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This document is the final report on research activities jointly sponsored by the European Office of Aerospace
Research and Development and the Air Force Office of Scientific Research, Air Force Material Command, USAF,
under Grant number FA8655-12-1-2004, entitled ”PSE-3D instability analysis and application to flow over an
elliptic cone”. The Grant was jointly monitored by Dr. Gregg Abate of EOARD and Dr. John D. Schmisseur
of AFOSR. The present report covers the 36-month period from March 15, 2012 the inception of the grant, to
its end on March 15, 2015.

The present effort constitutes a step forward in advancing the frontiers of knowledge of fluid flow insta-
bility from a physical point of view, as a consequence of having been successful in developing groundbreaking
methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-
dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial
directions. In the context of the numerical work presented in this report, the discretization of the spatial oper-
ator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous
spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders
of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of nu-
merical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference
schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra
techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations,
as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional
EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlin-
ear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled
inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the
novel PSE-3D algorithm developed in the framework of the present report to study nonlinear flow instability
permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has
been successfully employed in the same context to boundary-layer type of flows over the last three decades.
Typical examples of incompressible flows, the instability of which was analyzed in the present report without
the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems
thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets,
the instability of which is exploited in order to improve flame-holding properties of combustors. The instability
of compressible subsonic leading-edge flows has been solved, and the wake of an isolated roughness element in
a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent
agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis
of Mach number 7 flow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow
instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.

Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under
grant number FA8655-12-1-2004. I certify that there were no subject inventions to declare during the perfor-
mance of this Grant. The U.S Government is authorized to reproduce and distribute reprints for Governmental
purpose notwithstanding any copyright notation thereon. The views and conclusions contained herein are those
of the author and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.
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Chapter 2

Introduction

Linear stability theory, in part motivated by research into laminar-turbulent flow transition, has occupied a
substantial part of fluid mechanics research for over a century. Numerical expediency has confined the bulk of
the efforts into analyzing one-dimensional shear flows. The classic linear stability theory of Tollmien [1929] is
mainly concerned with individual sinusoidal waves propagating in the boundary-layer parallel to the wall. In this
context, the parallel flow approximation is assumed, resulting in an ordinary differential equations (ODE)-based
eigenvalue problem (EVP), which may be expressed as the Orr-Sommerfeld and Squire equations (OSE) Drazin
and Reid [1981], Mack [1984], Schmid and Henningson [2001]. The prediction of boundary-layer transition based
on solutions of the OSE remains the only theoretically-founded approach in use in industry presently. However,
discrepancies exist with experimental results, especially at the tip of the neutral curve of Blasius flow, as well as
in boundary-layer flows in the presence of pressure gradients. The origin of the discrepancies was traced back
to the existence of a small but not negligible wall-normal base flow velocity component. An instability analysis
concept of the multiple-scales class, which relaxes the parallel flow approximation was introduced in the 1990s
of last century Herbert [1991], Bertolotti et al. [1992], Li and Malik [1994], denominated Parabolized Stability
Equations (PSE), owing to the change in the mathematical nature that the multiple-scales approach introduces
to the linearized stability equations. A key advantage of the PSE over the OSE types of approaches is that it
permits natural introduction of non-linear mode interaction and has been shown to be in excellent agreement
with spatial DNS both on flat-plate boundary layer Bertolotti et al. [1992] and vortex flows Wassermann and
Kloker [2003]. In-depth studies of the classic PSE have appeared in the literature in the course of the past
two decades Chang et al. [1991], Bertolotti et al. [1992], Herbert [1994], Li and Malik [1996, 1997]; see Herbert
[1997] for a review.

In a manner conceptually analogous to the OSE, global linear stability theory may consider base flows
which are inhomogeneous in two (rather than one) spatial directions. The amplitude functions of the associated
small-amplitude perturbations are now inhomogeneous in the same two spatial directions upon which the base
flow depends and are periodic along the third and are obtained from numerical solution of the pertinent two-
dimensional (BiGlobal) partial differential equations (PDE)-based EVP. The three-dimensional (TriGlobal)
PDE-based EVP has also been solved in a linear stability context, when no homogeneous directions existing
in the base flow. Three decades of research into this type of global instability analysis has already produced a
wealth of information; see Theofilis [2003, 2011] for a review.

The pioneering studies of inviscid instability of a vortex by Pierrehumbert [1986], viscous instability analyses
in the wake of the circular cylinder by Zebib [1987] and the rectangular duct by Tatsumi and Yoshimura [1990]
fall in the category of flows with two non-periodic spatial directions; all three works employed spectral methods
for the spatial discretization of the linearized operator. Almost simultaneously, finite-element methods were
also used for the solution of the two-dimensional EVP by Jackson [1987] and Morzyński and Thiele [2008], while
finite-volume methods soon followed Dijkstra [1992]. Although finite-element or finite-volume methods are not
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restricted to the single-domain two-dimensional grids employed in the early spectral analyses, their low formal
order of accuracy needs to be compensated in terms of grid density: should sharp gradients need to be resolved,
as the case is with the amplitude functions of global eigenmodes at increasingly high Reynolds numbers, one
resorts to using unstructured meshes of ever-increasing density in order to achieve convergence [e.g. González
et al., 2007]. In doing so, one effectively trades off the efficiency of a high-order method in favor of the flexibility
offered by the unstructured mesh discretization. The case is thus set for high-order accurate, flexible and efficient
numerical methods in order to solve the BiGlobal EVP. Such an approach has been introduced in the seminal
work of three-dimensional instability in the wake of a circular cylinder by Barkley and Henderson Barkley and
Henderson [1996], Henderson and Barkley [1996] in the form of spectral-element discretization on structured
meshes. The first application of a spectral/hp−element method Karniadakis and Sherwin [2005] to the study of
a global instability problem on unstructured meshes was that of Theofilis et al. [2002], who recovered instability
in the wake of a NACA0012 airfoil as the leading BiGlobal eigenmode of the steady wake flow.

Regarding eigenspectrum computations, early analyses relied on full eigenspectrum computation Pierrehum-
bert and Widnall [1982], Zebib [1987], which scales as O(M2) and O(M3) with regard to memory and CPU
time requirements, respectively, if a total number of M degrees of freedom are used for the spatial discretization
of the linearized operator. Both estimates present a severe limitation for full eigenspectrum computations in
both two and three simultaneously discretized spatial directions. Access to the entire eigenspectrum of global
EVPs is thus routinely sacrificed in present-day global instability analysis algorithms, which employ some form
of subspace iteration to recover a small subset of the eigenspectrum. This practice is justified since, from a
physical point of view only a relatively small part of the leading perturbations, those close to the origin, is rele-
vant to flow instability. On the other hand, access to the smallest eigenvalues implies inversion of the discretized
linear operator; a common practice to avoid inversion, the cost of which is also O(M2) and O(M3) if a direct
dense method is used, is to emulate the action of the inverse operator during the subspace creation, without
ever forming or inverting the operator. Well-established practices in the latter context, collectively referred to
as time-stepping methods, have been introduced by Eriksson and Rizzi [1985] and Edwards et al. [1994] and are
in use in modern global instability analysis, such as the three-dimensional global instability analyses of Tezuka
and Suzuki [2006] and Bagheri et al. [2009], or the modal and non-modal work of Blackburn et al. [2008b].
When considering non-modal linear analysis or transient growth, the theory pertinent to one-dimensional base
flows is well developed Schmid and Henningson [2001] (mainly in the incompressible regime, except some works
in the compressible regime as for example Hanifi et al. [1996]), but little transient growth analysis of essentially
multi-dimensional flows has been reported in the literature; the works of Arkevik et al. [2007], Blackburn et al.
[2008a,c], Heaton et al. [2009] and Abdessemed et al. [2009] are first examples in this class of analysis, all of them
in the incompressible limit, as well as the recent work of Schmidt and Rist [2014] in the compressible regime.
The non-modal theory use to rely in the computation of the singular value decomposition (SVD) instead of
solving an EVP when considering modal theory.

Nevertheless, it may be argued that forming the matrix has certain advantages over time-stepping, the main
ones being simplicity in the formation of the global EVP or SVD, and flexibility in extending the analysis
into regimes that would require the availability of entirely different flow solvers, if the time-stepping approach
were to be used. When the matrix is formed, it is straightforward to include in the same code compressibility
effects in subsonic or supersonic flow, extend the analysis into the hypersonic regime by implementing a few
additional terms in an otherwise unchanged algorithm, or include new physics, such as non-Newtonian dynamics
or magnetohydrodynamics, all by appropriately modifying the linearized operator. The penalty to be paid is of
course the need to store and operate large matrices which, as the resolution requirements increase, can quickly
be unmanageable in all but the largest supercomputers.

For a given spatial discretization method within a matrix forming context, straightforward serial (see Theofilis
[2003] and Supplemental Appendix 3 of Theofilis [2011] for an overview), as well as parallel computations
(ranging from a modest number of processors Crouch et al. [2007] up to massively parallel EVP solutions
Rodŕıguez and Theofilis [2009], Kitsios et al. [2009], Rodŕıguez and Theofilis [2011, 2010]) have been used for
the recovery of (part of) the global eigenspectrum. A key efficiency improvement was proposed by Crouch et al.

Page 22 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

[2007] who first employed sparse direct solvers for this class of problems. In order to exploit the benefits of
using sparse solvers, Merle et al. [2010b] compared Padé Lele [1992] and Dispersion-Relation-Preserving Tam
and Webb [1993] high-order finite-difference spatial discretization schemes to the solution of the incompressible
BiGlobal EVP and concluded that from a combined accuracy and efficiency perspective the DRP schemes offer
the best alternative for the solution of this global EVP.

The most general case corresponds to a three-dimensional flowfield, which is inhomogeneous in all three
spatial directions. A numerical solution of the PDE-based EVP resulting from the discretization of the three
coupled direction, referred to a TriGlobal stability analysis, is possible but prohibitively expensive nowadays
for most applications of interest. A parabolized variation of the three-dimensional stability equations (PSE-3D)
can be derived when the base flow can be assumed to experience slow variations along one of the three spatial
directions. Examples of such flows are corner flows Galionis and Hall [2005], Schmidt and Rist [2011], square
or serrated-nozzle jets Kit et al. [2007], missile-shaped bodies, i.e. circular and elliptic cones- or systems of
trailing-vortices in wakes. In this manner, the three-dimensional EVP is replaced by an initial value problem
that is solved using a marching integration along the slow direction. In an analogous manner to the extension
of the OSS equations to the conventional PSE, the BiGlobal analysis equations are extended to the PSE-3D
analysis, which appears to be the most efficient methodology for the study of wide branch of complex flows, as
the examples mentioned above.

The linear PSE-3D methodology, formulated in the incompressible limit in Galionis and Hall [2005] [see also
Broadhurst et al., 2006, Broadhurst and Sherwin, 2008, Paredes et al., 2011] and for the first time in the com-
pressible flow regime in De Tullio et al. [2013], assumes the existence of two scales along the streamwise spatial
direction: a slow one, on which the base flow varies, and a fast one, along which linear and non-linear wave-like
perturbations develop. Base flow and disturbances are inhomogeneous functions of the two coordintates of the
cross-sectional planes, and hence the two directions need to be resolved in a coupled manner. Therefore, the
PSE-3D methodology resolves a PDE-based instability problem at each streamwise location. After initialising
the PSE-3D with solutions of the spatial BiGlobal EVP at a given cross-section of the geometry analysed [Pare-
des et al., 2011], the full three-dimensional disturbance equations are marched along the slowly varying spatial
direction, solving the aforementioned PDE-based stability problem (with two-dimensional eigenfunctions) at
each station. It should be noted that the term PSE-3D has been used in the literature to describe the standard
PSE [Herbert, 1997] as applied to three-dimensional boundary-layers [as in Mughal, 2006]. Here, the term
PSE-3D is redefined in the sense of Broadhurst et al. [2006] and Paredes et al. [2011] to denote an instability
analysis methodology in which the base flow is strongly dependent on two spatial directions.

The typical modal instability theory based on linear ordinary differential equations of OSE or the linear
partial differential equations of BiGlobal analyses neglect the interaction between modes. Hence, its application
is restricted to regions of small disturbance amplitude, i.e. regions where modes develop practically independent
from each. Non-local non-linear methods based on PSE, as the DLR/FOI transition analysis code NOLOT/PSE
Hein et al. [1994], Hanifi et al. [1994], Hein [2005] do not require linearization. Therefore, they also model the
non-linear early stages of laminar-turbulent breakdown. The same methodology used for the addition of non-
linear effects in the PSE is extended here for the PSE-3D, enabling the study of complex three-dimensional
flows that so far were only accessible to the much more computationally expensive full Navier-Stokes spatial
evolving simulations.

Besides the instability analysis theory and several applications, the computation of base flows is also treated
in this report. It is well-known that instability analysis results are strongly dependent on the details of the
base flow Theofilis [2011]. Small differences in the base flow can lead to remarkable differences in the predicted
amplifications, due to the exponential nature of linear modal instability, while also leading to erroneous predic-
tions of the relevant frequencies of the small amplitude perturbations. The recovery of accurate base flows using
DNS in circumstances in which the flow is steady per se -and is thus, stable-, or along with a Newton-iteration
technique Tuckerman and Barkley [2000] in those cases in which an unsteady flow would exist, though feasi-
ble, may require considerable computational resources for the three-dimensional, moderate-to-high Reynolds
number flows of industrial interest. In those flows in which a predominant spatial direction exists, along which
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the mean properties of the flowfield vary slowly while fast variations are observed on the cross-sectional planes,
simplified approaches may be available in order to circumvent the large computational cost. The geometrical
particularities of this kind of flows can be exploited in order to devise ad hoc approaches for the computation
of base flows, that result more efficient for the problem at hand than using DNS. Along the present report, an
algorithm for the accurate and efficient computation of incompressible and compressible steady laminar base
flows in which strong flow variations exist along two spatial directions, while a mild variation can be assumed
along the third. This algorithm is based on the Parabolic Navier-Stokes (PNS) equations Rudman and Rubin
[1968]. Since their appearance, these equations have been used to successfully compute supersonic and hyper-
sonic, viscous flows; see Rubin and Tannehill [2004], Tannehill et al. [1997] for a review. The incompressible
version of the PNS equations were first formulated by Rubin and Lin [1981]. One of the advantages of using PNS
for the computation of base flows in an instability analysis context, is the steadiness of the solutions obtained
by definition. In this manner, unsteadiness in the real flow will be recovered as instability of the base flow in
a later instability analysis. It is important to notice that the same assumptions required to compute the flow
field through PNS are invoked in order to perform subsequent instability analysis of these flows using PSE-3D.

The present report is divided into different chapters, each one addressing a differentiated objective of the
present research work:

• Chapter 3: This Chapter presents a survey of the instability theory, addressing the different instabil-
ity approaches depending on the dimensionality of the base flow. Besides the modal local, BiGlobal
and TriGlobal analyses, attention is focused on the parabolized stability equations for two- and three-
dimensional flows, namely the classical PSE and the PSE-3D respectively.

• Chapter 4: In this Chapter different numerical methods for matrix formation approach are briefly de-
scribed. Special attention is firstly devoted to the spatial discretization. Then, the equations used for
analytical grid transformation, the eigenvalue computation algorithm and the solution procedure for PSE-
3D are explained.

• Chapter 5: A unified solution framework is presented for one-, two- or three-dimensional complex non-
symmetric EVPs, respectively governing linear modal instability of fluid flows in rectangular domains
having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace
iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered
by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order
finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-
Preserving (DRP) and Padé finite-difference schemes, as well as the Summation-by-parts (SBP) and the
new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view
of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability.
The FD-q method is found to significantly outperform all other finite difference schemes in solving classic
linear local, BiGlobal, and TriGlobal EVPs, as regards both memory and CPU time requirements. Results
shown in the present study disproves the paradigm that spectral methods are superior to finite difference
methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup
of O(104).

• Chapter 6: Flows of practical significance exist, like systems of trailing vortices or the flow around the
nose of an aerospace vehicle and the associated circular- and elliptic-base cone models, which are inhomo-
geneous in two and weakly dependent along the third spatial direction. Exploiting these characteristics,
an integration of the Navier-Stokes equations using the PNS concept is proposed for the recovery of
steady solutions, that might be used subsequently in the scope of primary instability analyses. The PNS
equations are first formulated In the incompressible regime in a cylindrical coordinate frame, and used
to calculate the solution of an isolated, axisymmetric non-parallel (axially developing) vortex. Then, the
fully three-dimensional flow corresponding to a counter-rotating pair of non-parallel vortices is obtained
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by PNS. Furthermore, the PNS equations are formulated in compressible regime using an arbitrary co-
ordinate transformation. For verification purposes, the boundary-layer solution around a circular cone
at zero angle of attack is compared in the incompressible limit with theoretical profiles. At supersonic
speed, at which an oblique shock appears, the recovered shock wave angle is compared with theoretical
predictions in the same circular cone geometry. Finally, the entire flow field around a 2:1 elliptic cone,
including the imbedded shock and the three-dimensional boundary-layer, is recovered at Mach numbers 3
and 4.

• Chapter 7: In the literature, the flows addressed in the previous Chapter, which are inhomogeneous in
two and weakly dependent on the third spatial direction, have been analyzed by simplified methodologies
those do not take in account the three-dimensionality or by the very expensive, in terms of computational
requirements, spatially evolving DNS. Exploiting the properties of these problems, the PSE-3D arise to
be the best candidates for their instability analysis. Focusing on the incompressible vortex flows, the
standard PSE in cylindrical coordinates is used along with the non-parallel vortex base flow computed
by PNS, as a validation test for the PSE-3D algorithm presented herein. The fully three-dimensional
counter-rotating vortex-pair flow is analyzed through PSE-3D.

• Chapter 8: In this Chapter, the global mode in a strongly swirling turbulent combustor flow undergoing
vortex breakdown is experimentally and analytically investigated. The experiment shows a self-excited
global flow oscillation at a well-defined frequency. Based on the mean flow field, a global hydrodynamic
stability analysis is carried out. The dampening effect of the Reynolds stresses are accounted for by an
estimated eddy viscosity. The global analysis successfully predicts the frequency of the global mode and
yields the global shape of the instability.

• Chapter 9: The linear instability induced by an isolated roughness element in a boundary-layer at Mach
2.5 and 6 is analyzed in this Chapter through direct numerical simulations, aided by spatial BiGlobal
and PSE-3D stability analyses. It is important to understand transition in this flow regime since the
process can be slower than in incompressible flow and is critical to prediction of local heat loads on next-
generation flight vehicles. The results show that the roughness element, with a height of the order of the
boundary-layer displacement thickness, generates a convectively unstable wake, which is composed of a
low velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid
growth of a number of instability modes. The most unstable of these modes are associated with varicose
or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in
the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous
mode). At the hypersonic regime, the Mach 6 case, boundary-layer modes develop at high frequencies
and are also covered here. The independently performed Navier-Stokes, spatial BiGlobal and PSE-3D
stability results are in excellent agreement with each other, validating the use of simplified theories for
roughness-induced transition involving wake instabilities.

• Chapter 10: In this Chapter, the linear instability of the three-dimensional boundary-layer over the
HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, is analyzed through spatial BiGlobal
analysis, in a effort to understand transition and accurately predict local heat loads on this configuration.
The base flow is computed at flight conditions of Mach 7 flow at altitude of 33.0 km and unit Reynolds
number 1.89 × 106 /m using the US3D non-equilibrium solver by Gosse et al. [2010]. The stability
analysis results reveal that the leading unstable modes peak on the mushroom-like structure formed near
the minor-axis meridian. On account of the three-dimensionality of the elliptic cone boundary-layer, this
produces spanwise pressure gradients, inducing crossflow from the leading edge (major-axis meridian) to
the centerline (minor-axis meridian), resulting in a lift-up of low momentum boundary-layer fluid at the
centerline. An unstable fluid structure, which is composed of a low velocity streak surrounded by a three-
dimensional high-shear layer, is thus generated and is found to sustain the rapid growth of instability
modes.
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• Chapter 11: In this Chapter, in an analogous manner to the addition of non-linear effects into the con-
ventional PSE, the linear PSE-3D are extended to predict the non-linear development of perturbations
on this kind of complex three-dimensional flows. This new in-house developed code is used firstly on the
flat-plate boundary-layer, showing excellent agreement with PSE results, and secondly on the wake of an
isolated roughness-element imbedded in a supersonic boundary-layer.
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Chapter 3

Hydrodynamic Instability

Hydrodynamic instability mostly studies the behavior of a laminar flow field upon the introduction of small-
amplitude perturbations, in order to improve the understanding of the processes involved in the onset of un-
steadiness and the transition of laminar flow to a turbulent regime.

3.1 The equations of fluid motion

The equations governing the motion of a viscous Newtonian fluid are obtained by imposing conservation of mass,
momentum and energy. The result is a system of nonlinear partial differential equations (PDEs), so called the
Navier-Stokes equations, which can be written as

∂ρ∗

∂t∗
+∇ · (ρ∗u∗) = 0, (3.1)

ρ∗
[
∂u∗

∂t∗
+ (u∗ · ∇)u∗

]
= −∇p∗ +∇[λ∗(∇ · u∗)]

+ ∇ · [µ∗((∇u∗) + (∇u∗)T)], (3.2)

ρ∗c∗p[
∂T ∗

∂t∗
+ (u∗ · ∇)T∗] = ∇ · (κ∗∇T ∗) +

∂p∗

∂t∗
+ (u∗ · ∇)p∗

+ λ∗(∇ · u∗)2 +
µ∗

2
[(∇u∗) + (∇u∗)T]2 (3.3)

where t∗ is the time, u∗ is the velocity vector, ρ∗ the density, p∗ the pressure, T ∗ the temperature, c∗p the
specific heat, κ∗ the thermal conductivity, µ∗ the first coefficient of viscosity, and λ∗ the second coefficient of
viscosity. The equation of state is given by the perfect gas relation p∗ = ρ∗RT ∗. Note that using the Stoke’s
law λ∗ = −2/3µ∗ and the asterisk denotes dimensional quantities.

The fluid variables are non-dimensionalized as follows. Lengths are scaled by a reference length l∗r , velocities
by u∗r and temperature by T ∗r . The reference pressure is p∗r = ρ∗r(u

∗
r)

2, the free-stream sound speed is denoted by
s∗r , and γ = c∗p,r/c

∗
v,r. The resulting dimensionless parameters are the Reynolds number, Re = ρ∗ru

∗
rl
∗
r/µ
∗
r , the

Prandtl number to Pr = c∗p,rµ
∗
r/κ
∗
r , the Mach number M = u∗r/s

∗
r and the Eckert number Ec = (u∗r)

2/(c∗p,rT
∗
r ) =

(γ − 1)M2. The equation of state in dimensionless form becomes

p =
1

γM2
ρT (3.4)

where the constant of perfect gases is fixed to γ = 1.4 and the Prandtl number Pr = 0.72. Sutherland’s law is
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used for the viscosity coefficient

µ = (T )3/2 1 + S

T + S
(3.5)

with µ∗s = 1.716 × 10−5 N s/m2, T ∗s = 273.15 K and S = 110.4 K/T ∗s for air in standard conditions. The
thermal conductivity of the medium is taken equal to the viscosity coefficient κ̄ = µ̄.

A simplification of the resulting flow equations (3.1-3.3) is obtained when considering an incompressible flow
of a Newtonian fluid. The assumption of incompressibility rules out the possibility of sound or shock waves to
occur; so this simplification is not useful if these phenomena are of interest. The incompressible flow assumption
typically holds well even when dealing with a compressible fluid, such as air at standard sea level temperature,
at low Mach numbers (even when flowing up to about M = 0.3). Taking the incompressible flow assumption
into account and assuming constant viscosity, the Navier-Stokes equations written in dimensionless form become

∇ · u = 0, (3.6)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (3.7)

where equations (3.6) and (3.7) are called the continuity and momentum equations respectively. Along the
present Chapter, the stability analysis theories will be presented in Cartesian coordinates at the incompressible
flow regime for simplicity of notation. Their compressible versions are written in the subsequent Appendices.

3.2 Instability analysis theory

The analysis of flow stability is based on the equations of motion (3.1-3.3) and monitors the development in time
and space of linear modal small-amplitude perturbations upon a given flow through the solution of the linearized
Navier-Stokes equations (LNSE). In order to proceed, the fluid variables q = (ρ, u, v, w, T )T are decomposed
into a steady base flow q̄ = (ρ̄, ū, v̄, w̄, T̄ )T and unsteady small-amplitude perturbations q̃ = (ρ̃, ũ, ṽ, w̃, T̃ )T :

q(x, t) = q̄(x) + εq̃(x, t), ε� 1. (3.8)

By introducing the previous decomposition of variables (3.8) into the governing equations (3.1-3.3) and neglect-
ing the non-linear terms of O(ε2) and O(ε3), the LNSE are recovered (see Appendix A). In the incompressible
limit, the LNSE are written as

∇ · ũ = 0 (3.9)

∂ũ

∂t
+ ū · ∇ũ + ũ · ∇ū = −∇p+

1

Re
∇2ũ (3.10)

The aforementioned LNSE can be written as initial-value-problem in the form

B(Re,M, q̄)
dq̃

dt
= A(Re,M, q̄)q̃, (3.11)

and solutions to this system of PDEs are considered.

The operators A and B are associated with the spatial discretization of the LNSE and comprise the basic
state, q̄(x) and its spatial derivatives. In case of steady basic flows, the separability between time and space co-
ordinates in (3.11) permits introducing a Fourier decomposition in time through the expression q̃ = q̂ exp(−iωt),
leading to the generalized matrix eigenvalue problem (EVP)

Aq̂ = ωBq̂, (3.12)
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in which matrices A and B discretize the operators A and B, respectively, and incorporate the boundary
conditions. Details on the eigenvector q̂ will be provided in what follows. Re-writing (3.11) in matrix form as

dq̂

dt
= Cq̂, (3.13)

where C = B−1A, in which the inversion B is permissible due to its non-singular nature in the compressible
regime, this autonomous system has the explicit solution

q̂(t) = exp(Ct) q̂(0) ≡ Φ(t)q̂(0). (3.14)

Here, q̂(0) ≡ q̂(t = 0) and the matrix exponential, Φ(t) ≡ exp(Ct), is known as the propagator operator. In the
case that the base flow has a time-periodic dependence, the propagator operator is denoted as the monodromy
matrix Karniadakis and Sherwin [2005] and Floquet theory is applicable Herbert [1984], Barkley and Henderson
[1996].

The linearization of the equations of motion is correct while the disturbance amplitude remains small enough
for the non-linear terms to be negligible. This statement should be kept in mind as the true non-linear system
can become unstable under finite-amplitude disturbances, under conditions in which the linearized system will
stay stable. One physical example of this is the laminar-turbulent transition originated by the transient or
non-modal growth of initially small disturbances, that can be stable in a linear approach (see Butler and Farrell
[1992] for a review). Both modal- and non-modal growth may be studied by equation (3.15), although the
modal approach is addressed in computationally more efficient manner by numerical solution of equation (3.12).

A solution of the initial value problem (3.13), which is valid for the non-normal matrices discretizing the
LNSE, distinguishes between the limits t→ 0 and t→∞; while the latter limit may be described by the EVP
(3.12), growth, σ, of an initial linear perturbation, q̂(0), may be computed at all times via

σ2 =
〈exp(C∗t) exp(Ct)q̂(0), q̂(0)〉

〈q̂(0), q̂(0)〉 =
〈Φ∗(t)Φ(t)q̂(0), q̂(0)〉

〈q̂(0), q̂(0)〉 , (3.15)

which permits the study of both modal and non-modal perturbation growth, the latter also called transient
growth, in a unified framework.

Implicit here is the definition of an inner product, (·, ·), and the associated adjoint C
∗

of the matrix C,
which discretizes the operator C.

The discussion is completed by introducing the singular value decomposition (SVD) of the propagator
operator

eCt = UΣVT. (3.16)

Here the unitary matrices V and U respectively comprise (as their column vectors) initial and final states,
as transformed by the action of the propagator operator, while Σ is diagonal and contains the associated growth
σ as the corresponding singular value. The SVD may be utilized to compute optimal perturbations, whose are
recovered as the first column of matrix U in equation (3.16).

The relationship between transient growth and the non-orthogonal properties of the linear operators de-
scribing local linear flow instability in the incompressible limit for one-dimensional problems, the so-called
Orr-Sommerfeld equation (OSE), have been investigated by Trefethen et al. [1993] and Reddy et al. [1993]
using the concept of pseudospectrum. In addition to investigating the development of disturbances based on
eigenmodes, the pseudospectrum analysis is adapted to the present context in order to explore the potential for
transient growth due to non-orthogonality.

Analysis proceeds by computing the pseudospectrum of the matrix discretizing the linearized equations,
C = B−1A, via computation of the eigenspectrum ω of this matrix C, perturbed by a small amount, according
to

(C + E)q̂ = ωq̂. (3.17)
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Here E is of the same dimension as A and contains homogeneously distributed random elements between 0 and
ε. The literature uses the definition of the norm ‖E‖ in order to quantify the perturbation of A; see Schmid
and Henningson [2001] for a complete description. The sensitivity of eigenvalues can also be represented using
the resolvent (ωI −A)−1, leading to a similar definition of the ε-pseudo eigenvalue ω. In that context a large
norm of the resolvent implies strong sensitivity to forcing, which in turn may be related to transient growth.

Non-modal BiGlobal instability analysis is an emerging field of research, while the bulk of global instability
analyses performed in the quarter-century of history of the subject concern the numerical solution of the EVP,
mainly in two spatial dimensions.

3.3 Modal linear stability theory

The above generic discussion is applicable to any linearization of the governing equations following the decom-
position of flow quantities (3.8). Furthermore, in modal linear stability theory, the perturbation term is usually
written as the product of an amplitude function and a phase function, q̃ = q̂Θ. Table 3.1 summarizes the
different instability approaches arranged by increasing constrains to the basic flow. However, depending on
the dimensionality of the base flow analyzed, the resulting theoretical frameworks involve numerical solutions
that require orders-of-magnitude different levels of computational work for their solution. In this Section the
different frameworks in use in the context of modern linear stability theory are detailed, and the associated
terminology is introduced. Table 3.1 presents the assumptions underlying the analysis, classified by the number
of resolved inhomogeneous spatial directions in the basic flow q̄.

Page 4 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

T
ab

le
3
.1

:
C

la
ss

ifi
ca

ti
on

of
m

o
d

er
n

li
n

ea
r

st
ab

il
it

y
an

al
y
si

s
th

eo
ry

co
n

ce
p

ts
in

to
lo

ca
l

(O
S

S
),

n
on

-l
o
ca

l
(P

S
E

)
an

d
gl

ob
a
l

(B
iG

lo
b

al
,

P
S

E
-3

D
,

T
ri

G
lo

b
al

)
th

eo
ri

es
.

D
en

om
in

at
io

n
A

ss
u

m
p

ti
on

s
B

as
e

F
lo

w
A

m
p

li
tu

d
e

F
u

n
ct

io
n

s
P

h
as

e
F

u
n

ct
io

n
Θ

T
ri

G
lo

b
al

-
q̄

(x
,y
,z

)
q̂

(x
,y
,z

)
ex

p
{−
ω
t}

P
S

E
-3

D
†

∂
x
q̄
�
∂
y
q̄
,∂
z
q̄

q̄
(x
∗ ,
y
,z

)
q̂

(x
∗ ,
y
,z

)
ex

p
{ ∫

α
(x
′ )
d
x
′
−
ω
t}

B
iG

lo
b

al
∂
x
q̄

=
0

q̄
(y
,z

)
q̂

(y
,z

)
ex

p
{α
x
−
ω
t}

P
S

E
†

∂
x
q̄
�
∂
y
q̄

;∂
z
q̄

=
0

q̄
(x
∗ ,
y
)

q̂
(x
∗ ,
y
)

ex
p
{ ∫

α
(x
′ )
d
x
′
+
β
z
−
ω
t}

O
S

E
∂
x
q̄

=
∂
z
q̄

=
0

q̄
(y

)
q̂

(y
)

ex
p
{α
x

+
β
z
−
ω
t}

†
d

en
o
te

s
p

o
te

n
ti

a
l

ex
te

n
si

o
n

to
in

cl
u

d
e

n
o
n

li
n

ea
r

m
o
d

e
in

te
ra

ct
io

n
.

∗
d

en
o
te

s
a

sl
o
w

ly
-v

a
ry

in
g

sp
a
ti

a
l

d
ir

ec
ti

o
n

.

Page 5 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

The best known context of classic or local linear stability theory assumes a single inhomogeneous spatial
direction in both the basic flow and the amplitude functions, indicated by y in the last line of Table 3.1. Examples
of flows to which classic local linear theory may be applied are parallel shear flows Schmid and Henningson
[2001], in which the velocity vector comprises a streamwise and a spanwise component, q̄ = (ū1(y), 0, ū3(y))T ,
both of which are functions of the transverse spatial coordinate, y, as well as for example isolated vortices or
circular ducts, the base flow velocity of which depends on the radial coordinate alone Khorrami et al. [1989].
Separation of variables in the operator describing the linear perturbations permits the introduction of Fourier
decompositions along the homogeneous streamwise, x, and spanwise, z, spatial directions and the linearized
equations of motion may be re-written to arrive at variants of the OSE. Numerical solution of this class of EVP
is straightforward and practically all present-day laminar-turbulent transition analysis employs variants of this
equation, also appropriately extended in the supersonic Malik [1990] and hypersonic regimes Malik [1987], Malik
and Anderson [1991], Stuckert and Reed [1994a]. On the other hand, the linear (and non-linear) stability of
boundary-layer flows, in which a small but non-zero wall-normal velocity component exists in the base flow and
the dependence of the latter on the streamwise coordinate, x, is much weaker than that along the wall-normal,
y, can be studied by the Parabolized Stability Equations (PSE), shown in Table 3.1. Unlike an EVP-based
solution, PSE solve a marching integration of the LNSE along the streamwise spatial direction, and is known
as a non-local instability analysis; Herbert [1997] provides an introduction to the PSE.

The remaining three entries in Table 3.1 are collectively known as global linear theory. The key difference
with classic linear theory or the PSE lies in the number of inhomogeneous spatial directions on which the base
flow depends and the related number of periodic directions assumed. Because of this, OSE and PSE result in a
system of ordinary differential equations (ODE). BiGlobal theory assumes the existence of a single homogeneous
spatial direction and fully resolves in a coupled manner the other two, while TriGlobal analysis does not make
any assumptions on homogeneity; respectively a two-dimensional and a three-dimensional PDE-based EVP
results. Between the two concepts, PSE-3D assumes the existence of a base state which depends strongly on
two and weakly on the third spatial dimension. The amplitude functions in both BiGlobal linear analysis and
PSE-3D are two-dimensional functions of the resolved spatial coordinates, while those pertinent to TriGlobal
analysis are three-dimensional functions of three simultaneously resolved spatial coordinates.

The leading dimension of the matrices discretizing the system of two-dimensional PDE describing the PSE-
3D and spatial BiGlobal analysis EVP is several orders of magnitude (depending in the number of discretization
nodes) larger than the equivalent when solving the system of one-dimensional ODE corresponding to the classical
PSE and local stability equations. Figure 3.1 shows a schematic comparison of their leading dimension for
compressible flow regime.

3.3.1 Local instability

The basic flow is assumed to be homogeneous in two of the three spatial directions, here x and z. Assuming that
the basic flow is only dependent on one, y, out of the three spatial directions, the coefficients of the resulting
EVP are (x, z)-independent, and without loss of generality modal perturbations get the form

q(x, y, z, t) = q̂(y) exp[i(αx+ βz − ωt)] (3.18)

where the new periodicity lengths Lx = 2π/α and Lz = 2π/β have been imposed to the disturbances shape
in the x− and z− direction respectively. Upon substitution of the ansatz (3.18) in the incompressible LNSE
(3.9-3.10), results the system of equations

Lû+ ūy v̂ + iαp̂ = 0 (3.19)

Lv̂ +Dyp̂ = 0 (3.20)

Lŵ + w̄y v̂ − iβp̂ = 0 (3.21)

iαû+Dy v̂ + ŵz = 0 (3.22)
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Figure 3.1: Schematic comparison of leading dimension of matrices discretizing local, classical PSE, BiGlobal
and PSE-3D operators.
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where L = iαū + iβw̄ − 1
Re (D2

yy − β2 − α2) − iω, Dy being the first derivative matrix and D2
yy the second

derivative matrix respect to y direction. The compressible version of equations (3.19-3.22) can be found in the
work of Malik [1990].

The system of ODEs described by equations (3.19-3.22) can be reduced to a system of two coupled equations
when w̄ = 0, by eliminating the pressure variable in v−equation and introducing the normal vorticity η̂ =
∂û/∂z − ∂ŵ/∂x. The resulting set of equations is

[
(−iω + iαū)

(
D2
yy − k2

)
− iαūyy −

1

Re

(
D2
yy − k2

)2
]
v̂ = 0 (3.23)

[
(−iω + iαU)− 1

Re

(
D2
yy − k2

)]
η̂ = −iβUy v̂, (3.24)

where the wavenumber k2 = α2 + β2 has been introduced. This problem is usually complemented with the
boundary conditions v̂ = dv̂/dy = η̂ = 0 at solid walls or in the far field. However, this choice of boundary
conditions for the far field is not justified when a continuous spectrum exists.

Equation (3.23) is called the Orr-Sommerfeld equation, and has been widely used since its introduction in
the beginning of the XX century Lin [1955], Drazin and Reid [1981]. This equation is a one-dimensional EVP
for the evolution of viscous wave-like disturbances, superposed to a basic flow given by a velocity profile ū(y).
Despite its apparent simplicity, it provides the exact eigenmodes of strictly parallel flows like plane-Poiseuille
and Couette flows, and good approximations for quasi-parallel, slowly diverging flows like the Blasius boundary-
layer. It is worth mentioning the inviscid equivalent of the OSE, that was derived by Lord Rayleigh, and yields
exact solutions for parallel inviscid shear flows, and good approximations for slowly diverging flows like the
unbounded mixing layer. Equation (3.24) is known as the Squire equation. For disturbances with v̂ = 0, it
becomes an EVP for pure normal vorticity disturbances. For v̂ 6= 0, i.e. for eigenmodes solution of the OSE,
equation (3.24) is a linear problem for the normal disturbance vorticity.

The instability problem as presented from the beginning considers the growth in time of disturbances.
However, many of the instability phenomena relevant to laminar-to-turbulent transition evolves in space rather
than in time, as the classic picture of transition in boundary-layer flows. The local instability problem, based
on the parallel flow assumption, can evenly consider evolutions in space or time.

The distinction of spatial and temporal instability problems is due to historical reasons. The temporal prob-
lem was the first to be employed because its simplicity, predicting reasonably well the dominant frequencies in
shear-flows. The spatial problem attained higher importance later in the study of instability waves originated
by periodic forcing, e.g. vibrating ribbons in boundary-layers, closely modeling the initial stages of the tran-
sition to turbulence. However, both spatial and temporal problems are particular cases in which the wave-like
perturbations grow only in space or in time. The instability waves can grow simultaneously in space and in
time, and both α and ω can be complex quantities in general. The relation between the wavenumbers α and β,
the frequency ω, and other parameters involved is referred to as the dispersion relation:

D(α, ω;β,Re,M) = 0. (3.25)

The wave-like disturbances characterized by complex α and ω values can grow in space and simultaneously
decay in time, or viceversa. The dispersion relation (3.25) maps points in the complex ω-plane to points in the
complex α-plane, thus determining the behavior of the wave. A wave-like disturbance is said to be convectively
unstable if after its introduction it experiences growth while it moves downstream, but in the initial location it
decays and finally vanishes. On the other hand, a disturbance is absolutely unstable if it grows in the location
where it is introduced, being also possible a growth downstream and upstream of the initial location. Absolute
instability Huerre and Monkewitz [1985, 1990] would appear if there exist waves with group velocity cg = 0
and positive temporal growth rate ωi > 0. Those disturbances would determine the border between parametric
regions of absolute instability and convective instability.
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Mathematically, the (linear) temporal EVP, can be written as a generalized EVP:

A · q̂ = ωB · q̂ (3.26)

where q̂ = [ρ̂, û, v̂, ŵ, T̂ ]T and the (nonlinear) spatial EVP,

A · q̂ =
2∑

k=1

αkBk · q̂. (3.27)

In order to solve numerically the quadratic EVP, it must be previously reduced to a linear EVP. The latter
problem can be converted into a (larger by a factor equal to the degree of non-linearity) linear EVP, as shown
by Theofilis [1995], using the companion matrix method Bridges and Morris [1984], Heeg and Geurts [1998], in
which an auxiliary vector q̂∗ = [ρ̂, û, v̂, ŵ, T̂ , αû, αv̂, αŵ, αT̂ ]T is defined, resulting in

A · q̂∗ = αB · q̂∗. (3.28)

The numerical procedure for the numerical solution of EVPs (3.26) and (3.28) is discussed in the Chapter 4
devoted to numerical methods.

Temporal Local instability formulation

The operators A and B defining (3.26) in the incompressible limit written using matrix notation become

A =




LT ūy 0 iα
0 LT 0 Dy
0 w̄y LT iβ
iα Dy iβ 0


 (3.29)

B =




i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0


 (3.30)

where LT = iαi + w̄iβ − 1
Re (D2

yy − β2 − α2). Here α, β ∈ R are a wavenumber parameter, related with the
periodicity length along the homogeneous spatial directions, x and z, through α = 2π/Lx and β = 2π/Lz. The
sought complex eigenvalue is ω = ωr + iωi, the real part being a circular frequency, while the imaginary part is
the temporal amplification/damping rate.

