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SUMMARY 

A joint US Air Force/Japan Air Self-Defense Force (JASDF) study was conducted to examine 
molecular responses in a human cohort occupationally exposed to either JP-4 or JP-8. In this sub-
study, we examined the utility of urinary beta-naphthol (uβ-Nph) as a biomarker of exposure to 
jet fuels. Beta-naphthol (β-Nph) is a metabolic product of naphthalene, a poly aromatic 
hydrocarbon found in jet fuel. Published studies using human occupational exposure samples 
indicated that urinary increases in β-Nph correlate well with jet fuel exposure levels. This study 
used a β-Nph competitive enzyme-linked immunosorbent assay (ELISA) to quantitate urine 
samples taken from subjects (18-50 yrs old) prior to shift or immediately post-shift. Exposed 
group subjects worked in occupations (crew chief, flight line personnel) with likely jet fuel 
exposures, while the control group was matched for regional work locations but in occupations 
expected to have no exposure (office workers).  Both JP-4 and JP-8 exposure/control group urine 
samples were collected and analyzed for β-Nph as well as uβ-Nph - urinary β-Nph normalized 
with creatinine levels to account for urine volume dilution. Statistical analyses of  meta data and 
values acquired for uβ-Nph included standard analysis of variance, Mann-Whitney Rank Sum 
test, factor analysis, dimensionality assessment, and correlation figures. Unlike other studies, we 
did not see any correlation to exposure group, nor did we see indications that smoking was a 
confounding factor in our analyses. However, our data suggested that age does correlate with β-
Nph levels. Further studies using a larger cohort and accurate quantitation of jet fuel dose should 
clarify issues seen in this study with the use of uβ-Nph as a urinary biomarker of jet fuel 
exposure. 

 

 

 

 

Key Words: JP-8; JP-4; jet fuel; beta-naphthol; β-naphthol; 1-naphthol; 2-naphthol; naphthalene; 
biomarker; fuel exposure; urine 
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1. INTRODUCTION 

Naphthalene Metabolism 

Naphthalene is one of many chemicals which comprise JP-8 jet fuel, and is present at about 
0.175%.1 With JP-8 exposure, naphthalene can enter the body by inhalation and by contact with 
the skin, where it easily enters the bloodstream.2 Once inside the body naphthalene is oxidized to 
naphthalene 1,2-oxide by the cytochrome P450 monooxygenase system (Fig. 1). This reaction 
occurs primarily in the liver, although oxidation can also occur in extrahepatic organs such as the 
brain, lung, and kidney.3 Naphthalene 1,2-oxides can reaction directly thiol such as glutathione 
or in protein, by conjugated enzymatically to glutathione-S-transferase, or spontaneously convert 
to either 1-naphthol (α-naphthol) or 2-naphthol (β-naphthol).  1 Naphthol can be converted to 
further to 1,4-naphthoquinone (structure not shown) or, like 2-naphthol, enzymatically 
conjugated with either sulfate or glucuronide, and excreted into the urine as either free 
compound or as a glucuronide or sulfate conjugate (structures not shown). 
 

 

 

 

 

Naphthols in Urine 
Urinary 1- and 2- naphthols are currently studied for use in individual PAH exposure 
biomonitoring as biomarkers of exposure to polyaromatic hydrocarbons (PAHs). As such, the 
reference value has been defined for 1-naphthol as 23 ug/L and for 2-naphthol as 28 ug/L, 

Figure 1.  Metabolic conversion of naphthalene.  Figure adapted from ATSDR 2003. 
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exhibiting from a 95% confidence interval for the 95th percentile of population.4 For the 
reference value, only data generated from samples exhibiting normal urinary dilution as defined 
by creatinine levels between 0.5-2.5 g/l, were used in the calculations.5  
 

Urinary Naphthol Biomarkers of Poly Aromatic Hydrocarbons 

PAHs are found in jet fuels in various concentrations and of these, naphthalene is present in the 
highest concentration.6  The use of 2-napththol, also called beta-naphthol (β-Nph) has been 
examined as a urinary surrogate biomarker of jet fuel exposure as well as PAH exposure from 
smoking.7-9   Strong correlations have been found between levels of JP-8 exposure and urinary β-
Nph levels, and have found to track to self-reported job exposure categories.9 β-Nph levels were 
also examined with meta data and separated according to cigarette smoking status, as the PAHs 
in cigarette smoke10 are a confounder for data interpretation.  As predicted, smokers were found 
to have higher β-Nph levels than nonsmokers within the same exposure group; 9 although, 
urinary beta-naphthol (uβ-Nph) levels were predominantly dependent on JP-8 exposure rather 
than smoking status. Yang et al. examined β-Nph levels in a cohort of Japanese male workers 
using high-resolution capillary gas chromatography/mass spectrometry/selected ion 
monitoring.11 Yang found that the levels of urinary 1- and 2-naphthol were 3- and 7-fold higher 
in smokers versus nonsmokers, respectively. They also examined other factors (age, alcohol 
consumption, or specific types of food) but did not find any significant correlation of urinary 1- 
or 2-naphthol concentration to these meta parameters. Yang et al. also examined correlations 
between naphthol levels and cytochrome P450 (CYP) polymorphisms. It was found that 
cytochrome P450 (CYP) 1A1 exon 7 polymorphism did not correlate to urinary β-Nph levels. 
However, smokers with the c1/c2 or c2/c2 type of CYP2E1 demonstrated higher levels of 
urinary 2-naphthol than subjects homozygous for c1. In addition, subjects with the glutathione S-
transferase (GST) M1 deficient type demonstrated higher levels of both 1- and 2- naphthol than 
those homozygous normal. Yang et al. concluded that when using urinary naphthols as 
biomarkers, both CYP2E1 and GSTM1 genetic types should be determined to get correct 
correlates to exposure. 

