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Joint Filter and Waveform Design for Radar

STAP in Signal Dependent Interference
Pawan Setlur, Member, IEEE, Muralidhar Rangaswamy, Fellow, IEEE

Abstract

Waveform design is a pivotal component of the fully adaptive radar construct. In this paper we

consider waveform design for radar space time adaptive processing (STAP), accounting for the waveform

dependence of the clutter correlation matrix. Due to this dependence, in general, the joint problem of

receiver filter optimization and radar waveform design becomes an intractable, non-convex optimization

problem, Nevertheless, it is however shown to be individually convex either in the filter or in the waveform

variables. We derive constrained versions of: a) the alternating minimization algorithm, b) proximal

alternating minimization, and c) the constant modulus alternating minimization, which, at each step,

iteratively optimizes either the STAP filter or the waveform independently. A fast and slow time model

permits waveform design in radar STAP but the primary bottleneck is the computational complexity of

the algorithms.

Index Terms

Waveform design, waveform scheduling, space time adaptive radar, Capon beamformer, constant

modulus, convex optimization, alternating minimization, regularization, proximal algorithms.

I. INTRODUCTION

The objective of this report is to address waveform design in radar space time adaptive processing

(STAP) [1]–[4]. An air-borne radar is assumed with an array of sensor elements observing a moving

target on the ground. We will assume that the waveform design and scheduling are performed over one

CPI rather than on an individual pulse repetition interval (PRI).To facilitate waveform design, we develop
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a STAP model considering the fast time samples along with the slow time processing. This is different

from traditional STAP which generally considers the data after matched filtering [1], [2]. Nonetheless

STAP research efforts have been proposed which consider inclusion of fast time samples in space time

processing, see for example [1], [5], [6] and references therein.

In line with traditional STAP, we formulate the waveform design, as an minimum variance distortion-

less response (MVDR) type optimization [7]. As we will see in the sequel, inclusion of the waveform

increases the dimensionality of the correlation matrix. Classical Radar STAP is computationally expensive

but the waveform adaptive STAP increases the complexity by several orders of magnitude. Therefore,

benefits of waveform design in STAP come at the expense of increased computational complexity. The

noise, clutter, and interference are modeled stochastically and are assumed to be mutually uncorrelated.

Endemic to airborne STAP, clutter is persistent in most range gates resulting from ground reflections.

The clutter correlation matrix is a function of the waveform causing the joint reliever filter and waveform

optimization to be non-convex with no closed form solution. However, it is analytically shown here that

the STAP MVDR objective is convex with respect to (w.r.t.) the receiver filter for a fixed but arbitrary

waveform, and vice versa. Therefore, alternating minimization approaches arise as natural candidate

solutions. As such, alternating minimization itself has a rich history in the optimization literature, possibly

motivated directly from the works in [8]–[11], with some not so recent seminal contributions [12]–[15]

and recent contributions (not exhaustive) [16], [17]. Other celebrated algorithms such as the Arimoto-

Blahut algorithm to calculate channel capacity, and the expectation-maximization (EM) algorithm are all

examples of the alternating minimization.

Here we address the joint optimization problem via a constrained alternating minimization approach,

which has the favorable property of monotonicity in successive objective evaluations. Convergence,

performance guarantees and other properties pertinent to this algorithm are further addressed. Full rank

correlation matrices are required in implementing the constrained alternating minimization approach. In

practice, radar STAP contends with rank deficient correlation matrices due to lack of homogeneous training

data. In this case, the constrained alternating minimization approach is not implementable. To addresses

this issue, we consider regularization of the STAP objective via strongly convex functions resulting in the

constrained proximal alternating minimization [18]. Proximal algorithms, originally proposed by [19], [20]

are well suited candidate techniques for constrained, large scale optimization [16], [21]–[24], applicable

readily to our waveform adaptive STAP problem. In fact, as we will see subsequently the constrained

proximal alternating minimization results in diagonal loading solutions, and for optimization-specific

interpretations, the load factors may be related to the Lipschitz constants (w.r.t. the gradient).

2 
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Signal dependent interference: Chicken or the Egg? The fundamental problem in practical radar

waveform design is analogous to the chicken or the egg problem. Signal dependent interference, i.e.,

clutter, can only be perfectly characterized by transmitting a signal. Herein lies the central problem.

The estimated clutter properties could therefore be dependent on what was transmitted in the first place.

This is especially true for frequency selective and dispersive clutter responses frequently encountered

in radar operations, for example, urban terrain. Therefore, any claim of optimality is myopic. Sadly the

same problem would also persist when the target impulse responses are used to shape the waveform.

Unfortunately, and as famously stated by Woodward [25], [26], “. . . what to transmit remains substantially

unanswered” [27], [28].

We will assume like other works in the signal dependent interference waveform design [29]–[37], that

the clutter response is known a priori. To a certain extent, this may be obtained via a combination of,

either previous radar transmission [38], or assuming that the topography is known from ground elevation

maps, synthetic aperture radar imagery [39], or access to knowledge aided databases as in the DARPA’s

KASSPER program [40].

Literature: The signal dependent interference waveform design problem has had a rich history [41],

[42]. Iterative approaches but not limited alternating minimization type techniques have been the subject

of work in [29]–[37], [43] for SISO, MIMO radars but never in radar STAP. Waveform design for STAP

without considering the signal dependent interference clutter was addressed in [44], where the authors

premise is that the degrees of freedom from the waveform could be used in suppressing the interference

and noise, while the degrees of freedom from the filter could be used exclusively for suppressing the

clutter. A joint STAP waveform and STAP filter design was never considered. Further, their premise is

erroneous for the following several reasons. For any radar application, but especially in STAP, obtaining

range cells which are interference free or clutter free is impossible. Nonetheless assuming this was

possible, then, the weight vector for exclusive clutter suppression uses the inverse of the clutter inter-

ference correlation matrix only, and not, as stated in [44], the inverse of the (clutter+noise+interference)

correlation matrix. Furthermore such a detector may have disastrous consequences, because control in

the false alarm rates becomes impossible due to the self induced coloring on other range cells which are

contaminated by the clutter plus interference plus noise.

Other contributions in waveform design and waveform scheduling for extended targets in radar using

information theoretic measures, tracking etc can be seen in [45]–[50], [51]–[56], and the references

therein.

We outline some of the contributions for the signal dependent interference problem which have thus

3 
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far appeared in the literature.

Approaches different from Alternating minimization: In [29], [32], [34], [43] a single sensor radar was

assumed. In [29], the authors used the symmetry property of the cross-ambiguity function to design an

iterative algorithm for the signal dependent interference problem. Their algorithm cannot be modified

easily for the multi-sensor framework and when noise is in general colored. The problem was addressed

from a detection perspective in [32], and lead to a waterfilling [47] type solution. A similar waterfilling

type metric albeit in the discrete time domain was obtained in [43], where the authors also imposed

constant modulus and peak to average power ratio (PAPR) waveform constraints. An iterative algorithm

was derived in [34], where monotonic increase in SINR was not guaranteed, and was shown that waveform

could always be chosen as minimum phase.

Alternating minimization type approaches: In [33], a MIMO sensor framework was employed, con-

vergence was not addressed, convexity was not proven, and no practical waveform constraints were

imposed on the design. See also in this report, Section III, paragraph following Rem. 5 where some

of the conclusions drawn in [33] are further discussed. Alternating minimization was used in [35]–[37]

but for reasons unknown, was called as sequential optimization. In [35], [36], a SISO model advocating

joint filter and radar code design (after matched filtering) was employed. Analysis of the convexity of

the objective in the individual filter or radar code was never shown. Convergence in iterates was not

proven formally, neither was it shown via simulations. The constant modulus constraint was not invoked

directly but through a similarity constraint. In [37], the authors used a MIMO radar framework, and

relaxation techniques were employed in their iterative algorithm. Neither convergence nor convexity was

demonstrated analytically. Constant modulus constraint and similarity constraints were enforced separately

in the waveform design.

Notation: The variable N is used interchangeably with the number of the fast time samples, as well

as, the conventional dimension of arbitrary real or complex (sub)spaces. Its meaning is readily interpreted

from context. The symbol || · || always denotes the l2 norm. Vectors are always lowercase bold, matrices

are bold uppercase, λ is typically reserved for eigenvalues (with λo being an exception it used for the

spatial frequency, defined later) and γ is strictly reserved for the Lagrange multipliers (γpq is an exception

used for the radar cross section of the p-th scatterer in the q-th clutter patch). Solutions to the optimization

are denoted as (·)o, i.e. the subscript o. the complex conjugate is denoted with (·)∗. The set of reals,

complex numbers, and natural numbers are denoted as R,C,N, respectively. Other symbols are defined

upon first use and are standard in the literature.

Organization: The STAP fast time-slow time model is delineated in Section II, and in Section III, the

4 
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filter and waveform optimization is derived. Some preliminary simulations are presented in section IV

and the resulting conclusions are drawn in Section V.

II. STAP MODEL

The radar consists of a calibrated air-borne linear array, comprising M sensor elements, each having

an identical antenna pattern. Without loss of generality, assume that the first sensor in the array is the

phase center, and acts as both a transmitter and receiver, the rest of the elements are purely receivers.

The first sensor is located at xr ∈ R3 and the ground based point target at xt ∈ R3. The radar transmits

the burst of pulses:

u(t) =

L∑
l=1

s(t− lTp) exp(j2πfo(t− lTp)), t ∈ [0, T ) (1)

where, fo is the carrier frequency, and Tp = 1/fp is the inverse of the pulse repetition frequency, fp. The

pulse width and bandwidth are denoted as T , B, respectively. The coherent processing interval (CPI)

consists of L pulses, each of width equal to T . The geometry of the scene is shown in Fig. 1, where θt

and φt denote the azimuth and elevation. The radar and target are both assumed to be moving.

For the time being, we ignore the noise, clutter and interference and assume a non-fluctuating target.

Then the desired target’s received signal for the l-th pulse, and at the m-th sensor element is given by

sml(t) = ρts(t− lTp − τm)e(j2π(fo+fdm)(t−lTp−τm)) (2)

where the target’s observed Doppler shift is denoted as fdm, and its complex back-scattering coefficient

as ρt. Assume that the array is along the local x axis as shown in Fig. 1. Then, the coordinates of the

m-th element is given by xt +md,d := [d, 0, 0]T ,m = 0, 1, 2 . . . ,M − 1, where d is the inter-element

spacing. The delay τm could be re-written as

τm = ||xr − xt||/c+ ||xr +md− xt||/c

=
||xr − xt||

c
+
||xr − xt||

c

√
1 +

||md||2
||xr − xt||2

+
2mdT (xr − xt)

||xr − xt||2

(a)≡ ||xr − xt||
c

+
||xr − xt||

c

(
1 +

mdT (xr − xt)

||xr − xt||2
)

(3)

= 2
||xr − xt||

c
+
mdT (xr − xt)

c||xr − xt||
, (4)

where in approximation (a), the term ∝ ||md||2 was ignored, i.e. it is assumed that d/||xr − xt|| << 1, and then

a binomial approximation was employed. From geometric manipulations, we also have:

xr − xt

||xr − xt||
= [sin(φt) sin(θt), sin(φt) cos(θt), cos(φt)]

T .