Spatial Local instability formulation

The operators A and B defining (3.28) in the incompressible limit written using matrix notation become

A =




LS ūy 0 0 0 0 0
0 LS 0 Dy 0 0 0
0 w̄y LS iβ 0 0 0
0 Dy iβ 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I




(3.31)
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B =




−iū 0 0 −i − 1
Re 0 0

0 −iū 0 0 0 − 1
Re 0

0 0 −iū 0 0 0 − 1
Re

−i 0 0 0 0 0 0
I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0




(3.32)

where LS = −iω − 1
Re (D2

yy − β2). Here ω ∈ R is a real frequency parameter and β ∈ R is a real wavenumber,
β = 2π/Lz, while α ∈ C is the sought eigenvalue, the real part of which is related with the periodicity length
along the homogeneous spatial direction, x, through αr = 2π/Lx and the imaginary part, αi is the spatial
amplification/damping rate.

3.3.2 Parabolized Stability Equations

Parabolized Stability Equations (PSE) have opened new avenues to the analysis of the streamwise growth of
linear and nonlinear disturbances in slowly varying shear flows such as boundary-layers, jets, and far wakes.
Growth mechanisms include both algebraic transient growth and exponential growth through primary and higher
instabilities. In contrast to the eigensolutions of traditional linear stability equations, PSE solutions incorporate
inhomogeneous initial and boundary conditions as do numerical solutions of the Navier-Stokes equations. The
PSE are valid for convectively unstable flows in which the root-mean-square of the variables profiles vary slowly
in the streamwise direction, i.e. ∂

∂x = O(ε), with ε � 1, for example being ε = O(Re−1) in boundary-layer
flows.

The velocity components ū and w̄ exhibit small variations in the streamwise and spanwise direction, and
the component v̄ normal to the surface is non-zero to provide the mass parameter as the displacement thickness
changes.

The disturbance quantities are expanded in terms of their truncated Fourier components assuming that are
periodic in time

q̃(x, y, z, t) =
M∑

m=−M

N∑

n=−N
q̆m,n(x, y) exp [i(mβz − nωt)] . (3.33)

Furthermore, q̆ = (ρ̆, ŭ, v̆, w̆, T̆ ) is defined as a fast varying wavy function with a slowly varying amplitude

q̆(x, y) = q̂(x, y) exp

[
i

∫

x

α(x′)dx′
]
, (3.34)

where q̂(x, y) varies slowly with x. Note that q̆−m,−n is equal to the complex conjugate of q̆m,n.The sub-index
m,n is suppressed for simplicity when appropriate.

Within the PSE approximation, the streamwise derivatives of q̂ take the form

∂kq̆

∂xk
= ik

[
αkq̂− ikαk−1 ∂q̂

∂x
− i

k(k − 1)

2
αk−2 dα

dx
q̂

]
exp

[
i

∫

x

α(x′)dx′
]
, (3.35)

and for the first and second derivative, the above expression becomes

∂q̆

∂x
=

(
iαq̂ +

∂q̂

∂x

)
exp

[
i

∫

x

α(x′)dx′
]
, (3.36)

∂2q̆

∂x2
=

(
−α2q̂ + 2iα

∂q̂

∂x
+ i

dα

dx
q̂

)
exp

[
i

∫

x

α(x′)dx′
]
. (3.37)
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Substituting (3.34) and the first and second streamwise derivatives (3.36-3.37) into the LNSE (A.1-A.5), and
neglecting terms of O(ε2) as αxq̂x, q̂xx, αxx and higher derivatives with respect to x or streamwise derivatives
in the viscous part of the equations, the non-linear PSE are written in a compact form as

(Lm,n +Mm,nDx) q̂(x, y) = Fm,n(x, y) exp

[
−i

∫

x

αm,n(x′)dx′
]
, (3.38)

where Dx is the being the first derivative operator respect to x direction and Fm,n is the Fourier component of
the total forcing, F , which comprises the non-linear terms on disturbance variables

F =
M∑

n=−M

N∑

n=−N
Fm,n(x, y) exp [i(mβz − nωt)] . (3.39)

The entries of the coefficient matrices for Lm,n and Mm,n and vector components of F can be found in Hein
et al. [1994], Hanifi et al. [1994], Hein [2005] for the compressible regime and are expressed as follow in the
incompressible limit

Lm,n =




L0 + ūx ūy 0 iα
v̄x L0 + v̄y 0 Dy
w̄x w̄y L0 iβ
iα Dy iβ 0



m,n

, (3.40)

Mm,n =




ū 0 0 1
0 ū 0 0
0 0 ū 0
1 0 0 0


 , (3.41)

F =




ũũx + ṽũy
ũṽx + ṽṽy
ũw̃x + ṽw̃y

0


 , (3.42)

where L0 = ūiα + v̄Dy + w̄iβ − 1
Re (D2

yy − β2 − α2) − iω. The linear PSE equations are recovered by setting
zero forcing term, what is equivalent to neglect terms of O(ε2). Here, ω ∈ R is a real frequency parameter and
β ∈ R is a real wavenumber, β = 2π/Lz, while α ∈ C is sought.

The normalization condition

An ambiguity exists in the PSE formulation, in which the changes in amplitude along the slow spatial direction
can be contained both in the amplitude function q̂ or in the phase function of equation (3.34). A normalization
condition is required in order to close the formulation of the problem (see Herbert Herbert [1994, 1997] for a
review). In this work, the following normalization condition is used:

∫

Ω

ρ̄1/2û†
∂(ρ̄1/2û)

∂x
dΩ =

∫

Ω

1

2

∂

∂x
ρ̄|û|2 dΩ = 0 (3.43)

where û = (û, v̂, ŵ)T . This normalization imposes that the kinetic energy of the shape functions remains
independent of x. Thus, the amplitude growth is absorbed into the phase function.

The effective growth rate computed by PSE is formulated as

σK = −αi +
1

2

d ln[K(x)]

dx
, with K(x) =

∫

Ω

ρ̄(ûû† + v̂v̂† + ŵŵ†)dΩ, (3.44)

in order to take into account the residual slow variation of disturbance kinetic energy, K, with x.
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Numerical stability

Inspection of this system suggests a parabolic set of equations that can be solved by treating the x direction as
a pseudo-time, marching in this direction. The studies of Li and Malik [1994, 1997], found that these equations
are mathematically elliptic, and are numerically ill-posed. Choosing a sufficiently large marching step, however,
negates the upstream influence and was found to give accurate results. Li and Malik [1994] found that, for a
backward difference scheme in x, a limit of

∆x >
1

|α| (3.45)

needs to be placed on the marching step size.

3.3.3 BiGlobal instability

Assuming that the basic flow is now dependent on two out of the three spatial coordinates, the two-dimensional
parallel flow is assumed and the BiGlobal instability theory is applicable (see Theofilis Theofilis [2003], Theofilis
[2011] for a review).

The disturbances are three-dimensional, but a sinusoidal dependence with the homogeneous x-direction is
assumed, with the periodicity length Lx = 2π/α as follows

q̃(x, y, z, t) = q̂(y, z)exp[i(αx− ωt)]. (3.46)

Upon substitution of the ansatz (3.46) in the incompressible LNSE (3.9-3.10), results the system of equations

Lû+ ūy v̂ + ūzŵ + iαp̂ = 0 (3.47)

(L+ v̄y)v̂ + v̄zŵ + p̂y = 0 (3.48)

(L+ w̄z)ŵ + w̄y v̂ + p̂z = 0 (3.49)

iαû+ v̂y + ŵz = 0 (3.50)

where L = iαū+ v̄Dy + w̄Dz− 1
Re (D2

yy +D2
zz−α2)− iω, Dz being the first derivative matrix and D2

zz the second
derivative matrix respect to z direction.

Temporal BiGlobal instability formulation

Written using matrix notation, the operators A and B defining (3.26) become:

A =




LT ūy ūz iα
0 LT + v̄y v̄z Dy
0 w̄y LT + w̄z Dz
iα Dy Dz 0


 (3.51)

B =




i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0


 (3.52)

where LT = iαū+ v̄Dy + w̄Dz − 1
Re (D2

yy +D2
zz −α2). Following the same reasoning made in the temporal local

instability formulation, here α ∈ R is a wavenumber parameter, related with the periodicity length along the
homogeneous spatial direction, x, through α = 2π/Lx, while the sought complex eigenvalue is ω.

The entries of the matrices discretizing the operators A and B defining (3.26) in the compressible regime
are found in Appendix B for the choice of variables used in this work q = (ρ, u, v, w, T ), while Theofilis and
Colonius [2004] and Robinet [2007] show the equations for q = (u, v, w, T, p).
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Spatial BiGlobal instability formulation

Written using matrix notation, the operators A and B defining (3.28) become:

A =




LS ūy ūz 0 0 0 0
0 LS + v̄y v̄z Dy 0 0 0
0 w̄y LS + w̄z Dz 0 0 0
0 Dy Dz 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I




(3.53)

B =




−iū 0 0 −i − 1
Re 0 0

0 −iū 0 0 0 − 1
Re 0

0 0 −iū 0 0 0 − 1
Re

−i 0 0 0 0 0 0
I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0




(3.54)

where LT = −iω + v̄Dy + w̄Dz − 1
Re (D2

yy + D2
zz). Following the same reasoning made in the spatial local

instability formulation, here ω ∈ R is a real frequency parameter, while α ∈ C is the sought eigenvalue.

3.3.4 Three-dimensional parabolized stability equations

The most general case corresponds to a three-dimensional flowfield, which is inhomogeneous in all three spatial
directions. A numerical solution of the PDE-based EVP resulting from the discretization of the three coupled
direction, referred to a TriGlobal stability analysis, is possible but prohibitively expensive nowadays for most
applications of interest. A parabolized variation of the three-dimensional stability equations (PSE-3D) can
be derived when the basic flow can be assumed to experience slow variations along one of the three spatial
directions (see Table 3.1). In this manner, the three-dimensional EVP is replaced by an initial value problem
that is solved using a marching integration along the slow spatial direction.

Following the same reasoning made on the classical PSE, the PSE-3D are valid for convectively unstable flows
in which the root-mean-square of the variables profiles vary slowly in the streamwise direction. The disturbance
quantities are expanded in terms of their truncated Fourier components assuming that are periodic in time

q̃(x, y, z, t) =
N∑

n=−N
q̆n(x, y, z) exp [−inωt] . (3.55)

Furthermore, we write the q̆ as a fast varying wavy function with a slowly varying amplitude

q̆(x, y, z) = q̂(x, y, z) exp

[
i

∫

x

α(x′)dx′
]
, (3.56)

where q̂(x, y, z) varies slowly with x. The subindex n will be supressed for simplicity when appropiate.

Substituting (3.56) and the first and second streamwise derivatives (3.36-3.37) into the LNSE (A.1-A.5), and
neglecting terms of O(ε2) as αxq̂x, q̂xx, αxx and higher derivatives with respect to x or streamwise derivatives in
the viscous part of the equations, the compressible linear non-linear PSE-3D equations are written in a compact
form as

(Ln +MnDx) q̂(x, y, z)n = Fn(x, y, z) exp

[
−i

∫

x

αn(x′)dx′
]
, (3.57)
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where Fn is the Fourier component of the total forcing,

F =
N∑

n=−N
Fn(x, y, z) exp [−inωt] . (3.58)

The entries of the coefficient matrices for Ln and Mn and vector components of F can be found in Appendix
D for compressible flows and are expressed in the incompressible limit as follows

Ln =




L0 + ūx ūy ūz iα
v̄x L0 + v̄y v̄z Dy
w̄x w̄y L0 + w̄z Dz
iα Dy Dz 0



n

, (3.59)

Mn =




ū 0 0 1
0 ū 0 0
0 0 ū 0
1 0 0 0


 , (3.60)

F =




ũũx + ṽũy + w̃ũz
ũṽx + ṽṽy + w̃ṽz
ũw̃x + ṽw̃y + w̃w̃z

0


 , (3.61)

where L0 = ūiα + v̄Dy + w̄Dz − 1
Re (D2

yy − D2
zz − α2)− iω. The linear PSE equations are recovered by setting

zero forcing term, what is equivalent to neglect terms of O(ε2). As in the PSE theory, ω ∈ R is a real frequency
parameter and α ∈ C is sought.

The normalization condition

Following the same explanation of the classical PSE, the used normalization condition is equation (3.43), but
here the integral is two-dimensional over the plane normal to the marching direction.

Numerical stability

Following the same reasoning made on the classical PSE, the PSE-3D contain also some residual ellipticity, as
was shown by Broadhurst and Sherwin [2008]. The marching integration is performed using an implicit scheme
along with a sufficiently large streamwise step satisfying equation (3.45).

3.3.5 TriGlobal instability

The TriGlobal analysis is the most general case with the perturbations being non-homogeneus in the three
spatial directions and modal perturbations get the form

q̃(x, y, z, t) = q̂(x, y, z) exp[−ωt] (3.62)

where the definition ω → iω is used to have a real arithmetic EVP. In this case, ωi is the circular frequency and
ωr is the damping/growth rate.

Upon substitution of equation (3.62) into the incompressible LNSE (3.9-3.10), the operators A and B of
equation (3.26) define a PDE-based problem with real arithmetic as follows

A =




L+ Ux Uy Uz Dx
Vx L+ Vy Vz Dy
Wx Wy L+Wz Dz
Dx Dy Dz 0


 , B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , (3.63)
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where L = ūDx + v̄Dy + w̄Dz − 1
Re (D2

xx + D2
yy + D2

zz) and D2
xx being the second derivative matrix respect to

x direction. The entries of the coefficient matrices for A and B can be found in Appendix E for compressible
flows. Although TriGlobal instability results for compressible flows are not shown in this work, the equations
will be referenced when solving complex geometries using spatial BiGlobal and PSE-3D by using a generalized
coordinate system transformation.
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Chapter 4

Numerical considerations

4.1 Spatial discretization

The spatial discretization plays a very important role in matrix storing and forming approach for solving EVPs.
Special attention is devoted to the high order finite-difference methods developed by Hermanns and Hernández
[2008], since it is employed here for the first time in the global instability field.

4.1.1 Dispersion-Relation-Preserving schemes

The main objective of Dispersion Relation Preserving (DRP) finite-difference schemes is to present an optimized
high order finite-difference scheme which minimizes dispersion wave errors. Therefore, this scheme supports not
only consistency, stability and convergence but also wave solutions with the same characteristics as the linearized
Euler equations in the case of small amplitude waves. The methodology of this method is briefly introduced in
this paper and is explained more in detail by Tam and Webb [1993].

Considering the model wave equation
∂u

∂t
= c

∂u

∂x
, (4.1)

and using the spatial discretization on a uniform grid spacing ∆x, the next expression gives the first order
spatial derivative at the nodal point l:

(
∂u

∂x

)

l

' 1

∆x

M∑

j=−N
ajul+j , (4.2)

where the finite-difference coefficients aj need to be determined. Additionally to the fulfillment of the classical
finite-difference relations among the coefficients aj to ensure a certain order of convergence, the DRP methods
impose additional conditions based on the minimization of the integrated error E, defined by the Euclidean
norm,

E =

∫ π/2

−π/2
|α∆x− α̂∆x|2 d(α∆x), (4.3)

where α is the physical wavenumber and α̂ is the effective wavenumber of the finite-difference approximation
obtained from applying a spatial Fourier transformation to equation (4.2). This additional condition seeks to
improve the spectral resolution capabilities of the explicit finite-difference method Tam and Webb [1993].

The procedure to calculate second derivatives is similar to the one explained before. These coefficients are
presented in the work of Paredes et al. [2013] for a finite-difference scheme of order 8. Following the methodology
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employed by Merle et al. [2010a], the boundary formulations for the first and second order derivatives correspond
to standard finite-difference schemes of lower accuracy order. However, in the present procedure, the order of
the boundary formulations are kept of the same order than the inner finite-difference scheme. Such difference
is necessary in order to get the proper slope of the relative error curves that proves the order of the method.

4.1.2 Compact finite-difference schemes

The implicit scheme or compact finite-difference scheme described in Lele [1992] is briefly presented next. These
schemes are generalizations of the Padé schemes. The considered mesh is again a regular one with a constant
grid spacing ∆x. The generalizations for the first and second derivatives have the following form:

βf ′j−2 + αf ′j−1 + f ′j + αf ′j+1 + βf ′j+2

= c
fj+3 − fj−3

6∆x
+ b

fj+2 − fj−2

4∆x
+ a

fj+1 − fj−1

2∆x
, (4.4)

βf ′′j−2 + αf ′′j−1 + f ′′j + αf ′′j+1 + βf ′′j+2

= c
fj+3 − 2fj + fj−3

9∆x2
+ b

fj+2 − 2fj + fj−2

4∆x2
+ a

fj+1 − 2fj + fj−1

∆x2
. (4.5)

Following the methodology employed by Colonius [1994], the boundary formulation employed for the first
and second derivatives is a finite-difference compact scheme with smaller order than the inner scheme. How-
ever, the present formulation keeps the same order used in the inner finite-difference scheme for the boundary
formulations. Thanks to this, the proper slope of the relative error curves that proves the order of the method
is recovered.

4.1.3 Summation-by-Parts finite-difference schemes

Summation-by-Parts (SBP) operators can be used to construct time-stable high-order accurate finite-difference
schemes as a discretization of the integration by parts formula. In this paper the basic idea of the method
construction is briefly presented, which is explained more in detail in Strand [1994], Mattson and Nordström
[2004], Carpenter et al. [2011] .

Considering the hyperbolic scalar equation ut + ux = 0, integration by parts can be expressed as

d

dt
‖ u ‖2= −(u, ux)− (ux, u) = −u2 |ab , (4.6)

where (u, v) is the standard L2 inner product on [a, b] and ‖ u ‖2= (u, u) is the associated L2 norm. Considering
the approximation of the equation vt + Dxv = 0, being v the discrete counter part of u, a difference operator
Dx = H−1Q is an SBP operator if Q + QT = B, where B = diag(−1, 0, ..., 0, 1). The procedure to calculate
second derivatives is following as well a discretization of the integration by parts formula similar to the one
previously explained. The coefficients used to perform first and second derivatives for a finite-difference scheme
of order 8 can be found in Mattson and Nordström [2004].

4.1.4 Finite-difference methods with uniform error

The here called FD-q method developed by Hermanns and Hernández [2008] is a new high order finite-difference
method employed to solve global instability problems for the first time Paredes et al. [2013]. Therefore, more
attention is paid in the description of this numerical method. The idea behind FD-q is to construct a non-
uniform finite-difference scheme based on the philosophy behind Chebyshev Gauss-Lobatto collocation points
which minimize interpolation errors.
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The approach followed for the derivation of the finite-difference approximation is briefly presented in this
Subsection. See the work by Hermanns and Hernández [2008] for in-depth details of the presented method as
well as its application to time evolution problems.

Piecewise polynomial interpolation

In order to derive the finite-difference approximations to the spatial derivatives of a general function u(x, t),
a piecewise polynomial interpolant is constructed that matches the discrete values ui(t) of the function u(x, t)
at the grid nodes xi, and whose derivatives are then computed to obtain the sought finite-difference formulas.
Figure 4.1 represents such a piecewise polynomial interpolant formed out of individual polynomial interpolants
Ii(x) which are only valid in their respective domains of validity Ωi. Each of these domains Ωi includes the
corresponding grid node xi and their union is equal to the whole domain [−1,+1] of the problem.

Figure 4.1: Stencils, seeds si, and domains of validity Ωi of the individual polynomial interpolants Ii(x) of
a piecewise polynomial interpolation of degree q = 6 on 11 nodes (N = 10). The dashed box separates the
centered stencils from those affected by the presence of the boundaries.

Given a set of grid nodes, the expressions for Ii(x) can readily be obtained through the Lagrange interpolation
formula Fornberg [1998b], Hildebrand [1987]:

Ii(x) =

si+q∑

j=si

`ij(x)uj , `ij(x) =

q∏

m=0
si+m6=j

x− xsi+m
xj − xsi+m

. (4.7)

where q is the polynomial degree and the seed si is the index of the left most node xi involved in the construction
of the interpolant Ii(x). For the case of even polynomial degrees, which is the choice from now on, the following
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selection of values for si is made:

{si} = {0, . . . , 0︸ ︷︷ ︸
q/2 times

, 0, 1, . . . , N − q︸ ︷︷ ︸
centered FD

, N − q, . . . , N − q︸ ︷︷ ︸
q/2 times

}. (4.8)

The piecewise polynomial interpolant represented in figure 4.1 corresponds to the case of q = 6 and N = 10. As
can be seen from the represented stencils of the individual interpolants, sufficiently far away from the boundaries,
the above selection of seeds leads to centered finite-difference formulas, whereas close to the boundaries the
stencils are biased towards the center of the domain in order to only make use of existing grid nodes.

It should be noted, that in virtue of the uniqueness of the interpolating polynomials, the finite-difference
formulas obtained from the differentiation of the piecewise polynomial interpolant introduced above coincide
with the ones obtained by classical means. Thus, no differences compared to conventional finite-difference
methods on arbitrary grids exist, only the way in which they are formulated and derived, but not in the end
result.

Uniform interpolation errors

In the above definition of the piecewise polynomial interpolant the choice of grid nodes xi has been left open so
far. However, by their proper selection it is possible to make the interpolation error of the piecewise polynomial
interpolant to be uniform across the interval [−1,+1]. The result is a non-uniform grid that is unique for each
pair of values of q and N . This same idea underlies the Chebyshev interpolation, where the condition that the
interpolation error is uniform across the interval [−1,+1] is also imposed, but this time on a single polynomial
interpolant instead Isaacson and Keller [1994], Boyd [1989]. The result is also a non-uniform grid, known as the
Chebyshev roots or Chebyshev-Gauss quadrature points, that is unique for each value of N . Both approaches
achieve the same result, namely the suppression of the Runge phenomenon that spoils the accuracy of high
order polynomial interpolations close to the ends of the interpolation interval.

In figure 4.2 the resulting grid spacings ∆xi = xi+1 − xi for the piecewise polynomial interpolant and for
the Chebyshev interpolant are shown for different cases, both of them normalized with the uniform grid spacing
∆xi,Eq = 2/N . The details of the algorithm for the derivation of the former one can be found in Hermanns
and Hernández [2008], while the derivation of the Chebyshev grids can be found in any classical textbook on
spectral collocation methods or interpolation theory Hildebrand [1987], Isaacson and Keller [1994], Boyd [1989].
The case q = 6 and N = 10 from figure 4.1 is shown in figure 4.2(a), where it can be seen that the proposed
non-uniform grid for the piecewise polynomial interpolant lies in between the uniform grid and the Chebyshev
grid.

Very enlightening are the following limiting cases: (i) q � N and (ii) q = N . In the first case, only a few
points O(q) close to the boundaries need to be clustered in order to control the interpolation error, while far
from the boundaries the grid points are equally spaced, as seen in figure 4.2(b), where the case of a piecewise
polynomial interpolant for q = 6 and N = 30 is shown. In the second case, when q = N , only one interpolating
polynomial can be constructed out of the N + 1 grid nodes, thus I0(x) = I1(x) = . . . = IN (x). Due to the
uniqueness of the interpolating polynomials and the fact that the same error uniformization strategy is used for
the piecewise polynomial interpolant than for the Chebyshev interpolant, both approaches are identical. Thus,
in the limit q = N , the proposed piecewise polynomial interpolant with the proposed non-uniform grid presents
all the properties of spectral collocation methods, especially their spectral accuracy Boyd [1989], Canuto et al.
[1988], Fornberg [1998a].

When q < N , most of the nodes are affected by the presence of the boundaries and the resulting grid
point distributions are in between the two limiting cases. This can be seen in figure 4.2(c), where the grid
spacing of the proposed non-uniform grids for different values of q and N = 50 are shown. As the degree of
the interpolation increases, the node distribution approaches the Chebyshev grid, while for small values of q it
is more close to the uniform grid. Figure 4.2(d) shows that the minimum grid spacing ∆xmin present in the
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proposed non-uniform grids is always greater than the minimum grid spacing ∆xmin,Ch of the Chebyshev grid.
Moreover, from the figure it can be inferred that ∆xmin = O (∆xmin,ChN/q) = O

(
(qN)−1

)
.
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Figure 4.2: Grid spacing ∆xi = xi+1 − xi of the non-uniform grid for the piecewise polynomial interpolation
(solid line), for the Chebyshev interpolation (dotted line), and for the uniform grid (dashed line) normalized with
the uniform grid spacing ∆xi,Eq = 2/N for (a) q = 6 and N = 10, (b) q = 6 and N = 30, and (c) q = 10, 20, 30, 40
and N = 50. (d) Variation of ∆xmin,Ch/∆xmin with q of the non-uniform grid for the piecewise polynomial
interpolation with N = 50.
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4.1.5 Spectral collocation methods

The limit of q = N in the FD-q methodology is the Chebyshev-Gauss-Lobatto spectral collocation method.
These methods offer an optimal compromise between the highest accuracy possible and the necessity of reducing
the amount of information to be stored. The reason of the high accuracy of (collocation) spectral methods lies on
the use of high-order interpolating polynomials, comprising all the points in the discretization domain. Spectral
methods use all the points and the error is ε = O((1/N)N )→ O(eN ) Boyd [1989], Canuto et al. [1988].

Non-periodic boundary conditions

Chebyshev-Gauss-Lobatto (CGL) points, indicated for the non-periodic configurations of interest, are used here.

The Chebyshev polynomial of degree n, Tn(x), is given explicitly in terms of trigonometric functions by

Tn(x) = cos(nθ), x = cos(θ). (4.9)

From the trigonometric representation of this expression it is clear that the extrema of TN (x) are ±1 . The
collocation derivative matrix for the Gauss-Lobatto grid is defined by the set of zeros of TN+1 and is evaluated
in the interval [-1,1]. The Chebyshev-Gauss-Lobatto (CGL) points are

xj = cos(jπ/N), j = 0, 1, ..., N. (4.10)

Any function f(x) can be expressed via the expansion:

fN (xj) =
N∑

k=0

akTk(xj), (4.11)

where ak are the series coefficient and k is the order of Chebyshev polynomial.

The elements of D depend solely on the set of discretization points Gottlieb et al. [1984]

Di,j =





2N2+1
6 , i = j = 0

− yj
2(1−y2j )

, i = j 6= 0, N

c̄i
c̄j

(−1)i+j

yi−yj , i 6= j

− 2N2+1
6 , i = j = N

(4.12)

where

c̄j =

{
2, j = 0, N
1, 1 ≤ j ≤ N − 1

(4.13)

An expression for the second derivative matrix can be found in Ehrenstein and Peyret [1989]

D2
i,j =





(−1)(i+j)

c̄j

y2i+yiyj−2

(1−y2i )(yi−yj)2 , 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N, i 6= j

− (N2−1)(1−y2i )+3

3(1−y2i )2
, 1 ≤ j = j ≤ N − 1

2
3

(−1)j

c̄j

(2N2+1)(1−yj)−6
(1−yj)2 , i = 0, 1 ≤ j ≤ N

2
3

(−1)j+N

c̄j

(2N2+1)(1+yj)−6
(1+yj)2

, i = N, 0 ≤ j ≤ N − 1
N4−1

15 i = j = 0, i = j = N

(4.14)

However, alternative expressions that reduce the impact of the round-off errors resulting from subtraction
of nearly equal quantities are preferred. With this aim, the most obvious approach to reducing the impact of
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Table 4.1: Accuracy study for different approaches of DGL with N = 128

Case x f(x) = ex Df(x) D2f(x) D4f(x)
1 1 2.71828182845 2.71828182679 2.71827011478 -89.670055389

0 1.00000000000 1.00000000000 1.00000000128 0.99997886179
-1 0.36787944117 0.36787944146 0.36787697207 -23.832031250

2 1 2.71828182679 2.71828711319 95.2748298645
0 1.00000000000 1.00000000005 0.99999436007
-1 0.36787944146 0.36787962165 13.4882812500

3 1 2.71828182845 2.71828175174 1.90732192993
0 0.99999999999 0.99999999996 1.00000016850
-1 0.36787944115 0.36787954252 1.19531250000

Case 1: D calculated using equation (4.12) and D2 = D ·D
Case 2: D and D2 calculated using equations (4.12) and (4.14) respectively

Case 3: D calculated using equation (4.15) and D2 = D ·D

subtracting nearly equal numbers for the Chebyshev derivative matrices is to use trigonometric identities, giving
the next derivative matrix Canuto et al. [1988]:

Di,j =





2N2+1
6 , i = j = 0

− yj
2sin2(jπ/N) , i = j 6= 0, N

c̄i
2c̄j

(−1)i+j

sin[(i+j)π/2N ]sin[(i−j)π/2N ] , i 6= j

− 2N2+1
6 i = j = N

(4.15)

Table 4.1 shows a study of the recovered results using different approaches for D. The minimum error is
achieved in the Case 3: D calculated using equation (4.15) and D2 = D · D.

Periodic boundary conditions

Some problems allow the use of periodic boundary conditions in some spatial directions. The method used to
discretize these spatial coordinates is the Fourier spectral collocation method.

The definition of derivative matrix coefficients on a periodic grid depends on the choice of gird points, N ,
either being even or odd. Here, the N is chosen always even for this discretization. The mesh spacing, h = 2π/N ,
implies that wavenumbers differing by an integer multiple of 2π/h are indistinguishable on the grid, and thus
it will be enough to confine our attention to wavenumbers in the range k ∈ [−π/h, π/h]. The waves in physical
space must be periodic over the interval [0, 2π], and only waves exp(ikx) with integer wavenumbers have the
required period 2π.

The elements of D and D2 can be written as

Di,j =

{
0, i = j
1
2 (−1)i+j cot[(i− j)π/(N + 1)], i 6= j

(4.16)

D2
i,j =

{
− (N+1)2

12 − 1
6 , i = j

− 1
2 (−1)i+j csc2[(i− j)π/(N + 1)], i 6= j

(4.17)

where i, j = 0, 1, ..., N . See Boyd [1989], Canuto et al. [1988], Gottlieb et al. [1984] for more details.
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4.2 Multidimensional differentiation matrices

The differentiation matrices can be formed from the one-dimensional differential operator placing every coeffi-
cient in its respective row and column or easily if Kronecker tensor product (⊗) is considered Trefethen [2000].
The Kronecker product of two matrices A and B of dimension p× q and r× s respectively is denoted by A⊗B
of dimension pr × qs. For instance

(
1 2
3 4

)
⊗
(
a b
c d

)
=




a b 2a 2b
c d 2c 2d

3a 3b 4a 4b
3c 3d 4c 4d


 . (4.18)

Using this tensor product, the two-dimensional derivatives matrices are computed. In what follows, let
[a, b]× [c, d] be the computational domain discretized using the same number of points in each direction (N).

4.2.1 Two-dimensional differentiation matrices

The differentiation matrices in a two-dimensional problem are

Dx = D ⊗ I =

=




d0,0 d
0,N

d0,0 d
0,N

. . .
. . .

d0,0 d
0,N

. . .

d
N,0

d
N,N

d
N,0

d
N,N

. . .
. . .

d
N,0

d
N,N




(4.19)

Dy = I ⊗D =

=




d
0,0

d
0,1

. . . d
0,N

d1,0 d1,1 . . . d
1,N

. . .

d
N,0

d
N,1

. . . d
N,N

. . .

d
0,0

d
0,1

. . . d
0,N

d
1,0

d
1,1

. . . d
1,N

. . .

d
N,0

d
N,1

. . . d
N,N




(4.20)

where I is the N ×N identity matrix.

Second order derivative matrices are built using the same technique Dxx = D2 ⊗ I, Dyy = I ⊗ D2, and
Dxy = (I ⊗D)× (D ⊗ I).
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4.2.2 Three-dimensional differentiation matrices

The differentiation matrices in a three-dimensional problem are

Dx = D ⊗ I ⊗ I (4.21)

Dy = I ⊗D ⊗ I (4.22)

Dz = I ⊗ I ⊗D (4.23)

where I is the N ×N identity matrix. Second order derivative matrices are built using the same technique.

4.3 General coordinate transformation

Let the position vector in the Cartesian coordinate system be defined as

x = x(ξ, η, ζ)j1 + y(ξ, η, ζ)j2 + z(ξ, η, ζ)j3, (4.24)

where ξ, η and ζ are three independent curvilinear coordinates and j1, j2 and j3 orthogonal unit vectors in the
physical domain.

A general transformation follows

ξ = ξ(x, y, z), (4.25)

η = η(x, y, z), (4.26)

ζ = ζ(x, y, z), (4.27)

which can be used to transform the governing equations from the physical domain (x, y, z) to the computational
domain (ξ, η, ζ). Using the chain rule of partial differentiation, the partial derivatives become

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ
, (4.28)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
+ ζy

∂

∂ζ
, (4.29)

∂

∂z
= ξz

∂

∂ξ
+ ηz

∂

∂η
+ ζz

∂

∂ζ
. (4.30)

The metrics (ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz) appearing in these equations can be determined in the following
manner. Firstly, they are written in matrix form as




dξ
dη
dζ


 =




ξx ξy ξz
ηx ηy ηz
ζx ζy ζz






dx
dy
dz


 . (4.31)

In a like manner, the next expression is written as



dx
dy
dz


 =




xξ xη xζ
yξ yη yζ
zξ zη zζ






dξ
dη
dζ


 . (4.32)

Therefore



ξx ξy ξz
ηx ηy ηz
ζx ζy ζz


 =




xξ xη xζ
yξ yη yζ
zξ zη zζ



−1
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= J




yηzζ − yζzη −(xηzζ − xζzη) xηyζ − xζyη
−(yξzζ − yζzξ) xξzζ − xζzξ −(xξyζ − xζyξ)
yξzη − yηzξ −(xξzη − xηzξ) xξyη − xηyξ


 , (4.33)

where J is the Jacobian of the transformation,

J =
∂(ξ, η, ζ)

∂(x, y, z)
=

∣∣∣∣∣∣

ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

∣∣∣∣∣∣
(4.34)

which can be evaluated in the following manner

J = 1/J−1 = 1

/
∂(x, y, z)

∂(ξ, η, ζ)
= 1

/∣∣∣∣∣∣

xξ xη xζ
yξ yη yζ
zξ zη zζ

∣∣∣∣∣∣
= 1/ [xξ(yηzζ − yζzη)− xη(yξzζ − yζzξ) + xζ(yξzη − yηzξ)] . (4.35)

The metrics can be readily determined if analytical expressions are available for the inverse of the transfor-
mation:

x = x(ξ, η, ζ), (4.36)

y = y(ξ, η, ζ), (4.37)

z = z(ξ, η, ζ). (4.38)

For cases where the transformation is the direct result of a grid generation scheme, the metrics can be computed
numerically.

In order to express second order derivatives in terms of computational coordinate derivatives, the next
equivalence, written using Einstein notation, is used:

∂f

∂xi
= ξjxi

∂f

∂ξj
= J

∂

∂ξj

(
ξjxif

J

)
− Jf

[
∂

∂ξj

(
ξjxi
J

)]
, (4.39)

where f = f(x, y, z) is an arbitrary scalar function, i = 1, 2, 3, j = 1, 2, 3, (x1, x2, x3) = (x, y, z) and (ξ1, ξ2, ξ3) =
(ξ, η, ζ). The term in square brackets is equal to zero. This can be verified by substituting the metrics given
by equation (4.33) into this term. Then, using the above expression (4.39), the second order derivative with
respect to the physical coordinates xi and xj of an arbitrary scalar function f is expressed as follows

∂2f

∂xi∂xj
= ξkxi

∂

∂ξk

(
ξlxj

∂f

∂ξl

)
= J

∂

∂ξk

(
ξkxiξ

l
xj

∂f
∂ξl

J

)

= ξkxiξ
l
xj

∂2f

∂ξk∂ξl
+ J

∂

∂ξk

(
ξkxiξ

l
xj

J

)
∂f

∂ξl
. (4.40)

Particularly, the second order derivatives ∂2

∂y2 , ∂2

∂z2 and ∂2

∂y∂z are

∂2

∂y2
= ξ2

y

∂2

∂ξ2
+ η2

y

∂2

∂η2
+ ζ2

y

∂2

∂ζ2

+ 2ξyηy
∂2

∂ξ∂η
+ 2ξyζy

∂2

∂ξ∂ζ
+ 2ηyζy

∂2

∂η∂ζ

+ J

[
∂

∂ξ

(
ξ2
y

J

)
+

∂

∂η

(
ξyηy
J

)
+

∂

∂ζ

(
ξyζy
J

)]
∂

∂ξ
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+ J

[
∂

∂ξ

(
ξyηy
J

)
+

∂

∂η

(
η2
y

J

)
+

∂

∂ζ

(
ηyζy
J

)]
∂

∂η

+ J

[
∂

∂ξ

(
ξyζy
J

)
+

∂

∂η

(
ηyζy
J

)
+

∂

∂ζ

(
ζ2
y

J

)]
∂

∂ζ
(4.41)

∂2

∂z2
= ξ2

z

∂2

∂ξ2
+ η2

z

∂2

∂η2
+ ζ2

z

∂2

∂ζ2

+ 2ξzηz
∂2

∂ξ∂η
+ 2ξzζz

∂2

∂ξ∂ζ
+ 2ηzζz

∂2

∂η∂ζ

+ J

[
∂

∂ξ

(
ξ2
z

J

)
+

∂

∂η

(
ξzηz
J

)
+

∂

∂ζ

(
ξzζz
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξzηz
J

)
+

∂

∂η

(
η2
z

J

)
+

∂

∂ζ

(
ηzζz
J

)]
∂

∂η

+ J

[
∂

∂ξ

(
ξzζz
J

)
+

∂

∂η

(
ηzζz
J

)
+

∂

∂ζ

(
ζ2
z

J

)]
∂

∂ζ
(4.42)

∂2

∂y∂z
=

∂2

∂z∂y
= ξyξz

∂2

∂ξ2
+ ηyηz

∂2

∂η2
+ ζyζz

∂2

∂ζ2

+ (ξyηz + ξzηy)
∂2

∂ξ∂η
+ (ξyζz + ξzζy)

∂2

∂ξ∂ζ
+ (ηyζz + ηzζy)

∂2

∂η∂ζ

+ J

[
∂

∂ξ

(
ξyξz
J

)
+

∂

∂η

(
ξyηz
J

)
+

∂

∂ζ

(
ξyζz
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξzηy
J

)
+

∂

∂η

(ηyηz
J

)
+

∂

∂ζ

(
ηyζz
J

)]
∂

∂η

+ J

[
∂

∂ξ

(
ξzζy
J

)
+

∂

∂η

(
ηzζy
J

)
+

∂

∂ζ

(
ζyζz
J

)]
∂

∂ζ
(4.43)

4.3.1 Two-dimensional transformation

In the case of a two-dimensional transformation of the form

ξ = ξ(x, y), (4.44)

η = η(x, y), (4.45)

the partial derivatives become

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
, (4.46)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
. (4.47)

The metrics (ξx, ξy, ηx, ηy) appearing in these equations can be determined as

(
ξx ξy
ηx ηy

)
=

(
xξ xη
yξ yη

)−1

= J

(
yη −xη
−yξ xξ

)
,

where J is the Jacobian of the transformation,

J =
∂(ξ, η)

∂(x, y, )
=

∣∣∣∣
ξx ξy
ηx ηy

∣∣∣∣ = 1

/∣∣∣∣
xξ xη
yξ yη

∣∣∣∣ = 1/ [xξyη − xηyξ] . (4.48)
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Using the same methodology of the general three-dimensional case, the second order derivatives are written
as

∂2

∂x2
= ξ2

x

∂2

∂ξ2
+ η2

x

∂2

∂η2
+ 2ξxηx

∂2

∂ξ∂η

+ J

[
∂

∂ξ

(
ξ2
x

J

)
+

∂

∂η

(
ξxηx
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξxηx
J

)
+

∂

∂η

(
η2
x

J

)]
∂

∂η
(4.49)

∂2

∂y2
= ξ2

y

∂2

∂ξ2
+ η2

y

∂2

∂η2
+ 2ξyηy

∂2

∂ξ∂η

+ J

[
∂

∂ξ

(
ξ2
y

J

)
+

∂

∂η

(
ξyηy
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξyηy
J

)
+

∂

∂η

(
η2
y

J

)]
∂

∂η
(4.50)

∂2

∂x∂y
= ξxξy

∂2

∂ξ2
+ ηxηy

∂2

∂η2
+ (ξxηy + ξyηx)

∂2

∂ξ∂η

+ J

[
∂

∂ξ

(
ξxξy
J

)
+

∂

∂η

(
ξxηy
J

)]
∂

∂ξ

+ J

[
∂

∂ξ

(
ξyηx
J

)
+

∂

∂η

(ηyηx
J

)] ∂

∂η
(4.51)

4.3.2 Verification

The above expressions are verified solving the two-dimensional Helmholtz eigenvalue problem,

(
∂2

∂x2
+

∂2

∂y2

)
φ = −λ2φ, (4.52)

for orthogonal and non-orthogonal transformations. The two-dimensional differentiation matrices are computed
using the definitions (4.49-4.50) and the results are checked against those recovered using differentiation matrices
computed by simply multiplying first order derivative matrices, Dxx = Dx · Dx, Dyy = Dy · Dy.

Firstly, the next orthogonal elliptic confocal transformation is used

x = c cosh η cos ξ, y = c sinh η sin ξ. (4.53)

The domain is discretized using Nξ = 60 Fourier collocation points for ξ ∈ [0, 2π] and Nη = 61 Chebyshev-
Gauss-Lobatto collocation points for η ∈ [η0, ηR]. The parameters of the transformation (4.53) are selected for
an ellipse of aspect ratio AR = 2, η0 = atanh(1/AR), c = AR/ sinh(η0) and ηR = acosh(10/c). Figure 4.3 shows
the grid corresponding to the selection of parameters and discretization points.

Figure 4.4(a) shows the first eigenvalues corresponding to the Helmholtz problem (4.52) discretized in the
geometry defined by equation (4.53), using different definitions for the differentiation matrices. The second
order derivative matrices are defined using (4.49-4.50) (referenced as D2) and by simply multiplying the first
order derivative matrices Dxx = Dx ·Dx, Dyy = Dy ·Dy (referenced as DD). This fact verify the procedure used
here and makes possible to compute second order derivatives using finite-difference schemes without lost of ac-
curacy. Another advantage has been observed when using the definitions (4.49-4.50), resulting in a considerable
computational requirement reduction.
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Figure 4.3: Elliptic confocal grid around a 2:1 ellipse.
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Figure 4.4: Eigenspectrum of Helmholtz problem (4.52) discretized in the orthogonal grid shown in figure 4.3
and iso-contours of normalized eigenfunction with index 7.
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Figure 4.5: Elliptic non-orthogonal grid around a 2:1 ellipse.

