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INTRODUCTION 

African Americans (AAs) have a greater incidence of prostate cancer (PrCa) than European Americans (EAs) and their 
PrCas tend to be more aggressive. Because aggressive prostate cancers are often treated non-surgically and because AAs 
frequently select radiation instead of surgery, there are disproportionately fewer radical prostatectomies available to study 
the molecular features of PrCas in AAs. Thus, much less is known concerning the biology of PrCa in AAs and this lack of 
knowledge can limit therapeutic options for AAs with PrCa, especially the choice of active surveillance (AS). To reduce 
this racial disparity in PrCa research in AAs, this project focuses on the molecular analysis of prostate biopsies in order to 
capture a more representative study population. We utilize an innovative tissue print technology in which nitrocellulose 
blots (tissue prints) are collected from each prostate biopsy core and used as a source of RNA, DNA and proteins for 
biomarker studies. By focusing on biopsies, we are able to identify molecular features of a wide range of PrCas including 
cancers from AA patients and from EA patients who select radiation therapy, have high Gleason scores and/or high stage 
of PrCas that cannot be successfully treated by radical surgery.   

There are several hypotheses as to why PrCas are more aggressive in AAs including those considering social, cultural and 
economic issues that may delay evaluation of prostate health and appropriate screening and therapy for prostate diseases. 
Nevertheless, most studies have identified that biological issues also are likely involved in the aggressiveness of PrCas in 
AAs. One biological based hypothesis is that there are unidentified molecular characteristics that affect the biology of 
PrCas in AAs. These may be inherited genetic factors, DNA mutations in the tumor or epigenetic changes secondary to or 
interacting with other biological changes caused by, for example environmental exposures, diet, and/or obesity. To help 
differentiate inherited and environmental factors that may lead to more aggressive PrCa in AA, our molecular analyses 
include ancestry genotyping to identify West African, European (EU), and Native American (NA) ancestry based on 
single nucleotide polymorphisms (SNPs) that are used as ancestry informative markers (AIMs).  

Our work during the last year revealed that self-identified AAs may fall into two subgroups that differ with respect to 
PrCa aggressiveness. Specifically, in a series of 83 self-identified AAs we observed that almost all (95%) of the AA 
individuals diagnosed with high grade PrCa (Gleason 7 or more) on biopsy had more than 75% West African (WA) 
ancestry by AIMs genotyping, while a large proportion (40%) of the AAs diagnosed with no cancer on biopsy showed 
more than 25% EU genetic admixture. This finding suggests that in AAs, ancestry genotyping may be helpful in assessing 
individual PrCa risk and provide useful information for AAs who are considering AS rather than immediate treatment. It 
also points to a need to adopt an “ancestry informed” approach to characterizing PrCa in AA populations.  

Analysis of high grade cancers using prostate biopsy tissue prints has revealed prostate cancer subtypes that were either 
unrecognized or significantly underestimated in previous studies. Our gene expression data has identified the involvement 
of 3 molecules involved with the transport and/or synthesis of lipids that are highly overexpressed in a sub-set of PrCas. 
These include fatty acid binding protein 5 (FABP5) and fatty acid binding protein 1 (FABP1), genes that have not been 
previously reported to be differentially expressed in PrCas. Interestingly, higher levels of FABP5 expression seem to be 
more common in PrCas from AAs. A third lipid pathway gene overexpressed in sub-sets of PrCas is fatty acid synthase 
(FASN), previously shown to be involved in the emergence of castrate resistant PrCa. FABP5, FABP1 and FASN 
overexpression represent actionable alterations in genes that control PrCa lipid processing and metabolism that may reveal 
links between diet, obesity and aggressive forms prostate cancer.   

During this reporting period, we obtained data by mass spectrometry as to proteins that macrodissected prostate glands 
from both AA and EA patients. These tissues also were analyzed for protein differences in PrCas between AAs and EAs. 
Comparing PrCas with uninvolved prostate glands, 53 proteins were identified to be statistically increased and 32 proteins 
were statically decreased. Comparing AAs with EAs, 10 proteins in AAs were statically increased and 21 proteins were 
statistically decreased. 
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In addition, in this reporting period, we have expanded observations of epigenetic effects of prostate cancer foci on 
surrounding uninvolved prostate glands, including promoter hypermethylatiion of genes such as (glutathione S-transferase 
1) GSTP1, adenomatous polyposis coli (APC) and Ras association domain family member 1 (RASSF1). These are
translatable as improved “field effect” tests that can be used to detect occult high grade cancer in patients who are 
considering active surveillance. 

This reporting period also covers a significant expansion of our collaboration with the new MRI/US Fusion Guided 
Prostate Biopsy service at UAB. Because we can now overlay MR imaging information with pathology and with tissue-
print molecular marker mapping, we are especially well positioned to translate what we are learning about PrCa in AAs to 
better guide decisions about active surveillance.        

BODY 

Administrative: 

The major administrative problem involved the DOD action on a request from Drs. Gaston and Grizzle’s laboratories for a 
no cost extension of their respective grants beyond May 31, 2015 (UAB) and June 2015 (Tufts). The no cost extension of 
Dr. Gaston was approved on 8/19/15. The no cost extension for Dr. Grizzle was approved on 9/15/15. Part of the problem 
with the delays was that UAB’s Grants and Contracts Office had used the wrong grant number (actually Dr. Gaston’s 
grant number) in yearly financial reports for Dr. Grizzle’s grant. DOD did not report this to us until late in the 
administrative process. This period of administrative and financial uncertainty caused some shift in specific scientific 
approaches of the grant. 

In this reporting period, other administrative issues included the renewal of IRB at UAB and the change in status of the 
UCA IRB from closed to active in order to collect additional information from patients who had been accrued at UCA. 
Because the collection of the contracted 60 cases of PrCa had been successfully completed at UCA in 2014, the Western 
IRB was asked to classify the IRB for UCA as being in a “data analysis” only category because no further cases were 
being accrued. In 2014, UCA without UAB’s knowledge closed the UCA Western IRB and the UCA IRB at the DOD. 
Both IRB’s had to be reopened for data analysis because additional data collection was needed for publication. This was 
completed and the additional data were collected and transferred to UAB. The IRB at UCA now remains in the “data 
analysis” category.  

The Tufts Medical Center IRB has classified Dr. Gaston’s component of this project as exempt. 

During this period, UAB trained 4 student assistants, Ms. Fowler, Ms. Fuller, Ms. Perez Aponte and Ms. Sun. Others 
involved in the project did not change. During this period, Ms. Lian Tian was replaced as the technician in Dr. Gaston’s 
laboratory at Tufts Medical Center with Mr. James Kearns. In addition, an undergraduate research intern, Mr. Ravi 
Chinsky, assisted with the project.  

In 2015 Dr. Grizzle continued to be a consultant to a continuing grant DOD Prostate Cancer Tissue Repository. In 
addition, in 2015, he was added to the External Advisory Committee of this grant. 

In 2015, Dr. Gaston DOD was chairperson for the March and July Special Emphasis Panels reviewing the NCI Innovative 
Molecular Analysis Technology SBIR grants (ZRG1 OTC-H (10), was an ad-hoc member of the NCI Chemo/Dietary 
Prevention Study Section in February (CDP) and a member of the NCI Cancer Detection, Diagnosis and Treatment 
Technologies for Global Health review panel in July (ZCA1 TCRB-6 (A1).      
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Specific Scientific Progress and Results: 

Collection of Nitrocellulose Blots (Tissue Prints) for Analysis: In this reporting period, collection of tissue prints 
shifted completely to UAB with a focus on obtaining tissue prints from biopsy cores obtained using magnetic resonance 
imaging (MRI) fused with ultrasound (MRI-US) to guide the biopsy procedure. While biopsies obtained using the 
standard US approach are collected blindly as to areas of the prostate suspicious for cancer, MRI-US adds enough 
information from the MRI component to identify areas suspicious for cancer to which biopsies can be directed. In 2015, 
UAB accrued 15 patients (10 AAs and 5 EAs) from who biopsies were obtained using standard US technology and 53 
patients (10 AA and 43 EA) from whom biopsies were obtained using MRI-US technology. In some cases, some biopsies 
are obtained only by MRI-US from areas suspicious for cancer while other biopsies are obtained from both areas 
suspicious for cancer as well as standard “blind” US biopsies. Tissue prints were obtained from all biopsy cores; overall a 
total of 835 tissues prints, 237 from AAs and 598 from EAs were obtained from all biopsy cores. This does not count 
tissue prints from one case which as discarded because of infection of the patient with Hepatitis C. Also, 13 tissue prints 
were obtained from two radical prostatectomies from patients with prior biopsies. These results are included in our 
summary of cases (Tables “EN”). A summary of our cumulative enrollment and biopsy tissue print collection is included 
in EN Tables 1-6.  

Differential Expression of Prostate Biomarkers Associated with Lipid Transport, Syntheses, and metabolism. 
Previously, Dr. Gaston used gene analysis of mRNA from blots of prostate cancer to identify the importance of fatty acid 
protein 5 (FABP5) in prostate cancer. This observation, confirmed by qrtPCR and by review of data published using gene 
sequencing studies identified a potential subset of PrCas which have elevated mRNAs for FABP5. Because of our focus 
on lipid transport, we elected to study two other related molecules associated with lipid control in PrCa including fatty 
acid binding protein 1 (FABP1) and fatty acid synthase (FASN).  These molecules also were identified by qrtPCR to be 
elevated in PrCa. To evaluate the phenotypic differential distribution of FABP5, FABP1 and FASN in PrCa in AAs and 
EAs, UAB identified, collected, reviewed and selected paraffin blocks of normal prostate from radical cystectomy 
specimens from AAs and EAs and from AA and EA cases with radical prostectomies containing PrCa.  Sections from 
immunostained cases were sent to Dr. Gaston who works with Dr. Kittles to identify racial admixtures. Also, for some 
immunostained cases, sections are sent to Dr. Gaston for qrtPCR analysis of biomarkers of interest. 

Our studies in this reporting period have been focused on determining the differential expression of FABP 5, FABP 1 and 
FASN in patients evaluated for prostate cancers using radical prostectomies; also, we have evaluated these molecules in 
patients undergoing a radical cystectomy but found to have no prostate cancer in the associated removed prostates 
designated as (normal prostate) 

We found that FABP5 is strongly expressed in prostate cancers but there is low to no phenotypic expression in normal 
prostate tissue or normal appearing (uninvolved) prostate glands from patients with prostate cancers. Higher values of 
FABP-5 were expressed in PrCas in AAs compared to EAs. There was expression of FABP5 in low and high grade 
prostate intraepithelial neoplasia (PIN). The intracellular pattern of expression in PrCa was primarily cytoplasmic with 
accentuation of staining in the areas of the cell membrane and areas of the nuclear membrane. There also was expression 
in the nuclei of PrCa cells. (Figure IHC-1, Figure IHC-2, Figure IHC-3 in drop box.) 

In contrast to FABP-5, FABP1 had only slight to no differential expression in prostate cancers compared to normal 
prostate glands (no cancer) or to uninvolved prostate glands from the same matching cases of prostate cancer. Because of 
the large number of cases, differences between uninvolved prostate glands and PrCa is still significantly different at the 
cytoplasmic and membrane areas of the malignant cells. Of note, this low differential expression does not exclude FABP1 
from being important as a potential target for therapy. The intracellular expression of FABP1 in PrCa has strong 
expression in the cytoplasm with somewhat stronger expression in the area of the cell membrane and the perinuclear area. 
There is weaker expression in the nuclei of tumor cells compared to cytoplasmic and membrane staining. (Figure IHC-4, 
Figure IHC-5). Figure IHC-6 in drop box). 
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Fatty acid synthase (FASN) has clear differential expression in prostate cancer when compared with the minimal 
expression in normal prostate glands (from non-cancer cases) and uninvolved (normal appearing) prostate glands from 
matching cases with cancer. In contrast to FABP5, the higher volume of FASN tends to occur in EAs. The intracellular 
expression of FASN is somewhat variable even for malignant cells within the same gland. In PrCa, there is prominent 
cytoplasmic and cellular membrane staining with accentuation in the perinuclear area. Of note, compared to FABP5, there 
is frequently no nuclear staining, in most cells of PrCa. However, in high grade tumors there seems to be an increase in 
FASN expression in nuclei. This change to an intracellular nuclear pattern may be an important regulatory pathway. 
(Figure IHC-7, Figure IHC-8), Figure IHC-9 in drop box). 

