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1. Introduction 

Tactical radios are held to more stringent requirements than radios found in the 
commercial field. They must adhere to a higher set of requirements, which allow 
them to better operate in hostile environments. The Brigade Modernization 
Command, in conjunction with the Army Test and Evaluation Command’s 
Operational Test Command, conducted large-scale test events such as the Network 
Integration Evaluation1 to test radios in relevant tactical environments. Radio 
networks under test are instrumented to record traffic transmitted between network 
nodes. These data are processed and analyzed to determine how well a single radio 
or the whole network performed in the test. 

The collaboration between the Aberdeen Test Center and the US Army Research 
Laboratory’s Computational and Information Sciences Directorate resulted in a 
data processing system that reduces the collected traffic into manageable data 
products. Analysts extract relevant metrics from these data products to support the 
evaluation of the system-under-test performance. 

One of these data products, CommsIp, is related to packet-level analysis and is 
critical to network evaluation. This data product includes statistics such as the 
latency and completion rates between network nodes; both are derived by 
correlating the data (packets) observed at each node during the test. Correlating 
over 1 billion packets recorded during each day of testing was a forcing factor to 
employ high-performance-computing (HPC) assets to process the massive volumes 
of data into a usable data model.2 This report explains the need of this data model 
as well as the cut module3 within the HPC framework4 that creates it. 

2. Motivation and Desired Outputs 

Most systems send data across a network encapsulated in an IP packet. The IP layer 
data may arrive successfully, arrive out of order, or be dropped during transit. The 
results of these 3 cases are needed to determine several aspects of network 
performance.  

IP is known as a “best effort” delivery protocol, and knowing how well the network 
delivers IP layer data provides insights into how well the network performs from 
the end user perspective. By performing IP layer packet analysis, one can determine 
key network performance metrics, such as data delivery latency, load handling, and 
overall delivery completion rates. This analysis becomes even more important 
when the network is in the tactical domain because of the need for reliable and 
secure networking. 
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To evaluate network performance, the CommsIp data model is generated from raw 
collected data. The model captures the history of each packet and includes details 
from each end point that it was observed at.  

During the process of creating the CommsIp data model, it is possible to perform 
calculations that analysts commonly want to see in a distributed parallel fashion 
that can significantly reduce the time it takes to achieve the same result in a serially 
processed, database-driven analysis. This includes packet matching, latency 
calculation, packet endpoint determination, and the filtering out of local network 
traffic, which is of no interest from an analysis perspective.  

The Test and Evaluation community has determined most of the definitions and 
layout of the data product, which can be seen in Table A-1 (see the Appendix). 
Extra columns (refer to Table A-2) have been added to reduce unneeded data 
reduction for other cut modules, such as Transport, which draws Transmission 
Control Protocol (TCP)-based statistics. Each row in the CommsIp table typically 
represents the combination of 2 observations of a packet, the sending side and the 
receiving side. In some cases only one side of the transmission will be observed 
and the row will reflect that by leaving fields empty that cannot be calculated 
without both observations. An example would be calculating latency where you 
must have both sides. 

3. Data Organization 

This section describes in detail what reductions and manipulations occur within the 
CommsIp cut module. The module takes 2 different types of input data cuts. The 
cuts come from Binary Large Object (BLOb) files and/or Packet Capture (PCAP) 
files. During the module’s Process stage, important information is pulled from 
packets and saved in a temporary data store. This information is then read in during 
the module’s Crunch stage, where packet matching calculations on the data occur. 
This simplified data are then turned into the CommsIp Data Product. 

4. Prepare File 

File metadata must be collected to properly organize the information found in data 
cuts. The device ID, file ID, and, in the case of a PCAP file, the recording source 
are all required for correlating packet data across nodes in a network. 

The device ID is an identifier used in mapping an Advanced Distributed Modular 
Acquisition System (ADMAS) to its recorded data. The file metadata provides a 
serial number that is used to look up the device ID in a predefined reference. 
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The file ID is a global identifier that represents the file. Each HPC processing core 
is able to perform a lookup on a file ID and uniquely access the same file. 