5 
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Using the above equation in (4), the delay τm,m = 0, 1, . . . ,M − 1 can be rewritten as

τm = 2
||xr − xt||

c
+
md sin(φt) sin(θt)

c
. (5)

The Doppler shift, i.e. fdm is computed as

fdm = 2fo
(ẋr − ẋt)

T (xr − xt)

c||xr − xt||
(6)

+ fo
mdT

c

[
ẋr − ẋt

||xr − xt||2
− (xr − xt)(ẋr − ẋt)

T (xr − xt)

‖|xr − xt||3
]

where ẋ(·) is the vector differential of x(·) w.r.t. time. In practice d is a fraction of the wavelength, and assuming

that d/||xr − xt|| << 1 we approximate the second term in (6) as 0. The Doppler shift is no longer a function of

the sensor index, m, and is rewritten as

fdm = fd = 2fo
(ẋr − ẋt)

T (xr − xt)

c||xr − xt||
(7)

A. Vector signal model

Let s(t) be sampled discretely resulting in N discrete time samples. Consider for now the single range gate

corresponding to the time delay τt. After a suitable alignment to a common local time (or range) reference, and

invoking some standard assumptions, see also [57, A.1-A.3], the radar returns in l-th PRI written as a vector defined

as yl ∈ CNM , is given by

yl = ρts⊗ a(θt, φt) exp(−j2πfd(l − 1)Tp) (8)

a(θt, φt) := [1, e−j2πϑ, . . . , e−j2π(M−1)ϑ]T ∈ CM

where s := [s1, s2, . . . , sN ]T ∈ CN and ϑ := d sin(θt) sin(φt)/λo is defined as the spatial frequency. Further it

is noted that in (8), the constant phase terms have been absorbed into ρt. Considering the L pulses together, i.e.

concatenating the desired target’s response for the entire CPI in a tall vector y, is defined as

y ∈ CNML = [y0
T ,y1

T , . . . ,yTL-1]T = ρtv(fd)⊗ s⊗ a(θt, φt)

v(fd) := [1, e−j2πfdTp , . . . , e−j2πfd(L−1)Tp ]T . (9)

The vector y consists of both the spatial and the temporal steering vectors as in classical STAP, as well as the

waveform dependency, via waveform vector s. Due to inclusion of the fast time samples in the waveform s, the

STAP data cube is modified to reflect this change, and is depicted in Fig. 2.

At the considered range gate, the measured snapshot vector consists of the target returns and the undesired

returns, i.e. clutter returns, interference and noise. The contaminated snapshot at the considered range gate is then

6 
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given by

ỹ = y + yi + yc + yn = y + yu (10)

where yi,yc,yn are the contributions from the interference, clutter and noise, respectively, and are assumed to be

statistically uncorrelated with one another. The contribution of the undesired returns are treated in detail, starting

with the noise as it is the simplest.

Noise: The noise is assumed to be zero mean, identically distributed across the sensors, across pulses, and in

the fast time samples. The correlation matrix of yn is denoted as Rn ∈ CNML×NML.

Interference: The interference consists of jammers and other intentional / un-intentional sources which may be

ground based, air-borne or both. Let us assume that there are K interference sources. Further, since nothing is

known about the jammers waveform characteristics, the waveform itself is assumed to be a stationary zero mean

random process. Consider the k-th interference source in the l-th PRI, and at spatial co-ordinates (θk, φk). Its

corresponding snapshot contribution is modeled as,

ykl = αkl ⊗ a(θk, φk), k = 1, 2, . . . ,K, l = 0, 1, . . . , L− 1

where αkl = [αkl(0), αkl(1), . . . , αkl(N − 1)]T ∈ CN is the random discrete segment of the jammer waveform,

as seen by the radar in the l-th PRI. Stacking ykl for a fixed k as a tall vector, we have

yk = αk ⊗ a(θk, φk) = [yTko,y
T
k1, . . . ,y

T
kL−1]T ∈ CNML

αk : = [αk0
T ,αk1

T , . . . ,αkL−1
T ]T ∈ CNL (11)

Using the Kronecker mixed product property, (see for e.g. [58]), the correlation matrix of yk is expressed as

E{ykyHk } = Rk
α ⊗ a(θk, φk)a(θk, φk)H where, E{αkαkH} := Rk

α. For K mutually uncorrelated interferers, the

correlation matrix is Ri =
K∑
k=1

E{ykyHk } =
K∑
k=1

Rk
α ⊗ a(θk, φk)a(θk, φk)H =

K∑
k=1

(INL ⊗ a(θk, φk))Rk
α(INL ⊗

a(θk, φk)H), and is simplified as

Ri = A(θ, φ)RαA(θ, φ)H (12)

where Rα := Diag{R1
α,R

2
α, . . . ,R

K
α } ∈ CNMLK×NMLK and A(θ, φ) ∈ CNML×NMLK

= [INL ⊗ a(θ1, φ1), INL ⊗ a(θ2, φ2), . . . , INL ⊗ a(θK , φK)], here INL the identity matrix of size NL×NL, and

Diag{·, ·, . . . , ·} the matrix diagonal operator which converts the matrix arguments into a bigger diagonal matrix.

For example, Diag{A,B,C} =
[

A 0 0
0 B 0
0 0 C

]
.

Clutter: The ground is a major source of clutter in air-borne radar applications and is persistent in all range

gates upto the gate corresponding to the platform horizon. Other sources of clutter surely exist, such as buildings,

trees, as well as other un-interesting targets, which are ignored. We therefore consider only ground clutter and treat

it stochastically.

7 
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Let us assume that there are Q clutter patches indexed by parameter q. Each of these clutter patches are comprised

of say P scatterers. The radar return from the p-th scatterer in the q-th clutter patch is given by

γpqv(fcpq)⊗ s⊗ a(θpq, φpq)

where γpq is its random complex reflectivity, fcpq is the Doppler shift observed from the p-th scatterer in the q-th

clutter patch, and θpq, φpq are the azimuth and elevation angles of this scatterer.The Doppler fcpq is given by,

fcpq :=
2foẋ

T
r (xr − xpq)

c||xr − xpq||
. (13)

where xpq is the location of the p-th scatter in the q-th clutter patch. Since the clutter patch is stationary, the

Doppler is purely from the motion of the aircraft as seen in (13). The contribution from the q-th clutter patch to

the received signal is given by

yq =
P∑
p=1

γpqv(fcpq)⊗ s⊗ a(θpq, φpq), (14)

with corresponding correlation matrix

Rq
γ := BqRpq

γ Bq
H (15)

where, Bq = [v(fc1q)⊗ s⊗ a(θ1q, φ1q),v(fc2q)⊗ s⊗ a(θ2q, φ2q) . . . ,v(fcPq)⊗ s⊗ a(θPq, φPq)] ∈ CNML×P

and Rpq
γ is the correlation matrix of the random vector, [γ1q, γ2q, . . . , γPq]

T . It is readily shown that the matrix Bq

could be simplified as, Bq := B̆q(IP ⊗ s), where B̆q := [v(fc1q)⊗A1q,v(fc2q)⊗A2q, . . . ,v(fcPq)⊗APq] ∈
CNML×PN , and the structure of the matrix Apq ∈ CNM×N (straightforward but not shown here) is defined

such that s ⊗ a(θpq, φpq) = Apqs, p = 1, . . . , P . Assuming that a particular scatterer from one clutter patch is

uncorrelated to any other scatterer belonging to any other clutter patch, we have the net contribution of clutter

yc =
Q∑
q=1

yq , with corresponding correlation matrix given by

Rc =

Q∑
q=1

Rq
γ . (16)

The clutter model could further be simplified by the following arguments. Assuming a large range resolution which

is typically the case for radar STAP [2] the scatterers in a particular clutter patch are in the same range gate and

hence are assumed to possess approximately identical Doppler shifts, i.e. fcpq ≈ fcq =
2foẋT

r (xr−xq)
c||xr−xq|| . Similarly

for the far field operation, and considering scatterers in the same azimuth resolution cell, and from the large range

resolution argument, we may assume θpq ≈ θq and φpq ≈ φq , i.e. their nominal angular centers. These assumptions

can now be incorporated in matrix Bq to simplify the clutter model, see also [57].

8 
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Fig. 1: Radar scene considering the ground based target at
azimuth (θt), elevation (φt). The (x, y, z) axis are local to the
aircraft carrying the array.
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Fig. 2: STAP data cube before matched filtering or range
compression, depicting the considered range gate/cell and fast
time slices (dashed lines).

III. WAVEFORM DESIGN

The radar return at the considered range gate is processed by a filter characterized by a weight vector, w, whose

output is given by wH ỹ. Since the vector s ∈ CN prominently figures in the steering vectors, the objective is

to jointly obtain the desired weight vector, w and waveform vector, s. It is desired that the weight vector will

minimize the output power, E{|wHyu|2} = wHRu(s)w. Mathematically, we may formulate this problem as:

min
w,s

wHRu(s)w (17)

s. t wH(v(fd)⊗ s⊗ a(θt, φt)) = κ

sHs ≤ Po

In (17), the first constraint is the renowned,well known Capon constraint with κ ∈ R, typically κ = 1. An energy

constraint enforced via the second constraint is to addresses hardware limitation. Before we derive the solutions

to the optimization problem, it is useful to recall Lem. 1, which is well-known, used throughout this report but

not stated explicitly. This fundamental result discusses the technique to compute stationary points of a real valued

function w.r.t. its complex valued argument and its conjugate.

Lemma 1. Let f(x,x∗) : CN → R. The stationary point of f(x,x∗) = f̄(xr,xi) is found from the three equivalent

conditions, 1. ∇xr f̄(xr,xi) = 0 and ∇xi
f̄(xr,xi) = 0, or 2. ∇xf(x,x∗) = 0, or 3. ∇x∗f(x,x∗) = 0. Here

9 
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f̄ : RN × RN → R is the real equivalent of f(·, ·), xr = Re{x},xi = Im{x}, where we define the gradient

∇xf(x,x∗) := [∂f(·,·)∂x1
, ∂f(·,·)∂x2

, · · · , ∂f(·,·)∂xN
]T with xi as the i-th element of x, i = 1, 2, . . . N , and 0 is a column

vector of all zeros of dimension N .

Proof. This arises from the Wirtinger calculus see [59] 1 for a recent formal proof.

Optimizing (17) w.r.t. w first, the solution to (17) is well known, and expressed as

wo =
κR−1u (s)(v(fd)⊗ s⊗ a(θt, φt))

(v(fd)⊗ s⊗ a(θt, φt))HR−1u (s)(v(fd)⊗ s⊗ a(θt, φt))
(18)

where Ru(s) = Ri + Rc(s) + Rn. We further emphasize that the weight vector is an explicit function of the

waveform. Now substituting wo back into the cost function in (17), the minimization is purely w.r.t. s, and cast as,

min
s

κ2

(v(fd)⊗ s⊗ a(θt, φt))HR−1u (s)(v(fd)⊗ s⊗ a(θt, φt))

s. t. sHs ≤ Po (19)

A solution to (19) is not immediate, given the dependence of Ru on the waveform vector s. We consider first, the

case when the clutter dependence on the waveform is ignored. Solutions to the design when clutter is considered

are treated subsequently.

A. Rayleigh-Ritz: Minimum eigenvector solution

Ignoring the dependency of Ru on s, we readily see that the (19) can be recast as a Rayleigh-Ritz optimization,

whose solution is given by

v(fd)⊗ s⊗ a(θt, φt) = µmin(Ru) (20)

where µmin(Ru) is the eigenvector corresponding to the minimum eigenvalue of Ru. This tensor equation implicitly

defines the optimal s. It is readily seen that, v(fd)⊗ s⊗ a(θt, φt) = Gs, where G = v(fd)⊗At, and

At =


a(θt, φt) 0 0 · · · 0

0 a(θt, φt) 0 · · · 0

0 0 a(θt, φt)
...

...
...

...
...

...
...

 ∈ C
MN×N .

In general, the system is over-determined, and we solve this equation approximately via least squares (LS),

ŝ = (GHG)−1GHµmin(Ru). (21)

1also see refs. Brandwood, and A. van den Bos in [59]
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Moreover from (20) and the structure of the temporal and spatial steering vectors, as well as the orthonormality of

the eigenvectors, it is readily seen that,

||v(fd)⊗ s⊗ a(θt, φt)||2 = ||v(fd)||2||s||2||a(θt, φt)||2 = ||s||2

||µmin(Ru)||2 = 1. (22)

Hence the LS solution in (21) must be scaled to satisfy the desired energy requirements of the radar system.

