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Final Report: Model-based optimal experimental design for com-
plex physical systems

Project duration: 1 September 2012 to 31 August 2015
Grant number FA9550-12-1-0420

Final report submitted by the Massachusetts Institute of Technology (MIT)

Chi Feng (PhD student), Xun Huan (PhD student), Youssef Marzouk (Faculty, PI)

1 Project Overview

Experimental data play an essential role in developing and refining models of physical systems.
Data are used to infer model parameters, to improve the accuracy of model-based predictions,
to assess the validity of models, and to improve design and decision-making under uncertainty.
Yet experimental observations can be difficult, time-consuming, and expensive to acquire. In this
context, maximizing the value of experimental observations—designing experiments to be optimal
by some appropriate measure—is a critical task. Experimental design encompasses questions of
where and when to measure, which variables to interrogate, and what experimental conditions
to employ. While theory and algorithms for optimal design have been developed for many linear
parameter estimation problems, rigorous and computationally tractable methods for optimal design
with nonlinear simulation-based models have been sorely lacking.

This project addresses open challenges in optimal experimental design (OED) for complex
physical systems, taking a Bayesian decision theoretic approach. Our focus has been on generi-
cally nonlinear systems and information theoretic design objectives, for which existing theory and
computational tools have been inadequate. As described below, our goal has been to develop
new mathematical formulations, estimation approaches, and approximation strategies
to make rigorous OED feasible for systems accessible only through computational simulation. Work
in this project had two major thrusts:

• Innovations in batch optimal experimental design, where all experiments are planned si-
multaneously before they are implemented. A key output of this thrust is a new multiple
importance sampling scheme for estimating expected information gain (EIG). EIG is a central
measure of the information due to an experiment, and our new estimator achieves multiple
orders of magnitude smaller error (bias and variance), for a given computational effort, than
previous schemes.

Coupled with this estimator is a new formulation for focused experimental design, i.e., exper-
imental design in the presence of nuisance parameters. Very often the goal of an experiment
is to learn about a particular quantity of interest, yet other aspects of the system remain
uncertain. Focused design maximizes the expected information gain in the marginal distri-
bution of the parameters of interest without ignoring these other uncertainties; it can lead to
very different design configurations than previous (unfocused) schemes. A natural extension
of focused experimental design is the notion of experimental designs that account for model
error, when model error is itself captured by a statisical inadequacy or discrepancy model.

• New formulations and computational methods for sequential optimal experimental design.
Typical current practice for designing multiple experiments uses suboptimal approaches:
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open-loop design that chooses all experiments simultaneously with no feedback of information,
or greedy design that optimally selects the next experiment without accounting for future ob-
servations and dynamics. By contrast, sequential optimal experimental design (sOED) is free
of these limitations.

We have rigorously formulated sOED as a dynamic programming (DP) problem, and devel-
oped new numerical tools to enable DP in the context of nonlinear models with continuous
(and often unbounded) parameter, design, and observation spaces. Two major techniques are
employed to make solution of the DP problem computationally feasible. First, the optimal
policy is sought using a one-step lookahead representation combined with approximate value
iteration. This approximate dynamic programming method couples backward induction and
regression to construct value function approximations. It also iteratively generates trajecto-
ries via exploration and exploitation to further improve approximation accuracy in frequently
visited regions of the state space. Second, transport maps are used to represent belief states,
which reflect the intermediate posteriors within the sequential design process. Transport
maps offer a finite-dimensional representation of these generally non-Gaussian random vari-
ables, and also enable fast approximate Bayesian inference, which must be performed millions
of times under nested combinations of optimization and Monte Carlo sampling.

Collectively, this work has advanced the state of the art in optimal experimental design, yielding
new computational approaches applicable to a wide range of Air Force relevant problems, ranging
from object detection and inverse scattering to UAV path planning. The technical accomplishments
are detailed below.

2 Technical Accomplishments

2.1 Efficient methods for focused experimental design

We examine the optimal design of experiments when the experimental goal is the inference of a
subset of model parameters. In many scenarios, models have physical parameters and tuning param-
eters, but we may wish to prioritize information gain in the physical parameters over information
gain in the tuning parameters.