A more stringent test is a non-orthogonal transformation, since the cross-derivatives appearing in equations
(4.49-4.50) are non-zero. The elliptic transformation

x = ARη cos ξ, y = η sin ξ. (4.54)

is used here with similar parameters to the previous case, AR = 2, η0 = 1 and ηR = 10, and same number of
discretization points. The resulting grid is plotted in figure 4.5.

Figure 4.6(a) shows again perfect agreement for results recovered using definitions (4.49-4.50) (referenced as
D2) and by simply multiplying the first order derivative matrices Dxx = Dx · Dx, Dyy = Dy · Dy (referenced as
DD).

4.3.3 One-dimensional mappings

In some flows, the calculation domain has to be mapped onto the standard domain of the employed spatial
discretization through the one-dimensional mapping η = η(ξ), ξ being the standard collocation points. The

derivative matricesD
(m)
i,j for each spatial direction has to be independently redefined to incorporate the stretching

transformation as

D̂1
k,j(η) =

dξ

dη
D1
k,j(ξ) (4.55)

D̂2
k,j(η) =

(
dξ

dη

)2

D2
k,j(ξ) +

d2ξ

dη2
D1
k,j(ξ) (4.56)

D̂3
k,j(η) =

(
dξ

dη

)3

D3
k,j(ξ) + 3

d2ξ

dη2

dξ

dη
D2
k,j(ξ) +

d3ξ

dη3
D1
k,j(ξ) (4.57)

D̂4
k,j(η) =

(
dξ

dη

)4

D
(4)
k,j(ξ) + 6

d2ξ

dη2

(
dξ

dη

)2

D3
k,j(ξ)

+ 3

(
d2ξ

dη2

)2

D2
k,j(ξ) + 4

d3ξ

dη3

dξ

dη
D2
k,j(ξ) +

d4ξ

dη4
D1
k,j(ξ) (4.58)

Derivatives of the interpolating polynomials are then calculated in the standard manner with Dm
i,j replace by

D̂m
i,j .
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Figure 4.6: Eigenspectrum of Helmholtz problem (4.52) discretized in the non-orthogonal grid shown in figure
4.5 and iso-contours of normalized eigenfunction with index 7.

Two mappings are used in this work between CGL or FD-q grids (ξ ∈ [−1, 1]) and the actual physical
domain. The next transformation obtains a domain in the entire real axis Hein and Theofilis [2004],

η = η0 + η∞
tan

(
cπ
2 ξ
)

tan
(
cπ
2

) , (4.59)

where η is the discretized spatial direction, and η0 and η∞ are the respective center-point and far-field truncation
locations. Another transformation is used here in order to map the calculation domain grid η ∈ [0, η∞] into the
grid ξ ∈ [−1, 1] Malik [1990],

ηj = l
1− xj

1 + s+ ξj
, s = 2l/η∞, l =

η∞ηh
η∞ − 2ηh

, (4.60)

being η∞ the location where the calculation domain is truncated and ηh the domain location that splits in two
halves the number of discretization points.

4.4 Eigenvalue computation

The generalized EVP (3.26) must be constructed and solved employing adequate algorithms, taking into ac-
count the memory and CPU-time requirements when the matrices are formed and stored. Although the newly
developed code allows the use of dense or sparse linear algebra, the sparse version is much more efficient and
it is the one used here. The complex matrices A and B discretizing the operators of equation (3.26) are built
using an in-house modified version of the SPARSKIT2 library Saad [1994] to work with complex arithmetic.
To solve the eigenvalue problem, the Arnoldi algorithm Saad [1980] is employed, combined with the MUMPS
library Amestoy et al. [2001, 2006] (MUltifrontal Massively Parallel Solver) to perform the LU-decomposition
and solve the linear algebraic systems with the possibility of making serial and parallel computations.

The Arnoldi algorithm delivers a number of eigenvalues on the vicinity of a specific estimate value. Such
value is set in the vicinity of the unstable/least-stable eigenvalue. Computational cost is notoriously reduced
employing Arnoldi algorithm instead of the classical QZ method. More details can be found in the literature
Saad [1980], Theofilis [2003].
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The number of eigenvalues delivered is determined by the freely chosen Krylov subspace dimension, whose
limit is the leading dimension of matrices A and B. A so-called shift-and-invert strategy is also implemented
in this eigenvalue problem solver. The problem solved is the following

CX = µX, C = (A− σB)−1B, µ = 1
ω−σ . (4.61)

where the Krylov subspace is constructed by

Km = span(v, C · v, C2 · v, ..., Cm−1 · v) (4.62)

where m is the dimension of the subspace.

The vectors forming the basis are ordered by columns into the matrix Vm. The projection of the linear
operator on the basis Vm yields the relation

VH
mCVm = Hm, (4.63)

where Hm is an upper triangular Hessenberg matrix. The restriction of the eigenvalue problem to the Krylov
subspace Km is

HmVH
m · q̂ = µVH

m · q̂. (4.64)

The eigenvalues of the Hessenberg matrix Hm are approximations to the m largest eigenvalues of the original

problem. If y
(m)
i is the eigenvector corresponding to the i-th eigenvalue of Hm the corresponding approximation

to the eigenvector of the original problem, known as Ritz vector, is

q̂i = Vm · y(m). (4.65)

4.5 Solution procedure of PSE-3D

4.5.1 Parabolic marching integration

The next solution procedure is equivalent for classical PSE, with the exception of having q̂j(y, z) instead of
q̂j(y). Therefore, the involved integrals are two-dimensional instead of one-dimensional. The parabolic PDE
system of equations (3.57) is solved by marching along the streamwise direction. The derivative in the marching
direction is approximated by the implicit backward Euler scheme:

(q̂x)j+1 ≈
1

∆xj
(q̂j+1 − q̂j), (4.66)

where j ≥ 0 is the step index and q̂j = q̂j(y, z) = q̂(xj , y, z). In addition to this first order scheme, the
newly-developed code incorporates the option to use a second order scheme. Equation (3.57) becomes

[∆xjLkj+1 +Mk
j+1]nq̂kn,j+1 = [∆xjFkj+1 +Mk

j+1]nq̂n,j , (4.67)

where k is the iteration index. Starting with an initial guess α0
j+1 = αj , according to the first approximation

αx = 0, q̂0
j+1 is obtained from equation (3.57). Then, the normalization condition (3.43) is used to estimate a

new αj+1:

αk+1
j+1 = αkj+1 −

i

∆xj

∫
Ω
(ρb)

1/2
j+1û

†k
j+1[(ρb)

1/2
j+1û

k
j+1 − (ρb)

1/2
j ûj ] dΩ∫

Ω
(ρb)j+1|ûkj+1|2 dΩ

. (4.68)

Once the wavenumber is updated, equation (4.67) is solved for the new shape functions, and the value of α
is recalculated. The iteration continues until the normalization condition is satisfied to within some specified
residual r (i.e. |αk+1 − αk| < r = 10−8 in the present computations).
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4.5.2 Non-linear terms

Computationally, the Fourier component of the forcing term, Fn, can be computed using different algorithms.
When solving classical non-linear PSE and the number of modes in consideration is large enough, the Fast
Fourier Transform (FFT) is used. In order to proceed, firstly, q̃ is calculated from equation (3.56). Then, F is
calculated in the physical space using the equations of Appendix D and finally Fn is computed by performing
the FFT of F . However, for the PSE-3D results shown here, the Fourier modes of the non-linear terms, Fn, are
computed directly in the Fourier space using the convolution operation.

The computation of the non-linear terms requires some previous operations to calculate the streamwise
derivatives of perturbation variables. Since the second derivatives of the disturbances with respect to x appear
only in the viscous terms, the following formula

∂2q̃

∂x2
=

N∑

n=−N
−α2

nq̆ exp[−inωt], (4.69)

is consistent with the order of magnitude analysis made for the derivation of the linear terms. First derivatives
of the disturbances with respect to x can be written as

∂q̃

∂x
=

N∑

n=−N

(
∂q̂

∂x
+ iαnq̂

)
exp

[
i

∫

x

α(x′)dx′
]

exp[−inωt]. (4.70)

This may cause that some terms smaller than O(ε) appear in the forcing terms.
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Chapter 5

Linear modal stability validations and
numerical efficiency

5.1 Introduction

The present contribution revisits the numerical solution of the EVP arising in global linear stability theory using
matrix formation and spatial discretization of the spatial operator by means of the previously employed Padé
compact Lele [1992] and Dispersion-Relation-Preserving Tam and Webb [1993] schemes, as well as standard high-
order finite-differences, Summation-By-Parts operators Strand [1994], Mattson and Nordström [2004], and the
less-known very high order finite-difference schemes of Hermanns and Hernández [2008]. All results are compared
against those delivered by the spectral collocation method based on (standard and coordinate-transformed)
Chebyshev Gauss-Lobatto grids.

Although the main focus of the present work is global instability analysis in two or three inhomogeneous
spatial directions, the one-dimensional EVP governing local flow stability is also solved, since its well-known
highly accurate results assist quantification of the error associated with each spatial discretization method. The
potential of the most accurate finite-difference method identified to permit transient growth analyses Schmid
and Henningson [2001] is demonstrated also in this local linear stability limit. For the sake of quantifying errors
in the numerical solution of the two- and three-dimensional global linear stability EVP, solution of the Helmholtz
equation in two and three spatial dimensions is also presented using the spatial discretization methods discussed
earlier since, on the one hand analytically-known solutions exist for the Helmholtz EVP and on the other hand
the Laplacian operator in two and three spatial dimensions is a key element in the construction of the respective
BiGlobal and TriGlobal EVPs.

5.2 Incompressible stability analysis validations

In the incompressible limit, validations commence with the well-known OSE, to which the global EVP reduces
in case of parallel one-dimensional flows. Results are presented for the plane Poiseuille flow (PPF) Orszag
[1971], Kirchner [2000] and for the Blasius boundary-layer Mack [1976].

EVPs whose spatial dependence is described by the Poisson operator are subsequently solved by the present
methodology, in both two and three spatial dimensions. The attractiveness of this spatial operator resides in
the existence of analytically-known results in regular two- and three-dimensional geometries and also in the fact
that this spatial operator is at the heart of the global EVP in both two and three spatial dimensions. Attention
will be paid to the accurate recovery of analytically known results of the Poisson operator, the Helmholtz EVP,
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which is at the elliptic part of the linearized Navier-Stokes equations governing instability in both two and three
spatial dimensions:

∆φ+ λ2φ = 0, (5.1)

where λ2 is the sought real eigenvalue and can be determined analytically for simple geometries Morse and
Feshbach [1953]. This problem is also recovered by simplification from the linearized Euler equations, neglecting
flow altogether and keeping only the pressure.

Global modal instability analysis results are obtained in five fluid flow applications, three in a BiGlobal and
two in a TriGlobal EVP context. The BiGlobal EVPs to solve differ in the number of base flow components: in
the rectangular duct Tatsumi and Yoshimura [1990] only one such component exists, and the EVP is complex; in
the 2D lid-driven cavity Theofilis [2000], two base flow velocity components exist, while the wavenumber vector
is normal to the base flow plane, and the stability EVP is real; in the swept attachment-line boundary-layer
Lin and Malik [1996] all three base flow components exist and the EVP is again complex. Finally, TriGlobal
linear instability EVPs are solved, treating all three inhomogeneous spatial dimensions in a coupled manner.
This is the most stringent test to which the proposed spatial discretization is performed. The same rectangular
duct and 2D lid-driven cavity problems studied by BiGlobal analysis are solved by TriGlobal analysis. The
solution is obtained at length-to-depth ratio of unity and a spanwise domain extent defined by the maximally
amplified BiGlobal eigenmode, with which the TriGlobal analysis results are compared. Furthermore, the 3D
lid-driven cavity flow instability problem is solved using TriGlobal matrix-formation analysis. It is worth noting
that the very first TriGlobal instability analysis to appear in the literature was performed relatively recently
in a time-stepping context Tezuka and Suzuki [2006], while presently four more such analyses are available
Morzyński and Thiele [2008], Bagheri et al. [2009], Giannetti et al. [2009], Feldman and Gelfgat [2010]. Of
these, one Morzyński and Thiele [2008] is performed in a matrix-forming context, while two in a time-stepping
technique, all concerning the cubic lid-driven cavity with singular lid motion Giannetti et al. [2009], Feldman
and Gelfgat [2010].

The elliptic EVP (3.26) must be complemented with adequate boundary conditions for the disturbance
variables. In the presence of solid walls, no-slip condition is implemented, and far from the wall all distur-
bances decay to zero. Boundary conditions for the disturbance pressure do not exist physically; instead on the
boundaries, compatibility conditions are used derived from the Navier-Stokes equations at the boundary of the
domain (see Theofilis et al. [2004a]).

5.2.1 Local instability analysis

The one-dimensional LNSE is the limit to which the global eigenvalue problem reduces in case of parallel flows.
Results are presented for the PPF (PPF) Orszag [1971], Kirchner [2000], the bounded nature of which implies
the existence of a discrete eigenspectrum only, and for the Blasius boundary-layer Mack [1976], where both
discrete and continuous branches of the spectrum exist.

In order to assess the ability of the proposed spatial discretization to perform transient growth studies, the
well-known pseudospectra of the OSE Reddy et al. [1993] are also obtained.

Eigenspectrum of PPF

The temporal stability analysis of the PPF is considered first. The stability EVP Orszag [1971] is solved at
Re = 10000, α = 1 and spanwise wavenumber β = 0, for which the converged leading eigenvalue in dou-
ble precision arithmetic has been provided by Kirchner [2000] as being ωr,c + iωi,c = 0.2375264888204682 +
i0.0037396706229799. Owing to the relatively small leading matrix dimension, the dense linear algebra subrou-
tine ZGGEV of LAPACK, based on the QZ algorithm Golub and van Loan [1996], is used for the solution of
the EVP. The examined spatial discretizations are summarized in Table 5.1. All these finite-difference methods
are implemented at order 8 and on uniform grids, except for the last one, FD-q, which employs its particular
grid. In addition, FD-q method is implemented not only at order 8, but also at order 16, in order to prove the
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Table 5.1: Examined spatial discretization methods.

Spatial discretization method Acronym Refereces

Spectral collocation CGL Canuto et al. [1988], Boyd [1989]

Standard centered finite-differences STD -
Compact finite-differences Padé Lele [1992]
Dispersion-Relation-Preserving finite-differences DRP Tam and Webb [1993]
Summation-by-parts operators SPB Strand [1994], Mattson and Nordström [2004]

Finite difference methods with uniform error FD-q Hermanns and Hernández [2008]

capability of this method of reaching very high order schemes and its good behavior. In figure 5.1, relative error
of the leading eigenvalue as function of the leading matrix dimension N + 1 is presented in order to compare
accuracy between the different numerical methods. The relative error is defined in the following way:

εω =

∣∣∣∣
ωi − ωi,c
ωi,c

∣∣∣∣ , (5.2)

where ωi is the computed imaginary part of the eigenvalue using N + 1 nodes and ωi,c the corresponding
converged value quoted above.

Several observations are worthy of discussion on the basis of these results and the analogous ones of the
mode frequency, as well as all qualitatively identical results obtained for FD-q at different combinations of
discretization nodes, N + 1, and orders, q, not presented here. First, it is seen that, compared with any finite-
difference method, the spectral collocation method needs less grid points to obtain a converged result, a fact
which is well-known from classic linear stability studies [e.g. Malik, 1990]. Second, when monitoring finite-
difference discretizations of the same order (here methods of order 8 are shown), the standard and the compact
finite-differences, the DRP and the SBP methods all require practically the same resolutions in order to deliver
amplification rate results converged to the same degree. However, fastest convergence, compared with any of
the examined finite-difference methods of the same order, is offered by the FD-q8 method. In the example
presented, in order to achieve a relative error of O(10−6) in the amplification rate, N ≈ 200 points are needed
by FD-q8 and N ≈ 500 by all other finite-difference methods despite having all of them the same formal order
of accuracy/convergence. Conversely, and much more important from the point of view of the subsequent use
of the FD-q methods as the basis for spatial discretization in the multi-dimensional EVPs, at a given affordable
level of discretization, say N = 200 points, STD, Padé, SBP and DRP methods of order 8 have a relative error
of O(10−3) in the recovery of the leading eigenmode, while the error of the FD-q8 method is O(10−6). Third, as
the order of the FD-q method is increased, its results approach those of the spectral collocation method, with
which the method becomes identical when q = N as discussed in Subsection 4.1.4; the FD-q16 results shown in
figure 5.1 are typical for the convergence history shown by FD-q methods of order 8 < q < N , requiring only
N ≈ 100 points to achieve the specified relative error level of O(10−6), or attaining an accuracy of O(10−10)
for N = 200 points.

In summary, at all orders examined, the FD-q method performs better than all of the well-known high-order
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Figure 5.1: Convergence history of relative error for the amplification rate of the leading eigenmode of PPF at
Re = 10000, α = 1, obtained by (black) spectral collocation using CGL and (blue) high-order finite-difference
methods of order 8: STD, Padé, DRP, SBP, as well as (red) FD-q with q = 8 and q = 16. N + 1 is the total
number of discretization points.
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finite-difference methods. This is attributed to the fact that the FD-q method minimizes the interpolation error
both at the interior and boundary (and near-boundary) points in a self-consistent uniform manner. In order for
the standard high-order, Padé, DRP or SBP schemes to become competitive with FD-q, higher formal orders
need to be used compared with that employed in the FD-q method. However, that increase in the order may
not be straightforward for some schemes at q ≥ 8 Strand [1994] or the resulting finite-difference method may
be unstable.

On the other hand, for those methods for which using q > 8 is possible, the increase in bandwidth resulting
from a comparatively high value of q is not an issue from the point of view of efficiency, when the one-dimensional
EVP is solved using full eigenspectrum computations and the QZ algorithm. However, FD-q has a competitive
advantage in performing global instability analyses, where exploitation of the matrix sparsity is essential; there
one seeks to use the method having optimal convergence and accuracy properties between all available having
the same sparsity pattern, as will be discussed in subsequent sections.

Pseudospectrum of PPF

The non-modal scenario for laminar-turbulent flow transition is now well-understood Schmid and Henningson
[2001], the concept of pseudospectrum Trefethen et al. [1993] being central to its theoretical description. Here,
the pseudospectrum of PPF (PPF) is shown comparing, for brevity, Chebyshev-Gauss-Lobatto collocation
(CGL) and FD-q16.

As shown above, results obtained are representative of all combinations of number of discretization points, N ,
and finite-difference method order, q for FD-q; N = 128 and q = 16 are used presently, and the pseudospectrum
has been computed using EigTool Wright [2002].

Figure 5.2 shows the eigenspectrum and pseudospectrum obtained by the spectral collocation and FD-q
methods. Eigenspectrum results are graphically indistinguishable from each other while the pseudospectrum,
plotted here at different levels of matrix perturbations, corresponding to 10−7 for the innermost to 10−2 in
the outermost curve in figure 5.2, only shows discrepancies at large matrix perturbation levels. However, given
that q � N , the overall agreement is quite satisfactory. If an improved agreement is sought, the order q or
the number of points N may be increased in order for the FD-q method to deliver results approaching those
obtained by the spectral collocation method. As mentioned, though, it is not perfect agreement of the FD-q
with the spectral collocation method that is sought, but rather the ability of the former method to deliver
accurate description of the pseudospectrum, as shown in the results of figure 5.2, at a smaller cost thanks to
the fact that q � N , thus improving the sparsity pattern.

Eigenspectrum of the Blasius boundary-layer

The accuracy properties of the FD-q method are preserved in open flows, where a mapping transformation is
needed to transfer data from the standard domain x ∈ [−1, 1] of both the CGL and the FD-q methods onto a
semi-infinite domain y ∈ [0, y∞] with transformation (4.60), setting y∞ = 150 and yh = 5.

Figure 5.3 shows the leading unstable eigenmode and the least stable part of the Blasius eigenspectrum at
Reδ∗ = 580 and α = 0.179 Mack [1976], as recovered by the CGL spectral collocation method on N + 1 = 101
points, as well as FD-q12 and FD-q24 on the same number of nodes. Even at a value of q which is an order of
magnitude smaller than N , the entire discrete eigenspectrum is seen to be recovered by the FD-q method as
reliable as by the CGL spatial discretization. None of the three methods is capable of capturing the continuous
spectrum correctly; as is known analytically, the latter is a vertical line at cr = ωr/α = 1 (c refers to phase
velocity). Interestingly, even at q = 12 the discrete approximation of the continuous spectrum is more vertical
than the one delivered by the spectral collocation method, although as q increases the FD-q and spectral results
come closer, and collapse onto each other at q = N , pointing towards the existence of an optimum value of q
which for the moment is unknown a priori. Finally, an additional discrete mode is recovered at cr = 0.8 using
the FD-q12 and FD-q24 methods due to the displacement of the continuous part of the spectrum.
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Figure 5.2: Eigenspectrum and pseudospectrum of PPF at Re = 104, α = 1, obtained by spectral collocation
using CGL and high-order finite-difference method FD-q. Solid lines and empty circles correspond to CGL and
dashed lines and solid circles to FD-q16, both of them with N + 1 = 129 discretization points. Levels from
inner to outer isoline, 10−7, 10−6, 10−5, 10−4, 10−3 and 10−2. Note that c = ω/α refers to phase velocity.
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Figure 5.3: Eigenspectrum of Blasius boundary-layer flow at Reδ∗ = 580 and α = 0.179, obtained with spectral
collocation based on mapped CGL and two high-order finite-difference methods FD-q of order 12 and 24 with
N + 1 = 101 discretization points. Note that c = ω/α refers to phase velocity.
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Figure 5.4: Eigenspectrum and pseudospectrum of the Blasius boundary-layer flow at Reδ∗ = 580 and α = 0.179,
obtained by spectral collocation using CGL and FD-q. Solid lines and empty circles correspond to CGL and
dashed lines and solid circles to FD-q16, both of them with N + 1 = 129 discretization points. Levels from
inner to outer isoline, 10−7, 10−6, 10−5, 10−4, 10−3 and 10−2.

Pseudospectrum of the Blasius boundary-layer

This Subsection of validation of results of the FD-q method against known solutions of the one-dimensional
EVP closes with the presentation of the pseudospectrum of Blasius flow at the same parameters as those at
which the eigenspectrum has been obtained. Figure 5.4 presents the eigenspectrum obtained by the spectral
collocation method, already shown in figure 5.3, alongside the one delivered by FD-q16, which exhibits the
properties discussed in the previous Subsection. In addition, the pseudospectrum obtained at perturbation
levels of 10−7 to 10−2 (inner-to-outer curves) is shown. As in the case of the PPF, close qualitative agreement
is seen between the two sets of results, although the poor recovery of the continuous spectrum by both, the
spectral and the finite-difference methods, results in larger discrepancies in the pseudospectrum in that region.
By contrast, the pseudospectrum associated with the discrete eigenvalues is reproduced in close agreement by
both methods, despite the fact that q = 16 is an order of magnitude smaller than N+1 = 129, the discretization
nodes used in both methods.
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Figure 5.5: Convergence history of the solution of the 2D Helmholtz EVP for the eigenvalue λ2/(π2/4) = 34,
obtained by (black) spectral collocation using CGL and (blue) high-order finite-difference methods of order 8:
STD, Padé, DRP, SBP, as well as (red) FD-q with q = 8 and q = 16. The number of discretization nodes used
is the same in both spatial directions and is denoted by N + 1.
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Figure 5.6: (a) Convergence history of the solution of the 2D Helmholtz EVP for the eigenvalue λ2/(π2/4) = 34,
obtained using CGL and a suite of FD-q methods of orders 4, 8, 12, 16 and 20. The number of discretization
nodes used is the same in both spatial directions and is denoted by N + 1. (b) Corresponding eigenfunction
using FD-q12 with Nx ×Ny = 802. Shown are contours (-0.9:0.1:0.8) with isolines of positives (solid line) and
negatives (dashed line) values.

5.2.2 The 2D Helmholtz EVP

In two spatial dimensions the Helmholtz EVP (5.1) is
(
∂2

∂x2
+

∂2

∂y2

)
φ+ λ2φ = 0. (5.3)

Such problem is useful in assessing the accuracy of the proposed spatial discretization method comparing
the recovered eigenvalues with the analytical solution of this problem in the rectangular membrane domain
Ω = {x ∈ [−1, 1]} × {y ∈ [−1, 1]} [e.g. Morse and Feshbach, 1953]. Such solution is the following:

λ2
nx,ny =

π2

4
(n2
x + n2

y); nx, ny = 1, 2, 3, · · · (5.4)

Higher eigenvalues/eigenfunctions (nx, ny � 1) are of special interest due to the need of using a relatively
high number of nodes for an accurate description. This is in contrast with the first few eigenvalues, which are
already recovered using N ≈ 10.

Figure 5.5 shows the convergence history of the numerical solution of the 2D Helmholtz problem for a high
eigenvalue (λ2/(π2/4) = 34) comparing the same finite-difference methods used to obtain the OSE results in
figure 5.1. Similar conclusions to the one reached in the OSE solved in the previous applications are also
drawn here: maintaining the order of the scheme (order 8) FD-q presents higher accuracy than the other finite-
difference methods, and with a higher order (order 16), FD-q reaches double-precision employing a number of
nodes only two times larger than employing the spectral collocation method.

Figure 5.6(a) shows the convergence history of the numerical solution of the 2D Helmholtz problem for
the same eigenvalue. Different orders of FD-q methods are implemented and compared with CGL spectral
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collocation method. Special interest is focused on intermediate values of the order of the method, e.g. q = 12.
In such case single-precision convergence is achieved using approximately two times more discretization points
than with the spectral collocation method. In addition, double-precision convergence is achieved with less than
four times more nodes than the ones required by the spectral collocation method. For completeness, figure
5.6(b) displays the eigenfunction corresponding to the eigenvalue λ2/(π2/4) = 34, obtained numerically using
FD-q12 with Nx ×Ny = 802.

5.2.3 BiGlobal instability analysis

Attention is now turned to the main subject of this paper, namely modal global linear instability, discussing
BiGlobal instability first. Three applications are selected for validation purposes: the rectangular duct Tatsumi
and Yoshimura [1990], the lid-driven cavity Theofilis [2000], Albensoeder et al. [2001] and the swept leading-edge
boundary-layer Lin and Malik [1996], Theofilis et al. [2003]. As mentioned at the beginning of this Section,
these problems are selected because they are governed by one, two and three base flow velocity components,
respectively, and also permit validating both the real and the complex form of the EVP.

The rectangular duct flow

In two coupled spatial directions, the rectangular duct Tatsumi and Yoshimura [1990] of cross-sectional aspect
ratio A, driven by a constant pressure gradient along the axial (unbounded) direction, is the two-dimensional
extension of the PPF. Its base flow is known analytically Rosenhead [1963] and has a single component along
the (homogeneous) wavenumber vector direction. Considering the rectangular duct defined in the domain
Ω = {z ∈ [−A,A]} × {y ∈ [−1, 1]}, a constant pressure gradient in the unbounded x direction drives a steady
laminar flow which is independent of x and possesses a velocity vector ū = [ū(z, y), 0, 0]T with a single velocity
component ū(z, y) along the x spatial direction. The latter satisfies the Poisson equation that may be solved in
series form Rosenhead [1963]. Global flow instability in this application is governed by a complex EVP.

Table 5.2 presents convergence history results for the numerical solution of the 2D EVP presented in equation
(3.26) using the matrices (3.51) with base flow velocity ū = [ū(z, y), 0, 0]T , using CGL and FD-q16 at a subcritical
Reynolds number, Re = 1000, and wavenumber parameter α = π. In addition, Richardson-extrapolation
results are also shown. Considering the Richardson extrapolation value of CGL spectral collocation method as
converged eigenvalue, 8 decimal digits are converged in ωr and 9 in ωi when using CGL methods with N2 ≥ 602.
On the other hand, the same order of convergence is reached when using FD-q16 with N2 ≥ 902. Figure 5.7
shows the convergence history for the different spatial discretization schemes, using the converged result of Table
5.2, ω = 2.9027654541− i 0.10352492635, as correct value. Different slopes arise due to the discontinuities of the
derivatives in the corners of the domain Canuto et al. [1988]. As expected, the convergence rate for FD-q16 and
CGL are better than for the order 8 schemes. However, the higher degree of sparsity in the 8th-order scheme
makes FD-q8 the more efficient one in terms of the numerical solution of this problem.

The regularized lid-driven cavity

The two-dimensional lid-driven cavity, three-dimensional (non-zero spanwise wavenumber) BiGlobal instability
analysis of which was first performed using singular boundary conditions Theofilis [2000], Albensoeder et al.
[2001], is solved next, after regularizing the lid motion. Regularization eliminates the corner singularities at
the two ends of the moving lid and permits obtaining highly-accurate base flow solutions. Regarding global
instability in this problem, the wavenumber vector is normal to the plane on which the base flow develops, and
a simple transformation of the linearized Navier-Stokes equations reduces the two-dimensional EVP into one
governed by real coefficients Theofilis [2003].

The direction z is taken to be in the direction of the motion of the lid and y to be along the normal to
this direction. The base flow is considered independent of the third (spanwise) direction x. Thus, the domain
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Table 5.2: Convergence history of BiGlobal instability analysis of rectangular duct flow at A = 1, Re = 1000
and α = π comparing the leading eigenmode results using CGL and FD-q16 and the corresponding Richardson
extrapolations.

N2 ωr ωi

CGL 302 2.9027647730 -0.10353535398
402 2.9027654432 -0.10352492808
502 2.9027654495 -0.10352492616
602 2.9027654518 -0.10352492608
702 2.9027654528 -0.10352492609

Richardson Ext. 2.9027654541 -0.10352492635

FD-q16 302 2.9027679758 -0.10352715467
502 2.9027654409 -0.10352492446
702 2.9027654496 -0.10352492422
902 2.9027654520 -0.10352492512
1102 2.9027654529 -0.10352492555

Richardson Ext. 2.9027654541 -0.10352492637
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Figure 5.7: Convergence history of the BiGlobal EVP applied to the rectangular duct flow at Re = 1000
and α = π, with A = 1 for the eigenvalue ω = 2.9027654541 − i 0.10352492635, obtained by (balck) spectral
collocation using CGL and (blue) high-order finite-difference methods of order 8: STD, Padé, DRP, SBP, as
well as (red) FD-q with q = 8 and q = 16. The number of discretization nodes used is the same in both spatial
directions and is denoted by N + 1.
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is defined as Ω = {z ∈ [0, A]} × {y ∈ [0, 1]}, where A is the aspect ratio. The steady base flow vector under
these assumptions has two velocity components, ū = [0, v̄(z, y), w̄(z, y)]T , and it is obtained by solving the
vorticity-transport equation (see Theofilis [2003] for more details). The boundary conditions are v̄ = 0 on all
four walls and w̄ = 0 in all the walls but the corresponding to the lid where

w̄ =
[
1− (2z − 1)16

]2
, z ∈ [0, 1]. (5.5)

In this manner, the discontinuity in the boundary condition at w̄(z = 0, y = 1) and w̄(z = 1, y = 1) of the
lid-driven cavity flow Ghia et al. [1982], Schreiber and Keller [1983] is avoided, since it is a potential source of
suboptimal convergence.

Figure 5.8 presents convergence history results using the same suite of 8th-order finite-difference methods
used so far, in addition to FD-q16 and CGL. At the conditions at which the EVP in equation (3.26) with the
matrices (3.51) is solved, the leading eigenmode is stationary, so comparisons are performed using only the
imaginary part of the leading eigenvalue. The converged value used for this result is the average obtained whit
the Richardson extrapolations of the CGL and FD-q16 results. The same qualitative conclusions reached by
application of these discretization methods in the previous problems are reached here too, namely that the FD-q
methods are superior in terms of accuracy to all other finite-difference approaches.

It is worth noting in this context that the only previous known work in the literature which compares finite-
difference and spectral collocation methods for global instability analysis is the work by Merle et al. [2010b] who
also used the lid-driven cavity as test. The conclusion reached in that work was that the DRP scheme is the
best alternative in terms of computational cost to CGL from a combined accuracy and efficiency perspective.
This conclusion is superseded by the results of figure 5.8: while the DRP method has the same formal resolution
capacity as standard, Padé or SBP finite-differences, and may indeed be more efficient than some of the other
methods examined (comparisons in Merle et al. [2010b] were confined to Padé and DRP), the 8th-order member
of the FD-q methods family significantly outperforms all its peers; using N = 100 it delivers a relative error of
the most unstable eigenmode of O(10−4), as opposed to O(10−2) that all other finite-difference methods deliver.
In addition, due to the nature of the method, the sparsity of DRP is smaller than the one of FD-q when the
order of the method is the same in both numerical schemes. As in the previously studied problems, increasing
the order of the FD-q method utilized delivers results approximating those obtained by the spectral collocation
method.

The swept attachment-line boundary-layer flow

Still within a BiGlobal context, the EVP governing instability of the incompressible swept Hiemenz flow is also
solved using the proposed spatial discretization methods. Unlike the two previous two-dimensional base flows,
here all three base flow velocity components are present and no reductions of the LNSE are possible. Here
again a complex EVP needs to be solved. One advantage of this application is that the base flow is obtained
by the solution of systems of coupled ordinary differential equations at arbitrarily high precision. In addition,
accurate global instability results of this flow are available Lin and Malik [1996] and have been modeled by
simple one-dimensional EVPs in both the orthogonal Theofilis et al. [2003], and the non-orthogonal Pérez et al.
[2012] leading-edge boundary-layer flow, providing highly accurate data to compare against.

The base flow is provided by the swept Hiemenz boundary-layer, which models steady stagnation line flow.
The velocity components are independent of the homogeneous direction along the attachment line, x, which is
assumed to be infinite, while all three base flow velocity components are taken to depend on the wall-normal
direction y. Moreover, the chordwise velocity component w̄(y, z) is taken to be linearly dependent on the
chordwise coordinate z, while the wall-normal velocity component v̄(y) and the velocity component ū(y) along
the attachment line are taken to be independent of z Rosenhead [1963].

The EVP in equation (3.26) with the matrices (3.51) is solved with this attachment-line boundary-layer base
flow using the same set of parameters of Lin and Malik [1996]: Re = 800 and α = 0.255. The transformation
used for the wall-normal direction y is the same as the one used for the Blasius boundary-layer problem (4.60)
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Figure 5.8: Convergence history of the BiGlobal EVP applied to the regularized lid-driven cavity flow at
Re = 1000 and α = 15, with A = 1 for the most unstable eigenvalue ω = i 0.108337, obtained by (black)
spectral collocation using CGL grid and (blue) high-order finite-difference methods of order 8: STD, Padé,
DRP, SBP, as well as (red) FD-q with q = 8 and q = 16. The number of discretization nodes used is the same
in both spatial directions and is denoted by N + 1.
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Table 5.3: BiGlobal instability analysis of the incompressible attachment-line boundary-layer flow with at
Re = 800 and α = 0.255. The first two most unstable modes, GH and A1 are shown. Comparison with the
results presented by Lin and Malik [1996]. Note that c = ω/α refers to phase velocity.

N2 cr(GH) ci(GH)(×102) cr(A1) ci(A1)(×102)

CGL 302 0.35840506 0.58473709 0.35791126 0.41108252
402 0.35841015 0.58531622 0.35792172 0.41104656
502 0.35840978 0.58532857 0.35792622 0.41027206
602 0.35840997 0.58531393 0.35792318 0.40962663

FD-q16 302 0.35842026 0.58484758 0.35792767 0.40974017
502 0.35840951 0.58533098 0.35791855 0.40989817
702 0.35840947 0.58529166 0.35791927 0.40986547
902 0.35840990 0.58532679 0.35791979 0.40988838

FD-q8 302 0.35840088 0.58685134 0.35790972 0.41179370
502 0.35841011 0.58540140 0.35797511 0.40990771
702 0.35840976 0.58530175 0.35791916 0.40989455
902 0.35840991 0.58532658 0.35791980 0.40988576

L&M Lin and Malik [1996] 0.35840982 0.58532472 0.35791970 0.40988667
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Figure 5.9: (a) Convergence history of the solution of the 3D Helmholtz EVP for the eigenvalue λ2/(π2/4) = 43,
obtained using CGL and a suite of FD-q methods of orders 4, 8, 12, 16 and 20. The number of discretization
nodes used is the same in the three spatial directions and is denoted by N + 1. (b) Iso-surfaces of the corre-
sponding eigenfunction obtained using FD-q12 with Nx ×Ny ×Nz = 603.

but with y∞ = 150 and yh = 4. In the chordwise coordinate, a linear transformation is used to map the
standard CGL or FD-q domain into z ∈ [−200, 200]. Table 5.3 shows comparisons with the converged results of
Lin and Malik [1996] using CGL, FD-q8 and FD-q16 for the first two most unstable modes. FD-q8 and FD-q16
results show very good agreement with the literature result and even outperform the CGL results of the second
eigenvalue using low resolution (e.g. Nx ×Ny = 502), which is more difficult to be calculated numerically, due
to the closeness between both modes.

5.2.4 The 3D Helmholtz EVP

In three spatial dimensions the Helmholtz EVP (5.1) is defined by the following equation:

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ+ λ2φ = 0, (5.6)

Such problem is useful in assessing the accuracy of the proposed spatial discretization method, especially in
the recovery of the higher eigenvalues/eigenfunctions, nx, ny, nz � 1. The recovered eigenvalues are compared
with the analytical solution of this problem in the domain Ω = {x ∈ [−1, 1]} × {y ∈ [−1, 1]} × {z ∈ [−1, 1]}
Morse and Feshbach [1953]. Such solution is the following:

λ2
nx,ny,nz =

π2

4

[
n2
x + n2

y + n2
z

]
; nx, ny, nz = 1, 2, 3, · · · (5.7)

Figure 5.9(a) shows the convergence history of the eigenvalue λ2/(π2/4) = 43. Conclusions analogous to
those reached in the two-dimensional Helmholtz EVP and in the previously addressed applications are also

Page 51 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

drawn here. Special interest is focused on intermediate values of the order of the method, e.g. q = 12, q = 14.
Single-precision convergence is achieved using approximately two times more discretization points than with
spectral collocation methods, and double-precision convergence is achieved with less than four times more nodes
than with spectral collocation methods.

For completeness, figure 5.9(b) displays the eigenfunction corresponding to the eigenvalue (λ2/(π2/4) = 43),
obtained numerically using FD-q12, showing that a non-trivial structure in terms of gradients is obtained. As
with its two-dimensional analogous, reliable spatial discretization of the three-dimensional Poisson operator sets
the scene for the solution of the TriGlobal EVP.

5.2.5 The TriGlobal EVP

Finally, the TriGlobal linear instability EVP in equation (3.26) formed by the matrices (3.63) is solved, treating
all three inhomogeneous spatial dimensions in a coupled manner.

Using the two-dimensional rectangular duct and regularized lid-driven cavity base flows previously calcu-
lated, a three-dimensional, spanwise homogeneous base flow is constructed and analyzed by solving the three-
dimensional EVP without exploitation of the spanwise periodicity. Furthermore, the instability analysis of the
three-dimensional lid-driven cavity flow in absence of homogeneous spatial directions is solved. This is the most
stringent test to which the proposed spatial discretization is exposed. In view of the results, only the FD-q
method is used for the solution of equation (3.26) formed by the matrices (3.63).

The rectangular duct flow

The rectangular duct flow is analyzed also with TriGlobal analysis at Re = 1000, employing FD-q10 in both
z and y directions. For the TriGlobal analysis, NF Fourier collocation points are used along the spanwise
direction, in order to discretize a spanwise length Lx = 2π/αBG. The parameter αBG = π is chosen to
enable direct comparisons of the present TriGlobal with the results obtained by the solution of the BiGlobal
analysis in which only (z, y) are discretized in a coupled manner, ω = 2.902765454 − i0.1035249264. Results
are presented in Table 5.4, where a very good agreement between BiGlobal and TriGlobal analysis results is
observed: the damping rate obtained by BiGlobal analysis using the highest attainable resolution on the used
desktop computer, Nz×Ny = 702 CGL points and that delivered by the TriGlobal analysis with Nz×Ny = 562

FD-q10 points and NF = 12 Fourier collocation points, have a relative difference of O(10−7).

The two-dimensional regularized lid-driven cavity

Here, the two-dimensional regularized lid-driven cavity flow is analyzed with TriGlobal analysis. For the solution
of equation (3.26) formed by the matrices (3.63), NF Fourier collocation points are used along the spanwise
direction, in order to discretize a spanwise length Lx = 2π/αBG, and FD-q10 in both of the z and y directions.
The parameters Re = 1000 and αBG = 15 are chosen in order to directly compare the present TriGlobal results
with the converged BiGlobal result shown in figure 5.8, ω = i0.108337. The results are presented in Table 5.5,
where an acceptable agreement between BiGlobal and TriGlobal analysis results is observed: the damping rate
obtained by BiGlobal analysis using Nz×Ny = 702 CGL points and the one delivered by TriGlobal analysis with
Nz × Ny = 562 FD-q10 points and NF = 12 Fourier collocation points show a relative difference of O(10−3).
This discrepancy is expected to improve by increasing resolutions.

The three-dimensional regularized lid-driven cavity

The last test to which FD-q methods are subject is the three-dimensional regularized lid-driven cavity flow. The
base flow is computed with an in-house developed steady-state high order spectral collocation DNS solver Gómez
et al. [2012b]. The already showed substantial efficiency improvement over spectral collocation offered by the
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Table 5.4: TriGlobal instability analysis of the rectangular duct flow in the domain Ω = {x ∈ [−1, 1]} × {y ∈
[−1, 1]} × {z ∈ [−1, 1]} at Re = 1000 using FD-q10 for z and y direction with N + 1 points and Fourier
collocation with NF points in x.