Because FABP5 and FASN have been observed in some cases of PrCa to be inversely expressed at the mRNA level, we 
evaluated this at the protein level. This correlation is demonstrated for FABP5 versus FASN (Figure ICH-10), FABP1 vs 
FASN (Figure ICH-11) and FABP1 vs FABP5 (Figure ICH-12). The result for FABP5 vs FASN did not demonstrate the 
pattern observed at the mRNA level; however, the pattern did emphasize that there is increased expression in a subset of 
African Americans with a higher expression of FABP5 and a similar increase in expression for EAs of FASN (Figure 
ICH-10). This is demonstrated in TABLE IHC-1. Also, of interest, there is increased nuclear expression in subgroups of 
FABP5 and FASN which is indicative of a shift of FABP5 and FASN into the nuclei of some tumor cells. Because of the 
large ranges in expression of FABP5 and FASN, overall there is not a statistically significant difference in the overall 
pattern so the analysis is based upon cutoffs of phenotypic expression which vary with the expression in each of the 
intracellular areas (e.g. nuclear expression). 

In summary, FABP5 is differentially expressed in patients with PrCa. Of these, patients with higher levels of PrCa, there 
is a predilection for these patients to be self-identified AAs. These results also were consistent with results of MS. In 
contrast, patients with higher levels of FASN tend to be self-identified EAs. 

FABP5 and fatty acid binding protein 4 (FABP4) are increased in metabolic syndrome, which is a disorder which includes 
central obesity and elevated glucose and a tendency to develop cardiovascular disease and adult onset diabetes. The 
importance of metabolic syndrome has led to a widely used ELISA for FABP5 designed for serum. We have tested the 
FABP5 ELISA assay for FABP5 and found that it is technically reproducible and easy to perform; however, because of 
concern for the stability of multiple molecules in older samples of serum, (Potter et al 2012), we elected to postpone 
further evaluation of FABP5 in bodily fluids until a new set of fresh samples of serum are obtained. We have ordered 
these specimens from the Cooperative Human Tissue Network (CHTN) to facilitate our studies. 

Discovery of Proteins in PrCa Using Mass Spectrometry: Our initial approach to identify molecules associated with 
the aggressiveness of PrCa and racial differences between these molecules used multiplex immune assays of serum, 
plasma and urine. A problem with these studies was that there were reports in the literature that specific molecules in 
bodily fluids began to change after 1 to 2 years (Potter et al 2012). Until we could address this problem, we shifted to 
mass spectrometry analysis comparing biomarkers in tissues of AA and EA patients, to identify molecules differentially 
expressed in PrCas. In this reporting period, using mass spectrometry (MS) we completed the analysis of 8 AA patients 
with prostate cancer and 12 EA patients without prostate cancer for discovery of proteins associated with self-identified 
AAs and self-identified EAs. For each category of patients, both paired PrCa and uninvolved prostate glands were 
macrodissected. Thus, this study identified proteins/peptides which are differentially expressed in PrCas in addition to 
proteins/peptides which are selectively overexpressed or underexpressed in AAs versus EAs. 

The initial approach to mass spectrometry involved macrodissection of paraffin blocks of prostate cancer and matched 
uninvolved prostate from the same cases of prostate cancer. Thus a total of 20 specimens of macrodissected prostate 
cancer and 20 specimens of macrodissection matching uninvolved prostate were initially compared to identify molecules 
differentially expressed in prostate cancer. Each macrodissected specimen was evaluated in 3 dimensions (i.e., externally 
and longitudinally to ensure that no cancer was present in the specimen of uninvolved prostate glands and that the PrCas 
were composed of least 60% malignant cells). In these specimens a total of 896 proteins were identified and after these 
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were filtered and judged to be statistically relevant, 514 proteins were evaluated of which 53 were statistically increased in 
abundance and 32 were statistically decreased in abundance in PrCas with a false discovery rate of <0.1% (Figure MS1). 

Based on systems analysis, the major organs and processes involved in the 85 proteins differentially expressed in PrCa are 
shown in Figures MS-2 and MS-3.  The cytoplasm, extracellular proteins and nuclei were the most common tissue 
localizations identified as using the source of these proteins and cellular processes and cellular regulation were the most 
common themes in which these proteins were involved. 

The most significant 20 proteins identified by their abundance (increased or decreased) to be differentially expressed are 
shown in Figure MS-4. The main proteins of interest are those which are increased significantly in PrCa.  

After, the study of differentially expressed proteins in prostate cancer, we next focused on racial differences in prostate 
cancer, comparing PrCas from AAs with PrCas from EAs. We used the same approach to filter the 896 proteins to 298 
proteins. Of these, 10 proteins were found to be statistically increased in abundance and 21 were found to be statistically 
decreased in abundance in AAs when compared to EAs. (Figure MS-5). The 10 proteins found to be increased in 
abundance are listed in Table MS-1 and those that are decreased are in Table MS 2 

In view of our interest in lipid controlling molecules, we noted that zinc-alpha-2-glycoprotein, previously reported by 
others as a cancer marker that stimulates lipolysis is increased in PrCa in AAs. Because this molecule may be involved in 
the cachexia resulting from cancer, it will be added to our studies of lipids. Three other molecules of this group of 10 have 
been associated with motility and potential metastases.  These are galectin-3-binding protein, alpha-actinin-4, and keratin, 
type II cytoskeletal 5. Also ubiquitin-like modifier-activating enzyme which has been proposed  by others as a target for 
cancer therapy is elevated and is likely to be an important molecule in our study. Of interest and as expected, PSA is also 
increased in AAs compared to EAs. Several other molecules whose importance is unknown also are listed in Table MS-1 
including SERPINA3 which will be discussed subsequently. 

The 21 proteins that are decreased in tissue from PrCas in AAs versus Eas are listed in Table MS-2; however, our major 
focus will be on proteins that are increased rather than decreased unless important molecules that are decreased are 
identified in systems analysis.  Figure MS-8 demonstrates the distribution in tissue of proteins in PrCa that are 
significantly changed. Specifically, cytoplasmic, extracellular and nuclear proteins are the most affected. Similarly in 
Figure MS-9 the main molecular functions of the significantly changed proteins involve binding, catalytic activity and 
structure of the tissue. The biological processes of the significantly changed proteins (Figure MS-10) involve cellular 
process and regulation.  An example of changes in a specific protein (Fibrillin-1) is demonstrated in Figure MS-11 and a 
system analysis of SERPINA3 (ACT) is demonstrated in MS-12. Of note, SERPINA3 is a very important molecule in 
cellular responses to stress, control of immune responses and responses to cellular stimuli. 

Evaluation by Mass Spectrometry of FABP-1, FABP-5, and FASN Based on Race:  In the last quarterly report, we noted 
that FABP-1 was not detected by mass spectrometry; however, 7 cases had elevated FABP-5 in tumors with a normalized 
relative intensity (NRI) = 3.3 but no FABP-5 was detected in uninvolved prostate. Also, 15 cases had prostate cancer in 
which FASN was detected with a NRI = 4.6, but FASN was detected in only 2 cases of uninvolved prostate with 
(NRI=2.0). 

For FABP-5, 3 of the 7 cases in which FABP-5 was detected were in AAs (3/8) with an NRI = 6.6 and 4 of the 7 cases 
were in EAs (4/11) with an NRI = 1.2 note one case of the twelve EA patients was lost to analysis.  These results indicate 
that FABP-5 is more strongly expressed in prostate cancer from AAs than in prostate cancers from EAs and are consistent 
with results based on analysis at the mRNA level and with immunohistochemistry. 
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When FASN results were separated based on self-identified race, 7 of the 15 cases of FASN were in AAs (7/8) with and 
NRI = 4.4 and 8 cases were in EAs (8/11) with a NRI = 4.8. The two cases in which FASN expression was detected in 
uninvolved tissue also were in EAs (2/11) with a NRI = 2.   

The 21 proteins that were decreased in specimens of prostate cancer from AA patients are listed in Table 2.  We are still in 
the process of evaluating the potential importance of the decreases in each of these specific proteins on the aggressiveness 
of prostate cancers; however increased proteins are of major interest. 

Ancestry Genotyping 

When patients of different racial groups are analyzed and compared, the results can be affected by racial admixtures in the 
study populations which initially are not recognized.  Dr. Rick Kittles, our collaborator on this DOD project, specializes in 
studies that incorporate ancestry genotyping into studies addressing health disparities. The Kittles lab analyzes DNA 
samples extracted from de-identified subjects based on single nucleotide polymorphisms (SNPs); he uses a profile of 109 
unlinked autosomal SNPS that have been selected as ancestry informative markers (AIMs) to differentiate individuals of 
European, West African and Native American ancestry. In admixed populations, the AIMs results can then be used to 
estimate the relative proportion of these 3 racial groups in each individual’s ancestry.  During this reporting period, the 
Kittles lab completed ancestry genotyping for 126 of our study subjects, 114 from our prostate biopsy tissue print series 
and 12 from our radical prostatectomy (FFPE samples) series. The results of this analysis were provided to Dr. Gaston 
who has correlated the racial admixture results with the biopsy and tissue print results.   

The overall pattern of racial admixture in our Birmingham area study subjects is similar to what has been observed in 
other US populations. As expected, many self-identified African Americans showed genetic evidence of ancestry 
admixture; in our Birmingham AA subjects this admixture was almost entirely from European ancestors with only rare 
individuals showing appreciable Native American ancestry.  

The AIMs results from our prospectively enrolled prostate biopsy study subjects were particularly interesting.  In our 
prospective study, ancestry genotyping was performed on DNA prints collected prior to biopsy and AIMs genotyping was 
performed by the Kittles lab blinded to both self-identified ancestry and biopsy results. Comparison of AIMs genotypes 
and biopsy pathology findings for the 83 self-identified AA subjects in the prospective biopsy study showed that, as a 
group, the men who were diagnosed with high grade PrCa (Gleason sum 7 or more) were more likely to have genotype 
estimates of more than 0.75 West African Ancestry, as compared to the men who were diagnosed with no cancer (P = 
0.001) (Figure 1, Figure 2, Table 1). A similar trend is observed in a comparison of West African Ancestry between the 
men diagnosed with high grade cancer (Gleason sum 7 or more) vs low grade cancer (Gleason sum 6). To our knowledge, 
no previous studies have evaluated the levels of West African ancestry within a self-identified African American 
population as a marker for relative risk of prostate cancer. It should be noted that our studies use an ancestry genotyping 
panel with a relatively small number of well-established ancestry informative markers, and that this type of molecular 
testing is relatively inexpensive. Thus confirmation of a significantly increased risk of prostate cancer (and potentially, of 
high grade prostate cancer) in African American men with relatively high levels of West African genetic ancestry could 
have immediate potential clinical applications for prostate cancer screening and active surveillance.  These findings were 
first presented during this reporting period at an invited Minorities in Cancer Research Scientific Symposium entitled 
“Emerging Methodology and Tools for Understanding the Genetics of Cancer Disparities” at the 2015 Annual Meeting of 
the American Association for Cancer Research. 

Activities planned for next quarter: We have submitted DNA from an additional 61 study subjects to the Kittles laboratory 
for AIMs ancestry analysis. The Kittles lab has indicated that the analysis of these samples should be completed in time 
for us to present an update of our findings at the November 2015 AACR conference on AACR Conference on the Science 
of Cancer Health Disparities. 

