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Abstract

We consider the propagation of short, intense laser pulses through media consisting

of two-level and three-level atoms. We derive the coupled Maxwell-Bloch (MB) equa-

tions, which describe such propagation. Many different physical situations have been

studied by analyzing various limiting cases of these equations. Most of the recent work

has relied on steady-state or adiabatic assumptions to simplify the analysis of the MB

equations. However rapid progress has been made in recent years in developing ana-

lytic solution techniques that do not require these simplifications, such as Bäcklund

transformations, inverse scattering methods, and Darboux transformations. We use

the Bäcklund solution method, to derive soliton solutions to the MB equations for var-

ious physical situations of interest in multi-level media. In addition we examine the

experimental applicability of the exact solutions by numerically integrating the MB

equations for more physically realistic pulse shapes and media preparations that may

not permit analytic solutions. In two-level inverted gain media, we derive a pulse solu-

tion with group velocity exceeding the speed of light in vacuum (fast light). Numerical

results confirm that such a pulse can exhibit fractional peak advances exceeding one

pulse width despite spontaneous instabilites such as superfluorescence and stimulated

instabilities related to the McCall-Hahn area theorem. In three-level Λ type media we

derive soliton solutions for two pulses propagating through a medium prepared in an

arbitrary mixed-state of the two ground states. We include a tunable parameter in the

solutions that allows one to vary the medium between completely mixed state and com-

pletely pure-state superpositions known as “phaseonium”. This flexibility allows one

to study the interplay between stimulated Raman scattering, electromagnetically in-

duced transparency (EIT), self induced transparency (SIT), and pulse matching. Past

results have indicated that asymptotic pulse propagation is always dominated by EIT

type propagation when considering two-pulse propagation in phaseonium. Our results

indicate that only for pure-state phaseonium does EIT behavior dominate. When one



vii

considers mixed state superpositions of the two ground states, termed “mixonium,”

asymptotic EIT dominance is replaced with SIT behavior. We show how the area

theorem of self-induced transparency appears to govern propagation in both the two

and three-level cases.
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Chapter 1

Entanglement and multipartite

entanglement

Even though entanglement was already promoted by Schrödinger [1] as a fundamen-

tal aspect of quantum theory and in mathematics it predated quantum mechanics by

decades [2], only in recent decades it has been recognized that quantum mechanical sys-

tems can be used for real world applications of significant importance, including quan-

tum information processing [3, 4], quantum cryptography [5], and quantum metrology

[6]. Many of these applications require entanglement between more than two parties;

see, e.g., [3, 4]. Such systems also allow us to probe the transition from quantum to

classical behaviors in increasingly complex systems [7, 8]. These applications are of

sufficient importance to have prompted a number of experimental initiatives for gen-

erating entanglement between many parties [9, 10, 11, 12, 13, 14, 8, 15]. Additionally,

achieving quantum systems with scalable architectures continues to motivate much

research.

In tandem with experimental efforts to create entanglement in many-party sys-

tems there has been a theoretical effort aimed at quantifying the entanglement in

many party systems. Of particular importance is the entanglement existing collec-

tively between all N parties of an N -party system, which we call all-party entangle-

ment, and which plays an important role in high-precision metrology as well as other

applications [6, 16, 17]. Quantifying the entanglement has proved to be a challenging

task. only in few-party cases do prescriptions exist for determining the entangle-

ment of a mixed state [18, 19, 20, 21, 22, 23, 24]. In multipartite systems previous
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studies have produced witnesses and/or lower bounds of the all-party entanglement

[25, 26, 27, 28, 29, 30, 31, 32, 29, 28]. Many of these results are not well suited for

use in experimental settings because they apply only for idealized noise-free states

[30, 31, 32, 29], require numerical methods only feasible for few-partite systems [28],

or require knowledge of the density operator of the state under test [25, 26]. The latter

requirement is a problem for multi-party systems because, in general, the number of

measurements to determine the density operator scales exponentially with the number

of parties [33]. Apart from these methods, the measured value of witness operators

can be used to find a lower bound for the entanglement realized in an experiment

[34, 35, 36, 37]. Nonetheless, the efficacy of this approach for producing non-trivial

lower bounds is not guaranteed, and complementary techniques are desired. In sum-

mary, quantifying all-party entanglement remains a challenge.

In this thesis we focus on the problem of entanglement in an important class of

states, called X-states, that we will introduce in the following chapter. Our study led

us to an algebraic formula for the value of multipartite entanglement for X-states. We

will take advantage of this formula to further explore the connection of entanglement

and mixedness in multipartite systems and study the dynamics of entanglement in

open systems. In the current chapter we introduce the entanglement, its definition,

and the properties of good measures of entanglement in two party and many party

systems. This will set the stage for the developments that follow in the rest of the

thesis.

1.1 Separability and entanglement

Here we start with the definition and examples of two-party entanglement, also known

as bipartite entanglement, and in the following section we explain how the definition

can be extended to include many-party entanglement. Perhaps the simplest way to

define the entanglement is through its opposite: separability. Entanglement implies

lack of separability among two or even more parties. To start with the simplest case,

think of two parties, A and B, and their joint pure state |ψAB〉. Such a state is

defined to be a separable state if it can be written as a direct product of two pure

states each describing the state of either A or B: |ψAB〉 = |ψA〉 ⊗ |ψB〉. But if such a

decomposition is not possible, then the two parties are entangled. The extension of the

idea to include mixed states is quite simple. First think of a convex sum of separable
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states. Also assume there is an inequality of the form F ≥ 0 that cannot be violated

for any pure biseparable states and F is a linear function of expectation values of the

joint state. Historical examples are the Bell inequalities. Now think of an ensemble

of states where each state is a separable pure state with a given probability {pi, |ψi〉}.
For each of the pure states from this ensemble Fi ≥ 0, and thus F̄ =

∑
i piFi ≥ 0.

The average, F̄ , corresponds to the average value of the given ensemble. Note than

an such ensemble denotes a mixed state and also each mixed state denotes such an

ensemble. Thus if pure separable states cannot violate certain inequalities with the

properties given above, their mixtures cannot violate those inequalities either. This

is then how we extend the definition of separability to mixed states. A mixed state is

separable if and only if it can be written as a convex sum of pure biseparable states.

One can readily show that this is equivalent to the way it is presented, that a mixed

state ρ is separable iff it can be written as

ρ =
∑
i

pi ρAi ⊗ ρBi (1.1.1)

where ρAi’s and ρBi’s are density matrices in the Hilbert spaces of A and B respec-

tively. Thus to prove that a given state is entangled one needs to prove that such

a decomposition does not exist. Typically that is the difficult part of the problem.

Only in special cases are there simple solutions whether such a decomposition exists

or not. The problem arises from the fact that for any mixed state there are typically

an infinite number of ways to write the density matrix as a convex sum of pure states

(pure state decompositions). To determine that none of the pure state decompositions

is a sum of pure separable states is typically an open challenge.

For some special cases it is simple to determine whether the state is entangled or

separable. One such example is the case of a bipartite pure state. The simplicity is

due to the idea of the Schmidt decomposition that was introduced by Schmidt more

than a century ago [2]. This was the first treatment of entanglement and in this sense

entanglement predates quantum mechanics by three decades. The relevant result is

given below.

For any two Hilbert spaces H1, and H2, a pure state in the space H1 ⊗H2 can be

written as

|ψ〉 =
∑
i,j

aij |i〉 ⊗ |j〉 (1.1.2)
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where |i〉, and |j〉 are orthonormal bases for the two Hilbert spaces. Schmidt showed

that such a state can always be written using a sum on a single index

|ψ〉 =
∑
s

√
λs|φs〉 ⊗ |χs〉 (1.1.3)

where 〈φs|φr〉 = 〈χs|χr〉 = δrs. This result is equivalent to the singular value decompo-

sition of the matrix a whose elements are aij . The coefficients λ’s are the eigenvalues of

each of the reduced density matrices ρ1, and ρ2 and their sum is unity. This coefficients

are called Schmidt coefficients. Another proof of this result and a brief discussion can

be found in [5]. The connection to entanglement becomes readily clear when we notice

that for a separable state only a single term contributes to the Schmidt decomposition.

Thus any state that has more than one non-zero Schmidt coefficients is entangled. For

example a bipartite state such as

1√
2
|00〉+

1√
2
|11〉 (1.1.4)

is already written in a Schmidt form and its Schmidt coefficients are both 1
2 . Now

that for this simple case we learned how to determine whether a state is entangled

or separable, another question arise. How to determine how entangled some given

state is? For the above case the answer is readily available. One can use the Schmidt

weight, K, that is defined below.

K =
1∑
i λ

2
i

(1.1.5)

This value is always larger than one and for example for the above Bell state is 2.

It weighs how many modes contribute to the Schmidt sum of the state. But how to

find this quantity for a mixed state? or in other words, what is the proper way to

extend this definition for mixed states. This leads to a separate question that is what

constitutes a good measure of entanglement? In the following section we will discuss

this problem and enumerate the properties that a proper measure of entanglement

should possess. We then introduce a number of such measures and comment on their

connections.
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1.2 How to quantify entanglement

Previously we discussed the idea of bipartite entanglement. For the case of pure

bipartite states one can use the Schmidt decomposition to determine whether a given

state is entangled. The question that arises from the need to quantify the entanglement

of a given state. What are the properties that a good entanglement measure should

possess. Let us name such a measure E(ρ) for the density matrix ρ.

We can readily derive a few immediate properties. The first one is that the measure

is positive for all entangled states and zero for all separable states. Now assume that

the entangled states is shared by two parties, Alice and Bob. We do not expect that

Alice and Bob can create entanglement between them by starting mixing separable

states; The mixture of separable states is a separable states. We get a requirement

for convexity if we extend the previous assumption to the quantity of entanglement;

Mixture of entangled states cannot lead to an entangled state that possesses more

entanglement than the average. If ρ = pρ1 + (1− p)ρ2

E(ρ) ≤ p1E(ρ1) + (1− p)E(ρ2). (1.2.1)

The next requirement comes from a similar line of reasoning. Let us first introduce the

concept of local operations. These are operators that can be described by operators

that belong to the Hilbert space of one of the parties. For example one of the parties

may decide to make a measurement in an arbitrary basis of its Hilbert space. The

connection to the entanglement comes from the assumption that Local operations

cannot increase the entanglement of a state. We do not expect that given a separable

state, Alice can perform a local operation on her system that leads to entanglement

between her and Bob. Furthermore Alice and Bob cannot use classical communication

to coordinate a set of local operations such that on average they end up with higher

entanglement than when they started. Thus the measure should be, on average, a

non-increasing function under local operations and classical communications (LOCC).

The last requirement deals with a special set of LOCCs, namely local unitary

transformations. We expect that entanglement remains invariant under all local uni-

tary transformations. The simplest way to understand this requirement is to note

that each local unitary transformation is equivalent to a local change of basis, and

the entanglement is the kind of correlation that remains invariant under any choice

of basis by Alice (or Bob). A complete discussion on these properties is given [38].
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If a function of entanglement satisfies the last three requirements and is zero for all

separable states, it is called and entanglement monotone. Note that an entanglement

to be a measure of entanglement, however, the measure should also be positive for all

entangled states.

We close this section with an important result about making entanglement mono-

tones. Vidal showed in [38] that one can always make entanglement monotones by

defining functions that have two properties on the pure states and then extend the

definition to mixed states by using a minimization over all pure state decompositions.

Let us assume that the function f(σ) is concave over all density matrices, i.e. for

σ = pσ1 + (1 − p)σ2 we have f(σ) ≥ pf(σ1) + (1 − p)f(σ2). Furthermore for the

function is invariant under all unitary transformations, then the following quantity is

invariant under local unitary transformations, an non-increasing under LOCC.

F (ρ) = min
∑
i

pif(|ψi〉〈ψi|) (1.2.2)

where the minimization is taken over all pure state decompositions of the state. Note

that the condition of invariance of f(σ) under unitary transformations implies that

for pure states the function f depends only on the eigenvalues of any of the reduced

density matrices (or Schmidt coefficients).

So far in this section we discussed the properties of a proper measure of entangle-

ment. In the rest of the section we introduce and briefly discuss different examples

of the well-known measures of entanglement. Our list is by no means exhaustive but

it covers important measures that we will generalize later to the case of multipartite

entanglement.

1.2.1 Entanglement of formation

For a bipartite pure state the entanglement of formation is defined by taking the von

Neumann entropy of one of the reduced density matrices for each of the parties. This

is directly related to the Schmidt coefficients; The entanglement of formation, E(Φ),

is the Shannon entropy of the Schmidt coefficients of the pure state, |Φ〉.

E(Φ) = S(TrA|Φ〉〈Φ|) = S(TrB|Φ〉〈Φ|) (1.2.3)

where S denotes the von Neumann entropy. This definition offers an operational

interpretation that leads to a natural extension of this definition to the mixed states. It
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has been [CITE] shown that in the limit of large n, nE(Φ) identical copies of a singlet

state can be used to produce n copies of the state |Φ〉 using only local operations

[39, 40]. Thus least number of singlet states required to produce n copies of the state

ρ =
∑

i pi|Φ〉〈Φ| is given by nE(ρ) where

E(ρ) = inf
∑
i

piE(Φi) (1.2.4)

where the infimum is taken over all pure state decompositions of ρ. The measure also

has all the important properties that are required of a proper measure of entanglement:

invariance under local unitary transformation, non-increasing under local operation

and classical communication (LOCC), convexity, and strictly positive if and only if for

entangled states. The combination of the linear entropy and the optimization over all

the pure state decompositions give an operational interpretation to the measure. Yet

determining the value of the measure has been elusive. Only when the two parties are

two-level systems has the problem been solved analytically. The two-level systems are

ubiquitously referred as qubits (short for quantum bits) in quantum information. The

solution was proposed in a seminal paper by Wootters [20], in a connection with a new

measure of entanglement that we discuss next. It was shown that for any two-qubit

state

E(ρ) = h(
1 +

√
1− C(ρ)2

2
) (1.2.5)

where h(x) = −x log2 x− (1−x) log2(1−x), and C(ρ) is the concurrence of the state,

that we discuss next.

1.2.2 Concurrence

Here we discuss concurrence and survey some of its properties. We take the historical

approach and first discuss the concurrence of two qubits and and then discuss briefly

its generalizations to other bipartite states. For a two-qubit pure state the concurrence

is defined by

C(|ψ〉) = |〈ψ|σy ⊗ σy|ψ∗〉| (1.2.6)

where |ψ∗〉 is the complex conjugate of |ψ〉 when it is expressed in the basis that

diagonalizes σz. The extension to mixed states is defined through a minimization over
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all pure state decompositions:

C(ρ) = inf
∑
i

piC(|ψi〉). (1.2.7)

It was shown in [20] that the above quantity can be calculated from

C(ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} (1.2.8)

where the λs are the eigenvalues, in the decreasing order, of the following matrix:

ρ(σy ⊗ σy)ρ∗σy ⊗ σy (1.2.9)

We will sketch the proof below but a complete proof can be found in the original

paper [20] and an extended discussion on the proof can be found here [41]. First note

that every pure state decomposition of any density matrix ρ =
∑

i pi|ψi〉〈ψi| can be

found using the following prescription [42]. Let us first subnormalize the states of the

ensemble such that |Ψi〉 =
√
pi|ψi〉 and we can write the density matrix as

∑
i |Ψi〉〈Ψi|.

We define a unitary transformation such that

|Φj〉 =
∑
j

Vji|Ψi〉,
∑
i

V †kiVij = δjk, (1.2.10)

One can show that ρ =
∑

i |Ψi〉〈Ψi| =
∑

i |Φi〉〈Φi|. It is shown in [42] that the con-

verse is also true. All pure state decompositions of the density matrix can be related

to another using such a unitary transformation. Thus the optimization over all pure

state decompositions can be captured by the optimization over all such unitary trans-

formations. The other important part of the proof is the following lemma.

Lemma: If τ is a complex symmetric matrix, c = infV
∑

i |[V τV T ]ii| is given by

c = max(0, 2S1 −
∑
i

Si) (1.2.11)

where Si’s are the singular values of the matrix τ , which are equal to eigenvalues of

ττ †, in the decreasing order.

Having these two results one can define τij = 〈ψ∗j |(σy⊗σy)|ψi〉 which is a symmetric



CHAPTER 1. ENTANGLEMENT AND MULTIPARTITE ENTANGLEMENT 9

matrix. Then use the following relation

C(ρ) = inf
V

∑
i

|
∑
jk

VijτjkV
T
ki | = inf

V

∑
i

|[V τV T ]ii| (1.2.12)

Finally one uses the lemma we introduced above and prove the formula for the con-

currence of a two-qubit matrix.

Concurrence can also be generalized to bipartite systems of higher dimensions.

The connection can be established by noting that for a pure state the concurrence can

be written as

C(|ψ〉) =
√

2(1− Tr[ρ2
A]) (1.2.13)

where ρA is either of the reduced density matrices that one can define for a bipartite

pure state. This generalization was first proposed by Rungta et al. [43] through the

generalization of the spin-flip operator to higher dimensions. One can check that the

function satisfies the condition of concavity and invariance under unitary transforma-

tions and thus its minimization over all pure state decompositions givens a proper

measure of entanglement.

