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1. Introduction 

Reasonable understanding of the origin and of the mathematical, physical, and 
practical roots of the Phenomenological Mechanochemistry of Damage (PMD) is 
impossible without reading the report on the early history of the PMD.1 Early 
publications are deliberately simplified to make transparent the main object and 
drama of the PMD: it is the competition between the (macroscale) elastic 
accumulated energy, from one hand, and the (nanoscale) energy, accumulated in 
the chemical bonds, on the other hand. Because the “multiscale approach” is the 
buzz word these days, I would like to emphasize that the PMD theory is essentially 
macroscopic and phenomenological approach, when treating both scales. The PMD 
is the symbiosis of the damage theory as presented by Kachanov2, and of Gibbs’3 
variational scheme in thermodynamics of heterogeneous systems as interpreted in 
the monograph.4  

Briefly speaking, the PMD theory was born out of the practical necessity to suggest 
macroscopic models describing the widespread paradoxical radial pattern of 
damage often observed in terminal ballistics. The radial cracking paradox in 
ballistics could be formally and technically treated as the manifestation of the 
typical Stress Driven Rearrangement Instabilities (SDRI) of phase interfaces. The 
SDRI mechanisms originated as the natural—both physically and 
mathematically—development of the logically rigorous variational scheme of 
Gibbs.3 It still remains not understood by the many followers of Gibbs,3 that, when 
using the Gibbs’3 methodology even in the most rigorous and consistent way, we 
arrive in 99 out of 100 not to novel physical phenomena but to novel 
physico/mathematical paradoxes.  

Discovery of paradoxes is extremely important for the progress of science in many 
respects. Philosophically speaking, we are dealing with the apophatic pattern of the 
scientific study.  

First and foremost, the SDRI is a set of thermodynamic paradoxes. Not more than 
that—but not less than that either. At the same time, the discovery of the SDRI 
paradoxes demanded essential further developments of powerful technical 
languages of compatibility conditions of singular fields as well as its 
implementation into multidimensional variational calculus. To the best of this 
author’s knowledge, still, 35 years after its appearance, these techniques have been 
mastered by less than 5 individuals worldwide. In fact, there is nothing 
paradoxical—the real pace of the progress with fundamentals is always extremely 
slow.  
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Despite the fact that SDRI of phase interfaces is a set of physical artifacts, the 
associated technical tools can and should be used in different applied areas of 
physics, mathematics, and mechanics (but, of course, not in the context of the SDRI 
of phase interfaces in crystalline materials). In particular, numerical modelers and 
computational physicists noticed in early 1990s that the SDRI, in their late stage, 
lead to the appearance of cracks. That observation seemed promising for 
developing a novel approach to formulating practically useful models of cracking.  

In the terminal ballistics and many other potential applications, to which this author, 
has no direct relation, the mathematics of the SDRI can be immediately applied to 
reproduce the patterns typical for the paradox of radial cracking. However, one has 
clearly distinguish the mathematics of the SDRI (which is absolutely correct!) from 
the physics of the SDRI of phase interfaces (which is just a physical artifact!). Each 
publication, relating to the SDRI-based approach to radial cracking, not 
emphasizing clearly and explicitly this remarkable discrepancy, would indoctrinate 
practitioners with conceptually wrong and misleading vision. It is really unwise to 
erect an important technical approach using a theoretical artifact as its basis. 

I think, the most productive strategy would be the following. The SDRI should 
preserve its status of a fundamental paradox. Then, theorists will be prompted to 
resolve this paradox—that is the primary practical role of any paradox. At the same 
time, keeping the productivity of the SDRI-based vision in mind, we have to try to 
modify somewhat both the physical model and the mathematical technique of the 
SDRI. The PMD theory is one of the possible outcomes of such an approach. The 
PMD does not mention explicitly or implicitly any phase-transformations 
whatsoever. It does not mention explicitly the SDRI whatsoever. It does not use 
directly any techniques associated with the SDRI theory and even with the Gibbs’3 
paradigm. Yet, it uses the clear variational paradigm, typical for the classical statics. 
Instead of the SDRI, it uses a more traditional concept of thermodynamic 
instability. It allows to reproduce the radial cracking pattern.  

Keeping this promising progress in mind, we might begin thinking of enriching the 
original simple PMD model with additional physical features. In this report, we 
formulate the extension of the PMD theory allowing one to include ponderomotive 
electrostatic or magnetostatic forces into the general scheme. 

