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A New Fast, Accurate and Non-Oscillatory Numerical Approach for Wave Propagation 

Problems in Solids: Application to High-Frequency Pulse Propagation in the Hopkinson 

Pressure Bar 

Alexander Idesman 
Texas Tech University 

   Final report 

The main accomplishments with the technical details have been reported in the archival 
publications. Therefore, below we will list the main findings with the corresponding figures from 
our presentation at the 2015 Program Review Meeting and short explanations. We also include 
the references to our publications for the derivations and the detailed explanations.   

Main accomplishments 

1. A two-stage time-integration technique for elastodynamics and acoustic wave

propagation problems 

The application of the finite elements or any other space-discretization method to the partial 
differential equations of linear elastodynamics and acoustics leads to a system of ordinary 
differential equations in time, see Fig. 1.  

Fig. 1 
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Fig. 2 

The main issues with the integration of this system of ordinary differential equations are listed in 
Fig. 2. The most important issue is related to divergent results at time and mesh refinements 
(e.g., below see Fig. 7 with no filtering). To resolve these issues we have developed a two-stage 
time-integration approach consisting of the stage of basic computations and the filtering stage. 
The idea of the two-stage time-integration procedure is very simple. Because for the ordinary 
differential equations of linear elastodynamics and acoustics there is no interaction between 
different modes during time integration (due to modal decomposition they are integrated 
independently and do not affect one another, see Fig.3), the most accurate time-integration 
method (without numerical dissipation or artificial viscosity) should be used for basic 
computations (one stage), especially for a long-term integration. This means that all modes 
(including high modes) are integrated very accurately, and the solution includes high-frequency 
oscillations. Then, for damping out high spurious (inaccurate) modes, a time-integration method 
with large numerical dissipation (or with artificial viscosity) can be used as a pre-, or post-
processor (another stage). This method can be considered a filter of high modes; see Fig. 4. 
Usually, a small number of time increments (we always use 5 positive plus 5 negative time 
increments) is necessary for the pre-, or post-processing (filtering) stage, with no error 
accumulation at low modes. This technique yields no error accumulation due to numerical 
dissipation (or artificial viscosity) at the stage of basic computations and does not require any 
guess for the selection of numerical dissipation or artificial viscosity as in the existing 
approaches. One of the impotent components of the new numerical approach is the quantification 
of the range of spurious frequencies. Using the dimensionless analysis of the 1-D impact wave 
propagation problem (all frequencies are excited for this problem), defining the amplitudes of 
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spurious frequencies as the difference between the exact and numerical velocities before and 
after the wave front for the 1-D problem, we have  

 
Fig. 3 

 
Fig. 4 
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Fig. 5 

found the analytical expression for the range of spurious frequencies in terms of the size of time 
increments at the filtering stage. Because the range of spurious frequencies depends on the mesh 
size and the observation time and is independent of the initial and boundary conditions, the 
analytical expression for the range of spurious frequencies is applicable to all elastodynamics 
and acoustics problems. This expression includes two parameters a1 and a2 that depend on the 
type and the order of the space discretization method; see Fig.  5. The values of the parameters a1 
and a2 for the low- and high-order finite elements, spectral elements, isogeometric elements and 
the linear finite elements with reduced dispersion are determined and shown in Fig. 6. It should 
be mentioned that the two-stage time-integration approach with the filtering stage yields accurate 
convergent results at time and mesh refinements; e.g., see the numerical results for the 2-D 
impact problem in Fig. 7. Without the filtering stage, the error in velocities (or stresses) may 
exceed 300% and more; see Fig. 7. 
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Fig. 6 

Fig. 7 
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Our publications with a detailed description of the results presented above. 

1. Idesman A.V. , Accurate finite element modeling of wave propagation in composite and
functionally graded materials, Composite Structures, 2014, 117, pp. 298-308.

2. Idesman A.V., Pham D., Foley J., Schmidt M. Accurate solutions of wave propagation
problems under impact loading by the standard, spectral and isogeometric high-order
finite elements. Comparative study of accuracy of different space-discretization
techniques, Finite Elements in Analysis and Design, 2014, 88, pp. 67-89.