 

2. MATERIALS AND METHODS  

2.1   Study Design and Sample Collection 

2.1.1    Approvals for Study. All human use research was reviewed and approved by the 
AFRL IRB under the protocol “Human Operational Exposure to JP-4 and JP-8 Fuel 
(Exhaust)” FWR20110047H under Principal Investigator David R. Mattie, Ph.D. DABT, and 
as 22-01-01 by the Aeromedical Laboratory Ethical Committee. 
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2.1.2   Human Study Design and Testing.  Subjects who were potentially exposed to either 
JP-8 or JP-4 as part of their everyday duties were recruited, as well as matched controls 
(Table 1).12 Control subjects were office or hospital personnel were matched to location of 
flight line personnel number at U.S. and JASDF air bases, and were sampled in an identical 
manner as flight line personnel. Subjects were volunteers who were active duty (USAF and 
JASDF) crew chiefs or other flight line personnel, male or female, and age range of 18-50 
years.   

Table 1. Cohort Tested for uβNph levels. 

Airbase Group Potential Fuel 
Exposure 

Number of 
Subjects Tested Nationality 

U.S. F-15 Exposed JP-8 10 U.S. 
Control none 15 U.S. 

U.S. C-130 Exposed JP-8 10 U.S. 
Control none 10 U.S. 

JASDF F-15 Exposed JP-4 10 Japanese 
Control none 15 Japanese 

 

Table 2. Meta data collected on subjects. 

Exposure Related Other Possible Confounders 
Career field Age 
Rank  Gender 
Years of service Smoker or nonsmoker 
Work experience Caffeine Intake 
Hobbies (other fuel or solvent exposures)  
Last time fueled a government or personal vehicle 
and what type of fuel. 

 

Flight line time  
Exposure to spills (fuel)  
Exposure to skin (fuel)  
Inhalation exposure (type)  
Shift length  

 

2.1.3   Urine Collection and Preparation. Prior to shift and post-shift each subject provided 
a urine sample (entire void). Urine was aliquoted and stored at -20 oC until shipped overseas 
to 711 HPW/RHDJ.  Samples were shipped on dry-ice in an insulated shipping container.  
Upon arrival at RHDJ, urine samples were stored at -80 °C until assayed. Samples were 
thawed on ice prior to analysis. For each subject, the pre-shift samples were used to 
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determine baseline β-Nph levels and the 4-6 pm post-shift samples examined for correlative 
increases in jet fuel exposure and β-Nph levels. 

 

Table 3. Urine Sample collection timelines. Tested samples indicated in red. 

Prior to Shift 
(6-8 am) 

During Shift 
(8 am-4 pm) 

Post Shift 
(4-6 pm) 

12-16 Post Shift 
(6-8 am) 

• First urine sample 
collected 

• personal 
environmental 
monitor attached 
to subject 

• work duties 
performed 
as usual 

• personal 
environmental 
monitor removed 

• 2nd urine sample 
collected 

• 3rd urine sample 
collected 

 

2.2    Quantitation of urinary β-Naphthol Levels  

2.2.1 Beta-Naphthol (βNph) ELISA kit protocol.  Competitive enzyme-linked 
immunosorbent assays (ELISA) were performed as described in the Elabscience® β-Nph 
(Beta-Naphthol) ELISA kit protocol (Antibodies-Online Cat. No. ABIN1113736). The 
Elabscience® β-Nph ELISA has a sensitivity of 0.5 ng/mL, with a range of 1.563-100 ng/mL.  
Urine samples were centrifuged for 20 minutes at 1000 x g and 4 °C.  Fifty microliters of 
supernatant were added to the wells of 96-well microtiter plates pre-coated with β-Nph.  
Fifty microliters of biotinylated detection antibody against β-Nph were immediately added to 
each well and incubated for 45 minutes at 37 °C.  Plates were washed 3 times with 350 uL of 
wash buffer.  One hundred microliters of HRP-avidin conjugate were added and incubated 
for 30 minutes at 37 °C.  Wells were washed five times with 350 uL of wash buffer.  Ninety 
microliters of TMB substrate (3,3’,5,5’-tetramethylbenzidine) were added, and plates were 
incubated 15 minutes at 37 °C in the dark.  Reactions were stopped by the addition of 50 uL 
of a sulfuric acid stop solution.  The absorbance (optical density [OD]) was measured at 450 
nm with a microplate reader (Molecular Devices SpectraMax M2e). 

