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1 Summary

1.1 Summary of Tasks Completed

The primary focus of this research was to extend the work of Perry et al. [6] by developing a statistical

framework that supports the detection of triangle motif-based clusters in complex networks. The specific

works accomplished over the 3-month period are as follows:

1. Developed a tractable hypothesis testing framework to assess, a priori, the need for triangle motif-based

clustering.

2. Developed an algorithm for clustering undirected networks, where the triangle configuration was used

as the basis for forming clusters.

3. Developed a C++ implementation of the proposed clustering framework.

1.2 Deliverables

The deliverables for this grant include:

1. Technical report describing developmental aspects of the proposed clustering framework.

2. C++ implementation of the proposed clustering framework, to include all computer codes required for

compilation.

2 Introduction

Clustering has a wide array of applications, from pattern recognition and spatial data analysis to data mining

and military intelligence. Regardless of the application, clustering methodologies are often used to explore

a data set where the goal is to partition the sample into distinct groups, or to provide new understanding

about the underlying structure of the data. Although clustering algorithms are often applied to conventional

data sets, they can also be applied to network data (e.g., social networks, biological networks, computer

networks, etc.). In such a case, the goal is typically to assign each node in the network to one of several

mutually exclusive groups based upon information contained in the edge set.

To date, most network clustering algorithms focus on finding groups of nodes that are densely intra-

connected and sparsely inter-connected, where the dyad (or link between two nodes) serves as the building

block for estimating clusters, e.g., see Perry et al. [6]. However, in many cases the minimal and functional

structural entity of a network is not a simple dyad, but rather, a small sub-pattern (or motif) involving

more than two nodes. Among possible motifs, the simplest involves three nodes (or triads), where the fully

connected triad represents the basic unit of transitivity. For example, in a social network of friendship ties,

transitivity might suggest that friends of my friends are also my friends. The importance of transitivity

dates back to Watts and Strogatz [7], where the clustering coefficient was proposed and quantifies the

total number of triangles in a network via the average likelihood that two neighbors of a vertex are also

neighbors. Networks with a high level of transitivity are often more stable, balanced and harmonious. For

social networks, Granovetter [3] in his work on “strength of weak ties” explains that strong social links are

transitive and result in redundant social structures like cliques. On the other hand, bridging links that lie

5
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Figure 1: Zachary’s karate club network.

between clusters are weak and do not follow the transitivity relations. Under this theory one can define a

community (or cluster) to be a tightly knit and highly transitive group of nodes.

To motivate this work, consider the well-known 34 node karate club friendship network of Zachary [8]

in Figure 1. Using the methodology given in Perry et al. [6], which uses the simple dyad as the basis for

forming clusters, the network is clustered into 5 distinct groups, e.g., see Figure 2. Based on the idea that

a community consists of tightly knit and highly transitive nodes, then the clustering exercise identified four

communities and a periphery group. The periphery group consists of those nodes in the network with small

degree, and very little influence, or nodes that are not tightly inwoven into any particular cluster. Notice

that nodes 5 and 11 in Figure 2 are considered to be inwoven into the cluster containing nodes 6, 7, and

17; however, nodes 5 and 11 are only weakly connected to this cluster since they lack any transitive ties

within this group. Thus, it would appear that nodes 5 and 11 should belong to the periphery group. If

the triangle motif was used as the basis of forming clusters, as opposed to the simple dyad, it might be

expected that nodes 5 and 11 would be placed in the periphery group, leaving nodes 6, 7, and 17 as one of

the core communities. Such a placement would result in better agreement with Granovetter’s definition of a

community.

The primary objective of this work is to develop a statistical framework for clustering undirected networks

by considering triangle motifs as building blocks for forming the clusters. Since triangle configurations are

often overrepresented in many real-world networks, it is expected that the communities found based on this

sub-pattern will improve upon those found based on the simple dyad, yielding more tightly knit and highly

transitive groups of nodes. In the next sections, an approach to clustering based on the triangle motif is

developed. Subsequently, using Monte Carlo simulation, clustering performance of the proposed algorithm

is evaluated when applied to LFR benchmark graphs, relative to the method proposed by Perry et al. [6].

6
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Figure 2: Karate club network clustered using the method given in Perry et al. [6].

Performance results of the proposed algorithm yield very promising results, and suggest that clustering on

the basis of the triangle motif appears to outperform clustering on the basis of simple edges. The proposed

algorithm is then applied to two real networks where the community structure is known. Finally, this report

closes with a summary and discussion section.

3 Methodology

In this section, an approach to clustering undirected networks on the basis of the triangle motif will be

discussed. Consider an undirected binary network with n nodes, and consider partitioning the n nodes into

k mutually exclusive groups or clusters.