3. Idesman A.V., Pham D. , Accurate finite element modeling of acoustic waves, Computer
Physics Communications, 2014, 185, pp. 2034-2045.

4. Idesman A.V., Mates S. P., Accurate finite element simulation and experimental study of
elastic wave propagation in a long cylinder under impact loading, International Journal of
Impact Engineering, 2014, 71, pp. 1-16.

5. Idesman A.V., Pham D.,  Finite element modeling of linear elastodynamics problems
with explicit time-integration methods and linear elements with the reduced dispersion
error, Computer Methods in Applied Mechanics and Engineering, 2014, 271 pp. 86-108.

2. New finite elements with the reduced dispersion error for explicit time-integration

methods 

We have developed two finite element techniques with reduced dispersion for linear 
elastodynamics that are used with explicit time-integration methods. These techniques are based 
on the modified integration rule for the mass and stiffness matrices and on the averaged mass 
matrix approaches (see Fig. 8) that lead to the numerical dispersion reduction for linear finite 
elements from the second order to the fourth order. The analytical study of numerical dispersion 
for the new techniques has been carried out in the 1-D, 2-D and 3-D cases. The numerical study 
of the efficiency of the dispersion reduction techniques includes two-stage time-integration 
approach with the filtering stage that quantifies and removes spurious high-frequency 
oscillations from numerical results. We have found that in contrast to the standard linear 
elements with explicit time-integration methods and the lumped mass matrix, the finite element 
techniques with reduced dispersion yield more accurate results at small time increments (smaller 
than the stability limit) in the 2-D and 3-D cases. The recommendations for the selection of the 
size of time increments have been suggested. The new approaches with reduced dispersion can 
be easily implemented into existing finite element codes and lead to significant reduction in 
computation time by a factor of 10 − 1000 and more compared with the standard finite element 
formulations at a given accuracy. We should also mention that the formulations with reduced 
dispersion and the explicit time-integration methods can be directly and efficiently used 
(practically, without modifications) on parallel computers because the numerical algorithm 
includes the matrix and vector multiplications and can be performed at the element level without 
the solution of a system of algebraic equations. 
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Fig. 8 

 
Our publications with a detailed description of the results presented above. 

 
 

1. Idesman A.V., Pham D.,  Finite element modeling of linear elastodynamics problems 
with explicit time-integration methods and linear elements with the reduced dispersion 
error, Computer Methods in Applied Mechanics and Engineering, 2014, 271 pp. 86-108. 

2. Idesman A.V., Pham D., Foley J., Schmidt M. Accurate solutions of wave propagation 
problems under impact loading by the standard, spectral and isogeometric high-order 
finite elements. Comparative study of accuracy of different space-discretization 
techniques, Finite Elements in Analysis and Design, 2014, 88, pp. 67-89. 

3. Idesman A.V., Pham D. , Accurate finite element modeling of acoustic waves, Computer 
Physics Communications, 2014, 185, pp. 2034-2045. 

 
 
3. Comparison of accuracy of different space-discretization techniques used for wave 

propagation 

 
One issue with numerical solutions of wave propagation problems solved by different space-
discretization techniques is the presence of spurious high-frequency oscillations. The range of 
spurious high frequencies is different for different space-discretization methods. We have not 
seen in the literature the numerical approaches that quantify and filter out all spurious 
oscillations from numerical solutions even solved by the popular space-discretization techniques 
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such as the standard, spectral and isogeometric high-order finite elements. We have resolved this 
issue by the application of the two-stage time-integration approach. 
Another important result is related to the comparison of accuracy of different space-
discretization techniques used for the solution of transient acoustics and elastodynamics 
problems. One way to compare the accuracy of these techniques is based on the evaluation of the 
numerical dispersion error. However, this error is defined for one selected mode of the 
elastodynamics system of equations and does not prescribe the combined effect of all modes on 
the accuracy. Moreover, the dispersion error does not estimate the effect of the observation time  
on the accuracy of numerical results. Therefore, for the comparison of the accuracy of different 
techniques, we solved the 1-D impact problem for which all modes are excited and which has a 
very simple analytical solution at short and long observation times. We should also mention that 
because the computational costs of different space-discretization techniques at the same number 
of degrees of freedom (dof) are different, then it is necessary to compare the efficiency of these 
techniques by the estimation of the computational costs at a given accuracy. The findings can be 
summarized as follows. 
 