1.2.3 Negativity

Negativity as a measure of entanglement is directly connected with the idea of the

positive partial transpose (PPT) criterion that was laid out by Peres [18]. A general

bipartite state of the Hilbert space HA ⊗HB can be always written as

ρ =
∑
ijlk

ρij,kl|i〉 ⊗ |j〉〈k| ⊗ 〈l| =
∑
ijlk

ρij,kl|i〉〈k| ⊗ |j〉〈l| (1.2.14)

Now one can define the operation of partial transposition by performing the transpo-

sition only on one of the parties, e.g. B:

ρTB =
∑
ijlk

ρij,kl|i〉〈k| ⊗ (|j〉〈l|)TB =
∑
ijlk

ρij,kl|i〉〈k| ⊗ (|l〉〈j|) (1.2.15)

Transposition is a positive map but not a completely positive mapping [5]. That means

when a positive matrix in a given Hilbert, e.g. HA space is transposed, the resulting

matrix is always a positive matrix. But if an state is in a product space, HA⊗HB and
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we apply transposition only to one of the Hilbert spaces, the result is not necessarily

a positive matrix. This property has a very important implication when applied to a

separable state. A separable state can always be written as

ρsep =
∑
i

piρAi ⊗ ρBi (1.2.16)

When we apply partial transposition on the state we get

ρTBsep =
∑
i

piρAi ⊗ ρTBBi (1.2.17)

Since ρBi is a positive matrix in the Hilbert space HB its transpose is a positive

matrix too. This implies that ρTBsep is also a positive matrix too. Thus if the partial

transpose of a state is not a positive matrix, i.e. has at least one negative eigenvalue,

the state cannot be a separable state and thus is entangled. Note that the converse is

not necessarily true. There exist entangled states whose partial transpose are positive

matrices. However, Horodecki [19] showed that for two-qubit and two-qutrit states,

the converse is also true and the positivity of the partial transpose is the necessary

and sufficient condition for separability.

Negativity also quantifies how far from positivity the partially transposed state

becomes. It is defined to be sum of the absolute values of the negative eigenvalues of

the partially transposed matrix.

N (ρ) =
||ρTB || − 1

2
(1.2.18)

and as expected vanishes for all separable states. Vidal and Werner showed that

negativity is an entanglement monotone [44]. The proof extends beyond the case of

two qubits and two qutrits but the positivity of the partial transpose is only a necessary

condition for separability. For an extended discussion on negativity one can look in

[4].

1.2.4 Distance measures

The last approach to quantify entanglement that we discuss here is the distance ap-

proach. It is based on the notion that separable states are convex subspaces, i.e. the

convex sum of any two separable state is a separable state. Thus we may quantify the

entanglement by the distance of the given state to the set of separable states. The
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benefit of this approach is the unifying perspective that it offers. It puts all differ-

ent quantum correlation such as quantum discord, classicality, entanglement, and etc

on the same footing by defining them through the distance of a given state to the

corresponding set of states [45].

The immediate draw back is that computing a value for such measures is typically

an open issue even for pure states. In the current work we will introduce a distance

measure of genuinely multipartite entanglement and will evaluate it for the class of

GHZ-diagonal states.

1.3 Multipartite entanglement

Having discussed separability and entanglement between two parties, we next turn to

the case of when more than two parties can share entanglement. The first step is to

clarify what kind of multipartite entanglement we are going to deal with. Below we

present three example states, each can be argued to be entangled.

|GHZ3〉 =
|000〉+ |000〉√

2
(1.3.1)

|W3〉 =
|001〉+ |010〉+ |100〉√

3
(1.3.2)

|χ〉 = |0〉 ⊗ |00〉+ |11〉√
2

(1.3.3)

For the first two states it is impossible to separate any part of the system and associate

with it a pure state, but for the last example one of the parties is associated with a

pure state. Yet even for the last example two of the parties cannot be separated from

each other. This brings us to the next definition that allows us to classify different

inseparabilities of an N -partite system.

We start with a pure state of N parties. A pure state of N parties is called k-

separable if and only if it can be written as a direct product of k separate pure states

[46]:

|ψ1〉 ⊗ |ψ2〉 ⊗ · · · |ψk〉 (1.3.4)

The extension to mixed states follows immediately too. A mixed state of N parties

is k-separable if it can be written as a pure state decomposition of k-separable states.

Two immediate extremes follow the above definition naturally. First is the case of
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N -separability. In that case the state can be written as∑
i

pi ρ1i ⊗ ρ2i ⊗ · · · ρNi (1.3.5)

Such states are more generally referred to as fully separable states. In the current

work we refer to the lack of full separability as weak inseparability. The other extreme

is when a state is not even 2-separable (biseparabe). This kind of entanglement is

referred to as genuinely N -partite entanglement. Sometimes it is also referred to as

genuinely multipartite entanglement. Below we discuss this entanglement in more

detail.

1.3.1 All-party entanglement

As mentioned entanglement among more than two parties can signal separability

among many different partitions of the system. One extreme kind of entanglement

is the idea of genuinely multipartite entanglement. Before discussing the concept let

us mention that we refer to genuinely multipartite entanglement simply as all-party

entanglement. It is because although a term such as genuinely N -partite entanglement

is specific enough to refer to the special kind of entanglement that we are concerned

with, the term genuinely multipartite entanglement lacks such specificity. Our choice,

all-party entanglement, has the advantage that it refers to the specific form of mul-

tipartite entanglement we are interested in, as well as the name does not need to be

changed for different number of parties. For a three party system, all-party entan-

glement implies genuinely three-partite entanglement and for a four party system it

implies genuinely four-partite entanglement.

All-party entanglement is defined by its opposite, biseparability. A pure N -partite

system |ψ〉 ∈ H1 ⊗ H2 · · · ⊗ HN is biseparable if there is a bipartition of the N

parties H1 ⊗ H2 · · · ⊗ HN = HA ⊗ HB, where HA = Hj1 ⊗ Hj2 ⊗ · · · ⊗ Hjk , HB =

Hjk+1
⊗Hjk+2

⊗· · ·⊗HjN for which |ψ〉 = |ψA〉⊗|ψB〉, and |ψA〉 ∈ HA and |ψB〉 ∈ HB
[47, 4]. In other words, a pure state is biseparable if it has at least one pure marginal

(reduced density matrix). An N -partite state that cannot be written as an ensemble

of biseparable states is an all-party entangled state.

let us introduce the set of all bipartitions of N parties. Each bipartition is a

division of the set {1, 2, . . . , N} into two disjoint and non-empty subsets. The set of

all such bipartitions is denoted by J = {J1, J2, . . . J2N−1−1}. For example for N = 3,
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there are three bipartitions J1 = {1|2, 3}, J2 = {2|1, 3}, and J3 = {3|2, 1}, so that

J = {J1, J2, J3}.
For a pure state |ψ〉, to each of the elements of J we can associate two reduced

density matrices Â(|ψ〉, Jj), and B̂(|ψ〉, Jj) by tracing out either of the subsystems

associated with that bipartition. The biseparability of a pure state can be determined

by whether for any of the elements of J , Â(|ψ〉, Jj) and B̂(|ψ〉, Jj) are pure. If so, |ψ〉
is biseparable. Thus the purity of the jth bipartition, denoted by Πj(|ψ〉), is a key

parameter.

To determine whether a mixed state ρ̂ is biseparable, one has to determine whether

ρ̂ can be written as a convex sum of pure biseparable states. Thus one has to check

all the ways ρ̂ can be written as a convex sum of pure states (all pure state decom-

positions). If it is impossible to write the density matrix of the state as a convex

sum of biseparable states then the state is called all-party entangled. Similarly to

the case of bipartite case, the mathematical difficulty in ruling out such a biseparable

decomposition is the main obstacle in determining whether a state is entangled or

biseparable.

1.4 All party concurrence

In this section we discuss the all-party concurrence. We will define it and show that it is

a proper measure of all-party entanglement. all-party concurrence is based on previous

works by Pope and Milburn [48] and Love, et al. [49]. It is formally introduced in the

work of Ma et al. [26] and it was shown to be a proper measure of entanglement. This

measure reduces to the Wootters concurrence [20] for two qubits.

To introduce the measure we use the definition for a pure state. Remember that

purity of each partition is a key parameter in determining whether the system is

separable along that bipartition. For a pure state GM concurrence is then defined [26]

as,

CGM (|ψ〉) : = min
j

√
2
√

1−Πj(|ψ〉).

Clearly, CGM (|ψ〉) ≥ 0 and it is equal to zero if and only if |ψ〉 is a biseparable state.

For a bipartite system this definition reduces to the I-concurrence [43].

To determine whether a mixed state ρ̂ is biseparable, one has to determine whether

ρ̂ can be written as a convex sum of pure biseparable states. Thus one has to check
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all the ways ρ̂ can be written as a convex sum of pure states (all pure state decom-

positions). Let us distinguish different pure state decompositions of ρ̂ by assigning a

continuous superscript, α, to label them:

ρ̂ =
∑
i

p
(α)
i |ψ

α
i 〉〈ψαi |. (1.4.1)

To determine whether a particular pure state decomposition is a sum of biseparable

states, we can calculate the average pure state GM concurrence for that particular α

Cα(ρ̂) =
∑
i

p
(α)
i CGM (|ψαi 〉)

=
∑
i

p
(α)
i

{
min
j

√
2
√

1−Πj(|ψαi 〉)
}
. (1.4.2)

Now we are ready to extend the definition of GM concurrence to all mixed states:

CGM (ρ̂) = min
α

Cα(ρ̂). (1.4.3)

If CGM (ρ̂) = 0 this means that there is an α for which Cα(ρ̂) = 0. Then ρ̂ can be

written as a sum of pure biseparable states, so ρ̂ is biseparable. If CGM (ρ̂) > 0, there

is no α for which the |ψαi 〉’s are all biseparable and thus ρ̂ is an N -partite entangled

state. The all-party concurrence of N parties, as defined in Ref. [26], is a monotone of

all-party entanglement. To show that our all-party concurrence is a proper measure

of entanglement we need to prove that it satisfies the following properties.

1. It is non-negative and, it is positive iff the state is all-party entangled.

2. It is invariant under local unitary transformations.

3. It is convex, i.e. CGM (
∑

i piρ̂i) ≤
∑

i piCGM (ρ̂i).

4. It is non-increasing under local operations and classical communications.

We have already shown that the first property is satisfied for our measure. The second

property follows immediately since purity remains invariant under unitary transfor-

mations. Convexity of the measure can be inferred from the fact that the concurrence

is the minimum over all pure state decompositions and if ρ̂ can be written as a convex

sum of some other density matrices, then the convex sum of the optimal pure state

decompositions of matrices in the sum is itself a pure state decomposition of ρ̂. Hence
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the convexity follows. Thus remain the last property. Note that for each bipartition

the I concurrence is non-increasing under LOCC and since all-party concurrence is the

minimum over all these bipartitions then it should be non-increasing too. Finally we

note that, the operational meaning of GM concurrence in terms of mutual information

is explicitly discussed in Ref. [50].

1.5 Chapter summary and what is to follow

In this chapter we examined entanglement and its different properties in two different

context. First we surveyed entanglement between two parties. We started with the

Schmidt decomposition to clarify the mathematical definition of entanglement between

two parties that are sharing a pure state. We explored the extension of this idea to

include the mixed states.

We then encountered the question of quantifying entanglement. One can make

entanglement monotones by utilizing concave functions on pure states and extending

the definition to mixed states through the minimization over all pure state decom-

positions. Concurrence is an example of such an entanglement monotone. We also

explored the properties of negativity as a separate measure of entanglement.

We then introduced the idea of k-separability that gives a hierarchy to classify

different kinds of multipartite entanglement. We focused on the case of all-party

entanglement, also known as genuinely multipartite entanglement. Finally, we intro-

duced the all-party concurrence and showed that it is a proper measure of all-party

entanglement.

In the rest of this thesis we focus on the multipartite entanglement among an

arbitrary number of qubits. In the next chapter, we focus heavily on a special class of

N -qubit states (X-states) and derive an algebraic formula to determine and quantify

the all-party entanglement of such states. In chapter three we use this formula to

explore the connection between the entanglement and purity in multiqubit systems.

We also examine the idea of universality of X-states.

In the fourth chapter we sharpen our machinery for experimental explorations.

We introduce a new measure of all-party entanglement and derive experimentally

accessible bounds for its value. In the last chapter of this work we utilize the machinery

we develop to study the dynamics of entanglement in different scenarii. We first study

entanglement sudden death and finally study how the phenomenon of collapse and

revival can be used to control the suppression and revival of the entanglement in
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multipartite systems. Our analysis suggest a clear picture of the path that the system

traverses in the Hilbert space.
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Chapter 2

Theory of entanglement of

N-qubit X-states

The problem of determining whether a two-qubit density matrice is entangled was

first solved in the seminal work of Wootters [20]. The Wootters concurrence formula

though effective is a prescription that involves calculating the eigenvalues of a matrix.

Thus using concurrence formula in dynamical situations usually requires a numerical

procedure, and this typically limits the feasibility of analytical investigations. Nev-

ertheless, there are classes of states for which concurrence takes a very simple form.

The simplest case is the case of a two-qubit pure state. A pure two-qubit state can

always be written as

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉. (2.0.1)

The concurrence of this state is C(|ψ〉〈ψ|) = 2 |αδ − βγ|. This formula, however, has

a limited utility since in a dynamical scenario typically different systems couples with

each other, or their environments, and do not remain pure. This is how the X-states

were first propelled to the front of dynamical studies involving entanglement between

two qubits. Their concurrence takes a simple form that can be used in analytical

investigations and furthermore there are many dynamical scenarii in which the X-

form of the state is robust. Their most famous appearance is the role they played in

identification of the phenomenon of sudden death of entanglement by Yu and Eberly

[51].

This chapter is devoted to introduction and examination of X-states. We first
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discuss the two-qubit case and their properties and then discuss their extension to

the case of many qubit density matrices. We then discuss how to find the many

party entanglement for such states. We derive an algebraic formula for the all-party

concurrence of such states. We finally discuss some of the subsets of X-states and their

properties.

2.1 X-states: from two qubits to many qubits

It is always possible to write a density matrix of two qubits, Q̂, as a sum of an X density

matrix and a remaining matrix, that we call an O-matrix. Assume that the density

matrix Q̂, written in an orthonormal product basis {|00〉, |01〉, |10〉, |11〉}, reads:

Q̂ =


Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

 . (2.1.1)

Then Q̂ = X̂ + Ô

=


Q11 0 0 Q14

0 Q22 Q23 0

0 Q32 Q33 0

Q41 0 0 Q44

+


0 Q12 Q13 0

Q21 0 0 Q24

Q31 0 0 Q34

0 Q42 Q43 0

 . (2.1.2)

The X matrix can be thought of as a density matrix itself, and so one can associate a

concurrence to it. This concurrence takes a very simple form.

C(X̂) = max{0, |Q14| −
√
Q22Q33, |Q23| −

√
Q11Q44}

= max{0, C1(X̂), C2(X̂)}. (2.1.3)

The term X-matrix was first coined by Yu and Eberly [52, 51]. An X-state is a

density matrix of two qubits, written in an orthonormal product basis, whose non-

zero elements are only diagonal or anti-diagonal. The simple concurrence formula,

given above is why these two-qubit states have been extensively used in studying the

dynamics of entanglement between two qubits in many scenarii [53, 51, 54, 55, 56, 57,

58, 59]. Many of other properties of two-qubit X-states also take simple formulas too
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[60].

As mentioned above the X-part of any two-qubit matrix is itself a density matrix.

To see this note that positivity of Q̂ ensures that |Q23| ≤
√
Q22Q33, and |Q14| ≤√

Q11Q44. These two conditions ensure that eigenvalues of Q̂ when projected on two

subspaces {|01〉, |10〉} and {|00〉, |11〉} respectively, are non-negative. The matrix X̂

is a convex sum of these two states and thus is positive itself. Furthermore X̂ has a

unity trace and is hermitian. These conditions guarantee that X̂ is a density matrix

itself. The question then arises whether there is a relation between the concurrence of

any two-qubit density matrix and its X-part.

We will show that such a relation exists and in fact the concurrence of the X-

part of any density matrix is smaller or equal to the concurrence of the whole matrix

C(Q̂) ≥ C(X̂). We will give two proofs for this statement, both we will later extend

to X-states of many-qubit states, but one is especially important to help us find the

all-party entanglement of N -qubit X-states.

In our first proof we show that for any Q̂, the X-part of the density matrix X̂ can

be written as the result of a positive local map acting on Q̂. Since the concurrence

is a monotone of entanglement it should be, on average, non-increasing under such

mapping and thus the concurrence of X̂ shall be smaller than C(Q̂). Let us call this

mapping χ. One can show that for any two-qubit state

χ(Q̂) =
1

2

(
Q̂+ (σ̂z ⊗ σ̂z)Q̂(σ̂z ⊗ σ̂z)

)
= X̂. (2.1.4)

Our second proof is longer and admittedly more convoluted, but it gives the lower

bound value explicitly with out the need to reference to the concurrence of an X-state.

Thus an extension of it to the N qubits can be found to find a lower bound for the

all-party concurrence of any qubits. We will use such an extension later in the coming

section.