3.1 Technical Approach

Let T = [T1, T2, ..., Tk, Tb]
′ denote a (k + 1) × 1 vector of triangle counts, where Tm denotes the observed

number of triangles between nodes assigned to group m, and Tb denotes the observed number of triangles

formed between nodes belonging to different groups. In the paper by Perry et al. [6], the authors assume

that the edges are sampled from independent Bernoulli trials, and thus they model edge counts as binomial

random variables. Unfortunately, for the case of counting triangles, since each triangle shares an edge with

3n− 9 other triangles, the Tm’s are not sums of independent Bernoulli trials. Specifically, let (X,Y ) denote

any two observed triangles, then for a Bernoulli(p) graph:

E(X) = E(Y ) = p3 (1)

7
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and

Cov(X,Y ) =


0, if X and Y do NOT share an edge,

p5(1− p), if X and Y do share an edge,

p3(1− p3), if X and Y are the same triangle,

so that the covariance between any two triangles that share an edge is p5(1 − p). Thus, X + Y cannot be

a binomial random variable since X and Y are generally correlated. Note further that the vector T defined

above is not a sufficient statistic since it contains no information about this covariance. That is, although

the Tm’s are uncorrelated, the Tm’s are all correlated with Tb (see Appendix B), i.e.,

Cov(Tm, Tb) = 3

(
nm

3

)[
(n− nm)p5(1− p)

]
. (2)

Applying the methodology given in Perry et al. [6] to this problem would not be appropriate, since the

likelihood approach they recommend requires sufficiency for the asymptotic results to hold. One could still

use their method to cluster by simply replacing edge counts with triangle counts; however, their statistical

test is less reliable. One alternative is to approximate sums of dependent Bernoulli trials as Poisson random

variables, e.g., see Chen and Rollin [1]; however, it is not clear how to write the joint density of T in this

case since the Tm’s are correlated with Tb. Multivariate Poisson models do exist; however, the assumption

is typically made that the correlation structure is exchangable, i.e., all pairs have same covariance. Unfortu-

nately, this does not accurately describe the covariance structure of the vector T. If an accurate posterior

statistical test is to be derived on the estimated clusters, one would need to fully specify the joint likelihood

function for the clustered network. This is a topic of ongoing research.

Instead of assessing the effectiveness of the clustering effort after the clustering operation is performed

(such as that proposed in Perry et al. [6]), one alternative is to develop an a priori test to determine whether

a clustering effort might be effective. If the test is significant, then this would suggest the need to cluster.

An insignificant test would suggest the opposite. Let A denote the observed adjacency matrix and consider

the null hypothesis H0: number of triangles in A is consistent with Bernoulli graph with probability p versus

the alternative H1: number of triangles in A is NOT consistent with Bernoulli graph with probability p. If

we define T as the total number of observed triangles in A, then one could test this hypothesis by computing

Z =
T − E(T )√
V ar(T )

, (3)

where for even moderately-sized networks Z is approximately standard normal under H0, and thus, one can

compare |Z| to the upper α/2 quantile of the standard normal distribution, where α is a user-specified type

I risk. Note that E(T ) and V ar(T ) in equation (3) are computed as given in equations (11) and (12) in

Appendix A, respectively, by replacing p with p̂, where p̂ is computed from the observed adjacency matrix

A and denotes the estimated density of the network. Thus, if |Z| > zα/2, the test concludes in favor of H1.

Note that Z > zα/2 suggests there are significantly more triangles in A than would otherwise be expected

by a random graph with the same edge density2, suggesting a need to cluster.

3.2 Quality Functions

Suppose that the a priori statistical test outlined above concludes in favor of H1, and thus, a clustering

effort is ensued. Then this section discusses a quality function to optimize in efforts to find the “best” set

2One could also use simulation and a configuration model to compute E(T ) and V ar(T ) in equation (3), which will preserve

both the density p, and the degree sequence of A. This approach, however, requires much more computational involvement.

8
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of clusters. One possible approach to extending the method of Perry et al. [6] to the case of triangles is

to assume that, for larger networks, the vector T follows a multivariate normal distribution with means,

variances, and covariances given by the expressions derived in Appendix B. However, this is problematic

since such an assumption would rely on the central limit theorem (CLT), and the CLT only applies to sums

of iid random variables. Unfortunately, the elements in T are not sums of iid random variables; rather they

are generally sums of correlated Bernoulli random variables.

The difficulty with modeling correlated Bernoulli trials is well known. In fact, it is not clear that a

probability distribution even exists in some cases, as correlation coefficients must satisfy a stringent algebraic

relationship, e.g., see Hisakado et al. [2]. One can use Poisson approximations to the marginal triangle

counts in T, and write out the likelihood function of the clustered network as if the elements in T were all

uncorrelated. In doing so, we are essentially ignoring the correlation between the Tm’s and Tb, and thus

any statistical tests derived on the estimated clusters using this specification of the likelihood would be

pseudo tests at best. However, if one’s interest only lies in assessing the quality of the cluster, then such

a specification might be sufficient. Specifically, one could assess the quality of a given group membership

assignment vector zk by evaluating

Q(zk|p, k) =
k∑

m=1

loge
exp{Tm loge(µTm)− µTm}

Tm!
+ loge

exp{Tb loge(µTb
)− µTb

}
Tb!