Decoupling LS: The LS solution in (21) can be further simplified due to the following linear relation between

elements of v(fd),a(θt, φt), s and elements of µmin(Ru), expressed as

vlamsn = µh, l = 1, 2, . . . , L, m = 1, 2, . . . ,M, n = 1, 2, . . . , N

h = (l − 1)MN + (n− 1)M +m. (23)

where vl, am, sn are the l-th, m-th, n-th elements of v(fd), a(θt, φt), s, and µh is the h-th element of µmin(Ru),

respectively. Therefore, the LS solution in (21) decouples as

sn =
(v(fd)⊗ a(θt, φt))

Hµn

(v(fd)⊗ a(θt, φt))H(v(fd)⊗ a(θt, φt))
, n = 1, 2, . . . , N (24)

where the vector µn ∈ CML for a particular n consists of the ML appropriate elements, µh, h = (l − 1)MN +

(n− 1)M +m, m = 1, 2, . . . ,M, l = 1, 2, . . . , L, as highlighted in (23).

The min. eigenvector solution is most relevant when noise and interference are considered and clutter is ignored

in the waveform design [3]. it has some nice spectral properties similar (but not identical) to water-filling [3],

[47]. Therefore this solution, although suboptimal, is a good initial waveform to interrogate the radar scene, but is

unfortunately well known to suffer from poor modulus and sidelobe properties. Nonetheless, in certain exceptional

cases and in the presence of clutter, this suboptimal solution is shown to be optimal, and is discussed at a later

stage. The ensuing definitions and lemma proves useful subsequently.

Lemma 2. (a) If vectors α, β and γ consist of the eigenvalues of the square but not necessarily Hermitian matrices,

X ∈ CN×N , Y ∈ CM×M and X⊗Y, respectively. Then γ = α⊗β. (b) Also, rank(X⊗Y) = rank(X)⊗rank(Y).

Proof. For (a), let xi, i = 1, 2, . . . , N and yj , j = 1, 2, . . . ,M are the eigenvectors corresponding to αi, βj i.e.

the i-th and j-th eigenvalues, of X,Y, respectively. Then, from the mixed property of the Kronecker product,

Xxi ⊗Yyj = (X⊗Y)(xi ⊗ yj) but the eigenvector relations imply that Xxi = αixi,Yyj = βjyj . This implies

that the ij-th eigenvalue of of X⊗Y is γij = αiβj with associated eigenvector xi⊗yj . Since the rank is equal to

the number of non-zero eigenvalues for square matrices, the second follows directly from (a). Hence proved.

Definition 1. (Convexity) A function f(x) : RN → R is convex if :

(a) f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) for any t ∈ [0, 1]

11 
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(b) If f(x) is first order differentiable, then it is convex if f(xj) ≥ f(xi) +∇xif(xi)
T (f(xj)− f(xi))

where in (a)(b) xi ∈ RN , i = 1, 2, j = 1, 2, j 6= i.

From our extensive simulations, we noticed that the original cost function in (17) is not jointly convex in w

and s. Nevertheless, it is not straightforward to prove / disprove joint convexity w.r.t. both w and s analytically.

Consider, then, the following propositions:

Proposition 1. The objective function in (17) is individually convex w.r.t. s, for any fixed but arbitrary w

Proof. Definition 1 cannot be directly invoked as the objective g(s) = wHRu(s)w : CN → R depends on the wave-

form s, which is complex. Consider the following transformation2, s = Ds̄ where s̄ ∈ R2N = [Re{s}T , Im{s}T ]T

and D = [IN , jIN ] ∈ CN×2N . Now, we may define an equivalent g(s̄) : R2N → R to invoke the definition of

convexity. We have to prove that,

wH


Rn + Ri

+

Q∑
q=1

B̆q

(IP ⊗D(ts̄1 + (1− t)s̄2))Rpq
γ

(IP ⊗ (ts̄1 + (1− t)s̄2)TDH)B̆H
q

w

≤ twH


Rn + Ri

+

Q∑
q=1

B̆q(IP ⊗Ds̄1)Rpq
γ (IP ⊗ s̄T1 DH)B̆H

q

w

+ (1− t)wH


Rn + Ri

+

Q∑
q=1

B̆q(IP ⊗Ds̄2)Rpq
γ (IP ⊗ s̄T2 DH)B̆H

q

w (25)

where t ∈ [0, 1] and s̄i ∈ dom{g(s̄)}, i = 1, 2. After elementary algebra, the convexity requirement in (25)

transforms to:

Q∑
q=1

xHq
(
Rpq
γ ⊗D(s̄1 − s̄2)(s̄1 − s̄2)TDH

)
xq ≥ 0 (26)

where xq ∈ CNP := B̆H
q w. In other words, it is sufficient to show that iff (26) is true then (25) is also true

and therefore convex. We notice immediately that (26) is a sum of Hermitian quadratic forms. Consider the matrix

Rpq
γ ⊗D(s̄1 − s̄2)(s̄1 − s̄2)TDH , we know that Rpq

γ � 03, since it is a covariance matrix and by definition atleast

positive semi-definite (PSD). The other matrix, i.e. D(s̄1− s̄2)(s̄1− s̄2)TDH is of course rank-1 Hermitian, and is

2Ideally one must decompose the function into real and imaginary components (as accomplished subsequently), but due to
Hermitian symmetry, real valued-ness e.t.c., we take this shortcut, here, instead

3Here � is the Löwner partial order [58]
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clearly PSD. From Lem. 2, it is straightforward to show that Rpq
γ ⊗D(s̄1 − s̄2)(s̄1 − s̄2)TDH � 0,∀q. Then from

the definition of positive semi-definiteness, each of the Q Hermitian quadratic forms in (26) is greater than zero,

hence their sum is also greater than zero.

Proposition 2. The objective function in (17) is individually convex w.r.t. w, for any fixed but arbitrary s.

Proof. Given the guaranteed positive semi-definiteness of Ru(s), the proof is straightforward to demonstrate by

invoking the convexity definition on the vector consisting of the real and imaginary parts of w.

In fact, Prop. 1, Prop. 2 may be sharpened to include strong convexity, which, as we will show subsequently is

desired for the solutions to exist, see the note immediately after (43). For now, however, individual convexity is

sufficient to proceed with our analysis.

Remark 1. (Characteristic of STAP objective) The STAP objective in (17) has at most one minima for a fixed but

arbitrary w ∈ CNML but ∀s ∈ CN . Likewise, it has at most one minima for a fixed but arbitrary s ∈ CN but

∀w ∈ CNML

This is concluded readily from Prop. 1, Prop. 2, i.e. the individual convexity. An illustrative example is provided

in Fig. 3.

w

s

Multiple Local Minima
Minima characteristic of objective

Minima not characteristic of objective

Fig. 3: An illustrative non-convex example with multiple local minima. Contours in black are characteristic of the objective.
Contours in blue violate convexity in the w, and s dimension individually, and are therefore not characteristic of the objective
function.

13 
Approved for public release; distribution unlimited. 



P. SETLUR AND M. RANGASWAMY: AFRL SENSORS DIRECTORATE TECH. REPORT, 2014. 14

B. Constrained alternating minimization

Motivated from Prop. 1, and Prop. 2, we propose a constrained alternating minimization technique which is

iterative. Before we present details on this technique, consider the following minimization problem, which optimizes

s, but for a fixed and arbitrary w:

min
s

wHRu(s)w

s. t. wH(v(fd)⊗ s⊗ a(θt, φt)) = κ (27)

sHs ≤ Po.

In (27), the objective function could be rewritten as,

wHRu(s)w =wH(Rn + Ri)w (28)

+

Q∑
q=1

Tr{Rpq
γ (IP ⊗ sH)xqxHq (IP ⊗ s)}.

In (28), the trace operation is further simplified as:

Tr{Rpq
γ (IP ⊗ sH)xqxHq (IP ⊗ s)}

= vec
((

Rpq
γ (IP ⊗ sH)xqxHq

)T)T
vec(IP ⊗ s)

= sHHT (Rpq
γ ⊗ xqxHq )Hs

= sHZq(w)s (29)

where vec(IP ⊗ s) = Hs, with H ∈ RP 2N×N = [H1
T ,H2

T , . . . ,HP
T ]T . The matrix Hk ∈ RPN×N , k =

1, 2, . . . , P is further decomposed into P , N ×N matrices, and is defined such that the k-th N ×N matrix is IN

and the other (N − 1), N ×N matrices are all equal to zero matrices.

Remark 2. (a) At the very least,
Q∑
q=1

Zq � 0. (b) The matrix Zq � 0 for P < N , always. (c) However, it may be

positive definite, i.e. Zq � 0 and hence
Q∑
q=1

Zq � 0 for P ≥ N and for Rpq
γ � 0.

We note that (a) is readily implied from Prop. 1 since a Hermitian quadratic form xHBx is convex (strictly

convex) iff B � 0 ( B � 0). Since Rpq
γ ⊗ xqxHq � 0 always (≤ P non-zero eigenvalues and the rest are zeros)

and that P < N , in other words, the transformation HT (Rpq
γ ⊗ xqxHq )H : CP

2N×N ×CP 2N×N → CN×N and

from the structure of H, the result (b) is obvious. For (c), we know that rank(H) = N , hence it could be shown

after some tedious algebra that Zq may be PD only when P ≥ N and that Rpq
γ is PD in the first place, also see

for example [58, pg. 399].

14 
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Using (28) and (29), the Lagrangian of (27) is readily cast as,

L(s, γ1, γ2) = wH(Ri + Rn)w +

Q∑
q=1

sHZq(w)s (30)

+ Re{γ∗1(wHGs− κ)}+ γ2s
HINs− γ2Po

where γ1 ∈ C and γ2 ∈ R+ are the complex and real Lagrange parameters.

Lagrange Dual: The Lagrange dual, denoted as H(γ1, γ2) = inf
s
L(s, γ1, γ2). Since (30) consists of Hermitian

quadratic forms and other linear terms of s, we have H(γ1, γ2) = L(so(γ1, γ2), γ1, γ2), where so(γ1, γ2) is obtained

by solving the first order optimality conditions, i.e.

∂L(s, γ1, γ2)

∂s
= 0 (31)

where, 0 is a column vector of size N and consists of all zeros. Further, in (31), while taking the derivative the

usual rules of complex vector differentiation apply, i.e. treat sH independent of s. The solution to (31) is readily

obtained by differentiating (30), and expressed as:

so(γ1, γ2) = −γ1
2

( Q∑
q=1

Zq(w) + γ2IN

)−1
GHw. (32)

Using (32), the dual H(γ1, γ2) is given by:

H(γ1, γ2) = wH(Ri + Rn)w − κRe{γ∗1} − γ2Po

−|γ1|
2

4
wHG

( Q∑
q=1

Zq(w) + γ2IN

)−1
GHw. (33)

Equation (33) is further simplified by decomposing, γ1 = γ1r+jγ1i. In which case, we notice that (33) is quadratic

in γ1r, γ1i,and purely linear in λ2. The Lagrange dual optimization is therefore,

max
γ1r,γ1i,γ2

H(γ1r, γ1i, γ2)

s. t γ2 ≥ 0. (34)

Maximizing first w.r.t. γ1r, γ1i, we have the solutions,

γ̄1r =
−2κ

wHG
( Q∑
q=1

Zq(w) + γ2IN

)−1
GHw

, γ̄1i = 0.

