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1 Summary Program Description
The goal of this research program consisted of developing a high-fidelity modeling capability for non-
equilibrium plasma, including detailed collisional-radiative kinetics, and magneto-hydrodynamic
(MHD) physics. Through this research effort, we have successfully implemented and verified single-
fluid, MHD, and multi-fluid models. The collisional-radiative (CR) kinetics were solved and coupled
to the fluid, and a new high-accuracy model for complexity reduction of the atomic CR chemistry
was developed and tested; this allows an efficient yet accurate way to model complex and re-
alistic plasma chemistries – involving multiple ion stages and multiple species – coupled to the
fluid dynamics. Extensions of the model to allow time-accurate simulations in multi-dimensional
configurations are currently being investigated. Such a capability is a significant step forward in
high-fidelity plasma simulations, for various conditions of interest to the Air Force and the DoD,
and is made possible by the preliminary R&D conducted under this Laboratory Research Indepen-
dent Research (LRIR). Furthermore, we have also been able to complete a rigorous derivation of a
new model of CR kinetics for multi-fluid plasma, the results of which are presnted in appendix C.

On a parallel effort, we have developed and tested a MHD version of the single-fluid code using
several monotonicity-preserving (MP), high-order (HO) numerical schemes: WENO [1], ADER-
WENO [2], and MP [3]. The results of these tests are part of dissertation work by L. Cole,
included in this report. We have also tested the implementation of both CFD schemes and kinetics
on Graphics Processing Units (GPUs), allowing massive parallelization for future large-scale studies;
the results of this GPU optimization were published and are included in this report.

This LRIR effort, although at a very moderate level of funding, was thoroughly successful:

1. Several innovative models and numerical schemes were developed, verified and validated,
against known analytical solutions, experiments (e.g. Schlieren and interferometric data from
shock-tubes), and other codes. These include: a) a new level-grouping methodology to reduce
the complexity of atomic CR kinetics and allow high-fidelity of large-scale simulations, and;
b) a new multi-fluid CR kinetics model and derivation of improved coupling coefficients for
mass, momentum and energy.

2. New modeling capabilities were created at AFRL with more detailed reproduction of physical
phenomena of critical importance to a number of problems of interest to the USAF, and
which are being incorporated into a general-purpose framework for future applications to
real systems: a) high-order MHD models; b) multi-fluid models; c) CR-chemistry models; d)
optimized GPU parallelization; e) laser-plasma interactions (LPI).

3. The LRIR funded the dissertation work of one graduate student (H. Le) and partially that of
another student (L. Cole), who worked at AFRL and under the direction of the PI, Dr. J.-L.
Cambier. This was a very effective interaction, multiplying the skills of experienced personnel
with the raw enthusiasm of very junior researchers, and a highly efficient use of resources.
It also provided a best-approach template for the collaboration between AFRL and a local
university, UCLA, with future impact on other R&D programs.

The results of this R&D effort are provided herewith as a series of appendices, namely:

1. A journal article describing the optimization of kinetics on the GPU platform (although
tested on chemical kinetics of combustion, the same procedure is applicable to CR kinetics
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with relatively minor modifications).
2. A journal article describing the derivation of a higher-order level-grouping scheme, for fu-

ture, more accurate simulations of multi-dimensional plasma with complex chemistry and
composition.

3. A journal article describing a new model of multi-fluid collisional-radiative kinetics, and the
derivation of new resistance and coupling coefficients, as well as a demonstration of their
potential impact. This article is part I of a two part series, with the second one describing
the model for ionization and recombination (in preparation).

4. The Ph.D. thesis of Hai Le (UCLA), who performed most of the work under the scope of
this LRIR. The dissertation provides; a) a detailed description of the single-fluid model with
detailed CR kinetics and validation; b) a description of the multi-fluid model and associ-
ated kinetics; c) a description of the newly implemented laser-plasma interaction modeling
capability, with reproduction of non-linear (ponderomotive) forces.

5. The Ph. D. thesis of Lord Cole (UCLA), which contains a detailed description of the various
numerical schemes studied, and applications to MHD modeling capability.

In conclusion, this LRIR effort has provided a number of advances in modeling capabilities for
AFRL, which are currently being integrated into a new, state-of-the-art M&S platform for future
large-scale studies. By itself this defines a successful program with direct transition into a 6.2 effort.
Of equal importance, this LRIR provided the seeds for on-going and future research with even
more significant impact and even greater advances, under the general scope of multi-dimensional,
time-accurate MHD and multi-fluid plasma simulations with detailed atomic physics and radiative
transport. This new level of modeling accuracy is currently being developed as a continuation of
this effort, through the same (and extended) collaboration with UCLA, and is expected to provide
revolutionary capabilities to AFRL.

References
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a b s t r a c t

The current paper reports on the implementation of a numerical solver on the Graphic Processing Units
(GPUs) to model reactive gas mixtures with detailed chemical kinetics. The solver incorporates high-
order finite volume methods for solving the fluid dynamical equations coupled with stiff source terms.
The chemical kinetics are solved implicitly via an operator-splitting method. We explored different
approaches in implementing a fast kinetics solver on the GPU. The detail of the implementation is
discussed in the paper. The solver is tested with two high-order shock capturing schemes: MP5 (Suresh
and Huynh, 1997) [9] and ADERWENO (Titarev and Toro, 2005) [10]. Considering only the fluid dynamics
calculation, the speed-up factors obtained are 30 for the MP5 scheme and 55 for ADERWENO scheme.
For the fully-coupled solver, the performance gain depended on the size of the reaction mechanism.
Two different examples of chemistry were explored. The first mechanism consisted of 9 species and 38
reactions, resulting in a speed-up factor up to 35. The second, larger mechanism, consisted of 36 species
and 308 reactions, resulting in a speed-up factor of up to 40.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Detail study of complex physical phenomena associated with
high-speed fluid flow requires a deep understanding of the funda-
mental physics which involves many highly non-linear processes
evolving in different spatial and temporal scales. Inevitably, the
challenge of solving these problems is due to the coupling mecha-
nism between these processes and what impact they have on the
flow solution. For example, in combustion study, one has to pay
close attention to the coupling between the fluid transport and
chemical kinetics in order to characterize the combustion process.
Computational FluidDynamics (CFD) techniques can be used to ob-
tain a detailed flow solution which can be applied in practical ap-
plications. Although the mathematical formulation of the physics
can be addressed in great detail, numerical simulation of high-
speed fluid flow in a non-equilibrium environment is often limited
by the computational power demanded for solving the governing
equations. Modern CFD codes are designed to take advantage of
high performance computing (HPC) platform to reduce run time.
Unfortunately, the tradition HPC resources are very limited due to
their cost and maintenance requirement. These limitations have
accentuated a need for a compact and low-cost HPC solutionwhere
numerical solvers can be effectively implemented.

During the last eight years, the Graphic Processing Unit (GPU)
has been introduced as a promising alternative to high-cost HPC

∗ Corresponding author.
E-mail address: hai.le@ucla.edu (H.P. Le).

platforms. Within this period, the GPU has evolved into a highly
capable and low-cost computing solution for scientific research.
Fig. 1 illustrates the superiority of GPU over the traditional Central
Processing Unit (CPU) in terms of floating point calculation. This
is due to the fact that the GPU is designed for the highly parallel
process of graphic rendering. Starting in 2008, the GPU began
to support double precision calculation, which is necessary for
scientific computing. The newest generation of NVIDIAGPUs called
‘‘Fermi’’ has been designed to enhance the performance on double
precision calculation over the previous generations of NVIDIA
GPUs. CUDA [1], which is currently themost popular programming
environment for general purpose GPU computing, has undergone
several development phases and reached a certain level of
maturity, which is essential for the design of numerical solvers.
Other alternatives such as OpenCL, DirectCompute, Stream, etc.
have also began tomaturewhich encourages newdevelopments in
scientific computing usingGPU. Several attempts hadbeenmade in
writing scientific codes on the GPU either by directly using CUDA
or via some wrapper which calls the CUDA kernel functions, and
promising results were obtained both in terms of performance
and flexibility. Previous implementations of CFD codes on the
GPU focused purely on solving the fluid dynamics using either
finite volume [2,3] or finite element methods [4]. Recently,
there have been a number of GPU-based implementations of
multiphysics simulation. Of particular note are the extension to
magnetohydrodynamics simulation by Wong et al. [5] and the
automated preprocessor tool tomodel finite rate chemical kinetics
by Linford et al. [6,7]. In all cases, the reported speed-ups show

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.10.013
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Fig. 1. Single and double precision floating point operation capability of GPU and
CPU from 2003 to 2010.
Source: Adapted from Fig. 1 of NVIDIA [1].

promising performance results and clearly demonstrate that GPU
is suitable for massively parallel scientific computing.

In this paper, we describe the detail code implementation of a
numerical solver coupling the fluid dynamics with detailed chem-
ical kinetics. Unlike previous attempts at adapting the GPU to nu-
merical solver, we have placed our emphasis on the kinetics solver
rather than the fluid dynamics. This is due to the fact that for
the simulation of high-speed fluid flow, the computation is dom-
inated by solving the kinetics. While the current implementation
is only for chemical kinetics, it is easy to extend it to a more gen-
eral kinetics (collision-radiative kinetics for plasma) since all the
elementary processes for a plasma (excitation/de-excitation, ion-
ization/recombination, etc.) can be represented by a chemical re-
action with the rate computed a priori and tabulated as a function
of temperature.

The rest of the paper is organized as follows. The governing
equation and numerical formulation for both the fluid dynamics
and chemical kinetics are described in Sections 2 and 3. Section 4
gives some background on GPU computing. The code implementa-
tion is detailed in Section 5, highlighting several optimization tech-
niques for maximizing the performance of the solver. The results
of several benchmark test cases both for non-reactive and reactive
flow fields are presented in Section 6 as well as the performance
results of the solver. Section 7 gives the conclusions and points out
possible future works.

2. Governing equations

The flow ismodeled as amixture of gas specieswhile neglecting
viscous effects. The chemical reactions taken place between the gas
components are to be modeled in great detail. The set of the Euler
equations for a reactive gas mixture can be written as:

∂Q
∂t
+∇ · F̄ = Ω̇ (1)

where Q and F are the vectors of conservative variables and invis-
cid fluxes, respectively. We assumed that there is no species dif-
fusion and the gas is thermally equilibrium (i.e., all species have
the same velocity and all the internal energy modes are at equi-
librium). The right hand side (RHS) of Eq. (1) denotes the vector of
source terms Ω̇ , which are composed here of exchange terms due
to chemical reactions. We solve the system (1) in a finite-volume

formulation, by applying Gauss’s law to the divergence of the
fluxes:

∂Q
∂t
+

1
V


S
FndS = Ω̇ (2)

where Q , Fn and Ω̇ now denote volume-averaged quantities,
which can be written as:

Q =



ρs
...

ρux
ρuy
ρuz
E

 , Fn =



ρsun
...

Pnx + ρunux
Pny + ρunuy
Pnz + ρunuz
un(P + E)

 ,

Ω̇ =



ω̇s
...
0
0
0

−


s

ω̇se0s



(3)

where un is the velocity vector normal to the interface and
(nx, ny, nz) is the corresponding unit vector. The total energy is the
sum of the internal energies from each species and the total kinetic
energy:

E =

s

ρseis +
1
2
ρu⃗2. (4)

Since the species formation energies e0s are not included in that
definition, we must account for their change in the source term
Ω̇ . The convective terms and the source terms are solved indepen-
dently of each other by making use of an operator-splitting tech-
nique.

∂Q
∂t
=


∂Q
∂t


conv
+


∂Q
∂t


chem
= −

1
V


S
FndS + Ω̇. (5)

The equation of state (EOS) is that of an ideal gas, i.e. Dalton’s law
of partial pressures:

P = NRT =

s

ρs(R/Ms)T (6)

where R is the Boltzmann constant (in J/mol ·K) andMs the species
molar mass. The pressure can also be determined from the con-
served variables, {ρs, m⃗, E}, where m⃗ = ρu⃗ =


ρsu⃗, by:

P = (γ − 1)

E −

m⃗
2ρ2


. (7)

This formulation allows us to compute the pressure derivatives
with respect to the conservative variables, needed for the flux Jaco-
bian. Comparing (6) and (7), we find the expression for the effective
ratio of specific heats γ :

γ = 1+ R T


s

ρs/Ms

ρēi
with ρēi =


s

ρseis. (8)

Using
∂γ

∂ρs


E,m
=

RT
ρēi


1
Ms
−

eis
M̄ēi


(9)

with M̄ = ρ/N , we find (using the notation Pqa = ∂P/∂qa):

Pρs = (γ − 1)
u⃗2

2
+


RT
Ms
−

RT
M̄

eis
ēi


. (10)
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j-2 j-1 j j+2j+1 j+3

Fig. 2. Schematic of computational stencil forMP5 schemewith left and right states
of an interface.

Note that


s ρsPρs ≡ (γ − 1)u⃗2/2. The other derivatives are:

Pmα = −(γ − 1)uα α = x, y, z (11)

and

PE = γ − 1. (12)

The speed of sound is defined as

c2 =

s

ĉsPρs + (h− u⃗2)PE = γ
P
ρ

(13)

where ĉs = ρs/ρ is the species mass fraction and

h =
H
ρ
=

E + P
ρ

(14)

is the specific enthalpy.

3. Numerical formulation

3.1. Fluid dynamics

A dimensional splitting technique [8] is utilized for solving the
convective part of the governing equations. In order to achieve
high-order both in space and time, we employed a fifth-order
Monotonicity-Preserving scheme (MP5) [9] for the reconstruction,
and a third-order Runge–Kutta (RK3) for time integration. For the
MP5 scheme, the reconstructed value of the left and right states of
interface j+ 1

2 is given as (see Fig. 2):

uL
j+ 1

2
=

1
60


2uj−2 − 13uj−1 + 47uj + 27uj+1 − 3uj+2


(15a)

uR
j+ 1

2
=

1
60


2uj+3 − 13uj+2 + 47uj+1 + 27uj − 3uj−1


. (15b)

The reconstructed values are then limited to avoid instability.

uL
j+ 1

2
← median


uL
j+ 1

2
, uj, uMP


(16)

where

uMP = uj +minmod

uj+1 − uj, α


uj − uj−1


(17)

with α = 2.
In addition to theMP5 scheme,we also considered the Arbitrary

Derivative Riemann Solver using the Weighted Essentially Non-
Oscillatory reconstruction procedure, the so-called ADERWENO
scheme [10]. At each interface of 1 one-dimensional stencil, we
seek the solution of the generalized Riemann problem (GRP)

∂tQ + ∂xF(Q ) = 0 (18)

with the following initial conditions

Q (k)(x, 0) =


q(k)
L (x) if x < 0

q(k)
R (x) if x > 0.

(19)

The solution of Eq. (18) can be expanded using the Taylor Series
expansion in time.

Q (xj+1/2, t + h) = Q (xj+1/2, t)+
r−1
k=1

hk

k!
∂k

∂tk
Q (xj+1/2, t) (20)

where all the temporal derivatives can be determined using the
Cauchy–Kowalewski procedures [10]. The solution obtained in this
form is high-order both in space and time, so no additional time
stepping (i.e., multi-stage RK) is required. This provides certain
advantages over the MP5 scheme since the overhead since the RK
additional stages for high temporal order are no longer required.
However, one disadvantage of the ADERWENO scheme is that
the scheme is not guaranteed to be total variation diminishing
(TVD) whichmight be an issue in the region of strong compression
or expansion waves. It is worthwhile to mention that there are
other formulations of ADER schemes available in the literature [11]
which are proven to be TVD. Although such schemes have not been
implemented, the core implementation of the solver described in
this work can be used as the building blocks for other formulations
of ADER schemes.

The interface fluxes are solved by employing the HLLE Riemann
solver [12], which is given as

FHLLE
j+1/2 =

b+FR − b−FL
b+ − b−

+
b+b−

b+ − b−
∆Qj+1/2 (21)

where

b+ = max(0, ûn + ĉ, unR + cR) (22)

b− = min(0, ûn − ĉ, unL − cL). (23)

3.2. Chemical kinetics

An elementary chemical reaction takes the form
s

ν ′s[Xs] ⇔

s

ν ′′s [Xs] (24)

where ν ′s and ν ′′s are the molar stoichiometric coefficients of the
reactants and products of each reaction. The forward rate can be
expressed in modified Arrhenius form as:

Kfr = AfrTβr exp

−

Er
RT


. (25)

The backward reaction rate is calculated from the equilibrium
constant, which is given as

Ke =
Kfr

Kbr
=


Pa
RT


s νs

exp

−∆G0

RT


. (26)

The species net production rate due to all reactions can then be
determined from

ω̇s =

r

Msνrs


Kfr


s

[Xs]
ν′rs − Kbr


s

[Xs]
ν′′rs


(27)

where νrs = ν ′′rs−ν ′rs. By conservation ofmass, sumof all the species
production rates should be equal to zerowhich yields the following
expression.

s

ω̇s = 0. (28)

In order to solve for the change in the species concentration,
one needs to know all the changes in the thermodynamics for
each reaction as well as their rates (production/destruction). The
backward rate for each reaction is calculated based on detail
balancing. In practice, acceptable result can also be obtained using
curve-fitting technique with the temperature as an input without
the expense of calculating the equilibrium constant. In this work,
we have computed the backward rates from the equilibrium
constant.
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Fig. 3. Data parallelism in GPU [1].

The chemical kinetics, expressed in the formof anODE, is solved
using a point implicit solver to ensure stability. The formulation
can be obtained by using a Taylor series expansion in time of the
RHS
dQ
dt
= Ω̇n+1 (29)

dQ
dt
= Ω̇n

+∆t
∂Ω̇n

∂t
. (30)

By applying chain rule to the timederivatives on the RHS, one could
obtain
I −∆t

∂Ω̇

∂Q


dQ
dt
= Ω̇. (31)

As a linear system of equations, Eq. (31) can be solved using
a variety of numerical methods. In the current work, a direct
Gaussian elimination procedure is carried out in order to solve for
the linear system of the chemical kinetics. It must be pointed out
that the computational cost of the Gaussian elimination procedure
scales as (Ns)

3 where Ns in this case is the number of species. For
large/detailed kinetics, solving the system at every cell is clearly a
computationally intensive task.

4. GPU computing

TheGPUprocesses data in a Single-Instruction-Multiple-Thread
(SIMT) manner. The instruction for executing on the GPU is
called a kernel which is invoked from the host (CPU). The CUDA
programming model consists of grid and thread block. A grid
consists of multiple thread blocks and each thread block contains
a number of threads. When a kernel is called, the scheduler unit on
the device will automatically assign a group of thread blocks to the
number of available streaming multi-processors (SM or GPU core)
on the device. Once the SMhas completed the calculation, it will be
assigned another block. Since there is no communication between
the thread blocks, the execution order is automatically optimized
so GPU with more cores will perform the calculation faster, which
is shown in Fig. 3.

The data parallelism is also inherent at the thread level. An
instruction given to a thread block is handled by a SM which
contains a number of streaming processors (SPs). All the threads
within each blockwill be organized into groups of 32 threads called
warps which are executed in a SIMT manner. The difference in the
data parallelism between grid and thread block is that there is a
synchronization mechanism for all the threads in a same block but
not for all the blocks in the grid. It is therefore important to ensure
that there is no data dependency between thread blocks.

5. Implementation

The overall implementation of the code can be divided into two
parts: the fluid dynamics and kinetics. The fluid dynamics module
is responsible for the advection calculation. The kinetics module,
on the other hand, calculates the species consumption/production
due to chemical reactions and ensures detail balance is satisfied.
The overall flow chart of the program is shown in Fig. 4 (see also
Fig. 5 for the flow chart of the fluid dynamics module). After all the
flow variables have been initialized and transferred to the GPU, the
entire calculation is performed on the device. There is no memory
transfer between each iteration unless there is a need to output
the flow solution. This effectively reduces the memory transfer
time between iterations, which can be significant for large-scale
problems. However, for calculation utilizing more than one GPU, it
is unavoidable to transfer memory back to the host for boundary
exchange (ghost cells).

5.1. Computational fluid dynamics

The parallelization is done by directly mapping the computa-
tional domain to a CUDA grid. The face values can be mapped the
samewaywith a larger grid since the number of faces in each direc-
tion is always 1 greater than the number of cells in that direction.
For a rectilinear grid, each CUDA thread can be associatedwith one
cell/face inside the computational domain.
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Initialization

Data transfer to GPU

Apply BC

Fluid Dynamics

Qconv

Output & Exit

Data transfer to CPU

time step loop

Chemical Kinetics
Q

Fig. 4. The overall work flow of the program. The fluid dynamics calculation and
chemical kinetics are done by several GPU kernels.

In order to maximize thememory access efficiency, the data for
the whole domain is stored as one-dimensional arrays. The index
of these arrays can be calculated from the dimensional indices and
the variable index and vice versa. This is similar to the approach
taken in [5]. Since all the data storage is one-dimensional, the do-
main can be decomposed into one-dimensional stencils of cell/face
values where each stencil can be assigned to a CUDA block. Since
the computational domain can be up to three-dimensional, one can
split the stencil in different ways. However, it is desired to split the
stencil so that all the elements of a stencil are located in contigu-
ous memory space. For example, if i is the fastest varying index of
a three-dimensional data array A(i, j, k), the stencil is created by
splitting the domain along the i direction. The directional indices
(i, j, k)of a three-dimensional domainwith lengths IDIM, JDIM and
KDIM can be calculated from the thread index, as shown in the fol-
lowing CUDA code snippets:

int tid = blockIdx.x*blockDim.x+threadIdx.x;
int k = tid / (IDIM*JDIM);
int ij = tid % (IDIM*JDIM);
int j = ij / IDIM;
int i = ij % IDIM;

Since each stencil can be fitted into a block of threads, each
component of the stencil is associated with a thread. Since all
the threads within a block are accessing consecutive memory
address, the access pattern is coalesced resulting in high memory
bandwidth.

The calculation inside theCFDkernels requires a certain amount
of memory which cannot be fitted in shared memory. This is be-
cause the size of the conservative variable vector is directly pro-
portional to the number of species which can be quite large for a

reacting mixture. In addition, high-order reconstruction requires
an interpolating stencilwhose length is three or five computational
cells depending on the order of the scheme. Hence, the shared
memory was not found useful in this case. In the CFD calculation,
the size of the thread block can have an impact on the performance
of the kernel. It is usually recommended by the CUDA program-
ming guide [1] to maximize the block occupancy to make up for
the memory latency. Since the occupancy factor is proportional to
the block size, a large block size would result in high occupancy.
However, Volkov [13] has shown that in the case where there are
multiple independent instructions in the kernel, it is more advan-
tageous to make the block size smaller and utilize more registers
to cover for the memory latency. Since each entry of the eigen-
system can be constructed independently of the others, the kernel
performs faster in the case of smaller block size. This is referred as
Instruction-level Parallelism (ILP). This is the approach utilized in
the CFD kernels to achieve high performance. One example is the
construction of the eigensystem in the fluid solver. More informa-
tion on how to optimize the performance of a kernel using ILP can
be found in Volkov [13].

5.2. Chemical kinetics

The parallelization of the kinetics solver can greatly benefit
from GPU acceleration. The problem can be described as a simple
linear algebra problem A · x = b where A is the Jacobian matrix
mentioned in Eq. (31). The solution of the system contains the
change in molar concentration of all the species due to chemical
reactions. It must be noted that the kinetics calculation is complex
and the computation time depends on a variety of parameters
such as domain size, number of species, number of reactions,
etc. In the optimization study of the kinetics solver, we have
neglected the effect of the number of reactions which is present
in the rate calculation (i.e., construction of the Jacobian), so the
focus can be placed on the matrix inversion algorithm where the
system size (Ns) can be varied. In general, the construction of the
Jacobian is also a time consuming process if one considers a large
number of reactions, but case dependent optimization techniques
can be applied, making generalization inefficient. Since the solver
is designed to solve a general set of kinetics, the detail in the
construction of the Jacobian is not discussed here, although in this
work, we have also attempted to optimize the rate calculation. The
efficiency of the rate calculation will be shown implicitly later in
a comparison of two fully-coupled solutions using two different
chemistry mechanisms.

The linear systemA·x = b is solvedusing aGaussian elimination
algorithm, which is a sequential method. Since the kinetics in
each computational cell are independent of other cells, one can
parallelize the system on thread-per-cell basis. The Gaussian
elimination process requires a considerable amount of memory
access for read and write instructions to use andmodify the values
of the Jacobian. We investigated different approaches to maximize
the performance of the kinetics solver. The first approach was
to store the entire system for all cells on global memory. This is
referred as the global memory approach. Although global memory
is the slowest type of memory available on the device, coalesced
memory access can result in high memory bandwidth close to
the theoretical limit. The advantage of this approach lies in its
simplicity. This is similar to the approach taken by Linford et al. [6,
7] for their implementation of the chemical kinetics kernel on the
GPU. Since the global memory is the largest on the device, the
restriction on the number of species can be relaxed. This is referred
as the global memory (coalesced) approach throughout the text.
A known issue of the Gaussian elimination is the significant
accumulation of round-off error for large linear system, so double-
precision is rapidly a necessity.
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Fig. 6. Chemistry size limitation ror storing the whole jacobian matrix and the RHS 
vector on shared memory. Even when we only store 1 jacobian per CUDA block, the 
maximum number or species is Jess than 13. 

It is always recommended [1] to utilize shared memory when
ever possible to reduce global memory traffic. In this case, solv
ing the chemical system requires inverting a N5-by-N5 matrix and 
the system needs to be solved at every computational cell. Storing 
the whole jacobian and the RHS vector on shared memory is ideal 
in this particular case. Fig. 6 shows the memory requirement for 
storing the jacobian and RHS on the typical shared memory (i.e., a 
Tesla C2050/2070 has 48 KB of shared memory per CUDA block). 
If we associated an entire thread block to the chemical system in 
a cell, the number of species is limited to 75. Storing more than 1 
system per block decreases this limit further, which is the case for 
1 thread per cell (32 threads block size). The approach of storing 
the entire system of one computational cell per block is referred as 
the shared memory (full storage pattern) approach. 
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Fig. 8. Solution or the rorward step problem using MPS scheme with 600,000 cells. 

In order to overcome the shared memory limit, we considered 
storing only two rows of the jacobian in shared memory since 
the sequence of the elimination is done row-by-row. In this ap
proach, referred as the shared memory (reduced storage pattern) 
approach, one needs to store values for the current row and the 
pivot row for each row elimination. Fig. 7 shows a comparison of 
the species limit for two approaches; the species limit for the re
duced storage pattern is much higher than the full storage pattern. 
The draw-back of this approach, however, is that there are multiple 
memory transfers between global and shared memory, since we 
are required to copy back the values of each row after being elim
inated. The parallelization is only effective when the calculation 
time dominates the global-shared memory transfer time (i.e., N5 is 
large). It will be shown later that this algorithm is only fast for lin
ear systems with a large number of species. It must be noted that 
the shared memory approach stated in the remaining of paper will 
refer to the reduced storage pattern approach. 

6. Results 

6.1. Solver results 

The first objective is to verify that the solver is correctly imple
mented using the CUDA kernels. For this purpose, we can compare 
the results with a pure-CPU version, but also compute a set of stan
dard test cases. The first of those is a Mach 3 wind tunnel problem 
(a.k.a. the forward step problem) using the MP5 scheme, whose 
solution is shown in Fig. 8. This problem had been utilized by 
Woodward and Colella [ 14] to test a variety of numerical schemes. 
The whole domain is initialized with Mach-3 flow and reflective 
boundary conditions are enforced on the step and the upper part 
of the domain. The left and the right boundary conditions are set 
as in-flow and out-flow, respectively. Special attention is usually 
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Fig. 9. Diffraction of a Mach 2.4 shock wave down a step using MP5 scheme with
27,000 cells. Comparison between numerical schlieren and experimental images.

required at the corner of the step since this is a singular point of
the flow which can create numerical instabilities. Woodward and
Colella treated this by assuming the flow near the corner is nearly
steady. However, this artificial fix was not used in this simulation
since we want to test the robustness of the solver in the case of
strong shocks and how it handles the singularity in wall curvature,
responsible for very strong expansion.

The second test involves a similar problem of a diffraction of a
shock wave (M = 2.4) down a step [15]. The strong rarefaction at
the corner of the step can cause a problemof negative densitywhen
performing the reconstruction. The problem ismodeled here using
27,000 cells, and thenumerical simulation is shown inpairwith the
experimental images in Fig. 9. The solver was able to reproduce the
correct flow features with excellent accuracy.

We also modeled the Rayleigh–Taylor instability problem [16]
(see Fig. 10). The problem is described as the acceleration of a heavy
fluid into a light fluid driven by gravity. In this test case, the specific
heat ratio is set to be a constant (γ = 1.4). For a rectangular
domain of (0.25× 1), the initial conditions are given as follows:

ρ = 2, u = 0, v = −0.025 cos(8πx),

P = 2y+ 1 for 0 ≤ y ≤
1
2

(32)

ρ = 1, u = 0, v = −0.025c cos(8πx),

P = y+
3
2

for
1
2
≤ y ≤ 1

(33)

where c is the speed of sound. The top and bottom boundaries
are set as reflecting and the left and right boundaries are periodic.
As the flow progresses, the shear layer starts to develop and the
Kelvin–Helmholtz instabilities become more evident. A momen-
tum and energy source is added to account for the gravitational
effects. This source is relatively simple and contributes very little
to the overall computational time. The performance of the fluid dy-
namics calculation is discussed in the next section of this report.

Fig. 10. Rayleigh–Taylor instability computed with the MP5 scheme with 640,000
cells.

We now turn the attention to the modeling of a reactive flow
field. We simulated a spark-ignited detonation wave both in one-
and two-dimension to demonstrate the capability of the solver.
At a well-resolved scale, the detonation wave can be described
as a strong shock wave supported by the heat release from a
high-temperature flame behind an induction zone. Interesting
features have been observed both in the 1-D and 2-D simulations,
characterized by the coupling of the fluid dynamics and chemical
kinetics. The study of flame-shock coupling is an on-going research
topic [17] and certainly canbe aidedwithGPUcomputingwhen the
evolution of the detonationwave needs to be resolved at a very fine
spatial scale.

The evolution of the pressure and temperature of a wall-spark
ignited detonation is shown in Fig. 11. The chemical kinetics is
modeled using the reduced H2-air mechanism which consists of 9
species gasmixturewith 38 reactions. Themechanism used for the
simulation is taken from the shock tube study by Jachimowski [18].
The computational domain is rectangular with a length of 20 cm
and a height of 2 cm. The grid spacing in both directions is 50 µm.
The detonation cells, between the shock and the multiple triple
points in transverse motion, are clearly seen. Fig. 12 illustrates the
numerical soot film produced by recording the maximum density
reached at each computation cell over the entire simulation time
which is used to measure the cell structure. This well-known
cellular structure has been observed both in experiments and
numerical simulations. Various techniques in reproducing these
images are discussed by Sharpe and Radulescu [19]. We will show
in the next section how the superior performance of the GPU can
enhance our ability in modeling reactive flows.

6.2. Performance results

Fig. 13 shows the performance of the solver for the simulation
considering only the fluid dynamics aspect using the MP5 and the
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Fig. 11. Evolution of the pressure and temperature in a 2D detonation simulation.

ADERWENO schemes. All the comparisons reported in this paper
are made between a Tesla C2070 GPU and an Intel Xeon X5650
CPU (single thread), both of which are using double precision
calculation. Since the ADERWENO scheme only requires single-
stage time integration, it is faster than the MP5 scheme. For the
ADERWENO scheme, we can obtain almost 60 times speed-up for
a large grid which is about twice faster than the MP5 scheme. The
speed-ups obtained in both cases are very promising.

The performance of the kinetics solver depends strongly on
the memory access efficiency. Since the Gaussian elimination
algorithm requires issuing a large amount of memory instructions
(both Read andWrite) to modify all the entries of the Jacobian, it is
important to achieve high memory bandwidth while maintaining
sufficient independent arithmetic operations to hide memory
latency. The efficiency of thememory access scheme is very crucial
in the casewhen thewhole Jacobian is stored inside globalmemory
(DRAM) which has much higher latency than shared memory.
Fig. 14 illustrates the memory access efficiency of the GPU kernel
performing the Gaussian elimination procedure. The figure shows
that coalesced memory access results in much higher memory
bandwidth comparing to the non-coalesced pattern for the same
number of operations. The memory bandwidth obtained with this
operation is approximately 80% of the theoretical peak limit of the
device (144 GB/s for a Tesla C2050). Similar tests were performed
for a species count ranging from 5 to 200. The results shown in
Fig. 14 indicate that the global memory access pattern in the first
approach (global memory) with coalesced memory access is very
efficient. This access pattern is used consistently in the global
memory approach stated in the remainder of the paper.

In the second approach, referred as the shared memory ap-
proach, we utilized shared memory to compensate for DRAM
latency issues exhibited in the first approach. However, due to the
memory intensive nature of the detailed chemical kinetics problem
and the limitation of shared memory storage, there is a substantial
amount of DRAM access required which cannot be avoided. The
memory bottleneck introduces addition memory latency which
can affect the performance of the kernel. Fig. 15 shows the perfor-
mance of the kinetics solver only (i.e., without convective trans-
port). Although the construction of the chemical Jacobian and
source terms can also be a time intensive process, in the present
study, we wish to focus on the more computational intensive pro-
cess of solving the linear system and its scaling. Hence, the perfor-
mance is measured by solving a number of linear systems A · x = b
with different system sizes (Ns) and grid sizes (Ncell).

We described two different implementation approaches in our
earlier discussion. The first approach is to store everything on
global memory and try to achieve high memory bandwidth by co-
alescedmemory reads. The second approach is to transfer memory
to shared memory for each row elimination. Fig. 15 shows that the
global memory approach outperforms the shared memory version
in all cases. Since the sharedmemory approach requires additional
memory transfers between each row elimination, it is only effec-
tive when Ns is large. It is shown in Fig. 15 that the algorithm is
only effective when Ns > 100. In contrast, the performance of the
global memory version depends strongly on the size of the grid.
Since the parallelization is achieved across all the computational
cells, solving a large number of systems makes it much more ef-
ficient. The global memory version seems to perform well in all
cases. The speed-up obtained for the global memory is at least 30.

Fig. 12. Numerical soot film produced by recording the maximum density at each grid cell over the entire simulation.
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Fig. 18. Performance of the reactive flow solver for two different chemistry
mechanisms (H2-air and CH4-air).

outperforms the shared memory approach. This is consistent with
the results obtained earlier for the fluid dynamics and the kinetics
separately. As the grid size increases, the speed-up factor obtained
for the shared memory approach of the kinetics solver does not
change rapidly. In contrast, the global memory approach results in
a 40 times speed-up for a large grid.

We extend the simulation tomodel a larger mechanism of CH4-
air detonation with 36 species and 308 reactions. The performance
is compared with the previous result of H2-air detonation. Fig. 18
illustrates how the CH4-air detonation simulation achieves a
greater speed-up than the H2-air detonation mainly because of
better performance in the construction of the chemical kinetics
Jacobian. This indicates that the performance of the rate calculation
scales with the number of reactions; thus, we can expect better
performance for a large number of reactions which makes it very
attractive for CFD calculation of hypersonic flow and plasmawhere
additional processes such as transitions between excited states of
atoms and molecules need to be modeled.

7. Conclusion and future works

In the current paper, we described the implementation of a nu-
merical solver for simulating chemically reacting flow on the GPU.
The fluid dynamics is modeled using high-order shock-capturing
schemes, and the chemical kinetics is solved using an implicit
solver. Results of both the fluid dynamics and chemical kinetics are
shown. Considering only the fluid dynamics, we obtained a speed-
up of 30 and 55 times compared to the CPU version for theMP5 and
ADERWENO scheme, respectively. For the chemical kinetics, we
presented twodifferent approaches on implementing theGaussian
elimination algorithm on the GPU. The best performance obtained
by solving the kinetics problem ranges from 30 to 40 depending
on the size of the reaction mechanism. When the fluid dynamics
is coupled with the kinetics, we obtained a speed-up factor of 40
times for a 9-species gas mixture with 38 reactions. The solver is
also testedwith a largermechanism (36 species, 308 reactions) and
the performance obtained is faster than the small mechanism.

The current work can be extended in different ways. First, since
the framework is performing well in shared memory architecture,
it is possible to also extend it to distributed memory architec-
ture utilizing Message Passing Interface (MPI). The extension per-
mits usingmulti-GPUwhich is attracted for performing large-scale
simulations. On the other hand, although the current simulation
is done for chemically reacting flow, it is desired to extend it to
simulate ionized gas (i.e. plasma) which requires modeling addi-
tional physical processes to characterize different excitation levels
of the charged species (Collisional-Radiative kinetics). In addition,
the governing equations also need to be extended to character-
ize the thermal non-equilibrium environment of the plasma. Given
that the physics has been well established [20–22], the extension
is certainly trivial.

Acknowledgment

The authors would like to thank Prof. Ann Karagozian of UCLA
for countless support on performing simulation on the Hoffman2
GPU cluster.

References

[1] NVIDIA Corporation, Compute Unified Device Architecture Programming
Guide version 4.0, 2011.

[2] T. Brandvik, G. Pullan, Acceleration of a 3D Euler Solver using Commodity
Graphics Hardware, in: 46th AIAA Aerospace Sciences Meeting, AIAA paper
08-607.

[3] E. Elsen, P. LeGresley, E. Darve, Large calculation of the flow over a hypersonic
vehicle using a GPU, J. Comput. Phys. 227 (2008) 10148–10161.

[4] A. Klockner, T. Warburton, J. Bridge, J. Hesthaven, Nodal discontinuous
Galerkin methods on graphics processors, J. Comput. Phys. 228 (2009)
7863–7882.

[5] H.-C. Wong, U.-H. Wong, X. Feng, Z. Tang, Efficient magnetohydrodynamic
simulations on graphics processing units with CUDA, Comput. Phys. Comm.
182 (2011) 2132–2160.

[6] J. Linford, J. Michalakes, M. Vachharijani, A. Sandu, Automatic generation of
multi-core chemical kernels, IEEE Transactions on Parallel and Distributed
Systems 22 (2011) 119–131 (Special Issue on High-Performance Computing
with Accelerators).

[7] J. Linford, J. Michalakes, M. Vachharijani, A. Sandu, Multi-core acceleration of
chemical kinetics for modeling and simulation (2009).

[8] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics — A
Practical Introduction, second ed., Springer, 1999.

[9] A. Suresh, H.T. Huynh, Accurate monotonicity-preserving schemes with
Runge–Kutta time stepping, J. Comput. Phys. 136 (1997) 83–99.

[10] V.A. Titarev, E.F. Toro, ADER schemes for three-dimensional nonlinear
hyperbolic systems, J. Comput. Phys. 204 (2005) 715–736.

[11] E.F. Toro, V.A. Titarev, TVD fluxes for the high-order ADER schemes, Journal of
Scientific Computing 24 (2005) 285–309.

[12] B. Einfeldt, C.D. Munz, P.L. Roe, B. Sjögreen, On Godunov-type methods near
low densities, J. Comput. Phys. 92 (1991) 273–295.

[13] V. Volkov, Better performance at lower occupancy, in: GPU Technology
Conference, 2010.

[14] P. Woodward, P. Colella, The numerical simulation of two-dimensional fluid
flow with strong shocks, J. Comput. Phys. 54 (1984) 115–173.

A-11



606 H.P. Le et al. / Computer Physics Communications 184 (2013) 596–606

[15] M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Inc., 1989.
[16] C.L. Gardner, J. Glimm, O. McBryan, R. Menikoff, D.H. Sharp, Q. Zhang, The

dynamics of bubble growth for Rayleigh–Taylor unstable interfaces, Phys.
Fluids 31 (1988) 447–465.

[17] L.K. Cole, A.R. Karagozian, J.-L. Cambier, Stability of Flame-Shock Coupling in
Detonation Waves: 1D Dynamics, Combust. Sci. Technol. 184 (10–11) (2012)
1502–1525.

[18] C.J. Jachimowski, An analysis of combustion studies in shock expansion
tunnels and reflected shock tunnels, Technical Report, NASA-TP-3224, 1992.

[19] G.J. Sharpe, M.I. Radulescu, Statistical analysis of cellular detonation dynamics
from numerical simulations: one-step chemistry, Combust. Theory Model. 15
(2011) 691–723.

[20] M.G. Kapper, J.-L. Cambier, Ionizing shocks in argon. Part I: collisional-radiative
model and steady-state structure, J. Appl. Phys. 109 (2011) 113308.

[21] M.G. Kapper, J.-L. Cambier, Ionizing shocks in argon. Part II: transient and
multi-dimensional effects, J. Appl. Phys. 109 (2011) 113309.

[22] J.-L. Cambier, S. Moreau, Simulations of a molecular plasma in collisional-
radiative nonequilibrium, AIAA paper 93-3196.

A-12



	
	
	

Appendix	B:		
Complexity	reduction	of	collisional‐
radiative	kinetics	for	atomic	plasma	

 

 

Hai P. Le 

Ann R. Karagozian 

Jean‐Luc Cambier 

	 	

B-1



PHYSICS OF PLASMAS 20, 123304 (2013) 
CrossM•rk 
f dU'-'III)!l.o ... ~ 

Complexity reduction of collisional-radiative kinetics for atomic plasma 
Hai P. Le,1·a> Ann R. Karagozian,2 and Jean-Luc Cambier3·bl 
1 ERC Inc., Edwards AFB, California 93524, USA 
2Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 
California 90095 , USA 
3 Air Force Research Laboratory, Edwards AFB, California 93524 , USA 

(Received 9 October 2013; accepted 3 December 2013; published online 23 December 2013) 

Thermal non-equilibrium processes in partially ionized plasmas can be most accurately modeled 
by collisional-radiative kinetics. This level of detail is required for an accurate prediction of the 
plasma. However, the resultant system of equations can be prohibitively large, making multi
dimensional and unsteady simulations of non-equilibrium radiating plasma particularly 
challenging. In this paper, we present a scheme for model reduction of the collisional-radiative 
kinetics, by combining energy levels into groups and deriving the corresponding macroscopic rates 
for all transitions. Although level-grouping is a standard approach to this type of problem, we 
provide here a mechanism for achieving higher-order accuracy by accounting for the level 
distribution within a group. The accuracy and benefits of the scheme are demonstrated for the 
generic case of atomic hydrogen by comparison with the complete solution of the master rate 
equations and other methods. © 2013 AlP Publishing lLC. [http:l/dx.doi.org/10.1063/1.4849417] 

I. INTRODUCTION 

The ability to model plasma flows with non-equilibrium 
chemistry plays an important role in a number of applica
tions including but not limited to plasma propulsion, 1 

high-speed reentry flows? plasma-assisted combustion and 
interpretation of laser diagnostics. 3 In order to better under
stand the physical characteristics of the flow and the cou
pling with chemistry under the conditions of interests, one 
needs to accurately model all the non-equilibrium processes 
associated with the atoms and molecules (e.g., excitation, 
ionization, and dissociation) through collisional and radiative 
interactions.4-6 The most accurate treatment for these non
equilibrium plasmas requires a state-to-state approach,7-

13 

also referred to as collisional-radiative (CR) models, in 
which deviations from the equilibrium distribution of the in
ternal states can be captured. 

These CR models, although very accurate from a 
physics point of view, can be computationally very expen
sive due to the large number of internal states for which the 
number densities must be computed For an atomic plasma, 
these states correspond to all the electronic excitation levels 
of the various neutral and ion species considered For a mo
lecular plasma, additional degrees of freedom such as the 
rotational and vibrational modes further increase the level of 
complexity. In addition, these molecular degrees of freedom 
are strongly coupled to the chemical reactions. For example, 
vibrational excitation facilitates dissociation or other endo
thermic reactions, and recombination can also favor the 
production of excited states. These models, derived from ab 
initio cross section databases for all elementary processes, 
can be applied to a wide range of plasma conditions and 
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offer more complete insight into the non-equilibrium effects. 
For example, a recent study of ionizing shocks in Argon by 
Kapper and Cambier 10

• 
11 demonstrated that this level of 

detail is needed for an accurate prediction of high-speed 
flows. In addition, the unsteady coupling of the hydrodynam
ics and CR kinetics leads to physical phenomena which can, 
in turn, provide additional information useful for model 
validation and/or experimental measurements of various 
parameters. 

Due to the large computational workload involved in 
solving the CR master equations, simulations incorporating 
state-to-state kinetics have only been limited to zero- or one
dimension with a few exceptions of two-dimensional calcu
lations. 11•14·15 For example, the run-time for solving a set of 
rate equations for the CR kinetics of atomic hydrogen scales 
as the cubic power of the size of the atomic state distribution 
function (ASDF) when an implicit, backward-Euler method 
is employed. While better scaling laws could be obtained 
with iterative and more approximate schemes, their accuracy 
and stability for extremely stiff problems are still an issue. 
The development of very efficient and accurate schemes for 
CR kinetics is still an ongoing research topic which will be 
presented elsewhere; here, we discuss a different approach, 
consisting of lowering the complexity of the calculations by 
developing a reduced-order kinetic model suitable for multi
dimensional flow calculations while maintaining a sufficient 
level of detail required to accurately model the plasma 
Several mechanism reduction schemes have been proposed 
in the literature with applications to various types of kinetics. 
Colonna et al. 16 utilize a two-level distribution model to 
study nitrogen dissociation rates in recombining flows , in 
which all the vibrational levels except for the last level are 
modeled by a single energy equation with an assumption of a 
Boltzmann distribution, and the last vibrational level is mod
eled using state-to-state kinetics to take in account the non
equilibrium effects of the upper states. Magin et al. 17 have 
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developed a rovibrational collisional (RVC) coarse-grain

model to characterize the internal energy excitation and dis-

sociation processes of nitrogen flow behind a strong shock

wave. The coarse-grain model is derived by lumping the

rovibrational energy levels into groups, in which the

population is described by a uniform distribution. Guy

et al.18 proposed a multi-internal-temperatures models for a

vibrationally non-equilibrium flow, in which the vibrational

distribution is divided into two or three groups, each with its

own vibrational temperature. Liu et al.,19 on the other hand,

proposed a mechanism reduction to CR models based on the

multi-group maximum entropy principle with the constraints

being the macroscopic parameters.

In this paper, we examine several different level group-

ing schemes for the state-to-state kinetics of atomic elec-

tronic states. The first approach is similar to that of Magin

et al.17 for the rovibrational collisional coarse-grain model

and therefore is based on uniform (U) binning of the levels.

The second approach here consists of grouping levels into

groups with an assumed Boltzmann (B) distribution, allow-

ing a higher-order description of the ASDF. In this case, the

effective excitation temperatures are evolved in time by con-

serving a set of moments of the distribution function; the

most obvious solution is to solve for number density and

energy, similar to the approach by Guys et al.18 However,

we will show that a different set of moment variables of the

same order should be used, due to the specific nature of the

ASDF.

The method developed here can be applied to a wide

range of state-to-state kinetics models including the

RVC13,17 and vibrational9 collisional (VC) models or the

electronic collisional-radiative model.8,10–12,20 In the interest

of simplicity, we consider here the CR model of atomic

hydrogen, using classical models for the level energies and

rates; the actual values of these parameters are unimportant

here, as long as the structure of the ASDF is representative

of the actual species, notably the geometric progression of

the level energies of the ASDF and the stiffness ratio. The

level grouping techniques are applied to reduce the cost of

solving the full master equations and the results are com-

pared with the reference solution computed from the full

master equations.

The rest of the paper is organized as follows: we

describe the state-to-state kinetics and numerical solution in

Sec. II, while in Sec. III we describe the various mechanism

reduction methods. We compare the results of the reduced-

order models with the full set of master equations in Sec. IV

and examine the issue of energy conservation in Sec. V.

Finally, a summary is given in Sec. VI, while the derivation

of the kinetic rates used in this study is given in Appendix.

II. COLLISIONAL-RADIATIVE MODEL

A. Definitions and rates

As mentioned above, we consider here the ASDF of

atomic hydrogen coupled to electron impact excitation and

ionization, and the reverse processes (respectively, deexcita-

tion and recombination), as well as the radiative rates for

line transitions in an optically thin approximation. Radiative

recombination is neglected and all radiation absorption is

ignored, as is free-free (Bremsstrahlung) emission, since this

does not directly affect the atomic level populations.21 The

atomic states of the hydrogen atom are listed as a function of

their principal quantum number (n) only, following the Bohr

atomic model; the splitting of states with respect to orbital

and spin numbers is ignored, and all states have a degeneracy

gn¼ 2n2. The states number from n¼ 1 to 1 and we con-

sider a finite number of states n¼ 1, …, M<1 before

reaching the ionization limit.22 In this simplified model, the

energy of each state is given as En ¼ IH 1� 1=n2
� �

, as meas-

ured from the ground state (E1� 0), and we will denote by

In ¼ IH 1=n2 � 1=M2
� �

’ IH=n2 the energy required for ioni-

zation of level n.

The population density Nn is the number of atoms per

unit volume of a state n. For a single bound-bound transition

between states n and m (m> n) induced by electron-impact

collisions, the rate of change of the population density is of

the form

dNn

dt
¼ �ae

ðmjnÞNnNe þ be
ðnjmÞNmNe: (1)

Hereafter, we will use the convention of indexing the rates

with the final state on the left, and the initial state on the

right, i.e., ðf jiÞ. The first term on the right of Eq. (1)

describes the loss due to excitation from level n to m, as a

result of collisions between free electrons (of number density

Ne); the second term describes the gain due to collisional

deexcitation from the state m, with number density Nm. Note

that for the same transition between the levels n and m, we

also have

dNm

dt
¼ þae

ðmjnÞNnNe � be
ðnjmÞNmNe: (2)

If there were only two states to consider, Eq. (1) would be

the entire rate of change for level n, but since all transitions

involving the state n must be counted, the rate of change for

excitation and deexcitation alone involves summing up the

right hand side over all levels m 6¼ n. At equilibrium

(Boltzmann), the ratio of population densities is

N�m
N�n
� BnmðTeÞ ¼

gm

gn
e DEnm=kTe ; (3)

where DEnm ¼ Em � En is the difference in level energies.

For electron-impact processes, the rates a and b in Eqs. (1)

and (2) are functions of Te and are given by Eqs. (A9a) and

(A9b) in Appendix. For low values of the energy gaps

between levels (DEnm=kT � 1), both forward (a) and back-

ward (b) rates become very large. This leads to a wide range

of time scales as the number of levels is increased, and to a

considerable stiffness in the system of equations. For exam-

ple, Figure 1 demonstrates the increase in both the maximum

eigenvalue (inverse time scale) and the spread of values, i.e.,

stiffness, as the plasma evolves as function of time.

Additionally, Eqs. (A9a) and (A9b) show that the system is

strongly diagonally dominant, in the sense that transitions

with small changes in quantum number (m� n ’ 1) have a
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FIG. I. Spectrwn of eigenvalues of the CR system versus time, during con 
Stant T, plasma evolution from a low temperature ASDF and low electron 
number density; as excitation and ionization proceed, the upper states and 
N, increase, yielding a rapid growth of the characteristic frequencies. 

higher rate than those with m - n » 1. In fact, a fairly good 
approximation here could be to consider a ladder process, 
i.e., transitions between neighboring states only, but this is 
not necessarily applicable to other atomic configurations, 
and this approximation is not used here. 

For ionization and recombination processes, the rate of 
change of the population density for level n is 

~n = - a.(+!n)NnNe + P'(ni+)N+N; . (4) 

The first term on the right side is the loss due to ionization of 
that level by electron collisions (Ne), while the second term 
is due to the capture by an ion (N +) of a free electron (one 
factor of Ne) , in the presence of a second electron (leading to 
an N; dependence), required for energy conservation. The 
equilibrium for ionization and recombination (Saha) involves 
a different relation 

where g+ is the degeneracy of the ion ground state (for 
atomic hydrogen, g+ = 1). Thus, we cannot assume that the 
equilibrium values are the same for both excitation/deexci
tation and ionization/recombination processes. Usually, we 
can have Boltzmann equilibrium (3) without Saha equilib
rium, but hardly the reverse, mostly because it takes 
more energy to ionize than to excite; for the upper states 
close to the ionization limit (n » 1), the difference is less 
significant. 

Only the radiative transitions between atomic levels 
("line," or "bound-bound" emission) are considered here. 
For each bound-bound transition m -+ n (m > n), we have 

(6) 

(7) 
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B. Master equations 

Once all the macroscopic rates are obtained, we can con
struct the master equations describing the collisional
radiative kinetics of all levels. In this study, we consider 
atomic hydrogen, which has only one ion state, and only 
electron collisions, which allows us to remove the super
script e in the rate definition hereafter. The rate of change of 
the population density of a level n is thus written as 

~n = - L IX(mln)NeNn + L /J(n'fn)NeNm + L A(nlm)Nm 
m>n m>n m>n 

+ L IX(nlm)NeNm - L fJ(mln)NeNn - LA(n4n)Nn 
m< n m< n m< n 

(8) 

Similarly, we can write another equation for the rate of 
change of the population density of the ions according to the 
rate of ionization or recombination 

(9) 

Finally, the electron density is related to the ion density by 
the charge neutrality condition 

(10) 

We will compute the time evolution of a uniform plasma; if 
we assume a constant temperature bath, the conservation 
equations above constitute a complete set, but for constant
volume conditions with time variation of the tempera
ture there is also conservation equation for the electron 
energy, which will be examined in more detail in Sec. V. 
The task of deriving a reduced model for the CR kinetics 
aims at modeling the shape of the ASDF at a lower computa
tional cost compared to that required to solve the full master 
equations, while maintaining sufficient accuracy to capture 
the non-equilibrium effects. The most natural way to accom
plish this is to partition the excited states into groups or 
"bins," therefore reducing the number of variables in the sys
tem. Various assumptions can be made about the internal 
structure of each group, i.e., the distribution of states within 
the groups, and various approaches to solving the group
based variables can be devised. 

C. Numerical solution 

Examination of Eqs. (8) and (9) reveals that the full sys
tem of ODEs can be written in the following form: 

(11) 

where Xp is the p-element of the vector of conserved 
variables for the set of master equations (8), Xp = Np and 
Jp, Kpq are matrices built from summation over all possible 
transitions between levels, and are themselves functions of 
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Xp. Thus, the source term can generally be decomposed into

a linear and non-linear terms. The system (11) can be solved

using a variety of techniques. In this study, we have used a

backward Euler scheme to avoid the stiffness of the CR

kinetics. Expanding the general system (11)

dXp ¼ �ðJp þ dJpÞ � ðXp þ dXpÞ

þ
X

q

ðKpq þ dKpqÞðXq þ dXqÞ (12)

and retaining 1st-order terms only, we obtain

Apr � dXr ’ �Jp � Xp þ
X

q

Kpq � Xq (13)

with the Jacobian

Apr ¼ ð1þ JpÞdpr �Kpr þ Xp
@Jp

@Xr

� �
�
X

q

Xq
@Kpq

@Xr

� �
:

(14)

For this implicit method, there is no stability restriction on

the time step. For consistency, all the simulations shown in

this paper utilized a constant time step. The same solution

methodology is applied to the various cases of level group-

ings, where now some of the conserved variables in the set

{Xp} are summations over the levels within the groups/bins,

while in the general case of non-isothermal plasma, it also

includes the electron energy Ee.

III. LEVEL GROUPING STRATEGIES

A. Uniform grouping

Consider a group of M individual levels

i ¼ fn0;…; nM 1g, abbreviated as i 2 n and denote the

group, or “bin” number by n; hereafter, n, m,… are the group

indices and i, j,… are level indices. This first approach to

model reduction is essentially a zeroth-order approximation

of the internal23 distribution function, where only one

moment variable, either the total number density of the

group or the total excitation energy of the group, is required.

The traditional choice is to conserve the total number density

of the group, i.e., N n ¼
P

i2n Ni. Using Eq. (3), a Boltzmann

approximation of the internal partition function Zn is

obtained by24

N n ¼ Nn0

X
i2n

Ni

Nn0

’ Nn0

gn0

X
i2n

gie
DEi=Tn

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Zn

; (15)

where DEi ¼ Ei � En0
is the difference in energy between

the level i and the first level of the group, n0. The approxima-

tion of a group with uniform internal distribution is equiva-

lent to having a characteristic group temperature Tn

approaching infinity, compared to the total energy width of

the group, i.e.,

Zn ! gn ¼
X
i2n

gi; (16)

where gn is the overall group degeneracy. The simplest

model therefore consists of assuming all levels within the

group to be distributed uniformly, i.e., weighted by the level

degeneracy

Ni ¼
gi

gn
N n: (17)

The rate equation for a group n is obtained by summing the

master rate equations (8) and (9) for all the levels i within

the group, and utilizing relation (15)

dN n

dt
¼�NeN n

X
m>n

X
i2n

gi

gn

X
j2m

aðjjiÞ þ
X
m<n

X
i2n

gi

gn

X
j2m

bðjjiÞ

" #

þNeN m

X
m<n

X
i2n

X
j2m

gj

gm
aðijjÞ þ

X
m>n

X
i2n

X
j2m

gj

gm
bðijjÞ

" #

�N n

X
m<n

X
i2n

gi

gn

X
j2m

AðjjiÞ

" #
þN m

X
m>n

X
i2n

X
j2m

gj

gm
AðijjÞ

" #

�NeN n

X
i2n

gi

gn
aðþjiÞ

	 

þN2

e Nþ
X
i2n

bðijþÞ
	 


: (18)

Similarly for the ion state, one obtains

dNþ
dt
¼ Ne

X
n

N n

X
i2n

gi

gn
aðþjiÞ

	 

� N2

e Nþ
X

n

X
i2n

bðijþÞ
	 


:

(19)

The terms within brackets in Eqs. (18) and (19) contain

effective rates for the groups, which can be pre-computed.

For example, in the first term on the right-hand-side of

Eq. (18)

~aðmjnÞ ¼
X
i2n

gi

gn

X
j2m

aðjjiÞ

is an effective excitation rate from group n to group m. Note

that since this model does not require computing an excita-

tion temperature Tn, all the effective transition rates between

the groups can be expressed as a function of the kinetic tem-

perature Te only. It is important to emphasize that the group-

ing of levels is applied on the high energy states only; thus in

any simulation we must choose a number of low-energy,

“resolved” levels, as well as a variable number of groups

combining the upper states. The number of discrete states,

the number of groups and their widths are variable parame-

ters of the model, whether we use uniform binning as above,

or Boltzmann internal distributions, discussed below. In

order to bound this parameter space (optimization is beyond

the scope of the present work), we need to provide a refer-

ence solution, such that the population density of each level

can be compared to the one reconstructed from the assumed

internal distribution within each group. Figure 2 shows the

evolution of the electron density computed from the master

equations. This test corresponds to a strong ionization regime
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FIG. 2. Time evolution of the electron number density using different total 
number of atomic levels. The electron temperature is set at 3.0eV. 

and the time evolution of the ASDF shows an increasing 
population of the higher atomic levels while the electron 
density grows exponentially. It also demonstrates the effect 
of the number of levels included in the simulation, i.e., using 
a fewer number of atomic states has an impact on delaying 
the onset of the electron avalanche. This indicates that ioni
zation from the high-energy states is an important process, 
and therefore the evolution of the upper states must be accu
rately captured We could always increase the size of the 
ASDF to obtain higher accuracy, but with diminishing 
return; ultimately, the time-resolution of interest and the ac
curacy threshold dictate the number of levels required in a 
simulation. The mapping between the practical requirements 
and ASDF size is not a straightforward matter, but is an issue 
beyond the scope of this work. Convergence studies 
with respect to the size of the system showed that beyond 
20 levels, there were no discernible differences in the 
results see Figure 2. Thus, we chose our reference solution 
to be the one obtained for 20 levels, and all level-grouping 
models investigated here will be based on this extent of the 
ASDF. 

B. Boltzmann grouping-Number and energy 

Several assumptions can be made regarding a 
Boltzmann-like structure within the group. Panesi et al. 12 

and Magin et at?5 rely on the assumption that the population 
within a group follows a Boltzmann distribution at the ki
netic temperature, i.e., in this case, T11 = Te. This approach is 
only valid if the rates of exchange between the levels within 
the group are much faster than the exchange rates with levels 
outside the group; otherwise, one could then assume that the 
entire ASDF is governed by Te and is always in Boltzmann 
equilibrium. The validity of this assumption is highly ques
tionable for atomic state populations.26 Furthermore, when 
different collision partners must be considered, the kinetic 
temperature can be either that of the heavy particles or the 
electrons (e.g., electron-impact excitation and heavy impact 
quenching); in this case, choosing either one of the kinetic 
temperature can impact on the results. 

In order to accurately describe the population of a group 
with a Boltzmann distribution, two moment variables of the 
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ASDF need to be conserved. The selection of these variables, 
however, can be arbitrary. Guy et al. 18 conserved the total 
number density of the group and the average excitation 
energy; these, respectively, correspond to zeroth- and 
first-order moment variables, and would appear to be a natu
ral choice. Consider the total number of states Nn defined 
in Eq. (15) and the total energy within the bin 
En = :Lien E;N;, for which we can write conservation equa
tions, derived from Eq. (8) 

(20a) 

g;e !J.EJ/Tn ] 
+ LL z 'LE;{3(j!i) ... 

m<n iEn n jEm 
(20b) 

For sake of brevity, we did not write the entire list of 
contributions in Eq. (20), which can be easily derived from 
Eq. (18) by generalizing the weighting factors g;/g11 to 
g;e tJ.E,(f. j Z"' and similarly for other groups. By solving for 
total number and total energy of each group, according to 
Eqs. (20a) and (20b), we can guarantee direct conservation 
of both mass (total number of levels Nn) and energy (En). 
However, this approach presents some problems in determin
ing the internal Boltzmann temperature, as will now be 
shown. First, let us define a total group/bin energy measured 
from the lower bound, i.e., !:J.En = l:ien(E; - En0 )N;; the 
rate of change of this shifted energy is still given by the 
right-hand-side ofEq. (20b). We can then write 
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!:J.E = Nno "' g· !:J.E· e M tfTn _ N (A r:o} 
n L..-t 1 1 - n LJ,.L n ' 

gno iEn 
(21) 

where 

is the average group energy measured from the first internal 
level. Similarly, a specific heat at constant-volume can be 
determined, i.e., 

[

Lg;(!:J.E;)2e 

Cv(Tn) = d~n (!:J.E}n = Tn 2 iEn Zn 

fl.EJ/Tn l 
- (!:J.E}~ 

= Tn 2 [ (!:J.£2}n - (!:J.E}~]. (23) 

Since Nn and En are conserved variables, we obtain new 
values at each time level (k) and in order to compute the 
Boltzmann temperature T,, we need to iterate the equation 



hDEinðT�nÞ þ CvðT�nÞdT�n ¼
DEðkÞn

N ðkÞn

; (24)

where T�n is the running iterated value, until convergence

(dT�n ’ 0). However, the slope of the curve hDEinðTnÞ is

extremely flat at low temperature, i.e., Cv ! 0. In fact,

when Tn ! 0, to the leading order we have: N n ’Nn0

oð1þ �Þ; hDEin ’ oð�Þ and CvðTnÞ ’ oð�Þ, where � ¼ e DE1=Tn

is a small parameter. Therefore, during the iterations dT�n
¼ oð�Þ=oð�Þ and arbitrary temperature solutions can be

obtained. Our studies showed that indeed, numerical instabil-

ities prevent us from obtaining satisfactory solutions in many

test cases. While it is possible to introduce limiters to prevent

unphysical or improbable values and stop the iteration coun-

ters, this is not a satisfactory solution to the problem. We

should also emphasize that the problem occurs when Tn is

small, which does not imply that electronic levels are unpopu-

lated, since we may very well have small internal group tem-

peratures as a result of initial conditions or running iterations,

but non-negligible overall electronic excitation (N n 6¼ 0).27

C. Boltzmann grouping—Partitioning

In the approach above, we are dealing with two reduced

variables N n and En (or DEn) which are both summations

over the internal levels. An alternative may consist of keep-

ing one of the level populations as a variable. Therefore, we

could instead choose for each group n to conserve the popu-

lation of the lowest level in that group Nn0
and N n, whose

evolution is given by a form similar to Eq. (20a). To evaluate

the Boltzmann temperature of the group, we now have at

time step (k), from Eq. (15):

N ðkÞn ¼
NðkÞn0

gn0

X
i2n

gie
DEi=Tn ¼

NðkÞn0

gn0

ZnðTðkÞn Þ

so that in order to evaluate the new bin temperature TðkÞn we

need to solve

ZnðT�nÞ þ
dZn

dTn

� �
dT�n ¼

N ðkÞn

N
ðkÞ
n0

gn0
(25)

until convergence. Using Eq. (22), this leads to

dT�n ’
T�2n

ZnðT�nÞhDEinðT�nÞ
N ðkÞn

N
ðkÞ
n0

gn0
� ZnðT�nÞ

" #
; (26)

where, again, the dependencies on temperature have been ex-

plicitly written. At low Tn, the denominator is oð�Þð1þ �Þ
and the numerator is a difference between two terms of

o(1þ �). Therefore, the iterative procedure is again numeri-

cally unstable.

To attempt to alleviate this problem, we have examined

yet another approach: for each group n we conserve the pop-

ulation of the lowest level in that group Nn0
and N 0n, the total

population of the remaining upper states n0 of that group,

such that n ¼ n0 [ n0. This is an effective partitioning within

the group, which allows us to separate the variables, one of

o(1) and the other of o(�). Clearly, we have now

N 0n ¼
Nn0

gn0

X
i2n0

gie
DEi=Tn

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Z0n

using Ni ¼
N 0n
Z0n

gie
DEi=Tn :

(27)

In order to evaluate the new temperature from the two con-

served variables, we iterate on dT�n using a form similar to

Eq. (25)

Z0nðT�nÞ þ
dZ0n
dTn

� �
dT�n ¼

N 0ðkÞn

N
ðkÞ
n0

gn0
: (28)

However, it is easy to see that since d
dTZ

0 � d
dTZ, we obtain

a similar equation to Eq. (26):

dT�n ’
T�2n

Z0nðT�nÞhDEinðT�nÞ
N 0ðkÞn

N
ðkÞ
n0

gn0
�Z0nðT�nÞ

" #
:

In the same limit Tn! 0, both numerators and denominators

are of o(�) and the temperature iterations are again unstable;

this was verified through extensive tests under a variety of

conditions and configurations. To avoid this systematic nu-

merical problem, we must consider another way to evaluate

the Boltzmann temperature inside each group.

Consider instead the following expansion of the parti-

tion function near the mean relative energy value

DEn ¼ 1
gn

P
i2n giDEi. Defining di � DEi � DEn as the

shifted energy gap, we have

ZnðTnÞ ¼
X
i2n

gie
DEi=Tn ¼ e DEn=Tn

X
i2n

gie
di=Tn

¼ e DEn=Tn

X
i2n

gi 1� di

Tn
þ 1

2

d2
i

T2
n

þ � � �
" #

’ gne DEn=Tn 1þ oðhd2i=T2
nÞ

h i
; (29)

where gn is the total degeneracy see Eq. (16). Therefore,

up to second-order in the approximate ratio of the bin width

to the temperature, the partition function can be approxi-

mated by a single exponential function and the relation (29)

can be inverted. If we use the ðNn0
;NÞ pair of conserved var-

iables, we have

N ðkÞn

N
ðkÞ
n0

g0 ¼ ZnðTðkÞn Þ ’ gne DEn=T
ðkÞ
n : (30)

However, the left-hand-side of Eq. (30) is o(1þ �), and the

right-hand-side should be as well. To see that this is the case,

consider the first terms in the expansion of Eq. (29)28

ZnðTnÞ ’ e DEn=Tn g0e ðDE0 DEnÞ=Tn þg1e ðDE1 DEnÞ=Tn þ�� �
h i

:

Since DE ’ DE1 and DE0� 0, the right-hand-side is

oð�Þ½oð1=�Þ þ 1þ � � �� ’ oð1þ �Þ. Again, this is not a
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desirable situation, since the evaluation of the group temper-

ature Tn is of the form 1=lnð1þ �Þ, and is subject to signifi-

cant errors. Furthermore, by computing the average gap DE
from the lower-bound of the energy bin, the requirement

hdi � Tn may be hard to justify at low group temperature.

Instead, we can take advantage of the self-similar struc-

ture of the atomic spectrum (exact for hydrogen, approxi-

mate for other atoms) and the fact that the energy gaps

become narrower as the level index increases. Thus, let us

define the average energy counting from the first level above
the lowest level, as obtained from Z0n, defined in Eq. (27)

Z0n ¼
X
i2n0

gie
DEi=Tn ¼ e DE0 n=Tn

X
i>n0

gie
d0i=Tn : (31)

By definition of the mean, the first-order term in the expan-

sion of the exponential on the right-hand-side should be:P
i2n0 gid0i ¼ 0, where now d0i � DEi � DE0n . This yields

DE0n ¼
1

g0n

X
i2n0

giDEi with g0n ¼
X
i>n0

gi: (32)

Therefore, DE0 differs from DE only by a normalization fac-

tor, since DE0� 0. Note that DE0 > DE1 and to lowest-order,

Z0ðTnÞ ’ g0ne DE0=Tn ’ oð�Þ. Using the conserved pair

ðNn0
;N 0Þ, the group temperature is now estimated by

N 0ðkÞn

N
ðkÞ
n0

gn0
¼ Z0nðTnÞ ! TðkÞn ’�

DE0n

ln
N 0n
g0n

gn0

Nn0

" #’� 1

lnð�Þ :

(33)

This is now a stable computation when � ! 0. Furthermore,

the approximation hdi � Tn is more justifiable since the

largest value (d0 ¼ En0
� DE) is removed from the average.

We see that we now have the means to compute the in-

ternal group temperature from conserved variables without

risking fatal numerical errors; this is possible only by sepa-

rating the lowest and upper levels within the group, i.e., by

performing a sub-scale, internal partitioning of the group.29

This is the approach used here for the last Boltzmann (here-

after denoted as B5) group we investigated, for which the

appropriate pair of conserved variables to use is therefore

ðNn0
;N 0nÞ. Note that it is also possible to improve on the

temperature evaluation by incorporating all higher-order

terms into the definition of the total degeneracy, i.e.,

Z0nðTnÞ ¼ ~g0nðTnÞe DE0n=Tn

! dZ0n
dTn
¼ Z0nðTnÞ �

DE0n
T2

n

þ d

dTn
ln ~g0n

" #
: (34)

If T�n is the running iteration, first evaluated by Eq. (33), suc-

cessive estimates of TðkÞn are obtained, using Eq. (34), from:

TðkÞn � T�n ¼
lnZ0nðTðkÞn Þ � lnZ0nðT�nÞ

dlnZ0n
dTn

	 

ðT�nÞ

where

Z0nðTðkÞn Þ ¼ gn0

N 0ðkÞn

N
ðkÞ
n0

: (35)

This iterative procedure can rapidly converge (as demon-

strated in our tests) because we have an excellent approxima-

tion of the initial temperature from the lowest-order direct

evaluation (33), and the o(�) term has been factored as the

leading term in the expansion. In other words, ~g0nðTnÞ is a

smooth function of temperature with a non-vanishing gradi-

ent, allowing gradient-descent iterations.

D. Boltzmann grouping—Effective rates

As before, the master equations are used to derive the

conservation equations for the two new variables ðNn0
;N 0nÞ,

by setting i¼ n0 for the first one, and summing over all levels

j 2 n0 in the second case. The latter yields the following:

dN 0n
dt
¼ �NeN 0n

X
m>n

X
i2n0

gie
DEi=Tn

Z0n

X
j2m

aðjjiÞ þ
X
m<n

X
i2n0

gie
DEi=Tn

Z0n

X
j2m

bðjjiÞ

" #

þNeN m

X
m<n

X
i2n0

X
j2m

gje
DEj=Tm

Zm
aðijjÞ þ

X
m>n

X
i2n0

X
j2m

gje
DEj=Tm

Zm
bðijjÞ

" #

�N 0n
X
m<n

X
i2n0

gie
DEi=Tn

Z0n

X
j2m

AðjjiÞ

" #
þN m

X
m>n

X
i2n0

X
j2m

gje
DEj=Tm

Zm
AðijjÞ

" #

�NeN 0n
X
i2n0

gie
DEi=Tn

Z0n
bðn0jiÞ þ

X
i2n0

gie
DEi=Tn

Z0n
Aðn0jiÞ

" #
� NeN 0n

X
i2n0

gie
DEi=Tn

Z0n
aðþjiÞ

" #
þ N2

e Nþ
X
i2n0

bðijþÞ
	 


: (36)

Note that we have used the total number N m ¼ Nm0
þN 0m

and the group total partition function Zm ¼ gm0
þZ0m in the

expressions on the right hand side, only as a way to group

terms and lead to simpler expressions; the conserved

variables remain Nm0
and N 0m. Equation (36) takes in

account all the interactions between the groups, assuming

the Boltzmann distribution approximation within each group.

The effective rates for group transitions can be expressed
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(and tabulated) as a function of two temperatures: the kinetic

temperature Te and the group excitation temperature Tn.

Notice also that because of the bin-averaging, the effective

radiative transition rates have also become temperature-

dependent (Tn).

Similarly, the rate of change of the number density of

the ground state of each group is

dNn0

dt
¼ �NeNn0

X
m>n

X
j2m

aðjjn0Þ þ
X
m<n

X
j2m

bðjjn0Þ
	 


þNeN m

X
m<n

X
j2m

gje
DEj=Tm

Zm
aðn0jjÞ

"

þ
X
m>n

X
j2m

gje
DEj=Tm

Zm
bðn0jjÞ

#
� Nn0

X
m<n

X
j2m

Aðjjn0Þ
	 


þN m

X
m>n

X
j2m

gje
DEj=Tm

Zm
Aðn0jjÞ

" #

þNeN 0n
X
i2n0

gie
DEi=Tn

Z0n
bðn0jiÞ þ

X
i2n0

gie
DEi=Tn

Z0n
Aðn0jiÞ

" #

�NeNn0
aðþjn0Þ½ � þN2

e Nþ bðn0jþÞ
� �

: (37)

Again, using the total number of levels N m ¼ Nm0
þN 0m on

the right-hand-side allows us to consider together transitions

between lowest states at the boundaries of different groups

(Nn0
� Nm0

), as well as the transitions with the excited sub-

partitions (Nn0
�N 0m) and simply the expressions. Since the

ion is conserved here as an individual state, the rate of

change of its number density remains the same but can be

rewritten in terms of the group number densities

dNþ
dt
¼ Ne

X
n

N n

X
i2n

gie
DEi=Tn

Zn
aðþjiÞ

" #

� N2
e Nþ

X
n

X
i2n

bðijþÞ
	 


: (38)

Each term in brackets in Eqs. (36) (38) is an effective rate for

transfer between the group variables ðNn0
;N 0nÞ; 8n. As men-

tioned in Sec. III A, both individual levels and groups (uni-

form or Boltzmann) are considered when solving the ASDF.

The few individual states are the lowest in the energy scale,

with the largest successive gaps, while the multitude of upper

levels is distributed into a variable number of groups. This is

justified on the basis of the kinetic rates (see the stiffness

ratios of Figure 1), and as justification of the expansion (29).

IV. ACCURACY OF UNIFORM AND BOLTZMANN
METHODS

A. Isothermal ionization test case

In the previous section, we have discussed several

approaches to the level grouping strategy; these are summar-

ized in Table I. This sequence of models was developed as a

result of preliminary tests and the failure to obtain converged

solutions for the group Boltzmann temperature Tn in many

instances. Thus, we found that the only model which was

able to provide stable and satisfactory solutions for all test

cases was model B5, using a sub-partition of the group into

the ground level n0 and the remainder, and the use of the

form (31) for the partition function, which allowed us to fac-

torize out the vanishingly small terms at low Tn. Therefore,

considerations of the “equation of state” of the Boltzmann

group dictated the correct approach to use here, and while all

the models explored are listed in Table I, only the

zeroth-order uniform binning described in Sec. III A and the

B5 models are shown here and compared to the reference so-

lution obtained from solving the full master equations; these

are indicated as (U) and (B) models, respectively.

We conducted a large number of additional tests but for

the sake of brevity, we are showing here the results of three

representative cases: the initial conditions are summarized in

Table II. For all the results shown in this section, a constant

time step of 10�7 s had been used for the test cases in the ion-

ization regime (cases 1 and 3), and a time step of 10�5 s was

used for the recombination regime (case 2); the same

backward-Euler scheme of Sec. II C was used throughout.

As indicated in Sec. III, the reference solution is based

on the detailed kinetics for 20 atomic levels, while the

group-based solutions will be based on a few low energy lev-

els individually monitored, and with partitioning of the

remaining upper states into a variable number of groups. The

first test case is the iso-thermal relaxation in the excitation

and ionization regime, i.e., the initial population of excited

states and electron density is well below equilibrium.30 This

test case is the same as the one shown in Figure 2 for a vari-

able number of electronic levels, solving for the full master

equations (8) and (9). As the plasma relaxes towards equilib-

rium, an increasing number of electronic levels become

populated and the electron number density grows exponen-

tially, until an ionization cascade occurs. The rates increase

very rapidly just before equilibrium, and the system becomes

very stiff, as shown by the large spread of eigenvalues in

Figure 1.

TABLE I. Summary of level grouping models investigated.

Model Variables Equations Tn evaluation

U N n (18) and (19) none

B1 ðN n; EnÞ (20a), (20b), and (38) Cv unstable

B2 ðNn0
;N nÞ (37) and (20a) Cv unstable

B3 ðNn0
;N

0

nÞ (37) and (36) Cv unstable

B4 ðNn0
;N nÞ (37) and (20a) Eq. (29) unstable

B5 ðNn0
;N

0

nÞ (37) and (36) Eq. (31) stable

TABLE II. Initial conditions of test cases. For all cases, the total atomic den

sity NH is 1021 m 3.

Case Te xe Nþ/NH Nn

1 3 eV isothermal 10 9 (1 xe)NH for n 1

10 20NH otherwise

2 1 eV isothermal Saha (3 eV) Boltzmann (3 eV)

3 3 eV isochoric 10 9 (1 xe)NH for n 1

10 20NH otherwise
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potential deviations from Boltzmann equilibrium in the most 
populated range of excited states. 

There can of course be variations in the grouping strat
egy, but in all cases the general guidelines of keeping the 
widths of the groups small and the levels with the largest 
energy gaps as individual states are perfectly consistent with 
the objective of computational cost reduction, since the dis
crete lower energy states evolve more slowly and the upper 
states are numerous and have similar energy. 33 

The relative accuracy of the grouping approaches can 
also be seen in Figure 5 where the ASDF is plotted at four 
different instances of time corresponding to t = 10, 20, 30, 
and 40 JlS. Both solutions with level grouping are obtained 
from using 3 atomic levels and 1 group of upper states. It is 
clearly seen that the Boltzmann group gives a more accurate 
representation of the upper states distribution during the 
heating process. We also showed in Figure 5 the results of a 
simplified model where it is assumed (see Sec. lli B) that all 
groups have the same internal temperature, equal to the ki
netic temperature, i.e., Tb(n) = Te, 'in (dashed line). This 
assumption is clearly violated, as shown in Figure 6, 
although the difference remains mostly confined to the upper 
states distribution. We should point out again that significant 
differences would be expected in a two-temperature kinetic 
system, i.e., including heavy-particle collisions. 

We note also that the ASDF from the full solution indi
cates that the high lying states, starting from the third excited 
state, behave like a continuum state, although there appears 
to be two distinct sub-groups among the upper states, as can 
be seen most clearly at t = 10 JlS. This suggests that the upper 
states are most effectively resolved by two groups or more, 
again confirming that relatively small widths of the groups 
are preferable, albeit at an increased computational expense. 
Figure 6 further illustrates this point by showing the evolu
tion of the Boltzmann temperatures of the upper states, using 
here 4 discrete atomic states and partitioning the upper states 
into 3 groups. While the Boltzmann temperatures of the first 
two groups are close to each other, the temperature of the 
third group is slightly higher. This again confirms that the 
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FIG. 6. Boltzmann temperature of the upper states. 

upper states need to be resolved by at least 2 groups. When 
the system is near equilibrium, both approaches give similar 
results. 