In this report, we formulate the extension of the PMD theory allowing one to 
include ponderomotive electromagnetic forces in the general scheme. Our approach 
of including the ponderomotive forces is based on earlier publications.5–7 One of 
our ultimate goals, as we foresee it now, is to suggest a novel model of electric 
breakdown8,9 based on the extended PMD approach. 
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There are thousands of publications devoted to analysis of ponderomotive forces 
including classical textbooks10–13 among others. The specific feature of those 
publications is the analysis of the problem in the framework of linear elasticity. 
Toupin14 was one who started the analysis in the full nonlinear framework. In our 
opinion, he made a strategical mistake though, relying on usage of the Lagrangian 
framework. Thus, he considerably narrowed the applicability of his theory since the 
domain, occupied by the substance, typically has a negligible size as compared with 
the whole space occupied by the electromagnetic field. Unfortunately, his mistake 
was made by many of his followers. 

The approach that is presented in the work found in references 5–7 and 15 relies on 
the usage of the Eulerian description and it is free of the drawbacks mentioned in 
the Lagrangian approach of Toupin and his followers. 

2. Quasi-Static Master System for Deformable Polarizable 
Solids 

Consider a deformable polarizable substance in a thermostat maintained at fixed 
temperature T  . In what follows the parameter T   will be omitted from all the 
relationships. The free energy ψ  per unit mass is given by the following formula 

 ( , , )k
i j MU Pψ ψ κ= ∇ , (1) 

 
where kP —the polarization vector, iU —the displacement vector, Mκ —the 
damage parameters. 

This substance reacts on the external load by generating elastic strain i jU∇  and 

electric polarization .kP  Under the action of these agents the integrity bonds of the 
substance gets broken. Since there are different bonds in solids it might be 
worthwhile to use different damage parameters. In the following though, we will 
use for brevity only 1 damage parameter κ . 

We assume that the mechanical and electrostatic equilibrium in the system 
establishes much faster as compared with the time-scale of establishing “chemical” 
equilibrium. As before, by chemical equilibrium we understand the equilibrium 
with respect to variation in the magnitude of the damage parameter κ .  

We suggest analyzing a slow evolution of this system with the help of the following 
master system. This system includes the system of electrostatics, consisting of the 
bulk equations: 

 0i
i D∇ =   (2) 
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and 

 0ijk
j kz E∇ = ,  (3) 

where iE  and iD  are the electrostatic field and displacement, satisfying the identity 

 4i i iD E Pπ= + . (4) 

At the internal and external boundaries these vectors should satisfy the following 
boundary conditions: 

 0i
iE Q

+

−
  =    (5) 

and 

 0i
iD N

+

−
  =  ,  (6) 

where iQ  and iN  are the tangent and normal vectors to the boundary. 

The bulk equations of the electrostatic and mechanical equilibrium read 

 ii E
P
ψρ ∂

=
∂

  (7) 

and 

 0mk
m∇ ℵ = ,  (8) 

where the Aleph tensor mkℵ is defined as follows: 

 ( ) ..
1 1 1

4 8 4
mk k k mk l l m k

j j l l
m j

U z E D E E D E
U
ψρ δ

π π π
∂  ℵ ≡ −∇ − − + ∂∇  

  (9) 

(see references 5–7 and 15). 

By definition, at the coherent interface the displacement vector should be 
continuous 

 0iU
+

−
  =    (10) 

together with normal components of the Aleph tensor 

  0mk
mN

+

−
 ℵ =  .  (11) 

The same condition (Eq. 11) should be satisfied at the interface substance/vacuum 
(obviously, the free energy of the vacuum should be ignored). 
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At last, we postulate the following equation for the rate of damage: 

 ( ) ( , , ), k
i ji

i

U Pz t
V K

t
ψ κκ

κ
κ

∂ ∇∂
+ ∇ = −

∂ ∂
 , (12) 

where ( ),iV z t  is the velocity field of substance satisfying the identity 

 ( ) ( ),i
j i i

j j

U z t
V U

t
δ

∂
= −∇

∂
.  (13) 

Here K  is the rate of kinetics state function. It should be chosen based on existing 
experimental data. The only universal constraint on it is the positivity: 0K > . Also, 
from comparison with experimental data one has to choose the free-energy density 
function ( , , ).k

i jU Pψ ψ κ= ∇  Of course, it is natural to demand that the system 

Equations 1–13 obeys the laws of thermodynamics. This demands imposing some 
constraints on the admissible functions ( , , ).k

i jU Pψ ψ κ= ∇  These constraints are 

known as thermodynamic inequalities. Still, a lot of freedom remains in the choice 
of ( , , ).k

i jU Pψ κ∇  Thermodynamics is helpless in generating further constraints. 