(4)

where µTm
= C(nm)p3, µTb

= [C(n) −
∑k
m=1 C(nm)]p3, and p denotes the overall density of the network.

Note that Q is maximized when Tm = µTm
(m = 1, ..., k) and Tb = µTb

. Further, as the T ’s deviate from the

µ’s, Q gets smaller. Thus, one way to find the “best” group membership assignment vector is to find that zk

that yields the greatest discrepancy between what we observe and what we expect to see if all groups had

density p. This can be accomplished by minimizing Q over all possible group membership assignments for a

given p.

It should be noted that for any given p, V ar(Tm) > E(Tm) (and V ar(Tb) > E(Tb)), suggesting that

perhaps a better quality function to minimize is

Q(zk|p, k) =

k∑
m=1

loge
Γ(Tm + rm)

Γ(Tm + 1)

(
µTm

µTm
+ rm

)Tm
(

rm
rm + µTm

)rm
(5)

+ loge
Γ(Tb + rb)

Γ(Tb + 1)

(
µTb

µTb
+ rb

)Tb
(

rb
rb + µTb

)rb
where equation (5) is based on a Poisson-Gamma mixture parameterization of the negative binomial distri-

bution, and accounts for the over dispersion observed in the triangle counts. A limiting form of the function

in equation (5) is that in equation (4) when the over-dispersion parameters (i.e., rm’s and rb) approach

infinity. One can determine the r’s via the relationship V ar(Tm) = µTm
+

µ2
Tm

rm
(and similarly for rb), where

µTm
and V ar(Tm) can be computed from equations (16) and (17) in Appendix B, respectively.

In practice, one can compute p̂ from the observed adjacency matrix of the network, and then use a meta-

heuristic (e.g., simulated annealing) to minimize Q over the set of possible group membership assignments.

As we shall see in the next section of this report, this approach yields better clustering performance when

applied to LFR benchmark graphs, relative to the method proposed by Perry et al. [6].

3.3 Clustering Algorithm

Using information provided in the discussions above, as well as results derived in the appendices, a practical

algorithm for clustering undirected networks on the basis of the triangle motif is described in this section.

9
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In addition to the a priori statistical test described above (which serves to justify the clustering effort),

a posterior statistical test will also be described and will be used to establish a stopping criteria for the

algorithm when the number of groups is unknown, thus, providing an estimate for k.

For a given network density p and number of groups k, the optimization problem can be written formally

as

z∗k = arg min
zk∈Zk

[Q(zk|p, k)], (6)

where z∗k is the n×1 group membership assignment vector with elements z∗k(i) ∈ [1, 2, ..., k] that minimizes Q,

and Zk is the set of all possible membership assignment vectors for a given k. The optimization problem given

in equation (6) is challenging, particularly due to the combinatorial explosion for large n and k. In general,

the problem is NP hard even for moderately-sized networks. As a consequence, throughout this effort, a

simulated annealing (SA) algorithm will be employed to effectively search the vast set Zk in attempts to

locate z∗k. Although there are several heuristics that could be used, the SA was chosen due to its ease of

programming.

Often in practice the number of groups is unknown, and thus the problem involves finding z∗k∗ , or the

“best” group membership assignment vector corresponding to the “best” k. The optimization problem for

k can be written formally as

k∗ = arg min
k

{ min
zk∈Zk

[Q(zk|p, k)]} (7)

where k∗ denotes an estimate for the number of groups. Since, for any k, only one parameter is estimated

(i.e., p), one can simply minimize equation (6) over a range of k, and return that integer k that yields the

smallest Q. Unfortunately, it is not often the case that the practitioner can define an appropriate range

for k, and even more problematic, is that the computation time required to find k∗ can be significant if the

range for k is large.

