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Forward

The proposed research is to develop Gaussian random fields methods to study fork-join net-
works (FJNs) with synchronization constraints. FJNs arise from many military operations, e.g.,
Army force deployment and counter-terrorism, where commands come from one or multiple types
of operations and each operation requires multiple parallel and/or sequential tasks to be processed
in service stations with multiple servers, and to be rejoined for further processing with synchro-
nization constraints, e.g., non-exchangeability. In this research, we focus on the non-exchangeable
synchronization constraint, which requires that tasks can only be synchronized only if all tasks of
the same job are completed. The main mathematical challenge lies in the resequencing of arrival
orders after service completion at each station, which requires an infinite dimensional state space
to track the status of all parallel tasks for each job. That was an extremely difficult open problem.

We have developed a novel method using multiparameter sequential empirical processes driven
by service vectors of parallel tasks of each job to describe the system dynamics of FJNs. This
research has produced two research papers, focusing on a single class FJN in two asymptotic regimes,
where the arrival rate of jobs and the number of servers in each station get large appropriately. We
consider the number of tasks in each waiting buffer for synchronization, jointly with the number
of tasks in each parallel service station and the number of synchronized jobs. In the first paper,
we consider the quality-driven regime, and show that all the limiting processes are functionals of
two independent processes - the limiting arrival process and a generalized Kiefer process driven
by the service vector of each job. We characterize the transient and stationary distributions of
the limiting processes. In the second paper, we consider the quality-and-efficiency-driven regime
(Halfin-Whitt regime), and show that all the limit processes in the functional central limit theorem
are also characterized via functionals of the initial limit quantities, the arrival limit process and
a generalized multiparameter Kiefer process driven by the service vectors. This new framework
is being further generalized to analyze fork-join networks with multiple classes of jobs, and study
control, reliability and provisioning problems.
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1 Statement of the Research Problem

Fork-join networks consist of a set of service stations that serve job requests simultaneously and
sequentially according to pre-designated deterministic precedence constraints. Such networks have
many applications in manufacturing and telecommunications [4, 16, 25, 26, 27, 43, 53, 36, 37, 49],
patient flow analysis in healthcare [22, 1, 2, 57, 58], parallel computing [47, 52, 51, 32], military
deployment operations [24, 56], and law enforcement systems [29]. Two types of synchronization
constraints are of particular interest. One is called exchangeable synchronization (ES) in which
tasks are not tagged with a particular job and can be synchronized for a service completion once
the necessary tasks are completed. This type of synchronization constraint is often used in manufac-
turing systems; for example, in many assembly systems, different parts of a product are processed
at separate workstations or plant locations and a product will be assembled once all of its neces-
sary parts are completed. In this case, the parts are not tagged with a particular product, since
they are standardized for the same type of product. The second type is called non-exchangeable
synchronization (NES). Tasks are tagged with a particular job and can only be synchronized when
all the parallel tasks of the same job are completed.

Figure 1: A fundamental fork-join network

Fork-join networks with NES are used in many applications, including healthcare systems,
parallel computing, MapReducing scheduling (e.g., large-scale parallel Web search), disassembly
and reassembly systems in manufacturing and so on. In patient flows of hospitals [1, 2, 22, 57, 58],
the treatment and discharge processes are typical examples of fork-join networks with NES: a
patient must have all test results ready before a doctor examination and these tests are conducted
in different units/laboratories and can never be mixed; a patient, after the discharge decision is
made, must wait for necessary procedures, pharmacy, transportation, etc., before being physically
discharged. In MapReduce scheduling [11, 32, 51, 54], jobs are processed in two phases: in the
map phase, a large-scale data input (e.g., Web processing data) is distributed into individual
computation nodes, and each node processes one block of input data, and after the execution of all
blocks of the same data input, they will be joined as an output in the reduce phase.

Despite the vast appealing applications of such networks, very little has been known about their
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behaviors in the many-server heavy-traffic regimes. We start considering a fundamental fork-join
network model with a single class of jobs and NES, where each arriving job is forked into several
parallel tasks upon arrival and each of the tasks is processed in parallel at a dedicated service
station with multiple servers under the non-idling FCFS discipline. Upon service completion, each
task will join a buffer associated with its service station, and wait for synchronization, such that
each job is synchronized only if all of its tasks have been completed. Figure 1 depicts such a
model. In this model, in addition to the service dynamics, we are interested in the waiting buffer
dynamics for synchronization. One important performance measure is the response time of a job,
namely, the time from arrival to synchronization. The response time may also include the time
required for the synchronization process, but we do not consider that in this work. Thus, the
response time includes two delays, waiting time for service and waiting time for synchronization.
Since each service station can be regarded as a separate many-server queue, the waiting time for
service has been well understood. However, the waiting time for synchronization, which is our focus
in this paper, has not been studied. Specifically, we investigate the waiting buffer dynamics for
synchronization jointly with the service dynamics.

The main mathematical challenge lies in the resequencing of the arrival orders after service
completion at each service station, due to the randomness of the service times and the multi-server
setting. When there is a single server in each of the parallel service station and the service discipline
is FCFS, the service completion order is preserved to be the same as the arrival order of tasks in
each service station, so that the two types of synchronization constraints are equivalent. However,
the arrival order of tasks in each service station can be resequenced at the service completion
epochs when the number of servers in a service station is larger than one or the service discipline
is not FCFS. Resequencing has been one of the most difficult obstacles in the study of fork-join
networks. Some limited work has been dedicated to the study of such challenging problems. For
example, substantial efforts were dedicated to the study of the max-plus recursions [21, 3, 12].
More recently, Atar et al. [2] have studied a fork-join network with single-server service stations
where tasks may reenter for service at some service stations in a Bernoulli mechanism so that
the arrival orders of tasks at each service station are resequenced after service completion. They
show that under a priority discipline, the system dynamics with NES is asymptotically equivalent
to that with ES in the conventional (single-server) heavy-traffic regime. For a Markovian fork-
join network with multiple servers, Zviran [58] shows that the system dynamics with NES is also
asymptotically equivalent to that with ES in the conventional heavy-traffic regime. However, the
two types of synchronization constraints lead to very different system dynamics when the service
stations have many parallel servers in the Halfin-Whitt regime, as conjectured in [2, 58]. To the
best of our knowledge, our work is the first to tackle the resequencing problem in non-Markovian
fork-join networks with NES and multiple-server service stations in the many-server heavy-traffic
regimes. We will consider both cases when each service station is operating in the quality-driven
(QD) regime, or in the quality-and-efficiency-driven (QED, Halfin-Whitt) regimes.

When all the service stations operate in the QD regime, this is equivalent to a model which has
infinite numbers of servers at all service stations asymptotically. To describe the system dynamics,
we can start with a graphical representation as shown in Figure 2(a) for a system of two parallel
tasks. At each job’s arrival epoch, we mark the arrival time on the horizontal line (x-axis) and
the service times of all parallel tasks on the vertical line (y-axis). At each time t, by drawing
a negative forty-five degree line, we can count the numbers of tasks in each service station and
each waiting buffer for synchronization. When the arrival process is Poisson, we can apply Poisson
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(a) The QD Regime
Entering service time t 

t 

0 

Service 
time 

1/√n 
(b) The QED Regime

Figure 2: Graphical representations of the system dynamics in the QD and QED regimes

random measure theory, similarly as in the “physics” of M/GI/∞ queues [14]. It can be shown
that at each time t, the numbers of tasks in each service station and each waiting buffer for
synchronization all have Poisson distributions and their parameter values and covariances can also
be obtained; see Proposition 2.1. However, when the arrival process is more general, this Poisson
random measure approach does not work, and we cannot obtain the exact distributions for these
performance measures. Thus, we consider heavy-traffic approximations of the system dynamics
when the arrival rate is relatively large. For that, the graphical representation in Figure 2(a) also
plays an important role; see the system’s dynamic equations in §2.

Here we develop a new approach to describe the system dynamics. Both the service dynamics
and the waiting buffer dynamics for synchronization are represented as functionals of the mul-
tiparameter sequential empirical process driven by the service vector of all parallel tasks. Their
diffusion-scaled processes converge weakly to limit processes that can be all represented as function-
als of two independent processes - the limiting arrival process and the multiparameter generalized
Kiefer process driven by the service vector. When the limiting arrival process is Brownian motion,
we show that the aforementioned limiting processes are a multidimensional continuous Gaussian
process, and thus characterize the joint transient and stationary distributions of these processes.
We also study the impact of the correlation among the service vector upon these distributions.

There are several advantages with this new approach. It gives a clean and elegant representation
of the limiting processes, involving only two independent stochastic processes arising from the arrival
and service processes. Moreover, the characterization of the limiting processes as Gaussian and their
transient and stationary distributional properties can be easily obtained. Furthermore, this new
approach paves the way to study the fork-join network with all the service stations operating in the
QED regime. We believe that this new approach launches a new framework to study more general
fork-join networks, for example, multiclass models, and when the service vectors for parallel tasks
form a stationary and weakly dependent sequence.

When all the service stations are in the QED regime, we exploit the delicate relationship between
finite-server models and its corresponding infinite-server models. This was exploited to prove
an FCLT for the GI/GI/n queue by Reed [45]. We make an important observation that the

5



multidimensional processes of the waiting buffer dynamics for synchronization and the service
dynamics in the fork-join network can be represented through the corresponding processes in the
infinite-server case. Thus, our results from the QD regime can be extended to establish the FCLT
for the fork-join network in the QED regime. To illustrate, we can also use a similar graphical
representation as in Figure 2(a) to describe the system dynamics. In particular, as shown in Figure
2(b), we mark the entering service times of all parallel tasks for each job on the horizontal line (x-
axis), and the service times of them on the vertical line (y-axis). However, unlike the infinite-server
case, tasks of the same job may not enter service simultaneously. Fortunately, it is well known
that the delay for service in the QED regime is O(1/

√
n); see, e.g., [45, 50]. This asymptotically

negligible difference among entering service times helps us to establish the FCLT for the fork-join
network in the QED regime.

An important implication of our results is that the size of the waiting buffer for synchronization
is of the same order as that of the total number of tasks at each service station, and thus, the waiting
time for synchronization is of the same order as the service time, O(1). Namely, the response time
in the QED regime includes the delay for service O(1/

√
n), the service time O(1) and the delay

for synchronization O(1). It remains to establish the FCLT for the (virtual) waiting time process
for synchronization. More importantly, it remains to find an optimal scheduling policy that will
minimize the delay for synchronization in the single-class case. We believe that our methods and
results will provide useful insights towards that direction.

In the development of approximations to the fork-join system, we make a fundamental contri-
bution to the study of multiparameter sequential empirical processes driven by random vectors.
Sequential empirical processes driven by a sequence of random vectors (allowing for correlation
among random variables in the vector) and their limits as generalized Kiefer processes have been
studied in the statistics literature; see e.g., [42, 6, 8, 9, 13], but the convergence is proved in the
space D([0, T ]k,R) of real-valued càdlàg functions defined on [0, T ]k, k ≥ 2, endowed with the
generalized Skorohod J1 topology in [35] and [48]. In our setting, it is necessary to prove the con-
vergence in the space D([0, T ], D([0, T ]k,R)) of function-valued càdlàg functions defined on [0, T ],
endowed with the standard Skorohod J1 topology for D([0, T ]k,R)-valued càdlàg functions.

Literature review. Most of the literature on fork-join networks is on models with single-server
service stations. We only give a brief summary here on relevant work in heavy traffic. These
studies are in the conventional (single-server) heavy-traffic regime. In Varma’s dissertation [53],
the diffusion-scaled workload processes and unsynchronized queueing processes in some fork-join
network models with ES are shown to converge weakly to certain multi-dimensional reflected Brow-
nian motions. The stationary distributions of the system response time and the processes counting
the number of tasks in unsynchronized queues are specified by some partial differential equations
(PDEs). Nguyen [36] shows the diffusion-scaled processes counting the queue lengths at each service
station of a single-class fork-join network model with ES converge to a reflected Brownian motion
in a polyhedral cone of the nonnegative orthant. Nguyen [37] discusses the difficult challenges with
multiclass fork-join models with ES. As we have noted above, for a fork-join network with feedback
and NES, Atar et al. [2] show that a dynamic priority discipline achieves throughput optimal-
ity asymptotically in the conventional heavy-traffic regime, as a consequence of the asymptotic
equivalence between NES and ES constraints.

