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Abstract

Here, we show that if E is a CM elliptic curve with CM field
Q(
√
−d), then the set of n for which the nth Fibonacci number Fn

satisfies an elliptic Korselt criterion for Q(
√
−d) (defined in the paper)

is of asymptotic density zero.
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1 Introduction

Let b ≥ 2 be an integer. A composite integer n is a pseudoprime to base b
if the congruence bn ≡ b (mod n) holds. There are infinitely many pseu-
doprimes with respect to any base b, but they are less numerous than the
primes. That is, putting πb(x) for the number of base b pseudoprimes n ≤ x,
a result of Pomerance [9] shows that the inequality

πb(x) ≤ x/L(x)1/2 where L(X) = exp (log x log log log x/ log log x)

holds for all sufficiently large x. It is conjectured that πb(x) = x/L(x)1+o(1)

as x→∞.

Let {Fn}n≥0 be the sequence of Fibonacci numbers Fn+1 = Fn +Fn−1 for
n ≥ 1 with F0 = 0, F1 = 1, and {Ln}n≥0 be its companion Lucas sequence
satisfying the same recurrence with initial conditions, L0 = 2, L1 = 1. For
the Fibonacci sequence {Fn}n≥1 is was shown in [7] that the set of n ≤ x
such that Fn is a prime or a base b pseudoprime is of asymptotic density
zero. More precisely, it was shown that the number of such n ≤ x is at most
5x/ log x if x is sufficiently large.

Since elliptic curves have become very important in factoring and pri-
mality testing, several authors have defined and proved many results on
elliptic pseudoprimes. To define an elliptic pseudoprime, let E be an el-
liptic curve over Q with complex multiplication by Q(

√
−d). Here, d ∈

{1, 2, 3, 7, 11, 19, 43, 67, 163}. If p is a prime not dividing 6∆E, where ∆E is
the discriminant of E, and additionally (−d|p) = −1, where (a|p) denotes
the Legendre symbol of a with respect to p, then the order of group of points
on E modulo p denoted #E(Fp), equals p+1. In case p - ∆E and (−d|p) = 1,
we have #E(Fp) = p + 1− ap for some nonzero integer ap with |ap| < 2

√
p.

Gordon [3], used the simple formula for #E(Fp) in the case (−d|p) = −1
to define the following test of compositeness: Let Q be a point in E(Q) of
infinite order. Let N > 163 be a number coprime to 6 to be tested. We
compute (−d|N). If it is 1 we do not test and if it is 0, then N is composite.
If it is −1, then we compute [N + 1]Q (mod N). If it is not O (the identity
element of E(Q)), then N is composite while if it is O, then we declare N to
be a probable prime for Q ∈ E. So, we can define N to be a pseudoprime
for Q ∈ E if it is composite and probable prime for Q ∈ E. The count-
ing function of elliptic pseudoprimes for Q ∈ E has also been investigated
by several authors. The record belongs to Gordon and Pomerance [4], who
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showed that this function is at most exp(log x− 1
3

logL(x)) for x sufficiently
large depending on Q and E. We are not aware of research done on the set
of indices n for which Fn can be an elliptic pseudoprime for Q ∈ E.

There are composite integers n which are pseudoprimes for all bases b.
They are called Carmichael numbers and there exist infinitely many of them
as shown by Alford, Granville and Pomerance in 1994 in [1]. They are also
characterized by the property that n is composite, squarefree and p−1 | n−1
for all prime factors p of n. This characterization is referred to as the Korselt
criterion.

Analogously, given a fixed curve E having CM by Q(
√
−d), a composite

integer n which is an elliptic pseudoprime for all points Q of infinite order
on E is called an elliptic Carmichael number for E. Fix d ∈ D. The authors
of [2] defined the following elliptic Korselt criterion which ensures that n is
an elliptic Carmichael number for any E with CM by Q(

√
−d) provided that

(N,∆E) = 1.

Theorem 1. (EPT) Let N be squarefree, coprime to 6, composite, with an
odd number of prime factors p all satisfying (−d|p) = −1 and p+ 1 | N + 1.
Then N is an elliptic Carmichael number for any E with CM by Q(

√
−d)

provided that (N,∆E) = 1.

We call positive integers N satisfying the first condition of Theorem 1
elliptic Korselt for Q(

√
−d). In [2], it is shown that there are infinitely many

elliptic Korselt numbers for Q(
√
−d) for all d ∈ D under some believed

conjectures from the distribution of prime numbers. It was recently shown
by Wright [10] that the number of elliptic Carmichael numbers up to x is

≥ exp

(
K log x

(log log log x)2

)
with some positive constant K

for all x > 100.

Here, we fix d ∈ D := {1, 2, 3, 7, 11, 19, 43, 67, 163} and look at the set of
numbers

N (d) = {n : Fn is elliptic Korselt for Q(
√
−d)}.