- The two-stage time-integration technique yields accurate numerical results for 
elastodynamics problems solved with different space-discretization approaches.  For 
example, due to the spurious oscillations, we have not seen in the literature the accurate 
numerical solutions of elastodynamics problems at impact loading (or high-frequency 
loading) for the spectral and isogeometric elements as well as for the standard high-order 
finite elements even in the 1-D case. The applicability of the new approach to different 
space-discretization techniques is based on the fact that for all these techniques, lower 
frequencies are resolved more accurately than higher frequencies. Then, by the 
quantification of the inaccurate high frequencies (in terms of the coefficients a1 and a2) 
and by their filtering at the filtering stage, we obtain accurate numerical results without 
the spurious oscillations; see Figs. 9-10 (after filtering). The new coefficients a1 and a2 
define different ranges of the spurious (inaccurate) frequencies for different space-
discretization methods and are used for the filtering of the spurious oscillations in 
numerical solutions of the 1-D as well as multi-dimensional elastodynamics problems.  

 
- As expected, at the same number of dof, the increase in the order of the standard finite 

elements, the spectral elements and the isogeometric elements leads to the increase in the 
accuracy of numerical results (however, the computational costs of higher-order elements   
are greater than that of lower-order elements at the same dof); see Figs. 9-10.  

 
- Except the known case of the linear elements with the lumped mass matrix, other space-

discretization techniques considered require small time-increments for time integration at 
the stage of basic computations. Moreover, the time increments should be decreased with 
the increase in the observation time. Even if for explicit time-integration methods the 
time increments close to the stability limit may yield accurate results at a small 
observation time, the time increments should be significantly decreased with the increase 
in the observation time; see Fig. 11. For example, for the 2nd-order time-integration 
methods, the size of time increments should be inversely proportional to the square root 
of the observation time (as predicted by the exact time error estimator developed in our 
paper); see Fig. 11. Similar to explicit time-integration methods, comparably small time  
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- 
- Fig. 9 

Fig. 10 
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Fig. 11 

 
increments should be used with implicit time-integration methods for the 1-D impact 
problem. According to our results, the typical statement in finite element textbooks, that 
for explicit methods a time increment should be close to the stability limit is not true, 
because the size of a time increment should depend on the observation time and should 
be much smaller than the stability limit at large observation times. 

 
- The comparison of the space-discretization techniques based on the non-diagonal mass 

matrices (used with implicit time-integration methods) show that at the same number of 
dof, the isogeometric elements yield more accurate results compared with the standard 
high-order finite elements and the linear elements with reduced dispersion; see Fig. 9. 
However, when we compare the computational costs at a given accuracy, the numerical 
results show that the linear elements with reduced dispersion are more computationally 
efficient than other space-discretization techniques. We should also mention that 
compared with the isogeometric 3rd-order elements, the computational efficiency of the 
linear elements with reduced dispersion decreases with the increase in the observation 
time. 

 
- The comparison of the space-discretization techniques based on the diagonal mass 

matrices (used with explicit time-integration methods) show that at the same number of 
dof, the spectral high-order  elements yield more accurate results compared with the 
standard linear and quadratic   finite elements and the linear elements with reduced 
dispersion; see Fig. 10. However, when we compare the computational costs at a given 
accuracy, the numerical results show the linear elements with reduced dispersion are  
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Fig. 12 

more computationally efficient than the spectral high-order elements. We should also 
mention that compared with the spectral 10th-order elements, the computational 
efficiency of the linear elements with reduced dispersion decreases with the increase in 
the observation time. 

- It is interesting to note that the size of time increments at the filtering stage of the two-
stage time-integration technique (this size is calculated according the special formulas) 
defines the range of actual frequencies used in numerical solutions and can serve as a 
quantitative measure for the comparison and the prediction of the accuracy and the 
computational efficiency of different space-discretization techniques; see Fig. 12. 