We formulate the experimental design problem in a decision-theoretic framework where the ob-
jective function is the expected information gain in only the parameters of interest. In a Bayesian
setting, the information gain in the parameters of interest is represented by the difference in infor-
mation carried by the prior and posterior distributions, which reflect our knowledge of the model
parameters before and after observing data, respectively. Unlike existing formulations, we look at
the information gain in the marginal distributions of the parameters of interest—where the influence
of other so-called nuisance parameters have been integrated out—so that our objective function
only reflects information gain in the parameters of interest. This allows us to exploit tradeoffs
in learning between subsets of model parameters which may be overlooked if our objective were
information gain in all of the model parameters.

In practice, most experimental design problems do not yield themselves to a fully analytic
treatment of the expected utility. Existing approaches for estimating the expected information gain
suffer from significant limitations due to computational expenses where a two order-of-magnitude
gain in computational efficiency would be required even to discriminate among the enumerated
designs. To this end, we have developed an efficient layered, incremental multiple importance
sampling scheme for estimating the expected information gain that has the requisite orders-of-
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magnitude reduction in estimator error required to make solving the exact optimal design problem
tractable.

Instead of using a naive Monte Carlo estimator which draws samples from the prior distribu-
tion to estimate the posterior quantities of interest—which can be extremely inefficient when the
prior and the posterior differ significantly, as is the case when data are informative—our approach
incrementally approximates the posterior distribution using information from existing Monte Carlo
samples that would have been discarded by the naive estimator, and remains asymptotically unbi-
ased by using the posterior approximations indirectly as biasing distributions for unbiased impor-
tance sampling estimates. With this approach, we not only observe significant pointwise reduction
in bias and variance, but we also observe a reduction in the sensitivity of the estimator bias with
respect to the experimental design, which is especially important in the context of optimal design
where correlations between the bias in the objective function and the design variable can result in
suboptimal results.

We used our approach on two experimental design problems, a 4-dimensional linear Gaussian
problem where three of the four parameters are nuisance parameters. The gain matrix has entries
that are functions of the 1-dimensional design parameter that were chosen to create a clear tradeoff
between designs. In Figure 1, we observe the orders-of-magnitude decrease in the estimator error,
and how using the new approach allows us to find the correct optimal design at d = 1. The second
example describes a Mössbauer spectroscopy experiment, where the goal is to choose measurement
locations on the horizontal axis that result in data that are informative for inferring the parameters
that describe an absorption peak. In Figure 2, we plot the posterior densities upon observing
simulated data, and observe that the variance in the marginal densities for the parameters of
interest are smaller when we explicity target those parameters in our focused experimental design
framework.

3
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Figure 1: (Above) Estimated expected in-
formation gain for a 4D linear Gaussian
model. Red is naive approach, and green
is our approach. Purple is the theoretical
lower bound. Note the incorrect location
of the maximum when using the naive ap-
proach. (Left) Mean square error. Note
the two  orders-of-magnitude decrease in
MSE.
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Figure 2: Our approach successfully captures the tradeoff in targeting information gain in different model
parameters.
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2.2 Sequential optimal experimental design

2.2.1 Formulation

Common practice for designing a sequence of experiments uses suboptimal approaches: batch design
that has no feedback, or greedy (myopic) design that optimally selects only the next experiment
without accounting for future effects and dynamics. The sequential optimal experimental design
(sOED) has the advantages of

1. making use of newly acquired information during the design process to guide designs of
subsequent experiments (i.e., feedback), and

2. taking into account of all future effects and dynamics.

We now seek the optimal policy, which consists of functions that decide what the best design is,
given the updated current situation (state) (see Figure 3).

Experiment 0

Experiment 1

...

Experiment N − 1

Optimizer
(controller)

ObservationsDesign

(a) Batch (open-loop) design

System dynamics

Policy (controller)

StateDesign

Observations

(b) Sequential (closed-loop) design

Figure 3: Batch design exhibits an open-loop behavior, where no feedback is involved, and the observations
from any experiment do not affect the design of other experiments. Sequential design exhibits a closed-loop
behavior, where feedback occurs, and the data from one experiment are used to guide the design of future
experiments. “System dynamics” is the process that updates the state from one experiment to the next.