In these simulations, we have assumed that the plasma is 
optically thin to all the radiation from the line transitions. 
Spectral signatures being a major diagnostic tool for determin
ing plasma conditions, it is important to know the CR kinetics 
in detail in order to match experimental data. Usually, this is 
accomplished by post-processing the numerical solution with 
a highly resolved spectral code including radiation transport 
(RT) if necessary with detailed computation of line shapes. 
This approach is accurate if the key parameters of such a spec
tral model, in particular Ne and Te, are also very accurate. As 
discussed above and shown in Table ill, our Boltzmann 
grouping procedure provides a significant improvement over 
conventional approaches, leading to a potentially much more 
accurate spectral signature prediction in transient and non
equilibrium plasma conditions. In addition, the ASDF solution 
is much closer to the true physical state, which may also lead 
to faster integration of the detailed CR kinetics with RT. 
These will be investigated in the future. 

Accurate evaluation of the radiative emission is also im
portant during the computation of flow dynamics, from simple 
reasons of power coupling, e.g., radiative cooling. Figure 7 
shows the radiative losses due to bound-bound radiation 
from the upper states (5, ... ,20) to the first three atomic states 
( 1, 2, 3) computed by grouping all the upper states together as 
a single group with a Boltzmann distribution. Although this is 
a somewhat coarse approximation to the ASDF, it is clear that 
the grouping scheme provides an excellent approximation to 
the radiative power. An accurate reproduction of the radiative 
spectrum depends inevitably on the reconstructed population 
of the atomic levels and, as can be seen by comparing the pro
files in Figure 3, the agreement can be excellent. 

B. Isothermal recombination test case 

In this case, we performed a cooling test where the 
plasma is suddenly brought down from 3eV to 1 eV. Thus, 
the simulation was run at a constant temperature (Te = 1 e V), 
while the initial conditions are the Boltzmann and Saba equi
librium values at 3 eV; these are exactly the conditions 
which would be obtained at the end of the first test case in 

B-11 



123304-11 Le, Karagozian, and Gambier 

1 
~ ., 
] 
<I) 

> 
~ 
~ 

J 

105 

104 

103 

102 

101 

wo 
w-1 
w-2 
10- 3 

1+--
2+-- U· 
3 f- u ..... ·-······· 
u = {5, ... , 20} 

w-4 L-_..._ _ _._ _ _. __ .._ _ _._ _ __. __ .___, 

0 5 10 M W ~ W ~ ~ 

time (microsec) 
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the absence of radiative losses. For all the simulations shown 
in this case, a constant time step of 10- 5 s has been used 

In this case, the cooling process occurs very rapidly and 
the plasma is in a deexcitation and recombination regime; 
the ground state and the electron number densities are 
quickly adjusted to their new equilibrium values, as can be 
seen in Figure 8. Strictly speaking, since bound-bound radia
tion is assumed to be optically thin, the system cannot reach 
equilibrium. However, a quasi-equilibrium state is achieved 
at approximately 1 ms, after which the bound-bound radia
tion is the dominant net rate of change and the system con
tinues to cool down at the radiative time scales. Note also 
that the uniform grouping is significantly less time-accurate 
than the Boltzmann method, as was already the case in the 
ionization regime see Figure 4. 

Figure 9 shows the evolution of the excited states as 
function of time for reference, uniform groups and 
Boltzmann groups. Once again, there is a noticeable discrep
ancy between the reference solution and the uniform bin 
model, especially concerning the red curve which crosses 
other levels during the relaxation process. This curve is the 
density of H(2), the first excited state, and is an effect of the 
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FIG. 9. Comparison of the time evolution of the excited states during the 
isothermal cooling test case (T, I eV). From top to bottom: (a) fuU 
solution with 20 levels; (h) solution with 3 levels and I uniform group; 
(c) solution with 3 levels and I Boltzmann group. H(3) is the bottom 
curve, followed by the next higher level, etc.; the non conforming red curve 
is H(2). The higher population densities as the level index increases include 
the increase of the level degeneracy. 

strong radiative decay of this state. Notice that the plot starts 
at t = 10- 5 s, i.e., the first implicit time step, but already the 
solution is far from the Boltzmann equilibrium which is the 
initial condition at t = 0, such that there is a population inver
sion with respect to H(2) for many upper states. Notice also 
that the time scale is logarithmic, and the processes consider
ably slow down as the electron density drops significantly. 
Because we are considering only electron impact collisions, 
the ASDF essentially becomes "frozen" in a quasi-static but 
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non-equilibrium state. If collisions by heavy particles were 
also considered, these would rapidly become the dominant 
process, leading to faster relaxation towards equilibrium. 
However, in some case of rapid plasma expansion, similar 
"frozen-in" non-equilibrium distribution functions of the 
ASDF could be obtained. 

To better appreciate the accuracy of the Boltzmann 
grouping procedure, Figure 10 shows the evolution of sev
eral excited states compared to the exact solution and simi
larly to the "heating" (ionization) case, excellent agreement 
was obtained In this simulation, the first 3 atomic states 
(1, 2, 3) are conserved as discrete levels and the upper states 
(4, ... ,20) are lumped into 1 Boltzmann group. 

Finally, we show in Figure 11 the snapshots of the 
ASDF during the recombination. Contrary to the case of ion
ization, the upper states are not depleted but enhanced 
instead as expected, since the recombination proceeds pref
erentially onto the upper states. As a reflection of the obser
vation made for Figure 10, the agreement is excellent for all 
atomic states. 
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FIG. II. Snapshots of the ASDF at several times during the cooling process. 
The dots represent the fuU solution. The solid tines are the solution obtained 
using the level grouping with Boltzmann distribution. The broken tines are 
the solution obtained using the level grouping with uniform distribution. 
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V. ENERGY CONSERVATION 

A. Effective rates 

The systems of equations (18) (19) and (36) (38) 
describe the complete evolution of the ASDF but for an iso
thermal plasma In the more general case, the ASDF kinetics 
are coupled to the energy of the system; here, this includes 
only the total energy of the free electrons Ee. Thus for 
constant-volume or constant-pressure conditions, there must 
be an evolution equation for the energy or enthalpy (only 
constant-volume kinetics are considered here). We must then 
exert care that the formulation exactly conserves energy, i.e., 
that E~k) + l:n £~k) at any time level (k) remains the same 
within numerical round-off errors. If we were dealing with 
only electron-impact collisions, it would be sufficient to sum 
the energies of all levels using the new population densities 
at the end of the time step, compute the difference and assign 
the change to Ee. However, there are two obvious problems 
with this scenario: (a) when other collision partners must be 
accounted for, or when the electrons themselves are parti
tioned (e.g., for non-Maxwellian kinetics), one must be able 
to correctly apportion the changes in energy, e.g., to Ee and 
Eh (for heavy particles) and (b) for large time steps, there is 
no guarantee that the subsequent change in Ee is physically 
acceptable, i.e., E~k) = E~k I) + {JEe > 0. We must therefore 
include an evolution equation for Ee (and another for Eh if 
heavy particle collisions are included), which must then be 
fully coupled, so that the Jacobian of the system (14) 
includes derivatives of the rates with respect to Ee, through 
the variation of Te. 

Energy conservation can be satisfied if the construction 
of the source term on the right-hand-side of the master equa
tions also satisfies it. Thus, we must explicitly construct the 
energy source term from the master equations, as was al
ready described briefly in Eq. (20). The same procedure is 
used, with the understanding that 

Thus we can combine contributions as follows: 

(39) 

where !l.Eii = Ei - E;. Note that in the case of excitation 
from level li), i.e., the first summation in Eq. (39), !l.Eji > 0, 
while !l.Eii < 0 in the second term for de-excitations from 
that level. We can then construct another set of effective 
rates, this time for the energy equation. Using the sub
partitioning of model BS, the rates derived from the first 
term on the right ofEq. (36) are 
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a(;.,ln'l = [Lg;e z~,rr.LMiia.IJI•! ] , 
iEn1 n jEnf 

(40a) 

P~''"'l = [L:g;e z~,rr.LMFPu,.! ] · 
iEn1 n jEnf 

(40b) 

These rates enter the evolution equation for Ee as 

dEe N' "" fJ3 N'"" 13- E dt = - N e nL.., (nf ln') - N e nL.., (nrln') + '' '· 
m>n m<n 

(41) 

Note that the same formulation applies for uniform groups 
by taking the limit T,, -+ oo, and summing over the complete 
set n = {n0 ,n'}. The rate of energy change can also be 
expressed as 

(42) 

where a.(ntln') is of course given by the effective rate for the 
conserved number densities 

_ g;e tJ.EtfT. 

IY.(ntln') = L L z 1 IJ!i) · 
jEnf iEn' n 

Equation (42) defines an average energy B(ntln')• transferred 
during excitation of levels of group rl to levels of group rrl , 
which can be tabulated as function of the initial T11 and colli
sional (Te) temperatures. This approach was successfully 
used, for example, for vibrational non-equilibrium. 34 

B. lsochoric ionization test case 

The third test case of Table II was designed to test for 
energy conservation. In this case, the energy loss and gain 
due to collisional processes are taken into account in the 
conservation equation for the electron energy. The evolu
tion now proceeds at constant volume, and the electron 
temperature changes rapidly, as seen in Figure 12. The ini
tial conditions are the same as those of the first test case, 
and the system is initially far below Boltzmann and Saba 
equilibrium However, contrary to the isothermal case, the 
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FIG. 12. N,, T, evolution in constant volume case. 
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FIG. 13. Cumulative and instantaneous relative errors in energy conserva 
tion test case 3. 

initial excitation and ionization processes deplete the elec
tron energy and the system "freezes" rapidly, and the 
excited states remain at a low population density. If an 
external heating source was applied (e.g., Ohmic heating), 
the system would more closely resemble the isothermal test 
case, and the system would become stiff again. Here, we 
are mostly concerned with testing energy conservation and 
to simplify the analysis, the radiative rates were removed 
from the kinetics, so that no radiative energy losses were 
present. 

We can monitor the error by comparing the values of Ee 
at the end of each time step with the total potential energy 
contained in the electronic states, by reconstruction of the 
level populations. Figure 13 shows both the accumulated 
error (symbols) and the one at each time step (solid line); 
this test was conducted with 5 resolved levels and 2 
Boltzmann groups, and all computations were performed 
with a constant time step of w- to s, using the same 
backward-Euler integration scheme. 35 

The error is certainly acceptable, but it is not commen
surate with numerical round-off, which we would have 
expected if the scheme was exactly energy-conserving. By 
comparison, the cumulative error in energy was below 10- 13 

when solving the full master equations without level 
grouping. 

While the exact solution consists of summing-up the 
contributions from each individual level, leading to the rate 
of change expressed by Eq. (20b). However, we are not using 
here the internal energy En as a conserved variable, and we 
must be careful that the procedure be consistent with our 
definition, or reconstruction of the internal energy. The 
corrected procedure is described next. 

C. Corrected energy rates 

Consider for example the change in electron energy due 
to excitations and de-excitations, and let us examine first the 
case of uniform grouping. 

~e = - L L a (;.,ln)NnNe + L L p~lm)NnNe - (43) 
m>n n m>n n 
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There are two formulations of the effective rates of energy

transfer:

Formulation 1:

~aE
ðmjnÞ ¼

X
j2m

X
i2n

gi

gn
ðEj � EiÞaðjjiÞ; (44a)

~b
E

ðmjnÞ ¼
X
j2m

X
i2n

gj

gm
ðEj � EiÞbðijjÞ: (44b)

Formulation 2:

~aE
ðmjnÞ ¼ ð ~Em � ~EnÞ

X
j2m

X
i2n

gi

gn
aðjjiÞ; (45a)

~b
E

ðmjnÞ ¼ ð ~Em � ~EnÞ
X
j2m

X
i2n

gj

gm
bðijjÞ; (45b)

where ~En ¼
P

i2n
gi

gn
Ei and similarly for ~Em.

Only the second formulation is exactly energy-

conserving. This is quite clear because in that case, the term

on the right side of Eq. (45) is the product of the change in

number density of the groups (dN n=dt) and the difference in

average group energy ( ~E). Energy conservation follows from

the definition of the total group energy En ¼ ~EnN n. Thus,

the model assumptions constrain us to choose the appropri-

ate formulation of the effective rates for energy change that

is consistent with the definition of group energy.

Let us now examine the case of the Boltzmann grouping

(B5), using the pair of conserved variables ðNn0
;N 0nÞ; the

rates of energy exchange must therefore be consistent with

the electronic energy defined from these two variables, and

with the equation of state used to describe the internal parti-

tion (i.e., Tn). We start with the conservation of the group

energy

dEn

dt
¼ d

dt
Nn0

En0
þN 0nhEin0

� �
¼ En0

dNn0

dt
þ hEin0

dN 0n
dt
þN 0n

dhEin0
dt

: (46)

Note that the averaging hin0 is done for the remaining levels

above the ground level n0 of that group. We can write a simi-

lar equation for the total energy measured from the ground

state of that group, i.e.,

dDEn

dt
�
X
i2n

DEi
dNi

dt
¼ d

dt
N 0nhDEin0
� �

¼ hDEin0
dN 0n

dt
þN 0n

dhDEin0
dt

: (47)

The first term in Eq. (47) describes the change in group

energy from the global change in population of the group,

i.e., hEindN n=dt. The last term describes the change of the

internal structure of the group as a result of the collisional

transitions, since

dhDEin0
dt

¼ 1

T2
n

hDE2in0 � hDEi2n0
h i

dTn

dt
¼ Cv;n0

dTn

dt
: (48)

From Eq. (31),

dZ0n
dt
¼ gn0

Nn0

dN 0n
dt
�N

0
n

Nn0

dNn0

dt

" #
¼ Z0n

DEn

T2
n

þ d ln ~g0n
dTn

" #
dTn

dt
:

(49)

Inserting into Eq. (47),

N 0n
dhDEin0

dt
¼ Cv;n0T

2
n

DE0n þ T2
n

d ln ~g0n
dTn

� � dN 0n
dt
�N

0
n

Nn0

dNn0

dt

" #
:

(50)

We can now combine with the other terms of Eq. (47) to

obtain an expression which only depends on the rates of

change of the conserved variables ðNn0;N 0nÞ. Defining

nn0 ¼
Cv;n0T

2
n

DE0n þ T2
n

d ln ~g0n
dTn

� � and xn0 ¼ nn0
N n0

Nn0

(51)

and adding the contribution from the ground state of the

group, we obtain

dEn

dt
¼ En0

� xn0½ �
dNn0

dt
þ En0

þ hDEin0 þ nn0
� � dN 0n

dt
: (52)

One can then identify the rates of change of the population

density with the effective rates. Considering transitions

between groups n and m> n, and using a similar expression

for dEm=dt, we have

~aE
ðm0jn0Þ ¼ Em0

� xm0 � En0
þ xn0½ � � ~aðm0jn0Þ

� �eðm0jn0Þ � ~aðm0jn0Þ; (53a)

~aE
ðm0 jn0Þ ¼ Em0

þ hDEim0 þ nm0 � En0
þ xn0

� �
� ~aðm0jn0Þ

� �eðm0 jn0Þ � ~aðm0 jn0Þ; (53b)

~aE
ðm0jn0Þ ¼ Em0

� xm0 � En0
� hDEin0 � nn0

� �
� ~aðm0jn0Þ

� �eðm0jn0Þ � ~aðm0jn0Þ; (53c)

~aE
ðm0 jn0Þ ¼ Em0

þ hDEim0 þ nm0 � En0
� hDEin0 � nn0

� �
� ~aðm0 jn0Þ

� �eðm0 jn0Þ � ~aðm0jn0Þ: (53d)

It is instructive to examine the limit of infinite Boltzmann

temperatures; in this case,

Zn0 ! g0n; Cv;n0 ; nn0 ;xn0 ! 0 and hDEin0 ! DE0 n

and similarly for m0. Equation (52) becomes
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Lg;E; Lg;E; 
d£n E dNn0 iEn' Nn1 E dNn0 iEn' dNn0 - - --+ - --+..:..;:;;, __ 
dt - no dt g~ dt - no dt gn

0 
dt 

Lg;E; 
_ iEn dNn0 _ E dNn 
- g,

10 
dt - n dt ' 

(54) 

where we have also used the fact that in that limit, 
Nn0 / gn0 = Nn/ gn. and used the definition of the average 
group energy see Eq. (45). Since a similar equation is 
found for d&m / dt, the combination exactly yields Eq. (45). 
Thus, we have verified that by taking the limit Tn, Tm -+ oo, 
we recover the uniform group model. 

For ionizations and recombinations, a similar procedure 
can be found Considering the change in electron energy due 
to ionization and recombination from and to the group n, we 
have 

dEe\ =-L~i = -~ [{l}~n] 
dt J n iEn dt dt 

= - / dNn0 _ ( / } 
1 
dNn' - N 

1 
d{/}" 

no dt n dt n dt ' (55) 

where I; is the ionization potential for level i and {I} 11 is the 
group ionization potential averaged over the sub-partition d. 
Using I; = IH - E; = ln0 - !:J.E;, it is easy to see that 

d{f}n' = - Cvn' · 
dt ' 

(56) 

Equations (49) and (50) are still valid, and using again the 
definitions (51), we obtain the final form 

dEe ) dNn0 [ ] dNn' dt n =-[/no+ Wn']dt - fno- (!:J.E}n'- en ---;jt· 

(57) 

Note the similarity with Eq. (52). The effective rates are 
therefore 

a (+lno) =[!no+ Wn1
] . a (+lno) = B(+lno) . a (+lno) > (58a) 

a (+ln') = [lno- (!:J.£}" - en'] · a (+ln'l = B(+lnl · a (+ln') · 

(58b) 

Examination of equations (53) and (58) reveals that the over
all procedure consists of replacing the energy of the group's 
ground state no and sub-partition rl by effective energies for 
the energy exchange 

Eno = Eno- COni and En' = Eno + (!:J.E}n' +en'· (59) 

Thus, the effective rates of energy transfer become 

(60a) 

(60b) 

(60c) 
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FIG. 14. Cumulative and instantaneous relative errors in energy conserva 
tion test case 3 with revised formulation. 

(60d) 

and for ionization: 

(61a) 

(61b) 

The use of effective group energies36 provides a straightfor
ward approach, and the effective rates of energy transfer for 
all transitions (including de-excitations, recombination, and 
radiative transitions) can now be expressed in a simple form. 
Note that Eq. (61) is similar to the case of uniform grouping 
( 45) and since we have already demonstrated that we can 
recover the uniform grouping case in the limit of infinite 
temperatures, we have achieved here a fully consistent 
model. 

We are now left with the task of verifying energy con
servation with this revised approach. Using the same test 
case (3), we now find a much smaller level of error, as can 
be seen from Figure 14 compare with Figure 13 that is 
the characteristic of the level of numerical round-off. Note 
that the cumulative error sums the absolute values of the 
stepwise error (L1 norm), and is therefore a maximum bound. 
Figure 15 shows the effect of bin size on the relative error; 
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FIG. 15. Cumulative relative errors in energy conservation as function of 
group sizes; revised formulation. 

B-16 



this observation is similar to the one made regarding the ac-

curacy of the ASDF see Figure 5, i.e., smaller group widths

are preferred. However, it is clear that even for one or two

bins, the error on energy conservation remains very small.

VI. CONCLUDING REMARKS

In this paper, we described a model reduction mecha-

nism for the collisional-radiative kinetics of the ASDF, by

grouping electronic states into groups and deriving the cor-

responding macroscopic rates to take in account all the

transitions. While level-grouping is a commonly used and

necessary procedure when dealing with a very large num-

ber of atomic levels, as in high-temperature plasma,37,38 the

procedure is commonly based on uniform grouping (i.e.,

simple average over the level degeneracies). A higher-order

description of the internal structure of the groups was

developed here by assuming a Boltzmann distribution of

the levels within the group, with different temperatures for

each group. This approach was shown here to have superior

features to the uniform grouping procedure, as summarized

below.

Numerical instabilities in the limit of low internal

temperature led us to the design of this non-traditional

approach. Instead of conserving the total energy of a

group, we used a novel approach using conserved varia-

bles from a sub-partitioning of the group between the

lowest level of that group (Nn0
) and the remaining states

(N 0n). Combined with an appropriate expansion of the

sub-group partition function, this model was able to very

rapidly determine the group temperatures in a stable and

accurate fashion for all conditions, solving a problem that

is particularly vexing for atomic collisional-radiative

kinetics, due to the structure of the energy levels of

atomic plasma.

The two grouping schemes (uniform and Boltzmann)

were implemented on an electronic collisional-radiative

model for atomic hydrogen and the results were compared

with the full solution of the master equation on a large num-

ber of numerical tests, of which a representative sub-set was

shown here. Both schemes showed agreement with the solu-

tion of the master equations and have excellent convergence

properties. However, substantial accuracy improvements

were obtained at minimal computational cost with the

Boltzmann grouping. Detailed tests of energy conservation

revealed the need for a revised approach to the construction

of effective rates of energy transfer. This was made neces-

sary because the total group energy was not part of the set of

conserved variables, and consistency requirements led us to

a new formulation involving effective level energies and av-

erage group energies between which energy exchange

occurs. We derived this new formulation and showed that it

was simple to implement, and consistent with the uniform

grouping method.

For the case of atomic hydrogen studied here, it was

sufficient to mix a few low-lying states with two

Boltzmann groups for all the high energy states and be

able to capture the correct ionization kinetics for all the

states and the radiative spectrum. This significantly

reduces the computational cost associated with solving

the kinetics and therefore can be applied in multidimen-

sional and time-resolved flow calculations, with accurate

coupling to radiative processes. The reduction schemes

presented in this work could also be applied to other set

of kinetics, e.g., rovibrational collisional and vibrational

kinetics, although in this case the levels are distributed

much more uniformly on the energy axis, in which case

reduction schemes and group temperature determination

are more straightforward. Future work includes a straight-

forward extension of the approach to non-hydrogenic and

multi-stage ionization, as well as the application of more

accurate and more efficient time integration schemes,

currently under development. Further optimization of the

scheme, such as dynamic re-partitioning, is also under

exploration.
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APPENDIX: COMPUTATION OF KINETIC RATES

The classical form of the cross-section for energy

exchange between a free electron and the atom,6 leading to

an excitation from level n to level m> n is

re
nm ¼ ð4pa2

0Þ
I2
H e� Enmð Þ

Enme2
� 3fnmð Þ; (A1)

where a0 is the Bohr radius, e is the energy of the free

electron, DEnm¼Em�En is the energy gap between n and

m and fnm is the oscillator strength

fnm ¼
32

3p 3
p 1

n5

1

m3

1

1

n2
� 1

m2

� �3
: (A2)

The free electrons are assumed to follow an isotropic

Maxwellian distribution feðeeÞ

feðeeÞdee ¼
2

p
p
ðkTeÞ3=2

e1=2
e e ee=kTe dee; (A3)

where me is the electron mass, ee ¼ mev2
e=2 and Te is the

temperature. The rate of excitation is obtained by averaging

over the distribution function

ae
ðmjnÞ ¼

ð1
Enm

re
nmðeÞvef ðveÞdve; (A4)

leading to

ae
ðmjnÞ ¼ ð4pa2

0Þ�ve
IH

kTe

� �2

ð3fnmÞwnm; (A5)

where
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�ve ¼
8kTe

pme

� �1
2

; wnm ¼
e xnm

xnm
� E1ðxnmÞ; and

E1ðxÞ ¼
ð1

x

e y

y
dy: (A6)

Here, �ve is the mean thermal electron velocity, xnm

¼ DEnm=kTe and E1 is the exponential integral. The reverse

rate can be found from detailed balance

be
ðnjmÞ ¼

n2

m2
eþxnm � aðmjnÞ: (A7)

We use the low temperature approximation6 (xnm � 1)

E1ðxÞ ’
e x

x
1� 1

x

� �
; (A8)

in which case

ae
ðmjnÞ ’ 4pa2

0 �
32

p 3
p � �ve

	 

e xnm

n5m3ðn 2 � m 2Þ5
; (A9a)

be
ðnjmÞ ’ 4pa2

0 �
32

p 3
p � �ve

	 

1

n3m5ðn 2 � m 2Þ5
: (A9b)

The factor in brackets is an upper bound, which is reached

for the upper states when xnm ! 0. Another scale is the fac-

tor IH/kTe in xnm, which is effectively responsible for the

stiffness. If that factor is very low (high temperatures), all

rates are of the same order; at low temperatures, the expo-

nential term dominates and the range of time scales is

increased.

The cross-section for ionization by electron impact has a

form similar to Eq. (A1), i.e.,

re
n ¼ ð4pa2

0Þ
I2
H e� Inð Þ

Ine2
: (A10)

This leads to an ionization rate coefficient6

ae
ðþjnÞ ¼ ð4pa2

0Þ�ve
IH

kTe

� �2

wðxnÞ: (A11)

The final state ðþj is an ionized state, i.e., where one electron

initially bound to the atom has reached the ionization limit

(n¼1) and is part of a free continuum of states. Using the

principle of detailed balance, the reverse (recombination)

rate is

be
ðnjþÞ ’

4

p
a2

0h3

m2
ekTe

" #
IH

kTe

� �2

n2wðxnÞexn : (A12)

Using the same low temperature approximation (A8), we

obtain6

ae
ðþjnÞ ’ ð4pa2

0Þ
8kTe

pme

� �1=2

n4e xn ; (A13a)

be
ðnjþÞ ’

4

p
a2

0h3

m2
ekTe

" #
n6: (A13b)

The rates of radiative transitions between levels can also be

obtained classically for the hydrogen atom.5 The spontane-

ous emission rates from an upper level m are

AðnjmÞ ¼
8p2e2

mec3

� �
gn

gm
fnm ¼

1:6	 1010

m3nðm2 � n2Þ s
1: (A14)

The expression on the right is for atomic hydrogen only.
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I. Introduction

Modeling of nonequilibrium processes in a low-temperature partially ionized plasma is of

particular interest to a wide range of technical fields such as gas discharge, electric propulsion,

spectroscopic and laser diagnostics, and material science1–3. The complexity of the model is

largely due to the characterization of various collisional and radiative processes, occurring at

a wide range of spatial and temporal scales4,5. Although the fundamental physical processes

may be individually known, it is not always clear how their combination affects the overall

operation, or at what level of detail this process needs to be modeled. The current state of

the art for modeling detailed chemical kinetics of a low temperature plasma is the collisional-

radiative (CR) model, first proposed by Bates et al. in 19626,7. CR models are now commonly

used in studies of plasma discharge, plasma-assisted combustion, and hypersonics8–13. The

advantage of a CR model is two-fold. First, strong deviations from equilibrium of the internal

states can be captured accurately when CR models are employed. In addition, ab initio

cross section data can be directly incorporated in the CR model, leading to a very accurate

prediction of the thermochemical kinetics of the system.

There are, however, two issues with this modeling approach. The first arises from the

complexity of the physical processes needed to be captured in the model. The required

level of detail of the CR model is typically not known a priori and is possibly changing in

a dynamical fashion as the system evolves in time. This can be resolved by coarse-graining

techniques, which reduce the complexity of the kinetics to avoid solving a large system of

equations14–16. The second issue comes from translational nonequilibrium, often found in a

discharge, where we have both a bulk plasma (continuum) and a highly energetic component

(kinetic), e.g., electrons emitted from the cathode. A proper treatment of this energetic

beam-like component requires extending the solution of the CR kinetics to the so-called

non-Maxwelllian regime17–19. These simulations are typically very expensive and therefore

limited to zero- or one-dimensional systems. In addition, space charge effects within the bulk

plasma can also become important, requiring further separation, i.e., ions and electrons. A

natural solution to this problem is to use a hybrid approach, decomposing the system into

a continuum and a kinetic component20. The continuum component can be solved by fluid

equations, and the kinetic component by (for example) a particle method. Although the
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idea seems quite intuitive, proper treatment of the coupling between the fluid and kinetic

components is highly non-trivial. There appears to be no unique and consistent coupling

methodology, and the choice is highly problem-dependent. This coupling issue is currently

being addressed by many researchers and is outside of the scope of the current work.

We are concerned here with an alternative approach, the so-called multifluid model, which

decomposes the plasma into several fluid components. For example, in a discharge configu-

ration, one could have 4 different fluids, namely the neutrals, ions, bulk electrons, and the

energetic electrons. The only required assumption is that collisions among particles within

the same fluid are sufficiently fast to maintain a Maxwellian distribution. The validity of

this assumption is not always well known. Nevertheless this approach is attractive, since

it is much faster than a fully kinetic solver, and unambiguous since at the same time, the

approach relies on kinetic theory for the treatment of coupling terms between different fluids.

Furthermore, one can rely on fast implicit methods to solve these fluid equations and exam-

ine long time behavior of the system; this offers a big advantage over kinetic simulations,

which are only suitable for problems with short time scales. Multifluid models are commonly

used in simulations of astrophysical plasmas (see for example21,22).

The most classical work in multifluid plasma modeling is due to Braginskii23, who derived

fluid equations for a fully ionized plasma, using a Chapman-Enskog closure. Braginskii’s work

has been successively refined by several authors, with particular emphases on improving the

transport coefficients and/or including interaction with neutral species24–27. Burgers, on the

other hand, presents a rather general framework for the modeling of elastic collisions28. These

include both neutral collisions and charged particle collisions; the methodology is applicable

for a general system of moment equations beyond the standard five-moment model. Burgers

also introduces a simplified model for reactive collisions using a Bhatnagar-Gross-Krook

(BGK) collision operator.

In the current work, we present a self-consistent model for inelastic collisions within the

multifluid framework. The model is derived from kinetic theory and obeys the principle of

detailed balance (DB), which we show to be an essential property to ensure that the system

approaches the correct equilibrium limit. We focus on characterizing the exchange source

terms due to collision, namely mass, momentum and energy exchanges (the hydrodynamics
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and transport fluxes can be added following23 when considering a non-uniform plasma). We

will show that in most cases none of these terms can be neglected, and they have complex

dependencies to microscopic quantities of the interaction, e.g., multiply-differentiated cross

sections. We present the general description of the collision kinematics and derive the ex-

change terms for the case of excitation and deexcitation processes. Although we are mostly

interested here in electron-impact collisions and atomic transitions, we keep the formulation

as general as possible, such that the application to other species and chemistry (e.g. proton-

impact, molecular vibrational transitions, charge-exchange, etc.) is a straight-forward exten-

sion. The case of ionization and recombination, and other three-body processes, is currently

under examination, using the same basic formulation presented here.

The rest of the paper is organized as follows. The derivation of the exchange source terms

is given in Sec. II, by first introducing the description of the transfer integral, and then

presenting the derivation of the exchange rates in the following subsections. In Sec. III,

we show the numerical evaluation of the multifluid rates, verify the results with Monte

Carlo calculations, and perform zero-dimensional calculations utilizing the multifluid rates.

Finally, conclusions and a summary of the present findings are given in Sec. IV. We also

provide several appendices to elaborate on the derivation of the exchange source terms and

the description of the numerical simulation.

II. Rate Derivation

A. Transfer integral

Let us consider an inelastic collision between two particles s and t, such that the particle t

changes its internal state. The particles s and t are respectively the scattered and target in

the laboratory frame of reference (LAB). The former will be identified as the electron and

the target as the atom, but we will keep the general s, t notation until explicit assumptions

and approximations are made, such as neglecting terms of the order of the mass ratio ms/mt

for final expressions. Following Appendix A, the initial velocities are vs,vt, where v=u+c

and u is the fluid mean velocity in the LAB frame, and post-collision values are indicated

by a prime, i.e.:

s(vs) + t(vt) → s′(v′
s) + t′(v′

t) (1)
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We make here two assumptions: 1) the collision produces only two particles, which may or

may not belong to the same fluids as the initial reactants, and 2) the masses of individual

particles are the same before and after the collision, e.g. m′
s ≡ ms, such that mass con-

servation is automatically obtained. Defining the energy transfer to and from the internal

modes to be represented by ∆ε, we have the following energy conservation constraint on the

relative velocity g where g = vs − vt (see Appendix A):

g2 = g′2 +
2∆ε

µ
(2)

For excitation, the transferred energy is a positive and fixed value ∆ε ≡ ε∗, the energy

gap between the levels, while for ionization it is a continuum of values: ∆ε ∈ [ε∗, ε], where

ε = 1
2
µg2 is the available kinetic energy in the center-of-mass (COM) frame. In the limit

∆ε → 0, the collision is elastic. We will keep the same relations for the reverse process, for

which the primed variables are post-collision and non-primed refer to pre-collision, such that

for deexcitation, ∆ε=−ε∗.

We can then define a transfer integral of the collision operator between the two species s

and t28.

Ψst = nsnt

∫
d3vsd

3vt fsft g

∫
ψ dω(vs,vt;v

′
s,v

′
t) (3)

where g is the magnitude of the relative velocity (g = |g|), dω is the differential cross sec-

tion (DCS), and ψ is any moment variable exchanged during the collision. We now follow

Appendix B, starting with the following transformations:

V∗ = V −U+ γg̃ T ∗ =
MTsTt

msTt+mtTs
a2 =

2kT ∗

M
(4a)

g̃ = g −w T̃ =
msTt+mtTs

M
α2 =

2kT̃

µ
(4b)

and γ =
µ(Tt − Ts)

msTt+mtTs
(4c)

where the relative mean velocity w = us −ut. The product of the two Maxwellian distribu-

tions fs · ft is expressed in terms of the product of two other Maxwellians, fV ∗ · fg̃, for the

COM velocity and relative velocity respectively. Inserting (B.14–B.16) into (3), the transfer

integral can be written as follows:

Ψst = nsnt
1

π
3
2a3

∫
d3V∗e−V∗2/a2 · 1

π
3
2α3

∫
d3g e−g̃2/α2

g

∫
ψdω(g; g′) (5)
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z 

X 

(a) (b) 

Figure 1. Frame rotation and relative orientation of (a) w and g and (b) g and g. 

Note t hat in the COM reference frame, t he DCS only depends on the relat ive velocities, i.e., 

dw(v s, vt; v's, v't) - dw(g;g'), and can be expressed as: 

dw(g ; g') = Cl5 t(g, O.' )dO.' (6) 

where 0.' is the solid angle between t he initial and final relat ive velocities, i.e., drt' = dpdcosx 

with g · g' = gg' cos X· Wit hout loss of generality, we can now choose a reference frame (LAB) 

such that the relative m ean velocity w is aligned wit h the z axis, as shown in Figure 1. Thus, 

the unit vectors g, g' are obtained by subsequent rot at ions of the (:X, y, z) frame. Using the 

abbreviated notation ccp - cos <p, s'P - sin <p, etc, we define this rotation operator by the 

matrix: 

CcpCe - Scp CcpS8 

R( <p, 8) = s'Pee c'P scpse 

- se 0 

and g = ~ = R( <p, 8) · z = 
g 

(7) 

Similarly, t he post-collision relative velocity is rotated by t he angles (p, x), such that g' = 

R (p,x) ·g. 

Using d3g = g2dgd<pdee, and equation (6), t he transfer integral can be written as: 

(8) 
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Let us now assume that the moment variable can be expanded in terms of powers of V∗:

ψ = a+ bV∗ + cV∗2 + . . .

where a, b, c... are functions of the remaining velocity variables, and let us perform the

integration over V∗. Note that we have:

∫
d3V∗fV ∗ ≡ 1

∫
d3V∗V∗fV ∗ ≡ 0

the latter by reasons of symmetry. Thus, as long as ψ does not contain terms quadratic (or

higher) in V∗, a condition satisfied throughout this work, we can eliminate the integration

over V∗, keeping only the terms which are independent of V∗. Also by symmetry, the DCS

σst does not depend on the angle ρ, and we can write:

σst(g,Ω
′) ≡ σst(g) · G(g, χ) s.t.

∫
dρ dcχ G(g, χ) ≡ 1 (9)

where G is the angular-dependent DCS. More generally, we will define the averaging of any

function ψ over the scattering angles as:

〈ψ〉
Ω′ = 2π

∫ +1

−1

dcχψ G(g, χ) (10)

A trivial integration over ϕ yields:

Ψst =
2nsnt

π
1
2α3

e−w2/α2

∫
dgg3e−g2/α2

σst(g) ·
∫ +1

−1

dcθe
2gwcθ/α

2〈ψ〉
Ω′ (11)

We now define the following, normalized energy variables,

z =
1
2
µg2

kT̃
λ =

1
2
µw2

kT̃
z∗ = max

(
0,

∆ε

kT̃

)
(12)

where T̃ is defined in Appendix B. Using g3dg≡2εdε/µ2 and a further change of variables,

we finally obtain:

Ψst = nsnt

(
8kT̃

πµ

) 1
2

︸ ︷︷ ︸
gT̃

e−λ

∫ ∞

z∗
dz z e−z σst(z) · 1

2

∫ +1

−1

dcθe
2
√
λzcθ · 〈ψ〉

Ω′ (13)

with gT̃ a thermal velocity based on the average temperature T̃ . Note that we have left the

variable ψ undetermined, and since it could potentially depend on all integration variables
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(z, χ, θ), ψ must be kept inside all integrals. We will see what simplifications can be made

next, depending on which moment variables we are integrating.

The lower limit of integration, z∗, is zero for elastic collisions or for exothermic reactions.

Thus, equation (13) is a general formula, which applies equally to excitation (z∗ > 0) and

deexcitation (z∗ ≡ 0)38. Let us first consider an excitation collision:

s(vs) + t(Eℓ,vt) → s(v′
s) + t(Eu,v

′
t)

where ℓ and u denote the lower and upper energy states, respectively. We made here the

assumption that both states (ℓ, u) belong to the same fluid, so that the particle indices (s, t)

are kept the same, but this is not necessary. From eq. (2), energy conservation implies

∆ε=Eu−Eℓ > 0. We can then define normalized energy variables for this case, x, x′ and x∗:

x∗ =
ε∗

kT̃
> 0; x′ ≡ x− x∗ > 0 (14)

Note that x (x′) is the normalized kinetic energy of the initial (final) products of excitation

respectively, and that x∗ is the normalized energy threshold, always a positive quantity. For

excitation, we can use (13) with the following identifications:

z ≡ x, z∗ ≡ x∗, z′ ≡ x′, and nt ≡ nℓ (15)

For a deexcitation collision, we have the reverse (u → ℓ), i.e. ∆ε < 0:

s(vs) + t(Eu,vt) → s(v′
s) + t(Eℓ,v

′
t) (16)

Equation (13) is again still valid, if we now make the following identifications:

z ≡ x′, z∗ ≡ 0, z′ ≡ x, and nt ≡ nu (17)

Therefore, in all cases the variable x always refers to the larger kinetic energy (before ex-

citation or after deexcitation) and x′ refers to the smaller value (after excitation or before

deexcitation). We can therefore define two cases of (13):

Ψ↑
sℓ = nsnℓgT̃ e

−λ

∫ ∞

x∗
dx x e−x σ↑

sℓ(x) · 1
2

∫ +1

−1

dcθe
2
√
λxcθ · 〈ψ〉

Ω′ (18a)

Ψ↓
su = nsnugT̃ e

−λ

∫ ∞

0

dx′ x′ e−x′
σ↓
su(x

′) · 1
2

∫ +1

−1

dcθe
2
√
λx′cθ · 〈ψ〉

Ω′ (18b)
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where the superscripts ↑, ↓ indicate excitation and deexcitation respectively (note the change

of subscript from st to sℓ for excitation, and su for deexcitation). It is worth pointing out that

the averaging over the scattering angle, i.e, 〈ψ〉Ω′, has to be done with the corresponding

angular-dependent DCS G, e.g., 〈ψ〉Ω′ = 2π
∫
cχψG↑

sℓ for excitation. However, from time

reversal we have G↑
sℓ=G↓

su, so for simplicity, we do not differentiate 〈ψ〉 between excitation

and deexcitation. Note that the integration over the θ angle remains to be performed. If

the moment variable ψ can be expanded in terms of power of cos θ, we can then define the

following set of functions:

ζ (k)(ξ) = Nk

∫ +1

−1

dy yk e2ξy (19)

where Nk is a normalizing factor. In particular, we have:

ζ (0)(ξ) =
1

2

∫ +1

−1

dy e2ξy =
sinh(2ξ)

2ξ
s.t.: lim

ξ→0
ζ (0) = 1 (20a)

ζ (1)(ξ) =
3

4ξ

∫ +1

−1

dy y e2ξy =
3

4ξ2

[
cosh(2ξ)− sinh(2ξ)

2ξ

]
s.t.: lim

ξ→0
ζ (1) = 1 (20b)

In the CR model, each internal state is treated as a pseudo-species, so the rate of change in

number density for each state (nℓ, nu) is taken into account separately. We can now examine

the specific form taken by the transfer integral, according to the chosen moment variable,

starting from (8), (13), or (18).

B. Zeroth-order moment: number density

The rate of change of the number density due to an inelastic collision of type (1) can be

obtained by setting ψ ≡ 1 in (13), so the average over all the scattering angle is trivially

removed:

Γst = nsntgT̃ e
−λ

∫ ∞

z∗
dz z e−z σst(z) · 1

2

∫ +1

−1

dcθe
2
√
λzcθ (21)

The integration over dcθ yields the function ζ (0) defined in eq. (20). We can now express the

rates for transitions between two atomic levels ℓ, u, by making the appropriate substitutions

for the energy variables. For the case of an excitation (ℓ → u), and according to eq. (15),

we define the variable x as the normalized kinetic energy of the reactants (s, t) in the COM

frame, prior to the collision: therefore in this case, z ≡ x, z∗ ≡ x∗ > 0 and nt ≡ nℓ. Thus,

Γ↑
sℓ = nsnℓgT̃ e

−λ

∫ ∞

x∗
dx x e−x σ↑

sℓ(x)ζ
(0)(

√
λx) (22)
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For deexcitation (u→ ℓ), the rate of change of number density follows from (17):

Γ↓
su = nsnugT̃ e

−λ

∫ ∞

0

dx′ x′ e−x′
σ↓
su(x

′)ζ (0)(
√
λx′) (23)

Both of these quantities are positive, hence the resultant rates equations are:

dnℓ

dt
= −Γ↑

sℓ = −dnu

dt
and

dnℓ

dt
= +Γ↓

su = −dnu

dt

In the case of electron-impact processes (s ≡ e), we can neglect terms of order me/M , and

for an atomic transition between levels ℓ→ u, we obtain:

Γ↑
eℓ = nenℓve e

−λ

∫ ∞

x∗
dx x e−x σ↑

eℓ(x) ζ
(0)(

√
λx) (24)

where ve =
√

8kTe

πme
. In the limit of thermal plasma where multifluid effects are weak, i.e.

λ→ 0, we obtain:

Γ↑
eℓ = nenℓve

∫ ∞

x∗
dx x e−x σ↑

eℓ(x) (25)

which is exactly the expected result for a single-fluid plasma.

Using the Klein-Rosseland relation for detailed balance30,

σ↑
sℓ(x)xgℓ = σ↓

su(x
′)x′gu (26)

where gℓ, gu are the degeneracies of the lower and upper atomic levels respectively, we can

write the excitation rate as follows:

Γ↑
sℓ = nsnℓgT̃ e

−λ gu
gℓ
e−x∗

∫ ∞

0

dx′ x′ e−x′
ζ (0)(

√
λ(x∗+x′)) σ↓

su(x
′) (27)

One can then easily extract reaction rates, for example:

Γ↑
sℓ = ̟↑

sℓ · nsnℓ (28a)

Γ↓
su = ̟↓

su · nsnu (28b)

It is instructive to consider the ratio of these rates:

̟↑
sℓ

̟↓
su

=

[
gu
gℓ
e−x∗

]
·
∫∞
0
dx′ x′ e−x′

ζ (0)(
√
λ(x′+x∗))σ↓

su(x
′)∫∞

0
dx′ x′ e−x′ζ (0)(

√
λx′)σ↓

su(x
′)

(29)

The first term in brackets is the traditional Boltzmann equilibrium relation; the second

term contains the correction due to the multifluid effects, and appears only through the ζ (0)
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function (20-a). A Taylor expansion near λ = 0 yields (with an obvious definition of the

Boltzmann function B):

̟↑
sℓ

̟↓
su

=

[
gu
gℓ
e−x∗

]
·
∫∞
0
dx′ x′ e−x′

[
1 + 2λ(x∗+x′)

3

]
σ↓
su(x

′)
∫∞
0
dx′ x′ e−x′ [1 + 2λx′

3

]
σ↓
su(x

′)

≃
[
Bℓu(T̃ )

]
·
(
1+

2λx∗

3
+ o(λ2)

)
(30)

Thus, we recover the expression for Boltzmann equilibrium in the thermal (single-fluid) limit

(λ→ 0). Note that the correction term increases with the energy threshold, i.e. transitions

between high levels (x∗ → 0) will not be affected very much by the multifluid effects, while

the impact will be stronger for excitation from low energy levels, with high energy gaps. For

elastic collisions (x∗=0), the ratio of rates is exactly given by the ratio of degeneracies.

C. First-order moment: momentum density

Consider now the forward reaction (1) and the corresponding loss of momentum to the

particles with velocity vs. The transfer variable in this case is ψ=msvs, and starting from

equation (8), the contribution to the momentum equation is:

R−
s = − nsnt

π
3
2α3

·
∫
d3V∗fV ∗ ·

∫
dg g3 e−g2/α2

σst(g) ·
∫
dϕdcθ e

2gwcθ/α
2 〈msvs〉Ω′ (31)

Similarly, the gain in momentum is given by the production of new particles with velocity

v′
s:

R+
s = +

nsnt

π
3
2α3

·
∫
d3V∗fV ∗ ·

∫
dg g3 e−g2/α2

σst(g) ·
∫
dϕdcθ e

2gwcθ/α
2 〈msv

′
s〉Ω′ (32)

Using the relation:

ms(vs − v′
s) = µ(g − g′) (33)

we verify that the integrand does not depend on V∗ and its integration is trivially removed.

The net rate of change to the momentum density of species s is therefore:

Rs = −µ nsnt

π
3
2α3

·
∫
dg g3 e−g2/α2

σst(g) ·
∫
dϕdcθ e

2gwcθ/α
2 〈g−g′〉

Ω′ (34)
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Let us consider the last integral over the scattering angle. From Figure 1, the vectors g, g′

in the rotated frame (ξ, η, ς) are:

g = g ĝ = g ·




0

0

1


 ; g′ = g′ · ĝ′ = g′




cρsχ

sρsχ

cχ


 (35)

Therefore the integral yields:

∫
dΩ′(g−g′)G(g,Ω′) = 2πg

∫
dcχG(g, χ)ĝ− 2πg′

∫
dcχcχG(g, χ)ĝ

=
[
g−g′〈cosχ〉

Ω′

]
ĝ

(36)

We must now express the unit vector ĝ in the initial (x̂, ŷ, ẑ) frame, which is given by (7);

integration over the ϕ variable leaves only one component, cθŵ, yielding:

Rs = −µŵ 2nsnt

π
1
2α3

·
∫
dg g3 e−g2/α2

σst(g) ·
∫
dcθcθ e

2gwcθ/α
2 [
g−g′〈cosχ〉

Ω′

]
(37)

Using (20) to replace the last integral and using the normalized variables (12) leads to:

Rs = −2

3
µw nsntgT̃ e

−λ

∫ ∞

z∗
dz z

3
2 e−z σst(z) ζ

(1)(
√
λz)

(√
z−

√
z′〈cosχ〉

Ω′

)
(38)

A similar (but of opposite sign) expression can be obtained for the species of type t, as a

result of the identity ms(vt−v′
t) = µ(g′−g).

We can now specify the type of collision. For an ℓ→ u excitation, we follow (15), to yield:

R↑
s = −2

3
µw nsnℓgT̃ e

−λ

∫ ∞

x∗
dx x

3
2 e−x σ↑

sℓ(x) ζ
(1)(

√
λx)

(√
x−

√
x′〈cosχ〉

Ω′

)
(39)

For deexcitation, we follow (17):

R↓
s = −2

3
µw nsnugT̃ e

−λ

∫ ∞

0

dx′ (x′)
3
2 e−x′

σ↓
su(x

′) ζ (1)(
√
λx′)

(√
x′−√

x〈cosχ〉
Ω′

)
(40)

Note that the expressions (39–40) are obtained in a frame where w is aligned with the ẑ

direction and corresponds to the change in momentum density along that direction. Thus, it

is the component of a force parallel to w, while all components in the transverse directions

are zero, by reason of symmetry39. The components in an arbitrary rest-frame must be

obtained by projecting w.
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Since the force density is approximately proportional to w, we can group all the other terms

into the definition of a coefficient, such that

R↑
s = −K↑

sℓ(us − ut) R↑
t = +K↑

sℓ(us − ut) (41a)

R↓
s = −K↓

su(us − ut) R↓
t = +K↓

su(us − ut) (41b)

where K↑
sℓ and K↓

su are known as resistance coefficients:

K↑
sℓ =

2

3
µnsnℓgT̃ e

−λ

∫ ∞

x∗
dx x

3
2 e−x σ↑

sℓ(x) ζ
(1)(

√
λx)

[√
x−

√
x′〈cosχ〉

Ω′

]
(42a)

K↓
su =

2

3
µnsnugT̃ e

−λ

∫ ∞

0

dx′ (x′)
3
2 e−x′

σ↓
su(x) ζ

(1)(
√
λx′)

[√
x′−√

x〈cosχ〉
Ω′

]
(42b)

It must be pointed out that when the collision is elastic, i.e., x = x′, we recover the expression

of the momentum transfer cross section often used in transport calculation, i.e., σm(x) ≡
σ(1 − 〈cosχ〉) (see for example32). In the limit of weak divergence of mean fluid velocities

(λ→ 0) and isotropic scattering (G(χ) = 1/4π), we have:

K↑
sℓ ≃

2

3
µnsnℓgT̃

∫ ∞

x∗
dxx2σ↑

sℓ(x)e
−x (43)

Again, using the Klein-Rosseland relation, the excitation resistance coefficient can be written

as:

K↑
sℓ =

[
Bℓu(T̃ )

] 2
3
µnsnℓgT̃ e

−λ

∫ ∞

0

dx′ x′x
1
2 e−x′

ζ (1)(
√
λ(x))σ↓

su(x
′)
[√

x−
√
x′〈cosχ〉

Ω′

]

(44)

As in the case of the zero-th order moment, we define the momentum exchange rates by:

K↑
sℓ = µnsnℓκ

↑
sℓ (45a)

K↓
su = µnsnuκ

↓
su (45b)

In the case of weak divergence of mean fluid velocities and isotropic scattering, the ratio of

the rate coefficients for the forward and backward processes is approximately:

κ↑sℓ
κ↓su

≃
[
Bℓu(T̃ )

]
·
∫∞
0
dx′e−x′

x′(x∗+x′)
[
1 + 2

5
λ(x∗+x′)

]
σ↓
su(x

′)∫∞
0
dx′e−x′x′2

[
1 + 2

5
λx′
]
σ↓
su(x

′)
(46)

Note that there is an additional contribution from high-order moment from the expansion.

This can be seen by further expanding the integrand of the numerator:

x′(x∗+x′)

[
1 +

2

5
λ(x∗+x′)

]
= x′2

[
1 +

2

5
λx′
]
+ x∗x′

[
1 +

2

5
λ(x∗ + 2x′)

]
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such that

κ↑sℓ
κ↓su

≃
[
Bℓu(T̃ )

]
·
[
1 + x∗

∫∞
0
dx′e−x′

x′
[
1 + 2

5
λ(x∗+2x′)

]
σ↓
su(x

′)∫∞
0
dx′e−x′x′2

[
1 + 2

5
λx′
]
σ↓
su(x

′)

]
(47)

Note that even as λ → 0, the correction term does not vanish. Therefore, there is no

equivalence between the resistance coefficients of the forward and backward processes in

the limit λ → 0. However, this is perfectly understandable; note that the correction is

proportional to the energy threshold, and since kinetic energy must be removed from particle

s in order to achieve excitation, but not for deexcitation, there must also be an imbalance

in the momentum exchange rate. As expected, this imbalance vanishes for elastic collisions

(x∗ → 0), and the rates are consistent with the detailed balance of the mass exchange. In

all cases, detailed balance is enforced through relation (26) at the microscopic level.

D. Second-order moment: total energy density

The net rate of change of total energy of species s can be obtained by setting ψ =

1
2
ms

(
v′2

s−v2
s

)
into equation (11):

Qs =
nsnt

π
3
2α3

·
∫
d3V∗fV ∗

∫
dg g3 e−g2/α2

σst(g) ·
∫
dϕdcθ e

2gwcθ/α
2 〈1

2
ms(v

′2
s−v2

s)〉Ω′ (48)

Using the transformation defined in Appendix B,

1

2
ms

(
v′2

s−v2
s

)
= µ (g′−g) · [V∗+U−γ(g−w)]− mt

M
∆ε (49)

The integration of the first term in the square bracket is zero since
∫
d3V∗V∗ fV ∗ = 0. One

can easily see that the second term in brackets is simply Rs · U by comparing with (34).

Similarly, the last term in (49) is identified as −(mt/M)∆εΓst. The third term in brackets

involves the following dot product:

(g′−g) · (g−w) = g · g′ −w · g′ − g2 +w · g

= gg′ cosχ− wg′(ĝ′ · ŵ)− g2 + wg cos θ (50)

We can now perform the averaging over the scattering angle; in particular, we have

∫
dΩ′G(χ) ĝ′ ·ŵ = 〈cosχ〉

Ω′ cos θ
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so that

∫
dΩ′G(χ) (g′−g)·(g−w) = (g′〈cosχ〉

Ω′−g)(g−w cos θ) (51)

Thus, we obtain, after integration over ϕ:

Qs = U ·Rs −
mt

M
∆εΓst − µγ

4nsnt

π
1
2α3

e−λ

∫
dg g3σst(g)e

−g2/α2 Iθ (52)

where the last angular integral is

Iθ =
1

2

∫
dcθe

2gwcθ/α
2

(g′〈cχ〉Ω′ −g)(g−wcθ)

= (g′〈cχ〉Ω′−g)
{
g
1

2

∫
dcθe

2gwcθ/α
2 − w

2

∫
dcθcθe

2gwcθ/α
2

}
(53)

= (g′〈cχ〉Ω′−g) g
{
ζ (0)(

√
λz)− 2

3

w2

α2
ζ (1)(

√
λz)

}

Therefore, after the change of variables g → z:

Qs =U ·Rs −
mt

M
∆εΓst

+ µγ
4nsnt

π
1
2α3

e−λα
6

2

∫
dzz

3
2 e−zσst(z)

(√
z−

√
z′〈cosχ〉

Ω′

)(
ζ (0)(

√
λz)−2λ

3
ζ (1)(

√
λz)

)

(54)

The factor in front of the integral can be re-arranged to yield:

γnsntgT̃ e
−λ(2kT̃ )

Using the identity γ(2kT̃ ) = 2µ
M
k(Tt − Ts), the final result has a traditional form:

Qs = U ·Rs −
mt

M
∆εΓst + Jst

2µ

M
k(Tt − Ts) (55)

with the thermal resistance coefficient defined as:

Jst = nsntgT̃ e
−λ

∫
dzz

3
2 e−zσst(z)

(√
z−

√
z′〈cosχ〉

Ω′

)(
ζ (0)(

√
λz)− 2λ

3
ζ (1)(

√
λz)

)
(56)

This result is general, and we can now make the usual substitutions for excitation:

Q↑
s = U ·R↑

s −
mt

M
ε∗Γ↑

sℓ + J↑
sℓ

2µ

M
k(Tt − Ts) (57a)

J↑
sℓ = nsnℓgT̃ e

−λ

∫
dxx

3
2 e−xσ↑

sℓ(x)
(√

x−
√
x′〈cosχ〉

Ω′

)(
ζ (0)(

√
λx)− 2λ

3
ζ (1)(

√
λx)

)
(57b)
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In the case of deexcitation, we can still use the general formula (54), except that in this case,

∆ε = −ε∗. This can be seen if we start from eq. (48), which gives us:

Q↓
s =− µ

nsnt

π
3
2α3

e−λ

∫
d3g′g′σ↓

su(g
′)e−g′2/α2

e2g
′wcθ/α

2

U · 〈g′−g〉
Ω′

+ µγ
nsnt

π
3
2α3

e−λ

∫
d3g′g′σ↓

su(g
′)e−g′2/α2

e2g
′wcθ/α

2

(g′−g) · (g−w) (58)

+
mt

M
ε∗Γ↓

su

Again, one can easily recognize the standard formulae:

Q↓
s = U ·R↓

s +
mt

M
ε∗Γ↓

su + J↓
su

2µ

M
k(Tt − Ts) (59a)

J↓
su = nsnugT̃ e

−λ

∫
dx′(x′)

3
2 e−x′

σ↓
su(x

′)
(√

x′−√
x〈cosχ〉

Ω′

)(
ζ (0)(

√
λx′)− 2λ

3
ζ (1)(

√
λx′)

)

(59b)

which could also be obtained directly from (55 - 56), with the usual substitutions (17).

We can also express the source term for particle t, using:

1

2
mt(v

′2
t −v2

t ) =
1

2
mt

(
(V−ms

M
g′)2 − (V−ms

M
g)2
)

=
ms

2M
µ(g′2−g2)− µV · (g′−g) (60)

= −µ(g′−g) · [V∗ +U− γ(g−w)]− ms

M
∆ε

Comparing with (49), we easily obtain (note the inversion of Ts and Tt in the last term):

Q↑
t = U ·R↑

t −
ms

M
ε∗Γ↑

sℓ + J↑
sℓ

2µ

M
k(Ts − Tt) (61a)

Q↓
t = U ·R↓

t +
ms

M
ε∗Γ↓

su + J↓
su

2µ

M
k(Ts − Tt) (61b)

with R
↑(↓)
t = −R

↑(↓)
s . Combining both s and t fluids, the only term remaining is the loss of

energy equal to the energy gap between the levels, as expected. Note also that this energy

loss is distributed to the respective fluids according to the ratio of masses, such that the

lighter element receives the major contribution. This is also an expected result, similar to

the energy exchange due to elastic collisions, and due to the kinematics of collision.

In the limits of near-single fluid (λ→ 0) and isotropic scattering, we have:

J↑
sℓ ≃ nsnℓgT̃

(
1− 2λ

3

)∫ ∞

x∗
dx x2 σ↑

sℓ(x)e
−x (62)
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The thermal relaxation rates can be extracted similarly:

J↑
sℓ = nsnℓj

↑
sℓ (63a)

J↓
su = nsnuj

↓
su (63b)

The ratio of the thermal relaxation rates can be written as:

j↑sℓ
j↓su

≃
[
Bℓu(T̃ )

]
·
[
1 + x∗

∫∞
0
dx′ e−x′

x′
[
1− 2

3
λ+ 2

3
λ(x∗ + 2x′)

]
σ↓
su∫∞

0
dx′ e−x′ x′2

[
1− 2

3
λ+ 2

3
λx′
]
σ↓
su

]
(64)

Similar to the case of momentum transfer rates, the correction terms do not vanish when

λ→ 0 due to contribution from high-order moments.

III. Numerical Results

In the following sections, we carry out a numerical evaluation and verification of the exchange

rates derived in IIB, IIC and IID, for the case of free electrons interacting with hydrogen

atoms; these processes include electron-neutral elastic collision and electron-impact exci-

tation and deexcitation. Ionization and recombination are currently omitted and will be

included in future work. For comparison purpose, we also show the exchange rates due

to Coulomb collision, i.e., electron-hydrogen ion, which is the dominating elastic exchange

mechanism for plasma with high ionization fraction.

The notations are slightly modified to better distinguish each type of interaction. We use

superscripts (en), (ei) and (xd) to denote electron-neutral, electron-ion (Coulomb), and

excitation/deexcitation (as a whole) collisions, respectively. These grouped notations are

useful, for example, when looking at the net momentum (or energy) transfer due to each

type of collision. The symbols ↑, ↓ are still retained to indicate individual excitation and

deexcitation rates. For each transition between two atomic states, we use the convention

of indexing the final state on the left, and the initial state on the right, i.e., (f |i). For

example, ̟↑
(u|ℓ) is the forward excitation rate from ℓ to u, and ̟↓

(ℓ|u) is the reverse process.

The energy levels and cross sections models for atomic hydrogen are given in classical form

and summarized in Appendix C

A. Reaction Rates

All the exchange rates (mass, momentum, energy) can be tabulated as a function of two pa-

rameters: the average thermal temperature T̃ , defined in appendix B, and a non-dimensional
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parameter λ, defined in eq. (12), which corresponds to the relative mean kinetic energy. For

convenience, we also define an equivalent drift temperature Tw = λT̃ 40, such that all the rates

can be tabulated in terms of two temperatures. Since the mass ratio between the electron

and the atom is very small (me ≪ MH), we can drop terms of order me/M and arrive at

the following approximations: µ ≃ me, T̃ ≃ Te, Tw ≃ λTe and gT̃ ≃ ve =
√

8kTe

πme
. There-

fore, all the exchange rates for electron-induced collisions (both elastic and inelastic) can be

numerically evaluated in terms of the electron temperature Te and the drift temperature Tw.

Figure 2 shows example calculations of the zeroth-order reaction rates, defined in eqs. (22),

(23) and (28), for electron-impact excitation and deexcitation between the first three atomic

states of hydrogen. These rates exhibit a similar trend for the range of temperatures plotted

here, that is, starting from low temperature, the rates first increase, reaching a plateau and

then decrease as temperature further increases. The value at which the rate is maximum

is very close to the threshold temperature of the transition. This trend holds both in the

direction of increasing thermal Te (x-axis) or drift temperatures Tw (y-axis).

It is clearly shown from Figure 2 that the reaction rates can be significantly different from the

thermal limit when the relative mean velocity between two fluids is significant. In particular,

one sees an increase of the reaction rate in the low temperature regime where Te and Tw are

small compared to the excitation temperature of the collision; this enhancement corresponds

directly to the form of the cross sections. Therefore, one can expect that significant deviation

from the thermal rate occurs when the mean kinetic energy is of the same order as the

excitation temperature. This indicates that excitation and deexcitation among low energy

states with large threshold energies are more sensitive to the multifluid effects. This is

consistent with the prior statement we made when examining the ratio of forward and

backward rates.

Figure 3 shows the forward and backward reaction rates of the first transition between the

ground state and the first excited state as a function of the thermal temperature for several

drift temperature values. Even at very low thermal temperature (Te ≃ 0.1 eV), one can have

significant excitation (̟ ≃ 10−14 m3/s) due to a high drift temperature. In addition, Figure 3

also shows that in the limit λ→ 0, the multifluid rate, as formulated here, converges to the

expression for thermal limit, given in eq. (C.3), as expected. Figure 4 shows the reaction
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Figure 3. Multifiuid reaction rates for electron-impact excitationj deexcitation collisions: lines with 

symbols correspond to different values of the drift temperature. 

rates as a function of the drift temperature for several thermal temperature values; here 

we can identify a different asymptotic limit of t he rate. In t he limit A --+ oo, the electron 

velocity distribution funct ion approaches t he form of a delta funct ion centered at the relative 

mean velocity w , and t he reaction rates approach t he beam limit given by eq. (C.5). It must 

be noted that in t he numerical integration of the multifiuid rates, e.g., eq. (22), t he energy 

grid x needs to be refined near the value of t he the mean kinetic energy A to avoid numerica l 

error due to the integration over a delta function. 

B. Moment um and Energy Exchange Rates 

We now compute t he momentum and energy exchange rates due to both excitation and 

deexcitation, and compare with those due to elastic collisions (electron-neutral and electron

ion). Recall from eq. (55) that t he total energy t ransfer include t hree terms: the first term 

due to work done by friction in t he COM reference frame, the second term due to thermal 

resistance (or t hermal relaxation), and the last one due to heat release/ absorpt ion due to 

chemical reaction. T here are three different rate coefficients associated with each of these 

processes, namely t he momentum exchange rate K, thermal relaxation rate j , and t he reaction 

rate ro. In this section, we will focus on examining the momentum exchange and thermal 

relaxation rates. The expressions derived in II C and II D can be readily used for the case 
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Figure 4. Multifiuid reaction rates for electron-impact excitationj deexcitation collisions: lines with 

symbols correspond to different values of the thermal temperature. 

of elastic collisions by simply setting z* = 0 and z' = z = x . For example, in the case of 

electron-neut ral (en) collision, we have: 

(65a) 

(65b) 

It can be seen from the previous two equations that in order to compute the rate for t he case 

of elastic collisions, we only need the so-called momentum t ransfer cross section u(en)m(x) 

a Cen)(l - (cos x) ) . These cross sections are available for a wide range of neutral species due to 

their extensive use in calculation of transport properties (see for example13
) . The electron

neutral collision cross section utilized in this work is taken from Bray and Stelbovics34 . For 

inelastic collisions, we need t he full DCS, i.e., bot h a(x) and g(x, x) in eq. (9) for each 

process. These cross sections are generally not available and analytical approximation is 

needed. For Coulomb collision, we use t he analytical DCS from Rut herford's scattering 

formula with suitable cut-off based on the De bye length4 , yielding a momentum t ransfer 

cross section of the form: 

(66) 
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Figure 5. Elastic momentum transfer cross section for electrons in atomic hydrogen computed with 

the DCS from equation (68). 

where ln A is the well-known Coulomb logarit hm, 

A = 124 X 10
7 (~: ) 

112 

Typically, ln A :::::::: 5 - 20; for convenience, we take a constant value of ln A = 5 for all the 

plots shown here. In this case, t he momentum exchange and thermal relaxation rates can 

be obtained in exact forms28 : 

(67a) 

(67b) 

where erf is t he typical error funct ion. 

Due to the lack of data of the DCS for inelastic processes, we have used an analytical Born 

scattering approximation for a Coulomb screened potential13
, given by the following form: 

c g(£ x) - . 
' - (1- hcosx)2' 

(68) 

where C is a normalization constant such that 21r f 1 g (£, x)dCx = 1. This angular-dependent 

DCS has been used to compute moment um transfer and t hermal relaxation rates for both 
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electron-neutral and excitation/deexcitation collisions. We note here that the angular-

dependent DCS’s G for excitation and deexcitation have to satisfy detailed balance30:

G↑
(u|ℓ)(ε, χ) = G↓

(ℓ|u)(ε
′, χ) (69)

The above condition implies that the probability for a deexcitation collision with an incident

energy ε to have a scattering angle of χ is the same as that for an excitation collision with an

incident energy ε+ε∗; therefore, one cannot independently specify both DCS’s for the forward

and backward processes. Figure 5 shows a comparison of the computed elastic momentum

transfer cross sections to the result from a direct close-coupling calculation of Bray and

Stelbovics34; the agreement between the two is excellent. Using the angular-dependent DCS

defined in eq. (68), the exchange rates, e.g., κ and j, can be computed for each bound-bound

transition and summed over all transitions to yield the total rates:

K(xd) = me

∑

ℓ

∑

u>ℓ

(
κ↑(u|ℓ)nlne + κ↓(ℓ|u)nune

)
(70a)

J (xd) =
∑

ℓ

∑

u>ℓ

(
j↑(u|ℓ)nlne + j↓(ℓ|u)nune

)
(70b)

Based on the total frictional and thermal resistance coefficients, we can extract average

momentum transfer and thermal relaxation rates for all excitation/deexcitation processes as

follows:

K(xd) = menennκ
(xd) (71a)

J (xd) = nennj
(xd) (71b)

where nn =
∑

k nk is the total atomic number density (summation over levels). Note that

according to our definitions, the exchange rates κ(xd) and j(xd) contain terms designating the

population of the excited states, e.g., nk/nn. For comparison purpose, these average rates are

calculated by assuming a Boltzmann distribution of the atomic states, i.e., nk = nn
gke

−Ek/kTB

Zn

and Zn =
∑

k∈n gke
−Ek/kTB . One can see that in this case the population of the excited

states is effectively replaced by a Boltzmann distribution characterized by a temperature

TB. This step is only done for the comparison shown below. In a CR calculation, the

detailed population of the atomic states (equilibrium or not) is known and the exchange

rates are computed for each transition as specified in eq. (70).
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Figure 6 shows a comparison between the momentum exchange and thermal relaxation

rates for three different processes: electron-neutral, electron-ion (Coulomb), and excita-

tion/deexcitation collisions. For clarity, the rates due to Coulomb collision are only shown

for value of Te > 1 eV. Two important observations can be deduced from this plot. Firstly,

when the atoms are cold, i.e., TB is low, the inelastic exchange rates are much smaller than

elastic ones. This is due to the fact that when TB is low, only collisions between the ground

state and a first few excited states are significant; the rates for these transitions are low com-

pared to the others due to larger energy threshold. As the atoms are being excited and TB

increases, transitions among highly excited states become significant, leading to an overall

increase in the total rates. These rates eventually exceed those due to elastic collisions as

can be noticed in region (I) in Figure 6 for the dash-dotted and dotted lines. Secondly, the

rates due to inelastic processes tends to have a slower drop-off at high temperature compared

to the elastic rates, which suggests that at sufficiently high temperature, the main momen-

tum and energy transfer mechanisms (region (II) in Figure 6) are due to inelastic collisions.

Thus, we are led to the important conclusion that one cannot neglect momentum and energy

transfer due to inelastic collisions. The only justification for neglecting these terms is when

the atoms are cold and thermal temperature is low, but both of these conditions will not be

realized in most practical systems.

C. Verification

The accuracy of the derived formulas of the exchange source terms are verified against direct

evaluation of the full transfer integral (3) over six dimensional space using the Monte Carlo

method. The procedure for the Monte Carlo integration is as follows: (1) sample different

pair of particles (one atom and one electron) from two different Maxwellian distributions,

(2) compute the exchange rate due to each sample pair, and (3) accumulate these rates. The

sum of these rates will follow the correct probability distribution function of the samples.

For brevity, we only show an example calculation of the zeroth-order reaction rate for an

excitation and deexcitation from levels 2 and 5. Figure 7 shows a detailed comparison

between the rate expressions obtained from eqs. (22) and (23) against Monte Carlo results

with an excellent agreement. Similar agreement is obtained with other sampled transitions,

giving us complete confidence in the accuracy of our derivation of the multifluid rates from
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kinetic theory. 

D. Zero-dimensional Calculations 

We conducted zero-dimensional (OD) calculations for a constant-volume (isochoric) system 

to support our findings in sections III A and III B , which include t he following: (1) reaction 
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number density temperature

atomic ni = 0.9nt for i = 1 0.3 eV

states ni = 10−15nt otherwise

electron ne = 0.1nt 2 eV

Table I. Initial conditions of 0D test cases. For all cases, the total atomic density nt is 1020 m−3.

rates can be enhanced when the relative mean drift velocity is significant, and (2) momentum

transfer and thermal relaxation due to inelastic collisions are non-negligible. The system

contains hydrogen atoms and a small fraction of free electrons41. The governing equations

are described in appendix D, and the resultant system of ordinary differential equations is

solved using the Radau5 method of Hairer and Wanner36, which is ideally suited for stiff

problems.

The initial conditions for the number densities and temperatures of the atoms and free

electrons are summarized in Table I. Initially, all the atoms are at the ground state (denoted

by i = 1 in table I) with a translational temperature of 0.3 eV. The atoms are assumed

to be at rest, i.e., their mean velocity is zero. The free electrons have a temperature of 2

eV, and their mean velocity is varied to demonstrate the multifluid effects. In all the test

cases, we include the first 10 atomic levels of hydrogen according to the model described in

Appendix C.

In the first test, we perform the calculation with various initial mean velocities of the elec-

trons, or equivalently, the drift temperatures Tw. Figure 8 shows the time evolution of the

number densities of the excited states during the isochoric heating process for two cases:

Tw = 0.01 and 10 eV; the former corresponds to a single fluid calculation of a thermal bath

with a warm electron population, and the latter corresponds to a situation where an electron

beam is injected to the system. One can clearly see from Figure 8 that there is an enhance-

ment to the excitation process, indicated by an early increase in the population of excited

states, due to the presence of a non-zero mean velocity of the electrons. The same argument

can be made from Figure 9, which shows the time evolution of the temperatures for three

cases of different initial Tw. In this plot, the Boltzmann temperature TB indicates the degree

of excitation of the atom. It must be pointed out that the enhancement in excitation, how-
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Figure 8. Number density of excited states during a zero-dimensional chemistry test. 

ever, persists on the time scale of t he momentum relaxation process, which is indicated by 

a drop in Tw at approximately 3 x w-7 sec as shown in t he bottom plot of Figure 9. After 

this time, t he moment um of t he elect rons is completely absorbed by the atom, signifying a 

change to single fluid kinetics. In all t he test cases, the excitation proceeds at a time scale 

much smaller than t he resolution of the figures, i.e., Ts approximately goes from 0 to 0.7 

eV in w-9 sec. As mentioned before, when Ts is sufficiently large, the momentum exchange 

and t hermal relaxat ion rates from inelast ic collisions cannot be neglected. 

In the second test , we specifically ident ify the effect of inelastic collisions. Figure 10 shows 

a comparison of t he temperature evolut ion for two test cases, both with a very small init ial 

drift temperature Tw = 0.01: t he solid lines correspond the solut ion with both elastic and 

inelastic exchanges, and t he dashed lines to t he solut ion without inelastic exchanges. In 

this case, t he friction is negligible since Tw ~ 0, and there are only t hermal relaxation 

and heat release from reaction. It is clearly shown that inelastic collisions do contribute to 

the total energy transfer between the elect rons and atoms, leading to a faster temperature 

equilibration Tn- Te- Ts . It is interesting to point out here t hat while Te- Ts equilibration 

is due to t he heat release/ absorption term, Te - Tn equilibrat ion is only due to t he thermal 

relaxation term. Figure 10 indicates that there is a faster Te- Tn equilibration when inelastic 

thermal relaxation is included. This result is quite intriguing, since this effect is normally 
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from kinetic theory and is applicable to any multifiuid plasma, irrespective of the mass 

ratio, and strictly obeys the detailed balance principle. The appropriate mass transfer rates 

and momentum and thermal resistance coefficients are derived, and are found to satisfy the 
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proper asymptotic limits, such that in the limit of vanishing energy gap, the well-known

expressions for elastic collisions are recovered.

Numerical evaluations of the multifluid rates are carried out for a two-fluid electron-hydrogen

plasma using Bohr model for the energy levels and semi-classical cross sections. Several nu-

merical tests were performed in a virtual (zero-dimensional) test cell, and both the known

thermal and beam limits were correctly recovered from the model. We also found that in

some plasma conditions of interest, the contribution of the inelastic collisions to the resis-

tance coefficients is significant, contrary to the usual assumptions made in current multifluid

models.

Appendix A Collision kinematics

Let us consider an inelastic collision between two particles s and t, such that the post-collision

particles can have modified internal states. The process is formally described as the relation

s(vs) + t(vt) → s′(v′
s) + t′(v′

t) (A.1)

Note that only two particles are produced by the collision. The initial velocities are vs,vt.

The mean fluid velocity is u, such that u ≡ 〈v〉 ≡
∫
d3vvf(v) and a thermal velocity

c = v − u. By definition, we also have 〈c〉 ≡ 0.

The collision can be transformed to the center of mass (COM) reference frame, moving with

velocity V with respect to the LAB frame. Similarly, we can also define a mean velocity

of this COM frame as U. The subsequent Galilean transformations yield the following

definitions:

V =
msvs +mtvt

M
g = vs − vt (A.2a)

U =
msus +mtut

M
w = us − ut (A.2b)

where M=ms+mt. The inverse transformation yields:

vs = V +
mt

M
g us = U+

mt

M
w (A.3a)

vt = V − ms

M
g ut = U− ms

M
w (A.3b)

Mass conservation imposes the relation ms+mt =M =m′
s+m

′
t. For the case of two-body

processes such as excitation of internal states, the masses are individually conserved, i.e.
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m′
s=ms, m

′
t=mt. Expressed in the COM frame, momentum and energy conservation yield,

respectively:

MV =MV′ (A.4a)

1

2
MV2 +

1

2
µg2 =

1

2
MV′2 +

1

2
µg′2 +∆ε (A.4b)

where µ=msmt/M . Therefore, we have the following constraints:

V = V′ and g2 = g′2 +
2∆ε

µ
(A.5)

For an excitation between two atomic levels, the transferred energy is a fixed value ∆ε ≡
ε∗ > 0, the energy gap between levels. For a deexcitation, we use the same formulation as

above (i.e. post-collision variables indicated by a prime), but in this case, ∆ε = −ε∗ < 0. In

the limit ∆ε → 0, the collision is elastic.

Appendix B Separation of variables

Consider the Maxwellian velocity distribution functions (VDF) of each particle type, nor-

malized to unity, e.g. (recall that c=v−u):

fs(vs) =

(
ms

2πkTs

) 3
2

exp

[
−msc

2
s

2kTs

]
(B.1)

and similarly for ft. The averaging over initial states will yield a product of these two

distributions:

fs(vs)ft(vt) =

(
ms

2πkTs

) 3
2
(

mt

2πkTt

) 3
2

exp[A] (B.2)

where the argument of the exponential function is, from (A.3):

A =
ms

2kTs

[
V −U+

mt

M
(g −w)

]2
+

mt

2kTt

[
V −U− ms

M
(g−w)

]2
(B.3)

Following Burgers28, this expression can be simplified with an appropriate transformation of

variables; since the basic procedure will be used elsewhere, we describe it below. First, we

define the following variables

βp =
mp

2kTp
, g̃ = g−w (B.4)
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such that

A = βs

[
(V−U) +

mt

M
g̃
]2

+ βt

[
(V−U)− ms

M
g̃
]2

= (βs+βt)(V−U)2 +

[
βs
m2

t

M2
+ βt

m2
s

M2

]
g̃2 + 2

[
βs
mt

M
− βt

ms

M

]
(V−U) · g̃ (B.5)

Let us define:

V∗ = V−U+ γg̃ (B.6)

and comparing the expression

(βs+βt)V
∗2 = (βs+βt)(V−U)2 + (βs+βt)γ

2g̃2 + 2γ(βs+βt)(V−U) · g̃ (B.7)

with (B.5), we can choose the appropriate value of the coefficient γ to eliminate the dot

product from A:

γ =
1

βs+βt

(
βs
mt

M
− βt

ms

M

)
(B.8)

We then obtain complete separation of variables:

A = (βs+βt)V
∗2 +

[
βs
m2

t

M2
+βt

m2
s

M2
− 1

βs+βt

(
βs
mt

M
− βt

ms

M

)2]
g̃2 (B.9)

The term in brackets is easily simplified:

[. . .] =
βsβt
βs + βt

(B.10)

We can now define effective, average temperatures:

βs+βt =
ms

2kTs
+

mt

2kTt
=
M

2k

msTt +mtTs
MTsTt

≡ M

2kT ∗ (B.11a)

βsβt
βs + βt

=
µ

2k

M

TsTt

TsTt
msTt+mtTs

≡ µ

2kT̃
(B.11b)

and γ becomes:

γ =
µ

M

Tt − Ts

T̃
= µ

Tt − Ts
msTt +mtTs

(B.12)

To summarize, we have performed the following change of variables:

V∗ = V −U + µ
Tt − Ts

msTt+mtTs
g̃ g̃ = g −w (B.13a)

T ∗ =M
TsTt

msTt+mtTs
T̃ =

msTt+mtTs
M

(B.13b)
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These are the same expressions found in28 (pp. 45-46) (with an occasional change of naming

convention) for which it is easy to verify that the Jacobian of the transformations is unity,

i.e.

d3vsd
3vt ≡ d3Vd3g ≡ d3V∗d3g̃ (B.14)

Furthermore, we note that:

(
ms

2kTs

) 3
2
(
mt

2kTt

) 3
2

≡ (βsβt) = (βs+βt)
3
2

(
βsβt
βs+βt

) 3
2

≡
(

M

2kT ∗

) 3
2
(

µ

2kT̃

) 3
2

(B.15)

The product of two distributions can now be written as:

fs · ft =
(

M

2πkT ∗

) 3
2

exp

[
−MV∗2

2kT ∗

]
·
(

µ

2πkT̃

) 3
2

exp

[
− µg̃2

2kT̃

]
≡ f ∗(V∗) · f̃(g̃) (B.16)

All subsequent expressions can now be simplified with this separation of variables. For

example, any operator O that depends only on variables expressed in the COM frame (g, g′),

we have: ∫
d3vsd

3vtfsftO(g, g′) =

∫
d3V∗f ∗(V∗)

︸ ︷︷ ︸
≡1

·
∫
d3g̃f̃(g̃)O(g, g′) (B.17)

Note that this procedure applies equally well for elastic, excitation and deexcitation collisions,

and that no approximations have been made on the mass ratio. Furthermore, since the

averaging over initial states only involves the distribution functions for the s and t particles,

we have not necessarily assumed that the final products s′ and t′ belong to the same fluid

as the initial particles.