N2 ×NF ωr ωi Mem. (MB) TLU (s) TAR (s)

322 × 12 2.90275822 -0.103516753 4862† 353† 0.8†

402 × 12 2.90276481 -0.103523881 2980 1006 8.8
482 × 12 2.90276539 -0.103524652 4611 1735 16.4
422 × 16 2.90276510 -0.103524201 6253 3345 19.0
562 × 12 2.90276545 -0.103524809 6539 5247 20.6

TLU and TAR respectively refer to time spent in the LU decomposition of the matrix
and the Arnoldi iteration.
† refers to Out-of-Core while rest are In-Core calculations.

Table 5.5: TriGlobal instability analysis of the regularized lid-driven cavity flow in the domain Ω = {z ∈
[0, 1]} × {y ∈ [0, 1]} × {x ∈ [0, 2π/15]} at Re = 1000 using FD-q10 for z and y direction with N + 1 points and
Fourier collocation with NF points in x.

N2 ×NF ωi Memory (MB) TLU (s) TAR(s)

322 × 12 0.102726 4920† 377† 0.9†

402 × 12 0.106135 3226 1447 8.8
482 × 12 0.106903 4578 1819 15.8
422 × 16 0.106538 6061 3097 16.5
562 × 12 0.106804 6704 3947 25.4

TLU and TAR respectively refer to time spent in the LU decompo-
sition of the matrix and the Arnoldi iteration.
† refers to Out-of-Core while rest are In-Core calculations.
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Table 5.6: TriGlobal instability analysis of the regularized cubic lid-driven cavity flow in the domain Ω = {x ∈
[0, 1]} × {y ∈ [0, 1]} × {z ∈ [0, 1]} at Re = 200 using matrix formation. FD-q finite-differences of orders q and
N number of points in each of the three spatial directions are used. The leading eigenvalue is shown in terms
of damping rate ωr and frequency ωi.

N3 q ωr ωi Memory (MB) TLU (s) TAR(s)

203 4 0.41796 0.15894 665 17 0.1
263 4 0.41475 0.13689 2172 84 0.4
323 4 0.41601 0.13405 5904 332 1.1
383 4 0.41585 0.13278 3742† 1126† 12.4†

203 6 0.41262 0.13152 1224 67 0.2
263 6 0.41606 0.13191 4296 265 0.7
323 6 0.41601 0.13191 4217† 1214† 10.7†

203 8 0.41711 0.13223 1926 142 0.3
263 8 0.41650 0.13187 6666 677 1.1

TLU and TAR respectively refer to time spent in the LU decomposition of
the matrix and the Arnoldi iteration.
† refers to Out-of-Core while rest are In-Core calculations.

FD-q finite-difference discretization method in combination with sparse matrix storage and inversion permits
solving the canonical TriGlobal linear modal instability problem in the cubic lid-driven cavity Giannetti et al.
[2009], Feldman and Gelfgat [2010] serially, on a workstation having 8GB of memory. While details of the
physics of this problem are discussed in the work of Gómez et al. [2012b], Table 5.6 shows the computing
requirements for the reliable solution of this problem, using the matrix-forming approach.

5.3 Compressible stability analysis validations

5.3.1 The Local EVP

The stability analysis of the zero-pressure-gradient boundary-layer flow at hypersonic regime (M = 6) is solved
under the parallel flow assumption using local theory. The parameters selected in this computation are Re =
1000, α = 0.8 and ψ = tan−1(β/α) = 45 deg.

The solution of the generalized EVP (3.26) applied to this problem is observed in figure 5.11, where the
eigenvalues are plotted using N = 129 discretization points using FD-q16 (right triangles) and FD-q24 (left
triangles). The mapping applied to the spatial scheme (4.60) uses the same parameters for both discretizations,
ηh = 20 and η∞ = 150. The boundary conditions are Dirichlet for the three components of velocity and
temperature at the wall and far field. The pressure/density component does not need boundary conditions.
The purpose of setting two spatial discretization is the identification of spurious and converged modes. Two
modes are identified in figure 5.11, being A the leading mode, which corresponds to the first Mack mode Mack
[1984], and B an arbitrary acoustic mode. The eigenvalues of this modes are exposed in Table 5.7. Well
agreement is observed against the literature predictions for the leading mode. The eigenvectors of both modes
are showed in figure 5.10 versus the wall normal direction. The nature of the compressible modes become clear
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Table 5.7: Local modal analysis results of compressible flat-plate boundary-layer at M = 6, Re = 1000, α = 0.8
and β = 0.8 using FDq-24 with N + 1 = 129 discretization points. The two modes shown are identified with
A and B in Figure 5.11. The leading mode (mode A) is compared with the result of Theofilis and Colonius
Theofilis and Colonius [2004].

Mode ωr ωi
A 0.072489745 0.001054002
T&C Theofilis and Colonius [2004] 0.072487839 0.001052149
B 0.050920988 0.000023752
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Figure 5.10: Components of the first Mack mode (A) and an arbitrary acoustic mode (B) eigenvectors of
compressible flat-plate boundary-layer flow at M = 6, Re = 1000, α = 0.8 and β = 0.8.

by inspection of the first Mack mode eigenfunction (figures 5.10(a), 5.10(b), 5.10(c) and 5.10(d)). As the Mach
number increases, sharp gradients develop both in the near-wall region and the neighborhood of the critical
layer, the latter moving well into the free-stream. The acoustic modes (figures 5.10(e), 5.10(f), 5.10(g) and
5.10(h)) develops wave-like behavior at high wall-normal coordinate values, i.e. at the free-stream region.

After the modal analysis, attention is paid to the non-modal lineal results. For that, the matrix discretizing
the operator C of equation (3.13), C = B−1A, is formed in a straightforward manner thanks to the non-
singularity of matrix B, unlike in the incompressible case. The pseudospectrum of this matrix is showed in
figure 5.11. Also, the results for two spatial discretization, FD-q16 (dashed lines) and FD-q24 (solid lines), are
showed. The pseudospectrum isoline ε = 10−4 cross the unstable border on closely to the leading mode. Figure
5.12 shows the evolution of the norm of the discretization of the propagator operator, ‖eCt‖. After a transient
growth at short times (5.12(b)), reaching a value around ‖eCt‖ ≈ 150 at t = 10, an exponential behavior is
exhibited for larger times. The exponential slope of this region, 0.00105035, matches the leading mode growth
rate.

Same calculation is showed in figure 5.13 at same parameters but decreasing the Reynolds number up to
Re = 100, for which all the modes are stable. In this case, the maximum transient growth ‖eCt‖ ≈ 150 is
reached at t ≈ 750, and following this time, an oscillatory decreasing of the norm is observed.
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Figure 5.11: Spectrum and pseudospectrum of matrix C for flat-plate boundary-layer flow at Ma = 6, Re =
1000, α = 0.8 and β = 0.8. Two different discretizations, FD-q16 (right triangles and dashed lines) and FDq-24
(left triangles and solid lines), both with N = 129 discretization points, are used for identifying non-spurious
modes. The mode identified with A is the leading mode and the mode B is an acoustic mode. Levels from inner
to outer isoline, 10−7, 10−6, 10−5, 10−4.
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Figure 5.12: Evolution of the norm of the propagator operator, ‖eCt‖ for flat-plate boundary-layer flow at
Ma = 6, Re = 1000, α = 0.8 and β = 0.8 using FD-q24 with N = 129 discretization points.
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Figure 5.13: Evolution of the norm of the propagator operator, ‖eCt‖ for flat-plate boundary-layer flow at
Ma = 6, Re = 100, α = 0.8 and β = 0.8 using FD-q24 with N = 129 discretization points.

5.3.2 The BiGlobal EVP

The stability analysis of the compressible orthogonal swept leading-edge flow at M = 0.9 and Re = 800 is
solved using temporal BiGlobal analysis theory. The base flow analyzed here is the same used in Theofilis et al.
[2004b], Gennaro et al. [2013].

The boundary conditions used for the temporal BiGlobal EVP (3.26) are no-slip on the perturbation velocities
at the wall, alongside with homogeneous Dirichlet condition for temperature and at the far-field, a fast decay in
the wall-normal direction is assumed for all disturbances, permitting the imposition of homogeneous Dirichlet
conditions at large distance form the wall, y∞ = 100. At a large distance form the attachment-line, along the z-
direction, z = ±Lz (setting Lz = 100 as in Gennaro et al. [2013]), the homogeneous condition D2

zz(û, v̂, ŵ, T̂ ) = 0
is used, which is equivalent to a linear extrapolation from the interior of the computational domain.

Table 5.8 shows the convergence history of the two most amplified modes, the GH (Görtler-Hammerling
or first symmetric mode) and the A1 (first antisymmetric mode), compared with the results of Gennaro et al.
[2013]. The non-uniform high-order finite-difference scheme FD-q8 of eighth order Hermanns and Hernández
[2008] is used for discretization of both spatial direction. The wavenumber, taken from Gennaro et al. [2013]
for comparison purpose, is α = 0.19. It is very surprising that a similar level of accuracy is recovered by CGL,
FD-q16 and even for FD-q8 with the same number of discretization points Ny = Nz = 60. The absolute error
achieved for the leading mode, i.e. the GH mode, is O(10−8). The A1 mode also is recovered by FD-q16 and
FD-q8 with the same absolute error for approximately same number of discretization points. Figures 5.14 and
5.15 show the real and imaginary part of the eigenvectors û and ŵ for the GH and A1 modes respectively.

5.4 The efficiency advantages of using FD-q

Once the accuracy of FD-q method has been established, attention may be turned to the efficiency advantage
that they offer over spectral collocation methods. The solution algorithm is based on subspace iteration in which
the spatial discretization matrix is formed, stored and LU-decomposed using sparse linear algebra routines and,
therefore, the sparsity pattern is the key parameter for the success of the overall algorithm. Only the FD-q
spatial discretization has been monitored in terms of the memory and CPU time requirements for the serial
solution of the incompressible BiGlobal EVP, on account of the superior accuracy properties of this over other
finite-difference methods of the same formal order (and sparsity pattern). A visual indication of the savings
expected by using a given FD-q method over the CGL spatial discretization is offered by the sparsity patterns
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Table 5.8: BiGlobal instability analysis of the compressible attachment-line boundary layer flow with at Re =
800, M = 0.9 and α = 0.19. The first two most unstable modes, GH and A1 are shown. Comparison with
the results presented by Gennaro et al. [2013], where the authors used Nz = 140 STD nodes of sixth order and
Ny = 140 CGL nodes. Note that N = Ny = Nz.

N2 ωr(GH) ωi(GH) ωr(A1) ωi(A1)

CGL 302 0.076470803 0.001189096 0.076325574 0.000576254
402 0.076472284 0.001187837 0.076329702 0.000575014
502 0.076472281 0.001187836 0.076329243 0.000574900
602 0.076472275 0.001187834 0.076329278 0.000574939

FD-q16 502 0.076472269 0.001187838 0.076329292 0.000574931
602 0.076472275 0.001187831 0.076329285 0.000574934
702 0.076472274 0.001187833 0.076329282 0.000574932
802 0.076472274 0.001187837 0.076329282 0.000574936

FD-q8 502 0.076472282 0.001187879 0.076329313 0.000574981
602 0.076472276 0.001187858 0.076329293 0.000574943
702 0.076472272 0.001187841 0.076329285 0.000574938
802 0.076472275 0.001187839 0.076329287 0.000574936

G Gennaro et al. [2013] 0.07647184 0.00118942 0.07632667 0.00057823
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Figure 5.14: Eigenfuctions at M = 0.9, Re = 800 and α = 0.19 corresponding to the mode GH ((a) Re(û), (b)
Im(û), (c) Re(ŵ) and (d) Im(ŵ).
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Figure 5.15: Eigenfuctions at M = 0.9, Re = 800 and α = 0.19 corresponding to the mode A1 ((a) Re(û), (b)
Im(û), (c) Re(ŵ) and (d) Im(ŵ).
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(a) (b)

Figure 5.16: Sparsity pattern of the left-hand-side BiGlobal operator matrix with N + 1 = 21 discretization
points per spatial direction using (a) CGL and (b) FD-q4 in the attachment line boundary-layer problem. (blue)
Real part and (red) imaginary part of the non-zero elements.

resulting from spatial discretization of the left-hand-side BiGlobal matrix A of equation (3.26) for incompressible
flows, respectively shown in figure 5.16(a) for CGL and figure 5.16(b) for FD-q4, both plotted using N = 20.
The key parameter when a sparse solver is used is the number of non-zero elements (NNZ). In most of the
differential operators, this parameter is reduced by a factor of O(q + 1/N + 1), with q the order of the used
finite-difference scheme (i.e. q + 1 is the stencil of the scheme) and N + 1, the number of points used to
discretize the problem in each spatial direction for all the differentiation matrices. For the more stringent
case of compressible BiGlobal instability analyses, or when non-orthogonal curvilinear mappings are used to
discretize the problem, cross-derivatives are present in the differential operators. In this case, NNZ is reduced
by a factor of O((q + 1/N + 1)2).

The computational requirements of the overall numerical solution of the EVP are imposed by those of the
LU-decomposition of the sparse matrix. The required memory and elapsed time for this factorization cannot
be predicted a priori and the ratio (q + 1/N + 1), elevated to a power to be determined later, is used next
to relate the required memory and elapsed time of the LU-decomposition of FD-q with those of CGL spatial
discretization. The flow instability problem chosen to study computational requirements is one in which all
velocity components and their derivatives need to be discretized: the attachment-line boundary-layer flow
problem. Spatial discretization methods used are the CGL discretization working in dense (results taken from
Gennaro et al. [2013]) and comparing them with the respective results corresponding to sparse CGL, FD-q8,
FD-q16 and FD-q24 spatial discretizations.

5.4.1 Incompressible regime operators

Focusing firstly on the incompressible regime and setting N = Nz = Ny, the leading dimension of the matrix
operator is M = 4 (N + 1)2.
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Table 5.9: Memory requirements for the LU decomposition (MB) in the attachment line boundary layer problem,
using different resolutions and working with dense algebra for CGL and sparse algebra for CGL, FD-q24, FD-q16
and FD-q8. Note that N = Nx = Ny.

N CGLdense CGLsparse FD-q24 FD-q16 FD-q8

40 760 584 444 246 107
50 1747 1350 705 457 179
60 3494 3078 1217 775 284
70 6230 5544 1889 1174 436

Table 5.9 shows the required memory for the LU decomposition of the BiGlobal EVP matrix using dense
and sparse routines in conjunction with CGL discretization, as well as three members of the FD-q family and
sparse linear algebra. The quantity of required memory when working in sparse is significantly reduced respect
to the quantity of required memory working in dense, which is theoretically Mem ≈ O(M2) ≈ O(N4). The
memory requirements of the FD-q8 method are found to be smaller by one order of magnitude compared with
those of the CGL method. In order to obtain a relation between the respective quantities the formula

Mem FD−q =

(
q + 1

N + 1

)a
×Mem CGL, (5.8)

is assumed and used to identify (fit) the constant exponent a using the results of Table 5.9, plotted in figure
5.17(a). Independently both the CGL and the FD-q results are taken to follow a curve Mem ∝ (N + 1)α. This
exponent is αCGL = 4.1 for the sparse CGL method, which is very close to the theoretical exponent of 4 for dense
computations, while the values 2.7, 2.8 and 2.6 have been identified for FD-q24, FD-q16 and FD-q8, respectively.
Using the average between the three FD-q cases, α FD−q = 2.7, the constant exponent of equation (5.8) is
approximated by a = αCGL−α FD−q = 1.4. Figure 5.17(b) shows the collapse of all FD-q curves using equation
(5.8) and these constant values. The required memory for FD-q scales as Mem FD−q ≈ O(N2.7) ≈ O(M1.3),
which outperforms computations using CGL, the latter scaling as Mem CGL ≈ O(M2).

Turning to the elapsed time for serial LU factorization of the matrix pertinent to the same global stability
EVP, results in Table 5.10 are presented for the same methods. The theoretical prediction of O(M3) ≈ O(N6)
is verified by the CGL either sparse or dense results. The most striking result of this table is the order(s) of
magnitude decrease of CPU time that the FD-q method offers, when compared with either of the CGL sparse
or dense solution.

In order to quantify the relation between the elapsed times required by the CGL and the FD-q methods,
the formula

Time FD−q =

(
q + 1

N + 1

)b
× Time CGL, (5.9)

is assumed and used to fit the constant exponent b. Figure 5.18(a) shows the results of Table 5.10. As in
the case of memory requirements, either method is taken to follow a curve Time ∝ (N + 1)β . For the CGL
method the exponent extracted from the results is β CGL = 6.0, which is exactly the theoretical exponent
for dense calculations, while the exponent values of 3.8, 3.7 and 3.1 have been obtained for FD-q24, FD-q16
and FD-q8, respectively. Again, using the average value of the three FD-q cases, β FD−q = 3.5, the constant
exponent of equation (5.9) is approximated by b = β CGL − β FD−q = 2.5. Figure 5.18(b) shows the collapse
of the FD-q CPU-time curves onto a single FD-q curve, which has the same slope as that obtained using CGL
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Figure 5.17: (a) Required memory and (b) rescaled memory for LU-factorization of incompressible BiGlobal
EVP using the equation (5.8) versus number of discretization points per direction, N + 1.

discretization, when equation (5.9) is used with this parameter value. Therefore, the CPU time for FD-q scales
as Time FD−q ≈ O(N3.5) ≈ O(M1.7), instead of Time CGL ≈ O(M3) for CGL.

The reductions in computational effort by the sparse solution of the BiGlobal EVP in which the matrix is
formed using the FD-q methods are made palpable by recalling the largest such solution to-date, namely the
massively parallel computations of Kitsios et al. [2009], Rodŕıguez and Theofilis [2010]. The latter work was
performed on the JUGENE supercomputing facility1, on which 2048 processors were used in order to distribute
the 1 TB large matrix resulting from the CGL spectral collocation discretization of the incompressible operator
on a Nz × Ny = 2502 grid, employing the parallel dense linear algebra library ScaLAPACK Blackford et al.
[1996], with an elapsed time of ≈ 10.5 hours of wall-clock time (≈ 22000 total hours of CPU time). Using the

1http://www.fz-juelich.de/ias/jsc/EN/Home/home node.html

Table 5.10: Elapsed time for the LU decomposition (s) in the attachment line boundary layer flow problem,
using different resolutions and working with dense algebra for CGL and sparse algebra for CGL, FD-q24, FD-q16
and FD-q8.

N CGLdense CGLsparse FD-q24 FD-q16 FD-q8

40 152.7 34.7 18.0 7.6 2.0
50 553.9 97.0 33.1 16.8 3.6
60 1603.4 292.0 80.2 35.2 6.3
70 4665.8 516.3 136.8 57.3 10.8
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Figure 5.18: (a) Elapsed time and (b) rescaled CPU-time for LU-factorization of incompressible BiGlobal EVP
using the equation (5.9) versus number of discretization points per direction, N + 1.

BiGlobal results of figure 5.8 as a guidance, and employing the relation NCGL ≈ 2NFD−q8 at which the CGL
and the FD-q8 spatial discretizations both reach a relative error of εω ≈ 10−5 in the leading eigenmode, the
results of Kitsios et al. [2009], Rodŕıguez and Theofilis [2010] could be obtained by employing Nz ×Ny = 5002

FD-q8 points. The memory estimation provided by the sparse direct solver MUMPS on a serial desktop is
28 GB for in-core and 3.2 GB for out-of-core calculations. The estimation of the respective elapsed time is
calculated by extrapolating the results of Table 5.10 for CGL sparse results to N = 500 with the previously
calculated slope β CGL = 6.0, resulting Time CGL ≈ 18000 CPU hours, and then using equation (5.9) to obtain
the estimation of Time FD−q8 ≈ 46 CPU minutes.

In order to complete the cost estimations, the relation NCGL ≈ 4NFD−q8, observed in the results of figure
5.6(a) at which the CGL and the FD-q8 spatial discretizations both reach a relative error of ελ ≈ 10−9 in the
leading eigenmode, is adopted. Now, using NFD−q8 = 1000, the memory estimation provided by MUMPS is 137
GB for in-core and 13.3 GB for out-of-core calculations. For the time estimation, following the same procedure,
the result of Time FD−q8 ≈ 9 CPU hours is obtained. While these estimates are one order of magnitude larger
than those corresponding to Nz×Ny = 5002 FD-q8 collocation nodes, the FD-q methods still offer an interesting
alternative to the commonly employed spectral collocation methods for this class of stability problems.

5.4.2 Compressible regime operators

Secondly, the same efficiency test is performed in the compressible regime. Setting N = Nz = Ny, the resulting
leading dimension of the matrix operators is M = 4 (N + 1)2.

A visual indication of the savings expected by using a given FD-q method over the CGL spatial discretization
is offered by the sparsity patterns resulting from spatial discretization of the left-hand-side BiGlobal matrix A
of equation (3.26), respectively shown in figure 5.19(a) for CGL and figure 5.19(b) for FD-q4, both plotted using
N = 20. Within the compressible BiGlobal instability analyses, or when non-orthogonal curvilinear mappings
are used to discretize the problem, cross-derivatives are present in the differential operators. In this case, NNZ
is reduced by a factor of O((q + 1)/(N + 1))2).
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(a) (b)

Figure 5.19: Sparsity pattern of the left-hand-side compressible BiGlobal operator matrix with N + 1 = 21
discretization points per spatial direction using (a) CGL and (b) FD-q4 in the attachment line boundary-layer
problem. (blue) Real part and (red) imaginary part of the non-zero elements.

Table 5.11 shows the required memory for the LU decomposition of the BiGlobal EVP matrix using dense
and sparse routines in conjunction with CGL discretization, as well as three members of the FD-q family and
sparse linear algebra. The quantity of required memory when working in sparse is significantly reduced respect
to the quantity of required memory working in dense, which is theoretically Mem ≈ O(M2) ≈ O(N4). The
memory requirements of the FD-q8 method are found to be smaller by one order of magnitude compared with
those of the CGL method. In order to obtain a relation between the respective quantities, the formula (5.8)
is used again to identify (fit) the constant exponent a using the results of Table 5.9, plotted in figure 5.20(a).
Independently both the CGL and the FD-q results are taken to follow a curve Mem ∝ (N + 1)α. This exponent
is αCGL = 3.83 for the sparse CGL method, which is very close to the theoretical exponent of 4 for dense
computations, while the values 2.74 and 2.63 have been identified for FD-q16 and FD-q8, respectively. Using the
average between the three FD-q cases, α FD−q = 2.69, the constant exponent of equation (5.8) is approximated
by a = αCGL − α FD−q = 1.15. Figure 5.20(b) shows the collapse of all FD-q curves using equation (5.8)
and these constant values. The required memory for FD-q scales as Mem FD−q ≈ O(N2.7) ≈ O(M1.3), which
outperforms computations using CGL, the latter scaling as Mem CGL ≈ O(M1.9).

Turning to the elapsed time for serial LU factorization of the matrix pertinent to the same global stability
EVP, results in Table 5.12 are presented for the same methods. The most striking result of this table is the
order(s) of magnitude decrease of CPU time that the FD-q method offers, when compared with either of the
CGL sparse or dense solution.

In order to quantify the relation between the elapsed times required by the CGL and the FD-q methods, the
formula (5.9) is used again to fit the constant exponent b. Figure 5.21(a) shows the results of Table 5.12. As
in the case of memory requirements, either method is taken to follow a curve Time ∝ (N + 1)β . For the CGL
method the exponent extracted from the results is β CGL = 5.79, which is nearly the theoretical exponent for
dense calculations, Time ≈ O(M3) = O(N6), while the exponent values of 3.69 and 3.29 have been obtained
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Table 5.11: Memory requirements for the LU decomposition (MB) in the compressible attachment line boundary
layer problem, using different resolutions for CGL, FD-q16 and FD-q8. Note that N = Ny = Nz and ∗ refers
to extrapolated values.

N CGL FD-q16 FD-q8

40 1561 462 202
50 3686 887 354
60 7141 1432 578
70 12888∗ 2125 864
80 21351∗ 3010 1195

 1000

 10000

 40  50  60  70  80

M
em

or
y 

(M
B

)

N

CGL
FD-q16
FD-q08

 1000

 10000

 40  50  60  70  80

Re
sc

al
ed

 m
em

or
y 

(M
B)

N

CGL
FD-q16
FD-q08

(a) (b)

Figure 5.20: (a) Required memory and (b) rescaled memory for LU-factorization of incompressible BiGlobal
EVP using the equation (5.8) versus number of discretization points per direction, N + 1.
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Table 5.12: Elapsed time for the LU decomposition (s) in the attachment line boundary layer flow problem,
using different resolutions for CGL, FD-q24, FD-q16 and FD-q8. Note that N = Ny = Nz and ∗ refers to
extrapolated values.

N CGL FD-q16 FD-q8

40 84 22 5.6
50 285 40 10
60 840 95 18
70 1990∗ 162 30
80 4267∗ 250 47

for FD-q16 and FD-q8, respectively. Again, using the average value of the three FD-q cases, β FD−q = 3.49,
the constant exponent of equation (5.9) is approximated by b = β CGL − β FD−q = 2.30. Figure 5.21(b) shows
the collapse of the FD-q CPU-time curves onto a single FD-q curve, which has the same slope as that obtained
using CGL discretization, when equation (5.9) is used with this parameter value. Therefore, the CPU time for
FD-q scales as Time FD−q ≈ O(N3.5) ≈ O(M1.7), instead of Time CGL ≈ O(M2.9) for CGL.

Regarding the accuarcy conclusions of Table 5.8, using FD-q8 at similar accuracy for N2 = 60 one order
of memory reduction (see Table 5.11) and a speed up factor of TimeCGL/TimeFD−q8 ≈ 50 (see Table 5.12)
result. In more complex problems, where the number of discretization points is much larger, several orders of
magnitude of CPU requirement savings would be expected as shown in the incompressible limit.

5.5 Summary and conclusions

The prime consideration in performing numerical solutions of the linear flow instability EVPs is accuracy.
Following the influential work of Orszag [1971], spectral spatial discretization has historically been the method
of choice for spatial discretization of the linear local stability analysis operator, a tendency which to a large
extent continues presently in the context of global linear flow instability analysis. The present contribution
has presented a comparison of a suite of high-order finite-difference spatial discretizations of the linear stability
operator in regular Cartesian two- and three-dimensional domains and compared the respective results against
those delivered by standard multi-dimensional spectral collocation discretization of the same spatial operators.
The FD-q method Hermanns and Hernández [2008] has been found to outperform all its peers at any given
formal order of accuracy, and tend toward the spectral results in the limit of the bandwidth of the differentiation
matrix being equal with the leading matrix dimension, q → N . Exploiting the sparsity at q � N , accurate
results have been delivered at orders of magnitude less storage and serial CPU time requirements, compared with
the standard spectral collocation approach based on the (unmapped or mapped) Chebyshev Gauss-Lobatto grid.
This permits a drastic reduction of the computing hardware on which state-of-the-art global linear instability
analyses are performed when the spatial discretization matrix is stored and LU-decomposed. Results obtained
demonstrate a memory reduction from O(M2) to O(M1.3), being M the leading dimension of the matrix
operator, as well as a reduction of CPU time from O(M3) to O(M1.7). Subsequently, the usage of FD-q
delivers a speedup of O(104) and a memory reduction of O(103) in the most challenging global linear stability
calculation made so far using matrix formation Kitsios et al. [2009], Rodŕıguez and Theofilis [2010], which used
spectral collocation methods for the spatial discretization. Both improvements permit performing TriGlobal
linear instability analyses on a modern desktop computer with modest computational effort.
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Figure 5.21: (a) Elapsed time and (b) rescaled CPU-time for LU-factorization of incompressible BiGlobal EVP
using the equation (5.9) versus number of discretization points per direction, N + 1.
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Chapter 6

Parabolic Navier-Stokes solutions of
incompressible and compressible base
flows

6.1 Introduction

The present Chapter presents an algorithm for the accurate and efficient computation of incompressible and
compressible steady laminar base flows in which strong flow variations exist along two spatial directions, while
a mild variation can be assumed along the third. The algorithm is based on the Parabolic Navier-Stokes (PNS)
equations Rudman and Rubin [1968]. Since their appearance, these equations have been used to successfully
compute supersonic and hypersonic, viscous flows; see Rubin and Tannehill [2004], Tannehill et al. [1997] for
a review. The incompressible version of the PNS equations were first formulated by Rubin and Lin [1981].
One of the advantages of using PNS for the computation of base flows in an instability analysis context, is the
steadiness of the solutions obtained by definition. In this manner, unsteadiness in the real flow will be recovered
as instability of the base state in a later instability analysis.

An example of this concept is the recent work of Duck [2011], where inviscid instability is studied upon the
solution of systems of trailing vortices which are computed by a formulation of the three-dimensional boundary-
layer equations. The application of the PNS equations to recover the solution of an isolated vortex in cylindrical
coordinates is related to the quasi-cylindrical boundary-layer approximation used by Hall [1972] and Trigub
[1985]. Both the latter and the formulation used by Duck [2011] can be regarded as further approximations of
the PNS. In the quasi-cylindrical boundary-layer approximation, the radial velocity and axial derivatives are
dropped from most of the equations. In the three-dimensional boundary-layer approximation used by Duck
[2011], the transversal velocities to the axial direction are assumed of order ū/Re, being ū the axial velocity.
The main objective of these works is the analysis of the vortex breakdown phenomenon. The axisymmetric
vortex breakdown study was followed in the 90’s by Beran and Culick [1992] and Wang and Rusak [1994], who
constructed the bifurcation diagram for swirling flows in a pipe. Later, Wang and Rusak [1997a,b] presented a
novel theory based on a rigorous mathematical analysis, recovering the flow behavior of previous computations
and providing a solid theoretical understanding of the dynamics of axisymmetric swirling flows in a pipe. These
works were extended for a diverging pipe by Rusak and Judd [2001].

Turning the attention now to high speed flows, the circular and elliptic cones are frequently used models to
understand transition over components of next-generation aerospace vehicles. Flows around both geometries
give rise to a three-dimensional boundary-layer. The process of transition in these kind of flows is highly complex,
since besides the second mode disturbances that often dominated in two-dimensional/axisymmetric hypersonic
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flows, also first mode and crossflow instabilities all become relevant mechanisms in the transition process. These
scenarios have been reported in numerous experimental research efforts in both configurations, the circular cone
at non-zero angle of attack (AoA) Stainback [1969], Stetson [1982], King [1992], Swanson and Schneider [2010]
and the elliptic cone at zero AoA Schmisseur et al. [1998, 1999], Poggie and Kimmel [1998], Huntley and Smits
[2000]. Furthermore, recently large-scale computations Balakumar and Owens [2010], Gronvall et al. [2011,
2012], Bartkowicz et al. [2010] and stability calculations Li et al. [2010], Kuehl et al. [2012], Perez et al. [2012],
Choudhari et al. [2009], Li et al. [2012] have appeared in the literature, reporting the co-existence of all these
scenarios and mostly focusing on the crossflow instability.

The first PNS calculations of three-dimensional viscous flows over cone-based shaped bodies at non-zero
AoA was presented by Lin and Rubin [1973a,b], where the authors computed the boundary-layer over a slender
cone at moderate incidence (ratio between AoA and half-cone vertex angle is lower or equal than 2). The same
authors also published the PNS calculations on spinning cones at nonzero AoA Lin and Rubin [1974]. Almost
contemporary, Helliwell and Lubard Helliwell and Lubard [1973], Lubard and Helliwell [1974] developed their
PNS code and showed calculations over a circular cone at high AoA. In the next decade, Tannehill et al. [1982]
developed a general PNS code to compute the steady supersonic viscous flow around arbitrary body shapes at
high AoA and used it to calculate the laminar flow over a slab delta wing with 70◦ sweep at AoA up to 41.5◦

and Mach numbers equal to 6.8 and 9.6. Some years later, Lawrence et al. [1987] showed PNS calculations
for two body shapes: a circular cone of 10◦ half-angle at AoA = 12◦, 20◦ and 24◦ and an elliptic cone-based
all-body hypersonic vehicle at AoA = 0◦ and 10◦, which can be considered as the first PNS calculation of the
viscous flow over an elliptic cone. Motivated by the NASP effort in the early 90s, Stuckert and Reed [1994b]
presented PNS base flow computations and local modal stability analysis of hypersonic, chemically reacting,
viscous flow over a circular cone at zero AoA. The supersonic and hypersonic PNS calculations research of the
three-dimensional boundary-layer over elliptic cross-section cones was undertaken by Lyttle and Reed [1995],
who presented solutions for adiabatic wall elliptic cones of eccentricities of 2:1, 3:1 and 4:1 at M = 4, applying
Reynolds number correlations based on the parameter R (see Reed and Haynes [1994]) for stability analysis. The
parameter R for these configurations peaked near the top centerline, outside the region of validity of the above
correlation. Boundary-layer velocity profiles near the top centerline were inflectional and unstable. Kimmel
et al. [1997] used an extended version of the the UPS PNS code Lawrence et al. [1986], Stalnaker et al. [1986],
enabling the study of cool-wall cases, for computing the base flow around cones with eccentricities of 1.5:1, 2:1
and 4:1 at M = 7.95.

The PNS equations are derived from the Navier-Stokes equations by assuming steadiness and, based on the
relative smallness of the streamwise flow variations, neglecting the viscous streamwise derivative terms. Then,
the equations change their mathematical nature from elliptic to parabolic, and a parabolic integration along
the streamwise direction is possible. The numerical solution of the problem for flows of practical application is
challenging, as it involves the inversion of the large matrices that result form the discretization of a system of
two-dimensional PDE. The challenge is met in the present work using stable high-order finite-difference schemes,
developed recently by Hermanns and Hernández [2008], together with the parallelizable sparse matrix linear
algebra package MUMPS Amestoy et al. [2001, 2006]. This combination exploits the high level of sparsity
offered by the finite-difference spatial differentiation, improving substantially the numerical efficiency while
keeping accuracy. In the previous Chapter 5, a systematic study on global stability problems using the same
combination shows that the solution of PDE-based problems of the same kind of those treated here is feasible
for typical desktop computers.

The PNS equations are formulated and the numerical solution procedure are presented in what follows.
Solution of a non-parallel isolated vortex and comparisons with theoretical predictions Batchelor [1964] and
experiments Del Pino et al. [2011] are presented in Section 6.4. Then, the fully three-dimensional flowfield
corresponding to two counter-rotating vortices is computed by PDE-based PNS equations. The effect of the
distance between the vortices on their axial development is studied. Furthermore, verifications and validations
of the newly-developed code are carried out solving the flow around a circular cone at zero AoA. Solutions of the
supersonic flow around a 7◦ half minor-axis angle 2:1 elliptic cone at Mach numbers 3 and 4 are also presented.
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6.2 Theory

6.2.1 Parabolic Navier-Stokes equations

The derivation of the PNS equations from the three-dimensional steady Navier-Stokes equations (3.1-3.3) is
valid in the limit of large Reynolds number when the flow configuration is predominant along the streamwise
direction and exhibits a slow spatial dependence in the same direction, ξ. Therefore, the streamwise viscous
derivative terms are negligible compared to the normal and transverse viscous derivative terms:

Lξ � Lη, Lζ , ∂( )/∂ξ � ∂( )/∂η, ∂( )/∂ζ, ∂( )2/∂2ξ ≪ ∂( )2/∂2η, ∂( )2/∂2ζ, (6.1)

where Lξ, Lη and Lζ are the characteristic lengths on the streamwise and normal to it spatial directions
respectively. Hence, the PNS equations are derived here by simply dropping second order partial derivatives
with respect to the streamwise direction from the steady Navier-Stokes equations (3.1-3.3) Tannehill et al. [1997].
When there is no flow, or reversed flow along the slow direction, the downstream integration of the Navier-Stokes
equations is not correct, and numerical instabilities will prevent the recovery of converged solutions.

The parabolization of equations is not totally correct due to the term p̄ξ, which is associated with the left-
running characteristic (for subsonic flows only) allowing upstream influence. The technique for handling the
pressure gradient term was proposed by Vigneron et al. [1978]. In this approach, the upstream propagation
is suppressed by splitting the pressure gradient term into an explicit and an implicit parts. This is made by
multiplying the streamwise pressure gradient p̄ξ by a parameter Ω given by

Ω =

{
γM2

ξ

1+(γ−1)M2
ξ

Mξ < 1,

1 Mξ ≥ 1,
(6.2)

where Mξ = Mūξ/
√
T̄ is the streamwise Mach number and ūξ the velocity component in the streamwise

direction, ξ. The remainder streamwise pressure gradient part is evaluated explicitly from previous marching
steps.

The vector of fluid variables is defined as q̄ = (ρ̄, ū, v̄, w̄, T̄ )T . The resulting PNS equations are a system
of nonlinear partial differential equations. In order to solve the system, a marching integration in ξ is used
together with Newton iteration for solving the implicit scheme. The linear system solved to update the solution
in each ξ-station is

J (q̄n−1)∆q̄ = Fq̄(q̄n−1)∆q̄ = −F(q̄n−1), (6.3)

where J = Fq̄ is the Jacobian of the operator F , ∆q̄ = (∆ρ̄,∆ū,∆v̄,∆w̄,∆T̄ )T and q̄n = q̄n−1 + ∆q̄. The
equation (6.3) is written using matrix formation in Appendix F. The PNS equations have to be complemented
with appropriate boundary condition depending on the particular problem.

6.3 Numerical considerations

6.3.1 Spatial discretization

The spatial discretization in the streamwise direction, ξ, is performed using Backward Differentiation Formulas
(BDF). The BDF have the following general form for a k-step method

∂q̄m
∂ξ

= ∆ξ
k∑

i=0

aiq̄m−i, (6.4)

where q̄m = q̄(ξm) and ai are the scheme’s coefficients. A two-step BDF (a0 = 1, a1 = −4/3, a2 = 1/3) with
constant step-size ∆ξ is convergent for index 2 DAEs and gives second order accuracy in ∆ξ. No higher order

Page 71 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

scheme is used in ∆ξ since, as has been mention before, the flow fields studied here exhibit a mild variation in
this direction. This scheme needs two previous steps to evaluate the ξ-derivative. The one-step BDF, which is
equivalent to the backward Euler method, a0 = 1 and a1 = −1, is used for the first step, started with an initial
flow field.

The two directions of the normal plane to the streamwise marching direction, (η, ζ), are discretized using the
stable high-order finite-differences numerical schemes of order q (FD-q) recently developed by Hermanns and
Hernández [2008] and reviewed in Subsection 4.1.4. An exception is the non-parallel isolated vortex problem,
which is assumed to be axisymmetric in the absence of instabilities and in consequence the azimuthal direction
is homogeneous. Owing to this, the PNS equations are reduced to a system of ODE depending solely on the
radial coordinate, which is discretized using the Chebyshev-Gauss-Lobatto (CGL) spectral collocation method
Boyd [1989], Canuto et al. [1988].

6.3.2 Non-linear marching integration

As has been mentioned above, the derivation of the PNS equations implies a change in the mathematical nature
of the steady Navier-Stokes equations, from elliptic to parabolic, and a marching integration on the streamwise
direction is permissible. The resulting discretized PNS equations are a system of nonlinear PDE. In order
to solve the system, a marching integration along ξ is used together with the Newton iteration method for
solving the non-linear implicit scheme. The linear system of equation (6.3) is solved for update the solution
in each ξ-station. The inversion of the matrix discretizing the Jacobian operator J , which leading dimension
is O(104 − 105), is performed using the parallelizable sparse matrix linear algebra package MUMPS Amestoy
et al. [2001, 2006] and the SPARSKIT2 library Saad [1994]. When the PNS equations are reduced to a system
of ODEs, a parabolic integration is affordable using dense algebra.

6.4 Incompressible vortex flows

Two different flow configurations are considered here in the incompressible limit. First, an isolated axisymmetric
trailing-vortex is computed. The homogeneity on the azimuthal direction permits reducing the problem to a
ODE-based PNS in cylindrical coordinates. The solution recovered is compared with theoretical predictions
Batchelor [1964] and stereo-PIV experiments Del Pino et al. [2011]. The second configuration is a pair of
counter-rotating vortices, a problem in which the number of inhomogeneous directions cannot be reduced on
account of symmetries and PDE-based PNS must be solved.

In this Section, the Cartesian coordinate system, (ξ, η, ζ) = (x, y, z) is considered, with the exception of
the isolated trailing-vortex case. The resulting set of equations is modified here to reduce the derivative order
of v̄ with respect to y and of w̄ with respect to z from second order to first order using the total pressure
q̄ = p̄ + (v̄2 + w̄2)/2 + 1/Re ūx and the streamwise vorticity ζ̄ = v̄z − w̄y Mart́ın and Martel [2012]. This
reduces also the number of boundary conditions to be imposed. The resulting set of equations for a Cartesian
coordinate system is given by:

ū ūx + v̄ ūy + w̄ ūz = −p̄∞,x +
1

Re
(ūyy + ūzz), (6.5)

ū v̄x + w̄ ζ̄ = −q̄y +
1

Re
ζ̄z, (6.6)

ū w̄x − v̄ ζ̄ = −q̄z −
1

Re
ζ̄y, (6.7)

ūx + v̄y + w̄z = 0, (6.8)

being p̄∞,x the streamwise derivative of the free-stream pressure, which enter into the equations as a known
function. The streamwise pressure gratient, p̄x is dropped for parabolization of equations. The flows considered
in this work are not subjected to a free-stream pressure gradient, so p̄∞,x = 0.
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6.4.1 The isolated trailing-vortex

For initialization of the PNS marching integration, the asymptotic parallel Batchelor vortex Batchelor [1964] is
used here. The Batchelor model vortex is a self-similar solution assuming that the vortex core radius r behaves
as r ∝ √x when the axial (or streamwise) is x� 1.

