will not receive any output, whereas the evalu-
ator will receive the ciphertext AESx(y).

Type Fairplay Ours-A Pinkas et al. Ours-B

non-XOR 15,316 15,300 11,286 9,100
XOR 35,084 34,228 22,594 21,628

Table 6: The components of the AES circuits from dif-
ferent sources. Ours-A comes from the textbook AES
algorithm, and Ours-B uses an optimized S-box circuit
from [3]. (Sizes do not include input or output wires)

First of all, we demonstrate the performance of our
compiler in Table 6. We have shown in Section 5 that
our compiler is capable of large circuit generation. We
also found in our experiments that our compiler produces
smaller AES circuit than Fairplay. Given the same high-
level description of AES encryption (textbook AES), our
compiler produces a circuit with a smaller gate count and
even fewer non-XOR gates. When applying the compact
S-Box description proposed by Boyar and Parelta [3]
to the high-level description as input to our compiler, a
smaller AES circuit than the hand-optimized one from
Pinkas et al. is generated with less effort.

In Table 7, both the computational and communica-
tion costs for each main stage are listed under the tradi-
tional setting, where there is only one process on each
side. These main stages include oblivious transfer, gar-
bled circuit construction, the generator’s input consis-
tency check, and the circuit evaluation. Each row in-
cludes both the computation and communication time
used. Note that network conditions could vary from set-
ting to setting. Our experiments run in a local area net-
work, and the data can only give a rough idea on how fast
the system could be in an ideal environment. However,
the precise amount of data being exchanged is reported.

We notice in Table 7 that the evaluator spends an un-
reasonable amount of time on communication with re-
spect to the amount of data to be transmitted in both
the oblivious transfer and circuit construction stages.

Gen Eval Comm
(sec) (sec) (KB)

OT
comp 45.8±0.09% 34.0±0.2%

5,516
comm 0.1± 1% 11.9±0.6%

Gen.
comp 35.6± 0.5% –

3
comm – 35.6±0.5%

Inp. comp – 1.75±0.2%
266

Chk comm – –

Evl.
comp 14.9± 0.6% 32.4±0.4%

28,781
comm 18.2± 1% 3.2±0.8%

Total
comp 96.3± 0.3% 68.0±0.2%

34,566
comm 18.3± 1% 50.8±0.4%

Table 7: The 95% two-sided confidence intervals of the
computation and communication time for each stage in
the experiment (x,y) 7→ (⊥,AESx(y)).

This is because the evaluator spends that time waiting
for the generator to finish computation-intensive tasks.
The same reasoning explains why in the circuit evalu-
ation stage the generator spends more time in commu-
nication than the evaluator. This waiting results from
the fact that both parties need to run the protocol in a
synchronized manner. A generator-evaluator pair can-
not start next communication round while any other pair
has not finished the current one. This synchronization is
crucial since our protocol’s security is guaranteed only
when each communication round is performed sequen-
tially. While the parallelization of the program intro-
duces high performance execution, it does not and should
not change this essential property. A stronger notion
of security such as universal security will be required if
asynchronous communication is allowed. By using TCP
sockets in “blocking” mode, we enforce this communi-
cation round synchronization.

Note that the low communication during the circuit
construction stage is due to the random seed checking
technique. Also, the fact that the generator spends more
time in the evaluation stage than she traditionally does
comes from the second construction for evaluation cir-
cuits. Recall that only the evaluation circuits need to be
sent to the evaluator. Since only 40% of the garbled cir-
cuits (102 out of 256) are evaluation-circuits, the ratio of
the generator’s computation time in the generation and
evaluation stage is 35.63:14:92 ' 5:2.

We were unfortunately unable to find a cluster of hun-
dreds of nodes that all support AES-NI. Our experimen-
tal results, therefore, do not show the full potential of
all the optimization techniques we have proposed. How-
ever, recall that for certain circuits the running time in
the semi-honest setting is roughly half of that in the

13
833

Approved for Public Release; Distribution Unlimited.

node #
4 16 64 256

Gen Evl Gen Evl Gen Evl Gen Evl

OT 12.56±0.1% 8.41±0.1% 4.06±0.1% 2.13±0.2% 1.96±0.1% 0.58±0.2% 0.64±0.1% 0.19±0.2%
Gen. 8.18±0.4% – 1.92±0.7% – 0.49±0.4% – 0.14± 1% –

Inp. Chk – 0.42± 4% – 0.10± 10% – – – –
Evl. 3.3± 4% 7.08± 1% 0.80± 10% 1.58± 4% 0.23± 17% 0.37± 7% 0.12±0.5% 0.05±0.6%

Inter-com 4± 5% 13.2±0.3% 0.93± 10% 4.08±0.8% 0.31± 20% 1.98± 1% 0.11± 40% 0.72±0.2%
Intra-com 0.17± 30% 0.23± 20% 0.18± 8% 0.25± 6% 0.45± 20% 0.48± 15% 0.34± 30% 0.34± 30%

Total time 28.3±0.3% 29.4±0.3% 7.90±0.5% 8.17±0.4% 3.45± 2% 3.44± 2% 1.4± 10% 1.3± 9%

Table 8: The average and error interval of the times (seconds) running AES circuit. The number of nodes represents
the degree of parallelism on each side. “–” means that the time is smaller than 0.05 seconds. Inter-com refers to the
communication between the two parties, and intra-com refers to communication between nodes for a single party.

malicious setting. We estimate a 20% improvement in
the performance of garbled circuit generation when the
AES-NI instruction set becomes ubiquitous, based on the
preliminary results presented above in Table 5.

Table 8 shows that the Yao protocol really benefits
from the circuit-level parallelization. Starting from Ta-
ble 7, where each side only has one process, all the way
to when each side has 256 processes, as the degree of par-
allelism is multiplied by four, the total time reduces into
a quarter. Note that the communication costs between the
generator and evaluator remain the same, as shown in Ta-
ble 7. It may seem odd that the communication costs are
reduced as the number of processes increase. The real in-
terpretation of this data is that as the number of processes
increases, the “waiting time” decreases.

Notice that as the number of processes increases, the
ratio of the time the generator spends in the construc-
tion and evaluation stage decreases from 5:2 to 1:1. The
reason is that the number of garbled circuit each process
handles is getting smaller and smaller. Eventually, we
reach the limit of the benefits that the circuit-level paral-
lelism could possibly bring. In this case, each process is
dealing with merely a single copy of the garbled circuit,
and the time spent in both the generation and evaluation
stages is the time to construct a garbled circuit.

To the best of our knowledge, completing an execution
of secure AES in the malicious model within 1.4 seconds
is the best result that has ever been reported. The next
best result from Nielsen et al. [29] is 1.6 seconds, and it
is an amortized result (85 seconds for 54 blocks of AES
encryption in parallel) in the random oracle model. This
is only a crude comparison, however; our experimental
setup uses a cluster computer while Nielsen et al. used
only two desktops. A better comparison would be pos-
sible given a parallel implementation of Nielsen et al.’s
system, and we are interested in seeing how much of an
improvement such an implementation could achieve.

Large Circuits In this experiment, we run the 4095-
bit edit distance circuit, that is, (x,y) 7→ (⊥,EDT(x,y)),
where x,y ∈ {0,1}4095. In particular, we use the I +C
approach, where the computation time could be roughly
a half of that of the I+2C approach with the price of not
getting to use the random-seed technique. Recall that in
the I +C approach, the generator and the evaluator con-
duct the cut-and-choose in a way that the generator does
not know the check circuits until she finishes transferring
all the garbled circuits. Next, both the parties run the
circuit generation and evaluation in a pipeline manner,
where one party is generating and giving away garbled
gates on one end, and the other party is evaluating and
checking the received gates at the other end at the same
time. The results are shown in Table 9.

Gen Eval Comm
(sec) (sec) (Byte)

OT
19.73±0.5% 5.26±0.4%

1.7×108
1.1± 6% 15.6±0.6%

Cut-& 1.1±0.8% –
6.5×107

Choose – 1.5± 2%

Gen./Evl.
24,400± 1% 14,600± 3%

1.8×1013
4,900± 1% 14,700± 2%

Inp. 0.6± 20% –
8.5×106

Chk 0.4± 40% 0.60± 20%

Total
24,400± 1% 14,600± 3%

1.8×1013
4,900± 1% 14,700± 2%

Table 9: The result of (x,y) 7→ (⊥,EDT-4095(x,y)).
Each party is comprised of 256 cores in a cluster. This
table comes from 6 invocations of the system. Simi-
larly, the upper row in each stage is the computation time,
while the lower is the communication time.

This circuit generated by our compiler has 5.9 billion
gates, and 2.4 billion of those are non-XOR. It is worth

14
834

Approved for Public Release; Distribution Unlimited.

mentioning that, without the random-seed technique, the
communication cost shown in Table 9 can also be esti-
mated by 256× 2.4× 109× 3× 10 = 1.8× 1013, since
256 copies of the garbled circuits need to be transferred,
each copy has 2.4 billion non-free gates, each non-free
gate has three entries, and each entry has k = 80 bits.

In additional to showing that our system is capable of
handling the largest circuits ever reported, we also have
shown a speed in the malicious setting that is comparable
to those in the semi-honest setting. In particular, we were
able to complete an single execution of 4095-bit edit dis-
tance circuit in less than 8.2 hours with a rate of 82,000
(non-XOR) gates per second. Note that Huang et al.’s
system is the only one, to the best of our knowledge, that
is capable of handling such large circuits [13]; they re-
ported a rate of over 96,000 (non-XOR) gates per second
for an edit-distance circuit in the semi-honest setting.

7 Conclusion

We have presented a general purpose secure two party
computation system which offers security against mali-
cious adversaries and which can efficiently evaluate cir-
cuits with hundreds of millions and even billions of gates
on affordable hardware. Our compiler can generate large
circuits using fewer computational resources than simi-
lar compilers, and offers improved flexibility to users of
the system. Our evaluator can take advantage of parallel
computing resources, which are becoming increasingly
common and affordable. As future work, we plan further
improvements to our compiler and language, as well as
experiments on systems other than Ranger. The source
code for this system can be downloaded from the au-
thors’ website (http://crypto.cs.virginia.edu/),
along with example functions, including those describe
in this paper.

8 Acknowledgements

We would like to thank Benny Pinkas, Thomas Schnei-
der, Nigel Smart and Stephen Williams for providing
us with a copy of their optimized AES circuit. We
would also like to thank Gabriel Robins for his ad-
vice on techniques for minimizing circuits in VLSI
systems. Supported by Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under contract FA8750-11-2-0211.
The views and conclusions contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects
Agency or the US government.

References

[1] BENDLIN, R., DAMGÅRD, I., ORLANDI, C., AND
ZAKARIAS, S. Semi-homomorphic Encryption
and Multiparty Computation. In EUROCRYPT’11
(2011), pp. 169–188.

[2] BOGETOFT, P., CHRISTENSEN, D. L.,
DAMGÅRD, I., GEISLER, M., JAKOBSEN,
T. P., KRØIGAARD, M., NIELSEN, J. D.,
NIELSEN, J. B., NIELSEN, K., PAGTER, J.,
SCHWARTZBACH, M. I., AND TOFT, T. Secure
Multiparty Computation Goes Live. In Financial
Cryptography (2009), pp. 325–343.

[3] BOYAR, J., AND PERALTA, R. A New Combina-
tional Logic Minimization Technique with Appli-
cations to Cryptology. In LNCS, vol. 6049. Springer
Berlin / Heidelberg, 2010, pp. 178–189.

[4] BRICKELL, J., AND SHMATIKOV, V. Privacy-
preserving Graph Algorithms in the Semi-honest
Model. In ASIACRYPT’05 (2005).

[5] CANETTI, R., LINDELL, Y., OSTROVSKY, R.,
AND SAHAI, A. Universally Composable Two-
Party and Multi-Party Secure Computation, 2002.
http://eprint.iacr.org/2002/140.

[6] CHOI, S. G., KATZ, J., KUMARESAN, R., AND
ZHOU, H.-S. On the Security of the “Free-XOR”
Technique, 2011. http://eprint.iacr.org/

2011/510.

[7] DAMGARD, I., PASTRO, V., SMART, N., AND ZA-
KARIAS, S. Multiparty Computation from Some-
what Homomorphic Encryption, 2011. http://

eprint.iacr.org/2011/535.

[8] FIPS. Advanced Encryption Standard (AES), 2001.

[9] GAREY, M. R., GRAHAM, R. L., JOHNSON,
D. S., AND KNUTH, D. E. Complexity Results
for Bandwidth Minimization. SIAM Journal on Ap-
plied Mathematics 34, 3 (1978), pp. 477–495.

[10] GENTRY, C., HALEVI, S., AND SMART, N. P. Ho-
momorphic Evaluation of the AES Circuit, 2012.
http://eprint.iacr.org/2012/099.

[11] GOYAL, V., MOHASSEL, P., AND SMITH, A.
Efficient Two-party and Multi-party Computation
against Covert Adversaries. In EUROCRYPT’08
(2008), Springer-Verlag, pp. 289–306.

[12] HENECKA, W., K OGL, S., SADEGHI, A.-R.,
SCHNEIDER, T., AND WEHRENBERG, I. TASTY:
Tool for Automating Secure Two-partY computa-
tions. In CCS’10 (2010).

15
835

Approved for Public Release; Distribution Unlimited.

[13] HUANG, Y., EVANS, D., KATZ, J., AND MALKA,
L. Faster Secure Two-Party Computation Using
Garbled Circuits. In USENIX Security (2011).

[14] HUANG, Y., MALKA, L., EVANS, D., AND KATZ,
J. Efficient Privacy-Preserving Biometric Identifi-
cation. In NDSS’11 (2011).

[15] ISHAI, Y., KILIAN, J., NISSIM, K., AND PE-
TRANK, E. Extending Oblivious Transfers Ef-
ficiently. In CRYPTO’03, vol. 2729 of LNCS.
Springer Berlin / Heidelberg, 2003, pp. 145–161.

[16] ISHAI, Y., PRABHAKARAN, M., AND SAHAI, A.
Founding Cryptography on Oblivious Transfer Ef-
ficiently. In CRYPTO’08, vol. 5157 of LNCS.
Springer Berlin / Heidelberg, 2008, pp. 572–591.

[17] JHA, S., KRUGER, L., AND SHMATIKOV, V. To-
wards Practical Privacy for Genomic Computa-
tion. In IEEE Symposium on Security and Privacy
(2008).

[18] KIRAZ, M. Secure and Fair Two-Party Compu-
tation. PhD thesis, Technische Universiteit Eind-
hoven, 2008.

[19] KIRAZ, M., AND SCHOENMAKERS, B. A Proto-
col Issue for The Malicious Case of Yao’s Garbled
Circuit Construction. In 27th Symposium on Infor-
mation Theory in the Benelux (2006).

[20] KOLESNIKOV, V., AND SCHNEIDER, T. Improved
Garbled Circuit: Free XOR Gates and Applica-
tions. In ALP’08 (2008), vol. 5126 of LNCS,
pp. 486–498.

[21] LINDELL, Y., OXMAN, E., AND PINKAS, B. The
IPS Compiler: Optimizations, Variants and Con-
crete Efficiency. In CRYPTO’11 (2011), pp. 259–
276.

[22] LINDELL, Y., AND PINKAS, B. Privacy Preserving
Data Mining. Journal of Cryptology 15, 3 (2002).

[23] LINDELL, Y., AND PINKAS, B. An Efficient
Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries. In EURO-
CRYT’07 (2007).

[24] LINDELL, Y., AND PINKAS, B. Secure Two-party
Computation via Cut-and-choose Oblivious Trans-
fer. In TCC’11 (2011), Springer-Verlag, pp. 329–
346.

[25] LYNN, B. Pairing-Based Cryptography Library,
2006. http://crypto.stanford.edu/pbc/.

[26] MALKA, L. VMCrypt: modular software architec-
ture for scalable secure computation. In CCS’11
(2011), pp. 715–724.

[27] MALKHI, D., NISAN, N., PINKAS, B., AND
SELLA, Y. Fairplay: A Secure Two-Party Compu-
tation System. In USENIX Security (2004), vol. 13,
pp. 287–302.

[28] MOHASSEL, P., AND FRANKLIN, M. Efficiency
Tradeoffs for Malicious Two-Party Computation.
In PKC’06 (2006).

[29] NIELSEN, J. B., NORDHOLT, P. S., ORLANDI, C.,
AND BURRA, S. S. A New Approach to Practi-
cal Active-Secure Two-Party Computation, 2011.
http://eprint.iacr.org/2011/091.

[30] OSADCHY, M., PINKAS, B., JARROUS, A., AND
MOSKOVICH, B. SCiFI: A System for Secure Face
Identification. In IEEE Symposium on Security and
Privacy (2010).

[31] PINKAS, B., SCHNEIDER, T., SMART, N., AND
WILLIAMS, S. Secure Two-Party Computation Is
Practical. In ASIACRYPT’09 (2009), vol. 5912 of
LNCS, pp. 250–267.

[32] RELIC, 2012. http://code.google.com/p/

relic-toolkit/.

[33] SHELAT, A., AND SHEN, C.-H. Two-output Se-
cure Computation with Malicious Adversaries. In
EUROCRYPT’11 (2011), pp. 386–405.

[34] YAO, A. Protocols for Secure Computations. In
FOCS’82 (1982), pp. 160–164.

16
836

Approved for Public Release; Distribution Unlimited.

The Knowledge Tightness of Parallel
Zero-Knowledge

Kai-Min Chung?1, Rafael Pass??1, and Wei-Lung Dustin Tseng1

Department of Computer Science, Cornell University, Ithaca, NY, USA.
{chung,rafael,wdtseng}@cs.cornell.edu

Abstract. We investigate the concrete security of black-box zero-knowledge
protocols when composed in parallel. As our main result, we give essen-
tially tight upper and lower bounds (up to logarithmic factors in the
security parameter) on the following measure of security (closely related
to knowledge tightness): the number of queries made by black-box sim-
ulators when zero-knowledge protocols are composed in parallel. As a
function of the number of parallel sessions, k, and the round complexity
of the protocol, m, the bound is roughly k1/m.
We also construct a modular procedure to amplify simulator-query lower
bounds (as above), to generic lower bounds in the black-box concurrent
zero-knowledge setting. As a demonstration of our techniques, we give a
self-contained proof of the o(logn/ log logn) lower bound for the round
complexity of black-box concurrent zero-knowledge protocols, first shown
by Canetti, Kilian, Petrank and Rosen (STOC 2002). Additionally, we
give a new lower bound regarding constant-round black-box concurrent
zero-knowledge protocols: the running time of the black-box simulator
must be at least nΩ(logn).

Keywords: Zero-Knowledge, Knowledge Tightness, Concrete Security, Concur-
rent Zero-Knowledge Lower Bounds.

1 Introduction

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rackoff
[GMR89] are paradoxical constructions allowing one player (called the prover)
to convince another player (called the verifier) of the validity of a mathematical
statement x ∈ L, while providing no additional knowledge to the verifier. In addi-
tion to being an independent construct of interest, zero-knowledge have become
a extremely useful tool in construction of numerous cryptographic protocols.

? Chung is supperted by a Simons Foundation Fellowship.
?? Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty

Fellowship, NSF CAREER Award CCF-0746990, AFOSR YIP Award FA9550-10-
1-0093, and DARPA and AFRL under contract FA8750-11-2-0211. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US government.

837

Approved for Public Release; Distribution Unlimited.

A fundamental question regarding zero-knowledge protocols is whether their
composition remains zero-knowledge. In theoretical constructions as well as in
practice, a zero-knowledge protocol is sometimes composed in parallel (to amplify
soundness or to improve efficiency, for example). It is well know that the defini-
tion of zero-knowledge (ZK) is not closed under parallel composition [GK96b].
On the other hand, we know numerous constructions of constant-round zero-
knowledge protocols that are secure when composed in parallel [FS90,GK96a,Gol02].
As a result, the subject of ZK with respect to parallel composition is widely con-
sidered closed.

We turn our attention to another fundamental question regarding zero-knowledge:
its knowledge tightness. In its original definition, the zero-knowledge property
is formalized by requiring that the view of any probabilistic polynomial time
(PPT) verifier V in an interaction with a prover can be “indistinguishably re-
constructed” by a PPT simulator S that interacts with no one. Since whatever V
“sees” in the interaction can be reconstructed by the simulator, the interaction
does not yield any knowledge to V that V cannot already compute by itself. Be-
cause the simulator is allowed to be an arbitrary PPT machine, this traditional
notion of ZK only guarantees that the class of PPT verifiers learn nothing.

To more concretely measure the knowledge gained by a particular verifier,
Goldreich, Micali and Wigderson [GMW91] (see also [Gol01]) put forward the
notion of knowledge tightness: informally, the “tightness” of a simulation is the
ratio of the (expected) running-time of the simulator, divided by the (worst-case)
running-time of the verifier. Thus, in a knowledge-tight ZK proof, the verifier
is expected to gain no more knowledge than what it could have computed in
time closely related to its worst-case running-time. In addition to theoretical
interests, the knowledge tightness of a zero-knowledge protocol is a helpful aid
for setting the security parameter in practice. It is easy to check that the origi-
nal zero-knowledge protocols [GMR89,GMW91,Blu86] all enjoy constant knowl-
edge tightness. The aforementioned protocols secure under parallel composition
[FS90,GK96a,Gol02] also enjoy constant knowledge tightness when executed in
isolation; however, when composed in parallel, the tightness of these protocols
seem increase/loosen linearly (sometimes even quadratically) with respect to
the number of parallel sessions (based on the currently known analysis of their
simulators)!

Since we do want to execute zero-knowledge protocols in parallel (for instance
in the application of secure multi-party computation), a natural question is to
ask: how does the knowledge tightness of a protocol vary when we increase the
number of parallel repetitions?

1.1 Our results

In this work we give essentially tight upper and lower bounds to the above
question. Our results focus on black-box zero-knowledge and “simulator queries”,
which we explain below.

Informally, a protocol is black-box zero-knowledge if there exists a universal
simulator S, called the black-box simulator, such that S generates the view of

838

Approved for Public Release; Distribution Unlimited.

any adversarial verifier V ∗ if S is given black-box access to V ∗. Essentially all
known constructions of zero-knowledge (with the notable exception of [Bar01])
and all practical zero-knowledge protocols are black-box zero-knowledge. Given
a black-box simulator S, we focus on bounding the number of black-box queries
made by S to a given adversarial verifier V ∗; we refer to this as the simulator-
query complexity. It is easy to see that the number of queries made by a black-
box simulator is closely related to knowledge tightness; in fact, for the case of
constant round protocols, they are asymptotically equivalent.

We state our main theorems below:

Theorem 1. Let n be the security parameter. For any m = m(n), there exists a
2m+ 7-round black-box zero-knowledge argument Π for all of NP based on one-
way functions, with perfect completeness and negligible soundness error, such
that for any polynomially bounded k = k(n), the parallel composition of k-copies
of the protocol, Πk, remains black-box zero-knowledge with simulator-query com-
plexity O(mk1/m log2 n).

It is easy to extend the above theorem to proofs assuming the existence of
collision-resistant hash-functions. We complement Theorem 1 with a lower bound:

Theorem 2. Let n be the security parameter, L be a language, and m = m(n) ∈
O
(

logn
log logn

)
. Suppose Π is a m(n)-round black-box zero-knowledge argument for

L with perfect completeness and negligible soundness error, and suppose there
exist a polynomially bounded k(n) ≥ n such that the parallel composition of
k-copies of the protocol, Πk, remains black-box zero-knowledge with simulator-
query complexity O(k1/m/(log2 n)). Then, L ∈ BPP.

For protocols with sub-logarithmic number of rounds, Theorem 1 and 2
are tight up to logarithmic factors in the security parameter; essentially, the
simulator-query complexity is asymptotically close to k1/m (in most cases, think
of k as a low polynomial in n). We mention that one can achieve simulator-query
complexity O(m) (independent of k) when m = ω(log n).

Briefly, our results show that the concrete security of constant-round black-
box zero-knowledge protocols actually decays polynomially in the number of
parallel sessions. Fortunately, this decay can be significantly slowed if we consider
protocols with more rounds (even if we simply use a large constant m).

1.2 Related Works

While we are unaware of any past work that explicitly studies the knowledge
tightness of parallelized zero-knowledge protocols, there are numerous related
publications that focus on the composition of zero-knowledge protocols, or on the
concrete security of zero-knowledge simulator. Dwork, Naor and Sahai [DNS04]
introduces the notion of concurrent zero-knowledge protocols; these protocols
must stay zero-knowledge even when composed arbitrarily (a strengthening over
parallel composition). Micali and Pass [MP06] introduces the notion of precision;
in a precise zero-knowledge protocol, the running time of the simulator should

839

Approved for Public Release; Distribution Unlimited.

be closely related to the running time of the adversarial verifier, on a view by
view basis1 (a strengthening over knowledge tightness).

Even with these stronger requirements, Pandey et. al. [PPS+08] is able to con-
struct protocols that are simultaneously precise and (black-box) concurrent zero-
knowledge. Note that our results are incomparable with the result of [PPS+08]
for many reasons, one of which being that black-box concurrent zero-knowledge
protocols require logarithmically many rounds [CKPR01], while our setting is
mainly interesting for sub-logarithmic-round protocols. Interestingly, [PPS+08]
actually gives a construction of a family of precise concurrent zero-knowledge
protocols, with trade-offs between round-complexity and precision, much like
our observed trade-off between round-complexity and knowledge tightness for
the case of parallelized zero-knowledge.

1.3 Connection to Concurrent Zero-Knowledge

We also present a connection from simulator-query lower bounds for zero-knowledge,
to round-complexity lower bounds for concurrent zero-knowledge (cZK). Due to
lack of space we postpone the result on Concurrent Zero-knowledge to the full
version. We briefly discuss the ideas as follows.

We start by describing the common framework for all known black-box zero-
knowledge lower bounds (e.g., [KPR98,Ros00,CKPR01,BL02,Kat08,HRS09,PTW09]).
Let Π be a protocol for a language L. To show that Π cannot be zero-knowledge
unless the language L is trivial (i.e., L ∈ BPP), we start by constructing a de-
cision procedure for L. Let S be the black-box zero-knowledge simulator of Π,
and let V ∗ be some “hard to simulate” adversarial verifier, and consider the
following decision procedure D: on input x, D(x) accepts if and only if SV

∗
(x)

generates an accepting view of V ∗(x). Usually, the completeness of D follows
easily from the zero-knowledge property; to show that D is sound often requires
more work. Our query-complexity lower bounds (Theorem 2) also follow the same
framework. That is, we construct some adversarial verifier V ∗para that schedules
multiple sessions in parallel, and show that for any zero-knowledge simulator S
with appropriately bounded query-complexity, if x /∈ L, then SV

∗
para(x) cannot

generate an accepting view of V ∗para(x).
Inspired by the work of Canetti, Kilian, Petrank and Rosen [CKPR01], we

next present a modular construction of a concurrent adversarial verifier V ∗conc
whose purpose is to amplify query-complexity lower bounds of more basic veri-
fiers. For example, consider V ∗para, an adversarial verifier that is restricted to par-
allel composition. Our modular construction would take V ∗para as input, and out-
put an adversarial verifier V ∗conc = V ∗conc(V

∗
para) that, among other things, nests

multiple incarnations of V ∗para in a way that takes full advantage of the concurrent
scheduling. Under appropriate parameters, our analysis would conclude that for
any zero-knowledge simulator S with polynomially bounded query-complexity,

1 For example, to achieve precision 2, if the simulator S generates a view of V ∗ and
the running time of V ∗ on that view is T , then the simulator S must have run in
time 2T .

840

Approved for Public Release; Distribution Unlimited.

if x /∈ L, then SV
∗
conc(x) cannot generate an accepting view of V ∗conc(x) (recall

again that this is the key step for most zero-knowledge lower bounds).
To demonstrate our framework, we re-prove the result of [CKPR01] — a

o(log n/ log log n) round-complexity lower bound for black-box concurrent zero-
knowledge (the currently best known round-complexity lower bound); we believe
the resulting analysis is quite clean. We also give a second lower bound concern-
ing constant-round cZK protocols:

Theorem (Informal). Let L be a non-trivial language, and let Π be a constant-
round black-box concurrent zero-knowledge protocol with a potentially possibly
super-polynomial time simulator. Then the simulator must run in time nΩ(logn).

Incidentally, Pass and Venkitasubramaniam [PV08] do construct constant-
round black-box concurrent zero-knowledge protocols for all of NP in the model
where both the simulator and the adversarial verifier runs in quasi-polynomial
time npoly(logn).

We also find our modular framework satisfying on a philosophical level: it
serves as an framework in which lower bounds for restricted compositions of
zero-knowledge (in this example parallel composition) can be transformed into
lower bounds for zero-knowledge in the fully concurrent setting. A similar and
celebrated example occurs in the work of Goldreich [Gol02], where it is shown
that constructions of zero-knowledge protocols secure under parallel composition
directly leads to constructions of concurrent zero-knowledge protocols secure in
the timing model.

2 Preliminaries

We use N to denote the natural numbers {0, 1, . . .}, [n] to denote the set {1, . . . , n},
and |x| to denote the length of a string x ∈ {0, 1}∗. By ngl(n), we mean a function
negligible in n (i.e., 1/nω(1)). We assume familiarity with indistinguishability.

Interactive Protocols. An interactive protocol Π is a pair of interactive Turing
machines, (P, V), where V is probabilistic polynomial time (PPT). P is called
the prover, while V is called the verifier. 〈P, V 〉 (x) denotes the random variable
(over the randomness of P and V) representing V ’s output at the end of the
interaction on common input x. If additionally V receives auxiliary input z, we
write 〈P (x), V (x, z)〉 to denote V ’s output. We assume WLOG thatΠ starts with
a verifier message and ends with a prover message, and say Π has k rounds if the
prover and verifier each sends k messages alternately. A full or partial transcript
of Π is a sequence of alternating verifier and prover messages, (v1, p1, . . .), where
v denotes verifier messages and p denotes prover messages.

We may compose an interactive proof in parallel. Let Πk = (P k, V k) be the
parallel composition of k copies of Π; that is, each prover and verifier message
in Πk is just concatenation of k independent copies of the corresponding message
in Π. Upon completion, V k accepts if and only if all k sessions are accepted by
V . We note that an adversarial verifier may chose to abort in one session but
not another.

841

Approved for Public Release; Distribution Unlimited.

Zero Knowledge Protocols In the setting of zero knowledge, we consider an adver-
sarial verifier that attempts to “gain knowledge” by interacting with an honest
prover. An m-session concurrent adversarial verifier V ∗ is a probabilistic
polynomial time machine that, on common input x and auxiliary input z, in-
teracts with m(|x|) independent copies of P concurrently (called sessions); the
traditional stand-alone adversarial verifier is simply a 1-session adversarial ver-
ifier. There are no restrictions on how V ∗ schedules the messages among the
different sessions, and V ∗ may choose to abort some sessions but not others. Let
ViewP

V ∗(x, z) be the random variable that denotes the view of V ∗ in an inter-
action with P (this includes the random coins of V ∗ and the messages received
by V ∗).

A black-box simulator S is a probabilistic polynomial time machine that
is given black-box access to V ∗ (written as SV

∗
). Formally, S fixes the random

coins r of V ∗ a priori, and S is allowed to specify a valid partial transcript
τ = (v1, p1, . . . , pi) of V ∗r , and query V ∗r for the next verifier message vi+1. Here,
τ is valid if it is consistent with V ∗r , i.e., each verifier message vj in τ is what
V ∗r would have responded given the previous prover messages p1, . . . , pj−1 and
the fixed random tape r. Note that S is allowed to “rewind” V ∗ by querying V ∗

with different partial transcripts that shares a common prefix.
Intuitively, an interactive proof is zero-knowledge (ZK) if the view of any

stand-alone (1-session) adversarial verifier V ∗ can be generated by a simulator.
The formal definition follows.

Definition 3 (Black-Box Zero-Knowledge [GMR89,GO94]). Let Π =
〈P, V 〉 be an interactive proof (or argument) for a language L. Π is black-box
zero-knowledge if there exists a black-box simulator S such that for every com-
mon input x, auxiliary input z and every (stand-alone) adversary V ∗, SV

∗(x,z)(x)
runs in time polynomial in |x|, and the ensembles {ViewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and

{SV∗(x,z)(x)}x∈L,z∈{0,1}∗ are computationally indistinguishable as a function of
|x|.

3 Construction

We define a zero-knowledge argument ParallelZK in Section 3.1, and show
that it satisfies Theorem 1 in Section 3.2.

3.1 The Protocol

Our ZK argument ParallelZK (also used in [PV08,PTV10]) is a slight variant
of the precise ZK protocol of [MP06], which in turn is a generalization of the
Feige-Shamir protocol [FS89]. The protocol for language L ∈ NP proceeds in
three stages, given a security parameter n, a common input statement x ∈
{0, 1}n, and a round-parameter m:

Stage Init: The verifier picks two random strings r1, r2 ∈ {0, 1}n and sends
their images c1 = f(r1), c2 = f(r2) through a one-way function f to the

842

Approved for Public Release; Distribution Unlimited.

prover. The verifier then acts as the prover in m parallel instances of a 4-
round witness indistinguishable and special sound proof of knowledge (WI
and SS-POK) of the NP statement “c1 or c2 is in the image set of f” (a
witness here would be a pre-image of c1 or c2). All but the last two messages
of each SS-POK is exchanged in this stage; we denote their partial transcripts
by (α1,α2, . . . ,αk).

Stage 1: m message exchanges occur in Stage 1. In the jth iteration, the prover
sends βj , a random second last message of the jth SS-POK, and the verifier
replies with the last message γj of the proof. These m iterations are called
slots. Slot i is convincing if the verifier produces an accepting proof (i.e., the
transcript (αi, βi, γi) is accepting). If there is ever an unconvincing slot, the
prover aborts the whole session.

Stage 2: The prover provides a 4-round witness indistinguishable proof of knowl-
edge (WI-POK) of knowledge of the statement “x ∈ L, or one of c1 or c2 is
in the image set of f”.

Completeness and soundness follows directly from the proof of Feige and
Shamir [FS89]; in fact, the protocol is an instantiation of theirs. Intuitively, to
cheat in the protocol a prover must “know” an inverse to c1 or c2 (because Stage
2 is an argument of knowledge), which requires the prover to invert the one-way
function f (its is shown in [FS90] that Stage Init and Stage 1 of the protocol
cannot aid the prover in inverting f). A formal description of protocol ParallelZK
is shown in Figure 1.

Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage Init:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V → P: c1 = f(r1), c2 = f(r2).
V ↔ P: Exchange in parallel (interactively) all but the last two messages

α1, . . . ,αk of k WI and SS-POKs on common input (c1, c2) with respect to
the witness relation:

RL′(c1, c2) = {r : f(r) = c1 or c2}

Note that V acts as the prover in these SS-POK’s.
Stage 1: For j = 1 to k, exchange the jth “slot”

P → V: The second last message βj of the jth SS-POK.
V → P: The last message γj of the jth SS-POK.
P aborts if (αj , βj , γj) is not a valid SS-POK.

Stage 2:
P↔ V: a 4-round computational-WI proof of knowledge from P to V on common

input (c1, c2, x) with respect to the witness relation:

RL′∨L(c1, c2, x) = {(r, w) : r ∈ RL′(c1, c2) or w ∈ RL(x)}

Fig. 1. ParallelZK: a ZK argument for NP with round parameter m.

843

Approved for Public Release; Distribution Unlimited.

Remark 4. We note that here we use multiple slots to improve the knowledge
tightness of parallel zero knowledge, whereas previously, multiple slots was typi-
cally used to achieve concurrent zero knowledge and ω(log n) slots were consid-
ered. In contrast, we show that in the context of parallel zero knowledge, using
even constant number of slots improves the knowledge tightness significantly. In-
deed, both our simulation technique and its analysis presented in the next section
are new, where we rewind each slot to resolve all sessions in parallel (as opposed
to previous works that focused on one session at a time).

3.2 The Simulator

To show that protocol Π = ParallelZK satisfies Theorem 1, given any poly-
nomially bounded k = k(n), we need to construct a black-box zero-knowledge
simulator S = Sk for protocol Πk (ParallelZK repeated k times in parallel).
On a very high-level, our simulator follows that of Feige and Shamir [FS90]:
after fixing the SS-POK prefixes in Stage Init, the simulator rewinds one of the
“slots” in Stage 1 (the last two messages of the SS-POKs). If the verifier responds
with two convincing slots, the simulator uses the special-soundness property to
extract a “fake witness” r such that f(r) = c1 or c2, and uses this fake witness
to simulate Stage 2 of the protocol.

Given an adversarial verifier V ∗ (for protocol Πk) and a common input x ∈
{0, 1}n, the simulator SV

∗
(x) does the following:

1. The simulator S interacts with V ∗, following the honest prover strategy,
until the end of Stage 1. We call this the reference simulation.

2. The simulator S attempts to resolve all k parallel sessions in the reference
simulation by extracting a fake witness r from the SS-POKs for each non-
aborting session; aborted sessions are automatically considered resolved (and
no fake witnesses are needed). To do so, S repeats the following step (called
a rewinding pass) as many times as necessary, until all sessions are resolved.

3. A rewinding pass. For each slot i, the simulator rewinds the reference
simulation back to the beginning of slot i, sends V ∗ a fresh random message
β′i, and receives a new reply γ′i (of course this is done in parallel for all
k sessions). Note that for each unresolved session j, S already knowns an
accepting transcript (αi, βi, γi) of SS-POK from the reference simulation.
If session j does not abort during slot i in this rewinding pass, then S
learns another accepting transcript (αi, β

′
i, γ
′
i) of SS-POK. In this case, S

can resolve the session j by extracting a fake witness using the special-sound
property.

4. S completes the reference simulation using extracted fake witnesses to sim-
ulate the Stage 2 proof (only needed in each parallel session that did not
abort). S outputs the view of V ∗ on the reference simulation and this com-
pletion.

For simplicity, we assume that for sessions that did not abort in the reference
simulation, the extraction of fake witnesses always succeeds whenever S receives

844

Approved for Public Release; Distribution Unlimited.

an accepting slot in a rewinding pass (i.e., we assume that S never sends the
same value for β twice). This assumption can be made without loss of generality
by the following modifications of the simulation strategy.

– Let the simulator S performs at most 2n rewinding passes. If there exist
any unsolved sessions j after 2n rewinding passes, S resolves the session by
brute force, i.e., by directly inverting the one-way function f to obtain a fake
witness of length n. This modification increases the running time (but not
the number of queries) of S by at most a poly(n) factor (multiplicatively),
and makes sure that S makes at most poly(2n) queries to V ∗.