Appendix C Atomic data and cross section models

The atomic states of the Hydrogen atom are listed as a function of their principal quantum

number (n) only, following the Bohr atomic model; the splitting of states with respect to

orbital and spin numbers is ignored, and all states have a degeneracy gn = 2n2. The states

number from n = 1 to ∞ and we consider a finite number of states n = 1, . . . ,M <∞ before

reaching the ionization limit42. In this simplified model, the energy of each state is given

as En = IH (1−1/n2), as measured from the ground state (E1 ≡ 0), and we will denote by

In=IH (1/n2−1/M2)≃IH/n2 the energy required for ionization of level n.
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The classical form of the cross section for energy exchange between a free electron and the

atom (Hydrogen) is used5. For an excitation collision from level ℓ to level u > ℓ, the cross

section takes the form:

σ↑
(u|ℓ)(x) = (4πa2o)(3fℓu)

(
IH
kTe

)2
(x− xℓu)

xℓux2
(C.1)

where ao is the Bohr radius, x is the nondimensional incident energy of the electron, xℓu =

(Eu − Eℓ)/kTe is the energy gap between ℓ and u, and fℓu is the oscillator strength:

fℓu =
32

3π
√
3

1

ℓ5
1

u3
1

(
1
ℓ2
− 1

u2

)3 (C.2)

In the thermal (single fluid) limit (λ → 0), the reaction rate can be obtained in an exact

form:

̟↑
(u|ℓ) ≃ (4πa2o)(3fℓu)ve

(
IH
kTe

)2

ψℓu (C.3)

where

ve =

(
8kTe
πme

) 1
2

, ψℓu =
e−xℓu

xℓu
− E1(xℓu) and E1(x)=

∫ ∞

x

e−y

y
dy (C.4)

Here, ve is the mean thermal electron velocity and E1 is the exponential integral. On the

other hand, in the beam limit (Te → 0), the reaction rate takes the form:

̟↑
(u|ℓ) ≃

√
π

2
veσ

↑
(u|ℓ)(λ) = (4πa2o)(3fℓu)ve

(
IH
kTe

)2

φℓu (C.5)

where

φℓu =

√
π

2

(λ− xℓu)

xℓuλ2
(C.6)

Appendix D Rate equations

We describe here the governing equations for the zero-dimensional simulation, which describe

the time evolution of a constant-volume system during a thermochemical relaxation process.
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The following system of rate equations is considered:

dne

dt
= 0 (D.1a)

dni

dt
= Γ

(xd)
i (D.1b)

d

dt
(meneue) = −(ue − un)(K

(en) +K(xd)) (D.1c)

d

dt
(mnnnun) = +(ue − un)(K

(en) +K(xd)) (D.1d)

dEe

dt
= −u · (ue − un)(K

(en) +K(xd))

− 2me

mn
k(Te − Tn)(J

(en) + J (xd))− Ξ(xd) (D.1e)

dEn

dt
= +u · (ue − un)(K

(en) +K(xd))

+
2me

mn
k(Te − Tn)(J

(en) + J (xd)) (D.1f)

where nn =
∑

i∈n ni and Ee(n) is the total energy of the fluid:

Ee(n) =
3

2
ne(n)kTe(n)
︸ ︷︷ ︸

εe(n)

+
1

2
me(n)ne(n)ue(n) · ue(n) (D.2)

where εe(n) is defined as the thermal energy of the fluid. The exchange source terms can be

decomposed into two parts: elastic and inelastic collisions between the electrons and atoms.

The momentum and energy exchange rates due to elastic and inelastic collisions are defined

in eqs. (65) and (70). The remaining terms are:

Γ
(xd)
i =

∑

u>i

[
−nine̟

↑
(u|i) + nune̟

↓
(i|u)

]
+
∑

ℓ<i

[
−nine̟

↓
(ℓ|i) + nℓne̟

↑
(i|ℓ)

]
(D.3)

Ξ(xd) =
∑

ℓ

∑

u>ℓ

[
nℓne̟

↑
(u|ℓ)ε

∗
ℓu − nune̟

↓
(ℓ|u)ε

∗
ℓu

]
(D.4)

where ε∗ℓu = Eu−Eℓ. Comparing eqs. (D.1c)-(D.1f) and (D.2), we can also write conservation

equations for the thermal energies of electrons and atoms:

dεe
dt

= −me(u− ue) · (ue − un)(K
(en) +K(xd))

− 2me

mn

k(Te − Tn)(J
(en) + J (xd))− Ξ(xd) (D.5a)

dεn
dt

= +me(u− un) · (ue − un)(K
(en) +K(xd))

+
2me

mn
k(Te − Tn)(J

(en) + J (xd)) (D.5b)
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Abstract of the Dissertation

Hydrodynamic models for multicomponent

plasmas with collisional-radiative kinetics

by

Hai Phuoc Le

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2014

Professor Ann R. Karagozian, Chair

Energy and space propulsion are two of the largest applied research areas requiring

contributions from fundamental physical sciences, due to the growing world-wide

demand in energy and continuing interests in expanding the frontier of deep space

exploration. One of the common thrust areas in these two disciplines is plasma

physics, the study of the motion of charged particles and their interaction with

the electromagnetic field. The characterization of these plasma systems requires

a comprehensive understanding of the physics of charged particles, collisional and

radiative interactions among these particles, and how they interact with the elec-

tromagnetic field.

This dissertation presents some advances in the development of hydrodynamic

models for plasma modeling and simulations in highly non-equilibrium conditions.

Expressed in the form of conversation laws, these governing equations are solved

by a finite volume discretization with a high-order reconstruction procedure and

a multi-stage time integration method. High-fidelity collisional-radiative (CR)

models are constructed by taking into account various elementary processes re-

sponsible for the excitation and ionization kinetics. The accuracy of the CR model

Distribution A: Approved for public release; distribution is unlimited. PA number 14560.
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is benchmarked against different experimental shock tube data, and yields satis-

factory agreement for a wide range of flow conditions. A mechanism reduction

scheme, based on a level grouping approach, is derived to lower the complex-

ity of the CR kinetics while maintaining sufficient accuracy to capture the non-

equilibrium dynamics of the plasma kinetics. The method is shown to be more

accurate and efficient than standard level grouping approach, and is suitable for

multidimensional flow calculations.

Although the hydrodynamic or fluid approach offers a convenient way to model

the system, it requires some assumptions on the time and length scales, which in

some case might be violated. Fortunately, small deviations from these assumptions

can still be captured by extending the fluid equations to multi-fluid equations,

which characterize the plasma species (ions and electrons) via their own set of

conservation laws. The extension of the CR model to the multi-fluid regime

requires a new derivation for exchange source terms. A model for excitation and

deexcitation collisions within the multi-fluid framework is derived, starting from

kinetic theory, where the model obeys the principle of detailed balance. The multi-

fluid equations developed in the current work are used to study ion acceleration

in laser-plasma interaction. The role of the laser parameters and the mechanism

of the acceleration are examined in detail, demonstrating the capabilities of this

computational framework.
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CHAPTER 1

Introduction

1.1 Background

Plasma science is a multidisciplinary topic, with a wide spectrum of applica-

tions such as thermonuclear fusion [1], astrophysical plasmas [2], solar physics [3],

electric propulsion thrusters [4], material processing [5], and many others. High

temperature and collisionless plasmas have been studied extensively by Vlasov

theory [6, 7]; these studies laid a foundation on the understanding of linear and

quasi-linear phenomena occurred in a plasma, e.g., Landau damping, plasma in-

stabilities, and collisonless shock [8, 9]. These phenomena are pertinent to the

study of plasma waves in fusion devices or astrophysical phenomena, e.g., super-

nova, active galactic nucleus jets, etc.

Low temperature and partially ionized plasmas, on the other hand, have

tremendous technological applications in manufacturing and material processing,

miniaturized ion propulsion device [4], novel combustion devices [10], and re-entry

physics [11]. These plasmas often exhibit strong deviation from thermal and chem-

ical equilibrium, thus collisional and radiative kinetics play an important role in

characterizing their dynamic behavior. For example, the interaction of the plasma

with the radiation field is directly applicable to predicting and analysing thrusters’

plume signature, radiative heat in hypersonic shock layer, and X-ray generation

in laser-plasma interaction (LPI).

The challenges in exploring non-linear phenomena and the transport of par-

1
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ticles and energy still remain, both of which would require theoretical, computa-

tional and experimental efforts. In the non-linear regime, one has to solve the full

set of governing equations; this task is quite challenging, and can only be done by

numerical calculations. Even so, the numerical methods themselves have limita-

tions1, and often cannot be used in a general scenario. In such cases, theoretical

knowledge is required to give insights to the design of the numerical methods,

and experimental verification (or code validation) is very essential to completely

understand the physics of the problem. The abundance and complexity of plasma

science can be seen in three representative technical application areas: plasma-

assisted combustion, re-entry physics, and laser-plasma interactions.

1.1.1 Plasma-assisted combustion

Plasmas have long been of interest as a propellant candidate for spacecraft due

to the ability to generate very high exhaust velocities, and thus very high specific

impulse (ISP) as a consequence of electromagnetic and/or electrostatic acceler-

ation [4]. Besides electric propulsion, plasma physics also finds use in chemical

propulsion applications due to the unique advantage coming from the participa-

tion of the plasma species in the combustion processes and their interactions with

the electromagnetic field. The existence of a plasma inside a combustion chamber

can potentially be utilized for different purposes, whether to enhance the reaction

kinetics or to be used for flow control [12, 13].

Recently, the concepts of plasma assisted combustion (PAC) and plasma as-

sisted ignition (PAI) have drawn a lot of attention due to their potential for im-

proving ignition reliability, enhancing flame stabilization and reducing pollutant

emission [14, 15, 13]. These concepts have been proposed in a variety of combus-

1This comes from both from a numerical and physical points of view. The numerical lim-
itation lies in the deterministic or stochastic nature of the methods when dealing with high
dimensional problems. The physical limitation simply comes from the fact that it is impossible
to include physics at all scales so one must be aware of which physics can be included and/or
missing from the model.

2
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Figure 1.1: Flame stabilization by plasma enhancement [15].

tion devices including scramjets and gas turbine engines [16, 17]. The plasma,

typically created by electric discharges, can deposit heat locally in the vicinity

the flame, which quickly raises the gas temperature, and creates reactive radicals

and excited species, which initiate chain reactions, therefore stabilizing the flame.

Figure 1.1 illustrates the flame stabilization effects that can be seen by application

of a nanosecond repetitively pulsed plasma [15].

Several concepts of propulsion systems have been proposed to take advantage

of magnetohydrodynamic (MHD) phenomena. One example is the pulse detona-

tion rocket-induced magnetohydrodynamic ejectors (PDRIME) concept, proposed

by Cambier [18], from which MHD power is extracted from the unsteady nozzle

flows within a pulse detonation rocket engines (PDRE) and applied in a bypass

air stream to provide additional thrust. The schematic concept of PDRIME is

illustrated in figure 1.2 showing the flow patterns for different stages of the cy-

cle. Numerical simulations of the PDRIME, as well as other MHD-based cycle

modification, were carried out by Zeineh et al. [19] showing potential increases

in performance for many operating conditions. Technical challenges associated

with the requirement for PDRIME operation were also revealed, which suggests

further analysis and optimization study. The numerical simulations have proven

3
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Figure 1.2: PDRIME concept: a) Overpressure at the nozzle exit launch a shock to

enter the bypass tube, which slows and raises the temperature of the air stream

inside the tube. Energy is extract from the flow (MHD power generation). b)

During the blowdown, the nozzle pressure drops, and power is applied to accelerate

compressed air in the bypass channel (MHD acceleration). [18, 19]

to be very useful in the preliminary evaluation of the PDRIME concept and its

variants.

1.1.2 Re-entry physics

Re-entry plasmas are typically created due to a strong bow shock that forms

in front of a vehicle such as the space shuttle when it enters the atmosphere.

As the air passes through the shock, the kinetic energy is quickly converted to

thermal energy, which for high re-entry Mach number, is sufficient to ionize the

gas. Nonequilibrium phenomena such as chemical reactions and energy relaxation

4
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processes are particularly relevant and extremely important (see figure 1.3), owing

to the fact that the success of the flight mission depends on how accurately the

flow field can be predicted in order to design adequate thermal protection system

[20].

In high speed re-entry conditions, the convective time scales of the fluid can be

of the same order of magnitude as the chemical and energy relaxation time scales.

The processes of translational, rotational and vibrational relaxation as well as

ionization of the gas thus must be taken into account for an accurate prediction of

the flow field [21, 11]. In addition, at very high velocity and low density regime,

the radiation from the gas becomes significant and can in turn interact with the

plasma; one must then take in account radiation transport and kinetic processes

involving the radiation field such as photo-excitation and photo-ionization must

be included2. In that case, the problem quickly becomes intractable and one must

rely mostly on empirical flight data or simplified models. These simplified models

are sometimes questionable and can not be used in a wide range of conditions.

In the past decade, experimental data from ground facilities for radiative heat

spectra relevant to re-entry conditions for different atmospheric gas composition

have become available, providing a useful set of validation data for physical models

and chemical reaction rates used in current state-of-the-art computational fluid

dynamics (CFD) tools [22, 23, 24, 25, 26]. These data have motivated a number of

studies using high-fidelity collisional-radiative (CR) models [27, 28, 29] to bench-

mark against experimental data, e.g., radiative spectrum of shock-heated gas. The

results from these studies are mixed: good agreement is obtained in some regions

of the spectrum but poor agreement is reported in other regions. Moreover, the

experimental spectrum also reveals additional features, e.g., contaminated species,

2In that case, one must solve the radiation transport equation in addition to the fluid equa-
tions. The radiation transport is a challenging problem in itself due to the hyper-dimensionality
aspect of the governing equation. Typically, radiation transport is decoupled from the flow
field and only used as a post-processing step [21]. In simple flow geometry, one can rely on
approximation such as the tangent slab method to reduce the dimensionality of the problem.

5
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Figure 1.3: Physical phenomena occurred during planetary entry (courtesy of

NASA).

continuum radiation, and high-lying transitions, all of which appear to be missing

or inadequately understood from the numerical model. There are several reasons

for the discrepancies: incomplete thermochemical rates, unsteady phenomena, and

possibly experimental artifact. These problems are current being tackled with a

better ab inito chemical database [30, 31], improved high-order and more efficient

transport schemes[32, 33, 34, 35], as well as mechanism reduction [36, 37] for

unsteady and multidimensional simulations.

1.1.3 Laser-plasma interactions

Lasers, among the greatest inventions of mankind, are devices which can produce

electromagnetic radiation at a range of wavelengths at very high intensity. Due

to their ability to deliver a large amount of energy at short duration, lasers have

been used widely in a wide numbers of applications [38]. As a consequence, the

physics of LPI has quickly become one of the fastest growing fields of research.

6
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LPI has direct applications in inertial confinement fusion, particle accelerators,

and medical imaging [39].

The physics of LPI can be quite complex, depending on both the laser config-

uration and the plasma condition. For example, while long-pulse lasers (nanosec-

ond) have long been used for target heating in inertial fusion [40], ultra-short-pulse

lasers (femtosecond), following the invention of chirped pulse amplification (CPA)

in 1985, created an immense range of exotic phenomena (some of which are still not

well understood), including particle acceleration, x-rays generation, and atomic

physics [41]. Furthermore, while the interaction of a laser with an under-dense

plasma results in different types of instabilities and particle acceleration, its in-

teraction with an over-dense plasma can be utilized to create soft and hard x-rays

(see figure 1.4 for an illustration).

It is worthwhile to highlight several aspects of the fundamental plasma physics,

which contribute to the understanding of LPI. Firstly, the propagation of electro-

magnetic wave propagation in plasma directly relates to various instabilities as

well as absorption mechanisms occurring in the corona layer of laser produced

plasmas (LPP). Secondly, the self-consistent coupling of the plasma with the field

gives rise to particle acceleration; this is a direct result of the Coulomb force

from the electrostatic field induced in the plasma. Lastly, X-ray generation can

be explained by collisions induced by the superthermal electrons generated in

short-pulse LPI.

In the three research areas described above, several key processes can be iden-

tified to better model the plasma therein. The first one is based on a complete

understanding of the CR processes and their coupling with the flow dynamics.

The challenges associated with these studies are twofold. In the case of PAC,

the combustion kinetics itself is a very complicated process, which comprises very

detailed reaction mechanisms. Moreover, the existence of a plasma in a flame

results in the generation of highly energetic excited species and reaction radicals;

7
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these processes add more complexity to the overall kinetics of the system. In

addition, the effects of species and thermal transport from both convection and

diffusion processes, also introduce more couplings to the system. These effects

are also relevant for applications in re-entry physics. Therefore, in order to ac-

curately model such a complex system, one needs to understand different aspects

of the plasmadynamics, the plasma chemical kinetics, and, more importantly, the

coupling of the two.

On the other hand, typical plasma conditions found in LPI exhibit a high

degree of translational non-equilibrium and charge separation between different

species. These effects are most severe for ultra high intensity laser since relativistic

electrons can be generated, which significantly alters the dynamics of the system.

Moreover, the plasma evolution in these applications might span several physical

regimes, from which multi-scale phenomena quickly arise. One must then be

able to obtain a multi-scale description of the plasma; from a numerical modeling

point of view, this is most computationally efficient with a hybrid model, i.e.,

combination of different numerical models at different regimes of interests. Some

of these issues are addressed in this dissertation, specifically on the modeling of

CR processes and non-equilibrium plasmas.

1.2 Overview of plasma physics

1.2.1 Plasma kinetic equations

Plasma flow can be modelled accurately at the microscopic level by the kinetic

equation, which describes the evolution of the plasma distribution function in

phase-space and Maxwell’s equations, which describe the evolution of the elec-

tromagnetic field. In the simplest case of a single plasma component, the kinetic

9
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equation for the distribution function takes the form:

∂f

∂t
+ v · ∇xf + a · ∇vf =

(
∂f

∂t

)

CR

(1.1)

where f ≡ f(x,v, t) is the distribution function in phase-space, and a is the

acceleration due to external force.

The terms on the left hand side (LHS) of the kinetic equation is denoted the

streaming operator, and the term on the right hand side (RHS) is the collision op-

erator responsible for all the exchange processes, including elastic (Coulomb) and

inelastic collisions (i.e., CR kinetics). Without the RHS, equation (1.1) represent

an advection equation in six-dimension so-called Vlasov equation. While the ad-

vection in configuration space is linear in nature, the advection in velocity space,

as in the case of a plasma, can be non-linear due to the acceleration term a. In

the case of a plasma, a represents the coupling terms between the plasma and the

electromagnetic field, i.e., via the Coulomb and Lorentz forces a = q
m
(E+ v ×B).

The electromagnetic field is governed by Maxwell’s equations:

∇×B = µ0j+ µ0ǫ0
∂E

∂t
(1.2)

∇× E =
∂B

∂t
(1.3)

∇ · E =
ρq
ǫ0

(1.4)

∇ ·B = 0 (1.5)

The non-linearity in the acceleration comes from the fact that an electric field can

be induced from the plasma current, as can be seen in equation (1.2), and this

field in turn acts on the plasma. Indeed, this closed loop system with constant

feedback is the essential ingredient for particle-wave coupling, which in many cases

results in instabilities or damping mechanisms [6].

The RHS of the kinetic equation (1.1) is quite complex, since it comprises

of all the exchange processes due to collisional and radiative interactions. It is
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well known that Coulomb collisions are generally the most important process in

plasma; however, when the plasma is partially ionized or the energy transfer be-

tween the components is large enough to activate the large number of atomic

transitions, inelastic collisions become significant and must be included. For ex-

ample, inelastic collisions play an important role in the formation of field-reversed

configuration (FRC) plasma [42], and internal energy excitation process in hyper-

sonic shock layer.

One can see from equation (1.1) that a direct numerical solution (DNS) of

the kinetic equation in 6-dimensional space with a complete detailed model of all

the exchange processes is unrealistic and would require enormous computational

resources. In addition, the plasma’s chemical composition can add complexity to

the system due to non-equilibrium effects between the components. In such cases,

one needs to model each component separately (i.e., having one kinetic equation

for each component).

Besides having to deal with the curse of dimensionality when directly solv-

ing the kinetic equation, the time scales associated with each component might

be orders of magnitude different from the others, making the system extremely

stiff. For example, electrons are much lighter than the heavy particles and there-

fore their transport occurs at a much shorter characteristic time scales. The

interaction of the electrons with other species also gives rise to both the elastic

and inelastic exchange processes, e.g., electron-impact excitation and ionization.

The numerical solution of CR kinetics presents a huge challenge for traditional

multi-scale methods due to the non-separation of time scales characteristics of the

master equations; some of the issues and novel techniques devised to deal with

these problems will be shown in this dissertation for the case of CR kinetics.
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1.2.2 Modeling and simulations

Various methods had been derived in order to solve the kinetic equations, whether

in simplified or the original form. The choice of the methods depends on the

plasma collisionality and the ratios of length and time scales. These methods can

be categorized as two main group of approaches: fluid based methods and kinetic

methods.

The plasma fluid equations can be derived by taking a finite number of mo-

ments of the kinetic equation[43], and therefore obtaining a set of conservation

laws for these moment variables. The most common model is the five-moment

model, which results in the classical hydrodynamic equations, e.g., the Euler or

Navier-Stokes equations. The fundamental issue with the moment approach is

the closure problem, that is, each moment equation is always coupled to the next

higher order moment variable, and the system cannot be completely closed with-

out knowing the form of the distribution function. For example, in the energy

equation, the coupling effect introduces the heat flux term, which is a high-order

term; this term cannot be determined without the distribution function.

Two limiting cases can be identified where the fluid equations are valid. The-

ses are referred to as the isothermal and inertial (or adiabatic) regime. These

regimes can be defined by comparing the characteristic velocity vchar to the ther-

mal velocity of the plasma vT =
√

kT
m
. In the isothermal regime (vchar << vT ), the

heat flux term in the energy equation dominates the inertial and collision terms,

and temperature becomes spatially uniform. In the inertial regime (vchar >> vT ),

the heat flux terms can be neglected and the system can be closed at the energy

equation.

Besides the two limiting cases where the fluid equations can be closed exactly,

one can also perform an asymptotic expansion of the distribution function with

a small parameter, i.e., f = f (0) + ǫf (1) + ǫ2f (2) + . . ., and deriving the fluid
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equations by keeping only low-order terms of the distribution function. The most

well-known closure scheme is the Chapman-Enskog method [44], first introduced

for neutral gases, in which the distribution function is expanded with the small

parameter being the ratio of the mean-free-path between collisions to the macro-

scopic length-scale so-called Knudsen number (ǫ = Kn). Therefore, the scheme is

only valid when the plasma is dominated by collisions (i.e., very similar to neu-

tral gas), making the distribution function very close to a Maxwellian distribution

function. For zeroth and first order Chapman-Enskog expansion, the resultant set

of fluid equations are the Euler and Navier-Stokes equations. For second order

expansion, the resultant system is the Burnett equations [45]. In 1965, Braginskii

[46] derived the plasma fluid equations for electrons and ions with the Chapman-

Enskog closure, the result of which, led to the well-known Braginskii equations

for a two-fluid fully ionized plasma.

Another classical closure scheme is Grad’s moment method [47]. Grad’s method

originally attempted to extend the validity of the fluid equations into the rarefied

regime by conserving higher order moments (e.g., individual component of the full

stress tensor) of the distribution function. Grad’s closure is done based on the

Hilbert expansion of the distribution function in Hermite polynomials. The resul-

tant systems from this family of closure are the Grad 13-moment and 26-moment

equations. One of the challenges associated with Grad’s type equations is the

lack of physical intuition of the moment variables, which imposes difficulties on

boundary conditions.

Since moment equations can always be represented as a set of conservation

laws, they can be solved by various efficient finite difference, finite volume, or finite

element methods. In both closure approaches described above, the complication

of modeling the exchange processes still remains, some of which are present in

the current research, but the computational resource required for solving these

equations are much more affordable. For example, in chemically reacting flow, the

13

D-41



exchange source terms (mass production/consumption) are often computed from a

zeroth-order (Maxwellian) distribution, which is inconsistent with the Chapman-

Enskog closure. A rigorous treatment of the exchange terms requires including

high-order correction to the both chemical rates and the transport coefficient

[48, 49].

The second approach, kinetic methods, aim at solving the distribution function

f in equation (1.1) by means of either a deterministic or stochastic method. There

have been various attempts in solving the kinetic equation directly in phase-space,

but most of the simulations is only limited to 2D-2V (that is, two-dimensional in

both physical and velocity space).

The most widely used plasma simulation method, introduced in the late 1950s,

is the particle-in-cell (PIC) method [50], the most favorite choice for simulating

collisionless plasma (i.e., solving the Vlasov equation). In PIC codes, the dis-

tribution function f is represented as a collection of pseudo-particles, i.e., the

distribution function is discretized into Lagrangian points in phase-space. In that

case, the distribution function is given by the superposition of these computational

particles.

f(x,v, t) =
∑

p

wpδ(v − vp)S(x− xp) (1.6)

where wp is the statistical weight3 and S(x − xp) is the shape function of the

computational particle p.

The evolution of the distribution function is modelled by solving the equations

of motion for these particles under the influence of the electromagnetic fields.

These equations can be derived by introducing the expression (1.6) into the kinetic

equation, and then taking the moment of the kinetic equations. A complete

derivation is given by Lapenta [51] and will not be repeated here.

Neglecting relativistic effects, the resultant equations of motion for these pseudo

3the number of real particle each pseudo particle represents.
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particles read:
dxp
dt

= vp (1.7)

dvp
dt

=
q

m
(E+ vp ×B) (1.8)

These are the characteristic equations of the Vlasov system. Furthermore, these

equations are coupled with Maxwell’s equations for the evaluation of the electric

and magnetic fields. The advantage of PIC method is that instead of solving

the distribution function, one only needs to keep track of these computational

particles and the complete distribution function can always be reassembled. How-

ever, similar to other particle-based methods for neutral gas, the PIC method has

difficulties modeling dense and highly collisional plasmas due to statistical noise.

1.3 Scope of present work

In the previous sections, multiple approaches in the numerical modeling of non-

equilibrium plasma were described, which revealed significant challenges in con-

structing a unified model for non-equilibrium plasma simulation. These chal-

lenges are associated with the hyper-dimensionality aspect, and the complexity

and abundance of the physical processes embedded in the collisional operators.

In the current research, special attention is paid to the dynamics of collisional

and radiative interactions in a plasma, and more importantly, the coupling be-

tween collisions and transport. The current work focuses on studying this coupling

in plasma regimes, for which the dimensionality of the problem can be reduced. In

particular, the research presented here is restricted to the hydrodynamic frame-

work. The validity and variation of these hydrodynamic models will be discussed,

and a self-consistent treatment of CR kinetics will be presented.

To summarize, the overall objective of this dissertation is to construct hydro-

dynamic models for non-equilibrium plasma flows with self-consistent treatment of
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the exchange terms due to CR kinetics, and present a numerical model for solving

these coupled sets of equations. The dissertation can be divided into three parts.

In the first part, different hydrodynamic models for plasma flows are presented

with emphasis on clarifying the assumptions of each model and their relation to

one another. The multi-fluid equations, which constitutes by far the most general

treatment of plasmadynamics within the hydrodynamic framework, will also be

introduced. The high-order numerical methods used to solve these equations are

also presented.

In the second part, the description of the CR model is introduced. The cou-

pling of CR kinetics with fluid equations will be detailed for the case of an atomic

plasma. The constructed CR model will be used to study in detail the dynamic

of excitation and ionization, as well as their coupling with convection. A novel

technique is derived to lower the complexity of CR kinetics while maintaining high

accuracy; this technique can help making multidimensional calculation with CR

kinetics feasible. In the last part, a self-consistent treatment of elastic and inelas-

tic collisions in multi-fluid equations will be presented. The multi-fluid model is

then used to study laser-plasma interaction phenomena.
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CHAPTER 2

Hydrodynamic Equations

2.1 Introduction

In this chapter, the hydrodynamic equations for plasma flow in thermal non-

equilibrium conditions are presented. It is worthwhile to go over the fundamental

assumptions which suggest to the domain of validity of these models. We empha-

size that here, the fluid is assumed to be sufficiently collisional that the continuum

hypothesis1 is satisfied. In the picture of neutral gas flow, this is characterized by

a single unit-less parameter known as the Knudsen number Kn, defined as the

ratio of collision mean free path to the characteristic length scale. In the limit of

Kn≪ 1, the flow is said to be strongly collisional such that the translational de-

grees of freedom are in equilibrium, that is, they can be represented by a classical

Maxwellian distribution function. Small perturbations from Maxwellian equilib-

rium of order Kn can be incorporated into the kinetic equations, which result

in various transport phenomena, commonly seen in the Navier-Stokes equations

[52, 44, 53].

While justification of the continuum hypothesis is fairly straight-forward in

neutral gas flow, the situation gets quite complicated in plasma flows, mainly due

to the stiff time scales introduced by the electrons and the coupling of the plasma

to electrodynamic forces, e.g., electron-ion collision time, plasma frequency, gy-

rofrequency, etc. The implied consequence is that the system’s degree of stiffness

1This term is commonly used in fluid dynamics literature.
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can no longer be characterized by a single parameter, and the hydrodynamic

regime cannot be distinguished without further assumptions. Moreover, these

fundamental time scales can also be evolved dynamically with the system, which

allows the plasma to go from one regime to another. For examples, in ultra-high

intensity LPI, while the plasma formation and interaction with a femtoseconnd

laser pulse are commonly simulated with a kinetic code, the slower plasma expan-

sion, on the other hand, can be simulated with a fluid code or a hybrid kinetic-fluid

code. This dynamical stiffness creates significant challenges for numerical model-

ing and simulations.

It is therefore more convenient to define the assumptions of a particular hy-

drodynamic model in each section rather than listing all the assumptions at once.

However, since we are working in the hydrodynamic framework, it is sufficient to

say that at all time the velocity distribution function (VDF) of each plasma com-

ponent can be characterized by a Maxwellian VDF. This is indeed a very crude

approximation and needs further elaboration.

It must be assumed that the electromagnetic field is not strong enough to dis-

tort the distribution function. For the electrons, this assumption is quite hard to

satisfy due to their high mobility. Fortunately enough, in a lot of cases, deviation

from Maxwellian equilibrium can be localized in both physical and velocity space,

that is to say, the electron VDF can be efficiently decomposed into an equilibrium

and a non-equilibrium parts. This is typically done in laser fusion, where the

electrons are divided into two populations: cold and hot (superthermal) electrons

[40]. The “hot” electrons, typically represented by a fast tail in the VDF, can be

extracted from a bulk Maxwellian VDF and treated using a kinetic method, while

the “cold” population can be well characterized by a fluid approximation.

Therefore, the models presented in this work, despite being unable to capture

kinetic effects, are still useful for a hybrid description of the plasma. It must

be noted that, for a typical Chapman-Enskog expansion of the plasma VDF,
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the electric and magnetic fields can affect the plasma transport properties, i.e.,

the transport coefficient is dependent of the field strength. These results can

be found from classical transport theory, and will not be described here [46, 54,

55]. In this chapter, all the transport terms are omitted in the presentation of

the fluid equations, except for electron heat conduction, since it is one of the

main mechanisms for thermal transport in LPI applications [38]. This term is

introduced in the multi-temperature model presented in section 2.4.

2.2 Multi-fluid equations

2.2.1 Euler-Maxwell and Euler-Poisson systems

Let us now consider the multi-fluid equation for a multicomponent plasma. The

plasma described here can be partially ionized, so there is a neutral population

among the charged species. In this section, s and t are defined to be a general

species index, while n, i, and e are the used to refer to the neutral, ion, and electron

populations, respectively, i.e., s, t ∈ {n, i, e}. For clarity in the presentation of

the hydrodynamic framework, detailed treatment of the collision terms is omitted

here, and their description is deferred for chapter 6. The elastic collision terms

appearing in the momentum and energy equations are kept in general form. The

inelastic terms are omitted in the current discussion.

The continuity equation for each plasma species follows conservation law:

∂tρs +∇ · (ρsus) = 0 (2.1)

where the subscript s is used to distinguish between the given species properties

from the total plasma properties. For example, us is the average velocity of the

species s, which is different from the mass averaged velocity, denoted as u. In

the absence of chemical reactions, the RHS of equation (2.1) is zero. Since each

species can have its own hydrodynamic velocity, its momentum can be separately
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conserved. The conservation equation of the momentum can be written as:

∂t (ρsus) +∇ · (ρsusus) +∇ps = nsqs (E+ us ×B) +
∑

t

Rst (2.2)

The first term on the RHS of equation (2.2) represents the electrodynamic forces

acting on the plasma. This term is zero for the neutral population (qn = 0).

The second term comprises of momentum exchange due to collision with other

populations. For example, the conservation equation for the electron momentum

includes two terms representing collisions with neutral and ion populations: Rei

and Ren. In addition, momentum conservation implies:

Rst +Rts = 0 (2.3)

The conservation of thermal energy of each species can be written as:

∂tεs +∇ · (εsus) + ps∇ · us =
∑

t

Qst (2.4)

The RHS of equation (2.4) represents thermal relaxation effects due to elastic

collisions (inelastic collisions are neglected here). Equation (2.4) can be combined

with (2.2) to yield the conservation equation for the total energy of each species:

∂tEs +∇ · [(Es + ps)us] = js · E+
∑

t

(Qst +Rst · us) (2.5)

where Es = εs+
1
2
ρsus ·us. Similarly, conservation of energy implies the following

relation to hold:

Qst +Rst · us +Qts +Rts · ut = 0 (2.6)

The fluid equations can be closed by specifying an equation of state, similar

to that of an ideal gas:

ps = nskTs (2.7)

where ns = ρs/ms. For an atomic plasma, the thermal energy is simply εs =

ps/(γs − 1), where γs is the ratio of specific heat for the plasma.
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The evolution of the electric and magnetic fields are governed by Maxwell’s

equations and will not be repeated here. In the case where the field is electrostatic,

the electric field can be solved from Gauss’s law, equation (1.4). It is more conve-

nient to express the electric field in term of the electric potential, i.e., E = −∇φ,
such that Gauss’s law can be transformed to Poisson’s equation:

∇2φ =
e

ǫ0
(ne − Zini) (2.8)

The Euler-Maxwell (or Euler-Poisson) system, equations (1.2)-(1.5) and (2.1)-

(2.8) form a complete self-consistent model for a multicomponent plasma. These

equations are referred to as comprising the multi-fluid plasma model.

2.2.2 Time and length scales of multi-fluid equations

Several fundamental time scales associated with the multi-fluid equations can be

identified. These time scales are crucial in the design of the numerical methods

for solving hyperbolic partial differential equations (PDEs) with source terms.

Firstly, a thermal velocity for each species can be defined from the translational

temperature, leading to a resultant time scale:

τs =
L

vTs
(2.9)

where vTs is the thermal speed of species s, i.e., vTs =
√

kTs
ms

and L is a character-

istic length scale. The time scales associated with the electromagnetic forces are

given in terms of the plasma frequency (inverse of time scale):

ωps =

√
nsq2s
ǫ0ms

(2.10)

and the gyrofrequency:

ωcs =
qs |B|
ms

(2.11)
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In addition, when electromagnetic wave propagation must be considered, the

light transit time becomes relevant:

τc =
L

c
(2.12)

where c = 3 × 108 m/s is the speed of light. Lastly, the momentum and energy

exchange processes between the species introduce relaxation time scales to the sys-

tem. In a typical fully-ionized plasma, the scaling of these collisional frequencies

is as follows [55]:

νee ∼ T−3/2
e (2.13)

νei ∼ Ziνee (2.14)

νii ∼ Z3
i

√
me

mi

νee (2.15)

νεei ∼ Zi
me

mi

νee (2.16)

where νεei is the energy relaxation frequency between the ion and electron. This

term scales as the mass ratio me/mi and is much smaller compared to the mo-

mentum relaxation frequency νei. In a typical plasma system, the electron plasma

frequency ωpe is the largest frequency in the system with the possible exception

of low density and strongly magnetized plasma, where ωce can also become quite

large.

Several length scales associated with the plasmadynamics characterized by the

multi-fluid equations can be identified. The characteristic length scale correspond-

ing to the plasma frequency is the Debye length, defined as follows:

λD =

√
ǫ0kT

e2ne
(2.17)

If the characteristic length scale of the system is much larger compared to the

Debye length, the plasma can be approximated to be quasi-neutral. Similarly, the

characteristic length scale corresponding to the gyro-motion of the particle due to

22

D-50



the magnetic field can be defined as:

rLs =
vTs
ωcs

(2.18)

where rLs is known as the gyro-radius (or Larmor radius). If the plasma is colli-

sional, one can also define a collision mean free path λs as follows:

λs =
vTs
νs

(2.19)

where νs is the collisional frequency of species s. Typically, it is more convenient

to define the collision mean free path for each collision type, since the collision

dynamics can be quite different from each other.

An important observation to be made about the multi-fluid equations, is that

there is a large disparity in the time scales. The electrons, being very mobile and

responsive to the electromagnetic fields, might be approximated in a quasi steady-

state condition. Using this approximation, the electron momentum equation is

reduced to the so-called generalized Ohm’s law, which is derived in the next

section.

2.2.3 Generalized Ohm’s law

In order to simplify the derivation, let us consider for now a two-component fully

ionized plasma consisting of ions and electrons with Coulomb interaction. The

generalization to include an additional neutral population can be done, but with

a more lengthy derivation since more collision terms need to be involved.

Starting from the electron momentum equation:

∂t (ρeue) +∇ · (ρeueue) +∇pe = −ene (E+ ue ×B) +Rei (2.20)

the so-called massless electron assumption is utilized, i.e., the two inertial terms

on the LHS of equation (2.20) are negligible compared to the other terms. Note

that the collision term Rei can be expressed in terms of the collisional frequency,
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i.e., Rei = meneνei(ui − ue) [46]. Hence, equation (2.20) is reduced to:

∇pe = −ene (E+ ue ×B) +meneνei(ui − ue) (2.21)

In this case, the electron dynamics are given by a steady-state condition given by

equation (2.21). In the limit of me → 0, one also obtains:

u =
ρiui + ρeue
ρi + ρe

≃ ui + o

(
me

mi

)
(2.22)

where u is the mass averaged velocity of the plasma. From the definition of the

total current density, one also obtains:

j = Zieniui − eneue = ene(u− ue) + e(Zini − ne)u (2.23)

Let us now assume that the system is close to charge neutrality (Zini − ne ≃ 0),

such that the second term on the RHS of equation (2.23) is smaller compared to

the first one, which leads to the following expression for the electron velocity:

ue ≃ u− j

ene
(2.24)

Using expression (2.24), equation (2.21) can be brought into the form:

j = σ(E+ u×B) +
σ

nee
∇pe − βej× b̂ (2.25)

where

σ =
nee

2

meνei
(2.26)

βe =
ωce
νei

(2.27)

b̂ =
B

|B| (2.28)

Equation (2.25) is known as the generalized Ohm’s Law. σ and βe are the plasma

conductivity and Hall parameter, respectively. The first term on the RHS of

equation (2.25) is the conduction term, the second term is the electron diffusion,

and the last term is the Hall term. Various MHD models can be derived starting

from Ohm’s law.
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2.3 Magnetohydrodynamics

In this section, Ohm’s law is utilized to derive the MHD equations. It is worth-

while to clarify that the MHD approximation corresponds to the assumption of

a steady-state current given by Ohm’s law, i.e., using equation (2.25) in place of

the electron momentum equation. One can easily retain all the other equations

in the multi-fluid systems and solve the system self-consistently. Those equations

are commonly referred to as the multi-fluid MHD equations. In this study, the

term multi-fluid is strictly reserved for the case where each plasma component

including the electrons are conserved as a separate fluid, as previously shown in

section 2.2.

Let us now look at the MHD equations in the single fluid limit, which implies

that the momentum exchange is sufficiently fast such that one only needs to keep

track of the total momentum of the bulk plasma2. This needs not be the case for

the energy equation, since the energy transfer rate is rather slow, e.g., see equation

(2.16); this suggests a multi-temperature approach, which will be described in the

next section. For simplicity, consider Ohm’s law in the following form:

j = σ(E+ u×B) (2.29)

where the electron diffusion and the Hall terms were neglected. Also for clarity,

we drop the bar in the expression of the plasma average velocity, i.e., u→ u.

The continuity equation for the plasma is in its typical form of conservation

law:

∂tρ+∇ · (ρu) = 0 (2.30)

where the convective speed is now u, and ρ is the plasma total density. If chemical

reactions and transport phenomena between the species (such as diffusion) are

2This condition is required for the single fluid approximation, i.e., all species have the same
averaged velocity. In general, one only needs ρeue ≪ ρiui; if the plasma mixture contains several
ion species with different averaged velocity, a multi-fluid MHD description can be used.
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important, equation (2.30) is replaced by a set of conservation equations for each

species, convected at the same velocity. The chemical reactions are represented

by a source term for each species equation, representing the rate of consumption

or formation of the species. The difference between each species velocity and the

bulk is given by the given species diffusion velocity. For brevity, only the total

plasma density here is considered. The extension to multi-species for a chemically

reactive plasma is given in the next section.

The total plasma momentum equation can be written as:

∂t (ρu) +∇ · (ρuu) +∇p = ǫ0E (∇ · E) + j×B (2.31)

where all the quantities now denote the properties of the bulk plasma instead of

individual species.

Let us now introduce two further approximations. The first approximation

corresponds to charge neutrality condition3, from which the first term on the RHS

of (2.31) vanishes (∇ · E = 0). This assumption is valid when the characteristic

length of the domain is much larger than the Debye length, or equivalently, when

the characteristic time is much slower than the plasma oscillation time. The second

one is the infinite speed of light approximation. In this limit, the displacement

current is negligible compared to the electric current and Ampere’s law yields:

∇×B = µ0j (2.32)

Inserting the expression above for j into the total plasma momentum equation

and with some vector calculus identities, one can obtain:

∂t (ρu) +∇ · (ρuu+ PB) +∇p = 0 (2.33)

where PB = 1
µ0

(
1
2
B ·B−BB

)
is known as the Maxwell stress tensor4. It is shown

3This approximation is now consistent with the assumption first made in arriving at equation
(2.24).

4Here charge neutrality was assumed, so the effect of electric field does not show up in the
expression of Maxwell stress tensor.
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that the effect of the Lorentz force is now replaced by an equivalent magnetic

pressure [56].

The conservation equation of the plasma total energy can be written as:

∂tE +∇ · [(E + p)u] = j · E (2.34)

where Joule heating is the only coupling term remaining on the RHS. The con-

servation equation for the magnetic energy density [56] can be written as:

∂t

(
B ·B
2µ0

)
+∇ ·

(
E×B

µ0

)
= −j · E (2.35)

Taking a cross product of Ohm’s law (2.29) with B and substituting the expression

of E×B back into equation (2.35), one obtains:

∂t

(
B ·B
2µ0

)
+∇ ·

(
B ·B
2µ0

u

)
+∇ · (PB · u)−∇ ·

(
1

µ0σ
∇ · PB

)
= −j · E

(2.36)

Combining equation (2.36) and (2.34) yields the conservation for the total plasma

energy density including the magnetic field energy:

∂tE
⋆ +∇ · [(E⋆ + p)u] +∇ · (PB · u) = ∇ ·

(
1

µ0σ
∇ · PB

)
(2.37)

where E⋆ = E+ B·B
2µ0

. The term on the RHS of equation (2.37) corresponds to the

resistive diffusion of the magnetic field energy. The equation of state to is that of

ideal gas similar to equation (2.7):

p = nkT = (γ − 1)E (2.38)

where n = ρ/m is the number density of the gas.

Similarly, an equation for the evolution of the magnetic field can also be de-

rived. Starting with Faraday’s law of induction (1.3), Ohm’s law can be used to

express ∇ × E in terms the current density and the magnetic field, which leads

to:

∂tB−∇× (u×B) = −∇× 1

σ
j (2.39)
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Using Ampere’s law (2.32) to relate the current density to the magnetic field and

utilizing some vector calculus identities, one obtain an equation for the evolution

of the magnetic field:

∂tB−∇× (u×B) = −∇×
(

1

µσ
∇×B

)
(2.40)

Equations (2.30), (2.33), (2.37), (2.38) and (2.40) constitute a complete set for a

standard resistive MHD model. In the limit of infinitely conducting plasma, i.e.,

σ →∞, all the diffusion terms associated with the magnetic field vanish, and the

ideal MHD equation is recovered. This point will be revisited in section 3.3.2.3

when we make comparison between the solution of the multi-fluid system and the

MHD equation.

It must be noted that the effect of electron diffusion and Hall current has

been left out in the expression of Ohm’s law. In the first case, one can introduce

an effective electric field Ê = E + ∇pe
ene

such that Ohm’s law can be put in the

form of (2.29). In the case when the Hall term is also included, Ohm’s law can

still be written in the same form where the scalar conductivity σ now becomes a

conductivity tensor [57]. Introducing the expression of the effective electric field

into generalized Ohm’s law equation (2.25), one obtains:

j+ βej× b̂ = σ
ˆ̂
E (2.41)

where
ˆ̂
E = Ê+u×B. Let us introduce a coordinate such that the magnetic field

is aligned with the z-direction, i.e., B = |B|êz. Ohm’s law can be brought into

the following form:



jx

jy

jz


 =

σ

1 + β2
e




1 −βe 0

βe 1 0

0 0 1 + β2
e







· ˆ̂Ex
ˆ̂
Ey
ˆ̂
Ez


 (2.42)

One can see from equation (2.42) that in the limit of strongly magnetized plasma,

the current parallel to the magnetic field is much stronger than the transverse

currents.
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2.4 Multi-temperature and chemically reactive hydrody-

namics

When the chemical reaction time scale is of the same order of magnitude as the

hydrodynamic time scale, one must take in account the species mass produc-

tion/consumption and energy exchanges between different modes. The resultant

set of equations is referred to as the multi-species multi-temperature model. These

models are widely used in numerical simulations due to their high efficiency in

multi-dimensional calculations [21].

The number of “temperature” variables included in the model is dictated by

the underlying assumption of the energy transfer rate between different energy

modes. For example, in an atomic plasma, due to the slow energy exchange

rates between the heavy species and the electrons, an additional conservation

equation for the electron energy is usually required, resulting in the so-called

two-temperature (2T) plasma model.

In the case of a molecular plasma, due to additional degrees of freedom such as

rotational and vibrational modes, one can write separate conservation equation for

rotational and vibrational energies, leading to various multi-temperature models.

The choice of partition between these energy modes is not trivial, and is highly

condition dependent. In hypersonic plasma, a typical assumption is that the

rotational modes is in equilibrium with the translational mode, and vibrational

energy can be considered separately. High-fidelity kinetic models indicate that

this assumption is questionable and indeed for high temperature and low pressure

conditions, rotational and vibrational exchange can proceed at the same rate [58].

In this section, a 2T model for atomic plasma is presented, where the electron

thermal energy is separated conserved from the total energy. In addition, chemical

reactions are taken into account by extending the Euler equation to multiple

species. For simplicity, only the single-fluid approximation is considered, and the
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effects of the electromagnetic fields is omitted. The resultant system of equations

is similar to the Euler equations for reactive neutral gas flow:

∂tρs +∇ · (ρsu) = msω̇s (2.43)

∂t (ρu) +∇ · (ρuu) +∇p = 0 (2.44)

∂tE +∇ [(E + p)u] +∇ · qe = ω̇εe + ω̇εh (2.45)

∂tεe +∇ (εeu) + pe∇ · u+∇ · qe = ω̇εe (2.46)

where the total energy of the plasma is this case is defined as:

E = εh + εe +
1

2
ρu · u (2.47)

and

εh =
ph

γ − 1
(2.48)

εe =
pe

γe − 1
(2.49)

For the case of an atomic plasma, one simply takes γ = γe =
5
3
. The equation of

state for a 2T plasma can be written as:

p =
∑

s6=e
nskTh + nekTe (2.50)

pe = nekTe (2.51)

The electron translational energy equation written in (2.46) is non-conservative

due to the adiabatic heating term pe∇ · ue. A conservative form of the equation

can be obtained by defining an entropy-like variable Se ≡ ρŝe = ρ pe
ργe

and rewriting

the equation accordingly5:

∂t

(
pe

ργe−1

)
+∇ ·

(
peu

ργe−1

)
=
γe − 1

ργe−1

[
∂εe
∂t

+∇ · (uεe)
]
+
γe − 1

ργe−1
(pe∇ · u) (2.52)

5This is similar to the approach taken in [59] but the electron entropy is defined in term of
ρ instead of ρe. The advantage is that the entropy remains finite when the ionization fraction
goes to zero (ρe → 0) [60].
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Using equation (2.46), we can obtain a conservation equation for the electron

entropy:
∂Se
∂t

+∇ · (Seu) +
(
γe − 1

ργe−1

)
∇ · qe =

γe − 1

ργe−1
ω̇εe (2.53)

Note that the source term must be modified based on the definition of the new

variable. The equation of state can be expressed in term of the electron entropy:

p = ph + pe = ργe−1Se +
∑

s6=e
nskTh (2.54)

Similarly, we can rewrite the expression for the total energy in term of the electron

entropy:

E =
Seρ

γe−1

γe − 1
+
∑

s6=e
ρsεs +

1

2
ρu · u (2.55)

It is important to mention that the source term on the RHS of the total energy

equation (2.45) is non-zero, which, however, does not violate energy conservation.

The reason for this is that the species heat of formation is not included in the

definition of the total energy E. Therefore, the change of the energy when a new

species is produced or destroyed has to be accounted for properly6. The choice of

such a definition of the total energy is purely due to numerics. It was observed

that for the simulation of flow containing species of high chemical energy, the

linearization of the energy (or enthalpy), an important step in the finite volume

method for solving non-linear PDEs, can introduce some error at the composition

discontinuity if the heat of formation is included in the definition of E [61].

The term on the RHS of (2.43) corresponds the rate of change of each species

due to chemical reaction. Consider a general reaction of the following type:

s+ t⇔ s′ + t′ (2.56)

6One must take in account the rate of change of energy for the heavy particle and electron
accordingly depending on a specific chemical process. For example, heavy-particle impact and
electron impact excitations must be considered as two separate processes, since the energy
exchange is taken from different conserved quantities.
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the corresponding source term for species s due to this reaction can be written as:

ω̇s = −kfnsnt + kbns′nt′ (2.57)

where kf denote the forward rate and kb denote the backward rate of reaction

(2.57). The most commonly used expression for the chemical reaction rate is the

modified Arrhenius form:

kf = AfT
βf exp

(
−δEf
kT

)
(2.58)

where A, β, and δE are the three main parameters controlling the rate. It is

important to note that the forward and the backward rates can always be related

by the principle of detailed balance. In the single-fluid approximation, these two

rates can be related by the so-called equilibrium constant:

keq =
kf
kb

(2.59)

The principle of detailed balance for atomic collisional and radiative processes,

resulting in a particular form of the equilibrium constant keq, will be described

in detailed in chapter 4. In addition, it will also be shown in chapter 6 that

expressions of the same type as equation (2.59) no longer hold for multi-fluid

equations. A detail treatment of these terms will be described in chapter 4.

The electron heat conduction process is also included in both conservation

equations for the total energy and electron entropy. This term is expressed as a

divergence of the electron heat flux qe. The electron heat flux is usually expressed

by Fourier’s law of heat conduction:

qe = −κe∇Te (2.60)

where κe is the electron heat conductivity.

The most commonly used expression for the electron heat flux in fully ion-

ized plasma is due to Spitzer-Harm (SH) [54], from which κe is determined from
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Coulomb interaction. The SH expression yields qe ∼ κ0∇(T 7/2
e ) where κ0 is a

constant. This expression is used, for example, in calculation of target heating

in inertial fusion. However, cautions must be exercised when using this formula,

especially in the region where the temperature gradient is large. This issue is dis-

cussed in detailed in chapter 7 for a numerical study of LPI using hydrodynamic

equations.
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CHAPTER 3

Numerical Formulation

3.1 Introduction

The numerical methods for solving the governing equations described in chapter 2

are presented in this chapter. Although the numerical methods are applicable for a

general set of hyperbolic PDEs with source term, in this research we only focus on

the multi-fluid equations and the 2T model for partially and fully ionized plasma

describe in sections 2.2 and 2.4, respectively. The procedure for solving the MHD

equations in section 2.3 can be performed with the same numerical approach.

The relation between the solutions of the multi-fluid and MHD equation will be

discussed later in this chapter.

3.2 Numerical methods

3.2.1 Finite volume methods

In the absence of viscous effects, the full set of governing equations can be written

in the form of a hyperbolic system of PDEs with a source term vector:

∂tQ+∇ · F = Ω̇ (3.1)

where Q is the vector of conservative variables, F is the inviscid flux tensor, and Ω̇

is the source term vector due to exchange processes and/or coupling forces. The

diffusive term, i.e., electron heat conduction, can also be included in equation (3.1)

using an expression of a diffusive flux tensor. This term is described separately

34

D-62



in section 3.2.6. For the fluid equations, Q = [ρs, ρux, ρuy, ρuz, E, Se]
T , and for

Maxwell’s equations, Q = [Ex, Ey, Ez, Bx, By, Bz]
T .

In this research framework, a finite volume method is developed to solve both

of these equations, using a similar discretization procedure. For the sake of gen-

erality, the numerical methods are presented using the general form of the PDEs.

Specific details regarding a particular set of equations will be mentioned where

appropriate.

Equation (3.1) is solved using an operator splitting technique, where the

changes in the conservative variables for each process are evaluated independently

within a time step, and accumulated independently at the end of each time step.

For example, at each time step n, the solution of the next time step n + 1 is

computed as follows:

∆Qconv = L∆t
conv (Q

n)−Qn (3.2)

∆Qdiff = L∆t
diff (Q

n)−Qn (3.3)

∆Qsource = L∆t
source (Q

n)−Qn (3.4)

Qn+1 = Qn +∆Qconv +∆Qdiff +∆Qsource (3.5)

where Lconv, Ldiff, Lsource are the convective, diffusive, and source term operators,

respectively, which advance the solution forward in time (so-called “propagators”).

The splitting scheme described above is a first order splitting scheme of O(∆t).
High-order splitting schemes such as Strang splitting [62] can also be employed.

For a convective-diffusive-reactive system, the splitting is as follows:

Qn+1 = L∆t/2
sourceL∆t/2

diff L∆t
convL∆t/2

diff L∆t/2
source (Q) (3.6)

where the splitting error is O(∆t2). In the current research, only the first or-

der splitting scheme is employed. The reason is due to its simplicity in im-

plementation. Also, the source terms of these equations are very stiff, e.g.,
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CR kinetics, which results in a small time scale restriction1. Since local time-

stepping is not used, all the operators are marched at the smallest time step

introduced by these operators, making the splitting error of O(∆tmin) where

∆tmin = min (∆tconv,∆tdiff,∆tsource). A detailed analysis of high-order schemes

and error estimate for time operator splitting approach can be found in the work

of Duarte et al. [63].

The integral form of the governing equations suitable for finite-volume formu-

lation can be obtained by integrating equation (3.1) over the control volume and

using Gauss’s law for the divergence of the flux.

dQ

dt
+

1

V

∑

s

FsAs = Ω̇ (3.7)

where Fs is the numerical flux computed at each face and As is its surface area.

Note that in equation (3.7), Q and Ω̇ denote volume averaged quantities. For the

case of the Euler terms, the fluxes are computed by solving a Riemann problem

at each face of the control volume.

3.2.2 Hyperbolic solvers - Approximated Riemann solvers

3.2.2.1 Semi-discrete approach

For simplicity, consider now a hyperbolic system of PDEs in one-dimensional of

the form:

∂tQ+ ∂xF(Q) = 0 (3.8)

where the domain is discretized into a uniform grid with constant spacing ∆x.

The system (3.8) is classified as a hyperbolic system if the eigenvalues of the flux

Jacobian, ∂F
∂Q

, are real, which is the case for the Euler equations and Maxwell’s

equations. Utilizing the standard finite volume approximation similar to equation

1Even when implicit time integration is employed, accuracy constraint still introduces time
step restriction.
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(3.7), the spatial derivative in equation (3.8) is replaced by the expression of a

numerical flux, yielding the following expression:

dQi

dt
= − 1

∆x

(
Fi+1/2 − Fi−1/2

)
(3.9)

where i± 1/2 denote the left and right faces of cell i.

Equation (3.9) is known as the semi-discrete form of (3.8), where only the

spatial terms had been discretized [64]. This approach converts the original system

of PDEs to a coupled system of ordinary differential equations (ODEs). The

advantage of the semi-discrete approach is that any time integration method can

be utilized to solve equation (3.9), once the fluxes had been computed. In the

current work, a third-order total variation diminishing (TVD) Runge-Kutta (RK)

time integration is utilized. The resultant scheme is referred to as RK3:

Qn+1/3 = Qn +∆tF(Qn) (3.10)

Qn+2/3 =
3

4
Qn +

1

4

(
Qn+1/3 +∆tF(Qn+1/3)

)
(3.11)

Qn+1 =
1

3
Qn +

2

3

(
Qn+2/3 +∆tF(Qn+2/3)

)
(3.12)

where F(Q) is now referred to the RHS of equation (3.9). Since RK3 is an explicit

method, the time step must satisfy the Courant-Friedrichs-Lewy (CFL) condition:

[
max
i
|λmax
i |

] ∆t

∆xυ
≤ 1 (3.13)

where υ is the CFL number, and λmax
i is the maximum eigenvalues of the flux

Jacobian. In the case of Euler equations, λmax
i = [|u|+ a]i where a is the speed of

sound. For Maxwell’s equations, λmax
i = c = 3× 108.

3.2.2.2 Approximate Riemann solvers

In order to compute the flux term in equation (3.9), a Riemann problem needs to

be solved at each face from the given left and right states. The exact solution of

the Riemann problem can be computationally expensive and thus is not practical

37

D-65



for numerical calculation. The numerical framework in this research utilizes an

approximate Riemann solver for the solution at the faces, that is, instead of solving

(3.8), one can solve:

∂tQ+A(Q)∂xQ = 0 (3.14)

where the flux Jacobian, A = ∂F
∂Q

, is replaced by a constant matrix Ã, which is

determined from the left and right states of each face, i.e., Ã = Ã(QL,QR).

The validity of the linearization process requires that the Jacobian A be diago-

nalizable with real eigenvalues, i.e., A = RΛL. The left and the right eigenvectors

can be used to project equation (3.14) from the physical to characteristic space.

∂(LQ)

∂t
+Λ

∂(LQ)

∂x
= 0 (3.15)

By introducing the characteristic variableW = LQ, equation (3.15) now becomes:

∂W

∂t
+Λ

∂W

∂x
= 0 (3.16)

The original system of PDEs now has been linearized and decoupled from the

original system resulting in a linear system of scalar hyperbolic PDEs. For the

Euler equations, the linearization is carried out using Roe-averaging procedures:

ρ̃ =
√
ρLρR (3.17)

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

(3.18)

h̃ =

√
ρLhL +

√
ρRhR√

ρL +
√
ρR

(3.19)

s̃e =

√
ρLŝLe +

√
ρRŝRe√

ρL +
√
ρR

(3.20)

For Maxwell’s equations, an arithmetic average of the field values is sufficient:

Ẽ =
EL + ER

2
(3.21)

B̃ =
BL +BR

2
(3.22)
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The eigensystems of both Euler and Maxwell’s equations are given in appendix

A.

The interface fluxes are solved by employing the Harten, Lax, vanLeer and

Einfeldt (HLLE) Riemann solver [65], which is given as

fHLLE
i+1/2 =

b+fRi+1/2 − b−fLi+1/2

b+ − b− +
b+b−

b+ − b−∆Wj+1/2 (3.23)

where

b+ = max(0, ũn + ã, uRn + aR) (3.24)

b− = min(0, ũn − ã, uLn − aL) (3.25)

where un denote the velocity normal to the face. It must be noted that the fluxes

in equation (3.23) are expressed in characteristic form, i.e., fi+1/2 = L̃Fi+1/2 .

3.2.3 High-order reconstruction

3.2.3.1 Monitonicity-Preserving schemes

In order to achieve high-order spatial accuracy, a fifth-order Monotonicity-Preserving

(MP5) scheme [66] is used for the reconstruction of the interface values. For non-

linear equations, the reconstruction is performed on characteristic variables with

the help of the eigenvectors. For a one dimensional stencil, the reconstructed value

of the left and right states of interface i+ 1
2
is given as (see figure 3.1)

wL
i+ 1

2
=

1

60
(2wi−2 − 13wi−1 + 47wi + 27wi+1 − 3wi+2) (3.26a)

wR
i+ 1

2
=

1

60
(2wi+3 − 13wi+2 + 47wi+1 + 27wi − 3wi−1) (3.26b)

The reconstructed values are then limited to avoid instability.

wL
i+ 1

2
← median

(
wL
i+ 1

2
, wi, wMP

)
(3.27)

where

wMP = wi +minmod [wi+1 − wi, α (wi − wi−1)] (3.28)
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with α = 2. The minmod and median functions are defined as follows:

minmod(x, y) =




sgn(x)min(|x|, |y|) if xy > 0

0 otherwise

(3.29)

median(x, y, z) = x+minmod(y − x, z − x)

= y +minmod(x− y, z − y)

= x+
1

2
[sgn(y − x) + sgn(z − x)]min(|y − x|, |z − x|)

(3.30)

where sgn(z) is the sign function.

The CFL condition of MP schemes depends on the value of α. In addition,

the original MP5 scheme of Suresh and Huynh [66] also contains an additional

accuracy-preserving constraint to avoid the loss of accuracy near the shock. The

detail of the constraint procedure is discussed in their paper and will not be

repeated here.

Another variant of the original MP5 scheme is a third order monotonicity-

preserving (MP) scheme, known as MP3, which utilize a three point stencil [32].

The MP3 reconstruction starts with a parabolic interpolation:

wL
i+ 1

2
=

1

6
(2wi−1 + 5wi − wi+1) (3.31)

wR
i+ 1

2
=

1

6
(2wi+2 + 5wi+1 − wi) (3.32)

The MP limiter in (3.27) and (3.28) is then applied to avoid instability in the

solution containing discontinuity. The MP schemes have been determined to hold

some CFL restriction based on the value of α. It is recommended to use a CFL

number close to 1/(1 + α) for a stable solution.

3.2.3.2 Weighted essentially non-oscillatory schemes

Weighted essentially non-oscillatory (WENO) schemes, developed by Liu et al.

[67] and Jiang and Shu [68] are based on the essentially non-oscillatory (ENO)
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i - 2 i - 1 i i+1 i+2 i+3 

Figure 3.1: Schematic of computational stencil for MPS and WENO schemes with 

left and right states of an interface. 

schemes developed by Harten et al. [69] in t he form of cell-averages. In WENO 

reconstruct ion, an adaptive-stencil approach is utilized, and t he reconstructed 

values is a convex combination of all the stencils. The WENO schemes preserve the 

essent ially non-oscillatory property of the original ENO scheme, but also improves 

the order of accuracy in the smooth part of the flow solut ion. A fifth-order scheme 

is implemented in the current work. For a one dimensional stencil similar to the 

one in figure 3.1, the reconstructed value of the left state of interface i + 1/ 2 is 

written as a weighted summation of t hree smaller stencils: 

The three stencil values are: 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

and t he non-linear weight are designed to adapted to the smoothness of the stencil. 

For a discontinuous stencil, the non-linear weight is reduced to zero: 

Xi 
wi =-.,..3--

l:n=lXn 
c: 
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where ǫ = 10−7 − 10−5 is a small number to avoid division by zero. Cr
i is known

as the optimal weight, given by:

Cr
1 =

1

10
(3.40)

Cr
2 =

6

10
(3.41)

Cr
3 =

3

10
(3.42)

and the smoothness indicator IS are:

IS1 =
13

12
(wi−2 − 2wi−1 + wi)

2 +
1

4
(wi−2 − 4wi−1 + 3wi)

2 (3.43)

IS2 =
13

12
(wi−1 − 2wi + wi+1)

2 +
1

4
(wi−1 − wi+1)

2 (3.44)

IS3 =
13

12
(wi − 2wi+1 + wi+2)

2 +
1

4
(3wi − 4wi+1 + wi+2)

2 (3.45)

The reconstructed value of the right state can be found easily by symmetry. The

stability of both MP and WENO is enhanced by RK3 time integration, yielding

a fifth-order spatial accuracy (third order in the case of MP3).

3.2.4 Hyperbolic solvers - Implicit time marching

It was mentioned previously that the solution of the multi-fluid equations contains

several time scales, which can be of different orders of magnitude. This is certainly

the case for the electron due to the small mass ratio compared to the heavy species.

The CFL time step restriction for the electrons is much more severe compared to

the heavy species. It is therefore advantageous to be able to solve the electron fluid

equation implicitly. A similar argument applies to the case of electromagnetic

wave propagation in the Maxwell’s equations. In this section, an implicit time

stepping scheme is described within the finite volume approximation.

Consider now the discretized equation of (3.8):

∆Qn
i

∆t
=

1

∆x

(
Fi−1/2 − Fi+1/2

)
(3.46)
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where ∆Qn
i = Qn+1

i − Qn
i . In the explicit scheme, the RHS of equation (3.46)

is evaluated at the current time step n. Let us define Fi to be the explicit flux

terms:

Fi =
∆t

∆x

(
Fn
i−1/2 − Fn

i+1/2

)
(3.47)

In order to facilitate an implicit time-stepping scheme, the numerical fluxes in

equation (3.46) need to be evaluated at time level n + θ. This can be done

through the linearization approximation:

Fn+θ
i±1/2 = Fn

i±1/2 + θA(Q)(∆Q)i±1/2 (3.48)

The Jacobian can be split based on the sign of the eigenvalues, i.e., A = R(Λ+ +

Λ−)L = A++A−, where Λ+ contains all the positive eigenvalues and Λ− contains

all the negative ones. The flux linearization can be written as:

Fn+θ
i+1/2 = Fn

i+1/2 + θA+
i+1/2(∆Q)i + θA−

i+1/2(∆Q)i+1 (3.49)

Similarly,

Fn+θ
i−1/2 = Fn

i−1/2 + θA+
i−1/2(∆Q)i−1 + θA−

i−1/2(∆Q)i (3.50)

The discretized version of equation (3.46) becomes:

[
−ηA+

i−1/2

]
∆Qi−1 +

[
1 + ηA+

i+1/2 − ηA−
i−1/2

]
∆Qi

+
[
ηA−

i+1/2

]
∆Qi+1 = Fi (3.51)

where η = θ∆t
∆x

. For stability, the LHS of (3.51) is reverted to first order approxi-

mation, the fully implicit system now can be written as:

[
−ηA+

i−1

]
∆Qi−1 +

[
1 + ηA+

i − ηA−
i

]
∆Qi +

[
ηA−

i+1

]
∆Qi+1 = Fi (3.52)

It must be noted that for θ = 1/2, the resultant scheme is the same as the Crank-

Nicolson method. For θ = 1, the scheme is the backward Euler method. System

(3.52) is a block tridiagonal system with block size N , where N is the number of
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conservative variables. Standard techniques like Gaussian elimination and back

substitution can be applied to solve this system of equations. This is referred as

the Thomas Block-Tridiagonal algorithm.

A similar approach can be used for 2-D equations, leading to a penta-diagonal

system of N × N block matrices. The cost of inverting the matrix in that case

is very large, and for the 3D case, directly inverting a septa-diagonal system is

completely prohibitive. Another approach, which consumes less memory, and has

a lower number of operations, is via the dimensional splitting technique, that

is, a block-tridiagonal system is solved for each direction, and the change in the

conservative variables can be successively refined by an iterative procedure. Detail

of such an approach is discussed in [70]. It must be pointed out that since most

of the problems considered in this work are highly transient, an iterative solution

of equation (3.52) does not give any advantage over the Thomas algorithm.

3.2.5 Source term treatment

The source term is solved using a point-implicit solver. In general, we seek the

solution of a system of ODEs written in the form:

dQ

dt
= Ω̇ (3.53)

where Q is the state variables, and S is the source term vectors due to the ki-

netics or coupling terms with the electromagnetic forces, i.e., Lorentz force and

Joule heating terms. For the CR kinetics, the system of ODEs is very stiff due to

the multitude of the kinetics time scales involved in the a wide range of physical

processes. An implicit time integration method is required to ensure the stability

of the solution. The implicit formulation of the system can be obtained by ex-

panding the source term vector via a Taylor series expansion about the current

time step n.
dQn

dt
= Ω̇n +

∂Ω̇n

∂t
∆t (3.54)
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By using the chain rule on the time derivative of the source term vector, one can

find
dQn

dt
= Ω̇n + J

dQn

dt
∆t (3.55)

where J is the Jacobian matrix written as:

J =
∂Ω̇

∂Q
(3.56)

By simple algebraic manipulation, one can obtain:

∆Qn = ∆t (I−∆tJ)−1 Ω̇n (3.57)

The solution of equation (3.57) gives the total change of the conservative vari-

ables due to the source term vector. Since the system is integrated implicitly,

there is no restriction on the time step. The time step in this case is only re-

stricted for accuracy purpose, i.e., for CR kinetics, the time step is limited by

controlling the rate of change in the state population. For the electromagnetic

coupling term in the two-fluid equation, the time step is set relative to the electron

plasma frequency and the gyro-frequency.

As a linear system of equations, equation (3.57) can be solved using a variety of

numerical methods. In the current work, a direct Gaussian elimination procedure

is utilized to invert the system. It must be pointed out that the computational

cost of the Gaussian elimination procedure scales as N3 where N is the number

of variables. For a large/detailed kinetics mechanism, i.e, many states, solving

the system at every cell is clearly a computationally intensive task. For most

of the simulations carried out in this dissertation, N is sufficiently small so that

Gaussian elimination is the optimal choice.

3.2.6 Diffusive transport

A numerical method for solving the diffusive transport is described in this sec-

tion. The method is used to solve the electron heat conduction equation. When
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the plasma ionization fraction is sufficient, the electron heat conduction process

can be very rapid, which suggests an implicit time marching scheme for stability

requirement. Let us consider the heat conduction equation in 1d:

∂tE = −∂xq

= ∂x (κ∂xT )
(3.58)

where q is the heat flux, E is the energy and κ is the thermal conductivity. Using

a finite volume approximation, the discretized form of equation (3.58) can be

written as:

∆En
i =

∆t

∆x

(
F κ
i+1/2 − F κ

i−1/2

)
(3.59)

where F κ denotes the diffusive flux (F κ = −q):

F κ
i+1/2 = κi+1/2fi+1/2 (3.60)

fi+1/2 =
1

∆x
(Ti+1 − Ti) (3.61)

For the transport properties at the face, one can use a simple arithmetic aver-

age, i.e., κi+1/2 =
κi+κi+1

2
. Let us now define the integrated diffusive flux, i.e., the

RHS of equation (3.59) evaluated at the current time n, to be Fκi , such that for

an explicit time integration, one simple have ∆Ei = Fκi . For an implicit scheme,

the fluxes can be linearized about the current time step n as follows:

F κ,n+θ
i±1/2 = F κ,n

i±1/2 + θδF κ
i±1/2 (3.62)

where

δF κ
i+1/2 =

∆Ei
ρicv,i

∂F κ
i+1/2

∂Ti
+

∆Ei+1

ρi+1cv,i+1

∂F κ
i+1/2

∂Ti+1

(3.63)

Note that we have used chain rule to relate the energy derivatives to the temper-

ature derivatives. From equation (3.60), one also has:

∂F κ
i+1/2

∂Ti
= −κi+1/2

∆x
+
∂κi
∂T

fi+1/2

2
(3.64)

∂F κ
i+1/2

∂Ti+1

=
κi+1/2

∆x
+
∂κi+1

∂T

fi+1/2

2
(3.65)
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The expression for δF κ
i−1/2 can be found similarly. This leads to:

∆Ei = Fκi +
θ∆t

∆x

{
∆Ei

1

ρicv,i

[
−κi+1/2

∆x
+

1

2

∂κi
∂T

fi+1/2

]

+∆Ei+1
1

ρi+1cv,i+1

[
κi+1/2

∆x
+

1

2

∂κi+1

∂T
fi+1/2

]

−∆Ei−1
1

ρi−1cv,i−1

[
−κi−1/2

∆x
+

1

2

∂κi−1

∂T
fi−1/2

]

−∆Ei
1

ρicv,i

[
κi−1/2

∆x
+

1

2

∂κi
∂T

fi−1/2

]}
(3.66)

The resultant system of equation is as follows:

A∆Ei−1 + B∆Ei + C∆Ei+1 = Fκi (3.67)

where

A =
η

ρi−1cv,i−1

[
−κi−1/2

∆x
+

1

2

∂κi−1

∂T
fi−1/2

]
(3.68)

B = 1 +
η

ρicv,i

[
κi+1/2

∆x
− 1

2

∂κi
∂T

fi+1/2

]
+

η

ρicv,i

[
κi−1/2

∆x
+

1

2

∂κi
∂T

fi−1/2

]
(3.69)

C =
η

ρi+1cv,i+1

[
−κi+1/2

∆x
− 1

2

∂κi+1

∂T
fi+1/2

]
(3.70)

and η = θ∆t
∆x

. Similarly, θ = 1 corresponds to Backward-Euler and θ = 1/2

corresponds to Crank-Nicolson method. The resulting system of equation to be

solved at each time step is a tridiagonal system, which can be solved efficiently

with a Thomas algorithm. In the case of multi-dimensional diffusion, one can

employ the similar approach of dimensional splitting described in the previous

section.

3.3 Benchmark problems

In this section, a series of benchmark test cases is presented to validate the numer-

ical method described in section 3.2. Although most of the simulations are limited

to one-dimensional and a few two-dimensional test cases, the numerical method
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can be easily generalized to three-dimensional, if the computational resource per-

mits. The reason is because the current research puts emphasis on high-fidelity

physical models associated with multiple couplings of the plasma, thus imposing

a large requirement on the computer resource. As will be shown later, some of

these models are not practical for multidimensional calculation, and a complexity

reduction strategy must be formulated.

3.3.1 Euler equations

3.3.1.1 Blastwave problem

The first problem presented for the solution of the Euler equations is the Woodward-

Colella blast wave problem [71]. This problem is designed to test the capability of

the numerical scheme to handle interaction of strong shock waves. The problem

is initialized with two strong shocks travelling past each other and reflected from

the wall to expedite multiple interactions. The initial condition of the problem

for a domain of x ∈ (0, 1) is given as:

[ρ, ux, p] =





[1, 0, 103] if x < 0.1

[1, 0, 10−3] if 0.1 ≤ x ≤ 0.8

[1, 0, 102] if x > 0.8

(3.71)

Figures 3.2 shows the numerical solution of the blast wave problem with 600

cells at t = 0.038. The reference solution is computed using MP5 scheme with

5,000 cells. As shown in figure 3.2, the contact discontinuity is well-resolved for

both MP5 and WENO scheme. The MP5 scheme performs slightly better in

resolving the contact. It must be noted that artificial compression method can

be used to enhance resolution in the near the discontinuity. Such a method was

not applied here since we want the scheme to be robust and free of numerical

parameters which are problem-dependent.
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Figure 3.2: Solution of the Woodward-Colella blast wave problem with 600 cells. 

Only part of the simulated domain is shown to illustrate t he difference of two 

schemes. 
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Reference --
MP5 + 

WENO 0 

X 

Figure 3.3: Solut ion of t he Shu-Osher problem with 300 cells. Only part of the 

simulated domain is shown to illustrate t he difference of two schemes. 

3.3.1.2 Shu-Osher p roblem 

T he next test case is the Shu-Osher problem, which models t he interact ion of a 

moving shock wave wit h an entropy disturbance. T his problem can be used to 

test the capability of the scheme to resolve complex flow struct ure wit h inst ability. 

T he init ial condit ion for t he problem is given for a domain of x E [- 1, 1] as follows: 

- { [3.857, 2.629, 10.333] 
[p, Ux ,P] -

[1 + 0.2sin(57rx) , 0, 1] 

if X< - 0.8 
(3.72) 

if X 2:: - 0.8 

Figures 3.3 shows the density plot of the solution using 300 cells at t = 0.36. 

T he reference solution is computed using the MPS scheme with 1600 cells. The 

solut ion obtained with both MPS and WENO schemes shows that complex flow 

feat ures such as local maximum and minimum density can be efficient ly resolved 

in high-resolut ion. 

50 

D-78 



3.3.1.3 Forward step problem

Results of two-dimensional test cases are now presented. From the one-dimensional

test cases, we learn that MP5 provides slightly better results than WENO in re-

solving the discontinuity and entropy waves. However, the CFL restriction of the

MP5 scheme is more severe than that of the WENO scheme. Therefore, WENO

scheme is slightly at more advantage in terms time step requirement, but the MP5

scheme generally yields better solution. For brevity, only the solution computed

using the MP5 scheme is presented.

The first two-dimensional test problem is the forward step problem, also known

as the Emery problem, or the Mach-3 wind tunnel problem. The problem consists

of uniform flow of Mach-3 past a step. The step and upper part boundaries of

the domain is set to be reflective. For the left and the right boundaries, simple

extrapolation is sufficient. An interesting feature of this problem is located at the

corner of the step. Numerical error generated in this region can create a so-called

numerical boundary layer which can affect the structure of the flow. A treatment

of this problem was given by Woodward and Colella [72], and is not used here.

Figures 3.4 shows the solution of forward step problem with 600,000 com-

putational cells using the MP5 scheme. The WENO solution of this problem,

although not shown here, yields similar results but slightly more diffusive notably

in the Kelvin-Helmholtz instability occurring near the top of the domain. This is

consistent with the observation from the 1D simulations.

3.3.1.4 Backward step problem

The next test involves a similar problem of a diffraction of a shock wave (M =

2.4) down a step [73]. The strong rarefaction at the corner of the step can cause

a problem of negative density when performing the reconstruction. The problem

is modeled here using 27,000 cells, and the numerical simulation is shown along
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Figure 3.4: Solution of the forward step problem using MP5 scheme with 600,000

cells.

with the experimental images in figure 3.5. The solver was able to reproduce the

correct flow features with excellent accuracy.

3.3.1.5 Rayleigh-Taylor instabilities

The Rayleigh-Taylor instability problem [74] is simulated in this section. The

problem is described as the acceleration of a heavy fluid into a light fluid driven

by gravity. In this test case, the specific heat ratio is set to be a constant (γ = 1.4).

For a rectangular domain of (0.25× 1), the initial conditions are given as follows:

ρ = 2, u = 0, v = −0.025 cos(8πx), p = 2y + 1 for 0 ≤ y ≤ 1

2
(3.73)

ρ = 1, u = 0, v = −0.025a cos(8πx), p = y +
3

2
for

1

2
≤ y ≤ 1 (3.74)

where a is the speed of sound. The top and bottom boundaries are set as reflect-

ing and the left and right boundaries are periodic. As the flow progresses, the

shear layer starts to develop and the Kelvin-Helmholtz instabilities become more

evident, as can be seen in figure 3.6. A momentum and energy source terms are

added to account for the gravitational effects.
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Figure 3.5: Diffraction of a Mach 2.4 shock wave down a step using MP5 scheme

with 27,000 cells. Comparison between numerical schlieren (left) and experimental

image (right).

3.3.1.6 Two-dimensional detonation

Modeling of a reactive flow field is now considered. A spark-ignited detonation

wave both in one- and two-dimension is simulated to demonstrate the capability

of the solver. Only the two-dimensional results are shown here. At a well-resolved

scale, the detonation wave can be described as a strong shock wave supported

by the heat release from a high-temperature flame behind an induction zone.

Interesting features have been observed both in the 1-D and 2-D simulations,

characterized by the coupling of the fluid dynamics and chemical kinetics. The

study of flame-shock coupling dynamics in one-dimension is described in [75].

The evolution of the pressure and temperature of a wall-spark ignited detona-

tion is shown in Figure 3.7. The chemical kinetics is modeled using the reduced

H2−air mechanism which consists of 9 species gas mixture with 38 reactions. The

mechanism used for the simulation is taken from the shock tube study by Jachi-

mowski [76]. The computational domain is rectangular with a length of 20 cm

and a height of 2 cm. The grid spacing in both directions is 50 µm.
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Figure 3.6: Rayleigh-Taylor instability computed with the MP5 scheme using

640,000 cells.
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The detonation cells, between the shock and multiple triple points in transverse

motion, is clearly seen. Figure 3.8 illustrates the numerical soot film produced

by recording the maximum density reached at each computation cell over the

entire simulation time which is used to measure the cell structure. This well-

known cellular structure has been observed both in experiments and numerical

simulations. Various techniques in reproducing these images are discussed by

Sharpe and Radulescu [77].