The sOED problem for N experiments involves finding the optimal policy π∗ ≡ {µ∗0, . . . , µ∗N−1},
that maximizes the expected utility (reward):

π∗ = max
π

Ey0,...,yN−1|π

[
N−1∑
k=0

gk (xk, yk, µk(xk)) + gN (xN )

]
. (1)

Here dk = µk(xk) is the design for the kth experiments, yk is the observations, xk is the state
(composed of a belief state component xk,b that describes uncertainty, and physical state component
xk,p that describes deterministic factors), gk is the stage reward, and gN is the terminal reward.
The states must adhere to the system dynamics xk+1 = Fk(xk, yk, dk), and the policy is subject to
any design space constraints µk(xk) = dk ∈ Dk.

We focus on designing experiments to infer the model parameter θ from noisy observations yk.
To achieve this, we adopt a Bayesian perspective, and choose the belief state to be the posterior
xk,b = θ|d0, y0, . . . , dk−1, yk−1, system dynamics to be Bayes’ theorem, and terminal reward to be
the Kullback-Leibler (KL) divergence from the final posterior to the initial prior—an information-
measuring criterion.
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Equation 1 is difficult to solve directly, but can be expressed in an equivalent form using the
principle of dynamic programming (DP), that is easier to tackle:

Jk(xk) = max
dk∈Dk

Eyk|xk,dk [gk(xk, yk, dk) + Jk+1 (Fk(xk, yk, dk))] (2)

JN (xN ) = gN (xN ). (3)

The Jk(xk) functions are called value functions, and the optimal policy is described by the argument
that maximizes the right hand side of these equations.

2.2.2 Approximate dynamic programming

Equations 2 and 3 must be solved approximately and numerically using approximate dynamic pro-
gramming (ADP) techniques. We take an approach using the “one-step lookahead” representation,
whose underlying idea is to construct functions J̃k that approximate Jk, for all k. Once these ap-
proximate value functions J̃k are constructed, the approximate optimal policy can then be extracted
via one step of lookahead:

µk(xk) = argmax
dk∈Dk

Eyk|xk,dk
[
gk(xk, yk, dk) + J̃k+1 (Fk (xk, yk, dk))

]
(4)

for k = 0, . . . , N − 1, and with J̃N (xN ) ≡ gN (xN ).
We choose to numerically represent J̃k using a simple and intuitive parametric linear architec-

ture, and construct them through the backward induction procedure:

J̃k(xk) = r>k φk(xk)

= Π

{
max
dk∈Dk

Eyk|xk,dk
[
gk(xk, yk, dk) + J̃k+1 (Fk (xk, yk, dk))

]}
= Π Ĵk(xk). (5)

Here rk is a vector of scalar coefficients, and φk are basis functions or features. The induction
procedure starts at the end with J̃N (xN ) ≡ gN (xN ) and then proceeds backwards from k =
N − 1 to k = 1. A suitable selection for the approximation operator Π is linear regression, which
offers flexibility for generating regression points from a combination of exploration and exploitation
strategies. We further developed an iterative method to improve the exploitation strategy as we gain
a better understanding of the characteristics of good policies from samples generated throughout
the procedure.

2.2.3 Transport maps

While ADP addresses the optimality aspect of sOED, another major difficulty remains: to numer-
ically represent non-Gaussian, continuous random variable posteriors (i.e., belief states) that arise
naturally from inference for nonlinear models. In particular, we need to use a representation that
allows Bayesian inference to be performed many (millions of) times in a feasible manner under
different candidate designs, observations, and priors within the ADP procedure. A suitable choice
is the transport map, that is a function T that transforms a random variable z to another random

variable ξ such that ξ
i.d.
= T (z), where

i.d
= denotes equality in distribution. For example, Figure 4

illustrates a log-normal random variable z mapped to a standard Gaussian random variable ξ via

ξ
i.d.
= T (z) = ln(z).
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Figure 4: A log-normal random variable z can be mapped to a standard Gaussian random variable ξ via

ξ
i.d.
= T (z) = ln(z).