In attempts to reduce the computation time required when k is unknown, we suggest the following

strategy. Suppose that for a given k one finds z∗k via equation (6). Then define the null hypothesis for group

m as H0m : number of triangles in group m is consistent with Bernoulli graph with probability pm. Then for

each m, one can compute

Zm =
Tm − E(Tm)√
V ar(Tm)

, (8)

where Tm was defined earlier and denotes the number of observed triangles in group m, and E(Tm) and

V ar(Tm) are defined in Appendix B. Note that in equation (8) the mean and variance of Tm are computed

using the observed within-group density, or p̂m. If the null hypothesis is true for each m = 1, ..., k, then

W =

∑k
m=1 nmZm√∑k

m=1 n
2
m

(9)

approximately follows a standard normal distribution, where nm denotes the number of nodes assigned to

group m. The test statistic defined in equation (9) is known as Stouffer’s test, and follows closely in theory

to Fisher’s combined probability test. Thus, one can compute W for a given group membership assignment

vector and compare to the upper δ quantile of the standard normal distribution, or zδ. If W < zδ, then

this would suggest little evidence to support the need to cluster further since the m subgraphs found via the

clustering effort appear to be consistent with Bernoulli graphs with corresponding probability pm. Obviously,

if pm = 1, this implies a complete subgraph, or “clique”, and if pm = 0, this denotes an empty subgraph.

In these two cases, the variance of Tm is zero and equation (8) is undefined. Therefore, components of the

10
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Figure 3: Karate club network network clustered using the proposed methodology.

sum in equation (9) that involve these cases are ignored. For example, suppose that k = 3 and p1 = 0.4,

p2 = 0.6, and p3 = 1. Then the summations in equation (9) will only include the components corresponding

to groups 1 and 2, since Z3 is undefined.

Using equation (9), one can then define a stopping scheme in the search for the “best” k. Suppose that

the search begins with k = 2, and upon completion of the clustering effort one obtains a reasonable estimate

for z∗2. At this point one can compute W and compare to the zδ critical value. If W > zδ, then increment k

by 1 and repeat the search to find z∗3. Once can continue to increment k until W < zδ, at which point the

algorithm will stop and return z∗k∗ . Although the proposed strategy is simple, it is also shown to be quite

effective.

At this point the karate club network of Zachary [8] can be revisited using the proposed clustering

framework with the objective function given in equation (5). Figure 3 shows the results, where groups of

nodes contained in the large rectangles were identified using the proposed approach. The proposed method

assigned nodes to groups similarly to the method of Perry et al. [6]; however, as anticipated, nodes 5 and

11 were assigned to the periphery group since they lack any transitive ties to nodes 6, 7, and 17. Thus, the

four main clusters of nodes identified using the proposed framework consist primarily of “strong ties”, and

therefore, are in better agreement with Granovetter’s definition of a community.

Although application of the proposed clustering framework to the karate club network appears to perform

quite well, it reveals nothing about how the proposed approach performs on the average. Therefore, in the

next section results of Monte Carlo simulation studies used to assess the expected clustering performance

of the proposed algorithm when applied to LFR benchmark graphs are presented. Clustering performances

using both forms of Q given in equations (4) and (5) are evaluated, and for both cases of known and unknown

11
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k, relative to the method suggested by Perry et al. [6].

4 Performance Results

In this section, results of Monte Carlo simulation studies used to assess the performance of the proposed

clustering framework are presented. Due to their non-homogeneous degree and community size distributions,

the LFR benchmark graphs developed by Lancichinetti et al. [4] are used in assessing the performances.

For a simple review of these benchmark graphs, see Section 5.1 of Perry et al. [6]. The proposed clustering

framework developed in the previous section is evaluated and subsequently compared to the performances

achieved by using the framework in Perry et al. [6]. For the proposed method, both objective functions

shown in equations (4) and (5) are considered.

Clustering performance for any given method is measured using the adjusted mutual information (AMI),

and to make relative comparisons amongst the three competing approaches, the relative mean index (RMI)

is employed. Refer to Perry et al. [6] for explicit detail on these performance measures. LFR benchmark

graphs of size n = 100 nodes with a maximum degree of 20 and three different values of average degree,

or AveDeg =8, 10, and 12 are considered. For each value of AveDeg, four different combinations for the

parameters γ and β are considered; namely, (γ, β)=(2, 1), (2, 2), (3, 1), and (3, 2), which encompasses the

extremes of the ranges of these LFR benchmark parameters. Note that γ is the parameter for the power law

on the degree distribution in the LFR benchmark graphs, and similarly, β for the community size distribution.

Finally, values of the mixing parameter µ are considered between 0.1 and 0.5, in increments of 0.1, where

small values of µ suggest more dense intra-group and less dense inter-group connections.

4.1 Cooling Schedule for SA Algorithm

For all methods evaluated, a simulated annealing algorithm was used to optimize the corresponding objective

function. For more details about simulated annealing and its theoretical underpinnings, see Kirkpatrick et al.

[5]. The cooling schedule for the SA algorithm was set equal for all simulations and is shown in Table 1. Note

that the parameters Max # of successes and Max # consecutive rejections represent the maximum number

of successes before the SA temperature is reduced and the maximum number of consecutive rejections before

the SA algorithm quits, respectively.

Table 1: Cooling schedule for SA algorithm.