3.3.2 Multi-fluid equations

In this section, several test cases of the multi-fluid equations are described. Before

getting into the solution of the full multi-fluid model, the first two test cases

model a sheath problem utilizing a simple model for the electron fluids. In these

test cases, the electrons are assumed to be in Boltzmann equilibrium with the

electrostatic field. At any time, the electron density can be expressed as:

ne = n0e
−(φ−φ0)/kTe (3.75)

where n0 is a reference number density value and φ0 is a corresponding reference

potential. In this case, we solve a non-linear Poisson equation for the electric field:

∇2φ = − e

ǫ0
niZi +

e

ǫ0
n0e

−(φ−φ0)/kTe (3.76)

This approximation is used to simulate both a transient and steady-state sheath

problem.

3.3.2.1 Transient sheath

For the transient sheath problem, the reference plasma condition is n0 = 10−14m−3,

Ti = 0.025 eV and Te = 1 eV. This corresponds to an ion plasma frequency,

ωpi = 2.086 × 10−6 rad/sec, and a Debye length λD = 74.3 mm as defined in

equation (2.17). The transient sheath problem is computed on 1D domain of
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Figure 3.7: Evolution of pressure and temperature in a 2D detonation simulation.
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Figure 3.8: Numerical soot film produced by recording the maximum density at

each grid cell over the entire simulation for a 2D detonation corresponding to

figure 3.7.

L = 200λD. Initially, the domain is filled with ions at rest with number density

ni = n0. At t = 0, the electric field is introduced, by setting the electric poten-

tial to -50 V at x = 0, and 0 V at x = L. The electrons are assumed to be in

Boltzmann equilibrium. For the ions, the full Euler equations are solved using the

WENO scheme. The solution of the electric field is determined from the solution

of equation (3.76).

In this simulation, the ion boundary conditions are treated by simple extrap-

olation. Figure 3.9 shows the profile of the ion and electrons number densities at

different instances of time, as well as the time history of the ion current collected

at the electrode. The numerical solution of the ion current are compared and in

good agreement to the analytical results of Lieberman [78].

3.3.2.2 Steady sheath

The reference plasma condition of the steady sheath is similar to that of the

transient sheath simulation. The solution is computed on a 1D domain of L =

100λD. In order to obtain a steady-state sheath, the ion loss to the wall is made up

by introducing a ionizing source term ωI = nez where z =
niui|x=0∫
nedx

. The steady-

state is achieved when the ionization rate z has reach a steady value, i.e., the

ion loss is exactly balanced by ionizing source and therefore the sheath reaches
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an equilibrium state. In this problem, the electrons are also assumed to be in

Boltzmann equilibrium, and the ion fluid equation is solved using WENO scheme.

Figure 3.10 shows the spatial profile of the ions number density, velocity and the

electric potential at the steady-state condition.

In addition, we also computed a steady-state sheath with a collisional friction

force. This acts as a source term on the momentum equation of the ions, which

is written as follows:

fi = −
|ui|
λi
ρiui (3.77)

where λi is the ion mean-free-path. One also has a corresponding heating term due

to the work done by the friction force. Figure 3.11 shows the electric potential

as well as the ion velocity with collisional drag term. For the collisional case,

the sheath thickness slightly increases, and the ion velocity at the electrode are

lower than the collisionless case. This indicates that the ions while moving to the

electrode experiences a drag force, resulting in a thicker sheath.

3.3.2.3 Generalized Brio-Wu problem

This is a generalization of the standard Brio-Wu problem often used to benchmark

MHD codes. The MHD approximation corresponds to the use of Ohm’s law in

deriving a steady-state current density, which was derived in section 2.3. In the

case of a fully-ionized plasma, Ohn’s law can be written as:

E+ u×B =
1

ene
(j×B−∇pe +Rei) (3.78)

The ideal MHD limit simply means E+u×B ≃ 0, i.e., all the terms on the RHS

are small. One can derive a scaling relation such that ideal MHD condition is

satisfied. Following the work of Freidberg [79], the sufficient conditions for ideal

MHD are (1) small Larmor radius, and (2) weak collisionality2. The Larmor radii

2The collisionality should be weak enough for diffusion to be neglected but still strong enough
to satisfy hydrodynamic theory.
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for the ion and electron, defined in equation (2.18), are related as:

rLe
rLi
≃ Zi

√
me/mi (3.79)

where we have assumed Ti ≃ Te. Therefore, we expect that the two-fluid model

produces results comparable to the ideal MHD solution at the correct asymptotic

limit, that is, in the limit of small electron-ion mass ratio, infinite speed of light,

charge neutrality, strongly conducting and large magnetic field. The first three

assumptions come from the general MHD approximation.

Strictly speaking, we do not expect an exact agreement between the two-fluid

solution and the ideal MHD solution due to the following reasons. Firstly, the

two-fluid solution can still capture some electron inertial effects and electroma-

netic wave propagation; these physics are missing from the ideal MHD model.

Secondly, the numerical solution utilizing the MHD model can vary depends on

the numerical formulation of the governing equations, and this is purely a numer-

ical artifact. For example, Thompson et al [80] reproduced the solution of the

Brio-Wu problem using two different formulations of the magneto-fluid-dynamics

(MFD) equations3 and the results are slightly different from each other.

The initial conditions of the ideal two-fluid electromagnetic shock problem

is given by Shumlak and Loverich [81]. In this simulation we assumed a mass

ratio mi/me = 1836, constant of adiabatic index γ = 5/3, and set ǫ0, µ0, c = 1.

Coulomb collisions are neglected in this simulation such that resistive effects can

be neglected. The shock is created by a initial discontinuity in the middle of the

3The MFD equations still assume massless electrons but they contain EM wave propagation
and charge separation.
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domain as follows:



ρi

ux,y,zi

pi

ρe

ux,y,ze

pe

Bx

By

Bz

Ex,y,z




=




1

0

5× 10−5

me/mi

0

5× 10−5

0.75× 10−2

1× 10−2

0

0




for x < 0;




ρi

ux,y,zi

pi

ρe

ux,y,ze

pe

Bx

By

Bz

Ex,y,z




=




0.125

0

5× 10−6

0.125me/mi

0

5× 10−6

0.75× 10−2

−1× 10−2

0

0




for x > 0

(3.80)

Figure 3.12 shows the ion density for several values of the Larmor radius in

addition to the MHD solution of the same problem. WENO schemes are used

to solve the fluid and Maxwell’s equations for all the test cases here. It was

shown that in the limit of rLi → 0 (or rLe), the solution of the two-fluid equation

converges to the MHD solution. Same argument can be made about the solution

of the transverse magnetic field as shown in figure 3.13.

Two observations were made about the solution of the collisionless two-fluid

system. Firstly, it is important that the spatial accuracy of the numerical schemes

for solving the fluid and Maxwell’s equation is consistent; inconsistency causes the

solution to be diffusive. Secondly, since the source term is solved implicitly, a time

step restriction is imposed for purposes of accuracy. Typically, in the source term

corresponding to the Lorentz force and Joule heating, the time step size is chosen

relative to ωpe. All the solutions shown in figure 3.12 correspond to a time step

size of 0.1ωpe which is the smallest time step in the system. The solution obtained

with a larger time step is more diffusive. These simulations show that the multi-

fluid system retains all the correct asymptotic limit of MHD approximation, and
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also includes additional physics of electromagnetic wave propagation and charge

separation. However, in the MHD limit, the two-fluid system becomes stiff and

the time-step restriction (for accuracy purpose) is quite severe.

3.3.3 Diffusion processes

3.3.3.1 Travelling thermal wave problem

In this section, a one-dimensional travelling heat wave problem is simulated. The

problem is representative of the electron thermal transport process in LPI problem.

The model equation reads:

∂tT = ∂x (λ0T
α∂xT ) (3.81)

with the following initial and boundary conditions:

T (0, t) =

[
αD

λ0
(x1 +Dt)

]1/α
(3.82)

T (x, 0) =

[
αD

λ0
(x1 − x)

]1/α
; 0 < x ≤ x1 (3.83)

T (x, 0) = 0 otherwise (3.84)

The exact solution for this problem reads:

T (x, t) =

[
αD

λ0
(Dt+ x1 − x)

]1/α
; x ≤ x1 +Dt (3.85)

Figure 3.14 shows the solution of the model problem for x1 = 0, λ0 = 0.5, D =

5 and α = 2 at t = 0.1. In this case, the explicit time step corresponds to 10−6.

The implicit scheme allows a time step of three orders of magnitude larger than

that required for the explicit scheme while the error for the two cases are of the

same order of magnitude. This indicates the robustness of the implicit scheme in

handling larger time step, which is a desired properties, since transport phenomena

can be stiff, e.g., the electron heat conduction process, and the coupling with

convection can lift the stiffness ratio of the system.
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Figure 3.14: Numerical solution and error of the heat conduction problem with 

100 cells using both explicit and implicit schemes. The explicit scheme is st able 

for !::1t ~ w-6 while the implicit scheme is stable up to !::1t = w-3 . 
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3.3.3.2 Laser produced plasmas with hot spot

In this section, we simulate the heat transport process of a laser produced plasma

hot spot. Convection is neglected here. This problem was simulated using Fokker-

Planck and PIC models by Batishchev [82] to study non-local heat transport

theory. Generally speaking, non-local effects becomes important when the tem-

perature gradient length scale is of the same order as the collision mean free

path. In such case, the electron energy distribution function (EEDF) becomes

non-Maxwellian and the classical (local) SH transport [54] breaks down. The cur-

rent simulation is set up such that classical SH transport remains valid. There

are two reference time and length scales, namely the electron collision time τe and

mean free path λe.

τe =
3
√
meT

3/2
e

4
√
2πe4Z2ne ln Λ

= 3.5× 105
T

3/2
e

Zne ln Λ
[sec] (3.86)

λe =
3T 2

e

4
√
2πe4Z2ne ln Λ

= 1.5× 1012
T 2
e

Zne ln Λ
[cm] (3.87)

(3.88)

where Te is in eV , ne is in cm
−3, and lnΛ is the Coulomb logarithm.

In the first test, we only consider the effect of thermal transport. The problem

is initialized with a quasi-neutral plasma containing (Ar+, e) with an initial elec-

tron temperature enhancement near the center. This condition is representative

of plasma heating process due to laser absorption. The reference number density

are ne = ni = n0 = 1016 cm−3 and T0 = 10 eV . The domain length, L, is set

to span [−300λe, 300λe], and the initial electron temperature is assumed to be a

spatial Gaussian profile:

Te(x, t = 0) = T0 + T1e
−x2/l2 (3.89)

where l = 50λei and T1 = 0.4T0. The electron heat flux from SH theory are
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Figure 3.15: Temperature profile at t = 100-re for the hot spot relaxation by 

electron heat conduction. The solid line indicat ed the init ial temperature. 

written as: 

(3.90) 

where "'e = / onek2TeTe/me and / o is a function depending weakly on ion charge Z . 

The values of / o for different Z are given in [46, 83, 84). Here we take / o = 3.16. 

This is known as the classical SH transport . This result breaks down when rtvr 
exceeds a value of approximately 10-2 [85). Figure 3.15 shows t he profile of the 

electron temperature at timet = 100-re, at which t he temperature starts diffusing 

outward. In t he simulation, we also include Coulomb t hermalizat ion, but the 

final result shows very little dependence on this term. This is because the energy 

relaxation t ime scale between t he ions and t he elect rons is much slower than the 

diffusive time scales, e.g. , Te rv (me/mi)-r!i· 

In t he second test, we consider laser absorption due to inverse Bremsstrahlung 

processes. The electron energy equation now includes an addit ion term due to t he 
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absorption, and can be written as:

∂tEe +∇ · qe = αI (3.91)

where α is the absorption coefficient due to collisional process, and I is the laser

intensity. Here we assume I is only spatially dependent and takes the form:

I(x) = I0e
−x2/d2 (3.92)

where I0 = 1012 W/cm2 and d = 10λe. The absorption coefficient is defined as

follows:

α =
ν

c

ω2
pe

ω2

(
1− ω2

pe

ω2

)1/2

(3.93)

where ν is the collisional frequency, ω is the laser frequency, and c is the speed of

light.

Figure 3.16 shows the temperature profile at t = 100τe and a comparison with

the former case where IB process was not included. When the laser absorption

is taken into account, the electron temperature begins to rise, especially at the

center of the hot spot. Figure 3.17 also shows a comparison of the thermal heat

flux in both cases. The magnitude of the heat fluxes in both cases remains below

10% of the freestream limit qf = pe(kTe/me)
1/2. SH results tend to break down

when the heat-flux exceeds approximately 15% of the free-stream value.

3.3.3.3 Hypersonic shocks

We now simulate a 1D hypersonic plasma shock with electron heat conduction.

This test is designed to test the coupling of the transport and convection in addi-

tion to thermalization via Coulomb collision. The shock is initiated by imposing

a uniform flow with a wall on the right side of the domain. The freestream con-

dition is a fully ionized plasma with (Ar+, e) where ni = ne = 2.14 × 1014 cm−3,

T∞ = 273, and u∞ = 7000 m/s. The fluid equations are solved with the MP5

scheme.
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Figure 3.16: Temperature profile for the hot spot simulation wit h and wit hout 

laser heating. 

Figure 3.18 shows the results for a nit rogen plasma shock computed with and 

wit hout heat conduction. For the case wit h heat conduction, t he post shock 

temperature of t he heavy particles is lower due to precursor conductive heating 

of t he electron, effectively raising the speed of sound of the plasma ahead of the 

shock. In case of a partially ionized plasma, this precursor heating can yield 

interest ing dynamics such as precursor excitation and radiat ion. 
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CHAPTER 4

Collisional-Radiative Models for Atoms

4.1 Introduction

This chapter goes over a detailed description of the CR models for an atomic

plasma. Firstly, different thermal equilibrium distributions are derived, and the

principle of detailed balance is discussed for various elementary processes imple-

mented in the CR model. Due to the great complexity in the collection of inelastic

processes which could occur in a plasma, we limit ourselves to discussing only sev-

eral important inelastic processes occurring in an atomic plasma: collisional and

radiative excitations/deexcitation, and ionization/recombination. A more com-

plete description of these processes can be found in [86, 87, 88, 89, 83].

Secondly, we describe in detail the cross section models for Argon, Krypton,

and Xenon for all the CR transitions. The model for Argon was previously devel-

oped by Kapper and Cambier [90] based on prior work of Vlcěk [91] and Bultel et

al. [92] with mostly ab initio cross sections for electron-impact processes and semi-

empirical model for atom-impact processes. Preliminary extensions to Krypton

and Xenon were carried out by Magin and Kapper [93] with a software framework

named Colorado. We extend their work by adding more ab initio cross sections for

electron-impact processes, updating some of the old cross sections, and validating

the models with available shock tube experimental data.
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4.2 Thermal equilibrium

This section goes over various thermodynamic equilibrium distribution of gases

and plasmas. Thermodynamic equilibrium of radiation field is also discussed,

since it can play an important role in the inelastic exchange processes especially for

very high temperature plasmas. It must be noted that thermodynamic equilibrium

distributions can be determined from statistical thermodynamics and the principle

of maximum entropy. In this section, we derive thermal equilibrium distributions

using a different approach, that is, by considering the equilibrium reaction balance

of different processes.

We start with the principle of microscopic reversibility (MR) which states

that in thermal equilibrium, any reaction from a quantum state to another state

is exactly counterbalanced by the reverse reaction. In the classical limit, i.e., the

case from which the number of quantum states is much larger than number of

particles, this leads to the following expression:

w(s, t→ s′, t′)N(s)N(t)G(s′)G(t′)

= w(s′, t′ → s, t)N(s′)N(t′)G(s)G(t)
(4.1)

where w(s, t → s′, t′) is the transition probability from states (s, t) to (s′, t′),

N(s) is the number of particle of type s, and G(s) is the total degeneracy. By

introducing the elementary occupation number, η(s) ≡ N(s)/G(s), and utilizing

the quantum mechanical reciprocity relation, w(s, t→ s′, t′) = w(s′, t′ → s, t), one

arrives at the following expression:

η(s)η(t) = η(s′)η(t′) (4.2)

The validity of equation (4.2) depends solely on the validity of the quantum

mechanical reciprocity relation, which is discussed in more detail by Oxenius [87]

from a quantum mechanics point of view. In the scope of the current study, we

assume that equation (4.2) is physically acceptable from which thermal equilib-

rium distribution can be derived. For simplicity, we assume that the system is
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isotropic so all the angular variables do not appear in the formula of the distribu-

tion function.

4.2.1 Maxwell distribution

Consider an elastic collision between particles X and Y , from which an amount

of energy, W , is transferred:

X(E) + Y (E ′)⇔ X(E +W ) + Y (E ′ −W ) (4.3)

where E and E ′ are the incident energy of particles X and Y , respectively. From

the MR relation, equation (4.2), we have:

ηX(E)ηY (E
′) = ηX(E +W )ηY (E

′ −W ) (4.4)

which leads to:
ηX(E)

ηX(E +W )
=
ηY (E

′ −W )

ηY (E ′)
= r(W ) (4.5)

The expression of r(W ) is introduced since the first and second terms of equation

(4.5) cannot be a function of either E or E ′. It can be proved that the solution

of equation (4.5) is given by the following (see ref [87]):

r(W ) = eβW (4.6)

η(E) = ζe−βE (4.7)

It is well known from statistical mechanics that β = 1/kT . The normalization

constant ζ is :

ζ =
1

g
nλ3 (4.8)

where g is the statistical weight, n = N/V is the number density, and λ is the

thermal de Broglie wavelength of the particle, i.e.:

λ =
h

(2πmkT )1/2
(4.9)
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The total degeneracy of the particle G(E) is:

G(E)dE = gV
25/2πm3/2

h3
E1/2dE (4.10)

Using (4.7) and (4.10), we can write the complete form of the Maxwell distribution

function f(E) ≡ N(E)/N :

f(E)dE =
2E1/2

π1/2(kT )3/2
e−E/kTdE (4.11)

where f(E) is the normalized distribution function, i.e.,
∫∞
0
f(E)dE = 1. It must

be noted that the Maxwellian distribution function describes the translational

states population in the classical limit, i.e., η ≪ 1. When η → 1, either Fermi-

Dirac or Bose-Einstein statistics should be applied according to the particle type.

This condition is relevant, for example, in low temperature and very dense electron

gas found in inertial fusion problems where the electrons are characterized by

Fermi-Dirac statistics. The case of Bose-Einstein statistics is relevant for the

distribution of photons as will be shown later in this chapter.

4.2.2 Boltzmann distribution

The Boltzmann distribution can be derived by considering an inelastic collision

where particle X with infinite mass at rest1 is (de)excited from a bound electronic

states by collision with particle M :

X(E1) +M(E)⇔ X(E2) +M(E −∆E21) (4.12)

where E1, E2 are the energy of the electronic bound states and ∆E21 = E2 − E1

is the energy gap between the lower and upper levels. Utilizing the MR relation,

it follows that:

ηX(E1)ηM(E) = ηX(E2)ηM(E −∆E21) (4.13)

1This assumption allows us to neglect the translational degree of freedom of X and M .
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Using the same argument as in the previous section, i.e., ηM(E−∆E21)/ηM(E) =

eβ∆E21 we can arrive at the following results:

n2

n1

=
g2
g1
e−∆E21/kT (4.14)

where g1 and g2 is the degeneracy weight of the excited states. This is the Boltz-

mann distribution for the bound excited states. It can also be written in the

following form for any particular state i of particle X:

ni∈X
nX

=
gi
ZX

e−Ei/kT (4.15)

where nX =
∑

i∈X ni, and ZX =
∑

i∈X gie
−Ei/kT is the electronic partition func-

tion of X.

4.2.3 Saha distribution

Let us now consider a collisional ionization and and its reverse process, three-body

recombination, as follows:

X(E0) +M(E)⇔ X+(E+) +M(E − I0 − E ′) + e(E ′) (4.16)

where I0 = E+ − E0 is the ionization energy. Similarly, the MR relation gives:

ηX(E0)ηM(E) = ηX+(E+)ηM(E − I0 − E ′)ηe(E
′) (4.17)

Similar to the previous section, this equation can be written in the form:

ηX(E0)

ηX+(E+)ηe(E ′)
=
ηM(E − I0 − E ′)

ηM(E)
= r(I0 + E ′) = eβ(I0+E

′) (4.18)

It can be seen that the mean occupation number of the electron is independent of

I0, i.e., ηe(E
′) = 1

2
neλ

3
ee

−βE′
, where λe is the thermal de Broglie wavelength of the

electron given by equation (4.9). Substituting this expression back to equation

(4.18), we obtain the Saha distribution:

nen+

n0

=
2g+
g0

λ−3
e e−I0/kT (4.19)
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Note that the factor of 2 appeared in the Saha distribution is due to the degeneracy

weight of the electron spin.

Also, in this process we have also assumed that the atom and ion have infinite

mass so that the center of mass (COM) is collocated with the atom and ion. If we

were to include the finite electron mass effect, the thermal de Broglie wavelength

needs to be computed using the reduced mass of the electron and ion, e.g., µ+e =

m+me/(m+ + me). If internal degrees of freedom of X and X+ are taken into

account, the Saha relation can be generalized:

nen+

n0

=
2Z+

Z0

λ−3
e e−I0/kT (4.20)

where Z0 and Z+ are the partition functions of X and X+, respectively.

4.2.4 Planck distribution

We now consider an elementary balance of emission and absorption of photons by

free particles M :

M(E)⇔M(E − hν) + p(ν) (4.21)

The MR needs to be modified since quantum effects must be taken into account

for photons, which leads to the following relation:

ηM(E) (1 + ηp(ν)) = ηM(E − hν)ηp(ν) (4.22)

Here the photons are treated as bosons, leading to the multiplicative factor of

1 + ηp(ν) on the LHS. Hence, we arrive at a slightly different relation:

ηM(E − hν)
ηM(E)

=
1 + ηp(ν)

ηp(ν)
= r(hν) = eβhν (4.23)

We can then express the mean occupation number of a photon state as follow:

ηp(ν) = (eβhν − 1)−1 (4.24)
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For photons, Gp(ν) = V 8πν2c−3, thus it leads to the expression of photon density

per unit volume, aka Planck distribution:

n(ν)dν =
8πν2

c3
(ehν/kT − 1)−1dν (4.25)

By introducing the spectral radiance quantity Iν = n(ν)hνc/4π, we can rewrite

Planck’s radiation law into its familiar form:

Iν(T ) =
2hν3

c2
(ehν/kT − 1)−1 (4.26)

In the low temperature limit (ehν/kT ≫ 1), Planck’s distribution is replaced with

the so-called Wien approximation:

IWν (T ) =
2hν3

c2
e−hν/kT (4.27)

On the other hand, in the high temperature limit (ehν/kT ≪ 1), Planck’s distribu-

tion reduces to the Rayleigh-Jeans function:

IRJν (T ) =
2kTν2

c2
(4.28)

4.3 Elementary processes and detailed balance

In the CR model, each electronic state of the atom is treated as a separate species.

The time evolution of the species’ number densities are determined by solving a

set of rate equations, which includes all the relevant kinetic processes by means

of collisional and radiative interactions. All the macroscopic rates are computed

assuming a Maxwellian EEDF of the heavy particles or electrons.

For a given microscopic cross section, σ(E), the macroscopic reaction rate is

computed as follows:

k(T ) =
v

(kT )2

∫ ∞

E0

σ(E)Ee−E/kTdE (4.29)

where E0 is the threshold energy, and v =
(

8kBT
πµ

)1/2
is the mean thermal velocity

with µ being the reduced mass. The rates computed in this form are tabulated
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Rate

Coefficient Process

kex(m|n) collisional excitation by electrons (n→ m)

khx(m|n) collisional excitation by ground state atoms (n→ m)

ked(n|m) collisional de-excitation by electrons (m→ n)

khd(n|m) collisional de-excitation by ground state atoms (m→ n)

kein , k
hi
n collisional ionization

kern , k
hr
i three-body recombination

kprn radiative recombination

A(m|n) transition probability/spontaneous emission (Einstein coefficient)

Λ(m|n) bound-bound optical escape factor

Λn bound-free optical escape factor

kei electron-ion elastic collisions

ken electron-neutral elastic collisions

Table 4.1: Rate coefficients for collisional-radiative model.

as a function of temperature. It must be noted that for recombination processes,

the rates are functions of both the heavy and electron temperatures as will be

described later in this chapter.

A summary of all the elementary processes responsible for the excitation and

ionization kinetics in a low temperature plasma is presented in this section. The

principle of detailed balance is discussed for each type of process, i.e., the relation

of the forward and backward rates. In this section, we use Argon as an example,

but the same formulation also holds for Krypton and Xenon. A summary of the

rates coefficients’ definitions is listed in table 4.1. For bound-bound transitions,

we use the convention of indexing the rates with the final state on the left, and

the initial state on the right, i.e., (f |i).
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4.3.1 Collisional excitation/deexcitation

A collisional excitation/deexcitation process of an atom can be due to impact with

another atom or the electron. Consider an electron-impact excitation process and

its reversed deexcitation process between levels n and m (n < m),

Ar(n) + e− ⇔ Ar(m) + e− (4.30)

the rate of change of the population density of state n due to the collisional process

is of the form:
dnn
dt

= −kex(m|n)nnne + ked(n|m)nmne (4.31)

The first term on the RHS of equation (4.31) describes the loss due to excitation

from level n to m, as a result of collisions of the free electron with the existing

state n; the second term describes the gain due to the collisional deexcitation

induced by the free electron from state m. The total rate of change of the number

density of level n can be determined by summing up the RHS of equation (4.31)

for all levels m 6= n.

At equilibrium (“Boltzmann”), the ratio of the population densities of the

lower and upper states are:

n⋆m
n⋆n
≡ Bnm(Te) =

gm
gn
e−∆Enm/kTe (4.32)

where ∆Enm = Em−En. The rate of change of the number density at equilibrium

is null, i.e., dn⋆
n

dt
≃ 0, and therefore we obtain a relation for the forward and the

backward rates:
kex(m|n)
ked(n|m)

=
gm
gn
e−∆Enm/kTe (4.33)

Similarly for an atom-impact collisional excitation and its reverse process,

Ar(n) + Ar⇔ Ar(m) + Ar (4.34)

the rate of change of the population is written similar to equation (4.31) with ne

being replaced by nAr and the expression for the backward rate is the same as
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equation (4.33) with Te being replaced by Th:

dnn
dt

= −khx(m|n)nnnAr + khd(n|m)nmnAr (4.35)

khx(m|n)
khd(n|m)

=
gm
gn
e−∆Enm/kTh (4.36)

4.3.2 Collisional ionization/recombination

Consider an electron-impact ionization and recombination written as:

Ar(n) + e− ⇔ Ar+ + e− + e− (4.37)

the rate of change of the number density of level n in this case is:

dnn
dt

= −kein nnne + kern n+n
2
e (4.38)

The first term on the RHS of equation (4.38) describes the loss due to ionization

from level n, as a result of collisions of the free electrons with the existing state n;

The second term describes the gain due to the three-body recombination process

induced by the free electrons from the ion state.

The equilibrium for ionization and recombination (“Saha”) involves a different

relation: (
n+ne
nn

)⋆
≡ Sn(Te) =

2g+
gn

(
2πmekTe

h2

)3/2

e−In/kTe (4.39)

Thus we cannot assume that the equilibrium values are the same for both exci-

tation and ionization. Usually we can have Boltzmann equilibrium without Saha

equilibrium, but hardly the reverse, mostly because it takes more energy to ionize

than to excite; for the upper states close to the ionization limit (n≫ 1), the differ-

ence is less significant. Using the principle of detailed balance, the recombination

rate is written as:
kein
kern

=
2g+
gn

(
2πmekTe

h2

)3/2

e−In/kTe (4.40)
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Similarly for an atom-impact collisional ionization and its reverse process,

Ar(n) + Ar⇔ Ar+ + e− +Ar (4.41)

The rate of change of the state population is written similar to equation (4.38)

with ne being replaced by nAr and the expression for the backward rate is the

same as equation (4.40) with Th in the exponential term:

dnn
dt

= −khin nnnAr + khrn n+nenAr (4.42)

khin
khrn

=
2g+
gn

(
2πmekTe

h2

)3/2

e−In/kTh (4.43)

where In is the ionization potential of the excited state n. Note that the expres-

sion for the detailed balance includes the electron translational partition function,

which is defined by the electron temperature Te; therefore, the recombination rate

is a function of both Te and Th.

4.3.3 Radiative processes

Radiation can also play an important role in the excitation and ionization kinet-

ics. Radiative transition rates between bound states, referred to as bound-bound

transition, can be expressed in terms of the Einstein coefficient A. Consider a

spontaneous absorption/emission process between level n and m

Ar(n) + hν ⇔ Ar(m) (4.44)

In order to calculate the rate of change in the population due to the forward

process, one needs to know the intensity of the radiation field, which is governed

by the radiation transport equation. A coupled solution of the CR kinetics with

radiation transport, although of great interest, is beyond the scope of the current

study. A simplified treatment can be made by using the so-called optical escape

factor Λ, which gives a local approximation of the radiative losses. Since the
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radiation mean free path can be significantly different for each process, the escape

factors are defined for each specific process. The rate of change of the number

density of a lower level n due to a bound-bound emission process, or line radiation

from an upper level n, can be written as:

dnn
dt

= Λ(n|m)A(n|m)nm (4.45)

The spontaneous emission rates for this transition, A(n|m), is defined as:

A(n|m) =

(
8π2e2

mec3

)
gn
gm

fnm (4.46)

where fnm is the oscillator strength of the transition.

Similarly for the photoionization and radiative recombination process,

Ar(n) + hν ⇔ Ar+ + e− (4.47)

the rate of change of the population of level n, using the escape factor, is written

as:
dnn
dt

= Λnk
pr
n n+ne (4.48)

In all the radiative transitions, Λ = 0 corresponds to the optically thick and Λ = 1

corresponds to the optically thin approximation. For the radiative recombination

case, the electron energy production rate also needs to be computed and tabulated:

k′(T ) =
v

(kT )2

∫ ∞

E0

σ(E)E2e−E/kTdE (4.49)

and the resultant rate of change of the electron thermal energy is as follows:

dεe
dt

= −Λnkpr′n n+ne (4.50)

The use of the escape factor is convenient and computationally efficient. How-

ever, in very high-temperature plasma, the radiation field might have a stronger

impact on the inelastic processes, and radiation transport must be taken into ac-

count. It is also important, for example, when the radiation mean free path is
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comparable to the characteristic length scale of the flow. In such cases, detailed

treatment of the radiative terms need to be considered, and the calculation can

get very expensive (see [94] and [95]). Moreover, since the escape factor is defined

locally, global effects cannot be captured, i.e., precursor effects in plasma shocks

[96].

4.3.4 Elastic processes

In addition to the all the excitation and ionization processes, the current model

also takes in account the effect of elastic collision between the the heavy particles

and the electrons. These collisions are responsible to enforce the equilibrium

between the translational energy of the electrons and the heavy particles. The

energy transfer between the two components due to the elastic collisions is given

as:

dεe
dt

= −dεh
dt

=
2me

mAr

nenn
3

2
k(Th − Te)ken +

2me

mAr

nen+
3

2
k(Th − Te)kei (4.51)

where nn and n+ are the number densities of the neutral and ion species, respec-

tively.

The first term on the RHS of equation (4.51) describes the energy transfer

due to electron-neutral collision, the second term describes the energy transfer

due to Coulomb collisions. The Coulomb collision can be computed from the

energy-averaged properties [86]:

kei = veσei (4.52)

σei = 5.58× 10−10 ln Λ

T 2
e

[m2] (4.53)

Free-free radiation had also been incorporated in the current model via Kramer’s

formula [83] for Bremsstrahlung emission. The rate of change of the electron en-

ergy is as follows:

dεe
dt

= −16π2

3
√
3

veZ
2
effe

6g

meh(4πE0c)3
n+ne = −1.42×10−40Z2

effT
1/2
e n+ne[J·m−3 ·s−1] (4.54)
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where g is the gaunt factor taken to be unity and Zeff is the effective charge.

4.4 Rate equations

Once all the macroscopic rates are obtained, one can construct a system of rate

equations, which computes the rate of change of the specie’s number densities and

the energies of the electrons and the heavy particles. These rate equations are

summarized below:

Ground state and excited states

∂nk
∂t

=
∑

i<k

ni(nek
ex
(k|i) + nArk

hx
(k|i))−

∑

j<k

nk(nek
ed
(j|k) + nArk

hd
(j|k) + Λ(j|k)A(j|k))

−
∑

j>k

nk(nek
ex
(j|k) + nArk

hx
(j|k)) +

∑

i>k

ni(nek
ed
(k|i) + nArk

hd
(k|i) + Λ(k|i)A(k|i))

+ n+ne(nArk
hr
k + nek

er
k + Λkk

pr
k )− nk(nekeik + nArk

hi
k )

(4.55)

Ion state

∂n+

∂t
=
∑

i

ni(nek
ei
i + nArk

hi
i )− n+ne

∑

i

(nArk
hr
i + nek

er
i + Λik

pr
i ) (4.56)

Heavy particles energy

∂εh
∂t

= nAr

∑

i

∑

j>i

∆Eij(njk
hd
(i|j) − nikhx(j|i)) + nAr

∑

i

Ii(nen+k
hr
i − nikhii ) (4.57)

− 3ρennk(Th − Te)
ken
mAr

− 3ρen+k(Th − Te)
kei
mAr+

(4.58)

Electron energy

∂εe
∂t

= ne
∑

i

∑

j>i

∆Eij(njk
ed
(i|j) − nikex(j|i)) + ne

∑

i

Ii(nen+k
er
i − nikeii ) (4.59)

− nen+

∑

i

Λik
pr′
i − n+ne

16π2

3
√
3

veZ
2
effe

6g

meh(4πǫ0c)3
(4.60)

+ 3ρennk(Th − Te)
ken
mAr

+ 3ρen+k(Th − Te)
kei
mAr+

(4.61)
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The electron number density is determined from charge neutrality, i.e., ne =
∑

s Zsns. Also, in the case where the mixture of gas consists of multiple chemical

species, one also needs to take in account the collisional processes with all the

heavy species. The expression for the atom-impact processes would need to be

summed over all the heavy species.

4.5 Physical models

4.5.1 Argon

The CR model for Argon implemented in this study is based on the work of

Vlcěk [91] and Bultel et al. [92], both of which, were specifically developed for

Argon. Subsequently, Kapper and Cambier [90, 97] extended this model, and

obtained a calibrated set of atom-impact excitation rates for Argon. Their CR

model takes in account the ground state and the first 30 excited levels of neutral

Argon obtained from the NIST database [98]. The electronic levels are split into

two configurations based on the core angular momentum numbers, which yield

two effective ionization potentials. The energy levels of all the excited states of

Argon are listed in table 4.2.

For atom-impact excitation processes, the cross sections are computed form

the semi-empirical Drawin’s formula [99, 100]. For the low energy range considered

in this study, the cross sections can be approximated by a linear function. For

excitation from ground state (1→ m), the cross sections take the form:

σa1m = χ∗
1m(E −∆E1m) (4.62)

where

χ∗
nm = 4πa20

(IH)
2

∆E3
nm

ξ2fnm
2me

mH

(4.63)

and fnm is the oscillator strength of the transition (n→ m). The values of χ∗
1m in

the current CR model were calibrated to obtain a satisfactory induction length (or
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n E(n) [eV] gn jc nℓ[K]J n E(n) [eV] gn jc nℓ[K]J

1 0 1 1.5 [Mg]3p6 18 13.903 5 1.5 3d[3/2]2

2 11.548 5 1.5 4s[3/2]2 19 13.979 9 1.5 3d[7/2]4

3 11.624 3 1.5 4s[3/2]1 20 14.013 7 1.5 3d[7/2]3

4 11.723 1 0.5 4s′[1/2]0 21 14.063 5 1.5 3d[5/2]2

5 11.828 3 0.5 4s′[1/2]1 22 14.068 5 1.5 3d[3/2]1

6 12.907 3 1.5 4p[1/2]1 23 14.090 3 1.5 5s[3/2]2

7 13.076 7 1.5 4p[5/2]3 24 14.099 7 1.5 5s[5/2]3

8 13.095 5 1.5 4p[5/2]2 25 14.153 3 1.5 3d[3/2]1

9 13.153 3 1.5 4p[3/2]1 26 14.214 5 0.5 5s′[1/2]0

10 13.172 5 1.5 4p[3/2]2 27 14.234 5 0.5 3d′[5/2]2

11 13.273 1 1.5 4p[1/2]0 28 14.236 7 0.5 5s′[1/2]1

12 13.283 3 0.5 4p′[3/2]1 29 14.241 1 0.5 3d′[3/2]2

13 13.302 5 0.5 4p′[3/2]2 30 14.255 3 0.5 3d′[5/2]3

14 13.328 3 0.5 4p′[1/2]1 31 14.304 3 0.5 3d′[3/2]1

15 13.480 1 0.5 4p′[1/2]0 ∞ 15.760 4 1.5 [Mg]3p5

16 13.845 1 1.5 3d[1/2]0 ∞′ 15.937 2 0.5 [Mg]3p5

17 13.864 3 1.5 3d[1/2]1

Table 4.2: Lowest 31 levels of Ar I by energy.
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n m χ∗
nm [m2/eV] n m χ∗

nm [m2/eV]

1 3 9.35× 10−25 2 3 1.79× 10−24

1 5 3.36× 10−24 2 4 4.80× 10−26

1 17 8.14× 10−27 2 5 4.80× 10−26

1 23 2.64× 10−25 3 4 4.80× 10−26

1 25 7.27× 10−25 3 5 4.80× 10−26

1 30 1.35× 10−25 4 5 1.79× 10−24

1 31 5.88× 10−25

Table 4.3: Atom impact excitation parameters for allowed transitions for Argon.

χ∗
nm for allowed transitions from ground state of neutral Ar has been tuned to

match the experimental induction length.

relaxation length) compared to the experimentally observed values (see Kapper

and Cambier[90] for more detail). The inner 3p54s maniford transitions take the

form:

σanm = χ∗
nm

E −∆Enm
∆E2.26

nm

(4.64)

where ∆Enm is in eV. The resultant set of values are summarized in table 4.3.

The atom-impact ionization cross sections are less sensitive to the induction

length. The ionization cross section from the ground state is taken from the work

of Haugsjaa and Amme [101]:

σa1(E) = 1.8× 10−25(E − 15.760)1.3 [m2], (4.65)

where E is in eV. For all other levels, the cross sections are computed from

Drawin’s formula:

σan(E) = 4πa20

(
IH
In

)2
mAr

mH

ξ2
2me

mAr +me

E/In − 1
(
1 + 2me

mAr+me
(E/In − 1)

)2 . (4.66)

While the atom-impact processes have a significant effect on the overall induc-

tion length, the electron-impact processes have a dominated effect on the electron
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Parameter Valence electron shell 

for Eq. (4.68) s p d f 
a 1.06 2 3/ 2 3/2 

b 0.23 1 3 1 

c 1 1 2/ 3 2/3 

d 1 1 1 1 

Table 4.4: Electron-impact ionization parameters as taken from [103]. 

avalanche. The cross sections for electron-impact excitation from ground state 

and 4s levels to all the levels below the 5p manifold are due to Zatsarinny and 

Bartschat [102]. Figure 4.1 shows the excit at ion cross sect ions due to electron

impact from the ground state to the 4s levels. The cross sect ions of Zatsarinny 

and Bartschat are obtained from from a semi-relativist ic Breit-Pauli B-spline R

matrix calculat ion of e-Ar collisions. Drawin's formulas have been used for all 

other transitions. 

The elect ron-impact ionization cross sections have been determined from the 

Deutsch-Mark (DM) formalism [103]. 

(4.67) 

where gne are the reduced weighting factors, rne are the radii of t he valence elec

tron, and 

f i(E) = d~(~j~: : ~)a x [b+c(1 - :~)ln(2.7+(E/Ii - 1) 112)] (4.68) 

The necessary parameters for equations (4.67) and (4.68) are given in Tables 

4.4 and 4.5. The results of the ionization cross sections due to electron-impact 

collisions are shown in figure 4.2. 

The Einstein coefficients for the all the bound-bound transitions are taken 

from the NIST database [98]. The radiative capt ure cross sect ions are determined 
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Valence electron 

shell, nf. Tn£ [A] 9n£ x Int [eV] 

4s 2.49 7.40 

5s 6.35 6.35 

4p 3.40 31.00 

3d 4.36 13.60 

Table 4.5: Radii of Ar valence electron and reduced weighting factors fore = 1 

as taken from [103]. 

1.2 

1 

;;- 0.8 

s 
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1'-

I 0.6 
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X 
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0 
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16 

Figure 4.1: Excitation cross sections from ground state to the 4s manifold due to 

electron-impact for Ar I taken from [102]. 
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Figure 4.2: Ionization cross sections due to electron-impact for Ar I as computed 

by the Deutsch-Mark formalism 

from detailed balance, 

(4.69) 

with the photoionization cross sections given by Vlcek [91]. Utilizing the relation 

hv = E + Ei, the cross section associated with the ground state is given by 

v 91 (E + E1? { 3.5 x w-21 
(]" 1 (E) = - 2 X I 3 

9+ 2Emec 2.8 X w-20 ( E : E1 ) 
(4.70) 

while all others are computed using 

( 4. 71) 

T he parameter /i takes the values 0.0763, 0.0458, 0.0305, and 0.0915 for i = 2, 
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Processes Ref. 

Atom-impact exc. Drawin[99, 100, 92] (allowed trans.) 

Bultel [ 92] (ot hers) 

Atom-impact ion. Haugsjaa[l01] (ground state) 

Drawin[99, 100] (others) 

Elect ron-impact exc. Zatsarinny[102] (from ground state) 

Drawin[99, 100] (others) 

Elect ron-impact ion. Deutsch-Mark[103] 

Line transit ion NIST [98] 

Photoionization Vlcek[91] 

Bremsstrahlung emission Kramer's formula[83] 

Elast ic collisions McEachran[104] 

Table 4.6: Summary of t he elementary cross sections used in t he CR model for 

Argon 

3, 4, and 5, respect ively. The cross sect ions for all the collisional and radiat ive 

transit ions of Argon are summarized in table 4.6. 

4 .5.2 K rypton 

In a similar fashion, the CR model for Krypton is constructed starting from the 

electronic levels taken from NIST database [98]. For brevity, only the first 31 

excit ed states, ordered by increasing energy values, are shown in table 4. 7. 

Similarly to Argon, the atom-impact excitation cross sections for Krypton are 

comput ed from equat ion ( 4.62) with t he linear dependence on energy. The values 

of X~m are listed in table 4.8. It must be noted that the excitation cross sections 

from the ground state were calibrated to obtain a reasonable agreement with the 

experimental induct ion length. The heavy part icle impact ionizat ion cross sect ions 
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n E(n) [eV] gn jc nℓ[K]J n E(n) [eV] gn jc nℓ[K]J

1 0 1 1.5 [Zn]4p6 18 12.144 5 0.5 5p′[3/2]2

2 9.915 5 1.5 5s[3/2]2 19 12.179 7 1.5 4d[7/2]3

3 10.032 3 1.5 5s[3/2]1 20 12.256 1 0.5 5p′[1/2]0

4 10.562 1 0.5 5s′[1/2]0 21 12.258 5 1.5 4d[5/2]2

5 10.644 3 0.5 5s′[1/2]1 22 12.284 7 1.5 4d[5/2]3

6 11.303 3 1.5 5p[1/2]1 23 12.352 5 1.5 6s[3/2]2

7 11.443 7 1.5 5p[5/2]3 24 12.355 3 1.5 4d[3/2]1

8 11.445 5 1.5 5p[5/2]2 25 12.385 3 1.5 6s[3/2]1

9 11.526 3 1.5 5p[3/2]1 26 12.756 3 1.5 6p[1/2]1

10 11.546 5 1.5 5p[3/2]2 27 12.785 7 1.5 6p[5/2]3

11 11.666 1 1.5 5p[1/2]0 28 12.785 5 1.5 6p[5/2]2

12 11.998 1 1.5 4d[1/2]0 29 12.803 5 0.5 4d′[3/2]2

13 12.037 3 1.5 4d[1/2]1 30 12.809 3 1.5 6p[3/2]1

14 12.100 3 0.5 5p′[3/2]1 31 12.815 5 1.5 6p[3/2]2

15 12.112 5 1.5 4d[3/2]2 ∞ 14.000 4 1.5 [Zn]4p5

16 12.125 9 1.5 4d[7/2]4 ∞′ 14.665 2 0.5 [Zn]4p5

17 12.140 3 0.5 5p′[1/2]1

Table 4.7: Lowest 31 levels of Kr I by energy.
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n m χ∗
nm [m2/eV] n m χ∗

nm [m2/eV]

1 3 1.11× 10−23 3 9 7.01× 10−22

1 5 7.93× 10−24 3 10 3.68× 10−22

2 6 7.15× 10−22 3 11 2.44× 10−22

2 7 9.93× 10−22 3 14 1.20× 10−23

2 8 2.57× 10−22 4 12 1.09× 10−21

2 9 5.05× 10−23 4 13 1.15× 10−21

2 10 4.41× 10−22 5 12 5.96× 10−22

2 13 3.79× 10−24 5 13 4.22× 10−22

2 14 8.32× 10−25 5 14 1.26× 10−21

3 8 1.31× 10−21 5 15 2.36× 10−22

Table 4.8: Atom impact excitation parameters for allowed transitions for Krypton.

are computed from the Drawin’s formula.

For electron-impact transitions, we have utilized the the cross sections from the

work of Zatsarinny and Bartschat [105]. These cross sections are determined from

a semi relativistic Breit-Pauli B-spline R-matrix calculation. Figure 4.3 show the

cross sections for excitation to the 5s manifold. For all other transitions, Drawin’s

formula has been used systematically. The DM formula has been used for all the

ionization cross sections. In particular, we have only considered the 5s sub-shell

for computing ionization from the core. For the excited states, we have considered

the electron in the valence shell. The results of the ionization cross sections due to

electron-impact collisions computed with the DM formalism are shown in figure

4.4.

For the radiative combination rates, we have used the same form of the cross

sections given by Vlcěk [91] for Argon where the coefficients are tuned to match

with the radiative cooling slope from experimental data. The cross sections for all
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Figure 4.3: Excitation cross sections from ground state to the 5s manifold due to 

electron-impact for Kr I taken from [105]. 

the collisional and radiative t ransitions of Krypton are summarized in table 4.9. 

4.5.3 X enon 

The CR model for Xenon is constructed similarly to Argon and Krypton. Table 

4.10 lists t he first 31 excited levels of Xenon ordered by increasing energy values. 

All t he electronic energy of t he excited stat es as well as the oscillator strength 

of t he allowed transition are taken from the NIST dat abase [98]. The effect of 

spin-orbit splitting of the ion due to different core angular moment um )c is similar 

to t hose of Argon and Krypt on. 

The atom-impact processes including excitation and ionization have been com

puted from Drawin's formula. The values of X~m are provided in table 4.11. The 

electron-impact excit at ion cross sections from t he ground state are computed by 

Zatsarinnny and Bartschat using R-matrix calculat ion [105]. The excitation cross 

sections from the ground st ate to all the 6s levels are plotted in figure 4.5. 
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Figure 4.4: Ionization cross sections due to elect ron-impact for Kr I as computed 

by t he Deutsch-Mark formalism 

P rocesses Ref. 

Atom-impact exc. Drawin[99, 100] 

Atom-impact ion. Drawin[99, 100] 

Elect ron-impact exc. Zatsarinny[105) (from ground state) 

Drawin[99, 100) (others) 

Elect ron-impact ion. Deutsch-Mark[103) 

Line t ransit ion NIST [98] 

Photoionization Modified Vlcek[91) 

Bremsstrahlung emission Kramer's formula[83) 

Elast ic collisions Mitroy[106) & McEachran[107) 

Table 4.9: Summary of t he elementary cross sections used in t he CR model for 

Krypton 
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Figure 4.5: Excitation cross sections from ground state to the 6s manifold due to 

electron-impact for Xe I taken from [105]. 

For elect ron-impact ionization of t he ground state, 6s and 6p levels, we used 

the cross sections of Erwin and Kunc [108], which are plotted in figure 4.6. For 

ionization from higher levels, DM formalism is used. Due to t he lack of available 

cross sections for radiative combination, we have ut ilized the formula given by 

Vlcek [91]. The cross sect ions for all the collisional and radiat ive transit ions of 

Xenon are summarized in table 4.12. 

4 .5.4 E lectron-neut r a l elastic collisions 

The momentum transfer cross sections of elast ic collisions with electrons for Argon, 

Krypton, and Xenon are t aken from t he works of McEachran [104, 107] and Mit roy 

[106]. The results of these cross sections are shown in figure 4.7. The comparison 

wit h t he results of Zatsarinny et al. [109] are excellent for all cases. 

98 
D-126 



n E(n) [eV] gn jc nℓ[K]J n E(n) [eV] gn jc nℓ[K]J

1 0 1 1.5 [Cd]5p6 18 10.220 7 1.5 5d[5/2]3

2 8.315 5 1.5 6s[3/2]2 19 10.401 3 1.5 5d[3/2]1

3 8.437 3 1.5 6s[3/2]1 20 10.562 5 1.5 7s[3/2]2

4 9.447 1 0.5 6s′[1/2]0 21 10.593 3 1.5 7s[3/2]1

5 9.570 3 0.5 6s′[1/2]1 22 10.902 3 1.5 7p[1/2]1

6 9.580 3 1.5 6p[1/2]1 23 10.954 5 1.5 7p[5/2]2

7 9.686 5 1.5 6p[5/2]2 24 10.958 3 0.5 6p′[3/2]1

8 9.721 7 1.5 6p[5/2]3 25 10.969 7 1.5 7p[5/2]3

9 9.789 3 1.5 6p[3/2]1 26 10.971 1 1.5 6d[1/2]0

10 9.821 5 1.5 6p[3/2]2 27 10.979 3 1.5 6d[1/2]1

11 9.890 1 1.5 5d[1/2]0 28 10.996 5 1.5 7p[3/2]2

12 9.917 3 1.5 5d[1/2]1 29 10.998 5 1.5 6d[3/2]2

13 9.933 1 1.5 6p[1/2]0 30 11.003 3 1.5 7p[3/2]1

14 9.943 9 1.5 5d[7/2]4 31 11.015 1 1.5 7p[1/2]0

15 9.959 5 1.5 5d[3/2]2 ∞ 12.130 4 1.5 [Cd]5p5

16 10.039 7 1.5 5d[7/2]3 ∞′ 13.436 2 0.5 [Cd]5p5

17 10.157 5 1.5 5d[5/2]2

Table 4.10: Lowest 31 levels of Xe I by energy
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n m X~m [m2/ eV) n m X~m [m2/ eV) 

1 3 1.16 X IQ- 22 2 9 1.42 X IQ-23 

1 5 5.41 x w- 23 2 25 1.74 x w-24 

1 12 2.56 x w-24 2 28 8.46 x w-25 

1 19 9.06 X IQ-23 3 31 1.16 X IQ-24 

1 21 2.12 x w-23 4 30 1.62 x w-23 

1 27 4.82 x w-25 

Table 4.11: Atom impact excitat ion parameters for allowed t ransit ions for Xenon. 
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Figure 4.6: Ionization cross sections due to electron-impact for Xe I as computed 

from the work of Erwin and Kunc [108). 
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Figure 4.7: Momentum transfer cross sections for Argon, Krypton and Xenon. 

Solid lines are t he results of McEachran et al. [104, 107). Dashed lines are the 

results of Zatsarinny et al. [109). 
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Processes Ref. 

Atom-impact exc. Drawin[99, 100] 

Atom-impact ion. Drawin[99, 100] 

Elect ron-impact exc. Zatsarinny[105] (from ground state) 

Drawin[99, 100] (others) 

Elect ron-impact ion. Erwin & Kunc[108] (Sp6 , 6s, 6p) 

Deutsch-Mark[103] (ot hers) 

Line transit ion NIST[98] 

Photoionization Modified Vlcek[91] 

Bremsstrahlung emission Kramer's formula[83] 

Elast ic collisions Mitroy[106] & McEachran[107] 

Table 4.12: Summary of the element ary cross sections used in the CR model for 

Xenon 

4 .6 B enchmark studies 

4.6.1 Steady-state flows 

The CR models described in the previous section for Argon and Krypton are 

utilized t o model t he experiments performed at University of Toront o's Instit ute 

of Aerospace St udies (UTIAS) in 1977 [llO, ll1]. Neglecting unsteady effects, t he 

flow properties of an ionizing shock layer can be computed by solving the st eady 

2T Euler equat ions with coupling source terms due to kinet ics. The procedure for 

solving this equation is given in appendix B. 

The UTIAS experiments provided detailed measurements of t he electron num

ber density and the total mass density of t he flow behind t he shock including the 

relaxation length as well as the radiative cooling region. The measurement of the 

induction length is part icularly helpful for calibrat ing the atom-impact excitation 
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Cases Ma Poo (Torr) Too (K) l* (em) 

1 15.9 5.14 293.6 2.00 

2 16.1 5.15 295.9 1.90 

3 16.5 5.12 296.6 1.80 

4 13.0 5.00 296.6 8.90 

Table 4.13: Summary of test conditions of the UTIAS experiments for ionizing 

shock in Argon with the predicted t hermal equilibrium flow propert ies. Data are 

taken from Glass and Liu [llO]. 

rate. For the case of Argon, four different experimental condit ions were used to 

assess t he current CR model. The test conditions along with t he experimentally 

measured relaxation lengths [llO] are summarized in t able 4.13. 

Figure 4.8 shows a comparison of the computed elect ron number density and 

the total mass density along wit h the experimental dat a. It must be noted t hat 

acceptable agreement in t he relaxation length was obtained by tuning t he atom

impact cross sections. The calculation is performed ut ilizing 31 electronic states of 

neutral Argon. It has been shown that this level of details is required for an accu

rate predict ion of the radiat ive cooling region [90]. This is because a major source 

of radiat ion is due to line radiation from the upper states. It must be pointed 

out t hat since radiation t ransport is not included, line radiat ion and radiat ive 

recombination are computed with the help of t he escape factor. The value of the 

escape factors (eit her 1 or 0) is determined by an order of magnit ude analysis of 

the radiat ion's mean-free-pat h compared with t he shock tube dimension. 

The temperature profile of t he elect rons and t he heavy particles for the same 

test case is shown in figure 4.9, which help ident ifying severe regimes marking the 

transit ion from the atom-impact dominat ed kinetics to electron-impact dominated 

kinet ics. In addit ion, figure 4.10 shows t he ASDF at several locat ions behind 
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Figure 4.8: Computed and experimental results of ionizing shock in Argon for case 

1: Poo = 5.14 Torr, Too = 293.6 K, Ma = 15.9. The values of the electron number 

density and the total mass density are normalized by the equilibrium values: 

n: = 1.69 x 1017 cm-3, p* = 8.4 x 10-3 gfcm3. Symbols represent experimental 

data for ne and p from Glass and Liu (110]. 
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Figure 4.9: Temperature profile of t he elect rons and heavy particles for case 1 

from table 4.13. 

the shock. One can see in the region where t he priming electrons are produced 

(x = 0.01 em) and where electron kinetics starts to dominate (x = 0.1 em), 

the ASDF exhibits a non-Boltzmann behavior, presumably due to a competition 

between t he atom-impact and electron-impact processes. Furt her downst ream 

from t he shock, t he ASDF relaxes toward a Boltzmann distribut ion. 

It can be seen that all the upper levels beyond the 4s manifold in this test 

case can be well approximated by a Boltzmann dist ribution. This small deviation 

from a Boltzmann dist ribut ion (notably only from the 4s manifold) indicates t hat 

the flow might be approximated by a three-temperature model; however, one st ill 

needs to model the losses due to radiat ion in order to resolve t he radiat ive cooling 

region behind the avalanche. The results of the steady state calculations for the 

other three cases are shown in figures 4.11, 4.12 and 4.13. Good agreement is ob

tained for cases 2 and 3. For case 4, the electron number density and the relaxation 

lengt h are over-predicted compared to t he experimental data. The discrepancies 
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Figure 4.10: T he ASDF plotted at different locations of st art ing from t he shock 

front utilizing t he experiment al condition from case 1 of table 4. 13. 

can be attributed to unsteady effects and interaction wit h the boundary layer, 

bot h of which, can be verified by performing unsteady simulations incorporating 

viscous effects, i. e., solving Navier-Stokes equations. 

Similarly, the steady state calculations are performed for the case of Krypton 

shocks. T he flow conditions along with the experiment al relaxat ion length are 

taken from Glass et al. [111] and summarized in table 4.14. T he simulation 

results for case 1 are shown in figures 4.14 and 4. 15 for the number densit ies and 

temperatures, respectively. 

Similar to the Argon shock experiment, wit h the tuned value of t he atom

impact cross section, we were able to obtain good agreement wit h the experimental 

relaxation lengt h. For the radiat ive cooling reason behind t he avalanche, the for

mula of Vlcek wit h some modificat ion yields sat isfact ory results. Non-Boltzmann 

populat ion of the excited states can be seen most clearly in figure 4.16 at 0 .01 and 

0.1 em. The results for case 2 are shown in figure 4.17 with excellent agreement 
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Figure 4.11: Elect ron number density and total density for Moo = 16.1 Ar shock 

corresponded t o case 2 in table 4.13. The freestream condit ions are: Poo = 5.15 

Torr, Too = 295.9 K. The values of t he electron number density and t he total 

mass density are normalized by the equilibrium values: n: = 1.83 x 1017 cm-3 , 

p* = 0.87 X 10-4 gj cm3 . Symbols represent experimental data for ne and p from 

Glass and Liu [110). 
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Figure 4.12: Elect ron number density and total density for Moo = 16.5 Ar shock 

corresponded t o case 3 in table 4.13. T he freestream condit ions are: Poo = 5.12 

Torr, Too = 296.6 K. The values of t he electron number density and t he total 

mass density are normalized by t he equilibrium values: n: = 2.1 x 1017 cm-3 , 

p* = 0.88 X w-4 gj cm3 . Symbols represent experimental data for ne and p from 

Glass and Liu [llO). 
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Figure 4.13: Elect ron number density and total density for Moo = 13.0 Ar shock 

corresponded t o case 4 in table 4.13. The freestream condit ions are: Poo = 5.00 

Torr, Too = 296.6 K. The values of t he electron number density and t he total 

mass density are normalized by the equilibrium values: n: = 5.62 x 1016 cm-3 , 

p* = 0.62 X w-4 gj cm3 . Symbols represent experimental data for ne and p from 

Glass and Liu [llO). 
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Cases Ma Poo (Torr) Too (K) l* (em) 

1 15.05 5.15 296.2 1.75 

2 15.17 5.07 295.4 1.90 

Table 4.14: Summary of test conditions of the UTIAS experiments for ionizing 

shocks in Krypton wit h the predicted thermal equilibrium flow properties. Dat a 

are taken from Glass et al. [ ll1]. 

to t he experimental dat a. 

Lastly, the CR model for Xenon is utilized to model t he shock tube experiment 

by Ezumi et al. [112]. Similar to the UTIAS experiment, Ezumi et al. investigated 

the ionizat ion relaxation and radiat ive cooling processes of an ionizing shock flow 

in Xenon. In t heir experiment, measurement of the electron number density and 

the heavy particle number density are carried out using interferometric techniques, 

and the result s are taken at one part icular location along the shock t ube. The 

shock Mach number is 13.1 and the freestream pressure is 2.0 Torr. Figure 4.18 

shows t he steady-state calculation of the shock layer, with satisfactory agreement 

to experiment . 

In t his test case, due to the high uncertainty in the use of Drawin's formula 

for atom-impact rates, these rates are t uned to match t he experimental relaxation 

t ime. Also, due to the lack of the cross sections data for the radiat ive cooling 

process, t he values obtained from Vlcek's expression [91] also need to be slightly 

modified. T herefore, the results for Xenon shock presented in this sect ion should 

be considered as preliminary only. In order to improve t he model, radiat ion trans

port should be included, and better atom-impact cross sections, those comput ed 

from ab init io calculation, should be implemented. 
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Figure 4.14: Elect ron number density and total density for Moo = 15.05 Kr shock 

corresponded t o case 1 in table 4.14. The freestream conditions are: Poo = 5.15 

Torr, Too = 296.2 K. The values of t he electron number density and t he total 

mass density are normalized by the equilibrium values: n: = 1.677 x 1017 cm-3 , 

p* = 1. 712 x I0-4 gf cm3 . Symbols represent experimental data for ne and p from 

Glass et al. [ll1). 
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Figure 4.15: Temperature profile of t he electrons and heavy part icles for case 1 

from table 4.14. 
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Figure 4.16: T he ASDF plotted at different locations of st art ing from t he shock 

front ut ilizing t he experiment al conditions from case 1 of t able 4.14. 
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Figure 4.17: Comput ed and experimental results of ionizing shock in Krypton for 

case 2: Poo = 5.07 Torr, Too = 295.4 K, M a = 15.17. T he values of t he electron 

number density and the total mass density are normalized by t he equilibrium 

values: n: = 1.712 x 1017 cm-3 , p* = 1.708 x 10-4 gjcm3 . Symbols represent 

experimental data for ne and p from Glass et al. (111]. 
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Figure 4.18: Electron number density and heavy particle number density for 

Moo = 13.1 Xe shock. Symbols represent experimental data for ne and nh from 

Ezumi et al. [112]. The freestream conditions are: Poo = 2.00 Torr, Too = 300 K. 
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4.6.2 Unsteady flows

In this section, we performed time accurate calculation of the same test cases

described in the previous section utilizing the calibrated CR model. The shock is

initiated by imposing a uniform flow field on a 1D domain with the right boundary

being a reflective wall. The freestream conditions are T∞ = 293.6 K, p∞ = 5.14

Torr, and u∞ = 4535 m/s. The initial condition corresponds to case 1 of table 4.13

for Argon. This test case were studied previously by Kapper and Cambier [97],

which reveals complex dynamics of the coupling between convection and chemical

kinetics.

In this simulation, the 2T model described in section 2.4 is utilized with de-

tailed kinetic source term as discussed in section 4.4. For the convection term, a

third-order MP scheme is used in conjunction with a RK3 scheme for time inte-

gration. The reason for using a lower order scheme (as opposed to the 5th order

scheme) is due to numerical difficulties encountered in resolving a high density

gradient (up to 10 order of magnitude) at the shock.

The origin of such a high density gradient is due to the activation of the CR

kinetics right after the shock. In this region, the atom-impact processes start

taking place at the rates determined by the post-shock temperature of the heavy

species, therefore populating the excited states at a much higher number density

compared to the freestream values. In addition, the simplified treatment of the

radiative processes also exacerbate the problem. In particular, since the escape

factors are pre-determined from an order of magnitude analysis of the radiative

mean free path, using the same set of escape factors for all the computational cells

causes an artificial radiation in the free steam gas, which effectively lowers the

population of the excited states and also raises the electron temperature2. These

high and low populations of the excited states cause a sharp density gradient

2This electron preheating artifact is specifically due to radiative recombination.
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which makes high-order reconstruction schemes unstable. The use of an lower

order scheme relieve the problem by introducing more numerical diffusion. This

problem can be remedied by including the full solution of radiation transport,

therefore avoiding the escape factors.

The results of the time accurate solutions are shown in figures 4.19 and 4.20

for the total mass density and electron number density, respectively. The highly

unsteady evolution, especially in the induction zone, suggests a non-linear wave

coupling mechanism between the shock and the avalanche layer. The coupling

cycle, as indicated by Kapper and Cambier [97], starts with an initiation of a

pressure wave travelling from the avalanche toward the shock. This pressure wave

causes the shock to accelerate, which results in a reflection of a entropy wave.

As the entropy wave travels toward the avalanche layer, the sensitivity of the

chemical rates to the temperature rise causes an early new avalanche, and the

cycle is repeated. The onset of the new avalanche can be seen most clearly from

figure 4.20.

The time period of these cycles can be estimated from basic wave theory [113]:

τ = l

(
1

a2 − u2
+

1

u2

)
(4.72)

where l is the average induction length, and u2 and a2 are the post shock velocity

and speed of sound. Figure 4.21 shows the density contour on a x − t diagram.

One can clearly see the fluctuation in the induction length, and the periodicity of

the shock structure. These features are strictly time-dependent, and cannot be

revealed in steady-state simulations. The unsteady simulation shows that the sen-

sitivity of the CR cross sections directly translates to the fluctuating mechanism

via non-linear coupling with convection process. It must be pointed out that this

mechanism possesses similar characteristics to instability in gaseous detonation,

which can also be explained by non-linear wave-coupling [75].
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Figure 4.19: Total mass density of ionizing shock in Argon for case 1 of table 4.13. 

Different lines correspond to the solut ions at t he different t imes, and t he arrow 

indicates flow solut ions as t ime increases. T he symbols are the experiment al dat a 

from t he UTIAS experiment [110]. 
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Figure 4.20: Electron number density of ionizing shock in Argon for case 1 of t able 

4.13. Different lines correspond to the solut ions at different times. The symbols 

are the experimental data from the UTIAS experiment [110). 

Figure 4.21: x - t diagram of total mass density p for a Ma 15.9 ionizing shock in 

Argon showing complex dynamics of t he coupling between convection and kinet ics. 

Colormap: min max 
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CHAPTER 5

Complexity Reduction of Collisional-Radiative

Kinetics

This chapter was taken with slight modification from the article “Complexity

reduction of collisional-radiative kinetics for atomic plasma”, published in Physics

of Plasmas [114].

5.1 Introduction

In the previous chapter, we demonstrate the use of the CR model in reproducing

the correct structure of an ionizing shock in monatomic gases. This level of de-

tail is needed for an accurate prediction of high-speed plasma flows. In addition,

the unsteady coupling of the hydrodynamics and CR kinetics leads to physical

phenomena which can, in turn, provide additional information useful for model

validation and/or experimental measurement of various parameters. These CR

models, although very accurate from a physics point of view, can be computa-

tionally very expensive due to the large number of internal states for which the

number densities must be computed. For example, in the ionizing shock test case

shown in section 4.6.1 for Argon, one needs to include excited states beyond the

4s manifold to accurately capture the line radiation responsible for the radiative

cooling region behind the shock.

Due to the large computational workload involved in solving the CR master

equations, simulations incorporating state-to-state kinetics have only been limited
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to zero- or one-dimension with a few exceptions of two-dimensional calculations

[115, 116, 90]. For example, the run-time for solving a set of rate equations for the

CR kinetics of atomic hydrogen scales as the cubic power of the size of the ASDF

when an implicit, backward-Euler method is employed. While better scaling laws

could be obtained with iterative and more approximate schemes, their accuracy

and stability for extremely stiff problems is still an issue.

The development of very efficient and accurate schemes for CR kinetics is still

an ongoing research topic which will be presented elsewhere; here, we discuss

a different approach, consisting of lowering the complexity of the calculations

by developing a reduced-order kinetic model suitable for multi-dimensional flow

calculations while maintaining a sufficient level of detail required to accurately

model the plasma.

Several mechanism reduction schemes have been proposed in the literature

with applications to various types of kinetics. Colonna et al. [117] utilize a two-

level distribution model to study nitrogen dissociation rates in recombining flows,

in which all the vibrational levels except for the last level are modeled by a single

energy equation with an assumption of a Boltzmann distribution, and the last

vibrational level is modeled using state-to-state kinetics to take in account the

non-equilibrium effects of the upper states. Magin et al. [36] have developed a

rovibrational collisional coarse-grain model to characterize the internal energy ex-

citation and dissociation processes of nitrogen flow behind a strong shock wave.

The coarse-grain model is derived by lumping the rovibrational energy levels into

groups, in which the population is described by a uniform distribution. Guy et

al. [37] proposed a multi-internal-temperatures models for a vibrationally non-

equilibrium flow, in which the vibrational distribution is divided into two or three

groups, each with its own vibrational temperature. Liu et al. [118], on the other

hand, proposed a mechanism reduction to CR models based on the multi-group

maximum entropy principle with the constraints being the macroscopic parame-
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ters.

In this chapter, we examine several different level grouping schemes for the

state-to-state kinetics of atomic electronic states. The first approach is similar to

that of Magin et al. [36] for the rovibrational collisional coarse-grain model, and

therefore is based on uniform (U) binning of the levels. The second approach here

consists of grouping levels into groups with an assumed Boltzmann (B) distribu-

tion, allowing a higher-order description of the ASDF. In this case, the effective

excitation temperatures are evolved in time by conserving a set of moments of

the distribution function; the most obvious solution is to solve for number density

and energy, similar to Guys et al.’s approach [37]. However, we will show that

a different set of moment variables of the same order should be used, due to the

specific nature of the ASDF.

The method developed here can be applied to a wide range of state-to-state ki-

netics models including the rovibrational [36, 58] (RVC) and vibrational [119] (VC)

collisional models or the electronic collisional-radiative model [90, 91, 120, 121].

In the interest of simplicity, we consider here the collisional-radiative (CR) model

of atomic Hydrogen, using classical models for the level energies and rates; the ac-

tual values of these parameters is unimportant here, as long as the structure of the

ASDF is representative of the actual species, notably the geometric progression

of the level energies of the ASDF and the stiffness ratio. The level grouping tech-

niques are applied to reduce the cost of solving the full master equations and the

results are compared with the reference solution computed from the full master

equations.
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5.2 Collisional-Radiative model

5.2.1 Definitions and rates

As mentioned above, we consider here the ASDF of atomic Hydrogen coupled to

electron impact excitation and ionization, and the reverse processes (respectively

deexcitation and recombination), as well as the radiative rates for line transitions

in an optically-thin approximation. Radiative recombination is neglected and all

radiation absorption is ignored, as is free-free (Bremsstrahlung) emission, since

this does not directly affect the atomic level populations1. The atomic states of

the Hydrogen atom are listed as a function of their principal quantum number

(n) only, following the Bohr atomic model; the splitting of states with respect to

orbital and spin numbers is ignored, and all states have a degeneracy gn = 2n2.

The states number from n = 1 to ∞ and we consider a finite number of states

n = 1, . . . ,M <∞ before reaching the ionization limit2. In this simplified model,

the energy of each state is given as En = IH (1−1/n2), as measured from the

ground state (E1 ≡ 0), and we will denote by In= IH (1/n2−1/M2)≃ IH/n2 the

energy required for ionization of level n.

The classical form of the cross-section for energy exchange between a free

electron and the atom [83], leading to an excitation from level n to level m > n

is:

σenm = (4πa20)
I2H (E −∆Enm)

EnmE2
· (3fnm) (5.1)

where a0 is the Bohr radius, E is the energy of the free electron, ∆Enm = Em−En
1Two of the test cases considered here are isothermal, i.e. Te =constant. The third test case

has a variable Te but is designed only to test energy conservation, and hence radiative energy
losses would not serve this purpose.

2Strictly speaking, the ionization limit IH is attained for n → ∞. In reality, the ionization
potential is lowered as a result of interaction with the plasma (Debye shielding) and quantum
uncertainty. In practice, the truncation is accomplished at a lower limit still; for the current
purpose, details of this truncation procedure can be ignored. Suffice to say that the series
extends to a number n = M , which can be considered large, e.g. O(100).
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is the energy gap between n and m and fnm is the oscillator strength:

fnm =
32

3π
√
3

1

n5

1

m3

1
(

1
n2 − 1

m2

)3 (5.2)

The free electrons are assumed to follow an isotropic Maxwellian distribution,

i.e., equation (4.11). The rate of excitation is obtained by averaging over the

distribution function:

αe(m|n) =
ve

(kTe)2

∫ ∞

Enm

σenm(E)Efe(E)dE, (5.3)

leading to

αe(m|n) = (4πa20)ve

(
IH
kTe

)2

(3fnm)ψnm (5.4)

where

ve =

(
8kTe
πme

) 1
2

, ψnm =
e−xnm

xnm
−E1(xnm) and E1(x)=

∫ ∞

x

e−y

y
dy (5.5)

Here, ve is the mean thermal electron velocity, xnm = ∆Enm/kTe and E1 is the

exponential integral. The reverse rate can be found from detailed balance:

βe(n|m) =
n2

m2
e+xnm · α(m|n) (5.6)

We use the low temperature approximation [83] (xnm >> 1)

E1(x) ≃
e−x

x

(
1− 1

x

)
, (5.7)

in which case:

αe(m|n) ≃
[
4πa20 ·

32

π
√
3
· ve
]

e−xnm

n5m3(n−2 −m−2)5
(5.8a)

βe(n|m) ≃
[
4πa20 ·

32

π
√
3
· ve
]

1

n3m5(n−2 −m−2)5
(5.8b)

The factor in brackets is an upper bound, which is reached for the upper states

when xnm → 0. Another scale is the factor IH/kTe in xnm, which is effectively

responsible for the stiffness. If that factor is very low (high temperatures), all
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rates are of the same order; at low temperatures, the exponential term dominates

and the range of time scales is increased.

The cross-section for ionization by electron impact has a form similar to (5.1),

i.e.:

σen = (4πa20)
I2H (E − In)

InE2
(5.9)

This leads to an ionization rate coefficient [83]:

αe(+|n) = (4πa20)ve

(
IH
kTe

)2

ψ(xn) (5.10)

The final state (+| is an ionized state, i.e. where one electron initially bound to

the atom has reached the ionization limit (n =∞) and is part of a free continuum

of states. Using the principle of detailed balance, the reverse (recombination) rate

is:

βe(n|+) ≃
[
4

π

a20h
3

m2
ekTe

](
IH
kTe

)2

n2ψ(xn)e
xn (5.11)

Using the same low temperature approximation (5.7), we obtain [83]:

αe(+|n) ≃(4πa20)
(
8kTe
πme

)1/2

n4e−xn (5.12a)

βe(n|+) ≃
[
4

π

a20h
3

m2
ekTe

]
n6 (5.12b)

The rates of radiative transitions between levels can also be obtained classically

for the Hydrogen atom [86]. The spontaneous emission rates from an upper level

m are:

A(n|m) =

(
8π2e2

mec3

)
gn
gm

fnm =
1.6× 1010

m3n(m2 − n2)
sec−1 (5.13)

The expression on the right is for atomic Hydrogen only.

5.2.2 Master equations

Once all the macroscopic rates are obtained, we can construct the master equations

describing the collisional-radiative kinetics of all levels. In this study we consider
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atomic Hydrogen, which has only one ion state, and only electron collisions, which

allows us to remove the super-script e in the rate definition hereafter. The rate of

change of the population density of a level n is thus written as:

dNn

dt
=−

∑

m>n

α(m|n)NeNn +
∑

m>n

β(n|m)NeNm +
∑

m>n

A(n|m)Nm

+
∑

m<n

α(n|m)NeNm −
∑

m<n

β(m|n)NeNn −
∑

m<n

A(m|n)Nn

− α(+|n)NeNn + β(n|+)N+N
2
e

(5.14)

Similarly, we can write another equation for the rate of change of the population

density of the ions according to the rate of ionization or recombination:

dN+

dt
=
∑

n

α(+|n)NeNn −
∑

n

β(n|+)N+N
2
e (5.15)

Finally, the electron density is related to the ion density by the charge neutrality

condition:

Ne =
∑

q

ZqNq (5.16)

We will compute the time evolution of a uniform plasma; if we assume a con-

stant temperature bath, the conservation equations above constitute a complete

set, but for constant-volume conditions – with time variation of the temperature

– there is also conservation equation for the electron energy, which will be exam-

ined in more detail in section 5.5. The task of deriving a reduced model for the

CR kinetics aims at modeling the shape of the atomic state distribution function

(ASDF) at a lower computational cost compared to that required to solve the

full master equations, while maintaining sufficient accuracy to capture the non-

equilibrium effects. The most natural way to accomplish this is to partition the

excited states into groups or “bins”, therefore reducing the number of variables in

the system. Various assumptions can be made about the internal structure of each

group, i.e. the distribution of states within the groups, and various approaches to

solving the group-based variables can be devised.
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5.3 Level grouping strategies

5.3.1 Uniform grouping

Consider a group of M individual levels i = {n0, . . . , nM−1}, abbreviated as i ∈ n
and denote the group, or “bin” number by n; hereafter, n,m, . . . are the group

indices and i, j, . . . are level indices. This first approach to model reduction is

essentially a zeroth-order approximation of the internal3 distribution function,

where only one moment variable, either the total number density of the group or

the total excitation energy of the group, is required. The traditional choice is to

conserve the total number density of the group, i.e., Nn =
∑

i∈nNi. Using (4.32),

a Boltzmann approximation of the internal partition function Zn is obtained by4:

Nn = Nn0

∑

i∈n

Ni

Nn0

≃ Nn0

gn0

∑

i∈n
gie

−∆Ei/Tn

︸ ︷︷ ︸
Zn

(5.17)

where ∆Ei = Ei−En0 is the difference in energy between the level i and the first

level of the group, n0. The approximation of a group with uniform internal distri-

bution is equivalent to having a characteristic group temperature Tn approaching

infinity, compared to the total energy width of the group, i.e.:

Zn → gn =
∑

i∈n
gi (5.18)

where gn is the overall group degeneracy. The simplest model therefore consists

of assuming all levels within the group to be distributed uniformly, i.e., weighted

by the level degeneracy

Ni =
gi
gn
Nn (5.19)

3That is, within the group.
4For further ease of notation, the Boltzmann constant k is not explicitly written.
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The rate equation for a group n is obtained by summing the master rate equations

(5.14-5.15) for all the levels i within the group, and utilizing relation (5.17):

dNn
dt

=−NeNn
[∑

m>n

∑

i∈n

gi
gn

∑

j∈m
α(j|i) +

∑

m<n

∑

i∈n

gi
gn

∑

j∈m
β(j|i)

]

+NeNm
[∑

m<n

∑

i∈n

∑

j∈m

gj
gm
α(i|j) +

∑

m>n

∑

i∈n

∑

j∈m

gj
gm
β(i|j)

]
(5.20)

−Nn
[∑

m<n

∑

i∈n

gi
gn

∑

j∈m
A(j|i)

]
+Nm

[∑

m>n

∑

i∈n

∑

j∈m

gj
gm
A(i|j)

]

−NeNn
[∑

i∈n

gi
gn
α(+|i)

]
+N2

eN+

[∑

i∈n
β(i|+)

]

Similarly for the ion state, one obtains:

dN+

dt
=Ne

∑

n

Nn
[∑

i∈n

gi
gn
α(+|i)

]
−N2

eN+

∑

n

[∑

i∈n
β(i|+)

]
(5.21)

The terms within brackets in equations (5.20-5.21) contain effective rates for the

groups, which can be pre-computed. For example, in the first term on the right-

hand-side of equation (5.20),

α̃(m|n) =
∑

i∈n

gi
gn

∑

j∈m
α(j|i)

is an effective excitation rate from group n to group m. Note that since this

model does not require computing an excitation temperature Tn, all the effective

transition rates between the groups can be expressed as a function of the kinetic

temperature Te only. It is important to emphasize that the grouping of levels is

applied on the high energy states only; thus in any simulation we must choose a

number of low-energy, “resolved” levels, as well as a variable number of groups

combining the upper states. The number of discrete states, the number of groups

and their widths are variable parameters of the model, whether we use uniform

binning as above, or Boltzmann internal distributions, discussed below. In order

to bound this parameter space (optimization is beyond the scope of the present

work), we need to provide a reference solution, such that the population density
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of each level can be compared to the one reconstructed from the assumed internal

distribution within each group. Figure 5.1 shows the evolution of the electron

density computed from the master equations. This test corresponds to a strong

ionization regime and the time evolution of the ASDF shows an increasing popu-

lation of the higher atomic levels while the electron density grows exponentially.

It also demonstrates the effect of the number of levels included in the simulation,

i.e. using a fewer number of atomic states has an impact on delaying the onset of

the electron avalanche. This indicates that ionization from the high-energy states

is an important process, and therefore the evolution of the upper states must be

accurately captured. We could always increase the size of the ASDF to obtain

higher accuracy, but with diminishing return; ultimately, the time-resolution of

interest and the accuracy threshold dictate the number of levels required in a sim-

ulation. The mapping between the practical requirements and ASDF size is not

a straightforward matter, but is an issue beyond the scope of this work. Conver-

gence studies with respect to the size of the system showed that beyond 20 levels,

there were no discernible differences in the results – see Figure 5.1. Thus, we chose

our reference solution to be the one obtained for 20 levels, and all level-grouping

models investigated here will be based on this extent of the ASDF.

5.3.2 Boltzmann grouping - number and energy

Several assumptions can be made regarding a Boltzmann-like structure within

the group. Panesi et al. [121] and Munafo et al. [122] rely on the the assumption

that the population within a group follows a Boltzmann distribution at the ki-

netic temperature, i.e. in this case, Tn ≡ Te. This approach is only valid if the

rates of exchange between the levels within the group are much faster than the

exchange rates with levels outside the group; otherwise, one could then assume

that the entire ASDF is governed by Te and is always in Boltzmann equilibrium.