In the following we will prove that C1(X̂) is smaller or equal to the concurrence

of the original matrix, C(Q̂); i.e. C1(X̂) ≤ C(Q̂). The proof that C2(X̂) ≤ C(Q̂) is

identical. Note that C(X̂) is a basis-dependent quantity and our claim is that it is

always smaller than or equal to the concurrence C(Q̂) which is a basis-independent

quantity. In addition, note that max{0, C1(X̂)} is the concurrence of a density matrices

for which the O-elements as well as Q23 and Q32 are put to zero. A similar remark

can also made about max{0, C2(X̂)}. It will be shown that these ideas can also be

generalized to the bipartite states of higher dimensions.
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Let us first assume that Q̂ is a pure state. For the pure state we defined in

Eq.(2.0.1) we have

C1(|ψ〉〈ψ|) = 2 |αδ| − 2 |βγ|. (2.1.5)

Using the triangle inequality returns the desired inequality

C(|ψ〉〈ψ|) ≥ |C1(|ψ〉〈ψ|)|. (2.1.6)

We note that the basis that maximizes the C1(|ψ〉〈ψ|) is the one for which γ = β = 0

which is equivalent to the Schmidt decomposition of the state. We now turn our

attention to the case when Q̂ is a mixed state. The concurrence of a mixed state is

defined as

C(Q̂) = Min
∑
i

pi C(|ψi〉〈ψi|), (2.1.7)

where the minimum is taken over all the pure decompositions of Q̂:

Q̂ =
∑
i

pi |ψi〉〈ψi|. (2.1.8)

Let us assume that the decomposition that satisfies Eq.(2.1.7) reads

Q̂ =
∑
i

Pi |φi〉〈φi|, (2.1.9)

C(Q̂) =
∑
i

Pi C(Q̂(i)), (2.1.10)

where Q̂(i) = |φi〉〈φi|. Since |φi〉’s are pure states, we can use Eq. (2.1.6) and write

C(Q̂) ≥
∑
i

Pi C1(Q̂(i)). (2.1.11)

To complete our proof we seek to show that∑
i

Pi C1(Q̂(i)) ≥ C1(X̂). (2.1.12)

The explicit formulas for C1(Q̂(i)) and C1(X̂), in terms of the elements of the Q̂(i)’s,
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are

C1(Q̂(i)) = 2(|Q(i)
14 | −

√
Q

(i)
22Q

(i)
33 ), (2.1.13)

C1(X̂) = 2(|Q14| −
√
Q22Q33), (2.1.14)

where, for example, Q14 =
∑

i PiQ
(i)
14 . The following inequalities can be proved easily

using the triangle and Cauchy-Schwarz inequalities:∑
i

Pi|Q(i)
14 | ≥ |

∑
i

PiQ
(i)
14 | = |Q14|, (2.1.15)

∑
i

Pi

√
Q

(i)
22Q

(i)
33 ≤

√∑
i

PiQ
(i)
22

√∑
j

PjQ
(j)
33 =

√
Q22Q33 .

By subtracting the above inequalities one can show that∑
i

Pi C1(Q̂(i)) ≥ C1(X̂). (2.1.16)

Two equations (2.1.11) and (2.1.16) complete our proof:

C(Q̂) ≥ C1(X̂). (2.1.17)

Similarly one can show that C(Q̂) ≥ C2(X̂) and therefore

C(Q̂) ≥ Max{0, C1(X̂), C2(X̂)} = C(X̂), (2.1.18)

which is the inequality that we sought to prove. That is, we have proved that if one

ignores the O-elements of a density matrix, the concurrence of the remaining X matrix

is always smaller than or equal to the concurrence of the original density matrix.

This inequality provides a sufficient condition that, if met, tells us that the state is

entangled and gives a lower bound on its entanglement. For a density matrix that takes

the X form, the inequality in Eq.(2.1.18) becomes an equality. However, the converse

is not necessarily true, i.e., it is possible that the matrix Q̂ does not have the X form

in the basis in which it is presented, and yet the concurrence of the corresponding X̂
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is the same as for the original density matrix Q̂. An example is given by

1

2
|00〉+

1√
3
|01〉+

1√
6
|10〉+

1

2
|11〉. (2.1.19)

The inequality that we derived above can be extended to the cases of bipartite

states of higher dimension or even to the cases where we are concerned with more

than two parties. We are going to discuss the multipartite case in detail and the

bipartite case and the two-qubit cases can indeed be considered as special cases of

that results. Thus here we only present the bipartite result.

There are different ways to generalize concurrence to higher dimensions [61, 43, 62].

We choose to work with the I concurrence that was first proposed by Rungta, et al.

[43]. It was later shown to be an entanglement monotone [22]. Here we simply refer

to I concurrence as concurrence as it is widely referred to in the literature. If we refer

to the two parties of the system as A and B, the concurrence of a bipartite pure state

is given by
√

2(1− Tr[Q̂2
A]) where Q̂A = TrB[Q̂] denotes the reduced density matrix

of one of the subsystems. In analogy to the two-qubit case, we define

Cik,jl(Q̂) = 2
(
|Qik,jl| −

√
Qil,ilQjk,jk

)
(2.1.20)

where, e.g., Qik,jl = 〈i, k|Q̂|j, l〉. The quantity Cik,jl(Q̂) then plays the same role that

previously C1(Q̂) played in the proof for the two qubit density matrices and similarly

one can show that

C(Q̂) ≥ Max{0, Cik,jl(Q̂) (i 6= j, k 6= l)}. (2.1.21)

This is a sufficient condition for non-separability and the maximum of the Cik,jl’s gives

a lower bound for concurrence. The above lower bound can be thought of as a special

case of a lower bound proposed for genuinely multipartite entanglement in [26] applied

to a bipartite state.

2.2 The algebra of X-states

In the previous section we examined the properties of two-qubits X-states. In this

section we focus on properties of such states in multiqubit systems. For two qubits

the X-states are those states that, presented in a product orthonormal basis, have only
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two-party coherences. This is equivalent to saying that the only non-zero elements of

the density matrix are either diagonal or anti-diagonal. Conversely if we force the single

party coherences of any two-qubit state, we are left with a proper density matrix. Such

is not necessarily true for example for bipartite systems of higher dimension.

For the multiqubit case a similar idea can be drawn. Encountered with N qubits,

one can have single party coherences, two party coherences, ..., and N -party coher-

ences. Again a density matrix that, in a product orthonormal basis, has only N -party

coherences is called an X-state. This is equivalent to having non-zero elements that

are either diagonal or anti-diagonal. Furthermore, the converse is also true. For any

matrix if one puts to zero all coherence elements, but the N -party coherences, one

ends up with a valid density matrix. Below we examine some of the algebraic proper-

ties of such states and then prove that the connection with the two-qubit case is even

deeper. We will prove that for any N -qubit density matrix the mapping that leads to

the X-part is an LOCC map. Thus for any proper measure of entanglement, the value

of the measure shall be smaller than the value of the same measure for the X-part of

the same density matrix. Similarly to the case of two qubits we name the mapping

that takes any density matrix to its X-part χ.

An algebraic characterization of X-states was presented in [63]. It is shown that

any N -qubit X-state can be written in the following form:

X =
1

2N

2N−1∑
i=0

(
siŜi + riR̂i

)
, (2.2.1)

where s0 = 1, and si, ri are real. To define Ŝi and R̂i, first note that any generator

of SU(2N ) is a direct product of N generators of SU(2). Ŝi is the operator obtained

by replacing, in the binary representation of i, 0’s with Î and 1’s with σ̂z. R̂i is the

operator that is obtained similarly, but by replacing 0’s with σ̂x and 1’s with σ̂y. For

example,

Ŝ2 = 1̂ ⊗ 1̂ ⊗ · · · ⊗ σ̂z ⊗ 1̂

R̂3 = σ̂x ⊗ σ̂x ⊗ · · · ⊗ σ̂y ⊗ σ̂y︸ ︷︷ ︸
N

. (2.2.2)

Let us define the sets S =
⋃2N−1
i=0 {Ŝi} and R =

⋃2N−1
i=0 {R̂i}. The set S ∪ R is closed

under multiplication as well as commutation [63]. Furthermore, in S there are 2N−1
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operators whose commutation with every element of S∪R vanishes. These are elements

of S with an even number of σ̂z’s in their multiplication. We name this subset C. Then

the quantum operation χ, that takes any N -qubit density matrix and returns its X-

part, is given by

χ(ρ) =
1

2N−1

∑
Ŝi∈C

ŜiρŜ
†
i . (2.2.3)

Below we prove that the mapping given in Eq. (2.2.3) returns the X-part of any

density matrix. We do so by showing that every generator of SU(2N ), which is not in

S ∪R commutes with half of the elements of C and anticommutes with the other half.

Since every N -qubit density matrix can be written as a linear sum of generators of

SU(2N ), the coefficients of generators in S∪R survive the sum while the coefficients of

the generators outside S∪R cancel out, leaving only the X-part of the density matrix.

The special case of N = 2 is discussed in [64].

Let us first introduce two sets ξ = {1, σ̂z}, η = {σ̂x, σ̂y}. Every generator of

SU(2N ) is given by a direct product of N operators from either η or ξ. We consider

the arbitrary generator

Â =
N⊗
j=1

âj (2.2.4)

where âj is either in ξ or η. We also choose an arbitrary element in C,

B̂ =
N⊗
j=1

b̂j (2.2.5)

where b̂j is either σ̂z or 1, and there are an even number of b̂j for which b̂j = σ̂z. It is

straightforward to show that the commutator has the form

ÂB̂± B̂Â = (

N⊗
j=1

âj b̂j)± (

N⊗
j=1

b̂j âj). (2.2.6)

We note that b̂j âj = −âj b̂j only if âj ∈ η and b̂j = σ̂z and b̂j âj = âj b̂j otherwise.
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Consequently we find that

ÂB̂± B̂Â = ÂB̂(1± (−1)q) (2.2.7)

where q is the total number of times âj ∈ η and b̂j = σ̂z. Thus Â and B̂ commute if q

is even and they anti-commute otherwise. Therefore we need only count the number

of operators in C for which q is even for an arbitrary operator Â. This is simpler than

it seems. Let us assume that there are a total of M âj ∈ η. The total number of ways

an even number of σ̂z’s can be distributed among two sets, one of size M and one of

size N-M, with an even number in each is given by

∑
i,j=0

(
M

2i

)(
N −M

2j

)
= 2N−2, (2.2.8)

including the case of zero σz’s which represents the identity. The set C has 2N−1

elements and thus Â anti-commutes with the other half of C. Note that this breaks

if M = 0 or N = 0. But in that case Â ∈ S ∪R and all elements of C commute with

Â. This proves that Eq. (2.2.3) is an LOCC mapping.

It immediately follows that for any entanglement monotone, the entanglement of

χ(ρ) is always smaller or equal to the entanglement of ρ. We will show that the lower

bound of all-party concurrence that was derived in [26] can thus be understood as a

special case of this inequality.

We note that the X-state can be defined completely different from their connection

to X-states and through their algebraic symmetries. In principle one can also use other

symmetries to define other classes of states, as is done in [63, 64]. Then one can define a

hierarchy of inequalities for all entanglement monotones. The important step however

is that as long as one cannot compute a measure of entanglement for such classes of

states, not much is added in terms of our ability to study entanglement. In other

words if we only knew that for some monotone of entanglement E(ρ̂) ≥ E(X̂ρ) but we

did not have the ability to compute E(X̂ρ), such inequality would have very limited

use. In the next section we address this problem and will derive an algebraic formula

for the all-party concurrence of N -qubit X-states.



CHAPTER 2. THEORY OF ENTANGLEMENT OF N-QUBIT X-STATES 26

2.3 The all-party entanglement of X-states

In the previous section we study the algebraic properties of the X-states. In this

section we study the all-party entanglement. The N -qubit version of the X-matrix

[52] is a density matrix of N qubits, written in an orthonormal product basis, whose

non-zero elements are only diagonal or anti-diagonal.

If the orthonormal basis for the X-matrix is {|0, 0, . . . , 0〉, |0, 0, . . . , 1〉, . . . , |1, 1, . . . , 1〉},
then one can always write an X-matrix in the form given below

X̂ =



a1 z1

a2 z2

. . . . .
.

an zn

z∗n bn

. .
. . . .

z∗2 b2

z∗1 b1


, (2.3.1)

where n = 2N−1, and we require |zi| ≤
√
aibi and

∑
i(ai + bi) = 1 to ensure that X̂

is positive and normalized. One can see why density matrices in this class are called

X-matrices.

The concurrence of a two-qubit X-matrix takes a very simple form [52] and that

is why these two-qubit states have been extensively used in studying the dynamics of

entanglement between two qubits in many scenarii [52, 53, 51, 54, 55, 56, 57, 58, 59].

In the following we first derive a lower bound for the all-party concurrence of any

X-states. For two-qubit states this lower bound reduces to the concurrence of the X-

part of the density matrix. In light of this result one wonders whether this lower bound

may be the exact value of the all-party concurrence even for many-qubit X-states. We

will prove that this conjecture is correct.

In Ref. [26], Ma et al. presented a lower bound for the GM concurrence. The lower

bound of GM concurrence, derived in Ref. [26], for an X-matrix is given by

CGM ≥ 2 max{0, |zi| − wi}, i = 0, 1, . . . , n (2.3.2)

where wi =
∑n

j 6=i
√
ajbj .
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We will prove this relation for the case of three qubits. It includes all the essential

elements that are needed to prove the general case and is more easily readable. The

proof of the general case is given in [26]. Similarly to the two qubit case we first prove

the inequality for a pure state. A three-qubit pure state can be written as

|ψ〉 = a0|000〉+ a1|001〉+ a2|010〉+ a3|011〉

+ a4|100〉+ a5|101〉+ a6|110〉+ a7|111〉. (2.3.3)

For three qubits we have only three bipartitions.

C2
1 = 4|a0a7 − a3a4|+ F1

C2
2 = 4|a0a7 − a2a5|+ F2

C2
3 = 4|a0a7 − a1a6|+ F2

Where all Fi’s are non-negative. Thus we can conclude that

C1 ≥ 2|a0a7| − 2|a3a4|

C2 ≥ 2|a0a7| − 2|a2a5|

C3 ≥ 2|a0a7| − 2|a1a6|

Thus we conclude

CGM = min{C1, C2, C3} ≥ 2|a0a7| − 2(|a3a4|+ |a2a5|+ |a1a6|)

= 2ρ17 − 2
√
ρ11ρ66 − 2

√
ρ22ρ55 − 2

√
ρ33ρ44

Which is the result we wanted to prove. Note that the right hand side of the last equa-

tion is a concave function of the elements of the density matrix and thus similarly to

the proof of the two-qubit case we can extend the inequality to mixed states too. This

approach to derive inequalities is a prevalent technique that has been used in many of

the results that deal with deriving inequalities whose violation signals entanglement

[26, 25, 65]. Now we move to prove that the lower bound we derive above is the exact

value of the all-party concurrence for N -qubit X-states.

In the following we will show that this lower bound is exact for all X-matrices.

Without loss of generality we can assume that
√
a1b1 ≥

√
aibi. Since we have assumed

that
√
a1b1 ≥

√
aibi, it is easy to show that |zi| − wi ≤ 0 for i > 1, so that Eq. 2.3.2
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reduces to

CGM (X) ≥ 2 max{0, |z1| − w1} (2.3.4)

We will show that this bound is actually an equality. First let us prove a lemma that

we will utilize in our proof.

Lemma: The GM concurrence of an X-matrix for which a1b1 ≥ aibi, and aj = bj =

0 for all j 6= {i, 1}, is

CGM (X̂1i) = 2 max{0, |z1| −
√
aibi} (2.3.5)

Proof. We already know that this quantity is a lower bound of GM concurrence. Thus

we only need to show that it is also an upper bound. We do this by mapping X̂1i to

a two-qubit density matrix, R̂, and then show that CGM (X̂1i) is bounded from above

by Wootters’s concurrence of R̂, where C(R̂) = 2 max{0, |z1| −
√
aibi}.

Before going forward let us introduce some notation. Since we are working with

qubits, we can represent each vector (ket) of the above basis as a number from 0 to

2N − 1 written in the binary basis. For example, |0, 0, · · · , 0〉 = |0〉, |0, · · · , 0, 1〉 = |1〉,
|0, · · · , 1, 0〉 = |2〉, and so on |1, · · · , 1, 1〉 = |2N − 1〉. We also denote the bit-flipped

states in the same way, |̄i〉 = |2N − i− 1〉, for example, |0̄〉 = |2N − 1〉. In places where

we need to label the individual qubits, we do so by using a subscript on the bits.