Parameter Value

Initial Temperature 1

Cooling Rate 0.99

Temperature Length 300

Stop Temperature 1.0× 10−8

Max # of successes 30

Max # consecutive rejections 2000
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4.2 Clustering Performance when k is Known

Clustering performance is first investigated for the case where the number of groups k is known a priori,

and although this is a less likely scenario relative to the unknown k case, it is studied for completeness. In

what follows, the simulation model is given in detail.

For any given simulation run, an LFR benchmark graph with parameters µ, γ, β and AveDeg was

generated and subsequently clustered using three different approaches: 1) the method of Perry et al. [6],

2) the proposed method with objective function given in equation (4), and 3) the proposed method with

objective function given in equation (5). This process is repeated N = 100 times, and the average AMI

values were then computed over the N independent Monte Carlo simulations. Figure 4 illustrates the results

from the method given in Perry et al. [6], which uses edges as the basis for building clusters, while Figures 5

and 6 illustrate results from the proposed approach. Since an AMI of unity would suggest perfect clustering,

it would appear from these figures that forming clusters on the basis of the triangle motif is effective. In

general, as the mixing parameter µ increases, the clustering performance decreases. This is intuitive since

smaller µ indicates denser clusters. It also appears that as the average degree of the network approaches

the maximum degree, the clustering performance increases. This is also intuitive since as the average degree

approaches the maximum degree, the degree distribution becomes more homogeneous. Further, general

clustering performance increases as the parameter γ increases. This result is also intuitive as an increase

in γ results in a decrease in the variance of the degree distribution of the graph. There also appears to be

a small effect on clustering performance due to changes in β, i.e., as β increases, so does the AMI. This

is particularly true for larger values of the mixing parameter µ. In order to make relative performance

comparisons, we compute the RMI for each method being compared across the mixing parameter µ. The

method that achieves the best performance then yields the smallest RMI. Results are shown in Table 2,

and suggest that clustering using the proposed method with the objective function in equation (5) generally

achieves the better relative performance.

It should be pointed out that performances of all thee methods could likely be improved with appropriate

changes to the cooling schedule of the SA algorithm. However, even if results are suboptimal, those given

here still provide a good idea of the performances of the methods as functions of LFR benchmark parameters,

as well as relative performance between the competing methods.

4.3 Clustering Performance when k is Unknown

In this section, results are presented for the k unknown case. For the method given in Perry et al. [6], the

value of k ≥ 2 that yields the minimum Bayesian information criterion (BIC) over a predetermined range

of k is then denoted as k∗. For the proposed method, the “best” k is the smallest value of k ≥ 2 such that

W > zδ, where δ = 0.001 and W is Stouffer’s test statistic given in equation (9).

Figure 7 shows average AMI results obtained from the method given in Perry et al. [6], while Figures

8 and 9 show average AMI results obtained from the proposed method. Table 3 shows corresponding RMI

values for the three methods. General results are similar to the k known case given in the previous subsection

and suggest that the proposed methodology should be considered as an alternative to the method given in

Perry et al. [6], especially when the clusters are less densely connected (i.e., µ > 0.3).

Since the k unknown case is considered here, estimates for the root mean square error (RMSE) of k∗

(i.e., the estimated number of groups) were also obtained from the simulation model over the N = 100 Monte

Carlo runs, and are illustrated graphically in Figures 10, 11, and 12, for the methodology outlined in Perry et
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Figure 4: Average AMI results for methodology in Perry et al. [6] for the case where k is known.
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Figure 5: Average AMI results for proposed methodology using Q1 in equation (4) for the case where k is

known.
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Figure 6: Average AMI results for proposed methodology using Q2 in equation (5) for the case where k is

known.

Table 2: RMI results of AMIs for k known case.

Ave Degree Edges Q1 Q2

8 0.111 0.011 0.001

γ = 2, β = 1 10 0.118 0.018 0.000

12 0.111 0.039 0.000

8 0.129 0.023 0.000

γ = 3, β = 1 10 0.149 0.037 0.000

12 0.153 0.049 0.000

8 0.056 0.001 0.000

γ = 2, β = 2 10 0.086 0.014 0.000

12 0.085 0.034 0.000

8 0.058 0.025 0.000

γ = 3, β = 2 10 0.118 0.030 0.000

12 0.126 0.038 0.000
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Figure 7: Average AMI results for methodology in Perry et al. [6] for the case where k is unknown.
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Figure 8: Average AMI results for proposed methodology using Q1 for the case where k is unknown.
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Figure 9: Average AMI results for proposed methodology using Q2 for the case where k is unknown.

Table 3: RMI results of AMIs for k unknown case.