Substituting the above solutions into (33), the Lagrange dual optimization problem and after ignoring an unnecessary

15 
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additive constant, takes the form,

max
γ2

κ2
(
wHG

( Q∑
q=1

Zq(w) + γ2IN

)−1
GHw

)−1
− γ2Po

s. t. γ2 ≥ 0 (35)

The associated Lagrangian for (35) is

D(γ2, γ) =
κ2

wHGF−1GHw
− γ2Po − γ3γ2 (36)

where F :=
Q∑
q=1

Zq(w) + γ2IN . The first order optimality condition for the optimization (35) is given by:

∂

∂γ2

( κ2

wHGF−1GHw

)
− Po − γ3 = 0

or
−κ2

(wHGF−1GHw)2
wHG

∂F−1

∂γ2
GHw − Po − γ3 = 0

or
κ2

(wHGF−1GHw)2
wHG

(
F−1

∂F

∂γ2
F−1

)
GHw − Po − γ3 = 0

where γ3 is the Lagrange multiplier associated with the Lagrangian (36), and we also have ∂F
∂γ2

= IN . The

complementary slackness and constraint qualifier for (35) i.e. γ3γ2 = 0 and γ2 ≥ 0 form the rest of the equations

comprising the KKT conditions. It is now readily shown that the solution to (35) is given by

γ̄2 = max[0, γ2] (37)

γ2 solves γ2
(
κ2wHGF−2GHw − Po(wHGF−1GHw)2

)
= 0.

Proposition 3. The parameter γ̄2 = 0 solves (37).

Proof. The spectral theorem for Hermitian matrices, allows for a decomposition, F = E(Λ+γ2IN )EH . The matrix

Λ is a diagonal matrix comprising eigenvalues in descending order, whereas, E is unitary and whose columns are

the corresponding eigenvectors of F. For ease of exposition, denote z ∈ CN := EHGHw, then assume a function

f(γ2) : R+ → R, expressed as

f(γ2) := κ2wHGF−2GHw − Po(wHGF−1GHw)2

=

N∑
n=1

κ2
|zn|2

(dn + γ2)2
− Po

(
N∑
n=1

|zn|2
dn + γ2

)2

(38)

where zn, dn are the n-th elements of z, and the n-th eigenvalue in Λ. We analyze f(γ2) and γ2f(γ2) in detail.

The following (behavior at 0 and ∞) are readily observed

lim
γ2→∞

f(γ2) = f(∞) = 0 (39a)

16 
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lim
γ2→0

f(γ2) =
N∑
n=1

κ2
|zn|2
d2n
− Po

(
N∑
n=1

|zn|2
dn

)2

= f(0) (39b)

Furthermore, it is seen that

lim
γ2→∞

γ2f(γ2) = lim
γ2→∞

f(γ2)

1/γ2
= lim
γ2→∞

df(γ2)
dγ2

(−1/γ22)
= 0 (40)

Moreover, consider f(γ2) = h1(γ2) − h2(γ2) = 0, where h1(γ2) = κ2
N∑
n=1

f2
n(γ2)
|zn|2 , h2(γ2) = Po(

N∑
n=1

fn(γ2))2,

where fn(γ2) = |zn|2
dn+γ2

. Note that fn(γ2) ↓, n = 1, 2, . . . , N and that hi(γ2) ↓, i = 1, 2, i.e. decreasing functions

w.r.t. γ2 ∈ [0,∞). Then equationf(γ2) = 0 implies that

N∑
n=1

κ2
|zn|2

(dn + γ2)2
− Po

(
N∑
n=1

|zn|2
dn + γ2

)2

= 0

or
N∑
n=1

(
κ2

|zn|2
− Po)f2n(γ2) = 2

∑
n1

∑
n2

n2 6=n1

fn1
(γ2)fn2

(γ2)

(41)

where (n1, n2) ∈ (1, 2, . . . , N). Recall that dn 6= 0∀n, dn ≥ dn+1, n = 1, 2, . . . , N , and |zn| 6= 0∀n. A solution to

(41) for γ2 ∈ [0,∞) is readily derived in the trivial case, for example when fn1
(γ2) = fn2

(γ2), Po 6= κ2, and for

|zn| to be some arbitrary constant for all n. For Po ≥ κ it may now be shown numerically that a solution to (41)

for γ2 ∈ [0,∞) does not exist.

In fact, our extensive numerical simulations reveal that in general and assuming Po ≥ κ and for γ21 ≤ γ22f(γ21) ≥ f(γ22) if f(0) > 0

f(γ21) ≤ f(γ22) if f(0) < 0

γ21 and γ22 ∈ [0,∞). (42)

That is, f(γ2) is monotonic. From the above arguments, therefore, γ2f(γ2) = 0 implies that γ2 = 0. Alternatively

nevertheless, a solution to (37) may be found numerically and is computationally cheap.

Note: (Inactive power constraint) It is noted that trivially γ̄2 = 0 may always be chosen as a solution with

suitable choices of the free parameter Po. This implies that the power constraint is always satisfied and hence is

an inactive constraint in the corresponding Lagrangian.

A graphical behavior of hi(γ2), i = 1, 2 and thus the behavior of f(γ2) is seen from Fig. 4. Using Prop. 3, the

waveform design solution is unique, a function of w and expressed as,

so(w) =

κ
( Q∑
q=1

Zq(w)
)−1

GHw

wHG
( Q∑
q=1

Zq(w)
)−1

GHw

. (43)

Note: (Strong convexity) To compute the constrained alternating minimization solutions, the respective matrices

in (43), (18) must be invertible, implying strong convexity individually w.r.t. w, s, respectively. This directly
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h1(�2) or h2(�2)

h2(�2) or h1(�2)

0 �2 !
Fig. 4: Two cases are presented assuming Po ≥ κ. (a) Blue: h1(γ2), Red: h2(γ2) and therefore f(γ2) is decreasing, (b) Blue:
h2(γ2), Red: h1(γ2) and therefore f(γ2) is increasing. The blue and red curves intersect at ∞.

necessitates, λmin

( Q∑
q=1

Zq(w)
)
6= 0 and λmin(Ru(s)) 6= 0, and hence also, positive definiteness of these matrices.

The alternating minimization algorithm is now succinctly stated in Table I.

Remark 3. (Strong duality) The optimal value of the lagrange dual problem is given by

wH(Ri + Rn)w +
κ2

wHG
( Q∑
q=1

Zq(w)
)−1

GHw

.

It is therefore trivial to show that the duality gap between (27) and (34) is zero. In other words, strong duality

holds between the primal in (27) and the dual in (34). From Slaters condition [60] the sufficient condition to ensure

strong duality is the existence of (43), i.e. the inverse of
Q∑
q=1

Zq(w) exists (see note below), and that the solution

in (43) satisfies the power constraint.

Note: (Lower bound on Q) Since rank(
Q∑
q=1

Zq(w)) ≤
Q∑
q=1

rank(Zq(w)), assume the worst case P = 1, then we

have that rank(Zq) = 1. Therefore for Q distinct (different spatial signature and Doppler) clutter patches, Q ≥ N
ensures invertibility of

∑
q

Zq.

1) Convergence, performance guarantees, and other properties: Denote (wk, sk) as the sequence of

iterates of the algorithm in Table I and define g(wk, sk) := wkRu(sk)wH
k , then for k = 1, 2, . . .

· · · g(wk, sk−1) ≥ g(wk, sk) ≥ g(wk+1, sk) · · · . (44)

Moreover, since at least Ru(s) � 0, i.e. PSD ∀s, we have that g(w, s) ≥ 0,∀w. Therefore each of the individual

terms in (44) are lower bounded by zero, in other words g(wk1 , sk2) ≥ 0, k1 = k, or k+ 1 and k2 = k, or k+ 1,

for k = 1, 2, . . . .

Proposition 4. Iff the iterates (wk, sk) of the constrained alternating minimization exist, then lim
k→∞

g(wk, sk) is
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TABLE I: Constrained alternating minimization for waveform adaptive radar STAP

1) Initialize: Start with an initial waveform design,
defined as s

(0)
o , set counter k = 1

2) Filter design: Design the optimal filter weight
vector, w

(k)
o = wo(s

(k−1)
o ), where (18) is used

to compute wo(·).
3) Waveform design: Design the updated waveform

s
(k)
o = so(w

(k)
o ), where (43) is used to compute

so(·).
4) Check: If convergence is achieved, exit, else k =

k + 1, go back to step-2.

finite.

Proof. The non-increasing property in (44), and since each term in (44) is lower bounded, straightforward application

of the monotone convergence theorem to the sequence, {g(wk, sk)},completes the proof.

We note that convergence to a finite limit as evidenced from Prop. 4 is indeed dependent on the constraints via

the existence of the iterates (wk, sk). This however does not imply convergence of the sequence {(wk, sk)}, for

which, consider the following.

Remark 4. The alternating minimization is a special case of the block Gauss-Siedel and block co-ordinate descent

(BCD) algorithm with block size equal to two [12], [15].

Definition 2. (Convergence in RN ) A sequence {xk} ∈ RN , k = 1, 2, . . . is said to converge to x̃, a limit point,

if, ∀ε > 0, ∃K ∈ N : ||xk − x̃|| ≤ ε, k > K.

Lemma 3. (Constrained alternating minimization lemma) Assume that a function g(z) : R2N → R, z = [xT ,yT ]T

is continuously differentiable over a closed nonempty convex set, A = A1 ×A2. Also, suppose the solution to the

constrained optimization problems, min
x∈A1

g(x,y) and min
y∈A2

g(x,y) are uniquely attained. Let {zk} be the sequence

generated by this algorithm, then every limit point of this sequence is also a stationary point.

Proof. The proof in [14, Prop. 2.7.1] follows immediately to the alternating minimization assuming two blocks.

Also see [15], where the convergence of the two block BCD was analyzed.

The above Lem. 3 discusses convergence of the constrained alternating minimization.This lemma can be applied

by decomposing our problem into its real equivalent along-with real and imaginary decomposition of w, s, and

assuming the our constraint set A = A1 × A2 is closed convex and the minimizers are unique. The necessary

condition of a unique minimizer [10] at each step is not obvious, but [9] showed that in the absence of this
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assumption the algorithm cycles endlessly around a particular objective value [14]. Further the algorithm provides

limit points which are not stationary points [15]. To discuss the characteristics of the limits points at convergence,

consider the remark, presented next.

Remark 5. (Characterizing the solutions at convergence) If (w?, s?) are the limit points of the sequence {(wk, sk)}.
Then, (w?, s?) is a local minima, i.e. by definition g(w?, s?) ≤ g(w, s),∃ε > 0 with (w, s) :

√
||w −w?||2 + ||s− s?||2 ≤

ε. Further, (w?, s?) : g(w?, s?) ≤ g(w?, s), ∀s ∈ A2 and g(w?, s?) ≤ g(w, s?), ∀w ∈ A1.

The first statement in Rem. 5 directly results from from the stationarity condition as given in Lem. 3 and also

since the objective is non-convex. The second statement in Rem. 5 arises from the individual convexity in w

and s as shown in Prop. 1, Prop. 2. We note readily from Rem. 1, that unfortunately there is nothing special or

strong about (w?, s?) except the fact that they are local minima. It is well known that global extrema (minima

or maxima) are attained only when the objective is either convex or concave. For a problem similar to ours and

where the alternating minimization was applied, see [33, pg.3537] the authors state that their algorithm produces

limit points which are stronger than local maxima, in our opinion this conclusion is suspect. They further claim

that their algorithm produces global extrema in their filter design and waveform dimensions individually, which

leads us to believe that their objective is concave, although this was never proved in [33]. In our opinion, Rem. 1 is

also relevant to their objective by replacing minima by maxima, and hence we do not believe that the limit points

produced by their algorithm are stronger than local extrema.

To derive the upper and lower bounds on g(wk, sk)−g(wk+1, sk), the following well known lemmas are useful.