We perform the mapping by focusing on a specific bipartition of the qubits. The

four non-zero diagonal elements of X̂1i are {a1, ai, b1, bi}, corresponding to projectors

{|0〉〈0|, |i − 1〉〈i − 1|, |0̄〉〈0̄|, and |i− 1〉〈i− 1|} respectively. Those qubits that con-

tribute 1 to the ket |i−1〉 we designate as party F . The rest of the qubits we denote as

party G. For example, with seven qubits, which we denote as (q1, q2, q3, q4, q5, q6, q7),

where i = 6, the basis states are

|0〉 =|01, 02, 03, 04, 05, 06, 07〉,

|5〉 =|01, 02, 03, 04, 15, 06, 17〉,

|127〉 =|11, 12, 13, 14, 15, 16, 17〉,

|122〉 =|11, 12, 13, 14, 05, 16, 07〉. (2.3.6)

Then party F is given by qubits (q1, q2, q3, q4, q6), and the remaining two qubits,

(q5, q7), make party G. Under this bipartition, we can write X̂1i using the follow-
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ing basis states,

| ↓F 〉 = |01, 02, 03, 04, 06〉, | ↑F 〉 = |11, 12, 13, 14, 16〉,

| ↓G〉 = |05, 07〉, | ↑G〉 = |15, 17〉,

X̂1i = a1| ↓F ↓G〉〈↓F ↓G |+ b1| ↑F ↑G〉〈↑F ↑G |

+ ai| ↓F ↑G〉〈↓F ↑G |+ bi| ↑F ↓G〉〈↑F ↓G |

+ z1| ↓F ↓G〉〈↑F ↑G |+ z∗1 | ↑F ↑G〉〈↓F ↓G |

+ zi| ↓F ↑G〉〈↑F ↓G |+ z∗i | ↑F ↓G〉〈↓F ↑G |, (2.3.7)

We see that if we restrict attention to the subspace defined by the non-zero elements

of X̂1i we can map X̂1i to a two qubit density matrix, R̂, which, in the basis {| ↓F ↓G
〉, | ↓F ↑G〉, | ↑F ↓G〉, | ↑F ↑G〉}, reads

X̂1i −→ R̂ =


a1 z1

ai zi

z∗i bi

z∗1 b1

 . (2.3.8)

Now that we have a two-qubit density matrix, we can take advantage of Wootters’s

concurrence. Note that from each pure-state decomposition (PSD) of R̂ one can make

a PSD of X̂1i by mapping the basis states of the two-qubit system back to the multi-

qubit basis states. We pick the PSD whose average concurrence is the minimum among

all possible PSD’s of R̂. Thus

R̂ =
∑
i

pi|ψi〉〈ψi|, C(R̂) =
∑
i

piC(|ψi〉). (2.3.9)

In Eq. 2.3.9, C(R̂) is Wootters’s concurrence, which, by definition, is equal to the

minimum average concurrence over all possible PSD’s of R̂. As mentioned before,

each pure state |ψi〉 can be mapped back to an N-qubit state (|ψi〉 → |Ψi〉), producing

a PSD for X̂1i,

X̂1i =
∑
i

pi|Ψi〉〈Ψi|. (2.3.10)
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Since GM concurrence is convex by definition, we have

CGM (X̂1i) ≤
∑
i

piCGM (|Ψi〉). (2.3.11)

For a pure state the GM concurrence is defined by

CGM (|Ψi〉) = min
j

√
2
√

1−Πj(|Ψi〉), (2.3.12)

where the minimum is taken over all bipartitions, J , of the N qubits. Therefore, the

GM concurrence must be bounded by any specific bipartition, including the bipartition

of the N qubits to party F and party G.

CGM (|Ψi〉) ≤
√

2
√

1−ΠF |G(|Ψi〉). (2.3.13)

Using the same mapping as for Eq. 2.3.8 it is easy to show that C(|ψi〉) is equal to

the right hand side of Eq. 2.3.13. Note that |ψi〉〈ψi| and |Ψi〉〈Ψi| are the same density

matrices. We have only renamed (and not changed) the bases vectors and that does

not change any of the reduced density matrices. Therefore we conclude that

CGM (X̂1i) ≤
∑
i

piCGM (|Ψi〉) ≤
∑
i

piC(|ψi〉)

= C(R̂) = 2 max{0, |z1| −
√
aibi}, (2.3.14)

where the right most equality is found by evaluating Wootters’s concurrence for R̂

under the assumption a1b1 ≥ aibi. This upper bound matches the lower bound and

therefore it is the exact value of CGM (X̂1i).

Next, we generalize this result to all the X-matrices. We do so by decomposing the

X-matrix into a convex sum of X̂1i matrices. Let us first look at the case for which

|z1| − w1 ≥ 0.

(a) |z1|−w1 ≥ 0. Note that |zi|−wi ≤ 0 for i ≥ 2 since
√
a1b1 ≥

√
aibi ≥ |zi|. First

by a change of phase of the basis, which is a local unitary transformation, we change

z1 to |z1|. This only changes the phase of the other off-diagonal elements. Then we
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decompose X̂ in the following form.

X̂ = Â+

n∑
i>1

Ŝi, (2.3.15)

where Ŝi is an X̂1i matrix whose two-qubit counterpart reads

R̂i =


xi

√
aibi

ai zi

z∗i bi√
aibi yi

 , (2.3.16)

where

A11 = a1(1− w1√
a1b1

), A2n,2n = b1(1− w1√
a1b1

),

A1,2n = A2n,1 = |z1| − w1,

Ai,j = 0 i 6= {1, 2n}, or j 6= {1, 2n},

xi =
a1

√
aibi

w1
, yi =

b1
√
aibi
w1

. (2.3.17)

It can be shown that Ŝi’s are all proportional to valid density matrices, since they

are non-negative hermitian matrices. The proportionality constant is between zero

and one and can be interpreted as probability. Using the above lemma one can show

that all Ŝi’s are biseparable matrices (though not normalized). Regarding the first

matrix in the decomposition, the proportionality constant is A11 +A2n,2n, and its GM

concurrence is 2(|z1| − w1)/(A11 + A2n,2n). Due to the convexity of GM concurrence

we conclude that

(A11 +A2n,2n)
2(|z1| − w1)

A11 +A2n,2n
= 2(|z1| − w1) (2.3.18)

is an upper bound for the GM concurrence of X̂. Since 2(|z1| − w1) is also a lower

bound for the concurrence, it is the exact value of the GM concurrence.

Note that for the above decomposition to work we had to assume that |z1| ≥ w1.

We now turn to the case |z1| < w1. We seek to show that all such density matrices

are biseparable. We consider two different scenarios.

(b)
√
a1b1 ≥ w1. In this case the matrix X̂ can be decomposed to matrices similar
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to the previous case.

X̂ =

n∑
i>1

Ŝ′i, (2.3.19)

where Ŝ′i is an X̂1i matrix whose two-qubit counterpart reads

R̂′i =


a1Ti z1Ti

ai zi

z∗i bi

z∗1Ti b1Ti

 , Ti =

√
aibi
w1

. (2.3.20)

Since |z1|Ti ≤
√
aibi and |zi| ≤

√
a1b1Ti, we can invoke Lemma 1 to confirm R̂′i is

biseparable for all i. The fact that R̂′i is not normalized does not interfere with the

proof of biseparability as one can always factor out Tr[R̂′i]. Now we focus on the last

case.

(c)
√
a1b1 < w1. In this case we divide our matrix into two positive semi-definite

matrices X̂ = K̂1(t, r) + K̂1(r, t).

K̂1(t, r) =



a1t z1t

a2r z2r

. . . . .
.

anr znr

z∗nr bnr

. .
. . . .

z∗2r b2r

z∗1t b1t


,

where

t =
w1

w1 +
√
a1b1

, and r = 1− t.

Note that since w1 ≤ 3
√
a1b1, then 3

4 ≥ t > r. One can show that

t
√
a1b1 = rw1, (2.3.21)
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which guarantees that K̂1(t, r) falls in the category of case (a). Since

t|z1| ≤ rw1,

r|zj | ≤ (t− r)
√
a1b1 + rwj , (2.3.22)

K̂1(t, r) is biseparable. Regarding matrix K̂1(r, t), since

r|z1| ≤ tw1,

t|zj | ≤ r
√
a1b1 + t

n∑
i6=1,j

√
aibi, (2.3.23)

it does not fall in the category of case (a) and thus belongs to either case (b) or case

(c). If it falls in the category of case (b) then we can conclude that it is biseparable.

If not, we divide K̂1(t, r) into two matrices K̂1(t, r) = K̂2(t′, r′) + K̂2(r′, t′), as before.

Each time we divide a matrix in this way the trace of the remaining part is strictly

smaller than the trace of the step before: Tr[K̂i(r
i, ti)] ≤

(
3
4

)i
. Thus, we can write the

matrix X̂ as a convex sum of biseparable states and a remaining part that can be made

arbitrarily close to zero. Therefore matrix X̂ is a biseparable matrix. This completes

the proof for all X-matrices. Therefore, we have proved that the GM concurrence of

a N -qubit X-matrix is

CGM (X̂) = 2 max{0, |zi| − wi}, 1 ≤ i ≤ n (2.3.24)

2.3.1 GHZ-diagonal states

Before closing this section we introduce an important subclass of X-states, namely

the GHZ-diagonal states. GHZ states provide a complete basis for the Hilbert space.

A class of states that can be directly linked to GHZ-states are the state that can be

written as a convex sum of GHZ states, hence the name GHZ-diagonal states. In

terms of X-states a GHZ-diagonal state takes a very simple form. Each GHZ state

is an equally weighted coherent superposition of two spin flipped product states. For

each GHZ state, there exists a GHZ state of the same spin flipped states but with

the opposite sign between the two product states. Any convex sum of the density

matrices of these two density matrices will have equal diagonal terms for the product

states. One can show that the converse is also true. Any X state with the condition

of ai = bi can be shown to be a convex sum of GHZ-states. In the coming chapters
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we will examine the entanglement properties of these states more carefully and derive

a set of experimentally accessible bounds that are especially useful for states that are

close to GHZ-diagonal states.

2.4 Chapter summary

N-partite entanglement, either as a resource for quantum computation or as a fun-

damental property of quantum theory, has been difficult to quantify, especially for

mixed states. This is an important drawback since many of the algorithms in quan-

tum computation need N-partite entanglement between a large number of qubits, and

inevitable interaction of these qubits with the environment renders initial pure states

mixed and diminishes their entanglement. Thus it is of interest to understand, quan-

titatively, the dynamics of N-partite entanglement when the qubits sharing it come in

contact with different environments. In this chapter, we have found an algebraic for-

mula for the genuinely N -partite (all-party) concurrence of N -qubit density matrices

that can be written as X-matrices in an orthonormal product basis.

We first reviewed two-qubit X-states and discussed some of its entanglement prop-

erties, most importantly the relation between the concurrence of the entanglement

of the X-part of any density matrix with the concurrence of the whole matrix. We

then generalized the X-states to include the case of N qubits. We proved that for

any proper measure of entanglement the entanglement of the X part of the density

matrix is smaller than than entanglement of the whole matrix. We proved this result

by showing that the mapping from the whole matrix to its X part is a LOCC mapping.

Finally we focused on the X-states and derived an algebraic formula for the all-party

concurrence of all such matrices. To achieve this we used the previously derived lower

bound of the all-party concurrence and showed that we can always find a pure state

decomposition whose average all-party concurrence matches the value of the lower

bound. Thus such a decomposition is the optimal pure state decomposition and the

lower bound is the actual value of the all-party concurrence.

The developments we laid out in this chapter allows N -partite entanglement to be

quantified for X states. The formula opens up the possibility of studying entanglement

dynamics of N -qubit states in different scenarii, as long as the X-form of the density

matrix is preserved. In the following chapters we are going to use this result in three

different ways. First we explore the connection between the all-party entanglement

and mixedness in the next chapter. We then use our result to derive bounds that



CHAPTER 2. THEORY OF ENTANGLEMENT OF N-QUBIT X-STATES 35

are more experimentally accessible in chapter five, and finally we use the available

machinery to study the entanglement dynamics in multiqubit open systems,
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Chapter 3

Maximally entangled mixed

X-states

In the previous chapter we studied the all-party entanglement for multiqubit states.

We derived an algebraic formula for the all-party concurrence of all such states. In

this chapter we take advantage of this formula to explore the Hilbert space of mul-

tiqubit states. The main question that we lightly entertain here regards the idea of

universality. By universality we mean that a class of states can achieve all possible

values of a set of quantities. Thus if a quantity is a resource then we only need to

create/explore the universal subset and not all of the Hilbert space.

In the first section of this chapter we discuss and explore the idea of universality

for two-qubit states. For the pair of concurrence-linear entropy, the two-qubit X-

states are universal, and we discuss other universal properties of two-qubit X-states.

In the next section we explore a similar idea of universality for N -qubit X-states. For

this set we find the X-states that for a given value of linear entropy are maximally

entangled. Examination of such states gives us some evidence that such states may

be maximally entangled mixed states for all N -qubit X-states. We finish the chapter

with a discussion on what is more to be done on this subject.

3.1 The universality of two-qubit X-states

The question regarding the maximally entangled states was first raised by Ishizaka

and Hiroshima [66]. They introduced a class of two-qubit states whose entanglement

of formation does not increase under any unitary transformation. They proved their



CHAPTER 3. MAXIMALLY ENTANGLED MIXED X-STATES 37

result for matrices with ranks smaller than four. For two-qubit states of rank four

the result was confirmed numerically. They also examined that their observation also

holds for negativity which is also a measure of two-qubit entanglement.

The question was then picked up in a separate paper [67]. where the class of

two-qubit maximally entangled states was derived directly. The maximally entangled

states are defined through the following observation. The set of pure states includes

the Bell states that are the maximally entangled states. The set of completely mixed

states, on the other hand, only includes separable states. One then wonders for the

subset of states of a given degree of mixedness (or purity), what is the maximum value

of entanglement.

There are a number of measures for the degree of purity. One can use either purity

Tr[ρ̂2], or the von Neumann entropy, given by −Tr[ρ̂ ln ρ̂]. We use the linear entropy

which is defined by

S =
d

d− 1
(1− Tr[ρ̂2]) (3.1.1)

where d is the dimensionality of the density matrix. The linear entropy ranges from 0

to 1 with 0 indicating the density matrix to be a pure state and 1 indicating ρ̂ to be

completely mixed.

The authors proposed an ansatz based on the intuition that among non-diagonal

elements, the two-party coherences are more directly related to the entanglement as

opposed to single party coherences. Among the class of ansatz the authors found the

class of states that are maximally entangled for a given linear entropy. These states

are

ρ̂MEMS =


g(γ) 0 0 γ/2

0 1− 2g(γ) 0 0

0 0 0 0

γ/2 0 0 g(γ)

 , g(γ) =

 1/3 γ < 2/3,

γ/2 γ ≥ 2/3.
(3.1.2)

The concurrence of these states is γ, and their linear entropy is given by [67]

S =
2

3
[4g(γ)(2− 3g(γ))− γ2] (3.1.3)

In Fig. (3.3) we plot the concurrence versus linear entropy for 106 randomly, and

uniformly chosen two-qubit states. The red line represents the set of maximally en-
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tangled states (MEMS). As expected no point lays beyond the red line boundary

confirming the fact that such states are indeed MEMS for concurrence versus linear

entropy. The similar plot in reference [67] plot the tangle versus the linear entropy but

since tangle, linear entropy and concurrence are directly related for two qubit states,

we expect the same MEMS for all three quantities.

Another approach to the problem was developed by Verstraete, et al. [68]. They

asked for a given two qubit density matrix what is the unitary transformation that

leads the maximal entanglement. It was shown in [68] that for two qubit states the

answer is given by the following theorem.

for the density matrix ρ̂ = ΦΓΦ† and the eigenvalues {λi} that are sorted in the

nonascending order, the entanglement of formation (and thus concurrence) is maxi-

mized if and only if the global transformation is of the form

U = (U1 ⊗ U2)


0 0 0 1
1√
2

0 1√
2

0
1√
2

0 −1√
2

0

0 1 0 0

DφΦ† (3.1.4)

where Dφ is a diagonal unitary matrix. The resulting concurrence ρ̂′ = Uρ̂U † is then

given by

C = max{0, λ1 − λ3 − 2
√
λ2λ4} (3.1.5)

Verstraete, et al. [68] also showed that the same transformation also maximizes the

negativity as well as relative entropy of entanglement.

We finish this section by commenting on two recent efforts in regard the question

of universality. First we comment on the recent work by Hedeman who has presented

numerical evidence that two-qubit X-states are universal [69]. The other study is the

work of Mendonça, et al. [70] that have proven that two-qubit X-states are indeed

universal. Here by universality we mean that for any pair of concurrence and entropy

that can be achieved by a physical state the same pair can be achieved by an X

state. In fact the universality goes further and work for any pair of concurrence and

a spectrum of density matrix.

In a recent attempt at the problem of universality of two-qubit X-states, Hedemann

[69] has presented strong numerical evidence that in the plane of concurrence-purity,

the X-states are universal. To show this, Hedemann focused on the idea of entangle-
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ment preserving unitary (EPU) transformations. These are unitary transformations

that preserve the value of a measure of entanglement. An obvious example of such

transformations are the local unitary transformations, i.e. any proper of measure of

entanglement is preserved under all local unitary transformations. Then numerical

evidence was presented supporting the idea that any state can be transformed to an

X-state through an EPU transformation. Since the spectrum and thus the purity are

invariant under all unitary transformation this evidence is equivalent to evidence for

the universality of X-states.

More recently and in a separate note, Mendonça, et al. [70], proved that indeed

two-qubit X-states are universal. To prove this result the authors used the unitary

entanglement maximizing transformation that was developed by Verstraete, et al. [68].

This transformation leads to an X-state of the same spectrum and entropy and equal

or higher entanglement than the initial density matrix. In the last step the authors

prove that this matrix can always be disentangled via a unitary transformation that

preserves the X-form of the density matrix. Thus we can disentangle via such a

transformation until the value of the measure of entanglement becomes the same as

the value of the measure for the original state. Thus for any density matrix of a given

spectrum, and purity and a given entanglement, we can find an X-state that has the

same spectrum and purity and the same entanglement. This confirms that two-qubit

X-states are universal. Note that the above result implies universality for all different

measures of entanglement and not only for concurrence.

An immediate question to this section regards the universality of multiqubit X-

states. Currently this is an open question. In the following section we will find

the maximally entangled mixed states among N -qubit X-states. We will show that

they have the same form as the MEMS for all two-qubit X-states. This similarity is

consistent with the conjecture that even for N qubits, X-states may be universal.

3.2 What are MEMS for N qubits?

In the previous section we discussed the idea of universality of X-states and some of

its different implications for two-qubit X-states. Moving beyond the simplest case of

two qubits similar questions arise naturally. Are N -qubit X-states universal? What

are the maximally entangled mixed states for a given linear entropy for N qubits. In

this section we find the maximally entangled mixed states among the X-states. We

find the class of X-states that for a given linear entropy have the maximum possible
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all-party concurrence. We call this class of states XMEMS. For two qubits XMEMS

matches the two-qubit MEMS. We also find the critical amount entropy, as a function

of N , above which no X-states possesses all-party entanglement. We will prove that

the critical entropy is given by

Scr(N) =
22N−1

(2N − 1)(2N − 1) + 1
. (3.2.1)

The critical entropy increases as a function of N . This means that for large N it is

possible to find highly mixed states that possess genuinely N -partite entanglement.