– Let the final verifier challenge in the SS-POK have length |β| = n2. In this
case, the probability of S ever querying V ∗ with the same value of β twice
is poly(2n) · 2−n2

= 2−Ω(n2), definitely negligible in n.

We now show two lemmas regarding S that together shows that Paral-
lelZK is zero-knowledge when composed in parallel.

Lemma 5. S runs in expected polynomial time, and makes O(mk1/m log2 n)
queries in expectation.

Lemma 6. On common input x ∈ L, the output of S is indistinguishable from
the real view of V ∗.

We defer the proof of Lemma 5 to the next section, where we bound the ex-
pected number of rewinding passes before S extracts all necessary fake witnesses.
We give a sketch of Lemma 6 now.

Proof (Proof Sketch). The output of S up to the end of Stage 1 (i.e., the ref-
erence simulation) is identical to the view of V ∗, because S follows the honest
prover strategy. The output of S in Stage 2 of the protocol is computationally
indistinguishable from the view of V ∗ because the Stage 2 proof is witness in-
distinguishable. Formally, this can be shown with a hybrid argument where we
incrementally exchange each of the k parallel Stage 2 proofs from using “fake wit-
nesses” r such that f(r) = c1 or c2 (the simulator strategy), to a real witnesses
w for x ∈ L (the honest prover strategy).

3.3 Proof of Lemma 5

In this section, we prove Lemma 5 by bounding the expected number of rewinding
passes in an execution of S. Let R be a random variable that denotes the number
of rewinding passes. We will show that:

E[R] = E[# rewinding passes] ≤ O(k1/m · log2 n).

This then implies Lemma 5 because outside of rewinding passes, SV ∗(x) makes
only O(m) queries to V ∗ and runs in polynomial time.

Before presenting our analysis for the general case of m slots, we revisit the
classical analysis for the case of single slot for intuition.

845

Approved for Public Release; Distribution Unlimited.

The case of single slot. The analysis is very simple. For every j ∈ [k], let Rj
denote the number of rewinding passes to resolve session j, and let pj be the
probability that session j does not abort during the single slot. Recall that
session j is resolved if it aborts in the reference simulation, and otherwise, the
simulator needs to rewind the slot several times until session j does not aborts
again. Hence, the expected number of rewinding passes to resolve session j is

E[Rj] = (1− pj) · 0 + pj ·
1

pj
= 1.

By linearity of expectation, the expected number of rewinding passes is

E[R] =
∑

j

E[Rj] = k ≤ O(k · log2 n).

We note that the above simple analysis is tight. Consider the case where
during the slot, each session aborts independently with probability (1− 1/k). It
is not hard to see that in this case, with constant probability, at least one session
does not abort during the slot, and the simulator needs to rewind k times in
expectation to resolve the survival session. Therefore, the expected number of
rewinding passes is Ω(k).

In fact, it is instructive to note that the following natural generalization of
the above example is essentially the worse-case example for the general case of
m slots: during each slot i ∈ [m], each survival session j aborts independently
with probability (1−k−1/m). In this case, each session does not abort during the
m slots with probability (k−1/m)m = 1/k, and hence with constant probability,
at least one session survives after m slots. Resolving the survival session requires
k1/m/m rewinding passes in expectation, and hence the expected number of
rewinding passes is Ω(k1/m/m).

We note that although in the above example, each session aborts during each
slot independently, in general, the aborting probability of each session at each
slot can depends arbitrarily on the history and correlated arbitrarily.

The general case of m slots. To analyze the expected number of rewinding
passes, we define the following [0, 1]-valued random variables based on the refer-
ence simulation generated in Step 1. Let hi denote the partial transcript of the
reference simulation before slot i. For every slot i ∈ [m] and session j ∈ [k], we
define random variable pi,j as follows.

– If session j is already aborted at the end of slot i, then we define pi,j , 1.
– Otherwise, we define pi,j to be the conditional probability

pi,j , Pr[session j does not abort during slot i | hi].
For intuition, pi,j is essentially the probability that S can resolve session j

by rewinding slot i. Now consider the best slot for each session — the slot with
the highest pi,j value (this is the slot that S wants to rewind). We record this
value as

p∗j = max
i
pi,j

846

Approved for Public Release; Distribution Unlimited.

Note that for a session j that aborts in the reference simulation, we have p∗j = 1,
indicating that sessions j is already resolved and matching the above intuition.
Finally, the number of rewinding passes depends heavily on the worst session —
the session with the worst p∗j value (the “worst best slot”). We record this value
as the critical probability :

p∗ = min
j
p∗j .

To see how the critical probability p∗ plays an important role in the expected
number of rewinding passes, note that on one hand, S needs roughly 1/p∗ rewind-
ing passes to resolve the worse-case session; on the other hand, the chance of
having a reference simulation with small critical probability (say, p∗ ≤ p) is rare
(at most pm). Therefore, to upper bound E[R], we define the following events,
which partition the probability space according to the critical probability. For
every t ∈ N, let

αt
def
=

(
1

2t · k1/m
)

– Let A0 be the event that p∗ ≥ α0 = k−1/m, and for every t ∈ N, let At be
the event that

αt ≤ p∗j < αt−1.

Similarly for every session j ∈ [k],

– Let A0,j be the event that p∗j ≥ α0 = k−1/m, and for every t ∈ N, let At,j
be the event that

αt ≤ p∗j < αt−1.

We can now express the expectation of the number of rewinding passes as follows.

E[R] =
∑

t≥0
Pr[At] · E[R | At]

≤ Pr[A0] · E[R | A0] +
∑

t≥1

k∑

j=1

Pr[At,j]

 · E[R | At],

where the last inequality follows by At ⊆ ∪jAt,j (which follows from definition).
We proceed to bound each term. For A0, we use trivial bound Pr[A0] ≤ 1. For
general t ≥ 1 and every j ∈ [k], we first observe that when At,j happens, session
j does not abort all of its m slots in the reference simulation (since otherwise,
p∗j = 1). This happened despite the fact that each slot i in session j in the
reference simulation could have only survived (not aborted) with probability
pi,j ≤ αt−1. Thus,

Pr[At,j] ≤ αmt−1 =

(
1

2t−1 · k1/m
)m

=
1

2m(t−1) · k ,

and,
k∑

j=1

Pr[At,j] ≤ k ·
1

2m(t−1) · k =
1

2m(t−1) .

847

Approved for Public Release; Distribution Unlimited.

It remains to bound E[R | At], which is given in the follow lemma.

Lemma 7. For every t ≥ 0, we have

E[R | At] ≤ O
(

2t · k1/m · log2 n
)
.

We apply Lemma 7 to upper bound E[R] first.

E[R] ≤ E[R | A0] +
∑

t≥1

1

2m(t−1) · E[R | At]

≤ O
(
k1/m · log2 n

)
+
∑

t≥1

2t

2m(t−1) ·O
(
k1/m · log2 n

)

≤ O
(
k1/m · log2 n

)
.

This completes the proof of Lemma 5.

Proof (Proof of Lemma 7). The event At means that in the reference simulation,
for every non-aborting session j, there exists a useful slot i ∈ [m] such that

Pr[session j is not aborted after slot i | hi] = pi,j ≥ αt.

Therefore, in each rewinding pass, the simulator S may learn an (additional)
accepting transcript of SS-POK in session j with probability at least αt, allowing
it to extract a fake witness.

Fix a non-aborting session j, and define

q =

(
10 · log2 n

αt

)
= O

(
2t · k1/m · log2 n

)
,

Because the rewinding passes are independent, we have

Pr[session j is resolved after q rewinding passes] = 1− (1− αt)q ≥ 1− ngl(n).

Since there are at most k survival sessions, by the union bound,

Pr[all sessions are resolved after q rewinding passes] ≥ 1− ngl(n).

In other words, every q rewinding passes can solve all the sessions with proba-
bility at least 1− ngl(n). It follows that

E[R | At] ≤ (1− ngl(n)) · q + ngl(n) (1− ngl(n)) · 2q + ngl(n)
2

(1− ngl(n)) · 3q + · · ·
≤ O(q) = O

(
2t · k1/m · log2 n

)
.

848

Approved for Public Release; Distribution Unlimited.

4 Lower Bound

The proof of Theorem 2 follows a well-known framework (e.g., [GK96b,CKPR01]).
Let S be a black-box zero-knowledge simulator for Πk = (P k, V k) that makes
less than q = O(k1/m/ log2 n) queries, and let V k∗ be a particular adversarial
verifier to be specified later. We define D, a BPP decision procedure for L by

combining S and V k∗: on input instance x, D(x) accepts if and only if SV
k∗

(x)
outputs an accepting view of V k∗ (i.e., all k sessions of V k∗ accept). Using the
zero-knowledge property, it is easy to show (see for example [GK96b]) that if
the modified protocol Πk∗ = (P k, V k∗) is complete for L (based on our choice
of V k∗), then D is complete for L as well. The main effort of the proof is to
show that D is sound; this relies both on the choice of V k∗ and the fact that S
makes less than q queries to V k∗. We discuss our choice of V k∗ in Section 4.1,
and analyze the soundness of D in Section 4.2.

4.1 The Random Termination Verifier V k∗

In this section, we define a verifier V k∗ for the parallelized protocol with two
goals in mind: the protocol Πk∗ = (P k, V k∗) should be complete (so that D
is complete), and V k∗ should be sound against any rewinding simulator S that
makes less than q queries to V k∗ (so that D is sound).

Just as [CKPR01], we define V k∗ to follow the honest verifier strategy V k

with one extra property: random termination.2 Whenever the prover P k or the
rewinding simulator S makes a query to V k∗, V k∗ determines, with independent
and fresh randomness,3 whether or not to terminate immediately and accept with
probability ρ ∈ [0, 1], a parameter to be specified later; this is done independently
for each of the k parallel sessions (i.e., one session may be terminated while other
sessions continue). Due to this independence between parallel sessions, we often
treat V k∗ as k machines, (V ∗1 , . . . , V

∗
k), each responsible for making the decision

to terminate and generating the verifier messages for one session. Note that
the fresh randomness is only used to decide whether to terminate or not; V k∗

generates protocol messages using its default random tape that is kept the same
between rewinds (as expected by following the honest verifier strategy).

Clearly, Πk∗ = (P k, V k∗) is still complete. It remains to show that V k∗ is

“sound” against the rewinding S; that is, on input x /∈ L, SV
k∗

is unlikely to

2 The term “random termination” was first used by Haitner [Hai09], but the random
termination verifier we considered already appeared in the earlier work of [CKPR01].

3 We use a well-known technique (see for example [GK96b,CKPR01]) to generate fresh
independent randomness on the fly for each query from the simulator S, despite the
fact that S may rewind V k∗ between queries and force V k∗ to use the same random
tape. Let H be a family of q-wise independent hash-functions, and let V k∗ sample
one hash-function h← H in the very beginning. Then whenever V k∗ receives a query
(from P k or S), V k∗ applies h to the current protocol transcript (the sequence of
messages exchanged in the protocol so far) and use the output as a fresh random
tape. Since S makes at most q queries to V k∗, the output distribution of the hash-
function is truly uniformly random.

849

Approved for Public Release; Distribution Unlimited.

generate an accepting transcript of V k∗. From now on we drop the common
input x /∈ L. Intuitively, by randomly terminating, V k∗ can better protect its
randomness against S’s rewinds (when V k∗ terminates, S learns nothing about
V k∗’s fixed random tape), thus ensuring soundness. To make this intuition more
concrete, suppose for example that S made q queries τ1, . . . , τq to V k∗, and
without loss of generality outputs the view of V k∗ on a subset of size m of those
queries4, T = {τi1 , . . . , τim}. Further suppose that there exists a parallel session
j ∈ [k] such that V k∗ does not terminate on the queries in T , but terminates on
all remaining queries. Then intuitively, S’s rewinding does not help S convince
V k∗ in session j, and the soundness of the original protocol Π should imply that
V k∗ rejects with overwhelming probability in session j (and therefore rejects
overall).

The core of our proof is to show that, with high probability, for every subset
of size m of queries T = {τi1 , . . . , τim} made by S, there exists a session j ∈ [k]
with overwhelming probability such that rewinds are “not helpful” for session j
with respect to T in the above manner. We make this possible by setting the
termination probability to ρ = (1− 1/q).

We now state the formal lemmas. Let n be the security parameter and L be

a language. Suppose there exists a m(n) ∈ O
(

logn
log logn

)
-round argument Π =

(P, V) for L with perfect completeness and negligible soundness error. For any
polynomially bounded k(n) ≥ n, let S be a black-box zero-knowledge simulator
of the parallelized protocol Πk = (P k, V k) that makes at most

q = k1/m/(log2 n)

queries, and let V k∗ be a random termination verifier of the parallelized protocol
with termination probability

ρ =

(
1− 1

q

)
=

(
1− 1

k1/m
· (log2 n)

)
.

(These parameters passes the following sanity checks: q is polynomially bounded
and q ≥ m — the simulator queries V k∗ at least once for each round of the
protocol. It is also useful later to know that

(
q
m

)
≤ qm ≤ k.) Then:

Lemma 8. On input x ∈ L, D(x) accepts with probability 1, i.e., SV
k∗

(x) out-
puts an accepting view of V k∗ with probability 1.

Lemma 9. On input x /∈ L, the probability that SV
k∗

(x) generates an accepting
view of V k∗ is negligible, i.e., D has negligible soundness error.

We sketch the proof of Lemma 8 now, and give the proof of Lemma 9 in the
next section.
4 Without loss of generality, we may assume that before S outputs a view of V k∗,
S first queries V k∗ with the messages in the view (if S hasn’t already). This may
increase the number of queries by m, and thus weaken the resulting lower bound
from q to q−m. Nevertheless, this does not change our lower bound since q = ω(m)
in Theorem 2.

850

Approved for Public Release; Distribution Unlimited.

Proof (Proof Sketch). Using the zero-knowledge property, the output of S is
indistinguishable from the view of V k∗ in an execution with P k. Therefore it is
enough to show that

〈
P k, V k∗

〉
(x) accepts with probability 1. In each parallel

session j ∈ [k], V ∗j accepts by definition if it decides to terminate in some protocol
round. Otherwise, Vj∗ is identical to V and would still accept with probability 1
because the original protocol Π = (P, V) has perfect completeness.

4.2 Soundness of D
Proof (Proof of Lemma 9). We prove Lemma 9 with a reduction. Suppose for the
sake of contradiction that S convinces V k∗ on some input x /∈ L with probability
more than 1/p(n) for some polynomial p. Using S, we construct a cheating prover
P ∗ for the original protocol Π = (P, V) that convinces V with non-negligible
probability.

Before we start, assume without loss of generality that S makes exactly q
queries, and that before S outputs a view of V k∗, S would first query V k∗ on
all previous messages in the view. For technical convenience, we let V k∗ make
a fresh decision to terminate for each query and each session, even if V k∗ has
already terminated previously in the same session. I.e., regardless of history or
message content, for each query and each parallel session, V k∗ always terminates
independently with probability ρ.

Our P ∗ is a natural extension of the classic reduction of [GK96b] — P ∗

guesses a session j0 ∈ [k] and m indices T0 = {i1, . . . , im} ⊆ [q] uniformly at
random, and interacts with an outside honest V by internally simulating an
interaction of (S, V k∗) with V embedded in session j0, queries τi1 , . . . , τim of
V k∗. In comparison, the idea of guessing a random query subset is exactly as
in [GK96b]. The difference is that the reduction in [GK96b] is for single session
protocols, and in contrast, we reduce from parallel protocols to single session
protocols. Hence, our reduction P ∗ guesses a random session as well.

In more details, P ∗ runs S and V k∗ internally. It simulates k − 1 sessions of
V k∗ honestly (except V ∗j0). When simulating V ∗j0 , for the ith S query τi, P

∗ first
simulate (with fresh randomness) V ∗j0 ’s decision on termination. If V ∗j0 decides to
terminate but i ∈ T0 or if V ∗j0 does not terminate but i /∈ T0, P ∗ aborts (in both
these cases, the termination decision of V ∗j0 is incompatible with P ∗’s choice of
queries to forward). If the forwarded queries (index set T0) are not “consistent”
(e.g., if they query for the same round of the protocol more than once, or the
query contains inconsistent transcript), P ∗ aborts as well. Note that if P ∗ does
not abort, then V k∗ is perfectly simulated (even in session j0).

Now consider the following best case scenario. Suppose that at the end of the
simulation, S successfully outputs an accepting view of V k∗. Moreover, suppose
that the accepting view consists exactly of the queries in index set T0 (this au-
tomatically guarantees that the forwarded queries are consistent), and suppose
that P ∗ does not abort (i.e., termination decisions are compatible with the for-
warded queries). Then, P ∗ will have successfully convinced the outside honest
V . The rest of the proof is devoted to show that this best case scenario occurs
with noticeable probability (roughly 1/(p · k2)).

851

Approved for Public Release; Distribution Unlimited.

Let T ⊂ [q] denote an index set {i1, . . . , im} of size m. For an index set T ⊂ [q]
and a session j ∈ [k], we define A(T, j) to be the event that, on session j, V k∗

terminates on query τi iff i /∈ T . Referring back to our intuition earlier, A(T, j)
denotes the event that for session j, S’s rewinds are not helpful with respect to
the queries indexed by T . If event A(T, j) holds, and S uses the queries indexed
by T to form an accepting view of V k∗, and P ∗ guesses both T0 = T and j0 = j
in the beginning, then P ∗ will have successfully convinced the outside honest V .

We claim that by the setting of parameters, we have

Pr[∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j)] ≥ 1− ngl(n) (1)

where ngl(n) denotes a negligible quantity in n. In words, with overwhelming
probability, for every possible index set T of size m that S may use to output
a view of V k∗, there exists a session j such that P ∗ may guess j0 = j and be
successful.

Before proving (1), we first use the claim to show that P ∗ convinces V with
noticeable probability. Recall that S outputs an accepting view of V k∗ with
probability 1/p. By a union bound, we have

Pr[(S outputs accepting view of V k∗)∧(∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j))] ≥ (1/p)−ngl(n).

Note that when the above event holds, there exist a unique index T̂ of m queries
used by S to form an accepting view of V k∗, and there exists a session ĵ ∈ [k]
such that A(T̂ , ĵ) holds. As mentioned earlier, if P ∗ guesses j0 = ĵ and T0 =
T̂ correctly, P ∗ will have successfully convinced V . Since P ∗ guesses j and T
uniformly at random and independent of the interaction between S and V k∗, we
have

Pr[P ∗ convinces V]

≥ Pr[(S convinces V k∗) ∧ (∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j))

∧ (P ∗ guesses T̂ and ĵ correctly)]

≥ (1/p− ngl(n))

k ·
(
q
m

) ≥ 1

p · k2 ,

where in the last line we used
(
q
m

)
≤ qm ≤ k. This contradicts the fact that Π

has negligible soundness error and completes our analysis.
It remains to show (1). By definition, each session j terminates on each query

τi with probability exactly ρ, independent from any other session or query. Hence,
for any session j and index set T of size m, the probability that event A(T, j)
holds is

Pr[A(T, j)] = ρq−m · (1− ρ)m ≥
(

1− 1

q

)q
·
(

1

q

)m
≥ Ω

(
1

k
· (log2m n)

)
.

It follows that

Pr[∃j ∈ [k] s.t. A(T, j)] ≥ 1−
(

1−Ω
(

1

k
· (log2m n)

))k
≥ 1− e−Ω(log2m n).

852

Approved for Public Release; Distribution Unlimited.

Finally, by a union bound, we have

Pr[∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j)] ≥ 1− e−Ω(log2m n) ·
(
q

m

)
≥ 1− ngl(n),

as claimed.

As with most lower bounds for black-box zero-knowledge, a careful reading
reveals that Theorem 2 also applies to more liberal definitions of zero-knowledge,
such as ε-zero-knowledge and zero-knowledge with expected polynomial time
simulators. Additionally, note that the proof of Lemma 9 never assume that S is
a zero-knowledge simulator, and works just as well for any PPT oracle machine
S.

Remark 10. By examining the technical inner workings of the proof of Canetti,
Kilian, Petrank and Rosen [CKPR01] (which also uses a random termination
verifier), we discovered that part of their analysis implicitly presents a lower
bound for the number of queries made by black-box simulators for parallel zero-
knowledge protocols. Compared with Theorem 2 and our analysis, the result of
[CKPR01] establishes a weaker bound (and is arguably more complicated); this
is not surprising, since establishing a parallel lower bound was not their goal.

Specifically, [CKPR01] implicitly establishes a logω(1)(k) lower bound on the
number of simulator queries, whereas we were able to establish a lower bound of
k1/m/(log2 n). Nevertheless, we believe that by adapting our parameters (which
may seem strange for their setting), their analysis could be strengthened to match
our lower bounds (we have not verified all the details, however).

Acknowledgments

We thank to Iftach Haitner and Johan H̊astad for useful discussion in the early
stage of this research.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS
’01, pages 106–115, 2001.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applica-
tions. In Computational Complexity, pages 162–171, 2002.

[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and
extraction. In STOC ’02, pages 484–493, 2002.

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. Proc. of the
International Congress of Mathematicians, pages 1444–1451, 1986.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In CRYPTO
’94, pages 174–187, 1994.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concur-
rent zero-knowledge requires ω̃(logn) rounds. In STOC ’01, pages 570–579,
2001.

853

Approved for Public Release; Distribution Unlimited.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
J. ACM, 51(6):851–898, 2004.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two
rounds. In CRYPTO, pages 526–544, 1989.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In STOC, pages 416–426, 1990.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity for all languages in NP have zero-knowledge proof systems.
J. ACM, 38(3):691–729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7:1–32, 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge
University Press, 2001.

[Gol02] Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In
STOC ’02, pages 332–340, 2002.

[Hai09] Iftach Haitner. A parallel repetition theorem for any interactive argument.
In FOCS ’09, pages 241–250, 2009.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28:12–24, 1999.

[HRS09] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (im)possibility of
Arthur-Merlin witness hiding protocols. In TCC ’09, pages 220–237, 2009.

[Kat08] Jonathan Katz. Which languages have 4-round zero-knowledge proofs? In
Theory of Cryptography, pages 73–88, 2008.

[KPR98] Joe Kilian, Erez Petrank, and Charles Rackoff. Lower bounds for zero knowl-
edge on the internet. In FOCS ’98, pages 484–492, 1998.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC ’06, pages
306–315, 2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptol-
ogy, 4(2):151–158, 1991.

[PPS+08] Omkant Pandey, Rafael Pass, Amit Sahai, Wei-Lung Dustin Tseng, and
Muthuramakrishnan Venkitasubramaniam. Precise concurrent zero knowl-
edge. In EUROCRYPT ’08, pages 397–414, 2008.

[PTV10] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasub-
ramaniam. Eye for an eye: Efficient concurrent zero-knowledge in the timing
model. In TCC, pages 518–534, 2010.

[PTW09] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikström. On the com-
position of public-coin zero-knowledge protocols. In CRYPTO ’09, pages
160–176, 2009.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-
round concurrent zero-knowledge. In TCC ’08, pages 553–570, 2008.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge.
In CRYPTO ’00, pages 451–468, 2000.

854

Approved for Public Release; Distribution Unlimited.

Computing on Authenticated Data

Jae Hyun Ahn
Johns Hopkins University

arjuna@cs.jhu.edu

Dan Boneh∗

Stanford University
dabo@cs.stanford.edu

Jan Camenisch†

IBM Research – Zurich
jca@zurich.ibm.com

Susan Hohenberger‡

Johns Hopkins University
susan@cs.jhu.edu

abhi shelat§

University of Virginia
abhi@cs.virginia.edu

Brent Waters¶

University of Texas at Austin
bwaters@cs.utexas.edu

December 21, 2011

Abstract

In tandem with recent progress on computing on encrypted data via fully homomorphic
encryption, we present a framework for computing on authenticated data via the notion of
slightly homomorphic signatures, or P -homomorphic signatures. With such signatures, it is
possible for a third party to derive a signature on the object m′ from a signature of m as long as
P (m,m′) = 1 for some predicate P which captures the “authenticatable relationship” between
m′ and m. Moreover, a derived signature on m′ reveals no extra information about the parent
m.

Our definition is carefully formulated to provide one unified framework for a variety of dis-
tinct concepts in this area, including arithmetic, homomorphic, quotable, redactable, transitive
signatures and more. It includes being unable to distinguish a derived signature from a fresh
one even when given the original signature. The inability to link derived signatures to their
original sources prevents some practical privacy and linking attacks, which is a challenge not
satisfied by most prior works.

Under this strong definition, we then provide generic constructions for all univariate and
closed predicates, and specific efficient constructions for a broad class of natural predicates such
as quoting, subsets, weighted sums, averages, and Fourier transforms. To our knowledge, these
are the first efficient constructions for these predicates (excluding subsets) that provably satisfy
this strong security notion.

∗Supported by NSF, DARPA, and AFOSR. Applying to all authors, the views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the US government.
†This work has been funded by the European Community’s Seventh Framework Programme (FP7/2007-2013)

under grant agreement no. 216483 (PrimeLife).
‡Supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory

(AFRL) under contract FA8750-11-2-0211, the Office of Naval Research under contract N00014-11-1-0470, a Microsoft
Faculty Fellowship and a Google Faculty Research Award.
§Supported by NSF CNS-0845811 and TC-1018543, Defense Advanced Research Projects Agency (DARPA) and

the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, and a Microsoft New Faculty Fellow-
ship.
¶Supported by NSF CNS-0915361 and CNS-0952692, AFOSR Grant No: FA9550-08-1-0352, DARPA PROCEED,

DARPA N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship,
and Packard Foundation Fellowship.

1
855

Approved for Public Release; Distribution Unlimited.

1 Introduction

In tandem with recent progress on computing any function on encrypted data, e.g., [28, 54, 51], this
work explores computing on unencrypted signed data. In the past few years, several independent
lines of research touched on this area:

• Quoting/redacting: [53, 34, 1, 41, 31, 18, 17, 19] Given Alice’s signature on some message
m anyone should be able to derive Alice’s signature on a subset of m. Quoting typically
applies to signed text messages where one wants to derive Alice’s signature on a substring
of m. Quoting can also apply to signed images where one wants to derive a signature on a
subregion of the image (say, a face or an object) and to data structures where one wants to
derive a signature of a subset of the data structure such as a sub-tree of a tree.

• Arithmetic: [35, 60, 23, 14, 27, 13, 12, 58] Given Alice’s signature on vectors v1, . . . ,vk ∈ Fnp
anyone should be able to derive Alice’s signature on a vector v in the linear span of v1, . . . ,vk.
Arithmetic on signed data is motivated by applications to secure network coding [26]. We show
that these schemes can be used to compute authenticated linear operations such as computing
an authenticated weighted sum of signed data and an authenticated Fourier transform. As a
practical consequence of this, we show that an untrusted database storing signed data (e.g.,
employee salaries) can publish an authenticated average of the data without leaking any
other information about the stored data. Recent constructions go beyond linear operations
and support low degree polynomial computations [12].

• Transitivity: [46, 40, 5, 32, 6, 49, 59, 45] Given Alice’s signature on edges in a graph G anyone
should be able to derive Alice’s signature on a pair of vertices (u, v) if and only if there is a
path in G from u to v. The derived signature on the pair (u, v) must be indistinguishable
from a fresh signature on (u, v) had Alice generated one herself [40]. This requirement ensures
that the derived signature on (u, v) reveals no information about the path from u to v used
to derive the signature.

In this paper, we put forth a general framework for computing on authenticated data that
encompasses these lines of research and much more. While prior definitions mostly contained
artifacts specific to the type of malleability they supported and, thus, were hard to compare to one
another, we generalize and strengthen these disparate notions into a single definition. This definition
can be instantiated with any predicate, and we allow repeated computation on the signatures
(e.g., it is possible to quote from a quoted signature.) During our study, we realized that the
“privacy” notions offered by many existing definitions are, in our view, insufficient for some practical
applications. We therefore require a stronger (and seemingly a significantly more challenging to
achieve) property called context hiding. Under this definition, we provide two generic solutions
for computing signatures on any univariate, closed predicate; however, these generic constructions
are not efficient. We also present efficient constructions for three problems: quoting substrings in
Section 5, a subset predicate in Section 6, and a weighted average over data in Section 7 (which
captures weighted sums and Fourier transforms). Our quoting substring construction is novel and
significantly more efficient than the generic solutions. For the problems of subsets and weighted
averages, we show somewhat surprising connections to respective existing solutions in attribute-
based encryption and network coding signatures.

2
856

Approved for Public Release; Distribution Unlimited.

1.1 Overview

A general framework. Let M be some message space and let 2M be its powerset. Consider
a predicate P : 2M ×M → {0, 1} mapping a set of messages and a message to a bit. Loosely
speaking we say that a signature scheme supports computations with respect to P if the following
holds:

Let M ⊂M be a set of messages and let m′ be a derived message, namely m′ satisfies
P (M,m′) = 1. Then there exists an efficient procedure that can derive Alice’s signature
on m′ from Alice’s independent signatures on all of the messages in M .

For the quoting application, the predicate P is defined as P (M,m′) = 1 iff m′ is a quote from the
set of messages M . Here we focus on quoting from a single message m so that P is false whenever
M contains more than one component1, and thus use the notation P (m,m′) as shorthand for
P ({m},m′). The predicate P for arithmetic computations is defined in Appendix A and essentially
says that P

(
(v1, . . . ,vk), v) is true whenever v is in the span of v1, . . . ,vk.

We emphasize that signature derivation can be iterative. For example, given a message-signature
pair (m,σ) from Alice, Bob can publish a derived message-signature pair (m′, σ′) for an m′ where
P (m,m′) holds. Charlie, using (m′, σ′), may further derive a signature σ′′ on m′′. In the quoting
application, Charlie is quoting from a quote which is perfectly fine.

Security. We give a clean security definition that captures two properties: unforgeability and
context hiding. We briefly discuss each in turn and give precise definitions in the next section.

• Unforgeability captures the idea that an attacker may be given various derived signatures
(perhaps iteratively derived) on messages of his choice. The attacker should be unable to
produce a signature on a message that is not derivable from the set of signed messages at
his possession. E.g., suppose Alice generates (m,σ) and gives it to Bob who then publishes
a derived signature (m′, σ′). Then an attacker given (m′, σ′) should be unable to produce a
signature on m or on any other message m′′ such that P (m′,m′′) = 0.

• Context hiding captures an important privacy property: a signature should reveal nothing
more than the message being signed. In particular, if a signature on m′ was derived from
a signature on m, an attacker should not learn anything about m other than what can be
inferred from m′. This should be true even if the original signature on m is revealed. For
example, a signed quote should not reveal anything about the message from which it was
quoted, including its length, the position of the quote, whether its parent document is the
same as another quote, whether it was derived from a given signed message or generated
freshly, etc.

Defining context hiding is an interesting and subtle task. In the next section, we give a definition
that captures a very strong privacy requirement. We discuss earlier attempts at defining privacy
following our definition in Section 2.3; while many prior works use a similar sounding intuition as
we give above, most contain a fundamental difference to ours in their formalization.

We note that notions such as group or ring signatures [24, 4, 20, 10, 48] have considered the
problem of hiding the identity of a signer among a set of users. Context hiding ensures privacy for
the data rather than the signer. Our goal is to hide the legacy of how a signature was created.

1We leave it for future work to construct systems for securely quoting from two messages (or possibly more) as
defined next.

3
857

Approved for Public Release; Distribution Unlimited.

Efficiency. We require that the size of a signature, whether fresh or derived, depend only on
the size of the object being signed. This rules out solutions where the signature grows with each
derivation.

Generic Approaches. We begin with two generic constructions that can be inefficient. They
apply to closed, univariate predicates, namely predicates P (M,m′) where M contains a single
message (P is false when |M | > 1) and where if P (a, b) = P (b, c) = 1 then P (a, c) = 1. The first
construction uses any standard signature scheme S where the signing algorithm is deterministic.
(One can enforce determinism using PRFs [29].) To sign a message m ∈ M, one uses S to sign
each message m′ such that P (m,m′) = 1. The signature consists of all these signature components.
To verify a signature for m, one checks the signature component corresponding to the message
m. To derive a signature m′ from m, one copies the signature components for all m′′ such that
P (m′,m′′) = 1. Soundness of the construction follows from the security of the underlying standard
scheme S and context hiding from the fact that signing in S is deterministic.

Unfortunately, these signatures may become large consisting up to |M| signature components
— effecting both the signing time and signature size. Our second generic construction alleviates
the space burden by using an RSA accumulator. The construction works in a similar brute force
fashion where a signature on m is an accumulator value on all m′ such that P (m,m′) = 1. While
this produces short signatures, the time component of both verification and derivation are even
worse than the first generic approach. Thus, these generic approaches are too expensive for most
interesting predicates. We detail these generic approaches and proofs in Section 4, where we also
discuss a generic construction using NIZK.

Our Quoting Construction. We turn to more efficient constructions. First, we set out to
construct a signature for quoting substrings2, which although conceptually simple is non-trivial to
realize securely. As an efficiency baseline, we note that the brute force generic construction of the
quoting predicate would result in n2 components for a signature on n characters. So any interesting
construction must perform more efficiently than this. We prove our construction selectively secure.3

In addition, we give some potential future directions for achieving adaptive security and removing
the use of random oracles.

Our construction uses bilinear groups to link different signature components together securely,
but in such a way that the context can be hidden by a re-randomizing step in the derivation
algorithm. A signature in our system on a message of length n consists of n lg n group elements;
intuitively organized as lg n group elements assigned to each character. To derive a new signature
on a substring of ` characters, one roughly removes the group elements not associated with the
new substring and then re-randomizes the remaining part of the signature. This results in a new
signature of ` lg ` group elements. The technical challenge consists in simultaneously allowing re-
randomization and preserving the “linking” between successive characters. In addition, there is a
second option in our derive algorithm that allows for the derivation of a short signature of lg ` group
elements; however the derive procedure cannot be applied again to this short signature. Thus, we
support quoting from quotes, and also provide a compression option which produces a very short
quote, but the price for this is that it cannot be quoted from further.

2A substring of x1 . . . xn is some xi . . . xj where i, j ∈ [1, n] and i ≤ j. We emphasize that we are not considering
subsequences. Thus, it is not possible, in this setting, to extract a signature on “I like fish” from one on “I do not
like fish”.

3Following an analog of [21], selective security for signatures requires the attacker to give the forgery message
before seeing the verification key.

4
858

Approved for Public Release; Distribution Unlimited.

Computing Signatures on Subsets and Weighted Averages. Our final two contributions
are schemes for deriving signatures on subsets and weighted averages on signatures. Rather than
create entirely new systems, we show connections to existing Attribute-Based Encryption schemes
and Network Coding Signatures. Briefly, our subset construction extends the concept of Naor [11]
who observed that every IBE scheme can be transformed into a standard signature scheme by
applying the IBE KeyGen algorithm as a signing algorithm. Here we show an analog for known
Ciphertext-Policy (CP) ABE schemes. The KeyGen algorithm which generates a key for a set S of
attributes can be used as a signing algorithm for the set S. For known CP-ABE systems [7, 36, 57]
it is straightforward to derive a key for a subset S′ of S and to re-randomize the signature/key. To
verify a signature on S we can apply Naor’s signature-from-IBE idea and encrypt a random message
X to a policy that is an AND of all the attributes in S and see if the signature can be used as an
ABE key to decrypt to X. Signatures for subsets have been previously considered in [32, §6.4], but
without context hiding requirements. We provide further details in Section 6. Our construction for
weighted sums is presented in Section 7, where we discuss how this applies to Fourier transforms.

Other Predicates. One can also imagine predicates P that support more complex operations
on signed messages. One natural set of examples are spreadsheet operations such as median,
standard deviation, and rounding on signed data (satisfying unforgeability and context hiding).
Other examples include graph algorithms such as computing a signature on a perfect matching in
a signed bipartite graph.

2 Definitions

Definition 2.1 (Derived messages) Let M be a message space and let P : 2M×M→ {0, 1} be
a predicate from sets overM and a message inM to a bit. We say that a message m′ is derivable
from the set M ⊆M if P (M,m′) = 1. We denote by P ∗(M) the set of messages derivable from M
by repeated derivation. That is, let P 0(M) be the set of messages derivable from M and for i > 0
let P i(M) be the set of messages derivable from P i−1(M). Then P ∗(M) := ∪∞i=0P

i(M).
We define the closure of P , denoted P ∗, as the predicate defined by P ∗(M,m) = 1 iff m ∈

P ∗(M).

A P -homomorphic signature scheme Π for message space M and predicate P is a triple of PPT
algorithms:

KeyGen(1λ): the key generation algorithm outputs a key pair (pk , sk). We treat the secret key
sk as a signature on the empty tuple ε ∈M∗. We also assume that pk is embedded in sk .

SignDerive(pk , ({σm}m∈M ,M),m′, w): the algorithm takes as input the public key, a set of mes-
sages M ⊆ M and corresponding signatures {σm}m∈M , a derived message m′ ∈ M, and possibly
some auxiliary information w. It produces a new signature σ′ or a special symbol ⊥ to repre-
sent failure. For complicated predicates P , the auxiliary information w serves as a witness that
P (M,m′) = 1. To simplify the notation we often drop w as an explicit argument.

As shorthand we write Sign(sk ,m) := SignDerive(pk , (sk , ε),m, ·) to denote that any mes-
sage can be derived when the original signature is the signing key. For a set of messages M =
{m1, . . . ,mk} ⊂ M∗ it is convenient to let Sign(sk ,M) denote independently signing each of the
k messages, namely:

Sign(sk ,M) :=
(

Sign(sk ,m1), . . . ,Sign(sk ,mk)
)
.

5
859

Approved for Public Release; Distribution Unlimited.

Verify(pk ,m, σ): given a public key, message, and purported signature σ, the algorithm returns 1
if the signature is valid and 0 otherwise.
We assume that testing m ∈M can be done efficiently, and that Verify returns 0 if m 6∈ M.

Correctness. We require that for all key pairs (sk , pk) generated by KeyGen(1n) and for all
M ∈M∗ and m′ ∈M we have:

• if P (M,m′) = 1 then SignDerive(pk , (Sign(sk ,M),M),m′) 6= ⊥, and

• for all signature tuples {σm}m∈M such that σ′ ← SignDerive(pk , ({σm}m∈M ,M),m′) 6= ⊥,
we have Verify(pk ,m′, σ′) = 1.

In particular, correctness implies that a signature generated by SignDerive can be used as an
input to SignDerive so that signatures can be further derived from derived signatures, if allowed
by P .