5. CommsIp Process 

As the file parser begins iterating cuts, they are passed into CommsIp’s Process 
method. Though BLOb Nettap cuts5 and PCAP cuts are roughly the same, BLOb 
cuts contain more cut metadata. The metadata for each Nettap cut contains the 
network source data stream it was recorded from, in comparison with the PCAP 
whose data are from only one network source. BLOb Nettap cut metadata also 
contains information about whether or not the data collection device experienced 
an overflow error (resulting in unrecorded data), what type of overflow error it was, 
and which interface it was recorded on. If an overflow error occurs, the data in the 
cut may be corrupted, and for this reason, the cut is ignored. 

When the CommsIp cut module receives a cut, it decodes the cut’s payload to 
extract the full Ethernet packet contained within and checks to verify that the packet 
should be processed. One check compares the packet’s collection time to the 
evaluation time window specified in the user-set configuration file. Another check 
ensures the packet was collected from a known source and on a tap being 
considered in the data reduction. Only packets that pass all checks are considered 
for the remainder of the reduction process. 

From here, each verified Ethernet packet has its EtherType6 decoded. All packets 
with EtherTypes that are not IPV4 get dropped because of prior knowledge that the 
evaluations will only be performed on IPV4 data. Tunneled packets are then broken 
down into their inner and outer IP layers by decoding any tunnel protocols, such as 
the Generic Routing Encapsulation protocol that may be encapsulating the packet. 

Packets with the outer IP layer’s time to live (TTL) less than 2 get dropped because 
of the location on the network of where the ADMAS records traffic. The packet’s 
TTL will typically drop by 2 or more when traveling over the air. Thus, this data 
may get recorded by the ADMAS but will get dropped before reaching the 
destination device. 

6. Collection Point 

The collection point is the location where the ADMAS is observing traffic on the 
network. There can be many collection points on one node; each is given a letter 
designation. For example, the collection point “X” is located on the switch port 
analyzer (SPAN) port of the router facing the over-the-air (OTA) radio. Thus, any 
traffic coming in or out of the OTA radio will end up being copied to the ADMAS. 
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The location of the collection point is vital to the analysis. For instance, if one side 
of the network collects data behind an encrypter and the other side collector is 
before the encrypter, there is absolutely no way to match the packets. 

7. Direction 

The location of the collection point is an important part of creating heuristics to 
determine the direction of packet transmission. Each collection point may use a 
different heuristic, and the heuristic may change from event to event. Some of the 
simple cases rely on prior knowledge of the testing setup to determine the direction. 
More complicated cases involve an extra processing phase to gather more 
information to make the determination.  

For example, collection point “B” as used in most of the Warfighter Information 
Network–Tactical test events was a simple heuristic using a simple check on the 
media access control (MAC) addresses in a packet’s Ethernet header to determine 
if the packet is inbound or outbound. The collection point “B” heuristic states that 
if the packet’s source MAC address is an inline network encrypter MAC address, 
it is considered inbound. Alternately, if the destination MAC address is either 
multicast or the network encrypter, then it is outbound.  

Some of the heuristics will use Virtual Local Area Network identifiers and MAC 
addresses to determine direction. There are many other heuristics that change from 
event to event, but they will not be covered in this report. 

8. Detecting Local Traffic 

Local packets are those that transit from one device to another on the same network 
node. An example of local network traffic would be a vehicular router pinging a 
collocated radio device to see if it responds.  

A packet can be either transmitting between nodes or transmitting entirely within a 
single node. Since the CommsIp Data Model strictly contains packets that transmit 
between nodes, local traffic must be filtered out. Packets that have a source and 
destination on the same node or a packet direction that cannot be determined are 
assumed local and removed from processing. This check is sometimes used to 
determine the packet direction; however, it is generally used during the Crunch 
stage of the reduction. 
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9. Hash 

To conduct efficient packet matching and calculate the latency, there needs to be a 
common key between packets recorded on different devices. To generate this 
common key, a packet’s mutable fields are removed since they can change between 
the sending side and the receiving side. Next, a hashing algorithm is applied to the 
modified packet resulting in a common key. Mutable fields include the IP options, 
the TTL, the packet checksum, and the type of service. In addition, the outer IP 
layer (if a tier-2 tunneling protocol is used) may be completely different because of 
how the packet gets routed through the network, hopping between tunnel endpoints. 
By omitting these mutable fields from the packet and only hashing on the inner IP 
layer, we find that the sending side hash matches the receiving side hash.  