Lemma 4. For any Hermitian matrix, A ∈ CN×N and any arbitrary vector x ∈ CN×N , we always have

λmin(A)||x||2 ≤ xHAx ≤ λmax(A)||x||2, where λmin(A) and λmax(A) are the min. and max. eigenvalues of

matrix A, respectively.

Proof. The proof can be seen in [58], and is in fact fundamental to the Rayleigh-Ritz theorem.

Lemma 5. For any two Hermitian matrices, A,B, both in CN×N ,

N∑
i=1

λi(A)λN−i+1(B) ≤ Tr{AB} ≤
N∑
i=1

λi(A)λi(B)

where λi(·) ≥ λi+1(·), i = 1, 2, . . . , N .

Proof. See [61, Lemma. II. I] for a proof.

Consider g(wk, sk), we have

g(wk, sk) = wH
k Ru(sk)wk

= (wk −wk+1 + wk+1)HRu(sk)(wk −wk+1 + wk+1)

= (wk −wk+1)HRu(sk)(wk −wk+1) (45)
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+ wH
k+1Ru(sk)wk+1 + Re{(wk −wk+1)HRu(sk)wk+1}

Moreover since the square root decomposition exists i.e., Ru(·) = R
1/2
u (·)R1/2

u (·), then application of the Cauchy-

Schwartz inequality produces,

Re{(wk −wk+1)HRu(sk)wk+1} ≤ (46)√
(wk −wk+1)HRu(sk)(wk −wk+1)

√
wH
k+1Ru(sk)wk+1

Using (46) in (45) and since Ru(·) is PSD, we can show that g(wk, sk)−g(wk+1, sk) ≤ (wk−wk+1)HRu(sk)(wk−
wk+1). Further using (44), we have the following upper and lower bounds

0 ≤ g(wk, sk)− g(wk+1, sk)

≤ (wk −wk+1)HRu(sk)(wk −wk+1) (47)

We notice immediately, that at convergence (wk −wk+1)HRu(sk)(wk −wk+1) → 0 since wk → wk+1. Other

bounds as in (47) can be readily derived. From Lem. 4, we can show that

≤ λmin(Ru(sk))||wk||2 − λmax(Ru(sk))||wk+1||2

g(wk, sk)− g(wk+1, sk) (48)

≤ λmax(Ru(sk))||wk||2 − λmin(Ru(sk))||wk+1||2.

Consider the following.

Lemma 6. If x, y are arbitrary but distinct complex vectors of size N and let A := xxH −yyH , then, (a) matrix

A has exactly two real non-zero eigenvalues, the rest N − 2 eigenvalues are all zeros, (b) of the two real and

non-zero eigenvalues one is always positive and the other is always negative, and (c) if the x, y are not distinct,

i.e. y = βx, β ∈ C, then there exists only one non-zero eigenvalue, (|1−|β|2|)||x||2and the rest N −1 eigenvalues

are purely zeroes.

Proof. First of all we notice A is Hermitian and hence its eigenvalues are real. The proof for (a) is obvious given

the fact that A is a sum of two distinct outer products. In other words, rank(A) = 2, for all y 6= βx .

Now we know that

Tr{A} = λ1 + λ2 = xHx− yHy

Tr{AAH} = λ21 + λ22 = ||x||4 + ||y||4 − 2|xHy|2

where λi, i = 1, 2 are the two non zero eigenvalues of A. The above set of equations can be reduced to a quadratic
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in any one eigenvalue. It can be shown that the only two possible solutions are then

λ1 =
||x||2 − ||y||2

2

(
1 +

√
1− 4

|xHy|2 − ||x||2||y||2
(||x||2 − ||y||2)2

)

λ2 =
||x||2 − ||y||2

2

(
1−

√
1− 4

|xHy|2 − ||x||2||y||2
(||x||2 − ||y||2)2

) (49)

Since λi, i = 1, 2 are purely real we have, 1−4 |x
Hy|2−||x||2||y||2
(||x||2−||y||2)2 ≥ 0 and from Cauchy Schwarz inequality, we also

have that |xHy|2 − ||x||2||y||2 ≤ 0. Using these two facts, consider two specific cases, both of which are shown

easily from elementary algebra, λ1 > 0, λ2 < 0, if ||x||2 − ||y||2 ≥ 0

λ1 < 0, λ2 > 0, if ||x||2 − ||y||2 < 0

. (50)

When ||x||2 − ||y||2 = 0, it is easily seen that λ1 =
√
||x||2||y||2 − |xHy|2 > 0, λ2 = −λ1 < 0. We also note

immediately from (49) that when, y = βx, λ1 = (1− |β|2)||x||2, λ2 = 0. This completes the proof.

It is readily shown that g(wk, sk)−g(wk+1, sk) = Tr{Ru(sk)(wkw
H
k −wk+1w

H
k+1)}. Therefore, from Lem. 5,

and Lem. 6, we have,

≤ λmax

(
Ru(sk)

)
λ−(wkw

H
k −wk+1w

H
k+1)

+ λmin

(
Ru(sk)

)
λ+(wkw

H
k −wk+1w

H
k+1)

g(wk, sk)− g(wk+1, sk) (51)

≤ λmax

(
Ru(sk)

)
λ+(wkw

H
k −wk+1w

H
k+1)

+ λmin

(
Ru(sk)

)
λ−(wkw

H
k −wk+1w

H
k+1)

It is not immediately evident from the analysis which set of bounds in (47), (48), (51) are tight, hence combining

them we have

max


g1lb(Ru(sk),wk,wk+1), g2lb(Ru(sk),wk,wk+1),

g3lb(Ru(sk),wk,wk+1)


≤ g(wk, sk)− g(wk+1, sk) ≤

min


g1ub(Ru(sk),wk,wk+1), g2ub(Ru(sk),wk,wk+1),

g3ub(Ru(sk),wk,wk+1)



where gilb(Ru(sk),wk,wk+1), giub(Ru(sk),wk,wk+1), i = 1, 2, 3 are the lower and upper bounds as given in
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(47)-(48), (51), for i = 1, 2, 3, respectively.

Similar upper and lower bounds can be readily derived for the other corresponding terms, g(wk+1, sk) −
g(wk+1, sk+1) using analysis presented thus far, and is not the focus now. Let us however denote these corresponding

lower and upper bounds to be hilb(Ru(sk),wk,wk+1), hiub(Ru(sk),wk,wk+1), i = 1, 2, 3.

C. Constrained proximal alternating minimization

The proximal version of the constrained alternating minimization is iterative, and for the filter design step,

optimizes at the k-th iteration,

min
w

wHRu(sk−1)w +
αk−1

2
||w −wk−1||2 (52)

s. t wH(v(fd)⊗ sk−1 ⊗ a(θt, φt)) = κ

where αk−1 ∈ R+ can be seen as a weight attached to the regularizer / penalizer ||w −wk−1||2. This parameter

can be interpreted as follows, if it is small, it encourages the optimizer to look for viable solutions in the vicinity

of wk−1. However, if large, it penalizes the optimizer heavily for focusing even slightly in the immediate vicinity

of wk−1.

In a similar spirit, the proximal version of the constrained alternating minimization for the waveform design step

at the k-th iteration optimizes,

min
s

wH
k Ru(s)wk +

βk−1
2
||s− sk−1||2

s. t. wH
k (v(fd)⊗ s⊗ a(θt, φt)) = κ (53)

sHs ≤ Po

where βk−1 ∈ R+ is the weight attached to the regularizer ||s− sk−1||2. Bounds on αk−1, βk−1 relating it to the

Lipschitz constants are deferred to forthcoming analysis. A graphical example comparing the constrained alternating

minimization and the proximal constrained alternating minimization is shown in Fig. 5.

Remark 6. The objective functions in (52), (53) are still individually convex in w, s, respectively. The regularizer

terms ||w−wk−1||2 and ||s−sk−1||2 are strongly convex, and ∇2
w(||w−wk−1||2) = I � 0, ∇2

s(||s−sk−1||2) = I �
0, and therefore do not alter the individual convexity of wHRu(sk−1)w and wH

k Ru(s)wk, w.r.t. w, s, respectively.

The solutions to (52), (53) can be cast in terms of the proximal operator as

wk =prox(αk−1,w)

(
g(w, sk−1); wk−1

)
(54)

s. t wH(v(fd)⊗ sk−1 ⊗ a(θt, φt)) = κ

sk =prox(βk−1,s)

(
g(wk, s); sk−1

)
(55)
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w

s

Constraint set

(sk,wk) (sk,wk+1)

(sk+1,wk+1)

w

s

Constraint set

(sk,wk) (sk,wk+1)

(sk+1,wk+1)

Constrained alternating minimization Constrained Proximal alternating minimization

Fig. 5: Constrained alternating minimization (left) and proximal constrained alternating minimization (right). Iso level contours
(each point on a curve has identical function values) and constraint set in background are shown. Outer iso-curves assume higher
function values than the inner iso-curves. On right, and for particular αk, βk, spheres (dashed, blue, dashed red) are the (two
of the several) spheres of influence of the regularizer. Outer spheres penalize more than the inner.

s. t. wH
k (v(fd)⊗ s⊗ a(θt, φt)) = κ

sHs ≤ Po

where, for a general f(x) : CN → R, the proximal operator is defined as

prox(α,x)

(
f(x); y

)
:= arg min

x
f(x) +

α

2
||x− y||2. (56)

The proximal operator has a rich history in the literature, and well documented properties, see for example [20]–[22],

[24]. A useful and interesting fact of this operator is that iff xo minimizes f(x) then xo = prox(α,x)(f(x); xo), a

proof is seen in [24].

Trust region interpretation. The objective now is to relate the unconstrained proximal minimization as in (56)

to a well known technique in numerical optimization. A generalized trust region subproblem can be formulated for

f(x) : CN → R [62]

min
x

f(x)

s. t. ||Ux− v||2 ≤ δ (57)

where U, v are a general nonsingular matrix, and a vector, both characterizing the trust region. The positive scalar
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δ may be interpreted as a parameter which specifies the extent of the trust region. For U = I and v = y, the

proximal minimization as in (56) and the trust region problem in (57) are equivalent for specific values of α and

δ. In particular every solution of (56) is a solution to (57) for a particular δ. In the same spirit, every solution to

(57) is an unconstrained minimizer to f(·) or a solution to (56) for a particular α, see also [22], [24].

The proximal optimizations problems, (52), (53) can be cast as equivalent constrained trust region subproblems,

where for the k-th iteration, the trust region is characterized by the previous iteration, wk−1, sk−1, respectively.

Closed form: A closed form solution to (52) is readily derived, expressed as in (58)

wk =
(
Ru(sk−1) +

αk−1
2

I
)−1(αk−1

2
wk−1 −

γ∗4
2

(
v(fd)⊗ sk−1 ⊗ a(θt, φt)

))
γ4 =

αk−1wH
k−1
(
Ru(sk−1) +

αk−1
2

I
)−1(

v(fd)⊗ sk−1 ⊗ a(θt, φt)
)
− 2κ(

v(fd)⊗ sk−1 ⊗ a(θt, φt)
)H(

Ru(sk−1) +
αk−1

2
I
)−1(

v(fd)⊗ sk−1 ⊗ a(θt, φt)
) (58)

where γ4 is the Lagrange parameter associated with (52). The solution to (53) is also in closed form and the

procedure to obtain it is similar to that used in deriving (43). Assuming that the Lagrange parameters for (53) are

γ5 = γ5r + jγ5i, γ6 ∈ R+, the solution is expressed in (59),

sk =
( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−1(βk−1
2

sk−1 −
γ5
2

GHwk

)
(59)

where,

γ5r = 2

βk−1

2 Re

{
wH
k G

( Q∑
q=1

Zq(wk) + βk−1

2 I + γ6I
)−1

sk−1

}
− κ

wH
k G

( Q∑
q=1

Zq(wk) + βk−1

2 I + γ6I
)−1

GHwk

γ5i =

βk−1Im

{
wH
k G

( Q∑
q=1

Zq(wk) + βk−1

2 I + γ6I
)−1

sk−1

}

wH
k G

( Q∑
q=1

Zq(wk) + βk−1

2 I + γ6I
)−1

GHwk

.