3. The PMD of Nonpolarizable Deformable Solids 

For this special case, the energy density does not depend upon the polarization 
vector 

 ( , )i jUψ ψ κ= ∇   (14) 

the general master system reduces to the following: 

 0mk
m∇ ℵ = ,  (15) 

 
where the Aleph tensor mkℵ  reduces to the following form: 

 ( )mk k k
j j

m j

U
U
ψρ δ∂

ℵ ≡ −∇
∂∇

,  (16) 

which is nothing but the Cauchy stress tensor in the Eulerian variables (see 
reference 4 and the references therein). 

By definition, at the coherent interface the displacement vector should be 
continuous 

 0iU
+

−
  =    (17) 
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together with normal components of the Aleph tensor  

 0mk
mN

+

−
 ℵ =  .  (18) 

The same condition (Eq. 11) should be satisfied at the interface substance vacuum 
(the free energy of the vacuum should be ignored). 

And finally, we postulate the following equation for the rate of damage: 

 
( ) ( , ), i ji

i

Uz t
V K

t
ψ κκ

κ
κ

∂ ∇∂
+ ∇ = −

∂ ∂
 , (19) 

where ( ),iV z t  is the velocity field of substance satisfying the identity 

 ( ) ( ),i
j i i

j j

U z t
V U

t
δ

∂
= −∇

∂
.  (20) 

Thus, in addition to the exact nonlinear master system of the PMD in the 
Lagrangian framework16–18, we attained the exact nonlinear master system of the 
PMD in the Eulerian framework. 

4. Quasi-Static Master System for Rigid Polarizable Solids 

The above system remains meaningful even in the case of rigid (i.e., 
nondeformable) substances. In this case, the general master system for deformable 
polarizable substances reduces to the following: 

 ( , )kPψ ψ κ=   (21) 

 0i
i D∇ =   (22) 

 0ijk
j kz E∇ = ,  (23) 

where iE  and iD  are the electrostatic field and displacement, satisfying the identity 

 4i i iD E Pπ= + .  (24) 

At the internal and external boundaries these vectors should satisfy the following 
boundary conditions: 

 0i
iE Q

+

−
  =    (25) 

 

 0i
iD N

+

−
  =  ,  (26) 

where iQ  and iN  are the tangent and normal vectors to the boundary. 
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The bulk equations of the electrostatic and mechanical equilibrium read 

 ii E
P
ψρ ∂

=
∂

.  (27) 

Also, we postulate the following equation for the rate of damage: 

 
( ), ( , )kz t PK
t

κ ψ κ
κ

∂ ∂
= −

∂ ∂
  (28) 

In this case, the density ρ  in Eq. 27 is just an unchangeable constant. 

5. The PMD for the Linear Isotropic Substances 

Consider the simplest free energy density of rigid dielectrics 

 ( ) ( ) ( )2,
1

k j k
jkP z P P Cπψ κ κ

ε κ
= +

−
.  (29) 

Then, thermodynamics imply 

 
( ) ( )

( ) ( )
( ) ( )

4, ,
1

4
, 4

1

i k i

i k i i i i

E P P

D P E P P E

πκ
ε κ

πε κ
κ π ε κ

ε κ

=
−

≡ + = =
−

 . (30) 

The electrochemical master system reads 

 ( ) ( )1
8

j
jK E E C

t κ κ
κ ε κ κ

π
∂  = − + ∂  

, (31) 

and 

 ( ) 0i
i Eε∇ =  . (32) 

Let us choose the simplest model 

 ( ) ( ) ( ) ( )2
1 1 ,

2
C χε κ ε ακ κ κ κ= + − = −  .  (33) 

Then, the system can be rewritten as 

 ( )1 1
8

j
jE E

K t
κ ε α χ κ κ

π
∂

= − −
∂

  , (34) 
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and 

 ( )( ){ }1 1 0i
i Eε ακ∇ + − = .  (35) 