Figure 1 depicts in red the fields that are not included in the hash because these 
fields are mutable. Each hash is associated with the data for its packet stored in the 
Packet-Knowledge-Temporary-Store (PKTS) local to the CommsIp Worker 
process. The PKTS is a temporary storehouse for all reduced packet data. PKTS 
records are incrementally populated during the various phases of the reduction 
processing. Each process records data into a separate store. The data columns of the 
store are shown in Tables A-3 and A-4 in the Appendix. 

 
Fig. 1 IP header hashed fields 

10. Fragments 

Before the PKTS data are recorded, all IP packet fragments are reconstructed.7 This 
is done because fragmentation can occur anywhere along the network path and thus 
may change how the packet appears on the receiving side, making it difficult to 
match individual fragments using the hash-based method. In general, fragments 
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appear in order and relatively close to each other in the file. A fragment 
bookkeeping mechanism is used to collect the fragments. 

As the bookkeeper collects packet fragments from a file, it attempts to reconstruct 
the whole packets they originated from. Fragments from a file that do not fully 
recreate a packet are provided to the Receiver8 process to be matched to fragments 
from other files. Packets that are reconstructed are decoded and have their 
information added to the PKTS. 

11. CommsIp Crunch 

Once the Process stage is complete and all fragmented packets have been decoded, 
the Crunch stage begins. At the start of the CommsIp Crunch stage, the Receiver 
process begins to offload work to CommsIp workers. Dividing up the work across 
the processes is crucial to efficient processing of the data. The initial breakdown of 
the work is based on bins that each packet is placed into. The bins are numerically 
defined based on the number of processes (P) in the HPC job, where N is 
determined by Eq. 1, 

 N = ceiling(log2(P)) , (1) 

and the bins are defined to include the range 0 ⟶ 2N – 1. As an example, if we had 
250 HPC processes for a reduction job, then N = ceiling(log2(250)) = 8, and the 
bins would be 0 ⟶ 255. 

Based on values calculated in the CommsIp Process stage, bin keys are sent to each 
CommsIp worker. Bin keys are unique bit strings that map to the tailing N bits in 
packet hashes. The keys identify which set of packets each worker should operate 
on. 

Considerations must be observed for memory for these packet operations since 
some of the HPC machines do not have swap space.9 When too much runtime 
memory is consumed, the node will end the reduction job prematurely. To prevent 
this, the number of packets per hash—thus, the number of packets that can be 
processed by each worker at a time—is limited based on the available memory. For 
current systems, the upper limit is set to 200,000 packets.10 Though this limit may 
seem low, it allows larger hash bins to be split up and processed in parallel sub-
bins. 

During the Process stage, CommsIp records a count of packets per bin (PPB), which 
allows it to determine when the limit is exceeded by any bin. When the upper limit 
is exceeded, crunch creates a number of sub-bins (S) according to Eq. 2:
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 𝑆𝑆 = 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑙𝑙𝑐𝑐2�
𝑃𝑃𝑃𝑃𝑃𝑃

200,000�) . (2) 

This will normally produce an evenly distributed amount of sub-bins, each being 
smaller than the upper bound. The CommsIp Crunch process will offload each of 
these to a worker and then wait until all the processing is done. 

12. Offloaded Worker 

An offloaded worker is one that receives a bin key, the number of sub-bin bits used, 
and a sub-bin value. These workers collect all packet data from the combined set 
of all PKTS that matches the bin key and the sub-bin value.  

13. Packet Matching 

Once all of the hashes have been found, the offloaded worker must attempt to find 
sent and received packet matches. To simplify this, while pulling the sub-bin into 
memory, each packet’s data are placed in an indexed table with the packet hash as 
the key. Each index (hash) can have one or more packet records, so iterating 
through the table provides a collection of packets with the same hash identifier. 