2.2.2. Urinary Creatinine Assay. In order to control for variations in urine flow rate 
between subjects, β-Nph concentrations were reported as a normalized ratio to urinary 
creatinine concentration.  Creatinine concentrations were determined using Eagle 
Biosciences, Inc. Creatinine Microplate Assays (Eagle Biosciences Cat. No. CRE34-K01), 
and assays were performed as described in the kit instructions.  Urine samples were diluted 
between 1:3 and 1:175 with 18 mΩ water.  Twenty-five microliters of standards or diluted 
sample were added to the wells of 96-well microplates provided with the kit.  One hundred 
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and eighty microliters of alkaline picrate solution were added to each well and incubated for 
10 minutes at room temperature with shaking at 75 RPM.  The absorbance (optical density 
[OD]) was measured at 490 nm with a microplate reader (Molecular Devices SpectraMax 
M2e).  After the first reading, 15 uL of acetic acid solution from the kit were added to each 
well.  The contents of the plate were mixed thoroughly by tapping and the plate was 
incubated at RT for a minimum of 5 minutes.  The absorbance was measured a second time 
at 490 nm.  The OD490 values of the second reading were subtracted from the OD490 values of 
the first reading.  The difference in absorbance is directly proportional to creatinine 
concentration.   

2.2.3 Urinary Biomarker Baseline Normalization. In order to present urinary biomarker 
concentration data, a standardization method is used to adjust for variation in urine volumes. 
We utilized a well-known method of normalizing to urinary creatinine values, a common 
method used for urine volume changes due to water excretion.13  Beta-naphthol 
concentrations (ng/mL) were divided by creatinine concentrations (mg/mL) and results were 
reported as creatinine-normalized β-naphthol, designated as uβ-Nph (ng of uβ-Nph per mg of 
creatinine).   
 

 2.3    Statistical Analyses  

Statistical analysis of uβ-Nph data was conducted using SigmaPlot Software (Systat Software, 
San Jose,CA). The Shapiro-Wilk test was used to determine normality of distribution of the data 
set.  If normality was seen, a standard analysis of variance (ANOVA) was conducted. If 
normality failed, Kruskal-Wallis ANOVA by ranks was used to access statistical significance of 
differences between the groups. Addition post-hoc tests (Dunn’s) were conducted if significant 
differences among means were seen. For comparisons between pre-shift and post-shift samples 
in a single group, paired t-tests were conducted. The Shapiro-Wilk test was used to determine 
normality of distribution of the data set. If normality failed, the Mann-Whitney Rank Sum test 
was conducted to determine statistical significance. Statistical correlations (factor analysis, 
dimensionality assessment, and correlation figures) on meta data and uβ-Nph concentration data 
(Section 3.2) were conducted using MatLab R2011a (Mathworks Corporation). 
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3. RESULTS  

3.1   Effect of Jet Fuel Exposure on uβ-Nph Levels 

3.1.1  Distribution of uβ-Nph Concentration in Cohort.  Distribution of uβ-Nph 
concentrations was graphed for all cohort Control subjects (Fig. 2). A slight overall increase 
in post-shift uβ-Nph concentrations was seen in this group. An examination of all Exposed 
subjects from the cohort (Fig. 3) indicated a tighter distribution of uβ-Nph levels with no 
indication of higher uβ-Nph levels at the post-shift time point. When the cohort is sorted by 
jet fuel exposure, the subjects in the JP-8 group seem to be fairly equivalent, with the 
exception of two outliers (Fig. 4).   However, we observed an unexpected increase in the 
distribution of uβ-Nph within the control subjects in the JP-4 group (Fig. 5). To examine this 
increase further, additional analyses were conducted to determine the effects of age and 
smoking on β-Nph levels (see below). 
 

 
 

 
 
 

Figure 2.  Distribution of pre- and post-shift uβ-Nph concentrations from all control 
subjects (JP-8 and JP-4).  
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Figure 3.  Distribution of pre- and post-shift uβ-Nph concentrations from all 
subjects (JP-8 and JP-4). 

Figure 4.  Distribution of pre- and post-shift uβ-Nph concentrations from all JP-8 
control and Exposed subjects. 
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3.1.2  Urinary β-Nph Concentrations in Cohort. The means of all test groups were 
calculated for both β-Nph and uβ-Nph (creatinine-normalized uβ-Nph) (Table 1). There were 
no obvious post-shift increases in β-Nph levels from exposure groups for either JP-8 or JP-4 
using means data. Unexpectedly, the largest increases in uβ-Nph levels are seen in the post-shift 
JP-4 group. 

 
 
 

Table 4.  Mean of β-Nph and uβ-Nph levels in pre- and post-shift samples from control 
and exposed groups. 