Mrna Gene Expression Analysis 
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Affymetrix Whole Transcriptome mRNA Gene Expression Profiling and qrtPCR Confirmatory Analysis: In this 
study we are using the Affymetrix Human Whole Transcriptome 2.0 (HTA 2.0) array to identify genes involved in 
prostate cancer and then confirm genes of interest using quatitative rtPCR (qrtPCR) technology. The HTA 2.0 is currently 
the most comprehensive array for interrogating human transcript isoforms for expression profiling. In addition to gene-
level detection, this array provides the necessary coverage and accuracy required to detect all know human transcript 
isoforms produced from a gene. The HTA 2.0 design utilizes multiple data sources to design and annotate the array are 
RefSeq, Ensembl, UCSC Known Genes, UCSC LincRNA transcripts and Broad Institute - Human Body Map lincRNAs 
and TUCP (transcripts of uncertain coding potential) catalog. As with most gene profiling techniques, the HTA 2.0 array 
performs best with high quality RNA and because we routinely prepare RNA from biopsy tissue prints with RINs better 
than 7 (total RNA per prostate biopsy print approximately 200 ng) we have been able to take full advantage of this 
technology.  

In addition to conventional analysis of our prostate biopsy gene expression data, we have found an approach described by 
Gorlov et al (2014) to be highly productive. These authors observed that while a typical approach to analyzing tumor gene 
expression compares cancer to adjacent uninvolved tissue, an analysis of inter-individual tumor-to-tumor variation in gene 
expression can be a more efficient way to identify genes that are over or under expressed in a molecular subgroup. One 
important advantage to this type of tumor-to-tumor analysis is that it is not confounded by cancer-associated changes in 
adjacent normal-looking tissue (cancer “field effects”). Our pairwise analysis of tumor-to-tumor variation in biopsies from 
AA and EA patients with high grade prostate cancer has identified several robustly overexpressed “outlier” genes of 
interest. These include genes involved in fatty acid processing and metabolism. Most notably, we identified a set of AA 
PrCa with extremely high (over 10 fold) overexpression of fatty acid binding protein 5 (FABP5). Although FABP5 has 
not been a major focus of PrCa research, qrtPCR studies confirmed this “super over-expression” pattern in a PrCa 
subgroup and identified a second PrCa subgroup with high overexpression of fatty acid synthase (FASN). Since our last 
annual report, we have focused much of our effort in further characterizing these two previously unrecognized PrCa 
subtypes.  

At the level of the biopsy core, approximately 15-10% of the high grade prostate cancers show outlier “super 
overexpression” of FABP5 mRNA at more than 10 fold over the baseline expression observed in benign prostate biopsies 
in patients diagnosed with no cancer. A similar 15-20% of high grade prostate biopsy cores show outlier “super 
overexpression of FASN mRNA at more than 10 fold over baseline expression in benign cores from cases with no cancer 
(GE Figure 1). Outlier super-overexpression of FABP1 is also observed, but is less prevalent in our high grade biopsy 
cores (about 8-10%). Comparison of same-core mRNA expression patterns shows that while some tumors show moderate 
overexpression of more than one of these three markers, super overexpression is observed in an “either-or” pattern. 
Tumors with top quartile levels of FASN do not show super overexpression of either of the binding proteins, and vice 
versa (GE Figure 2). This observation suggests that there are two different ways for prostate cancers to satisfy their 
increased demands for fatty acids, either by de-novo synthesis (FASN) or by increased uptake from the extracellular 
environment (FABPs). When we look at expression patterns at the level of the study subject and consider the highest 
expression in any core we see that the pattern consistent with that seen by IHC in an independent set of samples, with AA 
predominant in the FABP5 super overexpressors and EA predominant in the FASN super over expressors. Interesting 
some multi-focal cancers show both FABP5 and FASN overexpressing clones, perhaps showing synergy as one focus 
synthesizes new fatty acids (FASN overexpression) and the adjacent focus takes advantage the excess (FABP 
overexpression). If these observations are confirmed as we move forward, we may be able to identify patients whose 
prostate cancer can be selectively targeted by pharmacological or dietary interventions that target these two lipid 
processing/synthesis pathways. 

Analysis Of Epigenetic Cancer Associated Changes In Dna Methylation Patterns: 

Scientific Progress and Results: DNA extracted from prostate biopsy tissue print nitrocellulose blots has proven to be very 
well suited for studies of genes in uninvolved normal appearing prostate glands postulated to be hypermethylated by field 
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effects secondary to adjacent prostate cancers. These studies have shown that the level of promoter hypermethylation of 
the genes GSTP1, APC and RASSF1 in normal appearing tissue (field effect hypermethylation) is more intense when the 
prostate contains high grade cancer, compared to that found in a prostate with only low grade (Gleason 3+3) cancer. This 
finding is potentially important, because it shows that a relatively straightforward modification of a currently available 
clinical test may be useful in identifying patients who are considering active surveillance based on a biopsy that failed to 
detect a high grade prostate cancer due to sampling error. During this last reporting period, we identified cut-off values 
that optimize this prototype biomarker test for predicting a low risk of occult high grade cancer. This work was presented 
at the annual meeting of the American Urological Association in 2015. This biostatistical analysis completes the 
manuscript that is currently being prepared for submission to PLOS ONE.  

Additional data analysis comparing our field effect results with studies performed at Johns Hopkins Hospital in Boston is 
currently in progress; preliminary results have been submitted as an abstract to be presented at the 2016 GU ASCO 
conference. In addition, with support from the UAB Cancer Center, we will undertake a pilot study of the DNA 
hypermethylation patterns in areas of the prostate that are “suspicious” for prostate cancer. As noted in the section on MRI 
guided prostate biopsy studies, comparisons of AA and EA patients show a trend in which AA patients are more likely to 
have MRI suspicious regions that are negative for cancer in subsequent biopsy. We will test the hypothesis that a 
molecular test for cancer field effects may help differentiate MRI suspicious regions that are contain a an occult prostate 
cancer that was missed due to biopsy sampling error from MRI suspicious regions that are truly false-positive.  

FABP5 and FASN are two lead molecular markers for our future studies because they may identify PrCa subtypes that are 
differentially prevalent in AA and EA, potentially significant as alternative fatty acid phenotypes that can be targeted 
therapeutically and potentially visible by Multiparametric-MRI (MP-MRI), as a result of changes in tissue composition. 
Additional markers that are under evaluation based on Affymetrix gene discovery data include fatty acid binding protein 1 
(FABP1), elongation of very long-chain fatty acid 2 (ELOVL2), neuropeptide Y (NPY) and VEGF A. Additional markers 
under evaluation based on Mass Spec gene discovery including zinc-alpha-2-glycoprotein a controller of lipolysis and 
hypothesized to be involved in cancer cachexia and galectin-3-binding proteins reported in other cancers to affect 
aggressiveness. 

FUTURE DIRECTIONS 

• We will focus on increasing the number of patients for whom we will obtain tissue prints of biopsies of the prostate.
Most of the emphasis will be on patients who are undergoing MRI-US guided biopsies. These patients also will have 
standard US guided biopsies and tissue prints will be obtained on all biopsy cores. Of special importance will be tissue 
prints from AA patients. Our goal is to have a manuscript submitted on this research in November, 2015 (Drs. Grizzle and 
Gaston). 

• We will analyze ancestry informative markers (AIMs) from tissue prints to characterize racial admixtures (Dr. Gaston
and Dr. Kittles) and will analyze mRNAs from tissue prints for genes of focus-FABP5, FABP1, FASN and zinc-alpha-2-
glycoprotein. 

• We will analyze racial admixtures from paraffin sections of cases analyzed by immunohistochemistry (Drs. Gaston and
Kittles). 

• We will analyze mRNA gene expression patterns from paraffin sections of radical prostatectomy cases analyzed by
immunohistochemistry and MS in order to more completely characterize mRNA-protein-histology correlations for the 
genes involved in lipid processing and metabolism, with a particular focus on the high-expression prostate cancer 
subtypes that we have identified in our analyses of the prostate biopsy tissue prints (Drs. Gaston and Grizzle). 
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• For our immunohistochemical study of FABP5, FABP1 and FASN, we will analyze additional cases with Gleason
scores of 6, 4+3, and 8-10. These cases will be selected so that each GS group will have balanced racial representations. 
We also will increase our analysis of normal prostate specimens from radical cystectomies (Dr. Grizzle). 

• If resources permit, we will establish ELISA and multiplex immunoassays using samples of serum which are less than 1
year old. The ELISA will focus on FABP5. The multiplex immunoassay will focus on our prior studies of molecules that 
are increased in multiplex assays and new molecules identified by MS (Dr. Grizzle). 

• Our goal is to add immunohistochemistry of zinc-alpha-2-glycoprotein and galectin-3-binding protein to our MS results
and submit a paper by November 2015 (Dr. Grizzle). 

• We currently are preparing a manuscript on this work in which we will perform immuno histochemistry on zinc-alpha-2-
glycognotein and galectin-3-binding protein to demonstrate variations with race. 

KEY RESEARCH ACCOMPLISHMENTS 

• We have found that self-identified AA’s who are diagnosed with PrCas with Gleason scores of ≥ 7 on prostate biopsy
have a higher proportion (95%) of individuals with Western African ancestry ≥ 75% than do AAs with Gleason scores of 
6 or with no PrCa on biopsy. 

• We have identified that FABP5, and FASN are molecules that are strongly expressed in PrCas (p<0.0001 for both). Of
these cases, FABP5 is selectively expressed in AAs and FASN is selectively expressed in EAs. 

• We have identified the FABP1 is slightly overexpressed in most PrCas at the protein level, but at the mRNA levels is
highly overexpressed statistically in a significant subset of patients with PrCa. 

• By mass spectrometry we have identified 53 molecules that are overexpressed and 31 molecules that are under-
expressed in PrCas. We have identified 10 molecules that are overexpressed in AAs compared to EAs and 21 molecules 
that are under-expressed. One of the 10 molecules over expressed in PrCas of AAs is zinc-alpha-2-glycoprotein involved 
in lipolysis and hypothesized to cause cachexia of cancer. Another molecule of interest in PrCas of AAs is galectin-3-
binding protein that has been associated with aggressiveness in other cancers. 

REPORTABLE OUTCOMES 

1. The abstract “Limitations of the use of human prostate tissues in biomedical research” was presented by Dr.
Grizzle at the Prostate Cancer Foundation 21st Annual Scientific Retreat, Carlsbad, CA, October 23, 2014.

2. The abstract “Performance of an epigenetic assay to predict prostate cancer aggressiveness: Comparing Gleason
score and NCCN risk categories” was presented at the EAU Section of Urological Research (ESUR) meeting in
October 9-11, 2014, Glasgow, Scotland.

3. Dr. Grizzle was one of 5 presenters (Barnes M, Bledsoe MJ, Dressler L, Grizzle WE, Russell-Einhorn M) and
panel participants in the all-day pre-meeting conference “Contemporary Issues in Biobanking: Governance,
Consent and Practical Approaches to Current Challenges.”  This proceeded the conference “Advancing Ethical
Research” of the organization, Public Responsibility in Medicine and Research (PRIM&R), Baltimore, MD,
December 4, 2014.

4. An abstract “DNA hypermethylation field effects: potential applications for detection of occult high grade
prostate cancer” was presented at the 2015 Genitourinary Cancers Symposium of ASCO on February 26, 2015.

5. An invited oral presentation on “Tissue Print Technologies for the Preparation of High Quality Human
Biospecimens” was presented by Dr. Gaston at the SELECTBIO Sample Preparation and Analysis Technologies
conference in Boston, Massachusetts, March 2015.



12 

6. The abstract “Epigenetic Assay Stratifies Prostate Cancer Patients’ Risk” was presented by Dr. Gaston at the 2015
American Urological Association Annual Meeting in May 2015.

7. An invited podium (oral) presentation “The use of innovative prostate biopsy tissue print techniques for molecular
genomic, epigenetic and gene expression studies” was given by Dr. Gaston at the Minorities in Cancer Research
Scientific Symposium “Emerging Methodology and Tools for Understanding the Genetics of Cancer Disparities”
at the 2015 Annual Meeting of the American Association for Cancer Research.

8. An invited oral presentation “The Use of Tissue Prints of Prostate Cancer Biopsies for the Analysis of Non-
Resected Prostate Cancer” was presented by Dr. Gaston at the Illumina Key Opinion Leader Biobank Summit in
Boston, MA, May 2015.