The validity of this assumption is highly questionable for atomic state popula-

128

D-156



1022 
3 levs ----+----
5 levs ·- ··-•··- ·· 

1020 7 levs ··········EI····· _........ 
10 levs <') · ·· ·· G·· ·· · 

I 20 levs s -----~---·· 
...___., 40 levs 
:c 1018 
•U) 
s:: 
<!) 

'"0 
1016 10 

"S 
;:::l 
z 1014 

1012 
0 5 10 15 20 25 30 35 40 45 

time (microsec) 

Figure 5.1: Time evolut ion of the elect ron number density using different total 

number of at omic levels. The electron temperature is set at 3.0 eV. 

t ions5 . Furt hermore, when different collision partners must be considered, the 

kinetic temperature can be eit her that of t he heavy particles or the electrons (e.g. 

electron-impact excitation and heavy impact quenching); in t his case, choosing 

either one of the kinet ic temperature can impact on the results. 

In order to accurately describe the population of a group wit h a Boltzmann 

distribut ion, two moment variables of the ASDF need to be conserved. These

lection of these variables, however, can be arbitrary. Guy et al. [37) conserved 

the total number density of the group and t he average excit at ion energy; these 

respectively correspond to zeroth- and first-order moment variables, and would 

appear to be a nat ural choice. Consider the total number of states Nn - defined in 

equat ion (5.17)- and the total energy within the bin En = L_iEnEiNi, for which 

5In a log-plot , this model assumes that t he slope within each "bin" is always the same, and 
is not related to the average slope determined by the difference between adjacent bins. 

129 

D-157 



we can write conservation equations, derived from (5.14):

dNn
dt

= −NeNn
[∑

m>n

∑

i∈n

gie
−∆Ei/Tn

Zn
∑

j∈m
α(j|i)

+
∑

m<n

∑

i∈n

gie
−∆Ei/Tn

Zn
∑

j∈m
β(j|i)

]
+ . . .

(5.22a)

dEn
dt

= −NeNn
[∑

m>n

∑

i∈n

gie
−∆Ei/Tn

Zn
∑

j∈m
Eiα(j|i)

+
∑

m<n

∑

i∈n

gie
−∆Ei/Tn

Zn

∑

j∈m
Eiβ(j|i)

]
+ . . .

(5.22b)

For sake of brevity, we did not write the entire list of contributions in (5.22), which

can be easily derived from (5.20) by generalizing the weighting factors gi/gn to

gie
−∆Ei/Tn/Zn, and similarly for other groups. By solving for total number and

total energy of each group, according to equations (5.22a-5.22b), we can guaran-

tee direct conservation of both mass (total number of levels Nn) and energy (En).
However this approach presents some problems in determining the internal Boltz-

mann temperature, as will now be shown. First, let us define a total group/bin

energy measured from the lower bound, i.e. ∆En =
∑

i∈n(Ei − En0)Ni; the rate

of change of this shifted energy is still given by the right-hand-side of equation

(5.22b). We can then write:

∆En =
Nn0

gn0

∑

i∈n
gi∆Ei e

−∆Ei/Tn = Nn〈∆E〉n (5.23)

where

〈∆E〉n =
1

Zn
∑

i∈n
gi∆Ei e

−∆Ei/Tn = T 2
n

d

dTn
ln(Zn) (5.24)

is the average group energy measured from the first internal level. Similarly, a

specific heat at constant-volume can be determined, i.e.:

Cv(Tn)=
d

dTn
〈∆E〉n=T−2

n

[∑
i∈n gi(∆Ei)

2e−∆Ei/Tn

Zn
− 〈∆E〉2n

]

= T−2
n

[
〈∆E2〉n−〈∆E〉2n

]
(5.25)
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Since Nn and En are conserved variables, we obtain new values at each time level

(k) and in order to compute the Boltzmann temperature Tn, we need to iterate

the equation

〈∆E〉n(T ∗
n) + Cv(T

∗
n)δT

∗
n =

∆E (k)n

N (k)
n

(5.26)

where T ∗
n is the running iterated value, until convergence (δT ∗

n ≃ 0). However, the

slope of the curve 〈∆E〉n(Tn) is extremely flat at low temperature, i.e. Cv → 0. In

fact, when Tn → 0, to the leading order we have: Nn ≃ Nn0 o(1+ǫ), 〈∆E〉n ≃ o(ǫ)

and Cv(Tn) ≃ o(ǫ), where ǫ = e−∆E1/Tn is a small parameter. Therefore during the

iterations δT ∗
n = o(ǫ)/o(ǫ) and arbitrary temperature solutions can be obtained.

Our studies showed that indeed, numerical instabilities prevent us from obtaining

satisfactory solutions in many test cases. While it is possible to introduce limiters

to prevent unphysical or improbable values and stop the iteration counters, this

is not a satisfactory solution to the problem. We should also emphasize that

the problem occurs when Tn is small, which does not imply that electronic levels

are unpopulated, since we may very well have small internal group temperatures

as a result of initial conditions or running iterations, but non-negligible overall

electronic excitation (Nn 6= 0)6.

5.3.3 Boltzmann grouping - partitioning

In the approach above, we are dealing with two reduced values Nn and En (or

∆En) which are both summations over the internal levels. An alternative may

consist of keeping one of the level populations as a variable. Therefore we could

instead choose for each group n to conserve the population of the lowest level in

that group Nn0 and Nn, whose evolution is given by a form similar to equation

(5.22a). To evaluate the Boltzmann temperature of the group, we now have at

6Note that this problem is particularly relevant to ASDF kinetics because of the geometric
progression of the energy levels. By performing tests on a pseudo-atom with equidistant energy
levels, stability of the iterations was much improved, although not entirely eliminated for some
conditions.
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time step (k), from (5.17):

N (k)
n =

N
(k)
n0

gn0

∑

i∈n
gie

−∆Ei/Tn =
N

(k)
n0

gn0

Zn(T (k)
n )

so that in order to evaluate the new bin temperature T
(k)
n we need to solve

Zn(T ∗
n) +

(
dZn
dTn

)
δT ∗

n =
N (k)
n

N
(k)
n0

gn0 (5.27)

until convergence. Using (5.24), this leads to:

δT ∗
n ≃

T ∗2
n

Zn(T ∗
n)〈∆E〉n(T ∗

n)

[
N (k)
n

N
(k)
n0

gn0 −Zn(T ∗
n)

]
(5.28)

where, again, the dependencies on temperature have been explicitly written. At

low Tn, the denominator is o(ǫ)(1+ǫ) and the numerator is a difference between two

terms of o(1+ǫ). Therefore, the iterative procedure is again numerically unstable.

To attempt to alleviate this problem, we have examined yet another approach:

for each group n we conserve the population of the lowest level in that group Nn0

and N ′
n, the total population of the remaining upper states n′ of that group, such

that n = n0 ∪ n′. This is an effective partitioning within the group, which allows

us to separate the variables, one of o(1) and the other of o(ǫ). Clearly, we have

now:

N ′
n =

Nn0

gn0

∑

i∈n′

gie
−∆Ei/Tn

︸ ︷︷ ︸
Z′

n

using Ni =
N ′
n

Z ′
n

gie
−∆Ei/Tn (5.29)

In order to evaluate the new temperature from the two conserved variables, we

iterate on δT ∗
n using a form similar to equation (5.27):

Z ′
n(T

∗
n) +

(
dZ ′

n

dTn

)
δT ∗

n =
N ′(k)
n

N
(k)
n0

gn0 (5.30)

However, it is easy to see that since d
dT
Z ′ ≡ d

dT
Z, we obtain a similar equation to

(5.28):

δT ∗
n ≃

T ∗2
n

Z ′
n(T

∗
n)〈∆E〉n(T ∗

n)

[
N ′(k)
n

N
(k)
n0

gn0 −Z ′
n(T

∗
n)

]
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In the same limit Tn → 0, both numerators and denominators are of o(ǫ) and

the temperature iterations are again unstable; this was verified through extensive

tests under a variety of conditions and configurations. To avoid this systematic

numerical problem, we must consider another way to evaluate the Boltzmann

temperature inside each group.

Consider instead the following expansion of the partition function near the

mean relative energy value ∆En = 1
gn

∑
i∈n gi∆Ei. Defining δi ≡ ∆Ei −∆En as

the shifted energy gap, we have:

Zn(Tn) =
∑

i∈n
gie

−∆Ei/Tn = e−∆En/Tn
∑

i∈n
gie

−δi/Tn

= e−∆En/Tn
∑

i∈n
gi

[
1− δi

Tn
+

1

2

δ2i
T 2
n

+ . . .

]
(5.31)

≃ gne
−∆En/Tn

[
1 + o(〈δ2〉/T 2

n)
]

where gn is the total degeneracy - see equation (5.18). Therefore, up to second

-order in the approximate ratio of the bin width to the temperature, the partition

function can be approximated by a single exponential function and the relation

(5.31) can be inverted. If we use the (Nn0 ,N ) pair of conserved variables, we

have:
N (k)
n

N
(k)
n0

g0 = Zn(T (k)
n ) ≃ gne

−∆En/T
(k)
n (5.32)

However, the left-hand-side of (5.32) is o(1+ǫ), and the right-hand-side should be

as well. To see that this is the case, consider the first terms in the expansion of

(5.31)7:

Zn(Tn) ≃ e−∆En/Tn
[
g0e

−(∆E0−∆En)/Tn + g1e
−(∆E1−∆En)/Tn + . . .

]

Since ∆E ≃ ∆E1 and ∆E0 ≡ 0, the right-hand-side is o(ǫ)[o(1/ǫ) + 1 + . . .] ≃
o(1+ǫ). Again, this is not a desirable situation, since the evaluation of the group

7We have here temporarily simplified the notation (g0 ≡ gn0
, g1 ≡ gn0+1, . . .).

133

D-161



temperature Tn is of the form 1/ ln(1+ǫ), and is subject to significant errors. Fur-

thermore, by computing the average gap ∆E from the lower-bound of the energy

bin, the requirement 〈δ〉 ≪ Tn may be hard to justify at low group temperature.

Instead, we can take advantage of the self-similar structure of the atomic

spectrum (exact for Hydrogen, approximate for other atoms) and the fact that

the energy gaps become narrower as the level index increases. Thus, let us define

the average energy counting from the first level above the lowest level, as obtained

from Z ′
n, defined in equation (5.29):

Z ′
n =

∑

i∈n′

gie
−∆Ei/Tn = e−∆E′

n/Tn
∑

i>n0

gie
−δ′i/Tn (5.33)

By definition of the mean, the first-order term in the expansion of the exponential

on the right-hand-side should be:
∑

i∈n′ giδ
′
i=0, where now δ′i≡∆Ei−∆E ′. This

yields:

∆E ′ =
1

g′n

∑

i∈n′

gi∆Ei with g′n =
∑

i>n0

gi (5.34)

Therefore ∆E ′ differs from ∆E only by a normalization factor, since ∆E0 ≡ 0.

Note that ∆E ′ > ∆E1 and to lowest-order, Z ′(Tn) ≃ g′ne
−∆E′

n/Tn ≃ o(ǫ). Using

the conserved pair (Nn0 ,N ′), the group temperature is now estimated by:

N ′(k)
n

N
(k)
n0

gn0 = Z ′
n(Tn) → T (k)

n ≃ − ∆E ′
n

ln
[
N ′

n

g′n

gn0

Nn0

] ≃ − 1

ln(ǫ)
(5.35)

This is now a stable computation when ǫ → 0. Furthermore, the approximation

〈δ〉 ≪ Tn is more justifiable since the largest value (δ0 = En0 − ∆E) is removed

from the average.

We see that we now have the means to compute the internal group temperature

from conserved variables without risking fatal numerical errors; this is possible

only by separating the lowest and upper levels within the group, i.e. by performing

a sub-scale, internal partitioning of the group8. This is the approach used here

8This approach is a reflection of the self-similar structure of the atomic levels.
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for the last Boltzmann (hereafter denoted as B5) group we investigated, for which

the appropriate pair of conserved variables to use is therefore (Nn0 ,N ′
n). Note

that it is also possible to improve on the temperature evaluation by incorporating

all higher-order terms into the definition of the total degeneracy, i.e.:

Z ′
n(Tn) = g̃′n(Tn)e

−∆E′
n/Tn → dZ ′

n

dTn
= Z ′

n(Tn) ·
[
∆E ′

n

T 2
n

+
d

dTn
ln g̃′n

]
(5.36)

If T ∗
n is the running iteration, first evaluated by (5.35), successive estimates of

T
(k)
n are obtained, using (5.36), from:

T (k)
n − T ∗

n =
lnZ ′

n(T
(k)
n )− lnZ ′

n(T
∗
n)

d lnZ′
n

dTn
(T ∗

n)
where Z ′

n(T
(k)
n ) = gn0

N ′(k)
n

N
(k)
n0

(5.37)

This iterative procedure can rapidly converge (as demonstrated in our tests) be-

cause we have an excellent approximation of the initial temperature from the

lowest-order direct evaluation (5.35), and the o(ǫ) term has been factored as the

leading term in the expansion. In other words, g̃′n(Tn) is a smooth function of

temperature with a non-vanishing gradient, allowing gradient-descent iterations.

5.3.4 Boltzmann grouping - effective rates

As before, the master equations are used to derive the conservation equations for

the two new variables (Nn0 ,N ′
n), by setting i = n0 for the first one, and summing
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over all levels j ∈ n′ in the second case. The latter yields the following:

dN ′
n

dt
=−NeN ′

n

[∑

m>n

∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

∑

j∈m
α(j|i) +

∑

m<n

∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

∑

j∈m
β(j|i)

]

+NeNm
[∑

m<n

∑

i∈n′

∑

j∈m

gje
−∆Ej/Tm

Zm
α(i|j) +

∑

m>n

∑

i∈n′

∑

j∈m

gje
−∆Ej/Tm

Zm
β(i|j)

]

−N ′
n

[∑

m<n

∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

∑

j∈m
A(j|i)

]
+Nm

[∑

m>n

∑

i∈n′

∑

j∈m

gje
−∆Ej/Tm

Zm
A(i|j)

]

−NeN ′
n

[∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

β(n0|i) +
∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

A(n0|i)

]

−NeN ′
n

[∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

α(+|i)

]
+N2

eN+

[∑

i∈n′

β(i|+)

]

(5.38)

Note that we have used the total number Nm = Nm0 +N ′
m and the group to-

tal partition function Zm = gm0+Z ′
m in the expressions on the right hand side,

only as a way to group terms and lead to simpler expressions; the conserved vari-

ables remain Nm0 and N ′
m. Equation (5.38) takes in account all the interactions

between the groups, assuming the Boltzmann distribution approximation within

each group. The effective rates for group transitions can be expressed (and tab-

ulated) as a function of two temperatures: the kinetic temperature Te and the

group excitation temperature Tn. Notice also that because of the bin-averaging,

the effective radiative transition rates have also become temperature-dependent

(Tn).

Similarly, the rate of change of the number density of the ground state of each
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group is:

dNn0

dt
=−NeNn0

[∑

m>n

∑

j∈m
α(j|n0) +

∑

m<n

∑

j∈m
β(j|n0)

]

+NeNm
[∑

m<n

∑

j∈m

gje
−∆Ej/Tm

Zm
α(n0|j) +

∑

m>n

∑

j∈m

gje
−∆Ej/Tm

Zm
β(n0|j)

]

−Nn0

[∑

m<n

∑

j∈m
A(j|n0)

]
+Nm

[∑

m>n

∑

j∈m

gje
−∆Ej/Tm

Zm
A(n0|j)

]

+NeN ′
n

[∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

β(n0|i) +
∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

A(n0|i)

]

−NeNn0

[
α(+|n0)

]
+N2

eN+

[
β(n0|+)

]

(5.39)

Again, using the total number of levels Nm = Nm0 +N ′
m on the right-hand-side

allows us to consider together transitions between lowest states at the boundaries

of different groups (Nn0 − Nm0), as well as the transitions with the excited sub-

partitions (Nn0−N ′
m) and simply the expressions. Since the ion is conserved here

as an individual state, the rate of change of its number density remains the same

but can be rewritten in terms of the group number densities:

dN+

dt
=Ne

∑

n

Nn
[∑

i∈n

gie
−∆Ei/Tn

Zn
α(+|i)

]
−N2

eN+

[∑

n

∑

i∈n
β(i|+)

]
(5.40)

Each term in brackets in equations (5.38-5.40) is an effective rate for transfer

between the group variables (Nn0 ,N ′
n), ∀n. As mentioned in 5.3.1, both individual

levels and groups (Uniform or Boltzmann) are considered when solving the ASDF.

The few individual states are the lowest in the energy scale, with the largest

successive gaps, while the multitude of upper levels is distributed into a variable

number of groups. This is justified on the basis of the kinetic rates, and as

justification of the expansion (5.31).
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Model Variables Equations Tn evaluation

U Nn (5.20-5.21) none

B1 (Nn, En) (5.22a-5.22b, 5.40) Cv – unstable

B2 (Nn0 ,Nn) (5.39,5.22a) Cv – unstable

B3 (Nn0 ,N ′
n) (5.39,5.38) Cv – unstable

B4 (Nn0 ,Nn) (5.39,5.22a) equation (5.31) – unstable

B5 (Nn0 ,N ′
n) (5.39,5.38) equation (5.33) – stable

Table 5.1: Summary of level-grouping models investigated.

5.4 Accuracy of uniform and Boltzmann methods

5.4.1 Isothermal ionization test case

In the previous section, we have discussed several approaches to the level grouping

strategy; these are summarized in Table 5.1. This sequence of models was devel-

oped as a result of preliminary tests and the failure to obtain converged solutions

for the group Boltzmann temperature Tn in many instances. Thus, we found that

the only model which was able to provide stable and satisfactory solutions for all

test cases was model B5, using a sub-partition of the group into the ground level

n0 and the remainder, and the use of the form (5.33) for the partition function,

which allowed us to factorize out the vanishingly small terms at low Tn. There-

fore, considerations of the “equation of state” of the Boltzmann group dictated the

correct approach to use here, and while all the models explored are listed in table

5.1, only the zeroth-order uniform binning described in 5.3.1 and the B5 models

are shown here and compared to the reference solution obtained from solving the

full master equations; these are indicated as (U) and (B) models respectively.

We conducted a large number of additional tests but for the sake of brevity,

we are showing here the results of three representative cases: the initial conditions
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Case Te xe = N+/NH Nn

1 3 eV - isothermal 10−9
(1− xe)NH for n=1

10−20NH otherwise

2 1 eV - isothermal Saha (3 eV) Boltzmann (3 eV)

3 3 eV - isochoric 10−9
(1− xe)NH for n=1

10−20NH otherwise

Table 5.2: Initial conditions of test cases. For all cases, the total atomic density

NH is 1021 m−3.

are summarized in Table 5.2. For all the results shown in this section, a constant

time step of 10−7 second had been used for the test cases in the ionization regime

(cases 1 and 3), and a time step of 10−5 second was used for the recombination

regime (case 2); the same backward-Euler scheme of 3.2 was used throughout.

As indicated in 5.3, the reference solution is based on the detailed kinetics for

20 atomic levels, while the group-based solutions will be based on a few low energy

levels individually monitored, and with partitioning of the remaining upper states

into a variable number of groups. The first test case is the iso-thermal relaxation

in the excitation and ionization regime, i.e. the initial population of excited states

and electron density is well below equilibrium9. This test case is the same as the

one shown in Figure 5.1 for a variable number of electronic levels, solving for the

full master equations (5.14-5.15). As the plasma relaxes towards equilibrium, an

increasing number of electronic levels become populated and the electron number

density grows exponentially, until an ionization cascade occurs. The rates increase

very rapidly just before equilibrium, and the system becomes very stiff.

Figure 5.2 shows a comparison of the number densities of all the atomic states

9Since we are considering electron collisions only, all test cases must start with an initial
degree of ionization xe 6= 0.
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Method Error 

3 levels + 1 U-group 2618% 

3 levels + 1 B-group 89.2% 

4 levels + 1 U-group 165.8% 

4 levels + 1 B-group 23.7% 

6 levels + 1 U-group 20.9% 

6 levels + 1 B-group 0.9% 

Table 5.3: Relative error on electron density at peak rate of growt h (approx. 33 

J.LSec ). 

for the iso-t hermal test case (#1). In this simulat ion, t he ground state and the 

first 4 excited states (1, . . . , 5) are conserved as discrete levels while the remain

ing upper states (6, . . . , 20) are part itioned into two groups, each of which has 

either a uniform or Boltzmann dist ribution. There are both significant and subtle 

differences in the t races of the upper states. First, comparison of t he uniform 

(Figure 5.2-b) and Bolt zmann (Figure 5.2-c) grouping shows t he influence of the 

assumed int ernal distribut ion, as the reconstruct ed levels of the groups are clearly 

separated in the uniform case. Second, comparison wit h the reference solution of 

Figure 5.2-a shows t hat the Boltzmann groups are clearly more accurate. Slight 

differences remain in the very early stages of evolution10 below 1 J.LSec for example 

and around 10 J.LSec. 

The combined effect of the number of resolved lower levels and grouping st rat

egy is shown in Figure 5.3. Generally speaking, one can clearly observe a dramatic 

improvement, for t he same number of resolved levels, by switching from a uniform 

to Boltzmann group11. By selecting the time of maximum rate of growt h of the 

10This understandably so, since the ladder-climbing process of the early evolut ion would be 
difficult to describe with grouping methods, even by 1s t -order approximat ion of the internal 
distribution within the groups. 

11 By coincidence, the results of uniform binning for 6 resolved levels is right on top of the 
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(c) Solution with 5 levels and 2 Boltzmann groups. 

Figure 5.2: Comparison of the time evolut ion of the excited states during the isothermal 

heating test case (Te = 3 eV). From top to bottom: (a) full solution with 20 levels; (b) solution 

with 5 levels and 2 Uniform groups; (c) solution with 5 levels and 2 Boltzmann groups. The 

first excited state - H(2) - is the top curve, followed by the next higher level, etc. 
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Figure 5.3: Comparison between the solution obtained using both level grouping 

approaches. The solid line represents the full solut ion. 

electron density as the approximate location of t he avalanche ionization, we can 

measure the relative error in density. As shown in Table 5.3, the error can be very 

substant ial unless there is sufficient resolut ion of the ASDF kinetics, t hrough the 

number of resolved lower levels and a higher-order (B) descript ion of t he groups. 

This is important when comparing, for example, wit h time-gated experimental 

results. 

By conserving more discret e states and reducing the size of the upper state 

groups, t he results are of course significant ly improved. This is to be expected for 

ASDF kinetics, since the energy gaps are larger for the first levels, and grouping 

together t hese states would be less accurate, first by yielding excessive bin energy 

widt hs compared to mean energy and temperature scale - violat ing the validity 

condit ion for t he expansion (5.31) - and also by disallowing potent ial deviat ions 

from Boltzmann equilibrium in the most populated range of excited st ates. 

solution for a Boltzmann group with 4 lower levels. 
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Figure 5.5: Boltzmann temperature of the upper states 
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There can of course be variations in the grouping strategy, but in all cases

the general guidelines of keeping the widths of the groups small and the levels

with the largest energy gaps as individual states are perfectly consistent with the

objective of computational cost reduction, since the discrete lower energy states

evolve more slowly and the upper states are numerous and have similar energy12.

The relative accuracy of the grouping approaches can also be seen in Figure 5.4

where the ASDF is plotted at four different instances of time corresponding to t =

10, 20, 30 and 40 µsec. Both solutions with level grouping are obtained from using

3 atomic levels and 1 group of upper states. It is clearly seen that the Boltzmann

group gives a more accurate representation of the upper states distribution during

the heating process. We also showed in Figure 5.4 the results of a simplified model

where it is assumed (see section 5.3.2) that all groups have the same internal

temperature, equal to the kinetic temperature, i.e. Tb(i) ≡ Te, ∀i (dashed line).

This assumption is clearly violated, as shown in Figure 5.5, although the difference

remains mostly confined to the upper states distribution. We should point out

again that significant differences would be expected in a two-temperature kinetic

system, i.e. including heavy-particle collisions.

We note also that the ASDF from the full solution indicates that the high

lying states, starting from the third excited state, behave like a continuum state,

although there appears to be two distinct sub-groups among the upper states, as

can be seen most clearly at t = 10 µs. This suggests that the upper states are

most effectively resolved by two groups or more, again confirming that relatively

small widths of the groups are preferable, albeit at an increased computational

expense. Figure 5.5 further illustrates this point by showing the evolution of

the Boltzmann temperatures of the upper states, using here 4 discrete atomic

states and partitioning the upper states into 3 groups. While the Boltzmann

12Although the grouping techniques are formulated here for a general set of kinetics, the effec-
tiveness of the grouping approach is problem specific. For other situations, e.g. ro-vibrational
states, a different strategy may be required than the one discussed here for atomic states.
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Figure 5.6: Radiat ive loss due to bound-bound radiat ion from the upper st ates 

to the first 3 atomic stat es. The lines indicate the solut ion obtained from the full 

CR kinet ics. The dots represent solution obtained with level grouping (5 levels+ 

1 group) . 

temperatures of t he first two groups are close to each ot her, t he temperature of 

the third group is slight ly higher. This again confirms that t he upper states needs 

to be resolved by at least 2 groups. When t he system is near equilibrium, both 

approaches give similar results. 

In these simulations, we have assumed that the plasma is optically t hin to all 

the radiation from the line transit ions. Spectral signatures being a major diagnos

tic tool for determining plasma conditions, it is important to know the CR kinetics 

in detail in order to match experimental data. Usually, this is accomplished by 

post-processing the numerical solution with a highly resolved spectral code - in

cluding radiation transport (RT) if necessary - with detailed computation of line 

shapes. This approach is accurate if the key parameters of such a spectral model, 

in particular Ne and Te, are also very accurate. As discussed above and shown in 

Table 5.3, our Boltzmann grouping procedure provides a significant improvement 
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over conventional approaches, leading to a potentially much more accurate spec-

tral signature prediction in transient and non-equilibrium plasma conditions. In

addition, the ASDF solution is much closer to the true physical state, which may

also lead to faster integration of the detailed CR kinetics with RT. These will be

investigated in the future.

Accurate evaluation of the radiative emission is also important during the com-

putation of flow dynamics, from simple reasons of power coupling, e.g. radiative

cooling. Figure 5.6 shows the radiative losses due to bound-bound radiation from

the upper states (5, . . . , 20) to the first three atomic states (1, 2, 3) computed

by grouping all the upper states together as a single group with a Boltzmann

distribution. Although this is a somewhat coarse approximation to the ASDF,

it is clear that the grouping scheme provides an excellent approximation to the

radiative power. An accurate reproduction of the radiative spectrum depends in-

evitably on the reconstructed population of the atomic levels and, as can be seen

by comparing the profiles in Figure 5.2, the agreement can be excellent.

5.4.2 Isothermal recombination test case

In this case, we performed a cooling test where the plasma is suddenly brought

down from 3 eV to 1 eV. Thus, the simulation was run at a constant temperature

(Te = 1 eV), while the initial conditions are the Boltzmann and Saha equilibrium

values at 3 eV; these are exactly the conditions which would be obtained at the

end of the first test case in the absence of radiative losses. For all the simulations

shown in this case, a constant time step of 10−5 sec has been used.

In this case, the cooling process occurs very rapidly and the plasma is in a

deexcitation and recombination regime; the ground state and the electron number

densities are quickly adjusted to their new equilibrium values, as can be seen

in Figure 5.7. Strictly speaking, since bound-bound radiation is assumed to be
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Figure 5.8: Comparison of the t ime evolution of the excited states during the isothermal 

cooling test case (Te = 1 eV). From top to bottom: (a) full solution with 20 levels; (b) solution 

with 3 levels and 1 Uniform group; (c) solution with 3 levels and 1 Boltzmann group. H(3) - is 

t he bottom curve, followed by the next higher level, etc.; the non-conforming red curve is H(2). 
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optically thin, the system cannot reach equilibrium. However, a quasi-equilibrium

state is achieved at approximately 1 msec, after which the bound-bound radiation

is the dominant net rate of change and the system continues to cool down at

the radiative time scales. Note also that the uniform grouping is significantly

less time-accurate than the Boltzmann method, as was already the case in the

ionization regime – see Figure 5.3.

Figure 5.8 shows the evolution of the excited states as function of time for

reference, uniform groups and Boltzmann groups. Once again, there is a noticeable

discrepancy between the reference solution and the uniform bin model, especially

concerning the red curve which crosses other levels during the relaxation process.

This curve is the density of H(2), the first excited state, and is an effect of the

strong radiative decay of this state. Notice that the plot starts at t = 10−5

sec, i.e. the first implicit time step, but already the solution is far from the

Boltzmann equilibrium which is the initial condition at t = 0, such that there is

a population inversion with respect to H(2) for many upper states. Notice also

that the time scale is logarithmic, and the processes considerably slow down as

the electron density drops significantly. Because we are considering only electron

impact collisions, the ASDF essentially becomes “frozen” in a quasi-static but

non-equilibrium state. If collisions by heavy particles were also considered, these

would rapidly become the dominant process, leading to faster relaxation towards

equilibrium. However, in some case of rapid plasma expansion, similar “frozen-in”

non-equilibrium distribution functions of the ASDF could be obtained.

To better appreciate the accuracy of the Boltzmann grouping procedure, Fig-

ure 5.9 shows the evolution of several excited states compared to the exact solution

and similarly to the “heating” (ionization) case, excellent agreement was obtained.

In this simulation, the first 3 atomic states (0, 1, 2) are conserved as discrete levels

and the upper states (3, . . . , 19) are lumped into 1 Boltzmann group.

Finally, we show in Figure 5.10 the snapshots of the ASDF during the recom-
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Figure 5. 9: Comparison of t he t ime evolution of the excited states number densi

ties during the isothermal cooling process (3 levels+ 1 B group). 

bination. Contrary to the case of ionizat ion, the upper stat es are not depleted but 

enhanced instead - as expected, since the recombination proceeds preferent ially 

onto t he upper states. As a reflection of the observat ion made for Figure 5.9, the 

agreement is excellent for all atomic st ates. 

5 .5 E n ergy conservation 

The systems of equations (5.18-5.21) and (5.38-5.40) describe the complete evo

lut ion of t he ASDF but for an iso-thermal plasma. In t he more general case, the 

ASDF kinetics are coupled to the energy of the system; here, this includes only 

the total energy of the free electrons Ee. Thus for constant-volume or constant

pressure condit ions, t here must be an evolut ion equation for the energy or enthalpy 

(only constant-volume kinetics are considered here). We must then exert care that 

the formulat ion exact ly conserves energy, i.e. that E~k) + l:n £~k) at any t ime level 
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(k) remains the same within numerical round-off errors. If we were dealing with

only electron-impact collisions, it would be sufficient to sum the energies of all

levels using the new population densities at the end of the time step, compute the

difference and assign the change to Ee. However, there are two obvious problems

with this scenario: a) when other collision partners must be accounted for, or

when the electrons themselves are partitioned (e.g. for non-Maxwellian kinetics),

one must be able to correctly apportion the changes in energy, e.g. to Ee and

Eh (for heavy particles); and b) for large time steps, there is no guarantee that

the subsequent change in Ee is physically acceptable, i.e. E
(k)
e =E

(k−1)
e +δEe > 0.

We must therefore include an evolution equation for Ee (and another for Eh if

heavy particle collisions are included), which must then be fully coupled, so that

the Jacobian of the system includes derivatives of the rates with respect to Ee,

through the variation of Te.

Energy conservation can be satisfied if the the construction of the source term

on the right-hand-side of the master equations also satisfies it. Thus we must

explicitly construct the energy source term from the master equations, as was

already described briefly in equation (5.22). The same procedure is used, with

the understanding that
dEe
dt

= −
∑

n

dEn
dt

Thus we can combine contributions as follows:

dEe
dt

= −NeNn



∑

m>n
i∈n

gie
−∆Ei/Tn

Zn
∑

j∈m
∆Ejiα(j|i) +

∑

m<n
i∈n

gie
−∆Ei/Tn

Zn
∑

j∈m
∆Ejiβ(j|i)


 . . .

(5.41)

where ∆Eji=Ej−Ei. Note that in the case of excitation from level |i), i.e. the

first summation in equation (5.41), ∆Eji> 0, while ∆Eji< 0 in the second term

for de-excitations from that level. We can then construct another set of effective

rates, this time for the energy equation. Using the sub-partitioning of model B5,

152

D-180



the rates derived from the first term on the right of (5.38) are:

α̃E(m′|n′) =

[∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

∑

j∈m′

∆Ejiα(j|i)

]
(5.42a)

β̃E(m′|n′) =

[∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

∑

j∈m′

∆Ejiβ(j|i)

]
(5.42b)

These rates enter the evolution equation for Ee as:

dEe
dt

= −NeN ′
n

∑

m>n

α̃E(m′|n′) −NeN ′
n

∑

m<n

β̃E(m′|n′) + . . . (5.43)

Note that the same formulation applies for uniform groups by taking the limit

Tn→∞, and summing over the complete set n = {n0, n
′}. The rate of energy

change can also be expressed as:

α̃E(m′|n′) = α̃(m′|n′) · ε(m′|n′) (5.44)

where α(m′|n′) is of course given by the effective rate for the conserved number

densities:

α̃(m′|n′) =
∑

j∈m′

∑

i∈n′

gie
−∆Ei/Tn

Z ′
n

α(j|i)

Equation (5.44) defines an average energy ε(m′|n′), transferred during excitation of

levels of group n′ to levels of group m′, which can be tabulated as function of the

initial Tn and collisional (Te) temperatures. This approach was successfully used,

for example, for vibrational non-equilibrium [123].

5.5.1 Isochoric ionization test case

The third test case of Table 5.2 was designed to test for energy conservation.

In this case, the energy loss and gain due to collisional processes are taken into

account in the conservation equation for the electron energy. The evolution now

proceeds at constant volume, and the electron temperature changes rapidly, as

seen in Figure 5.11. The initial conditions are the same as those of the first
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test case, and t he system is initially far below Boltzmann and Saha equilibrium 

However, contrary to the isothermal case, the initial excit at ion and ionization 

processes deplete the electron energy and the system "freezes" rapidly, and the 

excit ed states remain at a low populat ion density. If an external heating source 

was applied (e.g. Ohmic heating), the system would more closely resemble the 

isot hermal test case, and the system would become stiff again. Here, we are 

most ly concerned wit h test ing energy conservation and to simplify the analysis, 

the radiative rates were removed from the kinetics, so that no radiative energy 

losses were present . 

We can monitor the error by comparing t he values of Ee at the end of each 

time step wit h t he tot al potential energy contained in the electronic states, by 

reconstruct ion of the level populations. Figure 5.12 shows both t he accumulated 

error (symbols) and the one at each time step (blue line); this test was conducted 

wit h 5 resolved levels and 2 Boltzmann bins, and all comput at ions were were 

performed with a constant time step of w-10 sec, using the same backward-Euler 

154 

D-182 



w-5 

w-6 
w-7 

<a 
w-4 

+> 
0 
+> 
~ 
"-"" 

~ f---- ,1 
1-< 
1-< w-5 

0 

J:il 0 
0 

0 

w-8 

w-9 ...--.... 
~ -----7 '-0 

10-1o "-"" 

~ 
w-n 

1-< 
1-< 

J:il 

10-12 

10-13 

10-14 

10-15 

w-9 w-8 w-7 w-6 w-5 

time (sec) 

Figure 5.12: Cumulative and instantaneous relative errors in energy conservation 

- t est case 3. 

integration scheme 13. 

The error is certainly acceptable, but it is not commensurate with numeri

cal round-off, which we would have expected if t he scheme was exactly energy

conserving. By comparison, t he cumulative error in energy was below w-13 when 

solving the full master equat ions without level grouping. 

While the exact solution consists of summing-up the contributions from each 

individual level, leading to the rate of change expressed by equation (5.22). How

ever, we are not using here the internal energy £n as a conserved variable, and 

we must be careful that the procedure be consistent wit h our definition, or recon

struction of the internal energy. The corrected procedure is described next. 

13Note that the scheme includes numerical errors resulting from the forward and backward 
sweeps of the Gaussian elimination procedure. However, this is negligible here, since we have 
used double-precision. 
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5.5.2 Corrected energy rates

Consider for example the change in electron energy due to excitations and de-

excitations, and let us examine first the case of uniform grouping.

dEe
dt

= −
∑

m>n

∑

n

α̃E(m|n)NnNe +
∑

m>n

∑

n

β̃E(n|m)NmNe (5.45)

There are two formulations of the effective rates of energy transfer:

Formulation 1

α̃E(m|n) =
∑

j∈m

∑

i∈n

gi
gn

(Ej−Ei)α(j|i) (5.46a)

β̃E(m|n) =
∑

j∈m

∑

i∈n

gj
gm

(Ej−Ei)β(i|j) (5.46b)

Formulation 2

α̃E(m|n) = (Ẽm−Ẽn)
∑

j∈m

∑

i∈n

gi
gn
α(j|i) (5.47a)

β̃E(m|n) = (Ẽm−Ẽn)
∑

j∈m

∑

i∈n

gj
gm
β(i|j) (5.47b)

where Ẽn =
∑

i∈n
gi
gn
Ei and similarly for Ẽm.

Only the second formulation is exactly energy-conserving. This is quite clear

because in that case, the term on the right side of (5.47) is the product of the

change in number density of the groups (dNn/dt) and the difference in average

group energy (Ẽ). Energy conservation follows from the definition of the total

group energy En = ẼnNn. Thus, the model assumptions constrain us to choose the

appropriate formulation of the effective rates for energy change that is consistent

with the definition of group energy.

Let us now examine the case of the Boltzmann grouping (B5), using the pair

of conserved variables (Nn0 ,N ′
n); the rates of energy exchange must therefore be
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consistent with the electronic energy defined from these two variables, and with

the equation of state used to describe the internal partition (i.e. Tn). We start

with the conservation of the group energy:

dEn
dt

=
d

dt
(Nn0En0 +N ′

n〈E〉n′) = En0

dNn0

dt
+ 〈E〉n′

dN ′
n

dt
+N ′

n

d〈E〉n′

dt
(5.48)

Note that the averaging 〈〉n′ is done for the remaining levels above the ground level

n0 of that group. We can write a similar equation for the total energy measured

from the ground state of that group, i.e.:

d∆En
dt
≡
∑

i∈n
∆Ei

dNi

dt
=

d

dt
(N ′

n〈∆E〉n′) = 〈∆E〉n′
dN ′

n

dt
+N ′

n

d〈∆E〉n′

dt
(5.49)

The first term in equation (5.49) describes the change in group energy from the

global change in population of the group, i.e. 〈E〉ndNn/dt. The last term describes

the change of the internal structure of the group as a result of the collisional

transitions, since

d〈∆E〉n′

dt
=

1

T 2
n

[
〈∆E2〉n′ − 〈∆E〉2n′

] dTn
dt

= Cv,n′
dTn
dt

(5.50)

From (5.33),

dZ ′
n

dt
=

gn0

Nn0

[
dN ′

n

dt
− N

′
n

Nn0

dNn0

dt

]
= Z ′

n

[
∆E ′

n

T 2
n

+
d ln g̃′n
dTn

]
dTn
dt

(5.51)

Inserting into (5.49),

N ′
n

d〈∆E〉n′

dt
=

Cv,n′T 2
n(

∆E ′
n + T 2

n
d ln g̃′n
dTn

)
[
dN ′

n

dt
− N

′
n

Nn0

dNn0

dt

]
(5.52)

We can now combine with the other terms of (5.49) to obtain an expression which

only depends on the rates of change of the conserved variables (Nn0,N ′
n). Defining

ξn′ =
Cv,n′T 2

n(
∆E ′

n + T 2
n
d ln g̃′n
dTn

) and ωn′ = ξn′
Nn′

Nn0

(5.53)

and adding the contribution from the ground state of the group, we obtain:

dEn
dt

= [En0−ωn′ ]
dNn0

dt
+ [En0+〈∆E〉n′+ξn′ ]

dN ′
n

dt
(5.54)
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One can then identify the rates of change of the population density with the

effective rates. Considering transitions between groups n and m > n, and using a

similar expression for dEm/dt, we have:

α̃E(m0|n0)
= [Em0 − ωm′ − En0 + ωn′ ] · α̃(m0|n0) ≡ ε(m0|n0) · α̃(m0|n0)

(5.55a)

α̃E(m′|n0)
= [Em0 + 〈∆E〉m′ + ξm′ − En0 + ωn′ ] · α̃(m′|n0) ≡ ε(m′|n0) · α̃(m′|n0)

(5.55b)

α̃E(m0|n′) = [Em0 − ωm′ − En0 − 〈∆E〉n′ − ξn′ ] · α̃(m0|n′) ≡ ε(m0|n′) · α̃(m0|n′)

(5.55c)

α̃E(m′|n′) = [Em0+〈∆E〉m′+ξm′ − En0−〈∆E〉n′−ξn′ ] · α̃(m′|n′) ≡ ε(m′|n′) · α̃(m′|n′)

(5.55d)

It is instructive to examine the limit of infinite Boltzmann temperatures; in

this case,

Zn′ → g′n, Cv,n′ , ξn′ , ωn′ → 0 and 〈∆E〉n′ → ∆E ′
n

and similarly for m′. Equation (5.54) becomes:

dEn
dt

= En0

dNn0

dt
+

∑
i∈n′ giEi

g′n

Nn′

dt
= En0

dNn0

dt
+

∑
i∈n′ giEi

gn0

dNn0

dt

=

∑
i∈n giEi
gn0

dNn0

dt
= Ẽn

dNn
dt

(5.56)

where we have also used the fact that in that limit, Nn0/gn0 = Nn/gn, and used

the definition of the average group energy – see equation (5.47). Since a similar

equation is found for dEm/dt, the combination exactly yields (5.47). Thus, we

have verified that by taking the limit Tn, Tm→ 0, we recover the uniform group

model.

For ionizations and recombinations, a similar procedure can be found. Con-

sidering the change in electron energy due to ionization and recombination from
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and to the group n, we have:

dEe
dt

)

n

= −
∑

i∈n

dNi

dt
Ii = −

d

dt
[〈I〉nNn] = −In0

dNn0

dt
− 〈I〉n′

dNn′

dt
−Nn′

d〈I〉n′

dt

(5.57)

where Ii is the ionization potential for level i and 〈I〉n′ is the group ionization

potential averaged over the sub-partition n′. Using Ii= IH−Ei= In0−∆Ei, it is
easy to see that:

〈I〉n′ = In0−〈∆E〉n′ and
d〈I〉n′

dt
= −Cv,n′ (5.58)

Equations (5.51,5.52) are still valid, and using again the definitions (5.53), we

obtain the final form:

dEe
dt

)

n

= − [In0+ωn′ ]
dNn0

dt
− [In0−〈∆E〉n′−ξn′ ]

dNn′

dt
(5.59)

Note the similarity with (5.54). The effective rates are therefore:

α̃E(+|n0)
= [In0 + ωn′ ] · α̃(+|n0) ≡ ε(+|n0) · α̃(+|n0) (5.60a)

α̃E(+|n′) = [In0−〈∆E〉n′−ξn′ ] · α̃(+|n′) ≡ ε(+|n′) · α̃(+|n′) (5.60b)

Examination of equations (5.55) and (5.60) reveals that the overall procedure

consists of replacing the energy of the group’s ground state n0 and sub-partition

n′ by effective energies for the energy exchange:

Ẽn0 = En0−ωn′ and Ẽn′ = En0+〈∆E〉n′+ξn′ (5.61)

Thus, the effective rates of energy transfer become:

α̃E(m0|n0)
=
(
Ẽm0 − Ẽn0

)
· α̃(m0|n0) (5.62a)

α̃E(m′|n0)
=
(
Ẽm′ − Ẽn0

)
· α̃(m′|n0) (5.62b)

α̃E(m0|n′) =
(
Ẽm0 − Ẽn′

)
· α̃(m0|n′) (5.62c)

α̃E(m′|n′) =
(
Ẽm′ − Ẽn′

)
· α̃(m′|n′) (5.62d)
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and for ionization:

α̃E(+|n0)
=
(
IH − Ẽn0

)
· α̃(+|n0) (5.63a)

α̃E(+|n′) =
(
IH − Ẽn′

)
· α̃(+|n′) (5.63b)

The use of effective group energies14 provides a straightforward approach, and

the effective rates of energy transfer for all transitions (including de-excitations,

recombination and radiative transitions) can now be expressed in a simple form.

Note that (5.63) is similar to the case of uniform grouping (5.47) and since we

have already demonstrated that we can recover the uniform grouping case in the

limit of infinite temperatures, we have achieved here a fully consistent model.

We are now left with the task of verifying energy conservation with this revised

approach. Using the same test case (#3), we now find a much smaller level

of error, as can be seen from Figure 5.13 – compare with Figure 5.12 – that

is characteristic of the level of numerical round-off. Note that the cumulative

error sums the absolute values of the stepwise error (L1 norm), and is therefore

a maximum bound. Figure 5.14 shows the effect of bin size on the relative error;

this observation is similar to the one made regarding the accuracy of the ASDF

– see Figure 5.4, i.e. smaller group widths are preferred. However, it is clear that

even for one or two bins, the error on energy conservation remains very small.

14Contrary to the uniform grouping case, we need to use two values, one for n0 and one for
n′, which reflects the additional degrees of freedom in the Boltzmann model.
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CHAPTER 6

Modeling of Collisions in Multifluid Plasmas

6.1 Introduction

Modeling of elastic collisions in neutral gases and plasmas is a classical topic

widely studied in the kinetic theory of transport phenomena [52, 44, 84, 53]. The

derivation starts from the kinetic equation with a Boltzmann collision operator

for neutral collision, and/or Landau-Fokker-Planck collision operator for charged

particle collision. The transport terms appearing in the hydrodynamic equations,

e.g., viscous shear stress and heat flux, are obtained by computing the collision

integral with a perturbative expansion of the velocity distribution function (VDF)

about a local Maxwellian one, i.e., f = fM + ǫδf + O(ǫ2), where ǫ is a small

parameter. The Chapman-Enskog expansion [44] and Grad’s method [47] are the

two well-known moment closure schemes, from which the Euler/Navier-Stokes and

the Grad-moment equations are derived, respectively.

The treatment of elastic collisions, within a multi-fluid framework, can be

found from the works of Braginskii [46] and Burgers [43]. In 1965, Braginskii de-

rived a two-fluid system of equations for a fully ionized plasma with a Chapman-

Enskog closure for the transport fluxes taking into account the effect of the mag-

netic field; these equations are now commonly referred to as the Braginskii’s equa-

tions. Burgers, on the other hand, presented a rather general framework for the

modeling of elastic collisions, which is applicable for a general system of moment

equations beyond the standard five-moment model.
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In this chapter, we present a derivation of the exchange terms for number,

momentum, and total energy densities due to inelastic collisions. These terms

are relevant for the construction of a collisional-radiative (CR) model within the

framework of the multi-fluid equations. We restrict ourselves to the case where the

VDF of each fluid is a Maxwellian distribution function. Current work focuses on

excitation and deexcitation collisions, but the method can be generalized to other

collision types, e.g., ionization/recombination, charge exchange collision, etc.

6.2 Transfer integral

Let us consider an inelastic collision between two particles s and t, such that the

particle t changes its internal state. The particles s and t are respectively the

scattered and target in the laboratory frame of reference (LAB), the former being

identified here as the electron and the target being the atom, but we will keep

the s, t notation until explicit assumptions and approximations are made, such as

neglecting terms of order ms/mt for final expressions.

s(vs) + t(vt)⇔ s′(v′
s) + t′(v′

t) (6.1)

The initial velocities are vs,vt, where v = u+c and u is the fluid mean velocity

in the LAB frame, and post-collision values are indicated by a prime. Thus, c is the

thermal velocity and if 〈. . .〉 denotes a statistical average over the corresponding

distribution function, we have 〈v〉 ≡ u and 〈c〉 ≡ 0. It is more convenient to treat

the collision in the center of mass (COM) reference frame, moving with velocity

V with respect to the LAB frame. Similarly, we can also define a mean velocity

of this COM frame as U. The subsequent Galilean transformations yield the

following definitions:

V =
msvs +mtvt

M
g = vs − vt (6.2a)

U =
msus +mtut

M
w = us − ut (6.2b)
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where M=ms +mt. The inverse transformation yields:

vs = V +
mt

M
g us = U+

mt

M
w (6.3a)

vt = V − ms

M
g ut = U− ms

M
w (6.3b)

One can also define a similar transformation for the post-collision variables. Ex-

pressed in the COM frame and for any inelastic collision with an energy transfer

∆ε, momentum and energy conservation yield:

MV ≡MV′ (6.4a)

1

2
MV2 +

1

2
µg2 ≡1

2
MV′2 +

1

2
µg′2 +∆ε (6.4b)

where V′ and g′ are defined similarly to (6.2), and µ=msmt/M is the reduced

mass. Note that we have also implicitly assumed that the collision produces

only two particles, as evidenced by the expression for the kinetic energy – this

assumption must be revisited when dealing with ionization and recombination,

along with the assumption of equal masses of individual particles before and after

the collision, e.g. m′
s ≡ ms, such that mass conservation is automatically obtained.

Therefore, we have the following constraints:

V ≡ V′ and g2 = g′2 +
2∆ε

µ
(6.5)

For an excitation between two atomic levels, the transferred energy is a fixed

value ∆ε ≡ ε∗, the energy gap between levels, while for ionization the energy is a

continuum of values: ∆ε ∈ [ε∗, ε], where ε = 1
2
µg2 is the available kinetic energy

(in the COM frame). In the limit ∆ε→ 0, the collision is elastic.

We can then define a transfer integral of the collision operator between the

two species s and t [43].

Ψst = nsnt

∫
d3vsd

3vt fsft g

∫
ψ dω(vs,vt;v

′
s,v

′
t) (6.6)

where g is the magnitude of the relative velocity (g = |g|), dω is the differential

cross section, and ψ is any moment variable exchanged during the collision. Let
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us now utilize the transformation defined in appendix C:

V∗ = V −U+ γg̃ T ∗ =
MTsTt

msTt+mtTs
a2 =

2kT ∗

M
(6.7a)

g̃ = g −w T̃ =
msTt+mtTs

M
α2 =

2kT̃

µ
(6.7b)

γ =
µ(Tt − Ts)
msTt+mtTs

(6.7c)

One can easily show that the Jacobian of the transformations is unity, i.e.

d3vsd
3vt ≡ d3Vd3g ≡ d3V∗d3g ≡ d3V∗d3g̃ (6.8)

Using the transformed variables, the product of two Maxwellian VDFs in equation

(6.6) becomes:

fs · ft =
(

M

2πkT ∗

) 3
2

exp

[
−MV∗2

2kT ∗

]
·
(

µ

2πkT̃

) 3
2

exp

[
− µg̃

2

2kT̃

]
≡ fV ∗ · fg (6.9)

Substituting the result of equation (6.9) into (6.6), the transfer integral can be

written as follows:

Ψst =nsnt

(
M

2πkT ∗

) 3
2
∫
d3V∗ exp

[
−MV∗2

2kT ∗

]
·

(
µ

2πkT̃

) 3
2
∫
d3g exp

[
−µ(g −w)2

2kT̃

]
g

∫
ψdω(g;g′)

(6.10)

In the COM reference frame, the differential cross section only depends on the

relative velocities, i.e., dω(vs,vt;v
′
s,v

′
t) ≡ dω(g;g′), and can be expressed as:

dω(g;g′)=σst(g,Ω
′)dΩ′ (6.11)

where Ω′ is the solid angle between the initial and final relative velocities, i.e.,

dΩ′ = dρ dcosχ with g · g′ = gg′ cosχ. Without loss of generality, we can now

choose a reference frame (LAB) such that the relative mean velocity w is aligned

with the z axis, as shown in figure 6.1. Thus, the unit vectors ĝ, ĝ′ are obtained

by subsequent rotations of the (x, y, z) frame. Using the abbreviated notation
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cϕ≡cosϕ, sϕ≡sinϕ, etc, we define this rotation operator by the matrix:

R(ϕ, θ) =




cϕsθ −sϕ cϕsθ

sϕcθ cϕ sϕsθ

−sθ 0 cθ


 and ĝ =

g

g
= R(ϕ, θ) · ẑ =




cϕsθ

sϕsθ

cθ




(6.12)

Similarly, the post-collision relative velocity is rotated by the angles (ρ, χ), such

that ĝ′ = R(ρ, χ) · ĝ.

Using d3g = g2dgdϕdcθ = 2πg2dgdcθ and equation (6.11), the transfer integral

can be written as:

Ψst =
4nsnt

π
1
2α3

e−w
2/α2 ·

∫
d3V∗fV ∗ ·

∫
dg g3 e−g

2/α2 ·
1

2

∫
dcθ e

2gwcθ/α
2

∫
dρdcχ ψσst(g,Ω

′)
(6.13)

Note that if ψ is independent of V∗, the first integral on the RHS is simply the

normalization of a Maxwellian VDF (= 1). For clarity, let us now consider the

case where ψ is not a function of V∗, so the integral
∫
d3V∗fV ∗ can be omitted.

By symmetry, the differential cross-section σst does not depend on ρ, and we can

write:

σst(g,Ω
′) ≡ σst(g) · G(g, χ) s.t.

∫
dρ dcosχG(g, χ) ≡ 1 (6.14)

More generally, we will define the averaging of any function ψ over the scattering

angles as:

〈ψ〉
Ω′ = 2π

∫ +1

−1

dcχψ G(g, χ) (6.15)

We now define the following, normalized energy variables:

ε =
1

2
µg2 e =

1

2
µw2 (6.16a)

x =
ε

kT̃
λ =

e

kT̃
(6.16b)

x∗ =
∆ε

kT̃
x′ =

ε′

kT̃
= x−x∗ (6.16c)
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z 

y 

(a) 

(b) 

Figure 6.1: Frame rotation and relative orientation of (a) w and g and (b) g 

and g'. The rotation operator matrix R( r.p, 8) (or R(p, x)) is defined such t hat 

g = R(r.p, 8) · w and g' = R(p, x) ·g. 
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Using g3dg≡2εdε/µ2 and a trivial integration1 over ϕ, we obtain:

Ψst = nsnt

(
8kT̃

πµ

) 1
2

︸ ︷︷ ︸
gT̃

e−e/kT̃

(kT̃ )2

∫ ∞

ε∗
dε ε e−ε/kT̃ σst(ε) ·

1

2

∫ +1

−1

dcθe
2
√
eεcθ/kT̃ · 〈ψ〉

Ω′

(6.17)

where gT̃ is a thermal velocity based on the average temperature T̃ . Equation

(6.17) can be written in terms of the normalized variables as follows:

Ψst = nsntgT̃ e
−λ
∫ ∞

x∗
dx x e−x σst(x) ·

1

2

∫ +1

−1

dcθe
2
√
λxcθ · 〈ψ〉

Ω′ (6.18)

Note that we have left the variable ψ undetermined, and since it could potentially

depend on all integration variables (x, χ, θ), it must be kept inside all integrals.

We will see next what simplifications can be made, depending on which moment

variables we are integrating. Note also that the lower limit of integration, x∗, is

zero for elastic collisions.

6.3 Excitation/Deexcitation collisions

In this section, we consider an excitation collision and its reverse process:

s(vs) + t(Eℓ,vt)⇔ s(v′
s) + t(Eu,v

′
t) (6.19)

where the particle indices (s, t) are kept the same to indicate that both internal

states (ℓ, u) belong to the same fluid t. For the case of an excitation collision,

particle t changes its internal states from ℓ to u (ℓ → u), where ℓ and u denote

the lower and upper energy states, respectively. For a deexcitation collision, we

have the reverse (u → ℓ). Conservation of momentum and energy are the same

as those expressed in equation (6.4) with ∆ε = Eu − Eℓ and ∆ε > 0.

In the CR model, each internal state is treated as a pseudo-species, so the rate

of change in number density for each state (nℓ, nu) is taken into account separately.

1Using symmetry principles.
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However, since both states (ℓ, u) belong to the same fluid, we only need to keep

track of the net change of momentum and energy of each fluid due to the collision.

6.3.1 Zeroth-order moment: number density

The rate of change of the number density due to an excitation collision of type

(6.19) can be obtained by setting ψ ≡ 1 in (6.18), so the average over all the

scattering angle is trivially removed. We can express the rate of change of number

density as:

Γ↑
sℓ = nsnℓgT̃ e

−λ
∫ ∞

x∗
dx x e−x σ↑

sℓ(x) ·
1

2

∫ +1

−1

dcθe
2
√
λxcθ (6.20)

where superscript ↑ denotes the forward process (ℓ → u), and (nℓ, nu) are the

number densities of the lower and upper states.

To perform the integral over dcθ, we define:

ζ(0)(ξ) =
1

2

∫ +1

−1

dy e2ξy =
sinh(2ξ)

2ξ
s.t.: lim

ξ→0
ζ(0) = 1 (6.21)

Combining all, we arrive at the following expression for the rate of change of the

number density:

Γ↑
sℓ = nsnℓgT̃ e

−λ
∫ ∞

x∗
dx x e−x ζ(0)(

√
λx)σ↑

sℓ(x) (6.22)

Note that
dnℓ
dt

= −Γ↑
sℓ = −

dnu
dt

In the case of electron-impact excitation (s ≡ e), we can neglect terms of order

me/M , and for an atomic transition between levels ℓ→ u, we obtain:

Γ↑
eℓ = nenℓve e

−λ
∫ ∞

x∗
dx x e−x ζ(0)(

√
λx)σ↑

eℓ(x) (6.23)

where ve =
√

8kTe
πme

. In the limit of thermal plasma when multi-fluid effects are

weak, i.e. λ→ 0, we obtain:

Γ↑
eℓ = nenℓve

∫ ∞

x∗
dx x e−x σ↑

eℓ(x) (6.24)
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which is exactly the expected result for a single-fluid plasma.

The reverse process of deexcitation (u → ℓ) can be computed in a similar

fashion by considering g′,g as the initial and final relative velocities respectively.

The transfer integral becomes:

Ψ↓
su = nsnugT̃ e

−λ
∫
d3V′∗fV ′∗ ·

∫ ∞

0

dx′ x′ e−x
′
σ↓
su(x

′) · 1
2

∫ +1

−1

dcθe
2
√
λx′cθ · 〈ψ〉

Ω′

(6.25)

where superscript ↓ indicates the reverse process (u→ ℓ), and now cos θ= ĝ′ · ŵ.

Setting ψ = 1, it is straightforward to obtain:

Γ↓
su = nsnugT̃ e

−λ
∫ ∞

0

dx′ x′ e−x
′
ζ(0)(
√
λx′) σ↓

su(x
′) (6.26)

Note that the lower limit of integration has changed, since deexcitation does not

have an energy threshold (recall that x′ = x−x∗). Using the Klein-Rosseland

relation for detailed balance [87],

σ↑
sℓ(x)xgℓ = σ↓

su(x
′)x′gu (6.27)

where gℓ, gu are the degeneracies of the lower and upper atomic levels respectively.

The principle of detailed balance for various processes are discussed in detail in

appendix D. We can write the excitation rate as follows:

Γ↑
sℓ = nsnℓgT̃ e

−λ gu
gℓ
e−x

∗
∫ ∞

0

dx′ x′ e−x
′
ζ(0)(

√
λ(x∗+x′)) σ↓

su(x
′) (6.28)

One can then easily extract reaction rates, for example:

Γ↑
sℓ = ̟↑

sℓ · nsnℓ

It is instructive to consider the ratio of these rates:

̟↑
sℓ

̟↓
su

=

[
gu
gℓ
e−x

∗
]
·
∫∞
0
dx′ x′ e−x

′
ζ(0)(

√
λ(x′ + x∗))σ↓

su(x
′)∫∞

0
dx′ x′ e−x′ζ(0)(

√
λx′)σ↓

su(x
′)

(6.29)

The first term in brackets is the traditional Boltzmann equilibrium relation; the

second term contains the correction due to the multi-fluid effects, and is apparent
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only through the presence of the ζ(0) function. A Taylor expansion near λ = 0

yields (with an obvious definition of the Boltzmann function B):

̟↑
sℓ

̟↓
su

=

[
gu
gℓ
e−x

∗
]
·
∫∞
0
dx′ x′ e−x

′
[
1 + 2λ(x∗+x′)

3

]
σ↓
su(x

′)
∫∞
0
dx′ x′ e−x′

[
1 + 2λx′

3

]
σ↓
su(x

′)

≃
[
Bℓu(T̃ )

]
·
(
1+

2λx∗

3

)
(6.30)

Thus, we recover the expression for Boltzmann equilibrium in the single-fluid limit

(λ → 0). Note that the correction term is larger for large energy thresholds, i.e.

transitions between high levels (x∗ → 0) will not be affected very much by the

multi-fluid effects, while the impact will be stronger for excitation from low energy

levels, with high energy gaps.

6.3.2 First-order moment: momentum density

Consider the forward reaction and the corresponding loss of momentum to the par-

ticles with velocity vs. The transfer variable in this case is ψ=msvs, and starting

from equation (6.13), this leads to the following contribution to the momentum

equation:

R−
s = −4nsnℓ

π
1
2α3
·
∫
d3V∗fV ∗ ·

∫
dg g3 e−g

2/α2

σ↑
sℓ(g) ·

1

2

∫
dcθ e

2gwcθ/α
2 〈msvs〉Ω′

(6.31)

Similarly, the gain in momentum is given by the production of new particles with

velocity v′
s:

R+
s = +

4nsnℓ

π
1
2α3
·
∫
d3V∗fV ∗ ·

∫
dg g3 e−g

2/α2

σ↑
sℓ(g) ·

1

2

∫
dcθ e

2gwcθ/α
2 〈msv

′
s〉Ω′

(6.32)

The net rate of change to the momentum density of species s is:

R↑
s = −

4µnsnℓ

π
1
2α3

·
∫
dg g3 e−g

2/α2

σ↑
sℓ(g) ·

1

2

∫
dcθ e

2gwcθ/α
2 〈g − g′〉

Ω′ (6.33)

where we have used the relation:

ms(vs − v′
s) = µ(g − g′) (6.34)
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Note that in equation (6.33), the integral over V∗-space is omitted since ψ does

not depend on V∗. Let us consider the last integral over the scattering angle.

From figure 6.1, the vectors g,g′ in the rotated frame (ξ, η, ς) are:

g = g ĝ = g ·




0

0

1


 g′ = g · ĝ′ = g′




cρsχ

sρsχ

cχ


 (6.35)

Therefore the integral yields, using (6.15):
∫
dΩ′(g′−g)G(g,Ω′) = 2πg′

∫
dcχcχG(g, χ)ĝ − 2πg

∫
dcχG(g, χ)ĝ

=
[
g′〈cosχ〉

Ω′−g
]
ĝ

(6.36)

We must now express the vector ĝ in the initial (x, y, z) frame, which is given by

(6.12). Let us also utilize the normalized variables as defined in (6.16). This leads

to the following expression:

R↑
s = −ŵµαnsnℓgT̃ e−λ

∫ ∞

x∗
dx x e−x σ↑

sℓ(x)
[√

x−
√
x′〈cosχ〉Ω′

]

·1
2

∫ +1

−1

dcθcθe
2
√
λxcθ (6.37)

As before, we can define another function as follows:

ζ(1)(ξ) =
3

4ξ

∫ +1

−1

dy y e2ξy =
3

4ξ2

[
cosh(2ξ)− sinh(2ξ)

2ξ

]
s.t.: lim

ξ→0
ζ(1) = 1

(6.38)

The last integration in (6.37) then yields:

R↑
s = −

2

3
µwnsnℓgT̃ e

−λ
∫ ∞

x∗
dx x

3
2 e−x σ↑

sℓ(x) ζ
(1)(
√
λx)

[√
x−
√
x′〈cosχ〉Ω′

]

(6.39)

We can also define average cross-sections as follows:

σ
↑(ℓ)
sℓ (x) = 2π

(
x′

x

)ℓ/2 ∫ 1

−1

(cχ)
ℓσ↑
sℓ(x, cχ)dcχ

=

(
x′

x

)ℓ/2
σ↑
sℓ(x)〈(cosχ)ℓ〉Ω′

(6.40)
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Note that σ
↑(0)
sℓ = σ↑

sℓ and x = x′+x∗. Using the average cross-sections in equation

(6.40), equation (6.39) becomes:

R↑
s = −

2

3
µwnsnℓgT̃ e

−λ
∫ ∞

x∗
dx x2 e−x ζ(1)(

√
λx)

[
σ
↑(0)
sℓ (x)− σ↑(1)

sℓ (x)
]

(6.41)

A similar (but of opposite sign) expression can be obtained for the species

of type t. Note that the expression (6.41) is obtained in a frame where w is

aligned with the z direction, and corresponds to the change in momentum density

along that direction. Thus, it is the component of a force parallel to w, while all

components in the transverse directions are zero, by reason of symmetry2. The

components in an arbitrary rest-frame must be obtained by projecting w. Since

the force density is approximately proportional to w, we can group all the other

terms into the definition of a coefficient, such that

R↑
s = −K↑

sℓ(us − ut) (6.42)

where K↑
sℓ is known as the resistance coefficient:

K↑
sℓ =

2

3
µnsnℓgT̃ e

−λ
∫ ∞

x∗
dx x2 e−x ζ(1)(

√
λx)

[
σ
↑(0)
sℓ (x)− σ↑(1)

sℓ (x)
]

(6.43)

In the limit of weak divergence of mean fluid velocities (λ → 0) and isotropic

scattering (G(χ) = 1/4π), we have:

K↑
sℓ ≃

2

3
µnsnℓgT̃

∫ ∞

x∗
dxx2σ↑

sℓ(x)e
−x (6.44)

Consider now the reverse process (u → ℓ) and the transfer integral (6.25), the

rate of change of momentum density of species s can be written as:

R↓
s = −µnsnugT̃ e−λ

∫ ∞

0

dx′ x′ e−x
′
σ↓
su(x

′) · 1
2

∫ +1

−1

dcθe
2
√
λx′cθ · 〈g′ − g〉

Ω′ (6.45)

Following the same procedure described above for the excitation process, we ob-

tain:

R↓
s = −

2

3
µnsnuwgT̃ e

−λ
∫ ∞

0

dx′ x′2 e−x
′
ζ(1)(
√
λx′)

[
σ↓(0)
su (x′)− σ↓(1)

su (x′)
]

(6.46)

2This is obtain by integrating over the ϕ angular variable.
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where

σ↓(ℓ)
su (x′) =

( x
x′

)ℓ/2
σ↓
su(x

′)〈(cosχ)ℓ〉
Ω′ (6.47)

Since σ↑
sℓ(x) and σ

↓
su(x

′) are related by the Klein-Rosseland relation (6.27), σ
↓(ℓ)
su (x′)

can be computed as a function of x. We can also define a resistance coefficient

similar to the case of excitation:

K↓
su =

2

3
µnsnugT̃ e

−λ
∫ ∞

0

dx′ x′2 e−x
′
ζ(1)(
√
λx′)

[
σ↓(0)
su (x′)− σ↓(1)

su (x′)
]

(6.48)

such that

R↓
s = −K↓

su(us − ut) (6.49)

Let us examine the ratio of the resistance coefficients for the forward and backward

processes in the case of weak divergence of mean fluid velocities and isotropic

scattering:

K↑
sℓ

K↓
su

≃
[
Bℓu(T̃ )

]
·
∫∞
0
dx′e−x

′
x′(x′ + x∗)

[
1 + 2

5
λ(x′ + x∗)

]
σ↓
su(x

′)∫∞
0
dx′e−x′x′2

[
1 + 2

5
λx′
]
σ↓
su(x

′)
(6.50)

Note that there is an additional contribution from high-order moment from the

expansion. Therefore, there is no equivalence between the resistance coefficients

of the forward and backward processes in the limit λ → 0. Detailed balance is

enforced through relation (6.27) at the microscopic level.

6.3.3 Second-order moment: total energy density

The rate of change of total energy of species s can be obtained by setting ψ =

1
2
ms

(
v′2
s − v2

s

)
into equation (6.13):

Q↑
s =

4nsnℓ

π
1
2α3
·
∫
d3V∗fV ∗ ·

∫
dg g3 e−g

2/α2

σ↑
sℓ(g)·

1

2

∫
dcθ e

2gwcθ/α
2 〈1

2
ms(v

′2
s−v2

s)〉Ω′

(6.51)

Using the transformation defined in (6.7), we can obtain:

1

2
ms

(
v′2
s − v2

s

)
= µ (g′ − g) · [V∗ +U+ γw − γg]− mt

ms +mt

∆ε (6.52)
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Note that equation (6.51) must include fV ∗ since the change in total energy

depends on V∗. The integration of the first term in the bracket is zero since
∫
d3V∗ V∗ fV ∗ = 0. The results for the second and the third terms are simply

R↑
s ·U and γR↑

s ·w, respectively. The fourth integral can be expressed in terms

of normalized variables as:

γµα2nsnℓgT̃ e
−λ
∫ ∞

x∗
dx x

3
2 e−x σ↑

sℓ(x)ζ
(0)(
√
λx)

[√
x−
√
x′〈cosχ〉

Ω′

]

=γµα2nsnℓgT̃ e
−λ
∫ ∞

x∗
dx x2 e−x ζ(0)(

√
λx)

[
σ
↑(0)
sℓ − σ

↑(1)
sℓ

] (6.53)

The integral with the last term on the RHS of equation (6.52) is simply− mt

ms+mt
Γ↑
sℓ∆ε.

By summing all the contributions, the expression for Q↑
s becomes:

Q↑
s = R↑

s ·U+ γR↑
s ·w −

mt

ms +mt

Γ↑
sℓ∆ε+

γµα2nsnℓgT̃ e
−λ
∫ ∞

x∗
dx x2 e−x ζ(0)(

√
λx)

[
σ
↑(0)
sℓ − σ

↑(1)
sℓ

] (6.54)

Let us now define a thermal relaxation coefficient Kε↑
sℓ as follows:

Kε↑
sℓ =

2

3
µnsnℓgT̃ e

−λ
∫ ∞

x∗
dx x2 e−x

[
ζ(0)(
√
λx)− 2

3
λζ(1)(

√
λx)

](
σ
↑(0)
sℓ − σ

↑(1)
sℓ

)

(6.55)

The expression for Q↑
s reduces to:

Q↑
s =

3k(Tt − Ts)
ms +mt

Kε↑
sℓ +R↑

s ·U−
mt

ms +mt

Γ↑
sℓ∆ε (6.56)

where we have used the relation γα2 = 2k(Tt−Ts)
ms+mt

. Note that due to the definition

of the thermal relaxation coefficient, the contributions from the second and last

terms of equation (6.54) to Q↑
s are grouped together. It must be pointed out that

the rate of change of thermal energy of species s, Hs ≡ dεs
dt
, can always be related

to Q↑
s by the following expression:

H↑
s = Q↑

s −R↑
s · us (6.57)
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The rate of change of total energy of species t can be found similarly by setting

ψ = 1
2
mt(v

′2
t−v2

t ). Following the same procedure, we arrive at the following result:

Q↑
t = −

3k(Tt − Ts)
ms +mt

Kε↑
sℓ −R↑

s ·U−
ms

ms +mt

Γ↑
sℓ∆ε (6.58)

In the limit of λ → 0 and isotropic scattering, the resistant and thermal

relaxation coefficients reduce to:

Kε↑
sℓ ≃ K↑

sℓ ≃
2

3
µnsnℓgT̃

∫ ∞

x∗
dx x2 e−x σ↑

sℓ(x) (6.59)

Let us now consider the reverse process (u→ ℓ). Similarly, we set v′, v to be

the initial and final velocities, respectively. The energy transfer rate for species s

becomes:

Q↓
s =

4nsnu

π
1
2α3
·
∫
d3V′∗fV ′∗ ·

∫
dg′ g′3 e−g

′2/α2

σ↓
su(g

′)·
1

2

∫
dcθ e

2g′wcθ/α2 〈1
2
ms(v

2
s − v′2

s)〉Ω′

(6.60)

One can easily show that:

Q↓
s =

3k(Tt − Ts)
ms +mt

Kε↓
su +R↓

s ·U+
mt

ms +mt

Γ↓
su∆ε (6.61)

Q↓
t = −

3k(Tt − Ts)
ms +mt

Kε↓
su −R↓

s ·U+
ms

ms +mt

Γ↓
su∆ε (6.62)

where

Kε↓
sℓ =

2

3
µnsnugT̃ e

−λ
∫ ∞

0

dx′ x′2 e−x
′
[
ζ(0)(
√
λx′)− 2

3
λζ(1)(

√
λx′)

] (
σ↓(0)
su − σ↓(1)

su

)

(6.63)
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6.4 Summary of results

All exchange terms the number density, momentum and total energy due to an

excitation and deexcitation collisions of type (6.19) can be summarized as follows:

dns
dt

= 0 (6.64)

dnℓ
dt

= −Γ↑
sℓ + Γ↓

su (6.65)

dnu
dt

= +Γ↑
sℓ − Γ↓

su (6.66)

d(ρsus)

dt
= K↑

sℓ(ut − us) +K↓
su(ut − us) (6.67)

d(ρtut)

dt
= −K↑

sℓ(ut − us)−K↓
su(ut − us) (6.68)

dEs
dt

= K↑
sℓ(ut − us) ·U+

3k(Tt − Ts)
ms +mt

Kε↑
sℓ −

mt

ms +mt

Γ↑
sℓ∆ε

+K↓
su(ut − us) ·U+

3k(Tt − Ts)
ms +mt

Kε↓
su +

mt

ms +mt

Γ↓
su∆ε (6.69)

dEt
dt

= −K↑
sℓ(ut − us) ·U−

3k(Tt − Ts)
ms +mt

Kε↑
sℓ −

ms

ms +mt

Γ↑
sℓ∆ε

−K↓
su(ut − us) ·U−

3k(Tt − Ts)
ms +mt

Kε↓
su +

ms

ms +mt

Γ↓
su∆ε (6.70)

For the purpose of numerical calculation, one can precompute and tabulate all the

reaction rate and resistance coefficients3 as a function of two parameters T̃ and

λ. It must be pointed out that the coefficients for the forward and the backward

processes must be tabulated separately, since there is no correspondence between

the two. The principle of detailed balance is enforced at the microscopic level.

3Note that all the product of number densities, e.g., nsnt, can be factored out.
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CHAPTER 7

Simulations of Laser-Plasma Interactions

7.1 Introduction

Laser-plasma interactions (LPI) present a physically rich research topic with a

wide range of applications. The dynamics of the interactions can span several

physical regimes, and encompasses a great deal of physical phenomena, e.g.,

plasma instabilities, resonant absorption, X-ray generation, multi-phase ablation,

particle acceleration [41, 38, 124, 125]. Due to the highly transient nature of the

interaction, computational models for LPI are often designed to work only on a

specific physical domain. For example, in ultra-short and ultra-high intensity LPI,

the laser absorption occurs at very fast time scales requiring a kinetic treatment,

i.e., PIC or Vlasov solver. On the contrary, once the plasma is formed and ther-

malized, the expansion of the plasma bulk1 mostly occur at the hydrodynamic

time scales and is often modeled by fluid codes.

In this chapter, a computational model for LPI is introduced based on the

multi-fluid description of a plasma described in section 2.2. The multi-fluid model

has several advantages over the traditional single-fluid model, often used in iner-

tial fusion calculation [40]. The first advantage is that it permits a self-consistent

coupling of the plasma with the electromagnetic field, which is relevant in the

study of laser-induced electric and magnetic fields and their effects on hydrody-

namic instabilities and charged particle acceleration [38]. The second advantage

1with the exception of superthermal or relativistic electrons.

178

D-206



of the multi-fluid model is that it can be used to hybridize with a kinetic method.

For instance, in the fast ignition concept proposed by Tabak et al. [126], the fuel is

first compressed by a low intensity laser, and then quickly ignited with a petawatt

laser. The incidence of the petawatt laser creates a channel into the compressed

core from which the superthermal electron beam generated from the interaction

of the laser can penetrate deep into the capsule and heat the compressed fuel. In

this scenario, the electrons can be decomposed into two populations: cold and hot

(superthermal) electrons. The interaction of the cold electrons with the ions can

be described by a multi-fluid model, and the hot electrons can be treated by a

kinetic method.

7.2 Electromagnetic wave propagation in plasmas

7.2.1 Electrodynamic equations

The physics of electromagnetic wave propagating in a plasma is first reviewed,

leading to the physical model for the laser and corresponding exchange terms

with the plasma. Let us now consider Maxwell’s equations, which governs the

evolution of the electric and magnetic field in a plasma [127, 128]:

∇× E = −∂tB (7.1)

ǫ0c
2∇×B = j+ ǫ0∂tE (7.2)

The plasma current, j, appearing on the RHS of equation (7.2) describes the

plasma response and its modification to the electromagnetic wave. By taking the

curl of (7.1) and utilizing the relation ∇×∇×A = ∇(∇ ·A)−∇2A, we get:

∂ttE− c2∇2E+ c2∇(∇ · E) + 1

ǫ0
∂tj = 0 (7.3)

Equation (7.3) is the wave equation governing the evolution of the electric field

in the plasma. Similarly, by taking the curl of (7.2), we obtain the wave equation
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governing the evolution of the magnetic field:

∂ttB− c2∇2B− 1

ǫ0
∇× j = 0 (7.4)

For a high frequency oscillation of the electromagnetic field, the plasma current

can be modeled by Ohm’s law, i.e., equation (2.25). Here we only include the

resistive term, so Ohm’s law can be written as:

∂tj+ νj = ǫ0ω
2
pE (7.5)

where ν is the plasma collision frequency. Let us now consider a monochromatic

oscillation with radian frequency ω for the quantities E, B and j:

E(x, t) = Ê(x)e−iωt + c.c. (7.6)

B(x, t) = B̂(x)e−iωt + c.c. (7.7)

j(x, t) = ĵ(x)e−iωt + c.c. (7.8)

Ohm’s law immediately yields:

ĵ = σÊ (7.9)

σ =
iǫ0ω

2
p

ω(1 + iν/ω)
(7.10)

where σ is the complex conductivity of the plasma. Substituting (7.9) into the

wave equation for the electric field (7.3), we obtain:

∇2Ê+ k20εÊ−∇(∇ · Ê) = 0 (7.11)

where k0 = ω/c and ε is the dielectric function of the plasma:

ε = η2 = 1− ω2
p

ω2(1 + iν/ω)
(7.12)

and η is the refractive index. Similarly for the magnetic field B, equation (7.4)

becomes:

∇2B̂+ k20εB̂+∇ (ln ε)×
(
∇× B̂

)
= 0 (7.13)
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Equations (7.11) and (7.13) are the governing equations for a monochromatic wave

propagating in a plasma. In practice, one only needs to solve for either Ê or B̂;

the remaining quantity can be determined from Faraday’s or Ampere’s law:

iωB̂ = ∇× Ê (7.14)

c∇× B̂ = −ik0εÊ (7.15)

Note that here we assume that the refractive index is time independent. This

is certainly a good approximation for long interaction times of laser-plasma sys-

tem characterized by fluid equations (ω/k ≫ vT )
2. For short interaction times,

a kinetic description must be utilized, and the time dependent solution of the

electromagnetic fields must be solved.

For a homogeneous medium with no charge separation, the wave equations

for both Ê and B̂ become identical, since ∇ · Ê = 0 and ∇ ln ε = 0. For sim-

plicity, let us consider a simple case of a linearly polarized electromagnetic wave

normally incident onto a homogeneous plasma medium. Let us define x to be the

propagating direction and y and z are the directions of the oscillating electric and

magnetic fields, respectively (see figure 7.1). The solution the wave equations can

be written as:

E(x, t) = êyE0e
i(kx−ωt) (7.16)

B(x, t) = êzB0e
i(kx−ωt) (7.17)

where E0 and B0 are determined from boundary conditions, and the wave number

k is given from the dispersion relation:

k2 = k20

(
1− ω2

p

ω2(1 + iν/ω)

)
(7.18)

It is interesting to note that in the absence of collision, i.e., ν = 0, k is imaginary

for ω < ωp. In this case, the wave is evanescent with a skin depth of δ ≈ c
ωp
. This

indicates that the laser cannot propagate past the critical surface, i.e., ω = ωp.