 
  JP-4    JP-8  
 Control Exposed  Control  Exposed 
Analyte Pre-

Shift 
(n=10) 

Post-
Shift 
(n=10) 

Pre-
Shift 
(n=10) 

Post-
Shift 
(n=10) 

 
 
 

Pre- 
Shift 
 (n=15) 

Post-
Shift 
(n=15) 

 
 
 

Pre-
Shift 
(n=20) 

Post-
Shift 
(n=20) 

 

β-Nph 
(ng/mL) 
 

 
2.39 

 
2.41 

 
1.72 

 
2.50 

  
2.51 

 
2.59 

  
2.55 

 
2.66 

uβ-Nph 
(ng/mg 
Creatinine) 

4.05 11.72 3.96 5.64  3.81 6.99  4.56 3.91 

 

Figure 5.  Distribution of pre- and post-shift uβ-Nph concentrations from all JP-4 
control and exposed subjects. 
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3.1.3 Statistical Analyses for Data Sets.  Statistical analyses were conducted for each group 
(JP-8 and JP-4) to confirm or refute differences seen for each group and sub-group. For each 
fuel, we examined each control group for differences in pre- and post-shift uβ-Nph levels 
using a simple paired t-test if normal distribution was seen, or using Wilcoxon Signed Rank Test if 
not. This analysis was also conducted with the exposed sample set. In addition, we examined 
differences between uβNph levels in control and exposed using Kruskal-Wallis One Way Analysis of 
Variance on Ranks and pairwise multiple comparison using Dunn’s method. 

JP-8 Pre- and Post-shift, Controls Only 
All data sets were analyzed for statistical significant differences as described in Section 2.3.  
An examination of pre- and post-shift uβ-Nph levels in JP-8 control subjects using the paired t-
test gave a two-tailed p = 0.105 (Normality passed) with an α = 0.050:0.364. The analysis indicated 
no statistical difference pre/post shift levels of uβ-Nph in the JP-8 control group, which was 
expected. 

JP-8 Pre- and Post-shift, Exposed Only 
An examination of pre- and post-shift uβ-Nph levels in JP-8 exposed subjects using the paired t-
test gave a two-tailed p = 0.454 (Normality passed) with an alpha = 0.050: 0.112.  Statistical analyses 
of uβ-Nph data indicate there is no difference between the pre/post-shift levels in the JP-8 Exposed 
subgroup. 

JP-8 Control verses Exposed 
An examination of pre- and post-shift uβ-Nph levels in JP-8 indicated a non-normal distribution 
(as determined by the Shapiro-Wilk Normality test). Further analysis using a Kruskal-Wallis One 
ANOVA on Ranks produced a p = 0.046, indicating that there was a statistically significant 
difference between control and exposed groups.  

JP-4 Pre- and Post-shift, Controls Only 
An examination of pre- and post-shift uβ-Nph levels in JP-4 control subjects using Shapiro-Wilk 
normality test indicated a non-normal distribution of the data (Normality failed). Examination of the 
data set using the Wilcoxon Signed Rank Test produced a p = 0.037, indicating that the pre- and post-
shift uβ-Nph levels in the JP-4 Control subjects are significantly different. 

JP-4 Pre- and Post-shift, Exposed Only 
An examination of pre- and post-shift uβ-Nph levels in JP-8 subjects using the paired t-test gave a 
two-tailed p = 0.249 (Normality passed) with an α = 0.050: 0.307. The analyses indicate that there is 
no statistically significant difference between the pre- and post-shift levels of uβ-Nph. 

JP-4 Control verses Exposed 
An examination of pre- and post-shift uβ-Nph levels in JP-8 indicated a non-normal distribution 
(as determined by the Shapiro-Wilk Normality test). Kruskal-Wallis One ANOVA on Ranks analysis 
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produced a p = 0.357, indicating that there were no statistically significant differences between the 
control and exposed groups within the JP-4 data set.  
 
3.1.4 Box plot Graphs of JP-8 and JP-4 Data sets.  Box plots indicate both the full range of 
variation, likely range of variation, and median of the data set, which provides a more 
appropriate visual indicator of outlier data points. Both outliers and suspected outliers can be 
visualized by this method.14,15  Outliers can be defined as 3 times the interquartile range 
(IQR) (above/below), whereas suspected outliers fall within 1.5 times IQR (above/below) 
(Fig. 6). To further visualize any potential differences between groups and sub-groups, Box 
plot depictions of each set were completed (Fig 7, Fig. 8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 6.  Interpretation of Boxplot indices.  Figure taken from Kirkman 1996.16 
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Figure 8.  Boxplot of uβ-Nph Concentrations from JP-4 Cohort. Pre- and Post-shift 
samples from Control and Exposed groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.5  Effects of Relative Exposure Levels on uβ-Nph Concentrations. To further examine 
the cohort data set for possible association of uβ-Nph levels to fuel exposure, the exposure 
set was binned according to predicted level of exposure as determined by the meta data 
associated with the sample sets. Supervised separation into bins used the following score set:  
1 = Controls; 2 = LOW - Crew Chiefs; 3 = MEDIUM - Engines/Propulsion, 4 = HIGH - 
Fuels, Fuel Cell Maintenance. A distribution of the data (Fig. 9) indicated that no increase 
was seen in the ‘high exposure’ subgroup, with either pre- or post-shift samples. Statistical 
analysis using a Kruskal-Wallis One Way ANOVA failed to find significant differences 
between exposure groups using the pre-shift (p = 0.564) or post-shift (p = 0.067) data.  
Indeed, the distribution further supported the finding that post-shift controls seemed to have 
an overall higher level of uβ-Nph, a very different conclusion expected for the hypothesis 
that uβ-Nph levels are linked to jet fuel exposure. To examine possible confounding 
variables responsible we examined correlations of meta data, especially smoking and age, on 
uβ-Nph levels. 
 