9. An invited oral presentation on “Tissue resources and the Association of Racial Admixtures and the Risk for High
Grade Prostate Cancer” was presented by Dr. Grizzle at the Illumina Key Opinion Leader Biobank Summit in
Boston, MA, May 2015.

10. Abstract accepted entitled “Improving the accuracy and diagnostic power of prostate biopsy for African American
patients: the Birmingham Alabama Prostate Cancer (BAPrCa) Consortium” to be presented by Dr. Gaston at the
Eighth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the
Medically Underserved in Atlanta, GA, November 2015 (copy attached to this report)

11. Abstract presentation entitled “Combined DNA-Methylation Intensity and Clinical Risk Score Stratifies Patients
for High-Grade Disease” at the EAU Section of Urological Research (ESUR) meeting in Nijmegen, The
Netherlands, September 2015 (copy attached to this report).

12. Invited oral presentation entitled “Tissue print technologies: An innovative and practical approach to obtaining
high quality research samples from biopsies and other challenging biospecimens” will be presented by Dr. Gaston
at IIR's Biorepositories and Sample Management Summit in Boston, MA, October 2015 (copy of the abstract for
this presentation attached to this report)

13. Invited submission of FY15-FY16 PCRP program materials describing this DOD sponsored project; these
materials include text and images for the program booklet, CDMRP website features, and the PCRP newsletter
(PCRP Perspectives). September 2015 (copy of the invitation is attached to this report).

14. Invitation to Dr Grizzle and Dr Gaston to apply for the DOD PCRP Health Disparity Research Award,
Application submitted September 24 2015.

15. With our collaborator Dr. Soroush Rais-Bahrami as PI, Drs. Gaston and Grizzle are co-investigators on a newly
awarded pilot grant from the UAB Cancer center to explore potential correlations between MRI parameters that
define regions of the prostate as “suspicious” for prostate cancer and molecular prostate cancer field effects.
September 2015

16. Book Chapter in Press
Burke HB, Grizzle WE. Clinical Validation of Molecular Biomarkers in Translational
Medicine in Biomarkers in Cancer Screening and Early Detection, Sudhir Srivastava, editor,
Wiley, Oxford, UK.
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CHALLENGES AND PROBLEMS 

Our main challenge affects all research in prostate cancer. Specifically, it is difficult to define “aggressive” PrCas 
except by association with Gleason score because of the many indolent PrCas and the long time it takes to define a 
recurrence of these tumors. Thus, we rely on Gleason score to correlate with aggressiveness except for tumors that are 
known to reoccur. Similarly, when working with bodily fluids, the “controls” (i.e., cases without PrCa) are difficult to 
define because PrCas tend to be asymptomatic and cases biopsied may be false negatives in that the lesions may be 
missed on biopsy. This is one reason that we have begun to select cases biopsied by MRI-US. Also, we are still trying 
to define changes in bodily fluids that may occur in storage at -80◦c or colder. We are addressing this by trying to 
analyze samples of bodily fluids that are ≤ 1year of age. We also will match samples by month of age. Our final 
challenge is trying to decide when to publish our positive results. We have now collected tissue prints from over 100 
AAs and 80 EAs. We await the ancestry informative markers from more recent cases with a goal of publishing our 
initial manuscripts in November 2015. Other than associated with the above challenges, we have no major problems 
of which we are aware. 

REFERENCES 

Potter DM, Butterfield LH, Divito SJ, Sander CA, Kirkwood JM. Pitfalls in retrospective analyses of biomarkers: A case 
study with metastatic melanoma patients. J Immunol Methods 2012;376 (1-2):108-112. 

Gorlov IP, Yang JY, Byun J, Logothetis C, Gorlova OY, Do KA, Amos C. How to get the most from microarray data: 
advice from reverse genomics. BMC Genomics. 2014;15:223. 
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All races AA EA

All Subjects 187 103 84
Benign 90 52 38
High Grade 58 29 29
Low Grade 39 22 17

Tissue Prints Collected from UCA and 
UAB as of September 30, 2015

Study Subjects Enrolled and Biopsy 
Tissue Prints Collected*

All races AA EA

All Subjects 59 59 0
Benign 33 33 0
High Grade 12 12 0
Low Grade 14 14 0

All races AA EA

All Subjects 128 44 84
Benign 57 19 38
High Grade 46 17 29
Low Grade 25 8 17

Tissue Prints Collected from UAB as of 
September 30, 2015

Tissue Prints Collected from UCA as of 
September 30, 2015

Enrollment at UCA and UAB Study Sites*

* Note that Enrollment Tables Exclude 2 Study Subjects
1 Withdrawal from UCA and 1 Omitted from UAB (both AA)

* Note that Enrollment Tables Exclude 2 Study Subjects
1 Withdrawal from UCA and 1 Omitted from UAB (both AA)

EN Table 1

EN Table 

SUPPORTING DATA 
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N % of 103 N % of 84
All Subjects 103 100% 84 100%
No Cancer on Biopsy (Benign Diagnosis) 52 50% 38 45%
Ca Positive, Low Grade (Only Gl sum 6) 22 21% 17 20%
Ca Positive, Gl sum 3+4 17 17% 12 14%
Ca Positive, Gl sum 4+3 or more 12 12% 17 20%

N % of 51 N % of 46
Cancer Positive Subjects 51 100% 46 100%
Ca Positive, Low Grade (Only Gl sum 6) 22 43% 17 37%
Ca Positive, Gl sum 3+4 17 33% 12 26%
Ca Positive, Gl sum 4+3 or more 12 24% 17 37%

Diagnosis Group

Summary of All Study Subjects African       
American

European 
American

Diagnosis Group

Summary of Cancer Positive 
Study Subjects

African       
American

European 
American

African American
N = 103

European American
N = 84

50%
21%

17%

12%

No CancerNo Cancer

20%

14%

20%

45%

Gl 3+3 Gl 3+3

Gl 3+4
Gl 3+4

Gl 4+3 
or more

Gl 4+3 
or more

EN Table 3

EN Figure 1: Biopsy Diagnosis in AA vs EA Study Subjects 
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Diagnosis 
Group

All races AA % of 11 EA % of 47

All Subjects 58 11 100% 47 100%
Benign 28 8 73% 20 43%
High Grade 19 1 9% 18 38%
Low Grade 11 2 18% 9 19%

MRI Targeted Biopsy Study Subjects
Enrolled as of September 30,  2015

Diagnosis 
Group

Subjects
All Std 
Cores

All Tgt 
Cores

Low Gl 
Cores

High Gl 
Cores

All Subjects 58 420 324 50 64
Benign 28 181 155 0 0
High Grade 19 155 94 21 64
Low Grade 11 84 75 29 0

MRI Targeted Biopsy Subjects as of September 30, 2015    
Comparison of Standard and Targeted Cores

Diagnosis 
Group

Subjects
Standard 

Cores
Low Gl 
Cores

High Gl 
Cores

All Subjects 129 1675 114 173
Benign 62 871 0 0
High Grade 39 468 47 173
Low Grade 28 336 67 0

Conventional (non-MRI) Biopsy Subjects as of 
September 30, 2015

EN Table 4

EN Table 5 and 6
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p < 0.0001

p < 0.0001

p < 0.0001
p < 0.0001 

p < 0.0001

p < 0.0001 

p < 0.0001

p < 0.0001

Legend 

Figure IHC-1 Expression of FABP5 in the prostate. This figure demonstrates FABP5 staining 
that is broken down as to intracellular patterns of staining- cytoplasmic, membrane, nuclear 
and perinuclear. Normal is based on prostates removed during radical cystectomy. These 
prostates did not have PrCa on pathologic examination. Uninvolved represents the matching 
normal appearing prostate glands from case of prostate cancer. While “cancer” indicates the 
matching PrCa to the uninvolved glands. Note, there is statistically significant differences 
between PrCa (cancer) and normal (p< 0.0001) and PrCa and uninvolved glands (p< 0.0001). 
Of interest, in the high levels of expression of FABP5, there are somewhat more African 
Americans (Table IHC-1) in all categories of expression, but especially in nuclear expression. 
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Legend 
Figure IHC-2 Expression of FABP5 in PrCa. This figure demonstrates the intracellular 
distribution of staining of PrCa-cytoplasmic, membrane, nuclear and perinuclear. The PrCa is 
broken down according to the Gleason Score (GS) of the case, i.e., GS 6, GS 3+4, GS 4+3, and 
GS 8-10. These are the cases randomly selected to date. The number of cases with GS 6, 
4+3, and 8-10 cases will be expanded in the next quarter. 
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Due to the large size of Figure IHC-3 and the email limitations, 
Figure IHC-3 will be uploaded thru UAB’s dropbox.

Legend:  
Figure IHC-3 Expression of FABP5 in PrCa. This figure demonstrates the intracellular 
distributions of FABP5 in an area of prostate cancer (red block arrows) adjacent to 
uninvolved glands with minimal staining (green block arrows). Magnification x400 
focally increases to x630. Thin black arrows point to nuclear staining with FABP5 and 
red arrows (thin and block) point to staining of the cell membrane. 

There is variable staining of cells with FABP5 even within the same malignant gland 
and there is little to no staining in uninvolved glands. FABP5 staining is increased at 
the membranes of cells and in the nuclei of some cells. This is emphasized in figure 
IHC-1. 
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p = 0.019

p = 0.374 

p = 0.0007

p = 0.4855 

p = 0.0704 

p = 0.1489 p = 0.0233 
p = 0.1749  

Legend 
Figure IHC-4:  Expressions of FABP1 in the prostate. This figure is similar to IHC-1 except that 
FABP1 is being evaluated. Of note, there is much less differential expression of FABP1 
between the normal glands and PrCa and the normal appearing uninvolved glands and PrCa 
than there is for either FABP5 (Figure IHC-5) or FASN (Figure IHC-7). Although this degree of 
differential expression is small, for cytoplasmic expression and membrane expression when 
uninvolved glands are compared with PrCa  there is a statistical difference
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Legend 
  
Figure IHC-5 Expression of FABP1 in PrCa. This figure demonstrates the range of 
expression of FABP1 in tumors broken down by Gleason scores (GS). These are the cases 
randomly chosen. In the next quarter we will target GS case of 6, 4+3, and 8-10 that are 
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Due to the large size of Figure IHC-6 and the email limitations, 
Figure IHC-6 will be uploaded thru UAB’s dropbox.

Legend:  
Figure IHC-6 Expression of FABP1 in PrCa. Panel A (x200) demonstrates the 
intracellular expression of FABP-1 in an area of PrCa (red block arrows) adjacent to 
uninvolved prostate glands (green block arrows). At x630 magnification, in panels B, 
C and D, the luminal cells of uninvolved prostate glands (green block arrows) and 
PrCa (red block arrows) have membrane expression (blue arrows) while the thin 
black arrows point to nuclear staining of FABP-1 in PrCa  In this case the staining of
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p < 0.0001

p < 0.0001 
p < 0.0001 

p <  0.0001 

p < 0.0001 

p = 0.0034 

p < 0.0001 

p < 0.0001  
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Legend 

Figure IHC-7 Expression of FASN in the prostate. This figure demonstrates the differential expression of 
FASN in glands of “normal” prostate compared to “cancer” (PrCa) (p<0.0001). The normal prostate glands 
are from prostatectomies removed as part of radical cystectomies that were found on pathologic 
examination to not have PrCa. Similarly, uninvolved (normal appearing) prostate glands were compared 
with the matching PrCas as to the differential expression of FASN (both p<0.0001). 

Of note, most of the higher values of FASN (cytoplasmic and membrane) were in the EA population in 
contrast to FABP5; however, this was not the case in the uninvolved prostate in which AAs predominated. A 
similar pattern was seen in perinuclear staining (p<0.0001). In nuclear staining the pattern also was similar 
for uninvolved (p<0.0001) but not in the normal prostate. Normal versus PrCa showed differential staining 
(p=0.0034). 
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Legend 

Figure IHC-8 Expression of FASN in PrCa. This figure demonstrates the expression of FASN 
in PrCa separated by Gleason scores (GS). These cases were randomly selected and results 
are expressed at cytoplasmic, membrane, nuclear and perinuclear intracellular patterns. 
Of note, we need more cases of Gleason scores 6, 4+3, and 8-10. Of importance, the 
higher values of FASN tend to occur in EA patients. In the next quarter we will add the 
needed cases and adjust the racial mix. 
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Due to the large size of Figure IHC-9 and the email limitations, Figure IHC-
9 will be uploaded thru UAB’s dropbox.