Very little work has been done for fork-join networks with multi-server service stations. Ko
and Serfozo [25] consider a fork-join network model with a single class of Poisson arrivals and K
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parallel service stations with multiple servers at each station and exponential service times, and
obtain an approximation for the distribution of the system response time in equilibrium under
the NES constraint. Dai [10] provides an exact simulation algorithm to approximate the system
response time in equilibrium for the same Markovian model in [25] by using a “coupling from the
past” method. Zviran [58] studies optimal control of multi-server feedforward fork-join networks
with exponential service times in the conventional heavy-traffic regime and shows that FCFS is
asymptotically optimal and the resequencing disruption becomes asymptotically negligible. Zaied
[57] calculates mean offered-load functions of fork-join networks with NES and multiple processing
stages when the arrival process is time-inhomogeneous Poisson and service times for parallel tasks
are independent, and studies staffing of time-varying emergency departments and synchronization
delays under Markovian assumptions. Both dissertations of Zviran [58] and Zaied [57] are motivated
from applications in patient flow analysis. Gurvich and Ward [17] study optimal matching policies
for a pure join model (Markovian) with multiple classes of jobs under certain matching constraints.

This work contributes to the recent development for non-Markovian many-server queueing mod-
els. We only mention those that are most relevant to our work due to the large volume of papers
on many-server models. Krichagina and Puhalskii [28] first observe that the system dynamics of an
infinite-server queueing model can be represented by an integral functional of a sequential empirical
process driven by service times. They show that the diffusion-scaled processes counting the num-
ber of jobs in the system can be approximated by a functional of a standard Kiefer process driven
by service times. Pang and Whitt [39, 41] generalize that approach to establish two-parameter
process limits for G/G/∞ queues when the service times are i.i.d. and weakly dependent, respec-
tively. Reed [45] and Puhalskii and Reed [44] have observed a relationship between finite-server
and infinite-server queues and generalized the approach in [28] to obtain the diffusion limits for
G/GI/N queues in the Halfin-Whitt regime. Mandelbaum and Momcilovic [33] generalize the
approach by Reed [45] to study G/GI/N + GI queues with abandonment. All these papers use
sequential empirical processes driven by a sequence of univariate random variables. Our approach
to study fork-join networks with NES uses multiparameter sequential empirical processes driven by
a sequence of i.i.d. random vectors and properties of multiparameter processes and martingales.

Notation Throughout the paper, the following notation will be used. R and R+ (Rd and Rd+,
respectively) denote sets of real and real non-negative numbers (d-dimensional vectors, respectively,
d ≥ 2). Z+ is the set of non-negative integers. N denotes the set of natural numbers. For a, b ∈ R,
we denote a ∧ b := min(a, b) and a ∨ b := max(a, b). For x ∈ R, let x+ := max{x, 0} and
x− := −min{x, 0}. For any x ∈ R+, bxc is used to denote the largest integer less than or equal to
x. We use bold letter to denote a vector, e.g., xxx := (x1, ..., xN ) ∈ RN . 000 denotes the vector whose
components are all 0. For xxx,yyy ∈ RN , we denote xxx ≤ yyy, xxx ≥ yyy and xxx > yyy in the componentwise
sense, and let xxx ∧ yyy = (x1 ∧ y1, ..., xN ∧ yN ). We use 1(A) to denote the indicator function of a
set A. The abbreviation a.s. means almost surely. For any univariate distribution function F (·),
we denote F c(·) = 1 − F (·). For ααα ∈ R2

+ and α ∈ R+, we call ∆ααα(δ) (resp. ∆α(δ)) is a δ-grid of
[0, α1] × [0, α2] (resp. [0, α]), if ∆ααα(δ) (resp. ∆α(δ)) is a finite partition of [0, α1] × [0, α2] (resp.
[0, α]), where each element of the partition is the rectangle [s1, t1)× [s2, t2) (resp. [s, t)), satisfying
0 ≤ sk < tk < αk for k = 1, 2 (resp. 0 ≤ s < t), and mink=1,2(tk − sk) ≥ δ (resp. t − s ≥ δ). For
two real-valued functions f and g, we write f(x) = O(g(x)) if lim supx→∞ |f(x)/g(x)| <∞.

All random variables and processes are defined on a common probability space (Ω,F , P ). For
any two complete separable metric spaces S1 and S2, we denote S1 × S2 as their product space,
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endowed with the maximum metric, i.e., the maximum of two metrics on S1 and S2. Sk is used
to represent k-fold product space of any complete and separable metric space S for k ∈ N. For a
complete separable metric space S, D([0,∞),S) denotes the space of all S-valued càdlàg functions
on [0,∞), and is endowed with the Skorohod J1 topology (see, e.g., [5, 15, 55]). Denote D ≡
D([0,∞),R). The space D([0,∞),D), denoted as DD, is endowed with the Skorohod J1 topology,
that is, both inside and outside D spaces are endowed with the Skorohod J1 topology. For a
complete separable metric space S, the space D([0,∞)2,S) is the space of all S-valued “continuous
from above with limits from below” functions on [0,∞)2, and is endowed with the same metric as
defined by [18]. D2 ≡ D([0, 1]2,R) is denoted as the space of all “continuous from above with limits
from below” functions on the unit square [0, 1]2 in the sense of Neuhaus [35], and is endowed with
the same metric dD2 as in [35]. Weak convergence of probability measures µn to µ will be denoted

as µn ⇒ µ. For a sequence of processes {X n : n ≥ 1} and a process X , we use notation X n
df⇒ X

to denote the convergence in finite-dimensional distributions of X n to X .

2 The Infinite-Server Fork-Join Network Model

2.1 Model and Assumptions

In this section, we present a detailed description of our infinite-server fork-join network model and
the assumptions. As shown in Figure 1, there is a single class of jobs, and each job is forked into K
parallel tasks, K ≥ 2. Each task is processed in a service station with multiple servers under the
FCFS discipline. There is an infinite number of servers at each station. After service completion,
each task will join a waiting buffer for synchronization associated with each service station, and
when all tasks of the same job are completed, they will be synchronized and leave the system. Here
we assume that the synchronization process takes zero amount of time.

Let A := {A(t) : t ≥ 0} be the arrival process of jobs with τi representing the arrival time
of the ith job, i ∈ N. Let {ηηηi : i ≥ 1} denote the i.i.d. service time vectors of the parallel
tasks. The joint distribution of the service time vector for the ith job ηηηi is F (xxx) := F (x1, ..., xK)
for xk ≥ 0, k = 1, ...,K. Their marginal distributions are Fk(x), for x ≥ 0, k = 1, ...,K. The
joint distribution of any two service times ηij and ηik is Fj,k(xj , xk) := P (ηij ≤ xj , η

i
k ≤ xk) for

xj , xk ≥ 0, j, k = 1, ...,K. Note Fj,k(·, ·) = Fk(·) when j = k for j, k = 1, ...,K. We denote
F cj,k(xj , xk) := P (ηij > xj , η

i
k > xk) = 1−Fj(xj)−Fk(xk)+Fj,k(xj , xk) for xj , xk ≥ 0, j, k = 1, ...,K.

Note F cj,k(·, ·) = F ck(·) when j = k for j, k = 1, ...,K. Let ηim := max{ηi1, ..., ηiK} be the maximum

of the components in the service vector ηηηi, and Fm(x) := P (ηim ≤ x) = F (x, ..., x) for x ≥ 0.
(Throughout the paper, we use subscript “m” to index quantities and processes associated with
the maximum.) The service process is assumed to be independent of the arrivals. We exclude the
case of perfectly positively correlated parallel services since that will lead to empty waiting buffers
for synchronization.

Let Xk := {Xk(t) : t ≥ 0} be the process counting the number of tasks in service at the service
station k, and Yk = {Yk(t) : t ≥ 0} be the process counting the number of tasks in the waiting
buffer for synchronization (unsynchronized queue) after service completion at service station k,
k = 1, ...,K. Let S := {S(t) : t ≥ 0} be the process counting the number of synchronized jobs and
Dk := {Dk(t) : t ≥ 0} be the process counting the number of tasks that have completed service at
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station k, k = 1, ...,K. Denote XXX := (X1, ..., XK), YYY := (Y1, ..., YK) and DDD := (D1, ..., DK). We
assume that the system starts empty.

Assuming that the arrival process A(t) is Poisson with rate λ, by Poisson random measure
theory, we can easily obtain the following properties on the processes XXX(t), YYY (t) and S(t) at each
time t.

Proposition 2.1. If the arrival process A(t) is Poisson with rate λ, then at each time t ≥ 0, for k =
1, ...,K, Xk(t) has a Poisson distribution with rate λ

∫ t
0 F

c
k(s)ds, Yk(t) has a Poisson distribution

with rate λ
∫ t
0 (F cm(s) − F ck(s))ds, and S(t) has a Poisson distribution with rate λ

∫ t
0 Fm(s)ds. For

each time t ≥ 0 and j, k = 1, ...,K,

Cov(Xj(t), Xk(t)) = λ

∫ t

0
F cj,k(s, s)ds, (2.1)

Cov(Yj(t), Yk(t)) = λ

∫ t

0
(Fj,k(s, s)− Fm(s))ds, (2.2)

Cov(Xj(t), Yk(t)) = λ

∫ t

0
(Fk(s)− Fj,k(s, s))ds. (2.3)

For each time t ≥ 0 and k = 1, ...,K, S(t) is independent of Xk(t) and Yk(t). When K = 2, Y1(t)
and Y2(t) are independent for each t ≥ 0.

When the arrival process A(t) is general, we will obtain heavy-traffic limits for the fluid and
diffusion scaled processes of (XXX,YYY , S) jointly. We will let the arrival rate grow large for the system
to be in heavy traffic. For that, we consider a sequence of such systems indexed by n and use
superscript n for the processes A,XXX,YYY ,DDD,S, and the arrival times {τi : i ≥ 1}, but we let the
service times {ηηηi : i ≥ 1} and their distribution functions be independent of n. We make the
following assumption on the arrival process An.

Assumption 1: FCLT for arrivals. There exist: (i) a continuous nondecreasing deterministic
real-valued function ā on [0,∞) with ā(0) = 0 and (ii) a stochastic process Â with continuous sample
paths, such that

Ân := n−
1
2 (An − nā)⇒ Â in D as n→∞. (2.4)

It follows from (3.6) that we have the associated FWLLN

Ān :=
An

n
⇒ ā in D as n→∞. (2.5)

When the arrival process is renewal, the limit in (2.5) is ā(t) = λt, for t ≥ 0 and some positive
constant λ, and the limit in (3.6) is Â =

√
λc2aBa, where c2a is the squared coefficient of variation

(SCV) of an interarrival time, and Ba is a standard Brownian motion (BM).
We also make a regularity assumption on the joint service-time distribution function F (xxx).
Assumption 2: Service time distributions. The joint distribution function F (xxx) of the

service time vectors {ηηηi : i ∈ N} is continuous.
From the graphical representation of the system dynamics in Figure 2(a), we can write, for each

t ≥ 0 and k = 1, ...,K,

Xn
k (t) =

An(t)∑
i=1

1(τni + ηik > t), (2.6)
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Y n
k (t) =

An(t)∑
i=1

1(τni + ηik ≤ t and τni + ηik′ > t for some k′ 6= k)

=

An(t)∑
i=1

(
1(τni + ηik ≤ t)− 1(τni + ηim ≤ t)

)
(2.7)

=

An(t)∑
i=1

(
1(τni + ηim > t)− 1(τni + ηik > t)

)
,

Sn(t) =

An(t)∑
i=1

1(τni + ηim ≤ t) =

An(t)∑
i=1

1(τni + ηik ≤ t, ∀k), (2.8)

Dn
k (t) =

An(t)∑
i=1

1(τni + ηik ≤ t). (2.9)

The following balanced equations hold for each t ≥ 0 and k = 1, ...,K,

Dn
k (t) = An(t)−Xn

k (t), (2.10)

Y n
k (t) = Dn

k (t)− Sn(t). (2.11)

As we have remarked in the introduction, by previous work on G/GI/∞ queues [28], each
individual process Xn

k and Dn
k (resp. Sn) can be represented by an integral of a sequential empirical

process driven by a sequence of i.i.d. random variables {ηik : i ≥ 1} (resp. {ηim : i ≥ 1}) for each
k = 1, ...,K. Thus, Gaussian limits for the diffusion-scaled processes Xn

k , Dn
k and Sn in heavy traffic

for each k can be established, and as a consequence, a Gaussian limit for the diffusion-scaled process
Y n
k can be obtained from those of Dn

k and Sn, k = 1, ...,K. However, that approach does not give a
characterization of the joint Gaussian distribution of the limiting processes of the diffusion-scaled
processes (XXXn,YYY n, Sn).