The Lagrange parameter γ6 is obtained by solving, the following

γ6r(γ6) = 0, γ6 ≥ 0 (60)

obtained from the complementary slackness constraint on the Lagrange dual and where,

r(γ6) = (Po −
β2
k−1
4

ak)

(
wH
k G

( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−1
GHwk

)2

−2
(
bi
dbi
dγ6

+ (br − κ)
dbr
dγ6

)
wH
k G

( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−1
GHwk

−(b2i + (br − κ)2)wH
k G

( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−2
GHwk.
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Where we also define

ak =sHk−1
( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−1
sk−1

br =
βk−1

2
Re

{
wH
k G

( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−1
sk−1

}

bi =
βk−1

2
Im

{
wH
k G

( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−1
sk−1

}

Further, since the derivative, Re{·}, Im{·} are all linear we also have

dbr
dγ6

= −βk−1
2

Re

{
wH
k G

( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−2
sk−1

}

dbi
dγ6

= −βk−1
2

Im

{
wH
k G

( Q∑
q=1

Zq(wk) +
βk−1

2
I + γ6I

)−2
sk−1

}
.

Remark 7. In general r(γ6) is not monotone and there exist one or more zero crossings excluding γ6 = ∞.

However in our extensive numerical simulations, and assuming Po >> κ2, γ6 = 0 solves (60).

It is readily seen that lim
γ6→0

r(γ6) = r(0) 6= 0, lim
γ6→∞

r(γ6) = 0, lim
γ6→∞

γ6r(γ6) = 0. Nevertheless unlike Prop. 3,

Rem. 7 is not straightforward to demonstrate analytically, however can be shown numerically. See Section IV for

some demonstrative examples not specific to the radar problem.

The value of γ6 = 0 is substituted in (59) to obtain the final waveform solution sk(·).

Remark 8. (Strong duality) The primal problem, (53) and its associated dual have zero duality gap. This is

straightforward but tedious to show. However we provide the optimal values attained by the primal as well as the

dual, given below,

wH
k (Ri + Rn)wk + s∗Hk

( Q∑
q=1

Zq(wk) +
βk−1

2
I
)−1

s∗k

+
βk−1||sk−1||2

2
− βk−1Re{s∗Hk sk−1} (61)

where using (59), Prop. 7,

s∗k = (

Q∑
q=1

Zq(wk) +
βk−1

2
I)−1(

βk−1
2

sk−1 −
γ5
2

GHwk)

γ5 =

βk−1wH
k G(

Q∑
q=1

Zq(wk) + βk−1

2 I)−1sk−1 − 2κ

wH
k G(

Q∑
q=1

Zq(wk) + βk−1

2 I)−1GHwk

.

This is not surprising since it is similar to Rem. 3. However, in this case the condition on the existence of the
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matrix is irrelevant, since the inverse in (59) always exists. Hence Slater’s condition now is a simple constraint

qualifier (the power constraint) which must be satisfied as in Rem. 3.

Interpretation with specific ranges of αk−1, βk−1 and related to the Lipschitz constants. Some definitions

and lemmas are useful for future discussions and are expressed below

Definition 3. (Lipschitz continuous gradient) A function f(x̄) : RN → R has a Lipschitz constant (and trivially

real positive), L, when ||∇x̄f(x̄)−∇ȳf(ȳ)|| ≤ L||x̄− ȳ||, and ∀x̄, ȳ ∈ RN .

Note: (upper bound on Hessian ) If f(x̄) has a Lipschitz continuous gradient, with constant L, then using Taylor’s

theorem, it can be proved that ∇2
x̄f(x̄) � LI.

Remark 9. The Lipschitz constant for f(x̄) = x̄T B̄x̄ is the maximum eigenvalue of B̄, i.e. λmax(B̄), where

B̄ ∈ RN×N , x̄ ∈ RN .

This is readily seen since ∇x̄x̄T B̄x̄ = B̄x̄. Further since the induced (by an arbitrary z̄ ∈ RN ) spectral norm

(notation: ||| · |||) is defined as

|||B̄||| := sup
z̄
{ ||B̄z̄||
||z̄|| : z̄ ∈ RN , z̄ 6= 0}, ||B̄z̄|| =

√
z̄T B̄T B̄z̄

but we know from Lem. 4 that z̄T B̄z̄ ≤ λmax(B̄)||z̄||2 and that eigenvalues of B̄ and B̄T are identical. This further

implies that z̄T B̄T B̄z̄ ≤ λ2max(B̄)||z̄||2. Therefore from Definition 3, it is readily seen that the Lipschitz constant

is the maximum eigenvalue of B̄.

Lemma 7. (Descent lemma) If f(x̄) : RN → R is continuously differentiable and has a Lipschitz continuous

gradient described by constant L, then f(x̄) ≤ f(ȳ) +∇ȳf(ȳ)T (x̄− ȳ) + L
2 ||x̄− ȳ||2.

Proof. See [14, Prop. A.24] and also [17, Lem2.2] relevant in general for the BCD.

Consider an arbitrary g(x) := xHBx, and B = BH , x ∈ CN . Since g(x) : CN → R, a real equivalent of g(x)

could be defined as ḡ(x̄) := x̄T B̄x̄ where

B̄ :=

Re{B} −Im{B}
Im{B} Re{B}

 ∈ R2N×2N , x̄ = [Re{x}T Im{x}T ]T ∈ R2N .

Lemma 8. The matrix B̄ :=
[
Re{B} −Im{B}
Im{B} Re{B}

]
∈ R2N×2N and

[
B 0
0 B∗

]
∈ C2N×2N have identical eigenvalues,

λ̃i, i = 1, 2, . . . , 2N . Moreover, if B is Hermitian, then λ̃i ∈ R+, i = 1, 2, . . . , 2N are equal to twice the multiplicity

of the eigenvalues of B ∈ CN×N .

Proof. Owing to the complex to real-real isomorphism, it can be shown after algebraic manipulations thatB 0

0 B∗

 = PHB̄P, P =
1√
2

jI I

I jI

 , PH = P−1. (62)
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That is (62) indicates that B̄ and
[

B 0
0 B∗

]
are unitary equivalent. Therefore they share the same eigenvalues.

Furthermore if B is Hermitian its eigenvalues are purely real, and hence trivially, the eigenvalues of B, B∗ are

identical, and their eigenvectors are complex conjugates of one another. Hence the block diagonal matrix has

identical eigenvalues as B but with multiplicity two.

Consider the objective in (52), (53). Define ḡ(w̄, s̄k−1), ḡ(w̄k−1, s̄k−1) as the real equivalents of g(w, sk−1), g(wk−1, sk−1),

respectively for the filter design objective as in (52). In addition, denote L1k−1 as the Lipschitz constant associated

with ḡ(w̄k−1, s̄k−1). Similarly using the same notation and for the objective in the waveform design objective as

in (53) consider the real equivalents, ḡ(̄s, w̄k), ḡ(̄sk−1, w̄k) and the Lipschitz constant denoted as L2k−1. Then the

following inequalities can now be shown.

ḡ(w̄) +
L1k−1

2
||w̄k−1 − w̄||2 ≥ ḡ(w̄k−1)

+∇ḡ(w̄k−1)T (w̄ − w̄k−1) +
L1k−1

2
||w̄k−1 − w̄||2 ≥ ḡ(w̄)

(63)

ḡ(̄s) +
L2k−1

2
||̄sk−1 − s̄||2 ≥ ḡ(̄sk−1)

+∇ḡ(̄sk−1)T (̄s− s̄k−1) +
L2k−1

2
||̄sk−1 − s̄||2 ≥ ḡ(̄s)

(64)

where in (63), the known’s s̄k−1 and in (64), the known’s w̄k are respectively treated as constants, therefore

suppressed in notation for brevity. We further note that (63), (64) are tight, i.e. for w̄k = w̄k−1, s̄k = s̄k−1 the

inequalities are strict equality’s. The Lipschitz constants, L1k−1, L2k−1 are readily derived using Lem. 8.

Remark 10. It is readily seen that if αk−1 ≥ L1k−1 and β2k−1 ≥ L2k−1 the inequalities in (63), (64) are valid by

replacing L1k−1, L2k−1 with αk−1, βk−1, respectively.

The term in the first inequalities of (63), (64) are the proximal minimization objectives with αk−1 = L1k−1, βk−1 =

L2k−1. The inequalities of (63), (64) are obtained from first applying the convexity Def. 1(b) (first order definition)

and then subsequently adding the respective terms L1k−1

2 ||w̄k−1 − w̄||2, L2k−1

2 ||̄sk−1 − s̄||2 and then using Lem. 7,

the descent lemma.

Additionally, it is recalled that the functions associated with the second inequalities of (63), (64) are the

(unconstrained) objectives which are minimized by the gradient descent with step size L1k−1, L2k−1, respectively.

That is, the new iterations are then w̄k = w̄k−1 − 1
L1k−1

∇w̄ḡ(w̄), and s̄k = s̄k−1 − 1
L2k−1

∇s̄ḡ(̄s). Therefore from

(63), (64) and Rem. 10 we note that the proximal objective, the gradient descent objective are all surrogate albeit

tight upper bounds on the true objective ∀αk−1 ≥ L1k−1 and ∀βk−1 ≥ L2k−1. This interpretation is graphically

depicted in Fig. 6 for the filter design objective as in (52) but for αk−1 = L1k−1. A similar graphic interpretation

is obvious for the waveform design stage and is therefore not shown.

Tikhonov interpretation This interpretation is immediate from (58), (59). In fact from (52), (53), the quadratic

regularizers ||w − wk−1||2, ||s − sk−1||2 are essentially Tikhonov regularization terms. Geometrically they are

spheres centered at wk−1, sk−1 and encourage the current iterates to be in the vicinity of the previous iterates.
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Furthermore, since in the limit, the regularizer terms only decrease, this may be also seen as a vanishing Tikhonov

regularization problem [24] for each iteration in both the waveform and the filter vectors.

Proximal minimization: A training data starved STAP solution The regularization in (52), (53) leads to

diagonally loaded solutions (58), (59) when compared to the constrained alternating minimization solutions as in

(18) and (43). In particular, the diagonal loading serves two important purposes, firstly it offers a numerically stable

solution by conditioning . Secondly and more importantly, it permits a weight vector solution when rank(Ru(s)) ≤
NML.

Practical STAP contends with rank deficient correlation matrices due to lack of sufficient training data from

neighboring range cells due to outlier contamination or heterogeneity in the data. The solution in (52) ameliorates

over the training data starved STAP scenarios.

So far, we have considered the algorithms for waveform design without enforcing constraints such as const.

modulus or sidelobe constraints. The minimum eigenvector solution belongs to this class of unconstrained waveform

design. We will revisit this design by considering (19) and Lem. 4.

Remark 11. The min. eigenvector solution in (20) is still optimal in the presence of clutter, provided Ri + Rn

and Rc(s) share the same eigenvector corresponding to their min.eigenvalues, but with λmin(Rc(s)) = 0, always.

This is readily seen since the optimization in (19), ignoring the constraint for now could be recast as max
s

(v(fd)⊗
s⊗ a(θt, φt))

HR−1u (s)(v(fd)⊗ s⊗ a(θt, φt)). Now using Woodbury’s identity [63], we have

(Ri + Rn + Ru(s))−1 = (Ri + Rn)−1

−(Ri + Rn)−1Rc(s)
(
I + (Ri + Rn)−1Rc(s)

)−1
(Ri + Rn)−1.