Legend 
Figure IHC-9 Expression of FASN in the prostate. Panel A original magnification x200 
demonstrates an area where high grade PrCa (red block arrows) surrounds 
uninvolved prostate ducts (green block arrows). Panel B original magnification x200 
is an area in which foci of PrCa (red block arrows) are surrounded by lymphocytes 
which are not stained by FASN. In this high grade PrCa, the thin black arrows point 
to nuclei in which FASN is expressed. Panel C (x630) demonstrates high grade 
prostate cancer (red block arrows) with most nuclei that have no FASN staining as 
does Panel D (x630). However, some nuclei of both Panels C and D also contain 
nuclei which are stained with FASN. 
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Legend  
Figure IHC-10 Correlation of FABP5 expression with the expression of FASN in PrCa. This figure was 
prepared to test if the same changes observed at the mRNA level in which, for some case of PrCa, the 
mRNA of FABP5 and FASN were oppositely expressed (i.e., ↑ FASN, ↓ FABP5, or ↓FASN,  ↑ FABP5) were 
present at the protein level. This pattern was not observed for any of the intracellular components. What is 
observed is that higher FABP5 scores tend to be enriched in AAs and higher FASN scores are enriched in EAs 
(Table IHC-1). This is especially apparent for nuclear and perinuclear expression. Also, of note, the nuclear 
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Legend 
  
Figure IHC-11 Correlation of FASN with FABP1 in PrCa. As with Figure IHC-10, no apparent 
pattern of opposite expression between FASN and FABP1 was noted. A pattern of increased 
expression of FASN in EAs is apparent at the cytoplasmic, membrane, nuclear and 
perinuclear areas of the cell. 
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 Legend 

Figure IHC-12 Correlation of FABP5 with FABP1 in PrCa. Again, this does not appear to be an 
inverse correlation between the expressions of FABP5 with FABP1. Of note compared with 
FABP1, there is an relative increase in FABP5 expression in AAs at the cytoplasmic, 
membrane, nuclear, and perinuclear areas of malignant cells. This is especially apparent in 
the nuclear and perinuclear areas of the cells. 
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Table IHC-1 Comparison of FABP5 versus FASN Phenotypic Expression

Marker and Intracellular 
Component AAs EAs 

FABP5 Cutoff % ~ Cutoff % ~Cutoff 

Cytoplasmic 2.5 26 23 

Membrane 2.5 43 42 

Nuclear 2.0 35 19 

Perinuclear 2.5 35 26 

FASN 

Cytoplasmic 2.0 17 35 

Membrane 2.5 4 23 

Nuclear 1.0 34 29 

Perinuclear 2.0 26 42 
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FIGURE  MS-1 

T=53 N=32 514 896 

Filters 
 

Stats 

Legend 

Figure MS-1 

After filtering the data ~900 proteins were identified with 
<0.1% FDR. Of those, 514 proteins were found to be 
identified in >30% of patient specimens for each arm. We 
have found that at least 30% of samples per statistical arm 
must have quantifiable peptides in order to obtain robust 
analysis (we call this a commonality filter). However, for 
specific proteins of interest we do go back and pull out the 
data to identify potential proteins of interest. 
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FIGURE  MS-2
Systems Analysis

(GO Associated Localizations)

Legend
Figure MS-2
Systems analysis demonstrating the cellular components  from 
which the modulated proteins of prostate cancer are associated.
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FIGURE  MS-3
Systems Analysis

(GO Associated Processes)

Legend
Figure MS-3
Systems analysis demonstrating the biological process 
associated with the modulated proteins of PrCa.
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Legend 

FIGURE  MS-4
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FIGURE MS-5

EA=21 AA=10298 896
Filters 

Stats

Legend
Figure MS-5
After filtering the data ~900 proteins were identified with 
<0.1% FDR. Of those, 298 proteins were found to be 
identified in >50% of patient specimens for each arm. We 
have found that at least 50% of samples per statistical arm 
must have quantifiable peptides when one arm is limited as is 
the case here. The AA arm was limited to 8 patients and 
therefore we had to go with a limit of 4 patients with 
quantifiable data in order to obtain robust analysis (we call 
this a commonality filter). 
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TABLE  MS-1 
10 Proteins Increased in Tumor Tissues of 

AAs vs EAs 
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Of the 10 proteins increased in prostate cancer from AA patients compared to EA 
patients, 3 of the proteins may be involved in the aggressiveness of prostate 
cancer in AAs.  We found this encouraging and plan to increase the power of the 
study by macrodissecting and analyzing additional cases by mass spectrometry.

TABLE  MS-2 
21 Proteins Decreased in Tumor 
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FIGURE  MS-6 
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AAs vs EAs
(PrCa – p<0.05 for AAs vs EAs only) 

U-AA
T-AA
U-EA
T-EA

Legend
Figure MS-6
All values are indicated for those proteins that are significantly changed in PrCa 
tissues for AAs vs EAs.

FIGURE MS-7
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Legend 
Figure MS-7 
All values are indicated for those proteins that are significantly changed in 
PrCa tissues for AAs vs EAs. 

FFPE Prostate Tissue Biomarkers Compared Between AA vs. C 
(PCa • p<0.05 for AAvC only) 
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AAs vs EAs
(PrCa – p<0.05 for AAs vs EAs)

U-AA T-AA U-EA T-EA

U-AA
T-AA
U-EA
T-EA

FIGURE  MS-8 

Legend 

Figure MS-8 

This is just one example that was worth highlighting where 
all values are indicated for those proteins that are 
significantly changed in PrCa tissues for AAs vs EAs. 
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FIGURE  MS-9 
STRAP GO Analysis  for 

Significantly Changed Proteins 
(PrCa - AAs vs EAs)

Legend
Figure MS-9
Systems analysis demonstrating the cellular components of 
modulated proteins of PrCa between AAs vs EAs.
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FIGURE  MS-10 
STRAP GO Analysis  for 

Significantly Changed Proteins 
(PrCa - AAs vs EAs) 

Legend 

Figure MS-10 

Systems analysis demonstrating the molecular function of 
modulated proteins of PrCa between AAs vs EAs. 
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FIGURE  MS-11 
STRAP GO Analysis  for 

Significantly Changed Proteins 
(PrCa - AAs vs EAs) 
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Legend
Figure MS-11
Systems analysis demonstrating the biological process of 
modulated proteins of PrCa between AAs vs EAs.

FIGURE MS-12 
Network 1. SERPINA3 (ACT), 

Oncostatin M, BMP7, IL-6, 
Thrombopoietin
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Top Network with 19 protein 
hits: 
Regulation of….. 
 Response to stress 
 Immune response 
 Defense response 
 Response to stimulus 

Legend 

Figure MS-12 

This is an example of a system analysis for SERPINA3. 

Biopsy Diagnosis: 
High Grade PrCa

N = 22 

Biopsy Diagnosis: 
Low Grade PrCa

N = 18 

Biopsy Diagnosis: 
No PrCa
N = 43 

95%

5%

72%

28%

60%

40%

West African Ancestry 0.74 to 0.50West African Ancestry 1.0 to 0.75
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In our studies of prostate biopsies from our prostate biopsy study subjects, FABP5 and FASN mRNA 
expression showed patterns consistent with “outlier” PrCa subtypes. Further analysis of PrCa gene 
expression data available through Oncomine showed similar outlier patterns for FABP5 and FASN in 
at least four other independent studies. In our study subjects, the subgroup of cancers showing 
FABP5 super over-expression were predominant of AA origin, while the cancers showing FASN super 
over-expression were predominantly from EAs.  

GE Figure 1: Outlier gene expression patterns of  FABP5 and FASN in  PrCa biopsies from AA 
and EA subjects 

African American

European American
Top quartile

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80

FABP5 

FA
SN

 

GE Figure 2: Super-overexpression (10  fold or greater) may define two PrCa subgroups with 
different molecular phenotypes for  fatty acid processing/synthesis. Top quartile mRNA 
expression patterns for FABP5 and FASN in biopsies from AA and EA subjects are consistent 
with two PrCa subtypes that show an “either-or” super-overexpression at the mRNA level. In 
our study subjects, AA prostate cancers predominate in the subgroup showing the highest 
levels of FABP5 overexpression and EA prostate cancers in the subgroups showing the highest 
levels of FASN overexpression. 
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Meeting: Eighth AACR Conference on the Science of Cancer Health 
Disparities in Racial/Ethnic Minorities and the Medically Underserved 

Title: Improving the accuracy and diagnostic power of prostate biopsy for African 
American patients: the Birmingham Alabama Prostate Cancer (BAPrCa) Consortium 

Sandra M. Gaston1
; Soroush Rais-Bahrami 2

; Rick Kittles3
; Kerry Dehimer1

; Dennis Otali2
; 

Jeffrey W. Nix2; Peter N. Kolettis2
; George Adams4

; William E. Grizzle2
• 

1Tufts Medical Center, Boston, MA, 2University of Alabama at Birmingham, Birmingham, 
Alabama, 3University of Arizona, Tucson, Arizona, 4Urology Centers of Alabama, Homewood, 
Alabama. 

Study Purpose: Both incidence and mortality data show that the burden of prostate cancer 
(PrCa) is greater in African Americans (AA) than in European Americans (EA). 
Socioeconomic factors contribute to this health disparity, but do not fully account for 
observations that AA are more likely than others to be diagnosed with more aggressive and 
life threatening forms of PrCa. Prostate biopsies usually establish the diagnosis of PrCa and 
are used to estimate the extent of the disease (based on the number and location of cores 
with cancer and involvement of individual cores) and its potential aggressiveness (based on 
Gleason scores). Health policy groups recommend that men with limited low grade prostate 
cancer be managed by active surveillance (AS) rather than immediate surgical or radiation 
treatment. However, the standard-of-care prostate biopsy is limited by sampling error and 
the possibility that a high grade PrCa might have been missed is a significant concern for 
many patients who are considering AS; this concern is heightened for AA because of their 
higher risk of aggressive disease. Moreover, AA are more likely to be diagnosed with high 
grade/high stage prostate cancer that is not treated surgically and thus not well represented 
in molecular studies that utilize radical prostatectomy specimens. Our research team 
established the Birmingham Alabama Prostate Cancer (BAPrCa) Consortium with a major 
focus on the molecular analysis of prostate biopsies in order to increase the clinically 
actionable information that can be obtained from these specimens. We use an ancestry­
informed approach that is specifically designed to improve the accuracy and diagnostic 
power of prostate biopsy for AA patients. 

Experimental Procedures: The BAPrCa Consortium implemented an innovative prostate 
biopsy "tissue print" technology that permits collection of snap-frozen nitrocellulose blots of 
biopsy cores without diagnostically compromising these specimens. Tissue prints provide 
high quality RNA and DNA from biopsies from the full range of patients, including AAs whose 
cancer is too advanced at diagnosis for radical prostatectomy; this permits the molecular 
characterization of PrCa subtypes in men diagnosed with high volume/high grade disease 
who have not been adequately represented in previous molecular profiling studies. Our 
BAPrCa research protocols include informed consent for genetic ancestry admixture studies. 
Gene expression analysis of prostate biopsy tissue prints is correlated with histopathology 
and multiparametric prostate MRI. 