Indexes with only one packet represent an unmatched packet. For these, the 
packet’s direction flag (pkt_isoutbound in PKTS), which shows the packet’s 
direction, is examined to determine if this is a received but not sent (RNS cip_rns 
= true) or not completed (cip_comp = false) packet.  

When more than one packet has the same hash value, then the set of packets is split 
into two lists (SENT and RECEIVED) based on each packet’s direction flag. These 
lists are then fed into 1 of 2 packet-matching processing algorithms: unicast or 
multicast. 

14. Unicast 

The unicast algorithm is outlined in Fig. 2. Unicast matching begins with the 2 
packet lists: one for sent packets and one for received packets. 
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Fig. 2 Unicast packet matching process 

The red loop depicts what happens if there are no received packets. Each sent packet 
is made into a one-sided pair. The pair is then appended to a list of matched entries. 

If instead there are received packets, the list of receive-side packets is sorted in 
ascending order by collection time. Initially, all packets in this list are considered 
to be “unmatchable”. Then, as the algorithm finds potential matches of sent and 
received packets, the received packets are removed from the “unmatchable” set. 
Figure 3 depicts how matches are created from these 3 lists. 
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Fig. 3 Creating matched packet entries 

For each of the sent packets in the list, a binary search is used to find the received 
packet that was collected the soonest after and the one that was collected the latest 
before the sent packet. Any packets found are considered potential matches and are 
removed from the “unmatchable” set. 

The results of the binary search can produce 3 different scenarios as depicted by 
the first diamond shape in Fig. 3. 
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1)  There are no matchable receivers to the left (earlier in time) side of the 
binary search result. 

2)  There are no matchable receivers to the right (later in time) side of the 
binary search result. 

3)  There are results on both sides. 

In case 1, the algorithm first checks if the right side had a result. If so, a matching 
pair is made from the sent packet and the right result. If not, the sent packet must 
be tested to determine if it is local traffic. If the sent packet is considered local, then 
it is ignored, and the next sent packet is processed. Otherwise, a receiver-less pair 
(cip_comp = false) is created and appended to the list of matched entries. 

In case 2, there is a left result but no right result. A pair is made using the sent 
packet and the left result. The match is added to the list of matched entries. 

In case 3, there is a result on the left side and a result on the right side. The algorithm 
decides which side has the absolute minimum time difference and generates a 
matched pair with the sent packet and the closer received packet. 

Once the algorithm has attempted to match all of the sent packets, there may be 
some received packets that remain in the “unmatchable” set. The remaining set of 
unmatchable received packets is converted into receive-side-only pairs, as shown 
in the tan loop in Fig. 4. The resulting received but not sent (cip_rns = true) entries 
are added to the list of matched entries. 

 



 

11 

 
Fig. 4 Handling unmatched packets 

15. Multicast 

Dealing with a packet hash set that is multicast is similar to unicast, but the 
algorithm must be taken into account—one sent packet can have multiple receivers. 
In the unicast case, a packet could only be matched once. In the multicast case, 
however, it may be matched once for each device observing a received copy. The 
matching algorithm is modified such that the input list of date-ordered received 
packets is grouped per device. Then the list of sent packets is traversed in the same 
manner as in the unicast algorithm but for each device found in the receive list. In 
addition, the set of unmatchable receives is split up by the device. Aside from this 
difference, the algorithm works in the same way. 

16. Offloaded Worker (Continuation) 

Once all of the matches have been found, they are filtered for duplicate 
observations. Duplicate observations are defined as observations that occur within 
.000245 s11 of a bitwise identical packet on the same device. After the duplicate 
observations are removed, the matched packets are then merged into the previously 
described CommsIp table format. The latency calculation is performed during the 
merge of the 2 packets. In addition, specific flags will also get set, such as 
cip_ismulticast and cip_isduplicatepkt. The merged data are then written to disk. 