We will represent all the processesXXXn,YYY n, Sn as integrals of a multiparameter sequential empir-
ical process K̄n := {K̄n(t,xxx) : t ≥ 0,xxx ∈ RK+} driven by the sequence of service vectors {ηηηi : i ≥ 1}:

K̄n(t,xxx) :=
1

n

bntc∑
i=1

1(ηηηi ≤ xxx), t ≥ 0, xxx ∈ RK+ . (2.12)

That is, we write, for t ≥ 0 and k = 1, ...,K,

Xn
k (t) = n

∫ t

0

∫
RK
+

1(s+ xk > t)dK̄n
(
Ān(s),xxx

)
, (2.13)

Y n
k (t) = n

∫ t

0

∫
RK
+

(1(s+ xk ≤ t)− 1(s+ xj ≤ t, ∀j)) dK̄n
(
Ān(s),xxx

)
, (2.14)

and

Sn(t) = n

∫ t

0

∫
RK
+

1(s+ xj ≤ t, ∀j)dK̄n
(
Ān(s),xxx

)
. (2.15)

The integrals in (2.13), (2.14) and (2.15) are well-defined as a Stieltjes integral for functions of
bounded variation as integrators.
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2.2 An FCLT for Multiparameter Sequential Empirical Processes

We present an FCLT for multiparameter sequential empirical processes Ûn := {Ûn(t,xxx) : t ≥ 0, xxx ∈
[0, 1]K} driven by a sequence of i.i.d. random vectors with uniform marginals:

Ûn(t,xxx) :=
1√
n

bntc∑
i=1

(
1(ξξξi ≤ xxx)−H(xxx)

)
, t ≥ 0, xxx ∈ [0, 1]K , (2.16)

where for each i ∈ N, ξξξi := (ξi1, ..., ξ
i
K) is a vector of nonnegative random variables with continuous

joint distribution function H(·) and uniform marginals over [0, 1].
The convergence for the processes Ûn(t,xxx) is established in the space D([0,∞),D([0, 1]K ,R)).

We remark that this theorem is in the same spirit as Lemma 3.1 in [28], where an FCLT is proved
for the two-parameter process Ûn(t, x) in the univariate case in the space D([0,∞),D([0, 1],R)).
We generalize that result to the multivariate setting.

Theorem 2.1. The multiparameter sequential empirical processes Ûn(t,xxx) defined in (2.16) con-
verge weakly to a continuous Gaussian limit,

Ûn(t,xxx)⇒ U(t,xxx) in D([0,∞),D([0, 1]K ,R)) as n→∞, (2.17)

where U(t,xxx) is a continuous Gaussian random field with mean function E[U(t,xxx)] = 0 and covari-
ance function

Cov(U(t,xxx), U(s,yyy)) = (t ∧ s)(H(xxx ∧ yyy)−H(xxx)H(yyy)), t, s ≥ 0, xxx,yyy ∈ [0, 1]K .

To show the FCLT for the processes (XXXn,YYY n, Sn), we define the diffusion-scaled multiparameter
sequential empirical processes K̂n := {K̂n(t,xxx) : t ≥ 0,xxx ∈ RK+} by

K̂n(t,xxx) :=
1√
n

bntc∑
i=1

(
1(ηηηi ≤ xxx)− F (xxx)

)
, t ≥ 0, xxx ∈ RK+ . (2.18)

Theorem 2.1 can be applied to show an FCLT for the processes K̂n(t,xxx). Define FFF : RK → [0, 1]K

with FFF (xxx) = (F1(x1), ..., FK(xK)). By Sklar’s theorem [46], for any multivariate distribution func-
tion F , there exists a unique multivariate distribution function H (called “copula”) with uni-
form marginals on [0, 1] such that F (xxx) = H(FFF (xxx)) when the marginal distribution functions Fk,
k = 1, ...,K, are continuous. Then, K̂n(·, ·) can be represented as a composition of Ûn(·, ·) with
FFF (·) in the second component, i.e.,

K̂n(t,xxx) = Ûn(t,FFF (xxx)), t ≥ 0, xxx ∈ RK+ .

Thus, it follows from Theorem 2.1 that the processes K̂n(t,xxx) converge in distribution:

K̂n(t,xxx) = Ûn(t,FFF (xxx))⇒ K̂(t,xxx) := U(t,FFF (xxx)) in D([0,∞),DK) as n→∞, (2.19)

which implies that

K̄n(t,xxx)⇒ k̄(t,xxx) := tF (xxx) in D([0,∞),DK) as n→∞. (2.20)
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2.3 FWLLN and FCLT

We define fluid-scaled processes X̄̄X̄Xn, Ȳ̄ȲY n and S̄n by

X̄XX
n

:=
1

n
XXXn, ȲYY

n
:=

1

n
YYY n, S̄n :=

1

n
Sn. (2.21)

The FWLLN for (X̄XX
n
, ȲYY

n
, S̄n) is stated in the following theorem.

Theorem 2.2 (FWLLN). Under Assumptions 1 and 2, the fluid-scaled processes converge to
deterministic fluid functions,

(Ān, X̄XX
n
, ȲYY

n
, S̄n)⇒ (ā, X̄XX, ȲYY , S̄) (2.22)

in D2K+2 as n → ∞, where the limits are all deterministic functions: ā is the limit in (2.5), for
each t ≥ 0,

X̄XX(t) := (X̄1(t), ..., X̄K(t)), X̄k(t) :=

∫ t

0
F ck(t− s)dā(s), for k = 1, ...,K, (2.23)

ȲYY (t) := (Ȳ1(t), ..., ȲK(t)), Ȳk(t) :=

∫ t

0
(F cm(t− s)− F ck(t− s))dā(s), for k = 1, ...,K, (2.24)

S̄(t) :=

∫ t

0
Fm(t− s)dā(s). (2.25)

When ā(t) = λt for a constant arrival rate λ > 0 and E[η1k] <∞ for k = 1, ...,K,

X̄k(∞) := lim
t→∞

X̄k(t) = λE[η1k], k = 1, ...,K, (2.26)

Ȳk(∞) := lim
t→∞

Ȳk(t) = λ(E[η1m]− E[η1k]), k = 1, ...,K, (2.27)

lim
t→∞

S̄(t)

t
= λ. (2.28)

We define the diffusion scaling of XXXn, YYY n and Sn by

X̂XX
n

:=
√
n(X̄XX

n − X̄XX), ŶYY
n

:=
√
n(ȲYY

n − ȲYY ), Ŝn :=
√
n(S̄n − S̄). (2.29)

We will show the following FCLT for these diffusion-scaled processes.

Theorem 2.3 (FCLT). Under Assumptions 1 and 2, the diffusion-scaled processes converge in
distribution,

(Ân, K̂n, X̂XX
n
, ŶYY

n
, Ŝn)⇒ (Â, K̂, X̂XX, ŶYY , Ŝ) (2.30)

in D × D([0,∞),DK) × D2K+1 as n → ∞, where Â is the limit in (3.6), K̂ is the limit in (2.19),
which is independent of Â, and for t ≥ 0 and k = 1, ...,K,

X̂XX(t) := M̂MM1(t) + M̂MM2(t), M̂MM i(t) := (M̂1,i(t), ..., M̂K,i(t)), i = 1, 2, (2.31)

M̂k,1(t) :=

∫ t

0
F ck(t− s)dÂ(s) = Â(t)−

∫ t

0
Â(s)dF ck(t− s), (2.32)
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M̂k,2(t) :=

∫ t

0

∫
RK
+

1(s+ xk > t)dK̂(ā(s),xxx) = −
∫ t

0

∫
RK
+

1(s+ xk ≤ t)dK̂(ā(s),xxx), (2.33)

Ŝ(t) := V̂1(t) + V̂2(t), (2.34)

V̂1(t) :=

∫ t

0
Fm(t− s)dÂ(s) = −

∫ t

0
Â(s)dFm(t− s), (2.35)

V̂2(t) :=

∫ t

0

∫
RK
+

1(s+ xj ≤ t, ∀j)dK̂(ā(s),xxx), (2.36)

ŶYY (t) := ẐZZ1(t) + ẐZZ2(t), ẐZZi(t) := (Ẑ1,i(t), ..., ẐK,i(t)), i = 1, 2, (2.37)

Ẑk,1(t) :=

∫ t

0
(Fk(t− s)− Fm(t− s))dÂ(s) =

∫ t

0
Â(s)d(Fm(t− s)− Fk(t− s)), (2.38)

Ẑk,2(t) :=

∫ t

0

∫
RK
+

(1(s+ xk ≤ t)− 1(s+ xj ≤ t, ∀j))dK̂(ā(s),xxx) = −M̂k,2(t)− V̂2(t).(2.39)

The processes M̂MM2, ẐZZ2 and V̂2 are defined in the mean-square sense. This is in the same way
as the limit process with respect to a standard Kiefer process for the G/GI/∞ queue is defined in
[28, 39]. The limit processes are characterized in the next subsection.

2.4 Characterization of the Limit Processes

In this section, we show the Gaussian property of the limiting processes (X̂XX, ŶYY ) and Ŝ when the
arrival limit process is a Brownian motion.

Theorem 2.4 (Gaussian Property). Under Assumptions 1 and 2, when the arrival limit process
Â is a Brownian motion, i.e., Â(t) = caBa(ā(t)) for a standard Brownian motion Ba, a positive
constant ca > 0 and t ≥ 0, the limiting processes (X̂XX, ŶYY ) and Ŝ in Theorem 2.3 are well-defined
continuous Gaussian processes. For each t ≥ 0,

(X̂XX(t), ŶYY (t))
d
= N(000,Σ(t)), and Ŝ(t)

d
= N(0, σS(t)),

where for j, k = 1, ...,K,

σXjk(t) := Cov(X̂j(t), X̂k(t)) =

∫ t

0

[
F cj,k(t− s, t− s) + (c2a − 1)F cj (t− s)F ck(t− s)

]
dā(s), (2.40)

σYjk(t) := Cov(Ŷj(t), Ŷk(t)) =

∫ t

0

[
(Fj,k(t− s, t− s)− Fm(t− s))

+ (c2a − 1)(Fj(t− s)− Fm(t− s))(Fk(t− s)− Fm(t− s))
]
dā(s), (2.41)

σXYjk (t) := Cov(X̂j(t), Ŷk(t)) =

∫ t

0

[
(Fk(t− s)− Fj,k(t− s, t− s))

+ (c2a − 1)
(
F cj (t− s)(Fk(t− s)− Fm(t− s))

) ]
dā(s), (2.42)

and

σS(t) := V ar(Ŝ(t)) =

∫ t

0
Fm(t− s)dā(s) + (c2a − 1)

∫ t

0
(Fm(t− s))2dā(s). (2.43)
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When the arrival rate function ā(t) = λt for a positive constant λ > 0,

(X̂XX(t), ŶYY (t))⇒ (X̂XX(∞), ŶYY (∞))
d
= N(000,Σ(∞)) as t→∞,

lim
t→∞

t−1V ar(Ŝ(t)) = λc2a,

where for j, k = 1, ...,K,

σXjk(∞) := λ

∫ ∞
0

F cj,k(s, s)ds+ λ(c2a − 1)

∫ ∞
0

F cj (s)F ck(s)ds, (2.44)

σYjk(∞) := λ

∫ ∞
0

[
(Fj,k(s, s)− Fm(s)) + (c2a − 1)(Fj(s)− Fm(s))(Fk(s)− Fm(s))

]
ds, (2.45)

σXYjk (∞) := λ

∫ ∞
0

[
(Fk(s)− Fj,k(s, s)) + (c2a − 1)

(
F cj (s)(Fk(s)− Fm(s))

) ]
ds. (2.46)

We make the following remarks on the Gaussian property of the limiting processes.