Results: Our data suggest that in the Birmingham area, higher prostate cancer risk in AA is 
associated with increasing proportion of West African (WA) ancestry, which may reflect the 
prevalence of population-specific genetic mutations or variations that contribute to the 
development of more aggressive disease. As a group, the men diagnosed with high grade 
PrCa showed a significantly higher level of WA ancestry than the men diagnosed with no 
cancer (P = 0.001). A similar pattern is observed in comparisons of AA men diagnosed with 
high grade cancer vs low grade PrCa. Inasmuch as our AIMs genotyping panel uses a small 



number of well-established AIMS markers, our observation of significantly increased risk of 
PrCa in AA men with high %WA AIMS ancestry may, if confirmed, have immediate potential 
clinical applications for improving prostate cancer screening and active surveillance. 
Moreover, gene expression profiles of biopsies from BAPrCa patients diagnosed with high 
volume/high grade PrCa revealed two subtypes of high grade PrCa with striking differences 
in the pathways that drive a shift in tumor fatty acid metabolism; one is a fatty acid 
synthase (FASN) dominant phenotype and the other a previously unrecognized fatty acid 
binding protein (FABPS) dominant phenotype. Our data suggest that the FABPS dominant 
PrCa subtype is more common in AA and the FASN dominant subtype more common in EA. 
These findings may provide the basis for more effective dietary interventions and targeted 
therapies for AA and EA patients with high grade PrCa. 

Conclusions: By utilizing innovative tissue print techniques for the molecular analyses of 
prostate biopsies and using an ancestry informed approach in our study designs, the 
Birmingham Alabama Prostate Cancer (BAPrCa) Consortium has identified new and 
potentially actionable PrCa signatures that may improve the accuracy and diagnostic power 
of prostate biopsy for AA patients. 
Category - Genitourinary Cancers 

Keywords- African Ancestry; Ancestry Admixture; Prostate Cancer Aggressiveness 
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Combined DNA-methylation intensity and clinical risk score stratifies patients for high-grade 
disease. 

Leander Van Neste, Grant Stewart, Sandra Marlene Gaston, William E. Grizzle, George W. Adams, Gary P 
Kearney, Jonathan I Epstein, David James Harrison, Alan W. Partin, Wim Van Criekinge; Maastricht University 
Medical Center, Maastricht, Netherlands; University of Edinburgh, Edinburgh, United Kingdom; Tufts Medical 
Center, Boston, MA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; 
Urology Centers of Alabama, Urology, Homewood, AL; New England Baptist Hospital, Boston, MA; Johns 
Hopkins University School of Medicine, Baltimore, MD; University of St. Andrews School of Medicine, St. 
Andrews, United Kingdom; The Johns Hopkins Hospital, Baltimore, MD; University of Ghent, Ghent, Belgium 

Abstract Text: 

Background: Prostate cancer (PCa) diagnostics remains challenging due to fear of over-diagnosis and 
overtreatment. Due to low accuracy of PSA too many men are biopsied that do not have a subsequent PCa 
diagnosis or that have indolent disease. Furthermore, persistent risk factors and fear of missed PCa leads 
to many unnecessary repeat biopsies. Most prostate tumors have epigenetic DNA-methylation aberrations, 
which display a field effect that can be observed in normal-appearing surrounding tissue, and that could 
help alleviate biopsy-sampling errors. Methods: A training cohort of methylation-positive men with a 
negative index biopsy followed by either a Gleason score (GS);:: 7 (n=43) or cancer-negative (n=226) repeat 
biopsy was evaluated. Using the initial negative biopsy, men were stratified for the likelihood of harboring 
high-grade PCa focusing on a methylation intensity algorithm involving GSTP1, RASSF1 and APC. This 
algorithm was validated in a cohort of 102 men, with either a PCa-free (n=20), GS6 (n=46), or GS2:7 (n=36) 
biopsies. Results: The methylation intensity-based algorithm was developed on Pea-negative index 
biopsies and optimized to predict the presence of GS2:7 cancer in a repeat biopsy. The methylation 
intensity was significantly higher in GS2:7 compared to PCa-free repeat biopsies (p<0.001). Men with GS6 
PCa detected upon repeat biopsy exhibited intermediate intensities. When combined into one model with 
clinical risk factors (age, pathology, ORE, PSA), an area under the curve (AUC) of 0. 762 was obtained, 
which was significantly higher than the AUC of PSA (0.574; p=0.004) or the AUC of the clinical risk as 
calculated by the PCPT risk calculator (0.618; p=0.029). In the validation set, an AUC of 0.818 was 
obtained, with higher intensities for men with GS2:7 disease compared to men with GS6 PCa (p=0.002). 
Conclusions: The risk score can identify clinically significant cancer in PCa-negative biopsies and is 
strongly correlated with the GS of Pea-positive biopsies. The risk score could better stratify men for the 
need for repeat biopsy and the risk of harboring occult clinically significant PCa. The same algorithm could 
be used to segregate likely under-graded men from active surveillance candidates. 

Title: Combined DNA-methylation intensity and clinical risk score stratifies patients for high-grade disease. 
Submitter's E-mail Address: I. vanneste@maastrichtuniversity. nl 
Is this a late-breaking abstract? No 
Is this abstract a clinical trial? No 
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Objectives: Significant racial disparities exist between African American (AA) 
and non-African American men in Gleason Grade at the time of prostate cancer 
(PCa) diagnosis. To better characterize this disparity we used multi parametric 
magnetic resonance imaging (mpMRI) and targeted biopsies as a tool to assist in 
PCa detection. 

Methods: Between January 2014 and August 2015, 177 patients who underwent 
mpMRI and MRI/ultrasound (US) fusion guided prostate biopsy and concurrent 
12-core biopsy were reviewed. They were stratified by race but also protocol 
entry criteria: (1) prior negative prostate biopsy, (2) active surveillance protocol, 
or (3) primary biopsy evaluation for abnormal DRE or elevated PSA. MRI studies 
with T2-weighted, diffusion weighed, and dynamic contrast enhancement 
sequences were evaluated and areas of suspicion were identified. Patients 
underwent MRI/US fusion biopsies of targets and concurrent standard 12-core 
biopsy. The number of targets with PC a, number of standard biopsies with PC a, 
grade identified, and distribution of tumors was calculated. 

Results Obtained: In our study, 38 AA males and 139 non-AA males underwent 
MRI/US fusion biopsies. PSA, age, and cancer detection on standard biopsy were 
not significantly different between groups. AA and non-AA men had a mean of 
2.58 and 2.74 targets identified, respectively(p=N.S). The efficacy of targeted 
biopsy vs standard biopsy in detection of PCa and higher grade disease was 
equivalent between AA and non-AA males(p=N.S.). When both targeted cores 
and standard cores found PCa, standard cores in AA males showed higher grade 
PCa than targeted cores (p<O.OO 1 ). 



Conclusions: African American males have been shown to have higher risk of 
PCa and higher grade disease, but in our patient cohort undergoing MRI/US 
fusion-guided biopsy, cancer detection stratified by grade was equivalent. In 
patients with PCa found on both standard and targeted biopsy techniques, AA 
patients had higher grade disease on standard biopsy cores, likely a result of the 
distribution of AA patients referred with already diagnosed PCa on AS, 
suggesting a selection bias favoring the posterior peripheral zone location of their 
tumors. 
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Translational Relevance 

Biomarkers are used in early detection, diagnosis, prognosis and risk assessment, in predicting responses 
to specific therapies and in evaluating therapeutic/preventive approaches (surrogate endpoints). Before 
biomarkers can be used clinically, they must be validated; however, in cancer there are few validated 
biomarkers for any of the above uses. Validation is a process that is not well understood by investigators 
and frequently biomarkers are described as validated when they have only begun validation. This 
manuscript describes and discusses a well-defined pathway with the steps that are necessary for validation 
of a biomarker for a specific use over a defined interval oftime. This manuscript will aid investigators in 
the validation of their biomarkers, will clarify approaches needed for validation and will reduce the waste 
of resources for biomarkers that appear to be not strong enough to be validated for a specific use. 
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Abstract 

Molecular biomarkers are required for improving the assessment of risk of disease, establishing the 
existence of disease, detennining prognosis and treatment, and the implementing personalized medicine, 
and their clinical validation is a key step in translational medicine. Although many published papers claim 
to report clinically useful prognostic biomarkers, there are emban·assingly few validated cancer 
prognostic biomarkers. There are many reasons for this situation, one of which is that researchers may not 
fully appreciate the subtleties of molecular biomarkers and may not follow the rigorous procedures that 
are necessary to translate basic scientific findings to the clinic. We propose a straightforward approach to 
validating a biomarker using a well-defined, three-stage method. The stages are: 1) identification, 
characterization, and evaluation, 2) data and model testing, and 3) independent prospective replication of 
results. Also discussed are several important issues affecting the validation of biomarkers such as 
statistical model stability, the definition of clinical events, and combining molecular biomarkers into 
signatures and pathways. The goal of this manuscript is to clarify the process of validation and to provide 
guidance to investigators performing translational biomarker research. 
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Introduction 

Molecular biomarkers are required for improving the assessment of risk of disease, establishing 
the existence of disease, determining prognosis and treatment, and the implementing personalized 
medicine (1-2), and their clinical validation is a key step in translational medicine (3-6). Validation is a 
rigorous process that requires a deep understanding of molecular biomarkers and their relationship to 
disease and an appreciation of the complexities inherent in their identification, testing, and replication (4). 

In the past twenty years there has been an exponential increase in molecular biomarker research 
with thousands of new gene and protein biomarkers reported each year. At last count there are over five 
hundred thousand papers indexed in PubMed for gene, protein, and molecular biomarkers. Although 
many of these papers claim to report clinically useful prognostic biomarkers, there are embarrassingly 
few validated cancer prognostic biomarkers (7 -1 0). There are many reasons for this situation (8-1 0), one 
of which is that researchers may not fully appreciate the subtleties of molecular biomarkers and may not 
follow the rigorous procedures that are necessary to translate basic scientific findings to the clinic (8-1 0). 
The result is studies replete with errors and a literature that contains incorrect, and many times even 
contradictory results (8-1 0). Because biomarkers are central to translational medicine, a failure to properly 
understand, assess, and utilize them has prevented their use in treatment, comparative benefit analyses, 
and in integrating individualized patient outcomes in clinical decision-making (8-11 ). 

The validation of molecular biomarkers has been a concern since the earliest days of molecular 
research. Over the last twenty years significant problems have been noted, and recommendations 
regarding solving these problems have been made (12), but few of these proposals have been adopted. 
Pepe et al. (13) proposed a model for clinical validation of biomarkers for the early detection for disease, 
yet subsequent publications on early detection suggest that the confusion did not recede after this 
publication ( 14-17). 

This manuscript proposes a straightforward, general method for validating biomarkers to assist 
investigators in their validation of molecular biomarkers. Because ofthe inherent complexity in analyzing 
biomarkers and the dynamic nature of the field, commentaries and general guidelines are provided. 

Validation of Biomarkers 

A molecular biomarker can be said to have been validated if it has been shown in an independent 
prospective replication study to reliably and accurately predict a specific outcome in a specified patient 
population over a defined time interval (1 ,3-4 ). At a minimum, a validated biomarker consists of a set of 
necessary and sufficient characteristics that uniquely identify the biomarker and includes the following: a 
detection and analysis protocol that results in high inter-laboratory agreement, a defined target patient 
population, a trained statistical model, i.e., a model whose parameters have been defined by the data that 
contains the biomarker, other relevant factors and the outcome of interest, and a quantitative statement of 
the accuracy of the biomarker at predicting the outcome of interest in the target population over the 
specified time interval (1,4). 

For the purposes of this discussion, "molecular" refers to any sub-cellular factor, including 
proteogenomic, transcriptional, and metabolic factors (18). "Biomarker" refers to both individual and 
combinations of biological factors, including panels, patterns, profiles, pathways, and signatures that are 
used to predict one of three outcomes, namely, risk of disease, the existence of disease, and prognosis (I). 
There are three types of prognostic biomarkers, defined in terms oftheir use, namely, natural history, 
which predicts the course of the disease if the patient never receives a therapy; therapy-specific, which 
predicts whether a particular therapy will benefit the patient; and post therapy, which predicts that the 
therapy the patient received benefited the patient ( 4). "Outcome" is the clinical event of interest, e.g., 
incident disease, response to therapy, recurrence, or death. Although knowledge of the biological function 
of a molecular biomarker can provide important basic science information, functional information is not 
necessary for using a biomarker to predict a clinical outcome (2). 
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Predictive accuracy refers to the relationship of a predicted value to a true value for each patient, 
across a population of patients. It has two components, discrimination (the correct ordering ofthe 
predictions) and calibration (how close the predicted value is to the true value). A very useful measure of 
discriminative accuracy is the receiver operating characteristic (ROC) method ( 19-21 ). We are less 
interested in the calibration of the model than the correct ordering of the predictions because poorly 
calibrated models can be corrected by performing a post-processor calibration (22) but there can be no 
recovery from the low accuracy of a model that poorly discriminates. 