Derivation efficiency. In many cases it is desirable that the size of a derived signature depend
only on the size of the derived message. This rules out signatures that expand as one iteratively
calls SignDerive. All the constructions in this paper are derivation efficient in this sense.

Definition 2.2 (Derivation-Efficient) A signature scheme is derivation-efficient if there exists
a polynomial p such that for all (pk , sk) ← KeyGen(1λ), set M ⊆ M∗, signatures {σm}m∈M ←
Sign(sk ,M) and derived messages m′ where P (M,m′) = 1, we have

|SignDerive(pk , {σm}m∈M ,M,m′)| = p(λ, |m′|).

2.1 Security: Unforgeability

To define unforgeability, we extend the basic notion of existential unforgeability with respect to
adaptive chosen-message attacks [30]. The definition captures the idea that if the attacker is given a
set of signed messages (either primary or derived) then the only messages he can sign are derivations
of the signed messages he was given. This is defined using a game between a challenger and an
adversary A with respect to scheme Π over message space M.

— Game Unforg(Π,A, λ, P):

Setup: The challenger runs KeyGen(1λ) to obtain (pk , sk) and sends pk to A. The challenger
maintains two sets T and Q that are initially empty.

Queries: Proceeding adaptively, the adversary issues the following queries to the challenger:

• Sign(m ∈M): the challenger generates a unique handle h, runs Sign(sk ,m)→ σ and places
(h,m, σ) into a table T . It returns the handle h to the adversary.

• SignDerive(~h = (h1, . . . , hk), m
′): the oracle retrieves the tuples (hi, σi,mi) in T for i =

1, . . . , k, returning ⊥ if any of them do not exist. Let M := (m1, . . . ,mk) and {σm}m∈M :=
{σ1, . . . , σk}. If P (M,m′) holds, then the oracle generates a new unique handle h′, runs
SignDerive(pk , ({σm}m∈M , M),m′) → σ′ and places (h′,m′, σ′) into T , and returns h′ to
the adversary.

• Reveal(h): Returns the signature σ corresponding to handle h, and adds (σ′,m′) to the set
Q.

6
860

Approved for Public Release; Distribution Unlimited.

Output: Eventually, the adversary outputs a pair (σ′,m′). The output of the game is 1 (i.e., the
adversary wins the game) if:

• Verify(pk ,m′, σ′) = 1 and,

• let M ⊆M be the set of messages in Q then P ∗(M,m′) = 0 where P ∗ is the closure of
P from Definition 2.1.

Else, the output of the game is 0. Define ForgA as the probability that Pr[Unforg(Π,A, λ, P) =
1].

Interestingly, for some predicates it may be difficult to test if the adversary won the game. For all
the predicates we consider in this paper, this will be quite easy.

Definition 2.3 (Unforgeability) A P -homomorphic signature scheme Π is unforgeable with
respect to adaptive chosen-message attacks if for all PPT adversaries A, the function ForgA is
negligible in λ.

A P -homomorphic signature scheme Π is selective unforgeable with respect to adaptive
chosen-message attacks if for all PPT adversaries A who begin the above game by announcing
the message m′ on which they will forge, ForgA is negligible in λ.

Properties of the definition. By taking P to be the equality oracle, namely P (x, y) = 1 iff
x = y, we obtain the standard unforgeability requirement for signatures.

Notice that Sign and SignDerive queries return handles, but do not return the actual signatures.
A system proven secure under this definition adequately rules out the following attack: suppose
(m,σ) is a message signature pair and (m′, σ′) is a message-signature pair derived from it, namely
σ′ = SignDerive(pk , σ, m,m′). For example, suppose m′ is a quote from m. Then given (m′, σ′)
it should be difficult to produce a signature on m and indeed our definition treats a signature on
m as a valid forgery.

The unforgeability game imposes some constraints on P : (1) P must be reflexive, i.e. P (m,m) =
1 for all m ∈M, (2) P must be monotone, i.e. P (M,m′)⇒ P (M ′,m′) where M ⊆M ′. It is easy to
see that predicates that do not satisfy these requirements cannot be realized under Definition 2.3.

2.2 Security: Context Hiding (a.k.a., Privacy)

Let M be some set and let m′ be a derived message from M (i.e., P (M,m′) = 1). Context hiding
captures the idea that a signature on m′ derived from signatures on M should reveal no information
about M beyond what is revealed by m′. For example, in the case of quoting, a signature on a
quote from m should reveal nothing more about m: not the length of m, not the position of the
quote in m, etc. The same should hold even if the attacker is given signatures on multiple quotes
from m.

We put forth the following powerful statistical definition of context hiding and discuss its im-
plications following the definition. We were most easily able to leverage a statistical definition for
our proofs, although we also give an alternative computational definition in Appendix A.

Definition 2.4 (Strong Context Hiding) Let M ⊆ M∗ and m′ ∈ M be messages such that
P (M,m′) = 1. Let (pk , sk)← KeyGen(1λ) be a key pair. A signature scheme (KeyGen,SignDerive,
Verify) is strongly context hiding (for predicate P) if for all such triples ((pk , sk),M,m′), the fol-
lowing two distributions are statistically close:

{(
sk , {σm}m∈M ← Sign(sk ,M), Sign(sk ,m′)

)}
sk ,M,m′{(

sk , {σm}m∈M ← Sign(sk ,M), SignDerive(pk , ({σm}m∈M ,M),m′)
)}

sk ,M,m′

7
861

Approved for Public Release; Distribution Unlimited.

The distributions are taken over the coins of Sign and SignDerive. Without loss of generality,
we assume that pk can be computed from sk.

The definition states that a derived signature on m′, from an honestly-generated original sig-
nature, is statistically indistinguishable from a fresh signature on m′. This implies that a derived
signature on m′ is indistinguishable from a signature generated independently of M . Therefore,
the derived signature cannot (provably) reveal any information about M beyond what is revealed
by m′. By a simple hybrid argument the same holds even if the adversary is given multiple derived
signatures from M .

Moreover, Definition 2.4 requires that a derived signature look like a fresh signature even if the
original signature on M is known. Hence, if for example someone quotes from a signed recommen-
dation letter and somehow the original signed recommendation letter becomes public, it would be
impossible to link the signed quote to the original signed letter. The same holds even if the signing
key sk is leaked.

Thus, Definition 2.4 captures a broad range of privacy requirements for derived signatures.
Earlier work in this area [34, 17, 19, 16] only considered weaker privacy requirements using more
complex definitions. The simplicity and breadth of Definition 2.4 is one of our key contributions.

Definition 2.4 uses statistical indistinguishability meaning that even an unbounded adversary
cannot distinguish derived signatures from newly created ones. In Appendix A, we give a definition
using computational indistinguishability which is considerably more complex since the adversary
needs to be given signing oracles. In the unbounded case of Definition 2.4 the adversary can simply
recover a secret key sk from the public key and answer its own signature queries which greatly
simplifies the definition of context hiding. All the signature schemes in this paper satisfy the
statistical Definition 2.4.

As mentioned above, the context-hiding guarantee applies to all derivations that begin with
an honestly-generated signature. One might imagine a scenario where a malicious signer creates a
signature that passes the verification algorithm, but contains a “watermark” that allows the signer
to detect if other signatures are derived from it. To prevent such attacks from malicious signers,
we could alter the definition so that indistinguishability holds for any derivative that results from
a signature that passed the verification algorithm.

A simpler approach to proving unforgeability. For systems that are strongly context hiding,
unforgeability follows from a simpler game than that of Section 2.1. In particular, it suffices to
just give the adversary the ability to obtain top level signatures signed by sk . In Appendix A, we
define this simpler unforgeability game and prove equivalence to Definition 2.3 using strong context
hiding.

2.3 Related Work

Early work on quotable signatures [53, 34, 43, 42, 31, 18, 22, 16] supports quoting from a single
document, but does not achieve the privacy or unforgeability properties we are aiming for. For
example, if simple quoting of messages is all that is desired, then the following folklore solution
would suffice: simply sign the Merkle hash of a document. A quote represents some sub-tree of
the Merkle hash; so a quoter could include enough intermediate hash nodes along with the original
signature in any quote. A verifier could simply hash the quote, and then build the Merkle hash tree
using the computed hash and the intermediate hashes, and compare with the original signature.
Notice, however, that every quote in this scheme reveals information about the original source

8
862

Approved for Public Release; Distribution Unlimited.

document. In particular, each quote reveals information about where in the document it appears.
Thus, this simple quoting scheme is not context hiding in our sense.

The work whose definition is closest to what we envision is the recent work on redacted signatures
of Chang et al. [22] and Brzuska et al. [16] (see also Naccache [44, p. 63] and Boneh-Freeman [13,
12] 4). However, there is a subtle, but fundamental difference between their definition and the
privacy notion we are aiming for. In our formulation, a quoted signature should be indistinguishable
from a fresh signature, even when the distinguisher is given the original signature. (We capture
this by an even stronger game where a derived signature is distributed statistically close to a fresh
signature.) In contrast, the definitions of [22, 16, 13, 12] do not provide the distinguisher with the
original signature. Thus, it may be possible to link a quoted document to its original source (and
indeed it is in the constructions of [22, 16, 13, 12]), which can have negative privacy implications.
Overcoming such document linkage while maintaining unforgeability is a real technical challenge.
This requires moving beyond techniques that use nonces to link parts of messages.

Indeed, in most prior constructions, such as [22, 16], nonces are used to prevent “mix-and-
match” attacks (e.g., forming a “quote” using pieces of two different messages.) Unfortunately,
these nonces reveal the history of derivation, since they cannot change during each derivation
operation. Arguably, much of the technical difficulty in our current work comes precisely from the
effort to meet our definition and hide the lineage. We introduce new techniques in this work which
link pieces together using randomness that can be re-randomized in controlled ways.

Another line of work studies computing on authenticated data by holders of secret information.
Examples include sanitizable signatures [43, 1, 41, 19, 17] that allow a proxy to compute signatures
on related messages, but requires the proxy to have a secret key, and incremental signatures [3],
where the signer can efficiently make small edits to his signed data. In contrast, our proposal is more
along the lines of homomorphic encryption and Rivest’s vision [46], where anyone can compute on
the authenticated data.

3 Preliminaries: Algebraic Settings

Bilinear Groups and the CDH Assumption. Let G and GT be groups of prime order p. A
bilinear map is an efficient mapping e : G × G → GT which is both: (bilinear) for all g ∈ G and
a, b ← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1. We will
focus on the Computational Diffie-Hellman assumption in these groups.

Assumption 3.1 (CDH [25]) Let g generate a group G of prime order p ∈ Θ(2λ). For all PPT
adversaries A, the following probability is negligible in λ: Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

4 Generic Constructions for Simple Predicates

Let M be a finite message space. We say that a predicate P : M∗ ×M → {0, 1} is a simple
predicate if the following properties hold:

4As acknowledged in Section 2.2 of Boneh-Freeman [12], our definitional notion is stronger than and predates the
“weak context hiding” notion of [12]. Indeed, the fact that [12] uses our framework lends support to its generality, and
the fact that they could not achieve our context hiding notion highlights its difficulty. Their “weak” definition, which
is equivalent to [16], only ensures privacy when the original signatures remain hidden. In their system, signature
derivation is deterministic and therefore once the original signatures become public it is easy to tell where the derived
signature came from. Our signatures achieve full context hiding so that derived signatures remain private no matter
what information is revealed. This is considerably harder and is not known how to do for the lattice-based signatures
in Boneh-Freeman.

9
863

Approved for Public Release; Distribution Unlimited.

1. P is false whenever its left input is a tuple of length greater than 1,

2. P is a closed predicate (i.e., P is equal to its closure P ∗; see Section 2.1.)

3. For all m ∈M, P (m,m) = 1.

In this section, we present and discuss generic approaches to computing on authenticated data
with respect to any simple predicate P . Note that the quoting of substrings or subsequences (i.e.,
redacting) are examples of simple predicates.

We begin with two inefficient constructions. The first takes a brute force approach that con-
structs long signatures that are easy to verify. The second takes an accumulator approach that
constructs shorter signatures at the cost of less efficient verification. We conclude by discussing the
limitations of a generic NIZK proof of knowledge approach.

4.1 A Brute Force Construction From Any Signature Scheme

Let (G,S, V) be a signature scheme with a deterministic signing algorithm.5 One can construct a
P -homomorphic signature scheme for any simple predicate P as follows:

KeyGen(1λ) : The setup algorithm runs G(1λ)→ (pk , sk) and outputs this key pair.

Sign(sk ,m ∈M) : While Sign is simply a special case of the SignDerive algorithm, we will
explicitly provide both algorithms here for clarity purposes.

The signature σ is the tuple (S(sk ,m), U = {S(sk ,m′) | m′ ∈ P 0({m})}).

SignDerive(pk , σ,m,m′) : The derived signature is computed as follows. First check that P (m,m′) =
1. If not, then output ⊥. Otherwise, parse σ = (σ1, . . . , σk) where σi corresponds to message
mi. If for any i, V (pk ,mi, σi) = 0, then output ⊥. Otherwise, the signature is comprised
as the set containing σi for all mi such that P (m′,mi) = 1. Again, by default, let the first
sub-signature of the output be the signature on m′.

Verify(pk ,m, σ) : Parse σ = (σ1, . . . , σk). Output V (pk ,m, σ1).

Efficiency Discussion The efficiency of the above approach depends on the message space and
the predicate P . For instance, the brute force approach for signing a message of n characters, where
P (m,m′) outputs 1 if and only if m′ is a substring of m, will result in O(n2) sub-signatures (one
for each of the O(n2) substrings). If one wanted to “quote” subgraphs from a graph, this approach
is intractable, as a graph of n nodes will generate an exponential in n number of subgraphs.

Theorem 4.1 (Security from Any Signature) If (G,S, V) is a secure deterministic signature
scheme, then the above signature scheme is unforgeable and context-hiding.

Proof of the above theorem is rather straightforward. The context-hiding property follows from
the uniqueness of the signatures generated by the honest signing algorithms. The unforgeability
property follows from the fact that an adversary cannot obtain a signature on any message not
derivable from those she queried or one could use this signature to directly break the regular
unforgeability of the underlying signature scheme. The correctness property is actually the most
complex to verify: it requires the two restrictions on the predicate P made above.

5Given a signature scheme with a probabilistic signing algorithm, one can convert it to a scheme with a determin-
istic signing algorithm by: (1) including a pseudorandom function (PRF) seed as part of the secret key and (2) during
the signing algorithm, applying this PRF to the message and using the output as the randomness in the signature.
Given any signature scheme, one can also construct a PRF.

10
864

Approved for Public Release; Distribution Unlimited.

4.2 An Accumulator-based Construction

Assumption 4.2 (RSA [47]) Let k be the security parameter. Let a positive integer N be the
product of two random k-bit primes p, q. Let e be a randomly chosen positive integer less than and
relatively prime to φ(N) = (p − 1)(q − 1). Then no PPT algorithm given (N, e) and a random
y ∈ Z∗N as input can compute x such that xe ≡ y mod N with non-negligible probability.

Lemma 4.3 (Shamir [50]) Given x, y ∈ Zn together with a, b ∈ Z such that xa = yb and
gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ Zn such that za = y.

Theorem 4.4 (Prime Number Theorem) Define π(x) as the number of primes no larger than
x. For x > 1,

π(x) >
x

lg x
.

Consider the following RSA accumulator solution which supports short signatures, but the
computation required to derive a new signature is expensive. Let P be any univariate predicate
with the above restrictions.

We now describe the algorithms. While Sign is simply a special case of the SignDerive
algorithm, we will explicitly provide both algorithms here for clarity purposes.

KeyGen(1λ) : The setup algorithm chooses N as a 20λ-bit RSA modulus and a random value
a ∈ ZN . It also chooses a hash function Hp that maps arbitrary strings to 2λ-bit prime
numbers, e.g., [33], which we treat as a random oracle.6 Output the public key pk = (Hp, N, a)
and keep as the secret key sk , the factorization of N .

Sign(sk ,m ∈M) : Let U = P 0({m}) = {m′ | m′ ∈ M and P (m,m′) = 1}. Compute and output
the signature as

σ := a
1/(

Q
ui∈U Hp(ui)) mod N.

SignDerive(pk , σ,m,m′) : The derivation is computed as follows. First check that P (m,m′) = 1.
If not, then output ⊥. Otherwise, let U ′ = P 0({m′}). Compute and output the signature as

σ′ := σ
Q
ui∈U−U′ Hp(ui) mod N.

Thus, the signature is of the form a
1/

Q
ui∈U′ Hp(ui) mod N .

Verify(pk ,m, σ) : Accept if and only if a = σ
Q
ui∈U Hp(ui) mod N where U = P 0(m).

Efficiency Discussion In the above scheme, signatures require only one element in Z∗N . However,
the cost of signing depends on P and the size of the message space. For example, computing an
`-symbol quote from an n-symbol message requires O(n(n−`)) evaluations of Hp() and O(n(n−`))
modular exponentiations. The prime search component of Hp will likely be the dominating factor.
Verification requires O(`2) evaluations of Hp() and O(`2) modular exponentiations, for an `-symbol
quote. Thus, this scheme optimizes on space, but may require significant computation.

Theorem 4.5 (Security under RSA) If the RSA assumption holds, then the above signature
scheme is unforgeable and context-hiding in the random oracle model.

We provide a proof of above theorem by showing the following lemmas.

6We choose our modulus and hash output lengths to obtain λ-bit security based on the recent estimates of [52].

11
865

Approved for Public Release; Distribution Unlimited.

Lemma 4.6 (Context-Hiding) The homomorphic signature scheme from §4.2 is strongly context-
hiding.

Proof. This property is derived from the fact that a signature on any given message is deterministic.
Let the public key PK be (Hp, N, a) and challenge be any m,m′ where P (m,m′) = 1. Let U =
P 0(m) and U ′ = P 0(m′). Observe that

Sign(sk ,m) = σ = a1/
Q
u∈U Hp(u) mod N

Sign(sk ,m′) = σ0 = a1/
Q
u′∈U′ Hp(u

′) mod N

SignDerive(pk , (σ,m),m′) = σ
Q
u∈U−U′ Hp(u) mod N

=
[
a1/

Q
u∈U Hp(u)

]Q
u∈U−U′ Hp(u)

mod N

= a1/
Q
u′∈U′ Hp(u

′) mod N

= σ0

Because Sign(sk ,m′) and SignDerive(pk , (σ,m),m′) are identical, for any adversary A, the prob-
ability that A distinguishes the two is exactly 1/2, and so the advantage in the strong context
hiding game is 0. �

Lemma 4.7 (Unforgeability) If the RSA assumption holds, then the Section 4.2 homomorphic
signature scheme is unforgeable in the Unforg game in the random oracle model.

Proof. Our reduction only works on certain types of RSA challenges, as in [33]. In particular, this
reduction only attempts to solve RSA challenges (N, e∗, y) where e∗ is an odd prime. Fortunately,
good challenges will occur with non-negligible probability. We know that e∗ is less than and
relatively prime to φ(N) < N , which implies it cannot be 2. We also know, by Theorem 4.4, that
the number of primes that are less than N is at least N

lgN . Thus, a loose bound on the probability

of e∗ being a prime is ≥ (N
lgN)/N = 1

lgN = 1
20λ .

Now, we describe the reduction. Our proof first applies Lemma A.4, which allows us to only
consider adversaries A that ask queries to Sign oracle in the NHU game. Moreover, suppose
adversary A queries the random oracle Hp on at most s unique inputs. Without loss of generality,
we will assume that all queries to this deterministic oracle are unique and that whenever Sign is
called on message M , then Hp is automatically called with all unique substrings of M . Suppose an
adversary A can produce a forgery with probability ε in the NHU game; then we can construct
an adversary B that breaks the RSA assumption (with odd prime e∗) with probability ε/s minus a
negligible amount as follows.

On input an RSA challenge (N, e∗, y), B proceeds as follows:

Setup B chooses 2λ-bit distinct prime numbers e1, e2, . . . , es−1 at random, where all ei 6= e∗.
Denote this set of primes as E. Next, B makes a random guess of i∗ ∈ [1, s] and saves this value
for later. Then it sets

a := y
Q
ei∈E ei .

Finally, B give the public key PK = (N, a) to A and will answer its queries to random oracle
Hp interactively as described below.

12
866

Approved for Public Release; Distribution Unlimited.

Queries Proceeding adaptively, B answers the oracle and sign queries made by A as follows:

1. Hp(x) : When A queries the random oracle for the jth time, B responds with e∗ if j = i∗, with
ej if j < i∗ and ej−1 otherwise. Recall that we stipulated that each call to Hp was unique.
Denote x∗ as the input where Hp(x

∗) = e∗.

2. Sign(M): Let U = P 0(M). If x∗ ∈ U , then B aborts the simulation. Otherwise, B calls
Hp on all elements of U not previously queried to Hp. Let primes(U) denote the set of
primes derived by calling Hp on the strings of U . Then, it computes the signature as σ :=

y
Q
ei∈(E−primes(U)) ei mod N and returns (M,σ).

Response Eventually, A outputs a valid message-signature pair (M,σ), where M is not a deriva-
tive of an element returned by Sign. If M was not queried to Hp or if M 6= x∗, then B aborts the
simulation. Otherwise, let U = P 0(x∗)− {x∗} and primes(U) denote the set of primes derived by

calling Hp on the strings of U . It holds that a
1/

Q
ei∈primes(U) ei = y

Q
ei∈E−primes(U) ei = σe

∗
mod N .

Since y, σ ∈ ZN and gcd(e∗,
∏
ei∈E−primes(U) ei) = 1 (recall, they are all distinct primes), then

B can apply the efficient algorithm from Lemma 4.3 to obtain a value z ∈ ZN such that ze
∗

= y
mod N . B outputs z as the solution to the RSA challenge.

Analysis We now argue that any successful adversary A against our scheme will have success
in the game presented by B. To do this, we first define a sequence of games, where the first
game models the real security game and the final game is exactly the view of the adversary when
interacting with B. We then show via a series of claims that if A is successful against Game j, then
it will also be successful against Game j + 1.

Game 1: The same as Game NHU, with the exception that at the beginning of the game B
guesses an index 1 ≤ i∗ ≤ s and e∗ is the response of the i∗th query to Hp.

Game 2: The same as Game 1, with the exception that A fails if any output of Hp is repeated.

Game 3: The same as Game 2, with the exception that A fails if it outputs a valid forgery (M,σ)
where M was not queried to Hp.

Game 4: The same as Game 3, with the exception that A fails if it outputs a valid forgery (M,σ)
where M 6= x∗.

Notice that Game 4 is exactly the view of the adversary when interacting with B. We complete
this argument by linking the probability of A’s success in these games via a series of claims. The
only non-negligible probability gap comes between Games 3 and 4, where there is a factor 1/s loss.

Define AdvA[Game x] as the advantage of adversary A in Game x.

Claim 4.8 If Hp is a truly random function, then

AdvA[Game 1] = AdvA[Game NHU].

Proof. The value e∗ was chosen independently at random by the RSA challenger, just as Hp would
have done. �

13
867

Approved for Public Release; Distribution Unlimited.

Claim 4.9 If Hp is a truly random function, then

AdvA[Game 2] = AdvA[Game 1]− 2s2λ

22λ
.

Proof. Consider the probability of a repeat occurring when s 2λ-bit primes are chosen at random.
By Theorem 4.4, we know that there are at least 22λ/(2λ) 2λ-bit primes. Thus, a repeat will occur
with probability <

∑s s/(22λ/2λ) = 2s2λ/22λ, which is negligible since s must be polynomial in λ.
�

Claim 4.10 If Hp is a truly random function, then

AdvA[Game 3] = AdvA[Game 2]− 2λ

22λ
.

Proof. If M was never queried to Hp, then σ can only be a valid forgery if A guessed the 2λ-bit
prime that Hp would respond with on input M . By Theorem 4.4, there are at least 22λ/2λ such
primes and thus the probability of A’s correct guess is at most 2λ/22λ, which is negligible. �

Claim 4.11

AdvA[Game 4] =
AdvA[Game 3]

s
.

Proof. At this point in our series of games, we conclude that A forges on one of the s queries to Hp

and that 1 ≤ i∗ ≤ s was chosen at random. Thus, the probability that A forges on the i∗th query
is 1/s. �

This completes our proof. �

4.3 On the Limitations of Using a Generic NIZK Proof of Knowledge Approach

Another general approach that one might be tempted to try is to use an NIZK [8] proof of knowledge
system to generate a signature on m′ by proving that one knows a signature on some m such that
P (m,m′) holds. Unfortunately, this approach has the standard drawback of generality in that it
requires circuit-based (non black-box) reductions. In particular, the statements to prove in non-
interactive zero-knowledge require transforming the circuits of the signature scheme and the quoting
predicate into an instance of Hamiltonian circuit or 3-SAT. Even if one were to tailor an NIZK proof
of knowledge for these specific statements and therefore avoid costly reductions, another problem
emerges with re-quoting. When a quote is re-quoted, then the same process happens for both the
original signature scheme circuit, the predicate, and the proof system. Aside from the inefficiency,
using standard NIZKPoK systems would leak information about the size of the original message
and quotes, and therefore would not satisfy our context hiding property7.

7Using non-interactive CS-proofs [39] in the random oracle model may reduce the size of the proof, but we do not
know how to avoid leaking the size of the theorem statement which also violates the context hiding property.

14
868

Approved for Public Release; Distribution Unlimited.

5 A Powers-of-2 Construction for Quoting Substrings

We now provide our main construction for quoting substrings in a text document. It achieves the
best time/space efficiency trade-off to our knowledge for this problem. We will have two different
types of signatures called Type I and Type II, where a Type I signature can be quoted down to
another Type I or Type II signature. A Type II signature cannot be quoted any further, but will
be a shorter signature. The quoting algorithm will allow us to quote anything that is a substring
of the original message. We point out that the Type I, II signatures of this system conform to
the general framework given in Section 2. In particular, we can view a message M as a pair
(t,m) ∈ {0, 1}, {0, 1}∗. The bit t will identify the message as being Type I or Type II (assume t = 1
signifies Type I signatures) and m will be the quoted substring. The predicate

P (M = (t,m),M ′ = (t′,m′)) =

{
1 if t = 1 and m′ is a substring of m;

0 otherwise.

The bit t′ will indicate whether the new message is Type I or II (i.e., whether the system can
quote further.) We note that this description allows an attacker to distinguish between any Type
I signature from any Type II signature since the “type bit” of the messages will be different and
thus they will technically be two different messages even if the substring components are equal.
For this reason we will only need to prove context hiding between messages of Type I or Type II,
but not across types. In general, flipping the bit t will not result in a valid signature of a different
type on the same core message, because the format will be wrong; however, moving from a Type I
to a Type II on the same core message is not considered a forgery since Type II signatures can be
legally derived from Type I.

For presentational clarity, we will split the description of our quoting algorithm into two quoting
algorithms for quoting to Type I and to Type II signatures; likewise we will split the description of
our verification algorithm into two separate verification algorithms, one for each type of signature.
The type of signature used or created (i.e., bit t) will be implicit in the description.

Notation: We use notation mi,j to denote the substring of m of length j starting at position i.

Intuition: We begin by giving some intuition. We design Type I signatures that allow re-quoting
and Type II signatures that cannot be further quoted, but are ultra-short. For an original message of
length n, our signature structure should be able to accommodate starting at any position 1 ≤ i ≤ n
and quoting any length 1 ≤ ` ≤ (n− i+ 1) substring.8

To (roughly) see how this works for a message of length n, visualize (n + 1) columns with
(blg nc+ 2) rows as in Figure 1. The columns correspond to the characters of the message, so if the
14-character message is “abcdefghijklmn” then there are 15 columns, with a character in between
each column. The rows correspond to the numbers lg n down to 0, plus an extra row at the bottom.9

Each location in the matrix (except along the bottom-most row) contains one or more out-going
arrows. We’ll establish rules for when these arrows exist and where each arrow ends shortly.

A Type II quote will trace a (lg n+1)-length path on these arrows through this matrix starting
in a row (with outgoing arrows) of the column that begins the quote and ending in the lowest row
of the first column after the quote ends. The starting row corresponds to the largest power of
two less than or equal to the length of the desired quote. E.g., to quote “bcdef”, start in row 2

8Technically, our predicate P (m,m′) will take the quote from the first occurrence of substring m′ in m, but for
the moment imagine that we allowed quoting from anywhere in m.

9The lowest row is intentionally not assigned a number. The second lowest row is row 0. We do this so that row
i can correspond to a jump of length 2i.

15
869

Approved for Public Release; Distribution Unlimited.

a b c d e f g h i j k l m n

`+1

N+1

0

1

2

3

blg `c+2

blgNc+2

S4,2

D8,1

A8,0

Type I Signature

c d e f g h i

`+1

0

1

2

blg `c+2

S′2,2

D′6,1

A′6,0

“start” arrow

“start” arrow and
“one” arrow (overlapped)

“zero” arrow

a path which represents
the substring “defgh”

Figure 1: The top diagram represents a signature on “abcdefghijklmn” with length N = 14. Each
arrow corresponds to some group elements in the construction. Logically, whenever the elements
corresponding to an arrow are included in a quoted signature, the characters underneath this arrow
are included in the quoted message. The bold path through the top diagram shows how to construct
a Type II signature on “defgh”; it is very short, but cannot be re-quoted. The gray box in this
figure shows how to construct a Type I signature on “cdefghi” of length ` = 7; it includes all the
arrows in the lower figure and can be re-quoted. A technical challenge is to enforce that following
the arrows is the only way to form a valid signature. Details are below.

immediately to the left of ‘b’ (because 22 = 4 is the largest power of two less than 5) and end in
row 0 immediately to the right of ’f’. Intuitively, taking an arrow over a character includes it in
the quote. A Type II quote on “defgh” is illustrated in Figure 1.

A technical challenge is to make this a O(lg n)-length path rather than a O(n)-length path. To
do this, the key insight is to view the length of any possible quote as the sum of powers of two
and to allow arrows that correspond to covering the quote in pieces of size corresponding to one
operand of the sum at a time. Each location (ic, ir) in the matrix (except the bottom-most row)
contains:

• a “start” arrow: an arrow that goes down one row and over 2ir columns ending in (ic+2ir , ir−
1), if this end point is in the matrix. This adds all characters from position ic to ic + 2ir − 1
to the quoted substring; effectively adding the largest power-of-two-length prefix of the quote
characters. This arrow indicates that the quote starts here. These are represented as Si,j , S̃i,j
pairs in our construction.
• a “one” arrow: operate similarly to start arrows and used to include characters after a start

16
870

Approved for Public Release; Distribution Unlimited.

arrow includes the quote prefix. These are represented as Ai,j , Ãi,j pairs in our construction.
• a “zero” arrow: an arrow that goes straight down one row ending in (ic, ir − 1). This does

not add any characters to the quoted substring. These are represented as Di,j , D̃i,j pairs in
our construction.

A Type II quote always starts with a start arrow and then contains one and zero arrows
according to the binary representation of the length of the quote. In our example of original
message “abcdefghijklmn”, we have 15 columns and 5 rows. We will logically divide our desired
substring of “bcdef” (length 5 = 22 + 20 = 4 + 1) into its powers-of-two components “bcde”(length
4 = 22) and “f” (length 1 = 20). To form the Type II quote, we start in row 2 (since 4 = 22) of
column 2 (to the left of ’b’) and take the start arrow (S2,2) to row 1 of column 7, take the zero
arrow (D7,1) to row 0 of column 7, and then take the one arrow (A7,0) to the lowest row of column
8. The arrows “pass over” the characters “bcdef”. Figure 1 illustrates this for quote “defgh”.

For a quote of length `, the elements on this O(lg `)-length path of arrows form a very short Type
II signature. For Type I signatures, we include all the elements corresponding to all arrows that
make connections within the columns corresponding to the quote. We illustrate this in Figure 1.
This allows quoting of quotes with a signature size of O(` lg `).

It is essential for security that the signature structure and data algorithm enforce that the
quoting algorithm be used and not allow an attacker to “splice” together a quote from different
parts of the signature. We realize this by adding in random “chaining” variables. In order to
cancel these out and get a well formed Type II quote a user must intuitively follow the prescribed
procedure (i.e., following the arrows is the only way to form a valid quote.)

The Construction: We now describe our algorithms. While Sign is simply a special case of the
SignDerive algorithm, we will explicitly provide both algorithms here for clarity purposes.

KeyGen(1λ) : The algorithm selects a bilinear group G of prime order p > 2λ with generator g.
Let L be the maximum message length supported and denote n = blg(L)c. Let H : {0, 1}∗ →
G and Hs : {0, 1}∗ → G be the description of two hash functions that we model as random
oracles. Choose random z0, . . . , zn−1, α ∈ Zp. The secret key is (z0, . . . , zn−1, α) and the
public key is:

PK = (H,Hs, g, g
z0 , . . . , gzn−1 , e(g, g)α).

Sign(sk ,M = (t,m) ∈ {0, 1} × Σ`≤L) : If t = 1, signatures produced by this algorithm are Type I
as described below. If t = 0, the Type II signature can be obtained by running this algorithm
and then running the Quote-Type II algorithm below to obtain a quote on the entire message.
The message space is treated as ` ≤ L symbols from alphabet Σ.

Recall: we use notation mi,j to denote the substring of m of length j starting at position i.

For i = 3 to ` + 1 and j = 0 to blg(i − 1) − 1c, choose random values xi,j ∈ Zp. These will
serve as our random “chaining” variables, and they should all “cancel” each other out in our
short Type II signatures. By definition, set xi,−1 := 0 for all i = 1 to `+ 1.

A signature is comprised of the following values for i = 1 to ` and j = 0 to blg(`− i+ 1)c, for
randomly chosen values ri,j ∈ Zp:

[start arrow: start and include power j]

Si,j = gαg−xi+2j ,j−1Hs(mi,2j)
ri,j , S̃i,j = gri,j

17
871

Approved for Public Release; Distribution Unlimited.

Together with the following values for i = 3 to ` and j = 0 to min(blg(i−1)−1c, blg(`−i+1)c),
for randomly chosen values r′i,j ∈ Zp:

[one arrow: include power j and decrease j]

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j , Ãi,j = gr

′
i,j

Together with the following values for i = 3 to `+ 1 and j = 0 to blg(i−1)−1c, for randomly
chosen values r′′i,j ∈ Zp:

[zero arrow: decrease j]

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j

We provide an example of how to form Type II signatures from this construction shortly. To
see why our Ai,j and Di,j values start at i = 3, note that Type II quotes at position i of
length 20 = 1 symbol include only the Si,0 value, where the x·,0−1 term is 0 by definition.
Type II quotes at position i of length 21 = 2 symbols include the Si,1 value plus an additional
Di+2,0 term to cancel out the xi+2,0 value (leaving only xi+2,−1 = 0.) Quotes at position i of
length 21 + 1 = 3 symbols include the Si,1 value plus an additional Ai+2,0 term to cancel out
the xi+2,0 value (leaving only xi+3,−1 = 0.) Since we index strings from position 1, the first
position to include an Ai,j or Di,j value is i+ 2 = 3.

SignDerive(pk , σ,M = (t,m),M ′ = (t′,m′)) : If P (M,M ′) = 0, output ⊥. Otherwise, if t′ = 1,
output Quote-Type I(PK, σ,m,m′); if t′ = 0, output Quote-Type II(PK, σ,m,m′), where
these algorithms are defined below.

Quote-Type I(pk , σ,m,m′) : The quote algorithm takes a Type I signature and produces another
Type I signature that maintains the ability to be quoted again. Intuitively, this operation
will simply find a substring m′ in m, keep only the components associated with this substring
and re-randomize them all (both the xi,j and ri,j terms in every component.)

Ifm′ is not a substring ofm, then output⊥. Otherwise, let `′ = |m′|. Determine the first index

k at which substring m′ occurs in m. Parse σ as a collection of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j

values, exactly as would come from Sign with ` = |m|.

First, we choose re-randomization values (to re-randomize the xi,j terms of σ.) For i = 2 to
`′+ 1 and j = 0 to blg(i− 1)− 1c, choose random values yi,j ∈ Zp. Set yi,−1 := 0 for all i = 1
to `′ + 1. Later, we will choose ti,j values to re-randomize the ri,j terms of σ.

The quote signature σ′ is comprised of the following values:

For i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c, for randomly chosen ti,j ∈ Zp:

S′i,j = Si+k−1,j · g−yi+2j ,j−1Hs(mi+k−1,2j)
ti,j , S̃′i,j = ˜Si+k−1,j · gti,j

Together with the following values for i = 3 to `′ and j = 0 to min(blg(i−1)−1c, blg(`′−i+1)c),
for randomly chosen t′i,j ∈ Zp:

A′i,j = Ai+k−1,j · gyi,jg−yi+2j ,j−1H(mi+k−1,2j)
t′i,j , Ã′i,j = ˜Ai+k−1,j · gt

′
i,j

18
872

Approved for Public Release; Distribution Unlimited.

Together with the following values for i = 3 to `′+1 and j = 0 to blg(i−1)−1c, for randomly
chosen t′′i,j ∈ Zp:

D′i,j = Di+k−1,j · gyi,jg−yi,j−1gzjt
′′
i,j , D̃′i,j = D̃i+k−1,j · gt

′′
i,j

Quote-Type II(pk , σ,m,m′) : The quote algorithm takes a Type I signature and produces a
Type II signature. If P (m,m′) 6= 1, then output ⊥.

A quote is computed from one start value and logarithmically many subsequent pieces depend-
ing on the bits of |m′|. All signature pieces must be re-randomized to prevent content-hiding
attacks.

Consider the length `′ written as a binary string. Let β′ be the largest index of `′ = |m′|
that is set to 1, where we start counting with zero as the least significant bit. That is, set
β′ = blg(`′)c. Select random values v, vβ′−1, . . . , v0 ∈ Zp. Set the start position as B := Sk,β′

and
k′ := k + 2β

′
. Then, from j = β′ − 1 down to 0, proceed as follows:

• If the jth bit of `′ is 1, set B := B ·Ak′,j ·H(mk′,2j)
vj , set k′ := k′+2j , and Zj := Ãk′,j ·gvj ;

• If the jth bit of `′ is 0, set B := B ·Dk′,j · gzjvj and Zj := D̃k′,j · gvj .

To end, re-randomize as B := B ·Hs(mk,2β)v and S̃ := S̃k,β · gv; output the quote as

σ′ = (B, S̃, Zβ−1, . . . , Z0)

Verify(pk ,M = (t,m), σ) : If t = 1, output Verify-Type I(pk ,m, σ). Otherwise, output Verify-
Type II(pk ,m, σ), where these algorithms are defined immediately below.