 

12 

17. Analyst Usage 

The packet-level data contained on the CommsIp table is used by the analytical 
community to render many different types of data products. These include 
aggregate statistics binned by time and/or location within the network. The types 
of tactical applications or network devices can be derived using the IP addresses 
contained in each CommsIp record. One sample data product derived from the data 
model is shown in Fig. 5, a Google Earth12 Keyhole Markup Language (KML) file. 
This product includes aggregate network statistics between node pairs. The white 
lines represent the range between nodes and are used to render the terrain profile 
between nodes (seen at the bottom of the image). The blue arcs represent satellite 
communication links between node pairs; green arcs represent terrestrial radio 
links. The CommsIp-derived data for each link can be displayed by clicking on the 
links (white box pop-up in upper left of the map area).  

 

Fig. 5 Sample CommsIp-derived data product (KML file) 

18. Conclusion 

The packet-level analysis data processing module, CommsIp, has been used for 
multiple testing events. As the tests evolved, the module has evolved as well to 
cover new cases and new collection points. 

The CommsIp processing represents the bulk of the computational work required 
to perform packet-level network analysis and requires significant amounts of 
processing time to complete. However, with the parallel nature of the data reduction 
framework and HPC machines, the impact on time is mitigated to a reasonable 
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level. The shortening of the reduction time line allows the analysts to receive this 
useful data product much faster. Since most of the analysis comes from the 
CommsIp data product, having it in hand early can allow them to determine the 
results of the test much faster. 
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Appendix. Tabular Data Definitions 
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Table A-1 CommsIp data elements 

Column Name Description 
cip_xdate Datetime on transmitting side of when packet was observed 
cip_rdate Datatime on receiving side of when packet was observed 
cip_xcollpt Data collection point on transmitting side 
cip_rcollpt Data collection point on receiving side 
cip_comp Boolean: True if the packet was observed on the receiving side, False 

otherwise 
cip_rns Boolean: True if the packet was observed on the receiving side but not 

the sending side, False otherwise 
cip_totalpacketsize Total size of the packet in bytes 
cip_payloadsize Size of the packets inner most payload 
cip_latency Latency between transmission and receipt of packet 
cip_xdscp Differentiated services code point on transmitting side 
cip_rdscp Differentiated services code point on receiving side 
cip_xdeid Device ID on transmitting side 
cip_xip IP Address on transmitting side 
cip_rdeid Device ID on receiving side 
cip_rip IP Address on receiving side 
cip_protocol The protocol the packet was sent on 
cip_payloadhash The folded md5sum hash of the inner most payload (backwards 

compatibility) 
cip_ipidentifier The IP identifier on the packet that was sent 
cip_fragmented Boolean: True if the packet was fragmented, False otherwise 
cip_xttl The time-to-live value on the transmitting side of the packet 
cip_rttl The time-to-live value on the receiving side of the packet 
cip_xsrcmac The source MAC address on the transmitting side  
cip_rsrcmac The source MAC address on the receiving side 
cip_xdstmac The destination MAC address on the transmitting side 
cip_rdstmac The destination MAC address on the receiving side 
cip_t_xip The outer most tunnel IP address of the transmitter 
cip_t_rip The outer most tunnel IP address of the receiver 
cip_innerfingerprintid The identifying full md5sum hash of the altered inner most IP layer, 

used for matching 
cip_inferred_x_deid Intended device the packet was sent from 
cip_inferred_r_deid Intended device the packet was destined for 
cip_daglimiteduseid Used for marking out data that should not be used by analysts 
cip_dagreasoncodeid Used for marking out data that should not be used by analysts 
cip_ismulticast Boolean: True if the packet is a multicast packet, False otherwise 
cip_isduplicatepkt Boolean: True if the packet was observed at more than 2 locations, 

False otherwise 
cip_xvlanid Virtual Local Area Network ID of the sending side packet 
cip_rvlanid Virtual Local Area Network ID of the receiving side packet 
cip_istunneled Boolean: True if the packet is tunneled, False otherwise 
cip_t_ipid The tunnel layers IP identifier of the packet 
cip_t_payloadsize The tunnel layers payload size (contains the inner IP layer) 
cip_t_payloadhash The tunnel layers md5sum payload hash 
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Table A-2 CommsIp additional transport elements 