- The estimation and comparison of accuracy of different space-discretization techniques 
obtained for impact problems for which all frequencies of the semi-discrete equations are 
excited are also valid for any transient acoustics or elastodynamics problem for which 
only a part of frequencies of the semi-discrete equations is excited. We showed that the 
two-stage time-integration approach can be equally applied to wave propagation 
problems under impact loading as well as under low- and high-frequency loading (the 
same range of spurious high-frequencies should be filtered independent of applied 
loading). The comparative study of other space-discretization techniques (similar to that 
considered here) will help us determine the most computationally efficient technique for 
elastodynamics and acoustics. 
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Our publications with a detailed description of the results presented above. 

1. Idesman A.V., Pham D., Foley J., Schmidt M. Accurate solutions of wave propagation
problems under impact loading by the standard, spectral and isogeometric high-order
finite elements. Comparative study of accuracy of different space-discretization
techniques, Finite Elements in Analysis and Design, 2014, 88, pp. 67-89.

2. Idesman A.V., Pham D. , Accurate finite element modeling of acoustic waves, Computer
Physics Communications, 2014, 185, pp. 2034-2045.

3. Idesman A.V., Pham D.,  Finite element modeling of linear elastodynamics problems
with explicit time-integration methods and linear elements with the reduced dispersion
error, Computer Methods in Applied Mechanics and Engineering, 2014, 271 pp. 86-108.

4. Propagation of acoustic waves

We have analyzed in more detailed the application of the new numerical approach to propagation 
of acoustic waves. For the space-discretization, we have used the standard linear finite elements 
as well as the linear elements with reduced dispersion. However, any other space-discretization 
techniques such as the spectral elements, the isogeometric elements, the boundary element 
method, different meshless methods and many others can be applied with the new approach 
suggested. The new findings can be summarized as follows. 

In contrast to the results known from the literature, we use the dispersion analysis of the 
reduced dispersion technique and the standard finite element approach for transient 
acoustic problems in order to determine the effect of the size of time increments on the 
dispersion error. We have found that for linear finite elements the decrease in the size of 
time increments leads to the increase in the dispersion error for both techniques. 
Therefore, the time increments close to the stability limit in basic computations yield the 
most accurate numerical solutions. We should mention that these results are totally 
different from those for multi-dimensional elastodynamics problems for which smaller 
time increments in basic computations yield more accurate solutions for the linear 
elements with reduced dispersion.  

- We have shown that for a suddenly applied load  even the reduced dispersion technique 
with the time increments close to the stability limit leads to divergent results at mesh 
refinement; e.g., see Fig 14 (after basic computations). This is explained by the increase 
in the amplitudes of spurious oscillations at mesh refinement. Therefore, in order to get 
convergent results, we have modified and applied the two-stage time integration 
technique to acoustic problems. This technique allows the quantification of the range of 
spurious oscillations and their filtering from numerical solutions for different space-
discretization methods at the filtering stage. For the first time we have shown that the 
application of the two-stage time integration approach yields accurate convergent results  
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Fig. 13 

Fig. 14 
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at mesh refinement; e.g., see 14 (after filtering). It is also interesting to note that along 
with the damping of spurious oscillations, the filtering stage significantly reduces the 
numerical anisotropy of solutions; e.g., see Fig. 13. 

- In paper by B. Yue, M.N. Guddati, J. Acoust. Soc. Am. 118 (2005) 2132–2141, the 
reduced dispersion technique and the standard technique with the lumped mass matrix are 
compared at the same time increments (corresponding to the Courant number τ=0.75) 
which are close to the stability limit for the reduced dispersion technique but are smaller 
than the stability limit (τ=1) for the standard approach. Therefore, this comparison cannot 
be considered as the illustration of the advantage of the reduced dispersion technique 
because the time increments close to the stability limit (τ=1) significantly improve the 
accuracy of the standard approach. We have compared these techniques for the time 
increments close to the stability limit for each technique. It is interesting to note that 
along the Cartesian axes, the reduced dispersion technique and the standard technique 
yield approximately the same accuracy. However, the numerical solution for the standard 
technique is inaccurate in other directions as predicted by the dispersion analysis. After 
the filtering of spurious oscillations in all directions, we showed that the reduced 
dispersion technique is much more accurate than the standard approach.  