Verify–Type I(pk ,m, σ) : Parse σ as the set of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j . Let ` = |m|.
Let Xi,j denote e(g, g)xi,j . We can compute these values as follows. The value Xi,−1 = 1,
since for all i = 1 to ` + 1, xi,−1 = 0. For i = 3 to ` + 1 and j = 0 to blg(i − 1) − 1c,
we compute Xi,j in the following manner: Let I = i − 2j+1 and J = j + 1. Next, compute

Xi,j =
(
e(g, g)α · e(Hs(mI,2J), S̃I,J)

)
/ e(SI,J , g). The verification accepts if and only if all of

the following hold:

• for i = 3 to ` and j = 0 to min(blg(i− 1)− 1c, blg(`− i+ 1)c),

e(Ai,j , g) = Xi,j/Xi+2j ,j−1 · e(H(mi,2j), Ãi,j)

• and for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c, e(Di,j , g) = Xi,j/Xi,j−1 · e(gzj , D̃i,j).

Verify-Type II(pk ,m, σ) : We give the verification algorithm for Type II signatures. Parse σ as
(B, S̃, Zβ−1, . . . , Z0). Let ` = |m| and β be the index of the highest bit of ` that is set to 1.
If σ does not include exactly β Zi values, reject. Set C := 1 and k = 1. From j = β− 1 down
to 0, proceed as follows:

• If the jth bit of ` is 1, set C := C · e(H(mk,2j), Zj) and k := k + 2j ;
• If the jth bit of ` is 0, set C := C · e(gzj , Zj).

Accept if and only if e(B, g) = e(g, g)α · e(Hs(m1,2β), S̃) · C.

Theorem 5.1 (Security under CDH) If the CDH assumption holds in G, then the above quotable
signature scheme is selectively quote unforgeable and context-hiding in the random oracle model.

19
873

Approved for Public Release; Distribution Unlimited.

Efficiency Discussion This construction presents the best known balance between time and
space complexity. The quotable (Type I) signatures require O(` lg `) elements in G for a message
of length `. The group elements in both types of signatures are elements of G, and not the target
group GT . Typically, elements of the base group are significantly smaller than elements of the
target group. Computing quotes requires O(` lg `) modular exponentations for a quote of length `
for re-randomization. Similarly, verification also requires O(` lg `) pairings.

The non-quotable (Type II) signatures require only O(lg `) elements in G. Computing quotes
is very efficient as it requires only O(lg `) modular exponentiations for a quote of length ` for
re-randomization. Similarly, verification requires only O(lg `) pairings.

Removing the Random Oracle and Obtaining Full Security There are a few different
options for adapting the above construction to the standard model. We observe that our signa-
tures share many properties with the private keys of hierarchical identity-based encryption (HIBE)
schemes. To remove the random oracle, while remaining under a selective definition, we can use the
Boneh-Boyen techniques [9] to instantiate H(m) = gmh, where h ∈ G is added to the public key
and there is a method for mapping the message space to Zp. Similarly, we can remove the random
oracle by instantiating H with the Waters hash [55] and applying his proof techniques. This can
be viewed as a full security construction with a reduction to the concrete security parameter by
roughly a factor of (1/O(q))lg `, where q is the number of signing queries and ` is the length of
the quote. A direction for achieving full security is to use the recent “Dual System” techniques
introduced by Waters [56]. One obstacle in adapting the Waters system is that it contains “tags”
in the private key structure, which would likely make our re-randomization step difficult for our
context hiding property. Lewko and Waters [37] recently removed the tags, which may make their
techniques and construction more suitable for our application. One drawback in using their HIBE
techniques to construct signatures is that even the signatures resulting from their construction
require (slightly non-standard) decisional complexity assumptions. Thus, it is unknown how to
balance time/space efficiently while achieving full security in the standard model from a simple
computational assumption such as CDH.

5.1 Security Analysis

We now provide a proof of Theorem 5.1 by showing the following lemmas.

Lemma 5.2 (Strong Context-Hiding) The Section 5 quotable signature scheme is strongly context-
hiding.

Proof. Given any two challenge messages M = (t,m),M ′ = (t′,m′) such that P (M,M ′) = 1, we
claim that whether t′ = 1 or 0, SignDerive(pk , σ,M ′,M) has an identical distribution to that of
Sign(sk ,M), which implies that the two distributions are statistically close.

{(SK, σ ← Sign(SK,M),Sign(SK,M ′)}SK,M,M ′

{(SK, σ ← Sign(SK,M),SignDerive(PK, σ,M,M ′)}SK,M,M ′

Let `, `′ denote |m| and |m′| respectively. Let Γ = min(blg(i−1)−1c, blg(`− i+1)c). Sign(SK,M)
is composed of the following values:

Si,j = gαg−xi+2j ,j−1Hs(mi,2j)
ri,j , S̃i,j = gri,j , for i = 1 to ` and j = 0 to blg(`− i+ 1)c

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j , Ãi,j = gr

′
i,j , for i = 3 to ` and j = 0 to Γ

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j , for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c

20
874

Approved for Public Release; Distribution Unlimited.

for randomly chosen ri,j , r
′
i,j , r

′′
i,j , xi,j ∈ Zp.

Case where t′ = 1 (Type I Signatures). Let Γ′ = min(blg(i − 1) − 1c, blg(`′ − i + 1)c). When
t′ = 1, Sign(SK,M ′) is composed of the following values:

S′′i,j = gαg
−x′

i+2j ,j−1Hs(m
′
i,2j)

vi,j , S̃′′i,j = gvi,j , for i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c

A′′i,j = gx
′
i,jg
−x′

i+2j ,j−1H(m′i,2j)
v′i,j , Ã′′i,j = gv

′
i,j , for i = 3 to `′ and j = 0 to Γ′

D′′i,j = gx
′
i,jg−x

′
i,j−1gzjv

′′
i,j , D̃′′i,j = gv

′′
i,j , for i = 3 to `′ + 1 and j = 0 to blg(i− 1)− 1c

for randomly chosen vi,j , v
′
i,j , v

′′
i,j , x

′
i,j ∈ Zp.

And SignDerive(PK, σ,M,M ′) is Quote-Type I(PK, σ,m,m′), which is comprised of the fol-
lowing:

S′i,j = gαg−wi+2j ,j−1Hs(m
′
i,2j)

rI,j+ti,j , S̃′i,j = grI,j+ti,j , for i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c
A′i,j = gwi,jg−wi+2j ,j−1H(m′i,2j)

r′I,j+t
′
i,j , Ã′i,j = gr

′
I,j+t

′
i,j , for i = 3 to `′ and j = 0 to Γ′

D′i,j = gwi,jg−wi,j−1gzj(r
′′
I,j+t

′′
i,j), D̃′i,j = gr

′′
I,j+t

′′
i,j , for i = 3 to `′ + 1 and j = 0 to blg(i− 1)− 1c

for randomly chosen ti,j , t
′
i,j , t

′′
i,j , yi,j ∈ Zp, where m′ occurs at position k as a substring of m,

I = i+ k − 1 and wi,j = xI,j + yi,j .
Since all exponents have been independently re-randomized, one can see by inspection that

SignDerive(pk , σ,M ′,M) has identical distribution as that of Sign(sk ,M ′).

Case where t′ = 0 (Type II Signatures). Parse m′ = m′βm
′
β−1 . . .m

′
0 where m′j is of length 2j

or a null string where β = blg(`′)c. `′i denotes i-th bit of `′ when we start counting with zero as

the least significant bit. m′ occurs at position k of m. Sign(SK,M ′) = (B, S̃, Zβ−1, . . . , Z0) is the
following, for random u, ui ∈ Zp:

B = gα ·Hs(m
′
β)u

∏

j<β, `′j=1

H(m′j)
uj

∏

j′<β, `′
j′=0

gzj′uj′

S̃ = gu, Zj = guj

Let each m′j start at position sj in m′. SignDerive(PK, σ,M,M ′) = Quote-Type II(PK, σ,m,m′)

is (B′, S̃′, Z ′β−1, . . . , Z
′
0) such that

B′ = gα ·Hs(m
′
β)rk,β+v

∏

j<β, `′j=1

H(m′j)
r′k+sj−1,j+vj

∏

j′<β, `′
j′=0

g
zj′ (r

′′
k+sj′−1,j′+vj′)

S̃′ = grk,β+v, Z ′j = g
r′′k+sj−1,j+vj

for randomly chosen v, vj ∈ Zp. Since all exponents have been independently re-randomized,
one can see by inspection that SignDerive(PK, σ,M,M ′) has identical distribution as that of
Sign(sk ,M ′).

Thus, the our powers-of-2 construction is strongly context-hiding. �

Lemma 5.3 (Unforgeability) If the CDH assumption holds in G, then the Section 5 quotable
signature scheme is selectively unforgeable in the Unforg game in the random oracle model.

21
875

Approved for Public Release; Distribution Unlimited.

Proof. (Sketch) We first apply Lemma A.4, which allows us to only consider adversaries A that
asks queries to Sign oracle in the simpler NHU game.

Suppose an adversary A can produce a forgery with probability ε in the selective NHU un-
forgeability game; then we can construct an adversary B that breaks the CDH assumption with
probability ε plus a negligible amount.

We are now ready to describe B which solves the CDH problem. On input the CDH challenge
(g, ga, gb), B begins to run A and proceeds as follows:

Selective Disclosure A first announces the message M∗ on which he will forge.

Setup Let L be the maximum size of any message and let n = blg(L)c. Let M∗ = (t∗,m∗) and
`∗ = |m∗| and let β be the highest bit of `∗ set to 1 (numbering the least significant bit as zero).
Set e(g, g)α := e(ga, gb), which implicitly sets the secret key α = ab.

For i = 0 to n− 1, choose a random vi ∈ Zp and set

gzi =

{
gbvi if the ith bit of `∗ is 1;

gvi otherwise.

Finally, B give the public key PK = (g, gz0 , . . . , gzn−1 , e(g, g)α) to A and will answer its queries
to random oracles H and Hs interactively as described below.

Random Oracle Queries Proceeding adaptively, Amay make any of the following queries which
B will answer as follows:

1. H(x): The random oracle is answered as follows. If the query has been made before, return
the same response as before. Otherwise, imagine dividing up m∗ into a sequence of segments
whose lengths are decreasing powers of two; that is, the first segments would be of length 2β

where β is the largest power of two less than `∗, the second segment would contain the next
largest power of two, etc. Let m∗(j) denote the segment of m∗ corresponding to power j. If no
such segment exists, let m∗(j) =⊥. Select a random γ ∈ Zp and return the response as:

H(x) =

gγ
if |x| = 2j and j < β and m∗(j) = x

(x is on the selective path);

gbγ
otherwise

(x is not on the selective path).

Note that H(m∗(j)) is set according to the first method for all segments of m∗ except the first
segment m∗(β).

2. Hs(x): The random oracle is answered as follows. If the query has been made before, return
the same response as before. Select a random δ ∈ Zp and return the response as:

Hs(x) =

{
gδ if |x| = 2β and m∗(β) = x;

gbδ otherwise.

Note that Hs(m
∗
(j)) is set according to the first method only for the first segment of m∗.

22
876

Approved for Public Release; Distribution Unlimited.

Signature and Quote Queries

Sign (M): Let M = (t,m) and ` = |m|. Recall that β∗ is highest bit of `∗ set to 1 and that we
are counting up from zero as the least significant bit.

We describe how to create signatures.

1. When t = 1 and m∗ is not a substring of m (Type I Signature Generation):
Here mi,j denotes the substring m of length j starting at position i. It will help us to first
establish the variables Xi,j , which will be set to 1 if on the selective forgery path and 0
otherwise. We give a set of “rules” defining terms and make a few observations. Then we
describe how the reduction algorithm creates the signatures.
Rules.
For i = 1 up to `+ 1,
For j = blg(`− i+ 1)c down to −1,

(a) If j + 1 = β∗ and mi−2j+1,2j+1 = m∗(j+1), then set Xi,j = 1.

(b) Else, if j + 1 < β∗ and (j + 1)th bit of `∗ is 1 and mi−2j+1,2j+1 = m∗(j+1) and
Xi−2j+1,j+1 = 1, then set Xi,j = 1.

(c) Else if j + 1 < β∗ and (j + 1)th bit of `∗ is 0 and Xi,j+1 = 1, then set Xi,j = 1.

(d) Else set Xi,j = 0.

Observations. Before we show how B will simulate the signatures, we make a set of useful
observations.

(a) For all i and j ≥ β∗, Xi,j = 0.

(b) For all i, Xi,−1 = 0. Otherwise, mi−`∗,`∗ = m∗.

(c) For all i, j, if Xi,j = 1 and Xi,j−1 = 0, then the jth bit of `∗ is 1. If the jth bit were 0,
then Xi,j−1 would have been set to 1 by Rule 1c.

(d) For all i, j, if Xi,j = 0 and Xi,j−1 = 1, then the jth bit of `∗ is 1. If the jth bit were 0,
then the only way to set Xi,j−1 to 1 would be by Rule 1c, however, Xi,j = 0 so Rule 1c
does not apply.

(e) For all i, j, if Xi,j = 1 and Xi+2j ,j−1 = 0, then H(mi,2j) = gbγ for some known γ ∈ Zp.
Otherwise, Xi+2j ,j−1 would have been set by Rule 1b to be 1.

(f) For all i, j, if Xi,j = 0 and Xi+2j ,j−1 = 1, then H(mi,2j) = gbγ for some known γ ∈ Zp. If
Xi+2j ,j−1 = 1 and Xi,j = 0, then Xi+2j ,j−1 was set to be 1 either by Rule 1a or Rule 1c.
If it were Rule 1a, then j = β∗ and it follows from the programming of the random
oracle that H(mi,2j) = gbγ . If it were Rule 1c, then the jth bit of `∗ is 0, meaning m(j)

cannot be on the selective path and therefore again H(mi,2j) = gbγ .

(g) For all i, j, if Xi+2j ,j−1 = 0, then Hs(mi,2j) = gbδ for some known δ ∈ Zp. If j 6= β∗, this
follows immediately from the programming of the random oracle. Otherwise, if j = β∗,
then the only way for Xi+2j ,j−1 = 0 would be if m(β) 6= m∗(β) by Rule 1a. Thus, it also

follows that Hs(mi,2j) = gbδ.

Signature Components. Next, for i = 1 to ` + 1 and j = 0 to blg(` − i + 1)c, choose a
random x′i,j ∈ Zp and logically set xi,j := x′i,j + Xi,j · (ab). For i = 1 to ` + 1, set xi,−1 := 0
(as consistent with Observation 1b.)
A signature is comprised of the following values:
Start. For i = 1 to ` and j = 0 to blg(`− i+ 1)c:

23
877

Approved for Public Release; Distribution Unlimited.

(a) If Xi+2j ,j−1 = 0, then it follows by Observation 1g that Hs(mi,2j) = gbδ for some known
δ ∈ Zp, so choose random si,j ∈ Zp, implicitly set ri,j := −a/δ + si,j and set

Si,j = g−xi+2j ,j−1gbδsi,j

= gαg−xi+2j ,j−1Hs(mi,2j)
ri,j

S̃i,j = g−a/δ+si,j = gri,j

(b) Else Xi+2j ,j−1 = 1, so choose random ri,j ∈ Zp and with xi+2j ,j−1 := x′
i+2j ,j−1 + ab set

Si,j = g
−x′

i+2j ,j−1Hs(mi,2j)
ri,j

= gαg−xi+2j ,j−1Hs(mi,2j)
ri,j

S̃i,j = gri,j

Across. Together with the following values for i = 3 to ` and j = 0 to min(blg(i − 1) −
1c, blg(`− i+ 1)c):
(a) If Xi,j = 1 and Xi+2j ,j−1 = 1, choose random r′i,j ∈ Zp with implicitly set xi,j = x′i,j +ab

and xi+2j ,j−1 = x′
i+2j ,j−1 + ab and set

Ai,j = gx
′
i,jg
−x′

i+2j ,j−1H(mi,2j)
r′i,j

= gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j

Ãi,j = gr
′
i,j

(b) Else, if Xi,j = 1 and Xi+2j ,j−1 = 0, then H(mi,2j) = gbγ for some known γ ∈ Zp by
Observation 1e. Choose random s′i,j ∈ Zp with implicitly set xi,j = x′i,j +ab, xi+2j ,j−1 =
x′
i+2j ,j−1 and r′i,j := −a/γ + s′i,j and set

Ai,j = gx
′
i,jg−xi+2j ,j−1gbγs

′
i,j

= gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j

Ãi,j = gr
′
i,j

(c) Else, if Xi,j = 0 and Xi+2j ,j−1 = 1, then H(mi,2j) = gbγ for some known γ ∈ Zp by
Observation 1f. Choose random s′i,j ∈ Zp with implicitly set xi,j = x′i,j , xi+2j ,j−1 =
x′
i+2j ,j−1 + ab and r′i,j := a/γ + s′i,j and set

Ai,j = gxi,jg
−x′

i+2j ,j−1gbγs
′
i,j

= gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j

Ãi,j = gr
′
i,j

(d) Else, Xi,j = 0 and Xi+2j ,j−1 = 0, so choose random r′i,j ∈ Zp and set

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j)
r′i,j , Ãi,j = gr

′
i,j

Down. Together with the following values for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c:

24
878

Approved for Public Release; Distribution Unlimited.

(a) If Xi,j = 1 and Xi,j−1 = 1, choose random r′′i,j ∈ Zp with implicitly set xi,j = x′i,j + ab
and xi,j−1 = x′i,j−1 + ab and set

Di,j = gx
′
i,jg−x

′
i,j−1gzjr

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = gr
′′
i,j

(b) Else, if Xi,j = 1 and Xi,j−1 = 0, then the jth bit of `∗ is 1 by Observation 1c. Thus
zj = bvj , so choose random s′′i,j ∈ Zp with implicitly set xi,j = x′i,j + ab, xi,j−1 = x′i,j−1
and r′′i,j := −a/vj + s′′i,j and set

Di,j = gx
′
i,jg−xi,j−1gbvjs

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = g−a/vj+s
′′
i,j = gr

′′
i,j

(c) Else, if Xi,j = 0 and Xi,j−1 = 1, then the jth bit of `∗ is 1 by Observation 1d. Thus
zj = bvj , so choose random s′′i,j ∈ Zp with implicitly set xi,j = x′i,j , xi,j−1 = x′i,j−1 + ab
and r′′i,j := a/vj + s′′i,j and set

Di,j = gx
′
i,jg−xi,j−1gbvjs

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = ga/vj+s
′′
i,j = gr

′′
i,j

(d) Else, Xi,j = 0 and Xi,j−1 = 0, so choose random r′′i,j ∈ Zp and set

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j

2. When t = 0 and m 6= m∗ (Type II Signature Generation):
Let ` = |m|, and β = blg(`)c. `∗i denotes i-th bit of `∗ when we start counting with zero as
the least significant bit, and `i denotes i-th bit of `.
Parse m∗ as m∗β∗m

∗
β∗−1 . . .m

∗
0 where m∗i is a string of length 2i or a null string. mi is of length

2i if `i = 0, and is null otherwise. Similarly, parse m as mβmβ−1 . . .m0.
B constructs (B, S̃, Zβ−1, . . . , Z0) in the following way:

• If mβ 6= m∗β∗ , then Hs(mβ) = gbδ for a δ which is known to B.

(a) B sets S̃ := g−a/δ+r for a randomly chosen r and B := gbδr.
(b) For j = β − 1 down to 0, Zj := grj for a randomly chosen rj , and

– If `j = 1, then B := B ·H(mj)
rj .

– If `j = 0, then B := B · gzjrj .
• Otherwise, if β = β∗ and mβ = m∗β∗ , there exists js < β such that

– `js 6= `∗js , or
– `js = `∗js = 1 and H(mjs) 6= H(m∗js).

so B can construct a signature (B, S̃, Zβ−1, . . . , Z0) in the following way.

(a) B sets S̃ := grc for a randomly chosen rc and B := gδrc .
(b) For j = β − 1 down to js + 1 and j = js − 1 to 0, Zj := grj for randomly chosen rj ,

and

– If `j = 1, then B := B ·H(mj)
rj .

– If `j = 0, then B := B · gzjrj .
(c) For j = js,

25
879

Approved for Public Release; Distribution Unlimited.

– If `j = 1, whether `∗j = 0 or not, B knows γ such that H(mj) = gbγ . B sets

Zj = g−a/γ+rj for a randomly chosen rj , and B := B · gbγrj .
– If `j = 0 and `∗j = 1, then B knows v such that gzj = gbv. B sets Zj = g−a/v+rj

for a randomly chosen rj , and B := B · gbvrj .
B returns (B, S̃, Zβ−1, . . . , Z0).

Response Eventually, A outputs a valid signature σ∗ on M∗ = (t∗,m∗). Recall that `∗ = |m∗|
and β = blg(`∗)c. Here `∗i denotes i-th bit of `∗ when we start counting with zero as the least
significant bit. Parse m∗ as m∗βm

∗
β−1 . . .m

∗
0 where m∗i is a string of length 2i (when `∗i = 1) or a

null string (when `∗i = 0).
Because of the selective disclosure and setup, B knows the following exponents:

– γ such that Hs(m
∗
β) = gγ .

– δj such that H(m∗
sj ,2j

) = gδj when `∗j = 1 and j 6= β.

– zj when `∗j = 0.

t∗ is either 1 or 0.

• If t∗ = 1,
si denotes the position where m∗i starts. B can compute the information of some xi,j with
the following components of σ∗.

– S1,β = gαg
−x

1+2β,β−1Hs(m
∗
β)rc , S̃1,β = gr1,β

B knows γ such that Hs(m
∗
β) = gγ , so B can compute gαg

−x
1+2β,β−1 = S1,β/S̃1,β

γ
.

– For j = β − 1 down to 0,

∗ when `j = 1, Asj ,j = gxsj ,jg−xsj−1,j−1H(m∗j)
r′sj ,j , Ãsj ,j = g

r′sj ,j

B knows δ such that H(m∗j) = gδ, so B can compute gxsj ,jg−xsj−1,j−1 = Asj ,j/Ãsj ,j
δ
.

∗ when `j = 0, Dsj ,j = gxsj ,jg−xsj−1,j−1g
zjr
′′
sj ,j , D̃sj ,j = g

r′′sj ,j

B knows zj , so B can compute gxsj ,jg−xsj−1,j−1 = Dsj ,j/D̃sj ,j
zj

.

so B can compute gxsj ,jg−xsj−1,j−1 .

B has the values of gxsj ,jg−xsj−1,j−1 for j = β−1 down to 0 and gαg
−x

1+2β,β−1 , so can compute

gαg
−x

1+2β,β−1

β−1∏

j=0

gxsj ,jg−xsj−1,j−1 = gαg−xs−1,−1 = gα

• If t∗ = 0,
B parses σ∗ as (B, S̃, Zβ−1, . . . , Z0), with

S̃ = gc, Zβ−1 = gcβ−1 , . . . , Z0 = gc0

for some c, cβ−1, . . . , c0 ∈ Zp.

B = gα ·Hs(m
∗
β)c

∏

j<β, `∗j=1

H(m∗j)
cj

∏

j′<β, `∗
j′=0

(gzj′)cj′

because the signature is valid.

– B knows γ such that Hs(m
∗
β) = gγ . B sets C := S̃γ .

26
880

Approved for Public Release; Distribution Unlimited.

– From j = β − 1 down to 0, B proceeds as:

∗ If `j = 1, B knows δj such that H(m∗j) = gδj . B sets C := C · Zδjj ;

∗ If `j = 0, B knows zj . B sets C := C · Zzjj .

Then
C = Hs(m

∗
β)c

∏

j<β, `∗j=1

H(m∗j)
cj

∏

j′<β, `∗
j′=0

(gzj′)cj′

so B can compute B/C = gα.

Thus, whether t∗ is 1 or 0, B can solve for gα = gab and correctly answer to the CDH challenge.

Analysis The distribution of the above game and the security game are identical. Thus, whenever
A is successful in a forgery against our scheme, B will solve the CDH challenge.

�

6 A Construction for Subset Predicates based on ABE

In this section we briefly point out a surprising connection to Attribute Based Encryption (ABE).
We show that existing constructions for Ciphertext-Policy ABE [7, 36, 57] naturally lead to context
hiding quotable signatures for arbitrary message subsets (as opposed to the substring predicate
considered in the previous section). In particular, a message will be a sets of strings (strings can
be used to encode elements for different types of sets), and the predicate P (~m,m′) = 1 iff m′ ⊆ mi

for some mi ∈ ~m. Observer that this disallows “collusions” between two different signatures where
m′ is a subset of the union of multiple messages, but not any single one. (Otherwise, this would be
trivially realizable from standard signatures schemes.)

Our main tool is an observation of Naor that shows that secret keys in Identity Based Encryp-
tion [11] can function as signatures. Recall that in (ciphertext-policy) attribute based encryption an
authority provides secret keys to a user based on the user’s list of attributes. The main challenge
in building such systems is preventing collusion attacks: two (or more) users with distinct sets of
attributes should be unable to create a secret key for a combination of their attributes.

If we treat words in a message m ∈ Σ∗ as attributes, that is, we treat a message m =
(a1, . . . , a`) ∈ Σ` as a sequence of attributes a1, . . . , a`, then we can define the signature on m
as a set of ` secret keys corresponding to the ` attributes in the message. Verifying the signa-
ture can be done by trying to decrypt some test ciphertext using the secret keys in the signature.
Now, given a signature on m we derive a signature on a subset of the words in m by simply re-
moving the secret keys corresponding to words not in the subset. For context hiding we need to
re-randomize the resulting set of secret keys. (Not all CP-ABE schemes may support the removal
and re-randomization of secret keys in this manner, but the schemes of [7, 36, 57] do.)

Since ABE security prevents collusion attacks, it is straight forward to show that these signatures
are unforgeable in the sense of Definition 2.3. Moreover, due to the re-randomization of secret keys,
a derived signature is sampled from the same distribution as a fresh signature and is independent
from the given signature. This implies strong context hiding in sense of Definition 2.4.

This unexpected connection between quoting and ABE leads to the following theorem, stated
informally.

Theorem 6.1 (informal) The Ciphertext-Policy ABE systems in [7, 36, 57] translate using Naor’s
transformation into a signature scheme supporting quoting for arbitrary subsets of a message. (Se-
lective) security of the CP-ABE systems imply (selective) unforgeability and context hiding.

27
881

Approved for Public Release; Distribution Unlimited.

In other words, when the ABE scheme provides adaptive (resp, selective) security, then the
resulting signature scheme achieves adaptive (resp., selective) unforgeability. The (third) ABE
scheme of [57] provides selective security from the d-BDH assumption. Adaptive security is proven
in [7], but only in the generic group model. While [36] proves adaptive security under certain static
assumptions using composite order groups.

7 Computing Weighted Averages and Fourier Transforms

So far we only constructed schemes for univariate predicates P . We now give an example where
one computes on multiple signed messages. Let p be a prime, n a positive integer, and T a set of
tags. The message space M consists of pairs:

M := T × Fnp

Now, define the predicate P as follows: P (ε,m) = 1 for all m ∈M and10

P

((
(t1,v1), . . . , (tk,vk)

)
, (t,v)

)
= 1 ⇐⇒

{
t = t1 = · · · = tk, and
v ∈ span(v1, . . . ,vk)

Thus, given signatures on vectors v1, . . . ,vk grouped together by the tag t, anyone can create a
signature on a linear combination of these vectors. This can be done iteratively so that given signed
linear combinations, new signed linear combinations can be created. Unforgeability means that if
the adversary obtains signatures on vectors v1, . . . ,vk for particular tag t ∈ T then he cannot
create a signature on a vector outside the linear span of v1, . . . ,vk.

Signature schemes for this predicate P are presented in [14, 13, 12, 15, 2] while schemes over Z
(rather than Fp) are presented in [27]. These schemes were originally designed to secure network
coding where context hiding is not needed since there are no privacy requirements for the sender (in
fact, the sender is explicitly transmitting all his data to the recipient). The question then is how to
construct a system for predicate P above that is both unforgeable and context hiding. Fortunately,
we do not need to look very far. The linearly homomorphic signature schemes in [14] can be shown
to be context hiding. We state this in the following theorem.

Theorem 7.1 If the CDH assumption holds in group G, then the signature scheme NCS1 from [14]
is unforgeable and context-hiding in the random oracle model, assuming tags are generated inde-
pendently at random by the unforgeability challenger when responding to Sign queries.

Unforgeability is Theorem 6 in [14], which holds only when tags ti ∈ T are generated inde-
pendently at random by the signer. While context hiding has not been considered before for this
scheme, it is not difficult to show that the scheme is context hiding. The scheme is unique in the
sense that every vector v has a unique valid signature.11 It is easy to show that any homomorphic
unique signature must be context hiding and hence NCS1 is context hiding.

Viewed in this way, the scheme NCS1 gives the ability to carry out authenticated addition on
signed data. Consider a server that stores signed data samples s1, . . . , sn in Fp. The signature on
sample si is actually a signature on the vector (si|ei) ∈ Fn+1

p , where ei is the ith unit vector in
Fnp . The server stores (i, si) and a signature on (si|ei). (The vector ei need not be stored with the

10Recall, the signature on ε is the output the KeyGen algorithm.
11Recall that in unique signatures [38] in addition to the regular unforgeability requirement there is an additional

uniqueness property: for any honestly-generated public key pk and any message m in the message space, there do
not exist values σ1, σ2 such that σ1 6= σ2 and yet Verify(pk ,m, σ1) = Verify(pk ,m, σ2) = 1.

28
882

Approved for Public Release; Distribution Unlimited.

data and can be reconstructed from i when needed.) Using SignDerive, the server can compute
a signature σ on the sum (

∑n
i=1 si, 1, . . . , 1). Since the schemes are context hiding, the server can

publish the sum
∑n

i=1 si mod p and the signature σ on the sum and (provably) reveal no other
information on the original data. The “augmentation” (1, . . . , 1) proves that the published message
really is the claimed sum of the original samples (the tag t prevents mix-and-match attacks between
different data sets). We can similarly publish a sum of any required subset.

More generally, the server can publish an authenticated inner product of the samples s :=
(s1, . . . , sn) with any public vector c ∈ Fnp without leaking additional information about the samples.
This is needed, for example, to publish a weighted average of the original data set. Similarly, recall
that the Fourier transform of the data (s1, . . . , sn) is a specific linear operator (represented by a
specific n× n matrix) applied to this vector. Therefore, we can publish signed Fourier coefficients
of the data. If we only publish a subset of the Fourier coefficients then, by context hiding, we are
guaranteed that no other information about (s1, . . . , sn) is revealed.

Acknowledgments

We are grateful to the anonymous reviewers for their helpful comments.

References

[1] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable signa-
tures. In ESORICS ’05, volume 3679 of LNCS, pages 159–177, 2005.

[2] Nuttapong Attrapadung and Benoit Libert. Homomorphic network coding signatures in the
standard model. In Public Key Cryptography - PKC 2011, volume 6571, page 17, 2011.

[3] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case of
hashing and signing. In CRYPTO ’94, volume 839 of LNCS, pages 216–233, 1994.

[4] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In EUROCRYPT, pages 614–629, 2003.

[5] Mihir Bellare and Gregory Neven. Transitive signatures based on factoring and RSA. In
ASIACRYPT ’02, volume 2501 of LNCS, pages 397–414, 2002.

[6] Mihir Bellare and Gregory Neven. Transitive signatures: New schemes and proofs. IEEE
Transactions on Information Theory, 51:2133–2151, 2005.

[7] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[8] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

[9] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without
random oracles. In Advances in Cryptology – EUROCRYPT ’04, volume 3027, pages 223–238,
2004.

[10] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO ’04,
volume 3152 of LNCS, pages 45–55, 2004.

29
883

Approved for Public Release; Distribution Unlimited.

[11] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM
J. Comput., 32(3), 2003.

[12] Dan Boneh and David Freeman. Homomorphic signatures for polynomial functions. In Proc.
of Eurocrypt, 2011. Cryptology ePrint Archive, Report 2011/018.

[13] Dan Boneh and David Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In Proc. of PKC, volume 6571 of LNCS, pages 1–16, 2011.
Cryptology ePrint Archive, Report 2010/453.

[14] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace:
Signature schemes for network coding. In Public-Key Cryptography — PKC ’09, volume 5443
of Springer LNCS, pages 68–87, 2009.

[15] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast encryption
schemes. In ASIACRYPT, pages 455–470, 2008.

[16] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan Katzen-
beisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and Dominique
Schröder. Redactable signatures for tree-structured data: definitions and constructions. In
Applied Cryptography and Network Security (ACNS) ’08, volume 6123 of LNCS, pages 87–104,
2010.

[17] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob
Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signatures revisited.
In Public Key Cryptography, volume 5443 of LNCS, pages 317–336, 2009.

[18] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Santizable sig-
natures: How to partially delegate control for authenticated data. In BIOSIG 2009, pages
117–128, 2009.

[19] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Unlinkability of
sanitizable signatures. In Public Key Cryptography (PKC) ’10, volume 6056 of LNCS, pages
444–461, 2010.

[20] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Advances in Cryptology – CRYPTO ’04, volume 3152, pages 56–72, 2004.

[21] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, pages 255–271, 2003.

[22] Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short redactable signatures using random
trees. In CT-RSA ’09: Proceedings of the The Cryptographers’ Track at the RSA Conference
2009 on Topics in Cryptology, pages 133–147, 2009.

[23] Denis Charles, K Jain, and K Lauter. Signatures for network coding. International Journal
of Information and Coding Theory, 1(1):3–14, 2009.

[24] David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, volume 547 of
LNCS, pages 257–265, 1991.

[25] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

30
884

Approved for Public Release; Distribution Unlimited.

[26] Christina Fragouli and Emina Soljanin. Network Coding Fundamentals. Now Publishers Inc.,
Hanover, MA, USA, 2007.

[27] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding
over the integers. In Public Key Cryptography — PKC ’10, volume 6056 of Springer LNCS,
pages 142–160, 2010.

[28] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[29] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In FOCS, pages 464–479, 1984.

[30] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281–308, 1988.

[31] Stuart Haber, Yasuo Hatano, Yoshinori Honda, William Horne, Kunihiko Miyazaki, Tomas
Sander, Satoru Tezoku, and Danfeng Yao. Efficient signature schemes supporting redaction,
pseudonymization, and data deidentification. In ASIACCS ’08, pages 353–362, 2008.

[32] Alejandro Hevia and Daniele Micciancio. The provable security of graph-based one-time sig-
natures and extensions to algebraic signature schemes. In ASIACRYPT ’02, volume 2501 of
LNCS, pages 379–396, 2002.

[33] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard
assumptions. In EUROCRYPT ’09, volume 5479 of LNCS, pages 333–350, 2009.

[34] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic signature
schemes. In CT-RSA, pages 244–262. Springer-Verlag, 2002.

[35] M. Krohn, M. Freedman, and D. Mazieres. On-the-fly verification of rateless erasure codes for
efficient content distribution. In Proc. of IEEE Symposium on Security and Privacy, pages
226–240, 2004.

[36] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In EUROCRYPT, 2010.

[37] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In TCC ’10, volume 5978 of LNCS, pages 455–479, 2010.

[38] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In CRYPTO, pages 597–612, 2002.

[39] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[40] Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In CT-RSA ’02, volume
2271 of LNCS, pages 236–243, 2002.

[41] Kunihiko Miyazaki, Goichiro Hanaoka, and Hideki Imai. Digitally signed document sanitizing
scheme based on bilinear maps. In ASIACCS ’06: Proceedings of the 2006 ACM Symposium
on Information, computer and communications security, pages 343–354, 2006.

31
885

Approved for Public Release; Distribution Unlimited.

[42] Kunihiko Miyazaki, Mitsuru Iwamura, Tsutomu Matsumoto, Ryoichi Sasaki, Hiroshi Yoshiura,
Satoru Tezuka, and Hideki Imai. Digitally signed document sanitizing scheme with disclosure
condition control. IEICE Transactions on Fundamentals, E88-A(1):239–246, 2005.

[43] Kunihiko Miyazaki, Seiichi Susaki, Mitsuru Iwamura, Tsutomu Matsumoto, Ryoichi Sasaki,
and Hiroshi Yoshiura. Digital document sanitizing problem. IEICE Technical Report,
103(195(ISEC2003 12-29)):61–67, 2003.

[44] David Naccache. Is theoretical cryptography any good in practice? CHES 2010 invited talk,
2010. available at www.iacr.org/workshops/ches/ches2010.

[45] Gregory Neven. A simple transitive signature scheme for directed trees. Theoretical Computer
Science, 396(1-3):277–282, 2008.

[46] Ronald Rivest. Two signature schemes. Slides from talk given at Cambridge University, 2000.
http://people.csail.mit.edu/rivest/Rivest-CambridgeTalk.pdf.

[47] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Comm. of the ACM, 21(2):120–126, February 1978.

[48] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret: Theory and applications
of ring signatures. In Essays in Memory of Shimon Even, pages 164–186, 2006.

[49] Siamak Fayyaz Shahandashti, Mahmoud Salmasizadeh, and Javad Mohajeri. A provably secure
short transitive signature scheme from bilinear group pairs. In Security and Communication
Networks, volume 3352 of LNCS, page 6076, 2005.

[50] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM
Transaction on Computer Systems, 1:38–44, 1983.

[51] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography — PKC ’10, volume 6056 of Springer LNCS,
pages 420–443, 2010.

[52] Nigel Smart. ECRYPT2 Yearly Report on Algorithms and Keysizes (2008-2009), Revision
1.0, July 27, 2009. Edited by Smart. Available at http://www.ecrypt.eu.org/documents/

D.SPA.7.pdf.

[53] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Context extraction signatures. In Informa-
tion Security and Cryptology (ICISC), volume 2288 of LNCS, pages 285–304, 2001.

[54] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology — EUROCRYPT ’10, volume 6110
of Springer LNCS, pages 24–43, 2010.

[55] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in
Cryptology – EUROCRYPT ’05, volume 3494, pages 320–329, 2005.

[56] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Advances in Cryptology – CRYPTO ’09, volume 5677, pages 619–636, 2009.

[57] Brent Waters. Ciphertext-policy attribute-based encryption: an expressive, efficient, and prov-
ably secure realization. In Public Key Cryptography — PKC ’11, pages 53–70, 2011.

32
886

Approved for Public Release; Distribution Unlimited.

[58] Lei Wei, Scott E. Coull, and Michael K. Reiter. Bounded vector signatures and their applica-
tions. In ASIACCS ’11, pages 277–285, 2011.

[59] Xun Yi. Directed transitive signature scheme. In CT-RSA ’07, volume 4377 of LNCS, page
129144, 2007.