If (ūx, ūr, ūθ) denote the non-dimensional velocity components in the axial x, radial r (i.e. r2 = (y −
yc)

2 + (z − zc)2 with (yc, zc) the coordinates of the vortex axis) and azimuthal θ directions respectively, the
non-dimensional parallel-flow version of Batchelor’s equations can be written as

ūx = 1− γ0 exp(−r/δ0)2, (6.9)

ūr = 0, (6.10)

ūθ =
κ0

r
{1− exp(−r/δ0)2)}, (6.11)

where γ0 = ū∗c/ū
∗
∞ is the axial velocity defect, ū∗c is the core vortex velocity and ū∗∞ is the free-stream velocity

(stars denote dimensional quantities), δ0 is the initial core vortex radius and κ0 = Γ∗/(2πū∗∞δ
∗
0) is the swirl

strength parameter, which is related to the q-Vortex swirl parameter q, commonly used in the literature Khorrami
et al. [1989], Mayer and Powell [1992], as

q =
κ0

γ0δ0
. (6.12)

The Reynolds number is defined using the free-stream velocity ū∗∞, the kinematic viscosity coefficient ν∗ and
initial core vortex radius, δ∗0 , as

Re =
ū∗∞δ

∗
0

ν∗
. (6.13)

Since the core vortex radius is the selected length scale, δ0 = 1.

The incompressible PNS equations (6.5-6.8) are used here in cylindrical coordinates, particularized for ax-
isymmetric flow,

ūx
∂ūx
∂x

+ ūr
∂ūx
∂r

=
1

Re

(
∂2ūx
∂r2

+
1

r

∂ūx
∂r

)
, (6.14)

ūx
∂ūr
∂x

+ ūr
∂ūr
∂r
− ū2

θ

r
= −∂p̄

∂r
+

1

Re

(
∂2ūr
∂r2

+
1

r

∂ūr
∂r
− ūr
r2

)
, (6.15)

ūx
∂ūθ
∂x

+ ūr
∂ūθ
∂r

+
ūθ ūr
r

=
1

Re

(
∂2ūθ
∂r2

+
1

r

∂ūθ
∂r
− ūθ
r2

)
, (6.16)

∂ūx
∂x

+
1

r

∂(r ūr)

∂r
= 0. (6.17)

The axis conditions for axisymmetric flow are (∂ūx/∂r, ūr, ūθ) = (0, 0, 0) Batchelor [1964]. The pressure
level is arbitrarily set to p̄ = 0 at the axis. At the upper edge of the domain, asymptotic boundary conditions
for the streamwise velocity, ūx = 1, and azimuthal velocity, ūθ = 0, are imposed.

The selected computational domain is discretized using Nr = 101 CGL points (r ∈ [−1, 1]) mapped to
r ∈ [0, r∞] with the transformation of equation (4.60), setting r∞ = 200 and rh = 4, and ∆x = 0.5 for the
marching direction.

Figure 6.1 shows the evolution of the axial velocity defect at r = 0, γ(x), and the vortex radius, δ(x), along
the axial direction for Re = 100, κ0 = 0.8 and γ0 = 0.8. Both magnitudes are compared with the theoretical
predictions of Batchelor [1964]. Figure 6.1(a) shows the comparison with the axial velocity defect at the axis of
the vortex,

γ(x)TH = K2 log(x/Re)

8x/Re
+

L

8x/Re
, (6.18)
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Figure 6.1: Axial velocity defect γ(x) and vortex radius δ(x) computed by PNS (solid line) at Re = 100 for the
non-parallel vortex with initial parameters κ0 = 0.8 and γ0 = 0.8, compared to the theoretical curves Batchelor
[1964] (dotted line).

where K and L are free constant fitted for best comparison. The agreement between the theoretical and PNS
computed curves improves as γ decreases, consistently with the assumption used by Batchelor [1964], γ � 1.
Figure 6.1(b) reflects close agreement of the vortex radius, δ(x), computed by PNS using the definition based
on the vorticity polar moment,

δ(x) =

[
2π

Γ

∫

r

(
ζ̄r3
)

dr

]1/2

, ζ̄ =
1

r

∂(r ūθ)

∂r
, (6.19)

and the one predicted by the theoretical curve Batchelor [1964]:

δ(x)TH = δ0

(
1 +

4x

δ2
0 Re

)1/2

. (6.20)

The initial transient observed in the PNS solution is attributed to the adjustment of the initial condition to
the PNS equations, since the Batchelor’s solution (6.9-6.11) does not take into account the radial velocity
component. This component is essential in enforcing a divergence-free velocity field when the solution is axially
divergent.

In order to check the reliability of these computations, results are compared with the experiments of Del
Pino et al. [2011]. These authors compared stereo Particle Image Velocimetry (PIV) measurements of the
trailing vortex behind a wing in a water tunnel with the theoretical models of Batchelor [1964] and Moore and
Saffman [1973]. Figure 6.2 shows comparisons between the numerical results delivered by the PNS equations
(6.14-6.17), initialized with the parallel Batchelor vortex (6.9-6.11), for κ0 = 0.75 and γ0 = 0.95, and the
experimental curves Del Pino et al. [2011] at two downstream positions, x/Re = 0.41 and x/Re = 0.65, chosen
in order to match the experimental profiles. The axial coordinate is expressed as x/Re since the isolated vortex
is theoretically self-similar as shown by equations (6.18) and (6.20). Axial and azimuthal velocities match very
well the experimental profiles. The small differences present at large r values may be due to the Batchelor
vortex model used at the initial position of the marching integration, the assumptions done using PNS or the
errors associated with measuring devices of the experiments. Comparisons for larger radial coordinate are not
performed since experimental results are not available.
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Figure 6.2: Comparisons between the experimental results of Del Pino et al. [2011] and numerical results
delivered by PNS for the non-parallel vortex with initial parameters κ0 = 0.95 and γ0 = 0.75 at positions (a)
x/Re = 0.41 and (b) x/Re = 0.65 for the azimuthal velocity, ūθ, and axial velocity, ūx.

6.4.2 The trailing counter-rotating vortex-pair

By contrast to the isolated vortex considered before, the solution of the non-parallel vortex-pair is not axisym-
metric, and cannot be reduced to an ODE with the use of cylindrical coordinates, thus requiring the PDE-based
PNS equations (6.5-6.8). The flowfield corresponding to a counter-rotating vortex pair, used as initial condition
for the parabolic integration of the PNS, is constructed as the linear sum of two Batchelor parallel vortices,
defined by equations (6.9-6.11), as follows

ū = 1−
2∑

n=1

γn exp (−rn/δn)
2
, (6.21)

v̄ = −
2∑

n=1

{
κn
r2
n

(z − zn)
(

1− exp (−rn/δn)
2
)}

, (6.22)

w̄ =

2∑

n=1

{
κn
r2
n

(y − yn)
(

1− exp (−rn/δn)
2
)}

, (6.23)

where r2
n = (y − yn)2 + (z − zn)2 and (yn, zn) denotes the center of the n (= 1, 2) vortex. Defining d as the

initial distance between the vortex cores, the vortices are located at (y1, z1) = (d/2, 0) and (y2, z2) = (−d/2, 0).
The two vortices are counter-rotating, κ1 = −κ2 = κ0, and have the same axial velocity defect, γ1 = γ2 = γ0.

In order to reduce the computational requirements, the symmetries existing in the problem, ū and w̄ sym-
metric and v̄ antisymmetric with respect to the plane y = 0, have been exploited. Therefore, the computational
domain is reduced to Ω = {x ∈ [0, x∞]} × {y ∈ [0, y∞]} × {z ∈ [−z∞, z∞]}.

For counter-rotating vortex-pairs, a downward induced velocity exists because of the interaction between the
vortices on the (y, z)-plane, causing the downwash displacement of the vortices. A rotation of the computational
domain is used to keep the vortex cores approximately at the center of the domain during the marching inte-
gration, significantly reducing the discretization area and therefore the number of discretization points required
in the z-direction. Using the magnitude of the velocity induced between the vortices for the initial profile,
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Figure 6.3: Sketch of the rotational transformation around the y-axis used for the computations of the counter-
rotating pair of trailing vortices by PNS.

v̄d = κ0/d, the computational domain is rotated an angle

θd = atan (v̄d) = atan (κ0/d) , (6.24)

along the y-axis as can be observed in the sketch of figure 6.3. An axes translation can also be used, introducing
some additional terms into the equations. In this case, the PNS equations (6.5-6.8) are expressed in the new
coordinate axes

x′ = x, y′ = y, z′ = z + v̄d x, (6.25)

resulting

ū ūx′ + v̄ ūy′ + (w̄ + v̄d ū) ūz′ = −p̄∞,x′ +
1

Re
(ūy′y′ + (1 + v̄2

d) ūz′z′), (6.26)

ū v̄x′ + (w̄ + v̄d ū) v̄z′ − w̄ w̄y′ = −q̄y′ +
1

Re
(−w̄y′z′ + (1 + v̄2

d) v̄z′z′), (6.27)

ū w̄x′ + v̄ w̄y′ + v̄d ū w̄z′ − v̄ v̄z′ = −q̄z′ −
1

Re
(−v̄y′z′ + w̄y′y′ + v̄2

d w̄z′z′), (6.28)

ūx′ + v̄d ūz′ + v̄y′ + w̄z′ = 0, (6.29)

where the total pressure is here defined as q̄ = p̄+(v̄2 + w̄2)/2+1/Re (ūx′+ v̄d ūz′). The results delivered by the
two approaches, axes rotation and translation, are nearly indistinguishable, as show in figure 6.7. As a second
validation test, the computed flowfieds were introduced into the full Navier-Stokes equations. The computed
residuals are shown in figure 6.4, and consistently with the approximations taken (see Section 6.2) are of order
ε (being ε the level of accuracy set in the Newton iteration procedure) in the continuity, y− and z−momentum
equations, while in the x−momentum equation the residual is of of order p̄x ≈ O(1/Re), since the term p̄x is
dropped in order to parabolize the equations. These residuals are related to the leading eigenmodes of a linear
stability problem; see the structure of the modes found by González et al. [2007] and the discussion about the
relation between residuals and flow instabilities of Theofilis [2011].

The domain is discretized using Nz = 160 points for the z-direction, mapped using Equation (4.59) setting
z∞ = 40 and cz = 0.90 to concentrate points in the vortex cores, and Ny = 181 points, mapped using equation
(4.60), y∞ = 40 and yh = 8. A constant marching step ∆x = 0.5 is selected. Tenth-order stable high-order finite
differences (FD-q10) are used for the differentiation along the two spatial directions. The boundary conditions
imposed by the symmetries are (ūy, v̄, w̄y) = (0, 0, 0) at y = 0 and asymptotic boundary condition for the
streamwise velocity, ū = 1, and normal velocity w̄ = 0 are imposed at y∞, where it is also set the total pressure
level, q̄ = 0. Periodic boundary conditions are imposed at z∞.

Figure 6.5 shows a three-dimensional visualization of the counter-rotating vortex-pair flowfield by iso-surfaces
and iso-contours of axial vorticity at Re = 3000. The vortices are defined by the initial parameters γ0 = 0.8,
κ0 = 0.4 and the distance between the cores d = 6. The downwash displacement of the vortices, caused by the
induced velocity, v̄d, is clearly visible.
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(a) Continuity (b) x−momentum

(c) y−momentum (d) z−momentum

Figure 6.4: Residuals of the full Navier-Stokes equations for the PNS computed solution of the counter-rotating
vortex-pair flow at x = 20 with an initial distance between vortex cores d = 5, setting Re = 3000, κ0 = 0.4 and
γ0 = 0.8.
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!

Figure 6.5: Iso-contours and iso-surfaces of axial vorticity of the non-parallel counter-rotating vortex-pair at
Re = 3000 for the initial parameters κ0 = 0.4 and γ0 = 0.8, computed by PNS methodology.
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Figure 6.6: Evolution on streamwise direction of vortex radius δ(x) computed by PNS equations (6.5-6.8) with
four different initial distances between the vortex cores (d = 4, 5, 6 and 8) and the theoretical value for one
isolated vortex with the same parameters of figure 6.5 (κ0 = 0.4, γ0 = 0.8).

Figure 6.6 shows the evolution of the vortex radius δ = (δ2
y + δ2

z)1/2 based on the vorticity polar momentum
on the half-plane Sipp et al. [2000], defined as

δ2
y =

1

Γ

∫ ∫

z>0

ζ̄ (y − yc)2 dy dz, δ2
z =

1

Γ

∫ ∫

z>0

ζ̄ (z − zc)2 dy dz, (6.30)

where (yc, zc) denotes the position of the vorticity centroids,

yc =
1

Γ

∫ ∫

z>0

y ζ̄ dy dz, zc =
1

Γ

∫ ∫

z>0

z ζ̄ dy dz. (6.31)

The interaction between the vortices is illustrated by the differences with the theoretical curve for one isolated
vortex (6.20): as the distance between vortices, d, increases, the vortex radius curve, δ(x), tends to the theoretical
value for one isolated vortex. For the smaller initial distances between vortices, cases d = 4 and 5, the vortex
radius stops growing about x ≈ 20 and then decays slowly downstream. This behavior is attributed to the
inviscid interaction between the core vortices as the ratio δ0/d becomes significant. It is important to note that
the swirl strength parameter also affects this phenomenon.

Figure 6.7 shows the evolution along the axial direction of the vortex core locations (6.31). As shown in
figure 6.7(a), the yc coordinate experiments an initial shift due to the adjustment of the initial condition, which
is not a solution of the PNS equations. Downstream, a mild displacement increases the distance between the
vortices. This phenomenon impacts on the zc coordinate, by decreasing the downward induced velocity, as
shown in figure 6.7(b). Stronger effects are observed for smaller initial distances. Figure 6.7 also reflects the
very good agreement between the results recovered by translation and rotation of axes.

6.5 Compressible circular and elliptic cone flows

This Section firstly presents validations of the compressible PNS code solving the boundary-layer around a
circular cone at zero AoA in the incompressible and compressible regimes. Secondly, the supersonic flow
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Figure 6.7: Evolution on the streamwise direction of the vortex core position (a) yc and (b) zc + v̄d x for
d = 4, 5, 6 and 8 setting the same parameters of figure 6.5 (κ0 = 0.4, γ0 = 0.8). The open circles correspond to
the equations (6.26-6.29) with axes translation for d = 5

solutions around a 2:1 elliptic cone at Mach numbers 3 and 4 are presented, also at zero AoA.

The marching integration needs to be feed by an initial condition. Free-stream conditions, q̄∞ = (ρ̄∞, ū∞, v̄∞, w̄∞, T̄∞)T ,
i.e. q̄∞ = (1, 1, 0, 0, 1)T for AoA=0◦, are imposed at the vertex of the cone and the solution at an initial station
ξ0 is converged after some Newton iterations.

A three-dimensional coordinate transformation of the form

ξ = ξ(x), η = η(x, y, z), ζ = ζ(x, y, z), (6.32)

are used to transform the governing equations into the (ξ, η, ζ) system. This transformation restricts the (η, ζ)
solution surfaces to be in a plane normal to the x axis, resulting ξy = ξz = 0. Using the chain rule, the
derivatives with respect to physical coordinates system are related to those with respect to the computational
coordinates system through the metrics (ξx, ηx, ηy, ηz, ζx, ζy, ζz). More details are found in Subsection 4.3.

The PNS marching scheme (6.3) has to be complemented with appropriate boundary conditions. For the
cases studied here, the flow around a circular cone and around an elliptic cone, the symmetries of the problem
are exploited for reducing computational requirements and the corresponding boundary conditions are imposed
for the azimuthal direction, ζ. No-slip conditions are imposed at the wall, η = 0, together with Neumann
conditions for temperature and density, which implies having adiabatic wall. Results showed here are recovered
using free-stream conditions at the top boundary η = 1 and therefore the shock wave is immersed in the domain.

6.5.1 Circular cone

The mesh surrounding a circular cone is calculated using a modification of the cylindrical transformation,
written as

x = ξ, y = (ξ tanα+ ηη∞) sin ζ, z = (ξ tanα+ ηη∞) cos ζ, (6.33)

where η ∈ [0, 1] and η∞ controls the far-field boundary.

The flow around a circular cone is well understood thanks to the axisymmetric condition, in which the
streamlines remain in meridian planes. The boundary-layer equations under rotational symmetry were first
given by Mangler [1945] in the incompressible limit, introducing the Mangler transformation, which converts
the well-known Falker-Skan boundary-layer solutions into the ones around circular cones. Figure 6.8(a) shows
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Figure 6.8: Comparisons of theoretical predictions and results delivered by the newly-developed PNS code.
Figure 6.8(a) shows the streamwise velocity profiles in a circular cone with half angle α = 15◦ setting M = 10−3

comparing with Mangler theory Mangler [1945] at different streamwise positions. Figure 6.8(b) shows the
shock angle β versus the half cone angle α for Mach numbers 2 and 3 comparing with the Taylor and Maccoll
theoretical predictions Taylor and Maccoll [1933].

the streamwise velocity profiles for a circular cone with half angle α = 15◦ setting M = 10−3 and Re = 100
comparing with Mangler theory Mangler [1945] at three different streamwise positions, x = 100, 200 and 300.
Excellent agreement is observed, having an overlapping of the profiles.

The theory of inviscid supersonic flow past a circular-based cone at zero incidence (see Shapiro [1954] for
more details) indicates that, for M > 1.2 and a half cone angle less than 55◦, the resulting shock wave is
attached to the cone vertex, and the flow at the cone surface is at constant velocity, pressure, and temperature.
These properties base the analysis of Taylor and Maccoll [1933], in which the shock angle β is predicted versus
the Mach number and half cone angle α. Figure 6.8(b) shows the comparisons between the PNS results and
the inviscid theory predictions for Mach numbers 2 and 3. Excellent agreement is again observed.

6.5.2 Elliptic cone

For the elliptic cone problem, a modified confocal elliptic transformation is used,

x = ξ, y = cξ sinh(η0 + ηη∞) sin ζ, z = cξ cosh(η0 + ηη∞) cos ζ, (6.34)

where c sets the half angle of the cone minor-axis, c = atanα/ sinh η0, and η0 is a parameter controlling the
Aspect Ratio (AR) of the cone, η0 = atanh (1/AR).

In the elliptic cone problem, the three-dimensionality of the flow makes it unaffordable from an analytical
point of view and more complex numerical tools are needed to recover the flow field. The three-dimensionality
of the flow inevitable produces spanwise pressure gradients, which induce crossflow, at locations where the
flow direction of the interior of the boundary-layer is no longer co-planar with the edge velocity vector. This
phenomenon causes the appearance of two main regions in the elliptic cone flow, the attachment-line on the
leading edge, i.e. the major-axis, and the top centerline, i.e. the minor-axis, where a lift-up process is observed.

The supersonic flow around a 7◦ half minor-axis angle angle 2:1 elliptic cone is solved at Mach numbers 3 and
4. Figures 6.9 and 6.10 show the iso-contours of the flow field variables from Rex = 104 to Rex = 3× 104. The
shock wave layer is clearly visible in the density plots 6.10(c) and 6.10(d). The crossflow region is observed in
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(a) u, M = 3 (b) v, M = 3 (c) w, M = 3

(d) u, M = 4 (e) v, M = 4 (f) w, M = 4

Figure 6.9: Three velocity components of the flow field from Rex = 104 to Rex = 3×104 for a 7◦ half minor-axis
cone angle elliptic cone of aspect ratio 2 at Mach numbers 3 and 4.

figures 6.9(c) and 6.9(f), near the wall of the cone, where w̄ < 0. Figure 6.11 shows some near-wall streamlines
for the M = 4 case, differentiating the two mentioned main regions of the flow, the attachment-line at the
leading edge and the lift-up over the top centerline.

6.6 Summary and conclusions

A PNS algorithm has been developed and validated in a systematic manner and solutions of two different flows
are obtained. Using this methodology, steady incompressible three-dimensional flows with one slowly-varying
spatial direction can be solved without resorting to a fully three-dimensional spatially evolving DNS and thus
saving several orders-of-magnitude of computational effort in the computation of steady solutions to serve as
base flow in subsequent stability analysis. The algorithm has been formulated and results have been obtained
for the incompressible and compressible flow regimes.

Focusing firstly on the incompressible limit, two different vortical flows have been computed, a non-parallel
trailing vortex and a system of two counter-rotating vortices which are allowed to interact. The non-parallel
trailing vortex is computed by PNS equations in cylindrical coordinates initialized with the Batchelor vortex
Batchelor [1964]. The solution differs from Batchelor’s model in the existence of a radial velocity component,
arising from the inhomogeneity on the axial direction. Results are compared with theoretical predictions and
stereo-PIV experiments Del Pino et al. [2011], validating the present algorithm. In the case of a pair of counter-
rotating vortices, a downward induced velocity exists and the domain is transformed using two approaches,
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(a) T , M = 3 (b) T , M = 4

(c) ρ, M = 3 (d) ρ, M = 4

Figure 6.10: Temperature and density components of the flow field from Rex = 104 to Rex = 3× 104 for a 7◦

half minor-axis cone angle elliptic cone of aspect ratio 2 at Mach numbers 3 and 4.
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Figure 6.11: Near-wall streamlines of a 7◦ half minor-axis angle 2:1 elliptic cone at M = 4.

an axes rotation and a translation. Both domain transformations delivered nearly indistinguishable solutions.
The PNS computed results converge to those of the isolated vortex as distance between vortices increases.
It is found that, as vortices become closer, the mutual interaction results in an increase of the vortex radii,
accompanied by a decrease in the downward induced velocity. It should be noted that the steady nature of
the PNS equations prevents the recovery of elliptic instability induced by one vortex on the other. Subsequent
stability analysis of the computed incompressible vortex base flows using three-dimensional Parabolized Stability
Equations (PSE-3D) is shown in next Chapter 7.

On the other hand, solutions of the supersonic flows around the circular and elliptic cones computed using a
newly-developed compressible PNS code are presented. The boundary-layer solution around a circular cone at
zero angle of attack is compared in the incompressible limit with theoretical profiles. Also, the recovered shock
wave angle at supersonic conditions is compared with theoretical predictions in the same circular-base cone
geometry. Both results show excellent agreement with theoretical predictions. The fully three-dimensional flow
field surrounding a 7◦ half minor-axis cone angle elliptic cone of aspect ratio 2 at supersonic regime is presented.
The domain is chosen such as that the shock position and the compressible boundary-layer are captured. The
two main features of this flow are identified, the attachment line at the leading edge and the lift-up over the top
centerline. The crossflow region is also clearly visible in the three-dimensional plots, showing potential crossflow
mechanisms of transition.
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Chapter 7

Instability analysis of trailing vortex
flows using parabolized equations

7.1 Introduction

The stability analysis of the incompressible vortex steady base flows computed in the previous Section 6.4 using
the PNS equations is performed here. The model typically analyzed when considering trailing vortices flows is
the Batchelor [1964] vortex, initially investigated by Lessen et al. [1974], Lessen and Paillet [1974] and more
recently by Khorrami et al. [1989]. Several spiral modes of instability were identified but their relation with
the abrupt change in structure and subsequent vortex breakdown is not fully understood yet; where vortex
breakdown is defined following Leibovich [1978, 1984] as, ”a disturbance characterized by the formation of
an internal stagnation point on the vortex axis”. It has been suggested that one reason why local stability
theory proves inadequate in predicting breakdown consistently is because, similar to the parallel boundary layer
assumption, it neglects axial velocity and pressure gradients, such as axial deceleration, that may influence the
vortex. This was confirmed by the DNS results of Abid and Brachet [1998], who related the spiral instability
eigenmode with a lateral expansion of the vortex cross section. As a direct consequence of the assumption of
streamwise periodicity, these results fail to identify a significant axial loss in velocity. However, it is recently
becoming clear that the assumption of homogeneity in one spatial direction may be overtly restrictive even in as
simple a flow as a single spatially-developing viscous vortex as seen in the results of Broadhurst et al. [2006], who
analyzed a temporally and a spatially-developing Batchelor vortex both by DNS. In the first case, the temporal-
evolving vortex in which the axial direction was artificially kept homogeneous, these authors predicted linear
instability by local analysis, observed also in the DNS results, in whose it is followed by nonlinear saturation.
By contrast, the nonlinear development of instability in the Batchelor vortex is qualitatively different when
the vortex is allowed to evolve spatially. Then, a streamwise loss in energy (initiated by the linear mode of
instability), will lead to the formation of an internal stagnation point and ultimate vortex breakdown. The
assumption of axial homogeneity of a base flow vortex employed in all previous global analyses was relaxed
by Heaton et al. [2009], who studied the more realistic spatially developing Batchelor vortex model. These
authors documented the modifications that the classic Batchelor eigenspectrum experiences and the ensuing
potential for transient growth exhibited by the spatially developing flow, computing the base flow and studying
its stability using an axisymmetric DNS.

Modeling the trailing-vortex system behind an aircraft as an isolated vortex is quite restrictive as it assumes
an axisymmetric base flow, thus it neglects in principle the influence of any neighboring vortices. Crow [1970],
Widnall [1975], Jiménez [1975], Crouch [1997] and Fabre and Jacquin [2000], amongst others, have used vortex
filament methods to analyze the instabilities triggered by interaction between neighboring vortices. However,
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vortex core instabilities Mayer and Powell [1992] or absolute instability Delbende et al. [1998] are beyond the
scope of a vortex filament approach. In addition, the vortex filament method has limitations (besides that of
strictly being applicable to inviscid flow) in the permissible distributions of vorticity in the wake, in terms of
both strength and placement of the constitutive vortices.

As mentioned in Chapter 3, the instability analysis technique that may consider base flows inhomogeneous
in two or three (rather than one) spatial directions is call global linear stability theory, referenced as BiGlobal or
TriGlobal analysis for two and three inhomogeneous directions, respectively. Hein and Theofilis [2004] presented
some numerical results for the flow developing downstream from two counter-rotating Batchelor vortices, with
the axial velocity component neglected, computed with a two-dimensional DNS. The instability analysis was
performed by BiGlobal analysis, which considers the quasi-steady and the axially-homogeneous approximations
in the base flow; recovering both classic long- (Crow) and short-wavelength instabilities. The work of González
et al. [2007] shows a similar study, but considering axial flow, finding only short-wavelength instabilities. Another
related study of non-axisymmetric/system of vortices is that of Lacaze et al. [2007], in which the stability of flows
with no/little axial flow was studied. The authors focused on the short-wavelength instabilities, specifically on
the elliptic instability, observed on an isolated vortex subject to a stationary strain field. The elliptical instability
is believed to take place in various contexts ranging from three-dimensional transition in shear flows Bayly et al.
[1988] to vortex interactions Leweke and Williamson [1998]; see Kerswell [2002] for a review.

In a first approximation, the system of counter-rotating vortex-pair flow may be analyzed by BiGlobal
instability analysis, neglecting the the existence of a small, but not negligible, dependence of the fluid variables
on the axial direction. Therefore, a three-dimensional analysis is needed, but treating the three spatial directions
as inhomogeneous, the TriGlobal analysis requires the numerical solution of the PDE-based EVP resulting from
the discretization of the three coupled directions, which is possible but prohibitively expensive nowadays for
most applications of interest. To study the instability of this flow, the PSE-3D analysis results to be the most
efficient methodology.

In what follows, these approaches are used along with the non-parallel isolated vortex, comparing PSE-3D
against conventional PSE in cylindrical coordinates and spatial BiGlobal stability. The PSE-3D methodology
is used to study the instability properties of the fully three-dimensional counter-rotating vortex-pair flow field,
computed by PNS equations in Section 6.4.

7.2 Results

7.2.1 The isolated trailing-vortex

The stability analysis is performed upon the previously showed trailing line vortex base flow computed by PNS
of figure 6.1, with Re = 3000, κ0 = 0.8 and γ0 = 0.8. The conventional PSE in cylindrical coordinates (see
Paredes et al. [2011] for more details) and the PSE-3D are used along with this base flow for cross-validation
purposes. The PSE in cylindrical coordinates uses the same spatial discretization of PNS, Nr = 101 CGL
points mapped with equation (4.60) setting r∞ = 200 and rh = 4, and PSE-3D uses (N + 1)2 = 1212 FD-q10
points for both y and z directions, mapping the square domain with equation (4.59) setting cy = cz = 0.96 and
y∞ = z∞ = 40. The marching step of both the PSE and PSE-3D is ∆x = 1.

Figure 7.1 shows the leading spatial eigenmodes computed by Spatial BiGlobal instability analysis of the
Batchelor vortex model of equations (6.9-6.11) with κ0 = 0.8 and γ0 = 0.8 at Re = 3000. The different
modes appearing in figure 7.1 correspond to discrete modes and present a periodic structure in the azimuthal
direction, with the wavenumber assigned by m. In the range of frequencies analyzed, the most unstable mode
occurs for m = 2, frequency ω = 1.75, wavenumber αr = 1.212 and growth rate −αi = 0.725. From this
maximum at m = 2, a linear trend defines the maximum growth rate, −αi, for increasing m. These maxima
are specified in Table 7.1. Figure 7.2(a) shows the eigenspectrum at ω = 4.6. A branch of eigenvalues appears
for αr = 0 and αi < 0, which corresponds to a discretized spectrum of upstream moving pressure waves. This
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Table 7.1: Spatial BiGlobal leading eigenmodes of each familily represented by the number of lobes, m, for the
Batchelor vortex model flow (6.9-6.11) with κ0 = 0.8, γ0 = 0.8, δ0 = 1 at Re = 3000.

m 1 2 3 4 5 6

ω 0.86 1.75 2.70 3.65 4.56 5.49
αr 0.543 1.212 1.792 2.399 2.897 3.466
−αi 0.185 0.725 0.690 0.663 0.636 0.605
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Figure 7.1: Unstable spatial eigenmodes, represented by their (a) wavenumber, αr, and (b) growth rate, −αi,
of the Batchelor vortex model of equations (6.9-6.11) with κ0 = 0.8, γ0 = 0.8 at Re = 3000, obtained by spatial
BiGlobal analysis. Symbols indicate different azimuthal wavenumbers or number of lobes, m.

branch is suppressed in the PSE approximation in order to permit a stable numerical integration along the
axial direction, as discussed by Li and Malik [1996]. In addition, a branch of discrete eigenvalues is found,
describing a near-vertical line. The modes inside this branch have the same wavenumber m. Note that when
a one-dimensional stability analysis such as the OSE in cylindrical coordinates is used, the wavenumber m is
a parameter of the problem. The BiGlobal analysis recovers the results of several local analysis at the same
time. Figure 7.2(b) shows the real part of the initial axial velocity amplitude eigenfunction of the most unstable
mode, which corresponds to a five lobes (m = 5) spiral-eigenmode.

Initial conditions need to be specified for the PSE marching integration. The most common method used in
conventional PSE is to draw on the local analysis of weakly non-parallel flow, q̄0, in order to obtain a complex
wavenumber, α0, and shape function, q̂0, at initial axial location for an specific Re and ω Herbert [1994].
In this work, the parallel-flow approximation along the axial direction is considered, so the spatial BiGlobal
problem obtains a first approximation to the complex wavenumber and shape functions. Afterwards, this result
is refined by PSE-3D iterations introducing the non-parallel effects to α0 and q̂0. In the case that an arbitrary
eigenmode is given at the initial position, by marching integration upon the base flow q̄0, the leading eigenmode
is recovered by PSE-3D as can be observed in figure 7.3. This fact gives more advantages to the PSE-3D
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Figure 7.2: Eigenspectrum of the parallel Batchelor vortex model (6.9-6.11) defined with the parameters γ0 = 0.8
and κ0 = 0.8 at Re = 3000 and ω = 4.6. The most unstable eigenmode is plotted in Fig. 7.2(b) with iso-contours
ûr/|u| = (−0.9 : 0.1 : 0.9) of normalized real part of axial velocity amplitude function (dashed lines correspond
to negative values).
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Figure 7.3: Evolution of initial complex wavenumber by PSE-3D iterations on the initial station from the second
most unstable eigenmode (A) shown in the spectrum of figure 7.2(a) to the leading eigenmode (B) for the vortex
model of equations (6.9-6.11) defined with the parameters γ0 = 0.8 and κ0 = 0.8 at Re = 3000 and ω = 4.6.
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Figure 7.4: Evolution of growth rate for the non-parallel vortex flow (κ0 = 0.8, γ0 = 0.8) for the most unstable
eigenmode at the selected parameters (Re = 3000, ω = 4.6), comparing conventional PSE with cylindrical
coordinates and PSE-3D results for a cross-validation test. Also, the leading eigenmode at each station is
computed by local analysis (LST).

methodology, because the leading eigenmode is an attractor of the system.

Figure 7.4 shows the evolution of the spatial growth rate, −αi, along the axial direction computed using
PSE-3D and conventional PSE with cylindrical coordinates Paredes et al. [2011]. Excellent agreement exists
between the results delivered by both methodologies. The main target of this work is to prove the profit of
using non-parallel or non-local analysis instead of using local stability analysis. For example at x = 10, a gap
larger than the 50 % of relative error between both local and non-local analyses is observed. It is important
to note that, although large discrepancies exist in terms of relative error between both curves, they cross the
neutral stability threshold, αi = 0, at same axial position x ≈ 25.4. Figure 7.5 compares the reconstruction
of the three-dimensional solutions, showing again notable differences between the results delivered by both
approaches.

7.2.2 The trailing counter-rotating vortex-pair

The non-parallel counter-rotating vortex-pair base flow computed by PNS in Section 6.4 is now analyzed by
PSE-3D, since it is the only analysis methodology capable to it, regardless the prohibitively expensive TriGlobal
instability analysis. The next results are corresponding to fixed Re = 3000 and ω = 2.55. The computational
domain in the y − z plane is truncated at (y∞, z∞) = (35, 35). It is discretized using Ny × Nz = 181 × 121
FD-q10 nodes mapped by equation (4.59) setting cz = 0.85 and cy = 0.93, but the case with d = 8, in which
Ny = 201.

Firstly, the spatial BiGlobal analysis is used to obtain the most spatial amplified eigenmode for the initial
integration station. Two eigenmodes are found with equal growth rate, one symmetric and another antisym-
metric. Figure 7.6 shows the shape functions of the most spatially amplified modes, corresponding to the d = 6
case. The spatial structure is similar to the eigenfunction recovered for the isolated vortex flow analysis, with
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(a) (b)

Figure 7.5: Iso-surfaces (ũ/|ũ0| = 10 and ũ/|ũ0| = −10) of axial velocity amplitude functions of figure 7.4 by
local theory, in this case by spatial BiGlobal analysis, and PSE-3D.

five lobes per vortex, m = 5. Same shape functions is observed for d = 4 and d = 8 with same parameters.

Figure 7.7 shows the axial evolution of the wavenumber αr(x) and the amplification rate −αi(x), these curve
are identical for both symmetric and antisymmetric eigenmodes. As the vortices are initially located farther,
more similarities are found with the isolated vortex analysis results. The trend of the curve changes when the
vortices are initially located closer, d = 4. Surprisingly, the stabilization of the flow is inverted from x ≈ 10 to
x ≈ 25.

Figure 7.8 shows the iso-surfaces of axial vorticity flowfield for the initial most unstable perturbations
(plotting the symmetric eigenmode). The inhomogeneous nature of the underlying flow is evident in the non-
axisymmetric shape of the amplitude functions of perturbations.

7.3 Summary and conclusions

The combination of parabolized equations, PNS equations for the computation of steady base flows and PSE-
3D methodology for their latter stability analysis, is found to be the best candidate for the analysis of spatial
developing vortical flows and extensively to a wide range of complex three-dimensional flows with a slow-varying
spatial direction, instead of using a fully three-dimensional spatially evolving DNS and thus saving several orders-
of-magnitude of computational effort. Two different flows have been analyzed, the realistic non-parallel trailing
line vortex and a system of two counter-rotating vortices, whose are allowed to interact. Spatial BiGlobal
EVP and PSE-3D analysis have been developed and validated with results of local analysis and PSE upon the
previously mentioned base flows. Comparisons of local and non-local stability analyses of an isolated vortex,
by spatial BiGlobal and PSE-3D methodologies respectively, showed saturation of modal growth due to viscous
spread in the downstream direction, as opposed to the uninhibited axial growth predicted by the local analysis
of a parallel vortex. Results of conventional PSE in cylindrical coordinates, using spectral collocation methods,
and PSE-3D in a rectangular domain, using high-order finite difference schemes Hermanns and Hernández
[2008], analyses upon the non-parallel isolated vortex base flow are compared as a cross-validation test showing
excellent agreement. Furthermore, the leading spatial eigenmode is computed at each station by spatial BiGlobal
analysis, showing important discrepancies between local and non-local analyses, showing the need of taking into
account the non-parallel velocity term, the radial velocity, and the dependence of the base flow on the axial
direction. In the case of a pair of counter-rotating vortices, the results showed similar results to those of the
isolated vortex flow, but the stabilization process is suppressed as the vortices are initially located closer.
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Figure 7.6: The most unstable eigenmodes of the counter-rotating Batchelor vortex (6.21-6.23) with d = 6,
γ0 = 0.8 and κ0 = 0.4 at Re = 3000 and ω = 2.55, (upper) symmetric and (lower) antisymmetric eigenmodes
plotted with iso-contours û/|u| = (−0.9 : 0.1 : 0.9) of normalized real part of axial velocity amplitude function
(dashed lines correspond to negative values).
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Figure 7.7: Evolution of (a) wavenumber and (b) growth rate for the counter-rotating non-parallel vortex-pair
flow with γ0 = 0.8 and κ0 = 0.4 initial parameters, at Re = 3000 and frequency ω = 2.55, corresponding the
leading spatial eigenmode for three different initial distances between vortices d = 4, 6 and 8.

Figure 7.8: Iso-surfaces of axial vorticity flow field (ζ = ζ̄ + εζ̃ = ±0.6) with ε = 10−5/|ζ̃0| for the initial
most unstable perturbations (plotting the symmetric eigenmode) with the selected parameters for the base flow
(κ0 = 0.4, γ0 = 0.8, d = 6) at Re = 3000 and ω = 2.55.
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Chapter 8

Global analysis of an isothermal
turbulent swirling combustor flow

8.1 Introduction

Swirling jet flows are the fundamental component of modern combustors, which in turn are an essential compo-
nent of gas turbines, ramjets or scramjet engines. The swirl flow is employed for aerodynamic flame stabilization.
It leads to vortex breakdown and large regions of reversed flow, acting as a flame anchor. However, swirling
flows are often prone to self-excited flow oscillations that are manifested in large-scale helical flow structures,
featuring a precessing vortex core (PVC) [Syred, 2006]. The starting point for an analytical assessment of the
mechanisms that cause the PVC was its interpretation as an unstable global mode triggered by an inherent flow
resonance [Liang and Maxworthy, 2005, Gallaire et al., 2006, Oberleithner et al., 2011]. This concept is further
developed in this Chapter by conducting global linear stability analysis on the time- and phase-averaged flow
field.

Since the seminal experiments conducted by Crow and Champagne [1971], it is generally accepted that
turbulent flows are organized by orderly quasi-deterministic coherent structures (CS). Follow-up work has shown
that these structures comprise large portions of the overall kinetic energy, being responsible for noise Ffowcs
Williams and Kempton [1978], mixing Coats [1996], cross-stream momentum transfer Greenblatt and Wygnanski
[2000], and many other unsteady flow phenomena. Nowadays, the analysis and modeling of CS plays an
important role in modern flow data analysis strategies. The enormous data sets of flow quantities at high spatial
and temporal resolutions provided by the modern experimental and numerical methods must be analyzed in
order to extract the main flow flow features. The flow dynamic models describe the dominant flow structures
within a low-dimensional subspace of the original data set and result to be the best candidate for this issue.
The reconstruction of the CS may either be entirely empirical (empirical mode construction) or based on
physical equations (physical mode construction). Physical modes are superior to empirical modes, since they are
derived from the governing equations and provide information about physical cause and effect of phenomena.
For instance, a linear stability analysis allows differentiating between globally unstable flows that promote
self-excited single-tone flow oscillations (oscillator flows; see e.g. the Karmán vortex street) and convectively
unstable flows that promote a wide range of frequencies (amplifier flows; see e.g. the 2D mixing layer) Huerre
and Monkewitz [1990].

The Proper Orthogonal Decomposition (POD) is the most used empirical CS reconstruction scheme, where
turbulent flow data is expressed as series of orthogonal modes that are optimal in terms of energy content
Greenblatt and Wygnanski [1993]. High energetic CS are well captured by this method Oberleithner et al.
[2011], while frequency-ranked mode decomposition techniques are more appropriate when the energy of the
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structure of interest is low Rowley et al. [2009]. Empirical modes are typically used for efficient reduced order
models that can be employed for closed-loop control applications Noack et al. [2003]. On the other hand, the
most representative physical mode reconstruction method is the modal linear stability analysis theory Drazin
and Reid [1981]. This theory is conventionally applied to low Reynolds number laminar steady flow solutions to
study the flow bifurcation from a steady to an unsteady state. Such an analysis is highly valuable to describe
the initial onset of instability, but it is incapable to describe the flow fluctuations at post-critical/transitional
(turbulent/limit-cycle) conditions.

In order to model CS at the limit-cycle, modal instability analysis is applied to the turbulent flow, which
requires additional assumptions: Firstly, the CS are seen as a superposition of instability modes with their scales
to be much larger than those of the background turbulence. Secondly, the linear stability analysis is based on the
time-averaged flow that represents the saturated state of the stability modes. Nonlinear interactions between
the mean flow and the CS are thereby inherently accounted for, while mode-mode interactions are neglected.
While the validity of the first assumptions can be readily shown, the justification of the second is difficult.
Examples supporting the mean flow stability analysis are the mixing layer Gaster et al. [1985], the cylinder
wake Barkley [2006], Meliga et al. [2012b], Pier [2002], the vortex breakdown bubble Oberleithner et al. [2011],
the swirling jet Oberleithner et al. [2013a], and natural and forced jets Gudmundsson and Colonius [2011]. The
listed examples demonstrate the high potential of the physical mode construction based on the mean turbulent
flow. Particularly the most recent investigations show a good quantitative agreement between the CS and the
stability eigenmodes and, most importantly, provide information about the cause and the effect. The analysis
reveals the source of the flow oscillations, and how they are affected by, e.g., fluidic excitation Thiria and
Wesfreid [2007] , density stratification Oberleithner et al. [2013b], or volume forces Meliga et al. [2012b].