A special form of multivariate transport map that has a triangular structure—the Knothe-
Rossenblatt (KR) map—is particularly useful for performing Bayesian inference repeatedly. For
example in one experiment, with d being the design variable, y the observations, and θ the parameter
to be inferred, we can construct a KR map on the joint distribution of (d, y, θ): ξ1

ξ2
ξ3

 =

 Td(d)
Ty|d(d, y)

Tθ|y,d(d, y, θ)

 , (6)

where ξ1, ξ2, ξ3 are i.i.d. standard Gaussians. Because of the triangular structure of variable depen-
dence, Bayesian inference with a particular design d∗ and observations y∗ simply involves condition-
ing (i.e., substituting) these values into the last row of the joint map, to arrive the corresponding
posterior map. As a result, this inference via conditioning process can be repeated for different
designs and observations at an extremely low computational cost. This concept is extended to
multiple experiments, leading to a higher-dimensional joint map that allows Bayesian inference to
be carried out easily for any number of experiments. The joint map is also easy to construct, as
they involve solving a convex optimization problem that can be easily separated into independent
sub-problems for each dimension, and requires only samples from the target distribution which
is available through the aforementioned exploration and exploitation. The use of transport maps
plays a crucial role in making the overall sOED method tractable.

2.2.4 Results

The sOED method is successfully demonstrated on realistic applications of optimal sensor place-
ment. In the scenario of a chemical/biological contaminant spill, we design a sequence of locations
for measuring contaminant concentrations for the purpose of inferring the contaminant source
location. This sequential design problem requires a balance of planning ahead for future wind
conditions, attaining high measurement signals, and reducing vehicle movement costs, which is
captured withing the method developed.

In one example, we design four experiments in one-dimensional physical space. Figure 5 displays
distributions of total rewards from 1000 simulated trajectories as a function of iteration for refining
the exploitation measure, and the expected utility (mean) values are connected by the dashed blue
line. A clear advantage of iteration is observed as the expected utility increases sharply after the
first stage. Indeed, a good policy is achieved after the second iteration, and the expected utility
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values of sOED are much higher than that achieved from an exploration policy (−2.0). Additionally,
we have also demonstrated the advantages of sOED over batch OED and greedy design approaches
(results not shown here), further supporting the near-optimality of our results.
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Figure 5: 1D contaminant source inversion problem: total reward distributions from 1000 simulated tra-
jectories over increasing iterations of exploitation update `. The blue dashed line connects the mean of the
distributions.

In a more challenging setting, designing three experiments in two-dimensional physical space, the
histograms for designs d0, d1, and d2 from 1000 simulated trajectories are shown in Figure 6. Each
dk has two components, corresponding to the two physical space dimensions. The movement trend
of the sensor corresponds to the expectation of future wind conditions that starts blowing to the
north and northeast. The pairwise and marginal distributions from samples used to construct the
joint map, and samples generated from that map are shown in Figure 7. The distributions exhibit
extremely non-Gaussian, heavy-tail, and even multi-modal behavior. Nonetheless, the map is still
able to capture these characteristics well, with the map-generated distributions (right) matching
well with their counterparts that were used to construct the map (left).

Figure 6: 2D contaminant source inversion problem: dk histograms from 1000 simulated trajectories.
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Figure 7: 2D contaminant source inversion problem: pairwise and marginal distributions from samples
used to construct the exploration map (left), and from samples generated from the resulting map (right).
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mental design via approximate inference.” ISBA 2014, Cancun, Mexico, July 2014.

17. C Feng and YM Marzouk. “Optimal Bayesian experimental design in the presence of model
error.” International Society for Bayesian Analysis (ISBA) 2014 World Meeting. Cancún,
Mexico. July 2014.

18. YM Marzouk. 6th International Conference on Advanced Computational Methods in Engi-
neering (ACOMEN). Plenary speaker. Ghent, Belgium. June 2014.

10
DISTRIBUTION A: Distribution approved for public release.



19. C Feng and YM Marzouk. “Optimal Bayesian experimental design in the presence of model
error.” SIAM Conference on Uncertainty Quantification (UQ14) (invited minisymposium
presentation). Savannah, GA. April 2014.