Ave Degree Edges Q1 Q2

8 0.379 0.060 0.001

γ = 2, β = 1 10 0.298 0.018 0.011

12 0.284 0.012 0.005

8 0.446 0.043 0.000

γ = 3, β = 1 10 0.349 0.031 0.000

12 0.322 0.070 0.000

8 0.351 0.038 0.003

γ = 2, β = 2 10 0.230 0.036 0.003

12 0.210 0.007 0.002

8 0.409 0.038 0.001

γ = 3, β = 2 10 0.312 0.034 0.000

12 0.300 0.083 0.000
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Figure 10: Root mean square estimates for k using methodology in Perry et al. [6].

al. [6], and the proposed methodology with objective functions given by equations (4) and (5), respectively.

Results are quite intuitive as an increase in the RMSEs is observed as the mixing parameter increases, and

a decrease in the RMSE is observed as the degree distribution becomes more homogeneous. Also, there

does not appear to be any evidence that the RMSE performance is significantly affected by the parameters

γ and β; however, more simulation runs may reveal a small effect. The RMIs in Table 4 summarize the

RMSEs across the mixing parameter µ and suggest that the proposed method, using either of the objective

functions given in equations (4) and (5), consistently outperforms the method suggested by Perry et al. [6].

It should be noted that the parameter δ likely has a significant effect on the RMSE of the estimated number

of groups. However, due to the short interval of time allotted for this research effort, and the fact that

primary interest was in relative performance comparisons, it was decided to set δ = 0.001 in the simulations

and leave performance evaluations of the proposed method as a function of δ for future research.

5 Application to Real Networks

In the section the proposed clustering methodology is applied to two real networks, one corresponding to

an approximately homogeneous degree sequence, and the other corresponding to a highly skewed degree

sequence. In particular, the 2012 college Football Bowl Series (FBS) game schedules network will be consid-

ered, as well as the author’s personal Facebook network. The reasoning behind choosing these networks lies

in the fact that the community structure is known, and thus, a meaningful evaluation of our method can

ensue.

5.1 2012 FBS Football Schedule Network

In this subsection the 2012 college Football Bowl Series (FBS) game schedules network is clustered using

the proposed method. In this network, each node denotes an FBS college or university, and if an edge exists

between two nodes, then these two colleges played each other. The network is illustrated in Figure 13, while
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Figure 11: Root mean square estimates for k using proposed methodology with Q1.
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Figure 12: Root mean square estimates for k using proposed methodology with Q2.
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Table 4: RMIs results of RMSEs for three different estimators of k.

Ave Degree Edges Q1 Q2

8 0.807 0.131 0.021

γ = 2, β = 1 10 0.402 0.056 0.014

12 0.416 0.049 0.071

8 0.392 0.014 0.039

γ = 3, β = 1 10 0.302 0.050 0.009

12 0.258 0.065 0.000

8 0.564 0.071 0.010

γ = 2, β = 2 10 0.383 0.095 0.056

12 0.232 0.065 0.117

8 0.358 0.038 0.008

γ = 3, β = 2 10 0.254 0.107 0.016

12 0.216 0.162 0.000

Figure 14 shows a stem plot of of the degree-ordered vertices versus degree. Notice that this network has a

fairly constant degree sequence, and thus the degree distribution is near homogeneous.

The a priori statistical test on the triangle count was highly significant, with Z = 24.5 and corresponding

p-value of practically zero, suggesting an overrepresentation of triangles, and thus, the presence of highly

transitive subgraphs. Note that the actual clusters are known for this network. In particular, there are 11

primary clusters, each representing one of the major conferences in the FBS. Additionally, there are four

“independent” colleges or vertices, namely, Notre Dame, BYU, Army, and Navy. An interesting application

of the proposed clustering algorithm to this network is assessing the strength of schedules for the independent

teams, relative to the other conferences in the FBS. Applying the proposed clustering algorithm to the FBS

network using the objective function given in equation (5) and δ = 0.1 yields the results shown in Figures

15 and 16. Notice that the proposed algorithm correctly identified all 11 conferences, as well as those teams

that belong to those conferences. The “independent” teams were also assigned to a conference, with Notre

Dame assigned to the Big 10, BYU and Navy assigned to the WAC, and Army assigned to the MAC. This

would seem to suggest that these independent teams have strength of schedules on par with the conferences

to which they were assigned.

5.2 Author’s Personal Facebook Network

In this subsection the author’s personal Facebook network is clustered using the proposed framework. This

network is illustrated graphically in Figure 17, and a stem plot of the degree-ordered vertices versus the

degree is shown in Figure 18. Notice that for this network, the degree sequence is much more skewed than

that of the college football network. The a priori test on the triangle count yields Z = 49.7 with a p-value

of practically zero. Since the degree sequence is skewed, a configuration model was also used to perform the

test, where the degree sequence of the observed network was preserved. The test also resulted in a p-value

of practically zero, suggesting the presence of highly transitive subgraphs. Figures 19 and 20 show output

results of the algorithm, where a total of 9 groups were estimated. Notice that group 6 represents a periphery

group, and the other 8 groups consist of tightly knit and highly transitive communities.
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Figure 13: Unclustered FBS 2012 college football schedule network.
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Figure 14: Stem plot of degree-ordered vertices versus the degree for college football network.