Despite of these inspiring examples, the application of linear stability analysis to turbulent flows is far from
being common practice. Mean flow stability wave models have the reputation of being inaccurate and not
rigorously valid, and therefore, most investigations are still restricted to the analysis of stationary base flows,
whose flow conditions are far from those corresponding to typical industrial applications.

In the present Chapter, the global mode in a strongly swirling turbulent combustor flow undergoing vortex
breakdown is experimentally and analytically investigated. The experiment shows a self-excited global flow
oscillation at a well-defined frequency. Based on the mean flow field, global hydrodynamic stability analysis is
carried out. The dampening effect of the Reynolds stresses are accounted for by an estimated eddy viscosity.
The global analysis successfully predicts the frequency of the global mode and, in addition to that, yields
the global shape of the instability. The results show a precession of the vortex core and synchronized Kelvin-
Helmholtz instabilities in the shear layers. In gas turbine combustors, the flow oscillations cause large-scale flame
oscillation and may couple with thermoacoustic instabilities, proving the practical relevance of the investigated
global mode.

8.2 Theory

8.2.1 Stability analysis of turbulent mean flows

In the present analysis, the flow of interest is unsteady and non-periodic. Therefore, the triple decomposition
theory proposed by Hussain and Reynolds [1970] is used to distinguish between the time-averaged base flow
q̄(x), the coherent or instability perturbations q̃(x, t) and the stochastic or turbulent fluctuations q′(x, t):

q(x, t) = q̄(x) + q̃(x, t) + q′(x, t) (8.1)

Note that for a steady base flow q′(x, t) = 0. The three components of equation (8.1) are defined as

q̄(x) = lim
T→∞

1

T

∫ T

0

q(x, t)dt, (8.2)
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q̃(x, t) = 〈q(x, t)〉 − q̄(x), (8.3)

q′(x, t) = q(x, t)− 〈q(x, t)〉 , (8.4)

where the phase average is defined as

〈q(x, t)〉 =
1

N

N∑

n=0

q
(
x, t +

n

f

)
, (8.5)

with f being the frequency of the coherent perturbation and N the number of cycles used in the phase average.

The evolution equations for q̃(x, t) are derived by substituting equation (8.1) into the Navier-Stokes equations
(3.6-3.7). For an incompressible flow, each individual component of equation (8.1) conserves continuity. The
momentum equation for q̃ is derived phase averaging the equations and then subtracting away the time-averaged
mean of the phase-averaged equations. The resulting continuity and momentum equations of the perturbations
are given by

∇ · ũ = 0, (8.6)[
∂ũ

∂t
+ (ū ·∇) ũ + (ũ ·∇) ū

]
+∇ p̃− 1

Re
∆ũ = −∇ ·

(
τR + τN

)
, (8.7)

where τN ≡ ũũ − ũũ are the non-linear terms, which are removed assuming small-amplitude perturbations,
and

τR ≡ 〈u′u′〉 − u′u′ = ũ′u′, (8.8)

are the remaining stresses.

These equations show that the coherent part interacts with the mean flow through the generation of coherent
Reynolds stresses, the turbulent (incoherent) part interacts with the mean flow through the generation of
turbulent Reynolds stresses, while the coherent part and the turbulent part interact through phase-averaged
turbulent Reynolds stresses; see Reynolds and Hussain [1972] for further details. The mean-coherent and
mean-turbulent interactions are readily incorporated through the analysis of the actual mean flow, while the
coherent-turbulent interactions must be accounted for by employing a turbulence model. Particularly the latter
is often ignored, which leads to a wrong estimation of the CS’s growth rates Gaster et al. [1985], Gudmundsson
and Colonius [2011].

8.2.2 Eddy-viscosity closure

In order to resolve the equations (8.6-8.7), a model relating τR to q̃ is required. In the present work, the
turbulent stresses are modeled with an eddy viscosity, redefining the viscosity of the problem as the sum of
the molecular plus the eddy viscosities ν → ν + νt. The well-known Boussinesq’s eddy-viscosity approximation
assumes that the Reynolds stresses are the product of the mean strain-rate tensor and turbulent viscosity νt.
This is analogously to the viscous stresses in Newtonian fluids that are determined by the molecular viscosity
ν and the strain-rate tensor. For a constant density flow this hypothesis can be written as in Wilcox [2006]:

−u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
kδij . (8.9)

The turbulent kinetic energy (TKE) k is introduced to avoid an inconsistency with the continuity equation
Ivanova [2012]. The aim is to describe the stress tensor with only one turbulent viscosity. Thus, for a three-
dimensional flow, as the swirling jet, the system of equations (8.9) is overdetermined. An optimal representation
of νt is obtained using a least-square fit over all resolved Reynolds stresses Ivanova [2012]

νt =

(
−u′iu′j + 2

3kδij

)
·
(
∂ūj
∂xi

+ ∂ūi
∂xj

)

(
∂ūk
∂xl

+ ∂ūl
∂xk

)
·
(
∂ūk
∂xl

+ ∂ūl
∂xk

) , (8.10)
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with the summation over the repeating indices i, j, k, and l = 1, 2, 3.

8.2.3 Global analysis of axisymmetric flows

The swirling jet flow is axisymmetric, what translates that mean flow is homogeneous in the azimuthal direction,
q̄ = q̄(x, r). Therefore, the equations (8.6-8.7) are expressed in cylindrical coordinates and the perturbations
are written as

q̃(x, r, θ, t) = q̂(x, r) exp[i(mθ − ωt)] + c.c., (8.11)

where q̂ represents the vector of two-dimensional amplitude functions, m is the azimuthal wavenumber, ω is
the circular frequency and c.c. refers to complex conjugate.

Introducing the perturbation variables decomposition of equation (8.11) in equations (8.6-8.7), the temporal
BiGlobal EVP (3.26) is recovered. Written using matrix notation, the operators A and B become

A =




L+ ūx ūr 0 Dx
v̄x L+ v̄r + 1

Re r2 − 2w̄
r + 2im

Re r2 im
w̄x w̄r + w̄

r − 2im
Re r2 L+ v̄

r + 1
Re r2

im
r

Dx 1
rDr r im

r 0


 ,

B =




i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0


 , (8.12)

where L = ūDx + v̄Dr + w̄
r im− 1

Re

(
D2
xx + 1

rDr +Drr + m2

r2

)
.

The elliptic EVP (3.26) is complemented with the next boundary conditions. Dealing firstly with the stream-
wise direction, homogeneous Neumann conditions are imposed at the inlet, homogeneous Dirichlet conditions at
the walls and decay of perturbations through the imposition of a sponge region at the outlet, setting homoge-
neous Dirichlet boundary conditions. The main objective of this sponge region is to avoid spurious reflections.
This is achieved by artificially decreasing the local Reynolds number, in the exit region, using a smooth func-
tion, say a hyperbolic tangent. The sponging strength is defined as the ratio of the decrease in the Reynolds
number between the flow and the exit, to the Reynolds number of the flow. Sponging strengths of between
80% and 90% have been used. The sponged length is the fraction of the domain over which the sponging is
applied, ranging from 10 to 20%. Within this range of strengths and lengths, it is seen that the results remain
insensitive. For the radial coordinate, a sponge region is also used at the top boundary r = rm and homogeneous
Dirichlet boundary conditions are imposed for the three velocity components. The same sponge technique was
successfully used by Meliga et al. [2012a] for recovering the global modes of a swirling jet flow.

At the radial axis r = 0, the boundary conditions, originally derived by Batchelor [1964], are

∂û

∂r
= v̂ = ŵ = 0, if m = 0, (8.13)

û =
∂v̂

∂r
= v̂ +mŵ = 0, if |m| = 1, (8.14)

û = v̂ = ŵ = 0, if |m| > 1. (8.15)

In order to avoid the use of artificial pressure boundary conditions, the pressure and continuity equation
are enforced at the mid grid points. This method, so called staggered grid, was successfully used for first time
in cylindrical coordinates for local stability analysis by Khorrami [1991] using Chebyshev spectral collocation
discretization.

Since this flow problem requires a mild clustering of points at the inflow boundary, the equation used to
map the calculation domain x ∈ [0, xm] and r ∈ [0, rm] into the FD-q grid is equation (4.60). The selected
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(a) Generic swirl stabilized combustor

camera 2

camera 1

measurement 
plane

center body

laser

mirror 2

mirror 1

(b) Setup for the stereo PIV measurements

Figure 8.1: Generic burner and stereo PIV setup

mapping parameters are xh = 2 and xm = 6. The same equation is used for mapping the radial coordinate,
setting rh = 1 and rm = 3.2.

8.3 Experimental setup

The swirling jet under investigation is created from a swirl-stabilized model combustor, as depicted in figure
8.1(a). It consists of an adjustable radial swirl generator, where the angular momentum is imparted on the
flow. The amount of swirl was set to a theoretical swirl number of S = 0.9 Leuckel [1967] for the experiments.
This swirl number is defined as

S =
Gt

R · Ga
=

2πρ
∫ R

0
uwr2 dr

R · 2πρ
∫ R

0
(u2 − 0.5w2)r dr

, (8.16)

where R is the hydraulic radius of the burner and Gt and Ga are the axial fluxes of tangential and axial
momentum, respectively.

Downstream of the swirl generator the fluid passes an annular duct of 55 mm outer diameter and 27.5 mm
inner diameter, which serves to enhance the fuel-air mixing under reacting conditions. The combustion chamber
downstream of the duct has a diameter of 200 mm, a length of 300 mm and open exit boundary conditions.

The flow measurements were carried out in a vertically oriented water tunnel test facility at TU Berlin. The
water is filtered at the bottom of the storage tank in order to reduce perturbations by non-seeding particles
and air bubbles during testing. A flow straightener upstream of the test section homogenizes the velocity inlet
profile and a rotary vane flow meter measures the water mass flow (±5%). The stereo PIV measurement system,
shown in figure 8.1(b), consists of two PCO Sensicams and an Nd:YaG laser operating at 4 Hz with a pulse
energy of 20 mJ . The flow is seeded with silver coated hollow glass spheres of a nominal diameter of 15 µm.
The laser sheet is aligned at an angle of ≈ 45◦ to the windows of the rectangular test section and the cameras
are aligned in an angle of ≈ 45◦ to the laser sheet. Time resolved pressure data was recorded using a sensor
located in burner mouth.
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(b) Azimuthal velocity, w̄

Figure 8.2: Time-averaged flow field

8.4 Results

The global mode in a strongly swirling turbulent combustor flow undergoing vortex breakdown is experimentally
and analytically investigated. The experiment shows a self-excited global flow oscillation at a well-defined
frequency. Based on the mean flow field, global hydrodynamic stability analysis is carried out.

8.4.1 Experimental observations

The flow studied here is the time- and azimuthally-averaged mean flow recovered by PIV experiments. The non-
dimensionalisation of the equations and variables is performed using the hydraulic diameter of the combustor
inlet as reference length scale, l∗r = Dh = 27.5mm, and the inlet bulk velocity u∗r = 1m/s as reference velocity.
The flow field inside the combustor, as depicted in figure 8.2, is composed of an emanating jet and large zones of
recirculating fluid. An inner recirculation zone is located around the centerline and an outer recirculation zone
near the combustor walls. In between the jet and the recirculation zones, turbulent shear layers are formed.
The tangential velocities show a solid body rotation in the vortex core and a decay of the tangential velocities
for higher radius. The solid body rotational speed decay quickly with the distance from the combustor inlet.
The highest levels of the turbulent kinetic energy (TKE), as shown in figure 8.3(a), are encountered near the
combustor inlet on the centerline and in the inner shear layers. Figure 8.3(b) shows that the calculated eddy
viscosity (8.10), in contrast to the TKE, peaks in the shear layers only up to axial locations of x∗/Dh = 3.3.

The spectrum of the pressure signal located at the burner, depicted in figure 8.4, shows a clear peak at
9.25 Hz, indicating a strong periodic oscillation. The second peak is at the double frequency of 18.5 Hz and
corresponds to the first harmonic of the oscillation. The resulting measured Strouhal number is St = f∗Dh/u

∗
r =

0.26 and the dimensionless circular frequency ω = 2πSt = 1.61.
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Figure 8.3: Flow field turbulence properties
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Fig. 4. Results of the global stability analysis.

3. Results

First results of the global analysis are presented in Fig. 4a for two different fixed swirl Reynolds numbers and the
Reynolds number based on the calculated eddy viscosity. For the highest Reynolds number, an unstable mode is pre-
dicted at a slightly higher frequency than encountered in the experiments. For the lowest Reynolds number, a stable
mode with a very similar frequency as in the experiments is calculated. With the incorporated eddy viscosity, a slightly
stable mode is found at a frequency close to the measured frequency. The eigenfunctions corresponding to this eigen-
value are depicted in in Fig. 4b and compared to the shape of the global mode reconstructed from the experimental
data via a proper orthogonal decomposition4. It is evident that both modes describe a similar wave pattern located in
the shear layers. Some deviations exist in the distribution of the oscillation amplitude. In the experiments, it is more
concentrated near the burner inlet and the axial decay is faster. However, the excellent agreement of the frequency
and the reasonable agreement of the mode shape provide sufficient evidence that the global stability analysis captures
the flow instability.

4. Outlook

The results of the global stability show a very good agreement to the experiments. This provides strong evidence
that the instability, including the precession of the vortex core and the Kelvin-Helmholtz instability, is the manifesta-
tion of a global mode. The results of the local analysis (not shown in the extended abstract) also successfully predict
the instability frequency. Furthermore, it provides the location of the wave maker of the instability. This wave maker
is assumed to be of utmost importance for the manipulation of the instability. This can be by means of flow control or
due to changes in the flow field in the presence of a flame in the swirling combustor flow.
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8.4.2 Global instability analysis

Results of the global analysis, setting m = 1 to capture the global helical mode (PVC), are presented in figure
8.5 for two different fixed swirl Reynolds numbers and the Reynolds number based on the calculated eddy
viscosity. For the highest Reynolds number, an unstable mode is predicted at a slightly higher frequency than
encountered in the experiments. For the lowest Reynolds number, a stable mode with a very similar frequency
as in the experiments is calculated. With the incorporated eddy viscosity, a slightly stable mode is found at
a frequency close to the measured frequency. The eigenfunctions corresponding to this eigenvalue are depicted
in figure 8.6 and compared to the shape of the global mode reconstructed from the experimental data via a
POD Oberleithner et al. [2011]. It is evident that both modes describe a similar wave pattern located in the
shear layers. Some deviations exist in the distribution of the oscillation amplitude. In the experiments, it is
more concentrated near the burner inlet and the axial decay is faster. However, the excellent agreement of the
frequency and the reasonable agreement of the mode shape provide sufficient evidence that the global stability
analysis captures the flow instability.

8.5 Summary and conclusions

The present study investigates the instability mechanisms of an isothermal turbulent swirling jet flow, simulating
an annular combustor flow. The study focuses on the global stability analysis of a turbulent mean flow extracted
from stereo PIV measurements at TU Berlin, by applying the triple decomposition theory proposed by Hussain
and Reynolds [1970]. The dampening effect of the Reynolds stresses are accounted for by an estimated eddy
viscosity.

A self-excited oscillation was clearly visible from the experimental measurements. The POD decomposition of
the experimental data unraveled a helical instability. The global instability results show a very good agreement
to the experiments, predicting the measured frequency and helical amplitude function. The comparison of
the later shows a very similar phase velocity between the most energetic POD mode and the shape function
of the global mode, which peaks along the burner inlet axis and shear-layer. This provides strong evidence
that the instability, including the precession of the vortex core (PVC) and the Kelvin-Helmholtz instability, is
the manifestation of one global mode, what is usually explained in the literature as two unrelated instability
mechanisms Lieuwen [2012].

Although it is not shown here, local stability analysis was conducted on the same mean flow and the results
also successfully predict the instability frequency. Furthermore, it provided the location of the wave maker of
the instability. This wave maker is assumed to be of utmost importance for the manipulation of the instability.
This can be by means of flow control or due to changes in the flow field in the presence of a flame in the swirling
combustor flow.
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Chapter 9

Instability study of the wake behind a
discrete roughness element in high
speed boundary-layers

9.1 Introduction

Experimental observations indicate that the dominant laminar-turbulent transition mechanisms in boundary-
layers can be greatly modified by the presence of localized or distributed roughness, leading to a significant
acceleration of the transition process both in noisy and in quiet environments [Tani and Sato, 1956, Klebanoff
and Tidstrom, 1972, Corke et al., 1986, Fujii, 2006, Schneider, 2008]. Over the years, a number of possible
scenarios have been postulated to explain these observations. However, despite the numerous research efforts,
the underlying physical mechanisms responsible for roughness-induced transition are only partly understood.
Consequently high speed vehicle design still relies on empirical transition-prediction criteria [Reda, 2002]. A
deeper understanding of the effects of roughness on the stability of boundary-layers is thus urgently needed since
it is particularly important for high speed applications, where transition to turbulence leads to a significant
increase of both the skin-friction and the wall heat-transfer, with obvious implications for the design of high
speed vehicles.

The early experiments of Klebanoff and Tidstrom [1972] showed that discrete two-dimensional roughness
elements may lead to an acceleration of the transition process due to the modified stability of the tripped
boundary-layer. In particular, the growth of Tollmien-Schlicting (TS) waves was found to be enhanced by
the two-dimensional roughness element. The effects of localized two-dimensional roughness elements on the
stability of a compressible boundary-layer at M = 4.5 have recently been studied through direct numerical
simulations (DNS) by Marxen et al. [2010], who showed that the roughness element induces a sudden disturbance
amplification (over a limited frequency band) in its vicinity but does not affect the boundary-layer stability
characteristics further downstream. The sudden amplification appears to be due to the phase-locked linear
superposition of the first boundary-layer mode with a stable mode excited by the roughness element, resulting in
transient energy growth. This result seems to be in line with a mechanism, originally proposed by Ruban [1984]
and Goldstein [1985] and studied theoretically by Crouch [1992] and Choudhari and Street [1992], by which the
interaction of free-stream disturbances with localized surface geometrical distortions can excite disturbances
tuned (in frequency and phase speed) with the boundary-layer instability eigenmodes. An example of this
mechanism for three-dimensional localized roughness elements, in the context of compressible boundary-layers,
was reported in the DNS results of Balakumar [2008]. However, the effect of three-dimensional roughness
elements on the stability of boundary-layers seems to extend beyond the enhancement of the receptivity, that
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is conversion of external disturbance in boundary-layer modes, and/or amplification of boundary-layer modes.
Three-dimensional roughness elements often induce subcritical disturbance amplification, leading to a “bypass”-
like laminar-turbulent transition. In fact, bypass and roughness-induced transition to turbulence appear to share
numerous similarities, at least in the incompressible flow regime.

Bypass transition may take place when moderate or large free-stream disturbances enter the boundary-
layer and give rise to high- and low-velocity streaks through the lift-up mechanism of Landahl [1975] [see also
Hultgren and Gustavsson, 1981, Alfredson and Matsubara, 1996, Reddy et al., 2001, Andersson et al., 1999,
Jacobs and Durbin, 2001, Reshotko, 2001]. The streaks may then interact nonlinearly with each other [Brandt
and de Lange, 2008] or undergo a secondary instability before breaking down into turbulence [Andersson et al.,
2001]. Investigations into the secondary instability of streaks in boundary-layers have been conducted mainly
for incompressible flows. The early experiments of Swearingen and Blackwelder [1987] show that low velocity
streaks, appearing following the formation of Görtler vortices in a concave wall boundary-layer, can sustain
both sinuous (anti-symmetric) and varicose (symmetric) instabilities, the former being more prominent. More
recently Asai et al. [2002] experimentally investigated the linear instability of a single boundary-layer streak,
showing that under certain conditions (mainly depending on the geometry of the three-dimensional high-shear
layer surrounding the streak) the varicose mode can be more unstable than the sinuous mode. In the nonlinear
transition stages, quasi-streamwise vortices and hairpin vortices form following a sinuous and a varicose streak
instability, respectively. The growth of the varicose mode was found to be the consequence of a Kelvin-Helmholtz
instability of the wall-normal detached high-shear layer, while the sinuous mode develops due to an instability
of the lateral high-shear layers. Numerical simulations performed by Andersson et al. [2001] indicate that the
streak instability starts appearing in the form of a sinuous perturbation for streak amplitudes of about 26% of
the free-stream velocity, while varicose disturbances become unstable only for streak amplitudes larger than 37%.
Their inviscid stability simulations indicate that the sinuous mode grows faster than the varicose instability; a
result which was also reported by Wu and Choudhari [2003].

Roughness-induced transition may follow a similar path. In fact, the flow behind small three-dimensional
localized roughness elements is characterized by the presence of counter-rotating streamwise vortices [see for
example Gaster et al., 1994, Joslin and Grosch, 1995, Tumin and Reshotko, 2005, Rizzetta and Visbal, 2007],
which through the “lift-up” effect can potentially lead to strong algebraic growth of boundary-layer streaks and
breakdown to turbulence. A model based on the transient growth mechanism was proposed by Reshotko and
Tumin [2004] to predict roughness-induced transition, following a similar approach to that of Andersson et al.
[2001] for the bypass transition scenario. The model suggests that the transition Reynolds number (based on the
momentum thickness θ) varies according to (h/θ)−1 for stagnation point flow with constant wall temperature,
thereby agreeing with the ballistic-range data presented by Reda [2002]. Reda’s review provides a detailed
analysis of the available experimental data for a variety of different flows and provides strong evidence of the
importance of the critical roughness Reynolds number approach (Reh = ūhh/νh, where ūh and νh are the
streamwise velocity and kinematic viscosity taken at y = h in the corresponding clean flat plate boundary-
layer) for modeling laminar-turbulent transition induced by localized and distributed roughness. However,
Reda also concludes that a universal critical Reh will not be found, given the large number of different flow
conditions and roughness patterns possible. Somewhat in contrast with this view, Horvath et al. [2004] propose
a transition criterion for isolated roughness elements based on the parameter momentum thickness Reynolds
number divided by the boundary-layer edge Mach number. Critical values of this parameter appear to scale
linearly (on a logarithmic scale) with the roughness height divided by the local boundary-layer thickness.

A parametric study of the effects of localized smooth roughness elements on the laminar-turbulent transition
occurring in supersonic flat-plate boundary-layers was recently performed by Redford et al. [2010] using DNS.
Their results indicate that transition is promoted provided Reh exceeds a critical value which increases as the
parameter Mh T̄∞/T̄w increases, where Mh is the Mach number calculated at the roughness edge and T̄w is
the wall temperature. They proposed a roughness-induced transition map which suggests a critical value of
Reh = 300 for Mh T̄∞/T̄w = 0. These findings were confirmed by Bernardini et al. [2012], who proposed a
modified version of roughness Reynolds number Re∗h = ūhh/νw, with the kinematic viscosity taken at the wall,
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which has a constant critical value of Re∗h = 460.

The criteria mentioned above represent a useful tool for predicting transition induced by an isolated rough-
ness element, without attempting to provide a physical explanation of the flow instability and transition to
turbulence. In order to gain a better understanding of the physical mechanisms driving the roughness-induced
transition process Choudhari and co-workers [Choudhari et al., 2010, Kegerise et al., 2012] analyzed the growth
of instabilities in the wake of diamond-shaped roughness elements at M = 3.5, both experimentally and through
BiGlobal linear stability calculations. The results show that both sinuous and varicose modes can grow sub-
stantially in the linear stages of the transition process. For Reh = 426 the experiments show that the transition
process is driven by the varicose mode, while the sinuous mode dominates for Reh = 319. This result is in
agreement with the BiGlobal stability simulations, which show that the sinuous mode becomes more dominant
for decreasing Reh. The BiGlobal stability results also suggest that the varicose mode growth rate decreases
more rapidly than that of the sinuous mode with increasing streamwise distance, suggesting that the latter mode
may drive the final breakdown to turbulence even for high Reh. Experimentally obtained mode shapes were
found to be in good qualitative agreement with the eigenfunctions extracted from the BiGlobal stability analy-
sis. Groskopf et al. [2009] studied the instability induced by discrete three-dimensional roughness elements in a
M = 4.8 boundary-layer, reporting good agreement between BiGlobal stability simulations and DNS. Further
experimental results demonstrating the importance of the roughness wake instability as the cause of the early
laminar-turbulent transition observed in the presence of isolated roughness elements were reported by Kegerise
et al. [2010] and Owens et al. [2011]. Recently Wheaton and Schneider [2012, 2013] have carried out a set of
experiments on roughness-induced transition at M = 6, reporting the first quantitative measurements of the
roughness wake instability at hypersonic speeds. For the same Mach number, the numerical simulations of De
Tullio and Sandham [2012] and Choudhari et al. [2013] show that the roughness wake can sustain the growth of
a number of different instability modes, the relative importance of which seems to depend on the specific flow
conditions considered.

In the wake flow behind an isolated three-dimensional roughness element, a predominant spatial direction
exists along which the mean flow properties vary slowly, while the flow varies rapidly in the crossflow directions.
These properties are taken into account in the derivation of the three-dimensional parabolized stability equations
(PSE-3D), which represent the most efficient simplified approach for the solution of the instability problem of
such flows.

In what follows we study the linear stage of the laminar-turbulent transition process induced by a sharp-
edged isolated roughness element embedded in a boundary-layer at two speed regimes, firstly at a supersonic
Mach number M = 2.5 and secondly at a hypersonic regime, M = 6. The first Mach number is high enough for
significant compressibility effects to be expected but below the Mach number at which higher modes of instability
(Mack modes) develop, what occurs in the highest Mach number case. The linear instability of the flow is
investigated through full Navier-Stokes (NS) simulations, spatial BiGlobal and linear PSE-3D stability analyses.
Details about the breakdown to turbulence following the linear growth of instability modes is investigated by
DNS in the work of De Tullio et al. [2013] for the M = 2.5 case.

9.2 Theory

In order to compute the convectively unstable base flows analyzed here, the compressible Navier-Stokes equa-
tions (3.1-3.3) are solved numerically using high order finite-differences. The spatial discretization is treated
using a standard fourth-order central difference scheme to calculate derivatives at internal points, while close
to boundaries a stable boundary treatment by Carpenter et al. [1999] is applied, giving overall fourth-order ac-
curacy. Time integration is based on a third-order compact Runge-Kutta method [Wray, 1990] and an entropy
splitting approach developed by Sandham et al. [2002] is used to split the inviscid flux derivatives into conser-
vative and non-conservative parts, thereby improving numerical stability. The code has multi-block capabilities
and is made parallel (both intra- and inter-block) using the message-passing-interface (MPI) library. Details
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on the implementation of the numerical schemes can be found in Li [2003] and Jones [2008]. The multi-block
version of the code used has been extensively validated [see for example Yao et al., 2009, De Tullio and Sandham,
2010].

The study include the effects of one roughness element with dimensionless height equal to h = 1. The
roughness element is placed at a non-dimensional distance xh = x∗h/δ

∗
0 = 50. The laminar displacement

thickness (δ∗) and the boundary-layer thickness (δ99) grow in the streamwise direction according to

δ∗(x̃∗)

δ∗0
= ∆

√
2Rex̃∗

Reδ∗0
and

δ99(x̃∗)

δ∗(x̃∗)
=

∆99

∆
, (9.1)

where

Rex̃∗ =
1

2

(
Reδ∗0

∆

)2

+Reδ∗0
x∗

δ∗0
. (9.2)

Equations (9.1) and (9.2) were derived from the similarity solution [see the section on the Illingworth transfor-
mation in White, 2005]. Note that x̃∗ is the dimensional streamwise coordinate in a reference frame positioned
at the flat-plate leading-edge. The scaling factors ∆ and ∆99 are calculated as

∆ =

∫ ∞

0

(
ρ∗∞
ρ∗
− u∗

u∗∞

)
dη and ∆99 =

∫ η99

0

ρ∗∞
ρ∗
dη, (9.3)

where η = [(ρ∗∞u
∗
∞)/(2µ∗∞x̃

∗)]1/2
∫ y∗

0
(ρ∗)/(ρ∗∞)dy∗ is the non-dimensional similarity coordinate and η99 is ob-

tained at y∗99, where u∗/u∗∞ = 0.99. Equation (9.2) provides a straightforward method of converting from the
dimensionless simulation data to a reference system based on the flat-plate that would be used in an experiment.

The reference values for velocity (u∗r), density (ρ∗r), temperature (T ∗r ) and dynamic viscosity (µ∗r) are taken
at the free stream, while the reference length is the displacement thickness of the laminar boundary-layer at the
computational domain inflow, δ∗0 .

9.3 Results

9.3.1 Supersonic regime

The laminar-turbulent transition induced by a sharp-edged isolated roughness element in an supersonic boundary-
layer is analyzed. It focuses on the linear instability of the wake induced by the isolated roughness element, the
full Navier-Stokes equations are simulated and compared with BiGlobal and PSE-3D simulations. Dimensionless
parameters which define the problem are the Reynolds number Reδ∗0 = 3300, the Mach number M = 2.5 and
the Prandtl number Pr = 0.72.

The roughness height expressed in terms of δ∗99 of the surrounding undisturbed boundary-layer at streamwise
location of the roughness element is h∗/δ∗99 = 0.44. The roughness element has length L = 6.0 and same width.
The walls are considered no-slip and isothermal with T̄w = T̄ad = 2.05, where T̄ad is the laminar adiabatic-
wall temperature. The roughness Reynolds numbers of Reh = 791 and modified roughness Reynolds numbers
[Bernardini et al., 2012] Re∗h = 788. More details can be found in De Tullio et al. [2013].

During the linear instability study using direct numerical simulations, the laminar boundary-layer base flow
is subjected to a time-varying density disturbance imposed at the inflow boundary, which is placed at x0 = 16,
so that the inflow condition for density reads

ρ(x0, y, z, t) = ρ̄(x0, y, z) + aGw

M∑

m=1

N∑

n=1

cos (βmz + φm) cos (ωnt+ ψn) , (9.4)

with N = 16 and M = 6 as the number of frequencies and spanwise wavenumbers respectively, βm = m2π/Lz,
ωn = n2πF0 with F0 = 0.02. Note that the non-dimensional frequency F = f∗δ∗0/u

∗
∞, f∗ being the dimensional
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frequency (cycles per second), takes the form of a Strouhal number. The phases φm and ψn are set to random
numbers between 0 and 2π in order to avoid local peaks in the disturbance signal which might trigger undesired
non-linearities. The damping function Gw = 1 − exp

(
−y3

)
was used to control the disturbance location with

respect to the boundary-layer; it is greater than zero inside the boundary-layer and zero at the wall. An
additional damping was employed to drive the forcing function to zero at the top domain boundary to avoid
the onset of numerical oscillations. A small amplitude of a = 2 × 10−6 is used to ensure the linearity of the
dominating transition mechanisms, at least for the initial stages of the instability. The boundary-layer response
to the inflow disturbances is characterized by considering an integrated disturbance energy norm given by

Eη(x) =

∫ δ99

0

|ρ̆|0,(·)
[
|ŭ|2η,(·) + |v̆|2η,(·) + |w̆|2η,(·)

]

+
|ρ̆|2η,(·)|T̆ |0,(·)
γ|ρ̆|0,(·)M2

∞
+

|T̆ |2η,(·)|ρ̆|0,(·)
γ(γ − 1)|T̆ |0,(·)M2

∞
dy. (9.5)

The wake of the roughness element is characterized by the presence of regions of high streamwise vorticity.
A pair of strong counter-rotating streamwise vortices form as the flow reattaches downstream of the roughness.
Figure 9.1 shows shaded contours of ūs = [(∂ū/∂y)2 + (∂ū/∂z)2]1/2 at three different streamwise positions. The
strong streamwise vortices induced downstream of the roughness element lift-up low momentum fluid from the
near wall region and give rise to a low velocity streak away from the wall as shown in figures 9.1(a), 9.1(b)
and 9.1(c). As the low velocity streak forms, it induces a three-dimensional detached high shear-layer in its
surroundings, leading to a highly unstable roughness wake. Note that the shape of the low velocity streak
changes notably along the streamwise extent of the computational domain, suggesting that non-parallel flow
effects might play an important role in the determination of the stability characteristics of the wake.

Figure 9.2 compares the growth rates of the dominant modes extracted from the PSE-3D results at different
streamwise locations with the NS results for a selection of frequencies. The NS growth rates are measured as

σE =
1

2

d ln[Eη(x)]

dx
, for η = 1, 2, . . . , J/2− 1, (9.6)

while for the PSE-3D results the effective growth rate calculated using equation (3.44) is used to account for
the residual slow variation of disturbance kinetic energy (K) with x. Note that the PSE-3D growth rates can
also be computed from the streamwise variation of the mode amplitudes, similarly to what was done for the NS
results. The growth rates obtained using the two methodologies were found to be practically indistinguishable
from each other. This aspect was also reported by Bertolotti and Herbert [1991], who showed the use of
normalization condition (3.43) and consequent definition of the effective growth rate (σK) does not change the
results. Therefore the definition in equation (3.44) was used here for the comparison with the NS results. Both
NS and PSE-3D results show that disturbances with F = 0.14 are the most unstable, with an averaged growth
rate of σK ≈ 0.21 for 80 ≤ x ≤ 116. This is roughly thirty times higher than the smooth flat plate primary
instability for the same Mach and Reynolds numbers, which has F ≈ 0.013 and −αi ≈ 0.0075 according to
parallel linear stability theory. While the NS and PSE-3D growth rates agree closely for x ≥ 95.8, a slight
disagreement is evident at x = 91.6 for F ≥ 0.14. This is believed to be due to the fact that, as will be shown in
the following, multiple modes with different growth rates contribute to the growth of Eη in the NS simulations.
In the linear limit the disturbed flow field is given by the sum of these modes and

√
Eη can potentially grow

faster than the most unstable mode, as is the case for F ≥ 0.14 in figure 9.2(b). The mechanism is similar to
that responsible for the transient growth of disturbances in the presence of non-orthogonal stable modes, only
here two (or potentially more) unstable modes combine linearly and lead to a total disturbance energy growing
faster than the most unstable mode during a certain transient.

A more complete picture of the modes taking part in the instability of the wake can be obtained by analysing
the linear stability of y-z slices of the roughness wake. Figure 9.3(a) gives the spatial BiGlobal eigenspectrum
obtained for F = 0.08 at x = 93.66. It can be seen that, in addition to the dominant varicose and sinuous
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Figure 9.1: Contours of ūs in crossflow planes at x = 76.025, 93.665 and 114.665 for (a), (b) and (c) respectively,
showing the localized shear generated by the roughness-induced counter-rotating vortices. The solid lines show
contours of ū = 0.38 and the dashed ones correspond to the roughness element position.
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Figure 9.2: Disturbance growth rate at different streamwise positions for a selection of the most unstable
frequencies (σE for NS and σK for PSE-3D).
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Figure 9.3: Spatial BiGlobal spectrum (a), with letters in brackets referring to subsequent figures, and contours
of the real part of the temperature eigenfunctions (blue for negative and red for positive). Spectrum and
eigenfunctions were obtained for F = 0.08 at x = 93.66.

modes, figures 9.3(b) and 9.3(c) respectively, the wake of the roughness element sustains the growth of four
additional modes for the frequency and streamwise position considered. The modes shown in figures 9.3(d)
and 9.3(e) belong to the family of modes growing in the three-dimensional high-shear layer surrounding the
low-velocity streak, while the modes shown in figures 9.3(d) and 9.3(e) reflect disturbances growing in the
streak itself. The growth rate obtained from the BiGlobal eigenvalue problem for the dominant varicose mode
is −αi = 0.149, while the NS and PSE-3D results give respectively σE = 0.169 and σK = 0.167 for the same
mode. A disagreement between NS and BiGlobal results was expected given the degree of non-parallelism of
the base flow. On the other hand, the agreement between NS and PSE-3D is remarkable.

Difficulties in recovering accurate amplification rates from BiGlobal stability results were also reported by
Bonfigli and Kloker [2007] while studying the secondary instability of crossflow vortices in an incompressible
flow. On the other hand, they show that a BiGlobal stability analysis can give reliable results in terms of mode
eigenfunctions and dispersion relation.

Here, the u-, v-, and w-velocity amplitude functions of the dominant modes obtained from the BiGlobal
eigenvalue analysis are compared with those obtained from the NS simulations in figure 9.4 for F = 0.08 and
F = 0.26. It can be seen that the two results are in excellent qualitative agreement. The varicose mode
dominates the wake instability for F = 0.08, but there is a non-negligible contribution of the sinuous mode
to the NS amplitude functions, which leads a slight asymmetry. On the other hand, for F = 0.26 both the
BiGlobal stability and the NS results indicate that the only unstable mode is sinuous and grows in the lateral
high-shear layers induced at the sides of the low-velocity streak.

The structure of the dominant modes taking part in the wake instability can be used to estimate the growth
rates of the varicose and sinuous modes separately from the NS results, which can then be compared with those
obtained from the PSE-3D simulations. For this purpose it is worth noting that growth of v′ disturbances at
the roughness mid-plane reflects solely the growth of the varicose mode, while w′ disturbances at the same
location are only influenced by the sinuous mode development (note that |ŵ| = 0 for the varicose mode and
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Figure 9.4: Mode shape comparison between Navier-Stokes (red contour-lines) and BiGlobal stability (shaded
contours) results for x = 93.66. The Navier-Stokes and BiGlobal mode amplitudes were normalised with the
maximum attained over y and z and plotted at the same contour levels, eight equally spaced contours from 0
to 1. (a), (b) and (c) for F = 0.08 (varicose mode) and (d), (e) and (f) for F = 0.26 (sinuous mode).

|v̂| = 0 for the sinuous mode at the roughness mid-plane). Figure 9.5 gives a comparison of the streamwise
variation of the sinuous and varicose mode amplitudes obtained from the NS and PSE-3D simulations for some

of the most unstable frequencies. Varicose and sinuous mode amplitudes are obtained respectively as
∫ δ99

0
|v̂|dy

and
∫ δ99

0
|ŵ|dy at z = 10 (roughness mid-plane) from the NS results, while the PSE-3D mode amplitudes are

calculated as
∫
x
σK(x)dx. Again NS and PSE-3D results agree closely and indicate that varicose and sinuous

modes are unstable for overlapping frequency ranges. The varicose mode dominates throughout the streamwise
extent of the computational domain for the most unstable frequencies. In fact, at x = 90 the growth rate of
the varicose mode is higher than that of the sinuous mode by about 15% for F = 0.10 and F = 0.12, 11% for
F = 0.14 and 8% for F = 0.16, while at x = 112 the growth rate differences are about 16%, 19%, 21% and 22%,
respectively. On average (for 80 ≤ x ≤ 116) the most unstable varicose mode grows about 17% faster than the
most unstable sinuous mode (σK = 0.18 for F = 0.14).

These results are in agreement with the BiGlobal stability and experimental results of Choudhari et al.
[2010] and Kegerise et al. [2012], which suggest that the varicose mode dominates over the sinuous mode for
high Reh (arguably Reh ≥ 426). However, contrary to what was found by Choudhari et al. [2010], here the
difference in growth rates between varicose and sinuous modes increases for increasing x-position, at least
within the streamwise extent of the computational domain used, which could be due to a number of reasons
including the higher Reh considered here, increased compressibility effects at the higher Mach number or a
dependence on the shape of the roughness element. Additional parametric studies would be needed to clarify
these findings. Using the N-factor concept [Smith and Gamberoni, 1956, Van Ingen, 1956] and assuming N = 9
as the transition criterion, both the NS and PSE-3D results indicate that transition to turbulence occurs within
about 40 roughness heights from the point of excitation of the varicose mode, which can be considered to be
positioned immediately downstream of the separation bubble at the back of the roughness element (x = 66).
Therefore, transition to turbulence occurs about 50 roughness heights downstream of the roughness trailing
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FIGURE 13. Growth of the dominant varicose and sinuous modes; comparison between NS
and PSE-3D results. The NS mode amplitudes are calculated as

� δ99
0 |ŝ| dy at the roughness

mid-plane, where s = v for the varicose mode and s = w for the sinuous mode. The varicose
and sinuous PSE-3D mode amplitudes were calculated as

�
x σK(x) dx and normalized to

match, respectively, the v-velocity and w-velocity NS amplitudes at x = 90: (a) F = 0.10; (b)
F = 0.12; (c) F = 0.14; (d) F = 0.16.

v� disturbances growing in the lateral shear layer regions and w� disturbances growing
over the whole three-dimensional shear layer.

The structure of the dominant modes taking part in the wake instability can be used
to estimate the growth-rates of the varicose and sinuous modes separately from the NS
results, which can then be compared with those obtained from the PSE-3D simulations.
For this purpose it is worth noting that growth of v� disturbances at the roughness
mid-plane reflects solely the growth of the varicose mode, while w� disturbances at
the same location are only influenced by the sinuous mode development (note that
|ŵ| = 0 for the varicose mode and |v̂| = 0 for the sinuous mode at the roughness
mid-plane). Figure 13 gives a comparison of the streamwise variation of the sinuous
and varicose mode amplitudes obtained from the NS and PSE-3D simulations for
some of the most unstable frequencies. Varicose and sinuous mode amplitudes are
obtained respectively as

� δ99
0 |v̂| dy and

� δ99
0 |ŵ| dy at z = 10 (roughness mid-plane)

from the NS results, while the PSE-3D mode amplitudes are calculated as
�

x σK(x) dx.
Again NS and PSE-3D results agree closely and indicate that varicose and sinuous
modes are unstable for overlapping frequency ranges. The varicose mode dominates
throughout the streamwise extent of the computational domain for the most unstable
frequencies. In fact, at x = 90 the growth-rate of the varicose mode is higher than that
of the sinuous mode by ∼15 % for F = 0.10 and F = 0.12, 11 % for F = 0.14 and
8 % for F = 0.16, while at x = 112 the growth-rate differences are ∼16, 19, 21 and
22 %, respectively. On average (for 80 � x � 116) the most unstable varicose mode
grows ∼17 % faster than the most unstable sinuous mode (σK = 0.18 for F = 0.14).