3.2.1 numerical exploration

We first explore the idea of maximally entangled X-states numerically. We produce 106

random three qubit X-states. We then calculate both the linear entropy and all-party

concurrence for each of the states and plot them. We make two qualitative observation

from the plot. First is that as the linear entropy increases the maximum achievable

all-party entanglement decreases. The second observation regards the critical entropy,

that beyond a critical entropy no state possesses entanglement. Such observation can

be made explicitly quantitative if we find the class of states that lie on the boundary

of the entanglement-entropy plane. As mentioned, we will refer to this class of states

as maximally entangled mixed X-states and denote them with XMEMS. We aim to

determine XMEMS analytically in this section.

3.2.2 Maximally entangled mixed X-states

We use the same parametrization for X-states that we utilized in the previous chapter.

Without loss of generality, we assume that |z1| ≥ |zi| for all i’s. Thus the all-party

concurrence is given by C(X) = 2(|z1| −w1). Remember that w1 =
∑2N−1

j 6=1

√
ajbj . In

the following we propose a mapping that takes any X state to a state X̄ that has the

same all-party concurrence but a higher linear entropy.

The mapping is defined through the elements of X̄ that are given by the following
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Figure 3.1: All-party concurrence and linear entropy plane for three-qubit X-states. Each of the
points corresponds to the all-party concurrence and entropy of a randomly generated X-state. We are
interested in the states that make the boundary as well as the critical entropy.

relations.

ā1 = a1 (3.2.2)

āi = ai + bi, i > 1 (3.2.3)

b̄1 = b1 (3.2.4)

b̄i = z̄i = 0, i > 1 (3.2.5)

z̄1 = |z1| = w1. (3.2.6)

One can readily check that the trace of X̄ remains 1, and our mapping from X to X̄

is positive. Furthermore the all-party concurrence is conserved under this mapping:

C(X) = C(X̄) (3.2.7)

Next we will show that the linear entropy is increasing under our mapping, i.e. the

entropy of X̄ is equal or more than the linear entropy of X. To show this we subtract

the linear entropy of the two matrices.

S(X̄)− S(X) =

(
2N+1

2N − 1

)
×

n∑
i6=1

(
|zi|2 + 2

√
aibi(|z1| − w1)

)
≥ 0 (3.2.8)

Note that our assumption that X is an entangled state implies that |z1| ≥
∑n

i6=1

√
aibi.
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The facts that the above mapping conserves the all-party concurrence and increases the

linear entropy implies that the maximally entangled mixed states have to be conserved

under such mapping and thus possess a similar form to X̄ for which all the lower

diagonal elements except b̄1 vanish.

Let us introduce a slight change of notation, and parameterize the XMEMS in the

following form.

X̂ =



α+ |γ| γ

ā2 0

. . . . .
.

ān 0

0 0

. .
. . . .

0 0

γ∗ β + |γ|


, (3.2.9)

To ensure the positivity and a unity trace, we also require

α+ |γ| ≥ 0 (3.2.10)

β + |γ| ≥ 0 (3.2.11)

αβ + (α+ β)|γ| ≥ 0 (3.2.12)

α+ β + 2|γ|+
n∑
i=2

āi = 1 (3.2.13)

This parametrization is inspired by a similar parametrization in [67]. The all-party

concurrence of such a state is given by 2|γ|. Now we need to find that given γ for

what values of the parameters maximize the entropy. This is equivalent to keeping the

off-diagonal elements constant. Keeping the off-diagonal element constant, entropy or

mixedness is maximized if all the possible diagonal elements are equally populated:

α = β = x, (3.2.14)

ā2 = ā3 = · · · = ān = y, (3.2.15)

where we have defined two new variables, x, y. Using the constraint of trace unity, we
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can eliminate y in favor of x and rewrite the entropy of the density matrix as:

S(X̄) =
2N

2N − 1

(
A(x+ |γ|)2 +B(x+ |γ|) + c

)
(3.2.16)

where

A =− 2

(
n+ 1

n− 1

)
, (3.2.17)

B =
4

n− 1
, (3.2.18)

C =

(
1− 1

n− 1
− 2|γ|2

)
. (3.2.19)

We now need to maximize the linear entropy, S(X̄), for a given value of γ. We also

need to make sure that the constraints of positivity are met. Thus x, y ≥ 0 and

2(x + |γ|) + (n − 1)y = 1. This last equation implies (x + |γ|) ≤ 1/2. Keeping these

constraints in mind, we plot S(X̄) in Fig. [FIGURE] as a function of x + |γ|. We

note that when |γ| ≤ 1/(n + 1) the maximum of S(X̄) occurs at x + |γ| = 1/(n + 1)

and y = 1/(n + 1). On the other hand, when (x + |γ|) ≥ 1/2, the maximum occurs

when x = 0, and y = (1− 2|γ|)/(n− 1). With these considerations, we finally get the

following form of the maximally entangled mixed X-states.

X̂MEMS =



f(γ) γ

g(γ) 0

. . . . .
.

g(γ) 0

0 0

. .
. . . .

0 0

γ∗ f(γ)


, (3.2.20)

where

f(γ) =

 1
n+1 0 ≤ |γ| 1

n+1

|γ| 1
n+1 ≤ |γ| ≤

1
2

(3.2.21)
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and

g(γ) =

 1
n+1 0 ≤ |γ| 1

n+1

1−2|γ|
n−1

1
n+1 ≤ |γ| ≤

1
2

(3.2.22)

As noted earlier these are the states that also have the maximum entanglement for

a given value of entropy. The degree of all-party entanglement is 2|γ| and the linear

entropy is given by

S(XMEMS) =
2N

2N − 1

(
Af(γ)2 +Bf(γ) + c

)
. (3.2.23)

In fig. 3.2 we plot the entanglement versus entropy for a million different matrices. We

pick a XMEMS and add to it a random X-state and calculate the entanglement and

the entropy. This allows the boundary in the entanglement-entropy plane explicitly.

In a clear agreement with the analytical result we see that no randomly generated

point violate the boundary. We note that the general results derived here reduces

Figure 3.2: Entanglement and entropy of randomly generated three-qubit X-states. The solid line
corresponds to the XMEMS for three qubits. We see that all the points lie inside the solid line, as we
expect from our analytical solution.

correctly to the results derived by Munro et al. for N = 2 [67]. We reiterate that

analysis here is restricted to the X-states whereas the analysis in the previous work

includes all two-qubit density matrices.
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Letting γ = 0, we also find the critical entropy above which no X-state possesses

entanglement. This critical entropy as a function of N is given by

Scr(N) =
22N−1

(2N − 1)(2N − 1) + 1
. (3.2.24)

For N = 2 this critical entropy is 8/9. In Fig. 3.3 we plot this critical entropy as a

function of N . We see that the critical entropy is an increasing function of N and it

approaches unity asymptotically. This implied that as N increases, we can have states

that are more mixed and still exhibit all-party entanglement.

2 4 6 8 10 12 14 160.88

0.9

0.92

0.94

0.96

0.98

1

N

Scr

Figure 3.3: Critical entropy, Scr, as a function of the number of participating qubits, N . Note that
the critical entropy increases as the number of qubits increases and approaches unity asymptotically.

3.3 Chapter summary

In this chapter we introduced and explored the idea of universality of X-states. We

reviewed a series of results that have recently led to a concrete proof that among two-

qubits the X-states are universal. The immediate conjecture that follows is whether

this result can be extended to more than two-qubits. Here we encounter an imme-

diate obstacle that is for general N -qubit states there currently exists no conclusive

procedure to determine whether a state is entangled and if so, how much. Thus even

the numerical explorations that was a starting point for the case of two qubits is not

feasible at the moment.
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The all-party concurrence formula for X-states, however, provide an avenue to

further explorations. One can ask similar questions that was raised about maximally

entangled mixed states and only answer them for X-states. Questions such as what are

the maximally entangled mixed states for a given purity or spectrum. What unitary

transformation does maximize the entanglement of a given X-state? Such questions

are at least amenable to numerical explorations. One can extend previous results

by hypothesizing and then numerically check for the validity of such hypotheses and

finally undertake an effort to prove them rigorously. This chapter was an example of

such progress.

We found the class of N -qubit X-states that has the maximum all-party entangle-

ment for a given value of mixedness. We showed that these states, named X-MEMS

here, are a natural extension of their two qubit counterparts. We also found the critical

entropy above which no X-state possesses genuinely multipartite entanglement. If the

conjecture of universality of holds for more than two qubits, then the X-MEMS that

are found here are indeed maximally entangled mixed states for all N -qubit states. It

also interesting and open question to find the MEMS for different measures of all-party

entanglement.

In the next chapter we shift our attention to a separate issue. We will try to deal

with the problem of noise in experimental setups. Since noise is unavoidable producing

highly idealized states such we discussed above can be very difficult if not impossible.

We will try to develop bounds that give an estimate of the entanglement when it is

only nearly is the ideal state of interest.
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Chapter 4

Entanglement of experimental

X-states

In the two previous chapters we derived a formula for the all-party concurrence of

X-states and utilized this result to explore the relation between entanglement and

different quantities in the Hilbert space. Here we explore a different aspect of the

problem. Let us step back and see the problem in a larger context. Quantifying

the all-party entanglement is a challenge. Previous studies have produced witnesses

and/or lower bounds of the all-party entanglement [25, 26, 27, 28, 29, 30, 31, 32, 29, 28].

Many of these results are not well suited for use in experimental settings because they

apply only for idealized noise-free states [30, 31, 32, 29], require numerical methods

only feasible for few-partite systems [28], or require knowledge of the density operator

of the state under test [25, 26]. The latter requirement is a problem for multi-party

systems because, in general, the number of measurements to determine the density

operator scales exponentially with the number of parties [33]. Apart from these meth-

ods, the measured value of witness operators can be used to find a lower bound for

the entanglement realized in an experiment [34, 35, 36, 37]. Nonetheless, the efficacy

of this approach for producing non-trivial lower bounds is not guaranteed, and com-

plementary techniques are desired. In summary, quantifying all-party entanglement

remains a challenge. Here we develop an approach that aims addressing this problem

at least in a restricted way.

We will introduce a measure of all-party entanglement and find upper and lower

bounds for the value of this measure. Our bounds do not require a full state tomog-

raphy of the state and are experimentally relevant even for very large Hilbert spaces.
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We will show that our bounds are specially useful for states that are nearly GHZ-

diagonal. We finish the chapter with an example of the utility of our bounds in a real

experimental settings.

4.1 The challenge of nearly ideal states

Let us discuss our challenge from a slightly different perspective. Assume that we are

interested in producing a specific X-state in the laboratory. We design our experiment,

put the setup together and start our characterization. Yet as much as we try to produce

that ideal state there is always some noise left in the coherence elements. and thus

what is created is not an ideal X-state. So we cannot take advantage of the algebraic

formula that we derived to quantify its entanglement.

Yet entanglement is a continuous property of the state. It is highly non-linear

function of the state but it is reasonable to assume that it is continuous. So we

expect that for states that are nearly ideal with a very small noise, the measure

of entanglement is nearly the same thing. It is this notion that we are going to

characterize rigorously in this following sections.

One needs to first define what we mean by nearly ideal. How do we decide that

two states are very close to each other? There are different distance measures for two

states. Three famous candidates are fidelity, relative entropy, and trace distance, and

a review of their properties can be found here [5]. We choose to work with the trace

distance since it has all the nice properties of a measure. The trace distance of two

matrices is defined by

D(σ, ρ) =
1

2
Tr|ρ− σ| = 1

2
Tr|σ − ρ| = D(ρ, σ) (4.1.1)

where we define |A| =
√
AA†, is the sum of all singular values of A. Let us summarize

the properties of this distance measure that we are going to use in the next section.

Trace distance is invariant under unitary transformation:

D(UρU †, UσU †) = D(ρ, σ). (4.1.2)

The trace distance satisfies the triangle inequality

D (ρ, σ) ≤ D(ρ, τ) +D(τ, σ) (4.1.3)
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There are two more properties of the trace distance that we will use in the next

section to define a measure of all-party entanglement. First the trace distance is a

convex quantity, thus for two probability distribution {pi} and {qi} and two sets of

matrices ρi, and σi we will have

D

(∑
i

piρi,
∑
i

qiσi

)
≤ 1

2

∑
i

|pi − qi|+
∑
i

D(ρi, σi) (4.1.4)

The last property if the contractivity which is the following: Let E be a trace-preserving

quantum operation, and ρ and σ are two density operators. Then

D(E(ρ), E(σ)) ≤ D(ρ, σ). (4.1.5)

Apart from the above properties we will use the fact that trace distance can be cal-

culated simply in instances that are of interest to us. Before we close this section let

us sketch out what we are going to do in the next section. We seek to attack the

problem of nearly ideal state but first we needed to define what closeness of two states

really mean. Now that we have that tool we also need to contemplate what measure

of entanglement we are going to use? We have concurrence but it is defined through

the idea of purity and the connection between purity and trace distance is not really

clear. So what should we do? An answer to this challenge is presented in the next

section.

4.2 Trace distance measure

One approach is to quantify the entanglement by a measure that is directly related

to the trace distance. We are going to quantify the entanglement of a state by its

distance from the set of non-entangled states [45]. For the all-party entangled the set

of biseparable states is a convex set and one can quantify the all-party entanglement of

any state to be the trace distance of that state with its closest biseparable state. In this

section we first prove that trace distance provides a proper measure of entanglement

and then provide an upper and a lower bound of this measure of entanglement that

are based in the value of entanglement for close states. Let us introduce our measure

of all-party entanglement to be,

E(ρ) = min
τ∈BS

D(ρ, τ), (4.2.1)
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where BS is the set of biseparable states. The trace distance is symmetric in its argu-

ments and is zero if and only if its arguments are equal. The benefit of this approach,

as we will show, lies in the fact that when we succeed in evaluating the measure for

a given state, we can readily place tight bounds on the value of the measure for the

states that are close to that state. Below we establish that E(ρ) is a monotone of the

all-party entanglement.

To show that E(ρ) is an entanglement monotone we prove that E(ρ) is convex, non-

increasing under local operations and classical communication (LOCC), and invariant

under local unitary transformations. We first address the convexity of E(ρ), showing

that E(ρ) ≤ λ1E(ρ1) +λ2E(ρ2) if ρ = λ1ρ1 +λ2ρ2. If the two closest biseparable states

to ρ1 and ρ2 are σ1 and σ2, respectively, then

E(ρ1) = D(ρ1, σ1), and E(ρ2) = D(ρ2, σ2). (4.2.2)

The convexity of the trace distance allows us to conclude that

λ1E(ρ1) + λ2E(ρ2) = λ1D(ρ1, σ1) + λ2D(ρ2, σ2) ≥

D(λ1ρ1 + λ2ρ2, λ1σ1 + λ2σ2) = D(ρ, σ12) ≥ E(ρ), (4.2.3)

where σ12 = λ1σ1 + λ2σ2 is biseparable, since the convex sum of any two biseparable

states is itself a biseparable state.

To show that our measure is non-increasing under LOCC we use the contractive

property of the trace distance [5]. The distance between two states cannot increase

under trace-preserving quantum operations, i.e. for any two states, ρ and ρ′

D(M(ρ),M(ρ′)) ≤ D(ρ, ρ′) (4.2.4)

where M is a trace-preserving quantum operation. We note that any LOCC is a

completely positive, trace-preserving map [71]. Now if the closest biseparable state to

the state ρ is called σ then

E(ρ) = D(ρ, σ) ≥ D(Γ(ρ),Γ(σ)) ≥ E(Γ(ρ)) (4.2.5)

where Γ is an LOCC. Note that in the last inequality, since σ is biseparable, any LOCC
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genuinely multipartite
 entangled

Figure 4.1: A graphic visualization of the bounds of entanglement. The red region represents the set
of biseparable states. The yellow circle represents the set of states that are closer to ρ′ than D(ρ, ρ′).

operation on it leads to another biseparable state.

Finally, we show that E(ρ) is invariant under local unitary transformations. Since

the trace distance is invariant under unitary transformations [5], then

E(ρ) = min
τ∈BS

D(UρU †, UτU †). (4.2.6)

If U is a local unitary transformation then τ ′ = UτU † represents a one-to-one mapping

between biseparable states, and we can write

E(ρ) = min
τ ′∈BS

D(UρU †, τ ′) = E(UρU †). (4.2.7)

Thus, E is invariant under local unitary transformations. This completes our proof

that E is an entanglement monotone.

4.2.1 Bounds on entanglement

Next we show that if the value of the entanglement measure is known for some state,

one can use that value to bound the entanglement of other states. Later we will find

the value of E(ρ) for all GHZ-diagonal states.

Let us assume we have a state ρ and another state ρ′ for which we know the value
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of E(ρ′). Then there exist states σ and σ′, the closest biseparable states to ρ and ρ′,

for which E(ρ) = D(ρ, σ) and E(ρ′) = D(ρ′, σ′). Consequently we can conclude that

E(ρ) = D(ρ, σ) ≤ D(ρ, σ′) ≤ D(ρ, ρ′) +D(ρ′, σ′) = D(ρ, ρ′) + E(ρ′).

The last inequality is the result of the triangle inequality for our distance norm. The

graphic picture in Fig. 4.1 can be helpful although our argument is purely algebraic.