[60] Fang Zhao, Ton Kalker, Muriel Médard, and Keesook Han. Signatures for content distribution
with network coding. In Proc. Intl. Symp. Info. Theory (ISIT), 2007.

A A Computational Definition of Context Hiding

Let (KeyGen,SignDerive,Verify) be a P -homomorphic signature scheme for predicate P and
message M. Consider the following game to model context hiding:

Setup: The challenger runs the algorithm (pk , sk) ← KeyGen(1λ) to obtain the public key pk
and the secret key sk , and gives pk to the adversary.

Query Phase 1: Proceeding adaptively, the adversary may query any of the three oracles from
the unforgeability game:

• Sign(m ∈M): (same as in the unforgeability game)

• SignDerive(i ∈ Z,m′): (same as in the unforgeability game)

• Reveal(i ∈ Z): (same as in the unforgeability game)

Challenge: At some point, the adversary issues a challenge (m,m′) where P (m,m′) = 1 for
any m,m′ ∈ M. The challenger computes the following three values: σ ← Sign(sk ,m),
σ0 ← Sign(sk ,m′) and σ1 ← SignDerive(pk , σ,m,m′). The challenger then picks a random
b ∈ {0, 1} and returns (σ, σb) to the adversary. Note: there are no restrictions on m,m′ other
than that they be in the message space; in particular, they could be equal and one or both
could have been previously signed.

Query Phase 2: Proceeding adaptively, the adversary may query the oracles from Phase 1.

Output: Eventually, the adversary will output a bit b′ and is said to win if b = b′.

We define AdvCH
A to be the probability that adversary A wins in the above game minus 1

2 .

Definition A.1 (Context Hiding) For a predicate P and message space M, a P -homomorphic
signature scheme (KeyGen,Sign,SignDerive, Verify) is context hiding if for all probabilistic
polynomial time adversaries A, AdvCH

A is negligible in λ.

A.1 Relation to Strong Context Hiding

Lemma A.2 A homomorphic signature scheme that is strongly context hiding is context hiding.

Proof. (Sketch) Let Π = (KeyGen,SignDerive,Verify) be a homomorphic signature scheme
and let A be an adversary that has advantage AdvCHA (Π) = p(λ) in the context-hiding game. The
advantage probability forA is taken over the random coins of the key generation, random coins of the
Sign and SignDerive operations used in the first query phase, the random coins used by algorithm
A, and the random coins used by the rest of the experiment. Therefore by an averaging argument,

33
887

Approved for Public Release; Distribution Unlimited.

there must exist some particular key pair (PK,SK) ← KeyGen(1λ; z1), some particular random
tape zq for the Sign and SignDerive operations used in the first query phase, some particular
random coins zA for A, and some particular message pair (m,m′) output by A over which the
probability of A winning the context-hiding game in this case is at least p(λ). Let the values of the
random tapes be given as non-uniform advice.

We show how this information can be used to construct a (non-uniform) adversary A′ that
distinguishes {(SK, σ,Sign(SK,m′)} from {(SK, σ,SignDerive(PK, σ,m,m′)} with probability
p(λ) for the triple ((PK,SK),m,m′). Thus, if Π is strongly context hiding, then p(λ) must be
exponentially small, and so Π must also be context-hiding.

The adversary A′ works as follows: On input the challenge tuple (SK, σ, σ′), A′ begins to run
the context-hiding experiment for A(PK; zA). A′ answers the queries that A asks by using SK
and the random tape zq to run Sign and SignDerive. When A outputs a challenge message pair
(m,m′) (which must occur by construction), then A′ answers with (σ, σ′). A′ answers the second-
phase queries of A using SK and fresh random coins. Finally, when A outputs b′, A′ echoes this
answer as output and halts.

First observe that A′ performs a perfect simulation of the context-hiding game. When the input
pair (σ, σ′) corresponds to (Sign(SK,m),Sign(SK,m′)), then A′ simulates the context-hiding
game for b = 0. In the other case, A′ simulates the context-hiding game for b = 1. Therefore, A′

distinguishes
{(SK,Sign(SK,m),Sign(SK,m′))}SK,m,m′
{(SK,Sign(SK,m),SignDerive(PK, σ,m,m′))}SK,m,m′

with probability p(λ). �

A.2 Simplified Unforgeability Under Strong Context Hiding

We now show how the strong context hiding property can help simplify the security argument for
unforgeability. In particular, we introduce a weaker notion of unforgeability in which the adversary
only makes calls to the Sign oracle and immediately receives a signature.

— Game NHU(Π,A, λ, P): This game is the same as the Unforg(Π,A, λ, P) game with the
exception that only the following query is allowed:

— Sign(m ∈M): the oracle computes σ ← Sign(SK,m), adds m to Q and returns σ.

Note, the only difference between game NHU and the standard unforgeability game for a signature
scheme is that in this game, the adversary only wins if it produces a forgery on a signature m∗

such that for all m ∈ Q, P (m,m∗) = 0, whereas in the standard unforgeability game, the adversary
wins if it produces a signature on any message that is not in Q.

Definition A.3 A quoteable signature scheme Π is NHU-unforgeable if for all efficient adversaries
A, it holds that Pr[NHU(Π,A, λ, P) = 1] < negl(λ) for some negligible function λ.

Lemma A.4 A signature scheme that is NHU-unforgeable and strongly context hiding is Unforg-
unforgeable.

Proof. Our plan is to present a series of hybrid experiments that are meant to simplify the quotable
unforgeability game.

34
888

Approved for Public Release; Distribution Unlimited.

Hybrid H1(Π,A, λ, P) Consider the first hybrid experiment H1 which is the same as the un-
forgeability game Unforg(Π,A, λ, P), with the exception that all Sign and SignDerive queries are
lazily evaluated. That is, when A makes a query, the experiment responds in the following way:

— Sign(m): generate a handle i and record information (i, ?,m, ε) in T and return i

— SignDerive(i,m′): retrieve (i, z,m, ·) from T , return ⊥ if it does not exist or if P (m,m′) 6= 1,
generate a new handle i′, record (i′, ?,m′, i) in T , and return i′

— Reveal(i): retrieve (i, z,m, i1) from T (returning ⊥ if it does not exist). If z 6=?, then return
z. Otherwise, if i1 = ε, then compute σ ← Sign(SK,m), replace the entry (i, z,m, ε) with
(i, σ,m, ε), and return σ. Finally, if i1 6= ε, then recursively call z1 ← Reveal(i1), obtain
(i1, ·,m1, ·) from T and compute σ ← SignDerive(PK, z1,m1,m). Replace the entry with
(i, σ,m, i1), and return σ.

Claim A.5 Pr[H1(Π,A, λ, P) = 1] = Pr[Unforg(Π,A, λ, P) = 1].

This claim follows by inspection. For any query that is eventually revealed, the same operations
are performed in both H1 and the original game. For any query that is never revealed, no operation
in H1 is performed; but this does not affect the view of the adversary, and therefore does not affect
the output of the adversary.

Hybrid H2,i(Π,A, λ, P) The second hybrid is the same as H1 except that the first i queries to
Reveal are answered using Reveal2 described below, and the remaining queries are answered as per
H1: (The only difference is that Sign(SK,m1) is used in place of SignDerive(PK, z1,m1,m) in
the second to last sentence.)

— Reveal2(i): retrieve (i, z,m, i1) from T (returning ⊥ if it does not exist). If z 6=?, then return
z. Otherwise, if i1 = ε, then compute σ ← Sign(SK,m), replace the entry (i, z,m, ε) with
(i, σ,m, ε), and return σ. Finally, if i1 6= ε, then recursively call z1 ← Reveal(i1), obtain
(i1, ·,m1, ·) from T and compute σ ← Sign(SK,m1). Replace the entry with (i, σ,m, i1), and
return σ.

Claim A.6 H2,0(Π,A, λ, P) is identically distributed to H1(Π,A, λ, P).

By inspection.

Claim A.7 H2,i(Π,A, λ, P) is identically distributed to H2,i−1(Π,A, λ, P) for i ≥ 1.

This claim follows via the strong context-hiding property of the signature scheme because this
property guarantees Sign(SK,m′) and SignDerive(PK, σ,m,m′) are statistically close.

Suppose that A makes ` = poly(λ) queries. Observe that H2,`(Π,A, λ, P) only evaluates Sign,
and only does so on messages that are immediately returned to the adversary. Thus, H2,` is
syntactically equivalent to the NHU game. Since the H2,` game enablesA to produce a forgery with
the same probability as Unforg(Π,A, λ, P), we have that Unforg(Π,A, λ, P) = NHU(Π,A, λ, P)
which completes the lemma. �

35
889

Approved for Public Release; Distribution Unlimited.

Batch Verification of Short Signatures

Jan Camenisch
IBM Research - Zürich
jca@zurich.ibm.com

Susan Hohenberger
Johns Hopkins University

susan@cs.jhu.edu

Michael Østergaard Pedersen
Miracle A/S

mop@miracleas.dk

August 11, 2011

Abstract

With computer networks spreading into a variety of new environments, the need to au-
thenticate and secure communication grows. Many of these new environments have particular
requirements on the applicable cryptographic primitives. For instance, a frequent requirement
is that the communication overhead inflicted be small and that many messages be processable
at the same time. In this paper, we consider the suitability of public key signatures in the latter
scenario. That is, we consider signatures that are 1) short and 2) where many signatures from
(possibly) different signers on (possibly) different messages can be verified quickly. Prior work
focused almost exclusively on batching signatures from the same signer.

We propose the first batch verifier for messages from many (certified) signers without random
oracles and with a verification time where the dominant operation is independent of the number
of signatures to verify. We further propose a new signature scheme with very short signatures, for
which batch verification for many signers is also highly efficient. Combining our new signatures
with the best known techniques for batching certificates from the same authority, we get a fast
batch verifier for certificates and messages combined. Although our new signature scheme has
some restrictions, it is very efficient and still practical for some communication applications.

1 Introduction

As the world moves towards pervasive computing and communication, devices from vehicles to
dog collars will soon be expected to communicate with their environments. For example, many
governments and industry consortia are currently planning for the future of intelligent cars that
constantly communicate with each other and the transportation infrastructure to prevent accidents
and to help alleviate traffic congestion [16, 50]. Raya and Hubaux suggest that vehicles will transmit
safety messages every 300ms to all other vehicles within a minimum range of 110 meters [49], which
in turn may retransmit these messages.

For such pervasive systems to work properly, there are many competing constraints [16, 50,
37, 49]. For one, there are physical limitations, such as a limited spectrum allocation for specific
types of communications and the potential roaming nature of devices, that require that messages
be kept very short and (security) overhead be minimal [37]. Yet for messages to be trusted by
their recipients, they need to be authenticated in some fashion, so that entities spreading false
information can be held accountable. Thus, some short form of authentication must be added.
Furthermore, different messages from many different signers may need to be verified and processed

1

890

Approved for Public Release; Distribution Unlimited.

quickly (e.g., every 300ms [49]). Another possible constraint that these authentications remain
anonymous or pseudonymous, we leave as an exciting open problem.

In this work, we consider the suitability of public key signatures to the needs of pervasive
communication applications. Generating one signature every 300ms is not a problem for current
systems, but transmitting and/or verifying 100+ messages per second might pose a problem. Using
RSA signatures for example seems attractive as they are verified quickly, however, one would need
approximately 3000 bits to represent a signature on a message plus the certificate (i.e., the public
key and signature on that public key) which might be too much for some applications (see Section
8.2 of [49]). While many new schemes based on bilinear maps can provide the same security with
significantly smaller signatures, they take significantly more time to verify (e.g., [9, 6, 13, 53]).
Thus, it is not immediately clear what the proper tradeoff between message length and verification
time is for many pervasive communication applications. However, in some applications, there is
evidence that doing a small amount of additional computation is more advantageous than sending
longer messages. For example, Landsiedel, Wehrle, and Götz showed that for applications using
Mica2 sensors transmitting data consumes significantly more battery power than keeping the CPU
active [40]. Barr and Asanović note that the wireless transmission of just a single bit, can use more
than 1000 times the energy required for a 32 bit computation [3].

1.1 Our Contributions

Now, if one wants both, short signatures and short verification times, it seems that one needs to
improve on the verification of the bilinear-map based schemes or try to reduce the signature size
of a fast signature scheme such as RSA. In this paper we take the first route and investigate the
known batch-verification techniques and to what extent they are applicable to bilinear-map based
schemes, whereas for example Gentry provides a method for compressing Rabin signatures in [28].
We note that while these two techniques are not mutually exclusive (in fact Gentry mentions that
the compressed Rabin signatures can be aggregated [28]), compressing signatures has not been the
focus of our work. More precisely, the main contributions of this paper are:

1. We instantiate the general batch verification definitions of Bellare, Garay, and Rabin [4] to the
case of signatures from many signers. We also do this for a weaker notion of batch verification
called screening and show the relation of these notions to the one of aggregate signatures.
Surprisingly, for most known aggregate signature schemes a batching algorithm is provably
not obtained by aggregating many signatures and then verifying the aggregate.

2. We present a batch verifier for the Π-IBS scheme [19]. (More precisely, this is the IBS scheme
implicitly defined by the Chatterjee-Sarkar hierarchical IBE [19] and it can also be viewed as a
generalized version of the Boyen-Waters IBS [11] as we will discuss later.) To our knowledge,
this is the first batch verifier for a signature scheme without random oracles. Let z be the
additional security parameter required by the Π-IBS scheme. When identities and messages
are k bits, viewed as z chunks of k/z bits each, our algorithm verifies n Π-IBS signatures
using only (z + 3) pairings. Individually verifying n signatures would cost 3n pairings.

3. We present a new signature scheme, Π-Sig, derived from the Camenisch-Lysyanskaya signature
scheme [13], which is secure in the random oracle model. Π-Sig signatures require only one-
third the space of the original CL signatures– on par with the shortest signatures known [9]
–, but users may only issue one signature per period (e.g., users might only be allowed to sign

2

891

Approved for Public Release; Distribution Unlimited.

one message per 300ms). We present a batch verifier for these signatures from many different
signers that verifies n signatures using only three total pairings, instead of the 5n pairings
required by n original CL signatures. Yet, our batch verifier has the restriction that it can
only batch verify signatures made during the same period. Π-Sig signatures form the core of
the only public key authentication, known to us, that is extremely short and highly efficient
to verify in bulk.

4. Often signatures and certificates need to be verified together. This happens implicitly in
IBS schemes. To achieve this functionality with the Π-Sig signature scheme, we can issue
signatures with Π-Sig and certificates with the Boneh, Lynn and Shacham scheme [9]. Then
we can batch the Π-Sig signatures (on any message from any signer) using a new batch verifier
proposed herein; and we can batch the BLS certificates (on any public key from the same
authority) using a known batch verifier that can batch verify n signatures from the same
signer using only two pairings.

1.2 Batch Verification Overview

We start by a some historical remarks and then later present the schemes relevant to this paper in
more detail.

Batch cryptography was introduced in 1989 by Fiat [26] for a variant of RSA. Later, in 1994,
Naccache, M’Räıhi, Vaudenay and Raphaeli [48] gave the first efficient batch verifier for DSA
signatures, however an interactive batch verifier presented in an early version of their paper was
broken by Lim and Lee [43]. In 1995 Laih and Yen proposed a new method for batch verification of
DSA and RSA signatures [39], but the RSA batch verifier was broken five years later by Boyd and
Pavlovski [10]. In 1998, Harn presented two batch verification techniques for DSA and RSA [32, 33]
but both were later broken [10, 35, 36]. The same year, Bellare, Garay and Rabin took the first
systematic look at batch verification [4] and presented three generic methods for batching modular
exponentiations, called the random subset test, the small exponents test and the bucket test which
are similar to the ideas from [48, 39]. They showed how to apply these methods to batch verification
of DSA signatures and also introduced a weaker form of batch verification called screening. Later,
Cheon and Lee introduced two new methods called the sparse exponents test and the complex
exponents test [22], which they claim to be about twice as fast as the small exponents test. In 2000,
Boyd and Pavlovski published some attacks against different batch verification schemes, mostly ones
based on the small exponents test and related tests [10]. These attacks do not invalidate the proof of
security for the small exponents test, but rather show how the small exponents test is often used in
a wrong way. However, the authors also describe methods to repair some broken schemes based on
this test. In 2001, Hoshino, Masayuki and Kobayashi [34] pointed out that the problem discovered
by Boyd and Pavlovski [10] might not be critical for batch verification of signatures, but only when
using batch verification to verify for example zero-knowledge proofs. In 2004 Yoon, Cheon and Kim
proposed a new ID-based signature scheme with batch verification [21], but their security proof is
for aggregate signatures and does not meet the definition of batch verification by Bellare et al. [4];
hence their title is somewhat misleading. Other schemes for batch verification based on bilinear
maps were proposed [17, 54, 55, 56] but all were later broken by Cao, Lin and Xue [15]. In 2006,
a method was proposed for identifying invalid signatures in RSA-type batch signatures [42], but
Stanek [52] showed that this method is flawed. Shacham and Boneh gave a practical application
of batch verification by using a modified version of Fiat’s batch verifier for RSA to improve the

3

892

Approved for Public Release; Distribution Unlimited.

efficiency of SSL handshakes on a busy server [51]. Ferrara, Green, Hohenberger, and Pedersen
gave performance measurements for the schemes herein, and also showed how to batch verify other
types of signatures, such as group and ring signatures [25]. Law and Matt pointed out some IBS
schemes that batch well, and also give methods for identifying invalid signatures in a batch [41].

Bellare, Garay and Rabin Testing Techniques. Let g generate a group of prime order.
In 1998, Bellare, Garay and Rabin described some tests [4], for verifying equations of the form
yi = gxi for i = 1 to n. Obviously if one just multiplies these equations together and checks
if
∏n
i=1 yi = g

Pn
i=1 xi , it is easy to produce two pairs (x1, y1) and (x2, y2) such that the product

of them verifies correctly, but each individual verification does not, e.g., by submitting the pairs
(x1 − α, y1) and (x2 + α, y2) instead. Let us review three fixes to this broken initial proposal.

Random Subset Test: The idea here is to pick a random subset of these pairs (xi, yi) and mul-
tiply them together, hoping to split up the pairs that were specifically crafted to cancel each
other out. Repeating this test ` times, picking a new random subset every time, results in
the probability of accepting invalid pairs being 2−`.

Small Exponents Test: Instead of picking a random subset every time, one can choose exponents
δi of (a small number of) ` bits and compute

∏n
i=1 y

δi
i = g

Pn
i=1 xiδi . Bellare et al. prove that

this test results in the probability of accepting a bad pair being 2−`. The size of ` is a tradeoff
between efficiency and security and hence it is difficult to give an exact recommendation for
it. It all depends on the application and how critical it is not to accept even a single invalid
signature. For just a rough check that all signatures are correct 20 bits seems reasonable. In
a higher security setting we should probably be using around 64 bits.

Bucket Test: This method is even more efficient than the small exponents test for large values
of n. The idea is to repeat a test called the atomic bucket test m times. The atomic bucket
test works by first putting the n instances one wants to verify into M buckets at random.
This results in M new instances of the same problem, which are then checked using the small
exponents test with security parameter m. After repeating the atomic bucket test m times,
the probability of accepting a bad pair in the original n instances is at most 2−m.

1.3 Efficiency of Prior Work and our Contributions

Efficiency will be given as an abstract cost for computing different functions. We begin by discussing
prior work on RSA, DSA, and BLS signatures mostly for single signers, and then discuss our new
work on Π-IBS, Π-Sig and BLS signatures for many signers. Note that Lim [44] provides a number of
efficient methods for doing m-term exponentiations and Granger and Smart [31] give improvements
over the naive method for computing a product of pairings, which is why we state them explicitly.

m-MultPairCostsG,H s m-term pairings
∏m
i=1 e(gi, hi) where gi ∈ G, hi ∈ H.

m-MultExpCostsG(k) s m-term exponentiations
∏m
i=1 g

ai where g ∈ G, |ai| = k.
PairCostsG,H s pairings e(gi, hi) for i = 1 . . . s, where gi ∈ G, hi ∈ H.

ExpCostsG(k) s exponentiations gai for i = 1 . . . s where g ∈ G, |ai| = k.
GroupTestCostsG Testing whether or not s elements are in the group G.
HashCostsG Hashing s values into the group G.
MultCosts s multiplications in one or more groups.

4

893

Approved for Public Release; Distribution Unlimited.

If s = 1 we will omit it. Throughout this paper we assume that n is the number of message/signature
pairs and `b is a security parameter such that the probability of accepting a batch that contains an
invalid signature is at most 2−`b .

RSA* is a modified version of RSA by Boyd and Pavlovski [10]. The difference to normal RSA is
that the verification equation accepts a signature σ as valid if ασe = m for some element α ∈ Z∗m of
order no more than 2, where m is the product of two primes. The signatures are usually between
1024 − 2048 bits and the same for the public key. A single signer batch verifier for this signature
scheme with cost n-MultExpCost2Zm(`b) +ExpCostZm(k), where k is the number of bits in the public
exponent e, can be found in [10]. Note that verifying n signatures by verifying each signature
individually only costs ExpCostnZm(k), so for small values of e (|e| < 2`b/3) the naive method is a
faster way to verify RSA signatures and it can also handle signatures from multiple signers. Bellare
et al. [4] presents a screening algorithm for RSA that assumes distinct messages from the same
signer and costs 2n+ ExpCostZm(k).

DSA** is a modified version of DSA from [48] compatible with the small exponents test from [10].
There are two differences to normal DSA. First there is no reduction modulo q, so the signatures
are 672 bits instead of 320 bits and second, individual verification should check both a signature σ
and −σ and accept if one of them holds. Messages and public keys are both 160 bits long. Using the
small exponents test the cost is n-MultExpCostG(`b) + ExpCost2G(160) + HashCostnG + MultCost2n+1

multiplications. This method works for a single signer only.

Π-IBS is an IBS scheme derived from the Chatterjee and Sarkar HIBE scheme [19] for which we
provide a batch verifier without random oracles in Section 4. An interesting property of this scheme
is that the identity does not need to be verified separately. Identities and messages are k bits divided
into z logical chunks, each of k/z bits, where z is a security parameter, and a signature is three
bilinear group elements. The computational effort required depends on the number of messages
and the security parameters. Let M = n-MultExpCostGT (`b) + n-MultExpCost3G(`b) + PairCost3G,G +

GroupTestCost3nG + MultCost3 and refer to the table below for efficiency of the scheme.

n ≤ 2z : M +2n-MultPairCostG,G + z-MultExpCost2nG (kz) + ExpCost2nG (`b)

n > 2z : M +z-MultPairCostG,G + ExpCost2nG (kz + `b) + MultCostzn

The naive application of Π-IBS to verify n signatures costs PairCost3nG,G + z-MultExpCost2nG (kz) +

MultCost4n. Also note that in many security applications we do not need to transmit the identity
as a separate parameter, as it is already included in the larger protocol. For example, the identity
may be the hardware address of the network interface card.

BLS is the signature scheme by Boneh, Lynn and Shacham [9]. We discuss batch verifiers for BLS
signatures based on the small exponents test. For a screening algorithm, aggregate signatures by
Boneh, Gentry, Lynn and Shacham [8] can be used. The signature is only one group element in
a bilinear group and the same for the public key. For different signers the cost of batch verifica-
tion is n-MultPairCostG,G +n-MultExpCostG(`b) +PairCostG,G +ExpCostnGT (`b) +GroupTestCostnG +

HashCostnG, but for single signer it is only n-MultExpCost2G(`b) + PairCost2G,G + GroupTestCostnG +
HashCostnG.

5

894

Approved for Public Release; Distribution Unlimited.

Π-Sig is a new variant of Camenisch and Lysyanskaya signatures [13] presented in Section 5 designed
specifically to enable efficient batch verification. The signature is only one bilinear group element
and the same for the public key. Batch verification costs n-MultExpCost2G(`b)+n-MultExpCostG(|w|+
`b)+PairCost3G,G+GroupTestCostnG+HashCostnG, where w is the output of a hash function. However,
the scheme has some additional restrictions.

Small Exponents and Bucket Tests. Recall the various testing techniques covered in Sec-
tion 1.2. Our batch verifiers in this paper make use of the small exponents test, but since the
bucket test uses the small exponents test as a subroutine, we note that we can also use the bucket
test to further speed up verification of many signatures.

2 Definitions

Recall that a digital signature scheme is a tuple of algorithms (Gen,Sign,Verify) that also is cor-
rect and secure. The correctness property states that for all Gen(1`) → (pk , sk), the algorithm
Verify(pk ,m,Sign(sk ,m)) = 1.

There are two common notions of security. Goldwasser, Micali and Rivest [30] defined a scheme
to be unforgeable as follows: Let Gen(1`)→ (pk , sk). Suppose (m,σ) is output by a p.p.t. adversary
A with access to a signing oracle Osk (·) and input pk . Then the probability that m was not queried
to Osk (·) and yet Verify(pk ,m, σ) = 1 is negligible in `. An, Dodis and Rabin [1] proposed the
notion of strong unforgeability, where if A outputs a pair (m,σ) such that Verify(pk ,m, σ) = 1,
then except with negligible probability at some point the signing oracle Osk (·) was queried on m
and outputted signature σ exactly. In other words, an adversary cannot create a new signature
even for a previously signed message. Our batch verification definitions work with either notion.
The signatures used in Section 4 meet the GMR [30] definition, while those in Section 5 meet the
stronger ADR [1] definition.

Now, we consider the case where we want to quickly verify a set of signatures on (possibly)
different messages by (possibly) different signers. The input is {(t1,m1, σ1), . . . , (tn,mn, σn)}, where
ti specifies the verification key against which σi is purported to be a signature on message mi. We
extend the definitions of Bellare, Garay and Rabin [4] to deal with multiple signers. And this is an
important point that wasn’t a concern with only a single signer: one or more of the signers may
be maliciously colluding.

Definition 2.1 (Batch Verification of Signatures) Let ` be the security parameter. Suppose
(Gen,Sign,Verify) is a signature scheme, k, n ∈ poly(`), and (pk1, sk1), . . . , (pkk, skk) are generated
independently according to Gen(1`). Let PK = {pk1, . . . , pkk}. Then we call probabilistic Batch a
batch verification algorithm when the following conditions hold:

• If pk ti ∈ PK and Verify(pk ti ,mi, σi) = 1 for all i ∈ [1, n], then
Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 1.

• If pk ti ∈ PK for all i ∈ [1, n] and Verify(pk ti ,mi, σi) = 0 for some i ∈ [1, n], then
Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 0 except with probability negligible in `,
taken over the randomness of Batch.

6

895

Approved for Public Release; Distribution Unlimited.

Note that Definition 2.1 requires that signing keys be generated honestly, but then they can be
later held by an adversary. In practice, users could register their keys and prove some necessary
properties of the keys at registration time [2].

On Differences between Batch Verification, Screening and Aggregate Signatures. As
we discussed in the introduction, when doing our literature search on batch verification, we often
came across works (e.g., [21, 23]) which confuse the goals of aggregate signatures and batch veri-
fication or claim to do batch verification when, in fact, they often meet a weaker guarantee called
screening [4]. Let us clarify these distinct notions.

Informally, in both batch verification and screening, the goal is an algorithm that takes as input
n distinct signatures and verifies them quickly. In batch verification, the batch of signatures should
verify if and only if all individual signatures are valid. In the screening security model, an honest
signer is protected in the sense that an attacker cannot cause her to become bound to a message
that she did not sign, even if the attacker controls all other signers; however, honest verifiers are
not totally protected from dishonest signers in the sense that a dishonest signer might be able to
devise a batch of signatures that pass the screening test, but do not all individually verify.

The goal in aggregate signatures is an algorithm that takes as input n distinct signatures
and compresses them to save bandwidth. It happens that the security definition of aggregate
signatures [8] implies screening, while neither definition implies batch verification. We first give the
formal definitions of screening and aggregate signatures, and then discuss a scheme which satisfies
these notions, but not batch verification.

Definition 2.2 (Screening of Signatures) Let ` be the security parameter. Suppose (Gen,Sign,
Verify) is a signature scheme, n ∈ poly(`) and (pk0, sk0) ← Gen(1`). Let Osk0(·) be an oracle that
on input m outputs σ = Sign(sk0,m). Then for all p.p.t. adversaries A, we call probabilistic Screen
a screening algorithm when µ(`) defined as follows is a negligible function:

Pr[(pk0, sk0)← Gen(1`), (pk1, sk1)← Gen(1`), . . . , (pkn, skn)← Gen(1`),

D ← AOsk0
(·)(pk0, (pk1, sk1), . . . , (pkn, skn)) :

Screen(D) = 1 ∧ (pk0,m, σ) ∈ D ∧ m 6∈ Q] = µ(`),

where Q is the set of queries that A made to Osk0(·) and for all (pka, b, c) ∈ D, a ∈ {0, . . . , n}.

The above definition is generalized to the multiple-signer case from the single-signer screening
definition of Bellare, Garay and Rabin [4]. We now describe the security notion for aggregate
signatures; the correctness property should be obvious.

Definition 2.3 (Aggregate Signatures Security [8]) Let ` be the security parameter. Suppose
(Gen,Sign, Verify) is a signature scheme, n ∈ poly(`) and (pk0, sk0) ← Gen(1`). Let Osk0(·) be an
oracle that on input m outputs σ = Sign(sk0,m). Then for all p.p.t. adversaries A, we call prob-
abilistic AggVerify an aggregate-verification algorithm when µ(`) defined as follows is a negligible
function:

Pr[(pk0, sk0)← Gen(1`); (pk1, . . . , pkn,m0, . . . ,mn, σ)← AOsk0
(·)(pk0) :

AggVerify((pk0, . . . , pkn), (m0, . . . ,mn), σ) = 1 ∧ m0 6∈ Q] = µ(`),

where Q is the set of queries that A made to Osk0(·).

7

896

Approved for Public Release; Distribution Unlimited.

As mentioned above, screening is the (maximum) guarantee that some aggregate signatures
offer if one were to attempt to batch verify a group of signatures by first aggregating them together
and then executing the aggregate-verification algorithm. We now give an example of a construction
which can satisfy both Definitions 2.2 and 2.3, but which provably does not satisfy Definition 2.1.
Consider the aggregate signature scheme of Boneh, Gentry, Lynn and Shacham [8] based on the
BLS signatures [9]. First, we review the BLS signatures. Let G = 〈g〉 be a group of prime order
q that provided for a bilinear map e : G × G → GT . To generate a key pair, choose a random
sk ∈ Zq and set pk = gsk . A signature on message m is σ = H(m)sk , where H : {0, 1}∗ → G is
a hash function. To verify a signature σ on a message m, one checks that e(σ, g) = e(H(m), pk).
Given a group of message-signature pairs (m1, σ1), . . . , (mn, σn) (all purportedly from the same
signer) where each message is distinct, BGLS aggregate them as A =

∏n
i=1 σi. Then all signatures

can be verified in aggregate (i.e., screened) by testing that e(A, g) = e(
∏n
i=1H(mi), pk). This

scheme is not, however, a batch verification scheme since, for any a 6= 1 ∈ G, the two invalid
message-signature pairs P1 = (m1, a · H(m1)sk) and P2 = (m2, a

−1 · H(m2)sk) will verify under
Definition 2.2 (as BGLS observe [8]), but will not verify under Definition 2.1. Indeed, for some
pervasive computing applications only guaranteeing screening would be disastrous, because only
P1 may be relevant information to forward to the next entity – and it won’t verify once it arrives!
Also recall the e-mail scenario from Section 1. If we only did screening on the server, a user could
send n messages with invalid signatures (to different receivers) that would screen correctly. The
sender could then later claim that he did not send one of the messages and indeed the signature
will not verify unless one can get hold of all n messages! To be fair, batch verification is not what
aggregate schemes were designed to do.

Let’s make one final observation about the relationship between batch verification and screening.
Let D = {(t1,m1, σ1), . . . , (tn,mn, σn)}. We note that while Screen(D) = 1 does not guarantee that
Verify(pk ti ,mi, σi) for all i; it does guarantee that the holder of sk ti authenticated mi. That is, for
all i, the holder of sk ti helped to create σi, which may or may not be a valid signature for mi. Thus,
a screening scheme can be employed to hold users accountable for the messages they “sign” in a set
D such that Screen(D) = 1, but to do this the entire set D must be recorded or retransmitted to a
third party. In the authenticated email scenario, where the mailserver is verifying the signatures on
emails for many different users, releasing D (in the event of disputes) raises serious privacy issues.
One could consider releasing a non-interactive zero-knowledge proof of knowledge of D such that
Screen(D) = 1, although the naive approach will require O(|D|) space and O(|D|) time to verify.

3 Algebraic Setting and Group Membership

Bilinear Groups. Let BSetup be an algorithm that, on input the security parameter 1`, outputs
the parameters for a bilinear map as (q, g,G,GT , e), where G and GT are groups of prime order
q ∈ Θ(2`). The efficient mapping e : G × G → GT is both: (bilinear) for all g ∈ G and a, b ← Zq,
e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1. Following prior work,
we write G and GT in multiplicative notation (although G is often also denoted as an additive
group). This bilinear map is called a symmetric bilinear map. A more general version of the
bilinear map is the asymmetric bilinear map e : G1 × G2 → GT , where G1 and G2 are distinct
groups, possibly without efficient isomorphisms between them. Getting into details about how
these bilinear maps are constructed is not the purpose of this paper, so we just give a very brief
overview required for reasoning about the efficiency of our schemes.

8

897

Approved for Public Release; Distribution Unlimited.

G1 and G2 are groups of points on some curve and GT is a subgroup of a multiplicative group
over a related finite field. All groups have the same order q. Let E be an elliptic curve. We denote
the group of points on E defined over Fp as E(Fp). G1 (or G in the symmetric setting) is a subgroup
of E(Fp), G2 is usually defined as a subgroup of E(Fpk) where k is the embedding degree and GT

is usually a subgroup of E(F∗
pk

). Let’s look at the size of the group elements. For simplicity we will
assume that we are aiming for security comparable to 1024 bit RSA. Note that although a point
(x, y) on a curve consist of two elements x and y in the underlying field, the size of groups elements
are equivalent to the size of elements in the underlying field. The reason is that we only need to
represent the x coordinate and the least significant bit of y in order to reconstruct y when needed.

So what is the minimum size the group elements can have? First of all the group order q must
be large enough to resist attacks on discrete logarithms, such as the Pollard-ρ attack, which means
that q ≥ 160. Second, the MOV attack states that solving the discrete logarithm problem on a
curve, reduces to solving it over the corresponding finite field [46], which means that the bitlength
of pk must be around 1024, which has implications for the size of GT . The best known curves in
the symmetric setting works with |p| = 512 and k = 2, and hence elements of G will be 512 bits,
while elements of GT will be 1024 bits. In the asymmetric setting one can choose |p| = 160 and
k = 6 which results in elements of size 160 bits in G1, while elements of G2 and GT will be 960
bits. In some cases elements of G2 can be represented in the subfield E(Fpk/2) instead, resulting in
elements of 480 bits [38].

Our constructions from Section 5 also work in the asymmetric setting which allows us to use a
short representation of the signatures. The Π-IBS scheme from Section 4 can be modified to work
in the asymmetric setting, but some parts of the signature will end up in the large group. We refer
to the efficiency note paragraphs in Section 4 and 5 for a more detailed discussion.

Testing Membership in G. In a non-bilinear setting, Boyd and Pavlovski [10] observed that
the proofs of security for many previous batch verification or screening schemes assumed that
the signatures (potentially submitted by a malicious adversary) were elements of an appropriate
subgroup. For example, it was common place to assume that signatures submitted for batch DSA
verification contained an element in a subgroup G of Z∗p of prime order q. Boyd and Pavlovski [10]
pointed out efficient attacks on many batching algorithms via exploiting this issue. Of course, group
membership cannot be assumed, it must be tested and the work required by this test might well
obliterate all batching efficiency gains. E.g., verifying that an element y is in G by testing if yq

mod q = 1; easily obliterates the gain of batching DSA signatures. Boyd and Pavlovski [10] suggest
methods for overcoming this problem through careful choice of q.

In this paper, we will work in a bilinear setting, and we must be careful to avoid this common
mistake in batch verification. Our proofs will require that elements of purported signatures are
members of G and not E(Fp) \ G. The question is: how efficiently can this fact be verified?
Determining whether some data represents a point on a curve is easy. The question is whether it
is in the correct subgroup. Assume we have a bilinear map e : G1 ×G2 → GT . In all the schemes
we use, signatures are in G1, so this is the group we are interested in testing membership of.

If the order of G1 is q, one option is to verify that an element y is in G1 by checking that
yq = 1. While this might seem inefficient, it is actually not a problem in practice when working
with pairing based schemes, since the time required for a single exponentiation is considerably less
than the time required for computing a pairing. This has been verified experimentally by Ferrara
et al. [25]. One area for improvement in batching, however, is to devise more efficient methods for

9

898

Approved for Public Release; Distribution Unlimited.

membership testing in bilinear groups. Chen, Cheng and Smart [20] provide more details on this.

Complexity Assumptions. In the coming sections, we will refer to the following complexity
assumptions.

Assumption 3.1 (Computational Diffie-Hellman [24]) Let g generate a group G of prime
order q ∈ Θ(2`). For all p.p.t. adversaries A, the following probability is negligible in `:

Pr[a, b,← Zq; z ← A(g, ga, gb) : z = gab].

Assumption 3.2 (Decisional Bilinear Diffie-Hellman [7]) Let BSetup(1`)→ (q, g,G, GT , e),
where g generates G. For all p.p.t. adversaries A, the following probability is at most 1/2 plus a
negligible function in `:

Pr[a, b, c, d← Zq; x0 ← e(g, g)abc; x1 ← e(g, g)d; z ← {0, 1}; z′ ← A(g, ga, gb, gc, xz) : z = z′].

Assumption 3.3 (LRSW [45]) Let BSetup(1`) → (q, g,G,GT , e). Let X,Y ∈ G, X = gx, and
Y = gy. Let OX,Y (·) be an oracle that, on input a value m ∈ Z∗q, outputs a triple A = (a, ay, ax+mxy)

for a randomly chosen a ∈ G. For all p.p.t. adversaries A(·), the following probability is negligible
in `:

Pr[(q, g,G,GT , e)← BSetup(1`);x← Zq; y ← Zq;X = gx;Y = gy;

(m, a, b, c)← AOX,Y (q, g,G,GT , e, X, Y) : m /∈ Q ∧ m ∈ Z∗q ∧
a ∈ G ∧ b = ay ∧ c = ax+mxy]

where Q is the set of queries that A made to OX,Y (·).