(65)

Further using the eigenvector relations, (Ri + Rn)(v(fd)⊗ s⊗a(θt, φt)) = λmin(Ri + Rn)(v(fd)⊗ s⊗a(θt, φt))

and Rc(s)(v(fd) ⊗ s ⊗ a(θt, φt)) = λmin(Rc(s))(v(fd) ⊗ s ⊗ a(θt, φt)) = 0 in (65), it is readily seen that

(v(fd)⊗ s⊗ a(θt, φt))
H(Ri + Rn + Ru(s))−1)(v(fd)⊗ s⊗ a(θt, φt)) = λ−1min(Ri + Rn).

The simplest example where Rem. 11 is satisfied is when the noise correlation matrix is scaled identity (may not

be practical for narrowband radar), clutter correlation matrix is low rank. In STAP and for ideal scenarios, insights to

the clutter rank are obtained by the Brennan’s rule [1]–[3]. A high clutter rank prevails due to the practical effects

such as, the intrinsic clutter motion,velocity misalignment and crabbing, mutual coupling and antennae element

mismatches as well as clutter ambiguities in Doppler resulting in aliasing [2].

D. Constant modulus alternating minimization

So far, the optimization problems had no specific constraints (except the power/energy constraint) on the wave-

form, constant modulus is a desirable property to have in a waveform [64]. The optimum weight vector is unchanged

by introducing the const. modulus constraint, and is identical to (18) for the constrained alternating minimization
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ḡ(w̄k�1) +
L1k

2
||w̄k�1 � w̄k||2

ḡ(w̄k�1) + rḡ(w̄k�1)
T (w̄k � w̄k�1)

+
L1k

2
||w̄k�1 � w̄k||2

ḡ(w̄k)

ḡ(w̄k�1)

w̄kw̄k�1

ḡ(w̄)

Fig. 6: Upper bounds on the objective for the proximal algorithm w.r.t. the filter design. A similar graphical interpretation for
the waveform design but with L2k−1 is also easy depicted but not shown here.

4.

Since the optimization w.r.t. weight vector is unchanged, we only treat the optimization for s but with the const.

mod. constraint for a fixed but arbitrary w, formulated below

min
s

wHRu(s)w

s. t. wH(v(fd)⊗ s⊗ a(θt, φt)) = κ (66)

|si| = ρ, i = 1, 2, . . . , N.

where si is the i-th component in s. Unlike say (17), notice that in (66), constraining the power of the waveform

is unnecessary since ρ is fixed but could be chosen arbitrarily to scale up / down the waveforms energy to satisfy

hardware limitations. Therefore, the last N constraints in (66) implicitly impose the power requirements, but more

importantly also impose the constant modulus constraint.

The Lagrangian of (66) is expressed as

L(s, γ7,γ5) = wHRu(s)w + Re{γ∗7(wHQs− κ)}

4The analysis of the proximal constrained alternating minimization with the const. mod. constraint is omitted, but can be
readily derived from the analysis of its non-proximal counterpart, presented here.
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+ sHDγs− ρ1Tγ8 (67)

where the Lagrange parameter, γ7 ∈ C, and the Lagrange parameter vector γ8 = [γ81 , γ82 , . . . , γ8N ]T ∈ RN

are for the Capon constraint and the N const. mod. constraints, respectively. Furthermore in (67), define Dγ =[ γ81
. . .

γ8N

]
, i.e. a diagonal matrix. The KKT conditions are expressed as

so(w) =

κ
( Q∑
q=1

Zq(w) + Dγ

)−1
GHw

wHG
( Q∑
q=1

Zq(w) + Dγ

)−1
GHw

(68a)

|soi(w)| = ρ, i = 1, 2, . . . , N. (68b)

The waveform which simultaneously satisfies (68)(a)(b) is the solution. Moreover, note that (68)(a)(b) are 2N non-

linear equations with 2N unknowns. The first N unknowns are soi(w), i = 1, 2 . . . , N and the next N unknowns

are the Lagrange parameters γ8i . Unfortunately, (68) is not in closed form but can be solved numerically for the

N parameters, γ8i , i = 1, 2, . . . , N via a numerical root finder. Nonetheless we note that γ8i ∈ (−∞,∞) and a

reasonable initialization point is not forthcoming for the numerical root finding.

Eliminating the constant modulus constraints Instead of solving the 2N non-linear equations as in (68)(a)(b),

we take an alternative approach. One may reformulate the optimization (66) by eliminating the last N constraints,

by imposing a structure on s, namely, si = ρ exp(jαi). Other structures exists but from our experience, complex

exponentials are the easiest to manipulate. The new optimization problem is now w.r.t. α = [α1, α2, . . . , αN ]T ∈
RN , expressed as

min
α

wHRu(s)w

s. t. wH(v(fd)⊗ s⊗ a(θt, φt)) = κ (69)

where in, s = ρ[exp(jα1), exp(jα2), . . . , exp(jαN )]T and αi ∈ [0, 2π), i = 1, 2, . . . , N . The Lagrangian corre-

sponding to (69) is

L(α, γ9) = wHRu(s)w + Re{γ∗9(wHGs− κ)}. (70)

The KKT’s are expressed as, ∂L(α,γ9)∂α = 0 and wHGs = κ. Noting that α is purely real, we have

∂L(α, γ9)

∂α
= −j

Q∑
q=1

Zqs� s∗ + j

Q∑
q=1

Z∗qs∗ � s

+Im{γ∗9(wHG)T � s} = 0.

(71)

The above equation can be simplified as, Im{
Q∑
q=1

Z∗qs∗ � s − γ∗
9

2 (wHG)T � s}. Using this in (71), and taking
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the complex conjugate, while absorbing the negative sign into the constant γ95, we have the KKTs in final form

expressed as

Im

{(
Q∑
q=1

Zq(w)so +
γ9
2

GHw

)
� s∗o

}
= 0 (72a)

wHGso = κ (72b)

where 0 is a column vector of all zeros and of dimension N . The optimal solution, so, is a function of the optimal

αo. This relationship although evident from (69) is not explicitly stressed in (72) for notational succinctness.

Define ZQ :=
Q∑
q=1

Zq(w) and let zij , i = 1, 2, . . . , N, j = 1, 2 . . . , N be the ij-th element of ZQ. Noting that ZQ

is Hermitian, we also have Im{zii} = 0, ∀i, zji = z∗ij .

Proposition 5. The Lagrange parameter γ9 = 0 solves (72).

Proof. For any z ∈ C, and any θ ∈ [0, 2π], we have Im{z exp(jθ)} = Re{z} sin(θ) + Im{z} cos(θ). Using this

and the fact that ZQ = ZHQ , the i-th equation in (72)(a) can be simplified as

2ρ
( N∑
j=1,j 6=i

Re{zij} sin(αoj − αoi ) + Im{zij} cos(αoj − αoi )
)

= Im{γ9ui exp(−jαoi )}, i = 1, 2, . . . , N

(73)

where ui is the i-th element of u = GHw Adding the N equations in (73), it easily seen that
N∑
i=1

Im{γ9ui exp(−jαoi } =

0 but we know from (72)(b) that ρ
N∑
i=1

ui exp(−jαoi ) = κ, where κ ∈ R. Therefore this implies that Im{γ9} = 0 or

in other words, γ9 is purely real. Substituting this back into (72)(a) and following the same arguments as before,

this is possible if trivially ρ = 0 or γ9 = 0, the former is false since ρ = 0 does not solve (72)(b), therefore the

latter must be true.

Interpretation of γ9 = 0. With γ9 = 0, from (72)(a) we have that

Im

{
Q∑
q=1

Zq(w)so

}
= 0

wHGso = κ.

(74)

The first equation in (74) does not depend on ρ, but the second does. Therefore γ9 = 0 does not imply that the

constraint in (69) is inactive. Rather, this implies that the KKTs enforce the Capon constraint in (69) for the constant

modulus waveform by varying the unspecified modulus parameter ρ.

The result in Prop. 5 has some very interesting consequences. Using γ9 = 0, the N equations in (73) and

5new γ9=old −γ9.
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therefore (72)(a), can be rewritten as a some linear matrix equation Z̄Qpαo = 0, where Z̄Q ∈ RN×(N
2 ) and the

vector pαo = [sin(αo2 − αo1), sin(αo3 − αo1) . . . , sin(αoN − αoN−1), cos(αo2 − αo1), . . . , cos(αoN − αoN−1)]T i.e. has(
N
2

)
components consisting of sines and cosines of all possible differences of αoi − αoj ,∀i,∀j 6= i. In other words,

pαo ∈ null
(
Z̄Q

)
. The rank of Z̄Q is not easy to calculate here but its maximum value is N . Therefore from the

rank-nullity theorem, dim(null(Z̄Q)) ≥ N(N − 2). Clearly there could exist multiple vectors which are in this

null space but we are not certain if this translates to multiple solutions of αo from this linear equation alone.

Nonetheless, if multiple solutions exist to this linear equation, they must also satisfy (72)(b) to be considered as a

solution to (69). In any case the optimal solution(s) are in, Cαo ⊂ RN , with

Cαo = {αo : pαo ∈ null(Z̄Q),
N∑
i=1

u∗i exp(jαoi ) =
κ

ρ
}. (75)

It remains to be seen if Cαo is singleton, or comprises many elements, but we are optimistic that it would not turn

out to be empty.

E. Practical Considerations: Classical STAP v.s Waveform adaptive STAP

Here we addresses practical considerations on the fast time-slow time model in STAP which aids in the waveform

design and compare this with the classical model in STAP (slow time).

Hardware The fast-time slow-time model in STAP does not necessitate newer hardware nor does it require

any modifications to the existing hardware. It does however assume that the current state-of-art permits arbitrary

waveform generation and adaptive transmitting capabilities [38].

Computational complexity The inclusion of the waveform causes the correlation matrices to have larger

dimension. Inverting large matrices are computationally prohibitive. Classical STAP requires inverting a complex

ML×ML matrix which has a complexity of O((ML)2.373)-O((ML)3) [65]. Waveform adaptive STAP requires

inverting complex NML ×NML complex matrices which has a computational complexity of O((NML)2.373)-

O((NML)3) [65].

Training data Due to the larger dimensions of the correlation matrices by inclusion of the waveform, it suddenly

appears, albeit deceivingly, that more training data (from more neighboring range cells) are needed to estimate the

correlation matrices. This is not true since inclusion of waveform simply includes the fast time samples. Hence the

fast-time slow-time model uses the raw data prior to pulse compression or matched filtering, hence the training data

requirements is identical to that required in the classical STAP case. Note that we are not interested in resolving

targets within the pulse duration but rather outside it.

IV. SIMULATIONS

First we will addresses simulations not specific to radar.
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Fig. 7: Simulations supporting Prop. 3, x-axis γ2. Monotone increasing (a) f(γ2) and corresponding (b) γ2f(γ2). Monotone
decreasing (c) f(γ2) and corresponding (d) γ2f(γ2).

A. Simulations supporting: Prop. 3 and Rem. 7

We ran simulations with random zn and random dn to analyze f(γ2) and γ2f(γ2) numerically. In our extensive

simulations we chose zn from complex normal distributions with different means and different variances. Since

dn > 0 for all n, we used uniform distributions with different supports on the positive real axis excluding zero. We

show only two representative simulation results for the monotonically increasing and decreasing cases in Fig. 7(a)(c),

respectively. The corresponding function γ2f(γ2) are also shown in Fig. 7(b)(d) for the two cases.