6. Spatially Uniform Equilibrium Configuration 

 ( )4
j

jE Eε α χ κ κ
π

∗ ∗ ∗= −


   (36) 

implying 

 
4

j
jE Eε ακ κ

πχ
∗ ∗ ∗= +


 , (37) 

and 

 ( )
2 2

1 1
4

j
jE Eε αε ε ακ

πχ
∗ ∗ ∗= + − −


  .  (38) 

For negligibly small initial damage κ  we get, respectively, the following values of 
the damage and electric permittivity 

 
4

j
jE Eε ακ

πχ
∗ ∗ ∗=



 , (39) 

and 

 
2 2

1
4

j
jE Eε αε ε

πχ
∗ ∗ ∗= + −


  . (40) 

 

7. System of Small Disturbances in Vicinity of Spatially 
Uniform Configuration 

We obtain the system of small disturbances in vicinity of the uniform equilibrium 
configuration by linearizing the bulk master system (Eqs. 31 and 32). We get 

 1 1
4

j
jE E

K t
κ ε α χκ

π
∗∂

= −
∂

   , (41) 

and 

 ( ) 0i i
i E Eακε ε∗ ∗∇ − + =  . (42) 
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In 1-dimensional case the system (Eqs. 41 and 42) reads, respectively, as 

 1
4

E E
K t

κ ε α χκ
π

∗∂
= −

∂

   , (43) 

and 

 ( )E E A tακε ε∗ ∗− + =  .  (44) 

We are looking for solutions of the linear system (Eqs. 43 and 44) in the form 

 ( ) ( ), , ,t ikx t ikxx t Pe E x t Qeη ηκ + += = ,  (45) 

where k  is the spatial wave-vector, η  is the rate of growth of small disturbances, 
whereas P  and Q  are constants. 

Substituting Eq. 45 in Eqs. 43 and 44, we get  

 0
4

P E Q
K
η ε αχ

π
∗ + − = 

 



, (46) 

and 

 0E P Qαε ε∗ ∗− = .  (47) 

The linear system (Eqs. 47 and 48) with respect to the constants P  and Q  has 
nonvanishing solutions only when its determinant vanishes. Equating the 
determinant to zero we arrive at the secular equation: 

 
2 2

2 0
4

E
K
η ε αχ ε

π
∗ ∗ + − = 

 



. (48) 

In view of Eq. 47, we arrive at the following formula for the rate η  of the bulk 
disturbances: 

 
2 2

2

4
E

K
η ε αχ

πε
∗

∗= − +


. (49) 

When the rate of growth η  is less than zero the disturbances decay exponentially. 
When η  is greater than zero they grow exponentially in time. Because of this 
exponential growth the amplitudes of the disturbances become so big that the 
linearization becomes invalid. However, the linear analysis, on its own, allows to 
conclude that the uniform configuration becomes unstable. 
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The formula in Eq. 49 clearly demonstrates the competition in the influences 
between the chemistry of the bond’s damage and ponderomotive forces. The 
chemistry of the bond’s damage produces the stabilizing effects, whereas the 
ponderomotive forces try to destabilize the system by enhancing the damage. We 
call as critical the electric field at which the rate η  crosses the zero (neutral) value. 
Using Eq. 50 we arrive at the following formula of the critE  

  ( )( )2
2 2

2 1 1critE πχ ε ακ
ε α

= + − 


.  (50) 

In the case of the small initial damage κ   the last formula reads 

 2
2 2

2 1
critE π εχ

α ε
+

=



. (51) 

8. Conclusions 

We discussed a phenomenological variational approach to the problems of 
electrostatics and magnetostatics. Although we explicitly focused on electrostatic 
heterogeneous systems, almost all of the presented results are valid for 
magnetostatics. Our approach is close to the Gibbs’3 minimum energy approach, as 
it was interpreted in Grinfeld 1994.4 

Although the suggested approach is based on logically consistent derivation from 
the Gibbs’3 energy principle, its implications should not be treated as reliable 
physical facts. Potentially, the discrepancy of many of those implications against 
experiments and observations should be treated as paradoxes. We believe that it is 
important to remember that paradoxes always played an extremely important role 
in the development of fundamentals of physical sciences. 
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