We can also find a lower bound for E(ρ) by employing the reverse triangle inequality;

E(ρ) = D(ρ, σ) ≥ D(ρ′, σ)−D(ρ, ρ′) ≥ D(ρ′, σ′)−D(ρ, ρ′) = E(ρ′)−D(ρ, ρ′).

Consequently knowledge of E(ρ′) allows us to bound the entanglement of ρ,

|E(ρ)− E(ρ′)| ≤ D(ρ, ρ′). (4.2.8)

In fact, the upper bound in (4.2.8) can be tightened by noting that if σ′ is known then

E(ρ) ≤ D(ρ, σ′) ≤ E(ρ′) +D(ρ, ρ′) (4.2.9)

as shown graphically by the solid line in Fig. 4.1. Finally, using the relationship

between distance and fidelity [5],

D(ρ′, ρ) ≤
√

1− F (ρ′, ρ)2, (4.2.10)

together with Eq. (4.2.8) and Eq. (4.2.9), we show that for any two states ρ, ρ′:

E(ρ′)−
√

1− F (ρ′, ρ)2 ≤ E(ρ) ≤
√

1− F (σ′, ρ)2, (4.2.11)

where E(ρ) is the value of our entanglement measure for ρ, and F (ρ′, ρ) is the fidelity

between ρ and ρ′, and σ′ is the closest biseparable state to ρ′. When ρ′ is a GHZ state,

the bounds in the above equation may be determined using only four measurements.

The above bounds will be useful provided we can find another state close enough to ρ

such that the bounds in Eq. (4.2.8) are non-trivial.

In deriving the above bounds we have not made any assumptions about the two

states ρ and ρ′. Specifically, the value of the above bounds, and whether or not they

are non-trivial, depends only on the distances (or fidelities) between states ρ and ρ′.

For example if D(ρ, ρ′) < E(ρ′), the lower bound of entanglement becomes a non-trivial
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positive value. A similar argument can be made for the upper bound. Next we will

find the value of our measure for GHZ-diagonal states explicitly. This allows us to

find bounds on the all-party entanglement of any state using its distance to a GHZ-

diagonal state. But this does not mean that the bounds that we derived previously

are only useful for states near to GHZ-diagonal states.

4.3 Entanglement of GHZ-diagonal states

We will now derive the value of E(ρ′) for the so-called GHZ-diagonal states which are

mixtures of GHZ states by finding the closest biseparable state, σ′ to such states. We

start with a definition and a lemma for N-qubit X-states [52], the class of N-qubit

density matrices whose non-zero elements, in some orthonormal product basis, are di-

agonal and/or anti-diagonal. These matrices only have N-party coherences and tracing

over any set of parties leads to a diagonal density matrix [63, 72].

Lemma: The closest biseparable state to an X-state is itself an X-state.

Proof : If we take a density matrix Y and map it to an X-state: X = χ(Y ), by

setting every element to zero except for the diagonal and anti-diagonal elements, it

is shown in the Appendix that χ is an LOCC mapping. Let us assume the closest

biseparable state to X, called Xbs, is not itself an X-state. The contractive property

of the trace distance implies that

D(X,Xbs) ≥ D(χ(X), χ(Xbs)) = D(X,χ(Xbs)). (4.3.1)

Also note that since Xbs is biseparable, so is χ(Xbs). Thus if Xbs is not itself an

X-state we can find a biseparable X-state that is closer to X than Xbs. This is in

contradiction to the assumption that Xbs is the closest biseparable state to X. Thus

we can conclude that the closest biseparable state to an X-state is itself an X-state.
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Now we determine the closest biseparable state to the following X-state,

X̂N =



a1 z1

b2 z2

. . . . .
.

bn zn

z∗n bn

. .
. . . .

z∗2 b2

z∗1 b1


, (4.3.2)

where n = 2N−1, and we require |zi| ≤ bi, |z1| <
√
a1b1 and a1 + b1 + 2

∑
i bi = 1 to

ensure that X̂N is positive and normalized. We further assume that |z1| ≥ |zi|. The

all-party concurrence of an N -qubit X-matrix is given by [32]

C(X̂N ) = 2 max{0, |z1| − w1}, (4.3.3)

where, for the X-states of the form in Eq. (4.3.2) w1 =
∑n

j 6=1 bj . Notice that in the

above X-state if a1 = b1, X̂N becomes a GHZ-diagonal state. Below, we will show that

the closest biseparable state to X̂N has identical elements to X, except for z1, which

is replaced with w1z1/|z1|. Consequently the value of the all-party entanglement for

X-states of the above form is given by

E(X̂N ) = max{0, |z1| − w1}. (4.3.4)

In the following we further assume z1 ∈ R and z1 > 0 since we can always change the

phase of the basis to achieve this, and the distance is invariant under local unitary

transformations. Furthermore we assume z1 = w1 + ε > w1, otherwise X̂N is a bisep-

arable matrix.
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Let us parameterize the closest biseparable state to X̂N to be Σ̂ = X̂N + ∆̂;

∆̂ =



δ+
1 ν1 − ε

δ+
2 ν2

. . . . .
.

δ+
n νn

ν∗n δ−n

. .
. . . .

ν∗2 δ−2
ν∗1 − ε δ−1


, (4.3.5)

The X form of the difference matrix implies that D(X̂, Σ̂) = ||D1||+
∑n

i>1 ||Di||, where

||A|| = 1
2Tr|A| and

D1 =

(
δ+

1 ν1 − ε
ν∗1 − ε δ−1

)
, Di =

(
δ+
i νi

ν∗i δ−i

)
. (4.3.6)

First we turn to the ||D1|| contribution. Taking advantage of the triangle inequality

for the eigenvalues of D1 leads to

||D1|| ≥
1

2

√
(δ+

1 − δ
−
1 )2 + 4|ε− ν1|2 ≥ |ε−Re(ν1)|.

Note that the above inequality implies that Re(ν1) > 0 since we assumed D(X̂N , Σ̂) <

ε. Similarly using the triangle inequality for the eigenvalues of Di, we can show that

||Di|| ≥ 1
2 |δ

+
i + δ−i |. Now we define δi = 1

2(δ+
i + δ−i ). We conclude

∑
i>1

(bi + δi) ≥
∑
i>1

√
(bi + δ+

i )(bi + δ−i ) ≥ |w1 + ν1| ≥ w1 +Re(ν1).

The second to last inequality arises from applying the condition of biseparability for

the element Σ̂1,2n. Subtracting w1 from both sides of the above equation leads to∑
i>1

||Di|| ≥
∑
i>1

δi ≥ Re(ν1). (4.3.7)

Thus we conclude that D(X̂, Σ̂) = ||D1||+
∑n

i>1 ||Di|| ≥ ε. One can readily check that

is inequality is saturated if Σ̂’s elements are all identical to X̂N except for z1 that is
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replaced with w1. This completes our proof.

4.3.1 Experimentally accessible bounds

Now that we have proved Eq. (4.3.4), we need only show that if ρ′ is a GHZ state then

F (ρ, ρ′) and F (ρ, σ′) can be computed with four measurements regardless the number

of qubits. That F (ρ, ρ′) depends only on the populations and coherences ρ1,1, ρ1,2n,

and ρ2n,2n and therefore requires only four measurements has been shown previously

[12, 8]. From our previous analysis we find that the nearest biseparable state to the

GHZ state is σ′ = (|0 · · · 0〉〈0 · · · 0|+ |1 · · · 1〉〈1 · · · 1|)/2 for which it is easy to see that

the fidelity, F (ρ, σ′), also only depends on the populations and coherences ρ1,1, ρ1,2n,

and ρ2n,2n.

In deriving the above experimentally more accessible bounds we took advantage of

the fact that the fidelity between any state and a GHZ-state depends solely on three

density matrix elements, i.e. ρ1,1, ρ1,2n, and ρ2n,2n. An identical argument can be

made even for GHZ-states that are not of equal weighting:

|ψ〉 = cos θ|0, 0, . . . , 0〉+ sin θ|1, 1, . . . , 1〉 (4.3.8)

Thus the lower bound of the entanglement can be improved using a simple optimization

E(ρ) ≥ max
θ

(
1

2
| sin 2θ| −

√
1− F (ρ, |ψ〉)2

)
(4.3.9)

where the fidelity reads

F (ρ, |ψ〉)2 = ρ1,1 cos2 θ + ρ2n,2n sin2 θ + Re(ρ1,2n) sin 2θ (4.3.10)

We demonstrate the utility of our approach by using the fidelities recently reported

on the creation of GHZ-states among up to fourteen ions to establish lower bounds

on the actual entanglement produced in the experiment [8]. The lower bounds on the

generated all-party entanglement for states that are produced with up to six ions are

given in Table 4.1. The fidelities of states with larger numbers of qubits are not big

enough to establish non-trivial lower bounds. Regardless, these states are all-party

entangled as reported by the authors.



CHAPTER 4. ENTANGLEMENT OF EXPERIMENTAL X-STATES 57

Number of ions 2 3 4 5 6

Fidelity, % 98.6 97.0 95.7 94.4 89.2
E > 0.33 0.25 0.2 0.17 0.044
E% > 66 50 40 34 8.8

Table 4.1: The lower bound E of the entanglement of the states reported in Ref. [8]. The third row
is the percentage of the produced entanglement lower bound relative to the entanglement of a GHZ
state.

4.4 Distance from the closest fully separable state

In this section we focus on the entanglement properties of a subclass of GHZ-diagonal

states. The GHZ-diagonal states are themselves a subset of X-states. In our notation

they are X-states for which ai = bi. Such matrices can be written as a convex sum of

GHZ states, hence their name. The entanglement properties of GHZ-diagonal states

has already been the subject of a few previous investigations [73, 25, 74, 65, 75].

For the purpose of the current section we impose an extra condition of zi = 0 for

i > 1. The states that we are interested in are X-matrices of the form given below.

ρ̂x =



a1 z1

b2 0

. . . . .
.

bd 0

0 bd

. .
. . . .

0 b2

z∗1 a1


. (4.4.1)

The conditions for biseparability and full separability of all partitioning of such states

are known [73]. For these states to be fully separable it is necessary and sufficient that

S = |z1| −min{bi} ≤ 0 (4.4.2)

Below we show that the quantity S also has a simple geometrical interpretation and it

can be used as a measure of weak inseparability. We submit that S ≥ 0 is the distance

from the closest fully separable state. The distance metric we are using here is the

trace distance that we have used previously to find a measure of all-party entanglement
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[76]. The trace distance of two matrices is given by

D(ρ, τ) =
1

2
Tr(|ρ− τ |), (4.4.3)

where |A| =
√
AA†. The measure of weak inseparability that we introduce here is

E(ρ) = min
τ∈FS

2D(ρ, τ) (4.4.4)

where FS denotes the set of fully separable states, which is a convex set. Identically

to the proof we have given in previous sections we can show that E(ρ) is convex,

non-increasing under LOCC and invariant under local unitary transformations. From

now on, unless otherwise said, we use separable in stead of fully separable. Now we

prove the main result of this section that is to find the closest fully separable state to

ρ̂x. It is shown in [73] that any density matrix can be depolarized to a state of the

form ρ̂x using an LOCC map. This and the contractive property of the trace distance

guarantee that the closest separable state to ρ̂x has the same form as ρ̂x. In the

following we assume that z1 = |z1| without loss of generality since this can always be

accomplished using a local unitary transformation without changing any other element

of the matrix, and the distance is invariant under local unitary transformaitons. We

assume z1 = min{bi}+ ε > min{bi} = c. We will prove that the closest separable state

to ρ̂x has identical elements except for z1 replaced with with c, i.e. E(ρ̂x) = ε.

To prove let us assume the contrary. There exists a separable state Σ̂ that is closer

to ρ̂x than ε. We parameterize this state as Σ̂ = ρ̂x + ∆̂:

∆̂ =



δ1 ν − ε
δ2 0

. . . . .
.

δd 0

0 δd

. .
. . . .

0 δ2

ν∗ − ε δ1


. (4.4.5)

The X form of the difference matrix implies that D(ρ̂x,Σ) = |D1|
2 + Σi>0|δi|.
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D1 =

(
δ1 ν1 − ε

ν∗1 − ε δ1

)
(4.4.6)

The contribution from D1 leads to

|D1|
2
≥ |ε− ν| ≥ |ε−<(ν)|. (4.4.7)

The above inequality implies that <(ν) > 0 since we assumes that D(ρ̂x,Σ) < ε. Since

Σ is a separable state we should have that for all i’s

bi + δi ≥ |c+ ν| ≥ c+ <(ν). (4.4.8)

Let i = j be the index for which bj = c, then δi ≥ <(ν). Thus we have D(ρ̂x,Σ) ≥
|D1|+δi ≥ ε. This implies that there is no separable state closest to ρ̂x than z1−c. The

state with δi = 0 and ν = 0 saturates this inequality and thus E(ρ) = min{|z1|− c, 0}.
In the thesis we choose the normalization S = 2E(ρ̂x) so that the distance matches

the value of the all-party concurrence for ρ̂x.

4.5 Chapter summary

More than a century after the seminal work of Schmidt [2], and inspite of important

contributions from many, including Werner [77] and Wootters [20], to the theory of

entanglement, the question of how to determine and quantify the entanglement of

a given state remains open. Of particular importance is determining the all-party

entanglement among many qubits in an experimental setting. This is a difficult prob-

lem because most presently available techniques are not well suited for experimentally

produced systems in which noise is always present. Additionally, the exponential scal-

ing of measurements required to determine the state of N-qubits make state-based

approaches very inefficient. Finally, witness-based techniques for quantifying the en-

tanglement do not currently provide upper bounds and may not result in non-trivial

lower bounds.

In this chapter, we have introduced a technique to solve this problem by using

a distance measure to derive bounds on the all-party entanglement for an arbitrary

number N of qubits. We derived an algebraic formula for the all-party entanglement of
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GHZ-diagonal states and then used this formula to derive easily calculable upper and

lower bounds to the all-party entanglement of any experimentally produced state based

on the results of just four measurements. This is a particularly promising technique

for establishing the bounds of the produced entanglement when N is large.

As mentioned in the beginning, we used our lower bound to quantify the non-zero

all-party entanglement that was produced in a recent experiment [8]. We used the

fidelities reported on the creation of GHZ-states of up to fourteen ions and established

lower bounds on the actual all-party entanglement for states with up to six ions. The

fidelities of states with larger numbers of qubits are not big enough to establish non-

trivial lower bounds. Regardless, these states are all-party entangled as reported by

the authors. While upper bounds appropriate to the experiment in [8] could also be

computed from two of the populations and one of the coherences using our approach,

the required populations were not reported.

So far in this thesis we focused on the question regarding how to determine a

state is separable or entangled, how to quantify this entanglement and how to sharpen

our methods for experimental techniques or use or insight to explore the connection

between different quantities in large Hilbert spaces. In the final chapter we change our

focus to the the dynamics of entanglement. How it is being lost and is there a way to

exert some control over all-party entanglement among many parties.
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Chapter 5

Multipartite entanglement in

open systems

So far in this work we focused on questions regarding how to determine whether a

given state is entangled, and if so how to properly quantify such an entanglement. We

developed an algebraic formula for the all-party concurrence of N -qubit X-states and

explored the relation between linear entropy and all-party concurrence. In the last

chapter we presented a discussion on a distance measure of entanglement and how to

utilize it to develop bounds on all-party entanglement that are directly accessible in

an experimental settings without the need to characterize the state completely.

In this chapter we utilize the machinery that we have developed in the previous

chapters to study the dynamics of multipartite entanglement in an explicitly quanti-

tative approach. In the first part of the chapter we study the dynamics of multipartite

entanglement in open systems that are experiencing local decoherence. We also present

a short discussion on the robustness of such entanglement against white noise.

In the second half of this chapter we focus on an approach to defeat the suppres-

sion of entanglement in a controlled setting. Our approach uses the phenomenon of

collapse and revivals to coherently suppress and revive the multipartite entanglement.

Multipartite entanglement can signal inseparability for different partitionings of the

system. Here we examine two extreme kinds of entanglement: (i) all-party entangle-

ment, also known as genuinely multipartite entanglement, which signals inseparability

along all possible partitionings, and (ii) weak inseparability, defined as the lack of full

separability. Full separability signals that the state is not entangled along any parti-

tioning. We develop an approximation that allows us to obtain analytical expressions



CHAPTER 5. MULTIPARTITE ENTANGLEMENT IN OPEN SYSTEMS 62

for both of these quantities.

The qubits are initially assumed to be in a Greenberger-Horne-Zeilinger (GHZ)

state [9] and we explain below an approximation that reduces their density matrix

to an X-state for all times. X-states are N -qubit density matrices whose non-zero

elements are restricted to diagonal or anti-diagonal in an orthonormal product basis.

They include important states such as GHZ and GHZ-diagonal states. Our approxi-

mation enables us to use the algebraic formula developed previously in chapter three

to quantify the all-party entanglement. We also utilize the distance from the set of

fully-separable states as our measure of weak inseparability. We obtain an analyti-

cal formula for this quantity during dynamics. We observe that beyond three qubits

the initial loss of all-party entanglement after collapse is permanent. We then ex-

amine weak inseparability, and demonstrate that, contrary to all-party entanglement,

weak inseparability experiences revivals even for very large values of N , although the

strength of such revivals decreases with N . Our result suggests a clear picture of the

path that the N -qubit state traverses during the dynamics.

5.1 Local decoherence channels and all-party entangle-

ment

In this section we investigate two examples of all-party entanglement dynamics in

open systems. Our first example is the all-party entanglement in a system that ex-

perience decoherence through N local amplitude damping channel. Earlier studies

to tame this problem have only been successful qualitatively [78]. Here we present a

completely quantitative approach and determine how entanglement changes through

the dynamics.