4 Batch Verification without Random Oracles

In this section, we present a method for batch verifying an identity-based signature scheme Π-IBS.
This batch verification method can be executed in different modes, optimizing for the lowest run-
time. Let n be the number of certificate/signature pairs, let 2k be the number of users and let there
be k bits per message. Let z be the additional security parameter required by the Π-IBS. Further-
more assume that the k bits are divided into z elements of k/z bits each. Then our batch verifier
will verify n certificate/signature pairs with asymptotic complexity of the dominant operations
roughly MIN{(2n+ 3) , (z + 3)}.

On the practical side, we note that as z grows there is a corresponding degradation in the
concrete security of the IBS scheme (see [19] for a detailed discussion of these tradeoffs.) Setting
z = k/32, however, seems a reasonable choice. Suppose we use SHA256 to hash all the messages
(k = 256) and we choose the elements to be 32 bits (k/z = 32), then roughly when n ≥ 3 batch
verification becomes faster than individual verification.

10

899

Approved for Public Release; Distribution Unlimited.

4.1 Batch Verification for Π-IBS

We describe a batch verification algorithm for the Π-IBS scheme [19], where the number of pairings
depends on the security parameter and not on the number of signatures and where no random
oracles are necessary. The underlying Π-IBS signature scheme appears only implicitly in prior
work, so let us clearly explain its origin. We begin with the observation by Boyen and Waters
that an IBS scheme is realized by the key issuing algorithm of any (fully-secure) 2-level hierarchical
identity-based encryption (HIBE) scheme [11].

In 2004, Boneh and Boyen described an efficient HIBE in the selective-ID security model [5]. In
2005, Waters described how to alter this scheme to make it fully-secure [53]. The IBS scheme that
can be extracted from Waters 2-HIBE was proven secure under CDH in the standard model by
Boyen and Waters [11]. In the conference version of this paper [12], we presented a batch verifier
for this IBS scheme. Let n be the number of certificate/signature pairs, let 2k1 be the number of
users, and let k2 be the bits per message. Then our batch verifier from the conference version can
verify n certificate/signature pairs with asymptotic complexity of the dominant operations roughly
MIN{(2n+ 3) , (k1 + n+ 3) , (n+ k2 + 3) , (k1 + k2 + 3)}. Suppose there are one billion users
(k1 = 30) and SHA256 is used to hash all the messages (k2 = 256), then when n ≥ 31 batching
becomes faster than individual verification and at most 289 dominant operations will have to be
performed regardless of n.

Fortunately, we are able to significantly improve the efficiency of these prior results. We begin
by recalling that in 2005 Naccache [47] and Chatterjee and Sarkar [18] independently showed how
to generalize the Waters IBE to optimize it for efficiency. In 2006 Chatterjee and Sarkar extended
these ideas to Waters HIBE and the resulting HIBE was proven secure under DBDH in the standard
model [19]. We call the IBS scheme implicitly defined by this generalized HIBE as Π-IBS. It is
known to be secure under DBDH [19] and we conjecture that its security can be shown under CDH.

The Π-IBS scheme and its batch verification algorithm are both considerably more practical than
the non-generalized version presented in our conference paper [12]. Indeed, the structure imposed
by the generalization [47, 19] makes the Π-IBS scheme particularly well-suited for batch verification.
We now explicitly describe the Π-IBS and then show how to batch verify these signatures.

We assume that the identities and messages are both bit-strings of length k represented by z
blocks of k/z bits each. (If this is not the case, then let k be the larger bit-length and then pre-pad
the shorter string with zeros.) Let BSetup(1`)→ (q, g,G,GT , e).

Setup: First choose a secret α ∈ Zq and h ∈ G and calculate A = e(g, h)α. Then pick two random
integers y′1, y

′
2 ∈ Zq and a random vector y = (y1, . . . , yz) ∈ Zzq . The master secret key is

MK = hα and the public parameters are given as: PP = (g,A, u′1 = gy
′
1 , u′2 = gy

′
2 , u1 =

gy1 , . . . , uz = gyz).
We use the notation of Chatterjee and Sarkar [19] to define the following function. Let
v = (v1, . . . , vz), where each vi is a (k/z)-bit string. For i ∈ {1, 2}, let:

Ui(v) = u′i

z∏

j=1

u
vj
j .

Extract: To create a private key for a user with identity ID = (κ1, . . . , κz), select r ∈ Zq and
return KID = (hα · U1(ID)r, g−r) .

11

900

Approved for Public Release; Distribution Unlimited.

Sign: To sign a message m = (m1, . . . ,mz), where each mi is a (k/z)-bit string, using private key
K = (K1,K2), select s ∈ Zq and return

S =
(
K1 · U2(m)s, K2, g

−s) .

Verify: To verify a signature S = (S1, S2, S3) from identity ID = κ1, . . . , κz on message m, parse
m = (m1, . . . ,mz), where each mi is a (k/z)-bit string, and check that:

A = e(S1, g) · e(S2, U1(ID)) · e(S3, U2(m)).

If this equation holds, output accept; otherwise output reject.

We now introduce a batch verifier for this signature scheme. The basic idea is to adopt the
small exponents test from [4] and to take advantage of the peculiarities of bilinear maps.

Batch Verify: Suppose we want to batch verify n purported signatures. Let κij and mi
j denote

the j’th (k/z)-bit block of the identity of the i’th signer and the message signed by the i’th
signer, respectively. Let Si = (Si1, S

i
2, S

i
3) denote the signature from the i’th signer. First

check that all the identities have the correct length and that Si1, S
i
2, S

i
3 ∈ G for all i. If not;

output reject. Otherwise generate a vector ∆ = (δ1, . . . , δn) where each δi is a random element
of `b bits from Zq and set

P = e(

n∏

i=1

Si1
δi , g) · e(

n∏

i=1

Si2
δi , u′1) · e(

n∏

i=1

Si3
δi , u′2).

Depending on the values of z and n proceed as follows: if n < 2z check whether

n∏

i=1

Aδi = P ·
n∏

i=1

e(Si2

δi ,
z∏

j=1

u
κij
j) · e(Si3

δi ,
z∏

j=1

u
mij
j)

 (1)

holds, otherwise verify the equation

n∏

i=1

Aδi = P ·
z∏

j=1

e(
n∏

i=1

(Si2
κij · Si3

mij)δi , uj) . (2)

Output accept if the chosen equation holds; otherwise output reject.

Theorem 4.1 The above algorithm is a batch verifier for the Π-IBS.

Proof. Let IDi = (κi1, . . . , κ
i
z). The requirement that all public keys are valid is trivially sat-

isfied for an identity based scheme, once it has been verified that all identities have the correct
length. First we show that Verify(ID1,M1, S1) = · · · = Verify(IDn,Mn, Sn) = 1 implies that
Batch((ID1,M1, S1), . . . , (IDn,Mn, Sn)) = 1. This follows from the verification equation for the

12

901

Approved for Public Release; Distribution Unlimited.

Π-IBS scheme:

n∏

i=1

Aδi =
n∏

i=1

(
e(Si1, g) · e(Si2, U1(IDi)) · e(Si3, U1(Mi))

)δi (3)

= e(
n∏

i=1

Si1
δi , g) ·

n∏

i=1

e(Si2
δi , u′1

z∏

j=1

u
κij
j) ·

n∏

i=1

e(Si3
δi , u′2

z∏

j=1

u
mij
j)

= P ·
n∏

i=1

e(Si2

δi ,

z∏

j=1

u
κij
j) · e(Si3

δi ,

z∏

j=1

u
mij
j)

 . (4)

For the first part of the proof, all we need now is to show that equation 1 is equivalent to
equation 2. Since for all i, Verify(IDi,Mi, Si) = 1, (Si1, S

i
2, S

i
3) are valid signatures and hence we

can write Si2 = gbi and Si3 = gci for some elements bi, ci ∈ Zq. Now we rewrite the part inside the
parenthesis of equation 1 and get equation 2:

n∏

i=1

e(Si2
δi ,

z∏

j=1

u
κij
j) ·

n∏

i=1

e(Si3
δi ,

z∏

j=1

u
mij
j) =

n∏

i=1

(
e(gbi , g

Pz
j=1 κ

i
jyj) · e(gci , g

Pz
j=1m

i
jyj)
)δi

=
n∏

i=1

(
e(g, g)

Pz
j=1(δibiκ

i
jyj+δicim

i
jyj)
)

=
z∏

j=1

(
e(g, g)yj

Pn
i=1(δibiκ

i
j+δicim

i
j)
)

=

z∏

j=1

e(

n∏

i=1

(Si2
κij · Si3

mij)δi , uj) .

We must now show the other direction. This proof is an application of the technique for proving
the small exponents test in [4]. Batch verification accepts so we know that Si1, S

i
2, S

i
3 ∈ G and hence

we can write Si1 = gai , Si2 = gbi and Si3 = gci for some ai, bi, ci ∈ Zq. Also since h ∈ G we can write
h = gd for some d ∈ Zq.

Since equation 3 is just an (inefficient) variant of the batch verification, we know that it holds,
and we can rewrite it as:

n∏

i=1

Aδi =

n∏

i=1

(
e(gai , g) · e(gbi , gy

′
1g

Pz
j=1 yjκj) · e(gci , gy

′
2g

Pz
j=1 yjmj)

)δi

=

n∏

i=1

e(g, g)δi(ai+biy
′
1+ciy

′
2+bi

Pz
j=1 yjκj+ci

Pz
j=1 yjmj)

= e(g, h)
Pn
i=1 δid

−1(ai+biy′1+ciy
′
2+bi

Pz
j=1 yjκ

i
j+ci

Pz
j=1 yjm

i
j)

⇒
n∑

i=1

δiα−
n∑

i=1

δid
−1

ai + biy

′
1 + ciy

′
2 + bi

z∑

j=1

yjκ
i
j + ci

z∑

j=1

yjm
i
j

 ≡ 0 (mod q) .

13

902

Approved for Public Release; Distribution Unlimited.

Setting βi = α− d−1
(
ai + biy

′
1 + ciy

′
2 + bi

∑z
j=1 yjκ

i
j + ci

∑z
j=1 yjm

i
j

)
this can be written as:

n∑

i=1

δiβi ≡ 0 (mod q) . (5)

Assume that Batch((ID1,M1, S1), . . . , (IDn,Mn, Sn)) = 1, but for at least one i it is the case
that Verify(IDi,Mi, Si) = 0. Assume wlog that this is true for i = 1, which means that β1 6= 0.
Since q is a prime then β1 has an inverse γ1 such that β1γ1 ≡ 1 (mod q). This and equation 5 gives
us:

δ1 ≡ −γ1

n∑

i=2

δiβi (mod q) . (6)

Given (IDi,Mi, Si), where i = 1 . . . n, let E be an event that Verify(ID1,M1, S1) = 0 holds
but that Batch((ID1,M1, S1), . . . , (IDn,Mn, Sn)) = 1, or in other words, that we break batch
verification. Note that we do not make any assumptions about the remaining values. Let ∆′ =
δ2, . . . , δn denote the last n − 1 values of ∆ and let |∆′| be the number of possible values for this
vector. Equation 6 says that given a fixed vector ∆′ there is exactly one value of δ1 that will
make event E happen, or in other words that the probability of E given a randomly chosen δ1 is
Pr[E|∆′] = 2−`b . So if we pick δ1 at random and sum over all possible choices of ∆′ we get Pr[E] ≤∑|∆′|

i=1 (Pr[E|∆′] · Pr[∆′]). Plugging in the values, we get: Pr[E] ≤ ∑2`b(n−1)

i=1

(
2−`b · 2−`b(n−1)

)
=

2−`b . 2

Efficiency Note. The signature for Π-IBS consists of three group elements, but since it is
identity-based there is no public key, and we assume that the identity is given ”for free” e.g., it
could be the hardware address of the network interface card. Hence the size of the signature that
verifies both the message and the identity depends only on the size of these group elements. We
have described the scheme in the symmetric bilinear setting e : G×G → GT because the original
scheme does not work in the asymmetric bilinear setting e : G1×G2 → GT . However, by switching
the order of the elements in the first pairing and modifying the public parameters accordingly, the
scheme also works in the asymmetric bilinear setting.

In the symmetric bilinear setting, elements must be around 512 bits for security comparable to
1024 bits RSA, which gives us a total signature size of 1536 bits. In the asymmetric bilinear setting
the elements S2 and S3 can be represented using 160 bits, whereas S1 needs 512 bits. So all in all
we can represent the signature on the message and the identity using only 832 bits. However, it
might not be efficient to test membership of the group G2, which is needed for batch verification.

5 Faster Batch Verification with Restrictions

In this section, we present a second method for batch verifying signatures together with their
accompanying certificates. We propose using the BLS signature scheme [9] for the certificates and
a modified version of the CL signature scheme [13] for signing messages. This method requires
only two pairings to verify n certificates (from the same authority) and three pairings to verify
n signatures (from possibly different signers). The cost for this significant efficiency gain is some
usage restrictions, although as we will discuss, these restrictions may not be a problem for some of
the applications we have in mind.

14

903

Approved for Public Release; Distribution Unlimited.

Certificates: We use a batch verifier for BLS signatures from the same authority as described in
Section 5.1. The scheme is secure under CDH in the random oracle model. To verify n BLS
certificates costs n-MultExpCost2G(`b) +PairCost2G,G +GroupTestCostnG +HashCostnG, using the
Section 1.2 notation.

Signatures: We describe a new signature scheme Π-Sig with a batch verifier in Section 5.2. The
scheme is secure under the LRSW assumption in the plain model when the size of the message
space is a polynomial and in the random oracle model when the size of the message space
is super-polynomial. We assume that there are discrete time or location identifiers φ ∈ Φ.
A user can issue at most one signature per φ (e.g., this might correspond to a device being
allowed to broadcast at most one message every 300ms) and only signatures from the same
φ can be batch verified together. To verify n Π-Sig signatures, costs n-MultExpCost2G(`b) +
n-MultExpCostG(|w|+ `b)+PairCost3G,G +GroupTestCostnG +HashCostnG, where w is the output
of a hash function.

5.1 Batch Verification of BLS Signatures

We describe a batch verifier for many signers for the Boneh, Lynn, and Shacham signatures [9]
described in Section 2, using the small exponents test [4], which requires distinct messages.

Batch Verify: Given purported signatures σi from n users on distinct messages Mi for i = 1 . . . n,
first check that all public keys pk i where i ∈ [1, n] are valid, and that σi ∈ G for all i. If not; output
reject. Otherwise compute hi = H(Mi) and generate a vector δ = (δ1, . . . , δn) where each δi is a
random element of `b bits from Zq. Check that e(

∏n
i=1 σ

δi
i , g) =

∏n
i=1 e(hi, pk i)

δi . If this equation
holds, output accept; otherwise output reject.

Theorem 5.1 The algorithm above is a batch verifier for BLS signatures.

Proof. First we show that Verify(pk1,M1, S1) = · · · = Verify(pkn,Mn, Sn) = 1 implies that
Batch((pk1,M1, S1), . . . , (pkn,Mn, Sn)) = 1. This follows from the verification equation for the
BLS scheme:

n∏

i=1

e(σi, g)δi =
n∏

i=1

e(hi, pk i)
δi ⇔ e(

n∏

i=1

σδii , g) =
n∏

i=1

e(hi, pk i)
δi (7)

We must now show the other direction. This proof is again an application of the technique for
proving the small exponents test in [4]. Batch verification accepts so we know that σi ∈ G and
hence we can write σi = gci for some ci ∈ Zq. We also know that hi ∈ G so we write it as hi = gri .
Recall that pki = gxi . We know that equation 7 holds, so we can rewrite it as:

n∏

i=1

e(σi, g)δi =
n∏

i=1

e(hi, pk i)
δi =

n∏

i=1

e(g, g)δirixi

⇒ e(g, g)
Pn
i=1 δici = e(g, g)

Pn
i=1 δirixi

⇒
n∑

i=1

δici −
n∑

i=1

δirixi ≡ 0 (mod q)

15

904

Approved for Public Release; Distribution Unlimited.

Setting βi = ci − rixi this is equivalent to:

n∑

i=1

δiβi ≡ 0 (mod q)

The rest of the proof follows from the last part of the proof of Theorem 4.1. 2

Single Singer for BLS. However, BLS [9] previously observed that if we have a single signer
with public key v, the verification equation can be written as e(

∏n
i=1 σ

δi
i , g) = e(

∏n
i=1 h

δi
i , v) which

reduces the load to only two pairings.

Theorem 5.2 ([9]) The algorithm above is a single-signer, batch verifier for BLS signatures.

5.2 A New Signature Scheme Π-Sig

In this section we introduce a new signature scheme secure under the LRSW assumption [45], which
is based on the Camenisch-Lysyanskaya signature scheme [13].

The Original CL Scheme. Recall the Camenisch and Lysyanskaya signature scheme [13]. Let
BSetup(1`) → (q, g,G,GT , e). Choose the secret key sk = (x, y) ∈ Z2

q at random and set X = gx

and Y = gy. The public key is pk = (X,Y). To sign a message m ∈ Z∗q , choose a random
a ∈ G and compute b = ay, c = axbxm. Output the signature (a, b, c). To verify, check whether
e(X, a) · e(X, b)m = e(g, c) and e(a, Y) = e(g, b) holds.

Π-Sig: A version of the CL Scheme Allowing Batch Verification. Our goal is to batch-
verify CL signatures made by different signers. That is, we need to consider how to verify equations
of the form e(X, a) · e(X, b)m = e(g, c) and e(a, Y) = e(g, b). The fact that the values X, a, b, and
c are different for each signature seems to prevent efficient batch verification. Thus, we need to find
a way such that many different signers share some of these values. Obviously, X and c need to be
different. Now, depending on the application, all the signers can use the same value a by choosing
a as the output of some hash function applied to, e.g., the current time period or location. We
then note that all signers can use the same b in principle, i.e., have all of them share the same Y as
it is sufficient for each signer to hold only one secret value (i.e., sk = x). Indeed, the only reason
that the signer needs to know Y is to compute b. However, it turns out that if we define b such
that loga b is not known, the signature scheme is still secure. So, for instance, we can derive b in a
similar way to a using a second hash function. Thus, all signers will virtually sign using the same
Y per time period (but a different one for each period).

We note that the idea of sharing some value between the signers in order to efficiently perform
some operation on the signatures is not new. Gentry and Ramzan present an identity based
aggregate signature scheme [29] in which signatures can only be aggregated if all signers agree on
some dummy message that none of them have used before.

Let us now describe the resulting scheme. Let BSetup(1`)→ (q, g,G,GT , e). Let φ ∈ Φ denote
the current time period or location, where |Φ| is polynomial. LetM be the message space, for now
let M = {0, 1}∗. Let H1 : Φ→ G, H2 : Φ→ G, and H3 :M×Φ→ Zq be different hash functions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.

16

905

Approved for Public Release; Distribution Unlimited.

Sign: If this is the first call to Sign during period φ ∈ Φ, then on input message m ∈ M, set
w = H3(m||φ), a = H1(φ), b = H2(φ) and output the signature σ = axbxw. Otherwise, abort.

Verify: On input message-period pair (m,φ) and purported signature σ, compute w = H3(m||φ),
a = H1(φ) and b = H2(φ), and check that e(σ, g) = e(a,X) · e(b,X)w. If true, output accept;
otherwise output reject.

Theorem 5.3 Under the LRSW assumption in G, the Π-Sig signature scheme is existentially
unforgeable in the random oracle model for message space M = {0, 1}∗.

Proof. We show that if there exists a p.p.t. adversary A that succeeds with probability ε in forging
Π-Sig signatures, then we can construct a p.p.t. adversary B that solves the LRSW problem with
probability ε · |Φ|−1 · q−1

H in the random oracle model, where qH is the maximum number of oracle
queries A makes to H3 during any period φ ∈ Φ. Recall that |Φ| is a polynomial. Adversary
BOX,Y (·) against LRSW operates as follows on input (q, g,G,GT , e, X, Y). Let ` be the security
parameter. We assume that Φ is pre-defined. Let qH be the maximum number of queries A makes
to H3 during any period φ ∈ Φ.

1. Setup: Send the bilinear parameters (q, g,G,GT , e) to A. Choose a random w′ ∈ M and
query OX,Y (w′) to obtain an LRSW instance (w′, a′, b′, c′). Choose a random φ′ ∈ Φ. Treat
H1, H2, H3 as random oracles. Allow A access to the hash functions H1, H2, H3.

2. Key Generation: Set pk∗ = X. For i = 1 to n, choose a random sk i ∈ Zq and set pk i = gsk i .
Output to A the keys pk∗ and all (pk i, sk i) pairs.

3. Oracle queries: B responds to A’s hash and signing queries as follows. Choose random ri and
si in Zq for each time period (except φ′). Set up H1 and H2 such that:

H1(φi) =

{
gri if φi 6= φ′;

a′ otherwise.
(8)

and

H2(φi) =

{
gsi if φi 6= φ′;

b′ otherwise.
(9)

Pick a random j in the range [1, qH]. Choose random tl,i ∈ Zq, such that tl,i 6= w′, for
l ∈ [1, qH] and i ∈ [1, |Φ|]. Set up H3 such that:

H3(ml||φi) =

{
tl,i if φi 6= φ′ or l 6= j;

w′ otherwise.
(10)

B records m∗ := mj . Finally, set the signing query oracle such that on the lth query involving
period φi:

Osk∗(ml||φi) =

abort if φi = φ′ and l 6= j;

c′ else if φi = φ′ and l = j;

XriX(si)tl,i otherwise.

(11)

17

906

Approved for Public Release; Distribution Unlimited.

4. Output: At some point A stops and outputs a purported forgery σ ∈ G for some (ml, φi). If
φi 6= φ′, B did not guess the correct period and thus B outputs a random guess for the LRSW
game. If ml = m∗, or the Π-Sig signature does not verify, A’s output is not a valid forgery
and thus B outputs a random guess for the LRSW game. Otherwise, B outputs (tl,i, a

′, b′, σ)
as the solution to the LRSW game.

We now analyze B’s success. If B is not forced to abort or issue a random guess, then we note
that σ = H1(φi)

xH2(φi)
x·H3(ml||φi). In this scenario φi = φ′ and tl,i 6= w′. We can substitute as

σ = (a′)x(b′)x·(tl,i). Thus, we see that (tl,i, a
′, b′, σ) is indeed a valid LRSW instance. Thus, B

succeeds at LRSW whenever A succeeds in forging Π-Sig signatures, except when B is forced to
abort or issue a random guess. First, when simulating the signing oracle, B is forced to abort
whenever it incorrectly guesses which query to H3, during period φ′, A will eventually query to
Osk∗(·, ·). Since all outputs of H3 are independently random, B will be forced to abort at most q−1

H

probability. Next, provided that A issued a valid forgery, then B is only forced to issue a random
guess when it incorrectly guesses which period φ ∈ Φ that A will choose to issue its forgery. Since,
from the view of A conditioned on the event that B has not yet aborted, all outputs of the oracles
are perfectly distributed as either random oracles (H1, H2, H3) or as a valid Π-Sig signer (Osk∗).
Thus, this random guess is forced with probability at most |Φ|−1. Thus, if A succeeds with ε
probability, then B succeeds with probability ε · |Φ|−1 · q−1

H . 2

On Removing the Random Oracles. In the previous proof, notice that we treated hash
functions H1, H2 and H3 as independent random oracles which were (statically) programmed in
|Φ|, |Φ|, and |Φ| · |M| points, respectively, where Φ is the set of time period identifiers and M
is the signing message space. Recall that, as before, |Φ| is restricted to be polynomial in the
security parameter. Now, for sufficiently short message spaces, e.g., ISO defined error messages,
we can replace all three random oracles in the security proof of Π-Sig by concrete hash functions.
Suppose that given a set of pairs (x1, y1), . . . , (xk, yk), it is possible to efficiently sample a function
H : {0, 1}` → G (where k < 2` + 1) from a (2` + 1)-independent function family H such that for
each H ∈ H, we have H(xi) = yi for i = 1 to k. If such types of hash function families exist then
we could simply constrain them exactly as we programmed our random oracles.

Fortunately, Canetti, Halevi, and Katz [14] describe a method of efficiently constructing such
a hash function family which allows to map strings to bilinear map elements (or to map strings to
elements in another prime-order algebraic group such as Zq). Any family satisfying the constraints
above will work for our purposes, where H1 and H2 map into bilinear group G and H3 maps into
Zq. The construction remains as before and the new security proof simply uses concrete functions
with constraints mirroring the points (statically) programmed in the oracles.

Lemma 5.4 Under the LRSW assumption in G, the Π-Sig signature scheme is existentially un-
forgeable in the plain model when |M| are polynomial in the security parameter.

Batch Verification of Π-Sig Signatures. Batch verification of n signatures σ1, . . . , σn on mes-
sages m1, . . . ,mn for the same period φ can be done as follows. (Recall that each signer can issue
at most one signature per time period. Thus, these n signatures are all from different signers.)
Assume that user i with public key Xi signed message mi. Set wi = H(mi||φ). First check that all
public keys Xi where i ∈ [1, n] are valid, and that σi ∈ G for all i. If not; output reject. Otherwise

18

907

Approved for Public Release; Distribution Unlimited.

pick a vector ∆ = (δi, . . . , δn) with each element being a random `b-bit number and check that
e(
∏n
i=1 σ

δi
i , g) = e(a,

∏n
i=1X

δi
i) · e(b,

∏n
i=1X

wiδi
i). If this equation holds, output accept; otherwise

output reject.

Theorem 5.5 The algorithm above is a batch verifier for Π-Sig signatures.

Proof. First we show that Verify(X1,M1, S1) = · · · = Verify(Xn,Mn, Sn) = 1 implies that Batch((X1,
M1, S1), . . . , (IDn,Mn, Sn)) = 1. This follows from the verification equation for the Π-Sig scheme
if we keep in mind that

n∏

i=1

e(σi, g)δi =
n∏

i=1

(e(a,Xi) · e(b,Xi)
wi)δi =

n∏

i=1

e(a,Xi)
δi ·

n∏

i=1

e(b,Xi)
wiδi (12)

⇔ e(
n∏

i=1

σδii , g) = e(a,
n∏

i=1

Xδi
i) · e(b,

n∏

i=1

Xwiδi
i) .

We must now show the other direction. This proof is again an application of the technique for
proving the small exponents test in [4]. Batch verification accepts so we know that σi ∈ G and
hence we can write σi = gci for some ci ∈ Zq. We also know that a and b are in G so we write them
as a = gr and b = gs. Since equation 12 is just an (inefficient) variant of the batch verification, we
know that it holds, and we can rewrite it as:

n∏

i=1

e(σi, g)δi =
n∏

i=1

(e(a,Xi) · e(b,Xi)
wi)δi =

n∏

i=1

e(g, g)δi(rxi+sxiwi)

⇒ e(g, g)
Pn
i=1 δici = e(g, g)

Pn
i=1 δi(rxi+sxiwi)

⇒
n∑

i=1

δici −
n∑

i=1

δi (rxi + sxiwi) ≡ 0 (mod q) .

Setting βi = ci − (rxi + sxiwi) this is equivalent to:

n∑

i=1

δiβi ≡ 0 (mod q) .

The rest of the proof follows from the last part of the proof of Theorem 4.1. 2

Π-Sig Without Batch Verification. So far we have described Π-Sig only as an efficient signa-
ture scheme to batch verify, but for completeness we note that if we are not interested in batch
verification, Π-Sig is still a fairly efficient regular signature scheme without any restrictions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.

Sign: Generate a value φ ∈ Φ that has never been used by the signer before. Then on input
message m ∈ M, set w = H3(m||φ), a = H1(φ), b = H2(φ), and σ = axbxw and output the
signature (σ, φ).

19

908

Approved for Public Release; Distribution Unlimited.

Verify: On input message m and purported signature (σ, φ), compute w = H3(m||φ), a = H1(φ)
and b = H2(φ), and check that e(σ, g) = e(abw, X). If true, output accept; otherwise output
reject.

This is very similar to the original scheme. Note that the only change is that φ is now generated
independently from all other signers and included as part of the signature, which makes the scheme
unsuitable for batch verification (since the probability that many signers will share the same value
of φ is small). However, now that we are only interested in individual verification, we can rewrite
the original verification equation e(σ, g) = e(a,X) · e(b,X)w as e(σ, g) = e(abw, X) which requires
only two pairings to verify. Finally note that this variant of the verification equation does not
depend on how φ was generated, and can always be used for individual verification if needed.

Efficiency Note. First, we observe that the Π-Sig signatures are very short, requiring only one
element in G. Since the BLS signatures also require only one element in G, and since a public key
for the Π-Sig scheme is also only one group element, the entire signature plus certificate could be
transmitted in three G elements. In order to get the shortest representation for these elements, we
need to use asymmetric bilinear maps e : G1×G2 → GT , where G1 6= G2, which will allow elements
in G1 to be 160 bits and elements of G2 to be 512 bits for a security level comparable to RSA-1024.
For Π-Sig signatures we need to hash into G1 which according to Galbraith, Paterson and Smart
can be done efficiently [27]. To summarize; using BLS and Π-Sig we can represent the signature
plus certificate using approximately 832 bits with security comparable to RSA-1024, compared to
around 3072 bits for actually using RSA-1024.

Second, suppose one uses the universal one-way hash functions described by Canetti, Halevi, and
Katz [14] to remove the random oracles from Π-Sig. These hash functions require one exponentiation
per constraint. In our case, we may require as many as |Φ| · |M| constraints. Thus, the cost to
compute the hashes may dampen the efficiency gains of batch verification. However, our scheme will
benefit from improvements in the construction of universal one-way hash functions with constraints.

If Π-Sig is used as a signatures scheme without an efficient batch verifier, the signature require
one group element in G and one element in Φ, where the size of Φ only needs to be large enough
to represent the number of times a user might want to sign with the same private key. Verification
of a single Π-Sig signature requires two pairings.

6 Conclusions and Open Problems

In this paper we focused on batch verification of signatures. We overviewed the large body of
existing work, almost exclusively dealing with single signers (Boneh, Lynn and Shacham [9] provide
a batch verification scheme for multiple signers on the same message). We extended the general
batch verification definition of Bellare, Garay and Rabin [4] to the case of multiple signers. We
then presented, to our knowledge, the first efficient and practical batch verification scheme for
signatures without random oracles. We focused on solutions that comprehended the time to verify
the signature and the corresponding certificate for the verification key. First, we presented a
batch verifier for the Π-IBS that can verify n signatures using only z + 3 pairings (the dominant
operation), where identities are k bits divided into z elements, each of k/z bits. This is a significant
improvement over the 3n pairings required by individual verification. Second, we presented a
solution in the random oracle model that batch verifies n BLS certificates and n Π-Sig signatures

20

909

Approved for Public Release; Distribution Unlimited.

using only 5 pairings. Here, Π-Sig is a variant of the Camenisch-Lysyanskaya signatures that is
much shorter, allows for efficient batch verification from many signers, but where only one signature
can be safely issued per period.

It is an open problem to find a fast batch verification scheme for short signatures without the
period restrictions from Section 5. Another exciting open problem is to develop fast batch verifiers
for various forms of anonymous authentication such as group signatures, e-cash, and anonymous
credentials.

Acknowledgments

We thank Ivan Damg̊ard, Anna Lisa Ferrara, Jean-Pierre Hubaux, Panos Papadimitratos and the
anonymous reviewers for their helpful input. Susan Hohenberger and Michael Østergaard Peder-
sen performed part of this research while at IBM Research, Zürich Research Laboratory. Also,
Michael Østergaard Pedersen performed part of this research while at the University of Aarhus.
Susan Hohenberger is sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, the Office of
Naval Research under contract N00014-11-1-0470, NSF CAREER CNS-1053886, a Microsoft Fac-
ulty Fellowship and a Google Faculty Research Award. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US
government.

References

[1] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT ’02, volume 2332 of
Lecture Notes in Computer Science, pages 83–107. Springer, 2002.

[2] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In 45th Symposium on Foundations of Computer
Science (FOCS), pages 186–195. IEEE Computer Society, 2004.

[3] Kenneth Barr and Krste Asanović. Energy aware lossless data compression. In MobiSys.
USENIX, 2003.

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentia-
tion and digital signatures. In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT
’98, volume 1403 of Lecture Notes in Computer Science, pages 236–250. Springer, 1998.

[5] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
– EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer Science, pages 223–238.
Springer, 2004.

[6] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT ’04, volume 3027 of
Lecture Notes in Computer Science, pages 382–400. Springer, 2004.

21

910

Approved for Public Release; Distribution Unlimited.

[7] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO ’01, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer, 2001.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT
’03, volume 2656 of Lecture Notes in Computer Science, pages 416–432. Springer, 2003.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal
of Cryptology, 17(4):297–319, 2004.

[10] Colin Boyd and Chris Pavlovski. Attacking and repairing batch verification schemes. In
Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT ’00, volume 1976 of Lecture
Notes in Computer Science, pages 58–71. Springer, 2000.

[11] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Serge
Vaudenay, editor, Advances in Cryptology – EUROCRYPT ’06, volume 4004 of Lecture Notes
in Computer Science, pages 427–444. Springer, 2006.

[12] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification of
short signatures. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT ’07, volume
4515 of Lecture Notes in Computer Science, pages 246–263. Springer, 2007.

[13] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew K. Franklin, editor, Advances in Cryptology – CRYPTO ’04, volume
3152 of Lecture Notes in Computer Science, pages 56–72. Springer, 2004.

[14] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In Eli Biham, editor, Advances in Cryptology – EUROCRYPT ’03, volume 2656 of Lecture
Notes in Computer Science, pages 255–271. Springer, 2003.

[15] Tianjie Cao, Dongdai Lin, and Rui Xue. Security analysis of some batch verifying signatures
from pairings. International Journal of Network Security, 3(2):138–143, 2006.

[16] Car 2 Car. Communication consortium. http://car-to-car.org.

[17] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Yvo Desmedt, editor, 6th Public Key Cryptography (PKC), volume 2567 of Lecture
Notes in Computer Science, pages 18–30. Springer, 2003.

[18] Sanjit Chatterjee and Palash Sarkar. Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In Dongho Won and Seungjoo Kim,
editors, 8th Information Security and Cryptology (ICISC), volume 3935 of Lecture Notes in
Computer Science, pages 424–440. Springer, 2005.

[19] Sanjit Chatterjee and Palash Sarkar. HIBE with short public parameters without random
oracle. In Xuejia Lai, editor, Advances in Cryptology – ASIACRYPT ’06, volume 4284 of
Lecture Notes in Computer Science, pages 145–160. Springer, 2006.

[20] L. Chen, Z. Cheng, and N.P. Smart. Identity-based key agreement protocols from pairings,
2006. Cryptology ePrint Archive: Report 2006/199.

22

911

Approved for Public Release; Distribution Unlimited.

[21] Jung Hee Cheon, Yongdae Kim, and Hyo Jin Yoon. A new ID-based signature with batch
verification, 2004. Cryptology ePrint Archive: Report 2004/131.

[22] Jung Hee Cheon and Dong Hoon Lee. Use of sparse and/or complex exponents in batch
verification of exponentiations. IEEE Transactions on Computers, 55(12):1536–1542, January
2006.

[23] Shi Cui, Pu Duan, and Choong Wah Chan. An efficient identity-based signature scheme with
batch verifications. In Abdur Chowdhury, Francis Lau, and Frank Zhigang Wang, editors, 1st
International Conference on Scalable Information Systems (InfoScale). ACM Press, 2006.

[24] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

[25] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Østergaard Peder-
sen. Practical short signature batch verification, 2008. Cryptology ePrint Archive: Report
2008/015.

[26] Amos Fiat. Batch RSA. In Gilles Brassard, editor, Advances in Cryptology – CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages 175–185. Springer, 1989.

[27] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers,
2006. Cryptology ePrint Archive: Report 2006/165.

[28] Craig Gentry. How to compress Rabin ciphertexts and signatures (and more). In Matthew K.
Franklin, editor, Advances in Cryptology – CRYPTO ’04, volume 3152 of Lecture Notes in
Computer Science, pages 179–200. Springer, 2004.

[29] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, editor,
9th Public Key Cryptography (PKC), volume 3958 of Lecture Notes in Computer Science, pages
257–273. Springer, 2006.

[30] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Computing, 17(2), 1988.

[31] R. Granger and N.P. Smart. On computing products of pairings, 2006. Cryptology ePrint
Archive: Report 2006/172.

[32] Lein Harn. Batch verifying multiple DSA digital signatures. Electronics Letters, 34(9):870–871,
1998.

[33] Lein Harn. Batch verifying multiple RSA digital signatures. Electronics Letters, 34(12):1219–
1220, 1998.

[34] Fumitaka Hoshino, Masayuki Abe, and Tetsutaro Kobayashi. Lenient/strict batch verification
in several groups. In George I. Davida and Yair Frankel, editors, 4th Information Security,
volume 2200 of Lecture Notes in Computer Science, pages 81–94. Springer, 2001.

[35] Min-Shiang Hwang, Cheng-Chi Lee, and Yuan-Liang Tang. Two simple batch verifying mul-
tiple digital signatures. In Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, 3rd
Information and Communications Security (ICICS), volume 2229 of Lecture Notes in Com-
puter Science, pages 233–237. Springer, 2001.

23

912

Approved for Public Release; Distribution Unlimited.

[36] Min-Shiang Hwang, Iuon-Chang Lin, and Kuo-Feng Hwang. Cryptanalysis of the batch verify-
ing multiple RSA digital signatures. Informatica, Lithuanian Academy of Sciences, 11(1):15–
19, 2000.

[37] IEEE. 5.9 GHz Dedicated Short Range Communications. http://grouper.ieee.org/

groups/scc32/dsrc.

[38] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels, 2005.
Cryptology ePrint Archive: Report 2005/076.

[39] Chi-Sung Laih and Sung-Ming Yen. Improved digital signature suitable for batch verification.
IEEE Transactions on Computers, 44(7):957–959, 1995.

[40] Olaf Landsiedel, Klaus Wehrle, and Stefan Götz. Accurate prediction of power consumption
in sensor networks. In IEEE Workshop on Embedded Networked Sensors (EmNetS-II), 2005.

[41] Laurie Law and Brian J. Matt. Finding invalid signatures in pairing-based batches. In Steven D.
Galbraith, editor, Cryptography and Coding, 11th IMA International Conference, volume 4887
of Lecture Notes in Computer Science, pages 34–53. Springer, 2007.

[42] Seungwon Lee, Seongje Cho, Jongmoo Choi, and Yookun Cho. Efficient identification of bad
signatures in RSA-type batch signature. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E89-A(1):74–80, 2006.

[43] C. Lim and P. Lee. Security of interactive DSA batch verification. In Electronics Letters,
volume 30(19), pages 1592–1593, 1994.