(i) When we set c2a = 1, the variance and covariance formulas coincide with those in the Poisson
arrival case in Proposition 2.1.

(ii) When K = 2 and c2a = 1, Cov(Ŷj(t), Ŷk(t)) = 0, for t ≥ 0 and k, j = 1, ...,K with k 6= j,
even if the service times of parallel tasks are correlated, since both terms inside the integral
in (2.41) vanish.

(iii) We emphasize the interesting structure of the variances of X̂k and Ŷk and their covariances,
k = 1, ...,K. Recall that for G/GI/∞ queues [28], the steady-state variance formula of the
number of jobs in the system is given as the sum of two terms, the mean and the coefficient
(c2a − 1) multiplying an integral associated with the service time distribution; for example,
when E[η1k] < ∞, the variance of the steady-state number of tasks in the kth service station
is

V ar(X̂k(∞)) = λE[η1k] + λ(c2a − 1)

∫ ∞
0

(F ck(s))2ds, k = 1, ...,K.

It turns out that the steady-state variance formula for the number of tasks in the waiting buffer
for synchronization has the same structure; for instance, when E[η1k] < ∞ for k = 1, ...,K,
the variance of the steady-state waiting buffer size at the kth service station is

V ar(Ŷk(∞)) = λ(E[η1m]− E[η1k]) + λ(c2a − 1)

∫ ∞
0

(F cm(s)− F ck(s))2ds, k = 1, ...,K.

The same structure also exists for the covariances between X̂j and Ŷk, as shown in (2.42), for
k, j = 1, ...,K.

(iv) The synchronized process does not have a Brownian motion limit, but its limiting process is
Gaussian, and has the same variability as the arrival process when the arrival rate is constant.
This can be also explained by regarding the synchronized process as the departure process
of a G/GI/∞ queue with the same arrival process and service times as the maximum of the
service vectors (see [28, 39]).
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To explore the impact of the correlation among the service times of each job’s parallel tasks
on the system dynamics, we consider the case when the service vector ηηηi has the joint continuous
distribution function

F (xxx) = (1− ρ)
K∏
k=1

G(xk) + ρG

(
min

k=1,...,K
{xk}

)
(2.47)

with a marginal continuous distribution function G(·), for 0 ≤ ρ < 1, xk ≥ 0 and k = 1, ...,K.
Namely, the service times at the parallel stations have the same distribution, and are symmetrically
correlated with a correlation parameter ρ ∈ [0, 1). We state the mean and covariance functions of
the performance measures studied above as functions of the parameter ρ in the following corollary.

Corollary 2.1. Under the same assumptions in Theorem 2.4, when the service vector ηηηi has the
joint distribution function F in (2.47), for each t ≥ 0 and k = 1, ...,K, X̄k(t) and V ar(X̂k(t)) are
the same as in (2.23) and (2.40), respectively,

Ȳk(t) = (1− ρ)

∫ t

0

[
G(t− s)(1− (G(t− s))K−1)

]
dā(s),

V ar(Ŷk(t)) =

∫ t

0

[
(1− ρ)G(t− s)(1− (G(t− s))K−1)

+ (1− ρ)2(c2a − 1)(G(t− s))2
(
1− (G(t− s))K−1

)2 ]
dā(s),

Cov(X̂k(t), Ŷk(t)) = (c2a − 1)(1− ρ)

∫ t

0

[
Gc(t− s)G(t− s)(1− (G(t− s))K−1)

]
dā(s),

for j, k = 1, ...,K and j 6= k,

Cov(X̂j(t), X̂k(t)) =

∫ t

0

[
(1− ρ)(Gc(t− s))2 + ρGc(t− s) + (c2a − 1)(Gc(t− s))2

]
dā(s),

Cov(Ŷj(t), Ŷk(t)) =

∫ t

0

[
(1− ρ)(G(t− s))2(1− (G(t− s))K−2)

+ (1− ρ)2(c2a − 1)(G(t− s))2
(
1− (G(t− s))K−1

)2 ]
dā(s),

Cov(X̂j(t), Ŷk(t)) = (1− ρ)

∫ t

0

[
G(t− s)Gc(t− s)

+ (c2a − 1)Gc(t− s)G(t− s)
(
1− (G(t− s))K−1

) ]
dā(s),

and

S̄(t) =

∫ t

0

[
(1− ρ)(G(t− s))K + ρG(t− s)

]
dā(s),

V ar(Ŝ(t)) =

∫ t

0

[
(1− ρ)(G(t− s))K + ρG(t− s)

]
dā(s)

+ (c2a − 1)

∫ t

0

[
(1− ρ)(G(t− s))K + ρG(t− s)

]2
dā(s).
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We make several remarks on the impact of the correlation among the service vector. The mean
and the variance of Xk(t) are not affected by the correlation, but the covariances of Xj(t) and Xk(t)
increase linearly in ρ for t ≥ 0 and j, k = 1, ...K with j 6= k. The mean of Yk(t) decreases linearly in
ρ and the mean of S(t) increases linearly in ρ for t ≥ 0 and k = 1, ...,K. The covariances of Yj(t) and
Yk(t) decrease in ρ, in the order of (1−ρ)2, but the covariances of Xj(t) and Yk(t) decrease linearly
in ρ for t ≥ 0 and j, k = 1, ...K. The variance of S(t) increases in ρ, in the order of ρ2, for t ≥ 0.
The intuitive interpretation for these observations is that positive correlation makes the parallel
tasks more likely to finish close to each other so that the waiting time for synchronization becomes
less and more jobs are synchronized. It is also important to emphasize that the covariances of Yj(t)
and Yk(t) and the covariances of Xj(t) and Yk(t) decrease in different orders in the correlation
parameter ρ for t ≥ 0 and j, k = 1, ...K. The same observations hold for the associated steady-state
performance measures.

2.5 Comparison with a fork-join network with ES

We make a comparison with an associated fork-join network with ES. We use superscript “ES” in
the corresponding processes for this model. Let the arrival and service processes be the same as
the model described above. The only difference is the synchronization constraint. Here tasks are
not tagged with a particular job, so that whenever there are tasks completed at all parallel service
stations, the oldest completed task at each waiting buffer for synchronization will be synchronized.
It is evident that when the arrival process A(t) is Poisson, the processes Y ES

k (t) and SES(t) do not
have a Poisson distribution at each time t ≥ 0, k = 1, ...,K. In this case, for each k = 1, ...,K,
Xn,ES
k and Dn,ES

k will have the same representations as in (2.6) and (2.9), but the processes Sn,ES

and Y n,ES
k become

Sn,ES(t) = min
1≤j≤K

{Dn,ES
j (t)}, t ≥ 0, (2.48)

and
Y n,ES
k (t) = Dn,ES

k (t)− Sn,ES(t) = Dn,ES
k (t)− min

1≤j≤K
{Dn,ES

j (t)}, t ≥ 0. (2.49)

Thus, at any time, one of the waiting buffers for synchronization should be empty. It is evident that
the processes Sn,ES and Y n,ES

k cannot be represented as a single integral of the multiparameter
sequential empirical process K̄n as in equations (2.15) and (2.14), respectively.

We now discuss more on the comparison for the steady-state mean values of the fluid limits of
these processes when the arrival rate is constant. In the ES model, the synchronization process
SES can be represented as the minimum of the departure processes from all parallel stations, and
these departure processes are dependent due to the correlation of service vector of each job. Thus,
we are unable to obtain a distributional approximation of the processes SES and Y ES

k , k = 1, ...,K.
However, for each t ≥ 0, by applying the previous results on G/GI/∞ queues [28], we can obtain
the mean values of the fluid limit Ȳ ES

k (t), k = 1, ...,K, and S̄ES(t):

Ȳ ES
k (t) := λ

[∫ t

0
Fk(s)ds− min

1≤j≤K

{∫ t

0
Fj(s)ds

}]
(2.50)

−→ Ȳ ES
k (∞) := λ

(
max

1≤j≤K
{E[η1j ]} − E[η1k]

)
as t→∞,
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S̄ES(t) := λ min
1≤j≤K

{∫ t

0
Fj(s)ds

}
= λt− λ max

1≤j≤K

{∫ t

0
F cj (s)ds

}
, and lim

t→∞

S̄ES(t)

t
= λ.

(2.51)

Recall that the steady-state mean value of the waiting buffer for synchronization in our model
Ȳk(∞) = λ

(
E[η1m]− E[η1k]

)
in (2.27), k = 1, ...,K, denoted as Ȳ NES

k (∞) for the comparison
purpose. It is evident that the average waiting buffer sizes for synchronization under NES constraint
are larger than those under ES constraint, even though the total synchronization throughput rates
are the same, limt→∞ S̄

ES(t)/t = limt→∞ S̄
NES(t)/t = λ. We also observe that when the parallel

service times are perfectly positively correlated, the difference Ȳ NES
k (∞)− Ȳ ES

k (∞) becomes zero
for k = 1, ...,K. We summarize this comparison result in the following proposition.

Proposition 2.2. Under Assumptions 1 and 2, when ā(t) = λt for a positive arrival rate λ > 0
and E[η1k] <∞ for k = 1, ...,K,

Ȳ NES
k (∞)− Ȳ ES

k (∞) = λ
(
E[η1m]− max

1≤j≤K
{E[η1j ]}

)
≥ 0, for k = 1, ...,K. (2.52)

By the extreme value theory, if the service vector has i.i.d. components such that the service
time distribution lies in the domain of attraction for Gumbel extremal distribution, then we have
aK(η1m − bK) ⇒ Z as K → ∞, where Z has a Gumbel distribution, and aK and bK are constants
depending on K; see Chapter 1 in [31]. The Gumbel distribution has cdf P (Z ≤ z) = e−e

−z
, z ≥ 0,

with mean E[Z] = γ ≈ 0.5772, the Euler-Mascheroni constant, and variance V ar(Z) = π/
√

6 ≈
1.2825. For one example, if the service vector has i.i.d. components of an exponential distribution
with rate 1, then aK = 1 and bK = lnK (see Example 1.7.2 of [31]), for k = 1, ...,K,

Ȳ NES
k (∞)− Ȳ ES

k (∞) = λ

(
K∑
k=1

1

k
− 1

)
≈ λ(ln(K)− 1) as K →∞. (2.53)

For another example, if the service vector has i.i.d. components of a lognormal distribution
LN(0, 1), we have, for k = 1, ...,K,

Ȳ NES
k (∞)− Ȳ ES

k (∞) ≈ λ(γ/aK + bK − e1/2) as K →∞, (2.54)

where aK and bK are (see Example 1.7.4 of [31]):

aK = (2 lnK)1/2 exp
{
−(2 lnK)1/2 + 0.5(2 lnK)−1/2(ln lnK + ln(4π))

}
,

and
bK = exp

{
(2 lnK)1/2 − 0.5(2 lnK)−1/2(ln lnK + ln(4π))

}
.

2.6 Numerical Example

In this section, we provide a numerical example with two parallel tasks (K = 2), comparing our
approximations with simulations. We let the arrival process be renewal with arrival rate λ = 100
and the SCV c2a = 5. The service times of the two parallel tasks are assumed to be a bivariate
Marshall-Olkin hyperexponential distribution, which is a mixture of two independent bivariate
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Marshall-Olkin exponential distributions [34]. A bivariate Marshall-Olkin exponential distribution
function FMO(x, y) for the random vector (X,Y) can be written as F cMO(x, y) := P (X > x,Y >
y) = exp(−µ1x− µ2y − µ12(x ∨ y)), x, y ≥ 0, where three parameters µ1, µ2, µ12 are such that the
two marginals are exponential with rates µ1 +µ12 and µ2 +µ12 and their correlation ρ = µ12/(µ1 +
µ2 +µ12) ∈ [0, 1]. We denote MO(λ1, λ2, ρ) for a bivariate Marshall-Olkin exponential distribution,
where λ1 and λ2 are the rates for the marginals, and ρ is the correlation parameter, for which the
parameters µ1 = (λ1−ρλ2)/(1 +ρ), µ2 = (λ2−ρλ1)/(1 +ρ) and µ12 = (ρ(λ1 +λ2))/(1 +ρ). In the
numerical example, we take a mixture of MO(4/5, 1, ρ1) with probability 0.4 and MO(6/5, 6/5, ρ2)
with probability 0.6, such that the means of the two hyperexponential marginals are ms,1 = 1 and
ms,2 = 0.9. By setting ρ1 = ρ2 = 0, we have two independent parallel service times, and by setting
ρ1 = 0.7 and ρ2 = 172/679, we obtain that the correlation (see the correlation formula in §5.2 [40])
between the two parallel service times is equal to 0.5.