2We also assume that ω
k ≫ νion ∼ 1

ne

dne

dt such that no ionization occurs during the interaction.
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k -

Figure 7.1: Coordinate system of a one dimensional electromagnetic wave prop

agation where xis the direct ion of propagat ion: E = E(x)ey, B = B(x)ez, and 

k = kex. 
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7.2.2 WKB approximation

In this section, the Wentzel-Kramers-Brillouin (WKB) approximation for solving

the wave equations is described. Let us now consider a one dimensional propa-

gation of a monochromatic wave in an inhomogeneous medium. Using the same

coordinate system as defined previously (see figure 7.1), the electric and magnetic

fields can be written as:

E = êy

[
Ê(x)e−iωt + c.c.

]
(7.19)

B = êz

[
B̂(x)e−iωt + c.c.

]
(7.20)

The wave equations for the electric and magnetic fields, equation (7.11) and (7.13),

reduce to second order ODEs:

∂xxÊ + k20ε(x)Ê = 0 (7.21)

∂xxB̂ + k20ε(x)B̂ = 0 (7.22)

where the dielectric function ε is defined in equation (7.12). The WKB approxi-

mation looks for a solution of the form:

Ê = Ê0(x)e
ik0

∫
x ψ(ζ)dζ (7.23)

For simplicity, we assume that there is no collision, hence ψ is real. If we substitute

expression (7.23) to equation (7.21) and to the lowest and first order, we obtain

the following:

ψ =
√
ε = η (7.24)

Ê0(x) =
EV
η1/2

(7.25)

where EV is the electric field in free space.

EV =

√
2I

ǫ0c
(7.26)
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The validation of the WKB approximation requires a smooth variation of the

plasma density or the refractive index. This assumption breaks down in the region

near the critical density where ε → 0. Mathematically, the following relations

needs to be satisfied for the WKB approximation to be valid [129]:

√
3

2

|∂xη|
k0|η|2

≪ 1 (7.27)

1

2

|∂xxη|
k20|η|3

≪ 1 (7.28)

The WKB solution for the electric field reads:

Ê(x) =
EV
η1/2

eik0
∫
x ηdζ (7.29)

The solution for the magnetic field can be determined from Faraday’s law:

B̂(x) =
1

c
η1/2EV e

ik0
∫
x ηdζ +

i

2k0c

EV
η3/2

∂xηe
ik0

∫
x ηdζ (7.30)

One can see that the amplitude of the electric and magnetic fields can undergo

increase or swelling when propagating in a medium with a spatially varying re-

fractive index. The second term in (7.30) is referred to as a phase term [130]; this

term is essential in the generation of non-linear forces, which will be described

later in this chapter. In addition, we have not discussed collisional absorption yet,

but one can see that since η can be complex, its imaginary component is related

to the absorption of the electromagnetic energy.

7.2.3 Collisional absorption

When collision is included, the wave can be collisionally damped as it passes

through the medium. Considering an electromagnetic wave propagating through

a homogeneous medium and utilizing the WKB solution of the electric field, i.e.,

equations (7.29) and (7.30), one can compute the intensity of the wave as follows

184

D-212



[125]:

I(x) = ǫ0c
2|〈E×B〉|

=
1

2
ǫ0cE

2
V e

−2k0
∫
x ηIdζ

= I(x0)e
−

∫ x
x0
κdζ

(7.31)

where I(x0) is the intensity of the incident wave, 〈•〉 denotes a time-average op-

erator, and ηI is the imaginary part of the refractive index, i.e., η = ηR + iηI .

Equation (7.31) is a form of Beer’s law [125]. The spatial damping rate κ, also

known as the absorption coefficient, is related to the plasma refractive index as

follows:

κ = 2k0ηI (7.32)

Using the dielectric function as defined in equation (7.12), the real and the imag-

inary parts of the refractive index for a plasma read:

ηR =
1√
2



√(

1− ω2
p

ω2 + ν2

)2

+

(
ν

ω

ω2
p

ω2 + ν2

)2

+

(
1− ω2

p

ω2 + ν2

)


1/2

(7.33)

ηI =
1√
2



√(

1− ω2
p

ω2 + ν2

)2

+

(
ν

ω

ω2
p

ω2 + ν2

)2

−
(
1− ω2

p

ω2 + ν2

)

1/2

(7.34)

For ν/ω ≪ 1, one can do a series expansion and obtain an expression for the

absorption constant:

κ =
ν

c

ω2
p

ω2

(
1− ω2

p

ω2

)−1/2

(7.35)

It must be noted that the absorption constant as described in equation (7.35)

depends only on the plasma properties. In the so-called linear regime (I . 1015

W/cm2), this is certainly a good approximation. However, if the laser intensity

is high enough that the oscillation energy exceeds the electron thermal energy,

i.e., the quivering motion of the electrons is comparable to or larger than their
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thermal motion, the absorption becomes dependent on the laser and one has to add

correction to the collision frequency and the absorption constant. This is typically

referred to as non-linear collisional absorption [130]; the treatment of non-linear

absorption in hydrodynamic codes will be described later in this chapter. If the

laser intensity is much higher, relativistic particle beam can be generated; all the

relativistic effects are neglected in the current framework.

In the general case, laser absorption can be computed directly from the con-

servation of electromagnetic energy, which is expressed by the Poynting theorem:

1

2
ǫ0∂t

(
E · E+ c2B ·B

)
+∇ · S = −j · E (7.36)

where S = 1
µ0
E×B is the Poynting vector. Since transient effects of the electro-

magnetic fields are neglected, the first term in equation (7.36) is negligible. The

heating rate due to laser absorption, denoted byWL, is obtained by time averaging

the Joule heating term, i.e., the work done on the plasma by the electromagnetic

wave:

WL = 〈j · E〉 = −∇ · 〈S〉 (7.37)

where E and B are obtained from the wave equations.

7.2.4 Ponderomotive forces

When a high-frequency electromagnetic wave propagates through a plasma, it

induces a slow time scale pressure force on the plasma as a result of conservation

of momentum. This force is known as the ponderomotive force or light pressure,

which plays an important roles in many physical phenomena occurring in laser

produced plasma, such as momentum transfer, density modification, magnetic

field generation, and parametric instabilities [38].

The derivation of the ponderomotive force, sometimes referred to as the non-

linear force3 in the general case can get complicated. The most general expression

3The terms non-linear and pondermotive forces are often used interchangeably in the lit-
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found in literature for the non-linear force caused by a transient monochromatic

radiation in a plasma is as follows:

fnl = j×B+ ǫ0E∇ · E+ ǫ0
(
1 + ω−1∂t

)
∇ · (η2 − 1)EE (7.38)

The complete derivation of equation (7.38) is given in appendix C of Hora [129],

Zeidler et al. [131] and Hora [132]. The non-linear force in equation (7.38) can be

rewritten in terms of the electromagnetic energy tensor. Conservation of momen-

tum of the electromagnetic field gives:

∂tS+∇ · T = −ǫ0E∇ · E− j×B (7.39)

where T is the Maxwell tensor, written in index notation as follows:

Tij = −ǫ0EiEj −
1

µ0

BiBj +
1

2
δij

(
ǫ0E

2 +
1

µ0

B2

)
(7.40)

Utilizing equations (7.38) and (7.39), we obtained the following expression for the

non-linear force:

fnl = −∇ ·
[
T− ǫ0

(
1 + ω−1∂t

) (
η2 − 1

)
EE
]
− 1

c2
∂tS (7.41)

The slow time-scale ponderomotive force is obtained by time averaging the non-

linear force fnl over many oscillation cycles. In the current work, transient effects

are neglected, so the expression for the ponderomotive force reduces to:

fp = 〈fnl〉 = −∇ ·
[
〈T〉 − ǫ0

(
η2 − 1

)
〈EE〉

]
(7.42)

For a one-dimensional perpendicular incidence along x direction (see figure 7.1),

the expression for the ponderomotive force is simplified to:

fp = −
ǫ0
4
∂x

(
ÊÊ⋆ +

1

c2
B̂B̂⋆

)

= −ǫ0
4
∂x

(
ÊÊ⋆ +

1

k20
∂xÊ∂xÊ

⋆

)

= −ǫ0ω
2
p

4ω2
∂x

(
ÊÊ⋆

)
(7.43)

erature to indicate the radiation pressure force. Here we use the term pondermotive force to
indicate the slow time scale force, appearing on the hydrodynamic equations; the ponderomotive
dorce is obtained simply by time averaging the non-linear force, i.e., fp = 〈fnl〉.
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The last step is performed with the help of the wave equation (7.21). Although

less general, equation (7.42) is commonly used to express the ponderomotive force

[38]. An alternative derivation of the ponderomotive force, by considering a single

particle motion, is given in appendix E, the result of which, leads to the same

expression as (7.42). If the WKB approximation, i.e., equation (7.23) is used, the

ponderomotive force can be simplified much further [129]:

fp = êx
ǫ0E

2
V

2η2
ω2
p

ω2
∂xη (7.44)

where EV is the electric field in vacuum, given by equation (7.26). As will be

shown later, the solution of the ponderomotive force using WKB equations can

develop a singularity near the critical layer, and do not take in account local

reflection of the wave. The latter is responsible for the density modification due

to ponderomotive bunching.

7.3 Multi-fluid model for laser plasma interactions

In this section, a self-consistent hydrodynamic model is introduced for simulations

of laser plasma interactions. This model is based on the multi-fluid equations

described in section 2.2 with additional coupling terms due to the interaction

with the laser. In high intensity laser plasma interaction, the strong coupling

with the laser can drive the electrons out of equilibrium with the ions, which

gives rise to charge separation, sheath formation, magnetic field generation, etc.

Furthermore, the electrons themselves can possibly be non-Maxwellian, in which

the VDF must be resolved. A kinetic treatment of the electrons is beyond the

scope of the current study. Here we assumed that the electron VDF is close to a

Maxwellian distribution such that it can be characterized by fluid equations.

Considering a fully ionized plasma and assuming that inelastic collisions are
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negligible, the continuity equations for the electrons (e) and ions (i) read:

∂tρe +∇ · (ρeue) = 0 (7.45)

∂tρi +∇ · (ρiui) = 0 (7.46)

In the multi-fluid model, the momentum of ions and electrons are conserved sep-

arately, leading to different averaged velocity for each species, and thus allowing

charge separation. In the current work, we neglect the effect of the magnetic field

and only consider electrostatic fields; the resultant equations are referred to as

the Euler-Poisson system. When the magnetic field is included, the full Maxwell’s

equations need to be solved self-consistently.

The momentum equations for the ions and electrons are as follows:

∂t(ρeue) +∇ · (ρeueue + peI) = −eneE+ ρeνeiwei + fp (7.47)

∂t(ρiui) +∇ · (ρiuiui + piI) = ZieniE− ρeνeiwei (7.48)

where wei = ui − ue is the mean drift velocity, νei is the Coulomb collision fre-

quency between ions and electrons, and I is an identity tensor. The first terms on

the RHS of equations (7.47) and (7.48) correspond to the Coulomb force and the

second terms correspond to the momentum relaxation term [46]. One can check

that momentum conservation are satisfied. The third term, which only acts on the

electron fluid, is due to the ponderomotive force, discussed in section 7.2.4. The

ponderomotive force fp in the general case can be expressed by equation (7.42);

for one dimensional problems studied here, we use the expression given by (7.43).

For the ions, this force scales as me/mi and can be neglected.

The collision frequency for Coulomb interaction is:

νei =
4

3
(2π)1/2

(
Ze2

4πǫ0me

)2(
m

kTe

)3/2

ni ln Λ (7.49)

where Λ = λD/bmin and bmin is the minimum impact parameter. In addition to

collisional friction, the collision frequency νei is also used to describe the dielectric
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function of the medium. As pointed out earlier in this chapter, for high intensity

lasers (I > 1015 W/cm−2), the electron quiver velocity is comparable to the ther-

mal velocity, so the absorption process becomes dependent of the laser intensity

(non-linear absorption). In hydrodynamic codes, this effect is taken into account

by introducing an effective collision frequency ν⋆ei [129]:

ν⋆ei ≈ νei
(kTe)

3/2

(kTe + E)3/2
(7.50)

and E = I/cncr is the oscillation energy of the electrons due to the laser.

The conservation equations for the thermal energy of each species, denoted as

εs, can we written as:

∂tεe +∇ · (εeue) + pe∇ · ue =−∇ · qe + 3m̃eneνeik(Ti − Te)

+ m̃iρeνeiwei ·wei +WL

(7.51)

∂tεi +∇ · (εiui) + pi∇ · ui =− 3m̃eneνeik(Ti − Te)

+ m̃eρeνeiwei ·wei

(7.52)

where m̃s = ms

me+mi
. Here we include electron thermal conduction, which is the

main heat transport mechanism in LPI. It must be pointed out that the thermal

energy exchange process, i.e., RHS of equations (7.51) and (7.52), is due to both

thermal relaxation effects (temperature difference) and frictional heating (velocity

difference). The frictional heating term scales as |wei|/vTe, and can be neglected

in the limit of small relative drift velocity. Laser absorption is taken into account

by the heating termWL, which represents the energy transfer from the laser to the

plasma. WL can be computed directly from the Poynting theorem via equation

(7.37).

The thermal energy equations (7.51) and (7.52) can be combined with the

momentum equations (7.47) and (7.48) to yield the conservation equations for the

total energy of each species:

∂tEe +∇ · [(Ee + pe)ue] =−∇ · qe + je · E+ ρeνeiwei · uei

+ 3neνeik(Ti − Te) + fp · ue +WL

(7.53)
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∂tEi +∇ · [(Ei + pi)ui] =ji · E− ρeνeiwei · uei − 3neνeik(Ti − Te) (7.54)

where

js = Zsensus (7.55)

Es = εs +
1

2
ρsus · us (7.56)

uei =
miui +meue
mi +me

(7.57)

To close the system, an ideal gas equation of state is used, i.e., ps = nskTs and

εs = ps/(γs − 1). One can easily check that energy conservation is satisfied for

the collision terms; this is only possible with the inclusion of the frictional heating

terms in equations (7.51) and (7.52). The electrostatic field E is determined from

Gauss’s law4:

∇ · E =
e

ǫ0
(Zini − ne) (7.58)

It is often convenient to express the electric field in terms of the electrostatic

potential, i.e., E = −∇φ, which leads to the Poisson equation:

∇2φ = − e

ǫ0
(Zini − ne) (7.59)

The electron heat flux takes the classical form of Spitzer-Harm (SH) [54]:

qSH = −κe∇Te (7.60)

where κe is the electron thermal conductivity:

κe =
γZnek

2Te
meνei

(7.61)

γZ ≈
3.22554(Zi + 0.24)

1 + 0.24Zi
(7.62)

It must be noted that since νei ∼ T
−3/2
e , κe ∼ T

5/2
e . SH formula is valid for

λei ≪ Te/|∇Te| where λei is the collisional mean free path between ions and

4This is the low frequency field induced by the plasma, which is different from the electric
field of the laser.

191

D-219



electrons. Beyond this limit, non-local effects in heat transport becomes impor-

tant, requiring a kinetic treatment. In most hydrodynamic codes, the heat flux

from SH theory is limited such that it can never exceed the free-stream limit,

qFS =
(
2
π

)1/2
kTevTe, where vTe is the thermal velocity of the electrons. The same

approach was employed here, leading to the following modification for the heat

flux:

qe = min(f
qFS
|qSH |

qSH ,qSH) (7.63)

where f is a flux limit value. Here we set f = 0.15.

7.4 Numerical solutions of the wave equations

7.4.1 Finite difference method

In this section, the numerical methods for solving the wave equations (7.21) and

(7.22) for Ê and B̂ are briefly described. Instead of solving both equations, it is

more convenient to solve for Ê from equation (7.21), and B̂ can be determined

from Faraday’s law. Equation (7.21) can be solved easily by a finite difference

(FD) discretization; detail of such a discretization can be found in LeVeque[133]

and will not be repeated here.

One can see that the general solution of equation (7.21) is of the form:

Ê(x) = E+e
ikx + E−e

−ikx (7.64)

where the first term represents the wave coming from the left and the second term

is due to the wave coming from the right. For a problem with laser incidence from

the left, the boundary conditions are defined as follows:

E+(x = 0) = EV (7.65)

E−(x = L) = 0 (7.66)
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where EV given by equation (7.26). Note that here we assume that the phase of

the incident wave is zero at x = 0, and there is no light coming in from x = L. The

two conditions on E+ and E− lead to two mixed boundary conditions (Neumann

and Dirichlet) on the two sides of the domain. The discretized version of the wave

equation is a tridiagonal system of equations, which can be solved easily by the

Thomas algorithm.

7.4.2 Transfer-matrix method

The second approach of solving the wave equations is the transfer-matrix method

(TMM) [134, 135]. Instead of solving the second order wave equation, we look for

the solution of a system of two first order ODEs:

∂xÊ = iωB̂ (7.67)

c∂xB̂ = ik0η
2Ê (7.68)

One can rewrite the system above into the form:

dU

dx
= i

β

p
V (7.69)

dV

dx
= ipβU (7.70)

where p = η, β = ωp
c
, U ≡ Ê and V ≡ cB̂. The solution for the equation above

in the region where η2 is uniform reads:

U = E+e
iβx + E−e

−iβx (7.71)

V = p(E+e
iβx + E−e

−iβx) (7.72)

where E± = 1
2
(U ± V/p). Assuming an uniform value of the complex refractive

index within a computational cell, the field values at two faces next to each other

can be related by the following analytical expression:

Uj−1/2

Vj−1/2


 =


 cos(βj∆x) − i

pj
sin(βj∆x)

−ipj sin(βj∆x) cos(βj∆x)




Uj+1/2

Vj+1/2


 (7.73)
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Taking of the product of all the matrices for all the cells, one obtains a relation

for the first and last faces:

U−1/2

V−1/2


 =


m11 m12

m21 m22




UN+1/2

VN+1/2


 (7.74)

Assuming the phase of the incident electric field is zero and there is no light

incident from the right, the boundary conditions at the laser incident side (left)

read:

E+,−1/2 = EV =
1

2
(U−1/2 + V−1/2) (7.75)

E−,N+1/2 = 0 =
1

2
(UN+1/2 − VN+1/2) (7.76)

Utilizing equations (7.74), (7.75) and (7.76), we obtain the following relations:

UN+1/2 =
2EV

m11 +m12 +m21 +m22

(7.77)

VN+1/2 = UN+1/2 (7.78)

Once the solution at N + 1/2 is computed, one can recursively utilize relation

(7.73) to find U and V at other faces.

7.4.3 Benchmark problems

In this section, the wave solver for the laser fields is validated with an analytical

problem. For a linearly increasing plasma density profile n ∼ x, the wave equation

(7.21) can be solved exactly [124]. The dielectric function also follows the same

linear relation:

ε(x) = η2(x) = (x− xc)/L (7.79)

where xc is the location of the critical surface, i.e., n(xc) = ncr. By using the trans-

formation ξ = (k20/L)
1/3(x − xc), equation (7.21) is reduced to the homogeneous

Stokes equation:

∂ξξÊ + ξÊ = 0 (7.80)
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Assuming the wave is evanescent to the right halfspace (ξ > 0), the exact solution

of the electric field is the Airy function, denoted as Ai(ξ):

Ê(ξ) = 2
√
π(k0L)

1/6EV e
iϕAi(ξ) (7.81)

where ϕ is a phase factor which does not affect |Ê|. The solution of the magnetic

field is determined from Faraday’s law, i.e., equation (7.14):

B̂(ξ) = − i
c
2
√
π(k0L)

−1/6EV e
iϕAi′(ξ) (7.82)

where Ai′(ξ) is the derivative of the Airy function.

We tested the two numerical approaches finite difference and transfer matrix

methods in solving the wave equations for the electromagnetic fields using the

linear density profile defined in equation (7.79). In the first test case, collision

is neglected, resulting in a real value of the refractive index, and hence there

is no absorption of the electromagnetic energy. The numerical solutions of the

electric field along with the exact solution are shown in figure 7.2. The results

show excellent agreement between the numerical and the exact solutions. It can

be seen that the solution obtained with the transfer-matrix method is slightly

more accurate. However, the finite difference method can be easily generalized to

multiple dimensions.

The ponderomotive force is computed for the same test case using equation

(7.43) and plotted in figure 7.3. The same quantity was computed by Lindl and

Kaw [136] using the analytical solution of the field. A discrepancy between the

current numerical solution and Lindl and Kaw’s result was found; the numerical

result suggests that the term due to the magnetic field in the Maxwell tensor, i.e.,

second term on the RHS of equation (7.43), was missing from their calculation.

It can be seen that at approximately ξ = −1, the ponderomotive force is pushing

the cold plasma inward on the right side, and pushing the left side further away.

On the left of ξ = −2, there exits a standing wave due to local reflection of the
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Figure 7.2: Solution of t he electric field for a linear density profile (shown by the 

black dotted line) computed using bot h TMM and FD methods. The solid black 

line is the exact solut ion given by the Airy funct ion. The length is normalized by 

the laser wavelength 
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Figure 7.3: Ponderomotive force for a linear density profile. The numerical solu

tion is obt ained using the electric field computed in figure 7.2. The solut ion of 

Lindl and Kaw [136] is reproduced by omitting the term containing the magnetic 

field in the expression of the Maxwell stress tensor. The broken line is t he solution 

obtained from t he WKB approximat ion, i.e. , equation (7.44) . 

electromagnetic wave, which gives rise to the ponderomot ive bunching effects. 

The solut ion of the poderomot ive force comput ed using the equat ion (7.44) is also 

shown in t he figure 7.3 wit h a singularity near~ = 0 due to the breakdown of the 

WKB approximat ion. 

In the second test case, collision is included in the expression of t he refract ive 

index, which allows the wave to be collisionally damped. The spatial profile of 

the int ensity of the electromagnet ic wave is shown in figure 7.4 using t he field 

values obtained from solving t he wave equations and the WKB approximat ion. 

The numerical solut ions from both approaches (wave equations and WKB approx

imation) agree very well with unnoticeable difference near the crit ical layer. The 
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surface and consequently creating a charge displacement. The TNSA process, on

the other hand, refers to the direct conversion of the laser energy to kinetic energy

of the electrons through various absorption mechanisms, leading to generation of

relativistic electrons. These electrons are expanded to vacuum, thus creating an

extremely large electric field, which accelerates the ions.

The RPA mechanism is reproduced by simulating the interaction of a high

intensity laser pulse with a plasma density gradient using the multi-fluid equations.

The effect of the laser ponderomotive force (appearing in the electron momentum

equation) in modifying the plasma density and accelerating charged particles is

examined. A similar problem was studied by Hora et al. in 1984 [140] albeit

with a more compact domain size. Hora et al.’s work focuses on examining the

generation of a double layer near the critical surface. In this work, we extended

the domain to model the entire profile starting from the overdense plasma to near

vacuum5.

The plasma is initialized using an Epstein transition layer profile [141] with a

thickness δ = 4 µm. The initial profile assumes a fully ionized hydrogen plasma

at rest, and the computational domain is x ∈ [0, L] where L = 25 µm. The initial

density profile is as follows:

b = 1− exp [4(x− L/2)/δ]
1 + exp [4(x− L/2)/δ] (7.84)

ni = ne = a ncr (1− b) (7.85)

where a = 1.02 and ncr is the laser critical density. The initial temperatures of the

ions and electrons are 1 keV. The laser wavelength is chosen to be 1.053 µm. The

laser pulse is simulated as a Gaussian pulse with a peak intensity of 1016 W/cm2, a

pulse duration of 1 ps, and a FWHM of 0.2 ps (see figure 7.5). At t = 0+, the laser

5Due to the use of an Eulerian code, one can not have zero number density, so a minimum
value (0.01ncr) for the number density is imposed in the “vacuum” region. This far field region
does interact with the laser but does not affect the overall dynamics near the plasma density
gradient.
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Figure 7.5: Gaussian laser pulse wit h a maximum intensity of 1016 Wjcm2 

is incident from t he left side of t he domain. Although the calculation also includes 

absorption, its effect is negligible due to high temperat ure and laser intensity. 

Simulat ion results show little difference whether or not absorption is included. 

The reason for choosing a weak absorpt ion condit ion is to enhance the effect of 

the ponderomotive force on t he plasma accelerat ion and density modificat ion. The 

init ial conditions and the laser propert ies are chosen similarly to Hora 's test case 

but wit h a longer comput at ional domain and a slightly different density profile. 

This allows us to validate t he code by comparing wit h Hora 's result near the 

critical density layer, and also look at at t he evolut ion of t he plasma density in 

the corona region. 

Figure 7.6 shows t he ion number density profile and t he laser ponderomot ive 

potential at various t imes during the laser pulse. At t = 0.3 ps, t he profile still 

looks very much similar to t he init ial one as the laser intensity begins to rise. One 

can see the formation of a large potential hill near the crit ical layer. The resultant 
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ponderomotive force due to this potential rapidly pushes the electrons down the

hill, thus creating a charge displacement and an electrostatic field, which drags

the ions along. At t = 0.5 ps, the laser is at its peak intensity, and we begin

to see the formation of a caviton at x ≈ 16 µm, as a direct consequence of the

charge particle being rolled down the potential hill. This effects was also shown

in the simulation of Hora et al. [140] with a more compact domain size. It must

be pointed out that nonlinear force produced caviton was observed in the case of

a plasma density gradient being imposed with an external rf field, and had been

studied extensively by a number of researchers [142, 143]. In addition, the current

simulation also shows an oscillatory structure of the density profile for x < 16 µm,

which persists even after the laser is gone. The density ripples effectively make

the plasma less transparent to the laser field; this can be seen from the density

profile during the second half of the laser cycle where most of the laser is being

reflected.

The appearance of the ripple in the density profile was not revealed in the

previous simulation of Hora et al. [140] due to the limit on their computational

domain size. This effect is due to local reflection of the laser electromagnetic wave

as it propagates through the plasma medium, forming a standing wave pattern as

can be seen in the ponderomotive potential profile. The standing wave nature of

the potential results in an oscillatory (in space) acceleration of the electrons. The

dynamics of the ions is mainly an electrostatic response to the charge separation

as illustrated in figure 7.7. The magnitude of the electrostatic field induced in

plasma can be significantly large during the laser period (up to 107 V/cm). Since

plasma temperature is relatively high, collisional relaxation plays a minor role.

Figure 7.8 shows the ion velocity profile at different instances of time. Highly

oscillatory velocity profile can be observed in the plasma corona region, and most

importantly one can see that the ions are accelerated inward with an velocity of

approximately 107 cm/sec. It must be clarified that the acceleration of the bulk
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Figure 7.6: Ion number density (solid line) and the ponderomot ive potent ial 

(dashed line) at four different t imes during t he laser pulse. The ponderomot ive 

potent ial is defined as Eo(E2 + c2 B2 ) . The ion number density is normalized by 

the laser crit ical number density, and the potent ial is normalized by its value at 

the vacuum region. 
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Figure 7.7: Elect rostat ic field generated in t he plasmas due to charge separation. 

of the plasma is merely due to the acoustic wave launched into the plasma. The 

ion acceleration, however, is a result of the intense electric field induced inside 

the plasma. This E-field consequently generates bursts of high energy ions in a 

transient fashion, which is t he essence of RPA mechanism. The result in t his 

simulation indicates that in the regime of weak collision and low absorption, non

linear force can dominate thermal action and plays an important role in charge 

acceleration. This is sometimes referred to as the laser piston regime. The same 

acceleration mechanism can be observed at kinetic t ime scale with ultra-high in

tensity laser-matter interact ion, by which the ions can be accelerated to relat ivistic 

speed [144]. 

Let us now look at the evolution of t he plasma after the laser pulse and t he 

dependences on t he laser parameters. In particular, we examine numerically the 

density modification effects due to a negatively chirped laser pulse. The effect 

of chirped lasers in LPI was examined in the context of charge acceleration both 
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Figure 7.8: Ion velocity at various t imes after the laser pulse init iat ion. 

from theoret ical and application aspects [145, 146, 147, 148]. We focus here on 

characterizing the density steepening effect due to the action of ponderomot ive 

force and variation of t he laser frequency. Since t he laser period is much short er 

than the pulse durat ion (211'w- 1 ~ 3.5 fs) , the effect of a chirped laser can be 

incorporated by imposing a time variation of the laser frequency w in the wave 

equat ions. In this study, the laser frequency is modeled by a linear relat ion: 

(7.86) 

where b is the chirp parameter and T is the t ime normalized by the laser pulse 

duration. In t his study, we choose b = 0.25. 

Figure 7.9 shows the ion densit ies for both cases of negatively chirped and 

unchirped lasers at several t imes. It can be seen that the formation of the density 

bump is delayed and t he peak density value is higher when t he laser is chirped. 

This can be explained by examining the dynamics of t he laser ponderomot ive 

forces during the laser pulse. Figure 7.10 shows the ponderomotive potential for 
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the first half the pulse. As expected, one can see a shift in the location of the

potential hill when the laser is chirped as a indication of a change in the laser

critical frequency. Consequently, as time progresses, the pressure force from the

chirped laser starts pushing lower density plasma in the corona region inward,

resulting a more compressed density bump. This suggests that the negatively

chirped laser can enhance compression and steepen the plasma density near the

critical layer. The existence of profile steepening is advantageous for energy trans-

port process, i.e., excessive heating in the corona region can be minimized and

resonance absorption is more efficient.
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CHAPTER 8

Conclusions and Future Directions

8.1 Achievements and contributions

In this dissertation, a hydrodynamic framework was developed to simulate multi-

component plasmas including both elastic and inelastic interactions by means of

a collisional-radiative (CR) model. The hydrodynamic equations can be derived

by taking moments of the plasma kinetic equation with an appropriate closure of

the transport fluxes. The CR model takes in account nonequilibrium distribution

of the internal energy degrees of freedom. These energy states are convected as

pseudo-species and their evolution due to CR kinetics are determined by solving

a system of rate equations.

Two families of fluid models were considered in this work. The first one is the

multi-fluid equations which characterize the plasma species in terms of their own

set of conservation laws, which are coupled through collisional and electromag-

netic interaction. The electromagnetic fields, governed by Maxwell’s equations,

are solved self-consistently with the plasmadynamics. In the limit of small elec-

tron inertia, the electron momentum reduces to the generalized Ohm’s law, which

relates the plasma current and the electromagnetic field. Various magnetohydro-

dynamic models can be derived from Ohm’s law. Furthermore, in the limit of fast

momentum exchange rate between the plasma components, the plasmadynam-

ics can be characterized by the bulk fluid instead of individual components; this

leads to the second family referred to as single-fluid models. Thermal nonequilib-
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rium among different plasma components can be captured by multi-temperature

equations, i.e., the thermal energy of each component is convected separately.

These hydrodynamic equations could be casted in system of conservation laws,

which may be solved by a variety of numerical methods. In the current work, a

finite volume discretization was utilized to solve for the fluid transport. The nu-

merical fluxes were computed by solving an approximated Riemann solver at each

interface. In order to achieve high-order accuracy, a high-order reconstruction

procedure along with multi-stage Runge-Kutta method were employed for the

flux integration and time marching, respectively. The coupling source terms were

treated with an operator splitting approach. Stiff source terms were computed

with a backward Euler method for stability reasons. An extensive set of bench-

mark problems for both single-fluid and multi-fluid equations were presented to

validate the numerical methods and various physical modules implemented in the

code.

Detailed CR models for Argon, Krypton and Xenon were constructed, taking

into account excitation and ionization mechanisms both from collisional and ra-

diative interaction, and thermal relaxation via elastic collision. The macroscopic

rates were obtained directly from the cross section assuming a Maxwellian en-

ergy distribution function. A majority of the cross sections are based on ab initio

calculations, and semi-empirical formula are used for missing data. Using both

steady and unsteady 1D simulations, these CR models were calibrated against

available experimental shock tube data with satisfactory agreement over a wide

range of flow conditions. The source of remaining discrepancy discovered through

these simulations calls for future multi-dimensional simulations with viscous phe-

nomena.

In order to lower the complexity and computational requirement in solving the

CR kinetics, a model reduction mechanism for atomic plasma was developed, by

grouping electronic states into groups and deriving the corresponding macroscopic
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rates to take in account all the transitions. In contrast to the common level-

grouping approach, a higher-order description of the internal structure of the

groups was developed here by assuming a Boltzmann distribution of the levels

within the group, with different temperatures for each group. This approach

provides substantial accuracy at minimal computational cost, making it suitable

for multidimensional flow calculations.

The modeling of inelastic collisions is extended to the multi-fluid regime, with

much emphasis on excitation collision and its reverse process. The exchange

source terms due to collision are derived by taking moment of the collision transfer

integral. It is shown that the macroscopic rates for multi-fluid equations can

deviate significantly from the single-fluid limit due to the difference in the mean

flow velocities. In addition, inelastic collisions impose momentum and energy

exchange analogously to elastic collisions. The derivation also shows that common

expressions of detailed balance for excitation and deexcitation collision does not

hold at the macroscopic level when the relative mean drift velocity between the

two components is apparent.

The multi-fluid equations were used to simulate laser-plasma interaction phe-

nomena. In particular, the ion acceleration mechanism due to radiation pressure

is modeled, showing a strong coupling between the laser, the plasma, and the

induced electromagnetic field at high intensity (I ≥ 1015 W/cm2). These sim-

ulations highlighted the advantage of the multi-fluid model over the single-fluid

model to capture charge separation and electromagnetic effects in plasma, which

play an essential role in the dynamics of charged particle acceleration, magnetic

field generation, and instabilities.
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8.2 Future directions

The hydrodynamic models developed in this dissertation can be utilized to study

a wide range of problems. In particular, the CR model is directly applicable for

the study of plasma formation and radiation, which is relevant, for example, in

field-reversed configuration (FRC) plasma formation [42] and aerothermodynam-

ics [20]. The FRC modeling can be accomplished by solving the magnetohydro-

dynamic (MHD) equations or the multi-fluid equations with a detailed CR model.

The validity of the MHD approximation in this plasma regime can be revealed via

comparison with the multi-fluid solutions. The same set of equations can be used

to study shock and instabilities, occurring in hypersonic reentry [20], inertial con-

finement devices [149], and astrophysical plasmas [150]. The aspect of excitation

and ionization kinetics is of most interests in these simulations since it is often

neglected (assuming a fully ionized plasma) or over-simplified (one-step kinetics,

quasi steady-state model).

The CR model itself can be improved in several ways. The empiricism of the

collision cross section (heavy-particle impact collision) can be removed by using

ab initio cross sections. In addition, the simplified treatment of the radiative term

can be improved with a radiation transport (RT) model, which takes into account

the distribution of the radiation field [95]. Although the solution of the RT equa-

tion can be computationally very expensive, various approximations can be used

to reduce the cost, e.g., tangent-slab method, multi-group diffusion approxima-

tion, etc. By combining the level-grouping method developed in this work with

a simplified RT model, a time-dependent flow solution with detailed CR kinetics

coupled with the radiation field can be made feasible, allowing us to extract the

synthetic radiation spectra for comparison with experiments. In fact, this cou-

pling approach was attempted by Cambier [113] albeit with the use of a simplified

model for the CR kinetics. Cambier’s work shows that precursor effects can be
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of importance for very high shock Mach number; these phenomena are highly

non-local and cannot be captured without a RT model.

Extension of the CR model to the multi-fluid regime requires a full description

of all the macroscopic rates (density, momentum, and energy) for each transi-

tion. The rates must be consistent with kinetic theory, and obey the principle of

detailed balance. The same derivation carried out for the excitation and deex-

citation collisions can be extended to model ionization and recombination. The

contribution of the radiative terms can be derived in a similar fashion with some

simplification. Since the mean momentum of the photon is usually much smaller

than the thermal momentum of the particle, momentum transfer can be neglected

for the radiative transitions. The fully developed multi-fluid CR model can com-

plement the existing work on multi-fluid transport to construct a self-consistent

plasmadynamic model. This model is a generalization of the traditional MHD

model, therefore having a wider range of applicability, and can potentially pro-

vide a robust coupling with hybrid fluid-kinetic methods.
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APPENDIX A

Eigensystems

A.1 2T Model

The expressions for the pressure and energy derivatives, which enter the flux

Jacobian matrix, are given here. From the equation of state (2.54), the total

pressure derivatives can be determined as:

pE ≡
∂p

∂E
= γh − 1 (A.1)

pSe ≡
∂p

∂Se
= ργe−1

(
1− γh − 1

γe − 1

)
(A.2)

pρu ≡
∂p

∂(ρu)
= −(γ − 1)u (A.3)

pρe ≡
∂p

∂ρe
= (γe − γh)

pe
ρ

+ (γh − 1)
u · u
2

(A.4)

pρs6=e
≡ ∂p

∂ρs6=e
= pρe − (γh − 1)εs +

ps
ρs

(A.5)

pρ ≡
∂p

∂ρ
= pρe − (γh − 1)

∑

s6=e
ysεs +

p− pe
ρ

(A.6)

The energy derivatives can also be obtained in a similar manner from equa-

tion (2.55):

Eρe ≡
∂E

∂ρe
= −1

2
u · u (A.7)

Eρs6=e
≡ ∂E

∂ρs6=e
= εs + Eρe −

ps
(γ − 1)ρs

(A.8)

Eu ≡
∂E

∂u
= ρu (A.9)
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Ep ≡
∂E

∂p
=

1

γh − 1
(A.10)

Epe ≡
∂E

∂pe
=

1

γe − 1
− 1

γh − 1
(A.11)

where ys is the species mass fraction.

The vector of conservative variables and the inviscid flux vector in the two-

temperature model within the context of a finite-volume approximation is as fol-

lows:

Q =




ρs

ρux

ρuy

ρuz

E

Se




, Fn =




ρsun

ρunux + pnx

ρunuy + pny

ρunuz + pnz

unH

unSe




(A.12)

where Fn is the numerical flux normal to the interface. The three components

of the unit vector normal to the face are defined as nx, ny and nz, and un is the

normal component of the velocity:

un = uxnx + uyny + uznz (A.13)

We also define the two tangential velocities to the face

ut = uxtx + uyty + uztz (A.14)

us = uxsx + uysy + uzsz (A.15)

The flux Jacobian for the Euler equations for the 2T model is given as:

A =




un(δsr − ys) ysnx ysny ysnz 0 0

pρrnx − unux Amx,mx Amy ,mx Amz ,mx pEnx pSenx

pρrny − unuy Amx,my Amy ,my Amz ,my pEny pSeny

pρrnz − unuz Amx,mz Amy ,mz Amz ,mz pEnz pSenz

un (pρr − h) unpmx + hnx unpmy + hny unpmz + hnz un (1 + pE) unpSe

−unŝe ŝenx ŝeny ŝenz 0 un




(A.16)
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where ys = ρs/ρ is the species mass fraction, and Amα,mβ
= pmαnβ+uβnα+δαβun.

The speed of sound can be extracted from the determinant of the flux Jacobian:

a2 =
∑

ys
∂p

∂ρs
+

(
εh + εe +

p

ρ
− u · u

2

)
∂p

∂E
+ ŝe

∂p

∂Se
(A.17)

The similarity transformation matrices R and L are defined as:

R =




δsr ys 0 0 ys 0

ux ux − nxa txρ sxρ ux + nxa 0

uy uy − nya tyρ syρ uy + nya 0

uz uz − nza tzρ szρ uz + nza 0

Eρr h− aun Eut Eus h+ aun Epe

(1− γe)ŝe ŝe 0 0 ŝe ρ1−γe




(A.18)

L =




δsr − ys pρsa2 −ys pmx

a2
−ys pmy

a2
−ys pmz

a2
−ys pEa2 −ys pSe

a2

pρr+cun
2a2

pmx−cnx

2a2
pmy−cny

2a2
pmz−cnz

2a2
pE
2a2

pSe

2a2

−ut
ρ

tx
ρ

ty
ρ

tz
ρ

0 0

−us
ρ

sx
ρ

sy
ρ

sz
ρ

0 0

pρr−cun
2a2

pmx+cnx

2a2
pmy+cny

2a2
pmz+cnz

2a2
pE
2a2

pSe

2a2

(γe−1)pe
ρ
− γepepρr

ρa2
−γepepmx

ρa2
−γepepmy

ρa2
−γepepmz

ρa2
−γepepE

ρa2
pe
Se
− γepepSe

ρa2




(A.19)

The diagonal matrix of eigenvalues of Λ is defined by

Λ =




un . . . 0 0 0 0 0 0
...

. . .
...

...
...

...
...

...

0 . . . un 0 0 0 0 0

0 . . . 0 un − a 0 0 0 0

0 . . . 0 0 un 0 0 0

0 . . . 0 0 0 un 0 0

0 . . . 0 0 0 0 un + a 0

0 . . . 0 0 0 0 0 un




(A.20)
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A.2 Maxwell’s equations

The vector of conservative variables and the inviscid flux vector in Maxwell’s

equations within the context of a finite-volume approximation is as follows:

Q =




Bx

By

Bz

Ex

Ey

Ez




, Fn =




Ezny − Eynz
−Eznx + Exnz

Eynx − Exny
c2(−Bzny + Bynz)

c2(Bznx −Bxnz)

c2(−Bynx + Bxny)




(A.21)

where nx, ny and nz are the three component of a unit vector normal to a com-

putational cell. The flux Jacobian for the Maxwell’s equations is given as:

A =




0 0 0 0 −nz ny

0 0 0 nz 0 −nx
0 0 0 −ny nx 0

0 c2nz −c2ny 0 0 0

−c2nz 0 c2nx 0 0 0

c2ny −c2nx 0 0 0 0




(A.22)

The transformation matrices R and L are defined as:

R =




0 nx −nxny

c
nxnz

c

nxny

c
−nxnz

c

0 ny
n2
x+n

2
z

c

nynz

c
−n2

x+n
2
z

c
−nynz

c

0 nz −nynz

c
−n2

x+n
2
y

c

nynz

c

n2
x+n

2
y

c

nx 0 −nz −ny −nz −ny
ny 0 0 nx 0 nx

nz 0 nx 0 nx 0




(A.23)
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L =




0 0 0 nx ny nz

nx ny nz 0 0 0

− cny

2nx
c/2 0 −nz/2 −nynz

2nx

n2
x+n

2
y

2nx

cnz

2nx
0 −c/2 −ny/2 n2

x+n
2
z

2nx
−nynz

2nx

cny

2nx
−c/2 0 −nz/2 −nynz

2nx

n2
x+n

2
y

2nx

− cnz

2nx
0 c/2 −ny/2 n2

x+n
2
z

2nx
−nynz

2nx




(A.24)

The diagonal matrix of eigenvalues of Λ is defined by

Λ =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 −c 0 0 0

0 0 0 −c 0 0

0 0 0 0 c 0

0 0 0 0 0 c




(A.25)

where c = 3× 108 m/s is the speed of light.
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APPENDIX B

Steady-state Flow Equations

This appendix describes the steady-state 1D flow approximation used to compute

an ionizing shock profile. Utilizing the two temperature model described in section

2.4 and dropping the unsteady terms, the governing equations for steady-state flow

are reduced to a system of ODEs:

d

dx
(ρsu) = msω̇s (B.1)

d

dx

(
p+ ρu2

)
= 0 (B.2)

d

dx
(uH) = ω̇εh + ω̇εe (B.3)

d

dx
(uSe) =

γe − 1

ργe−1
ω̇εe (B.4)

(B.5)

where H = E + p. Using the Jacobian defined in appendix A, one can write the

system as:

A
dQ

dx
= Ω̇ (B.6)

where Q is the typical vector of hydrodynamic variables. Here we consider a

semi-implicit approximation in which only the RHS is treated implicitly. The

linearization follows from a Taylor series expansion:

A
dQn

dx
= Ω̇n +

∂Ω̇

∂x
∆x (B.7)

A
dQn

dx
= Ω̇n + J

dQn

dx
∆x (B.8)
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where J = ∂Ω̇
∂Q

. Note that the inviscid flux Jacobian A is assumed constant in the

expansion which makes the scheme not fully implicit. However, the main concern

of the stiffness due to kinetics can be avoided. The final expression for the change

in the conservative variables reads:

∆Qn = ∆x (A−∆xJ)−1 Ω̇n (B.9)

For the steady-state shock flow, we seek for a solution of an initial value prob-

lem with the initial conditions being the post-shock flow properties determined

from the Rankine-Hugoniot conditions with frozen chemistry. The flow variables

are then marched forward in space using the approximation given by equation

(B.9). The size of ∆x is selected such that sharp flow features such as the elec-

tron avalanche can be well resolved.
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APPENDIX C

Collision kinematics

C.1 Two-body processes

Let us consider an inelastic collision1 between two particles s and t, such that the

post-collision particles can have modified internal states. The process is formally

described as the relation

s(vs) + t(vt)⇔ s′(v′
s) + t′(v′

t) (C.1)

Note that only two particles are produced by the collision, and that the reverse

process is indicated by the left arrow in (C.1). The initial velocities are vs,vt.

One can define a fluid velocity u such that u ≡ 〈v〉 ≡
∫
d3vvf(v) and a thermal

velocity c = v − u. By definition, we also have 〈c〉 ≡ 0

The collision can be transformed to the center of mass (COM) reference frame,

moving with velocity V with respect to the LAB frame. Similarly, we can also

define a mean velocity of this COM frame as U. The subsequent Galilean trans-

formations yield the following definitions:

V =
msvs +mtvt

M
g = vs − vt (C.2a)

U =
msus +mtut

M
w = us − ut (C.2b)

1The particles s and t are respectively the scattered and target in the laboratory frame of
reference (LAB)
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where M=ms+mt. The inverse transformation yields:

vs = V +
mt

M
g us = U+

mt

M
w (C.3a)

vt = V − ms

M
g ut = U− ms

M
w (C.3b)

Mass conservation imposes the relation ms+mt=M=m′
s+m

′
t. For the case of two-

body processes such as excitation of internal states, the masses are individually

conserved, i.e. m′
s=ms,m

′
t=mt. Expressed in the COM frame, momentum and

energy conservation yield, respectively:

MV =MV′ (C.4a)

1

2
MV2 +

1

2
µg2 =

1

2
MV′2 +

1

2
µg′2 +∆ε (C.4b)

where µ=msmt/M . Therefore, we have the following constraints:

V = V′ and g2 = g′2 +
2∆ε

µ
(C.5)

For an excitation between two atomic levels, the transferred energy is a fixed

value ∆ε ≡ ε∗, the energy gap between levels. In the limit ∆ε → 0, the collision

is elastic.

Consider now the Maxwellian velocity distribution functions (VDF) of each

particle type, normalized to unity, e.g. (recall that c=v−u):

fs(vs) =

(
ms

2πkTs

) 3
2

exp

[
−msc

2
s

2kTs

]
(C.6)

and similarly for ft. The averaging over initial states will yield a product of these

two distributions:

fs(vs)ft(vt) =

(
ms

2πkTs

) 3
2
(

mt

2πkTt

) 3
2

exp[A] (C.7)

where the argument of the exponential function is, from inverting (C.2):

A =
ms

2kTs

[
V −U+

mt

M
(g −w)

]2
+

mt

2kTt

[
V −U− ms

M
(g −w)

]2
(C.8)
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Following Burgers [43], this expression can be simplified with an appropriate trans-

formation of variables; since the basic procedure will be used elsewhere, we de-

scribe it below. First, we define the following variables

βp =
mp

2kTp
, g̃ = g −w (C.9)

such that

A = βs

[
(V−U) +

mt

M
g̃
]2

+ βt

[
(V−U)− ms

M
g̃
]2

= (βs+βt)(V−U)2 +

[
βs
m2
t

M2
+ βt

m2
s

M2

]
g̃2 + 2

[
βs
mt

M
− βt

ms

M

]
(V−U) · g̃

(C.10)

Define now

V∗ = V−U+ γg̃ (C.11)

and comparing the expression

(βs+βt)V
∗2 = (βs+βt)(V−U)2 + (βs+βt)γ

2g̃2 + 2γ(βs+βt)(V−U) · g̃ (C.12)

with (C.10), we see that we can choose the appropriate value of the coefficient γ

to eliminate the dot product from A:

γ =
1

βs+βt

(
βs
mt

M
− βt

ms

M

)
(C.13)

We then obtain complete separation of variables:

A = (βs+βt)V
∗2 +

[
βs
m2
t

M2
+βt

m2
s

M2
− 1

βs+βt

(
βs
mt

M
− βt

ms

M

)2]
g̃2 (C.14)

The term in brackets is easily simplified:

[. . .] =
βsβt
βs + βt

(C.15)

We can now define effective, average temperatures:

βs+βt =
ms

2kTs
+

mt

2kTt
=
M

2k

msTt +mtTs
MTsTt

≡ M

2kT ∗ (C.16a)

βsβt
βs + βt

=
µ

2k

M

TsTt

TsTt
msTt+mtTs

≡ µ

2kT̃
(C.16b)
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and γ becomes:

γ =
µ

M

Tt − Ts
T̃

= µ
Tt − Ts

msTt +mtTs
(C.17)

To summarize, we have performed the following change of variables:

V∗ = V −U+ µ
Tt − Ts

msTt+mtTs
g̃ g̃ = g −w (C.18a)

T ∗ =M
TsTt

msTt+mtTs
T̃ =

msTt+mtTs
M

(C.18b)

These are the same expressions found in [43, pp. 45-46] (with an occasional change

of naming convention) for which it is easy to verify that the Jacobian of the

transformations is unity, i.e.

d3vsd
3vt ≡ d3Vd3g ≡ d3V∗d3g̃ (C.19)

Furthermore, we note that:

(
ms

2kTs

) 3
2
(
mt

2kTt

) 3
2

≡ (βsβt) = (βs+βt)
3
2

(
βsβt
βs+βt

) 3
2

≡
(

M

2kT ∗

) 3
2
(

µ

2kT̃

) 3
2

(C.20)

The product of distributions can now be written as:

fs · ft =
(

M

2πkT ∗

) 3
2

exp

[
−MV∗2

2kT ∗

]
·
(

µ

2πkT̃

) 3
2

exp

[
− µg̃

2

2kT̃

]
≡ f ∗(V∗) · f̃(g̃)

(C.21)

All subsequent expressions can now be simplified with this separation of variables,

since for any operator O that depends on variables expressed in the COM frame,

we have:

∫
d3vsd

3vtfsftO(g) =

∫
d3V∗f ∗(V∗)

︸ ︷︷ ︸
≡1

·
∫
d3g̃f̃(g̃)O(g) (C.22)

The elimination of the variable V∗ is simply a consequence of the Galilean invari-

ance of the collision process.

The procedure above can be also used for the reverse process, where the initial
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variables are now the prime quantities. Thus, similarly to (C.2,C.3), we have

V =
msv

′
s +mtv

′
t

M
v′
s = V +

mt

M
g′ (C.23a)

g′ = v′
s − v′

t v′
t = V − ms

M
g′ (C.23b)

while the mean flow velocity relations are unchanged, since the s′, t′ particles

belong to the same fluids as s, t. One can therefore use the exact same procedure

described above to re-cast the product of the distribution functions of the initial

variables into separated variables:

fs(v
′
s) · ft(v′

t) ≡
(

M

2πkT ∗

) 3
2

exp

[
−MV′∗2

2kT ∗

]
·
(

µ

2πkT̃

) 3
2

exp

[
−µg̃

′2

2kT̃

]

≡ f ∗(V′∗) · f̃(g̃′) (C.24)

C.2 Three-body processes

Similarly to excitation, the ionization process has two particles in the initial state,

but the final state includes a third particle, since an electron extracted from the

target to yield an ion state (t→ i+ e). The process is therefore:

s(vs) + t(vt)⇔ s′(v′
s) + i(v′′

i ) + e(v′′
e) (C.25)

We have used double-prime variables for the ion and electron, for reasons which

will soon become clear. In the case of ionization, one must integrate over the

distribution functions of the initial variables, which remain s, t, and the procedure

of section C.1 remains valid. However, for recombination, we have a triple product

of VDFs:

fs(v
′
s) fi(v

′′
i ) fe(v

′′
e) =

(
ms

2πkTs

) 3
2

e−βs(v
′
s−us)2

(
mi

2πkTi

) 3
2

e−βi(v
′′
i −ui)

2

(
me

2πkTe

) 3
2

e−βe(v
′′
e−ue)2 (C.26)

In order to perform the separation of variables, it is necessary to proceed in two

steps. Thus, we can consider the ionization process as follows:

224

D-252



a) the formation of an excited state t′ via scattering: s(vs) + t(vt)⇒ s′(v′
s) +

t′(v′
t)

b) the spontaneous ionization of the t′ state into ion and electron: t′(v′
t) ⇒

e(v′′
e) + i(v′′

i )

The reverse process, recombination, would similarly follow two steps:

a) the formation of an excited state t′ via recombination: e(v′′
e)+i(v

′′
i )⇒ t′(v′

t)

b) the spontaneous deexcitation of the t′ state via scattering: s′(v′
s)+ t′(v′

t)⇒
s(vs) + t(vt)

Consider now the following change of variables

g′ = v′
s − v′

t (C.27a)

g′′ = v′′
e − v′′

i (C.27b)

along with the COM velocity definition (mt=me+mi):

V =
msvs +mtvt

M
=
msv

′
s +mtv

′
t

M
=
msv

′
s +mev

′′
e +miv

′′
i

M
(C.28)

Thus, 


V

g′

g′′


 =




ms/M me/M mi/M

1 −me/mt −mi/mt

0 1 −1


 ·




v′
s

v′′
e

v′′
i


 (C.29)

One can easily verify that this transformation is unitary, i.e. dVdg′dg′′ ≡ dvs
′dv′′

edv
′′
i .

Consider now the first part of this two-step recombination process, which in-

volves the product of the two VDFs for electron and ion: fe(v
′′
e)fi(v

′′
i ). Therefore,

the argument of the exponential function resulting from this product is:

Aei =
me

2kTe
(v′′

e−ue)2 +
mi

2kTi
(v′′

i −ui)2 (C.30)
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From (C.29) and v′
t=(mev

′′
e+miv

′′
i )/mt, we have:

v′′
e = v′

t +
mi

mt

g′′ (C.31a)

v′′
i = v′

t −
me

mt

g′′ (C.31b)

Similarly, we can define mean fluid variables

u′
t =

meue+miui

mt

w′′ = ue − ui
⇒

ue = u′
t +

mi

mt
w′′

ui = u′
t − me

mt
w′′

(C.32)

With the usual definition g̃′′=g′′−w′′, The argument (C.30) becomes

Aei = βe

(
v′
t−u′

t+
mi

mt

(g̃′′)

)2

+ βi

(
v′
t−u′

t−
me

mt

(g̃′′)

)2

= (βe+βi)(v
′
t−u′

t)
2 +

(
βe
m2
i

m2
t

+βi
m2
e

m2
t

)
(g̃′′)2 + 2

(
βe
mi

mt

−βi
me

mt

)
(v′

t−u′
t) · g̃′′

(C.33)

We recognize the same form as (C.10); we can thus apply the same procedure,

and define

Ct = v′
t−u′

t + γ(g̃′′) (C.34)

where now

γ =
1

βe+βi

(
βe
mi

mt

− βi
me

mt

)
(C.35)

such that the argument now becomes:

Aei = (βe+βi)Ct
2 +

βeβi
βe+βi

(g̃′′)2 (C.36)

We can now multiply by the VDF for the scattering particle for the second

step of the recombination process. This leads to the total argument:

A = (βe+βi)Ct
2 +

βeβi
βe+βi

(g̃′′)2 + βs(v
′
s−us)2 (C.37)

Similarly to (C.32), we have

U =
msus+mtu′

t

M

w′ = us − u′
t

⇒
us = U+ mt

M
w′

u′
t = U− ms

M
w′

(C.38)
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Let us also define

V∗ = V −U− ms

M
g̃′ with g̃′ = g′−w′ (C.39)

This yields:

v′
s − us = V−U+

mt

M
g̃′ = V∗ + g̃′ (C.40)

and, from (C.34)

Ct = V∗ + γ g̃′′ (C.41)

Inserting into (C.37):

A = (βs+βe+βi)V
∗2 + βs(g̃

′)2

+

[
(βe+βi)γ

2 +
βeβi
βe+βi

]
(g̃′′)2 (C.42)

+ 2γ(βe+ βi)V
∗ · g̃′′ + 2βsV

∗ · g̃′

Let us now try the following variable substitution

V∗∗ = V∗ + γ̃g̃′′ + δ̃g̃′ (C.43)

Thus,

V∗∗2 = V∗2 + γ̃2(g̃′′)2 + δ̃2(g̃′)2

+ 2γ̃V∗ · g̃′′ + 2δ̃V∗ · g̃′ + 2γ̃δ̃g̃′ · g̃′′

Defining Σβ = βs+βs+βi and choosing

δ̃ =
βs
Σβ

, γ̃ =
βe+βi
Σβ

γ (C.44)

we obtain

ΣβV
∗∗2 =ΣβV

∗2 +
β2
s

Σβ

(g̃′)2 +
(βe+βi)

2

Σβ

γ2(g̃′′)2

+ 2γ(βe+βi)V
∗ · g̃′′ + 2βsV

∗ · g̃′ + 2γ
βs(βe+βi)

Σβ

g̃′ · g̃′′
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Comparing with (C.42), we can simplify the argument as:

A =ΣβV
∗∗2 +

[
βs(βe+βi)

Σβ

γ2 +
βeβi
βe+βi

]
(g̃′′)2 (C.45)

+
βs(βe+βi)

Σβ

]
[
(g̃′)2 − 2γg̃′ · g̃′′]

Define now

j = (g′−w′)− γ(g′′−w′′) (C.46)

We can now eliminate the last dot product, since (g̃′)2−2γg̃′ · g̃′′= j2−γ2(g̃′′)2.

Inserting into (C.45), we finally obtain:

A = (βs+βe+βi)V
∗∗2 +

βeβi
βe+βi

(g′′−w′′)2 +
βs(βe+βi)

βs+βe+βi
j2 (C.47)

We have achieved variable separation, i.e. all dot products have been removed

with the proper change of variables. One can also show that:

βs + βe + βi =
M

2k

msTeTi +meTsTi +miTsTe
MTsTeTi

≡ M

2kT ∗ (C.48)

βeβi
βe + βi

=
memi

2k(me +mi)

me +mi

meTi +miTe
≡ µt

2kT̃t
(C.49)

βs(βe + βi)

βs + βe + βi
=
ms(me +mi)

2kM

MT̃t
msTeTi +meTsTi +miTsTe

≡ µ

2kT̃
(C.50)

where

T ∗ =
MTsTeTi

msTeTi +meTsTi +miTsTe
(C.51)

T̃t =
meTi +miTe
me +mi

(C.52)

T̃ =
msTeTi +meTsTi +miTsTe

MT̃t
(C.53)

µt =
memi

me +mi

(C.54)

µ =
ms(me +mi)

M
(C.55)
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The product of the three Maxwellian VDF becomes:

fs(v
′
s) · fe(v′′

e) · fi(v′′
i) =

(
M

2πkT ∗

) 3
2

exp

[
−MV′∗∗2

2kT ∗

]
·
(

µt

2πkT̃t

) 3
2

exp

[
−µtg̃

′′2

2kT̃t

]
·

(
µ

2πkT̃

) 3
2

exp

[
−µj

∗2

2kT̃

]
≡ f ∗∗(V∗∗) · f̃t(g̃′′) · f̃(j∗)

(C.56)

Since me/mi ≪ 1, T̃t ≃ Te + o(me/mi). For a heavy particle induced recombina-

tion, me/ms ≪ 1 and T̃ ≃ msTi+miTs
ms+mi

+ o(me/M). If ms ≃ mi, T̃ → Ts+Ti
2

. For an

electron induced recombination, T̃ → Te.
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APPENDIX D

Microscopic Detailed Balance

In this appendix, the principle of detailed balance (DB) are described for various

inelastic processes occurring in an atomic plasma. These are essentially explicit

forms of the reciprocal relations introduced in section 4.2. The notation of differen-

tial and total cross section for various processes are introduced and the reciprocal

relation is derived by considering microscopy reaction balance.

D.1 Collisional excitation and deexcitation

Consider now a collisional excitation between particles s and t and its reverse

process similar to section C.1:

s(vs) + t(vt, Eℓ)⇔ s′(v′
s) + t′(v′

t, Eu) (D.1)

where Eℓ and Eu are the energy of the lower and upper states of particle t,

respectively. Conservation of momentum and energy lead to:

msvs +mtvt = msv
′
s +mtv

′
t (D.2)

1

2
msv

2
s +

1

2
mtv

2
t =

1

2
msv

′2
s +

1

2
mtv

′2
t +∆ε (D.3)

It can be shown that in the COM frame, momentum conservation indicates that

the COM velocity is unchanged after collision.

V′ = V =
msvs +mtvt
ms +mt

=
msv

′
s +mtv

′
t

ms +mt

(D.4)
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Energy conservation gives the change in the magnitude of the relative velocity:

g′ =

(
g2 − 2∆ε

µ

)1/2

(D.5)

where

g = vs − vt (D.6)

g′ = v′
s − v′

t (D.7)

µ =
msmt

ms +mt

(D.8)

One can also show that:
∣∣∣∣
∂(V,g)

∂(vs,vt)

∣∣∣∣ =
∣∣∣∣
∂(V′,g′)

∂(v′
s,v

′
t)

∣∣∣∣ = 1 (D.9)

such that

d3vtd
3vs = d3Vd3g (D.10)

d3v′
td

3v′
s = d3V′d3g′ (D.11)

d3V = d3V′ (D.12)

gdg = g′dg′ (D.13)

d3g

d3g′ =
g′

g
(D.14)

Equation (D.14) is a direct result of the collision dynamics where the relative

orientation of g and g′ is always fixed. We can then write a rate equation for this

process as follows:

nsfs(vs)d
3vs · nℓft(vt)d3vt · g · σsℓ(g,Ω)dΩ

= nsfs(v
′
s)d

3v′
s · nuft(v′

t)d
3v′

t · g′ · σsu(g′,Ω)dΩ
(D.15)

where nℓ, nu are the number densities of the lower and upper states, and σsℓ, σsu

are the differential cross sections for excitation and deexcitation. By utilizing

equation (4.14) for nℓ, nu, equation (4.11) for fs, conservation of momentum and

energy, and change of variables, we arrive at the following expression:

gℓg2σsℓ(g,Ω) = gug′2σsu(g′,Ω) (D.16)
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where g is the state degeneracy factor. A special case of zero net energy, ∆ε = 0,

corresponds to elastic collision. This relation can also be expressed in term of

total energetic cross sections by integrating over all scattering solid angle, i.e.,

σ(ε) =
∫
σ dΩ:

gℓεσsℓ(ε) = guε′σsu(ε′) (D.17)

where ε = 1
2
µg2. This expression is known as the Klein-Rosseland relation which

describes DB of collisional excitation and deexcitation at the microscopic level1.

D.2 Collisional ionization and recombination

We consider now a collisional ionization and a three body recombination process

similar to (C.25):

s(vs) + t(vt)⇔ s′(v′
s) + i(v′′

i ) + e(v′′
e) (D.18)

Again, momentum and energy are conserved which leads to:

msvs +mtvt = msv
′
s +miv

′′
i +mev

′′
e︸ ︷︷ ︸

mtv′
t

(D.19)

1

2
msv

2
s +

1

2
mtv

2
t =

1

2
msv

′2
s +

1

2
miv

′′2
i +

1

2
mev

′′2
e +∆ε (D.20)

where ∆ε is now the ionization potential of t. The rate equations for the both

processes are:

nsfs(vs)d
3vs · ntft(vt)d3vt · g · σion(g;g′,g′′)d3g′d3g′′

= nsfs(v
′
s)d

3v′
s · nifi(v′′

i )d
3v′′

i · nefe(v′′
e)d

3v′′
e · g′g′′ · σrec(g′,g′′;g)d3g

(D.21)

where we have previously defined g = vs−vt, g
′ = v′

s−v′
t and g′′ = v′′

e −v′′
i (see

section C.2). Note that in the COM reference frame, σion is a triply differential

cross section.

1which is, independent of the form of the distribution function.
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By utilizing the transformation defined in section C.2, one can obtain the

following relations:

d3vsd
3vt = d3Vd3g (D.22)

d3v′
sd

3v′′
i d

3v′′
e = d3Vd3g′d3g′′ (D.23)

We can proceed similarly by introducing the Maxwell distribution for fs, ft,

fi and fe, and Saha distribution for nine/nt in equation (D.21). This leads to the

following expression:

gtgσion(g;g′,g′′) = 2gi
µ3
t

h3
g′g′′σrec(g

′,g′′;g) (D.24)

For an electron impact ionization process, this expression reduces to the Fowler’s

relation:

gtvσion(v;v′,v′′) = 2gi
m3
e

h3
v′v′′σrec(v

′,v′′;v) (D.25)

where v, v′, and v′′ are the velocities of the incident, reflected, and ejected elec-

trons, respectively. The cross section can be averaged over all angular variables

to yield the following:

gtεσion(ε; ε′, ε′′) =
16πme

h3
giε′ε′′σrec(ε′, ε′′; ε) (D.26)

It must be noted that σion is now a singly differential ionization cross section; one

can define total ionization cross section by integrating over all the possible energy

transfer values, i.e., Σion =
∫∞
∆ε
σiondW where W = ε − ε′. It is, however, not

possible to obtain a total recombination cross section in a similar fashion; inte-

grating over the final states of the recombination process is not possible without

also partially summing over the initial states. Due to energy conservation, once

the initial state is determined by the pair (ε′, ε′′), the final state ε is also fully

determined; there is only one final state possible, and σrec from equation (D.26)

is the total cross section of recombination for the given initial state.
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D.3 Line emission and absorption

Consider now a bound bound emission and absorption process, written as:

t(Eu)⇔ t(Eℓ) + hν (D.27)

where hν = ∆ε = Eu − Eℓ for energy conservation. In this transition, we assume

that the momentum transfer between particle t and the photon is negligible. One

can construct a rate equation for this process by taking in account absorption,

stimulated and spontaneous emission processes:

nu(Auℓ + BuℓIν) = nℓBℓuIν (D.28)

where Auℓ, Bℓu and Buℓ are Einstein coefficients. Comparing this with equation

(4.22), it is easy to see that:
Buℓ

Auℓ
=

c2

2hν3
(D.29)

Combining the result above with equation (D.28), we obtain the relation of Buℓ

and Bℓu:

gℓBℓu = guBuℓ (D.30)

which is known as the Einstein relations.

D.4 Photoionization and radiative recombination

Consider now a balance of the photoionization and radiative recombination pro-

cesses:

t(ε) + hν ⇔ i(εi) + e−(v) (D.31)

For simplicity, we assume that the atom (t) and ion (i) are stationary and neglect

their translational degree of freedom. The rate equation corresponding to this
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reaction is:

nt ·
Iν
hν
dνdΩ · σνion(ν;χ)dΩe

= ni · nefe(v) v2dvdΩe︸ ︷︷ ︸
d3v

·v · σνrec(v;χ)dΩ
(
1 +

c2

2hν3
Iν

)
(D.32)

where χ is the angle between the photon beam and the electron. Inserting the

Maxwell distribution for fe, Saha distribution for nine/nt and Planck distribution

for Iν , one obtain:

gt(hν)2σνion(ν;χ) = gim2
ec

2v2σνrec(v;χ) (D.33)

For isotropic distribution function, one can write the DB relation in terms of total

cross sections σνion =
∫
σνiondΩe:

gt(hν)2σνion(ν) = 2gimec
2εσνrec(ε) (D.34)
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APPENDIX E

Derivation of the Ponderomotive Force for a

Single Particle

In this appendix, we derive the expression of the ponderomotive force for a single

particle [38]. We start with the equation of motion for an electron moving in the

laser fields:

me
dv

dt
= −e (E+ v ×B) (E.1)

Let us consider a monochromatic field of the form:

E = EL(x) cos(ωt) (E.2)

B = − 1

ω
sin(ωt)∇× EL(x) (E.3)

where the second relation came from Faraday’s law. For nonrelativistic electrons,

the second term in equation (E.1) due to the Lorentz force is small compared to

the first. Let us perform an expansion of the position and velocity vectors:

x = x0 + x1 + x2 + . . . (E.4)

v = v0 + v1 + v2 + . . . (E.5)

where v0 = 0,v1 =
dx1

dt
,v2 =

dx2

dt
, . . . The fields can also be expressed via a Taylor

series expansion:

E = E(x0) + (x1 · ∇)E(x0) + . . . (E.6)

B = B(x0) + (x1 · ∇)B(x0) + . . . (E.7)
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The lowest order reads:

me
dv1

dt
= −eEL(x0) cos(ωt) (E.8)

Integrating twice equation (E.8) yields the equations for v1 and x1:

v1 = −
e

meω
EL(x0) sin(ωt) (E.9)

x1 =
e

meω2
EL(x0) cos(ωt) (E.10)

The next order reads:

me
dv2

dt
= −e [(x1 · ∇)EL(x0) + v1 ×BL(x0)] (E.11)

Utilizing the relations above, we get:

me
dv2

dt
= − e2

meω2

[
cos2(ωt)(EL · ∇)EL + sin2(ωt)EL ×∇× EL

]
(E.12)

By averaging the force over a laser period, we get:

f̃p = −
e2

2meω2
[(EL · ∇)EL + EL ×∇× EL] (E.13)

where f̃p is the ponderomotive force on a single electron. For the electron fluid,

we simply multiply expression (E.13) by ne:

fp = −
nee

2

4meω2
∇E2

L

= −ǫ0ω
2
p

4ω2
∇E2

L

(E.14)

Since fp ∼ 1/m, one can see that the ponderomotive force acting on the ions is

negligible compared to the electrons.
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Abstract of the Dissertation

Combustion and Magnetohydrodynamic Processes

in Advanced Pulse Detonation Rocket Engines

by

Lord Kahil Cole

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2012

Professor Ann Karagozian, Chair

A number of promising alternative rocket propulsion concepts have been devel-

oped over the past two decades that take advantage of unsteady combustion waves

in order to produce thrust. These concepts include the Pulse Detonation Rocket En-

gine (PDRE), in which repetitive ignition, propagation, and reflection of detonations

and shocks can create a high pressure chamber from which gases may be exhausted

in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrody-

namic Ejector (PDRIME) is a modification of the basic PDRE concept, developed

by Cambier (1998), which has the potential for performance improvements based

on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the ad-

vantage of both low combustion chamber seeding pressure, per the PDRE concept,

and efficient energy distribution in the system, per the rocket-induced MHD ejector

(RIME) concept of Cole, et al. (1995).

In the initial part of this thesis, we explore flow and performance characteristics of

different configurations of the PDRIME, assuming quasi-one-dimensional transient

ii
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flow and global representations of the effects of MHD phenomena on the gas dy-

namics. By utilizing high-order accurate solvers, we thus are able to investigate the

fundamental physical processes associated with the PDRIME and PDRE concepts

and identify potentially promising operating regimes.

In the second part of this investigation, the detailed coupling of detonations and

electric and magnetic fields are explored. First, a one-dimensional spark-ignited det-

onation with complex reaction kinetics is fully evaluated and the mechanisms for

the different instabilities are analyzed. It is found that complex kinetics in addition

to sufficient spatial resolution are required to be able to quantify high frequency as

well as low frequency detonation instability modes. Armed with this quantitative

understanding, we then examine the interaction of a propagating detonation and

the applied MHD, both in one-dimensional and two-dimensional transient simula-

tions. The dynamics of the detonation are found to be affected by the application of

magnetic and electric fields. We find that the regularity of one-dimensional cesium-

seeded detonations can be significantly altered by reasonable applied magnetic fields

(Bz ≤ 8T ), but that it takes a stronger applied field (Bz > 16T ) to significantly alter

the cellular structure and detonation velocity of a two-dimensional detonation in the

time in which these phenomena were observed. This observation is likely attributed

to the additional coupling of the two-dimensional detonation with the transverse

waves, which are not captured in the one-dimensional simulations. Future studies

involving full ionization kinetics including collisional-radiative processes, will be used

to examine these processes in further detail.
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CHAPTER 1

Introduction

1.1 Background on Detonation Engine Concepts

The chemical rocket can be considered the oldest technical development in jet propul-

sion. In a solid propellant rocket, for example, the exit plane momentum is due to

the flow of a hot gas created by the rapid burning of solid fuel composed of a mixture

of a fuel and oxidizer. Gun powder emerged in China around AD 850 as the result

of accidental discovery by Chinese alchemist. For centuries after this discover, little

was done in the advancement of rocket propulsion, until in 1903, a Russian school

teacher by the name of Konstantin Tsolikowsky[1] published the paper ‘The Investi-

gation of Outer Space by Means of Reaction Apparatus”. In this paper, Tsolikowsky

postulated that man could escape the clutches of earth’s gravity with rockets. His

calculations led him to the idea of multi-staging. Subsequently, he went on to dis-

cuss the use of liquid oxygen and liquid hydrogen for those purposes. Piggy-backing

off of these ideas, the American physicist, Robert Goddard, designed constant pres-

sure rocket combustion chamber nozzles and propellant feed systems. Goddard[2]

went on to lead the advancement of liquid fueled rockets and in 1919 published, “A

Method of Reaching Extreme Altitudes”, which not only provided the mathematical

analysis for achieving high altitudes, but also to reach the moon. He devoted much
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of his effort to thrust chamber development and to the turbo-machinery needed for

pumping the liquid propellants [3].

Still today, almost a century later, the modern aerospace community finds itself

facing the same challenges as the founding fathers of modern rocketry. These chal-

lenges include, but are not limited to, developing lighter and more efficient propulsion

systems and more efficient multi-staging techniques. The present studies focus on

exploring potential rocket propulsion systems that take advantage of magnetohydro-

dynamics(MHD) phenomena.

In 1998, Dr. Jean-Luc Cambier proposed a novel combined cycle propulsive con-

cept, the Pulse Detonation Rocket-Induced Magnetohydrodynamic Ejector (PDRIME)[4].

The PDRIME is one of many MHD thrust augmentation ideas that shows promise

for application in advanced propulsion systems. Taking advantage of the unsteady

wave engine concept of the constant volume Pulse Detonation Engine (PDE), the

PDRIME utilizes temporal periodic energy divergence into a seeded air stream, then

MHD acceleration for thrust augmentation. Because of the nature of the unsteady

waves in the PDE, the PDRIME does not need heavy turbo-machinery to pump

liquid propellants. With the elimination of heavy turbo-machinery, paired with the

energy augmentation of the MHD accelerator in the bypass air stream, the PDRIME

could potentially be able to achieve the velocities necessary for Single-Stage-to-Orbit

(SSTO) flight, thus breaking with the expensive tradition of complicated, expensive

multistage propulsive systems.

Another concept developed by Cambier in [5] is the ‘Magnetic Piston’. This

concept involves energy extraction from the expansion portion of the nozzle, energy

reintroduction into the combustion chamber, followed by acceleration of the com-
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bustion products from the combustion chamber. The ‘Magnetic Piston’ builds upon

the PDE and the PDRIME, but also gains some advantages of traditional constant

pressure rocket propulsion systems. These and other alternative rocket propulsion

concepts will be explored in this dissertation. The present chapter provides the

technical background for these concepts.

1.1.1 Engine Impulse and Efficiency

Before we can compare the properties and advantages of various propulsion systems,

we must first have a quantitative means of expressing various properties. Impulse

and efficiency are the properties we are most interested in. Impulse is defined as the

integral of thrust, F , over a given time period:

I ≡
∫ t

0

F(τ)dτ (1.1)

Efficiency in a propulsion system is quantified by the specific impulse, Isp, which is

defined as Isp ≡ I
Mpg

, where Mpg is the weight of the propellant used. A typical

rocket engine uses a converging-diverging (Laval) nozzle to convert high pressure

and temperature propellant into thrust. The larger the area ratio (AR), ratio of

nozzle exit area to nozzle throat area, of the nozzle the faster the exit velocity of the

propellant, ue, and lower the exit pressure, Pe. The thrust generated by rockets is

typically expressed as:

F = ṁue + (Pe − Patm)Ae (1.2)

where ṁ is the mass flux of gas exiting the nozzle and Ae is the area of the nozzle

exit plane. For optimal thrust, Pe is equal to the ambient pressure, Patm, when this

is achieved, a nozzle is said to be ‘perfectly’ expanded. When traveling in altitudes

which range from sea level to the edge of space (the Von Karman line, or 100 km),
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there is a large variation in the ambient pressures, so that most often Pe 6= Patm.

These variations in ambient pressure lead to significant losses in nozzle efficiency.

1.1.2 Pulse Detonation Engines

The Pulse Detonation Engines (PDE) in simple terms is an engine that utilizes deto-

nation waves to derive its thrust. The PDE operates in a cycle, shown schematically

in Figure 1.1. In this simple configuration, a stoichiometric mixture of reactants is

placed in a long tube with an open and closed end (i.e., thrust wall). The mixture

is then ignited from the thrust wall (a). This results in a shock and deflagration

wave (subsonic flame) quickly coalescing into a detonation wave (supersonic flame –

see section 1.4) propagating into the reactant mixture (b). The high pressure region

behind the wave imparts force on the thrust wall. When the detonation wave reaches

the open end of the tube (c), it will be reflected back into the tube as an expansion

wave (d). The expansion wave propagates into the tube, while at the same time

purging the combustion products from the tube (e). The expansion wave will then

reflect off of the thrust wall, and at that time the lowered pressure will draw fresh

reactants into the tube (f). The expansion wave will propagate into the tube, then

reflect back from the open end as a compression wave (h). This compression wave

will propagate through the re-introduced reactants (i), after which it will reflect of

the thrust wall as a shock (j) and a new cycle will begin. There are many advantages

to the PDE over conventional rockets propulsion systems. The conventional rocket

engines have to pump reactants at very high pressures into a combustion chamber,

requiring heavy turbo machinery, while the PDE does not need heavy turbo ma-

chinery, but rather naturally introduces the reactants into the combustion chamber
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at much lower pressures. The simplicity of the concept is quite attractive, and the

PDE’s have been tested extensively over the years [22]. PDE’s have even been tested

as the sole source of propulsion on an experimental aircraft, the Scaled Composites

Long E-Z[24], which used an abundance of off-the-shelf parts.

1.1.3 AJAX and RIME concepts for thrust augmentation

Ejectors have been considered for years as a viable method of thrust augmentation

for various aerospace propulsion systems. Ejectors rely on the transfer of energy from

one stream (primary) to another stream (secondary). Higher thrust can be achieved

if the primary stream has a high specific energy and the secondary has a high mass

flow rate. A generic Rocket Induced Magnetohydrodynamic Ejector (RIME) [25]

consist of 3 parts, each consisting of variable area stream-tubes; (1) the generator,

(2) the accelerator, and (3) the mixer. The streams can be described by different

power plants, for example a rocket stream, a bypass tube, and the mixer. In the

RIME described by [25], the “rocket stream” serves as the MHD generator while the

“mixer” is the MHD accelerator. The MHD generator transforms the internal energy

of a fluid into electrical power. The fluid itself is a conductor of electricity, the motion

of this fluid through a magnetic field gives rise to electromotive force (drag) and flow

current in accordance with Faraday’s law of inductance. An MHD accelerator uses

the same principles, but in this particular case electrical energy is applied to the

system resulting in an electromotive force (thrust). In the AJAX system, energy is

diverted from the inlet flow via MHD generation, it is then re-applied after the fluid

passes through the combustor via MHD generation[26].
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1.2 Plasma Flows

1.2.1 The Lorentz Force

The various advanced rocket engine configurations explored and reviewed in this dis-

sertation utilize electromotive forces (Lorentz forces) generated by a moving charge to

augment thrust. The Lorentz Force is defined as the Coulombic attractive/repulsive

force between single or collection of charged particle(s) moving through an electro-

magnetic field:

F = j×B (1.3)

where F is the Lorentz force, j is the current density, and B is the applied magnetic

field. The current density is defined by Ohm’s law:

j = σ(E + u×B) (1.4)

where σ is the conductivity, E is the electric field, and u is the fluid velocity. Ex-

pressing the electric field using Ohm’s law and using vector identities, the total rate

of energy deposition into the fluid can be expressed as :

j · E = j ·
(

j

σ
− u×B

)
=

j2

σ
+ u · (j×B) (1.5)

where the first term on the right side is the heating of the fluid (dissipation) and

the second term on the right side is the mechanical power obtained from the Lorentz

force (non-dissipative). The separation of the different forms of power expended in

the fluid becomes important as we evaluate efficiency later in this document [4].
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1.2.2 Plasmas and Cesium Ionization

A plasma is defined as a collection of charged particles where the long-range Coulom-

bic force is a factor in determining the statistical properties, but where the collection

of particles is low enough in density so that the forces exerted by a particles nearest-

neighbor is less than the long-range Coulombic force exerted by the particle’s many

neighbors. Thus, the study of plasma often coincides with the study of low-density

ionized gases. An ion is a molecule or atom which acquires enough energy to liberate

a valence, outer shell, electron from the respective molecule/atom. A collection of

ions, liberated electrons, and neutral particle’s form a plasma. In a weakly ionized

plasma, which we shall investigate throughout the remainder of this study, the ion

remains in close proximity with a liberated electron, thus the plasma as a whole can

be thought of as charge neutral, but locally charged [27].