Figure 7.  Boxplot of uβ-Nph Concentrations from JP-8 Cohort. Pre- and Post-shift 
samples Controls and Exposed Group. 
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3.2  Correlations of Meta Data and uβ-NPH Concentrations. 

Heat maps, consistent with Wilkinson et al.17 were produced using MATLAB R2011a to 
visualize the Pearson correlations of the data feature. As seen in this data set (Fig. 10), the 
data is not highly correlated except between years of service, age, and work experience; a 
logical result since these should necessarily be related to some degree. While group, 
exposure, inhalation, and time on flight line are also highly correlated, these are categorical 
features and thus the correlation is not directly interpretable.  

For dimensionality reduction and data organization, principal component analysis (PCA) was 
considered. Although some of the data is categorical, many features are continuous and thus 
PCA can be considered. PCA is a statistically optimal method that transforms the data via the 
eigenvectors of the data covariance matrix, 

𝑃𝑃𝑃𝑃 = 𝑋𝑋𝑛𝑛×𝑝𝑝
𝑆𝑆 𝑉𝑉𝑝𝑝×𝑘𝑘 

where 𝑃𝑃𝑃𝑃 is a matrix of PCA scores for k retained PCs,  

𝑋𝑋𝑛𝑛×𝑝𝑝
𝑆𝑆 = �𝑋𝑋𝑛𝑛×𝑝𝑝 − 1𝑛𝑛×1𝜇𝜇1×𝑝𝑝

𝑇𝑇 �𝐷𝐷−1/2 

Figure 9.  Distribution of Pre- and Post-shift uβ-Nph concentrations from binned 
exposure groups.  

Control        Low        Medium       High 
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with  𝑋𝑋𝑛𝑛×𝑝𝑝
𝑆𝑆  being a standardized data matrix, 𝑋𝑋𝑛𝑛×𝑝𝑝 being the original data matrix, and 

𝑉𝑉𝑝𝑝×𝑘𝑘being the eigenvectors of the data covariance matrix.18   By definition, PCs are thus 
uncorrelated and organized via eigenvalue magnitude with the first PC explaining the most 
variance in the data and subsequent PCs explaining sequentially less variation.19   PCA also 
permits a dimensionality assessment of the data through examining the covariance matrix 
eigenvalues (Fig. 11A). Kaiser’s Criterion, an estimation of data dimensionality based on the 
mean eigenvalue19 was used to estimate that there are 4 PCs that explain much of the 
underlying dimensionality in the data.  PCA loadings, the Pearson correlation of the PCs19 
with 𝑋𝑋𝑛𝑛×𝑝𝑝, were computed to understand how each data feature relates to the PCs. As seen in 
Fig. 11B, the pre- and post- uβ-Nph load heavily on the first PC along with age, years of 
service, and work experience. When considering subsequent PCs, time on the flight line and 
inhalation then load on the second PC, the third and fourth PCs then have much smaller 
loadings.  

Factor analysis, using data covariance matrix eigenvalues, was further considered to 
understand the data. Factor analysis differs from PCA in that it seeks a correlation explaining 
representation of features, while PCA seeks a variance explaining representation of 
features.20 When considering the data covariance matrix, the initial formulation for factor 
analysis is identical for PCA.20   However, one of the key components of Factor Analysis is a 
rotation of the factors; therefore, a varimax rotation was considered which involves an 
orthogonal rotation to maximize the variance of the squared loadings on the factors.19,20 
When considering a factor rotation, one selects the number of factors to rotate, consistent 
with the dimensionality assessment and results of PCA, three factors were rotated in an 
attempt to reduce and organize the dimensionality further.  

The resultant factor loadings, Pearson correlation between factor scores and the original data 
matrix,19 are presented in Fig. 12. The factor loadings show an age and experience related 
factor in factor one, an exposure factor in factor two, and factor three which considers pre- 
and post- uβ-Nph measurements.   
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Figure 10.  Heat map correlations between meta data, and β-Nph concentrations. Higher 
correlations are indicated as red, lesser correlations as blue. Pre Beta ng/ml = 
β-Nph; Pre Beta ng/mg c = pre-exposure uβ-Nph; Post Beta ng/mg c = post 
exposure uβ-Nph  
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Figure 12.   Factor Analysis Loadings. Coefficient of variation based after varimax rotation. 
Higher correlations are indicated as red, lesser correlations as blue. 