In Table 1, we show the approximation values for the mean, variance and covariance of Xk

and Yk, for k = 1, 2, and compare them with the corresponding simulated values. To estimate
the simulated values, we simulated the system up to time 40 with 4000 independent replications
starting with an empty system, which we call one experiment. In each replication, we collected data
over the time interval [20, 40] and formed the time average (the system tends to be in steady state
in less than 5 time units). We conducted 5 independent experiments and took sample averages as
estimations for simulated values. To construct the 95% confidence interval (CI), we used Student
t-distribution with four degrees of freedom. The halfwidth of the 95% CI is 2.776s5/

√
5, where s5

is the sample deviation.
We make several remarks for the numerical example. First, our approximations match very well

with the simulated values. Second, the size of waiting buffers for synchronization is quite large, of
the same order as the number of tasks in the service stations. Third, we find that when the two
parallel tasks are positively correlated, the mean and the variance of Xk’s are the same as those
in the independent case, while the covariance between X1 and X2 gets larger, the mean and the
variance and covariances of Yk’s and the covariances between Xk and Yj become smaller than those
in the independent case, j, k = 1, 2. These are also consistent with the observations in Corollary
2.1. Note that this numerical example is more general than that considered in Corollary 2.1.

3 The multi-server fork-join network model

3.1 Model and Assumptions

In this section, we present a detailed description of our multi-server fork-join network model. We
consider a fork-join network with a single class of jobs, and each job is forked into K (K > 1)
parallel tasks. Each task is processed in a service station with finite servers under the non-idling
FCFS discipline. Namely, a newly arriving task immediately gets served if there is an idle server in
that station, and joins the back of the queue otherwise, and the task waiting for the longest in the
queue enters service as soon as a server in that station becomes available. After service completion,
each task will join a waiting buffer for synchronization associated with each service station, and
when all tasks of the same job are completed, they will be synchronized and leave the system. Here
we assume that the synchronization process takes zero amount of time.

Let A := {A(t) : t ≥ 0} be the arrival process of jobs after time 0. Let τi be the arrival time of
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Table 1: Comparing approximations with simulations in a stationary model

(X1, X2) (E[X1], E[X2]) (V ar(X1), V ar(X2)) Cov(X1, X2)

ρ = 0
Sim. (95% CI.) (99.99 ± 0.17 , 89.98 ± 0.12) (296.26 ± 0.66, 269.46 ± 0.70) 234.14 ± 0.66

Approx. (100.00, 90.00) (296.00, 269.27) 233.99

ρ = 0.5
Sim. (95% CI.) (99.98 ± 0.04, 89.99 ± 0.04) (296.08 ± 0.57, 269.23 ± 0.80) 256.34 ± 0.43

Approx. (100.00, 90.00) (296.00, 269.27) 256.30

(Y1, Y2) (E[Y1], E[Y2]) (V ar(Y1), V ar(Y2)) Cov(Y1, Y2)

ρ = 0
Sim. (95% CI.) (43.18 ± 0.05 , 53.20 ± 0.10) (70.12 ± 0.20, 89.85 ± 0.40) 31.53 ± 0.30

Approx. (43.20, 53.20) (70.31, 90.08) 31.55

ρ = 0.5
Sim. (95% CI.) (20.89 ± 0.01, 30.88 ± 0.02) (27.14 ± 0.15, 42.23 ± 0.35) 8.36 ± 0.07

Approx. (20.89, 30.89) (27.05, 42.23) 8.31

(X,Y ) Cov(X1, Y1) Cov(X1, Y2) Cov(X2, Y1) Cov(X2, Y2)

ρ = 0
Sim. (95% CI.) 60.80 (± 0.59) 122.87 (± 0.61) 99.21 (± 0.42) 64.56 (± 0.54)

Approx. 61.09 123.10 99.85 64.57

ρ = 0.5
Sim. (95% CI.) 28.72 (± 0.33) 68.37 (± 0.73) 47.51 (± 0.42) 34.49 (± 0.44)

Approx. 28.67 68.37 47.41 34.44

the ith job, i ∈ N, that is, A(t) = max{i ≥ 1 : τi ≤ t} for t > 0 and A(0) = 0. Let Nk be the number
of servers at service station k, k = 1, ...,K. Each job brings in a K-dimensional service vector,
representing the service time at each service station, which can be correlated. Let ηηηi := (ηi1, ..., η

i
K)

be the service vector of the job that arrives at time τi, i ∈ N, where ηik is the service time at the
kth service station. We assume that the sequence {ηηηi : i ≥ 1} is i.i.d., and let the joint distribution
function of ηηηi be F (xxx) = F (x1, ..., xK) for xk ≥ 0, k = 1, ...,K. Let F c(xxx) := P (ηi1 > x1, ..., η

i
K >

xK), for x1, ..., xK ≥ 0. Their marginal distributions are Fk(·) with mean 1/µk ∈ (0,∞), for
k = 1, ...,K. Let ηim := max{ηi1, ..., ηiK} and Fm(x) := P (ηim ≤ x) = P (ηij ≤ x, ∀j) = F (x, ..., x)
for x ≥ 0. (Throughout this paper, we use “m” to index quantities and processes associated with
the maximum.) We make a regularity assumption on the service time distributions for the parallel
tasks.

Assumption 1. The joint distribution function F (xxx) of the service time vector ηηηi, i ∈ N, is
continuous.

State Descriptors. Let Xk := {Xk(t) : t ≥ 0} be the process counting the number of tasks at
the service station k, and Yk := {Yk(t) : t ≥ 0} be the process counting the number of tasks in
the waiting buffer for synchronization (unsynchronized queue) after service completion at service
station k, k = 1, ...,K. Denote XXX := (X1, ..., XK) and YYY := (Y1, ..., YK). Let S := {S(t) : t ≥ 0}
be the process counting the number of synchronized jobs by each time t ≥ 0. In addition, let
Qk := {Qk(t) : t ≥ 0} and Bk := {Bk(t) : k ≥ 0} be the processes representing the queue length
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and the number of tasks in service at station k, respectively, k = 1, ...,K. Let Dk := {Dk(t) : t ≥ 0}
be the cumulative service completion (departure) process at service station k, k = 1, ...,K. Denote
QQQ := (Q1, ..., QK), BBB := (B1, ..., BK), and DDD := (D1, ..., DK).

A Sequence of Systems. We consider a sequence of the above fork-join networks, indexed by
superscript n and let n→∞. We assume that each service station is operating in the many-server
heavy-traffic asymptotic regimes, where the arrival rate of jobs and the number of servers get large
appropriately while the service time distributions are fixed. In establishing the FLLN, we allow
the arrival rate to be time-dependent. In establishing the FCLT, we will assume that each service
station is operating in the Halfin-Whitt (QED) regime, so that it is critically loaded with a constant
arrival rate (see Assumption 4 for the precise definition). For any process X , we use X n to represent
the associated process in the sequence of the fork-join networks.

Some Fundamental Flow Balance Equations. For each service station k, k = 1, ...,K, and for
each t ≥ 0, we have the following flow conservation equations:

Xn
k (t) = Bn

k (t) +Qnk(t), (3.1)

Xn
k (t) = Xn

k (0) +An(t)−Dn
k (t), (3.2)

Y n
k (t) = Y n

k (0) +Dn
k (t)− Sn(t). (3.3)

The non-idling condition implies that for each k = 1, ...,K and t ≥ 0,

Bn
k (t) = Xn

k (t) ∧Nn
k , Qnk(t) = (Xn

k (t)−Nn
k )+. (3.4)

In addition, we have the following flow balance equation, for each k, k′ = 1, ...,K, k 6= k′, and t ≥ 0,

Xn
k (t) + Y n

k (t) = Xn
k′(t) + Y n

k′(t), (3.5)

that is, the total numbers of tasks in each service station and its associated waiting buffer for
synchronization are equal at all time, and are equal to the total number of jobs in the system.

3.2 Fluid Limit

In this section, we present the fluid limit for the fork-join network. We assume that the system
starts from empty and allow the arrival rate to be time-dependent.

Assumption 2. There exists a continuous nondecreasing deterministic real-valued function ā(t)
on [0,∞) with ā(0) = 0 such that

Ān(t) := n−1An(t)⇒ ā(t) in D as n→∞. (3.6)

We also make the following assumption on the numbers of servers.

Assumption 3. For k = 1, ...,K, N̄n
k := Nn

k /n→ Nk > 0 as n→∞.

Under the empty initial condition, we can write the processes Xn
k (t), Y n

k (t), k = 1, ...,K, and
Sn(t) as

Xn
k (t) =

An(t)∑
i=1

1(τni + wn,ik + ηik > t), t ≥ 0, (3.7)
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Y n
k (t) =

An(t)∑
i=1

1(τni + wn,ik + ηik ≤ t, τni + wn,ik′ + ηik′ > t, for some k′ 6= k), t ≥ 0, (3.8)

Sn(t) =

An(t)∑
i=1

1(τni + wn,ik + ηik ≤ t, ∀k = 1, ...,K), t ≥ 0, (3.9)

where wn,ik is the waiting time of the ith arrival at station k, i ∈ N.
In addition, for k = 1, ...,K, let Enk (t) be the number of tasks that have entered service at

station k by time t, t ≥ 0, and set Enk := {Enk (t) : t ≥ 0}. Denote EEEn := (En1 , ..., E
n
K). For each

service station k = 1, ..,K, we also have the balance equation

Enk (t) = An(t)−Qnk(t) = An(t)− (Xn
k (t)−Nn

k )+, t ≥ 0. (3.10)

Define the fluid-scaled processes X̄ n := n−1X n for X n = XXXn,YYY n, Sn,EEEn,QQQn,BBBn,DDDn. We now
state the FLLN for the fluid-scaled processes.

Theorem 3.1. Under Assumptions 1-3,

(Ān, X̄XX
n
, ȲYY

n
, S̄n, ĒEE

n
, Q̄QQ

n
, B̄BB

n
, D̄DD

n
)⇒ (ā, X̄XX, ȲYY , S̄, ĒEE,Q̄QQ,B̄BB,D̄DD) (3.11)

in D6K+2 as n → ∞, where the limits are all deterministic functions: ā is the limit in (3.6),
(ĒEE,X̄XX, ȲYY , S̄) is the unique solution to the following: for t ≥ 0 and k = 1, ...,K,

X̄k(t) =

∫ t

0
F ck(t− s)dā(s) +

∫ t

0
(X̄k(t− s)−Nk)

+dFk(s), (3.12)

Ēk(t) = ā(t)− (X̄k(t)−Nk)
+, (3.13)

S̄(t) =

∫ t

0
...

∫ t

0

(
min

k=1,...,K

{
Ēk(t− sk)

})
dF (s1, ..., sK), (3.14)

Ȳk(t) =

∫ t

0
Fk(t− s)dā(s)−

∫ t

0
(X̄k(t− s)−Nk)

+dFk(s)− S̄(t), (3.15)

and the limits Q̄̄Q̄Q, B̄̄B̄B and D̄̄D̄D satisfy

Q̄k(t) = (X̄k(t)−Nk)
+, B̄k(t) = X̄k(t) ∧Nk, D̄k(t) = ā(t)− X̄k(t). (3.16)

It is easy to check that for each k = 1, ...,K, the limit X̄k(t) also satisfies the following equation:

X̄k(t) = ā(t)−
∫ t

0
Ēk(t− s)dFk(s), t ≥ 0. (3.17)

When ā(t) =
∫ t
0 λ(s)ds and the service times are exponential (independent or dependent), where

λ(·) is a positive function, for each k = 1, ...,K, the fluid limit X̄k in (3.12) and (3.17) becomes an
ordinary differential equation (ODE) [38], but the fluid limit Ȳk in (3.15) does not have an ODE
representation. We remark that the fluid limit X̄k for each k = 1, ...,K depends only on the marginal
distribution Fk, while the fluid limits Ȳk, k = 1, ...,K, and S̄ depend on the joint distribution F .
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However, as the FCLT (Theorem 3.2) below shows, the limits for all these processes in the diffusion
scale will depend on the joint distribution F .