Three Stages of Validation 

We propose three stages to biomarker validation: 1) identification, characterization, and 
evaluation, 2) data and model testing, and 3) independent prospective replication of results (Table 1) ( 4). 
Each stage must be successfully completed before moving to the next stage. Prior to beginning the 
clinical validation process the investigator should be satisfied that the biomarker has the potential to 
answer an important clinical question. In other words, does the biomarker appear to be related to the 
disease, does the relationship appear to be very strong, and could use of the biomarker have an impact on 
patient outcomes? 

For diseases in which the outcomes are easily predicted, no additional biomarkers are needed, and 
for diseases where there is no effective treatment, biomarkers will have little clinical utility. Additionally, 
the investigator should consider whether the biomarker is suitable for clinical use; in other words, is it 
relatively easily acquired and analyzed, is the analysis reproducible across laboratories, and is the 
acquisition and analysis of the biomarker relatively inexpensive. Further, will the biomarker be applicable 
to a sufficiently large number of patients so that its validation will make a clinical difference? Finally, the 
candidate biomarker should be examined in terms of whether it could add predictive accuracy when used 
with to the current biomarkers and whether it could eliminate one or more of the currently used 
biomarkers. If it neither adds predictive accuracy nor eliminates a current biomarker, then it is probably 
unnecessary. If the researcher believes that the evidence suggests that all these issues will be resolved in 
favor of the biomarker, then the validation process should proceed. 

The validation of molecular biomarkers should progress through three stages (4). Stage 1 has 
three components: identification of the biomarker, characterization of the biomarker in tenns of its 
specimen acquisition and analysis in its target population, and creation and evaluation of a multivariate 
supervised learning statistical model to determine the predictive power of the biomarker for a specific 
outcome over a specified time interval. 

During stage 1, the investigator learns about the biomarker, including assessing the practicality of 
the acquisition of the biological specimen, its accuracy in various clinical populations, trying different 
statistical methods, determining a threshold (cut-off point for a continuous variable) for the biomarker, 
and examining the effects of confounders on the biomarker's accuracy. Most of the theoretical, biological, 
and experimental work related to the clinical validation of a molecular biomarker occurs in the first stage 
and the determination is made in this stage as to whether the biomarker is sufficiently accurate so that is 
warrants proceeding to the next stage in the validation process. 

Stage 2, data and model testing, takes the final results of the first stage and attempts to implement 
and test them on another independent dataset from a different institution. This is an important stage 
because it reveals many of the unrecognized assumptions and biases that existed in the first stage. Stage 3, 
replication of results, is the critical stage since the clinical utility of the biomarker is established in this 
stage. Until the biomarker successfully completes the third stage, which requires an independent 
investigator, independent laboratory, and independent prospectively collected patient population, there is 
insufficient evidence that it can be applied to an important clinical problem. 

Stage 1, Identification, Characterization, and Evaluation (ICE): In the ICE stage, the 
investigator selects and assesses a biomarker. There is no restriction as to how the biomarker is 
discovered. One of the first steps in identifying a potential risk or diagnostic biomarker is to detennine if 
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the biomarker is expressed differentially in diseased versus non-diseased tissue, in other words, is it 
specific to the disease? The next step is to assess the biomarker's relationship to an outcome, i.e., risk of 
disease, diagnosis, or prognosis (1). Overall, there should be some evidence that the biomarker, as 
measured in solid tissue or in bodily fluids, is associated with the clinical outcome. 

At the completion of this stage the biomarker should be described in sufficient detail so that it can 
be unambiguously and reproducibly identified and measured by other investigators (including the 
acquisition, storage and analysis of the biological specimen), its analysis is documented, a disease is 
specified, a clinical population relevant to the biomarker is identified, a disease-related outcome is 
selected, and the time interval during which the biomarker is relevant to the outcome is provided. 

An example of a validated biomarker is the estrogen receptor (ER) of breast cancer (23). ER was 
initially described in terms of its measurement by radioimmunoassay, the specimen of malignant tissue 
and controls in which it was measured, the method of data analysis, the biomarker's relevance to a 
population of women with non-metastatic breast cancer, its disease related outcome, e.g., mortality due to 
breast cancer, and the time interval, e.g., I 0 year disease-specific mortality, and better survival (24). The 
presence of a certain level ofER expression in the tumor predicts that anti-hormonal therapy will be 
effective in reducing women's' probability of a recurrence and of dying from their breast cancer (23,25). 

Even though a single biomarker may be the primary focus of the validation, its clinical use will 
invariably rely on a multivariate model because the model must contain all the predictively relevant 
factors so that it can make accurate predictions (26-27). The goal of the model will be to contain all the 
independent, orthogonal predictors of the outcome. Further, the multivariate model will usually be related 
to an effective treatment, e.g., antihormonal therapy for ER expressing breast cancers, so that the 
biomarker predicts which patients will or will not respond to a specific therapy (28). 

An initial approach to the analysis is to create a dataset containing patients to be analyzed for the 
biomarker and to randomly split the patients into training and testing subsets. The reason to spilt the data 
set is because the model developed on a single dataset will always have a high accuracy when it is 
assessed using the exact same patients on which it was developed. This high accuracy is due to over 
fitting and it reduces the model's generalizability. Therefore, the accuracy of the model should be 
determined on another dataset. It should be observed, that splitting the data is less than optimal because 
the training and testing data are subsets of the same patient population and contain the same biases. (We 
will discuss assessing the model's accuracy independent data sets.) The training subset determines the 
relationship between the independent and dependent variables and establishes that relationship in a 
statistical model. The test subset measures the accuracy of that trained model. For large data sets that 
contain many clinical (binary) events, e.g., dead/alive, recurrence/no recurrence, a fifty-fifty split is 
reasonable. For smaller data sets the more important component is the correct modeling of the disease 
phenomena, so more data is allocated to the training subset than the testing subset. A useful heuristic for 
small datasets is to split the data into two-thirds to three-fourths for training and one-fourth to one-third 
for testing (28). 

The biomarker is modeled using an appropriate statistical method on the training dataset and its 
accuracy is tested on the testing dataset. During this stage, the investigator has knowledge of each 
patient's outcome and may examine the data, assess various statistical methods, add or remove 
biomarkers, and modify the analysis in any way. Various thresholds can be tested and the best one 
selected. There are no limitations on what may be done with the data or how the results are analyzed 
during this stage. 

The discriminative accuracy of the model that contains the biomarker as a variable is measured 
on the testing dataset by the receiver operating characteristic (ROC). This is a critical juncture, for it is 
here that investigators can take a wrong turn. There is an inclination to believe that the results obtained on 
the ICE testing dataset have clinical meaning, but they do not because the investigator has optimized the 
biomarker, examined and manipulated the data and the analysis, looked at the results, and through trial 
and error, determined the best threshold, patient population, statistical model, and outcome for the 
biomarker. The biomarker's accuracy on an ICE dataset is not a valid measure of biomarker's clinical 
utility because this stage has the potential to produce overly optimistic and biased results. So far the 

6 



Validation of molecular biomarkers 

investigator does not have valid results and neither the model nor its ROC developed in the ICE stage 
should be presented or published. 

How to report studies of biomarkers used as prognostic factors is beyond the scope of this paper, 
however, other publications have addressed reporting prognostic biomarkers including REMARK, a 
checklist of20 items (truncated to 11 items by some journal editors) that can be used to determine if a 
study of prognostic factors should be published (27,29-30), and STROBE-ME (31) that provides guidance 
on reporting observational molecular epidemiology studies. 

Focusing on an understanding the scientific process regarding biomarker validation, which is the 
goal of this paper, can be more useful to an investigator than performing a study guided by whether it will 
meet a set of publication criteria. In other words, although problems with performing a study and 
problems with its publication can overlap, if the performance of a study is scientifically valid there should 
be few reporting problems, whereas, if the study is incorrectly designed and performed no publication 
guidance can save it. 

Further, there are elements in some reporting approaches that may increase rather than decrease 
the quality and validity of publications on biomarkers. One example ofthis difficulty is the statement by 
Altman (27) that it is permissible to publish results after the investigator has looked at the data and used 
the resulting information to plan key features of the analysis to be perfomed using the same data. Our 
view is that data can only be looked at in the ICE stage, and then only with the understanding that the 
resulting ICE finding cannot be published. 

Typically, the accuracy of a biomarker decreases as it progresses through the validation stages. At 
the end of the validation process it must retain sufficient accuracy to be clinically useful. In other words, 
the accuracy observed in the ICE stage will almost always be higher than the final validated accuracy of 
the biomarker. In order to save a biomarker investigator time and resources we suggest the following 
approach. A validated biomarker should have an ROC of at least 0.65 (assuming a standard deviation of 
0.05 or less) to be clinically useful (2,32). Experience suggests that a biomarker will lose between 0.3 and 
0.5 of its discriminative accuracy as it progresses thorough the stages of validation. Therefore, the 
minimum ROC for a biomarker to move from the ICE stage to the next stage should be 0.75. The 
relevance of these numbers will become more apparent in the clinical utility section of this paper. 

Stage 2, Data and Model Testing (DMT): In this stage, the investigator uses the final 
characterization of the biomarker and statistical model derived from the ICE stage to test the biomarker. 
The researcher collects a new independent patient dataset (DMT dataset) from another investigator at a 
different institution (33). It includes the defined target patient population and appropriate biological 
samples for the measurement of the biomarker. The biomarker characteristics were determined based on 
the ICE study. The investigator then tests the ICE's final statistical model on the DMT dataset of patients. 
The critical component of this stage is the proper application of the final methods and results from the 
ICE stage to the new DMT patient population. The trained statistical model from the ICE stage can be 
tested only once on the DMT dataset. The DMT patients are run though the predictive model and the 
probability the outcome over the defined time interval for each patient is determined. The predicted 
outcomes are compared to the true outcomes and the predictive accuracy of the model is detennined and 
reported in terms of the model's ROC on the DMT patients. The results must be sufficiently accurate to 
justify moving to the third stage of the validation process. In this case, the minimum ROC required to 
progress to the next stage is 0.70. If the biomarker does not achieve an acceptable accuracy in the DMT 
stage the investigator should determine if this failure was due to one of the following: the characterization 
and analysis ofthe biomarker, the statistical model, the characteristics of the patient population, the 
treatments included in the analysis, the conditions of the study, or other factors. The researcher can return 
to the ICE stage at any time, improve the biomarker or the model, and retest once on the DMT dataset. If 
the researcher uses the results of the DMT stage to improve the performance of the biomarker, then 
another independent patient population must be obtained for the DMT stage (labeled DMT2 dataset). 

A successful evaluation of the biomarker does not mean that it has been validated because the 
same investigator who performed the ICE stage also performed its DMT stage and the dataset was 
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retrospectively created. At this point in the process many unknown and even unanticipated sources of bias 
may exist that can affect the power of the biomarker and the performance of the model, and therefore the 
accuracy and utility of the biomarker. For example, the investigator's method of dataset collection, 
biomarker analysis, and use of the statistical model are all subject to bias and error. Further, the datasets 
used in the first two stages are usually retrospective and subject to all the biases inherent in retrospective 
studies. Positive results of the DMT stage may be reported, but the report should contain the following 
explicit statement, "The reported biomarker results have not been validated and the biomarker is not ready 
for use in clinical practice." It is important that negative results of the DMT stage also be published ( 15). 