Figure 11.   Dimensionality assessment of meta data (A).   Retaining the first four variables 
appeal reasonable based on multiple methods (B). Higher correlations are 
indicated as red, lesser correlations as blue. Pre Beta ng/ml = β-Nph; Pre Beta 
ng/mg c = pre-exposure uβ-Nph; Post Beta ng/mg c = post exposure uβ-Nph  

 

A. B. 

Factor Scores 
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3.3 Effects of Smoking on uβ-Nph Levels in Cohort 

3.3.1    Distribution of uβ-Nph Concentration in Smokers and Nonsmokers.  The data 
sets were separated into smokers and nonsmokers as determined by self-reported meta data 
associated with the samples. Examination of the distribution of uβ-Nph in the pre-shift from 
all controls and all exposure samples indicated a low number of smokers in the control 
samples (Fig. 9), making statistical comparisons difficult. No obvious differences were seen 
in examining pre-shift samples from all nonsmoking subjects (Fig. 11).  An examination of 
the pre-shift samples from the control subjects (smokers/nonsmokers) did not identify any 
differences, again likely due to the low amount of control subject smokers (Fig. 12).  The 
distribution of uβ-Nph in pre-shift samples from the exposed subjects (smoking/nonsmoking) 
indicates slightly higher levels of uβ-Nph in smokers (Fig. 13).  
 

 

 

 

 

 

Figure 13.  Distribution of uβ-Nph concentrations in control and exposed samples from 
smokers, pre-shift samples only. Data includes smokers from both JP-8 and JP-4 
cohorts. 
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Figure 14.  Distribution of uβ-Nph concentrations in nonsmokers from the control and 
exposed groups, pre-shift samples only. Data includes nonsmokers from both JP-
8 and JP-4 cohorts.  

Figure 15.  Distribution of uβ-Nph concentrations in pre-shift samples from JP-8 and JP-
4 control groups segregated into smokers and nonsmokers.   
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3.3.2    β-Nph Concentration in Smokers and Nonsmokers.  The mean levels of β-Nph 
and uβ-Nph were calculated using pre-shift, post-shift, and combined data (Table 2).  
 
 
Table 5.  Average β-Nph and uβ-Nph levels in pre-shift samples from smokers/non-

smokers. A) Pre-shift data only; B) Post-shift data only; C) Combined Pre- and 
Post-shift data. S = smoker, NS = nonsmoker. 

A. Pre-Shift   JP-4   JP-8  
 Control Exposed Control Exposed 
Analyte S 

(n=0) 
NS 

(n=10) 
S 

(n=5) 
NS  

(n=5) 
S  

(n=3) 
NS 

(n=12) 
S 

(n=11) 
NS 

(n=9) 
 

 

β-Nph  
(ng/mL) 

 
--- 

 
2.39 

 
1.69 

 
1.74 

 
2.82 

 
2.44 

 
2.49 

 
2.62 

 
β-Nph  
(ng/mg Creatinine) 

--- 4.05 4.09 3.83 1.61 4.36 6.28 2.47 

 

B. Post-Shift   JP-4   JP-8  
 Control Exposed Control Exposed 
Analyte S 

(n=0) 
NS 

(n=10) 
S 

(n=5) 
NS  

(n=5) 
S  

(n=3) 
NS 

(n=12) 
S 

(n=11) 
NS 

(n=9) 
 

Figure 16.  Distribution of uβ-Nph concentrations in pre-shift samples from JP-8 and 
JP-4 exposure groups segregated into smokers and nonsmokers.   
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β-Nph  
(ng/mL) 

 
--- 

 
2.41 

 
2.20 

 
2.81 

 
2.47 

 
2.62 

 
2.35 

 
3.03 

 
β-Nph  
(ng/mg Creatinine) 

--- 11.72 7.65 3.63 4.71 7.56 4.87 2.73 

 

C.  Combined  JP-4   JP-8  
 Control Exposed Control Exposed 
Analyte S  

(n=0) 
NS 

 (n=20) 
S  

(n=10) 
NS  

(n=10) 
S  

(n=6) 
NS  

(n=24) 
S 

 (n=22) 
NS 

(n=1
8) 

 

β-Nph  
(ng/mL) 

 
--- 

 
2.40 

 
1.95 

 
2.28 

 
2.64 

 
2.53 

 
2.42 

 
2.82 

 

β-Nph  
(ng/mg Creatinine) 

 

--- 
 

7.88 
 

5.87 
 

3.73 
 

3.16 
 

5.96 
 

5.58 
 

2.60 
 

 

3.3.3 Statistical Analysis of uβ-Nph Levels in Smokers/Nonsmokers. Using previously 
described statistical methods, the uβ-Nph levels in smokers and nonsmokers were examined 
for significant differences. 
 