One feature that typically companies the dynamics of entanglement in open sys-

tems is the non-exponential disappearance of entanglement in finite time that was first

identified by Yu and Eberly [52, 51], the entanglement sudden death. Here we study

which states experience entanglement sudden death.

5.1.1 Robustness of N-partite entanglement

Restricted forms of X-matrices of more than two qubits have been used in some recent

studies of the dynamics of multipartite entanglement. The entanglement measures uti-

lized in these studies yield qualitative information about the multipartite entanglement
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[79, 80, 81, 82]. Direct study of the dynamics of genuinely multipartite entanglement

has been an elusive problem mainly due to the lack of an analytical measure of gen-

uinely multipartite entanglement that is simple to calculate. Our GM concurrence

formula provides an opening to quantitatively examine the conjectures of such studies

and many other scenarios whenever the initial density matrix is an X-matrix and the

X nature of the density matrix is robust in the dynamics.

In the following we use our formula to directly study the dynamics of the multiqubit

entanglement shared by N qubits when each qubit is subjected to a local amplitude

damping channel. This can represent, for example, the spontaneous decay of N two-

level atoms, each in a separate zero-temperature Markovian reservoir. For a two-level

atom in zero-temperature Markovian reservoir, the evolution of ground and excited

states, |g, 0〉 and |e, 0〉, is given by

U(t)|e, 0〉 = At|e, 0〉+Bt|g,1〉,

U(t)|g, 0〉 = |g, 0〉, (5.1.1)

where U(t) is the local propagator, At =
√

1− Pt, and Bt =
√
Pt. Although Pt has

a time dependence Pt = 1 − e−γt where γ is the damping rate, we can also think of

Pt as the probability of the decay and write everything as a function of P instead

of an explicit dependence on time. Thus, in the following we drop the explicit time

dependence of P . The state |1〉 denotes an excited state of a local reservoir.

We study the dynamics of the multiqubit entanglement that is shared initially by

N -partite GHZ states:

|Φ(k)
N , α〉 = cosα|e⊗N−kg⊗k〉+ sinα|g⊗N−ke⊗k〉

This is a GHZ state where either (N − k)’s of the qubits are initially excited and the

rest are in their ground state or k qubits are initially excited and the rest are in their

ground states. We first study the k = 0 case. We present a detailed analysis only for

the three qubit case but the generalization to N qubits is straightforward. By tracing



CHAPTER 5. MULTIPARTITE ENTANGLEMENT IN OPEN SYSTEMS 64

out the reservoirs we find the density matrix of the three atoms,

ρ̂
Φ

(0)
3

(t) =



a1 z1

a2

a2

b2

a2

b2

b2

z1 b1


, (5.1.2)

where

a1 = cos2 α|At|6, b1 = sin2 α+ cos2 α|Bt|6,

a2 = cos2 α|A2
tBt|2, b2 = cos2 α|AtB2

t |2,

z1 = sinα cosαA3
t .

For an initial |Φ(0)
N , α〉 state the concurrence reads

C
(0)
N = max{0, Q(0)

N }, (5.1.3)

Q
(0)
N = 2(cos2 α) (1− P )

N
2

(
| tanα| − (2N−1 − 1)P

N
2

)
.

In Fig. 5.1, we plot Q
(0)
N versus P for N = {2, 10, 100} qubits. It confirms that the

bulk of the initial entanglement dies out faster (at smaller P ’s) as the number of

qubits increases. In the Q
(0)
N formula, the non-negative factor, 2(cos2 α) (1 − P )

N
2 ,

determines the decay of entanglement for N � 2, and one can show that for the

amplitude damping channel the half-life of the entanglement depends on N as

Phalf-life ≈
2 log 2

N
, (5.1.4)

which is the same as the half-life of the coherence elements in the density matrix. We

observe from Fig. 5.1 that the half-life of the entanglement decreases as the number

of the qubits increases. One might expect a similar dependence on N for the time at

which the entanglement disappears completely. However, this is not always the case.

In order to show this we solve the equation Q
(0)
N = 0 for the critical value of P , beyond
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Figure 5.1: The Q
(0)
N vs P for different numbers of qubits for the initial state |Φ(0)

N , π
4
〉. N = 2 is the

dotted line, N = 10 is the dashed line and N = 100 is the solid line.

which the concurrence is zero:

P ≥
( | tanα|

2N−1 − 1

) 2
N = Pc. (5.1.5)

If Pc < 1, then the entanglement has a finite life [51]. Otherwise the entanglement

dies out asymptotically. In Fig. 5.2, we plot Pc versus the number of the qubits for

different initial states. We observe that the critical value, Pc, can increase, decrease or

even decrease and then increase as a function of N . The parameter that determines

this peculiar dependence of Pc on N is tanα, which one can think of as a distance of the

initial state to the final state. In the macroscopic limit, N →∞, even this dependence

on tanα is suppressed. Thus although the half-life of macroscopic entanglement is very

small, a non-zero entanglement lasts for a constant interval of time before vanishing

completely.

Similar unusual behaviors were observed by Aolita et al. [78] for the entanglement

of different bipartitions of N qubits. They had derived similar N -dependence for the

half-life and also provided examples of initial states giving Pc increasing with N . It

should be pointed out that since the entanglement of different bipartitions is not a

sufficient condition for N-partite entanglement similar behavior was not a foregone

conclusion.

For the k > 0 case one can show that the initial entanglement only decays asymp-
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Figure 5.2: Pc vs number of qubits for different initial states |Φ(0)
N , α〉. From bottom up tanα =

0.01, 0.1, 0.2, 0.5, and 1 respectively.

totically. Below we present the argument for N = 3 and k = 1 but the extension

to higher N is straightforward. The asymptotic decay of entanglement is due to the

fact that 〈e, e, e|ρ
Φ

(1)
3

|e, e, e〉, 〈e, g, e|ρ
Φ

(1)
3

|e, g, e〉, and 〈g, e, e|ρ
Φ

(1)
3

|g, e, e〉 remain zero

for all times. To show this, we note that our initial state is a superposition of two

possibilities. Either two of the atoms, {1, 2}, are excited and the other atom, {3},
is in vacuum state, or that single atom is excited and the atoms {1, 2} are in their

ground states. Since all reservoirs are initially in their ground states, if an atom is in

its ground state initially it will always remain there. The three diagonal terms that we

referred to require the atom {3} and at least one of the other two atoms to be excited

simultaneously. Since this is forbidden, all of these matrix elements remain zero. Thus

the negative contribution to the concurrence formula remain zero. This argument can

be generalized for N ≥ 4 to all of the GHZ states except for |Φ(0)
N , α〉, because in the

|Φ(0)
N , α〉 state all of the atoms can be initially excited. The concurrence of all |Φ(k)

N , α〉
initial states with k > 0 is given by

C
(k)
N = | sin 2α|(1− P )

N
2 .

Thus for k > 0, concurrence only dies when P = 1.

The entanglement that is stored initially between the N qubits is transferred to the

environments. Since the environments in this case also remain qubits we can also try
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to study the entanglement between different environments. From the above equations

for the state at all times one can trace out the atoms and find the density matrix of

different environments. One can readily check the result is a density similar to that of

the atoms with At’s are exchanged with Bt’s. This is equivalent to exchanging P and

1 − P in the concurrence formula. For the initial state of |Φ(0)
N , α〉, the concurrence

between different environments is given by

C
(0)
Ne = max{0, Q(0)

Ne}, (5.1.6)

Q
(0)
Ne = 2(cos2 α) P

N
2

(
| tanα| − (2N−1 − 1)(1− P )

N
2

)
.

The plot for the all-party concurrence among the environments is identical to the plot

of all-party concurrence among the atoms mirrored along the P access. We previously

saw that as the number of parties increases the entanglement is lost faster in strength.

Here we observe the opposite perspective that as N increases the transfer of the bulk

of the entanglement to all-party entanglement among the environments happens later.

5.1.2 Robustness against white noise

We now study robustness of the entanglement agains white noise. Adding white noise

(a maximally mixed state) to the density matrix does not change the X nature of the

density matrix, so we look at a density matrix of the form

Ŷ = (1− p)X̂ +
p

2N
Î , (5.1.7)

where Î is the identity matrix, p is the mixing parameter, and we again assume
√
a1b1 ≥√

aibi. The diagonal and cross diagonal elements change according to

ai −→ (1− p)ai +
p

2N
,

bi −→ (1− p)bi +
p

2N
,

zi −→ (1− p)zi,

wi −→ (1− p)wi +

√
p(1− p)

2N
(1− ai − bi) + (

1

2
− 1

2N
)p, (5.1.8)
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The concurrence of Ŷ reads

C(Ŷ ) = 2 max{0, (1− p)(|z1| − w1)

−
√
p(1− p)

2N
(1− a1 − b1)− (

1

2
− 1

2N
)p}. (5.1.9)

The third term on the right hand side is independent of the density matrix X̂. The

second term depends on the density matrix and vanishes for the GHZ states. Thus

amongst X-matrices of N qubits, the GHZ states are the most robust. The entangle-

ment of a maximally entangled GHZ states disappears when

p ≥ 2N−1

2N − 1
= pbisep. (5.1.10)

In Fig. 5.3, we plot the concurrence of a maximally entangled GHZ state mixed with

maximally mixed state versus p for two extremal value of N = {2,∞}. It is interesting

to note that the N -partite concurrence of the maximally entangled GHZ state dies out

linearly with a rate between −2 and −3
2 . Comparing this result with that of ampli-

tude damping we can conclude that in handling N -partite entanglement, amplitude

damping is a more important source of entanglement decay than exposure to white

noise.
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Figure 5.3: CN versus p for two extremal value of N = {2,∞}, tanα = 1 (a maximally entangled
GHZ state).
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5.2 Coherent control of multipartite entanglement

Three important aspects of any quantum technology are the creation, characterization

and controlled preservation of entanglement in settings involving a large number of

parties. Efforts to produce entanglement among many parties have led to the ob-

servation of multipartite entanglement among up to fourteen ions [8]. An emerging

field of study, compressive quantum state tomography, could also be helpful in ex-

perimental characterization of such states even for large numbers of parties. In this

approach the prior knowledge that the state produced in an experiment is close to

some ideal state can be used to characterize the experimental state with a number of

measurements that grows slower than quadratically for conventional quantum state

tomography [83, 84]. There are also a few approaches to preserve the entanglement

such as the quantum Zeno effect [85], entanglement distillation [39, 86, 87, 88] or weak

measurements [89]. Unfortunately such schemes usually lack an element of control

and/or their success is probabilistic.

In this section we will present a scheme for controlled entanglement preservation.

The scheme can be applied to systems of arbitrary number of qubits, and its success

is deterministic. We will show that our all-party concurrence formula allows us to

examine our new scheme quantitatively.

We combine knowledge about N -party entanglement with control of revival dy-

namics to demonstrate quantitative control of multipartite entanglement. Elements

of our procedure have only been exploited for two-qubits previously [90]. We present

an example of multipartite entanglement that is initially shared by N remote qubits

interacting with individual fields. Local control is managed by a coherent state of a

resonant mode via collapse and revivals of the qubit coherences. By controlling the

amplitude of the coherent states one controls the time of revivals and thus the recov-

ery of the multi-qubit entanglement. We note that entanglement and revivals were

previously discussed in studies focused on the entanglement of one qubit and its local

field [91, 92]. Here, we mean the entanglement among the qubits and not insepara-

bility from their local fields. A schematic representation of the scenario that we are

interested in is presented in Fig. (5.4)

In the following, we first briefly revisit the theory of collapse and revivals in JC

model [93]. We then shortly discuss the possibility of experimental realization of

our scheme. Then we present our calculation of the all-party concurrence and its

implications.
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Figure 5.4: Schematic representation of three subsystems each composed of a two-level system inside
a single mode cavity.

5.2.1 Collapse and revivals in the Jaynes-Cummings model

The system under our investigation is made of N remote (non-interacting) subsystems.

All subsystems are assumed to be identical. Each subsystem is made of a two-level

system (a qubit) that is interacting with a single mode of the electromagnetic field

through a Jaynes-Cummings interactions [94].

Hi =
ω0

2
σzi + g(a†iσ

−
i + aiσ

+
i ) + ωa†iai (5.2.1)

The frequencies and the coupling constants are identical for all subsystems. The

Jaynes-Cummings Hamiltonian is integrable and one can analytically follow the evo-

lution of the above model. First we follow the dynamics of Jaynes-Cummings model

for Fock states.

For start let us assume that each of the qubits is interacting with a Fock state of

n excitations. Using the Jaynes-Cummings model the evolution of each subsystem is

given by.

Ut|e, n〉 = |e, n〉t = rn+1|e, n〉+ tn+1|g, n+ 1〉

Ut|g, n〉 = |g, n〉t = tn|e, n− 1〉+ rn|g, n〉 (5.2.2)

where for n > 0, rn = e−inωt cos(g
√
nt) and tn = −ie−inωt sin(g

√
nt).

Now we turn to the more complex case of coherent states. For simplicity we assume

that α is real and positive.

|α〉 =
∑
n

e−α
2/2 α

n

√
n!
|n〉 =

∑
n

An|n〉.
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We can write the coherently driven evolution of |e〉 and |g〉 states:

|e, α〉t =
∑
n

An|e, n〉t = |e〉 ⊗ |φ0〉+ |g〉 ⊗ |φ1〉 (5.2.3)

where

|φ0〉 =
∑
n

Anrn+1|n〉, |φ1〉 =
∑
n

Antn+1|n+ 1〉 (5.2.4)

and

|g, α〉t =
∑
n

An|g, n〉t = |e〉 ⊗ |φ2〉+ |g〉 ⊗ |φ3〉 (5.2.5)

where

|φ2〉 =
∑
n

Antn|n− 1〉, |φ3〉 =
∑
n

Anrn|n〉. (5.2.6)

All the dynamics we intend to investigate can be captured by the inner products

of these four different |φi〉’s. For α ≥ 10 excellent approximations are available to

evaluate these inner products (Appendix A). The summary of the results is given

below.

〈φi|φi〉 =
1 + p1x

2
, p1 =

{+1 i=0,3

−1 i=1,2

〈φi|φi+1〉 = i
eiωt

2
(I2 + p2y), p2 =

{+1 i=2

−1 i=0

〈φi|φ3−i〉 =
eiωt

2
(I1 + p3x), p3 =

{+1 i=2

−1 i=0

〈φ0|φ2〉 = −〈φ1|φ3〉 = − iy
2

where x+ iy =
∑

nA
2
n exp(2igt

√
n), and

I1 + iI2 ' exp(− g
2t2

32α4
)e

igt
2α . (5.2.7)

A detailed derivation of the above results and evaluations of the four quantities

are given in Appendix A. In Fig. 5.5 we present the time dependence of x, I1, and I2

for the coherent states with α = 10. The plot for y is similar to the plot for x except
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that the fast Rabi oscillations in the revivals are π out of phase. At the first revival

the maximum of |x| is 1
2 , and I1 ' −1. At all revivals I2 ' 0.
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0
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1
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gt/π

Figure 5.5: The time dependence of x, I1, and I2 for coherent states of α = 10.

Revivals are especially prominent since their presence is a direct result of a discrete

photon distribution [93]. To observe revivals one has to prepare a cavity with a small

leakage constant such that until the first revival the chance of losing a photon is

negligible. Since we are dealing withN cavities, to observe revivals in the entanglement

dynamics we have to make sure that no photon leaks out from any of the cavities until

the first revival time. This will lead to a leakage constant that is N times smaller than

the leakage constant needed to observe a revival in a single cavity. For a coherent

state of, on average, hundred photons the ratio of coupling constant to the decay rate

of 103 is required to observe the revival in a single cavity, which is not outrageously

higher than 3× 102 that was achieved in a circuit QED setup recently [95]. Thus only

an order of magnitude improvement in this ratio leads to suitable condition for revival

of multipartite entanglement in a setup with N ≥ 3. In the following, we assume this

condition is satisfied and ignore the leakage of the cavities altogether.

5.2.2 Density matrix and X-approximation

Before computing the entanglement we need to find the density matrix. In deriving

the density matrix we are going to use an approximation that leads to a GHZ-diagonal
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state. Thus we can use the X-state formula to study the dynamics of the entanglement.

In deriving the density matrix, we follow the same approximation that was developed

in [90].

To decide which elements of the matrix can be safely discarded Yönaç and Eberly

[90] replaced |α〉 by |n̄〉 where n̄ = α2. This replacement is at least weakly supported

by the fact that for n̄ � 1 the photon distribution of a coherent state is relatively

narrowly peaked around n̄. One can instead assume a less extreme variant of this

approximation where |α〉 is replaced by a mixture of Fock states |n〉 that has the

same photon distribution as |α〉. Both of these approximations leads to one important

consequence. If the qubits are initially in a GHZ-state, then we will have a density

matrix whose non-zero elements are either diagonal or anti-diagonal. Furthermore,

This density matrix will have only one non-zero anti-diagonal element. We then cal-

culate the values of non-zero elements using their values from a coherent state. In fact

the simplification goes even further and we will show that ai = bi. This will guarantee

that, if the initial state is a GHZ states, the density matrix remains a GHZ-diagonal

matrix. The above approximation is shown to be an excellent choice in capturing the

collapse and revivals [96, 90]. This approximation also enables us to calculate a proper

measure of inseparability as we have shown in Appendix B.

Before closing this subsection let us emphasize that the above approximation is

equivalent to ignoring all non-diagonal elements except of one them in the outset.