Our publications with a detailed description of the results presented above. 

1. Idesman A.V., Pham D. , Accurate finite element modeling of acoustic waves, Computer
Physics Communications, 2014, 185, pp. 2034-2045.

2. Idesman A.V., Pham D., Foley J., Schmidt M. Accurate solutions of wave propagation
problems under impact loading by the standard, spectral and isogeometric high-order
finite elements. Comparative study of accuracy of different space-discretization
techniques, Finite Elements in Analysis and Design, 2014, 88, pp. 67-89.

3. Idesman A.V., Pham D.,  Finite element modeling of linear elastodynamics problems
with explicit time-integration methods and linear elements with the reduced dispersion
error, Computer Methods in Applied Mechanics and Engineering, 2014, 271 pp. 86-108.
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5. Wave propagation in inhomogeneous materials. 

 
 
We have extended the new technique to wave propagation in inhomogeneous materials including 
composite and functionally graded materials and we have shown the main differences for the 
modeling of wave propagation in inhomogeneous and homogeneous materials. Below we will 
summarize the main findings.  
 
 

- For the special design of finite element meshes in the 1-D case, we can obtain very 
accurate results for wave propagation problems in inhomogeneous materials if we use the 
standard linear elements with the lumped mass matrix and the explicit central difference 
method with the time increments equal to the stability limit.  In this case, there are no 
spurious oscillations in the numerical solutions after basic computations (the filtering 
stage is not required) and a discontinuity in a solution (if presented) is spread over three 
nodes. In contrast to the finite element formulations with graded finite elements used in 
the literature for such problems, we use a piecewise constant variation of materials 
properties (they are constant within any finite element). Nevertheless, even for 
functionally graded materials the numerical results converge very fast to the exact 
solution at mesh refinement. It is interesting to mention that in the 1-D case the analytical 
solution to wave propagation in functionally graded materials can be obtain by the 
approach developed by Chiu T-C, Erdogan F. (One-dimensional wave propagation in a 
functionally graded elastic medium. J Sound Vib 1999;222(3):453–87). However, this 
analytical solution is based on the infinite series and may lead to spurious oscillations due 
to Gibbs phenomena when a finite number of terms is used in the series. In contrast to 
this case, the numerical solutions based on the special non-uniform meshes with standard 
linear finite elements, on the lumped mass matrix and on the explicit central-difference 
method with the time increments equal to the stability limit do not include spurious 
oscillations at any number of degrees of freedom. They can be used as reference solutions 
for testing computer codes as well as for the analysis of wave propagation phenomena 
under high-frequency and impact loadings.  

 
- Except one case described above, in all other cases (e.g., uniform meshes or the non-

lumped mass matrix or smaller time increments or other time-integration methods or 
high-order finite elements or the 2-D and 3-D problems etc.) numerical solutions 
obtained by existing methods may include large spurious high-frequency oscillations 
especially under impact loading. However, the new numerical approach based on the 
two-stage time-integration technique (with basic computations and the filtering stage) 
quantifies and removes the spurious oscillations for these cases. For the first time we 
have obtained accurate finite element solutions of wave propagation problems in 
composite and functionally graded materials without spurious oscillations and without the 
interaction between user and computer code; see Figs. 15-17. 
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Fig. 15 

Fig. 16 
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Fig. 17 

- In many known papers on the simulation of the dynamic response of structures made of 
inhomogeneous materials, uniform meshes or meshes independent of material properties 
are used with the standard approaches with explicit or implicit time-integration methods. 
We have shown that despite uniform meshes are justified for homogeneous materials, 
non-uniform meshes with the constant ratios of the local wave velocity to the size of the 
finite element yield much more accurate results than uniform meshes do; see Figs. 15-16.  