All Smokers (Control and Exposed), Pre-shift Samples (Fig. 10) 
Analysis using a Normality test (Shapiro-Wilk) failed, indicating a non-normal data 
distribution of the data sets.  Comparisons using a Mann-Whitney Rank Sum Test calculated 
a p = 0.162, indicating that there was no statistically significant differences in uβ-Nph levels 
between control and exposed subjects who smoke. 
 
All Nonsmokers (Control and Exposed), Pre-shift Samples (Fig. 11) 
Analysis using a Normality test (Shapiro-Wilk) failed, indicating a non-normal data 
distribution of the data sets.  Comparisons using a Mann-Whitney Rank Sum Test calculated 
a p = 0.077, indicating that there was no statistically significant differences in uβ-Nph levels 
between control and exposed subjects who are nonsmokers in the pre-shift samples. 
 
Control Subjects (Smokers/nonsmokers), Pre-shift Samples (Fig. 12) 
Analysis using a Normality test (Shapiro-Wilk) failed, indicating a non-normal data 
distribution of the data sets.  Comparisons using a Mann-Whitney Rank Sum Test calculated 
a p = 0.220, indicating that there was no statistically significant differences in uβ-Nph levels 
between smokers and nonsmokers in all control subjects in the pre-shift samples. 
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Exposed Subjects (Smokers/nonsmokers), Pre-shift Samples (Fig.13) 
Analysis using a Normality test (Shapiro-Wilk) failed, indicating a non-normal data 
distribution of the data sets.  Comparisons using a Mann-Whitney Rank Sum Test calculated 
a p = 0.059, indicating that there was no statistically significant differences in uβ-Nph levels 
between smokers and nonsmokers in all exposed subjects in the pre-shift samples. 
 
3.3.4  Boxplot Graphs of JP-8 and JP-4 Data sets.  Box plot depiction of each set 
described above (in Section 3.2) was completed. As seen with the statistical analyses, there 
were no statistically significant differences in the data sets when segregated into the various 
groups as described (Fig. 14).  The data set most approaching significance is that of exposed 
subjects (smokers/nonsmokers, p = 0.059).  

Multiple Comparisons of Cohort u�Nph Data 
Segregated by Smoking Status

Test Groups

u �
N

ph
 C

on
c 

(n
g/

m
g 

cr
ea

tin
ine

)

0

10

20

30

40

Con
tro

l

Exp
ose

d

Non
sm

ok
er

Smok
er

Exp
ose

d

Con
tro

l

Non
sm

ok
er

Smok
er

Smokers
Pre-shift

Nonsmokers
Pre-shift Control 

Pre-shift
Exposed
Pre-shift

Fig. 9 Fig. 10 Fig. 11 Fig. 12

 
 

3.4  Effect of 
Figure 17.  Boxplots of uβ-Nph concentrations in data sets described in Figs 8-11.   
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Age on uβNph Levels in Cohort.  

To examine the possible effects of age on uβ-Nph levels, the cohort data was binned according 
to age. The age data were separated into four groups: 25 yrs and under; 26-35 yrs; 36-40 yrs; and 
over 40 yrs.  

3.4.1  Distribution of uβ-Nph Concentration by Age Group.  An examination of 
distribution in pre-shift samples indicated no obvious separation of uβ-Nph levels based on 
age (Fig. 15).   

 

 

 

 

 

3.4.2  Statistical Analysis of uβ-Nph Levels by Age Group. Both pre- and post-shift 
sample data binned by age were examined for significant differences in uβ-Nph.  Statistical 
analysis using  Kruskal-Wallis One Way ANOVA on Ranks of  pre-shift samples of all 
subjects binned by age indicated that age may play a role in modulating  uβ-Nph levels (p = 

Figure 18.  Distribution of uβ-Nph concentrations in post-shift samples from JP-8 and JP-4 
groups as binned by age.  1 = 25 yrs and under; 2 = 26-35 yrs; 3 = 36- 40 yrs; 4 = 
over 40 yrs. 
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0.012).  Examination of post-shift analyzed in the same manner generated a p = 0.022, 
supporting the premise that age may play a role in determining β-Nph levels in the urine. 

3.4.3  Boxplot Graphs of JP-8 and JP-4 Data sets by Age Group.  Box plot analysis 
suggests that uβ-Nph may increase with age (Fig. 16). Pairwise comparison of this data using 
Dunn’s method indicated that the levels of β-Nph within the age groups were significantly 
different (p = 0.012). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
  

Figure 19.  Box plot  uβ-Nph concentrations in post-shift samples from  exposed/control 
subjects from both JP-8 and JP-4 groups as binned by age.   