One of the necessary properties of the configurations discussed earlier in this doc-

ument, the AJAX, the RIME, and other advanced configurations, is the ability for

the working fluid to conduct electricity. In order for a fluid to conduct electricity it

must be at least partially ionized. These advanced configurations achieved ioniza-

tion through thermal ionization. Thermal ionization follows mass action laws like

any chemical reaction. The heat of ionization, when expressed in Kelvin is referred

to as the characteristic temperature of ionization, Θi ≡ Hionizaiton/k, where k is

Boltzmann’s constant. Most common gases and combustion products, i.e., air, CO,

CO2, and noble gases, have high characteristic temperatures, so they do not ther-

mally ionize until temperatures in excess of 4000K are reached. However, if an alkali

metal, which has a low characteristic temperature of ionization, is added in small

amounts (on the order of 1 part in 100 or less) thermal ionization can be achieved
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at temperatures as low as 2000K. This process, referred to as seeding, changes the

working fluid into a plasma and allows the previously mentioned configurations to

conduct electricity under realistic operating temperatures [28].

A plasma will often take on different characteristics, depending on the temper-

ature, conductivity, and mean velocity, to name a few. Before we delve into the

various regimes in which the plasma being studied will exist, we must first look to

Maxwell’s equations for free charge[29]:

∇×H = ∂D
∂t

+ j

∇× E = −∂B
∂t

∇ ·B = 0

∇ · E = e(ni−ne)
ε0

(1.6)

where ne is the number density of electrons, ε0 is the permittivity of free space, H

is the magnetic field, D is the electric displacement field, and e is the charge of an

electron. As an example, if a one-dimensional gas were to flow perpendicularly to a

magnetic field, the induced electric field could be expressed as Ey ≈ 1
2
uxBz, which

can be shown as follows for the idealize case, j/σ → 0:

j = σ (E + u×B)

E ≈ −u×B

Ey ≈ uxBz

(1.7)

The work done by a unit volume of this gas moving a length, L, oriented perpen-

dicularly to the magnetic field, B, using Equations 1.3 and 1.6, would produce the

following[28]:

FL =
1

2
σguB

2L (1.8)
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The energy stored in a magnetic field per unit volume is B2

2µ0
, which is often

referred to as the magnetic pressure. The ratio of these is

Work done by the gas

Energy stored in the field
= µ0σguL = Rem (1.9)

The Magnetic Reynolds number, Rem, is a good measure of the degree in which a

field induced by gas motion compares to the original magnetic field. This parameter

plays a very important role in determining the performance of the MHD accelerator

and generator.

1.3 Pulse Detonation Rocket Induced Magnetohydrodynamic

Ejectors and other Alternative Configurations

Spawned from the concept of AJAX [26] and RIME [25], Pulse Detonation Rocket

Induced Magnetohydrodynamic Ejectors (PDRIME) and other alternative configu-

rations are meant to push the bounds of MHD thrust augmentation. The Pulse

Detonation Rocket Engine (PDRE) is the core of the various alternative engine con-

figuration currently under review. The PDRE is composed of two major components:

a combustion chamber and a converging-diverging nozzle shown in Figure 1.2. The

combustion chamber introduces reactants on the front end, while the downstream

end connects to the converging-diverging nozzle. The converging end of the nozzle

has an extremely short length and a high exit-to-throat area ratio, AR ∼ 16, the

significance of which will be explained momentarily. A typical PDRE cycle is at the

core a PDE cycle, where reactants are introduced to the combustion chamber and

the reactants are ignited at the front end. A detonation wave is formed and propa-

gates downstream, but unlike the PDE cycle previously mentioned, the detonation
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wave will reflect off of the high area ratio converging section nozzle and reflect back

as a shock wave. The reflected detonation will raise the chamber temperature and

pressure so rapidly that the expelled gases can be thought of as started from this

high pressure or ‘blow down’ state [30]. The fluid is then accelerated out of the

nozzle where more thrust is derived. Over a cycle, the pressure of the chamber will

decrease as more products are being expelled. The chamber will then reach a critical

pressure in which reactants will be introduced at relatively low pressure, and a new

cycle will commence.

1.3.1 PDRIME

The PDRIME is actual a composite of some of the systems previously discussed,

that is, the AJAX, the RIME, and PDRE. The PDRIME is physically composed

of PDRE (the combustion chamber and nozzle), a bypass tube that sits directly

on top of the PDRE and magnets which are placed around the nozzle as well as

around the bypass tube which is illustrated in Figure 1.3 and 1.4. The effect of the

strengths of these magnetics will be explored later in this dissertation. In a PDRIME

cycle, reactants as well as a gas of low ionization energy, e.g., cesium, are introduced

into the combustion chamber and a PDRE cycle will commence. The fluid in the

combustion chamber will be heated sufficiently to ionize the seeded cesium. During

this process, hot products and ions will be expelled out of the nozzle. As the fluid

expands through the nozzle, the MHD generator in the nozzle will be engaged. The

generator will extract energy from the fluid moving at high velocities and reduce the

Mach number, M = u/a, to approximately unity at the nozzle exit. With M ≈ 1

at the nozzle exit, an unsteady shock will migrate from the nozzle exit into the
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bypass tube. The front entrance of the bypass tube is seeded with cesium, and as

the unsteady shock migrates upstream, the cesium will also pass through the shock

and be ionized. From there, the MHD accelerators in the bypass will be employed

and will utilize the Lorentz force to accelerate the fluid out of the bypass tube. The

aim of this configuration is to take energy out of the nozzle and more effectively

utilize it in the bypass tube in order to increase thrust and thus gain more impulse

and efficiency.

The PDRE has many good performance characteristics, e.g., low seeding pressure,

but one characteristic that we wish to improve is the nature of the unsteady pressure

throughout the PDRE cycle. As previously described, the pressure in the chamber is

quickly increased with the chemical reactions and subsequent reflection of detonation

waves, then gas is expelled from the combustion chamber and expanded through the

nozzle. As more combustion products are purged from the combustion chamber,

the pressure in the combustion chamber drops drastically with time. In a PDRIME

configuration, this drastic drop in pressure severely handicaps the effectiveness of

the MHD accelerator in the bypass tube. This impairment works as follows: as the

pressure drops in the chamber and nozzle, the back pressure driving the nozzle flow

drops. This dropping of pressure driving the nozzle correlates to a drop in pressure

entering the bypass tube exit. The pressure at the end of the bypass tube supports

the unsteady shock wave in the tube, so as this pressure drops, so does the strength of

the unsteady shock heating the fluid in the bypass. As the strength of the unsteady

shock dies down is strength, the temperature jump across shock is reduced, therefore

less ionization takes place. Less ionization leads to lower conductivity, and with

lower conductivity the MHD accelerator is less effective.

In order to prevent the negative effects of the unsteady pressure drop through-
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out the cycle, MHD forces can be utilized in the combustion chamber to drive the

heated fluid out of the combustion chamber at a more constant pressure. This con-

figuration, with applications of energy extracted from the nozzle into the chamber,

for a “magnetic chamber piston” configuration, would then possess the advantages

of low seeding pressure demonstrated in the aforementioned PDRE [31] as well as

the property of constant pressure possessed by a conventional rocket engine [5]. For

the basic PDRIME configuration, this combustion chamber has chemical reactions,

ionization of seeding ionizable gas, and reflection of detonation waves. But unlike the

PDRIME cycle, with a “chamber piston”, after the chamber is sufficiently heated, a

MHD accelerator is placed around the combustion chamber to create the piston forces

fluid out of the chamber using the Lorentz force. The ‘magnetic piston’ concept is

illustrated in Figure 1.5, and the PDRIME with the ‘magnetic piston’ is illustrated

in Figure 1.6. The concept of a ‘magnetic piston’ was first introduced by Kolb in

1957[32]. In his experimentation of magnetic shock tubes, Kolb found by applying a

magnetic field to a plasma, that the shock waves produced were stronger than that

produced in the absence of the magnetic field. The fundamental interaction of a

magnetic field with shocks and detonations will be explored in the present studies.

1.3.2 Cambier’s Quasi-1D Model and Verification

Cambier has performed analysis and numerical simulations of various PDRE configu-

rations; i.e., the PDRIME and the PDRE with a ‘magnetic piston’.The assumptions

that are part of the analysis are as follows. In his preliminary studies, Cambier

selected a simple configuration where the fluid velocity, electric field, and magnetic

field form a right hand coordinate system shown in Figure 1.7, indicating generator
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(decelerator) and accelerator configurations. The current density from Equation 1.4

can now be expressed as:

jy = σ(Ey − uxBz) ≈ σuxBz(Ky − 1) (1.10)

where K is the loading parameter, i.e., the ratio of the applied electric field to the

induced field: Ky = Ey
uxBz

. This is an important parameter in Cambier’s simplified

modeling of MHD interaction [4]. When ux > 0 and 0 < Ky < 1, energy is ex-

tracted from the fluid, the Lorentz force is negative, as is jy, and the device acts

as a “generator”, shown in Figure 1.7(a). When Ky > 1, a positive application of

energy takes place, the Lorentz force is positive, as is jy, and the device acts as an

“accelerator”, shown in Figure 1.7(b). It is the generator configuration that allows

energy extraction as shown in Figure 1.3, with energy input to accelerate the flow,

as shown in Figures 1.4–1.6. In the present studies we use Ky = 0.5 for the generator

and Ky = 1.5 for the accelerator. The ideal case of no ohmic heating, j2/σ ≈ 0, is of

particular interest, because it forms a very simple analytical expression, but it is not

always valid. In order to neglect the ohmic heating as compared to the mechanical

work, the following condition must be satisfied:

∣∣∣∣
j2/σ

u · (j×B)

∣∣∣∣ =

∣∣∣∣
jy

σuxBz

∣∣∣∣ =

∣∣∣∣
Ey − uxBz

uxBz

∣∣∣∣ = |Ky − 1| � 1 (1.11)

Cambier also assumes a constant magnetic field as well as a sufficiently low Rem.

In the case of a highly conducting plasma (σ ≈ 1000 mhos/m), which can be seen in

the combustion chamber, the constant magnetic field assumption is only valid if the

loading factor is small, which also leads to the low dissipation approximation[4].
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1.4 Detonation Waves and MHD Effects

The foregoing discussion pertains to the proposed ability of magnetohydrodynamics

(MHD) to affect reactive processes via seeding the flow with potentially ionizing

species such as cesium. While this notion will be explored in a global sense for the

PDRIME and alternative detonation-based engine configurations in Chapter 5, the

ability of magnetic and electric fields to influence combustion processes requires a

more detailed examination, in particular, including the effect of complex reaction

kinetics. Hence a fundamental understanding of transient detonation processes, and

the ultimate impact of MHD on these processes, is required and will also be examined

in this thesis.

The study of detonation waves dates back to the late 19th century, where Chapman[6]

and Jouguet[7] modeled detonations as a shock wave supported by the heat release

of the combustible material in an infinitely thin zone, where all chemistry and dif-

fusive transport takes place. Later Zel’dovich[8], Von Neumann[9], and Doering[10]

independently represented the detonation as a confluence of a one-dimensional shock

wave moving at a detonation velocity, followed by a chemical reaction zone of finite

length; this came to be known as the ZND model for a detonation wave.

While the true structure of detonation waves inevitably calls for representation of

multi-dimensional effects with complex reaction kinetics, the simple one-dimensional

detonation structure provides a rich spectrum of dynamical features which are worthy

of detailed exploration and which have relevance to multi-dimensional phenomena,

e.g., cellular detonations [11]. Even with single step Arrhenius kinetics [12, 13, 14, 15],

pulsations or instabilities associated with a 1D overdriven ZND detonation may be

explored in detail, with important physical features and computational requirements
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established. For a rapidly initiated, spark-induced detonation, where the detonation

decays from an over-driven state toward the self-sustaining Chapman-Jouguet limit

cycle, one obtains a sequence of different modes of physical oscillation between the

flame and shock front. The numerical analysis of this effect has been explored previ-

ously by Cambier[16] using complex H2-air detonation kinetics and highly-resolved

numerical simulations, but with only a spatially and temporally second-order con-

vergence rate shock capturing scheme. The initiation of evolving 1D detonation

instability modes is also observed in calculations by Leung et al.[17] using a two-step

chain-branching reaction model [18] and a Roe scheme, with an overdriven ZND

detonation as the initial condition. Similar calculations with a second-order accu-

rate slope-limited centered scheme and a 7-step reduced chemical mechanism for

acetylene-oxygen detonations [19] have allowed exploration of the stabilizing effect

of dilution of the mixture with argon.

In the present study (Chapters 6 and 7), we combine higher-order numerical

methods and complex reaction kinetics for the detailed analysis of the non-linear

dynamics associated with a spark-induced detonation. While simplified one-step

and two-step chemistry models have provided useful guidance in elucidating the dy-

namics of detonation instability, it is important to understand the influence of the

complexity of a realistic reaction mechanism, since energy release and unsteadiness

in the coupling of the wave front and induction zone can affect detonation initiation

or failure [20]. Moreover, important physical processes associated with deflagra-

tion to detonation transition (DDT) require an understanding of the formation and

amplification of localized explosion centers and positive-feedback flame acceleration

mechanisms [21, 22, 23]. These phenomena are often easier to understand through

dimensionality reduction, while preserving some of the complexity of the physics (i.e.
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reaction kinetics). The use of high-order numerical methods can also be a powerful

tool in the analysis of such complex flows, but we need to understand the interaction

of numerical (spatial accuracy) and physical (chemical) length scales. This must be

done before adding other effects such as species diffusion and viscosity; hence our

study is limited to reactive Euler flow. Since the use of high-order numerical methods

can become a powerful tool in studying the non-linear detonation dynamics, it is also

important to gain a good understanding of the effect of the non-linear algorithms

on the flow dynamics. In a similar fashion to many previous studies of detonation

dynamics, the objective of the present work is not to provide realistic detonation

simulations, but to systematically investigate these dynamics through the addition

of increasing complexity in the models. We expect of course that adding physical

diffusion will eliminate some characteristic length scales of instability, an effect which

can be investigated in the future.

1.5 Goals of the Present Studies

Among the goals of the present research is first to explore alternative configurations

of the PDRIME to achieve optimal performance from the MHD augmentation. The

various engine configurations used in our research took on a multitude of forms, these

forms are shown in figures 1.2 through 1.6. While the present studies described in

Chapter 5 focused on quasi-one dimensional simulations, these results, together with

those in Zeineh [33], were published in a complete study[34].

Inherent to the ability of the PDRIME and its modified configurations to operate

is the ability of an applied magnetic field to affect a chemical reaction. Hence in

the present study we have separately studied the propagation of a detonation wave
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with complex kinetics, including its inherent instabilities (Chapter 6), and then to

examine the effects of the cesium seeding and an applied magnetic field on the dy-

namics of the detonation (Chapter 7). Thus both aspects of this dissertation, the

simplified modeling and the detailed detonation simulations, may be used to validate

the PDRIME and related MHD propulsion concepts.
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Figure 1.1: The generic pulse detonation cycle. (a)-(c) represent ignition and det-

onation wave propagation. (d)-(g) represents reflection of an expansion wave from

the tube opening to the thrust wall and back to the tube opening. (h)-(j) represents

the reflection of compression waves which eventually leads to the re-ignition of the

reactants which are drawn into the tube at stage (f).
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Figure 1.2: PDRE Pulse Detonation Rocket Engine

Figure 1.3: Pulse Detonation Rocket Engine with with Nozzle Generator (NG) with

MHD nozzle generation flight configuration
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Figure 1.4: Pulse Detonation Rocket Induced MHD Ejector (PDRIME), the MHD

accelerator is located in the Bypass Section

Figure 1.5: Pulse Detonation Rocket Engine with Chamber Magnetic Piston (CP)

(from Cambier[5])
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Figure 1.6: Pulse Detonation Rocket Induced MHD Ejector with Chamber Magnetic

Piston
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(a) (b)

Figure 1.7: Lorentz Force (J × B)x when (a) the MHD generator is on, with fluid

moving in the positive x-direction, applied magnetic field in the positive z-direction,

and current flowing in the negative y-direction, and (b) the MHD accelerator is on,

with fluid moving in the positive x-direction, applied magnetic field in the positive

z-direction, and current flowing in the positive y-direction.
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CHAPTER 2

Governing Equations and Physical Phenomena

An accurate description of the governing equations is presented here, describing the

flow and evolution of properties associated with detonation and MHD processes.

2.1 Conservative Formulation

The governing equations are presented here in the differential form, but later will be

expressed in the integral form, which is necessary for the finite-volume formulation

used in some simulations of the PDRIME. The flow equations are expressed as a

hyperbolic equation with a source term:

∂Q

∂t
+∇n · F = Ω̇ (2.1)

where the Q, F, and Ω̇ are arrays of conserved variables, normal component of the

flux density of Q, and source terms, respectively. In the current study all terms on

the left hand side (LHS) of Eqn 2.1 are strictly in the hyperbolic form, while the

right hand side (RHS) will express all other terms which will be referred to as source

terms. Source terms can describe the diffusion, chemical kinetics, or enforcement

of geometric coordinate constraint. Operator splitting, which will be discussed in

greater detail in Section 3.1, can be employed to compute the convective contribution,
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∂Q

∂t

∣∣∣∣
conv

= −∇n · F (2.2)

as well as various source terms,

∂Q

∂t

∣∣∣∣
mhd

= Ω̇mhd,
∂Q

∂t

∣∣∣∣
kinetics

= Ω̇kinetics (2.3)

These terms then can be combined to describe the total change of the conserved

variables,

∂Q

∂t
=
∂Q

∂t

∣∣∣∣
conv

+
∂Q

∂t

∣∣∣∣
mhd

+
∂Q

∂t

∣∣∣∣
kinetics

+ ... (2.4)

2.1.1 Single-Temperature(1T) Hydrodynamic Formulation

The hydrodynamic formulation of Eqn. 2.1 is well established and can be used to

describe the evolution of the density, velocity, and pressure fields of the fluid where

the conserved variables and normal fluxes can be described as such:

Q =




ρs

ρu

E


 F =




ρsun

ρu · un + Pn

(E + P )un


 (2.5)

where the total mixture density ρ ≡ ∑s ρs, n is an arbitrary direction, un = u · n,

and the total energy and pressure can be expressed as:

E =
∑

s

ρseint,s +
1

2
ρu2 (2.6)

P = (γ − 1)

(
E − 1

2
ρu2

)
(2.7)
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where eint,s is the specific internal energy of the sth species and γ is the adiabatic

index. For a calorically perfect gas (constant cv) the specific internal energy can be

expressed as:

eint,s =
P

γ − 1
(2.8)

For thermally perfect gases, which is of particular interest in the present study, the

specific internal energy of a species can be expressed as:

eint,s =

∫
cv,s(T )dT + e0,s (2.9)

where cv,s is the specific heat capacity at constant pressure for the sth species and

the e0,s is the specific internal energy of formation for the sth species.

2.1.2 Single-Temperature(1T) Ideal MHD Formulation (Rem →∞)

By combining Maxwell’s equations and the induction equation, Equations 1.6 and 1.4

respectively, as well as adding a zero charge separation approximation, ne − ni ≈ 0,

one can describe the time evolution of the magnetic field as:

∂B

∂t
= − 1

µ0σ
∇×∇×B

︸ ︷︷ ︸
diffusive

−∇×u×B︸ ︷︷ ︸
convective

(2.10)

The time varying B contains a convective term which behaves as a hyperbolic equa-

tion and a diffusive term, which behaves as a parabolic equation. Using the criteria

set in previous sections, the convective term will be treated as the LHS, of the form

of Eqn. 2.1, and the diffusive term as the source term. If the conductivity were to

be extremely large such that σ →∞, then the diffusive term of Equation 2.10 would

become zero, leaving only the convective portion of the equation. When this partic-

ular case is cast into the divergence form of Eqn. 2.1 as well as incorporating the
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magnetic pressure contribution to the momentum and energy equations, i.e. Lorentz

force and Joule heating terms, with hydrodynamic formulation of Equation 2.5, it is

referred to as the ideal MHD formulation,

Q =




ρ

ρu

B

E∗




F =




ρun

ρuun + P ∗n− 1
µ0

BBn

unB− uBn

(E∗ + P ∗)un − 1
µ0

u ·BBn




(2.11)

where Bn = B · n, and the total energy and pressure can be expressed as:

E∗ =
∑

s

ρseint,s +
1

2
ρu2 +

B ·B
2µ0

P ∗ = P +
B ·B
2µ0

Where E∗ is the total energy, P is the mechanical pressure, and the total pressure

is defined as P ∗ ≡ P + Pm. Often, B·B
2µ0

is referred to as the magnetic pressure, Pm.

Without the presence of a magnetic field, B · B = 0, the formulation of Equation

2.11 will reduce to the hydrodynamical formulation of Equation 2.5.

2.1.3 Two-Temperature(2T) Formulation

It has been shown by Cambier[35] that under certain conditions the electrons can

be heated adiabatically while the bulk fluid can be heated non-isentropically. Con-

versely, the electrons can be heated non-adiabatically while the bulk fluid is heated

adiabatically. One example of the latter is when a microwave is used to excite the

electrons in the fluid. In the case of the former, a fluid may pass through a stationary

shock at Mach M = 10, but while the electron entropy speed is the same as that of

the bulk fluid, the speed of sound of the electron is considerably faster, ce =
√

γPe
ρe

,
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where the ratio of molar masses of Nitrogen and the electron is
MWN2

MWe
∼ 105. In

the electron reference frame there is therefore no shock, Me � 1. When this occurs,

the bulk fluid and the electrons have different temperatures, and these temperatures

will relax on time scales proportional to the electron-heavy particle elastic collision

frequency. The two-temperature MHD formulation (MHD2T), Equation 2.1, builds

from the MHD1T formulation but contains additional terms which describe the evo-

lution of the electron energy. The electron thermal energy is transported as:

dEe
dt

+∇ (uEe) = −Pe∇ · u (2.12)

Because the electron is convected at u and |u|/ce � 0, the convection of the electron

is subsonic and can be treated isentropically. This allows for the recasting of the

electron energy into the electron entropy, Se, which is a conserved quantity and

does not require a special source term for convective transport, where the conserved

variables and normal fluxes can be described for the two-temperature formulation:

Q =




ρ

ρu

B

E∗

Se




F =




ρun

ρuun + P ∗n− 1
µ0

BBn

unB− uBn

(E∗ + P ∗)un − 1
µ0

u ·BBn

Seun




(2.13)

where the electron entropy is defined Se ≡ Pe
ργe

and γe ≡ 5
3
. The electron energy, total

energy and total pressure are defined:

Ee =
Seρ

γe−1

γe − 1
=
nekTe
γe − 1

(2.14)

E∗ =
∑

s6=e
ρseint,s +

1

2
ρu2 +

B ·B
2µ0

+ Ee (2.15)
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Without the presences of a magnetic field, B ·B = 0, and this formulation will reduce

to the two-temperature hydrodynamical formulation (EULER2T).

2.2 Overview of Source Terms for Governing Equations

2.2.1 Combustion and Ionization Reaction Kinetics

In the present study, the kinetic processes which include the chemical reactions of

combustion processes, the ionization of the fluid, and the temperature relaxation of

the electron must be properly captured. In the case of chemical reactions and ion-

ization, chemical species are not strictly conserved, but particles (chemical elements)

and mass are, while in the case of temperature relaxation, energy can be transferred

from the heavy particles to the electrons and vice-versa. This source term can be

represented in the following way,

Q =




ρs

ρu

E

Se




Ω̇kinetics =




ω̇s

0

ω̇E

Ṡe




(2.16)

where ω̇s is the production of the sth species, ω̇E is the energy production due to

change in formation energy, and Ṡe is the electron entropy production. A more

detailed description of these terms will be discussed in the following sections as well

as Section 2.3.
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2.2.2 MHD Transport

2.2.2.1 Fixed Magnetic Field (Rm → 0)

In the MHD source formulation that is used to study the PDRIME configurations,

and some of the MHD-detonation interactions, there is no conservation law for the

magnetic field, but rather the Lorentz force and Joule heating are incorporated into a

hydrodynamic formulation of the governing equations. By incorporating the Lorentz

force exerted by an applied magnetic field, Eqn. 1.3, as well as the mechanical power

obtained from the Lorentz force and the associated Joule heating, Eqn. 1.5, one can

recover the following MHD source terms for a fixed magnetic field:

Q =




ρs

ρu

E


 Ω̇mhd,fixed =




0

j×B

j · E


 (2.17)

In the present study, when this approximation of MHD is used, Cambier’s [4] sim-

plified MHD model will be implemented, which was previously discussed in Section

1.3.2. In that model, the system includes the electric and magnetic fields as orien-

tated in Figure 1.7. In addition, one can simplify the expression for current density

with Equation 1.10, such that the x-component of the Lorentz force becomes:

(j×B)x ≈ σuxB
2
z (Ky − 1) (2.18)

and the Joule heating term becomes:

j · E ≈ σu2
xB

2
z (Ky − 1)Ky (2.19)

This formulation will be employed in the simplified PDRIME simulations and in

some of the detonation-MHD studies.
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2.2.2.2 Resistive MHD (Rem ∼ O(1))

Seldom do real problems act ideally, as described in the perfectly conducting ideal

MHD approximation of Eqn. 2.11 or the perfectly resistive fixed field line approx-

imation of Equation 2.17. Typically, there is a finite conductivity such that the

diffusive and convective terms of Eqn. 2.10 are of the same order of magnitude, thus

neither can be neglected. The diffusion of magnetic field and magnetic energy can

be expressed as the following source term:

Ω̇mhd, diffuse =




0

0

∇ ·
(

1
µ0σ
∇B

)

j · E




(2.20)

where the evolution of the magnetic energy is prescribed by

j · E = ∇ ·
(

1

µ0σ
∇T
)

(2.21)

where the Maxwell stress tensor is defined as Tαβ = |B|2
2µ0

δαβ− BαBβ

µ0
. A more detailed

discussion of magnetic field diffusion will be presented in Section 2.4.

2.3 Kinetics

In order to properly resolve the chemical reaction and ionization processes, one must

first characterize the plasma and chemical kinetics. Using detailed balancing one can

express the rate of species production and destruction in the following manner.

ω̇s =
∑

r

νrskfr
∏

j

ρ
ν′rj
j −

∑

r

νrskbr
∏

j

ρ
ν′′rj
j (2.22)
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νrs = ν ′′rs − ν ′rs

where ν ′′rk and ν ′rk are the coefficients of sth species in the rth forward and backward

reactions, respectively, and kfr and kbr and the forward and backward chemical rates

of the rth reaction. When the temperature of the fluid is near thermal equilibrium,

detailed balancing can be used to determine backward rates:

kb = kfexp

(∑

s

νs∆Gs/T

)
(2.23)

where ∆Gs is the change in Gibbs free energy of the sth species. In cases where the

temperature is far from equilibrium, for example when there is a heavy and electron

temperature, detailed balance would not be appropriate to determine the backward

rates. The forward reaction rates are given by the modified Arrhenius equation of

the form:

k = AT ηexp(−Θ/T ) (2.24)

Where A is the Arrhenius pre-factor, η is the Arrhenius coefficient, and Θ is the

activation temperature. Using the form of Equation 2.16 with Equation 2.22, the

energy production due to the internal energy change can be expressed as ω̇E =
∑

s ωse0,s.

2.3.1 Combustion Kinetics

2.3.1.1 Single Step Kinetics

During preliminary testing, we simulated a single-step H2 − O2 reaction, reactants

H2 and O2 form product H2O

H2 + 1
2
O2 → H2O (2.25)
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The H2O production rate takes the Arrhenius form of Equation 2.24 in which ω̇p =

Kρfe
−θ/T . In this particular case, ρf is the density of a stoichiometric mixture of

the fuel, H2, and oxidizer, O2, and ρp is the density of the product, H2O. The

thermodynamic properties of the reactants and product are given in Table 2.1. The

differences in the thermodynamic properties between reactants and products found

in this table are due to the differences in the molar mass, M , and the degrees of

freedom associated with the molecular configuration of each species.

2.3.1.2 Detailed Reaction Kinetics

In the present study, we have primarily focused on detailed kinetics of a simple

combustion system (H2 − O2). Another approach to the single step reaction in

Equation 2.25, commonly chosen in fundamental studies of detonation dynamics, is

a constant-volume one-step reaction model, in which the entire chemistry is described

by the evolution of a single progress variable that follows an exponential relaxation

with a characteristic time-scale given by the induction delay. This progress variable

is also associated with the fractional amount of heat released into the flow. In that

model, the induction delay time, τind, follows a simple exponential fit, tind ' eθa/T .

The delay being essentially caused by the need for a sufficient amount of radicals

from chain-branching reactions, and the production of those being an endothermic

process, the parameter θa in this formulation is an averaged activation energy of the

key radical-producing reactions.

This is a reasonable approximation to the chemistry in that region, albeit within

limits. To study detonation dynamics more completely, we have used the detailed

chemistry to compute and parametrize the induction delay as a function of initial
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temperature and pressure, with the mixture held fixed to stoichiometric hydrogen-

air. As in a previous study [16], the chemical kinetics of a dilute hydrogen-air mixture

were solved here. The chemistry includes eight reacting species, H2, O2, H, O, OH,

HO2, H2O2, H2O, and the non-reacting diluent, N2, where a compilation of NASA

and JANNAF thermo-chemical data is obtained from [36]. As prescribed by [37],

38 elementary reactions, found in Appendix A, are used in this mechanism and the

backward rates are computed from equilibrium constants. As shown in Figure 2.1, the

delay does follow an exponential form, ti ∝ α(P )eβ(P )/T , as expected. The parameter

β in this formulation is an averaged activation energy of the key radical-producing

reactions. However, this approach yields unrealistic profiles of the post-shock region,

since the heat release is gradual.

A better description is obtained with a two-step reaction model [38, 39], where

the heat release is associated with a second progress variable whose evolution can

start only at the end of the induction delay, which now follows a linear time variation.

While this two-step model allows a separation between the induction and heat release

zones, the model is unsatisfactory in several ways. First, the rate of heat release

is assumed independent of temperature, which is unrealistic, as the flow heating

accelerates the combustion. Generally speaking, a stiff differential equation for the

progress variable can be used to reproduce this non-linear effect, but the dynamics

can be different from the real conditions. Second, when the flame is accelerated

towards the shock, the two reaction zones (induction and flame) start to merge,

even if species diffusion is neglected; the enforcing of two separate zones with a

two-step model could thus modify the dynamics of the strongly coupled shock-flame

system. It is for these reasons we will utilize detailed reaction kinetics to perform

the simulations in the present study, per Equations 2.22 – 2.24 and the full H2−O2
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combustion mechanism described in Appendix A.

2.3.2 Ionization Kinetics

The existence of plasma in a working fluid is studied via the field of magnetohydro-

dynamics. If a working fluid’s characteristic temperature of first ionization, Θi, is

high relative to the fluid temperature, it is imperative to seed the fluid with a species

with a sufficiently low characteristic temperature to create the flow of ionized gas.

The principle components of the working fluids in this study, air, H2, O2, and H2O,

have high characteristic temperatures relative to the fluid temperature in the scope

of the present study. A sampling of ionization temperatures are shown in Table

2.2. As prescribed by Cambier in [40], cesium is chosen as the seeded species due

to its low characteristic temperature of ionization. In the modeling of the ionization

and recombination of cesium in the working fluid, we start with a simple three-body

reaction mechanism:

Cs+M 
 Cs+ +M + e− (2.26)

where M in this particular case represents a third-body species. In the present study,

it is extremely important to be able to calculate the conductivity of the plasma in

order to correctly simulate MHD. The scalar conductivity, σ, is defined as:

σ =
nee

2

meνm
(2.27)

where ne is the electron number density, me is the electron mass, and e is the Coulom-

bic charge where the electron collisional frequency, νm is defined as:

νm = neQei v̄e︸ ︷︷ ︸
νei

+N
∑

s6=e

∫ ∞

0

dεQes(ε) v · f(ε)

︸ ︷︷ ︸
νen

(2.28)
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where Qei and νei is the electron-ion elastic collisional cross-section and collisional

frequency, Qes and νes is the electron-neutral elastic collisional cross-section and

collisional frequency of the sth species, ve is the electron thermal velocity, and f

is the electron distribution function. Electron-neutral cross-section data are found

in [41] while the electron-ion cross-section, commonly referred to as the Coulombic

cross-section is given by [42]:

Qei =
2.87× 10−14

T 2
[eV ]

lnΛ (2.29)

where the Coulombic logarithm is lnΛ = 13.57 + 1.5 log T[eV ] − 0.5 log ne. In the

regime where the fluid is strongly ionized, α & 10−4, the electron-ion collision term

of Equation 2.28 dominates, and the conductivity scales as follows:

σ ∼ T 5/2
e (2.30)

2.3.3 Two-Temperature(2T) Relaxation

When a plasma is rapidly heated by a shock, radiation, or other process, the heavy

particle and the electron temperatures can be altered from equilibrium and must

undergo a series of elastic collisions to return them to equilibrium, or thermalize. If

the collisional time scale is significantly faster than the fluid time scale, the heavy

particles and electrons can be assumed to be in equilibrium. But, when the collisional

time scales are much slower than that of the fluid, the temperatures can be treated

completely separately. In the event the time scale associated with thermalization is

on the order of the fluid time scale, the finite rate of elastic energy relaxation must

be taken into account. The relaxation of the electron energy is as follows [42]:

dEe
dt

= νm

(
2me

M

)
3

2
nekb (Th − Te) (2.31)
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where Th is the translational temperature of the heavy particles. Equation 2.31 can

be recast in terms of electron entropy as follows:

Ṡe =
dSe
dt

= νm

(
2me

M

)
3

2
nekb (Th − Te) (γe − 1) ρ1−γe (2.32)

2.4 MHD Transport

In order to properly characterize a non-ideal system in the present of an imposed

magnetic field, one must account for both the convective and diffusive transport of

the magnetic field. Let us re-examine the formulation of the temporal evolution of

the magnetic field expressed in Equation 2.10:

∂B

∂t
= − 1

µ0σ
∇×∇×B

︸ ︷︷ ︸
diffusive

−∇×u×B︸ ︷︷ ︸
convective

Starting from 2.1 and the description of the source term from Eqn. 2.20, one can

define a system which describes the evolution of the magnetic field and magnetic

pressure due to diffusive transport in the divergence form as follows:

∂B
∂t

= ∇ · 1
µ0σ
∇B

∂PB
∂t

= ∇ · 1
µ0σ
∇T

(2.33)

where PB is the magnetic pressure which was previously defined as PB = B2

2µ0
. Now

let us rewrite Eqn. 2.33 in a flux formulation of the form,

Qt = ∇ · Fν (2.34)
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where Fν represents the magnetic diffusive flux,

Q =




Bx

By

Bz

PB




Fν =
1

µ0σ




∇Bx

∇By

∇Bz

∇T




(2.35)

This description of MHD diffusive transport is particularly useful when the con-

ductivity of a fluid is finite, as in the problems represented in this thesis. The limits

of ideal MHD and perfectly resistive MHD, where σ → ∞ and σ ≈ 0, respectively

will also be investigated.
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Species R [ J
kg−K ] cv [ J

kg−K ] e0 [ J
kg

]

H2 −O2 692.8 2.425× 103 0

H2O 461.9 2.079× 103 1.344× 107

Table 2.1: List of thermodynamic properties of a stoichiometric mixture of H2−O2,

reactant, and H2O, product, for a simple, single-step reaction.

Species Θi, [K]

Cs 45,141

K 50,364

Na 59,647

Li 62,548

O2 139,834

H2O 146,217

O 157,937

CO2 167,105

H2 181,030

N2 181,030

Ar 182,887

He 285,239

Table 2.2: Listing of characteristic temperatures of first ionization of selected

species[43].
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Figure 2.1: Computed induction delay as a funct ion of initial temperat ure at various 

pressures P for the stoichiometric H2-air react ion with complex kinet ics. Curves can 
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CHAPTER 3

Numerical Methods

The following chapter will list and describe the numerical methods utilized to solve

the governing equations described in the previous section.

3.1 Operator Splitting

As shown in Equation 2.4, it is often necessary to solve the LHS with one solver while

solving the various RHS source terms with other solvers. For example, one might

wish to solve a problem which involves convection, LHS, as well as chemical kinetics,

RHS, and utilize different solvers, or operators, Lconv and Lchem, respectively. By

utilizing these operators, the solution of Q at t = tn+1, where tn+1 = t0 + ∆t, can be

determined as follows:

∆Qchem = LchemQn −Qn

∆Qconv = LconvQn −Qn

Qn+1 = Qn + ∆Qchem + ∆Qconv

(3.1)

Figure 3.1 illustrates the contribution of the two operators in attaining the solution

at t = tn+1.

When stronger coupling is needed amongst multiple operators, either for stability

or accuracy, Strang splitting[44] can be employed. Strang splitting the convective
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and chemical kinetic operator of the previous example would go as follows:

Q̃ = LchemQn

Qn+1 = LconvQ̃

which can be simply expressed in the compact notation:

Qn+1 = LconvLchemQn (3.2)

Figure 3.2(a) illustrates how the chemical kinetic solver operators on the solution at

t = tn, and the convective solver operates on the updated solution in order to obtain

the solution at t = tn+1. Since Strang splitting is not a commutative operation, the

ordering of the operators can indeed yield unique solutions,

LchemLconvQn 6= LconvLchemQn (3.3)

Figures 3.2(a) and 3.2(b) illustrate how commuting the operators could yield a dif-

ferent solution.

3.2 Time Step Restrictions

3.2.1 Convection

For linear or linearized hyperbolic equations, the Courant-Friedrich-Levy(CFL) con-

dition ensures that information does not propagate further than one grid cell in a

given time step:

∆tconv ≤
ν∆x

λ
(3.4)

where ∆tconv represents the convection-limited time step, ν is the Courant number,

for linear stability 0 < ν ≤ 1, ∆x is the grid cell size, λ is the wave speed of the
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convected information. For a purely convective simulation, where there is no kinetic

or diffusive processes, the CFL would be sufficient for stability of the time integration.

3.2.2 Kinetics Resolution

Solving kinetics presents a different challenge in that the reaction time scale must be

taken into consideration in order to determine the proper time step restriction. For

the simple case of an explicit single step reaction with the form, ω̇p = ρfKe
−θ/T , the

time step restriction would be determined as,

∆tchem ≤
∣∣K−1eθ/T

∣∣ (3.5)

In the case of an explicit complex reaction of the form of Equation 3.41,

∆tchem ≤ min

(
ρk
ω̇k
,
Eint
ω̇E

)
(3.6)

Since the kinetic source term of Equation 2.3 is often extremely stiff and ∆tchem ∼ 0

when ρk ∼ 0, an implicit approach will be taken. When a strictly implicit numerical

scheme is employed, the time step restrictions for stability of Equation 3.6 are no

longer required. But even though restrictions for stability are no longer required,

there still exist accuracy considerations. The following accuracy time step restriction

was introduced in the present study:

∆tchem = min

(
εc
ρ∗k
|ω̇k|

, εT
Eint
|ω̇E|

)
(3.7)

Where ρ∗k is the greater value of ρk and a floor density, εc is the maximum species

creation/destruction fraction, and εT is the maximum temperature cooling/heating

fraction.
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3.2.3 Diffusion

When solving diffusive transport problems, which are expressed as parabolic partial

differential equations of the form, ut = −µuxx, the explicit time step restriction is

quite similar to that of the convective transport. The explicit time step restriction

is given by,

∆tdiff ≤
0.5∆x2

µ
(3.8)

where µ represents the “kinematic viscosity”. This time step can become quite

constraining with the increase in the diffusivity, µ, or with moderate grid spacing

reduction (∆t ∼ ∆x2). For these reasons, spatially implicit numerical schemes will

be utilized to solve problems of this type.

3.3 Explicit Runge Kutta Scheme

In order to obtain stable high order convergent solutions in time, a TVD Runge-Kutta

(RK) time integrator is used. This particular version of the Runge Kutta family was

implemented by Shu and Osher in [45]. For 3rd order Runge-Kutta (RK3), ∀ j

Q
(0)
j = Qn

j

Q
(1)
j = Q

(0)
j + Lj(Q

(0)
j )

Q
(2)
j = 3

4
Q

(0)
j + 1

4
Q

(1)
j + 1

4
Lj(Q

(1)
j )

Qn+1
j = 1

3
Q

(0)
j + 2

3
Q

(2)
j + 2

3
Lj(Q

(2)
j )

(3.9)

where Lj represents the flux into the jth grid cell and Q(k) represents the conserved

variables of the kth step of the Runge-Kutta integration. Equation 3.9 will serve as

the fluid convection operator, Lconv, for the remainder of this study, unless otherwise

stated, while the temporally and spatially integrated flux, Lj, will be determined by
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Riemann solvers which will be discussed in the next sections.

3.4 Hyperbolic Solvers – Approximate Riemann Solvers

In the present study, it is imperative that the fluid convection solver be able to

capture shocks without introducing dispersion or excess dissipation into the solution.

Let us now recast the LHS of our governing equation, Equation 2.1, into its integral

or conservative form:
∂

∂t

∫
Q dV +

∫
FdS = 0 (3.10)

We will next assume a given grid cell is uniform in its properties, and can be ap-

proximated with its cell-averaged value. Then Equation 3.10 can take the following

form:
∂Q

∂t
+

1

V

∑

s

FsdAs = 0 (3.11)

where Fs and dAs are the areas and normal fluxes of the sth face of a given grid cell.

As a building block, we will utilize Roe’s scheme[46] to solve for the flux at the face,

Fi+1/2 as follows:

Fi+1/2 =
1

2
(FR + FL)− 1

2
RΛ̃L (QR −QL) (3.12)

where FR,L and QR,L represent the normal fluxes and conserved variables of the right

and left side of the face, respectively, L is the matrix of eigenvector, R is the inverse

of the matrix of eigenvector, and Λ̃ are the HLLE[47] conditioned eigenvalues. The

eigen-system is discussed in more detail in Appendix B. For the 1st order spatial

accuracy convergent Roe scheme, the right fluxes and conserved variables are, Fi+1

and Qi+1, respectively and the left fluxes and conserved variables are, Fi and Qi,
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respectively. In the proceeding sections, the numerical schemes used to calculate

high order spatially convergent conserved variable solutions will be discussed.

In order to achieve a spatially high order convergent interpolation of the conserved

variables at the cell interface, QR,L, the governing system of equations, Equation 2.1,

must be linearized in the following manner:

Qt + Fn = 0

Qt + AQn = 0

LQt + LRΛLQn = 0

Wt + ΛWn = 0

(3.13)

where ()n represents the spatial derivative in an arbitrary direction, the convective

flux jacobian is A = ∂F
∂Q

and the characteristic variable array, W = (w1, w2, ...)
T is

defined as the projection of the conserved variables, W = LQ, and by definition

LR = RL = I. Now that the governing equations have been linearized with the pro-

cess shown in Equation 3.13, it can now be expressed as a system of scalar hyperbolic

differential equations:

wt + λwn = 0 (3.14)

where the eigenvalues are the diagonal components of the matrix of eigenvalues,

λi = Λi,i. After using one of the high order spatially convergent methods, which

will be discussed in greater detail in the preceding sections, to approximate the

characteristic variable solution at the cell interface, WR,L, the characteristic variables

can be projected back to its component form using the following operation:

QR,L = R WR,L (3.15)

The updated conserved variables determined from Equation 3.15 are then used to

calculate the interface flux, FR,L, as well as construct a new eigensystem.
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3.4.1 Weighted Essentially Non-Oscillatory (WENO) Schemes

In Weighted Essentially Non-Oscillatory (WENO) schemes, first introduced by Liu,

Osher, & Chan [48], high spatial order of convergence is achieved where the solution

is smooth and a spatial convergence of no greater than O(1) near a discontinuity

in the solution. In the present study, we utilized a 5th order spatially convergence

variant of WENO which weights the contribution of three stencils, illustrated in

Figure 3.3. Here we will describe how wL,i+1/2 is computed in [48] on the basis of the

ENO stencil[49]. For simplicity, the “L” subscript will be dropped. The formula for

the right characteristics are symmetric and will only be shown when they vary from

the left characteristics.

The rth order ENO scheme chooses the “smoothest” stencil from r candidate

stencils to approximate wi+1/2. In the case of r = 3, the stencil Sk, where k ∈ [0, 2],

shown in Figure 3.3, happens to be chosen as the ENO interpolation stencil, the

rth-order ENO approximation of wi+1/2 to produce

wk = qrk (wi+k−r+1, ..., wi+k) (3.16)

where

qrk (g0, ..., gr−1) =
r−1∑

l=0

ark,l gl (3.17)

Here ark,l, 0 ≤ k, l ≤ r− 1, are constant coefficients, which are provided in Table 3.1.

Using the smoothest of the rth stencil would be desirable near a discontinuity, but in

smooth regions, information from all stencils can be used in the final solution. Thus,

in smooth regions, it would be desirable to combine the ENO stencils in a manner

that will generate a higher than r order solution. As shown in [48], one can use all

of the r candidate stencils, which all together would contain (2r − 1) grid values of
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wi+1/2 to give a (2r − 1)th-order approximation of w

wk = q2r−1
r−1 (wi−r+1, ..., wi+r−1) (3.18)

which is the solution of a (2r − 1)th-order upstream central scheme. Since high

order upstream central schemes (in space), combined with high order Runge-Kutta

methods (in time) are stable and dissipative under appropriate CFL numbers, they

are convergent. Using this fact, one can now use the (2r − 1)th-order upstream

central scheme in smooth regions and the rth order ENO scheme near discontinuities.

As shown in Equation 3.16, each of the stencils can approximate wi+1/2. If the stencil

is smooth, an rth order approximation of the stencil can be recovered, but if the stencil

is discontinuous, a less accurate or inaccurate approximation would be recovered. So

WENO assigns a weight, ω̂k, to each of the candidate stencil Sk, where k ∈ [0, r − 1],

and uses these weights to combine the r different approximations to obtain the final

approximation of the solution as:

wi+1/2 =
r−1∑

k=0

ω̂kq
r
k (wi+k−r+1, ..., wi+k) (3.19)

where qrk is defined in Equation 3.17. To achieve essentially non-oscillatory properties,

WENO requires that the weights adapt to the relative smoothness of w. Discontinu-

ous stencils contributions should be assigned weights of zero. In the smooth regions

the weights should be adjusted so the upstream central scheme, Equation 3.18, is

recovered.

In the present study, the 5th order WENO(WENO5) scheme (r = 3) is utilized
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as prescribed by Jiang and Shu in [45]. The stencils, Sk, are calculated as:

S0(wi−2, wi−1, wi) = 1
6

(2wi−2 − 7wi−1 + 11wi)

S1(wi−1, wi, wi+1) = 1
6

(−1wi−1 + 5wi + 2wi+1)

S2(wi, wi+1, wi+2) = 1
6

(2wi + 5wi+1 − 1wi+2)

(3.20)

And the right solution is stencils, SRk are calculated as:

SR0 (wi+3, wi+2, wi+1) = 1
6

(2wi+3 − 7wi+2 + 11wi+1)

SR1 (wi+2, wi+1, wi) = 1
6

(−1wi+2 + 5wi+1 + 2wi)

SR2 (wi+1, wi, wi−1) = 1
6

(2wi+1 + 5wi − 1wi−1)

(3.21)

The smoothness of each stencil is then calculated as:

IS0 = 13
12

(wi−2 − 2wi−1 + wi)
2 + 1

4
(wi−2 − 4wi−1 + 3wi)

2

IS1 = 13
12

(wi−1 − 2wi + wi+1)2 + 1
4

(wi−1 − wi+1)2

IS2 = 13
12

(wi − 2wi+1 + wi+2)2 + 1
4

(3wi − 4wi+1 + wi+2)2

(3.22)

The smoothness of each stencil for the right solution is then calculated as:

ISR0 = 13
12

(wi+3 − 2wi+2 + wi+1)2 + 1
4

(wi+3 − 4wi+2 + 3wi+1)2

ISR1 = 13
12

(wi+2 − 2wi+1 + wi)
2 + 1

4
(wi+2 − wi)2

ISR2 = 13
12

(wi+1 − 2wi + wi−1)2 + 1
4

(3wi+1 − 4wi + wi−1)2

(3.23)

We can now calculate the new weights, ω̂′k, based on the smoothness, ISk, and

the optimal weights, ω̂optk , which are defined as ω̂opt = ( 3
10
, 6

10
, 1

10
) for approximation

of w by using the procedure from [45],

ω̂′k =
ω̂optk

(ε+ ISk)2
(3.24)

where ε = 10−6 is there to guarantee non-singular behavior. These new weights, ω̂′k,

are then normalized to become the final WENO weights:
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ω̂k =
ω̂′k∑2
z=0 ω̂

′
z

(3.25)

where
∑

k ω̂k = 1. The weighted solutions from each stencil are then summed, in the

same manner as Equation 3.18, to form our WENO5 approximated solution:

wi+1/2 =
2∑

k=0

ω̂kq
5
k (3.26)

After at characteristics at all of the cell interfaces are calculated, the charac-

teristics are then projected back to real space using Equation 3.15 then the final

flux at the cell interface, Fi+1/2, is determined by Equation 3.12 using the updated

approximations to the conserved variables.

3.4.2 Monotonicity Preserving (MP) Schemes

The Monotonicity Preserving (MP) scheme, first introduced by Suresh & Huynh[50],

uses a high order spatially convergent reconstruction of the interface, the original

value, then limits this solution in order to obtain the final interface value. We will

adopt the notation of the previous section and drop the “L” subscript for solutions

at the face. For the 5th order MP scheme (MP5), which will be used throughout the

present study, the original value, wORi+1/2, is given as:

wORi+1/2 = (2wi−2 − 13wi−1 + 47wj + 27wi+1 − 3wi+2) /60 (3.27)

To find the MP5 solution, a few constraints must be satisfied. The first constraint

is monotonicity-preservation, which Suresh & Huynh [50] define as the upper limit,

wUL = wi + α(wi − wi−1) (3.28)
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where α = 2, represents a parabolic reconstruction. The second constraint, accuracy-

preserving, is accomplished by bounding the solution with the median and large cur-

vature solutions. The median (denoted by superscript “MD”) value at the interface,

xi+1/2, is given by

wMD = wAV − 1

2
dMD
i+1/2 (3.29)

While the large curvature (denoted by superscript “LC”) value at the interface is

given by

wLC = wi +
1

2
(wi − wi−1) +

β

3
dLCi−1/2 (3.30)

where β = 4, wAV is the average solution, di is the curvature, and dLCi+1/2 is the

minmod approximation of the curvature at the zone boundary, all of which are

defined as follows:

wAV = 1
2

(wi + wi+1)

di = wi−1 + wi+1 − 2wi

dMM
i+1/2 = minmod (di, di+1)

(3.31)

The superscript “MM” indicates the use of a minmod function. Suresh & Huynh[50]

recommended the use of a slightly more restrictive curvature measure than dMM
i+1/2,

which is given by:

dM4
i+1/2 = minmod (4di − di+1, 4di+1 − di, di, di+1) (3.32)

For the MP5 scheme dMD
i+1/2 = dLCi+1/2 = dM4

i+1/2. Now that the mechanisms for the two

constraints, monotonicity-preserving and accuracy-preserving, have been stated, the

minimum and maximum value of the solution, wMIN and wMAX , respectively, are

given by:

wMIN = max
[
min(wi,min(wi+1, w

MD)),min(wi,min(wUL, wLC))
]

wMAX = min
[
max(wi,max(wi+1, w

MD)),max(wi,max(wUL, wLC))
] (3.33)
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The solution at the face, wi+1/2, can now simply be expressed as:

wi+1/2 = median
(
wORi+1/2, w

MIN , wMAX
)

(3.34)

The 5th order convergent Monotonicity Preserving WENO (MW5) scheme by

Balsara & Shu [51], which is based on the MP5 scheme, has the smooth solution

of WENO5, but is strictly monotonicity-preserving near discontinuities. Balsara &

Shu were able to demonstrate that the solutions to ideal MHD simulations were far

superior to that of MP5 and WENO5. The form of the MW5 solution is the same

MP5, Equation 3.34, but the key difference is in how MW5 is used to determine the

original value, wOR, and the curvature at the median and large curvature values,

dMD and dLC , respectively. By using the WENO stencils for r = 3, Equation 3.20

with WENO coefficients from Table 3.1, and the optimal weights, the MW5 original

value, wOR, is recovered:

wOR = (6wi−2 − 27wi−1 + 65wi + 17wi+1 − wi+2) /60 (3.35)

In an attempt to filter out extremal features with small domains of support, while

keeping extremal features with large domains of support intact, dMD
i+1/2 = dLCi+1/2 =

dM4X
i+1/2, where

dM4X
i+1/2 = minmod (4di − di+1, 4di+1 − di, di, di+1, di−1, di+2) (3.36)

3.4.3 Advection-Diffusion-Reaction (ADER) Schemes

The Advection-Diffusion-Reaction (ADER) schemes of Titarev & Toro [52] utilize

high order spatial derivatives calculated by the underlying scheme to generate the
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temporal derivatives using the Cauchy-Kovalevskaya procedure:

∂tw = −λ∂xw
∂ttw = λ2∂xxw

∂tttw = −λ3∂xxxw
...

∂
(k)
t w = (−λ)k∂

(k)
x w

(3.37)

Where λ is the characteristic wave speed. With the high order temporal derivatives

generated from Equation 3.37, a simple Taylor series expansion is performed to ac-

quire a higher order temporally and spatially convergent scheme. But first, we must

take the temporal series expansion at the interface,

wi+1/2 = w̃ +
m−1∑

k=1

∂
(k)
t w̃

τ k

k!
(3.38)

Where τ is the time step size and w̃ = w(xi+1/2, 0
+) is the approximation of the

solution at the interface from the underlying scheme. In the present study, we wish

to achieve 3rd order convergence in time, so we will start from Equation 3.38 with

m = 3 to give,

wi+1/2 = w̃ + ∂tw̃τ + ∂ttw̃
τ 2

2
(3.39)

By performing the Cauchy-Kovalevskaya procedure on Equation 3.39, the solution,

wi+1/2, will become a function of the time step size and spatial derivatives of the

approximate solution as follows:

wi+1/2 = w̃ − λ∂xw̃τ + λ2∂xxw̃
τ 2

2
(3.40)

Equation 3.40 will serve as the general form of the temporally 3rd order convergent

ADER (ADER3) scheme. Since the expensive Runge-Kutta time integration steps
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are no longer required, ADER schemes are extremely efficient and well suited for

parallel computation.

By combining the 5th order spatially convergent WENO5’s reconstruction to cal-

culate the approximate solution and its spatial derivatives, w̃ and ∂
(k)
x w̃, respectively,

with the 3rd order temporally convergent ADER3, we form the 3rd order temporal

and 5th order spatial convergent ADER-WENO (AW5) scheme [53]. At discontinu-

ities, ∂
(k)
x w̃ = 0 ∀ k > 1 is satisfied in order to prevent spurious oscillations.

3.5 Point-Implicit Euler

The finite rate kinetic systems in the present study are extremely stiff. When solving

a stiff ODE, it is often beneficial to solve the problem implicitly. The stiff chemical

kinetics ODEs will be expressed in the form of Equation 2.3:

dQ

dt
= Ω̇kinetic (3.41)

where Q and Ω̇kinetic are defined by Equation 2.16. The 1st order point-implicit Euler

will be utilized to solve problems of this particular form. First, let us discretize the

time into uniform intervals of size ∆t and denote tn = t0 and tn+1 = t0 + ∆t. Upon

discretization, a Taylor series expansion can be performed on Equation 3.41 and is

expressed as follows:

∆Q
∆t

= Ω̇
n+1

∆Q
∆t

= Ω̇
n

+ ∂
∂t

Ω̇
n
∆t

∆Q
∆t

= Ω̇
n

+ ∂
∂Q

Ω̇
n ∂
∂t
Q∆t

∆Q
∆t

= Ω̇
n

+ ∂Ω̇
n

∂Q
∆Q

(3.42)
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Then we shall proceed and solve for the change in the conserved variables, ∆Q, and

arrive with the following form:

∆Q =

(
I− ∂Ω̇

n

∂Q
∆t

)−1

Ω̇
n
∆t (3.43)

From here we arrive at the solution to our implicit formulation as:

Qn+1 = Qn +

(
I− ∂Ω̇

n

∂Q
∆t

)−1

Ω̇
n
∆t (3.44)

This can also be expressed in the operator form: Qn+1 = LchemQn, where the oper-

ator is defined as:

Lchem = 1 +

(
I− ∂Ω̇

n

∂Q
∆t

)−1
∂Ω̇

n

∂Q
∆t (3.45)

3.6 Spatial-Implicit Euler

Diffusive MHD transport will often have much stricter explicit time step restrictions,

Equation 3.8, than that of convective transport, Equation 3.4. Since the maximum

allowable explicit diffusive time step is determined by ∆t ≤ 0.5∆x2σminµ0, it becomes

apparent that as σ → 0 then ∆t→ 0. This can become quite cost prohibitive, so in

order to ensure stability with a non prohibitive time step, an implicit time marching

scheme is utilized.

Before we can cast the diffusive MHD transport into an implicit formulation,

we must start from the magnetic diffusion flux formulation of the RHS, Equation

2.34, and define the magnetic field diffusion Jacobian, Aν , for the dimensionally split
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magnetic diffusion as
∂Q

∂t
=

∂

∂x

(
Aνx

∂Q

∂x

)
(3.46)

where the magnetic field diffusion Jacobian, Aνx = ∂Fνx
∂Q

,

Aνx =
1

µ0σ




1 0 0 0

0 1 0 0

0 0 1 0

−Bx
µ0

0 0 1




Assuming a one-dimensional discretization on a uniformly-spaced grid, the spatial

derivatives can be approximated by finite-differences and the subscript in Aνx will be

ignored, thereby reducing the PDE to a system of ODE’s,

dQi

dt
=

1

∆x2

(
Aν
i+ 1

2
Qi+1 − (Aν

i+ 1
2

+ Aν
i− 1

2
)Qi − Aνi− 1

2
Qi−1

)
(3.47)

the system of equations can be written in matrix notation as

∂ ~Q

∂t
= Φ̃~Q (3.48)

where Φ̃ is a tridiagonal matrix and ~Q is the spatial vector of the conserved element

array,

Φ̃ =
1

∆x2




. . . . . . . . .

−Aν
i− 1

2

(1 + Aν
i− 1

2

+ Aν
i+ 1

2

) −Aν
i+ 1

2

. . . . . . . . .




, ~Q =




...

Qi−1

Qi

Qi+1

...




(3.49)
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Now, we can determine the implicit formulation by evaluating the RHS of Eqn.

3.48 at time t+ ∆t,

~Qn+1 = ~Qn + ∆t Φ̃ ~Qn+1 (3.50)

By applying backwards Euler to Equation 3.50, one can recover the operator form,

~Qn+1 = Ldiffα
~Qn, where the MHD diffusion matrix operator for the α-direction is

Ldiffα =
(

1−∆tΦ̃α

)−1

(3.51)

In order to apply the diffusive MHD transport in all directions, one might perform

the following operation:

Qn+1 = Ldiffx Ldiffy Ldiffz Qn (3.52)

Upon inspection of Equation 3.49, Ldiff is merely the inverse of a tridiagonal

system of equations. Rather than applying a scheme with a relatively high computa-

tion cost, i.e. GMRes or Gaussian Elimination, one can exploit the fact the system

is tridiagonal and implement Thomas’ Algorithm, which is discussed in more detail

in Appendix F.1.

The diffusive MHD operators, Ldiffα , use line relaxation to proceed in time. If

the grid and fluid properties, i.e. conductivity, grid resolution, etc., are not spa-

tially uniform the diffusive MHD transport will have different time scales for each

directional sweep. When this occurs, it becomes necessary to split a given operator,

Lx, in time using the Strang operator splitting technique demonstrated in Section

3.1. The superscript ‘diff’ has been discarded for the remainder of this section. One

permutation of applying multiple spatial operators to a generic 2D diffusive MHD

problem would go as follows:

Qn+1 = L∆t/2
x L∆t

y L∆t/2
x Qn (3.53)
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which is illustrated in Figure 3.4(a). In order to avoid developing a bias toward a

particular direction, after applying Equation 3.53 one should use the following:

Qn+2 = L∆t/2
y L∆t

x L∆t/2
y Qn+1 (3.54)

which is illustrated in Figure 3.4(b). A similar permutation can be performed when

solving a 3-D diffusive MHD problem.
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Q 

r k l = O l = 1 l = 2 

2 0 -1/ 2 3/ 2 

1 1/ 2 1/ 2 

3 0 1/ 3 -7/ 6 11/ 6 

1 -1/ 6 5/ 6 1/ 3 

2 1/ 3 5/ 6 -1/ 3 

Table 3.1: WENO Coefficients, aJ::,z 

-. Qn+l 
I 

I 
I 

~ I 
I 
I 
~Qconv + L:>.Qch em 
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Figure 3.1: Operator splitting of two generic operators, £ Chern & cccmv. 
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Figure 3.2: Demonstrat ion that with Strang splitt ing coupled operators, t he ordering 

of t he operators can significant ly change the solut ion. 
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Figure 3.3: WENO stencil for r = 3. 
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(a) (b) 

Figure 3.4: Strang operator split t ing in t ime for three operat ions illustrated wit h 

different ordering of the operators, Lx and Ly. 
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CHAPTER 4

Verification of Numerical Schemes

The numerical schemes used in the present study must be validated and verified to

ensure there accuracy and proper usage. The 1-dimensional, 2-dimensional, and 3-

dimensional forms of the hydrodynamic and magnetohydrodynamic governing equa-

tions assume the form of Equation 2.1:

∂Q

∂t
+∇n · F = Ω̇

For the 1-D subset of the governing equations, the variation in the y- and z-

dimensions are set to zero, ∂
∂y
≡ 0 and ∂

∂z
≡ 0, respectively. While in the 2-D subset

of the governing equations, there is no variation in the z-direction, ∂
∂z
≡ 0.

4.1 Inviscid Hydrodynamics

The hydrodynamic test cases will show that the physical wave (acoustic and entropy)

speeds present in the simulation are properly captures and that the approximate

Riemann solution matches the proper jump conditions in the event of a shock. In

the hydrodynamic limit the conserved variables, Q, and flux, F, are expressed as

65

E-90



Equation 2.5:

Q =




ρ

ρu

E


 F =




ρun

ρu · un + Pn

(E + P )un




4.1.1 Sod’s Shock Tube

There are a few classic test cases performed utilizing our Riemann solvers, in order

to test their ability to resolve shocks, contact discontinuities, and rarefactions as well

as the interactions of these structures. The first test case was introduced by Sod [54],

known presently as Sod’s shock tube. We will adopt the same initial and boundary

conditions. The left and right states are

(ρL, ux,L, PL) = (1 kg/m3, 0m/s, 1Pa) x < 0

(ρR, ux,R, PR) = (0.125 kg/m3, 0m/s, 0.1Pa) x > 0
(4.1)

where the adiabatic index, γ ≡ 1.4, unless otherwise stated, and over a domain

x ∈ (−5, 5]mm. Figure 4.1(a) shows the solution for the schemes at t = 200 µs

which contains a single shock, contact discontinuity and rarefaction. The figure

clearly shows that all of the schemes used resolved the problem reasonably well

compared to the exact solution. Figure 4.1(b) illustrates MW5 solution converging

to the exact solution at the contact discontinuity as ∆x is decreased.

4.1.2 Hydrodynamical Interacting Blast Wave Problem

Blast waves are generally described as strong and rapid release of energy which are

often characterized by regions containing drastic temperatures and pressure rises.

For the second test of our 1D hydrodynamic test problems, we ran the interacting

66

E-91



blast wave problem which was first proposed by Woodward and Collela [55]. The

problem consist of the left, middle, and right initial states, L, M, and R respectively,

which are as follows:

(ρL, ux,L, PL) = (1, 0, 103) x < 0.1

(ρM , ux,M , PM) = (1, 0, 10−2) 0.1 < x < 0.8

(ρR, ux,R, PR) = (1, 0, 102) x > 0.8

(4.2)

where x ∈ (0, 1]. Figure 4.2 shows the density profiles at t = 38 seconds using

the MP5, AW5, and MW5 schemes with greater detail in Figure 4.3. While all

of the schemes resolve the shocks at x ≈ 0.65 & 0.87 reasonably well, the contact

discontinuities at x ≈ 0.75 & 0.8 are slightly better resolved by MP5. None of the

schemes used artificial compression methods.

4.1.3 Shock-Entropy Wave Interaction

In the last of our 1-D hydrodynamic test cases, we wish to test our numerical schemes

ability to resolve smooth flow disturbances which is of particular interest because

of the nature of the problems in the present study. The Shu-Osher problem [56]

has been extensively used to simulate a Mach 3 shock wave interacting with an

oscillatory density disturbance which generates a flow field with a combination of

smooth structures and discontinuities. The initial conditions are given for the left

and right state as follows:

(ρL, ux,L, PL) = (3.857143, 2.629369, 10.33333) x < 0.8

(ρR, ux,R, PR) = (1 + 0.2sin(5πx), 0, 1) x > 0.8
(4.3)

where x ∈ (−1, 1]m. From the density profile in Figure 4.4(a) at t = 360ms, one

can see that three schemes resolved the entropy disturbances quite well. Upon closer
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inspection, Figure 4.4(b) clearly shows that while AW5 was slightly diffused and

MW5 slightly amplified, MP5 was clearly able to resolve the transient entropy waves

the best.

4.1.4 Shock Diffraction Down a Backward Facing Step

The next test problem describes the diffraction of a Mach 2.4 shock down a backward

facing step[57]. The strong rarefaction generated by the diffraction at the 90o corner

often results in numerical errors described by over-expansion and negative pressure

for many Riemann solvers[58]. The problem is simulated using a resolution of ∆x =

∆y = 1
1024

with the MW5 solver. The numerical simulation is shown side-by-side

with the experimental images in Figure 4.5. The numerical solution is presented

using a Schlieren-type plot as prescribed by [58] which uses density gradients in an

analogous way to index of refraction gradients, which makes it ideal for comparison

with experimental images. The figure shows that the MW5 scheme was able correctly

reproduce the flow features in the region of the rarefaction.

4.1.5 Rayleigh-Taylor Hydrodynamic Instability

In the next test, a heavy fluid is supported by a lighter fluid in a gravitational field,

or equivalent, which accelerates the heavier fluid into a lighter fluid. This condition

is unstable once the interface between the two fluids is perturbed. The instability is

known as the Rayleigh-Taylor(RT) instability. Earlier analytical investigations date

back to the detailed analysis given by Chandrasekhar[59].

In the initial configuration, two fluids with a prescribed density ratio (ρL/ρU = 2)

are left to evolve between two planes (y = -1 m and y = +1 m), with gravity oriented
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in the upward direction (g = {0,+1}T ). The boundaries are adiabatic solid walls.

The remainder of the fluid initial conditions above and below the diaphragm, U & L

respectively, are found in Table 4.1. The solutions produced by the MP5, AW5, and

MW5 scheme were compared for this problem against the test solution at various

times in Figures 4.6-4.9. From these figures, it becomes quite clear that sharp features

and rolled up vortices in the MW5 solution are far superior to that of the solutions

produced by MP5 and AW5.

4.2 Ideal Magnetohydrodynamics(MHD)

The ideal MHD test cases will demonstrate that the physical waves (entropy, fast &

slow magneto-acoustic, and Alfvén) are properly captured under various configura-

tions by the present schemes.

4.2.1 1D MHD Shock Tube Problems

The Brio-Wu problem [60] was used to ensure the numerical scheme sufficiently

captured all of the important features, ie, a contact discontinuity, fast shock, fast

rarefaction, compound wave, and slow shock. The initial conditions are analogous

to Sod’s shock tube problem where the initial left and the right states are as follows:

(ρl, ux,l, uy,l, uz,l, Bx,l, By,l, Bz,l, Pl) = (0.1, 0, 0, 0, 0.75,−1, 0, 1) x < 0

(ρr, ux,r, uy,r, uz,r, Bx,r, By,r, Bz,r, Pr) = (1, 0, 0, 0, 0.75,+1, 0, 10) x > 0
(4.4)

where γ ≡ 2 and x ∈ (−1, 1]. Figure 4.10 - 4.15 show the distributions of various

fluid properties at the solution time, t = 0.1. Figure 4.11(a) shows a zoom in

of the compound wave at x ≈ −.03m. From this figure, it is clear that the MW5
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scheme is able to resolve the major features (compound wave, fast & slow rarefaction)

better than MP5 & AW5. All of the schemes (MP5, AW5, & MW5) resolve the

contact discontinuity fairly well, shown in Figure 4.11(b).The undershoot observed

in the velocity profile, Figure 4.12(a), at x ≈ 0.35 m is a well documented feature

in literature for higher order MHD schemes at magneto-sonic points; Jiang and Shu

[61] suggest performing the test problem in a moving reference frame in order to

suppress the oscillations.

4.2.2 Orszag-Tang Problem

Various 2D MHD test cases were performed to ensure that the solver correctly cap-

tured all physical waves and to ensure the solution remains divergence free, ∇·B ≡ 0.

The divergence cleaning procedure used when performing MHD simulations is given

in Appendix C. The first numerical test case is that of the Orszag-Tang vortex prob-

lem, first introduced by Orszag & Tang[62]. This is a well-known model problem for

testing the transition to supersonic 2D MHD turbulence. The initial conditions of

the problem are given by:

(ρ, ux, uy, Bx, By, P ) = (2.778,−sin(y), sin(x),−sin(y)
√
µ0, sin(2x)

√
µ0, 1.667)

(4.5)

where γ ≡ 5
3
. The problem is set on a periodic domain with the dimensions x : y ∈

[0, 2π)m : [0, 2π)m. Figure 4.16 shows the temperature distribution of the solutions

at t = 3s. Although the images illustrated appear similar, upon further inspection

the flow features in Figures 4.16(a) & (c) are sharper than those in Figure 4.16(b).
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4.2.3 Balsara’s Rotor Problem

The following test, which was original introduced by Balsara & Spicer[63], consists of

the propagation of strong torsional Alfvén waves into an ambient fluid. The problem

consists of a dense, rapidly spinning cylinder of fluid(the rotor) surrounded by a

light, stationary fluid (ambient fluid). Because there is no diffusive transport in this

problem, the two fluids are connected by an initially uniform magnetic field. The

rapidly spinning rotor causes torsional Alfvén waves to propagate into the ambient

fluid, which will lead to a decrease of angular momentum in the rotor. The magnetic

field is strong enough that as it wraps itself around the rotor, the increased magnetic

pressure will compress the rotor into an oblong shape. Balsara & Spicer applied a

slight taper to the initial density and velocity of the rotor as to avoid generating

strong start-up transient from the computational scheme. The computation domain

is described by x : y ∈ [0, 1] : [0, 1] and the initial conditions are described in Table

4.2.

At the solution time, t = 0.295 s, MW5 and MP5 shown in Figures 4.17 & 4.18,

respectively, agree quite well with the results of Balsara & Spicer[63] using CFL =

0.3, while AW5 is unstable at this CFL number. Figure 4.19 illustrates that AW5

can remain stable and resolve Balsara’s rotor problem quite well by reducing the

CFL to 0.15.

4.2.4 Rayleigh Taylor MHD Instability

Equally as important as the stability of the chemical processes is that of the stability

of the MHD. As previously demonstrated in Section 4.1.5, Rayleigh-Taylor Instabil-

ities (RTI) can arise from infinitesimal disturbances in amplitude and grow because
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of the gradient in the applied force, e.g., a buoyant force. In [59], Chandrasekhar an-

alytically demonstrated RTI with a uniform tangential magnetic field in both fluids,

where the stability growth rate is:

n2 = gk
ρ2 − ρ1

ρ2 + ρ1

− B2k2cos2 θ

2π(ρ2 + ρ1)
(4.6)

where k is the wave number, n is the growth rate, and θ is the angle between B

and k. The critical strength of a magnetic field to suppress instability of a mode of

wavelength λ is:

Bc =

√
gλ(ρ2 − ρ1)

cos θ
(4.7)

Similarly, the critical wavelength for a given strength of a magnetic field can be

expressed as:

λc =
B2cos2 θ

g(ρ2 − ρ1)
(4.8)

where λ < λc are suppressed.

As specified by Remacle et al.[64], a domain with dimensions x : y ∈ [0, 0.25]m :

[−0.5, 0.5]m is enclosed by reflective, adiabatic walls. The heavy, upper fluid is

separated from the light, lower fluid at y = 0.01cos(8πx). The acceleration due to

gravity is g = {0,−1}T . The initial conditions conditions of the fluid are listed in

Table 4.1. Figures 4.20(a) - (c) show the solution of the density distribution of MW5,

MP5, and AW5, respectively, at t = 2 s with grid resolution ∆x = ∆y = 1
400
m. Due

to the lack of rolled up vortices in Figure 4.20(c), AW5 cannot properly resolve the

instability of the current problem. Thus, only MW5 and MP5 will be used in the

next portion of the test.

The suppression of the instability growth with tangential magnetic field strengths

of Bx = 0, 0.2Bc, 0.5Bc, and 0.8Bc at t = 2 s using MW5 & MP5, respectively, is
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illustrated in Figures 4.21 & 4.22 . The illustrations support the well established

theory of Chandrasekhar[59] that there is a critical tangential magnetic field that

will suppress a perturbations growth in this particular test case. A normal magnetic

field with the strengths By = 0.5Bc, 1.5Bc, and 2Bc are illustrated at t = 2 s in

Figures 4.23 & 4.24. The normal magnetic field did not have a significant affect on

the growth of the instabilities until a larger field was applied relative to the tangential

field strength, which is confirmed by Jun et al.[65]. Additionally, Jun et al. show

that the growth of the instability in the nonlinear regime is enhanced by the normal

field up to a certain field strength.

4.3 Two-Temperature(2T) Model

When there is significant ionization due to shocks or non-isentropic processes, the

electron temperature, Te, is adiabatic and must relax to the translational temperature

of the heavy particles, Th. Next, we present a 1D test case of a Mach 10 fully

ionized plasma of argon passing through a normal shock. Figure 4.25(a) illustrates

the electron and heavy particle temperatures when they are conserved separately

and are not allowed to relax toward equilibrium, while Figure 4.25(b) illustrates the

electron and heavy particle temperatures relaxing via electron-ion collisions toward

equilibrium. In these figures we see that MP5 is able properly conserve electron

entropy as well relax to the correct equilibrium temperature, Te = Th = 7800K.
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upper part lower part

ρ 2 1

P 2− 2y 2− y
ux εxsin(8πx)cos(πy)sinτ−1(πy) same as upper part

uy −εycos(8πx)sinτ (πy) same as upper part

Table 4.1: RTI problem hydrodynamic initial conditions as specified by Remacle et

al.[64] where τ = 6, M0 = 0.1, εy = M0

√
γ/2, and εx = −εyτ/16.

r < r0 r0 < r < r1 r > r1

ρ 10 1 1 + 9f

P 0.5 0.5 0.5

ux −v0(y−y0)
r0

−f v0(y−y0)
r0

0

uy
v0(x−x0)

r0
f v0(x−x0)

r0
0

Table 4.2: Balsara’s rotor problem initial conditions as specified by Tóth[66] with a

magnetic field Bx = 2.5/µ0, where r0 = 0.1, r1 = 0.115, f = r1−r
r1−r0 , v0 =, v0 = 1,

(x0, y0) = (0.5, 0.5), and γ = 5/3.
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Figure 4.4: Density distribution of the lD Shock-Entropy Interaction problem [56] 
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Figure 4.5: Mach 2.4 flow over a backward facing step solution (left) using MW5

with ∆x = ∆y = 1
1024

m compared to the experimental results (right) [57].
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Figure 4.6: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 0.75s, where ∆x = ∆y = 1
800
m (For High Resolution, MW5 was used

with ∆x = ∆y = 6.25× 10−4m), min max.
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Figure 4.7: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 1.50s, where ∆x = ∆y = 1
800
m (For High Resolution, MW5 was used

with ∆x = ∆y = 6.25× 10−4m), min max.
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Figure 4.8: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 2.25s, where ∆x = ∆y = 1
800
m (For High Resolution, MW5 was used

with ∆x = ∆y = 6.25× 10−4m), min max.
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Figure 4.9: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 3.00s, where ∆x = ∆y = 1
800
m (For High Resolution, MW5 was used

with ∆x = ∆y = 6.25× 10−4m), min max.
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Figure 4.17: The density, thermal pressure, Mach number, and the magnetic pressure

distributions at t = 0.295s for Balsara’s rotor problem. The solution was obtained

using MW5 with a grid resolution of ∆x = ∆y = 1
400
m and CFL = 0.3. The 30

contour lines are shown for the ranges 0.532 < ρ < 10.83 kg
m3 , .007 < P < 0.702Pa,

0 < |u|
cs
< 3.64, and 0.007 < B2

2µ0
< 0.702Pa, as prescribed by Tóth [66].
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Figure 4.18: The density, thermal pressure, Mach number, and the magnetic pressure

distributions at t = 0.295s for Balsara’s rotor problem. The solution was obtained

using MP5 with a grid resolution of ∆x = ∆y = 1
400
m and CFL = 0.3. The 30

contour lines are shown for the ranges 0.532 < ρ < 10.83 kg
m3 , .007 < P < 0.702Pa,

0 < |u|
cs
< 3.64, and 0.007 < B2

2µ0
< 0.702Pa, as prescribed by Tóth [66].
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Figure 4.19: The density, thermal pressure, Mach number, and the magnetic pressure

distributions at t = 0.295s for Balsara’s rotor problem. The solution was obtained

using AW5 with a grid resolution of ∆x = ∆y = 1
400
m and CFL = 0.15. The 30

contour lines are shown for the ranges 0.532 < ρ < 10.83 kg
m3 , .007 < P < 0.702Pa,

0 < |u|
cs
< 3.64, and 0.007 < B2

2µ0
< 0.702Pa, as prescribed by Tóth [66].
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Figure 4.20: Growth of instability without the presence of a magnetic field at t = 2s

for MW5, MP5, and AW5 where ∆x = ∆y = 1
400
m. Density distribution with 20

density contours between 1 2.
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Figure 4.21: The impact of the tangential magnetic field, Bx, on the growth of

instabilities at t = 2s where ∆x = ∆y = 1
400
m and Bc = 0.5T using MW5. Density

distribution with 20 density contours between 1 2.
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Figure 4.22: The impact of the tangential magnetic field, Bx, on the growth of

instabilities at t = 2s where ∆x = ∆y = 1
400
m and Bc = 0.5T using MP5. Density

distribution with 20 density contours between 1 2.
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Figure 4.23: The impact of the normal magnetic field, Bx, on the growth of insta-

bilities at t = 2s where ∆x = ∆y = 1
400
m and Bc = 0.5T using MW5. Density

distribution with 30 density contours between 1 2.
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Figure 4.24: The impact of the normal magnetic field, Bx, on the growth of insta-

bilities at t = 2s where ∆x = ∆y = 1
400
m and Bc = 0.5T using MP5. Density

distribution with 30 density contours between 1 2.
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CHAPTER 5

Simplified Approach for PDRIME Simulations

Now that the various numerical schemes have been validated, we first investigate

the performance of a PDRE flight configuration, and later the PDRIME, using a

simplified non-reactive model, Equation 2.5. In the simplification, we assumed that

all reactants (H2 and O2) in the combustion chamber have been consumed, leaving

just products (H2O) and the seeded Cesium. We also assumed that the detonation

has left the chamber. This model has been shown to replicate blowdown conditions

in a rocket nozzle reasonably accurately, as shown in Figure 5.1 from the work by

Cambier. Following Cambier’s blowdown model[67], we initialize the combustion

chamber with the post-combustion and post-detonation conditions:





P̂0 = 100 atm

T̂0 = 3000K

ρ̂0 = P̂0

RT̂0

Rather than simulating the combustion chamber, the combustion chamber is mod-

eled as a “reservoir” whose conditions (P0, T0) temporally evolve as prescribed by

Cambier’s blowdown equations[67]:

P0 = P̂0[f(t)]γ/(γ−1) (5.1a)
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ρ0 = ρ̂0[f(t)]1/(γ−1) (5.1b)

T0 = T̂0[f(t)] (5.1c)

where f(t) = 1
1+νt

and ν is the blowdown frequency and is equal to 87.5 Hz for

this particular case. Now, by using the isentropic relations, we can determine the

conditions at the PDRE throat as a function of time. With this simplification, our

computational domain no longer needs to include the combustion chamber, this is

illustrated in Figure 5.2. Next, we assume that the back pressure, the atmospheric

pressure Patm, is sufficiently low, so that there is no back flow into the nozzle. Pres-

sures at the altitudes we are simulating are high enough that even with the expan-

sion in the nozzle, the nozzle exit pressure is greater than the atmospheric pressure,

Pexit > Patm. Because of the extremely high flight altitudes (altitude ≈ 15 − 20

km) , the PDRE performance does not have any significant variance with regard to

altitude.