- We have shown that for inhomogeneous materials (similar to homogeneous materials), 
the finite element formulation with reduced dispersion (based on the averaged mass 
matrix and the linear elements) yields much more accurate results than the standard 
formulations with the lumped or consistent mass matrices do; see Figs. 15-16.  There is 
one exception for the case of the lumped mass matrix with the non-uniform mesh with 
linear elements and the explicit central difference method with the time increments equal 
to the stability limit. However, this exception is valid in the 1-D case only.  

- We have shown  that the size of time increments at the filtering stage of the two-stage 
time-integration technique defines the range of actual frequencies used in numerical 
solutions and can serve as a quantitative measure for the comparison and the prediction of 
the accuracy  and the computational efficiency of different space-discretization 
techniques used for wave propagation in inhomogeneous materials. The smaller size of 
time increments at the filtering stage calculated according to the special formulas 
corresponds to more accurate numerical solutions. 
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Our publications with a detailed description of the results presented above. 

1. Idesman A.V. , Accurate finite element modeling of wave propagation in composite and
functionally graded materials, Composite Structures, 2014, 117, pp. 298-308.

6. Propagation of high-frequency pulses in the Hopkinson Pressure Bar

We have considered the modeling of wave propagation in the components of the Hopkinson Bar.  
For the first time, detailed accurate numerical solutions for elastic wave propagation in a long 
axisymmetric elastic bar under impact loading are obtained using the new finite element 
technique. In contrast to known numerical techniques, the new numerical approach quantifies 
and removes spurious high-frequency oscillations which may invalidate numerical results in 
impact loading simulations. The comparison of the accurate experimental results (by Dr. Mates 
from NIST) for the impact of striker and incident bars with the corresponding accurate numerical 
results (see Fig. 18) allows us to explain some details of elastic wave propagation in long bars.  

Fig. 18 

For example, due to the absence of very high frequencies in the obtained experimental results, 
the mathematical formulation of the problem should include physical damping for the 
corresponding range of high frequencies. This range can be defined by the filtering stage of the 
new approach in terms of the number of finite elements along the radial direction of the bar. By 
the variation of this number we can fit the experimental curves with the numerical results 
obtained by the new numerical technique. However, for the accurate numerical solution of the 
impact problem with zero physical damping, the number of elements in the radial direction 
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should be large. By the comparison of the numerical and experimental data, we can accurately 
determine the longitudinal wave velocity from the experiments. The accurate numerical solutions 
also allow the analysis of the uniformity of the different strain and velocity components across 
the radius at different distances from the impact face. The validity of some assumptions used in 
the 1-D theory for wave propagation in long bars has been also checked by the use of the 
accurate numerical solution. We have also shown that at the elastic impact the known dispersion-
correction technique used for the description of the shape of the wave pulse at different locations 
along the axisymmetric bar is inaccurate for the prediction of pulses close to the impact face. 

Fig. 19 

We have also simulated the experiments on wave propagation in long bars under impact loading. 
These experimental data have been provided by the group of Dr. Foley from AFRL/RWMF, 
Eglin. The experimental results included the evolution of the axial velocity at four gages located 
along an incident bar; see Figs. 19, 20.   In order to simplify the simulations, we have not 
considered the contact interaction of a striker bar with the long incident bar. The action of the 
striker bar we have replaced by the following boundary conditions at the impact face:  the normal 
velocity vz(r,0,t) = V0(t) and zero tangential tractive forces are applied until time t < t2 (we 
matched the numerical and experimental results for the first oscillation in gage 1 by an 
appropriate selection of V0(t); see Fig. 19) and the zero normal and tangential tractive forces are 
applied after time t > t2. The problem was solved by the new numerical technique. We have 
obtained a surprisingly good agreement between the experiments and the calculations not only 
for large oscillations but also for the following small oscillations; see color and black curves in 
Fig. 20. We should emphasize that in our approach we assigned the velocity V0(t) at the impact 
face that allowed us to fit the experimental and numerical results just for the first big oscillations 
in gage 1 for a short time;  see Fig. 19. Then, all other numerical results at time t > 0.00015 s in 
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gage 1 and the results in gages 2-4 represent an accurate numerical solution of the wave 
propagation problem for the given boundary conditions; see Fig. 20. By the numerical modeling 
we could explain such interesting experimental results as a small increase in the amplitudes of 
big oscillations as well as the appearance of new small oscillations with the increase in the 
observation time (the effect of high frequencies and physical dispersion);  see Fig. 20.   