21

Distribution A:  Approved for public release; distribution is unlimited.



Figure 15: Output of proposed algorithm implemented in C++ and applied to 2012 FBS college football

network.

Since this is the author’s Facebook network, the true community structure is known and the algorithm

can thus be validated. All of the groups to the left of the red line in Figure 20 are groups of individuals

associated with the author during his childhood and up through high school. All of the groups to the

right of the red line correspond to individuals who became associated with the author through marriage.

Essentially there are three main clusters: “Salvadoran Family”, “Perry Family”, and “High School”, with

smaller peripheral clusters attached to these main groups. The “High School” group was actually split into

two communities, and appears to correspond to a difference in the ages of the individuals. Overall, and

based upon the author’s knowledge of this network, the proposed algorithm appears to correctly cluster

the individuals into the appropriate communities, thus providing more validity in support of the proposed

method.

6 Conclusions

In this effort an algorithm was developed for detecting clusters in undirected networks, where the triangle

motif was used as the basis for forming clusters. It was shown that the likelihood ratio test outlined in Perry

et al. [6] cannot be directly extended to the case of triangles since the vector of triangle counts T is not a

complete sufficient statistic, i.e., it does not contain information about the correlation between Tm’s and Tb.

Therefore, in this effort, an a priori statistical test on the observed triangle count was developed, and was

used as a means for deciding whether one should ensue a clustering exercise. It was also used as a basis for

establishing stopping criteria for the proposed algorithm in the likely case that the number of groups k is

unknown.

Given that sums of dependent Bernoulli random variables can often be well approximated by Poisson

random variables, two different objective functions were proposed, i.e., one based on the Poisson mass

function, and the other based on the negative binomial mass function. For a given observed network density,
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Figure 16: Clustered FBS 2012 college football schedule network.

Figure 17: Unclustered Facebook network.
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Figure 18: Stem plot of degree-ordered vertices versus the degree for Facebook network.

Figure 19: Output of proposed algorithm implemented in C++ and applied to Facebook network.

24

Distribution A:  Approved for public release; distribution is unlimited.



Figure 20: Clustered Facebook network.
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say p̂, the objective is to find the k-group partition that yields the greatest discrepancy between that observed

and that expected if all k groups had density p̂. This was accomplished by minimizing the proposed objective

functions for a given p̂. Using a statistical test for triangle counts, in conjunction with Stouffer’s test, a

stopping criteria for the algorithm was developed so that an estimate for k is made available. Thus, the

resulting partition is one that maximizes discrepancy, such that the k resulting subgraphs can be viewed as

independent Bernoulli graphs. It was shown that this approach appears to work quite well on both synthetic

and real networks.

Monte Carlo simulation was used to assess the expected performance of the proposed algorithm when

applied to the LFR benchmark graphs, and comparisons were made with the methodology outlined in Perry

et al. [6]. General results suggest that clustering on the basis of the triangle motif, as opposed to the simple

edge configuration, seems to yield significantly better clustering performance, especially when the mixing

parameter µ is larger (say, µ ≥ 0.3). Additionally, when the number of groups k is unknown, the proposed

algorithm will produce a smaller RMSE of the estimated k. Finally, the proposed method with either of the

objective functions in equations (4) and (5) will outperform the methodology in Perry et al. [6]; however,

use of the objective function in equation (5) generally achieves the best relative performance for all measures

considered.

The work outlined in this report provides some significant opportunities for future research. One area

involves deriving the exact joint distribution of the vector of triangle counts, T (or at least a reasonable

approximation to this distribution). This could potentially permit the development of an approximate

log-likelihood ratio test on the detected clusters, similar to that given in Perry et al. [6]. Further, the

methodology outlined in this report might be a reasonable approach to clustering directed networks under

particular motifs of interest. For example, one might be interested in partitioning a directed network, such

that resulting groups have strong within-group and weak between-group transitive ties. This is a topic of the

author’s on-going research.
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7 Appendices

A: Mean and Variance of Triangle Count for Bernoulli Graph

Let A denote an n×n adjacency matrix with elements aij ∈ [0, 1] independently sampled from a Bernoulli(p)

distribution for all i < j = 1, ..., n, and define

T =
n−2∑
i=1

n−1∑
j=i+1

n∑
`=j+1

aijai`aj` (10)

as the total number of triangles observed in A. Let C(n) =

(
n

3

)
, then for a given p,

E(T ) = C(n)p3 (11)

and

V ar(T ) = C(n)[(3n− 9)p5 − (3n− 8)p6 + p3]. (12)