When the arrival rate is constant and each service station is underloaded or critically loaded, we
give a corollary on the steady states of the fluid limits. The proof follows from a direct calculation
and is omitted. It is evident that correlation among service times of parallel tasks only affects the
steady state of ȲYY but not that of X̄XX.

Corollary 3.1. Under Assumptions 1-3, if the arrival rate is constant, ā(t) = λt, for λ satisfying
0 < λ ≤ Nkµk for all k = 1, ...,K,

(X̄XX(t), ȲYY (t), Q̄QQ(t), B̄BB(t))→ (X̄XX(∞), ȲYY (∞), Q̄QQ(∞), B̄BB(∞)) as t→∞,

and
1

t
(D̄DD(t), ĒEE(t), S̄(t))→ λλλ := (λ, ..., λ) as t→∞,

where

X̄k(∞) = B̄k(∞) = λE[η1k] = λ/µk, Ȳk(∞) = λ(E[η1m]− E[η1k]), Q̄k(∞) = 0.

3.2.1 Numerical Examples

We give two numerical examples to show the effectiveness of fluid approximations comparing with
simulations, when K = 2. We let the arrival process be Poisson with time-varying rate λ(t) =
200 + 120 sin(t), t ≥ 0. The numbers of servers in stations 1 and 2 are N1 = 300 and N2 = 340,
respectively. In the first numerical example, the service times of the two parallel tasks are assumed
to have a bivariate Marshall-Olkin exponential distribution [34]. For our first numerical example,
we set the service times to be MO(1, 0.9, ρ) such that the service times of the two parallel tasks
have exponential marginals with means 1 and 10/9 in stations 1 and 2, respectively, and their
correlation is ρ. The numerical results with ρ = 0 and ρ = 0.5 are provided in Figure 3(a), marked
with “ind.” and “corr.”, respectively. In the second numerical example, we let the service times of
the two parallel tasks have a bivariate Marshall-Olkin hyperexponential distribution [40], which is
a mixture of two independent bivariate Marshall-Olkin exponential distributions. Specifically, we
take a mixture of MO(4/5, 1, ρ1) with probability 0.4 and MO(6/5, 27/32, ρ2) with probability 0.6,
such that the two parallel service times have hyperexponential marginals with the same means as
the first example. By setting ρ1 = ρ2 = 0, we have two independent parallel service times, and
by setting ρ1 = 0.7 and ρ2 = 521/1232, we get the correlation between the two parallel service
times to be 0.5. In Figure 3(b), we show the numerical results with ρ = 0 (“ind.”) and ρ = 0.5
(“corr.”). To calculate the simulated values, we simulated the system up to time 20 with 500
independent replications starting with an empty system. We make two remarks from numerical
results. First, the fluid approximations match very well with the simulated results. Second, the
positive correlation among parallel service times does not affect X̄k, but reduces Ȳk, for k = 1, 2.

3.3 FCLT in the Halfin-Whitt regime

In this section, we study the fork-join network with NES in the Halfin-Whitt regime, which requires
that each service station operates in a critically loaded regime asymptotically. Specifically, we
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Figure 3: Comparison of fluid approximations with simulations.

assume the following. Let λn be the arrival rate of jobs such that λ̄n := λn/n→ λ > 0 as n→∞,
and set Nn

k := nNk, where Nk ∈ N, and ρnk := λn/(µkN
n
k ) for each k = 1, ...,K.

Assumption 4. For each k = 1, ...,K, λ = Nkµk and
√
n(1− ρnk)→ βk > 0, as n→∞.

The arrival processes An = {An(t) : t ≥ 0} satisfy an FCLT.

Assumption 5. There exists a stochastic process Â with continuous sample paths satisfying

Ân(t) :=
An(t)− λnt√

n
⇒ Â(t) in D as n→∞. (3.18)

It follows from (3.18) that we have the associated FLLN:

Ān(t)⇒ λt in D as n→∞. (3.19)

We now describe the non-empty initial conditions. Due to the complexity from initial conditions,
we focus on the case of K = 2, but our approach can be extended to K > 2. For convenience, we
use the notation k′ to denote its counterpart, i.e., k′ = 1 (k′ = 2, respectively) if k = 2 (k = 1,
respectively), for k = 1, 2. At time 0−, there are Xn

k (0) tasks at service station k, and Y n
k (0) tasks

in its associated waiting buffer for synchronization, for k = 1, 2. Let XXXn(0) := (Xn
1 (0), Xn

2 (0)) and
YYY n(0) := (Y n

1 (0), Y n
2 (0)). Recall the flow balance equation (3.5). At time 0−,

Xn
k (0) + Y n

k (0) = Xn
k′(0) + Y n

k′(0), k = 1, 2, (3.20)

which is equal to the number of jobs in the system. Note that Xn
k (0) ≥ Y n

k′(0) for each k = 1, 2,
since tasks in the waiting buffer associated with station k′ for synchronization must be in station
k, either in service or in queue. Let Bn

k (0) := min(Xn
k (0), Nn

k ) and Qnk(0) := (Xn
k (0)−Nn

k )+ be the
number of tasks in service (busy servers) and the queue length at station k at time 0−, respectively,
k = 1, 2. We also assume that Y n

k′(0) ≤ Bn
k (0) for k = 1, 2. This is not a restrictive assumption,

because in the Halfin-Whitt regime, waiting times for service at each station are O(1/
√
n) and

service times are O(1), and jobs that have completed tasks in one station and joined its waiting
buffer for synchronization have their associated tasks receiving service in the other station with
probability one asymptotically.
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Let Jn(0) := mink=1,2{Bn
k (0) − Y n

k′(0)} be the number of jobs whose both tasks are in service
at time 0−. Then Znk (0) := Bn

k (0)− Y n
k′(0)− Jn(0) represents the number of jobs in the system at

time 0− whose task k is in service but whose task k′ is in queue waiting for service, k = 1, 2. Let
In(0) := Qn1 (0)∧Qn2 (0) be the number of jobs (if any) whose both tasks are in queue at their service
stations at time 0−. Then Rnk (0) := Qnk(0) − In(0) represents the number of jobs (if any) whose
task k is waiting in queue for service while whose task k′ is in service, k = 1, 2. (Note that our
assumption above implies that if a job is waiting in queue at station k, its parallel task can be either
in queue or in service at station k′.) By our definition, we can see that Znk (0) = Rnk′(0), k = 1, 2. Set
RRRn(0) := (Rn1 (0), Rn2 (0)) and ZZZn(0) := (Zn1 (0), Zn2 (0)). We also obtain a decomposition for Xn

k (0):

Xn
k (0) = Bn

k (0) +Qnk(0) = Y n
k′(0) + Jn(0) + Znk (0) + In(0) +Rnk (0), k = 1, 2. (3.21)

We let {w̃n,ik : i = 1, ..., Qnk(0)} be the sequence of remaining waiting times of the tasks in

station k at time 0−, k = 1, 2. It is in the order of their positions in queue: w̃n,1k is the remaining

waiting time of the task in the front of the queue while w̃
n,Qn

k (0)

k is that for the task in the end
of the queue at station k at time 0−, k = 1, 2. Let {η̃ik : i = 1, ..., Bn

k (0)} be the sequence

of remaining service times of the tasks in station k at time 0−, for k = 1, 2. Let {ηi,Qk : i =
1, ..., Qnk(0)} be the sequence of service times of the tasks in station k that are in queue at time

0−, k = 1, 2. Without abuse of notation, we use {η̃i,Ykk : i = 1, ..., Y n
k′(0)}, {η̃i,Jk : i = 1, ..., Jn(0)}

and {η̃i,Zk : i = 1, ..., Znk (0)}, which are partitioning subsets of {η̃ik : i = 1, ..., Bn
k (0)}, to represent

the remaining service times of the tasks in station k at time 0− corresponding to the quantities
Y n
k′(0), Jn(0) and Znk (0), respectively, k = 1, 2. Similarly, we use {w̃n,i,Ik : i = 1, ..., In(0)} and

{w̃n,i,Rk : i = 1, ..., Rnk (0)}, which are partitioning subsets of {w̃n,ik : i = 1, ..., Qnk(0)}, to represent the
remaining waiting times of the tasks in station k at time 0− corresponding to the quantities In(0)
and Rnk (0), respectively, k = 1, 2. Finally, we use {ηi,Ik : i = 1, ..., In(0)} and {ηi,Rk : i = 1, ..., Rnk (0)},
which are partitioning subsets of {ηi,Qk : i = 1, ..., Qnk(0)}, to represent the service times of the tasks
in station k corresponding to the quantities In(0) and Rnk (0) in queue at time 0−, respectively,
k = 1, 2. We assume that these initial quantities are independent of the arrival process An and the
service times of new arrivals after time 0.

We can now give a representation for the processes XXXn, YYY n and Sn: for t ≥ 0 and k = 1, 2,

Xn
k (t) =

Bn
k (0)∑
i=1

1(η̃ik > t) +

Qn
k (0)∑
i=1

1(w̃n,ik + ηi,Qk > t) +

An(t)∑
i=1

1(τni + wn,ik + ηik > t), (3.22)

Sn(t) =

Y n
2 (0)∑
i=1

1(η̃i,Y11 ≤ t) +

Y n
1 (0)∑
i=1

1(η̃i,Y22 ≤ t) +

Jn(0)∑
i=1

1(η̃i,Jj ≤ t,∀j) (3.23)

+

Zn
1 (0)∑
i=1

1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t) +

Zn
2 (0)∑
i=1

1(w̃n,i,R1 + ηi,R1 ≤ t, η̃i,Z2 ≤ t)

+

In(0)∑
i=1

1(w̃n,i,Ij + ηi,Ij ≤ t,∀j) +

An(t)∑
i=1

1(τni + wn,ij + ηij ≤ t,∀j),

and

Y n
k (t) = Y n

k (0) +Xn
k (0) +An(t)−Xn

k (t)− Sn(t). (3.24)
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We use the convention that
∑0

i=1 ≡ 0 throughout the paper.
We impose the following assumptions on the initial quantities.

Assumption 6. There exists (Ȳ1(0), Ȳ2(0)) ∈ R2
+ such that

(X̄XX
n
(0), ȲYY

n
(0)) := n−1(XXXn(0),YYY n(0))⇒ (X̄XX(0), ȲYY (0)) in R4 as n→∞,

where X̄XX(0) := (N1, N2) and ȲYY (0) := (Ȳ1(0), Ȳ2(0)). There exist random vectors X̂XX(0) := (X̂1(0), X̂2(0)) ∈
R2 and ŶYY (0) := (Ŷ1(0), Ŷ2(0)) ∈ R2 such that

(X̂XX
n
(0), ŶYY

n
(0)) :=

√
n(X̄XX

n
(0)− X̄XX(0), ȲYY

n
(0)− ȲYY (0))⇒ (X̂XX(0), ŶYY (0)) in R4 as n→∞.

This assumption implies that the associated fluid-scaled initial quantities

(J̄n(0), Z̄ZZ
n
(0), Īn(0), R̄RR

n
(0)) := n−1(Jn(0),ZZZn(0), In(0),RRRn(0))⇒ (J̄(0), Z̄ZZ(0), Ī(0), R̄RR(0))

in R6 as n→∞, where

J̄(0) := N1 − Ȳ2(0) = N2 − Ȳ1(0), Z̄ZZ(0) := (Z̄1(0), Z̄2(0)) := (0, 0), Ī(0) := 0, R̄RR(0) := (0, 0).

Define the associated diffusion-scaled quantities (Ĵn(0), ẐZZ
n
(0), În(0), R̂RR

n
(0)) by

Ĵn(0) :=
Jn(0)− nJ̄(0)√

n
, Ẑnk (0) :=

Znk (0)√
n
, În(0) :=

In(0)√
n
, R̂nk (0) :=

Rnk (0)√
n
, k = 1, 2.