It is easy to prove that N (1) = ∅. Namely, since F2n+1 = F 2
n +F 2

n+1, it follows
that if r ≥ 5 is an odd prime, then all prime factors of Fr are congruent to 1
modulo 4. In particular, (−1|p) = 1 for all prime factors p of Fr. Since Fr | Fn
for all r | n, then the primes p|Fr (recall that they all satisfy (−1|p) = 1)
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would divide Fn but that is impossible since Fn is Korselt and its prime factors
must satisfy (−1|p) = −1. This shows that if n ∈ N (1), then n cannot have
prime factors r ≥ 5, therefore n = 2a · 3b, which is impossible since Fn must
be coprime to 6. It is likely that N (d) is finite for all d ∈ D\{1} (or even
empty) but we do not know how to prove such a strong result. Instead, we
settle for a more modest goal and prove that N (d) is of asymptotic density 0.
For a subset A of the positive integers and a positive real number x put
A(x) = A ∩ [1, x].

2 The result

We prove the following result.

Theorem 2. For d ∈ D\{1}, we have

N (d)(x)� x(log log x)1/2

(log x)1/2
.

Proof. Let Q be the set of primes q ≡ 2, 3 (mod 5). Let x be a large positive
real number and y be some parameter depending on x to be made more
precise later. Consider n ∈ N (x), where we omit the dependence on d for
simplicity. Put N = Fn. Our proof uses the fact that N is coprime to 6 but
it does not use the fact that (−d|p) = −1 for all prime factors p of N . We
distinguish several cases.

Case 1. n ∈ N1(x) = {n ≤ x : q - n for any q ∈ Q ∩ (y, x)}.

By Brun’s sieve (see, for example, Theorem 2.3 on Page 70 in [5]), we
have

#N1(x)� x
∏
p∈Q
y≤p≤x

(
1− 1

p

)
� x

(
log y

log x

)1/2

. (1)

From now on, we work with n ∈ N (x)\N1(x), so there exists q ∈ Q with
q ≥ y such that q | n. Since such q ≡ 2, 3 (mod 5), it follows that Fq ≡ −1
(mod q). Furthermore, let p be any prime factor of Fq. Then p ≡ ±1
(mod q). Since Fq ≡ −1 (mod q), at least one of the prime factors p of Fq
has the property that p ≡ −1 (mod q). Thus, q | p+ 1. Since p+ 1 | Fn + 1,
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we get that q | Fn + 1. Note that 4 - n because otherwise Fn is a multiple of
F4 = 3, which is not possible. We now use the fact that

Fn + 1 = F(n+δ)/2L(n−δ)/2,

for some δ ∈ {±1,±2} such that n ≡ δ (mod 4). Thus,

q | F(n+δ)/2L(n−δ)/2 | Fn−δFn+δ.

Hence, either q | Fn−δ or q | Fn+δ. This shows that if we put z(q) for the
index of appearance of q in the Fibonacci sequence, then n ≡ ±δ (mod z(q)).

Put R = {q : z(q) ≤ q1/3}. By a classical argument due to Hooley [6], we
have

#R(t)� t2/3. (2)

Case 2. N2(x) = {n ∈ N1(x)\N (x) : q ∈ R}.

If n ∈ N2(x), then q | n for some q > y in R. For a fixed q, the number
of such n ≤ x is bx/qc ≤ x/q. Hence,

#N2(x) ≤
∑
y≤q≤x
q∈R

x

q
≤ x

∑
q≥y
q∈R

1

q
� x

y1/3
, (3)

where the last estimate follows from estimate (2) by the Abel summation
formula.

Case 3. N3(x) = N (x)\ (N1(x) ∪N2(x)) .

If n ∈ N3(x), then we saw that there exists q ≥ y in Q\R dividing n
such that n ≡ δ (mod z(q)) for some δ ∈ {±1,±2}. Since q ≡ 2, 3 (mod 5),
z(q) divides q + 1, therefore q and z(q) are coprime. Fixing q and writing
n = qm, the congruences mq ≡ δ (mod z(q)) put m ≤ x/q into one of four
possible arithmetic progressions modulo z(q). The number of such integers
for a fixed q is therefore at most 4bx/qz(q)c + 4 ≤ 4x/qz(q) + 4. Summing
up the above bound over all q ≤ x in Q\R, we get that

#N3(x) ≤ 4
∑
y≤q≤x
q 6∈R

x

qz(q)
+ 4π(x) ≤ 4x

∑
q≥y

1

q4/3
+ 4π(x)� x

y1/3
+

x

log x
. (4)
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Comparing estimates (1), (3), (4), it follows that we should choose y such
that

y1/3 = (log x/ log y)1/2, giving y = (2/3 + o(1))
(log x)3/2

(log log x)3/2

as x → ∞. With this choice for y, we get the desired result from (1), (3)
and (4), because

#N (x) ≤ #N1(x) + #N2(x) + #N3(x).

ut

3 Comments and Remarks

Id d 6= 1, we used neither the condition that (−d|p) = −1 for all prime
factors p of Fn, nor the condition that Fn is squarefree and has an odd
number of prime factors. It is likely that if one can find a way to make
use of these conditions, then one can give sharper (smaller) upper bound
on #N (d)(x) than that of Theorem 2. Finally, there are other definitions of
elliptic Carmichael numbersN which apply to elliptic curves without CM (see
for example [7]). It was shown in [7] that the set of N which are Carmichael
for E in that sense is of asymptotic density zero. It would be interesting to
show that the set of n such that Fn is elliptic Carmichael in that sense is also
a set of asymptotic density zero. The methods of this paper do not seem to
shed much light on this modified problem.
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