Simulations for supporting Rem. 7 is presented next. Some parameters specifying the function r(γ6) were
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Fig. 8: Simulations supporting Rem. 7, x-axis γ6. Example showing one zero crossing of (a) r(γ6) and corresponding (b)
γ2r(γ6). Monotone decreasing example for Po >> κ2 in (c) r(γ6).

simulated randomly with the identical distributions used as in generating Fig. 8. The parameter κ = 2, Po = 10 was

used in generating Fig. 8(a), the function γ6r(γ6) is also shown in Fig. 8(b). As such, it is noted that Po = 10 is

a a contrived example, typical radar applications will require Po to be in several hundred KW or several Hundred

MW.

The zero crossing is the intersection of the dashed line (black) with the blue curve in Fig. 8(a). Now using Po = 20

and keeping the other parameters fixed we obtain Fig. 8(c) which shows that r(γ6) is monotonic decreasing whose

limit at ∞ is 0.
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Fig. 9: Constrained alternating minimization: objective costs vs. iterations for 3 random, independent waveform initializations
(inset: for 25 random initializations).
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Fig. 10: (a) Constrained alternating minimization, (b) Proximal constrained alternating minimization (inset: magnified), minimum
eigenvector waveform (dashed black).
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Fig. 12: Constant modulus waveform design comparison with non const. mod. design, 200 trials initialized with: (a) random
non-const. mod. Gaussian waveforms (b) random unit modulus waveforms, with phase drawn uniformly from [−π, π].

Radar Specific simulations: Here onward, some parameters are common to all the simulation examples and

are stated now. The simulation parameters are in SI units unless mentioned otherwise. To reduce computation

complexity while inverting large matrices and computing their eigen-decompositions, we considered the number of,

sensors, waveform transmissions, and fast time samples in the waveform as M = 5, L = 32, N = 5, respectively.

The carrier frequency was chosen to be 1GHz, and the radar bandwidth was 50MHz. The element spacing d = λo/2.
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Fig. 13: Oracle: Reed Mallet Brennan rule.
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Fig. 14: Adapted patterns using designed waveform from alternating minimization, dashed line is the Doppler as a function of
angle predicted by theory. In, (a) no clutter Doppler ambiguities, (b) clutter Doppler ambiguities shown with arrows.
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Fig. 15: ROC (a) non con. mod design, (b) con. mod. design
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Fig. 16: Rank deficient waveform adaptive STAP (a) constrained alternating minimization, (b) constrained proximal alternating
minimization.
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B. Constrained alternating minimization

The noise correlation matrix was assumed to have a correlation function given by exp(−|0.005n|), n =

0, 1, . . . , NML. Two interference sources were considered at (θ = 0.3941, φ = 0.3) and at (−0.4941, 0.3).

Both these interference sources had identical discrete correlation functions given by 0.2|n|, n = ±0,±1, . . .. To

simulate clutter we considered two clutter patches, consisting of five scatters each. The clutter correlation functions

corresponding to the two patches were exp(−0.2|p|) and exp(−0.1|p|), p = ±0,±1, . . . ,±P . The rest of the

parameters are identical to those used in [57].

In Fig. 9, the STAP beamformer objective vs. iterations are shown for 3 independent, random waveform

initializations but the inset shows 25 independent initializations or trials. The alternating minimization was initialized

with waveforms whose fast time samples are chosen independently from a standard complex Gaussian distribution.

The algorithm was terminated as soon as the current waveform iterate invalidated the set power constraint. From the

figure and its inset it is clear that the STAP beamformer output is non-increasing thereby validating the monotonicity

property of this algorithm. More importantly from Fig. 9, we see that the final objective value and the iterations to

reach it for each trial are different from one another, attributed to the joint non-convexity of the objective w.r.t. w

and s. Sensitivity to the random initialization is therefore duly noted.

C. Constrained proximal alternating minimization

All the simulations parameters are identical to the previous case. The constrained alternating minimization was

initialized with random waveforms as in Fig. 9, immediately followed by its proximal counterpart. The termination

of the former algorithm was identical to the previous case, then, the latter was run for 200 iterations. Three

representative trials are shown in Fig. 10(a)(b), for the constrained alternating minimization and its proximal

counterpart. In Fig. 10(b), the dashed black lines are the final objective values obtained from the min. eigenvector

waveform having the same energy as its proximal counterpart. For the three trials and not surprisingly, the proximal

objective value, for all practical purposes, is identical to that obtained from the waveform derived from (21) as

evidenced from the inset. Therefore validating the implementation of both the constrained as well as its proximal

counterpart. From Fig. 10(b) and unlike Fig. 9, three accumulation points w.r.t. the objective are clearly visible for

the three trials indicating strong convergence.

D. Constant modulus

The constant modulus algorithm was implemented numerically via the KKTs (i.e. (72)) and using the results

from Prop. 5. The simulation parameters are identical to the two previous scenarios. In Fig. 11, the modulus of the

fast time waveform samples vs. iterations are shown for the constant modulus alternating minimization algorithm.

As seen from this figure, the algorithm was initialized with a non-constant modulus waveform. For this random

initialization, convergence to a constant modulus is achieved in three iterations or less. We have however encountered

cases where the algorithm has not converged for several iterations. Nevertheless this problem was not encountered
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when the algorithm was initialized with a random constant modulus waveform. Thus in practice, it is advocated

that this algorithm be initialized with an arbitrary constant modulus waveform, viz. a chirp, rectangular pulse, etc..

The ratio of the final objective for the constant modulus algorithm to the objective for the non-constant modulus

waveform design using the constrained alternating minimization is seen in Fig. 12(a)(b) for 200 random waveform

initializations. After convergence, not unexpectedly, the constant modulus objective is more than the non-constant

modulus objective. This trend is readily observed from Fig. 12(a)(b) for the 200 trials. This is to be expected since

constant modulus waveforms are a subset of their non-constant modulus counterparts. In particular, the amplitude

is constrained temporally in the constant modulus design, while the phase is allowed to be optimized. Whereas,

the phase and amplitude are both optimized the non-constant modulus design. From these figures we can see that

on one end, this ratio is as much as 10dB, and on the other it is almost 0dB. Nonetheless on the average, the

non-const. modulus waveforms have lower objective values than objective values derived from the const. modulus

waveforms.

E. Oracle sample support requirements

The ideal SINR is ρ2t |wH
o (v(fd)⊗so⊗a(θt,φt))|2

wH
o Ru(so)wo

where wo, so are obtained after optimization. Using the estimated co-

variance matrix, say the sample covariance matrix, the definition of the estimated SINR is ρ2t |wH
est(v(fd)⊗sest⊗a(θt,φt))|2

wH
estR̂u(sest)west

,

where R̂u(·) is the estimated sample covariance matrix, and west, sest are the optimized weight and waveform

vectors by using the estimated covariance in the optimization instead.

A true SINR loss can be computed by using the estimated i.e. R̂pq
γ in (15) and running the optimization algorithm

for each Monte Carlo trial, resulting in an estimated sest. This is computationally heavy on our current resources,

therefore not reported here. However, we will assume that an oracle has provided the optimal waveform to be

transmitted. Then the oracle loss of SINR due to the estimated covariance is a random variable, captured by,

SINRloss =
wH
o Ru(so)wo

wH
estR̂u(so)west

.

Random data is now generated from zero mean multivariate complex Gaussian distributions to compute the sample

covariance matrices, i.e. R̂i, R̂n and R̂pq
γ . Two hundred Monte Carlo trials were run with differing sample supports.

The mean and standard deviation of the oracle SINRloss are shown in Fig. 13(a)(b). Not surprisingly the RMB

rule is followed perfectly. For the same sample support, the standard deviation is a few orders less than the mean.

F. Adapted patterns

The adapted pattern for the waveform dependent STAP objective function is expressed as

P(fd, θ) = |wH
o (v(fd)⊗ so ⊗ a(θ, φ))|2, for a fixed φ. (76)

The adapted pattern in (76) is a function of angle, Doppler, the optimal weight and the waveform vectors, wo, so,

respectively. Two examples are shown in Fig. 14(a)(b). Two interferers at (θ = −0.2, φ = π/3) and at (−0.2, π/3)
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were chosen. We modeled the clutter discretely from all azimuth angles from −π/2 to π/2 in discrete increments

of −0.005π/2 radians. The clutter patches were fixed at an elevation angle of π/4 radians. The target was assumed

to be at θt = 0.7, φt = π/4 with normalized Doppler equal to 0.31 and θt = 0, φt = π/4 with normalized

Doppler equal to -0.4 in Fig14(a)(b), respectively. The adapted patterns in Fig. 14 are identical (upto a scaling)

to those obtained from the classical STAP adapted pattern. This is not a surprise but is rather reassuring since

the waveform in (76) affects all the Doppler frequencies and the azimuths identically. Moreover, we can always

consider so ⊗ a(θ, φ) as a new /modified spatial steering vector. Hence as expected the inclusion of the optimal

waveform will not alter the shape of the classical STAP adapted pattern.

G. Detection

Here, we investigate the impact of detection using the optimized waveforms and randomly selected waveforms.

The detection test for the presence of a target at a particular range cell is cast as a binary hypothesis test,

H0 : wH ȳ = wHyu H1 : wH ȳ = wHy + wHyu (77)

where y, yu have been been defined in (8), (9). Assuming that yu is complex normal distributed, the test in (77) is

readily evaluated. The weight vector is obtained after the optimization. The ROC curves for SINRs 0dB, 3dB and

6dB are shown in Fig. 15(a)(b) for the non const. modulus and const. modulus design, respectively. For generating

Fig. 15(a), a random waveform was used having the same energy as that obtained after the alternating minimization

algorithm. The waveform samples were drawn independently from a complex Gaussian distribution. In Fig. 15(b),

a chirp waveform was used having the same bandwidth and energy as its optimized constant modulus counterpart.

From these figures and as expected, from a detection standpoint, an optimized waveform performs much better than

transmitting an un-optimized waveform.

H. Realistic STAP waveform design

We consider a scenario frequently encountered in STAP, the sample covariance matrix is rank deficient due

to the paucity of training data. The simulation parameters are identical to those used as in Fig. 9, except that we

considered ground clutter from all azimuths in [−π/2, π.2], similar to those used in generating Fig. 14. Furthermore,

we constrained the rank of the resulting correlation matrices to be 30, equal to the numerical rank of the clutter

correlation matrix for generating Fig. 16. The alternating minimization is first used for 20 iterations assuming an

arbitrary diagonal loading factor equal to 100. After termination of this algorithm, the proximal algorithm was

employed for 50 iterations. The results are shown in Fig. 16(a)(b). It is noted that in practice the ‘true’ min.

eigenvector cannot be computed due to the rank deficiency. Interestingly nonetheless, the designed waveforms after

the proximal optimization result in a STAP objective value which is close to that obtained from the waveform

estimated from the ’true’ min. eigenvector. However, extensive simulations for the rank deficient STAP are needed

to verify if this behavior is seen for other classes of noise plus interference, and clutter correlation matrices.

42 
Approved for public release; distribution unlimited. 



P. SETLUR AND M. RANGASWAMY: AFRL SENSORS DIRECTORATE TECH. REPORT, 2014. 43

V. CONCLUSIONS

Waveform design in STAP was the focus of this report assuming the dependence of the clutter response on the

transmitted waveform. Our preliminary simulations indicate that the objective function was jointly non-convex in the

weight and waveform vectors. However, we showed analytically that the objective function is individually convex

in the waveform and the weight vector. This motivated a constrained alternating minimization technique which

iteratively optimizes one vector while keeping the other fixed. A constrained proximal alternating minimization

technique was propose to handle rank deficient STAP correlation matrices. To addresses practical design constraints

we incorporated constant modulus constraints in our alternating minimization formulation. Simulations were cho-

sen to demonstrate the monotonic decrease of the MVDR objective function using this alternating minimization

algorithm. Preliminary simulations were presented to validate the theory.
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