Then Assumption 6 implies that(
Ĵn(0), ẐZZ

n
(0), În(0), R̂RR

n
(0)
)
⇒
(
Ĵ(0), ẐZZ(0), Î(0), R̂RR(0)

)
in R6 as n→∞,

where

Ĵ(0) := min
k=1,2

{−(X̂k(0))− − Ŷk′(0)}, Ẑk(0) := −(X̂k(0))− − Ŷk′(0)− Ĵ(0), k = 1, 2,

Î(0) := min
k=1,2

(X̂k(0))+, R̂k(0) := (X̂k(0))+ − Î(0), k = 1, 2.

Let

Fk,e(t) :=
1

E[η1k]

∫ t

0
F ck(s)ds, t ≥ 0,

be the equilibrium distribution associated with Fk, k = 1, 2.

Assumption 7. For k = 1, 2, {η̃ik : i ∈ N} is a sequence of i.i.d. random variables with distribution

Fk,e and for each i ∈ N, η̃i1 and η̃i2 are independent. {ηi,Qk : i ∈ N} is a sequence of i.i.d. random

variables with distribution Fk for each i ∈ N and k = 1, 2. {(ηi,I1 , ηi,I2 ) : i ∈ N} is a sequence of i.i.d.

random vectors with a joint distribution F (·, ·). {(ηi,Rk , η̃i,Zk′ ) : i ∈ N} is a sequence of i.i.d. random
vectors with independent components, k = 1, 2.

Finally, we also make an assumption for the residual waiting times {w̃n,ik : i = 1, ..., Qnk(0)},
k = 1, 2.
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Assumption 8. The residual waiting times of the tasks in queue {w̃n,ik : i = 1, ..., Qnk(0)}, k = 1, 2,
converge to zero a.s. as n→∞.

We define the diffusion-scaled processes X̂XX
n

:= (X̂n
1 , X̂

n
2 ), ŶYY

n
:= (Ŷ n

1 , Ŷ
n
2 ) and Ŝn by

X̂n
k (t) :=

Xn
k (t)−Nn

k√
n

, Ŷ n
k (t) :=

Y n
k (t)− Ỹ n

k (t)√
n

, Ŝn(t) :=
Sn(t)− S̃n(t)√

n
, t ≥ 0, (3.25)

for k = 1, 2, where

S̃n(t) := nS̄0(t) + λ̄n
∫ t

0

∫ t

0
((t− s1) ∧ (t− s2)) dF (s1, s2), (3.26)

S̄0(t) := Ȳ2(0)F1,e(t) + Ȳ1(0)F2,e(t) + J̄(0)F1,e(t)F2,e(t), (3.27)

Ỹ n
k (t) := nȲk(0) + λnt− S̃n(t). (3.28)

From the balance equation for Y n
k in (3.24), we can rewrite Ŷ n

k as

Ŷ n
k (t) = Ŷ n

k (0) + X̂n
k (0) + Ân(t)− X̂n

k (t)− Ŝn(t), t ≥ 0, k = 1, 2. (3.29)

Recall Enk (t) is defined as the cumulative number of tasks entering service by time t ≥ 0 at
station k, k = 1, 2, assuming the system starts empty in §3.2. Without abuse of notation, in §3.3
related to the FCLT, we let Enk (t) be the number of new arrivals after time 0 whose task k has
entered service by time t ≥ 0 at station k, k = 1, 2.

Define the diffusion-scaled processes (ÊEE
n
, Q̂QQ

n
, B̂BB

n
, D̂DD

n
), ÊEE

n
:= (Ên1 , Ê

n
2 ), Q̂QQ

n
:= (Q̂n1 , Q̂

n
2 ), B̂BB

n
:=

(B̂n
1 , B̂

n
2 ) and D̂DD

n
:= (D̂n

1 , D̂
n
2 ), by

Ênk (t) :=
Enk (t)− λnt√

n
, Q̂nk(t) := (X̂n

k (t))+, B̂n
k (t) := −(X̂n

k (t))−,

D̂n
k (t) := X̂n

k (0) + Ân(t)− X̂n
k (t), t ≥ 0, k = 1, 2. (3.30)

For s1, s2 ≥ 0, let

Ên(s1, s2) :=
1√
n

((En1 (s1) ∧ En2 (s2))− λn(s1 ∧ s2))

= (Ên1 (s1) + (λn/
√
n)(s1 − s1 ∧ s2)) ∧ (Ên2 (s2) + (λn/

√
n)(s2 − s1 ∧ s2)).(3.31)

Before we present the FCLT for the fork-join network with NES in the Halfin-Whitt regime,
we provide some preliminaries for the limit processes. The limit processes will be functionals of
a generalized multiparameter Kiefer process, as a limit of the multiparameter sequential empirical
process driven by the service time vectors of new arrivals. Define the multiparameter sequential
empirical processes K̂n := {K̂n(t1, t2,xxx) : t1 ≥ 0, t2 ≥ 0,xxx ∈ R2

+} by

K̂n(t1, t2,xxx) :=
1√
n

bnt1c∧bnt2c∑
i=1

(1(ηηηi ≤ xxx)− F (xxx)). (3.32)

We prove the convergence of K̂n in the space D([0,∞)2,D([0,∞)2,R)) endowed with a generalized
Skorohod J1 topology defined in [18] in Proposition 3.1.
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Proposition 3.1. Under Assumption 1,

K̂n(t1, t2,xxx)⇒ K̂(t1, t2,xxx) in D([0,∞)2,D([0,∞)2,R)) as n→∞, (3.33)

where K̂(t1, t2,xxx) is a continuous Gaussian random field, called a generalized multiparameter Kiefer
process, with mean E[K̂(t1, t2,xxx)] = 0 and covariance function

Cov(K̂(s1, s2,xxx), K̂(t1, t2, yyy)) = (s1 ∧ s2 ∧ t1 ∧ t2)(F (xxx ∧ yyy)− F (xxx)F (yyy)), (3.34)

for sk, tk ≥ 0, k = 1, 2, and xxx,yyy ∈ R2
+.

We define the processes Ŵk := {Ŵk(t) : t ≥ 0}, Ŵ c
k := {Ŵ c

k(t) : t ≥ 0} and Ŵ := {Ŵ (t) : t ≥ 0}
as integral functionals of K̂: for t ≥ 0, k = 1, 2,

Ŵk(t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sk + xk ≤ t)dK̂(λs1, λs2,xxx), (3.35)

Ŵ (t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̂(λs1, λs2,xxx), (3.36)

and

Ŵ c
k(t) := Ŵk(t)− Ŵ (t) =

∫ t

0

∫ t

0

∫
R2
+

1(sk + xk ≤ t, sk′ + xk′ > t)dK̂(λs1, λs2,xxx), (3.37)

where the integrals are defined in the sense of mean-square limits (see the precise definition in §??).

Proposition 3.2. The processes Ŵk, Ŵ c
k and Ŵ are well-defined continuous Gaussian processes

with mean zero, and for 0 ≤ s < t and k = 1, 2,

E[(Ŵk(t)− Ŵk(s))
2] = λ

∫ t

0
(Fk(t− u)− Fk(s− u))(1− Fk(t− u) + Fk(s− u))du,

E[(Ŵ (t)− Ŵ (s))2] = λ

∫ t

0

∫ t

0
[∆F ((s− s1, s− s2); (t− s1, t− s2))]

× [1−∆F ((s− s1, s− s2); (t− s1, t− s2))]d(s1 ∧ s2), (3.38)

E[(Ŵ c
k(t)− Ŵ c

k(s))2] = E[(Ŵk(t)− Ŵk(s))
2] + E[(Ŵ (t)− Ŵ (s))2]

− 2λ

∫ t

0

∫ t

0
[F (t− s1, t− s2)− Fk,k′(s− sk, t− sk′)

+ (Fk(t− sk)− Fk(s− sk))(F (s− s1, s− s2)− F (t− s1, t− s2))]d(s1 ∧ s2),

and covariance functions

Cov(Ŵk(t), Ŵk′(t)) = λ

∫ t

0

∫ t

0
[F (t− s1, t− s2)− Fk(t− sk)Fk′(t− sk′)]d(s1 ∧ s2),
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Cov(Ŵk(t), Ŵ
c
k′(t)) = λ

∫ t

0

∫ t

0
[Fk(t− sk)F (t− s1, t− s2)− Fk(t− sk)Fk′(t− sk′)]d(s1 ∧ s2),

Cov(Ŵk(t), Ŵ (t)) = λ

∫ t

0

∫ t

0
[F (t− s1, t− s2)− Fk(t− sk)F (t− s1, t− s2)]d(s1 ∧ s2),

Cov(Ŵ c
k(t), Ŵ (t)) = λ

∫ t

0

∫ t

0
[(F (t− s1, t− s2))2 − Fk(t− sk)F (t− s1, t− s2)]d(s1 ∧ s2),

where Fk,k′(x, y) := P (ηik ≤ x, ηik′ ≤ y) for x, y ∈ R+, and

∆F (xxx;yyy) := F (y1, y2)− F (x1, y2)− F (y1, x2) + F (x1, x2), xxx,yyy ∈ R2
+, xxx ≤ yyy.

In addition, let Û := {Û(ttt) : ttt ∈ R2
+} be a continuous two-parameter Gaussian process with

mean zero and covariance function:

Cov(Û(sss), Û(ttt)) = (F1,e(s1 ∧ t1)F2,e(s2 ∧ t2)− F1,e(s1)F2,e(s2)F1,e(t1)F2,e(t2)), (3.39)

for sss := (s1, s2) ∈ R2
+ and ttt := (t1, t2) ∈ R2

+. Define Ûk := {Ûk(t) : t ≥ 0}, for k = 1, 2, by

Û1(t) := Û(t,∞), Û2(t) := Û(∞, t), t ≥ 0, (3.40)

and without abuse of notation, we denote Û(t) = Û(t, t), t ≥ 0. Note that the processes Ŵk, Ŵ
c
k

and Ŵ are independent with Û , as well as Ûk, k = 1, 2.
We are now ready to state the FCLT.

Theorem 3.2. Under Assumptions 1 and 4-8,(
Ân, X̂XX

n
, ŶYY

n
, Ŝn, ÊEE

n
, Q̂QQ

n
, B̂BB

n
, D̂DD

n
)
⇒
(
Â, X̂XX, ŶYY , Ŝ, ÊEE,Q̂QQ,B̂BB,D̂DD

)
(3.41)

in D14 as n → ∞, where Â is in (3.18), X̂XX, ŶYY and Ŝ are the unique solutions to the following set
of stochastic integral equations: for t ≥ 0 and k = 1, 2,

X̂k(t) = X̂0
k(t)−NkβkFk,e(t)− J̄(0)1/2Ûk(t)− Ȳk′(0)1/2B̂0,k(Fk,e(t))

+

∫ t

0
(X̂k(t− s))+dFk(s) +

∫ t

0
F ck(t− s)dÂ(s)− Ŵk(t), (3.42)

Ŷk(t) = Ŷ 0
k (t) +NkβkFk,e(t)− Ȳk(0)1/2B̂0,k′(Fk′,e(t)) + J̄(0)1/2(Ûk(t)− Û(t))

−
∫ t

0
(X̂k(t− s))+dFk(s) +

∫ t

0
Fk(t− s)dÂ(s) + Ŵ c

k(t)− Ψ̂(t), (3.43)

Ŝ(t) = Ŝ0(t) + Ȳ2(0)1/2B̂0,1(F1,e(t)) + Ȳ1(0)1/2B̂0,2(F2,e(t)) + J̄(0)1/2Û(t) + Ŵ (t) + Ψ̂(t),

(3.44)

and ÊEE
n

, Q̂QQ
n

, B̂BB
n

and D̂DD
n

are given as follows:

Êk(t) = Â(t)− (X̂k(t))
+, D̂k(t) = X̂k(0) + Â(t)− X̂k(t), (3.45)
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Q̂k(t) = (X̂k(t))
+, B̂k(t) = −(X̂k(t))

−,

where

X̂0
k(t) := X̂k(0)F ck,e(t) + (X̂k(0))+(F ck (t)− F ck,e(t)), (3.46)

Ŝ0(t) :=
2∑

k=1

(Ŷk′(0)Fk,e(t) + Ẑk′(0)Fk(t)Fk′,e(t)) + Ĵ(0)F1,e(t)F2,e(t) + Î(0)Fm(t), (3.47)

Ŷ 0
k (t) := Ŷk(0) + X̂k(0)Fk,e(t) + (X̂k(0))+(Fk(t)− Fk,e(t))− Ŝ0(t), (3.48)

the processes B̂0,k := {B̂0,k(t) : t ≥ 0}, k = 1, 2, are independent standard Brownian bridges, the

process Û is a continuous two-parameter Gaussian process defined above with the processes Û1 and
Û2 defined in (3.40), and the processes Ŵk, Ŵ c

k and Ŵ are defined in (3.35), (3.37) and (3.36),

and B̂0,k is independent of Û and Ŵk, Ŵ c
k and Ŵ , and the process Ψ̂ := {Ψ̂(t) : t ≥ 0} defined by

Ψ̂(t) :=

∫ t

0

∫ t

0
Ê(t− s1, t− s2)dF (s1, s2), (3.49)

is a well-defined continuous process, where, for s1, s2 ≥ 0,

Ê(s1, s2) := Ê1(s1)1(s1 < s2) + Ê2(s2)1(s2 < s1) + (Ê1(s1) ∧ Ê2(s2))1(s1 = s2). (3.50)

We remark that the limit processes X̂k, k = 1, 2, have the same structure as the unique solution
to an integral convolution equation, as shown in Reed [45], but are also different because they are
both driven by the same generalized multiparameter Kiefer process K̂ defined in Proposition 3.1.
These two limiting processes X̂k, k = 1, 2, are correlated because of the correlated service times of
the parallel tasks of each job, which is captured by the process K̂, as well as the same arrival limit
process Â. In fact, these two processes K̂ and Â as well as the limits associated with the initial
quantities are the driving stochastic components of all the limit processes in (3.42)-(3.45).