 
 

24 
  

 
Distribution A:  Approved for public release; distribution unlimited. (PA Case No 88ABW-2016-0089, 13 Jan 2016) 

4. DISCUSSION 
 

uβ-Nph as an Exposure Biomarker 

In this study, statistically significant differences were only found within the JP-8 group (control 
vs. exposed). However, statistical analysis indicated that while the two groups were different, 
uβ-Nph levels in the control set were unexpectedly higher, not lower, than the exposed subjects. 
It is not clear why differences in β-Nph levels were not seen in our study but seen in previously 
published research.7-9   In published studies, uβ-Nph was quantified in samples from Air Force 
personnel by means of gas chromatography-mass spectrometry (GC-MS). We utilized a β-Nph 
ELISA with a lowest detectable limit (LDL) of 0.94 ng/ml with a detection range of 1.56-100 
ng/ml.  Unlike Sedar et al. or Chao et al. who sampled after 4 hrs in the workplace, this study 
collected a post-dose sample after a full 8 hr workday. Therefore, it was expected that the β-Nph 
levels in our exposure groups should be at even higher levels than published. Given the level of 
detection seen in the ELISA kit and the predicted β-Nph levels, the ELISA should have 
permitted detection at similar levels as previously published.  It is possible that the urinary 
naphthol degraded during storage; however, if such decreases occurred it is presumed that 
equivalent degradation would have occurred throughout all samples. In addition, past studies 
indicate that urinary naphthols are relative stable even under variable storage conditions,21  so the 
likelihood of introduction of sample variation due to inappropriate handling conditions is small.  
 
uβ-Nph levels within exposure groups 
In a more robust examination of the exposure subjects, the exposed data was binned into four 
sets based on self-reported fuel exposure levels. No differences in control versus exposure 
groups were seen using multiple statistical methods.  
 
Smoking as a confounder 
Besides increasing exposure to PAHs, smoking is known to alter the metabolism of 
naphthalene.9   An unexpected significant difference was also seen in the comparison of pre/post-
shift samples from the JP-4 Control group (see Fig. 8). To examine this difference further, and to 
scrutinize smoking as a possible confounder, we analyzed the data by separating it into 
smokers/nonsmokers as self-reported.  However, unlike previous studies, our analyses of the data 
failed to find any significant impact of smoking on β-Nph levels within this binned cohort set.  
 
 
 
Age as a confounder 
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Finally, we also analyzed the effect of age on uβ-Nph levels within this cohort, irrespective of 
smoking or exposure status. Interestingly, the analyses of these data do suggest that age seems to 
play a role in modulating uβ-Nph levels. Age was not examined as a variable in previous 
published studies. The metabolism of naphthalene adduct 1,4-naphthoquinone (1,4-NPQ) by 
cytochrome P450 has been shown to alter with age, diminishing at a rate of ~ 3% per year.22 
Subject age effects on cytochrome P450 enzymes has been noted previously, and occurs 
primarily through post-translational or transcriptional modifications.23   Therefore, our research 
indicates that age should be considered when evaluating PAH exposure based on uβ-Nph 
concentrations. 
 
Future use of uβ-Nph as a Biomarker of Exposure 
The use of biomarkers for biomonitoring require careful validation studies to identify 
confounding factors to aid in adjusting and  interpreting concentration changes. Such studies are 
ongoing to assess the usefulness of naphthols as biomarkers of exposure to PAHs.5  Smoking 
status has been examined in several studies previously mentioned and certainly must be 
identified within the test cohort. Data indicate that cytochrome P450 and GST mutations may be 
confounding variables, but further research is needed to establish a firm link to the CYP2E1 and 
GSTM1 mutations. Additionally, gender may be a confounder, as the estrus cycle has been seen 
to affect the metabolism of naphthalene.24,25  Our study did not see an effect of smoking on uβ-
Nph levels – an unexpected result - possibly due to the low sample size created when the cohort 
was binned into smoking/nonsmoking groups. However, this study suggests that age may also 
alter uβ-Nph concentrations, possibly due to the aging of cytochrome P450. We did not examine 
gender differences, and did not have enough female subjects enrolled to allow statistical analysis 
of this as a variable. For future examination of uβ-Nph as a biomarker to jet fuel exposures, we 
suggest that data from these possible confounders should be examined (Table 3).    
 

Table 6. Possible cofounding variables affecting uβ-Nph biomarker concentrations 
 

Trait Confounder? Include as metadata? 
Smoking Yes Yes 
Gender Possibly Yes 
CYP2E1 Possibly Yes 
GSTM1 Possibly Yes 
Age Possibly Yes 
Alcohol 
Consumption 

No No 

Food intake (types) No No 
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6. LIST OF SYMBOLS, ABBREVIATIONS, AND ACROYNMS 

 

ANOVA  standard analysis of variance 

β-Nph  beta-naphthol, concentrations not corrected for urine volume 

JP-8 Jet Propellant 8 

Nph naphthols 

OD optical density 

1,4-NPQ  1,4-naphthoquinone 

PAH poly aromatic hydrocarbons 

PCA principal component analysis  

RPM rotations per minute 

RT room temperature 

uβ-Nph urinary β-Nph normalized to urine creatinine concentration; [β-Nph] 
corrected for urine volume 
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