Proof. The expected value in equation (11) is straight-forward; thus, I will prove the expression for

the variance in equation (12). Note that in general V ar(T ) = E(T 2)− E(T )2, where

E(T 2) =

n−2∑
i=1

n−1∑
j=i+1

n∑
`=j+1

n−2∑
r=1

n−1∑
s=r+1

n∑
t=s+1

E(aijai`aj`arsartast). (13)

The proof is essentially a counting exercise. Consider the index sets (i, j, `) and (r, s, t) for i < j < ` and

r < s < t, and let R denote a C(n) × C(n) matrix of cross-products of these index sets with elements

{(i, j, `)(r, s, t)}. For example, if n = 4, then the cross-products matrix R is given by

R =


(1, 2, 3)(1, 2, 3) (1, 2, 4)(1, 2, 3) (1, 3, 4)(1, 2, 3) (2, 3, 4)(1, 2, 3)

(1, 2, 3)(1, 2, 4) (1, 2, 4)(1, 2, 4) (1, 3, 4)(1, 2, 4) (2, 3, 4)(1, 2, 4)

(1, 2, 3)(1, 3, 4) (1, 2, 4)(1, 3, 4) (1, 3, 4)(1, 3, 4) (2, 3, 4)(1, 3, 4)

(1, 2, 3)(2, 3, 4) (1, 2, 4)(2, 3, 4) (1, 3, 4)(2, 3, 4) (2, 3, 4)(2, 3, 4)

 . (14)

In general, there are C(n) elements of R that satisfy |(i, j, `)∩ (r, s, t)| = 3 (these are the diagonal elements),

and since each triangle shares an edge with 3n − 9 other triangles, there are C(n)(3n − 9) elements that

satisfy |(i, j, `)∩(r, s, t)| = 2. Lastly, there are C(n) [C(n)− 3n+ 8] elements that satisfy |(i, j, `)∩(r, s, t)| =
0 or 1 (these are triangle pairs that do not share an edge), where the notation | · | denotes set cardinality.

Also, note that

E(aijai`aj`arsartast) =


p6, |(i, j, `) ∩ (r, s, t)| = 0 or 1

p5, |(i, j, `) ∩ (r, s, t)| = 2,

p3, |(i, j, `) ∩ (r, s, t)| = 3,

so that equation (13) can be re-written as

E(T 2) = C(n)
(
[C(n)− 3n+ 8] p6 + (3n− 9)p5 + p3

)
(15)

and after subtracting E(T )2 from equation (15) and simplifying we obtain the expression in equation (12).
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B: Means, Variances and Covariances of Triangle Counts for Par-

titioned Bernoulli Graph

Suppose the vertex set is partitioned into k mutually exclusive groups, then the number of observed triangles

in group m, of size nm, is denoted by Tm and

E(Tm) = C(nm)p3 (16)

and

V ar(Tm) = C(nm)[(3nm − 9)p5 − (3nm − 8)p6 + p3]. (17)

Let Tb = T −
∑k
m=1 Tm denote the number of between group triangles, i.e., the number of triangles observed

between the k groups. Then

E(Tb) =

[
C(n)−

k∑
m=1

C(nm)

]
p3 (18)

where n = n1 + · · ·+ nk and

V ar(Tb) = V ar(T ) +

k∑
m=1

V ar(Tm) + 2
∑
m6=m′

Cov(Tm, Tm′)− 2

k∑
m=1

Cov(T, Tm) (19)

where Cov(Tm, Tm′) = 0 since triangles in group m do not share edges with triangles in group m′ (m 6= m′),

V ar(T ) and V ar(Tm) (m = 1, ..., k) are given in equations (12) and (17), respectively, and Cov(T, Tm) =

E(TTm)− E(T )E(Tm) with

E(TTm) = C(nm) [C(n)− 3n+ 8] p6 + C(nm)(3n− 9)p5 + C(nm)p3. (20)

Using equation (20) one can easily show

Cov(Tm, Tb) = Cov(T, Tm)− V ar(Tm) = 3C(nm)
[
(n− nm)p5(1− p)

]
. (21)

Proof. The proof to equation (20) is similar to the proof of E(T 2). The only difference being that

the matrix of cross products R has dimensions C(n)×C(nm), where nm < n. Notice that there are C(nm)

possible triangles in group m, and each triangle shares an edge with 3n − 9 other triangles. As a result,

C(nm) elements of R satisfy |(i, j, `) ∩ (r, s, t)| = 3, C(nm)(3n − 9) elements satisfy |(i, j, `) ∩ (r, s, t)| = 2,

and the remaining elements, C(nm) [C(n)− 3n+ 8], satisfy |(i, j, `) ∩ (r, s, t)| = 0 or 1. Thus E(TTm) can

be written as given in equation (20).
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