Next, we extend this simplified model of the PDRE to the PDRIME with a

‘Magnetic Piston’. In this extension, we assume that if the temperature is greater

than 3000K; the conductivity is a constant non-zero value, in this particular case

σ = 1000mho/m in the nozzle and σ = 500mho/m in the bypass tube. The nozzle

impulse contribution is calculated the same way as the PDRE, while bypass tube

impulse contribution is calculated by integrating the Lorentz force over the cycle

duration, as follows:

Ibypass =

∫ t

0

(j×B)x dτ ≈
∫ t

0

σuBz(Kx − 1) dτ (5.2)
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where all variables have been previously defined. We also assumed a constant mag-

netic field for both the nozzle and bypass section of the PDRIME, as illustrated in

Figure 1.7. The configuration called ‘NG’ refers to the PDRE with energy extraction

in the nozzle (for use of the ‘nozzle generator’), so, as expected there is a drop in

impulse as shown in Figure 5.3. A promising concept postulated by Cambier[40]

involving the PDRE with ‘Magnetic Piston’ was also simulated, but due to the lack

of energy supplied to the ‘Magnetic Piston’ by the generator, this flight configuration

could not be effectively utilized. In Chapter 7, the true energy ‘cost’ of the chamber

piston will be investigated by exploring the nature of the ionized gas and chemical

kinetics subjected to the Lorentz force. We will now explore other PDRE flight con-

figurations which will build off of the PDRE with ‘NG’ concept in order to further

optimize the PDRE.

5.1 PDRIME with Bypass Configurations

There were multiple flight configurations as well as different flight condition tested.

Using the standard combustion chamber condition, nozzle, and nozzle generation

configuration we were able to test various configurations of the Bypass Tube. Figure

5.3 shows the performance of the standard PDRIME configuration under various

flight condition as they compare the performance of a PDRE, which we will refer to

as the baseline. With this configuration, there are some marginal performance gains

above the baseline case. The standard PDRIME utilizes a constant magnetic field,

which is active only if the fluid temperature is greater than 3000K and the fluid is

moving in the stream-wise direction. When activated, a constant magnetic field of

3T is applied to the applicable fluid.
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5.2 Temporal/Temperature Controllers of the Magnetic Field

We performed component evaluations for the various flight configurations with dif-

ferent assumptions. This involved examining the net energy consumed compared to

impulse gained or lost by a particular component of the flight configuration. During

the course of component performance evaluation, it was determined that an MHD

bypass accelerator, where a “piston” like acceleration was applied in the bypass sec-

tion as done for the magnetic chamber piston, was under-performing relative to the

nozzle which is shown in Figure 5.4. Zeineh[33] also saw the same under-performance

in his 2-D simulations. The bypass available energy, ∆Egen, is being applied to the

bypass over approx 0.1 ms within a relatively small volume, dV , wherein most of the

available energy is directed towards Joule heating rather than accelerating the fluid.

This leads to large temperature spikes and little impulse increase.

From E =
∫
cv dT + 1

2
ρv2 with introduction of Energy at constant volume

∆Egen = cv∆T +
1

2
ρ∆v2 (5.3)

We can see where and how the energy is being used in the bypass. ∆Egen is a fixed

amount of energy produced by the MHD generator in the nozzle. cv∆T represents the

amount of energy that is converted to internal energy, which for our simplified model

of constant heat capacity is represented by a rise in temperature. Lastly, 1
2
ρ∆v2 ∝

∆KE represents the amount of kinetic energy which is imparted upon the fluid, and

since energy is introduced at constant volume, ρ remains constant, so this change in

kinetic energy is directly related to our change in impulse, I ∝ ∆KE
1
2 . In order to

reduce the temperature spikes and thus increase the impulse, when applying MHD to

the bypass, one must regulate the ∆Egen available for use by the bypass accelerator.

To control this energy reintroduction, one must either control the conductivity of the
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fluid, σ, or the strength of the magnetic field, B, acting on the bypass. Since it is

impractical if not impossible to dynamically control the conductivity in the bypass,

we chose the latter.

Our first approach is to scale the maximum magnetic field in the bypass with

time, for which we prescribe a simple algorithm. First, the magnetic field is initially

zero until the initiation time, t0, when at least one grid cell in the bypass meets the

normal criteria for MHD accelerator: Ti > 3000K and ui > 0. The magnetic field is

then scaled with the maximum field applied, B0. The magnetic field in the bypass

is prescribed as follows:

B(t) =




0 t < t0

Π(t) ·B0 t0 < t < t0 + ∆t

B0 t > t0 + ∆t


 (5.4)

B0: Maximum Magnetic Field Strength

t0: time at which T > 3000K and u > 0

∆t: ramp up time

Π(t): Magnetic Field Scaling Factor

We ran a series of simulations incorporating this prescribed magnetic field, adjust-

ing both Π(t) and ∆t as a means of “open loop” control. Our tests utilized three

different magnetic field scaling factors:

Π(t) = ( t−t0
∆t

) linear scaling where B ∝ t

Π(t) = ( t−t0
∆t

)
1
2 energy scaling (Energy ∝ B2), where B ∝ t

1
2

Π(t) = ( t−t0
∆t

)n power law scaling (n = 3) where B ∝ tn
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Figure 5.5 compares the evolution of these magnetic field scaling factors with time.

Figure 5.6 shows that the temporally varied bypass magnetic field with the “open

loop” control shown in Equation 5.4 has the same marginal performance improve-

ments performance as the standard bypass configuration. The optimal configuration

of the bypass magnetic field is dictated by the flight conditions which include flight

Mach number and altitude.

In our next approach, we return to the same problem of controlling the rate

at which energy is consumed by the bypass. It was previously stated, that it was

impractical to dynamically control the conductivity in the bypass, σ. When evalu-

ating the nature of the conductivity of a fluid in the current regime, Equation 2.30

shows the conductivity’s strong dependency on the temperature, T . Rather than

dynamically controlling the conductivity of the fluid, we modeled the behavior of an

‘ideally’ conductive fluid by prescribing its dependency to temperature, σ = σ(T ).

We wish to implement this “closed loop” controller in the bypass in order to scale

the magnetic field, Bi, with the sensible local temperature in the bypass, Ti. The

normal criteria for MHD acceleration are still utilized. The bypass magnetic field

“feedback” function is prescribed as follows:

B(T ) =




0 T < Tmin

Θ(T ) ·B0 Tmin < T < (Tmax − Tref )

B0 T > (Tmax − Tref )


 (5.5)

B0: Maximum Magnetic Field

Tmin: Minimum Temperature (3000K)

Θ(T ): Magnetic Field Scaling Factor
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Θ(T ) = ( T−Tref
Tmax−Tref ) linear scaling B ∝ T

Tref and Tmax are adjusted to optimize performance

The term “feedback” here is used in the sense that temperature is measured, and the

magnetic field is adjusted according to Equation 5.5. Figures 5.7 through 5.10 show

that the “closed-loop” controller in the bypass tube is able to match the performance

of the standard configuration at a flight altitude of 25km and Tmax < 8 × 103K.

But at other flight altitudes, this “closed loop” controller falls short. The B(T )

model is much more feasible for implementing into a physical system because of the

temperature dependency of many of the parameters that contribute to impulse from

the bypass accelerator, e.g., σ(T ) and B(T ).

5.3 PDRIME with 2D Bypass Configuration

There was further examination of the PDRIME with various configurations per-

formed in Zeineh[33] and Zeineh et al.[34]. In their study, Zeineh et al. found the

flight configuration of the PDRIME at altitudes 20, 25, and 30 km at relatively

low Mach numbers (M ≤ 5) had significant performance increases over the base-

line PDRE. Figures 5.11 through 5.13 show some of the performance gains of the

PDRIME at different altitudes with the optimal bypass section lengths(Lbypass = 3,

4, and 6 m) demonstrated in [34]. While the results of Zeineh’s multidimensional

simulations were quite promising, the effects of complex kinetics (i.e. hydrogen-air

chemistry and ionization process) were not rigorously investigated. The constant

conductivity assumption does not allow for the “closed loop” evolution of the con-

ductivity (i.e. Joule heating further ionizing fluid), therefore in Chapter 7 we will
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discuss and examine the effects of MHD when the conductivity is described more

accurately via Equation 2.27.
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Figure 5.1: Variation in impulse for a PDRE. Results are shown from a full quasi-1D

transient PDRE simulation and a cycle approximated by a constant volume reaction

and a blow-down period(from Cambier[67])
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Figure 5.2: Quasi 1D Computational Domain, where the Bypass and Nozzle inlet

and exit boundary conditions are shown
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Figure 5.3: Quasi 1D Performance: Impulse Loss in Nozzle Energy Generation with

H2O product
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Figure 5.4: Quasi 1D Component Performance: Bypass vs. Nozzle Impulse at M =

9 and Alt: 25km with H2O product

111

E-136



Figure 5.5: Magnetic Field Strength, B, as a function of time, using various Magnetic

Field Strength functions, Π(t)
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Figure 5.6: PDRIME: effects of flight Mach number. Magnetic Field, B(t) ∼ t2
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Figure 5.7: PDRIME with Chamber Piston: effects of flight mach number. Magnetic

Field B(T ), Tref = 0K and Tmax = 6× 103K
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Figure 5.8: PDRIME: effects of flight mach number. Magnetic Field B(T ), Tref = 0K

and Tmax = 7× 103K
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Figure 5.9: PDRIME: effects of flight mach number. Magnetic Field B(T ), Tref = 0K

and Tmax = 8× 103K
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Figure 5.10: PDRIME: effects of flight mach number. Magnetic Field B(T ),

Tref = 0K and Tmax = 9× 103K
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Figure 5.11: PDRIME impulse per cycle at 20 km plot against various Mach numbers

and bypass area per unit depth. The chamber is initially seeded with 0.5% cesium

by number at an initial temperature of 3000 K. The bypass length is Lbypass = 3 m

and is seeded with 0.1% cesium by number. (from Zeineh et al.[34])
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Figure 5.12: PDRIME impulse per cycle at 25 km plot against various Mach numbers

and bypass area per unit depth. The chamber is initially seeded with 0.5% cesium

by number at an initial temperature of 3000 K. The bypass length is Lbypass = 4 m

and is seeded with 0.1% cesium by number. (from Zeineh et al.[34])
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Figure 5.13: PDRIME impulse per cycle at 30 km plot against various Mach numbers

and bypass area per unit depth. The chamber is initially seeded with 0.5% cesium

by number at an initial temperature of 3000 K. The bypass length is Lbypass = 6 m

and is seeded with 0.1% cesium by number. (from Zeineh et al.[34])
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CHAPTER 6

Detonation Stability Phenomena

This chapter was taken with slight modification from the article “Stability of flame-

shock coupling in detonation waves: 1D dynamics”, published in the journal Com-

bustion Science and Technology [68].

6.1 Ignition and Instabilities

Direct initiation of the 1D detonation and the ensuing instabilities are now exam-

ined, in part for fundamental understanding but also to establish a baseline against

which the effects of MHD may be compared in Chapter 7. In this study, a cham-

ber is filled with a stoichiometric mixture of H2 and air (temperature 300 K and

pressure 1 atm), and ignition is achieved by setting a region adjacent to an end-wall

of the simulated shock tube at high pressure (40 atm for most computations) and

temperature (1500 K), as a simulated spark. This direct initiation is preferable to a

deflagration-to detonation transition (DDT), since the latter is much more sensitive

to initial conditions and grid resolution, it requires inclusion of species diffusion, and

it requires a very long computational domain to reproduce both the DDT and the

subsequent evolution of the detonation. Nevertheless, even direct initiation is sen-

sitive to initial conditions and resolution. The requirements to achieve detonation
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ignition with the MP5 scheme include a grid cell size ∆x of less than 50 µm and

a distributed simulated spark region (of length `spark ranging from 0.25 to 0.5 cm)

with sufficiently high pressure. For example, Figure 6.1(a) is an x-t diagram illus-

trating the pressure contours of a spark-ignited mixture with initial pressure 20 atm,

`spark = 0.25 cm, and grid size ∆x = 50 µm, which does not achieve detonation. In

contrast, Figure 6.1(b) illustrates contours of the same mixture and grid resolution

but with a higher spark pressure, 50 atm, and larger region (`spark = 0.5 cm), which

does achieve detonation. The constraints on initial spark conditions can be related

to the concepts of minimum energy and kernel size for direct initiation [69]; similar

studies by Eckett et al.[20] and He & Karagozian[70] indicate there are both pressure

and temperature requirements for the spark. With an understanding of the range of

satisfactory kernel/spark sizes and pressures, we fix the spark conditions to consis-

tently achieve a rapid initiation, in order to remove the dependence of the long-term

dynamics on the initial conditions. For the remainder of the studies in this chapter,

the spark conditions are `spark = 0.25 cm, Pspark = 40 atm, and Tspark = 1500K.

The succesful detonation initiation event proceeds in two phases. First, the gas in

the spark region rapidly burns and increases the pressure, in a nearly constant-volume

combustion process. This high pressure generates a strong shock which propagates

into the unburnt mixture, which itself is ignited after a time delay and rapidly burns,

starting from the region closest to the spark. In a scenario described as the SWACER

mechanism [71], the combustion wave is amplified as it overtakes the leading shock,

and the coalescence of the two fronts leads to extremely high peak pressures for a

very short time. This event is easily identified in the trace of the peak pressure

versus time as shown, for example, in Figure 6.2, and is referred to hereafter as the

“re-explosion” event, the first explosion having taken place within the initial spark
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region. Two different grid sizes are used in Figures 6.2(a) and 6.2(b), ∆x = 12.5

µm and 2.5 µm, respectively, using the MP5 scheme. A more detailed examination

of the dynamics for these two different grid sizes is shown in Figures 6.3 and 6.4, as

will be discussed below.

The high pressure of this re-explosion event initiates another strong shock, which

is followed, after an an induction length (`, measured in the reference frame of

the shock) by the combustion zone. This flame is initially strongly coupled to the

shock (` → 0) and the wave is strongly over-driven, i.e., its speed exceeds that of

the Chapman-Jouget (CJ) detonation. As the degree of overdrive decays and the

detonation approaches the CJ limit, instabilities begin to appear, as shown in Figure

6.2(a) after about 35 µs and in Figure 6.2(b) after about 25 µs.

These spark-ignited detonation simulations demonstrate the appearance of differ-

ent instability modes. For both sets of results in Figure 6.2, instabilities appear when

the detonation becomes close to the CJ condition, starting with a small-amplitude,

but high-frequency mode – hereafter referred to as the ‘HF’ mode. For the low-

resolution case in Figure 6.2(a), the transition to the high-frequency (HF) mode

occurs at a time of the order of 30− 35µs; this instability regime is shown in detail

in Figure 6.3(a). For the high-resolution case, Figure 6.2(b), the transition occurs

earlier, close to 25µs; this regime is shown in detail in Figure 6.3(b) for roughly

the same time period as in Figure 6.3(a). For both grid sizes, we observe that at

around 45 µs, there is a transition towards a lower frequency but high-amplitude

mode – referred to here as the ‘HA’ mode. This transition is more gradual in the

high-resolution case, with both modes coexisting during a period of time (between

approximately 44 and 48 µs), as shown in more detail in Figure 6.4(b). In the

low-resolution case of Figure 6.4(a), however, the behavior is less gradual and more
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chaotic. The contrast between these two profiles is striking; while a periodic signal

can still be detected in Figure 6.4(a), the characteristics and frequencies are both

very different. Besides the smoothness of the temporal waveforms of the high am-

plitude instabilities, we also note that a period-doubling in the high resolution case,

i.e., the HA signal has a dual oscillation (high-low pressures) which is not apparent

at lower resolution1. We note also that there are other manifest differences in the

specific dynamical features of these instabilities, e.g., in the appearance of noise in

the waveform after the re-explosion event (Figure 6.2(a)), which is eliminated for the

higher resolution case in Figure 6.2(b). Thus, it is clear that there can be significant

effects of the grid resolution on the dynamics of the instabilities. Furthermore, the

appearance of sharp features in the traces also suggests that special care must be

exercised in avoiding numerical procedures which can arbitrarily sharpen gradients,

as mentioned earlier.

There is no obvious “very high frequency” mode that arises after the re-explosion

event and before the initiation of the high frequency mode, as seen by Leung et

al.[17], in the well-resolved result in Figure 6.2(b). But if one explores in detail

the time regime after the re-explosion event, for grid sizes ∆x of 2.5 µm and even

smaller, as shown in Figure 6.5, one does observe relatively low amplitude and very

high frequency oscillations, with frequencies and amplitudes dependent on the grid

resolution. To examine the origin of these low amplitude oscillations, the variation in

induction length as a function of time, determined from peaks in the concentration

of H atoms, may be explored for these different resolutions. A plot of induction

length as a function of time is shown in Figure 6.6(a), with an expanded view in

Figure 6.6(b) corresponding to the same time period as shown in Figure 6.5. The
1This was verified for longer time periods than shown; for clarity purposes, the extent of the

simulation results shown in the figures has been truncated.
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results in Figure 6.6 indicate that the amplitude of oscillations in induction length

corresponds to the grid size ∆x, and moreover, the frequency of oscillation correponds

to the ratio of the CFL number here (0.4) to the sampling period (1 nanosecond).

Thus it appears that the very high frequency (and very low amplitude) oscillations

seen using complex kinetics merely correspond to numerical uncertainties associated

with the location of the peak pressure or peak in atomic hydrogen (mole fraction).

Because the re-explosion event is clearly identifiable, we can use this feature to

conduct a more detailed study of the effect of grid resolution. For example, one can

examine the variation of the measured time delay to this second explosion event,

texp, for the specific initial spark conditions noted previously. Here the uniform grid

spacing ∆x is varied from 0.5 µm to 20 µm. Figure 6.7 illustrates how the time to

re-explosion for the MP5, AW5, and MW5 schemes varies with the grid resolution.

Since the AW5 & MW5 schemes are more diffusive than MP5, it is not surprising

that the AW5 & MW5 curves exhibit a shallower profile. The most striking feature

here is the non-monotonic behavior, i.e. the presence of a maximum in the time to

explosion, which delineates two regimes. The peak in texp for MP5 in Figure 6.7

occurs at approximately ∆x = 7 µm, whereas the critical ∆x value is slightly

lower, at approximately 5.5 µm, for AW5, and event lowere for MW5 at ∆x ≈ 4µm.

For grid resolutions ∆x below the critical value, the numerical simulation is in a

“convectively” dominant regime, where the combination of the numerical scheme

and fine grid resolution is sufficient to effectively mitigate the effects of numerical

diffusion in the detonation formation. AW5 & MW5 produce similar values of texp

for ∆x < 3 µm, but for this complex kinetics scheme, time convergence for texp

may not be reached except for ∆x < 0.5 µm, consistent with findings by Powers

& Paolucci[72]. In the case of AW5, grid convergence is observed at ∆x ≈ 0.5µm.
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For grid resolutions greater than the critical value of ∆x in Figure 6.7, we enter the

numerically dissipative regime, where coupling of the fluid mechanics and kinetics

is enhanced due to numerical diffusion of temperature and chemical concentrations.

The value of texp thus decreases with increasing ∆x in this numerically dissipative

regime.

To obtain results that are truly insensitive to the numerical effects, one requires

∆x→ 0, since the two methods converge in that limit to a single value for texp, but

of course this is a practical impossibility. The results in Figure 6.7 suggest that,

to be able to reasonably resolve detonation propagation and shock-flame coupling

dynamics, a grid spacing of ∆x = 2.5 µm or smaller may produce acceptable ac-

curacy, given less than a 5% difference between the two different schemes. Yet the

time to re-explosion is but one parameter that is affected by grid resolution, and

calculations of the shock-flame instabilities at smaller grid spacings are needed to be

able to explore other quantitative features.

A simple fast Fourier transform (FFT) can be used to find the spectral content

of the two instability modes, HF and HA, which are observed in Figures 6.2 - 6.4.

Figure 6.8 shows FFT results for the MP5 scheme and grid sizes ∆x = 2.5, 1.5, and

1.0 µm. There is remarkable consistency in the dominant frequencies here; for both

HA instabilities near a frequency of approximately 0.35 MHz and HF instabilities

near 2.3 MHz, there is relatively little difference in results for ∆x ≤ 2.5µm. This

observation suggests that the spectral content of the resulting instability is relatively

insensitive to the grid spacing, as long as ∆x lies below the critical value for the

start of numerical diffusion. At high frequencies, above 4 MHz, there is some grid

dependency; in fact, frequencies above 4 MHz are not seen for ∆x = 1.5 µm. The

spectral content around 4.5 MHz is likely to be a harmonic of the strong 2.3 MHz
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signal. Note that since the instabilities develop for a finite time only, the sampling

statistics of the FFT are limited. The use of a wavelet decomposition did not provide

improvements in the signal-to-noise ratio.

These results confirm earlier complex kinetics findings [16] which indicate that

a detonation near the CJ limit has two physically distinct instability modes. The

high frequency mode always appears first and marks the transition from a ‘stable’

CJ detonation, where a low frequency mode appears later in time. The overdriven

detonation simulations by Leung et al.[17] with a two-step reaction mechanism also

demonstrate multiple instability modes, but with distinct differences from those seen

here, as noted above.

Our observed fluctuations in key properties (e.g., in species concentration, tem-

perature, and pressure) of the fluid within the induction zone are described by Oran

& Boris[73] as ‘hot spots’. The present study with complex reaction kinetics shows

that these ‘hot spots’ contribute to an initial stage of the flame dynamics. In this

regime, the induction length is very small (` << `CJ), and acoustic waves gener-

ated by the perturbed chemistry are rapidly transmitted to the shock, i.e. leading

to high-frequency modes. Because there is a very limited amount of fluid that can

participate in the fluctuation of the heat release, only low-amplitude perturbations

of the CJ peak pressure appear. As these acoustic waves reach the leading shock and

strengthen it, their frequency can be measured as that of the fluctuations of the peak

pressure. Eventually the average induction length continues to increase and the sec-

ond mode appears, which directly couples the flame speed with the shock, resulting

in fluctuations with lower frequency but much higher amplitude. This interpretation

of our observations will be elaborated upon and verified in the next section.
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6.2 Simplified Model

To better understand and interpret the coupling between reactive and fluid me-

chanical/acoustic phenomena that generates our observed results, a model for the

induction zone may be constructed and explored. This model is composed of a lead-

ing shock, a heated, post-shock medium(fluid), and a flame front, all of which are

illustrated in Figure 6.9. A single period of the detonation oscillation can be de-

scribed, in the reference frame of the shock, in a manner similar to that of McVey &

Toong[74], as follows. Fluctuations at the flame front create an acoustic (pressure)

disturbance, which travels at the acoustic wave speed, λac, through the induction

zone until it reaches the leading shock; this process occurs between reference times

ta and tb. Upon contact, the pressure fluctuation carried by the acoustic wave will

accelerate the shock and alter the post-shock conditions, thus creating an entropy

disturbance (temperature fluctuation). This entropy disturbance will propagate back

into the induction zone at the entropy wave speed, λen, toward the flame front, this

process occuring between times tb and tc. A resonant condition is achieved when,

upon contact with the flame, the entropy wave creates a new acoustic disturbance

in the flame, and the cycle repeats. Figure 6.9 illustrates this phenomenon, with

relations for the entropy and acoustic wave speeds as follows, respectively:

λen(x, t) =
dx

dt

∣∣∣∣
en

= u2(x, t) (6.1)

λac(x, t) =
dx

dt

∣∣∣∣
ac

= c(x, t)− u2(x, t) (6.2)

Here u(x, t) is the fluid velocity, c(x, t) is local speed of sound, D(t) is the detona-

tion velocity, and u2(x, t) = |u(x, t) − D(t)| is the post-shock fluid velocity in the
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detonation reference frame. From these wave speeds the period of the cycle, τ , may

be expressed by

τ =

∣∣∣∣∣

∫ xs

xf

1

λac(x, t)
dx

∣∣∣∣∣+

∣∣∣∣
∫ xf

xs

1

λen(x, t)
dx

∣∣∣∣ (6.3)

where xs = (t − t0) · D(t) is the position of the shock and xf is the position of the

flame.

At a zeroth-order approximation, the fluid properties in the induction region,

Q2(x, t), are assumed to weakly vary with time for a given half cycle, ∂Q2(x,t)
∂t

' 0 &

∂Q2(x,t)
∂x

' 0. This also implies that the relative positions of the flame and shock front

are approximately constant. From this approximation, the period can be determined

τ =
¯̀

cab + uab − D̄ab

+
¯̀

ubc − D̄bc

(6.4)

where ¯̀ is the period-averaged induction length, ab is the fluid state at the acoustic

wave half-cycle, bc is the fluid state during the entropy wave half cycle, and uα, cα,

and D̄α are the the fluid speed in the detonation reference frame, speed of sound,

and average detonation speed, respectively, for half-cycle α. The model for acoustic

and entropy half cycles are illustrated in Figure 6.10, corresponding to observed

oscillations as indicated in the inset. From the period of the combined cycles, the

frequency in oscillations of the peak pressure trace is f = τ−1.

Data may be extracted from the full kinetics results at different peak pressure

cycles from the high frequency as well as high amplitude regime, and compared

with the simplified model expressed in Equation 6.4. Figure 6.12 illustrates the

evolution of the induction zone temperature profile in the detonation reference frame

for a given period of the high amplitude mode, with data for the acoustic wave
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propagation in (a) and for the entropy wave in (b). The density distributions for

the corresponding HA mode are shown in Figure 6.14. Using the induction zone

data and the period from Eq. (6.4), the frequency f ≈ 310 kHz may estimated for

the HA mode, which is in excellent agreement with that obtained from the spectral

analysis using the full simulation, 310 ± 40 kHz, shown in Figure 6.8. Performing

the same analysis on the high frequency (HF) mode, illustrated in the temperature

profiles in Figure 6.11 and the density profiles in Figure 6.13, the frequency f ≈
2.08 MHz may estimated, which is also in good agreement with that extracted

from the spectral analysis (2.29± 0.4 Mhz) in Figure 6.8. Hence this simple model

appears to capture reasonably well the global processes that lead to the high- and

low-frequency detonation instability modes.

We should point out that this simple model has been succesfully applied to an-

other case of shock-induced instability. For strong, ionizing shocks in a noble gas

(specifically, argon), a similar structure of shock, induction zone and reaction front

can be observed [75, 76, 77]. The instability in this case has lower amplitudes, due to

the absence of exo-thermic reactions, but is also well explained by a resonant coupling

between the shock front and reaction zone through the transmission and reflection of

entropy and acoustic waves [75]. In fact, the 2D structure of that flow could be found

to have features remarkably similar to detonations including, for example, artifical

soot patterns [77]. This indicates that the model, despite its simplicity, provides a

good insight into the true physical mechanisms involved and may have relevance to

a universal class of instabilities in reactive shock systems.
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6.3 Discussion

The ‘hot spot’ which appears in the high frequency mode temperature profiles (Figure

6.11) is of particular interest in interpreting the differences between modes. This hot

spot burns only a fraction of the overall mixture and the heat release is not sufficient

to significantly alter the characteristic speeds of the flow (especially since the speed

of sound only varies with the square-root of the temperature). Examination of the

temperature profiles in Figure 6.11, in particular panel (a), shows that the reaction

zone fluctuates from a ‘hot-spot’ position without significant change in location; if

at all, the perturbed region of accelerated burning is actually convected downstream.

This pre-ignition effect does not allow the flame to accelerate, and in the case of

the high frequency mode, the detonation is still slightly overdriven. The resonance

between the perturbation of the chemical rates at the hot spot and the shock front

still remains, though, and is the basis for the observed oscillation pattern, as indicated

by the agreement between computed and measured frequencies.

By contrast in the high amplitude mode’s temperature profiles, seen in Figure

6.12, there is no observed ‘hot spot’. More likely, the perturbation has moved to the

flame region and any acceleration of the chemical rates in that region can enhance

the rate of heat release much more significantly. This allows what is presumably a

SWACER-like [71] mechanism to govern this high amplitude regime, starting from

a flame at the furthest distance from the shock, ¯̀
max, and accelerating towards the

shock as it burns the fluid in the induction zone, releasing large amounts of energy

up to the point of contact with the shock. This can be seen in Figure 6.12(a), where

the temperature profiles for the HA mode clearly exhibit a dramatic reduction of the

distance between the shock and flame fronts in time. Thus, the HA mode is very
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much a SWACER-like mechanism, while the HF mode is not. This large change in

shock-flame distance is not seen in the two-step model results of Leung et al.[17],

thus highlighting another important feature of the true kinetics.

From the density profiles illustrated in Figures 6.13 and 6.14, it becomes quite

apparent, even in the high-frequency regime, that there is a large variation of density

within the induction zone throughout a given cycle. Neither single-step Arrhenius

kinetics [12, 13, 14, 15] nor a two-step reaction model [17] account for these large

density variations; their ZND approximation is only valid for a brief portion of the

cycle in the HA regime. Therefore, more complex reaction kinetics than have been

incorporated in the past should be utilized to capture the full quantitative features of

the evolving detonation instabilities. The simple two-wave resonant model explored

in Section 6.2 also depends on approximately constant flow properties within the in-

duction zone, and thus the same limitations apply to this model, except that we have

separated the cycle into two sections, each with different average flow properties and

induction lengths. Hence a reasonable representation of global dynamical character

is achieved with the simple model.

As the detonation relaxes toward the CJ condition prior to the onset of the

instabilities, the post shock conditions can be used to determine the chemical time

scale corresponding to the induction zone. For the present simulations this time scale

is approximately τhydr = 300±10ns. Using the same post shock conditions in a zero-

dimensional reactive simulation produces time scale τchem = 215± 5ns. This level of

disparity is to be expected, because the zero-dimensional calculations are performed

at constant volume, and as the system approaches the peak of the H concentration

(the criterion used to define the flame center), the energy liberated remains confined

and leads to a more rapid rate of reaction. Using the τhydr value as a normalization
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factor, the two modes observed in the present simulations, HF and HA, correspond

to normalized periods of 1.6 and 10.75, respectively. This is within the range of

instabilities observed by Leung et al.[17]; a more exact correspondence is difficult to

obtain, since several parameters are being varied in their two-step model, with no

direct relation to the actual chemical system. As noted in Section 6.1, in the present

studies we do not observe the so-called “very-high frequency” mode seen by Leung et

al.[17], except for very low amplitude oscillations that are shown to be a numerical

artifact. In fact, a physical instability at very high frequency would correspond to an

oscillation period that is less than the induction delay, implying that the “hot spot”

be located very close to the shock. In that case, the extent of this perturbation (i.e.,

the reaction time) would need to be much smaller than the induction period. With

realistic chemistry, this may not be possible. Thus, it is conjectured here that the

very high frequency mode may be an artifice of the two-step model.
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(b) Pspark = 40 atm with 0.25 cm spark length where detonation is achieved

Figure 6.1: Pressure contours on an x-t diagram for a spark ignited H2-Air mixture

with ∆x = 50µm, computed using the MP5 scheme.
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Figure 6.2: Peak pressure-time history of a spark-ignited H2-air mixture simulated 
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texp, high amplit ude mode, HA, and high frequency mode, HF, are illustrated. 
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Figure 6.3: High frequency port ion of peak pressure t ime history as in Fig. 6.2, 

simulated with two different grid cell sizes f::.x. 

136 

E-161 



60 

55 

50 
y 
1:3 45 

<!) 
..... 40 
;:1 
{/) 35 {/) 
<!) 
..... 

0... 30 

2045 50 55 60 65 70 

time [J.ts] 

(a) t.x = 12.5 f.J-m 

60 

55 

50 
y 
1:3 45 

<!) 
..... 40 
;:1 
{/) 
{/) 
<!) 
..... 

0... 

25 

2045 50 55 60 65 70 

time [J.ts] 

(b) t.x = 2.5 f.J-m 

Figure 6.4: High amplit ude port ion of peak pressure t ime history as in Fig. 6.2, 

simulated with two different grid cell sizes f::.x . 
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CHAPTER 7

Magnetic Field and Detonation Interactions

In evaluating the feasibility of the PDRIME configurations we must examine how a

magnetic field will interact with a conducting, reacting flow such as the detonation

as well as the amount of conductivity required in the fluid for sufficient interaction

of the magnetic field and detonation. In Chapter 5, various PDRIME configurations

have been evaluated using simplified combustion kinetics and the exploration of the

effect of MHD to accelerate the reactive flow in the bypass section or magnetic

chamber piston concept(CP) or decelerate the flow in the nozzle via nozzle generator

concept(NG). In these prior calculations, the ability of MHD to affect combustion

was modeled globally, but not in detail. The goal of the studies in this chapter is

to determine if such MHD-based acceleration/deceleration is possible for detonation

phenomena.

7.1 Detonation Instabilities with Applied Magnetic Fields

In Section 6.1, the stability of an unsupported detonation was evaluated. For the

next simulations, we began with the same initial conditions used in the previous

chapter and seeded the fluid with different amounts of cesium (1%, 5%, and 10% by

mole). Because of the large molecular weight of cesium (MCs

MH2
≈ 70, MCs

MAir
≈ 5), adding
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upwards of 10% Cs can significantly affect the dynamics of the detonation (e.g.,

CJ detonation speed DCJ , flame temperature Tf , post-leading shock pressure and

temperature P vN ,T vN , etc.) even without the presence of an applied magnetic field.

Figure 7.1 illustrates the peak pressure traces of unmagnetized spark-ignited H2−air

detonations with the addition of 0, 1, 5, & 10 % Cs. A grid resolution of 5µm and the

MP5 scheme were used to perform the 1D detonation simulations in the remainder

of this section. Figure 7.1(a), in the absence of Cs addition, shows the initiation

of HF and HA instability modes, as observed in Figures 6.2(a) & (b) for different

grid cell sizes. With a grid resolution of 5 µm it is possible to capture the essential

dynamics of the detonation, within the “convection” dominated regime (see Figure

6.7), although parameters such as time to re-explosion may not be as accurately

determined. Nevertheless, 5 µm resolution is sufficient to enable computation of

additional ionization processes of Cs and their effect on instabilities.

From Figure 7.1 (a)-(d), one will notice the oscillations become less erratic and, at

5% and 10% molar addition, approaching consistent HA behavior, as more cesium is

added. Extinction, where the peak pressure decays, is significantly delayed for higher

Cs concentrations. This trend is consistent with the observations of Radulescu et

al.[19] where argon was incrementally added to acetylene-oxygen mixture to stabilize

the detonation. Heavy argon dilution in the mixture led to large-frequency, small

amplitude regular oscillations of the shock front pressure. Radulescu et al. attributed

the stabilizing effect of the diluent to the lower temperature in the reaction zone which

leads to slower exothermic reaction rates. For the present calculations, regularization

of both the HF and HA modes with Cs addition could result from the lowering of

the reaction front temperature. The addition of Cs is also observed to reduce the

effective 1D detonation speed, as also determined by the theoretical reduction in the
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CJ speed (see Table 7.1). The results shown in Figure 7.1 will serve as the “baseline”

case for the 1D dynamics as affected by an applied magnetic field.

Now that the “baseline” behavior has been established for cesium-seeded det-

onations, let us now examine how the behavior of these instabilities change when

one gradually increases the strength of an applied magnetic field. A fixed magnetic

field is used, per Equation 2.17, with a loading factor, K = 0 (no applied electric

field). The magnetic field configuration is illustrated in Figure 7.2 where a transverse

magnetic field will be applied with strengths ranging from 0 to 8 Tesla. A spark-

ignited detonation will propagate into the region of this magnetic field, as shown.

Figures 7.3, 7.4, and 7.5 show the peak pressure traces of detonations seeded with

1%, 5%, and 10% Cs, respectively, under the influence of various applied magnetic

field strengths. Without an applied magnetic field, the peak pressure trace of a det-

onation with a 1% Cs has an irregular periodicity (Figures 7.1(b) & 7.3(a)). As the

magnetic field is strengthened (see Figures 7.3(b)-(f)) the detonation peak pressure

trace shows more prolonged erratic behavior, with no clear trend in the time at which

extinction (pressure decay) takes place. But Figure 7.4 shows that as the magnetic

field strength is increased, the oscillations of the peak pressure trace are driven to

become less regular at earlier times and extinguish sooner. Similarly findings are

observed in Figure 7.5. There are a few qualitative assessments that can be made

from these results. Figures 7.3(a), 7.4(d), & 7.5(e) illustrate peak pressure traces

of detonations seeded with 1%, 5%, and 10% cesium under applied field strengths

of Bz = 0, 6, and 7 Tesla, respectively. These peak pressure traces demonstrate a

general trend. It would appear as though the stabilizing effect of the presence of

diluent, cesium, becomes less effective when the fluid at the flame has a greater con-

ductivity and thus introduces an additional scale to the flame-shock dynamics. One

149

E-174



could attempt to find the modes that exist within the peak pressure trace to give

some quantitative insight into the effects of these fields, but the data would prove

unreliable due to the small time frame during which these large oscillations exist.

The fact that the application of the magnetic field can degrade the cyclic stability

of the 1D detonation at earlier times does indicate the ability of the B field to alter

the flame-detonation coupling as well as the combustion process itself.

7.2 Detonation Instabilities with MHD

The behavior of a detonation with an applied field using the MHD accelerator con-

figuration will now be investigated. The study will begin with a fixed magnetic field,

Equation 2.17, and the loading factors recommended by Cambier[4], Ky = 1.5 and

0.5 (i.e., the electric field scaled with ux × Bz), for the accelerator and generator,

respectively. The remainder of the current detonation configuration is as specified in

Section 7.1.

The previous section demonstrated that the H2-air, 1D spark-induced detonation

under investigation is unstable under normal operating conditions with or without an

applied magnetic field. Figures 7.6-7.8 show the peak pressure traces of detonation

seeded with 1%, 5%, and 10% Cs, respectively, with an electric field in the acceler-

ator configuration (Ky = 1.5) under the influence of various applied magnetic field

strengths. In the 1% Cs test case, it becomes quite clear, when comparing Figures

7.6(b)-(f) with the unmagnetized case of Figure 7.6(a) that the MHD acceleration

has the ability to regularize and sustain the oscillating detonation; the detonation

does not extinguish, for the time period shown, as it does in Figure 7.6(a). When

the amount of cesium is increased to 5%, as the magnetic field is increased as shown
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in Figures 7.7(a)-(f) the detonation is cyclically stabilized and the peak pressure

amplitude greatly reduced, by around 30%. When the amount of cesium is increased

to 10%, as the magnetic field is increased from Bz = 0T , Figure 7.8(a), to Bz = 8T ,

Figure 7.8(f), the detonation goes from a cyclically stable galloping detonation to a

nearly stable CJ detonation, with a slightly delayed onset of the initial instabilities.

Because of the strong effect the magnetic field had on the detonation stability

and sustainment, in both the accelerator and generator configurations, we now ex-

amine these features side-by-side. Figures 7.9(a)(c)(e) illustrate the time dependent

peak pressure, induction length, and detonation velocity, respectively, for a 10 % Cs

in the accelerator configuration with applied magnetic field strengths of 0, 3, and 8

T. Figures 7.9(b)(d)(f) show the same thing for the generator configuration. Fig-

ure 7.9(a) & (c) show a significant decrease in amplitude of the peak pressure and

induction length, respectively, as the magnetic field strength is increased for an accel-

erator, while figure 7.9(e) shows the detonation speed stabilizes near but above the

Chapman-Jouguet velocity, with little propensity for extinction. In contrast, Figures

7.9(b) & (f) for the generator configuration show that peak pressure and detonation

speed become erratic, with increasing magnetic field strength, and Figure 7.9(d)

shows that the induction length oscillations becomes unbounded, leading to extinc-

tion for the 8 Tesla case. This contrast is quite striking, especially in the generator’s

influence on extinguishing the detonation. There appears to be some acceleration of

the detonation, to a speed greater than CJ for the accelerator configuration (Figure

7.9(e), 8T), but overall there is no significant difference in the detonation velocities

between accelerator and generator configurations.
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7.3 2D Cellular Detonation in an Applied Magnetic Field

While the effects of MHD on the stability of the 1D detonation are interesting, the

more realistic flow is that of a two-dimensional detonation structure. Before the

effects of an applied magnetic field on a two-dimensional detonation are examined,

however, one must first examine the effects of seeding cesium on the evolving cellular

detonation. The detonation front as well as the underlying detonation structure may

be found in the contours of the maximum pressure, Pmax, at each point in space.

These maximum pressure traces have been observed in experiments over decades in

smoke-foil records[78]. The unmagnetized 2D detonation with various amounts of

cesium will be examined first.

The 2D detonation initiated with a computational spark is illustrated in Figure

7.10. A grid resolution of ∆x = ∆y = 50µm and the MW5 scheme are used to

perform the 2D detonation simulations in the remainder of this chapter; much finer

grid resolution becomes prohibitively expensive, yet this is found to be sufficient for

the study of the overall detonation structure. Figure 7.11 shows that evolution of

an H2-air detonation front (Schlieren-like plot and smoke-foil record) without the

presence of an applied magnetic field and without Cs injection. From the series of

figures, the Mach stem, transverse shocks, and incidents shocks are well resolved.

Figure 7.12 shows the detonation front and smoke-foil record after 75µs of the same

detonation. At this resolution, it can be clearly seen in the smoke-foil record, Figure

7.12(b), that cellular detonation is achieved, and is consistent with the established

literature for cellular detonations[78, 79, 80, 81]. The simulated detonation cellular

length and width for this configuration are λL = 2.7±0.1mm and λW = 1.67±0.1mm,

respectively. It can also be demonstrated that an unmagnetized H2-air-Cs mixture
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seeded with cesium ranging from 1-10% can achieve the same cellular detonation and

detonation front resolution, shown in Figures 7.13 -7.15. The decreased detonation

velocity as cesium is increased from 1% to 10% is consistent with the 1D simulations

as well as the theoretical CJ velocity, which are tabulated in Table 7.1.

In the previous sections, 7.1 and 7.2, we demonstrated that an applied field can

alter the cyclic stability of a 1D detonation. Now we will investigate if an applied

field can affect the regularity or velocity of a 2D cellular detonation. Due to the large

spatial variation of the longitudinal velocity, ux, the static electric field should no

longer be optimally tailored to ux and Bz. In order to more accurately account for

the static electric fields contribution to the MHD forces, while still keeping the load-

ing factor concept for the accelerator and generator configurations, the static electric

field is prescribed as Ey = KyUBz, where U is the mean velocity, and will not evolve

with the flow. The optimal condition U ≈ 1000m/s is assumed. As performed

with the one-dimensional test cases, 2D detonations in the both the accelerator and

generator configurations were computed with varying amounts of cesium(1, 5, and

10%) using the highest magnetic field strength used previously in the 1D detona-

tion simulations, Bz = 8T . From the X-t plots of the centerline of the 2D shock

front, illustrated in Figures 7.16-7.18, there is no noticeable/significant altering of

the detonation velocity in either generator or accelerator modes, as compared with

the detonation in the absence of MHD. The peak pressure evolution in Figures 7.19-

7.21 similarly do not show any noticeable change in the cyclic stability of these

detonations. The differences in the two configurations can be seen in the centerline

pressure and conductivity profiles, where the 10 % Cs and Bz = 8T case at t = 75µs

case is illustrated in Figure 7.22. These differences in the profiles are seen further

downstream, however, and do not play a role in the detonation dynamics. Hence even
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at a very high magnetic field strength, 8T, and for 10% Cs, there does not appear

to be a significant influence of the MHD on detonation dynamics. In an attempt to

see if the two-dimensional detonation can be altered by MHD in some meaningful

way, but under different conditions, two alternative approaches were taken. The first

was to artificially enhance the kinetics of the cesium, (the original formulation of

which is described in Appendix A). The second approach drastically increased the

strengths of the applied magnetic and electric fields. For both cases, 10 % Cs was

seeded because it allowed for more optimal levels of ionization as compared to 1 and

5% Cs addition.

7.3.1 Enhanced Kinetics

In the enhanced kinetics approach, the Arrhenius pre-factor of the cesium forward

reaction mechanisms, A, was increased by factors of 10 and 100, respectively. Con-

ductivity and Schlieren-type plots are shown in Figures 7.23 and 7.24 for the gener-

ator and accelerator configurations, respectively. One can see a significant increase

in conductivity of the detonation close to the leading shock for both the accelera-

tor and generator configurations, with an increase in the “enhanced kinetic factor”,

EK, where the modified Arrhenius pre-factor in Equation 2.24 is A′ = EK × A.

Slight deceleration and acceleration of the detonation front is observed, respectively,

in Figures 7.23 & 7.24. The centerline peak pressure traces for the accelerator config-

uration, illustrated in Figure 7.25, show that as the EK is increased, the amplitude

of the peak pressure decreases. In contrast, the centerline peak pressure traces for

the generator configuration, illustrated in Figure 7.26, show that as EK is increased

the amplitude of the peak pressure increases. These results are consistent with the
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1D results from Section 7.2 for the accelerator and generator configurations, in that

when there is sufficient conductivity, with a larger concentration of Cs for the 1D

detonation, the applied magnetic and electric fields affect the amplitude of the peak

pressure. But even with the large increase in conductivity shown in Figures 7.23 and

7.24 for EK = 100, the X-t diagram of the unmagnetized, accelerator, and gener-

ator configurations, illustrated in Figure 7.27, shows only a small alteration of the

detonation velocity: +30m/s (increase) and −20m/s (decrease) for the accelerator

and generator configurations, respectively.

7.3.2 Strong Applied Fields

Next, we subjected the 2D detonation to significantly stronger magnetic fields (16T

and 32 T) without enhancing the cesium kinetics.1 Figures 7.28 and 7.29 show

the centerline peak pressure traces for Bz = 8, 16, and 32 T in the accelerator and

generator configurations, respectively. Even when the 2D detonation in the generator

configuration is subjected to a strong field, the peak pressure amplitude, shown in

Figure 7.29, is slightly increased. The X-t plot for the generator configuration,

illustrated in Figure 7.30, shows only a marginal decrease in the detonation velocity.

By comparing the profiles of the x-velocity, conductivity, pressure, and temperature

for the generator, illustrated in Figures 7.31 - 7.34, respectively, one will see that the

MHD effects are manifested significantly far downstream of (>> λW ) the leading

shock.

The accelerator configuration with a strong field, on the other hand, has a more

significant effect on the 2D detonation dynamics. From Figure 7.28 one can see

a transition, from Bz = 8T where the amplitude and frequency of oscillations are
1Unrealistic but only interested in scaling and dynamics
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regular, to Bz = 16T where the amplitude begins to noticeably decrease at t ≈ 50µs,

and finally to Bz = 32T where at t = 40µs there is a significant decrease in amplitude

and an increase in the mean peak pressure. Because of the significant change in

the oscillation frequency, amplitude and mean of the centerline peak pressure, the

associated smoke-foil record, illustrated in Figures 7.35 - 7.38, for field strengths

Bz = 0, 8T, 16T and 32T, respectively, can be used to see the alteration of the

underlying structure of the cellular detonation. In Figure 7.36, we see that for the

Bz = 8T case, cellular structure pattern remains regular, and from Figure 7.37 for the

Bz = 16T case, the cellular patterns become irregular at x ≈ 9.5cm. The detonation

case where Bz = 32T (Figure 7.38) shows that there is a transition from a cellular

structure to quasi-1D detonation at x ≈ 7.2cm. The X-t plot for the accelerator

configuration, illustrated in Figure 7.39, shows marginal increases in the detonation

velocity of +5m/s for the Bz = 16, but there is an increase of 338m/s for Bz = 32T ,

a 21% increase above the non-MHD case.

7.4 Conclusions

In this chapter, we examined the effects of a diluent (cesium) on the dynamics of a

1D spark-ignited detonation and confirmed the observation of Radulescu et al.[19]

that the diluent had a regularizing effect on the oscillations of the 1D detonation.

We also studied a cesium-seeded 1D spark-ignited detonation subjected to an ap-

plied magnetic field in both a accelerator and generator configurations and found

that the accelerator mode had a regularizing effect on the detonation oscillations,

while the generator mode had the opposite effect (see Figure 7.9). While it was

demonstrated that the dynamics of a cesium-seeded 1D spark-ignited detonation can
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be significantly altered when subjected to an applied magnetic field of reasonable

strength (Bz ≤ 8T ), the same statement does not hold true for the two-dimensional

case. When the enhanced kinetics factor EK for a cesium-seeded 2D spark-ignited

detonation was increased (EK = 1, 10, 100), the conductivity behind the leading

shock was significantly increased (see Figures 7.23 and 7.24), but there was no alter-

ation to the detonation velocity (see Figures 7.30 and 7.31). The 2D spark-ignited

detonation required a significantly stronger magnetic field (32T ) than the 1D deto-

nation to accelerate the detonation in the time (75µs) and length (15cm) scales of

the problem (see Figure 7.39). These findings suggest that multidimensional effects

play an important role in MHD acceleration. Perhaps a set of reactants/diluent with

an increased flame temperature, for increased conductivity, and a lower density, for

less inertia, would be more amenable for MHD acceleration.
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Theoretical
%Cs CJ [m/s] 1-D [m/s] 2-D [m/s]

0 1967 1998 1938

1 1917 1950 1883

5 1754 1763 1714

10 1584 1600 1551

Table 7.1: The effects of the addition of Cesium on the detonation velocity of a

1D and 2D H2 −Air detonation. The theoretical Chapman-Jouguet(CJ) velocity is

calculated with the initial conditions: P0 = 1 atm and T0 = 300K.

158

E-183



eo 

50 

s-<0 
Jt 
; 
~ 30 

p.. 

20 

10 20 eo so 100 
10 

20 eo ~ 100 
time fp.sJ time fp.sJ 

(a)% Cs = 0 (b)% Cs = 1 

v v 
20 20 

10 20 eo so 100 120 MO 10 20 eo ~ 100 120 140 
time fp.sJ time fp.sJ 

(c)% Cs = 5 (d) % Cs = 10 

Figure 7.1: Peak pressure traces of spark-ignited Hz-air detonat ions with different 

amounts of seeded cesium without an applied magnetic field (B = 0). The MPS 

scheme with f::.x = Sp,m was used here. 
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Figure 7.2: Configuration of spark-ignited detonation with an applied magnetic field. 
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Figure 7.3: Peak pressure t races of detonat ions seeded with 1% cesium subjected to 

various magnetic field strengths Bz without an applied electric field (K = 0). The 

MP5 scheme with !:1x = 5p,m was used here. 
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Figure 7.4: Peak pressure t races of detonat ions seeded with 5% cesium subjected to 

various magnetic field strengths, Bz wit hout an applied elect ric field (K = 0) . The 

MP5 scheme with !:1x = 5p,m was used here. 
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Figure 7.5: Peak pressure traces of detonations seeded with 10% cesium subjected 

to various magnet ic field strengths Bz without an applied electric field (K = 0). The 

MP5 scheme with !:1x = 5p,m was used here. 
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Figure 7.6: Peak pressure t races of detonat ions seeded with 1% cesium subjected to 

various magnet ic field strengths Bz with an applied electric field (Ky = 1.5), for an 

"accelerator" configuration. The MPS scheme with !::1x = SJ.Lm was used here. 

164 

E-189 



50 50 

20 20 

10 20 eo so 100 120 HO 10 20 eo 9'J 100 120 140 

time fp.sJ time fp.sJ 

(a) Bz = fYI' 

50 50 

IV 

20 20 

10 20 eo so 100 120 HO 10 20 eo 9'J 100 120 140 
time fp.sJ time fp.sJ 

(c) Bz = 5T 

50 50 

20 20 

10 20 eo so 100 120 HO 10 20 eo 9'J 100 120 140 
time fp.sJ time fp.sJ 

(e) Bz = 7T (f) Bz = 8T 

Figure 7.7: Peak pressure t races of detonat ions seeded with 5% cesium subjected to 

various magnet ic field strengths Bz with an applied electric field (Ky = 1.5), for an 

"accelerator" configuration. The MP5 scheme with !::1x = 5J.Lm was used here. 
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Figure 7.8: Peak pressure traces of detonations seeded with 10% cesium subjected 

to various magnetic field strengths Bz with an applied electric field (Ky = 1.5) , for 

an "accelerator" configuration. The MP5 scheme wit h b:.x = 5J.1m was used here. 
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Figure 7.10: Computational setup for 2D det onation simulations, where the red 

region represents the computational spark. 
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Figure 7.11: Schlieren-type plot using density gradients of the detonation front from

time 71.16µs to 72.36µs.
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Figure 7.12: Stoichiometric H2−Air detonation at t = 75µs where ∆x = ∆y = 50µm

and x : y ∈ [12, 15]cm : [0, 0.5]cm.
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(a) Conductivity distribution with a linear color map overlaid on Schlieren-type plot using density

gradients of the detonation front
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Figure 7.13: Stoichiometric H2 − Air − 1%Cs detonation at t = 75µs where

∆x = ∆y = 50µm and x : y ∈ [11.5, 14.5]cm : [0, 0.5]cm.
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Figure 7.14: Stoichiometric H2 − Air − 5%Cs detonation at t = 75µs where

∆x = ∆y = 50µm and x : y ∈ [10, 13]cm : [0, 0.5]cm.
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Figure 7.15: Stoichiometric H2 − Air − 10%Cs detonation at t = 75µs where

∆x = ∆y = 50µm and x : y ∈ [9, 12]cm : [0, 0.5]cm.
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Figure 7.16: X-t plot comparing the progression of the leading shocks at the centerline 

of the 2D detonation with no MHD, generator, and accelerator configurations. Here 

the mixture has 1% Cs and Bz = 8T. 
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Figure 7.17: X-t plot comparing the progression of the leading shocks at the centerline 

of the 2D detonation with no MHD, generator, and accelerator configurations. Here 

the mixture has 5% Cs and Bz = 8T. 
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Figure 7.20: Peak pressure trace of the centerline of the leading shock of t he 2D det

onation with no MHD, generator, and accelerator configurat ions. Here the mixture 

has 5% Cs and Bz = 8T. 
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Figure 7.21: Peak pressure t race of the centerline of the leading shock of t he 2D det
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has 10% Cs and Bz = 8T. 
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Figure 7.23: Conductivity distribution with a linear color map overlaid with

Schlieren-type plot using density gradients of the detonation front in the genera-

tor configuration with 10% Cs and Bz = 8T , for different enhanced kinetic(EK)

factors.
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Figure 7.24: Conductivity distribution with a linear color map overlaid with

Schlieren-type plot using density gradients of the detonation front in the acceler-

ator configuration with 10% Cs and Bz = 8T , for different enhanced kinetic(EK)

factors.
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Figure 7.25: Centerline peak pressure trace of 2D detonation for t he accelerator 

configurations with 10% Cs and Bz = 8T with various enhanced kinetics values EK. 
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Figure 7.26: Centerline peak pressure trace of 2D detonation for the generator con

figurat ions with 10% Cs and Bz = 8T with various enhanced kinetics values EK. 
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Figure 7.27: X-t plot of 2D detonation comparing the progression of the leading 

shocks at the centerline of the no MHD, generator, and accelerator configurations 

with EK = 100, 10% Cs and Bz = 8T. 
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Figure 7.28: Centerline peak pressure trace of 2D detonat ion for the accelerator 

configurat ion with 10% Cs and various Bz values without enhanced kinetics. 
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Figure 7.29: Centerline peak pressure trace of 2D detonation for the generator con

figurat ion with 10% Cs and various Bz values without enhanced kinetics. 
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Figure 7.30: X-t plot of 2D detonation comparing the progression of the leading 

shocks at t he centerline of the generator configuration wit h 10% Cs and various Bz 
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Figure 7.31: X-velocity profiles of 2D detonat ion at different t imes for t he generator 

configuration with 10% Cs and various Bz values wit hout enhanced kinet ics. 
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Figure 7.32: Conductivity profiles of 2D detonation at different times for the gener

ator configuration with 10% Cs and various Bz values without enhanced kinetics. 
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Figure 7.33: Pressure profiles of 2D detonation at different times for the generator 

configuration with 10% Cs and various Bz values wit hout enhanced kinet ics. 
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Figure 7.34: Temperature profiles of 2D detonation at different times for the gener

ator configuration with 10% Cs and various Bz values without enhanced kinetics. 
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Figure 7.35: Detonation history presented by maximum pressure contours without

MHD(Bz = 0T ) for 10% Cs.
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Figure 7.36: Detonation history presented by maximum pressure contours. Acceler-

ator configuration with Bz = 8T and 10% Cs.
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Figure 7.37: Detonation history presented by maximum pressure contours. Acceler-

ator configuration with Bz = 16T and 10% Cs.
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Figure 7.38: Detonation history presented by maximum pressure contours. Acceler-

ator configuration with Bz = 32T and 10% Cs.
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CHAPTER 8

Conclusions and Future Work

The present computational studies have enabled both a global exploration of PDRIME

concepts for propulsive devices, as well as a detailed exploration of the underlying

physics of detonation-MHD interactions.

For the standard PDRIME utilizing a constant magnetic field, there was marginal

gains in performance over the baseline PDRE configuration using simplified mod-

elling approaches. We investigated closed and open loop control of the magnetic

field utilizing, temporal and temperature controllers, respectively. We found that

these methods of control had marginal performance gains, at best. When the flight

Mach number was significantly lowered (M ≤ 5), we found significant performance

increases without the use of controllers.

The stability and dynamics of a 1D spark-ignited detonation with complex kinet-

ics were also investigated. We developed a model to understand and interpret the

coupling between the reactive and fluid mechanical/acoustic phenomena. We found

that the frequency in oscillations of the peak pressure trace is inversely related to

the time it takes for an acoustic wave to propagate from the flame to the leading

shock and the entropy wave generated from the perturbed shock to travel back to

the flame. We verified the model by finding out it was in agreement with the peak

pressure cycles extracted from the 1D complex kinetics detonation simulation.
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After gaining insight into the stability of the 1D detonation, we investigated the

stability of a cesium-seeded detonation. We confirmed previous findings by Radulescu

et al.[19] that the diluent had a regularizing effect on the 1D detonation. We then

applied MHD using a loading factor, Ky, to the 1D cesium-seeded detonation with

both the generator and accelerator configurations at various magnetic field strengths,

Bz, and concentrations of cesium. We found that for a given concentration of cesium

and applied field strength the accelerator had a regularizing effect, while the genera-

tor had the opposite effect. We then investigated the effect the applied fields had on

the 2D cesium-seeded spark-ignited detonation with the same parameters used for

the 1D simulations (i.e., Bz and cesium concentration) and found that the MHD had

little to no effect on the detonation dynamics, i.e., cellular structure and detonation

velocity. Next, we increased the Arrhenius pre-factor of the cesium forward reaction

mechanism by factors of 10 and 100. We observed a significant increase of conductiv-

ity near the leading shock of the 2D detonation, but little change in the detonation

velocity in either the accelerator or generator configurations. Lastly, we significantly

increased the strength of the magnetic field (16T and 32T ) without enhancing the

cesium kinetics. The generator mode had little effect on the detonation dynamics,

while the accelerator mode significantly altered the detonation velocity.

In Chapter 7, the conductivity of the fluid played an important role in the MHD

acceleration of the detonation. But in order to properly calculate the conductivity,

the number density of electrons as well as the electron temperature, Te, must be

determined (per Equation 2.27). Section 2.3.3 describes how the electron energy is

coupled to the bulk fluid via a two-temperature model. One future direction of this

research is to investigate the dynamics of the detonation in 1D and 2D simulations

using the two-temperature model to more accurately characterize the thermal non-
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equilibrium effects of the bulk fluid. Additionally, the kinetics of excitation and

ionization of the gas can be further investigated by means of a collisional radiative

model[75, 76], commonly used in the study of gas discharges[82, 83], which allow for

a more accurate representation of the atomic state distribution function.

The simulations performed in this dissertation utilized high-order accurate meth-

ods which significantly reduced numerical dissipation. The high-order accuracy al-

lowed for the capturing of sharp flow features (i.e., shocks and contact disconti-

nuities). Oran et al.[84] demonstrated that the viscous effects did not change the

dynamics of the leading shock, thus did not have a significant effect on the detona-

tion cellular structure. But unlike, previous works[68, 84, 85] with detonations, the

downstream effects play an important role in the overall dynamics of the detonation

with MHD acceleration. Future studies involving full ionization kinetics, including

collisional-radiative processes, will be used to examine these processes in further

detail. In addition, a more physically accurate model based on the Navier-Stokes

equations and including species diffusion is needed to correctly model the transport

of the fluid. In addition, precursor effects[86] might play a role in heating the up-

stream fluid, which then alters the flame temperature. It might also be interesting to

investigate the thermal losses to the wall as well as the interactions of the boundary

layer with the shock[87].
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APPENDIX A

Reaction Mechanism

A.1 H2-Air Reaction Mechanism

The H2-air reaction mechanism and Arrenhius coefficients used in the present study

contains 19 reversible elementary mechanisms composed of 9 species[37].

Elementary Mech. A η EA

1.) H +O2 
 O +OH 2.60E14 0.000 8400

2.) O +H2 
 H +OH 1.80E10 1.000 4450

3.) H2 +OH 
 H +H2O 2.20E13 0.000 2575

4.) 2OH 
 H2O +O 6.30E12 0.000 545

5.) H +OH +M 
 H2O +M 2.20E22 −2.00 0.000

6.) 2H +M 
 H2 +M 6.40E17 −1.000 0.000

7.) H +O +M 
 OH +M 6.00E16 −0.600 0.000

8.) 2O +M 
 O2 +M 6.00E13 0.000 −900

9.) H2 +O2 
 HO2 +H 1.00E14 0.000 28000

10.) H +O2 +M 
 HO2 +M 2.10E15 0.000 −500

11.) H +HO2 
 2OH 1.40E14 0.000 540

12.) H +HO2 
 O +H2O 1.00E13 0.000 540

13.) O +HO2 
 O2 +OH 1.50E13 0.000 475
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14.) OH +HO2 
 O2 +H2O 8.00E12 0.000 0.000

15.) H2O2 +M 
 2OH +M 1.20E17 0.000 22750

16.) 2HO2 +M 
 H2O2 +O2 2.00E12 0.000 0.000

17.) H +H2O2 
 H2 +HO2 1.40E12 0.000 1800

18.) O +H2O2 
 OH +HO2 1.40E13 0.000 3200

19.) OH +H2O2 
 H2O +HO2 6.10E12 0.000 715

(A.1)

A.2 Cesium Reaction Mechanism

The cesium reaction mechanism and Arrenhius coefficients used in the present study

contains 2 reversible elementary mechanisms composed of Cs, Cs+, and e−.

Elementary Mech. A η EA

1.) Cs+ e− 
 Cs+ + e− + e− 2.48E14 0.500 45900

2.) Cs+M 
 Cs+ e− +M 2.48E11 0.500 45900

(A.2)
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APPENDIX B

Eigenvector Matrices

The following was derived for a multi-species, two-temperature eigen-system[35, 88].

B.1 Governing Equation

The governing equation for a non-reactive multi-species, multi-temperature three-

dimensional flow without LHS is:

Qt +∇nF = 0 (B.1)

Here the vector containing the conserved variables, Q, and the flux normal to control

volume surface , F, are:

Q =




ρs

ρu

B

E∗

Se




F =




ρsun

ρuun + P ∗n− 1
µ0
BnB

unB− uBn

(E∗ + P ∗)un − 1
µ0
Bnu ·B

Seun




(B.2)
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B.2 Roe Averaged Weighting

Before the eigensystem can be determined, the Roe Averaged variables[46], i.e., mass

fraction, spatial components of velocity and enthalphy, must first be determined on

a flux interface, i+ 1
2
. First the primitive variables are calculated for i and i+ 1 as:

V =




cs

u

b

h

ŝe




(B.3)

h =
1

ρ

(
E + P − B2

2µ0

− Ee
)

, cs =
ρs
ρ

, b = [bn, bt]
T/
√
ρµ0 , and ŝe =

Se
ρ

where cs represents the mass fraction of the sth species, h represents the specific

enthalpy, and ŝe represents the specific electron entropy. Next, by using the densities

at i and i+ 1, the Roe-averaged variables at the face, i+ 1
2
, are determined by:

Vi+ 1
2

=
Vi
√
ρi + Vi+1

√
ρi+1√

ρi +
√
ρi+1

(B.4)

B.3 Eigensystem and Flux Jacobian Matrix

The flux Jacobian represents the relation Ã = ∂F
∂Q

. From here we diagonalize the

flux Jacobian to get a formulation involving the Jacobian, left and right eigenvector

matrices, and the eigen-matrix.

Ã =
∂F

∂Q
= RΛL (B.5)
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The eigen-matrix is defined as the following,

Λ =




un 0 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0 0

0 0 un + cf 0 0 0 0 0 0 0

0 0 0 un − cf 0 0 0 0 0 0

0 0 0 0 un + cs 0 0 0 0 0

0 0 0 0 0 un 0 0 0 0

0 0 0 0 0 0 un − cs 0 0 0

0 0 0 0 0 0 0 un + cA 0 0

0 0 0 0 0 0 0 0 un − cA 0

0 0 0 0 0 0 0 0 0 un




(B.6)

Where the diagonal entries are the eigen-values of the system. The definitions

of the fast(slow) magneto-acoustic, cf(s), and the Alfvén, cA, wave speeds can be

found in [88]. The similarity transformation matrices R and L are defined in the

next sections.

B.3.1 Right Eigenvectors

The system satisfies ∆Q = R · α̃ where
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R =




1 rf rf rs 0 rs 0 0 0

ux Θ+
f,x Θ−f,x Θ+

s,x 0 Θ−s,x
√
ρsx

√
ρsx 0

uy Θ+
f,y Θ−f,y Θ+

s,y 0 Θ−s,y
√
ρsy

√
ρsy 0

uz Θ+
f,z Θ−f,z Θ+

s,z 0 Θ−s,z
√
ρsz

√
ρsz 0

0 ∆̃f tx ∆̃f tx ∆̃stx nx ∆̃stx −sBsx√µ0 sBsx
√
µ0 0

0 ∆̃f ty ∆̃f ty ∆̃sty ny ∆̃sty −sBsy√µ0 sBsy
√
µ0 0

0 ∆̃f tz ∆̃f tz ∆̃stz nz ∆̃stz −sBsz√µ0 sBsz
√
µ0 0

~u2

2
H+
f H−f H+

s 0 H−s us
√
ρ us

√
ρ He

0 rf ŝe rf ŝe rsŝe 0 rsŝe 0 0 1




(B.7)

where sB is the sign of the normal component of the magnetic field and for the

purpose of a compact expression of R, the following variables are defined,

∆̃f = rs
cf√
ρ

(B.8a)

∆̃s = −rf
a2

c2
f

cf√
ρ

(B.8b)

Γ̃f = −sBbnrs (B.8c)

Γ̃s = +sBarf (B.8d)

He =
ζe

γe − 1
ργe−1 (B.8e)

H±f(s) = rf(s)h± rf(s)uncf(s) ± utΓ̃f(s) +
Bt

µ0

∆̃f(s) (B.8f)

Θ±f(s),x = rf(s)ux ± rf(s)cf(s)nx ± Γ̃f(s)tx (B.8g)

similarly for the y, z components and ζe = 1 − γe−1
γh−1

As noted by Brio & Wu[60],

renormalization factors, rf and rs, are needed to avoid singular solutions when the

magnetic field vanishes. Their definitions and identities are as follows1,
1Identities computed with εt =

b2t
a2+b2n

> ε∗t ∼ 10−6
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rf =

√
c2
f − b2

n

c2
f − c2

s

(B.9a)

rs =

√
c2
f − a2

c2
f − c2

s

=
cf
bn

√
b2
n − c2

s

c2
f − c2

s

(B.9b)

rfrs =
cfbt

c2
f − c2

s

(B.9c)

r2
s + r2

f

a2

c2
f

= 1 (B.9d)

r2
f + r2

s

c2
s

a2
= 1 (B.9e)

B.3.2 Left Eigenvectors

The systems satisfies L = R−1, where

L =




Lc

L+
f

L−f

L+
s

Lpseudo

L−s

L+
A

L−A

Le




(B.10)
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Lc = 1
a2




a2 − β ~u2
2

βux

βuy

βuz

βBt
µ0
tx

βBt
µ0
ty

βBt
µ0
tz

−β
βHe




T

, L±f = 1
2c2f




rfβ
~u2

2
∓ rfuncf ± rssBbnut

−rfβux ± rfcfnx ∓ rssBtx
−rfβuy ± rfcfny ∓ rssBty
−rfβuz ± rfcfnz ∓ rssBtz
−rfβBtµ0 tx + rs

√
ρ
µ0
cf tx

−rfβBtµ0 ty + rs
√

ρ
µ0
cf ty

−rfβBtµ0 tz + rs
√

ρ
µ0
cf tz

βrf

−βrfHe




T

L±A = 1
2
√
ρ




−us
sx

sy

sz

∓sB
√

ρ
µ0
sx

∓sB
√

ρ
µ0
sy

∓sB
√

ρ
µ0
sz

0

0




T

, L±s = 1
2a2




rsβ
~u2

2
∓ rsuncs ∓ rfsButa

−rsβux ± rscsnx ± rfsBatx
−rsβuy ± rscsny ± rfsBaty
−rsβuz ± rscsnz ± rfsBatz
−rsβBtµ0 tx − rf

√
ρ
µ0

a2

cf
tx

−rsβBtµ0 ty − rf
√

ρ
µ0

a2

cf
ty

−rsβBtµ0 tz − rf
√

ρ
µ0

a2

cf
tz

βrs

−βrsHe




T

,
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Le = 1
a2




−ŝeβ ~u
2

2

βuxŝe

βuyŝe

βuz ŝe

βBt
µ0
ŝetx

βBt
µ0
ŝety

βBt
µ0
ŝetz

−βŝe
1 + βHeŝe




T

, Lpseudo =




0

0

0

0

nx

ny

nz

0

0




T

B.3.3 Riemann ‘Jump’ conditions

The ‘jump’ conditions satisfy α̃ = L ·∆Q and is defined,

α̃ =




α̃c

α̃+
f

α̃−f

α̃+
s

α̃−s

α̃+
A

α̃−A

α̃e




(B.11)

where,

α̃c =

(
1− β ~u

2

2a2

)
∆ρ+

β~u

a2
∆(ρ~u) + β

Bt

a2
∆Bt −

β

a2
∆E∗ (B.12a)
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or... α̃c = ∆ρ− ∆P

a2

α̃±f =
rf
2c2
f

[∆P ± ρcf∆un] + rs

√
ρ

2cf

[
∆Bt ∓ sB

√
ρ
bn
cf

∆ut

]
(B.12b)

α̃±s =
rs

2a2
[∆P ± ρcs∆un]− rf

√
ρ

2cf

[
∆Bt ∓ sB

√
ρ
cf
a

∆ut

]
(B.12c)

α̃±A =
1

2
[
√
ρ∆us ∓ sB∆Bs] (B.12d)

α̃e = ∆ŝe −
Ee
ρ

∆P

a2
(B.12e)
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APPENDIX C

MHD Divergence Cleaning for General

Coordinate Systems

The pseudo electric field is defines as Ω = u × B. From Maxwell’s Equations the

temporal evolution can be described by

∂B

∂t
= −∇× Ω (C.1)

For a cartesian coordinate system with x, y, and z dependants ∂B
∂t

is described as:

∂Bx
∂t

= ∂
∂y

Ωz − ∂
∂z

Ωy

∂By
∂t

= ∂
∂z

Ωx − ∂
∂x

Ωz

∂Bz
∂t

= ∂
∂x

Ωy − ∂
∂y

Ωx

(C.2)

For a coordinate system with a r − z dependants ∂B
∂t

is described as:

∂Br
∂t

= −1
r
∂
∂z

(rΩθ)

∂Bz
∂t

= 1
r
∂
∂r

(rΩθ)

∂Bθ
∂t

= − ∂
∂r

Ωz + ∂
∂z

Ωr

(C.3)

For a coordinate system with a r − θ dependants ∂B
∂t

is described as:

∂Br
∂t

= 1
r
∂
∂θ

Ωz

∂Bz
∂t

= −1
r
∂
∂θ

Ωr + 1
r
∂
∂r

(rΩθ)

∂Bθ
∂t

= − ∂
∂r

Ωz

(C.4)
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APPENDIX D

Jacobians and Transforms

D.1 Chemical Jacobian

We first start out with the model ordinary differential equation for the kinetics:

dQ

dt
= Ω̇ (D.1)

where

Q =


 ns

E


 Ω̇ =


 ω̇s

ω̇E


 (D.2)

ns is the number density of the sth species, and ω̇s and ω̇E are the species and

energy production terms, respectively. The number density, ns, was used in lieu

of mass density, ρs, out of convience and can be easily transformed, ∂ρl
∂nk

= Mkδkl.

The implicit 1st order numerical formulation of Equation D.1 is carried out with the

following steps:
∆Q
∆t

= Ω̇n+1

∆Q
∆t

= Ω̇n + ∂Ω̇
∂t

∆t

∆Q
∆t

= Ω̇n + ∂Ω̇
∂Q

∆Q
∆t

∆t

∆Q
∆t

= Ω̇n + ∂Ω̇
∂Q

∆Q(
I− ∂Ω̇

∂Q
∆t
)

∆Q = Ω̇n∆t

∆Q =
(
I− ∂Ω̇

∂Q
∆t
)−1

Ω̇n∆t

(D.3)
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D.2 Chemical Jacobian(∂Ω̇
∂Q) Derivation

∂ω̇s
∂nk

=
∑

r

νrs
ν ′rk
nk

∏

j

n
ν′rj
j (D.4)

∂ω̇s
∂E

=
∂ω̇s
∂T

∂T

∂E
=
∂ω̇s
∂T

1

Cv

∂ω̇s
∂T

=
∑

r

νrs
dkr
dT

∏
n
ν′rk
k

∂kr
∂T

=
ηr
T
ArT

ηrexp

(−θr
T

)
+
θr
T 2
ArT

ηrexp

(−θr
T

)

∂kr
∂T

=

(
ηr
T

+
θr
T 2

)
kr

∂ω̇s
∂E

=
1

Cv

∑

r

νrs

(
ηr
T

+
θr
T 2

)
kr
∏

n
ν′rk
k (D.5)

ω̇E =
∑

s

ωse0s =
∑

s

e0s

∑

r

νrskr
∏

k

n
ν′rk
k

∂ω̇E
∂nk

=
∑

s

∂ω̇s
∂nk

e0s (D.6)

∂ω̇E
∂E

=
∑

s

∂ω̇s
∂E

e0s (D.7)
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APPENDIX E

Steady State Detonation

We will first begin with our model equation with the steady state approximation:

�
�
��7

0
∂Q

∂t
+
∂F

∂x
= Ω̇ (E.1a)

A
∂Q

∂x
= Ω̇ (E.1b)

∂Q

∂x
= A−1Ω̇ (E.1c)

From Equation E.1c, the explicit space-marching formulation is defined as:

∆Q

∆x
= A−1Ω̇i (E.2)

The implicit space-marching formulation is also defined,

∆Q

∆x
= A−1Ω̇i+1 (E.3a)

∆Q

∆x
= A−1

(
Ω̇i +

∂Ω̇

∂Q
∆Q

)
(E.3b)

∆Q

∆x
−A−1 ∂Ω̇

∂Q
∆Q = A−1Ω̇i (E.3c)

Now by solving for ∆Q the final form is expressed as:

∆Q =

(
A−∆x

∂Ω̇

∂Q

)−1

Ω̇i∆x (E.4)
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APPENDIX F

Iterative & Direct Solvers

F.1 Thomas’ Algorithm

The triadiagonal matrix algorithm, commonly refered to as Thomas’ algorithm, is a

simplified form of Gaussian elimination used to solve triadiagonal system of equation.

These systems of equations take on the following form:

aixi−1 + bixi + cixi+1 = di (F.1)

where a0 = 0 and cN = 0. And represented in the matrix form as:




b1 c1 0

a2 b2 c2

a3 b3 .

. . cN−1

0 aN bN







x1

x2

·
·
xN




=




d1

d2

·
·
dN




(F.2)

Just as in Gaussian elimination, Thomas’ algorithm consist of a forward elimination

and backward substitution to solve the system as follows:

Forward Elimination
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for k = 2 loop through N

m = ak
bk−1

bk = bk −mck−1

dk = dk −mdk−1

Backward Substitution

xN =
dN
bN

for k = N − 1 loop through 1

xk =
dk − ckxk+1

bk

This algorithm is applicable for diagonally dominant matrices, where

|bi| > |ai|+ |ci| i ∈ 1, ..., N (F.3)

F.2 Black-Red Gauss-Seidel

Gauss-Seidel is an iterative method used to solve problems of the general form:

U = f(~U) (F.4)

If one were to solve this equation explicitly, it would simply take the form,

Un+1 = f(~Un) (F.5)

If ~U is the spatially distribution of U, Equation F.4 can be solved implicitly using

Gauss-Seidel. In this procedure, one would begin with an initial solution at t = tn+1,

U(s), where s=0 initially. The solution at U(s) is used to determine U(s+1) until

convergence which is as follows:
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U
(s+1)
i,j = f(~U(s))

error = max ||U(s+1)
i,j −U

(s)
i,j ||

continue until ...

error < ε→ Un+1 = U(s+1) (convergence!)

(F.6)

Using this procedure, the update solution, U(s+1), is solved for using the latest solu-

tion. In order to speed up this process, instead of sweeping through all of the cells

(i & j for 2D), one can first sweep though and solve for the computational grid cells

colored red in Figure F.1, then using the updated solutions, U
(s+1)
red , sweep through

and solve for the black grid cells, U
(s+1)
black . The procedure would be as follows:

U
(s+1)
red = f(~U

(s)
black)

U
(s+1)
black = f(~U

(s+1)
red )

error = max ||U(s+1)
i,j −U

(s)
i,j ||

continue until ...

error < ε→ Un+1 = U(s+1) (convergence!)

(F.7)

The procedure shown above is refered to as Red-Black Gauss-Seidel.
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i=0 i=1 . . .

j=0

j=1

...

Figure F.1: Computational domain split into red and black computational cells.
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APPENDIX G

Message Passing Interface (MPI) Implementation

G.1 Grid Connectivity

A three dimensional computational domain can be broken up into rectangular cuboid

subdomains; each containing 6 rectangular faces. A face can connect with one or more

faces from adjacent domain(s), which is illustrated in Figure G.1. This illustration

also shows that domain p0 is connected with 2 domains(p1 & p2), domain p1 is

connected with 3 domains(p1,p2,p3), and domain p3 is connected with 2 domains (p1

& p2). The red numbers in the figure represent unique domain-to-domain connection

of which there are 5. Domains p0 & p2 of Figure G.1 are illustrated with there

associated ghost layers iin Figure G.2. For this connection, labeled 1 in Figure G.1,

p0 would pass information of its interior cells to the ghost layer of p1 and p1 would in

turn information of its interior to p2. This example shows that for each connection,

there are two receive buffers required, which will be refered to as memory windows

without explanation for the moment. From the 5 connections in Figure G.1, a list of

10 memory windows and its associated domains are created in Table G.1.
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p2 :1: p3 

, .... ,.. 
... '-' '-' 

pO p1 

Figure G.l: The computational domain, Dis decomposes into 4 subdomains. 

i------------------1 
I• I• 
I I I I 

I I I I 

I I I I 

I pO I I p2 I 

I I I I 

I I I I 

I I I I 

I I I I 

I. _I I. _I 
I 

I ·---------· ---------
Figure G.2: Domain-to-domain connection example where t he red shaded area is a 

pO ghost to p2 physical window and t he grey shaded area is a p2 ghost to pO physical 

window. 

window 0 1 2 3 4 5 6 7 8 9 

local 0 2 0 1 2 1 2 3 3 1 

remote 2 0 1 0 1 2 3 2 1 3 

Table G.1: Generic memory window list generated from Figure G.1 domain connec

t ions where ' local' is t he domain sending its physical cell dat a to the ghost cell of 

t he ' remote' domain. 
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