[44] Chae Hoon Lim. Efficient multi-exponentation and application to batch verification of digital
signatures, 2000. http://dasan.sejong.ac.kr/~chlim/english_pub.html.

[45] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In
Carlisle Adams and Howard Heys, editors, 6th Selected Areas in Cryptography (SAC), volume
1758 of Lecture Notes in Computer Science, pages 184–199. Springer, 1999.

[46] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing elliptic curve logarithms
to logarithms in a finite field. In 23rd ACM Symposium on Theory of Computing (STOC),
pages 80–89, 1991.

[47] D. Naccache. Secure and practical identity-based encryption, 2005. Cryptology ePrint Archive:
Report 2005/369.

[48] David Naccache, David M’Räıhi, Serge Vaudenay, and Dan Raphaeli. Can DSA be improved?
complexity trade-offs with the digital signature standard. In Alfredo De Santis, editor, Ad-
vances in Cryptology – EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science,
pages 77–85. Springer, 1994.

[49] Maxim Raya and Jean-Pierre Hubaux. Securing vehicular ad hoc networks. Journal of Com-
puter Security, 15:39–68, 2007.

[50] SeVeCom. Security on the road. http://www.sevecom.org.

24

913

Approved for Public Release; Distribution Unlimited.

[51] Hovav Shacham and Dan Boneh. Improving SSL handshake performance via batching. In David
Naccache, editor, Cryptographer’s Track at RSA Conference ’01, volume 2020 of Lecture Notes
in Computer Science, pages 28–43. Springer, 2001.

[52] Martin Stanek. Attacking LCCC batch verification of RSA signatures, 2006. Cryptology ePrint
Archive: Report 2006/111.

[53] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT ’05, volume 3494 of Lecture Notes in Computer
Science, pages 320–329. Springer, 2005.

[54] HyoJin Yoon, Jung Hee Cheon, and Yongdae Kim. Batch verifications with ID-based signa-
tures. In Choonsik Park and Seongtaek Chee, editors, 7th Information Security and Cryptology
(ICISC), volume 3506 of Lecture Notes in Computer Science, pages 233–248. Springer, 2004.

[55] Fangguo Zhang and Kwangjo Kim. Efficient ID-based blind signature and proxy signature from
bilinear pairings. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, 8th Information
Security and Privacy, Australasian Conference (ACISP), volume 2727 of Lecture Notes in
Computer Science, pages 312–323. Springer, 2003.

[56] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Efficient verifiably encrypted signa-
ture and partially blind signature from bilinear pairings. In Thomas Johansson and Subhamoy
Maitra, editors, Progress in Cryptology – INDOCRYPT ’03, volume 2904 of Lecture Notes in
Computer Science, pages 191–204. Springer, 2003.

25

914

Approved for Public Release; Distribution Unlimited.

Outsourcing the Decryption of ABE Ciphertexts

Matthew Green
Johns Hopkins University

Susan Hohenberger∗

Johns Hopkins University
Brent Waters†

University of Texas at Austin

Abstract

Attribute-based encryption (ABE) is a new vision for
public key encryption that allows users to encrypt and
decrypt messages based on user attributes. For example,
a user can create a ciphertext that can be decrypted only
by other users with attributes satisfying (“Faculty” OR
(“PhD Student” AND “Quals Completed”)). Given its
expressiveness, ABE is currently being considered for
many cloud storage and computing applications. How-
ever, one of the main efficiency drawbacks of ABE is that
the size of the ciphertext and the time required to decrypt
it grows with the complexity of the access formula.

In this work, we propose a new paradigm for ABE that
largely eliminates this overhead for users. Suppose that
ABE ciphertexts are stored in the cloud. We show how
a user can provide the cloud with a single transformation
key that allows the cloud to translate any ABE ciphertext
satisfied by that user’s attributes into a (constant-size) El
Gamal-style ciphertext, without the cloud being able to
read any part of the user’s messages.

To precisely define and demonstrate the advantages of
this approach, we provide new security definitions for
both CPA and replayable CCA security with outsourc-
ing, several new constructions, an implementation of our
algorithms and detailed performance measurements. In a
typical configuration, the user saves significantly on both
bandwidth and decryption time, without increasing the
number of transmissions.

∗Supported by NSF CAREER CNS-1053886, DARPA PROCEED,
Air Force Research Laboratory, Office of Naval Research N00014-11-
1-0470, a Microsoft Faculty Fellowship and a Google Faculty Research
Award. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S.
Government.

†Supported by NSF CNS-0915361 and CNS-0952692, AFOSR
Grant No: FA9550-08-1-0352, DARPA PROCEED, DARPA
N11AP20006, Google Faculty Research Award, the Alfred P. Sloan
Fellowship, and Microsoft Faculty Fellowship. The views expressed
are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

1 Introduction

Traditionally, we have viewed encryption as a method
for one user to encrypt data to another specific targeted
party, such that only the target recipient can decrypt and
read the message. However, in many applications a user
might often wish to encrypt data according to some pol-
icy as opposed to specified set of users. Trying to realize
such applications on top of a traditional public key mech-
anism poses a number of difficulties. For instance, a user
encrypting data will need to have a mechanism which
allows him to look up all parties that have access creden-
tials or attributes that match his policy. These difficul-
ties are compounded if a party’s credentials themselves
might be sensitive (e.g., the set of users with a TOP SE-
CRET clearance) or if a party gains credentials well after
data is encrypted and stored.

To address these issues, a new vision of encryption
was put forth by Sahai and Waters [38] called Attribute-
Based Encryption (ABE). In an ABE system, a user will
associate an encryption of a message M with an function
f (·), representing an access policy associated with the
decryption. A user with a secret key that represents their
set of attributes (e.g., credentials) S and will be able to
decrypt a ciphertext associated with function f (·) if and
only if f (S) = 1. Since the introduction of ABE there
have been several other works proposing different vari-
ants [24, 7, 14, 36, 23, 42, 15, 28, 35] extending both
functionality and refining security proof techniques. 1

One property that all of these ABE systems have is
that both the ciphertext size and time for decryption grow
with the size of the access formula f . Roughly, cur-
rent efficient ABE realizations are set in pairing-based
groups where the ciphertexts require two group elements
for every node in the formula and decryption will require

1A more general concept of functional encryption [11] allows for
more general functions to be computed on the encrypted data and en-
compasses work such as searching on encrypted data and predicate en-
cryption [10, 2, 12, 39, 27].

915

Approved for Public Release; Distribution Unlimited.

Scheme ABE Security Model Full CT Full Decrypt Out CT Out Dec
Type Level Size Ops Size Ops

Waters [42] CP CPA - |GT |+(1+2`)|G| ≤ (2+ `)P+2`EG - -
§3.1 CP CPA - |GT |+(1+2`)|G| ≤ (2+ `)P+2`EG 2|GT | ET
§3.2 CP RCCA RO |GT |+(1+2`)|G|+ k ≤ (2+ `)P+2`EG +2ET 2|GT |+ k 3ET

GPSW [24] KP CPA - |GT |+(1+ s)|G| ≤ (1+ `)P+2`EG - -
§4.1 KP CPA - |GT |+(1+ s)|G| ≤ (1+ `)P+2`EG 2|GT | ET
§4.2 KP RCCA RO |GT |+(1+ s)|G|+ k ≤ (1+ `)P+2`EG +2ET 2|GT |+ k 3ET

Figure 1: Summary of ABE outsourcing results. Above s denotes the size of an attribute set, ` refers to an LSSS access
structure with an `×n matrix, k is the message bit length in RCCA schemes, and P,EG,ET stand for the maximum time
to compute a pairing, exponentiation in G and exponentiation in GT respectively. We ignore non-dominant operations.
All schemes are in the selective security setting. We discuss methods for moving to adaptive security in Section 5.1.

a pairing for each node in the satisfied formula. While
conventional desktop computers should be able to handle
such a task for typical formula sizes, this presents a sig-
nificant challenge for users that manage and view private
data on mobile devices where processors are often one to
two orders of magnitude slower than their desktop coun-
terparts and battery life is a persistent problem. Interest-
ingly, in tandem there has emerged the ability for users
to buy on-demand computing from cloud-based services
such as Amazon’s EC2 and Microsoft’s Windows Azure.

Can cloud services be securely used to outsource de-
cryption in Attribute-Based Encryption systems? A
naive first approach would be for a user to simply hand
over their secret key, SK, to the outsourcing service.
The service could then simply decrypt all ciphertexts re-
quested by the user and then transmit the decrypted data.
However, this requires complete trust of the outsourc-
ing service; using the secret key the outsourcing service
could read any encrypted message intended for the user.

A second approach might be to leverage recent out-
sourcing techniques [20, 17] based on Gentry’s [21] fully
homomorphic encryption system. These give outsourc-
ing for general computations and importantly preserve
the privacy of the inputs so that the decryption keys and
messages can remain hidden. Unfortunately, the over-
head for these systems is currently impractical. Gentry
and Halevi [22] showed that even for weak security pa-
rameters one “bootstrapping” operation of the homomor-
phic operation would take at least 30 seconds on a high
performance machine (and 30 minutes for the high se-
curity parameter). Since one such operation would only
count for a small constant number of gates in the overall
computation, this would need to be repeated many times
to evaluate an ABE decryption using the methods above.

Closer to practice, we might leverage recent tech-
niques on secure outsourcing of pairings [16]. These
techniques allow a client to outsource a pairing operation
to a server. However, the solutions presented in [16] still
require the client to compute multiple exponentiations in
the target group for every pairing it outsources. These ex-

ponentiations can be quite expensive and the work of the
client will still be proportional to the size of the policy
f . Moreover, every pairing operation in the original pro-
tocol will trigger four pairings do be done by the proxy.
Thus, the total workload is increased by a factor of at
least four from the original decryption algorithm, and the
client’s bandwidth requirements may actually increase.
Given these drawbacks, we aim for an ABE outsourcing
system that is secure and imposes minimal overhead.

Our Contributions. We give new methods for effi-
ciently and securely outsourcing decryption of ABE ci-
phertexts. The core change to outsourceable ABE sys-
tems is a modified Key Generation algorithm that pro-
duces two keys. The first key is a short El Gamal [19]
type secret key that must be kept private by the user. The
second is what we call a “transformation key”, TK, that
is shared with a proxy (and can be publicly distributed).
If the proxy then receives a ciphertext CT for a func-
tion f for which the user’s credentials satisfy, it is then
able to use the key TK to transform CT into a simple and
short El Gamal ciphertext CT′ of the same message en-
crypted under the user’s key SK. The user is then able to
decrypt with one simple exponentiation. Our system is
secure against any malicious proxy. Moreover, the com-
putational effort of the proxy is no more than that used to
decrypt a ciphertext in a standard ABE system.

To achieve our results, we create what we call a new
key blinding technique. At a high level, the new out-
sourced key generation algorithm will first run a key gen-
eration algorithm from an existing bilinear map based
ABE scheme such as [24, 42]. Then it will choose a
blinding factor exponent z ∈ Zp (for groups of prime or-
der p) and raise all elements to z−1 (mod p). This will
produce the transformation key TK, while the blinding
factor z can serve as the secret key.

We show that we are able to adapt our outsourcing
techniques to both the “Ciphertext-Policy” (CP-ABE)
and “Key-Policy” (KP-ABE) types of ABE systems.2 To

2CP-ABE systems behave as we outlined above where a ciphertext

916

Approved for Public Release; Distribution Unlimited.

Server Client

ABE CT

Figure 2: Illustration of how ABE ciphertexts are fetched
today.

Server Proxy Client

ABE CT CT

Figure 3: Outsourcing the Decryption: Illustration of
how ABE ciphertexts could be transformed by a proxy
into much shorter El Gamal-style ciphertexts.

achieve our KP-ABE and CP-ABE outsourcing systems
we respectively apply our methodology to the construc-
tions of Goyal et al. [24] and Waters [42]. To prove se-
curity of the systems we must show that they remain se-
cure even in the presence of an attacker that acts as a
user’s proxy. Our first systems and proofs model seman-
tic security for an attacker that tries to eavesdrop on the
user. We then extend our systems and proofs to chosen
ciphertext attacks where the attack might query the user’s
decryption routine on maliciously formed ciphertexts to
compromise privacy. Our solutions in this setting apply
the random oracle heuristic to achieve efficiency near the
chosen plaintext versions.

Typical Usage Scenarios. We envision a typical usage
scenario in Figures 2 and 3. Here a client sends a single
transformation key once to the proxy, who can then re-
trieve (potentially large) ABE ciphertexts that the user is
interested in and forward to her (small, constant-size) El
Gamal-type ciphertexts. The proxy could be the client’s
mail server, or the ciphertext server and the proxy could
be the same entity, as in a cloud environment.

The savings in bandwidth and local computation time
for the client are immediate: a transformed ciphertext
is always smaller and faster to decrypt than an ABE ci-
phertext of [24, 42] (for any policy size). We emphasize
in this useage scenario that the number of transmissions
will be the same as in the prior (non-outsourced) solu-
tions. Thus, the power consumption can only improve
with faster computations and smaller transmissions.

Implementation and Evaluation. To evaluate our out-
sourcing systems, we implemented the CP-ABE version

is associated with a boolean access formula f and a user’s key is a set of
attributes x, where a user can decrypt if f (x) = 1. KP-ABE is useful in
applications where we want to have the mirror image semantics where
the attributes x are associated with a ciphertext and an access formula
f with the key.

and tested it in an outsourcing environment. Our imple-
mentation modified part of the libfenc [25] library, which
includes a current CP-ABE implementation. We con-
ducted our experiments on both an ARM-based mobile
device and an Intel server to model the user device and
proxy respectively.

Outsourcing decryption resulted in significant practi-
cal benefits. Decrypting on an ABE ciphertext contain-
ing 100 attributes, we found that without the use of a
proxy the mobile device would require about 30 seconds
of computation time and drain a significant amount of
the device’s battery. When we applied our outsourcing
technique, decrypting the ciphertext took 2 seconds on
our Intel server and approximately 60 milliseconds on
the mobile device itself.

To demonstrate compatibility with existing infrastruc-
ture, we constructed a re-usable platform for outsourcing
decryption using the Amazon EC2 service. Our proxy is
deployed as a public Amazon Machine Image that can be
programmatically instantiated by any application requir-
ing acceleration.

In addition to the core benefits of outsourcing, we dis-
covered other collateral advantages. In existing ABE im-
plementations [6, 25] much of the decryption code is
dedicated to determining how a policy is satisfied by a
key and executing the corresponding pairing computa-
tions of decryption. In our outsourcing solution, most
of this code is pushed into the untrusted transformation
algorithm, leaving only a much smaller portion on the
user’s device. This has two advantages. First, the amount
of decryption code that needs to reside on a resource con-
strained user device will be smaller. Actually, all bilinear
map operations can be pushed outside. Second, this par-
titioning will dramatically decrease the size of the trusted
code base, removing thousands of lines of complex pars-
ing code. Even without using outsourcing, this partition-
ing of code is useful.

Related Work: Proxy Re-Encryption. In this work, we
show how to delegate (in a true offline sense) the ability
to transform an ABE ciphertext on message m into an
El Gamal-style ciphertext on the same m, without learn-
ing anything about m. This is similar to the concept of
proxy re-encryption [8, 4] where an untrusted proxy is
given a re-encryption key that allows it to transform an
encryption under Alice’s key of m into an encryption un-
der Bob’s key of the same m, without allowing the proxy
to learn anything about m.

2 Background

We first give the security definitions for ABE with out-
sourcing. We then give background information on bi-
linear maps. Finally, we provide formal definitions for

917

Approved for Public Release; Distribution Unlimited.

access structures and relevant background on Linear Se-
cret Sharing Schemes (LSSS), as taken from [42].

Types of ABE. We consider two distinct varieties
of Attribute-Based Encryption: Ciphertext-Policy (CP-
ABE) and Key-Policy (KP-ABE). In CP-ABE an access
structure (policy) is embedded into the ciphertext during
encryption, and each decryption key is based an some
attribute set S. KP-ABE inverts this relationship, embed-
ding S into the ciphertext and a policy into the key.3 We
capture both paradigms in a generalized ABE definition.

2.1 Access Structures
Definition 1 (Access Structure [5]) Let {P1, P2, . . ., Pn}
be a set of parties. A collection A⊆ 2{P1,P2,...,Pn} is mono-
tone if ∀B,C : if B ∈A and B⊆C then C ∈A. An access
structure (respectively, monotone access structure) is a
collection (resp., monotone collection) A of non-empty
subsets of {P1,P2, . . . ,Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{ /0}.
The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the
attributes. Thus, the access structure A will contain the
authorized sets of attributes. We restrict our attention to
monotone access structures. However, it is also possible
to (inefficiently) realize general access structures using
our techniques by defining the “not” of an attribute as
a separate attribute altogether. Thus, the number of at-
tributes in the system will be doubled. From now on,
unless stated otherwise, by an access structure we mean
a monotone access structure.

2.2 ABE with Outsourcing
Let S represent a set of attributes, and A an access struc-
ture. For generality, we will define (Ienc, Ikey) as the in-
puts to the encryption and key generation function re-
spectively. In a CP-ABE scheme (Ienc, Ikey) = (A,S),
while in a KP-ABE scheme we will have (Ienc, Ikey) =
(S,A). A CP-ABE (resp. KP-ABE) scheme with out-
sourcing functionality consists of five algorithms:

Setup(λ ,U). The setup algorithm takes security param-
eter and attribute universe description as input. It outputs
the public parameters PK and a master key MK.

Encrypt(PK,M, Ienc). The encryption algorithm takes
as input the public parameters PK, a message M, and an

3More intuitively, CP-ABE is often suggested as a means to imple-
ment role-based access control, where the user’s key attributes corre-
spond the long-term roles and ciphertexts carry an access policy. Key-
Policy ABE is more appropriate in applications where ciphertexts may
be tagged with attributes (e.g., relating to message content), and each
user’s access to these ciphertexts determined by a policy in their de-
cryption key. For more on applications, see e.g., [37].

access structure (resp. attribute set) Ienc. It outputs the
ciphertext CT.

KeyGenout (MK, Ikey). The key generation algorithm
takes as input the master key MK and an attribute set
(resp. access structure) Ikey and outputs a private key SK
and a transformation key TK.

Transform(TK,CT). The ciphertext transformation al-
gorithm takes as input a transformation key TK for Ikey
and a ciphertext CT that was encrypted under Ienc. It out-
puts the partially decrypted ciphertext CT′ if S ∈ A and
the error symbol ⊥ otherwise.

Decryptout (SK,CT′). The decryption algorithm takes as
input a private key SK for Ikey and a partially decrypted
ciphertext CT′ that was originally encrypted under Ienc.
It outputs the message M if S ∈ A and the error symbol
⊥ otherwise.4

Why RCCA security? We describe a security model for
ABE that support outsourcing. We want a very strong
notion of security. The traditional notion of security
against adaptive chosen-ciphertext attacks (CCA) is a bit
too strong since it does not allow any bit of the cipher-
text to be altered, and the purpose of our outsourcing is
to compress the size of the ciphertext. We thus adopt
a relaxation due to Canetti, Krawczyk and Nielsen [13]
called replayable CCA security, which allows modifica-
tions to the ciphertext provided they cannot change the
underlying message in a meaningful way.

RCCA Security Model for ABE with Outsourcing. Fig-
ure 4 describes a generalized RCCA security game for
both KP-ABE and CP-ABE schemes with outsourcing.
We define the advantage of an adversary A in this game
as Pr[b′ = b]− 1

2 .

Definition 2 (RCCA-Secure ABE with Outsourcing)
A CP-ABE or KP-ABE scheme with outsourcing is
RCCA-secure (or secure against replayable chosen-
ciphertext attacks) if all polynomial time adversaries
have at most a negligible advantage in the RCCA game
defined above.

CPA Security. We say that a system is CPA-secure (or
secure against chosen-plaintext attacks) if we remove the
Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a CP-ABE (resp. KP-
ABE) system is selectively secure if we add an Init stage
before Setup where the adversary commits to the chal-
lenge value I∗enc.

4Note that we can implement the standard (non-outsourced) ABE
Decrypt algorithm by combining Transform and Decryptout .

918

Approved for Public Release; Distribution Unlimited.

Setup. The challenger runs the Setup algorithm and gives the public parameters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an integer j = 0. Proceeding adaptively,
the adversary can repeatedly make any of the following queries:

• Create(Ikey): The challenger sets j := j+1. It runs the outsourced key generation algorithm on Ikey to obtain the
pair (SK,TK) and stores in table T the entry (j, Ikey,SK,TK). It then returns to the adversary the transformation
key TK.
Note: Create can be repeatedly queried with the same input.

• Corrupt(i): If there exists an ith entry in table T , then the challenger obtains the entry (i, Ikey,SK,TK) and sets
D := D∪{Ikey}. It then returns to the adversary the private key SK. If no such entry exists, then it returns ⊥.

• Decrypt(i,CT): If there exists an ith entry in table T , then the challenger obtains the entry (i, Ikey,SK,TK) and
returns to the adversary the output of the decryption algorithm on input (SK,CT). If no such entry exists, then
it returns ⊥.

Challenge. The adversary submits two equal length messages M0 and M1. In addition the adversary gives a value
I∗enc such that for all Ikey ∈ D, f (Ikey, I∗enc) 6= 1. The challenger flips a random coin b, and encrypts Mb under I∗enc. The
resulting ciphertext CT∗ is given to the adversary.

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot

• trivially obtain a private key for the challenge ciphertext. That is, it cannot issue a Corrupt query that would
result in a value Ikey which satisfies f (Ikey, I∗enc) = 1 being added to D.

• issue a trivial decryption query. That is, Decrypt queries will be answered as in Phase 1, except that if the
response would be either M0 or M1, then the challenger responds with the special message test instead.

Guess. The adversary outputs a guess b′ of b.

Figure 4: Generalized RCCA Security game for CP- and KP-ABE with outsourcing functionality. For CP-ABE we
define the function f (Ikey, Ienc) as f (S,A) and for KP-ABE it is defined as f (A,S). In either case the function f
evaluates to 1 iff S ∈ A.

2.3 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of
prime order p. Let g be a generator of G and e : G×G→
GT be a bilinear map with the properties:

1. Bilinearity: for all u,v ∈ G and a,b ∈ Zp, we have
e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: e(g,g) 6= 1.

We say that G is a bilinear group if the group opera-
tion in G and the bilinear map e : G×G→GT are both
efficiently computable.

The schemes we present in this work are provably
secure under the Decisional Parallel BDHE Assump-
tion [42] and the Decisional Bilinear Diffie-Hellman as-
sumption (DBDH) [9] in bilinear groups. For reasons
of space we will omit a definition of these assumptions
here, and refer the reader to the cited works.

2.4 Linear Secret Sharing Schemes
We will make essential use of linear secret-sharing
schemes. We adapt our definitions from those in [5]:

Definition 3 (Linear Secret-Sharing Schemes (LSSS))
A secret-sharing scheme Π over a set of parties P is
called linear (over Zp) if

1. The shares of the parties form a vector over Zp.

2. There exists a matrix M with ` rows and n columns
called the share-generating matrix for Π. There ex-
ists a function ρ which maps each row of the matrix
to an associated party. That is for i = 1, . . . , `, the
value ρ(i) is the party associated with row i. When
we consider the column vector v = (s,r2, . . . ,rn),
where s ∈ Zp is the secret to be shared, and
r2, . . . ,rn ∈ Zp are randomly chosen, then Mv is the
vector of ` shares of the secret s according to Π.
The share (Mv)i belongs to party ρ(i).

It is shown in [5] that every linear secret sharing-
scheme according to the above definition also enjoys the

919

Approved for Public Release; Distribution Unlimited.

linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let
S ∈ A be any authorized set, and let I ⊂ {1,2, . . . , `} be
defined as I = {i : ρ(i) ∈ S}. Then, there exist constants
{ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any se-
cret s according to Π, then ∑i∈I ωiλi = s. It is shown
in [5] that these constants {ωi} can be found in time
polynomial in the size of the share-generating matrix M.

Like any secret sharing scheme, it has the property that
for any unauthorized set S /∈ A, the secret s should be
information theoretically hidden from the parties in S.

Note on Convention. We use the convention that vector
(1,0,0, . . . ,0) is the “target” vector for any linear secret
sharing scheme. For any satisfying set of rows I in M,
we will have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is
not in the span of the rows of the set I. Moreover, there
will exist a vector w such that w · (1,0,0 . . . ,0) =−1 and
w ·Mi = 0 for all i ∈ I.

Using Access Trees. Some prior ABE works (e.g., [24])
described access formulas in terms of binary trees. Using
standard techniques [5] one can convert any monotonic
boolean formula into an LSSS representation. An access
tree of ` nodes will result in an LSSS matrix of ` rows.

3 Outsourcing Decryption for Ciphertext-
Policy ABE

3.1 A CPA-secure Construction

Our CP-ABE construction is based on the “large uni-
verse” construction of Waters [42], which was proven
to be selectively CPA-secure under the Decisional q-
parallel BDHE assumption for a challenge matrix of size
`∗×n∗, where `∗,n∗ ≤ q.5 The Setup, Encrypt and (non-
outsourced) Decrypt algorithms are identical to [42]. To
enable outsourcing we modify the KeyGen algorithm to
output a transformation key. We also define a new Trans-
form algorithm, and modify the decryption algorithm to
handle outputs of Encrypt as well as Transform. We
present the full construction in Figure 5.

Discussion. For generality, we defined the transfor-
mation key TK as being created by the master author-
ity. However, we observe that our outsourcing approach
above is actually backwards compatible with existing de-
ployments of the Waters system. In particular, one can
see that any existing user with her own Waters SK can
create a corresponding outsourcing pair (SK′,TK′) by
rerandomizing with a random value z.

5By “large universe”, we mean a system that allows for a super-
polynomial number of attributes.

Theorem 3.1 Suppose the large universe construction
of Waters [42, Appendix C] is a selectively CPA-secure
CP-ABE scheme. Then the CP-ABE scheme of Figure 5
is a selectively CPA-secure outsourcing scheme.

Note that the Waters scheme of [42] was proven secure
under the Decisional q-parallel BDHE assumption. Due
to space constraints, we omit a proof of Theorem 3.1.
However, we observe that the proof techniques are quite
similar to those used for the RCCA-secure variant we
present in the next section.

3.2 An RCCA-secure Construction

We now extend our CPA-secure system to achieve the
stronger RCCA-security guarantee. To do so, we borrow
some techniques from Fujisaki and Okamoto [18], who
(roughly) showed how to transform a CPA-secure en-
cryption scheme into a CCA-secure encryption scheme
in the random oracle model. Here we relax to RCCA-
security and have the additional challenge of preserving
the decryption outsourcing capability.

The Setup and KeyGen algorithms operate exactly as
in the CPA-secure scheme, except the public key addi-
tionally includes the description of hash functions H1 :
{0,1}∗ → Zp and H2 : {0,1}∗ → {0,1}k. We now de-
scribe the remaining algorithms.

Encryptrcca(PK,M ∈ {0,1}k,(M,ρ)) The encryption

algorithm selects a random R ∈ GT and then com-
putes s = H1(R,M) and r = H2(R). It then computes
(C1,D1), . . . ,(C`,D`) as in the CPA-secure construction
of Figure 5 (except that s is no longer chosen randomly
as part of~v). The ciphertext is published as CT =

C = R · e(g,g)αs, C′ = gs, C′′ = M ⊕ r,

(C1,D1), . . . ,(C`,D`)

along with a description of access structure (M,ρ).

Transformrcca(TK,CT). The transformation algorithm
recovers the value e(g,g)sα/z as before. It outputs the
partially decrypted ciphertext CT′ as (C,C′′,e(g,g)sα/z).

Decryptrcca(SK,CT). The decryption algorithm takes
as input a private key SK = (z,TK) and a ciphertext CT.
If the ciphertext is not partially decrypted, then the algo-
rithm first executes Transformout(TK,CT). If the output
is⊥, then this algorithm outputs⊥ as well. Otherwise, it
takes the ciphertext (T0,T1,T2) and computes R = T0/T z

2 ,
M = T1⊕H2(R), and s=H1(R,M). If T0 = R ·e(g,g)αs

and T2 = e(g,g)αs/z, it outputs M ; otherwise, it outputs
the error symbol ⊥.

920

Approved for Public Release; Distribution Unlimited.

Setup(λ ,U). The setup algorithm takes as input a security parameter and a universe description U . To cover the most general
case, we let U = {0,1}∗. It then chooses a group G of prime order p, a generator g and a hash function F that maps {0,1}∗
to G.a In addition, it chooses random exponents α,a ∈ Zp. The authority sets MSK = (gα ,PK) as the master secret key. It
publishes the public parameters as:

PK = g, e(g,g)α , ga, F

Encrypt(PK,M ,(M,ρ)) The encryption algorithm takes as input the public parameters PK and a message M to encrypt. In
addition, it takes as input an LSSS access structure (M,ρ). The function ρ associates rows of M to attributes. Let M be an
`× n matrix. The algorithm first chooses a random vector ~v = (s,y2, ...,yn) ∈ Zn

p. These values will be used to share the
encryption exponent s. For i = 1 to `, it calculates λi =~v ·Mi, where Mi is the vector corresponding to the ith row of M. In
addition, the algorithm chooses random r1, . . . ,r` ∈ Zp. The ciphertext is published as CT =

C = M · e(g,g)αs, C′ = gs,

(C1 = gaλ1 ·F(ρ(1))−r1 , D1 = gr1), . . . ,(C` = gaλ` ·F(ρ(`))−r` , D` = gr`)

along with a description of (M,ρ).

KeyGenout (MSK,S) The key generation algorithm runs KeyGen(MSK,S) to obtain SK′ = (PK,K′ = gα gat ′ ,L′ = gt ′ ,{K′x =
F(x)t ′}x∈S). It chooses a random value z ∈ Z∗p. It sets the transformation key TK as

PK, K = K′1/z = g(α/z)ga(t ′/z) = g(α/z)gat , L = L′1/z = g(t
′/z) = gt , {Kx}x∈S = {K′1/z

x }x∈S

and the private key SK as (z,TK).

Transformout(TK,CT) The transformation algorithm takes as input a transformation key TK = (PK,K,L,{Kx}x∈S) for a set S
and a ciphertext CT = (C,C′,C1, . . . ,C`) for access structure (M,ρ). If S does not satisfy the access structure, it outputs ⊥.
Suppose that S satisfies the access structure and let I ⊂ {1,2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ωi ∈ Zp}i∈I
be a set of constants such that if {λi} are valid shares of any secret s according to M, then ∑i∈I ωiλi = s. The transformation
algorithm computes

e(C′,K)/
(

e(∏i∈I Cωi
i ,L) ·∏i∈I e(Dωi

i ,Kρ(i))
)
=

e(g,g)sα/ze(g,g)ast/
(

∏i∈I e(g,g)taλiωi

)
= e(g,g)sα/z

It outputs the partially decrypted ciphertext CT′ as (C,e(g,g)sα/z), which can be viewed as the El Gamal ciphertext (M ·
Gzd ,Gd) where G = e(g,g)1/z ∈GT and d = sα ∈ Zp.

Decryptout(SK,CT) The decryption algorithm takes as input a private key SK = (z,TK) and a ciphertext CT. If the ciphertext is
not partially decrypted, then the algorithm first executes Transformout(TK,CT). If the output is ⊥, then this algorithm outputs
⊥ as well. Otherwise, it takes the ciphertext (T0,T1) and computes T0/T z

1 = M .
Notice that if the ciphertext is already partially decrypted for the user, then she need only compute one exponentiation and no
pairings to recover the message.

aSee Waters [42] for details on how to implement this hash in the standard model. For our purposes, one can think of F as a random oracle.

Figure 5: A CPA-secure CP-ABE outsourcing scheme based on the large-universe construction of Waters [42, Ap-
pendix C].

921

Approved for Public Release; Distribution Unlimited.

Theorem 3.2 Suppose the large universe construction
of Waters [42, Appendix C] is a selectively CPA-secure
CP-ABE scheme. Then the outsourcing scheme above is
selectively RCCA-secure in the random oracle model for
large message spaces.6

We present a proof of Theorem 3.2 in Appendix A.

4 Outsourcing Decryption for Key-Policy
ABE

4.1 A CPA-secure Construction
We now present an outsourcing scheme based on the
large universe KP-ABE construction due to Goyal,
Pandey, Sahai and Waters [24].7 The Setup and Encrypt
algorithms are identical to [24]. We modify KeyGen to
output a transformation key, introduce a Transform algo-
rithm, and then modify the decryption algorithm to han-
dle outputs of Encrypt as well as Transform. The full
construction is presented in Figure 6.

Theorem 4.1 Suppose the GPSW KP-ABE scheme [24]
is selectively CPA-secure. Then the KP-ABE scheme of
Figure 6 is a selectively CPA-secure outsourcing scheme.

Discussion. As in the previous construction, we defined
the transformation key TK as being created by the master
authority. We again note that our outsourcing approach
above is actually backwards compatible with existing de-
ployments of the GPSW system.

Due to restrictions on space, we leave the proof of se-
curity to the full version of this work [26].

4.2 An RCCA-secure construction
We now extend our above results, which only hold for
CPA-security, to the stronger RCCA-security guarantee.
Once again, we accomplish this using the techniques
from Fujisaki and Okamoto [18]. The Setup and Key-
Gen algorithms operate exactly as before, except the pub-
lic key additionally includes the value e(g,h)α (which
was already computable from existing values) and the
description of hash functions H1 : {0,1}∗ → Zp and
H2 : {0,1}∗→{0,1}k.

6The security of this scheme follows for large message spaces; e.g.,
k-bit spaces where k ≥ λ , the security parameter. To obtain a secure
scheme for smaller message spaces, replace C′′ with any CPA-secure
symmetric encryption of M using key H2(R) and let the range of H2 be
the key space of this symmetric scheme. Since the focus of this work is
on efficiency, we’ll typically be assuming large enough message spaces
and therefore opting for the quicker XOR operation.

7This construction was originally described using access trees; here
we generalize it to LSSS access structures.

Encryptrcca(PK,M ∈ {0,1}k,S). The encryption al-
gorithm chooses a random R ∈ GT . It then computes
s = H1(R,M) and r = H2(R). For each x ∈ S it gener-
ates Cx as in the CPA-secure scheme. The ciphertext is
published as CT =

C = R · e(g,h)αs, C′ = gs, C′′ = r⊕M , {Cx}x∈S

along with a description of S.

Transformrcca(TK,CT). The transformation algorithm
recovers the value e(g,h)sα/z as before. It outputs the
partially decrypted ciphertext CT′ as (C,C′′,e(g,h)sα/z).

Decryptrcca(SK,CT). The decryption algorithm takes
as input a private key SK = (z,TK) and a ciphertext CT.
If the ciphertext is not partially decrypted, then the algo-
rithm first executes Transformout(TK,CT). If the output
is⊥, then this algorithm outputs⊥ as well. Otherwise, it
takes the ciphertext (T0,T1,T2) and computes R = T0/T z

2 ,
M = T1⊕H2(R), and s=H1(R,M). If T0 = R ·e(g,h)αs

and T2 = e(g,h)αs/z, it outputs M ; otherwise, it outputs
the error symbol ⊥.

Theorem 4.2 Suppose the construction of GPSW [24]
is a selectively CPA-secure KP-ABE scheme. Then the
outsourcing scheme above is selectively RCCA-secure in
the random oracle model for large message spaces.

See the footnote on Theorem 3.2 for a definition and dis-
cussion of “large message spaces”. We present a proof
of Theorem 4.2 in the full version [26] of this work.

5 Discussion

5.1 Achieving Adaptive Security
The systems we presented were proven secure in the se-
lective model of security. We briefly sketch how we can
adapt our techniques to achieve ABE systems that are
provably secure in the adaptive model.8

Recently, the first ABE systems that achieved adap-
tive security were proposed by Lewko et al. [28] using
the techniques of Dual System Encryption [41]. Since
the underlying structure of the KP-ABE and CP-ABE
schemes presented by Lewko et al. is almost respectively
identical to the underlying Goyal et al. [24] and Wa-
ters [42] systems we use, it is possible to adapt our con-
struction techniques to these underlying constructions.9

8We briefly note that it is simple to prove adaptive security of our
schemes in the generic group model like Bethencourt, Sahai, and Wa-
ters [7]. Here we are interested in proofs under non-interactive assump-
tions.

9The main difference in terms of the constructions is that the sys-
tems proposed by Lewko et al. are set in composite order groups where
the “core scheme” sits in one subgroup. The primary novelty of their
work is in developing adaptive proofs of security for ABE systems.

922

Approved for Public Release; Distribution Unlimited.

Setup(λ ,U). The setup algorithm takes as input a security parameter and a universe description U . To cover the most general
case, we let U = {0,1}∗. It then chooses a group G of prime order p, a generator g and a hash function F that maps {0,1}∗
to G.a In addition, it chooses random values α ∈ Zp and h ∈G. The authority sets MSK = (α,PK) as the master secret key.
The public key is published as

PK = g, gα , h, F

Encrypt(PK,M ,S). The encryption algorithm takes as input the public parameters PK, a message M to encrypt, and a set of
attributes S. It chooses a random s ∈ Zp. The ciphertext is published as CT = (S,C) where

C = M · e(g,h)αs, C′ = gs, {Cx = F(x)s}x∈S.

KeyGenout(MSK,(M,ρ)). Parse MSK = (α,PK). The key generation algorithm runs KeyGen((α , PK),(M,ρ)) to obtain SK′ =
(PK,(D′1 = hλ1 ·F(ρ(1))r′1 ,R′1 = gr′1), . . . ,(D′`,R

′
`)). Next, it chooses a random value z ∈ Zp, computes the transformation key

TK as below, and outputs the private key as (z,TK). Denoting r′i/z as ri, TK is computed as:

PK, (D1 = D′1/z
1 = hλ1/z ·F(ρ(1))r1 , R1 = R′1/z

1 = gr1), . . . ,(D` = D′1/z
` , R` = R′1/z

`)

Transformout(TK,CT). The transformation algorithm takes as input a transformation key TK = (PK,(D1,R1), . . . ,(D`,R`)) for
access structure (M,ρ) and a ciphertext CT = (C,C′,{Cx}x∈S) for set S. If S does not satisfy the access structure, it outputs
⊥. Suppose that S satisfies the access structure and let I ⊂ {1,2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ωi ∈ Zp}i∈I
be a set of constants such that if {λi} are valid shares of any secret s according to M, then ∑i∈I ωiλi = s. The transformation
algorithm computes

e(C′,∏
i∈I

Dωi
i)/

(
∏
i∈I

e(Ri,C
ωi
ρ(i))

)
= e(gs,∏

i∈I
hλiωi/z ·F(ρ(i))riωi)/

(
∏
i∈I

e(gri ,F(ρ(i))sωi)

)

= e(g,h)sα/z ·∏
i∈I

e(gs,F(ρ(i))riωi)/

(
∏
i∈I

e(gri ,F(ρ(i))sωi)

)
= e(g,h)sα/z

It outputs the partially decrypted ciphertext CT′ as (C,e(g,h)sα/z), which can be viewed as the El Gamal ciphertext (M ·
Gzd ,Gd) where G = e(g,h)1/z ∈GT and d = sα ∈ Zp.