Fig. 20 

Our publications with a detailed description of the results presented above. 

1. Idesman A.V., Mates S. P., Accurate finite element simulation and experimental study of
elastic wave propagation in a long cylinder under impact loading, International Journal of
Impact Engineering, 2014, 71, pp. 1-16.

2. Idesman A.V., Foley J., Dodson J. Effect of Radial Confinement on Wave Propagation
and Vibrational Response in Bars, Experimental Mechanics, 2015 (in preparation).
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Publications 

1. Idesman A.V. , Accurate finite element modeling of wave propagation in composite and
functionally graded materials, Composite Structures, 2014, 117, pp. 298-308.

2. Idesman A.V., Pham D., Foley J., Schmidt M. Accurate solutions of wave propagation
problems under impact loading by the standard, spectral and isogeometric high-order
finite elements. Comparative study of accuracy of different space-discretization
techniques, Finite Elements in Analysis and Design, 2014, 88, pp. 67-89.

3. Idesman A.V., Pham D. , Accurate finite element modeling of acoustic waves, Computer
Physics Communications, 2014, 185, pp. 2034-2045.

4. Idesman A.V., Mates S. P., Accurate finite element simulation and experimental study of
elastic wave propagation in a long cylinder under impact loading, International Journal of
Impact Engineering, 2014, 71, pp. 1-16.

5. Idesman A.V., Pham D.,  Finite element modeling of linear elastodynamics problems
with explicit time-integration methods and linear elements with the reduced dispersion
error, Computer Methods in Applied Mechanics and Engineering, 2014, 271 pp. 86-108.

6. Idesman A.V., A New Numerical Technique with Reduced Dispersion for Wave
Propagation Problems. Application to Isogeometric Elements, Computer Methods in
Applied Mechanics and Engineering, 2015, pp. 1-21 (under review).

7. Idesman A.V., Dey A., A new approach for the reduction of the dispersion error in high-
order numerical methods for wave propagation problems, Computational Physics, 2015
(under  review)

8. Idesman A.V., Foley J., Dodson J. Effect of Radial Confinement on Wave Propagation
and Vibrational Response in Bars, Experimental Mechanics, 2015 (in preparation).

9. Idesman A.V., Bhuiyan A., Foley J. Accurate Finite Element Modeling of Stresses for
Stationary Cracks Under Impact Loading, International Journal of Solids and Structures,
2015 (in preparation).

Presentations 

• Semi-plenary lecture: at the 5th ECCOMAS Thematic Conference on Computational
Methods in Structural Dynamics and Earthquake Engineering, Greece, May 26, 2015.

• Three Keynote lectures: at the 11th World Congress on Computational Mechanics

(July 21, 2014)
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 and 13th U.S. National Congress on Computational Mechanics (July 24,
2013, July 29, 2015),

• Twelve Invited lectures: U.S. Army Engineer Research and Development Center,

Vicksburg, MS (August 20, 1015), Air Force Research Lab, Eglin (July 2, 2015 and
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June 21, 2014), ABAQUS, Providence (October 10, 2014), Stanford University (March 
31, 2015), University of California, Berkeley (March 30, 2015), U.S. Army Research 

Laboratory, Aberdeen (May 20, 2014), University of Texas at Austin (March 27, 
2014), U.S. Army Engineer Research and Development Center, Hanover, NH 

(August 7, 2013), Naval Undersea Warfare Center, Newport, RI (August 6, 2013), Los 

Alamos National Laboratory (June 25, 2013), Ruhr University, Bochum, Germany, 
(January 7, 2013) 

• Organizer (co-organizer) of  five mini-symposia at: the 12
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 and 13th U.S. National

Congress on Computational Mechanics (July  2013 and July 2015), the 11th World

Congress on Computational Mechanics, Spain (July 2014), the 4
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