Column Name Description 
txp_id 13-byte transport identifier string  
txp_hash Hash of “normalized” transport identifier 
txp_xport TCP/UDP port of packet transmitter 
txp_rport TCP/UDP port of packet receiver 
txp_istcp Boolean: True if packet is TCP, false otherwise 
tcp_tcp_seq The sequence number from the TCP header (undefined if not TCP) 
txp_tcp_ack The acknowledgement  number from the TCP header (undefined if not TCP) 
txp_datalen The total size of the TCP/UDP payload 
txp_tcp_flags The TCP flags field (undefined if not TCP) 
pay_fileid The internal file ID of the file containing the payload 
pay_offset The file offset location of the payload in the file 
pay_length The length of the payload in bytes  

Table A-3 Packet knowledge temporary store structure 

Column Name Description 
binkey The first n bits of the pkt_fingerprint used to bin the data 
nexteight The next 8 bits of the pkt_fingerprint used to sub-bin  
pkt_date The datetime of when the packet was observed 
pkt_collpt Data collection point of the observed packet 
pkt_isoutbound Boolean: True if the packet is outbound, False otherwise 
pkt_totalpacketsize Total size of the packet in bytes 
pkt_payloadsize Size of the packets inner most payload 
pkt_dscp Differentiated services code point of packet 
pkt_device Device ID of the observing ADMAS 
pkt_xip IP Address of the transmitter 
pkt_rip IP Address of the receiver 
pkt_protocol The protocol the packet was sent on 
pkt_payloadhash The folded md5sum hash of the inner most payload (backwards 

compatibility) 
pkt_ipid IP identifier of the packet 
pkt_isfragmented Boolean: True if packet was fragmented, False otherwise 
pkt_packetcount The number of fragmented packets that the original packet is 

comprised of 
pkt_srcmac The source MAC address of the packet 
pkt_dstmac The destination MAC address of the packet 
pkt_fingerprint The identifying full md5sum hash of the altered inner most IP layer, 

used for matching 
pkt_ttl The time-to-live value of the packet 
pkt_vlanid The virtual local area network ID of the packet 
pkt_istunneled Boolean: True if the packet is tunneled, False otherwise 
pkt_t_ipid The IP Identifier of the outer most tunnel layer 
pkt_t_xip The sending IP Address of the outer most tunnel layer 
pkt_t_rip The receiving IP Address of the outer most tunnel layer 
pkt_t_payloadsize The size of the outermost tunnel layers payload (includes the inner IP 

layer) 
pkt_t_payloadhash The folded md5sum hash of the outer most tunnel payload (backwards 

compatibility) 
pkt_t_fingerprint The identifying full md5sum hash of the altered outer most IP layer, 

used for matching 
pkt_inferred_x_deid Intended device the packet was sent from 
pkt_inferred_r_deid Intended device the packet was destined for 
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Table A-4 Packet-Knowledge-Temporary-Store (PKTS) added transport level fields 

Column Name Description 
txp_id 13-byte transport identifier string  
txp_hash Hash of “normalized” transport identifier 
txp_xport TCP/UDP port of packet transmitter 
txp_rport TCP/UDP port of packet receiver 
txp_istcp Boolean: True if packet is TCP, false otherwise 
tcp_tcp_seq The sequence number from the TCP header (undefined if not TCP) 
txp_tcp_ack The acknowledgment  number from the TCP header (undefined if not 

TCP) 
txp_datalen The total size of the TCP/UDP payload 
txp_tcp_flags The TCP flags field (undefined if not TCP) 
pay_fileid The internal file ID of the file containing the payload 
pay_offset The file offset location of the payload in the file 
pay_length The length of the payload in bytes  
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List of Symbols, Abbreviations, and Acronyms 

ADMAS Advanced Distributed Modular Acquisition System 

BLOb binary large object 

FPGA field-programmable gate array 

HPC high-performance computing 

IP Internet Protocol 

KML Keyhole Markup Language 

MAC media access control 

OTA over-the-air [radio] 

PCAP Packet Capture 

PKTS Packet-Knowledge-Temporary-Store 

TTL time to live 
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