20. X Huan and YM Marzouk. “Sequential Experimental Design using Dynamic Programming
and Optimal Maps.” SIAM Conference on Uncertainty Quantification 2014 (invited min-
isymposium presentation). Savannah, GA, April 2014.

21. YM Marzouk. University of Warwick, Mathematics Institute. Coventry, United Kingdom.
December 2013.

22. YM Marzouk. University at Albany-SUNY. Department of Physics. Albany, NY. November
2013.

23. X Huan and YM Marzouk. “Optimal Bayesian Sequential Experimental Design using Ap-
proximate Dynamic Programming.” INFORMS Annual Meeting (invited presentation). Min-
neapolis, MN, October 2013.

24. YM Marzouk. University of Massachusetts Dartmouth, Department of Mathematics and
Center for Scientific Computing and Visualization Research. Dartmouth, MA. October 2013.

25. YM Marzouk. 38th Woudschoten Conference on Numerical Mathematics (invited keynote
lectures). Zeist, The Netherlands. October 2013.

26. X Huan and YM Marzouk. “Optimal Sequential Experimental Design using Gaussian Sum
Particle Filtering.” 12th U.S. National Congress on Computational Mechanics, Raleigh, NC,
July 2013.

27. YM Marzouk. United Technologies Research Center. East Hartford, CT. May 2013.

28. YM Marzouk. Workshop on “Numerical Methods for Uncertainty Quantification” (invited
lecture). Hausdorff Center for Mathematics. Bonn, Germany. May 2013.

29. YM Marzouk. Clarkson University, Department of Mathematics. Potsdam, NY. April 2013.

30. YM Marzouk. University of Chicago, Scientific and Statistical Computing Seminar. Chicago,
IL. February 2013.

31. X Huan and YM Marzouk. “Approximate Dynamic Programming for Sequential Bayesian
Experimental Design.” SIAM Conference on Computational Science and Engineering 2013
(invited minisymposium presentation). Boston, MA, February 2013.

32. YM Marzouk. “Surrogate modeling for uncertainty quantification.” UES/Air Force Research
Laboratory conference on Data Fusion for the Detection of Rare and Anomalous Events.
Dayton, OH. December 2012.

33. YM Marzouk. Iowa State University, Department of Mechanical Engineering. Ames, IA.
November 2012.

34. YM Marzouk. National Research Council (NRC), Workshop on “Data Collection in Support
of Modeling and Simulation.” Washington, DC. November 2012.

35. YM Marzouk. Air Force Research Laboratory, Materials and Manufacturing Directorate.
Dayton, OH. October 2012.
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36. YM Marzouk. Brown University, ICERM (Institute for Computational and Experimental
Research in Mathematics) Workshop on Uncertainty Quantification. Providence, RI. October
2012.

37. YM Marzouk. University of California-Berkeley, Applied Mathematics Seminar. Berkeley,
CA, October 2012.

Minisymposium organization

1. Minisymposium on “Advances in optimal experimental design for physical models.” SIAM
Conference on Uncertainty Quantification (UQ16). Lausanne, Switzerland. April 2016. Or-
ganizers: X. Huan, Q. Long, Y. Marzouk, R. Tempone. (12 speakers)

2. Minisymposium on “Advances in optimal experimental design.” International Congress on
Industrial and Applied Mathematics. Beijing, China, August 2015. Organizers: X. Huan, Q.
Long, Y. Marzouk, R. Tempone. (4 speakers)

3. Minisymposium on “Advances in optimal experimental design.” SIAM Conference on Uncer-
tainty Quantification (UQ14). Savannah, GA. April 2014. Organizers: X. Huan, Y. Marzouk,
L. Tenorio, G. Terejanu. (14 speakers)

Awards

1. X Huan was selected for a Natural Sciences and Engineering Research Council of Canada
(NSERC) postgraduate scholarship, 2012–13.

Software releases

1. Experimental design capabilities currently in development branches of MUQ (MIT Uncer-
tainty Quantification Library), http://muq.mit.edu; release in main branch expected early
2016.
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