Decryptout(SK,CT). The decryption algorithm takes as input a private key SK = (z,TK) and a ciphertext CT. If the ciphertext is
not partially decrypted, then the algorithm first executes Transformout(TK,CT). If the output is ⊥, then this algorithm outputs
⊥ as well. Otherwise, it takes the ciphertext (T0,T1) and computes T0/T z

1 = M .

aGoyal et al. [24] give a standard model instantiation for F using an n-wise independent hash function (in the exponents) with the restriction
that any ciphertext can contain at most n attributes. For our purposes, one can think of F as a random oracle.

Figure 6: A CPA-secure KP-ABE outsourcing scheme based on the large-universe construction of Goyal, Pandey,
Sahai and Waters [24].

923

Approved for Public Release; Distribution Unlimited.

Outsourcing Proxy

Amazon EC2

Outsourcing Proxy
Outsourcing Proxy

Application

Amazon S3
Datastore

TKABE ciphertext(s)Web server

Proxy AMI

Partially-decrypted
ciphertext(s)

Figure 7: Architecture and data flow for our cloud-based outsourcing proxy. An application programmatically instan-
tiates one or more instances of the outsourcing proxy, which is loaded from a public Amazon Machine Image (AMI)
in the S3 storage cloud. Next the application uploads a transform key TK to the proxy, and subsequently instructs
the proxy to obtain ciphertexts from remote web servers or from locations within the S3 storage cloud. The proxy
transforms the ciphertexts and returns the partially-decrypted result to the application, which completes decryption to
obtain a plaintext. We emphasize that the setup step including uploading the transformation key only needs to be done
once; subsequently, many decryption steps can follow. In an alternative configuration (not shown) the application can
also upload ABE ciphertexts to the proxy from its local storage. We note the first configuration conflates the ciphertext
delivery and partial decryption and thus requires no additional transmissions relative to non outsourcing solutions. The
alternative will require an round trip for each outsourcing operation.

One might hope that the proof of adaptive security
could be a black box reduction to the adaptively secure
schemes of Lewko et al. Unfortunately, this seems in-
feasible. Consider any direct black box reduction to the
security of the underlying scheme. When the attacker
makes a query to some transformation key, the reduction
algorithm has two options. First, it could ask the security
game for the underlying ABE system for a private key.
Yet, it might turn out that the key both is never corrupted
and is capable of decryption for the eventual challenge
ciphertext. In this case the simulator will have to abort.
A second option is for the reduction algorithm not to ask
for such a key, but fill in the transformation key itself.
However, if that user’s key is later corrupted it will be
difficult for the reduction to both ask for such a private
key and match it to the published transformation key.

Accordingly, to prove security one needs to make a
direct Dual-System encryption type proof. The proof
would go along the lines of Lewko et al., with the ex-
ception that in the hybrid stage of the proof all private
keys and transformational keys will be set (one by one)
to be semi-functional including those that could decrypt
the eventual challenge ciphertext. In the Lewko et al.
proof giving a private key that could decrypt the chal-
lenge ciphertext would undesirably result in the sim-
ulator producing observably incorrect correlations be-
tween the challenge ciphertext and keys. However, if
we only give out the transformation part of such a key
(and keep the whole private key hidden) then this cor-
relation will remain hidden. This part of the argument
is somewhat similar to the work of Lewko, Rouselakis,
and Waters [29], who show that in their leakage resilient
ABE scheme if only part of a private key is leaked such
a correlation will be hidden.

5.2 Checking the Transformation
In the description of our systems a proxy will be able
to transform any ABE ciphertext into a short ciphertext
for the user. While the security definitions show that an
attacker will not be able to learn an encrypted message,
there is no guarantee on the transformation’s correctness.
In some applications a user might want to request the
transformation of a particular ciphertext and (efficiently)
check that the transformation was indeed done correctly
(assuming the original ciphertext was valid). It is easy to
adapt our RCCA systems to such a setting. Since decryp-
tion results in recovery of the ciphertext randomness, one
can simply add a tag to the ciphertext as H ′(r), where H ′

is a different hash function modeled as a random oracle
and r is the ciphertext randomness. On recovery of r the
user can compute H ′(r) and make sure it matches the tag.

6 Performance in Practice

To validate our results, we implemented the CPA-secure
CP-ABE of Section 3 as an extension to the libfenc At-
tribute Based Encryption library [25]. We then used this
as a building block for a platform for accelerating ABE
decryption through cloud-based computing resources.

The core of our solution is a virtualized outsourcing
“proxy” that runs in the Amazon Elastic Compute Cloud
(EC2). Our proxy exists as a machine image that can
be programmatically instantiated by any application that
requires assistance with ABE decryption. As we demon-
strate below, this proxy is particularly useful for accel-
erating decryption on constrained devices such as mo-
bile phones. However, the system can be used in any
application where significant numbers of ABE decryp-
tions must be performed, e.g., in large-scale search op-

924

Approved for Public Release; Distribution Unlimited.

erations.10 The use of on-demand computing is particu-
larly well-suited to our outsourcing techniques, since we
do not require trusted remote servers or long-term stor-
age of secrets.

System Architecture. Figure 7 illustrates the architec-
ture of our outsourcing platform. The proxy is stored in
Amazon’s S3 datastore as a public Amazon Machine Im-
age (AMI), which wraps a standard Linux/Apache distri-
bution along with the code needed to execute the Trans-
form algorithm. Applications can remotely instantiate
the proxy and upload a TK corresponding to a particu-
lar ABE decryption key.11 Depending on the use case,
they can either push ciphertexts to the proxy for transfor-
mation, or direct the proxy to retrieve ABE ciphertexts
from remote locations such as the web or the Amazon S3
storage cloud. The latter technique is helpful when ac-
cessing remotely-held records on a mobile device, since
the proxy transformation dramatically reduces the mo-
bile device’s bandwidth requirements vs. downloading
and decrypting each ABE ciphertext locally. This can
significantly enhance device battery life.

6.1 Performance: Microbenchmarks
To evaluate the performance of our CPA-secure CP-ABE
outsourcing scheme in isolation (without confounding
factors such as network lag, file I/O, etc.) we conducted a
series of microbenchmarks using the libfenc implemen-
tation. For consistency, we ran these tests on two dedi-
cated hardware platforms: a 3GHz Intel Core Duo plat-
form with 4GB of RAM running 32-bit Linux Kernel
version 2.6.32, and a 412MHz ARM-based iPhone 3G
with 128MB of RAM running iOS 4.0.12 We instantiated
the ABE schemes using a 224-bit MNT elliptic curve
from the Stanford Pairing-Based Crypto library [30].13

The existing libfenc implementation implements the
Waters scheme using a Key Encapsulation variant. For
backwards compatibility, we adopted this approach in
our implementation as well. Herein, the ciphertext car-
ries a symmetric session key k that is computed at en-
cryption time as k = H(e(g,g)αs). The element C =

10Indeed, since cloud computing platforms support the creation of
multiple proxy instances, servers can rapidly scale their outsourcing
capability up and down to meet demand.

11The proxy requires only one TK to decrypt an unlimited number
of ciphertexts. However, a proxy can be shared by multiple users, each
with their own TK.

12Note that our tests were single-threaded, and thus used resources
from only a single core of the Intel processor. In all cases we conducted
our timing experiments with accessible background services disabled,
and with the mobile device connected to a power source.

13Although we define our schemes in the symmetric bilinear group
setting, the MNT curve choice required that we implement the scheme
in asymmetric groups with a pairing of the form G1×G2 → GT . As
a result we assigned various elements of the ciphertext and key to the
groups G1 and G2 with the aim of minimizing ciphertext size.

M ·e(g,g)αs is omitted from the ciphertext, and any data
payload must be carried via a separate symmetric encryp-
tion under k. The practical impact of this approach is
that the ABE ciphertexts (and partially-decrypted cipher-
texts) are shortened by one element of GT .

Experimental setup. Both decryption time and cipher-
text size in the CP-ABE scheme depend on the com-
plexity of the ciphertext’s policy. To capture this in our
experiments, we first generated a collection of 100 dis-
tinct ciphertext policies of the form (A1 AND A2 AND
. . . AND AN), where each Ai is an attribute, for values of
N increasing from 1 to 100. In each case we constructed
a corresponding decryption key that contained the N at-
tributes necessary for decryption. This approach ensures
that the decryption procedure depends on all N compo-
nents of the ciphertext and is a reasonable sample of a
complex policy.

To obtain our baseline results, we encapsulated a ran-
dom 128-bit symmetric key under each of these 100 dif-
ferent policies, then decrypted the resulting ABE cipher-
text using the normal (non-outsourced) Decrypt algo-
rithm.14 To smooth any experimental variability, we re-
peated each of our experiments 100 times on the Intel
device (due to the time consuming nature of the experi-
ments, we repeated the test only 30 times on the ARM
device) and averaged to obtain our decryption timings.
Figure 8 shows the size of the resulting ciphertexts as a
function of N, along with the measured decryption times
on our Intel and ARM test platforms.

Next, we evaluated the algorithms by generating a
Transform Key (TK) from the appropriate N-attribute
ABE decryption key and applying the Transform algo-
rithm to the ABE ciphertext using this key.15 Finally we
decrypted the resulting transformed ciphertext. Figure 8
shows the time required for each of those operations.

Discussion. As expected, the ABE ciphertext size and
decryption/transform time were linear in the complexity
of the ciphertext’s policy (N). However, our results illus-
trate the surprisingly high constants. Encrypting under a
100-component ciphertext policy produced an unwieldy
25KB of ABE ciphertext. The relatively fast Intel proces-
sor required nearly 2 full seconds to decrypt this value.
By comparison, the same machine can perform a 1024-
bit RSA decryption in 1.7 milliseconds.16

The results were more dramatic on the mobile device.
Decrypting a 100-component ciphertext policy on the

14Note that for this experiment we did not employ any symmetric
encryption, hence all times and ciphertext sizes refer to the ABE key
encapsulation ciphertext.

15We used the “backwards-compatible” key generation approach de-
scribed in Section 3.1 to derive a TK from a standard ABE decryption
key, rather than having the PKG generate the TK directly. This allowed
us to retain compatibility with the existing CP-ABE implementation.

16Measured with OpenSSL 1.0 [40].

925

Approved for Public Release; Distribution Unlimited.

ABE Ciphertext Size Partially-decrypted Ciphertext Size ABE Decryption Time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

s
iz

e
 i
n
 K

b
y
te

s

Number of policy attributes (N)

Ciphertext

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

s
iz

e
 i
n
 K

b
y
te

s

Number of policy attributes (N)

Ciphertext

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of policy leaves (N)

Intel
ARM

Outsourcing Keygen (Time) Transform (Time) Final Decryption (Time)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of key attributes (N)

Intel
ARM

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 20 40 60 80 100

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of key attributes (N)

Intel

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of key attributes (N)

Intel
ARM

Figure 8: Microbenchmark results for our CP-ABE scheme with outsourcing. Timing results are provided for both
Intel and ARM platforms. Key generation times represent the time to convert a standard ABE decryption key into
an outsourcing key, using the “backwards-compatible” approach described in Section 3.1. “Final decryption” refers
to the decryption of a partially-decrypted ciphertext. Note that we present the Transform timing results for the Intel
platform only, since we view this as the more likely outsourcing platform. Intel (resp. ARM) timings represent the
average of 100 (resp. 30) test iterations.

ARM processor required nearly 30 seconds of sustained
computation. Even at lower policy complexities, our re-
sults seem problematic for implementers looking to de-
ploy unassisted ABE on limited computing devices.

Outsourcing substantially reduced both ciphertext size
and the time needed to decrypt the partially-decrypted ci-
phertext. Each partially-decrypted ciphertext was a fixed
188 bytes in size, regardless of the original ciphertext’s
CP-ABE policy. Furthermore, the final decryption pro-
cess required only 4ms on the Intel processor and a man-
ageable 60ms on ARM.17 Thus, it appears that outsourc-
ing can provide a noticeable decryption time advantage
for ciphertexts with 10 or more attributes.

Other Implementation Remarks. There are several opti-
mizations and tradeoffs one might explore that could im-
pact both the performance of the existing ABE scheme
and our outsourced scheme. We chose to use the PBC
library due to its use in the libfenc system and its simple
API. However, PBC does not include all of the latest op-
timizations discussed in the research literature. Other fu-
ture optimizations could include the use of multi-pairings
for decryption. We emphasize that while using such op-

17We conducted our experiments on the CPA-secure version of our
scheme. The primary performance differences in the RCCA version
are an extra exponentiation in GT and some additional bytes.

timizations to the existing ABE systems could give some
performance improvements, they will not improve the
size of ABE ciphertexts. Furthermore, decryption time
will still be linear in the size of the satisfied formula,
whereas our outsourcing technique transforms the final
decryption step to a short El-Gamal-type ciphertext.

A note on policy complexity. The reader might assume
that 50- or 100-component policies are rare in practice.
In fact, we observed that it is relatively easy to arrive
at highly complex policies in typical use cases. This is
particularly true when using policies that contain integer
comparison operators, e.g., “AGE < 30”. The libfenc li-
brary implements integer comparison operators using the
technique of Bethencourt et al. [7]: prior to encryption,
each comparison operator is converted into a boolean
policy circuit composed of OR and AND gates, and the
resulting policy is applied to the ciphertext. Comparing
an attribute to a fixed n-bit integer adds approximately
n components to the policy. For example, without spe-
cial optimizations, a restriction window involving a Unix
time value (x < KEY CREATION TIME < y) increases
the policy size by approximately 64 components.

926

Approved for Public Release; Distribution Unlimited.

Operation local-only local+web proxy proxy+web
(sec) (sec/kb) (sec/kb) (sec/kb)

New proxy instantiation · · 93.4 sec 93.4 sec
Restart existing proxy instance · · 45 sec 45 sec
Generate & set 70-element transform key · · 2.9 sec 2.9 sec
Decryption:

((DOCTOR OR NURSE) AND INSTITUTION) 1.1s 1.2s/1.1k .2s/1.4k .2s/0.4k
(DOCTOR AND TIME > 1262325600 AND TIME < 1267423200) 17.3s 17.3s/22.8k 1.2s/23.2k 1.2s/0.4k

Figure 9: Some average performance results for the proxy-enhanced iHealthEHR application running on our iPhone
3G. From left to right, “local-only” indicates device-local decryption and storage of ciphertexts, “local+web” indicates
that ciphertexts were downloaded from a web server and decrypted at the device. “proxy” indicates local ciphertext
storage with proxy outsourcing. “proxy+web” indicates that ciphertexts were obtained from the web via the proxy.
Where relevant we provide both timings and total bandwidth transferred (up+down) from the device. Note that proxy
launch times exhibit some variability depending on factors outside of our control.

6.2 Performance: Mobile Example
To validate our ideas in a real application, we incorpo-
rated outsourcing into the iPhone viewer component of
iHealthEHR [3], an experimental system for distributing
Electronic Health Records (EHRs). Since EHRs can con-
tain highly sensitive data, iHealthEHR uses CP-ABE to
perform end-to-end encryption of records from the orig-
ination point to the viewing device. Distinct ciphertext
policies may be applied to each node in an individual’s
health record (e.g., to admit special permissions for psy-
chiatric records). iHealthEHR supports both local and
cloud-based storage of records.

We modified the iPhone application to remotely
instantiate our outsourcing proxy on startup, using
a “small” server instance within Amazon’s storage
cloud.18 In our experiments we found that the first EC2
instantiation required anywhere from 1-3 minutes, pre-
sumably depending on the system’s load. However, once
the proxy was launched, it could be left running indefi-
nitely and shared by many different users with different
TKs, or — when not in use — paused and brought back
to full operation in as little as 30 seconds (with an av-
erage closer to 45 seconds). During this startup interval
we set the application to locally process all decryption
operations. Once the proxy signaled its availability, the
application pushed a TK to it via HTTP, and outsourced
all further decryption operations.

To evaluate the performance implications, we con-
ducted experiments on the system with outsourcing en-
abled and disabled, considering four likely usage sce-
narios. In the first scenario (local-only), we conducted
device-local decryption on ciphertexts stored locally in
the device’s Flash memory. In the second scenario (lo-
cal+web) we downloaded ciphertexts from a web server,

18According to Amazon’s documentation, a small EC2 instance pro-
vides “the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or
2007 Xeon processor” and 1.7GB of RAM, at a cost of USD $0.085/hr.
[1].

then decrypted them locally at the device. In the third
scenario (proxy), we stored ciphertexts locally and then
uploaded them to the proxy for transformation. In the
final scenario (proxy+web) ciphertexts were retrieved
from a web server by the proxy, then Transformed be-
fore being sent to the device. In each case we measured
the time required to decrypt, along with the total band-
width transmitted and received by the device (excepting
the local-only case, which did not employ the network
connection). The results are summarized in Figure 9.

7 Hardening ABE Implementations

Thus far we described outsourcing solely as a means to
improve decryption performance. In certain cases out-
sourcing can also be used to enhance security. By way
of motivation, we observe that ABE implementations
tend to be relatively complex compared to implementa-
tions of other public-key encryption schemes. For ex-
ample, libfenc’s policy handling components alone com-
prise nearly 3,000 lines of C code, excluding library de-
pendencies. It has been observed that the number of vul-
nerabilities in a software product tends to increase in pro-
portion to the code’s complexity [34].

It is common for designers to mitigate software issues
by sandboxing vulnerable processes e.g., [33], or through
techniques that isolate security-sensitive functions within
a process [32]. McCune et al. recently proposed TrustVi-
sor [31], a specialized hypervisor designed to protect and
isolate security-sensitive “Pieces of Application Logic”
(PALs) from less sensitive code.

We propose outsourcing as a tool to harden ABE im-
plementations in platforms with code isolation. For ex-
ample, in a system equipped with TrustVisor, imple-
menters can embed the relatively simple key generation
and Decryptout routines in security-sensitive code (e.g.,
a TrustVisor PAL) and use outsourcing to push the re-
maining calculations into non-sensitive code. This not

927

Approved for Public Release; Distribution Unlimited.

only reduces the size of the sensitive code base, it also
simplifies parameter validation for the PAL (since the
partially-decrypted ABE ciphertext is substantially less
complex than the original). We refer to this technique
as “self-outsourcing” and note that it can also be used
in systems containing hardware security modules (e.g.,
cryptographic smart cards). Moreover, based on our ex-
periments of Section 6, we estimate that this approach
will have a minimal impact on performance.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments.

References

[1] Amazon EC2 FAQs. http://aws.amazon.com/

ec2/faqs/, November 2010.

[2] Michel Abdalla, Mihir Bellare, Dario Catalano,
Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and
Haixia Shi. Searchable encryption revisited: Con-
sistency properties, relation to anonymous ibe, and
extensions. In CRYPTO, pages 205–222, 2005.

[3] Joseph A. Akinyele, Christoph U. Lehmann,
Matthew Green, Matthew W. Pagano, Zachary N. J.
Peterson, and Aviel D. Rubin. Self-protecting
electronic medical records using Attribute-Based
Encryption. Cryptology ePrint Archive, Report
2010/565, 2010. Available from http://eprint.

iacr.org/.

[4] Giuseppe Ateniese, Kevin Fu, Matthew Green, and
Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed
storage. In NDSS, pages 29–43, 2005.

[5] Amos Beimel. Secure Schemes for Secret Sharing
and Key Distribution. PhD thesis, Israel Institute of
Technology, Technion, Haifa, Israel, 1996.

[6] John Bethencourt. Ciphertext-policy attribute-
based encryption library. Available from http:

//acsc.cs.utexas.edu/cpabe, May 2010.

[7] John Bethencourt, Amit Sahai, and Brent Waters.
Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages
321–334, 2007.

[8] Matt Blaze, Gerrit Bleumer, and Martin Strauss.
Divertible protocols and atomic proxy cryptogra-
phy. In EUROCRYPT, pages 127–144, 1998.

[9] Dan Boneh and Xavier Boyen. Efficient selective-
id secure identity-based encryption without random
oracles. In EUROCRYPT, pages 223–238, 2004.

[10] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostro-
vsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. In EUROCRYPT, pages
506–522, 2004.

[11] Dan Boneh, Amit Sahai, and Brent Waters. Func-
tional encryption: Definitions and challenges. In
TCC, pages 253–273, 2011.

[12] Dan Boneh and Brent Waters. Conjunctive, subset,
and range queries on encrypted data. In TCC, pages
535–554, 2007.

[13] Ran Canetti, Hugo Krawczyk, and Jesper Buus
Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO, pages 565–582, 2003.

[14] Melissa Chase. Multi-authority attribute based en-
cryption. In TCC, pages 515–534, 2007.

[15] Melissa Chase and Sherman S. M. Chow. Im-
proving privacy and security in multi-authority
attribute-based encryption. In ACM Conference
on Computer and Communications Security, pages
121–130, 2009.

[16] Benoı̂t Chevallier-Mames, Jean-Sébastien Coron,
Noel McCullagh, David Naccache, and Michael
Scott. Secure delegation of elliptic-curve pairing.
In CARDIS, pages 24–35, 2010.

[17] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan.
Improved delegation of computation using fully ho-
momorphic encryption. In CRYPTO, pages 483–
501, 2010.

[18] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure
integration of asymmetric and symmetric encryp-
tion schemes. In CRYPTO ’99, volume 1666, pages
537–554, 1999.

[19] Taher El Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
CRYPTO, pages 10–18, 1984.

[20] Rosario Gennaro, Craig Gentry, and Bryan Parno.
Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In CRYPTO,
pages 465–482, 2010.

[21] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In STOC, pages 169–178, 2009.

928

Approved for Public Release; Distribution Unlimited.

[22] Craig Gentry and Shai Halevi. Implementing Gen-
try’s fully-homomorphic encryption scheme. In
EUROCRYPT, pages 129–148, 2011.

[23] Vipul Goyal, Abishek Jain, Omkant Pandey, and
Amit Sahai. Bounded ciphertext policy attribute-
based encryption. In ICALP, pages 579–591, 2008.

[24] Vipul Goyal, Omkant Pandey, Amit Sahai, and
Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM
Conference on Computer and Communications Se-
curity, pages 89–98, 2006.

[25] Matthew Green, Ayo Akinyele, and Michael
Rushanan. libfenc: The Functional Encryption
Library. Available from http://code.google.

com/p/libfenc.

[26] Matthew Green, Susan Hohenberger, and Brent
Waters. Outsourcing the decryption of ABE cipher-
texts, 2011. The full version of this paper is avail-
able from the Cryptology ePrint Archive.

[27] Jonathan Katz, Amit Sahai, and Brent Waters.
Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In EURO-
CRYPT, pages 146–162, 2008.

[28] Allison Lewko, Tatsuaki Okamoto, Amit Sahai,
Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based en-
cryption and (hierarchical) inner product encryp-
tion. In EUROCRYPT, pages 62–91, 2010.

[29] Allison Lewko, Yannis Rouselakis, and Brent Wa-
ters. Achieving leakage resilience through dual sys-
tem encryption. In TCC, pages 70–88, 2011.

[30] Ben Lynn. The Stanford Pairing Based Crypto
Library. Available from http://crypto.

stanford.edu/pbc.

[31] Jonathan M. McCune, Yanlin Li, Ning Qu, Zong-
wei Zhou, Anupam Datta, Virgil D. Gligor, and
Adrian Perrig. TrustVisor: Efficient TCB Reduc-
tion and Attestation. In IEEE Symposium on Secu-
rity and Privacy, pages 143–158, May 2010.

[32] Jonathan M. McCune, Bryan Parno, Adrian Perrig,
Michael K. Reiter, and Arvind Seshadri. Minimal
tcb code execution (extended abstract). In IEEE
Symposium on Security and Privacy, pages 267–
272, 2007.

[33] Elinor Mills. Chrome OS security: ’Sandboxing’
and auto updates. eWeek., 2009.

[34] Subhas C. Misra and Virendra C. Bhavsar. Rela-
tionships between selected software measures and
latent bug-density: guidelines for improving qual-
ity. In ICCSA’03, pages 724–732, 2003.

[35] Tatsuaki Okamoto and Katsuyuki Takashima. Fully
secure functional encryption with general relations
from the decisional linear assumption. In CRYPTO,
pages 191–208, 2010.

[36] Rafail Ostrovsky, Amit Sahai, and Brent Waters.
Attribute-based encryption with non-monotonic ac-
cess structures. In ACM Conference on Com-
puter and Communications Security, pages 195–
203, 2007.

[37] Matthew Pirretti, Patrick Traynor, Patrick Mc-
Daniel, and Brent Waters. Secure attribute-based
systems. In ACM Conference on Computer and
Communications Security, pages 99–112, 2006.

[38] Amit Sahai and Brent Waters. Fuzzy identity-
based encryption. In EUROCRYPT, pages 457–
473, 2005.

[39] Elaine Shi, John Bethencourt, Hubert T.-H. Chan,
Dawn Xiaodong Song, and Adrian Perrig. Multi-
dimensional range query over encrypted data. In
IEEE Symposium on Security and Privacy, pages
350–364, 2007.

[40] The OpenSSL Project v1.0. OpenSSL: The open
source toolkit for SSL/TLS. www.openssl.org,
April 2010.

[41] Brent Waters. Dual system encryption: Realizing
fully secure IBE and HIBE under simple assump-
tions. In CRYPTO, pages 619–636, 2009.

[42] Brent Waters. Ciphertext-policy attribute-based en-
cryption: An expressive, efficient, and provably se-
cure realization. In PKC, pages 53–70, 2011.

A Proof of Theorem 3.2

Proof. Suppose there exists a polynomial-time adversary
A that can attack our scheme in the selective RCCA-
security model for outsourcing with advantage ε . We
build a simulator B that can attack the Waters scheme
of [42, Appendix C] in the selective CPA-security model
with advantage ε minus a negligible amount. In [42] the
Waters scheme is proven secure under the decisional q-
parallel BDHE assumption.
Init. The simulator B runs A . A chooses the chal-
lenge access structure (M∗,ρ∗), which B passes on to
the Waters challenger as the structure on which it wishes
to be challenged.

929

Approved for Public Release; Distribution Unlimited.

Setup. The simulator B obtains the Waters public
parameters PK = g,e(g,g)α ,ga and a description of the
hash function F . It sends these to A as the public pa-
rameters.

Phase 1. The simulator B initializes empty tables
T,T1,T2, an empty set D and an integer j = 0. It answers
the adversary’s queries as follows:

• Random Oracle Hash H1(R,M): If there is an en-
try (R,M ,s) in T1, return s. Otherwise, choose a
random s ∈ Zp, record (R,M ,s) in T1 and return s.
• Random Oracle Hash H2(R): If there is an entry
(R,r) in T2, return r. Otherwise, choose a random
r ∈ {0,1}k, record (R,r) in T2 and return r.
• Create((S)): B sets j := j+1. It now proceeds one

of two ways.

– If S satisfies (M∗,ρ∗), then it chooses a “fake”
transformation key as follows: choose a ran-
dom d ∈ Zp and run KeyGen((d,PK),S) to
obtain SK′. Set TK = SK′ and set SK =
(d,TK). Note that the pair (d,TK) is not well-
formed, but that TK is properly distributed if d
was replaced by the unknown value z = α/d.

– Otherwise, it calls the Waters key genera-
tion oracle on S to obtain the key SK′ =
(PK,K′,L′,{K′x}x∈S). (Recall that in the
non-outsourcing CP-ABE game, the Create
and Corrupt functionalities are combined in
one oracle.) The algorithm chooses a ran-
dom value z ∈ Zp and sets the transfor-
mation key TK as (PK, K = K′1/z,L =

L′1/z, {Kx}x∈S = {K′1/z
x }x∈S) and the private

key as (z,TK).

Finally, store (j,S,SK,TK) in table T and return TK
to A .
• Corrupt(i): A cannot ask to corrupt any key cor-

responding to the challenge structure (M∗,ρ∗). If
there exists an ith entry in table T , then B obtains
the entry (i,S,SK,TK) and sets D := D∪ {S}. It
then returns SK to A , or ⊥ if no such entry exists.

• Decrypt(i,CT): Without loss of generality, we as-
sume that all ciphertexts input to this oracle are al-
ready partially decrypted. Recall that both B and
A have access to the TK values for all keys created,
so either can execute the transformation operation.
Let CT = (C0,C1,C2) be associated with structure
(M,ρ). Obtain the record (i,S,SK,TK) from table
T . If it is not there or S 6∈ (M,ρ), return ⊥ to A .
If key i does not satisfy the challenge structure
(M∗,ρ∗), proceed as follows:

1. Parse SK = (z,TK). Compute R =C0/Cz
2.

2. Obtain the records (R,Mi,si) from table T1. If
none exist, return ⊥ to A .

3. If in this set, there exists indices y 6= x such
that (R,My,sy) and (R,Mx,sx) are in table T1,
My 6= Mx and sy = sx, then B aborts the sim-
ulation.

4. Otherwise, obtain the record (R,r) from table
T2. If it does not exist, B outputs ⊥.

5. For each i, test if C0 =R ·e(g,g)αsi , C1 =Mi⊕
r and C2 = e(g,g)αsi/z.

6. If there is an i that passes the above test, output
the message Mi; otherwise, output ⊥. (Note:
at most one value of si, and thereby one index
i, can satisfy the third check of the above test.)

If key i does satisfy the challenge structure
(M∗,ρ∗), proceed as follows:

1. Parse SK = (d,TK). Compute β =C1/d
2 .

2. For each record (Ri,Mi,si) in table T1, test if
β = e(g,g)si .

3. If zero matches are found, B outputs ⊥ to A .
4. If more than one matches are found, B aborts

the simulation.
5. Otherwise, let (R,M ,s) be the sole match.

Obtain the record (R,r) from table T2. If it
does not exist, B outputs ⊥.

6. Test if C0 =R ·e(g,g)αs, C1 =M ⊕r and C2 =
e(g,g)ds.

7. If all tests pass, output M ; else, output ⊥.

Challenge. Eventually, A submits a message pair
(M ∗

0 ,M
∗
1) ∈ {0,1}2×k. B acts as follows:

1. B chooses random “messages” (R0,R1) ∈G2
T and

passes them on to the Waters challenger to obtain a
ciphertext CT = (C,C′,{Ci}i∈[1,`]) under (M∗,ρ∗).

2. B chooses a random value C′′ ∈ {0,1}k.
3. B sends to A the challenge ciphertext CT∗ =

(C,C′,C′′,{Ci}i∈[1,`]).

Phase 2. The simulator B continues to answer queries
as in Phase 1, except that if the response to a Decrypt
query would be either M ∗

0 or M ∗
1 , then B responds with

the message test instead.

Guess. Eventually, A must either output a bit or abort,
either way B ignores it. Next, B searches through tables
T1 and T2 to see if the values R0 or R1 appear as the
first element of any entry (i.e., that A issued a query of
the form H1(Ri, ·) or H2(Ri).) If neither or both values
appear, B outputs a random bit as its guess. If only value
Rb appears, then B outputs b as its guess.

This ends the description of the simulation. Due to space
limitations, our analysis of this simulation appears in the
full version of this work [26].

�

930

Approved for Public Release; Distribution Unlimited.

ABE Attribute Based Encryption

AES Advanced Encryption Standard

AES-NI AES Encryption Instruction Set from Intel

BLS Boneh-Lynn-Shachem Signature

CCA Chosen Ciphertext Attack

CHARM A Toolkit for Protyping Cryptossytems

CLP ORAM Circuit Oblivious Random Access Memory

cNM-CCA1 Chosen Non-Malleable Chosen Ciphertext Attack

CPA Chosen Plaintext Attack

CPU Central Processing Unit

CS-Lite Cramer-Shoup Lite Scheme

DAP Schemes Decentralized Anonymous Payment Scheme

DARPA Defense Advanced Research Projects Agancy

DCCA Detectable Chosen Ciphertext Security

DDH Decisional Diffe-Hellman Assumption

DHK Diffe-Hellman Knowledge

DRG Damgard Elgamal Scheme

EC2 Amazon Elastic Compute Cloud Infrastructure

ECC Error Correcting Code

ECDSA Eliptic Curve Signature Algorithm

EDT Encryption Data Table

FHE Fully Homomorphic Encryption

GPGPU General Purpose Graphics Processing Unit

GPU Graphical Processing Unit

HBC Honest But Curioous

IBE Identity Based Encryption Scheme; Boneh - Franklin

LWE Learning With Errors

MIMD Multiple Instruction, Multiple Data; a class of Parallel Computers

MIRACL A Pairing Based Encryption Library

NAND Not AND Logical Gate

NIZK Non-Interactive Zero Knowledge Proof

NM-CCA1 Non-Maleable Chosen Ciphertext Attack

ORAM Oblivious Randon Access Memory

OT Oblivious Transfer

PCF Portable Circuit Format

PCP Theorem Probabalistically Checkable Proof Characterization Theorem

PI Principle Investigator

POK Proof of Knowledge

p-Tampering Attack where each bit may be tampered with probabality p

RAM Random Access Memory

RELIC A Pairing Based Encryption Library

RLWE Ring Learning With Errors

RSA Rivest, Shamir, Adleman Encryption Scheme

SC Secure Computation

SCORAM Heuristic Compact Oblivious Random Access Memory

SFE Secure Function Evaluation

SIMD Single Instruction, Multiple Data; a class of Parallel Computers

Glossary of Terms

931
Approved for Public Release; Distribution Unlimited.

SMC Secure Multi-Party Encryption

SMT Solvers Satisfyability Modulo Theories Solvers

SOA Selective Opening Attack

SSE2 Extension of SIMD Instruction Set

TFHE Threshold Fully Homomorphic Encryption

UC Universal Composition

VSS Verifiable Secret Sharing Scheme

XEN Hypervisor Hypervisor Utilized in Amazon EC2 Cloud

XOR Exclusive OR Logical Gate

Yau Yau's Garbled Circuit Protocol

ZK Proof Zero Knowledge Proof

zk-SNARKs Zero Knowledge Succinct Non-Interactive Arguments of Knowledge

932
Approved for Public Release; Distribution Unlimited.

	List of Figures
	List of Tables
	Summary
	Introduction
	Methods, Assumptions and Procedures
	Yao's Garbled Circuits
	Malicious Garbled Circuits on Compute Clusters
	Semi-Honest Garbled Circuits on GPUs

	General Theoretical Work

	Results and Discussion
	Secure 2-party Computation
	Malicious Garbled Circuits on Compute Clusters
	Parallelism
	Semi-Honest Garbled Circuits on GPUs
	PCF Compiler
	Oblivious RAM Results

	Theory of Secure Computation
	Non-Malleable Commitments
	Zero-Knowledge

	Digital Signatures
	Computing on Authenticated Data
	Full Domain Hash from Multilinear Maps
	Universal Aggregate Signatures

	Encryption
	New Approach for Chosen-Ciphertext Security
	Results on Construction of Other Strong Forms of Encryption
	Chosen-Ciphertext Security does not imply Circular Security
	Online/Offline Attribute-Based Encryption
	Blackbox proofs of knowledge of plaintext
	Efficient Prototyped Bootstrapping FHE with SAGE
	Tamper-resilient Cryptography

	New Software Tools
	Charm: A Toolkit for Rapid Prototyping of Cryptographic Systems
	The AutoTools Suite

	Protocols for Bitcoin
	Program Obfuscation
	Understanding Secure Computation in the Context of Complex Systems

	Conclusions
	References
	APPENDICES
	List of Papers Resulting from Project
	In preparation or submission
	In print or to appear
	CLP15:Constant-round Concurrent Zero-knowledge from Indistinguishability Obfuscation
	BCP15:Large-Scale MPC
	LP15:Succinct Garbling
	LP16:Constant-round Non-malleable Commitments From Any One-way Function
	HKW15: Adaptively Secure Puncturable Pseudorandom Functions in the Standard Model
	APGR13: CloudSourcing Cryptography: Automating the Generation of Outsourced Cryptographic Algorithms
	ABCHSW15: Computing on Authenticated Data
	HKW15: Universal Signature Aggregators
	AGHP14: Machine-Generated Algorithms and Proofs and Software
	BCGGMTV14: Zerocash: Practical Decentralized Anonymous E-Cash from Bitcoin
	GGMR14: Rational Zero: Economic Security from Zerocoin with Everlasting Security
	HSW14: Replacing a Random Oracle
	CP14:Parallel Repetition for Interactive Arguments
	HW14: Online/Offline Attribute-Based Encryption
	GGM14: Decentralized Anonymous Credentials
	WHCSS14: SCORAM: Oblivious RAM for Secure Computation
	AGH14: Using SMT Solvers to Automate Design Tasks for Encryption and Signature Schemes
	HMSG13: GPU and CPU Parallelization of Honest-but-Curious Secure Two-Party Computation
	MSS13: Blackbox Construction of A More Than Non-Malleable CCA1 Encryption Scheme from Plaintext Awareness
	CLP13: Constant-Round Concurrent Zero Knowledge From P-Certificates
	P13:Unprovable Security of NIZM and Non-malleable Commitments
	MSS13: Black-Box Proof of Knowledge of Plaintext and Multiparty Computation with Low Communication Overhead
	LP13:Black-box Constructions of Composable Protocols
	CPT13: Interactive Coding Revisited
	CPS13: Non-Black-Box Simulation from One-Way Functions And Applications to Resettable Security
	SS13: Fast Two-Party Secure Computation with Minimal Assumptions
	HSW13: Full Domain Hash from (Leveled) Multilinear Maps and Identity-Based Aggregate Signatures
	MGGR13: Zerocoin: Anonymous Distributed e-Cash from Bitcoin
	KMBS13: PCF: A Portable Circuit Format For Scalable Two-Party Secure Computation
	AGHP12: Machine-Generated Algorithms and Proofs and Software
	HLW12: Detecting Dangerous Queries
	CGH12: New Definitions and Separations for Circular Security
	KSS12: Billion-Gate Secure Computation with Malicious Adversaries
	CPT12: The Knowledge Tightness of Parallel Zero-Knowledge
	ABCHSW12: Computing on Authenticated Data
	CHP11: Batch Verification of Short Signatures
	GHW11: Outsourcing the Decryption of ABE Ciphertexts

	Blank Page
	Blank Page