Stage 3, Replication of Results (ROR): Because the hallmark of science is replication, a 
different investigator with a prospective, independently collected dataset should replicate the results of the 
DMT stage. This process is similar in approach to the DMT stage. The final model from the ICE stage, 
the one that was successfully used in the DMT stage, is applied only once to the ROR dataset. The model 
makes its predictions for the ROR patients and these predictions are compared to the true outcomes. If the 
ICE stage results were reproduced in the DMT stage but not in the ROR stage, this suggests that either 
there was a bias in the datasets used in one or more of the stages of the validation process or there were 
problems with the performance of the biomarker assay. 

Clinical utility means that the biomarker improves the management and outcomes of patients 
(30). Determining the potential clinical utility of a biomarker is a complex concept (34). It includes, but is 
not limited to, the acquisition and analysis ofthe biomarker, the number of patients with the target 
disease, the severity of the target disease, the safety and efficacy of the treatment, and the accuracy of the 
test in predicting a therapy-specific benefit. Herein, the discussion of clinical utility is limited and only 
includes the accuracy of the biomarker. A necessary requirement for clinical utility is that the biomarker 
is significantly more accurate than chance prediction, i.e., an ROC of 0.50; thus the minimum biomarker 
accuracy of an ROC of 0.65, because lower accuracies are unlikely to surmount chance. It should be 
noted that accuracies of at least 0.70, and a standard deviation less than 0.05, are preferred. Increasing a 
low ROC requires either starting with a more powerful biomarker or reducing the variance of the 
predictions. 

Issues Related to Validating Biomarkers 

Biomarker Datasets: The datasets used for validation should include the current clinical 
predictive factors, the relevant confounders, and the effective treatments. They should have a sufficient 
number of patients and events for model stability (discussed subsequently), and the patients should be 
followed for a sufficient period oftime, defined by the clinical problem the biomarker is addressing, so 
that the predictions are clinically meaningful. 

Most biomarker studies are conducted using retrospective populations. These datasets have the 
advantages of being readily available with relatively long periods of follow-up, thus making them quick 
and much less expensive to acquire and use. The main disadvantages of retrospective data sets are: 1) they 
may contain biases associated with patient selection, or specimen acquisition and analysis, or treatment, 
2) they usually do not contain all the relevant predictors and confounders, i.e., there can be unmeasured 
covariates, 3) they almost always contain heterogeneous patient populations and therapies, 4) not all the 
patients may have been assessed for the candidate biomarker (i.e., appropriate biological samples may not 
be available), 5) the therapies are not uniformly applied across patients resulting in a surprising number of 
different treatment regimens, 6) they may contain patients treated with antiquated therapies and/or 
inadequate numbers of patients may have been treated with current therapies, and 7) they typically 
contain a great deal of missing data which can make them unsuitable for multivariate analysis. 

A key issue in retrospective data is the absence of biomarker values in some of the patients. The 
values could be missing completely at random but this is rarely the case (35). Usually a bias is at work. 
The investigator has a number of ways to deal with this problem, including only using the patients who 
have a biomarker value, imputing a central tendency biomarker value, or finding the specimens and 
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assessing the missing biomarker value. In terms of solving the missing data problem, finding the 
specimens and assessing the biomarker is usually the best approach. If this is not possible, then 
performing multiple imputation may be a useful alternative approach (36). In any event, if the missing 
biomarker values affect the validation results, for example, ifthere is an important bias at work in the 
data, it will be discovered in Stage 3 by a significant decrement in accuracy. Thus, retrospective studies 
are not definitive evidence of the accuracy and clinical utility of a biomarker. 

Prospectively collected populations avoid many of the weaknesses inherent to retrospective 
studies. A prospective study follows a defined population, it collects all the relevant variables and 
samples, it implements uniform biomarker detection methods and therapy regimens, and the patients have 
been followed for a pre-specified period oftime. The major limitations of prospective studies are: they 
have entry criteria that create a relatively homogeneous patient sub-population (in part to reduce patient 
variability), they require extensive financial and manpower resources, and they take a long time to 
complete. Further, they may not be generalizable to most patients with the disease because the patients in 
the study were a special sub-population, because of the study's tight clinical control, and because many 
patients in the real world will not receive the exact therapy offered in the trial. Due of the time and cost of 
prospective studies, retrospective studes are usually employed in the ICE and DMT stages, the results of 
which are used to justify the time and cost of a prospective replication study. 

Implicit in this discussion is the knowledge that prospective datasets are usually collected to 
evaluate a specific therapy. Their use in the ROR stage is based on the idea that not all the patients who 
receive the therapy will respond and that this differential clinical effect can be used to define the utility of 
the biomarker in predicting which patients will respond to the therapy (therapy-specific prognosis) and 
predicting which patients, after receiving the therapy, responded to it by a change in the biomarker value 
(post-therapy prognosis) ( 1 ). 

Statistical Model Instability: An important consideration in building statistical models is to 
avoid model instability. Model instability occurs when the relationship between the independent variable 
and the dependent variable is not linked strongly enough in the model. The result is that the model's 
parameter estimates vary over too great a range. It has been suggested that to avoid model instability there 
must be at least 10 events (defined subsequently) for each independent variable (37), however, for the 
analysis of the predictive power of molecular biomarkers 15-20 events provide a greater assurance of 
model stability. With this number of events, the relationship between each independent variable and the 
outcome can be reliably determined (to the extent that the independent variable is a strong predictor of the 
outcome). Alternatively, one can use the bootstrap method to test for model instability (38-39). 

Clinical events: A clinical event is defined as the least frequent clinical outcome (4). Thus, for a 
binary outcome, e.g., alive or dead, whichever occurs least often is the event rate. The optimal event rate 
for the analysis of a binary outcome is 50%. As the event rate diverges from 50% toward 0% or 100% it 
becomes easier to make predictions because a model will predict that the more frequent event will always 
occur and it will be correct more and more of the time. For example, in terms of percent correct, ifthe 
event rate is 10% the model will be correct 90% ofthe time if it always predicts the occurrence ofthe 
non-event. In other words, statistical models can learn to ignore the independent variables and "bet on the 
frequency" (4). In fact, in clinical conditions with very low event rates, it is rarely possible for the 
independent variables to do as well as predicting the outcome as betting on the frequency. This illustrates 
why an analysis cannot be based on an accuracy measure such as percent correct. The ROC adjusts for the 
event frequency. 

Combining molecular biomarkers: Although a detailed discussion of the acquisition and analysis 
of molecular factors for purposed other than biomarker validation is beyond the scope of this paper (40-
41 ), there are certain issues related to the validation of these biomarkers that must be addressed. One can 
combine molecular biomarkers under various rubrics including panels, patterns, profiles, signatures, and 
pathways. The goal of combining biomarkers is usually to increase predictive power beyond that afforded 
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by an individual molecular biomarker. There are at least two approaches to combining molecular 
biomarkers. One approach can be called "naive" because it groups biomarkers using a statistical 
algorithm that does not use any previously known information regarding the biomarkers or the 
relationships between the biomarkers. The idea is that the relationship between the biomarkers will 
become apparent through their statistical association. 

Another approach, which can be called "functional," captures the power inherent in functionally 
related biomarkers, such as membership in a biological pathway that is related to the disease process. The 
idea is that there is prior scientific knowledge that certain biomarkers are related to each other and to the 
disease and this previous knowledge can be used to inform the statistical model. In other words, naive 
groupings make use the numerical information in the dataset but they ignore all other information, 
whereas functional groupings use the numerical information in the dataset and, in addition, they take 
advantage of previous scientific knowledge regarding relations among biomarkers. 

A functional group can be any set of related biomarkers. There is no restriction on the composition 
of a functional group other than it must consist of factors that are related to the disease process. The idea 
is that a subset of the pathway factors will be active at any one time and thus are predictive of the course 
of the disease. Further, one would like to include multiple orthogonal pathways, i.e., each providing new 
information regarding the disease process, in order to further increase predictive power. Because of the 
multiplicity of molecular biomarkers that comprise a pathway, the functional approach can be an effective 
way to combine many related biomarkers. The biomarkers in the pathway can be integrated using partial 
least squares, principal components, or similar dimension-reduction strategies and the integrated 
biomarkers can be one variable in the multivariate statistical model. Thus, each orthogonal pathway can 
be represented as a variable in a multivariate model. Generally, functional groups, rather than individual 
biomarkers, have the greatest chance of being strongly predictive. 

Sometimes investigators create a group of genes, e.g., 1 0 genes, and claim that this is a unitary gene 
signature and the genes are necessary and sufficient to be the signature for some outcome. But when the 
researchers attempt to reproduce their finding in another study, instead of reproducing the entire group of 
significant genes, they find that only 6 of the genes are significantly associated with the outcome in the 
repeat study. They may wish to claim that the 6 genes are now the validated gene signature. The problem 
is that the researchers cannot claim that the signature is composed of 10 genes when only 6 of the 
signature genes can be reproduced, nor can they claim that the combination of 6 genes is a new, replicated 
signature. Clearly, one cannot have it both ways, one cannot claim that there is a validated gene pattern 
when the pattern does not replicate completely or abandon the pattern for another pattern, yet claim that 
the original signature was replicated. On the other hand, in a functional group, when one claims that a 
related set of genes is the predictive unit of analysis, it is not expected that all the genes in the group will 
always be significantly over or under expressed. 

One method for assessing the predictive power of a biomarker in a multivariate model is to remove 
the biomarker from the model and observe a change in predictive accuracy (28). In this approach each 
variable is, in turn, removed, assessed, and returned to the model. The idea is that if the biomarker is a 
powerful predictor a large decrement in accuracy will be observed when it is removed. It should be noted 
that this is a complex process since it also involves issues related to collinearly and levels of analysis. 
Analysis levels refer to the type of units being analyzed. For example, one can posit three levels of 
analysis in cancer, namely, epidemiologic, e.g., age, race, etc., anatomic and cellular, e.g., tumor size, 
histology, etc., and molecular-genetic, e.g., ER, PR, HER-2 ( 18). 

Time denomination of the biomarker: Predictions, i.e., the probability of the occurrence or non­
occurrence of an event, must always be time denominated (1 ,4). For example, the probability of an event 
occurring in five years is different than the probability of that same event occurring in ten years. There are 
two reasons why the prediction's duration must accompany its numerical estimate. First, time itself 
affects the probably of the outcome. For example, it may be more difficult to make predictions in the 
middle of the time interval (where the interval is bounded by the index date and the end of the study). 
Second, the biomarker may only be related to the disease ("active") at a particular time in the disease 
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process, rather than uniformly across the course of the disease. Thus, a biomarker may be useful in 
predicting an outcome at 2 years but not useful in predicting the same outcome at I 0 years. In other 
words, when a biomarker makes a prediction, that prediction is only relevant for a defined population, a 
specific outcome, and over a specified period oftime. Finally, lifetime predictions are rarely clinically 
useful because it is not clear what the duration of the patient's lifetime will be, therefore, the time interval 
of the prediction is unknown. 

Conclusion 

If we are going to model diseases in terms of their molecular characteristics, and these models are 
going to drive future advances in medical care, then translational science must produce clinically 
validated molecular biomarkers. Unfortunately, molecular biomarkers are subtle and complex entities, 
and their validation is challenging. Advances in the validation of clinically useful biomarkers requires an 
unambiguous scientific nomenclature, clearly described and defined methods, and clinically relevant uses 
if the molecular biomarkers are to significantly impact medical care. To minimize the reporting and use of 
biomarkers that cannot be validated a straightforward three-stage approach to biomarker validation is 
described. The three stages are: I) biomarker identification, characterization and evaluation, 2) data and 
model testing, and 3) replication of results. This provides a scientific approach that, if followed, offers a 
high degree of certainty that a validated biomarker will be a true and clinically useful predictor of disease­
related outcomes. 
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Table 1. Characteristics of validation 

Cate2ory Sta2e 1 Sta2e 2 Sta2e 3 
Investigator Original Original Independent 
Data Retrospective or Different retrospective Different prospective 

prospective or prospective 
Analysis Any Pre-specified Pre-specified 
Minimum Model 0.75 0.70 0.65 
Accuracy* 
Reporting results No Qualified Unqualified 

*Minimum model accuracy is the discriminative accuracy of the statistical model that includes the 
biomarker and the biomarker adds significant predictive accuracy to the model. 
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