4 Concluding Remarks and Future Work

We remark on the main ideas of the proofs for the limit theorems due to space constraint. The
main difficulty in the study of many-server fork-join networks with NES is the resequencing of
arrival orders after service completion at each service station. Tasks of distinct jobs must be
differentiated and tracked in order to describe the waiting buffer dynamics for synchronization. To
mathematically describe the system dynamics, we develop a new approach using multiparameter
sequential empirical processes driven by service vectors for parallel tasks of each job, as depicted
in Figure 2. This approach is used to establish FLLNs and FCLTs for the waiting buffer processes
for synchronization and the service processes jointly in the fundamental fork-join network where
all service stations are operating in the many-server heavy-traffic regimes.

As a prerequisite, we first establish a new FCLT for multiparameter sequential empirical pro-
cesses driven by random vectors (Theorem 2.1). To prove Theorem 2.1, we employ the standard
approach of establishing convergence of finite-dimensional distributions and tightness [?, 20, 55].
The convergence of finite-dimensional distributions follows from the strong convergence result of
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multiparameter empirical processes in [42]. To prove tightness, we present a new decomposition
property for multiparameter sequential empirical processes, which have a multiparameter mar-
tingale [23, 19], and a second term of finite variation. We apply properties of multiparameter
martingales [23, 19] and strong approximations of random walks by Brownian motions (see section
3.5 in [30]) to show the tightness of those two decomposed terms, respectively. This decomposition
also plays a very important role in proving the tightness of the number of tasks in each waiting
buffer for synchronization, the number of tasks in each parallel service station and the number
of synchronized jobs. Specifically, the aforementioned processes can be decomposed into a linear
combination of three terms: an integral functional of the arrival process and two other terms from
the decomposition of the multiparameter sequential empirical process. We apply Aldous’ tightness
criteria (see, e.g., Lemma 3.7 in [28]) and another tightness criteria for processes with proper decom-
positions satisfying certain conditions (Lemma VI.3.32 in [20]) to verify the tightness property of
the two terms related to the sequential empirical process driven by the service vector, respectively.

The proofs of the limit theorems in the QD regime can be regarded as generalizations of those
for G/GI/∞ queues in [28]. However, since all the processes, XXX, YYY and S, are represented via
the multiparameter sequential empirical processes driven by the service vectors, many technical
challenges must be addressed in the multiparameter setting, for example, using multiparameter L2

martingales, and mean-square limits of (integral functionals of) multiparameter processes defined
on Rk (k ≥ 2). One important advantage of our new approach is that all the diffusion-scale limit
processes for XXX, YYY and S are all functionals of two independent processes - the arrival limit and
the multiparameter generalized Kiefer process driven by the service vector (Theorem 2.3). From
that, the characterization of the joint transient and stationary distributions of these processes is
made possible (Theorem 2.4).

The proofs in the QED regime are based on the important observations that the system dy-
namics of G/GI/n queues can be represented via the corresponding G/GI/∞ service dynamics
[45], and that waiting times in the QED regime are O(1/

√
n) while service times are O(1). For

the fork-join network, we represent the dynamics of XXX, YYY and S via that in the corresponding
infinite-server fork-join network where the entering service times in the model are regarded as the
“arrival” times for the corresponding infinite-server fork-join network, as shown in Figure 2(b).
The observation that the entering service times in the parallel stations have a difference of order
O(1/

√
n) is key to prove the joint convergence of the aforementioned processes. On the other

hand, since we have to simultaneously handle the waiting times of all parallel tasks and work with
multiparameter sequential empirical processes, we must develop new techniques to prove tightness,
including establishing new properties for multiparameter L2 martingales, and identifying a new
multivariate integral mapping to apply the continuous mapping theorem.

We believe that a general framework has been developed to study fork-join networks with
NES in the many-server heavy-traffic regimes (QD and QED). It can be potentially used to study
performance evaluation, capacity allocation, and control problems in multi-class fork-join networks
under NES with multi-stage processing. We want to find optimal scheduling and routing policies
such that delays for synchronization as well as delays for service can be minimized, particularly,
reducing delays for synchronization to be of a smaller order than service. We also want to find
optimal staffing policies to stabilize delays for synchronization in addition to delays for service
when arrival rates are time inhomogeneous. Our methods can be extended to investigate reliability
of many-server fork-join networks under NES in random environments (e.g., service disruptions).
Fork-join networks with NES are more likely to suffer from service disruptions due to the structural

30



complexity of parallel and sequential task processing. Component-level unreliability can be much
more amplified by its large scale. We will extend our approach to investigate the impact of service
disruptions in one or multiple service stations upon system congestion, particularly, delays for
synchronization and throughput.
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[9] M. Csörgö and P. Révész. (1975) A strong approximation of the multivariate empirical process.
Studia Sci. Math. Hungar, 10, 427-434.

[10] H. Dai. (2011) Exact Monte Carlo simulation for fork-join networks. Advances in Applied
Probability, 43(2), 484-503.

[11] J. Dean and S. Ghemawat. (2008) MapReduce: simplified data processing on large clusters.
Communications of the ACM. Vol. 51, No. 1, 107–113.

[12] A. B. Dieker and M. Lelarge. (2006) Tails for (max, plus) recursions under subexponentiality.
Queueing Systems, 53(4), 213-230.

[13] P. Doukhan, J. D. Fermanian and G. Lang. (2009) An empirical central limit theorem with
applications to copulas under weak dependence. Statistical Inference for Stochastic Processes,
12(1), 65–87.

[14] S. G. Eick, W. A. Massey and W. Whitt. (1993) The physics of the Mt/G/∞ queue. Operations
Research, 41(4), 731–742.

31



[15] S. N. Ethier and T. G. Kurtz. (1986) Markov Processes: Characterization and Convergence.
John Wiley & Sons.

[16] J. Gallien and L. M. Wein. (2001) A simple and effective component procurement policy for
stochastic assembly systems. Queueing systems, 38(2), 221-248.

[17] I. Gurvich and A. Ward. (2014) On the dynamic control of matching queues. Forthcoming in
Stochastic Systems.

[18] B. G. Ivanoff. (1980) The function space D ([0,∞)q, E). Canadian Journal of Statistics. Vol.
8, No. 2, 179–191.

[19] B. G. Ivanoff and E. Merzbach. (1999) Set-Indexed Martingales. CRC Press.

[20] J. Jacod and A. N. Shiryaev. (1987) Limit Theorems for Stochastic Processes. Berlin: Springer-
Verlag.

[21] A. Jean-Marie and L. Gün. (1993) Parallel queues with resequencing. Journal of the ACM,
40(5), 1188-1208.

[22] L. Jiang and R. E. Giachetti. (2008) A queueing network model to analyze the impact of
parallelization of care on patient cycle time. Health Care Management Science, 11(3), 248–
261.

[23] D. Khoshnevisan. (2002) Multiparameter Processes: An Introduction to Random Fields.
Springer.

[24] L. J. Klementowski. (1978) PERT/CPM and Supplementary Analytical Techniques. An Anal-
ysis of Aerospace Usage. Ph.D. Thesis.

[25] S. S. Ko and R. F. Serfozo. (2004) Response times in M/M/s fork-join networks. Advances in
Applied Probability, 854-871.

[26] S. S. Ko and R. F. Serfozo. (2008) Sojourn times in G/M/1 fork-join networks. Naval Research
Logistics, 55(5), 432-443.

[27] P. Konstantopoulos and J. Walrand. (1989) Stationary and stability of fork-join networks.
Journal of Applied Probability, 604-614.

[28] E. V. Krichagina and A. A. Phalskii. (1997) A heavy-traffic analysis of a closed queueing
system with a GI/∞ service center. Queueing Systems, 25(1-4), 235-280.

[29] R. C. Larson, M. F. Cahn and M. C. Shell. (1993) Improving the New York City arrest-to-
arraignment system. Interfaces, 23(1), 76-96.

[30] G. F. Lawler and V. Limic. (2010) Random Walk: A Modern Introduction. Cambridge Uni-
versity Press.

[31] M. R. Leadbetter, G. Lindgren and H. Rootzén. (1983) Extremes and Related Properties of
Random Sequences and Processes. Springer-Verlag.

32



[32] M. Lin, L. Zhang, A. Wierman and J. Tan. (2013) Joint optimization of overlapping phases in
MapReduce. Performance Evaluation, 70(10), 720-735.

[33] A. Mandelbaum and P. Momcilovic. (2012) Queues with many servers and impatient customers.
Mathematics of Operations Research, 37(1), 41-65.

[34] A. W. Marshall and I. Olkin. (1967) A multivariate exponential distribution. Journal of the
American Statistical Association. 62.317: 30-44.

[35] G. Neuhaus. (1971) On weak convergence of stochastic processes with multidimensional time
parameter. The Annals of Mathematical Statistics, 42(4) 1285-1295.

[36] V. Nguyen. (1993) Processing networks with parallel and sequential tasks: heavy traffic analysis
and Brownian Limits. The Annals of Applied Probability, 3(1), 28-55.

[37] V. Nguyen. (1994) The trouble with diversity: fork-join networks with heterogeneous customer
population. The Annals of Applied Probability, 4(1), 1-25.

[38] G. Pang, R. Talreja and W. Whitt. (2007) Martingale proofs of many-server heavy-traffic limits
for Markovian queues. Probability Surveys. 4, 193–267.

[39] G. Pang and W. Whitt. (2010) Two-parameter heavy-traffic limits for infinite-server queues.
Queueing Systems, 65(4), 325-364.

[40] G. Pang and W. Whitt. (2012) Infinite-server queues with batch arrivals and dependent service
times. Probability in Engineering and Informational Sciences. 26.02: 197-220.

[41] G. Pang and W. Whitt. (2013) Two-parameter heavy-traffic limits for infinite-server queues
with dependent service times. Queueing Systems, 73(2), 119-146.

[42] W. Philipp and L. Pinzur. (1980) Almost sure approximation theorems for the multivariate
empirical process. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 54(1),
1-13.

[43] B. Prabhakar, N. Bambos and T. S. Mountford. (2000) The synchronization of Poisson pro-
cesses and queueing networks with service and synchronization nodes. Advances in Applied
Probability, 824–843.

[44] A. A. Puhalskii and J. E. Reed. (2010) On many-server queues in heavy traffic. The Annals of
Applied Probability, 20(1), 129-195.

[45] J. E. Reed. (2009) The G/GI/N queue in the Halfin-Whitt regime. The Annals of Applied
Probability, 19(6), 2211-2269.
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