Figure 9.5: Growth of the dominant varicose and sinuous modes; comparison between NS and PSE-3D results.

The NS mode amplitudes are calculated as
∫ δ99

0
|ŝ|dy at the roughness mid-plane, where s = v for the varicose

mode and s = w for the sinuous mode. The varicose and sinuous PSE-3D mode amplitudes were calculated as∫
x
σK(x)dx and normalised to match, respectively, the v-velocity and w-velocity NS amplitudes at x = 90.
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Figure 9.6: Contours of ūs in crossflow planes at x = 79.6, 113.2 and 142.6 for (a), (b) and (c) respectively,
showing the localized shear generated by the roughness-induced counter-rotating vortices.

edge. This prediction is in agreement with the non-linear simulation of De Tullio et al. [2013].

9.3.2 Hypersonic regime

Here, the laminar-turbulent transition induced by a sharp-edged isolated roughness element in an hypersonic
boundary-layer is analyzed. It focuses on the linear instability of the wake induced by the isolated roughness
element with dimensionless height h = 1. The roughness height expressed in terms of δ∗99 of the surrounding
undisturbed boundary-layer at streamwise location of the roughness element is h∗/δ∗99 = 0.44. The roughness
element has length L = 6.0 and same width. The Reynolds number is Reδ∗0 = 8200 and the Mach number is
M = 6. The walls are considered no-slip and isothermal with T̄w = T̄ad = 7.022, where T̄ad is the laminar
adiabatic-wall temperature. The roughness Reynolds number is Reh = 331 Redford et al. [2010].

The laminar base flow is calculated through full Navier-Stokes simulations. The roughness element induces
two regions of three-dimensional separated flow, located immediately upstream and downstream of it. The wake
of the roughness element is convectively unstable for the condition studied here. The bubble lengths are 5.9δ∗0
upstream and 9.9δ∗0 downstream. The wake of the roughness element is characterised by the presence of regions
of high streamwise vorticity. A pair of counter-rotating streamwise vortices form at the edges of the roughness
element, inducing lift-up of low momentum fluid from the near wall region and give rise to a low velocity streak.
Figure 9.6 shows shaded contours of ūs = [(∂ū/∂y)2 + (∂ū/∂z)2]1/2 at three different streamwise positions. A
further description of the base flow is found in De Tullio and Sandham [2012], where also the flow is subjected
to disturbances, recovering the main stability aspects of it.

Here, the u-velocity amplitude functions of the dominant wake modes obtained from the BiGlobal eigenvalue
analysis at x = 142.6 are shown in figure 9.7 for F = 0.02, 0.06, 0.12 and 0.14. For F = 0.02 (figure 9.7(a)), the
shape function peaks near the lateral shear layer and the instability mode manifests itself as a sinuous defor-
mation of the low velocity streak generated in the region near the roughness centreline. At higher frequencies
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Figure 9.7: Contours of streamwise velocity eigenfunctions of leading roughness-induced modes at different
frequencies for x = 142.6 recovered by spatial BiGlobal analysis. (a) for F = 0.02 (sinuous mode) and (b), (c)
and (d) for F = 0.06, F = 0.12 and F = 0.14 respectively (varicose modes). The black isolines correspond to
ū = (0 : 0.2 : 0.8) and the thicker blue lines indicate the critical layers (ū = cph, where cph is the phase speed
of the instability modes).

the instability of the wall normal detached shear induced at the roughness centreline starts appearing in the
disturbance amplitude function, as shown in figure 9.7(c) for F = 0.12, which also induces a varicose deforma-
tion of the streak. This becomes dominant for F = 0.14, as shown in figure 9.7(d), which is the frequency with
the highest disturbance growth rate. These shape functions compare very well with those recovered by full NS
simulations De Tullio and Sandham [2012] for the same set of frequencies and streamwise position.

A more complete picture of the modes taking part in the instability of the wake is observed in figure 9.8,
which shows the spatial BiGlobal eigenspectrum obtained for F = 0.14 at x = 142.6 and the discrete unstable
eigenfunctions. In agreement with the full NS predictions De Tullio and Sandham [2012] is the amplification of
the Mack mode in the lateral boundary-layer, observing the growth of a two-dimensional instability 9.8(a) in
a clean flat plate at the same frequency, F = 0.14, for x > 100. Furthermore, a second unstable mode peaks
in the lateral boundary-layer with lower amplification rate, showing a antisymmetric shape function about the
roughness mid-plane 9.8(b). Finally, the streamwise velocity eigenfunction of the unstable varicose wake mode
is shown in figure 9.8(c).

Having identified the structure of the modes dominating the wake instability, PSE-3D simulations are carried
out to determine their growth rates. The frequency is set to F = 0.14 since it corresponds to the maximum
linear growth rate [De Tullio and Sandham, 2012]. To this end, the PSE-3D marching integration is performed
for F = 0.14, starting from the dominant BiGlobal eigenfunctions obtained at x = 67 for the wake instability
mode and from x = 105 for the boundary-layer or Mack mode. Figure 9.9 compares the growth rates of
the dominant modes extracted from the PSE-3D and BiGlobal results at different streamwise locations. The
PSE-3D effective growth rates are defined in equation 3.44in order to account for the residual slow variation
of disturbance kinetic energy (K =

∫
y

∫
z
ρ̄(û2 + v̂2 + ŵ2) dy dz) with x. In fact, regarding the changes of the

roughness-induced wake along x, strong discrepancies are found between PSE-3D and BiGlobal predictions for
the varicose wake mode. In the other hand, the growth rate results for the second Mack mode differ less. It
is important to notice the very good prediction of the PSE-3D effective growth rate comparing with the DNS
results of De Tullio and Sandham [2012], where the amplification slope of the most amplified mode, namely the
growth rate, is nearly constant ≈ 0.021 for 80 ≤ x ≤ 147 and the averaged σK = 0.0203.
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(c,ûi)(c,ûr)
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9.4 Summary and conclusions

The laminar-turbulent transition induced by a sharp-edged quadrilateral isolated roughness element at Mach
numbers M = 2.5 and M = 6 was thoroughly investigated. The study focused on the linear instability of the
roughness-modified steady but convectively unstable base flow. The main contributions of the present work
are an in-depth analysis of the linear instability of the wake generated behind the roughness element and a
cross validation of full NS, spatial BiGlobal stability and PSE-3D simulations. The latter two analyses were
found to agree very well with the NS results. The application of these different methods to the same problem
allows the effect of multiple modes and flow non-parallelism to be separated out. PSE-3D simulations were
performed here for the first time in the context of compressible flows. The results show that the base flow
changes introduced by the roughness elements can lead to a drastic modification of the stability characteristics
of the flow depending on the roughness height considered. Of particular importance is the generation of pairs
of counter-rotating streamwise vortices, which, through the lift-up of low momentum fluid from the near wall
region, give rise to a low velocity streak surrounded by regions of high wall-normal and lateral shear, forming
the roughness wake. Focusing on the supersonic case, M = 2.5 and Reδ∗0 = 3300, a roughness element with
height over boundary-layer thickness ratio of h∗/δ99 = 0.44 (Reh = 791) gives rise to a highly unstable wake,
where instability modes grow for all frequencies of the forcing. Note that δ99 is taken at streamwise location of
the roughness element in the surrounding undisturbed boundary-layer. The spatial BiGlobal stability results
show that at least six different modes may grow in the wake of the roughness element. Four of these modes are
manifestations of the instability of the three-dimensional shear-layer bounding the low-velocity streak, while the
remaining two modes reflect disturbances growing in different parts of the streak itself. The two most unstable
modes belong to the family of modes developing in the three-dimensional shear-layer and are associated with
characteristic varicose (symmetric u′ about the roughness mid-plane) and sinuous (anti-symmetric u′ about the
roughness mid-plane) deformations of the low-velocity streak. The dominant varicose mode differs from that
reported in the experiments of Asai et al. [2002] in that it is a consequence of an instability of the 3D shear-layer
as a whole rather than a Kelvin-Helmholtz instability of its ∂ū/∂y part. Both varicose and sinuous modes are
most unstable for a non-dimensional frequency F = 0.14. The varicose mode grows on average about 17% faster
than the sinuous mode, in qualitative agreement with the findings of Choudhari et al. [2010] and Kegerise et al.
[2012], and reaches N = 9 within about 50 roughness heights from the roughness element trailing edge. The
NS results also indicate that when varicose and sinuous modes present similar amplitudes, the total disturbance
energy may grow faster that the most unstable mode, as a consequence of the linear superposition of the two
modes. This effect was found to be limited for the cases analysed here but it may have wider significance under
different conditions. The results obtained from the NS simulations are found be in excellent agreement with
those obtained from the stability analyses. The shape functions and growth rates of the most unstable modes
extracted from the NS data are in close agreement with the two-dimensional eigenfunctions obtained from the
BiGlobal stability analysis and the growth rates obtained from the PSE-3D simulations, respectively.

The second case analyzed through spatial BiGlobal and PSE-3D analyses, commenting some qualitative
comparisons with NS simulations De Tullio and Sandham [2012], corresponds to the same flow configuration
at hypersonic speed, M = 6 and Reδ∗0 = 8200. At this high speed, Mack modes develops in the surrounding
undisturbed boundary-layer, as it would do in a clean flat-boundary-layer at this conditions. Mack modes are
found to grow slower and in a smaller region of instability than roughness-induced wake modes. The results are
found in a qualitatively good agreement with the same NS simulations. Varicose instability modes were found
to be the most unstable, which is also observed in NS simulations De Tullio and Sandham [2012].

Page 116 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

Chapter 10

Global instability analysis of an elliptic
cone flow at hypersonic flight
conditions

10.1 Introduction

The elliptic cone is a frequently used model to understand transition over components of next-generation high
speed vehicles. Evidence has been accumulated regarding laminar-turbulent transition scenarios on elliptic
cones at aspect ratios 2:1 and 4:1, exposed at zero angle of attack to oncoming flows for Mach numbers (M)
between 4 and 8 in different experimental facilities Schmisseur et al. [1998, 1999], Poggie and Kimmel [1998],
Huntley and Smits [2000], while recently large-scale computations of the same phenomenon have appeared in
the literature Bartkowicz et al. [2010]. All these studies reported the formation of large structures near the
minor-axis centerline of the cone; these structures were first experimentally found by Schmisseur et al. [1998,
1999] to be most receptive to amplification of perturbations in a 4:1 elliptic cone at M = 4. Simultaneously,
Poggie and Kimmel [1998] reported evidence of the classical crossflow and second Mack mode Mack [1984]
instabilities in a 2:1 elliptic cone at M = 8; the transition front was asymmetric, with early transition near
the top centerline and delayed transition near the leading edge. Images taken by Huntley and Smits [2000] of
the early stages of transition, on a sharp-nosed 4:1 elliptic cone at same M = 8, confirm that transition begins
with the emergence of small-scale structures near the centerline axis of the cone, rather than in the outboard
crossflow region.

In the last two decades, stability analyses of boundary-layers on sharp-nosed cones with elliptical cross
sections have been performed, using linear stability theory and cross flow correlations. These calculations relied
on base flow solutions recovered using the Parabolized Navier-Stokes equations. In 90’s of last century, research
into three-dimensional boundary-layers over elliptic cross-section cones was undertaken by Lyttle and Reed
[1995], who presented solutions of the PNS equations for adiabatic wall elliptic cones of eccentricities of 2:1,
3:1 and 4:1 at M = 4, applying Reynolds number correlations based on the parameter Recf(R&H) = HLRecf ,
where Recf is the traditional crossflow Reynolds number and the factors H and L are introduced to account
for compressibility and cooling effects of the wall Reed and Haynes [1994], for stability analysis. The parameter
Recf(R&H) for these configurations peaked near the top centerline, outside the region of validity of the above
correlation. Boundary-layer velocity profiles near the top centerline were inflectional and unstable. Kimmel
et al. [1997] used an extended version of the the UPS PNS code Lawrence et al. [1986], Stalnaker et al. [1986],
enabling the study of cool-wall cases, for computing the base flow around cones with eccentricities of 1.5:1, 2:1
and 4:1 at M = 7.95. The eMalik code Malik [1989] was used to calculate boundary-layer stability, demonstrating
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that all the three cases showed crossflow instability, with the 4:1 configuration attaining the highest N -factors.
Later experimental studies by the same authors delivered results in reasonable agreement with linear stability
calculations and were suggestive of a traveling crossflow instability mode Poggie et al. [2000]. The flow in the
vicinity of the top centerline was found to be highly unstable and for this region both the experiments and
the computations showed an unstable frequency band that coincided with the characteristic second Mack mode
frequency Mack [1984].

Recently, Gosse and Kimmel [2009] compared the base flow and transition correlating parameters of a 2:1
elliptic cone at a free-stream Mach number of 7.95 calculated using both a full Navier-Stokes CFD solver and
a PNS code, resulting in good agreement. From then on, efforts have concentrated on the HIFiRE-5 geometry,
also studied in this work. Details of the HIFiRE-5 configuration are discussed in Kimmel et al. [2010]. The works
of Choudhari et al. [2009] and Li et al. [2012] present a thorough instability analysis of this configuration using
local and non-local theories, respectively based on the solution of the one-dimensional EVP or the Parabolized
Stability Equations. These approaches base the transition prediction on the N -factor over streamlines or grid
lines of the cone, mainly the top centerline or the attachment-line. Furthermore, in the work of Choudhari
et al. [2009], also a two-dimensional stability theory is used, focusing this analysis on the vicinity of the mayor-
and minor-axis meridians, without accounting for surface curvature effects. In the last work, between the flow
condition studied, two were selected for flight condition at altitudes 18 km and 33 km. The latter corresponds
with the conditions studied here, but they used a lower free-stream velocity, having a slightly smaller Reynolds
number, Re′ = 1.65× 106 /m. The two-dimensional global linear EVP (called here BiGlobal analysis Theofilis
[2011]) results showed unstable modes in both conditions, but the onset for transition was not reached for the
larger altitude flow conditions case. Furthermore, leading-edge instabilities were not found for this case, since
the attachment-line Reynolds number with compressibility correction Malik et al. [2007] did not exceed the
critical threshold.

Large-scale computations by Bartkowicz et al. [2010] confirm the co-existence of all these scenarios and
attempt a first classification of their significance at different Reynolds number (Re) range: while the centerline
structures lead flow to transition at lower Re values, crossflow instability near the elliptic cone leading-edge
becomes competitive at higher Reynolds numbers. The origin and role of the large centerline structures in the
laminar-turbulent transition process on the elliptic cone is presently unclear. Mapping of the parameter space
with respect to critical conditions and study of nonlinear interactions of different modal scenarios potentially
leading flow to transition are issues hardly to be addressed by large-scale computations; spatial BiGlobal linear
analysis and PSE-3D are called for in order to accomplish these tasks.

In this Chapter, the linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight
test vehicle modeling a rounded-tip 2:1 elliptic cone at Mach number M = 7 was investigated. The main
contribution of the present work is an analysis of the liner instability of the overall geometry through spatial
BiGlobal stability simulations including surface curvature effects.

10.2 Spatial BiGlobal analysis for general coordinate trasformation

Regarding Chapter 3, spatial BiGlobal analysis is the analog of classic spatial linear theory in a local framework
Reed et al. [1996], in case two inhomogeneous spatial directions are resolved simultaneously on a plane, while
the third direction is considered locally homogeneous. In the elliptic cone geometry both the plane of amplitude
functions and the homogeneous spatial direction are defined on a transformed coordinate system as follows. A
three-dimensional coordinate transformation of the form

ξ = ξ(x), η = η(x, y, z), ζ = ζ(x, y, z), (10.1)

is used to transform the governing equations into the (ξ, η, ζ) system. Regarding this transformation, it restricts
the (η, ζ) solution surfaces to be in a plane normal to the x axis, resulting ξy = ξz = 0. Using the chain rule, the
derivatives with respect to physical coordinates system are related to those with respect to the computational
coordinates system through the metrics (ξx, ηx, ηy, ηz, ζx, ζy, ζz). More details are found in Subsection 4.3.
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Here, the transformed coordinate system (ξ, η, ζ) is taken such that

Lξ � Lη, Lζ , ∂( )/∂ξ � ∂( )/∂η, ∂( )/∂ζ, (10.2)

where Lξ, Lη and Lζ are the characteristic lengths on the streamwise and normal to it spatial directions
respectively. In order to proceed, the base flow is assumed to be locally independent of one spatial coordinate
ξ (but depending on the other two spatial directions, η and ζ, in a coupled inhomogeneous manner). Flow
quantities are then decomposed according to

q(ξ, η, ζ, t) = q̄(η, ζ) + εq̃(ξ, η, ζ, t), ε� 1, (10.3)

where εq̃ represents the unsteady three-dimensional infinitesimal perturbations, being inhomogeneous in η and
ζ and periodic in ξ. Thus, one may write

q̃(ξ, η, ζ, t) = q̂(η, ζ) exp[i(αξ − ωt)] + c.c., (10.4)

with q̂ representing the vector of two-dimensional complex amplitude functions.

The resulting two-dimensional partial derivative generalized EVP follows equation (3.28) and its entries are
derived from the TriGlobal operators of Appendix E substituting the derivatives with respect to physical coor-
dinates by expressions (4.39) and (4.40), setting ∂q̄

∂ξ = 0. Furthermore, next terms arise from the decomposition
of streamwise derivatives of amplitude functions

Dx = iα+D′x, (10.5)

D2
xx = −α2 +D′2xx +D′′xxiα, (10.6)

D2
xy = D′2xy +D′′xyiα, (10.7)

D2
xz = D′2xz +D′′xziα, (10.8)

which are defined as

D′x = ηxDη + ζxDζ , (10.9)

D′2xx = η2
xD2

ηη + ζ2
xD2

ζζ + 2ζxηxD2
ηζ

+ J

[(
η2
x

J

)

η

+

(
ζxηx
J

)

ζ

]
Dη

+ J

[(
ηxζx
J

)

η

+

(
ζ2
x

J

)

ζ

]
Dζ , (10.10)

D′′xx = 2ηxDη + 2ζxDζ + J

[(ηx
J

)
η

+

(
ζx
J

)

ζ

]
, (10.11)

D′2xy = ηxηyD2
ηη + ζxζyD2

ζζ + (ηxζy + ηyζx)D2
ηζ

+ J

[(ηxηy
J

)
η

+

(
ζxηy
J

)

ζ

]
Dη

+ J

[(
ηxζy
J

)

η

+

(
ζxζy
J

)

ζ

]
Dζ , (10.12)

D′′xy = Dy, (10.13)

D′2xz = ηxηzD2
ηη + ζxζzD2

ζζ + (ηxζz + ηzζx)D2
ηζ

+ J

[(ηxηz
J

)
η

+

(
ζxηz
J

)

ζ

]
Dη
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+ J

[(
ηxζz
J

)

η

+

(
ζxζz
J

)

ζ

]
Dζ , (10.14)

D′′xz = Dz. (10.15)

10.3 Numerical considerations

10.3.1 Elliptic cone transformation

The computational domain coordinate system (ξ, η, ζ) is transformed into the desired physical coordinate system
(x, y, z) using a modified confocal elliptic transformation, written as follows

x = ξ, y = cξ sinh(η0 + sp(ζ)η) sin ζ, z = cξ cosh(η0 + sp(ζ)η) cos ζ, (10.16)

where c sets the half angle of the cone minor-axis, c = tanα/ sinh η0, sp(ζ) truncates the wall-normal domain
and η0 is a parameter controlling the Aspect Ratio (AR) of the cone, η0 = atanh (1/AR).

10.3.2 Boundary conditions

The elliptic EVP (3.28) must be complemented with adequate boundary conditions for the disturbance variables.
Dealing firstly with the azimuthal direction, ζ, the symmetries of the problem are exploited in order to reduce
the computational requirements. Depending on the case, either symmetric or antisymmetric boundary for each
flow component, the corresponding homogeneous Dirichlet or Neumann boundary conditions are imposed at
ζ = 0 and ζ = π/2. The combination of these conditions gives rise to four cases, but it is reduced to two due
to the linearity of the modes and the clear independence of the structure of the shape functions either if it is
located near ζ = 0 or ζ = π/2. For the wall-normal direction, the perturbations are forced to decay through the
imposition of a sponge region outside the shock layer in the free-stream region, setting homogeneous Dirichlet
boundary conditions at η = 1. The main objective of this sponge region is to avoid spurious reflections. This is
achieved by artificially decreasing the local Reynolds number using a smoothing function. At the wall, η = 0,
no-slip conditions are imposed by setting homogeneous Dirichlet boundary conditions and the same condition
is set for temperature amplitude function. No boundary condition needs to be imposed for density amplitude
function at the wall, since the linearized continuity equation is satisfied at η = 0.

Appropriate mappings between the finite-difference grids (ξ ∈ [−1, 1]) and the computational domain are
needed. Since the boundary-layer problem requires clustering of points at the wall, the equation (4.60) is used
to map the calculation domain grid η ∈ [0, 1] into the FD-q grid, setting ηh = 0.2. For the spanwise direction,
the same transformation is used in order to cluster point near the top center-line with ζh = 3π/4.

10.4 Base flow

The geometry studied here corresponds to the HIFiRE-5 configuration. The HIFiRE program is a hypersonic
flight test program executed by the Air Force Research Laboratory (AFRL) and the Australian Defense Science
and Technology Organization (DSRO) Dolvin [2008]. The HIFiRE-5 test payload consists of a blunt-nosed
elliptic cone of 2:1 ellipticity, 0.86 m in length. The nose tip cross-section in the minor-axis describes a 2.5 mm
radius circular arc, tangent to the cone ray describing the minor-axis, and retains a 2:1 elliptical cross-section to
the tip. Fight conditions were calculated for a Mach 7 flow at altitude of 33.0 kmGosse et al. [2010]. The free-
stream velocity is 2452.17 m/s and the unit Reynolds number is Re′ = 1.89×106 /m. The surface temperature
was defined using a prescribed temperature based on heat conduction analysis of an estimated trajectory for
the vehicle. The surface temperature near the nose is approximately 650 K and varies between 300 K and 400
K over much of the surface of the cone. This results in a cold surface temperature accomplishing Tw/Ta,w < 0.3
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Figure 10.1: Streamwise Mach number at axial positions x∗ = 0.12, 0.32 and 0.72 m. The vicinity of the
minor-axis meridian is zoomed at x∗ = 0.72 m.

over most of the cone surface downstream of the nose. The steady laminar flow solution has been calculated
using the US3D non-equilibrium solver with shock fitting algorithm Nompelis et al. [2005] by Gosse et al. [2010]
and has been used to extract the base flow analyzed here at different distances from the cone vertex.

The three-dimensional shape of the elliptic cone inevitably produces spanwise pressure gradients, which
induce crossflow and the flow direction of the interior of the boundary-layer is no longer co-planar with the
edge velocity vector, as in circular cones at zero angle of attack. The low-momentum boundary-layer fluid
near the surface is deflected from the leading-edge or major-axis meridian towards the minor-axis meridian or
centerline. This fact produces a lift-up of low-momentum boundary-layer fluid at the centerline, generating a
low velocity streak away from the wall, as it is observed in figure 10.1. This figure shows contours of streamwise
Mach number, Mξ, at different intermediate axial sections of the cone. In the same figure, the mushroom-like
structure formed in the vicinity of the minor-axis meridian is zoomed to show its complex shape. As the low
velocity streak forms, it induces a three-dimensional detached high shear-layer in its surroundings. Note that
the shape of the low velocity streak changes notably along the streamwise extent of the computational domain,
suggesting that non-parallel flow effects might play an important role in the determination of the stability
characteristics of it. A further description of the base flow is found in Gosse et al. [2010]. The analysis of such
flow structure is only accessible to the present multidimensional global stability analysis.

10.5 Results

The steady laminar base flow introduced in previous section is interpolated onto the grid constructed by equation
(10.16) for spatial BiGlobal analysis at different distances from the tip. The instability analysis of Paredes and
Theofilis [2013], Choudhari et al. [2009] on the same elliptic cone geometry for different flight conditions show
that the onset for transition may be due to either one or more instability mechanisms, cataloged as centerline,
crossflow and attachment-line modes. The structure of the attachment-line modes is located near the major-
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axis meridian and are well-understood in the incompressible Theofilis et al. [2003] and compressible Mack and
Schmid [2011] regimes, as well as the well-known crossflow modes Li and Choudhari [2011]. On the other
hand, the centerline modes are accessible only to the present type of global EVP solution and their role in the
transition process is still unclear.

As discussed in Section 10.3, the symmetries of the elliptic cone geometry allow the reduction of the dis-
cretized domain to one quarter of the cone, using either symmetric or antisymmetric boundary conditions on
the minor-axis meridian, recovering the centerline varicose (ũ symmetric about the minor-axis meridian) and
sinuous (antisymmetric ũ about the same meridian) modes respectively. Same strategy is followed at the major-
axis meridian for computation of symmetric and antisymmetric attachment-line modes. On the other hand, the
crossflow modes are not dependent on the boundary conditions used.

Computations are carried out for a wide a wide range of frequencies, from 50 to 300 kHz, at several distances
from the cone tip. The number of discretization points per direction was checked for convergence and the
following results were calculated using Nζ = 181 and Nη = 141 points.

The solution of the spatial BiGlobal analysis is composed by the complex eigenvalue α and the related
complex eigenvectors, i.e. the two dimensional amplitude functions q̂(y, z). Firstly, the real and imaginary parts
of α, i.e. the wavenumber αr and growth rate−αi respectively, are shown in figure 10.2 for the dominant unstable
centerline and crossflow modes. It is relevant to notice that no unstable attachment-line modes were found, what
is in agreement with theory. Although the frequency of attachment-line stabilities is much higher Choudhari
et al. [2009], for the flight conditions studied here, height of 33 km and using a slightly lower Re′ = 1.65× 106

/m, Choudhari et al. [2009] showed that the attachment-line Reynolds number with compressibility correction
Malik et al. [2007] was far to exceed the critical threshold.

Focusing firstly on the centerline modes, figure 10.2(a) shows a constant slope of the wavenumber αr versus
frequency curves with an approximately constant phase velocity of these modes for all the axial stations; for
example, cph = 0.856 for F∗ = 156 kHz at x∗ = 0.52 m. For the same frequencies and axial positions, figure
10.2(b) shows the growth rate curves. It is observed that the growth rates for varicose and sinuous modes
exhibit some differences and oscillations for lower frequencies but approximate each other as the distance from
the cone vertex and frequency increase. The amplification peak is found at x∗ = 0.52 m for a frequency around
F ∗ ≈ 156 kHz. The amplification rate of the most unstable mode decays for larger x∗, while the most amplified
frequency is unchanged. The maximum N-factor Schmid and Henningson [2001] reached by this mode along the
cone is lower than 6, what does not exceed the typical threshold of transition, N = 9. Furthermore, unstable
crossflow modes are found for x∗ > 0.52 m and F ∗ > 150 kHz. Their phase velocity is slightly larger and the
frequency bandwidth becomes more narrow, ≈ 100 kHz, varying its most amplified frequency at each axial
position and thus leading to a localized amplification and decay of perturbations.

The eigenspectrum and eigenfuctions resulting from the spatial BiGlobal analysis are shown in figures 10.3
and 10.4 for x∗ = 0.62 and frequencies F ∗ = 156 kHZ and F ∗ = 215 kHZ, respectively. In figure 10.3 only
unstable centerline modes are found. The symmetric and antisymmetric centerline modes are associated with
varicose or sinuous deformations of the low-velocity streak formed in the centerline; they are a consequence
of the instability developing in the three-dimensional shear layer. As can be observed in figure 10.3, both the
leading varicose and sinuous modes have almost equal amplitude function, what refers to the fact that they
are localized in the lateral shear. This explains why their associated wavenumbers and growth rates are almost
equal. The main difference is that the sinuous mode would break the symmetries exhibited by the base flow.

At a higher frequency, F ∗ = 215 kHZ, figure 10.4 shows a higher number of unstable modes. The leading
mode at this condition is a centerline mode, but several boundary-layer modes appear in the unstable region
of the spectrum. These modes peaking far form the minor-axis meridian and localized in the regions of high
near-wall spanwise velocity are called crossflow modes. The axial velocity amplitude function of the leading
crossflow mode at the previously mentioned conditions is shown in figure 10.4. The structure of this mode is
localized at an azimuthal position of ζ ≈ 80 and is composed by one negative and one positive peaks in the
spanwise/azimuthal direction.
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Figure 10.2: Wavenumber (a) and growth rate (b) of most amplified centerline and crossflow modes for a range
of frequencies F ∗ ∈ (50, 300) kHz. Note that A refers to antisymmetric and S to symmetric boundary conditions
at ζ = 0 and ζ = π/2 and CL and CF refer respectively to centerline and crossflow modes.
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(A,ûi)(A,ûr)
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Figure 10.3: Spatial BiGlobal spectrum and contours of the real and imaginary parts of the streamwise velocity
leading mode eigenfunctions for symmetric and antisymmetric boundary conditions (red for positive and blue
for negative). The iso-lines correspond to base flow nondimensional streamwise velocity ub = (0 : 0.2 : 0.8). The
spectrum and eigenfunctions were obtained for F ∗ = 156 kHz and x∗ = 0.62 m.
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Figure 10.4: Spatial BiGlobal spectrum, with letters in parentheses referring to subsequent figures, and contours
of the real and imaginary parts of the streamwise velocity eigenfunctions (red for positive and blue for negative).
The iso-lines correspond to base flow nondimensional streamwise velocity ub = (0 : 0.2 : 0.8). The spectrum
and eigenfunctions were obtained for F ∗ = 215 kHz and x∗ = 0.62 m, setting symmetric boundary conditions.

10.6 Summary and conclusions

The linear instability of the three-dimensional boundary-layer over a rounded-tip 2:1 elliptic cone at Mach
number M = 7 was investigated. The main contribution of the present work is an analysis of the liner instability
of the overall geometry through spatial BiGlobal stability simulations.

The leading instability modes were found to peak in the vicinity of the minor-axis meridian of the cone,
denominated centerline in the text, where a mushroom-like structured is formed as consequence of the three-
dimensional shape of the elliptic cone geometry. Crossflow is induced from the leading-edges to the centerline,
producing a lift-up of low-momentum boundary-layer fluid at the centerline, generating a low velocity streak
away from the wall. This streak induces a three-dimensional detached shear-layer in its surroundings capable
to sustain the growth of different modes. The two most unstable modes in the range of frequencies studied
(50−300 kHz) belong to the family of modes developing in the three-dimensional shear-layer and are associated
with characteristic varicose and sinuous deformations of the low-velocity streak. Both modes are found to have
similar wavenumbers and growth rates as a consequence of their amplitude function shape, which is localized in
the lateral shear of the centerline flow structure. Furthermore, unstable crossflow modes are found for x∗ > 0.52
m and F ∗ > 150 kHz. Their associated most amplified frequency differs at each axial position, resulting in a
localized amplification and decay of perturbations. On the other hand, no unstable attachment-line modes were
found at studied frequencies, what agrees with the theory Choudhari et al. [2009].

The assumption of parallelism made in the spatial BiGlobal analysis may lead to approximate wave number
and growth rates predictions as shown in previous Chapter 9 and literature De Tullio et al. [2013], Paredes et al.
[2011], Gómez et al. [2012a]. Regarding this issue, a relative error of approximately 10% is found between spatial
BiGlobal and PSE-3D or full Navier-Stokes growth rate predictions. In order to account for the non-parallelism
of the flow, the present analysis must be extended by performing PSE-3D analysis.
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Chapter 11

Non-linear PSE-3D

11.1 Introduction

In this Chapter, in an analogous manner to the addition of non-linear effects into the conventional PSE Bertolotti
et al. [1992], the linear PSE-3D are extended to predict the non-linear development of perturbations on this
kind of complex three-dimensional flows.

The typical modal instability theory based on linear ordinary differential equations of Orr-Sommerfed or
the linear partial differential equations of BiGlobal analyses neglect the interaction between modes. Hence, its
application is restricted to regions of small disturbance amplitude, i.e. regions where modes develop practically
independent from each. Non-local non-linear methods based on PSE, as the DLR/FOI transition analysis code
NOLOT/PSE Hein et al. [1994], Hanifi et al. [1994], Hein [2005], used here for comparisons, do not require
linearization. Therefore, they also model the non-linear early stages of laminar-turbulent breakdown. The same
methodology used for the addition of non-linear effects in the PSE is extended here for the PSE-3D, enabling
the study of complex three-dimensional flows that so far were only accessible to the much more computationally
expensive full Navier-Stokes spatial evolving simulations.

The linear version of the in-house developed stability codes have been validated against DNS results analyzing
instability of the wake behind an isolated roughness element in supersonic flow in previous Chapter 9 and De
Tullio et al. [2013]. In the latter work, the first linear PSE-3D analysis for high-speed flows is performed, showing
excellent agreement when compared with DNS results in the linear regime. The theoretical formulation and
numerical treatment of the non-linear PSE-3D are explained in Subsection 3.3.4 and Section 4.5, respectively.
The full listing of the operators of the parabolic PDE system of equations (3.57) is found in Appendix D. In
this Chapter, the new in-house developed non-linear PSE-3D code is used firstly on the flat plate boundary-
layer, showing excellent agreement with the NOLOT/PSE results, and secondly on the wake of an isolated
roughness-element imbedded in a supersonic boundary-layer.

11.2 Results

The non-linear PSE-3D are firstly used here to compute the non-linear evolution of two-dimensional pertur-
bations in the incompressible flat-plate boundary-layer flow. Reference values are taken at the initial station,
setting Re0 = 400. Figure 11.1 shows the evolution of the root-mean-square (RMS) streamwise velocity pertur-
bation for each time Fourier component, including the mean flow distorsion (MFD), which correspond to the
zero frequency mode. The fundamental frequency is set to ω = 0.0344. The spanwise direction is discretized
with Nz = 4 Fourier collocation points and the wall-normal direction with Ny = 101 eight order finite differ-
ences scheme (FD-q8) Paredes et al. [2013]. Results show excellent agreement against those computed with the

Page 125 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

 0

 0.005

 0.01

 0.015

 0.02

 400  500  600  700  800  900  1000  1100

|u
| rm

s

Re

ω0=0
ω1=0.0344

ω2=2ω1
ω3=3ω1
ω4=4ω1

ω1 (linear)
ω0 (NOLOT)
ω1 (NOLOT)
ω2 (NOLOT)
ω3 (NOLOT)
ω4 (NOLOT)

(a)

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 400  500  600  700  800  900  1000  1100

|u
| rm

s

Re
(b)

Figure 11.1: Comparison of |ŭ|rms evolution in local Re =
√
xRe0, for the incompressible flat-plate boundary-

layer using the non-linear PSE-3D and the NOLOT/PSE codes, showing (a) linear and (b) logarithmic scalings.
Also, the linear evolution of fundamental mode for same initial amplitude is shown.

NOLOT/PSE code Hein et al. [1994], Hanifi et al. [1994], Hein [2005]. The non-linear effects are clearly visible,
exhibiting a strong difference of the fundamental mode from Re > 800 with the linear simulation, together with
an important growth of the MFD.

Secondly, the convectively unstable wake of an isolated roughness element in a boundary-layer at Mach
2.5 and Reδ∗ = 3300, presented in Chapter 9, is analyzed through non-linear PSE-3D. The same base flow
has been analyzed by means of direct numerical simulations, aided by spatial BiGlobal and linear PSE-3D
analyses, showing excellent agreement with each other and validating the use of simplified theories for this flow
configuration. Results are performed using Nz = 140 and Ny = 121 FD-q8 discretization points. Figure 11.2
shows the evolution of maximum amplitude of ŭ on the streamwise direction for the MFD and six traveling
modes, setting initial amplitude |ŭ|2,max = 10−3 to the mode with frequency F2 = ω2/(2π) = 0.08. The non-
linear effects are clearly visible since the modes with multiple frequencies to the amplified one, i.e. |ŭ|4,max and
|ŭ|6,max, grow more than the rest, what would not happen in a linear simulation. Also, the three-dimensional
view of the iso-surfaces of the perturbation quantity ũ is shown in the same figure, together with the roughness
element in gray color.
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Appendix A

Linearized Navier-Stokes equations

In order to recover the linearized stability equations, the decomposition of variables (3.8) is introduced into the
governing equations of fluid motion (3.1-3.3), resulting

∂ρ̃

∂t
+ ρ̄xũ+ ρ̄ũx + ρ̄y ṽ + ρ̄ṽy + ρ̄zw̃ + ρ̄w̃z

+ ρ̃xū+ ρ̃ūx + ρ̃y v̄ + ρ̃v̄y + ρ̃zw̄ + ρ̃w̄z

= −ρ̃xũ− ρ̃ũx − ρ̃y ṽ − ρ̃ṽy − ρ̃zw̃ − ρ̃w̃z, (A.1)

ρ̄

(
∂ũ

∂t
+ ũūx + ūũx + ṽūy + v̄ũy + w̃ūz + w̄ũz

)

+ ρ̃ (ūūx + v̄ūy + w̄ūz) +
1

γM2

(
T̃ ρ̄x + ρ̄T̃x + T̄ ρ̃x + ρ̃T̄x

)

− 1

Re

[
µ̄ (ũxx + ũyy + ũzz) +

µ̄

3
(ũxx + ṽxy + w̃xz)

+
2 µ̄x

3
(2ũx − ṽy − w̃z) + µ̄y (ũy + ṽx) + µ̄z (ũz + w̃x)

]

− µ̄′

Re

[
T̃ (ūxx + ūyy + ūzz) +

T̃

3
(ūxx + v̄xy + w̄xz)

+
2 T̃x

3
(2ūx − v̄y − w̄z) + T̃y (ūy + v̄x) + T̃z (ūz + w̄x)

]

− µ̄′′

Re
T̃

[
2 T̄x

3
(2ūx − v̄y − w̄z) + T̄y (ūy + v̄x) + T̄z (ūz + w̄x)

]

= −ρ̃ ∂ũ
∂t
− (ρ̃+ ρ̄) (ũũx + ṽũy + w̃ũz)

− ρ̃ (ūũx + v̄ũy + w̄ũz + ũūx + ṽūy + w̃ūz)−
1

γM2

(
T̃ ρ̃x + ρ̃T̃x

)

+
µ̄′

Re

[
T̃ (ũxx + ũyy + ũzz) +

T̃

3
(ũxx + ṽxy + w̃xz)

+
2 T̃x

3
(2ũx − ṽy − w̃z) + T̃y (ũy + ṽx) + T̃z (ũz + w̃x)

]

+
µ̄′′T̃

Re

[
2 T̄x

3
(2ũx − ṽy − w̃z) + T̄y (ũy + ṽx) + T̄z (ũz + w̃x)

]
, (A.2)
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ρ̄

(
∂ṽ

∂t
+ ũv̄x + ūṽx + ṽv̄y + v̄ṽy + w̃v̄z + w̄ṽz

)

+ ρ̃ (ūv̄x + v̄v̄y + w̄v̄z) +
1

γM2

(
T̃ ρ̄y + ρ̄T̃y + T̄ ρ̃y + ρ̃T̄y

)

− 1

Re

[
µ̄ (ṽxx + ṽyy + ṽzz) +

µ̄

3
(ũxy + ṽyy + w̃yz)

+ µ̄x (ṽx + ũy) +
2 µ̄y

3
(2ṽy − ũx − w̃z) + µ̄z (ṽz + w̃y)

]

− µ̄′

Re

[
T̃ (v̄xx + v̄yy + v̄zz) +

T̃

3
(ūxy + v̄yy + w̄yz)

+ T̃x (v̄x + ūy) +
2 T̃y

3
(2v̄y − ūx − w̄z) + T̃z (v̄z + w̄y)

]

− µ̄′′

Re
T̃

[
T̄x (v̄x + ūy) +

2 T̄y
3

(2v̄y − ūx − w̄z) + T̄z (v̄z + w̄y)

]

= −ρ̃ ∂ṽ
∂t
− (ρ̃+ ρ̄) (ũṽx + ṽṽy + w̃ṽz)

− ρ̃ (ūṽx + v̄ṽy + w̄ṽz + ũv̄x + ṽv̄y + w̃v̄z)−
1

γM2

(
T̃ ρ̃y + ρ̃T̃y

)

+
µ̄′

Re

[
T̃ (ṽxx + ṽyy + ṽzz) +

T̃

3
(ũxy + ṽyy + w̃yz)

+ T̃x (ṽx + ũy) +
2 T̃y

3
(2ṽy − ũx − w̃z) + T̃z (ṽz + w̃y)

]

+
µ̄′′T̃

Re

[
T̄x (ṽx + ũy) +

2 T̄y
3

(2ṽy − ũx − w̃z) + T̄z (ṽz + w̃y)

]
, (A.3)

ρ̄

(
∂w̃

∂t
+ ũw̄x + ūw̃x + ṽw̄y + v̄w̃y + w̃w̄z + w̄w̃z

)

+ ρ̃ (ūw̄x + v̄w̄y + w̄w̄z) +
1

γM2

(
T̃ ρ̄z + ρ̄T̃z + T̄ ρ̃z + ρ̃T̄z

)

− 1

Re

[
µ̄ (w̃xx + w̃yy + w̃zz) +

µ̄

3
(ũxz + ṽyz + w̃zz)

+ µ̄x (w̃x + ũz) + µ̄y (ṽz + w̃y) +
2 µ̄z

3
(2w̃z − ũx − ṽy)

]

− µ̄′

Re

[
T̃ (w̄xx + w̄yy + w̄zz) +

T̃

3
(ūxz + v̄yz + w̄zz)

+ T̃x (w̄x + ūz) + T̃y (v̄z + w̄y) +
2 T̃z

3
(2w̄z − ūx − v̄y)

]

− µ̄′′

Re
T̃

[
T̄x (w̄x + ūz) + T̄y (v̄z + w̄y) +

2 T̄z
3

(2w̄z − ūx − v̄y)

]

= −ρ̃ ∂w̃
∂t
− (ρ̃+ ρ̄) (ũw̃x + ṽw̃y + w̃w̃z)