Thus all the estimates that we are deriving are guaranteed to be lower bounds to the

actual value. The above justification implies that this lower bound is approximately

the actual value of the concurrence [32, 75].

5.2.3 Entanglement revival dynamics

We first work out the case of two qubits explicitly and then present the result for an

arbitrary number of qubits. The initial state is

|Ψ0〉 =
|e, e〉+ |g, g〉√

2
⊗ |α, α〉, (5.2.8)

and at a later time the state of the system will read.

|Ψt〉 =
1√
2

(|e, φ0〉+ |g, φ1〉)⊗ (|e, φ0〉+ |g, φ1〉) +
1√
2

(|e, φ2〉+ |g, φ3〉)⊗ (|e, φ2〉+ |g, φ3〉)
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To find the concurrence we need to find the following elements

2Xee,gg =
[
〈φ1|φ0〉2 + 〈φ1|φ2〉2 + 〈φ3|φ0〉2 + 〈φ3|φ2〉2

]
,

|Xee,gg| =
1

4
|I2

1 + x2 − y2 − I2
2 |,

2Xeg,eg = 〈φ0|φ0〉 〈φ1|φ1〉+ 〈φ2|φ2〉 〈φ3|φ3〉+ 〈φ0|φ2〉 〈φ1|φ3〉+ 〈φ2|φ0〉 〈φ3|φ1〉 ,

|Xeg,eg| =
1

4
(1− x2 + y2).

We note that Xeg,eg = Xge,ge. Thus the concurrence is given by

C2 = max{0, Q2} (5.2.9)

Q2 =
1

2
(I2

1 + 2x2 − 2y2 − I2
2 − 1). (5.2.10)

Now we find the all-party concurrence for N ≥ 3. The state of the system is given by

|Ψ〉t =
1√
2

(
⊗N |e, α〉t +⊗N |g, α〉t

)
. (5.2.11)

According to our approximation we only need to calculate one off-diagonal element:

2N+1|Xee···e,gg···g| =
∣∣(−i)N ((I2 − y)N + (I2 + y)N ) + (I1 − x)N + (I1 + x)N

∣∣ .
Next we calculate the diagonal elements:

2Xe⊗ng⊗m,e⊗ng⊗m =
1

2n+m
[(iy)n+m((−1)n + (−1)m)]

+
1

2n+m
[(1 + x)n(1− x)m + (1− x)n(1 + x)m]. (5.2.12)

This equation implies that 〈e⊗p, g⊗q|X̂|e⊗p, g⊗q〉 = 〈g⊗p, e⊗q|X̂|g⊗p, e⊗q〉. Using the

above equations and also the permutation symmetry of the problem we can find all the

diagonal elements of the density matrix. This simplification confirms that the X-part

of the state will always remain a GHZ-diagonal state. This has two consequences.

First, the concurrence of a GHZ-diagonal state is directly proportional to the distance

of that state to the set of biseparable states [75]. This enables us to draw a picture

of the trajectory that the state traverses in the Hilbert space. Second, since these

GHZ-diagonal states have only one non-zero anti-diagonal element, we can determine

the full-separability of them [73]. We use this property to also comment about the
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full-separability give an even more comprehensive picture about the movement of the

quantum state in the Hilbert space.

Now we discuss the dynamics of the all-party entanglement. For N = 3, the

all-party concurrence is given by

C3 = max{0, Q3} (5.2.13)

Q3 = 2(|Xeee,ggg| − 3|Xeeg,eeg|) (5.2.14)

|Xeee,ggg| =
1

8

√
(I3

1 + 3I2
1x)2 + (I3

2 + 3I2
2y)2 (5.2.15)

|Xeeg,eeg| =
1

8
(1− x2). (5.2.16)

We plot C2 and C3 as a function of time in Fig. 5.6. As expected the entanglement

dies out rapidly with the initial collapse. At gt = 2πα entanglement revives to a

small value. The maximum of this revival can be estimated from the above equations
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Figure 5.6: The revival of the entanglement for bipartite and genuinely tripartite entanglement for
coherent states of α = 10.

noting that the maximum value of x at first revival is 1/2, and I1 ' −1. At the

revivals I2 ' 0 and since x, y are completely out of phase with each other when x is at

maximum revival, y vanishes. Feeding these quantities to the above equations leads

to the maximum height of the bipartite and tripartite entanglement revivals to be 1
4

and 1
16 respectively. The second revival does not occur for tripartite entanglement.

For N > 3 the sudden death of all-party entanglement is permanent. We emphasize

that our two-qubit dynamics matches previous result derived in [90].
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Dynamics of weak inseparability

Above we investigated the dynamics of the all-party entanglement. This is the kind

of entanglement that implies inseparability of any part of the system from the rest.

This is also the most fragile kind of inseparability. In the above case we saw that for

N > 3 the all-party entanglement dies out permanently after the first collapse.

In the following we focus on another kind of inseparability; We study the insepara-

bility in the sense that the state can not be written as a convex sum of fully separable

states. All-party entanglement, which we studied so far, can be thought of as the most

exclusive kind of entanglement whose presence implies that system is inseparable along

any possible partitioning. Full separability is the other extreme of that line of thought

whose presence implies that the system is separable along all possible partitioning. An

N -party system is fully separable if it can be written as∑
i

pi ρ1i ⊗ ρ2i ⊗ · · · ⊗ ρNi. (5.2.17)

So in a sense the onset of full separability is the true end of entanglement. In the

following we follow the lack of full-separability that we refer to as weak inseparability.

This will let us make a more complete picture of how the N -party system moves in

the Hilbert space through out the dynamics.

To study the dynamics of inseparability we need to find a measure of weak insep-

arability. Here we use the distance of the state from the set of fully separable states

as our measure of weak inseparability. In the previous chapter we showed that this

distance is a proper measure of weak inseparability and we derived an algebraic for-

mula for the weak inseparability of the GHZ-diagonal states that we are dealing with

here. For the X-states for which all but one of anti-diagonal elements are zero and

also ai = bi we have shown that

S = 2 max{0, |z1| − c} (5.2.18)

where c = min{bi}. Below we plotted the value of this measure for N = 3, 4, 5. In all

cases we see that inseparability revives back at around multiples of gt = 2πα until it

decays away completely.

Finally we conclude with an attempt to capture the behavior of inseparability for

large values of N . To this end we replace c in the inseparability formula with the
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Figure 5.7: The revival of the inseparability for N = 3, 4, 5 for coherent states of α = 10.

average values of all bi’s. we also assume that N is odd. Thus we can approximate

|z1| =
1

2N+1
[(|I1| − x)N + (|I1|+ x)N ] (5.2.19)

2(n− 1)bi ' 1− 1

2N
[(1− x)N + (1 + x)N ] (5.2.20)

For the first few revivals we can approximate I1 ' −1 and thus derive

SN '
1

2N
[(1− x)N + (1 + x)N − 2] (5.2.21)

This has a strong implication and that is at these revivals the inseparability revives

back even for very large N . Yet its maximum distance from the boundary between

fully separable and inseparable states decreases exponentially. For example at the first

revival the maximum value of x is 0.5 and thus we can estimate SN ' (3
4)N . Thus

for large N the state follows a path to the boundary of inseparability and then stick

below it crossing it momentarily only at revivals. The previous results and the fact

that both of our measures have a geometrical interpretation suggest a picture for how

the state moves in the Hilbert space [52]; In the Hilbert space there is a convex set

that is the set of biseparable states, BS. Inside this set there is another convex set

which is the set of fully-separable states FS. For N = 2 these two sets match. The
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Figure 5.8: An schematic trajectory of the state in the Hilbert space for N = 3. H, BS, and FS stand
for the Hilbert space, biseparable subspace and fully separable states respectively.

initial state start outside the BS and after five crossings it ends up inside BS. For

N = 3 the state starts outside BS and move inside BS and also FS. At the first

revival the state goes outside of both these sets and then comes back inside and gets

trapped inside BS permanently. The state then moves inside BS crossing FS several

times until it ends up somewhere in FS. For N ≥ 4, once inside the state never leaves

BS. It follows a trajectory that crosses FS several times and end up in FS finally. In

Fig. 5.8 we have tried to capture these dynamics in the schematic plot.

Before closing this section let us summarize what is accomplished in this section.

At the onset of this section we pointed out that current schemes of entanglement

preservation do not simultaneously have many of the proper properties that one would

desire. Here we have presented a concrete example of such an achievement. Our

switching scheme enables us to turn the entanglement off and recover it partly at a

controlled time. Our prescription includes simultaneously many of the desired aspects,

namely mixed states, arbitrary number of qubits, quantitative measure, deterministic

success, and external control.

5.3 Chapter summary

Quantifying the multipartite entanglement of a mixed states has remained an elusive

challenge to tackle even now more than a century after its introduction in Schmidt’s

monumental achievement. The main theme of this chapter was to establish the utility

of the all-party concurrence that we developed previously for X-states in deriving
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analytical insights in a dynamical open systems, although it deals with the problem

of entanglement in a restricted class of states.

In the first part of the chapter we used our formula to study the dynamics of

all-party entanglement of N qubits interacting with their local amplitude damping

channels. We diagnosed which GHZ states will experience the entanglement sudden

death and which would only lose their entanglement asymptotically. Our calculations

confirms that one should make distinction between the life-time when the state most

the bulk of its entanglement versus the time when the state crosses the boundary of

biseparability and becomes biseparable. The half-life of the all-party entanglement

decreases as the number of qubits increases. Nevertheless, the time at which the state

becomes biseparable does not necessarily decrease with N . We observe that In fact

in the macroscopic limit N → ∞, this time becomes independent of the initial state.

We also presented a brief study on the robustness of all-party entanglement versus

white noise. We observed that even for a very large number of qubits the all-party

entanglement of a GHZ state is robust against white noise. Thus in an experimental

settings one should care more about losing coherences to amplitude damping rather

to mixedness with other states.

In the second part of the chapter we have used the machinery of quantifiable

measures of entanglement that we have developed in the previous sections to present an

example of taking advantage of phenomenon of coherent-state revivals to controllably

suppress and recover the multipartite entanglement. We only studied two extreme

kinds of entanglement, namely all-party entanglement and weak inseparability. All-

party entanglement is so fragile that beyond three qubits it vanishes after its collapse

it never recovers. On the other hand the, the weak inseparability always experiences a

revival. Even for very large values of N , weak inseparability revives from zero before

disappearing again. We comment that the strength of this revivals decrease as the

number of qubits increases.

Finally, our results suggest a clear picture of how the state evolves and moves

between different subset of the Hilbert space. If the system starts in a genuinely

N -partite entangled state its evolution takes it back and forth over the boundary of

biseparability and full-separability, ending up somewhere close to the boundary of full

separability.
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Appendix A

Multipartite entanglement in

open systems

A.1 Detailed evaluations and approximations

In this section we calculate the inner products that we used previously to compute the

elements of the density matrices.

〈φ0|φ0〉 =
∑
n=0

A2
n|rn+1|2 (A.1)

〈φ1|φ1〉 =
∑
n=0

A2
n|tn+1|2 (A.2)

〈φ3|φ3〉 =
∑
n=0

A2
n|rn|2 (A.3)

〈φ2|φ2〉 =
∑
n=0

A2
n|tn|2 (A.4)

The next two inner products are

〈φ0|φ1〉 =
∑
n=0

An+1Anr
∗
n+2tn+1 (A.5)

〈φ2|φ3〉 =
∑
n=0

An+1Ant
∗
n+1rn (A.6)
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and finally we have another four inner products

〈φ0|φ2〉 =
∑
n=0

AnAn+1r
∗
n+1tn+1 (A.7)

〈φ0|φ3〉 =
∑
n=0

A2
nr
∗
n+1rn (A.8)

〈φ1|φ2〉 =
∑
n=0

AnAn+2t
∗
n+1tn+2 (A.9)

〈φ1|φ3〉 =
∑
n=0

AnAn+1t
∗
n+1rn+1 (A.10)

We can compute the above inner products using appropriate approximations. The

first term that we compute is 〈φ2|φ2〉.

〈φ2|φ2〉 =
∑
n=0

A2
n|tn|2 =

∑
n=0

A2
n| sin(gt

√
n)|2 (A.11)

=
1

2
− 1

2

∑
n=0

A2
n cos(2gt

√
n)

To evaluate the sum we use the approach developed in [97]. First we rewrite the sum

using the Poisson sum formula.

∞∑
m=0

fm =
∞∑

ν=−∞

∫ ∞
0

dmf(m)e2πiνm +
f0

2
(A.12)

where f(m) is a continuous version of fm. First we follow the general formalism. In

these integrals A2
n is the Poisson distribution and it only contributes significantly when
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m ≈ α2 and it is the slowly varying factor. Thus we rewrite the sum in 〈φ2|φ2〉 as

− 1

2

∞∑
m=0

A2
m cos(2gt

√
m) (A.13)

= −1

2
<

( ∞∑
m=0

A2
m exp(−2igt

√
m)

)

= −1

2
<

( ∞∑
ν=−∞

∫ ∞
0

dmA(m)2e−2igt
√
me2πiνm +

A2
0

2

)

= −1

2
<

( ∞∑
ν=−∞

∫ ∞
0

dmA(m)2e2iSν(m) +
A2

0

2

)

=

∞∑
ν=−∞

wν(t) +
A2

0

2

where Sν(m) = πνm − gt
√
m. Now we can use the stationary phase approxima-

tion, a variation of saddle point approximation, to approximate these integrals. We

approximate Sν(m) around the point of stationary phase:

Sν(m) = Sν(mν) +
1

2

∂2Sν(mν)

∂m2
(m−mν)2. (A.14)

where ∂Sν(mν)
∂m = 0. Then we will have

wν(t) =
−A(mν)2

2

√
π

|∂
2Sν(mν)
∂m2 |

cos(2Sν(mν) + η
π

4
) (A.15)

where η = sgn(∂
2Sν(mν)
∂m2 ). In the above case mν = g2t2

4π2ν2
and

Sν(mν) = −g
2t2

4πν
(A.16)

∂2Sν(mν)

∂m2
=

2π2ν3

g2t2
> 0 (A.17)

wν(t) = −1

2
A(

g2t2

4π2ν2
)2

(
gt

π
√

2ν3

)
cos(

g2t2

2πν
− π

4
) (A.18)

The photonic distribution in A2
m is translated to a series of distributions in time.

Since we are interested in positive time, the ν = 0 gives the collapse and ν > 0 lead to

different revivals. Note that for simplicity we can approximate A2
m with a Gaussian
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distribution. This is an excellent approximation for moderately large values of α ≥ 10

that we are interested in here. If we use the above approximation we can conclude

that

〈φ3|φ3〉 =
∑
n=0

A2
n|rn|2 =

1 + x

2
(A.19)

〈φ2|φ2〉 =
∑
n=0

A2
n|tn|2 =

1− x
2

where x =
∑

n=0A
2
n cos(2gt

√
n). We also approximate AnAn+1 = A2

n. With this

approximation.

〈φ3|φ3〉 = 〈φ0|φ0〉

〈φ2|φ2〉 = 〈φ1|φ1〉 (A.20)

If we define y =
∑

n=0A
2
n sin(2gt

√
n) we can estimate

〈φ0|φ2〉 =
∑
n=0

AnAn+1r
∗
n+1tn+1 (A.21)

'− i
∑
n=0

A2
n cos(gt

√
n) sin(gt

√
n) =

−iy
2

〈φ1|φ3〉 ' 〈φ2|φ0〉 =
iy

2
(A.22)

Now we have only four inner products to calculate and they are all related to each

other. The simplest is

〈φ0|φ3〉 =
∑
n=0

A2
nr
∗
n+1rn (A.23)

=eiωt
∑
n=0

A2
n cos(gt

√
n+ 1) cos(gt

√
n),
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and we can rewrite this quantity as

〈φ0|φ3〉 =
eiωt

2

∑
n=0

A2
n cos(gt

√
n+ 1 + gt

√
n) (A.24)

+
eiωt

2

∑
n=0

A2
n cos(gt

√
n+ 1− gt

√
n)

'e
iωt

2

∑
n=0

A2
n cos(2gt

√
n+

gt

2
√
n

)

+
eiωt

2

∑
n=0

A2
n cos(

gt

2
√
n

).

Similarly we can get

〈φ1|φ2〉 =
∑
n=0

AnAn+2t
∗
n+1tn+2 (A.25)

'e−iωt
∑
n=0

A2
n sin(gt

√
n+ 1) sin(gt

√
n)

'e
−iωt

2

∑
n=0

A2
n[cos(

gt

2
√
n

)− cos(2gt
√
n+

gt

2
√
n

)]

and

〈φ0|φ1〉 =
∑
n=0

An+1Anr
∗
n+2tn+1

'− ieiωt
∑
n=0

A2
n cos(gt

√
n+ 1) sin(gt

√
n)

=− ie
iωt

2

∑
n=0

A2
n[− sin(

gt

2
√
n

) + sin(2gt
√
n+

gt

2
√
n

)],

〈φ2|φ3〉 =
∑
n=0

An+1Ant
∗
n+1rn (A.26)

'ieiωt
∑
n=0

A2
n sin(gt

√
n+ 1) cos(gt

√
n)

=
ieiωt

2

∑
n=0

A2
n[sin(

gt

2
√
n

) + sin(2gt
√
n+

gt

2
√
n

)].

Two of the above summations lead to evaluations of x, y that we already explained

how to evaluate. The other two summations are evaluated in [90]. In the limit of
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α2 � 1 we have

I =
∑
n=0

A2
n exp(

igt

2
√
n

) ' exp(− g
2t2

32α4
)e

igt
2α = I1 + iI2 (A.27)
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