− ρ̃ (ūw̃x + v̄w̃y + w̄w̃z + ũw̄x + ṽw̄y + w̃w̄z)−
1

γM2

(
T̃ ρ̃z + ρ̃T̃z

)
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+
µ̄′

Re

[
T̃ (w̃xx + w̃yy + w̃zz) +

T̃

3
(ũxz + ṽyz + w̃zz)

+ T̃x (w̃x + ũz) + T̃y (ṽz + w̃y) +
2 T̃z

3
(2w̃z − ũx − ṽy)

]

+
µ̄′′T̃

Re

[
T̄x (w̃x + ũz) + T̄y (ṽz + w̃y) +

2 T̄z
3

(2w̃z − ũx − ṽy)

]
, (A.4)

ρ̄

(
∂T̃

∂t
+ ūT̃x + v̄T̃y + w̄T̃z + ũT̄x + ṽT̄y + w̃T̄z

)
+ ρ̃

(
T̄xū+ T̄y v̄ + T̄zw̄

)

− (γ − 1)T̄

(
∂ρ̃

∂t
+ ūρ̃x + v̄ρ̃y + w̄ρ̃z

)
− (γ − 1)

(
ũρ̄xT̄ + ṽρ̄yT̄ + w̃ρ̄zT̄

)

− (γ − 1)T̃ (ūρ̄x + v̄ρ̄y + w̄ρ̄z)

− γ

RePr

[
κ̄
(
T̃xx + T̃yy + T̃zz

)
+ 2κ̄′

(
T̄xT̃x + T̄yT̃y + T̄zT̃z

)

+ κ̄′T̃
(
T̄xx + T̄yy + T̄zz

)
+ κ̄′′T̃

(
T̄ 2
x + T̄ 2

y + T̄ 2
z

) ]

− 2γ(γ − 1)M2µ̄

Re

[
2

3
(2ūx − v̄y − w̄z) ũx + (ūy + v̄x) ũy + (ūz + w̄x) ũz

+ (ūy + v̄x) ṽx +
2

3
(2v̄y − ūx − w̄z) ṽy + (w̄y + v̄z) ṽz

+ (w̄x + ūz) w̃x + (w̄y + v̄z) w̃y +
2

3
(2w̄z − ūx − v̄y) w̃z

]

− γ(γ − 1)M2µ̄′

Re
T̃

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z)

+ ū2
y + v̄2

x + ū2
z + v̄2

z + w̄2
x + w̄2

y + 2ūy v̄x + 2ūzw̄y + 2v̄zw̄y

]

= −ρ̃ ∂T̃
∂t
− (ρ̄+ ρ̃)

(
ũT̃x + ṽT̃y + w̃T̃z

)

− ρ̃
(
ūT̃x + v̄T̃y + w̄T̃z + ũT̄x + ṽT̄y + w̃T̄z

)

+ (γ − 1)T̃
∂ρ̃

∂t
+ (γ − 1)(T̃ + T̄ ) (ũρ̃x + ṽρ̃y + w̃ρ̃z)

+ (γ − 1)T̃ (ūρ̃x + v̄ρ̃y + w̄ρ̃z + ũρ̄x + ṽρ̄y + w̃ρ̄z)

+
γ

RePr

[
κ̄′T̃

(
T̃xx + T̃yy + T̃zz

)
+ κ̄′

(
T̃ 2
x + T̃ 2

y + T̃ 2
z

)

+ κ̄′′T̃ (T̄xT̃x + T̄yT̃y + T̄zT̃z)

]

+
γ(γ − 1)M2µ̄′T̃

Re

[
2

3
(2ūx − v̄y − w̄z) ũx + (ūy + v̄x) ũy + (ūz + w̄x) ũz

+ (ūy + v̄x) ṽx +
2

3
(2v̄y − ūx − w̄z) ṽy + (w̄y + v̄z) ṽz

+ (w̄x + ūz) w̃x + (w̄y + v̄z) w̃y +
2

3
(2w̄z − ūx − v̄y) w̃z
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+
2

3
(2ũx − ṽy − w̃z) ūx + (ũy + ṽx) ūy + (ũz + w̃x) ūz

+ (ũy + ṽx) v̄x +
2

3
(2ṽy − ũx − w̃z) v̄y + (w̃y + ṽz) v̄z

+ (w̃x + ũz) w̄x + (w̃y + ṽz) w̄y +
2

3
(2w̃z − ũx − ṽy) w̄z

]

+
γ(γ − 1)M2(µ̄′T̃ + µ̄)

Re

[
4

3
(ũ2
x + ṽ2

y + w̃2
z − ũxṽy − ũxw̃z − ṽyw̃z)

+ ũ2
y + ṽ2

x + ũ2
z + ṽ2

z + w̃2
x + w̃2

y + 2ũy ṽx + 2ũzw̃y + 2ṽzw̃y

]
. (A.5)

Here, ( )′ = ∂( )
∂T̄

and ( )′′ = ∂2( )
∂T̄ 2 . Note that the right-hand-side (RHS) terms are the non-linear terms of O(ε2)

and O(ε3), which are neglected to recover the linearized Navier-Stokes equations.
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Appendix B

Temporal BiGlobal EVP operators

The operators of the temporal BiGlobal EVP (3.26) for compressible flows are structured as follows




A11 A12 A13 A14 0
A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55







ρ̂
û
v̂
ŵ

T̂




=

ω




B11 0 0 0 0
0 B22 0 0 0
0 0 B33 0 0
0 0 0 B44 0
B51 0 0 0 B55







ρ̂
û
v̂
ŵ

T̂




(B.1)

The full listing of the operators in equation (B.1) follows

A11 = v̄Dy + w̄Dz + v̄y + w̄z + ūiα

A12 = ρ̄iα

A13 = ρ̄Dy + ρ̄y

A14 = ρ̄Dz + ρ̄z

A21 = v̄ūy + w̄ūz +
1

γM2
(T̄ iα)

A22 = − µ̄

Re
(D2

yy +D2
zz) +

(
ρ̄v̄ − µ̄y

Re

)
Dy

+
(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄ūiα+

4

3

µ̄

Re
α2

A23 = − µ̄

3Re
iαDy + ρ̄ūy −

µ̄y
Re

iα

A24 = − µ̄

3Re
iαDz + ρ̄ūz −

µ̄z
Re

iα

A25 = − µ̄′

Re
(ūyDy + ūzDz) +

1

γM2
ρ̄iα

− µ̄′

Re

[
ūyy + ūzz −

2

3
(v̄y + w̄z)iα

]
− µ̄′′

Re
[ūyT̄y + ūzT̄z]
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A31 =
T̄

γM2
Dy + v̄v̄y + w̄v̄z +

1

γM2
T̄y

A32 = − µ̄

3Re
iαDy +

2 µ̄y
3Re

iα

A33 = − µ̄

Re

(
4

3
D2
yy +D2

zz

)
+

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz

+ ρ̄(ūiα+ v̄y) +
µ̄

Re
α2

A34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

A35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − w̄z)

]
Dy −

µ̄′

Re
(v̄z + w̄y)Dz

+
ρ̄y
γM2

− µ̄′′

Re

[
2

3
(2v̄y − w̄z)T̄y + (v̄z + w̄y)T̄z

]

− µ̄′

Re

(
4

3
v̄yy + v̄zz +

1

3
w̄yz + ūyiα

)

A41 =
T̄

γM2
Dz + v̄w̄y + w̄w̄z +

1

γM2
T̄z

A42 = − µ̄

3Re
iαDz +

2 µ̄z
3Re

iα

A43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

A44 = − µ̄

Re

(
D2
yy +

4

3
D2
zz

)
+
(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz

+ ρ̄(ūiα+ w̄z) +
µ̄

Re
α2

A45 = − µ̄′

Re
(w̄y + v̄z)Dy +

[
ρ̄

γM2
− µ̄′

Re

2

3
(2w̄z − v̄y)

]
Dz

+
1

γM2
ρ̄z −

µ̄′′

Re

[
(w̄y + v̄z)T̄y +

2

3
(2w̄z − v̄y)T̄z

]

− µ̄′

Re

[
4

3
w̄zz + w̄yy +

1

3
v̄yz + ūziα

]

A51 = −(γ − 1)T̄ (v̄Dy + w̄Dz) + γ(T̄y v̄ + T̄zw̄)− (γ − 1)T̄ ūiα

A52 = −2γ(γ − 1)M2µ̄

Re

[
ūyDy + ūzDz −

2

3
(v̄y + w̄z)iα

]

A53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − w̄z)Dy + (v̄z + w̄y)Dz + ūyiα

]

− (γ − 1)(T̄yρ̄+ T̄ ρ̄y) + γρ̄T̄y

A54 = −2γ(γ − 1)M2µ̄

Re

[
(v̄z + w̄y)Dy +

2

3
(2w̄z − v̄y)Dz + ūziα

]

− (γ − 1)(T̄z ρ̄+ T̄ ρ̄z) + γρ̄T̄z

A55 = − γ

RePr
κ̄
(
D2
yy +D2

zz

)
+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy

+
(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz − (γ − 1)(ρ̄y v̄ + ρ̄zw̄) + ρ̄ūiα
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− γ

RePr

[
−κ̄α2 + κ̄′

(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

y + T̄ 2
z )
]

− γ(γ − 1)M2µ̄′

Re

[
4

3
(v̄2
y + w̄2

z − v̄yw̄z) + ū2
y + ū2

z + v̄2
z + w̄2

y + 2v̄zw̄y

]

B11 = i

B22 = ρ̄i

B33 = ρ̄i

B44 = ρ̄i

B51 = (1− γ)T̄ i

B55 = ρ̄i
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Appendix C

Spatial BiGlobal EVP operators

The operators of the spatial BiGlobal EVP (3.28) for compressible flows are structured as follows




A11 0 A13 A14 0 0 0 0 0
A21 A22 A23 A24 A25 0 0 0 0
A31 0 A33 A34 A35 0 0 0 0
A41 0 A43 A44 A45 0 0 0 0
A51 A52 A53 A54 A55 0 0 0 0

0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I







ρ̂
û
v̂
ŵ

T̂
αû
αv̂
αŵ

αT̂




=

α




B11 B12 0 0 0 0 0 0 0
B21 B22 B23 B24 B25 B26 0 0 0
0 B32 B33 0 B35 0 B37 0 0
0 B42 0 B44 B45 0 0 B48 0
B51 B52 B53 B54 B55 0 0 0 B59

0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0







ρ̂
û
v̂
ŵ

T̂
αû
αv̂
αŵ

αT̂




(C.1)

The full listing of the operators in equation (C.1) follows

A11 = v̄Dy + w̄Dz + v̄y + w̄z − iω

A13 = ρ̄Dy + ρ̄y

A14 = ρ̄Dz + ρ̄z

A21 = v̄ūy + w̄ūz

A22 = − µ̄

Re
(D2

yy +D2
zz) +

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz − iρ̄ω

A23 = ρ̄ūy

A24 = ρ̄ūz

A25 = − µ̄′

Re
(ūyDy + ūzDz)
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− µ̄′

Re
[ūyy + ūzz]−

µ̄′′

Re
[ūyT̄y + ūzT̄z]

A31 =
T̄

γM2
Dy + v̄v̄y + w̄v̄z +

1

γM2
T̄y

A33 = − µ̄

Re

(
4

3
D2
yy +D2

zz

)
) +

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy

+
(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄v̄y − iρ̄ω

A34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

A35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − w̄z)

]
Dy −

µ̄′

Re
(v̄z + w̄y)Dz

+
ρ̄y
γM2

− µ̄′′

Re

[
2

3
(2v̄y − w̄z)T̄y + (v̄z + w̄y)T̄z

]

− µ̄′

Re

(
4

3
v̄yy + v̄zz +

1

3
w̄yz

)

A41 =
T̄

γM2
Dz + v̄w̄y + w̄w̄z +

1

γM2
T̄z

A43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

A44 = − µ̄

Re

(
D2
yy +

4

3
D2
zz

)
+
(
ρ̄v̄ − µ̄y

Re

)
Dy

+

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz + ρ̄w̄z − iρ̄ω

A45 = − µ̄′

Re
(w̄y + v̄z)Dy +

[
ρ̄

γM2
− µ̄′

Re

2

3
(2w̄z − v̄y)

]
Dz

+
1

γM2
ρ̄z −

µ̄′′

Re

[
(w̄y + v̄z)T̄y +

2

3
(2w̄z − v̄y)T̄z

]

− µ̄′

Re

[
4

3
w̄zz + w̄yy +

1

3
v̄yz

]

A51 = −(γ − 1)T̄ (v̄Dy + w̄Dz) + (T̄y v̄ + T̄zw̄) + (γ − 1)T̄ iω

A52 = −2γ(γ − 1)M2µ̄

Re
[ūyDy + ūzDz]

A53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − w̄z)Dy + (v̄z + w̄y)Dz

]

− (γ − 1)T̄ ρ̄y + ρ̄T̄y

A54 = −2γ(γ − 1)M2µ̄

Re

[
(v̄z + w̄y)Dy +

2

3
(2w̄z − v̄y)Dz

]

− (γ − 1)T̄ ρ̄z + ρ̄T̄z

A55 = − γ

RePr
κ̄
(
D2
yy +D2

zz

)
+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy

+
(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz − (γ − 1)(ρ̄y v̄ + ρ̄zw̄)− ρ̄iω

− γ

RePr

[
κ̄′
(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

y + T̄ 2
z )
]
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− γ(γ − 1)M2µ̄′

Re

[
4

3
(v̄2
y + w̄2

z − v̄yw̄z) + ū2
y + ū2

z + v̄2
z + w̄2

y + 2v̄zw̄y

]

B11 = −iū

B12 = −iρ̄

B21 =
−iT̄

γM2

B22 = −iρ̄ū

B23 =
µ̄ i

3Re
Dy +

µ̄y i

Re

B24 =
µ̄ i

3Re
Dz +

µ̄z i

Re

B25 = − ρ̄ i

γM2
− 2 i µ̄′

3Re
(v̄y + w̄z)

B26 = − 4 µ̄

3Re

B32 =
µ̄

3Re
iDy −

2 µ̄y
3Re

i

B33 = −iρ̄ū

B35 =
µ̄′ i

Re
ūy

B37 = − µ̄

Re

B42 =
µ̄i

3Re
Dz −

2 i µ̄z
3Re

B44 = −iρ̄ū

B45 =
µ̄′

Re
ūzi

B48 = − µ̄

Re
B51 = (γ − 1)T̄ ūi

B52 = −4γ(γ − 1)M2µ̄

3Re
(v̄y + w̄z)i

B54 =
2γ(γ − 1)M2µ̄

Re
ūyi

B54 =
2γ(γ − 1)M2µ̄

Re
ūzi

B55 = −iρ̄ū

B59 = − γ κ̄

RePr
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Appendix D

Non-linear PSE-3D operators

Equation (3.57) for compressible flows expressed in matrix form results (index n is suppressed for simplification)




L11 L12 L13 L14 0
L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55







ρ̂
û
v̂
ŵ

T̂




+




M11 M12 0 0 0
M21 M22 0 0 M25

0 0 M33 0 0
0 0 0 M44 0
M51 0 0 0 M55







ρ̂x
ûx
v̂x
ŵx
T̂x




=




F1

F2

F3

F4

F5




(D.1)

The full listing of the operators in equation (D.1) follows

L11 = v̄Dy + w̄Dz + ūx + v̄y + w̄z + ūiα− iω

L12 = ρ̄iα+ ρ̄x

L13 = ρ̄Dy + ρ̄y

L14 = ρ̄Dz + ρ̄z

L21 = ūūx + v̄ūy + w̄ūz +
1

γM2
(T̄ iα+ T̄x)

L22 = − µ̄

Re
(D2

yy +D2
zz) +

(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz

+ ρ̄(ūiα+ ūx − iω) +
4

3

µ̄

Re
α2

L23 = − µ̄

3Re
iαDy + ρ̄ūy −

µ̄y
Re

iα

L24 = − µ̄

3Re
iαDz + ρ̄ūz −

µ̄z
Re

iα

L25 = − µ̄′

Re
(ūyDy + ūzDz) +

1

γM2
(ρ̄iα+ ρ̄x)

− µ̄′

Re

[
ūyy + ūzz −

2

3
(v̄y + w̄z)iα

]
− µ̄′′

Re
(ūyT̄y + ūzT̄z)
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L31 =
T̄

γM2
Dy + ūv̄x + v̄v̄y + w̄v̄z +

1

γM2
T̄y

L32 = − µ̄

3Re
iαDy + ρ̄v̄x +

2 µ̄y
3Re

iα

L33 = − µ̄

Re

(
4

3
D2
yy +D2

zz

)
+

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz

+ ρ̄(ūiα+ v̄y − iω) +
µ̄

Re
α2

L34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

L35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − w̄z)

]
Dy −

µ̄′

Re
(v̄z + w̄y)Dz +

ρ̄y
γM2

− − µ̄
′′

Re

[
2

3
(2v̄y − w̄z)T̄y + (v̄z + w̄y)T̄z

]

− µ̄′

Re

(
4

3
v̄yy + v̄zz +

1

3
w̄yz + ūyiα

)

L41 =
T̄

γM2
Dz + ūw̄x + v̄w̄y + w̄w̄z +

1

γM2
T̄z

L42 = − µ̄

3Re
iαDz + ρ̄w̄x +

2 µ̄z
3Re

iα

L43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

L44 = − µ̄

Re

(
D2
yy +

4

3
D2
zz

)
+
(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz

+ ρ̄(ūiα+ w̄z − iω) +
µ̄

Re
α2

L45 = − µ̄′

Re
(w̄y + v̄z)Dy +

[
ρ̄

γM2
− µ̄′

Re

2

3
(2w̄z − v̄y)

]
Dz +

ρ̄z
γM2

− µ̄′′

Re

[
(w̄y + v̄z)T̄y +

2

3
(2w̄z − v̄y)T̄z

]

− µ̄′

Re

(
4

3
w̄zz + w̄yy +

1

3
v̄yz + ūziα

)

L51 = −(γ − 1)T̄ (v̄Dy + w̄Dz + ūiα− iω) + (T̄xū+ T̄y v̄ + T̄zw̄)

L52 = −2γ(γ − 1)M2µ̄

Re

[
ūyDy + ūzDz −

2

3
(v̄y + w̄z)iα

]

− (γ − 1)T̄ ρ̄x + ρ̄T̄x

L53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − w̄z)Dy + (v̄z + w̄y)Dz + ūyiα

]

− (γ − 1)T̄ ρ̄y + ρ̄T̄y

L54 = −2γ(γ − 1)M2µ̄

Re

[
(v̄z + w̄y)Dy +

2

3
(2w̄z − v̄y)Dz + ūziα

]

− (γ − 1)T̄ ρ̄z + ρ̄T̄z

L55 = − γ

RePr
κ̄
(
D2
yy +D2

zz

)
+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy
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+
(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz − (γ − 1)(ρ̄xū+ ρ̄y v̄ + ρ̄zw̄)

+ ρ̄(ūiα− iω)− γ

RePr

[
−κ̄α2 + κ̄′

(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

y + T̄ 2
z )
]

− γ(γ − 1)M2µ̄′

Re

[
4

3
(v̄2
y + w̄2

z − v̄yw̄z) + ū2
y + ū2

z + v̄2
z + w̄2

y + 2v̄zw̄y

]

M11 = ū

M12 = ρ̄

M21 =
1

γM2
T̄

M22 = ρ̄ū

M25 =
ρ̄

γM2

M33 = ρ̄ū

M44 = ρ̄ū

M51 = −(γ − 1)T̄ ū

M55 = ρ̄ū

F1 = −ρ̃xũ− ρ̃ũx − ρ̃y ṽ − ρ̃ṽy − ρ̃zw̃ − ρ̃w̃z
F2 = −ρ̃ ∂ũ

∂t
− ρ̄ (ũũx + ṽũy + w̃ũz)

− ρ̃ (ūũx + v̄ũy + w̄ũz + ũūx + ṽūy + w̃ūz)−
1

γM2

(
T̃ ρ̃x + ρ̃T̃x

)

+
µ̄′

Re

[
T̃ (ũxx + ũyy + ũzz) +

T̃

3
(ũxx + ṽxy + w̃xz)

+
2 T̃x

3
(2ũx − ṽy − w̃z) + T̃y (ũy + ṽx) + T̃z (ũz + w̃x)

]

+
µ̄′′T̃

Re

[
2 T̄x

3
(2ũx − ṽy − w̃z) + T̄y (ũy + ṽx) + T̄z (ũz + w̃x)

]

F3 = −ρ̃ ∂ṽ
∂t
− ρ̄ (ũṽx + ṽṽy + w̃ṽz)

− ρ̃ (ūṽx + v̄ṽy + w̄ṽz + ũv̄x + ṽv̄y + w̃v̄z)−
1

γM2

(
T̃ ρ̃y + ρ̃T̃y

)

+
µ̄′

Re

[
T̃ (ṽxx + ṽyy + ṽzz) +

T̃

3
(ũxy + ṽyy + w̃yz)

+ T̃x (ṽx + ũy) +
2 T̃y

3
(2ṽy − ũx − w̃z) + T̃z (ṽz + w̃y)

]

+
µ̄′′T̃

Re

[
T̄x (ṽx + ũy) +

2 T̄y
3

(2ṽy − ũx − w̃z) + T̄z (ṽz + w̃y)

]

F4 = −ρ̃ ∂w̃
∂t
− ρ̄ (ũw̃x + ṽw̃y + w̃w̃z)

− ρ̃ (ūw̃x + v̄w̃y + w̄w̃z + ũw̄x + ṽw̄y + w̃w̄z)−
1

γM2

(
T̃ ρ̃z + ρ̃T̃z

)

+
µ̄′

Re

[
T̃ (w̃xx + w̃yy + w̃zz) +

T̃

3
(ũxz + ṽyz + w̃zz)
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+ T̃x (w̃x + ũz) + T̃y (ṽz + w̃y) +
2 T̃z

3
(2w̃z − ũx − ṽy)

]

+
µ̄′′T̃

Re

[
T̄x (w̃x + ũz) + T̄y (ṽz + w̃y) +

2 T̄z
3

(2w̃z − ũx − ṽy)

]

F5 = −ρ̃ ∂T̃
∂t
− ρ̄

(
ũT̃x + ṽT̃y + w̃T̃z

)

− ρ̃
(
ūT̃x + v̄T̃y + w̄T̃z + ũT̄x + ṽT̄y + w̃T̄z

)

+ (γ − 1)T̃
∂ρ̃

∂t
+ (γ − 1)T̄ (ũρ̃x + ṽρ̃y + w̃ρ̃z)

+ (γ − 1)T̃ (ūρ̃x + v̄ρ̃y + w̄ρ̃z + ũρ̄x + ṽρ̄y + w̃ρ̄z)

+
γ

RePr

[
κ̄′T̃

(
T̃xx + T̃yy + T̃zz

)
+ κ̄′

(
T̃ 2
x + T̃ 2

y + T̃ 2
z

)

+ κ̄′′T̃ (T̄xT̃x + T̄yT̃y + T̄zT̄z)

]

+
γ(γ − 1)M2µ̄′T̃

Re

[
2

3
(2ūx − v̄y − w̄z) ũx + (ūy + v̄x) ũy

+ (ūz + w̄x) ũz + (ūy + v̄x) ṽx +
2

3
(2v̄y − ūx − w̄z) ṽy + (w̄y + v̄z) ṽz

+ (w̄x + ūz) w̃x + (w̄y + v̄z) w̃y +
2

3
(2w̄z − ūx − v̄y) w̃z

+
2

3
(2ũx − ṽy − w̃z) ūx + (ũy + ṽx) ūy + (ũz + w̃x) ūz

+ (ũy + ṽx) v̄x +
2

3
(2ṽy − ũx − w̃z) v̄y + (w̃y + ṽz) v̄z

+ (w̃x + ũz) w̄x + (w̃y + ṽz) w̄y +
2

3
(2w̃z − ũx − ṽy) w̄z

]

+
γ(γ − 1)M2µ̄

Re

[
4

3
(ũ2
x + ṽ2

y + w̃2
z − ũxṽy − ũxw̃z − ṽyw̃z)

+ ũ2
y + ṽ2

x + ũ2
z + ṽ2

z + w̃2
x + w̃2

y + 2ũy ṽx + 2ũzw̃y + 2ṽzw̃y

]
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Appendix E

TriGlobal EVP operators

The operators of the three-dimensional partial derivative EVP (3.26) for TriGlobal analysis upon compressible
flows are structured as follows




A11 A12 A13 A14 0
A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55







ρ̂
û
v̂
ŵ

T̂




=

ω




B11 0 0 0 0
0 B22 0 0 0
0 0 B33 0 0
0 0 0 B44 0
B51 0 0 0 B55







ρ̂
û
v̂
ŵ

T̂




(E.1)

The full listing of the operators in equation (E.1) follows

A11 = ūDx + v̄Dy + w̄Dz + ūx + v̄y + w̄z

A12 = ρ̄Dx + ρ̄x

A13 = ρ̄Dy + ρ̄y

A14 = ρ̄Dz + ρ̄z

A21 =
T̄

γM2
Dx + ūūx + v̄ūy + w̄ūz +

1

γM2
(T̄x)

A22 = − µ̄

Re
(
4

3
D2
xx +D2

yy +D2
zz) +

(
ρ̄ū− 4 µ̄x

3Re

)
Dx

+
(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄ūx

A23 = − µ̄

3Re
D2
xy −

µ̄y
Re
Dx −

2 µ̄x
3Re

Dy + ρ̄ūy

A24 = − µ̄

3Re
D2
xz −

µ̄z
Re
Dx −

2 µ̄x
3Re

Dz + ρ̄ūz

A25 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2ūx − v̄y − w̄x)

]
Dx +

1

γM2
ρ̄x

− µ̄′

Re
[(ūy + v̄x)Dy + (ūz + w̄x)Dz]
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− µ̄′

Re

[
4

3
ūxx + ūyy + ūzz +

1

3
(v̄xy + w̄xz)

]

− µ̄′′

Re
[
2

3
(2ūx − v̄y − w̄x)T̄x + (ūy + v̄x)T̄y + (ūz + w̄x)T̄z]

A31 =
T̄

γM2
Dy + ūv̄x + v̄v̄y + w̄v̄z +

1

γM2
(T̄y)

A33 = − µ̄

Re
(
4

3
D2
yy +D2

zz +D2
zz) +

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy

+
(
ρ̄ū− µ̄x

Re

)
Dx +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄v̄y

A32 = − µ̄

3Re
D2
xy −

µ̄x
Re
Dy −

2 µ̄y
3Re

Dx + ρ̄v̄x

A34 = − µ̄

3Re
D2
xz −

µ̄z
Re
Dx −

2 µ̄x
3Re

Dz + ρ̄v̄z

A35 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2v̄y − ūx − w̄x)

]
Dy +

1

γM2
ρ̄y

− µ̄′

Re
[(v̄x + ūy)Dx + (v̄z + w̄y)Dz]

− µ̄′

Re

[
4

3
v̄yy + v̄xx + v̄zz +

1

3
(ūxy + w̄yz)

]

− µ̄′′

Re
[
2

3
(2v̄y − ūx − w̄y)T̄y + (ūy + v̄x)T̄x + (v̄z + w̄y)T̄z]

A41 =
T̄

γM2
Dz + ūw̄x + v̄w̄y + w̄w̄z +

1

γM2
(T̄z)

A44 = − µ̄

Re
(
4

3
D2
zz +D2

yy +D2
xx) +

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz

+
(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄ū− µ̄x

Re

)
Dx + ρ̄w̄z

A43 = − µ̄

3Re
D2
yz −

µ̄y
Re
Dz −

2 µ̄z
3Re

Dy + ρ̄w̄y

A42 = − µ̄

3Re
D2
xz −

µ̄x
Re
Dz −

2 µ̄z
3Re

Dx + ρ̄w̄x

A45 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2w̄z − v̄y − ūx)

]
Dz +

1

γM2
ρ̄z

− µ̄′

Re
[(w̄y + v̄z)Dy + (w̄x + ūz)Dx]

− µ̄′

Re

[
4

3
w̄zz + w̄yy + w̄xx +

1

3
(v̄zy + ūxz)

]

− µ̄′′

Re
[
2

3
(2w̄z − v̄y − ūz)T̄z + (ūy + v̄z)T̄y + (w̄x + ūz)T̄x]

A51 = −(γ − 1)T̄ (ūDx + v̄Dy + w̄Dz) + γ(T̄xū+ T̄y v̄ + T̄zw̄)

A52 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2ūx − v̄y − w̄z)Dx + (ūy + v̄x)Dy

+ (ūz + w̄x)Dz
]
− (γ − 1)(T̄xρ̄+ T̄ ρ̄x) + γρ̄T̄x

Page 146 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

A53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − ūx − w̄z)Dy + (v̄x + ūy)Dx

+ (v̄z + w̄y)Dz
]
− (γ − 1)(T̄yρ̄+ T̄ ρ̄y) + γρ̄T̄y

A54 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2w̄z − v̄y − ūx)Dz + (w̄y + v̄z)Dy

+ (w̄x + ūz)Dx
]
− (γ − 1)(T̄z ρ̄+ T̄ ρ̄z) + γρ̄T̄z

A55 = − γ

RePr
κ̄
(
D2
xx +D2

yy +D2
zz

)
+
(
ρ̄ū− γ

RePr
2κ̄′T̄x

)
Dx

+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy +

(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz

− (γ − 1)(ρ̄y v̄ + ρ̄zw̄)− γ

RePr

[
κ̄′
(
T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

x + T̄ 2
y + T̄ 2

z )
]

− γ(γ − 1)M2µ̄′

Re

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z)

+ ū2
y + v̄2

x + ū2
z + v̄2

z + w̄2
x + w̄2

y + 2ūy v̄x + 2ūzw̄y + 2v̄zw̄y

]

B11 = 1

B22 = ρ̄

B33 = ρ̄

B44 = ρ̄

B51 = −(γ − 1)T̄

B55 = ρ̄
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Appendix F

Compressible PNS operators

Equation (6.3) for compressible flows expressed in matrix form results




J11 J12 J13 J14 0
J21 J22 J23 J24 J25

J31 J32 J33 J34 J35

J41 J42 J43 J44 J45

J51 J52 J53 J54 J55







∆ρ
∆u
∆v
∆w̄
∆T




= −




F1

F2

F3

F4

F5




(F.1)

The full listing of the operators in equation (F.1) without dropping streamwise derivative terms in the viscous
part follows

J11 = ūDx + v̄Dy + w̄Dz + ūx + v̄y + w̄z

J12 = ρ̄Dx + ρ̄x

J13 = ρ̄Dy + ρ̄y

J14 = ρ̄Dz + ρ̄z

J21 = ūūx + v̄ūy + w̄ūz +
Ω

γM2
(T̄Dx + T̄x)

J22 = − µ̄

Re

(
4

3
D2
xx +D2

yy +D2
zz

)
+

(
ρ̄ū− 4 µ̄x

3Re

)
Dx

+
(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄ūx

J23 = − µ̄

3Re
D2
xy −

µ̄y
Re
Dx −

2 µ̄x
3Re

Dy + ρ̄ūy

J24 = − µ̄

3Re
D2
xz −

µ̄z
Re
Dx −

2 µ̄x
3Re

Dz + ρ̄ūz

J25 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2ūx − v̄y − w̄x)

]
Dx

− µ̄′

Re
[(v̄x + ūy)Dy + (w̄x + ūz)Dz]

+
Ω

γM2
ρ̄x −

µ̄′

Re

[
4

3
ūxx + ūyy + ūzz +

1

3
(v̄xy + w̄xz)

]

− µ̄′′

Re

[
2

3
(2ūx − v̄y − w̄x)T̄x + (ūy + v̄x)T̄y + (ūz + w̄x)T̄z

]
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J31 =
T̄

γM2
Dy + ūv̄x + v̄v̄y + w̄v̄z +

1

γM2
T̄y

J32 = − µ̄

3Re
D2
xy −

µ̄x
Re
Dy +

2 µ̄y
3Re

Dx + ρ̄v̄x

J33 = − µ̄

Re
(
4

3
D2
yy +D2

xx +D2
zz) +

(
ρ̄v̄ − 4 µ̄y

3Re

)
Dy

+
(
ρ̄ū− µ̄x

Re

)
Dx +

(
ρ̄w̄ − µ̄z

Re

)
Dz + ρ̄v̄y

J34 = − µ̄

3Re
D2
yz −

µ̄z
Re
Dy +

2 µ̄y
3Re

Dz + ρ̄v̄z

J35 =

[
ρ̄

γM2
− µ̄′

Re

2

3
(2v̄y − ūx − w̄z)

]
Dy

− µ̄′

Re
[(v̄x + ūy)Dx + (v̄z + w̄y)Dz]

+
ρ̄y
γM2

− µ̄′

Re

[
4

3
v̄yy + v̄xx + v̄zz +

1

3
(ūxy + w̄yz)

]

− µ̄′′

Re

[
2

3
(2v̄y − ūx − w̄z)T̄y + (ūy + v̄x)T̄x + (v̄z + w̄y)T̄z

]

J41 =
T̄

γM2
Dz + ūw̄x + v̄w̄y + w̄w̄z +

1

γM2
T̄z

J42 = − µ̄

3Re
D2
xz −

µ̄x
Re
Dz +

2 µ̄z
3Re

Dx + ρ̄w̄x

J43 = − µ̄

3Re
D2
yz +

2 µ̄z
3Re

Dy −
µ̄y
Re
Dz + ρ̄w̄y

J44 = − µ̄

Re

(
4

3
D2
zz +D2

yy +D2
xx

)
+

(
ρ̄w̄ − 4 µ̄z

3Re

)
Dz

+
(
ρ̄v̄ − µ̄y

Re

)
Dy +

(
ρ̄ū− µ̄x

Re

)
Dx + ρ̄w̄z

J45 =

[
ρ̄

γM2
− 2 µ̄′

3Re
(2w̄z − v̄y − ūx)

]
Dz

− µ̄′

Re
[(w̄y + v̄z)Dy + (w̄x + ūz)Dx]

+
1

γM2
ρ̄z −

µ̄′

Re

[
4

3
w̄zz + w̄yy + w̄xx +

1

3
(v̄zy + ūxz)

]

− µ̄′′

Re

[
2

3
(2w̄z − v̄y − ūz)T̄z + (ūy + v̄z)T̄y + (w̄x + ūz)T̄x

]

J51 = ūT̄x + v̄T̄y + w̄T̄z + (γ − 1)T̄ (ūx + v̄y + w̄z)

J52 = −2γ(γ − 1)M2

Re
µ̄

[
2

3
(2ūx − v̄y − w̄z)Dx + (ūy + v̄x)Dy

+ (ūz + w̄x)Dz
]

+ (γ − 1)T̄ ρ̄Dx + ρ̄T̄x

J53 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2v̄y − ūx − w̄z)Dy + (v̄x + ūy)Dx

+ (v̄z + w̄y)Dz
]

+ (γ − 1)T̄ ρ̄Dy + ρ̄T̄y
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J54 = −2γ(γ − 1)M2µ̄

Re

[
2

3
(2w̄z − v̄y − ūx)Dz + (w̄y + v̄z)Dy

+ (w̄x + ūz)Dx
]

+ (γ − 1)T̄ ρ̄Dz + ρ̄T̄z

J55 = − γ

RePr
κ̄
(
D2
xx +D2

yy +D2
zz

)
+
(
ρ̄ū− γ

RePr
2κ̄′T̄x

)
Dx

+
(
ρ̄v̄ − γ

RePr
2κ̄′T̄y

)
Dy +

(
ρ̄w̄ − γ

RePr
2κ̄′T̄z

)
Dz

+ (γ − 1)ρ̄(ūx + v̄y + w̄z)

− γ

RePr

[
κ̄′
(
T̄xx + T̄yy + T̄zz

)
+ κ̄′′(T̄ 2

x + T̄ 2
y + T̄ 2

z )
]

− γ(γ − 1)M2µ̄′

Re

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z)

+ ū2
y + v̄2

x + ū2
z + v̄2

z + w̄2
x + w̄2

y + 2ūy v̄x + 2ūzw̄x + 2v̄zw̄y

]

F1 = ρ̄xū+ ρ̄ūx + ρ̄y v̄ + ρ̄v̄y + ρ̄zw̄ + ρ̄w̄z

F2 = ρ̄(ūūx + v̄ūy + w̄ūz) +
Ω

γM2
(ρ̄xT̄ + ρ̄T̄x)

− 1

Re

[
µ̄

(
4

3
ūxx + ūyy + ūzz +

1

3
(v̄xy + w̄xz)

)

+
2

3
µ̄x(2ūx − v̄y − w̄z) + µ̄y(ūy + v̄x) + µ̄z(ūz + w̄x)

]

F3 = ρ̄(ūv̄x + v̄v̄y + w̄v̄z) +
1

γM2
(ρ̄yT̄ + ρ̄T̄y)

− 1

Re

[
µ̄

(
4

3
v̄yy + v̄xx + v̄zz +

1

3
(ūxy + w̄yz)

)

+ µ̄x(v̄x + ūy) +
2

3
µ̄y(2v̄y − ux − w̄z) + µ̄z(v̄z + w̄y)

]

F4 = ρ̄(ūw̄x + v̄w̄y + w̄w̄z) +
1

γM2
(ρ̄zT̄ + ρ̄T̄z)

− 1

Re

[
µ̄

(
4

3
w̄zz + w̄xx + w̄yy +

1

3
(uxz + v̄yz)

)

+ µ̄x(w̄x + ūz) + µ̄y(v̄z + w̄y) +
2

3
µ̄z(2w̄z − ūx − v̄y)

]

F5 = ρ̄(ūT̄x + v̄T̄y + w̄T̄z) + (γ − 1)ρ̄T̄ (ūx + v̄y + w̄z)

− γ

RePr

[
κ̄(T̄xx + T̄yy + T̄zz) + κ̄xT̄x + κ̄yT̄y + κ̄zT̄z

]

− γ(γ − 1)M2

Re
µ̄

[
4

3
(ū2
x + v̄2

y + w̄2
z − ūxv̄y − ūxw̄z − v̄yw̄z)

+ ū2
y + ū2

z + v̄2
x + v̄2

z + w̄2
x + w̄2

y + 2ūy v̄x + 2ūzw̄x + 2v̄zw̄y

]
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W. Tollmien. Über die Entstehung der Turbulenz. 1. Mitteilung. Nachr. Ges. Wiss. Göttingen, Math. Phys.
Klasse, 1929.

L.N. Trefethen. Spectral Methods in Matlab. SIAM, 2000.

L.N. Trefethen, A.E. Trefethen, S.C. Reddy, and T. Driscoll. Hydrodynamic stability without eigenvalues.
Science, 261:578–584, 1993.

V.N. Trigub. The problem of breakdown of a vortex line. J. Appl. Math. Mech., 49:166–171, 1985.

L.S. Tuckerman and D. Barkley. Bifurcation analysis for timesteppers. In Numerical methods for bifurcation
problems and large-scale dynamical systems, pages 453–566. Springer, 2000.

A. Tumin and E. Reshotko. Receptivity of a boundary-layer flow to a three-dimensional hump at finite Reynolds
numbers. Phys. Fluids, 17(094101), 2005.

J.L. Van Ingen. A suggested semi-empirical method for the calculation of boundary layer transition region.
Rept. UTH-74., Univ. of Techn., Dept. of Aero. Eng., Delft, 1956.

Y.C. Vigneron, J.V. Rakich, and J.C. Tannehill. Calculation of supersonic viscous flow over delta wings with
sharp subsonic leading edges. AIAA 78-1337, 1978.

S. Wang and Z. Rusak. The time-asymptotic behavior of vortex breakdown in tubes. Compt. Fluids, 23:913,
1994.

S. Wang and Z. Rusak. The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex
breakdown. J. Fluid Mech., 340:177, 1997a.

S. Wang and Z. Rusak. The effect of slight viscosity on a near-critical swirling flow in a pipe. Phys. Fluids, 9:
1914–1927, 1997b.

P. Wassermann and M. Kloker. Transition mechanisms induced by travelling crossflow vortices in a three-
dimensional boundary layer. J. Fluid Mech., 483:67 – 89, 2003.

B.M. Wheaton and S.P. Schneider. Roughness-induced instability in a hypersonic laminar boundary layer.
AIAA J., 5(6):1245–1256, 2012.

B.M. Wheaton and S.P. Schneider. Instability and transition due to near-critical roughness in a hypersonic
laminar boundary layer. AIAA 2013-0084, 2013.

F.M. White. Viscous fluid flow. McGraw-Hill, 3rd edition, 2005.

S.E. Widnall. The structure and dynamics of vortex filaments. Ann. Rev. Fluid Mech., 7:141–165, 1975.

D.C. Wilcox. Turbulence Modeling for CFD. DCW Industries, 3rd edition, 2006.

A.A. Wray. Minimal storage time advancement schemes for spectral methods. Rept. M.S. 202 A-1., NASA
Ames Research Centre, 1990.

T.G. Wright. Eigtool. Technical report, Oxford University Computing Laboratory, 2002. Available at
http://www.comlab.ox.ac.uk/pseudospectra/eigtool/.

Page 166 of 167

Distribution A:  Approved for public release; distribution is unlimited.



Final Report FA8655-12-1-2004 (Theofilis) PSE-3D instability analysis and application to flow over an elliptic cone

X. Wu and M. Choudhari. Linear and nonlinear instabilities of a Blasius boundary layer perturbed by streamwise
vortices. Part 2: Intermittent instability induced by long-wavelength Klebanoff modes. J. Fluid Mech., 483:
249–286, 2003.

Y. Yao, Z. Shang, J. Castagna, R. Johnstone, R.E. Jones, J.A. Redford, R.D. Sandberg, N.D. Sandham,
V. Suponitsky, and N. De Tullio. Re-engineering a DNS code for high-performance computation of turbulent
flows. AIAA 2009-566, 2009.

A. Zebib. Stability of viscous flow past a circular cylinder. J. Eng. Math., 21:155–165, 1987.

Page 167 of 167

Distribution A:  Approved for public release; distribution is unlimited.




